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Abstract

Traditional discrimination methods either provide holistic product difference scores or
focus on specific sensory attributes, often requiring multiple tests to capture both
qualitative and quantitative insights. While aggregate-based analyses like ANOVA can
statistically adjust product comparisons for assessor effects, they do not identify
which individual assessors exhibit problematic rating behaviours, such as using limited
parts of the scales or being too lenient or severe. Obtaining these diagnostic insights to
guide targeted interventions (e.g., retraining or panel refinement) requires separate

analyses that are not integrated into the standard discrimination testing framework.

This research explores the application of a Many-Facet Rasch Model (MFRM) as a
diagnostic and analytical tool in sensory difference testing. MFRM addresses these
challenges by estimating a single latent measure of overall product difference from
combined ratings of multiple attributes, while simultaneously adjusting for individual
differences in scale use. It also offers integrated quality control metrics that support

panel diagnostics and highlight the discriminative value of individual attributes.

Across three studies, trained and untrained panels evaluated the intensity of various
sensory attributes in three different food products. Rasch-derived overall difference
measures aligned closely with results from the Difference-from-Control (DFC) overall
difference test. Wright maps visualised the relative difficulty of perceiving attributes
and the rating tendencies of individual assessors, while fit statistics and residual
analyses revealed the contributions of individual attributes to perceived product
differences and systematic rating patterns. MFRM further identified distinct types of

individual scale-use bias, supporting targeted assessor training.

This study establishes the MFRM as a scalable, more insightful approach for sensory
data analysis, with applications in quality control, product development, and panel
management. Further research is encouraged to explore its utility across broader

sensory and consumer testing contexts.

Keywords: Many-Facet Rasch Model (MFRM), Sensory difference, Attribute
discrimination, Difference-from-Control (DFC), Assessor performance monitoring,

Scale-use bias, Sensory data analysis, Quality control, Product development, ANOVA.
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Chapter1

Introduction

1.1 Background of study

The sensory evaluation of food products plays a critical role in the food industry,
informing product development, quality control, marketing, regulatory compliance,

and consumer satisfaction (Stone et al., 2012; Heymann, 2019; Moskowitz &

Meiselman, 2020). Accurate and reliable product characterisation, through

methods such as descriptive analysis or sensory profiling, and sensory difference
testing, help manufacturers understand how product variations influence

consumer perception and acceptance.

Current difference testing methods involve trade-offs between qualitative and
quantitative insights. For example, triangle tests reveal if products differ overall,
while attribute-specific tests like paired comparison (2-AFC) tests identify which
product differs with respect to a single attribute (e.g., sweetness). These
approaches provide qualitative information about the existence of differences but
not their magnitude. In contrast, the Difference-from-Control (DFC) test quantifies
the overall magnitude of difference between products but does not indicate which
attributes are responsible. As a result, multiple tests and statistical analyses are

often required to gather both qualitative and quantitative insights, (Rogers, 2017;

Higgins & Hayes, 2020), making the process time-consuming and resource-

intensive.

Attribute Rating (AR) tests on the other hand, typically part of descriptive analysis
enable the simultaneous rating of multiple attributes. However, interpreting overall
product differences from AR data requires complex multivariate analysis.
Moreover, these methods rely on extensively trained panels, which are costly to
maintain since they must remain motivated and consistently calibrated to rating

scales over time (Raithatha & Rogers, 2018; Moskowitz & Meiselman, 2020;

Meilgaard et al., 2025).

Analysing sensory data presents further challenges related to reliability and validity

(Kemp et al., 2018). Because panel ratings are typically aggregated, it is difficult to
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estimate the true differences between samples without confounding effects from
individual assessor variability, an issue that even rigorous training cannot fully

eliminate (Naes, 1990; Romano et al., 2008). Statistical models such as Analysis of

Variance (ANOVA) are used to account for these effects, but they rely on
assumptions that may not always hold, and they can still be influenced by

inconsistent rating styles.

Monitoring assessor performance is essential for identifying individuals whose
responses deviate from panel expectations and determining when additional
training or removal from the panel is necessary. Individual-level analyses, such as
assessor-specific ANOVAs, are often used to evaluate panel performance.
However, these approaches rely on aggregated data (e.g., mean scores across
replicates), which can obscure subtle inconsistencies in rating behaviour or
individual variability. In practice, effective monitoring often depends heavily on the
expertise of the panel leader in recognising these deviations and implementing
corrective actions. Detecting inconsistencies can require multiple layers of
analysis and visualisation, which may be time-consuming and slow decision-

making in commercial environments (Raithatha & Rogers, 2018), despite the

availability of sensory analysis software to automate parts of the process (Fuentes

etal., 2021; Sipos et al., 2021).

Beyond monitoring, addressing individual differences in sensory responses during data
analysis presents additional challenges. Although some studies have proposed
methods to account for these differences, such as adjusting for overall scale use

through the assessor model (Romano et al.,, 2008) or evaluating consumer

inconsistency using Kendall’s rank correlation coefficient between paired scales

(Sipos et al., 2025) these approaches still involve multiple analytical steps.

Collectively, these challenges underscore a need for analytical techniques that can
efficiently integrate product differentiation with attribute diagnostics and panel
performance monitoring within a single analytical framework. Addressing this need
could streamline sensory workflows, reduce analytical costs, and provide more

actionable insights for product developers, quality managers, and panel leaders.

This study explores the application of Rasch analysis, a psychometric modelling

approach that analyses data based on individual response patterns (Bond et al.,
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2020), in sensory difference testing. Rasch analysis offers the potential to unify
intensity ratings across multiple sensory attributes into a single latent measure of
overall difference, while simultaneously providing diagnostic insights into attribute
contributions and assessor reliability within a unified framework. In this study,
intensity ratings were collected for multiple sensory attributes across a range of
product samples. These attribute ratings were then combined into an overall
difference measure and compared with holistic Difference-from-Control (DFC)

scores. Panel performance was assessed concurrently through the Rasch model.

1.2 Research hypothesis

Hypothesis 1:

Rasch analysis of intensity ratings for multiple sensory attributes can provide a
comprehensive estimate of the overall difference between food product samples,
based on the ratings provided by the panel, and enable identification of the

attributes that contribute most to these differences.

Rationale:

Rasch models combine multiple observable items (e.g., test questions) to estimate
unobservable latent variables (e.g., mathematical ability). When applied to sensory
evaluation, the model can combine intensity ratings of multiple sensory attributes
(e.g., sweetness or sponginess) to derive a single latent measure representing the
overall difference between products. This approach enables (i) the detection of
whether a significant difference exists between samples, (ii) quantifies the
magnitude of difference if one exists, and (iii) determines the relative contribution
of individual attributes to the perceived differences, all based on the panel ratings
from a single sensory test. In contrast to conventional approaches, which often rely
on multiple separate tests and analyses, Rasch analysis provides a more

streamlined, cost effective, and diagnostic tool for sensory analysts.

Hypothesis 2
Using Rasch analysis to monitor assessor performance enables earlier identification
of assessors needing additional training, thereby reducing overall training time and

resources.



Rationale:

Rasch models inherently account for individual differences in rating tendencies
(e.g., severity or leniency) and include diagnostic tools such as residual fit statistics
(e.g. outfit mean square) and Wright maps that visualise the overall structure of the
data. These features enable individualised evaluation of assessor performance and
consistency relative to the panel expectations. This approach allows for a rapid
overview of individual assessor performance and offers insights to support early
and targeted training interventions, all within the same integrated analysis used to
evaluate overall product differences (as described in Hypothesis 1). As a result, it
has the potential to reduce both training time and resource demands. In
comparison, conventional approaches do not adjust forindividual rating behaviour.
Instead, they emphasise rigorous training to standardise assessors as objective
rating instruments and depend on multiple separate analyses to evaluate

performance.

1.3 Research aims

This study explores the potential of Rasch analysis to provide a streamlined,
integrated diagnostic framework for sensory difference testing, enabling
simultaneous evaluation of overall product differences and individual assessor

reliability.
The specific objectives are:

1. To demonstrate the use of Rasch analysis in estimating an overall difference
(latent variable) between food product samples from a combination of sensory

attribute intensity ratings.
= Collect sensory data using the Difference-from-Control (DFC) test method.

= Collect attribute intensity ratings for multiple sensory attributes on the same

food samples and using the same group of assessors.
= Compare the DFC-derived overall difference results with Rasch-generated

measures of the Overall Difference as a latent variable.

2. To demonstrate how Rasch model quality control features can be used to

assess the reliability of assessors as objective measurement instruments.
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= Evaluate individual assessor performance using Rasch-based diagnostics,

such as fit statistics and Wright maps.

= |dentify assessors whose ratings deviate from panel expectations to inform

potential retraining.

3. To assess the reproducibility of the proposed method in a new context using an

integrated approach.

= A validation study conducted to assess both assessor performance and
overall product differences within a single Rasch analysis, applied in a
context that closely reflects practical conditions found in food production

settings.

1.4 Thesis structure

This thesis consists of seven chapters, and a brief overview of the chapters

following Chapter 1 (this introductory chapter) is provided below.

Chapter 2 reviews the literature on sensory difference testing methods, highlighting
the role of humans as measuring instruments and the challenges posed by
individual variability. It then introduces Rasch models, illustrating their current

applications and their potential relevance to sensory quality control.

Chapter 3 outlines the general methodologies used in this study for Rasch and
statistical analysis. It explains how Rasch measurement approaches are applied

across three research themes, which will be discussed in Chapters 4 to 6.

Chapters 4 to 6 outline the specific sensory methodologies used in the three sub-
studies, and present the results and discussions for each, exploring the different
applications of Rasch analysis in sensory difference testing and quality control.

Specifically:

Chapter 4 focuses on using the Many-Facet Rasch Model (MFRM) to measure the
overall difference between samples through a holistic Rasch measure, termed the
Total Intensity Measure (TIM). TIM is estimated for each sample based on a
combination of intensity ratings from five sensory attributes. Sensory attribute

ratings and Difference from Control (DFC) ratings of Jaffa cakes were used for the
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study, and the results from TIM were compared to those from DFC. Additionally, the
chapter discusses how Rasch quality control statistics provide deeper insights into
the contribution of each attribute to the overall difference latent variable, as well as
how easy or challenging it was for the panel to evaluate an attribute, highlighting the

added benefits of the TIM method over traditional overall difference methods.

Chapter 5 focuses on monitoring assessor and panel performance using the MFRM
approach. It compares trained and untrained panels based on their sensory
attribute ratings on chocolate spreads. Results from Rasch quality control statistics
were compared with those from ANOVA-based methods, alongside response
distribution plots of individual ratings for each attribute. Based on the insights from
the analysis, a subset of better-performing untrained assessors was identified and

compared with the trained panel.

Chapter 6 demonstrates how a Rasch approach can streamline sensory quality
programmes. In summary, the Total Intensity Measure (TIM) was used to assess the
overall difference between tomato soup samples based on a combination of
eighteen sensory attributes, while also providing insights into each attribute’s
contribution to the overall difference latent variable, and which of the attributes
were easy or challenging to evaluate. Within the same analysis, Rasch quality
control statistics were also used to monitor assessor performance and identify
areas for targeted training. A subset of the most consistent assessors, as identified
by the model, was then selected to run the study, demonstrating how the Rasch
approach can aid assessor selection and guide targeted training. The TIM overall
difference results were compared with those from the Difference from Control
(DFC) test on the same samples to validate the findings while addressing limitations

identified in the previous chapters.

Chapter 7 summarises the key findings of the thesis and their implications,
concluding with recommendations for areas where future research could build on

the research findings.
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Chapter 2

Literature Review

2.1 Overview of Sensory evaluation

The field of sensory science and consumer research has evolved over the decades
through interrelated generations of scientific work. Foundational contributions
from academic figures such as Rose Marie Pangborn and Maynard Amerine, along
with the growth of the food industry after World War Il, particularly in sectors like

wine and brewing, have shaped its trajectory. Shapin (2016), Lahne and Spackman

(2018) and Moskowitz and Meiselman (2020) provide detailed historical accounts

of this evolution, complemented by a more personal narrative in Heymann (2019)

and an account of developments and ongoing challenges in the field by Meiselman

et al. (2022).

Sensory evaluation, as originally defined by the Institute of Food Technologists (IFT),

Chicago in 1975 (Heymann, 2019), refers to the scientific methods used to evoke,

measure, analyse and interpret human responses to the properties of foods as
perceived by the human senses including taste, smell, touch, sight, and hearing.
This definition was later expanded to include the role of the trigeminal nerves, which

contribute to sensations such as heat, cooling, and irritation (Lawless & Heymann,

2010; Stone et al., 2012).

In recent times the field has become increasingly interdisciplinary and is now
applied across a broad range of consumer products beyond the food industry

(Kemp et al., 2018; Heymann, 2019; Meiselman et al., 2022; Jaeger et al., 2025;

Meilgaard et al., 2025). These include, pharmaceuticals (Mohamed-Ahmed et al.,

2016; Guedes et al., 2021; Clapham et al., 2023), personal and household care

products (Sanderson & Hollowood, 2017; Deubler et al., 2022; Turek & Kowalska,

2024), automobiles (Poirson et al., 2010; Verriele et al., 2012; Othman et al., 2021;
Fuchs et al., 2022), fashion & textiles (Ghalachyan et al., 2024; Uren, 2024), and

even pet foods evaluated using animal assessors (Li et al., 2018; Lema Almeida et

al., 2022; Rogues et al., 2022; Calderén et al., 2024; Le Guillas et al., 2024).
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Sensory evaluation of foods supports a wide range of industrial applications,
including product optimisation, shelf-life and stability testing, quality control,
market audits, benchmarking, and substantiating legal or advertising claims (Stone

et al., 2012). It aims to derive objective insights from inherently subjective human

perceptions, providing essential guidance for commercial decision-making. Guided

by seminal foundational texts, cited here in their latest editions (Amerine et al.,

1965; Munoz et al., 1992; Lawless & Heymann, 2010; Nees et al., 2010; Stone et al.,

2020; Meilgaard et al., 2025), sensory evaluation methods have been developed

and refined to reflect current best practices. These methods apply principles of
experimental design and statistical analysis, enabling sensory professionals to
make valid inferences and generate actionable insights about food products.
Sensory test methods are broadly classified as objective or subjective. Objective
methods aim to characterise the sensory attributes of products and typically rely
on trained or expert panels; these include discrimination and descriptive tests.
Subjective methods assess how product changes affect consumer perception and
generally involve larger panels of untrained assessors or consumers, such as in

preference and acceptance tests. Marques et al. (2022) provides a comprehensive

review of both classical and emerging sensory evaluation methodologies within the

food and beverage industry.

2.2 Sensory evaluation in quality control

According to Meilgaard et al. (2025), “sensory quality” refers to the procedures
implemented to ensure that products leaving a manufacturing facility meet
established design parameters and consumer expectations regarding sensory
attributes. It encompasses both proactive sensory quality assurance, aimed at
preventing defects, and reactive sensory quality control, which focuses on
identifying and correcting them. In sensory quality programmes, the product-

oriented methods i.e. discrimination and descriptive tests are typically employed.

Several researchers (Mufioz et al., 1992; Costell, 2002; Mufioz, 2002; Rogers, 2017;

Meiselman et al., 2022; Meilgaard et al., 2025) have identified discrimination tests

such as the “In Out” and Difference from Control (DFC) methods, along with

attribute descriptive tests, as effective approaches in this context.



2.2.1 Discrimination Tests

Discrimination tests are one of the key product-oriented sensory methods used in
quality control programmes, as mentioned earlier. They aim to evaluate whether
perceptible differences exists between two or more products and have been

classified into overall and attribute-specific tests (Lawless & Heymann, 2010; Bi,

2015; Rogers, 2017; Meilgaard et al., 2025), depending on whether the test specifies

the nature of the difference in advance. These methods are also referred to as

“Unspecified and Specified” difference methods (Amerine et al., 1965; Bi, 2015) or

“Non-directional and Directional” discrimination methods (Lawless & Heymann,

2010) respectively.

Overall difference tests require assessors to identify if a sample among a set differs

from the others, without specifying the attribute of interest. These include:

= Triangle test: Identify the odd sample out from three samples (two identical,

one different).

= Tetrad test: Evaluate the four samples and group them into two groups of two

based on similarity.

= Duo-Trio test: Identify which of two coded samples matches a known

reference.

= Two-Out-of-Five test: Out of the five samples presented, three are of one kind
and two are of another. Identify the two samples that are different from the other

three.

= Same-Different/simple difference test: Judge whether two samples are the

same or different.

= Difference-from-control (DFC): Rate how much a test sample differs from a

control or reference sample on a specified rating scale.

Attribute-specific tests focus the attention of assessors on a particular sensory

characteristic, ignoring other differences. These include as examples:
= Paired comparison, 2-AFC: which of the samples is sweeter?

= Alternative forced choice methods (3-AFC, 4-AFC): which of the samples is

the sweetest?
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= A-NOTA: interms of saltiness, is this sample the same as Aor Not A? The In-Out
test is a variation of the A-NOT A method, in which assessors classify samples
as either within or outside the acceptable range of variation defined by a target

product (Mufioz, 2002; Meilgaard et al., 2025).

= Rank test: Rank this samples in order of increasing intensity of an attribute

(sweetness, saltiness, etc).

= Attribute rating test: Rate the samples on a specified scale according to the

intensity of an attribute (sweetness, saltiness, etc).

Overall difference tests rely on a holistic comparison strategy, require relatively
minimal training, and do not indicate which specific sensory attributes differ.
Attribute-specific tests, on the other hand, focus on a single attribute but demand
greater cognitive effort, adequate sensitivity to that attribute, and often additional

assessor training.

Detailed test procedures for each test are provided in several texts including

(Lawless & Heymann, 2010; Stone et al., 2012; Rogers, 2017; Meilgaard et al., 2025).

Depending on the objective, the goal of most discrimination tests (except for
ranking and rating tests) may be to demonstrate that products differ (difference
testing), or to establish that they are similar enough to be used interchangeably
(similarity testing). In similarity testing, the same test designs are used, but the
statistical hypotheses are reversed to determine whether any sensory differences
are small enough to be regarded as negligible. In some cases, such as with the DFC
test, the goal extends to quantifying the magnitude of difference, providing more

actionable insights beyond simple binary responses.

The DFC test, originally introduced by (Aust et al., 1985) as the Degree of Difference

(DoD) test, is valued for its simplicity and unique ability to capture not only the
presence of a perceptible difference but also the magnitude of that difference
relative to a control sample. This sets it apart from tests like the Triangle and Duo-
Trio, which only produce binary outcomes, and is particularly useful for tracking

batch-to-batch variation in heterogeneous products.

However, while these methods can identify whether a perceptible difference exists,

they do not provide insight into why products differ in terms of attributes. Attribute-
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specific tests, for instance, indicate the presence of a difference in only a single
attribute but neither quantify the magnitude of that difference nor capture multiple
contributing factors, unless separate tests are conducted per attribute. In contrast,
the DFC test offers a quantitative measure of the magnitude of perceived
differences but still does not reveal the specific sensory attributes responsible for

those differences.

To address this limitation, several studies have explored combining the DFC test
with additional qualitative methods. Rogers (2017) suggests including a comment
section to capture assessor perceptions of what might be causing the differences.

Compusense (2020), a white paper on quality control using the DFC test, suggested

incorporating check-all-that-apply (CATA) follow-up questionnaires to improve

manufacturers’ chances of identifying product faults. Similarly, Higgins and Hayes

(2020) combined CATA questions with an open-ended comment box to further

characterise differences in beer samples.

Despite these enhancements, the resulting attribute insights remain qualitative,
providing only basic information about the presence or absence of certain
attributes. Although statistical tests such as the Cochran’s Q can be applied to the
CATA responses to determine which attributes are selected significantly more

frequently across samples (Meyners et al., 2013; Meyners & Hasted, 2021), thereby

identifying attributes that likely differ between products, this approach remains
fundamentally frequency-based. It does not directly measure the intensity or the
relative contribution of individual attributes to the overall perceived difference,

highlighting a gap that warrants further methodological development.

2.2.2 Attribute Rating (AR) Tests / Descriptive analysis

According to Munoz et al. (1992), Attribute Rating (AR) tests, are one of the most

powerful tools for assessing the sensory quality of products. They are central to
descriptive analysis or sensory profiling methods, enabling the quantification of
specific sensory characteristics using intensity rating scales. Over time, the
development of descriptive analysis has reflected a continuous effort to overcome
limitations in panel reliability, objectivity, and comparability across time and

products. The major methods in this category illustrate this progression:
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The Flavour profile™ method (Caul, 1957) was one of the earliest techniques. It

used a consensus-based approach, where assessors discussed and agreed on
the description and intensity of aroma, flavour, and aftertaste. However, its
reliance on panel consensus limited reproducibility and masked individual
variability in perception, which posed challenges for statistical analysis and

scalability.

In response, Quantitative Descriptive Analysis (QDA™) was developed in 1974

(Stone et al., 2004). This method shifted from group consensus on attribute

intensities to independent evaluation, training each assessor to rate the
consensus-generated sensory attributes individually on unstructured line
scales. This improved statistical robustness and allowed for more objective
data collection. However, the method lacked standardised reference points,

leading to potential inconsistencies between panels and over time.

As a refinement to both the Flavour profile™ and the QDA™, the Spectrum™
method developed by Gail Vance Civille and officially named “Spectrum

Descriptive Analysis” in 1986 (Civille & Osdoba, 2020; Meilgaard et al., 2025),

introduced anchored rating scales based on physical and conceptual reference
standards. This ensured improved calibration and consistency, making it
especially suitable for long-term product tracking and cross-laboratory
comparisons. Spectrum retains the independent evaluation of QDA but adds

rigor through standardised training and reference materials.

This evolution reflects a deliberate shift toward methods that balance individual
sensitivity, panel consistency, and data reproducibility, each stage refining the
scientific reliability of sensory measurement for quality control and product
development. Among these, Quantitative Descriptive Analysis (QDA) and the

Spectrum method are widely used in industrial practice (Meiselman et al., 2022) for

their structured approaches, which promote consistency, comparability, and

reliable interpretation of sensory data.

In sensory quality programs, these methods focus on identifying critical sensory

attributes, those known to introduce variability within a product (Mufioz et al., 1992;

Meilgaard et al., 2025). Consumer acceptance data are used to establish sensory
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specifications and define acceptable limits for these attributes, ensuring the

product consistently meets consumer expectations.

Highly trained or expert panels are essential for this approach, which makes the
method resource intensive. Assessors must generate a sensory lexicon (a
standardised vocabulary of relevant attributes), undergo extensive training and
calibration to ensure that the rating scales are used uniformly, and maintain

consistency through ongoing performance checks (Raithatha & Rogers, 2018;

Meilgaard et al.,, 2025). As such, while descriptive profiling provides rich

quantitative data for decision-making, it can be time-consuming and costly due to

its complexity and reliance on skilled personnel (Nees, 1990; Ares, 2015; Raithatha

& Rogers, 2018; Moskowitz & Meiselman, 2020; Torrico et al., 2023; Meilgaard et al.,

2025).

To accelerate product development and deliver innovations that meet consumer
expectations with minimal training, rapid sensory profiling methods emerged in the

2000s.

= Flash Profiling (FP) (Delarue & Sieffermann, 2004) allows assessors to generate

their own descriptive terms and rank products based on the perceived intensity
of these attributes.

= Napping® (Pages, 2005) and Sorted Napping (Pages et al., 2010), are projective

mapping techniques in which assessors place products on a 2D surface based
on perceived similarities; the latter adds a grouping step for similar items.

= Polarised Sensory Positioning (PSP) (Teillet et al., 2010) where assessors

compare test products to a small set of selected reference products (poles),
and rate how similar or different each product is to each pole. This results in a
holistic, perceptual map that visualises the overall sensory relationships among

all products and poles.

= Check-All-That-Apply (CATA) (Ares et al., 2010), presents assessors with a
predefined list of sensory attributes, from which they check all the attributes

perceived in the product being evaluated.

Time-dependent methods were also developed to capture dynamic sensory

perception.
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= Temporal Dominance of Sensations (TDS) (Pineau et al., 2009) requires

assessors to continuously select the most dominant sensory attribute over
time.

= Temporal Check-All-That-Apply (TCATA) (Castura et al., 2016) an evolution of

the CATA but similar to the TDS requires assessors to check all attributes that
apply to the product at different points in time instead of the most dominant

attribute.

Of all the rapid methods, CATA has become the most widely applied (Jaeger et al.,
2015; Vidal et al., 2018; Ruiz-Capillas & Herrero, 2021; Kim et al., 2023) due to its

simplicity and consumer-centric approach. However, because it does not capture

intensity data, extensions like the Rate-All-That-Apply (RATA) (Ares et al., 2014)

were developed.

= RATAcenables untrained assessors or consumer panels to rate the intensities of
only the sensory attributes they perceive to be present in the samples based on
a predefined list of sensory descriptors, offering a practical yet quantitative
alternative to traditional profiling. It has been shown to improve product

discrimination compared to CATA (Ares et al., 2014; Reinbach et al., 2014).

Despite the growing interest in rapid methods, attribute rating tests have remained
essential in sensory quality control. Another of their key advantage over the
Difference-from-Control (DFC) test is that samples are assessed independently,
without requiring comparison to a reference. This makes them less cognitively
demanding for assessors and reduces fatigue, particularly when a large number of
samples must be evaluated. In contrast, DFC tests, although useful for quantifying
overall product difference, can be resource-intensive, especially when multiple
products are involved. Even when test sessions are spread out over time, they often

require a greater time commitment from both assessors and researchers.

Recent methods like RATA have increased the accessibility and consumer
relevance of sensory profiling and attribute rating tests, but trade-offs remain.
Attribute rating provides detailed quantitative data on individual attributes but does
not directly measure overall product difference. Instead, overall differences must
be inferred through multivariate analysis, which can add complexity to result

interpretation. In contrast, DFC tests capture overall product differences but
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require additional tests to identify the key sensory drivers. This highlights the
ongoing need for an integrated approach that reliably and efficiently captures both
overall product differences and the contributions of individual attributes in a

reliable, interpretable, and efficient manner.

2.3 Measuring responses in sensory evaluation

At the core of all sensory testing methods is an unavoidable challenge, which is the
inherent variability of the human sensory system. Regardless of the evaluation
method used, the data collected must remain reliable and interpretable, even
though humans serve as the measuring instruments. As the link between technical
product development and market realities, the sensory analyst plays a critical role
in ensuring that product changes are accurately measured and that findings are

translated into insights that reflect real consumer experiences and expectations.

2.3.1 Humans as measuring instruments

A defining feature of all sensory evaluation methods is the use of humans,
commonly referred to as subjects, assessors, panellists, judges, raters,
participants, or tasters, or a group of humans known collectively as a “sensory

panel” (ISO 8586:2023 - British Standards Institution (2023)), as the measuring

instruments. Unlike mechanical or digital devices, humanresponses are influenced
by a range of internal and external variables, making individual variability inherent
to sensory science. This variability stems from differences in past experiences,

sensory acuity, health status, and contextual factors (Stone et al., 2012; Meilgaard

et al., 2025), as well as from genetic differences in taste receptor genes that create

fundamentally different sensory experiences across individuals (Bartoshuk et al.,

2005; Feeney etal., 2011). These sources of variability contribute to inconsistencies

and background noise in sensory data, making the assessment and management

of panel performance a key focus in sensory evaluation (Sipos et al., 2021).

Even with rigorous training, assessors vary not only from each other but also within

themselves over time Nees et al. (2010); Stone et al. (2012); and Sipos et al. (2021).

This inherent variability highlights the importance of well-designed testing protocols,
assessor calibration, and appropriate statistical tools to reduce noise and support

valid interpretations. Such fluctuations in perception beyond differences in the



16

products themselves are an accepted and inherent part of sensory evaluation

(Meilgaard et al., 2025).

2.3.2 Individual differences in sensory evaluation

The factors contributing to individual variation and response bias in sensory
evaluation, summarised in Table 2.1, are broadly classified as intrinsic (inherent to
the individual) and extrinsic (external factors contributing to response bias).
Intrinsic factors influence how individuals perceive and interpret sensory stimuli
and often persist despite training. Extrinsic factors, by contrast, stem from the
testing environment or methodology, such as sample presentation, location, and

questionnaire design, and are generally easier to control through clear protocols.

Both types of factors have significant implications for the design of sensory tests
and the interpretation of results. Minimising their impact is essential for obtaining
valid and reliable data. Current approaches to address these include assessor
training and calibration to the rating scale, addressing common sources of bias in
sample handling, environmental conditions, and test instructions, and using well-

structured experimental designs with randomised and balanced presentation

(Lawless & Heymann, 2010; Kemp et al., 2018; Meilgaard et al., 2025).

In the wake of increasing globalisation and the post-COVID-19 era, certain factors
influencing sensory response have gained prominence, particularly cultural

considerations and the influence of contextual testing environments.

Cultural differences can significantly affect how rating scales are used and how
assessors interpret the meaning, importance, and intensity of sensory attributes

(Lee & Lopetcharat, 2017; Yang & Lee, 2019; Dupas de Matos et al., 2025). As a

result, cultural sensitivity has become crucial in the design of questionnaires and
rating scales. A global approach to sensory research is encouraged, with growing
emphasis on ethicalrelevance and cultural adaptability to ensure that methods and

conclusions remain valid across diverse populations (Mufioz, 2002; Meiselman et

al., 2022; Hort, 2024).




Table 2.1. Common sources of individual variation and response bias in sensory evaluation

INTRINSIC FACTORS (Inherent to individuals)

Factors

Relevance

Age

Cognitive ability

Experience

Genetic predisposition

Health variations

Sensory acuity

Biological sex

As individuals age, there is a natural decline in the number and function of taste buds and olfactory receptors, leading to
diminished taste and smell sensitivity; while children often have heightened sensory sensitivity compared to adults
(Guinard, 2000; Issanchou, 2015)

Cognitive traits like attention span, learning ability, and memory capacity can influence sensory judgements especially in
tests that require mental recalls of stimuli like the Two-Out-of-Five Test (Meilgaard et al., 2025).

An individual’s background including culture, environment, knowledge, and skills affects sensory perception. For example,
cultural differences influence culinary experiences and expectations of how food should taste (Ares, 2018).

Genetic differences influence sensory perception (Feeney et al., 2021), as seen in classifications such as supertasters,
medium tasters, or non-tasters of phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP) (Bartoshuk, 1979).

Health conditions can impair sensory perception, such as anosmia (complete loss of smell), parosmia (distorted sense of
smell), ageusia (complete loss of taste), or dysgeusia (altered taste) (Parker et al., 2022; The John Hopkins University

Hospital, 2023)

Individuals vary in their sensitivity to different stimuli. Threshold detection tests are commonly used to screen sensory
assessors for acuity. The lowest concentration of a stimulus detectable is called the absolute threshold, while the highest
concentration perceivable is the limit of detection (Breslin, 1996; Lawless & Heymann, 2010)

This has been shown to affect sensory capabilities due to hormonal differences and a higher density of taste papillae
(Bartoshuk et al., 1994). Research indicates that women generally possess a more acute sense of smell and taste compared
to men (Doty & Cameron, 2009).

LL



EXTRINSIC FACTORS (External influences)

Factors

Relevance

Environmental context and
test conditions

Physiological Influences

Psychological bias

= Dumping effect

= Expectation error

= Habituation error

= Halo effect

These include consistency of sample presentation, testing locations, test site setup, ambience of the sensory room and
surroundings, carefully designed text questionnaire, etc. British Standards Institution (2019) describes the general guidance
for the design of test rooms for sensory evaluation.

These include adaptation or mental fatigue (a decrease or change in sensitivity to a stimulus due to continued exposure),
flavour carry-over effects (when test samples possess strong, lingering flavours) or cross-potentiation (where, for
instance tasting a sweet sample first heightens the sensitivity to sweetness and results in a higher rating for bitterness in a
subsequent bitter sample) (Meilgaard et al., 2025).

These are the most common sources of bias and refer to systematic mental shortcuts not due to sensory acuity but rather
due to external influence on cognitive processes leading to inaccurate ratings and deviations from objective product
assessments (Torrico et al., 2023). Common effects (Lawless & Heymann, 2010; Stone et al., 2012; Kemp et al., 2018;
Meilgaard et al., 2025) include:

Where assessors assign intensity ratings for perceived but unlisted attributes to a listed attribute instead, effectively
inflating that attribute’s rating.

Prior knowledge about the sample, acquired before or during testing, can influence perception due to preconceived
expectations.

A tendency to continue giving the same response when the series of test samples presented over time possess gradually
increasing or decreasing stimuli.

Where the general impression of a product, or the rating for one (dominant) attribute, influences the ratings for other
unrelated attributes when multiple attributes are assessed simultaneously.

8l



When assessors associate several sample characteristics in their minds, like relating green coloured juices with a vegetable

= | ogical error ]
or bitter flavour.

= Stimulus error Where assessor verdicts are influenced by irrelevant characteristics of the sample itself or its presentation.

Where assessor responses are influenced by other assessors’ reactions to the product, either through verbal or facial

= Mutual suggestion i
expressions.

= [ ack of motivation Where assessors are not adequately engaged, interested, or committed to the task of accurately assessing samples.

Short-term physical states such as taking medications, smoking, ill health, consuming strongly flavoured food or beverages,

= Physical condition . . . . .
or wearing strong perfumes can influence the perception of stimuli.

This is a major source of response bias and can manifest in several ways. Presenting a good quality sample just before a
poor one may lead to a lower rating for the second sample, and vice versa (contrast effect). A good sample presented

= Presentation order among poor ones may receive a lower rating than if presented alone (group effect). Presenting samples in a particular
sequence can lead assessors to anticipate the next sample (pattern effect). Assessor attitude may also change over time, o
with greater anticipation for the first sample and eventual indifference or fatigue toward the last samples (time-error bias).

This refers to systematic differences in the way assessors use rating scales not reflecting their actual sensory experiences.
Scale-use bias Differences arise not from the product perception itself but from how individuals choose to express what they perceive.
Common forms (Naes, 1990; Myford & Wolfe, 2003; Romano et al., 2008; Kemp et al., 2018; Heymann, 2019) include:

= | evel effect When assessors consistently rate products higher (leniency) or lower (severity) on the scale than others.

Where assessors restrict their ratings to a narrow portion of the scale (restriction of range), reducing the scale’s sensitivity

= Scaling effect to differences. Central tendency is a specific case where extreme categories are avoided and responses cluster around
the midpoint.
= Extreme response Where some assessors use the ends of the scale more than necessary, exaggerating differences.

= Variability effect Refers to the internal consistency of assessors when rating repeated evaluations of the same sample.
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Environmental context is another evolving area of interest. Home Use Tests (HUTs)
have grown in popularity due to their potential to enhance ecological validity by

allowing product evaluations in familiar, real-life settings (Niimi et al., 2022; Torrico

et al., 2023). However, HUTs present challenges such as distractions and lack of
control over serving conditions, which may compromise data consistency and

reliability (Torrico et al., 2020; Giezenaar & Hort, 2021). In contrast, Central

Location Tests (CLTs) typically conducted in sensory booths, provide better
control and reduce variability but may introduce response bias, as the artificial

setting can influence assessor behaviour (Boutrolle et al., 2007; Hannum et al.,

2019).

To bridge these gaps, immersive technologies are being employed to simulate real-
life consumption contexts within controlled environments. These include Virtual
Reality (VR), which uses head-mounted displays to present contextual settings

(Torrico et al., 2020; Yang et al., 2022); Augmented Reality (AR), which overlays

digital elements such as decorations or a certain ambience within the real-world

booth via AR glasses, tablets, or smartphones (Dong et al., 2021); and digital

immersion, where the physical testing space is enhanced using 360° projection

screens, surround sound, and even scent delivery to recreate realistic

environments, and include setups like immersive walls (Hannum et al., 2019) and

fully immersive rooms (Sinesio et al., 2019; Worch et al., 2020; Lichters et al.,

2021). These approaches allow for context-relevant testing, without compromising
experimental control. Comprehensive reviews of these technologies are available

in Fuentes et al. (2021), Giezenaar and Hort (2021), Chai et al. (2022), Torrico et al.

(2023) ENREF 76, and Cosme et al. (2025).

Notably, most research to date has focused on the use of these technologies in
affective, consumer-oriented testing, rather than product-focused analytical tests
typically used within sensory quality programmes. However, enhancing ecological
validity could also support product characterisation, particularly during product
development, where understanding product performance in realistic contexts is

essential (Ares & Varela, 2017).

Despite advances in sensory methods, critical challenges remain, particularly

individualvariability and response bias linked to the use of rating scales (Ares, 2018;
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Hannum et al., 2019). Tomic et al. (2010) further highlight issues with evaluating
panel proficiency i.e., the ability of multiple sensory panels to consistently and
accurately evaluate products, across different geographical or global locations.
Such inconsistencies can undermine the comparability and harmonisation of
results, which are crucial forinformed product development. These issues continue
to affect the precision and interpretability of sensory data, especially as testing
shifts toward more naturalistic settings and diverse consumer populations.

Overcoming them requires sophisticated analytical techniques that can distinguish

true product differences from variation caused by assessors (Romano et al., 2008)
or contextual factors, thereby enhancing the robustness of sensory evaluations and

producing results that better reflect real-world consumer perceptions.

2.4 Some considerations in sensory evaluation for quality control

There has been ongoing debate about the use of trained or untrained panels for
sensory quality assessment of products, especially with regards to obtaining
relevant and representative results that align with consumer expectations

(Meiselman, 2013; Ares & Varela, 2017; Moskowitz, 2017). Also, concerns regarding

the reliability and validity of results derived from sensory panel assessments

continue to be a significant issue within the industry (Raithatha & Rogers, 2018).

2.4.1 The Trained - Untrained panel spectrum

Traditionally, sensory panels have been clearly divided into two categories: trained
panels, often treated as analytical instruments, functioning like machines and
expected to provide predictable and repeatable data without the influence of
personal preference; and consumer panels, valued for their subjective judgements
that reflect real world consumer experiences and are usually based on liking and
emotional response rather than objective analysis. The two types of panels have

typically been kept separate (Meiselman, 2013; Ares & Varela, 2017).

According to ISO 8586:2023 - British Standards Institution (2023), trained

assessors are screened for sensory acuity relevant to the attributes under
evaluation, trained in specific sensory methods (or multiple methods), and
maintained over time through follow-up training and validation involving practice

with product attributes and rating scales. With continued experience and



22

demonstrated sensitivity, these individuals become expert sensory assessors,
capable of delivering consistent, repeatable sensory assessments across various

products.

Outside of this classification are untrained assessors, who could be naive
assessors with no prior sensory evaluation experience, as well as initiated or
experienced assessors who may have some exposure to sensory testing methods
but lack formal training. Somewhere between these groups are “semi-trained”
assessors, typically industry employees or co-workers who have received some
familiarisation with the products and methods but lack the extensive training of a
trained panel. This group appears to have evolved as a practical compromise in

contexts where time and resources are limited.

Since Meiselman’s decade-long prediction that the line between trained and

untrained or consumer panels would become increasingly blurred (Meiselman

2013), this shift appears to be materialising. Ares and Varela (2017) and Moskowitz

(2017) make a strong case for both panel types, arguing that the choice between
them should depend on the test objective. Both are valuable tools for sensory

quality control and product development.

Several studies have shown that untrained assessors can effectively carry out
analytical attribute difference tests, particularly when using alternative rapid

methods (Giacalone & Hedelund, 2016; Mello et al., 2019; Barton et al., 2020;

Maheeka et al., 2021; Wang et al., 2022; Xiangli et al., 2024). Across these studies,

a consistent finding is that trained panels tend to use more technical and precise
descriptors, whereas untrained or semi-trained assessors rely more on hedonic or

general (umbrella) terms.

Interestingly, when comparing performance, trained panels are not always more
discriminative overall. Their superior sensitivity emerges primarily for attributes
with low detection thresholds which they have been specifically trained to notice.

However, this sensitivity is often limited to those attributes. As Chollet et al. (2005)

and Ares and Varela (2017) argue, this perceptual advantage doesn’t necessarily

generalise to stimuli outside their training.
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Trained panels are also taught to use more complex rating scales, such as
unstructured line scales, often with minimal verbal anchors (discussed in the next
section). These scales are assumed to allow for finer discrimination and are treated as

yielding interval-level data (Lawless & Heymann, 2010; Meilgaard et al., 2025). In

contrast, untrained assessors are expected to produce more variable results. This is
partly due to a lack of consensus on where attribute intensities lie along the scale, and
partly because their responses are influenced by personal experiences and
preferences. Without a shared frame of reference for scaling, different assessors may

interpretthe same attribute in different ways. As Antmann et al. (2011) showed in their

cross-cultural study of creaminess perception, consumers differed considerably in
how they understood and rated this attribute, even when evaluating identical samples.

Similarly, Ares et al. (2011) reported that consumer panels used unstructured line

scales inconsistently, leading to low reliability in texture-intensity ratings of dairy
desserts. When results from trained and untrained panels are averaged, however, the

rank order of differences between samples is often similar (Worch et al., 2010; Xiangli

et al., 2024).

That said, averaging consumer panel intensity scores should be approached with
caution. Theirinconsistent, heterogeneous use of scale and other scale-related effects

can compromise data reliability (Ares & Varela, 2017; Hannum et al., 2019).

Familiarity with the product being evaluated has also been shown to increase

sensitivity to specific attributes (Moskowitz, 2017); and a limited amount of training

can significantly enhance performance in analytical tasks (Ares & Varela, 2017). These

suggest that experienced, assessors who have been oriented to the sensory method
could offer a viable alternative in situations where time, resources, or sample
availability are constrained, especially in industrial applications (Giacalone &

Hedelund, 2016; Barton et al., 2020; Wang et al., 2022).

There is growing consensus in the field that the choice between trained and

untrained panels should be guided by the objective of the test (Meiselman, 2013;

Ares & Varela, 2017; Barton et al., 2020; Maheeka et al., 2021), not by assumptions

of superiority. When the goalis analytical, such as ingredient substitution, changes

to formulation, or similarity testing, where smaller differences may be important
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even if consumers might not notice them (Meilgaard et al., 2025), a trained panel is

often more appropriate due to their heightened sensitivity.

However, for product development, consumer-relevant difference and consumer
acceptability testing, where real-world usage and emotional responses matter,
untrained or semi-trained consumer panels offer more relevant insights. While their
responses may be less consistent, they more closely reflect how the average
consumer experiences the product. This makes them especially valuable in early

product development stages, and benchmark testing.

Even when trained panel data are available, there is still a need for additional tools to
connect those results to actual consumer perceptions. Researchers note that data
from trained panels often need to be matched with consumer liking data to fully

understand product performance in the market (Ishii et al., 2007; Kemp et al., 2018).

This remains an active area of research, highlighting an ongoing gap between technical

sensory profiles and consumer relevance.

This ongoing debate about the appropriate sensory panel raises a number of questions:
If trained assessors detect differences that consumers may not notice or care about,

how meaningful is that added sensitivity in a typical use scenario (Ares & Varela,

2017)? If they function as analytical rating machines, do they belong more in fields like
product engineering, given the aim of sensory evaluation is to capture subjective

human perceptions, albeit in a structured and more objective manner (Meiselman

2013)? And even if they are calibrated to use rating scales consistently, does that truly

remove the influence of individual variability and scale-use bias?

The evidence suggests not. Moreover, individual variability persists across disciplines

requiring human judgement, including sensory science (Naes, 1990; Romano et al.,

2008; Sipos et al., 2021), psychometrics and educational assessment (Linacre, 1994;

Myford & Wolfe, 2003; Engelhard & Wind, 2018), regardless of training or expertise.
There will always be a need for techniques that can isolate true product differences,

independent of the idiosyncratic use of scales by the assessors.

2.4.2 Rating scales: measurement, reliability and validity of results

In sensory analysis, various types of scales are used to convert subjective

perceptions and associated sensory scores into measurable data. These scales
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can be categorised into four basic types: nominal, ordinal, interval, and ratio

(Stevens, 1946), and the type of scale chosen has significant implications for the

validity of the measurements, the statistical methods used for analysis, and the

interpretability of results (McEwan & Lyon, 2003; Meilgaard et al., 2025).

= Nominal scales classify datainto distinct categories without any implied order.
Common examples include binary responses such as yes or no, sweet or not
sweet, or same or different, often used in paired comparisons and other
difference tests. They also apply to classification tasks, such as sorting samples
by colour or identifying the presence of an attribute, as in CATA questionnaires.
» Ordinal scales introduce a ranked order such as “weak”, “moderate”, and
“strong”, and are sometimes used in attribute rating and hedonic testing.
However, they do not convey the magnitude of difference between levels. While
itis common practice to assign numerical values to these categories (e.g.,a 1 -
9 hedonic scale where 1 signifies “dislike extremely” and 9 signifies “like
extremely”) and treat the data as interval-level, this can be misleading, as it
assumes equal spacing between categories, which often does not align with

actual sensory perception (McEwan & Lyon, 2003; Neaes et al., 2010; Boone,

2016).

= |nterval scales place itemsinto numbered groups separated by equalintervals,
such as line scales. The numbers indicate both the order and a meaningful
relative distance between values on the scale. However, they lack a true zero

point (McEwan & Lyon, 2003; Bond et al., 2020), so statements about ratios (e.g.,

“twice as sweet”) are not valid.

= Ratio scales use numbers to express the magnitude of a stimulus as a multiple
or factor of another. For example, indicating that a sample is twice as sweet as
a reference sample. By including a true zero, which represents the absence of
an attribute, ratio scales enable proportional comparisons. Magnitude

estimation is an example of a ratio scale method (McEwan & Lyon, 2003;

Meilgaard et al., 2015; Rogers, 2017).

Two main families of scaling methods dominate in sensory science and consumer

research: line scales and category scales, each with advantages and limitations.
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Line scales typically use a continuous visual analogue line, often 10 or 15 cm long,

anchored with descriptors like “None” and “Very Intense” (Stone et al., 2012; Kemp

et al., 2018; Meilgaard et al., 2025). Assessors indicate their perception by marking

a point along the line, and the distance from the origin is measured and used for
statistical analysis. These are widely used in QDA™ and Spectrum™ methods for
their sensitivity and resolution, and results are often treated as interval-level for
statistical purposes. Their continuous nature allows for a wide range of subtle

responses, especially in trained panels.

However, their use can be cognitively demanding, particularly for untrained assessors,
and they are sometimes prone to ceiling and floor effects. Ceiling effects occur when
responses cluster at the top of the scale, limiting detection of improvements or
distinctions among high-intensity stimuli, thereby reducing product differentiation.
Conversely, floor effects occur when responses cluster at the bottom, obscuring
subtle differences at low intensities. Both effects restrict the usable range of the scale,
reduce variability, and compromise the sensitivity and interpretability of the data

(Stone et al., 2012; Kemp et al., 2018).

Category scales simplify response collection by offering discrete options, typically in
the form of hedonic or intensity categories anchored with verbal labels. The most
familiar example is the 9-point hedonic scale, ranging from “Dislike Extremely” to “Like

Extremely” (Peryam & Pilgrim, 1957). These scales are intuitive and widely used in

large consumer tests for assessing preference and acceptability (Peryam & Pilgrim,

1957; Yao et al., 2003; Pham et al., 2008; Lesschaeve et al., 2012; Zhi et al., 2016;

Ho, 2019).

Ordinal categorical scales are also used in overall difference testing (Schlossareck &

Ross, 2019; Higgins & Hayes, 2020; Montero & Ross, 2022; Cela et al., 2023), as well

as for attribute rating and descriptive analysis (Findlay et al., 2007; Reinbach et al.,

2014; Puputti et al., 2019; Pineau et al., 2022). However, while convenient, these

scales yield only ordinal data.

Itiscommon practice, though methodologically debated, to treat ordinalresponses
as interval-level data for the purposes of statistical analysis, particularly using
ANOVA. This approach assumes equal spacing between categories, normal

distribution of residuals, and homogeneity of variance. These assumptions,
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however, are not always met in response data (Naes, 1990; McEwan & Lyon, 2003;

Ho, 2015; Boone, 2016; Raithatha & Rogers, 2018; Ho, 2019). While ANOVA is

generally robust to moderate violations of its assumptions, particularly with larger

sample sizes due to the central limittheorem (Kwak & Kim, 2017), the ordinal nature
of categorical scales can present challenges when violations are severe (Stone et

al., 2012) or sample sizes are small (Meilgaard et al., 2025). Specifically, residuals

may not be normally distributed, and variances can be heterogeneous across
groups due to individual differences in scale use, potentially compromising result
validity. Most studies fail to report whether these assumptions were tested or met,

raising concerns about the robustness of conclusions drawn.

Sensory data occasionally depart from normality because rating scales have fixed
upper and lower limits (i.e., they are bounded), are ordinal in nature, and can be
skewed by individual differences in scale use or reluctance to use extreme

categories (Kemp et al., 2018). When data deviate substantially from normality,

estimates of central tendency and variability may become biased (Stone et al.,

2012; Meilgaard et al., 2025), reducing the sensitivity and interpretability of

subsequent analyses. Understanding the distributional nature of sensory
responses is therefore essential for selecting appropriate analyticaltechniques and
ensuring that statistical conclusions accurately reflect perceived differences

(Raithatha & Rogers, 2018).

Categorical-Ratio scales including the Labelled Magnitude Scale (LMS) (Green et
al., 1993) and the Generalised Labelled Magnitude Scale (gLMS) (Bartoshuk et al.,

2005) were developed to overcome limitations of both line and category scales.
These are vertical, semi-logarithmic scales anchored with empirically spaced
perceptual labels like “barely detectable”, “moderate”, and “strongest imaginable
[the sensory stimulus being measured]”. Unlike linear or ordinal scales, the LMS
aims to approximate ratio-level measurement by aligning verbal anchors with

psychophysicalintensity intervals derived and validated using ratio scaling (i.e., the

magnitude estimation scale) (Lim et al., 2009). Bounded by “no sensation” and
“strongest (or maximal) imaginable sensation” at each end, these scales enable
comparison of individual and group differences within the full range of perceived

intensities. Additionally, the inclusion of the verbal anchor “strongest imaginable”
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was intended to minimise ceiling effects (Kemp et al., 2018), as assessors are
instructed to rate sensations relative to the most intense version of the specific
stimulus they can imagine (e.g., the strongest imaginable oral sensation). This
personalisation broadens the scale’s dynamic range and enhances discrimination
among high-intensity experiences, reducing response clustering near the top and

allowing for more accurate comparisons across individuals and stimuli.

The gLMS extends this approach by asking assessors to rate sensations relative to
the strongest imaginable sensation of any kind, not limited to the same sensory
modality. This adjustment was intended to reduce variability between individuals
with differing sensory sensitivity levels, such as supertasters and non-tasters of

bitterness (Bartoshuk, 1979), and to enable more meaningful cross-individual

comparisons. However, the gLMS has faced criticism for assuming that individuals
canreliably compare across sensory modalities. For example, a participant may be
asked to rate the intensity of a bitter taste relative to the strongest imaginable
sensation of any kind, such as the pain of a broken bone or the sound of a fire alarm.
This type of cross-modal comparison can be cognitively demanding and may not be

intuitive (Lim et al., 2009), especially when the sensations differ dramatically in both

intensity and emotional relevance. Moreover, individual differences in prior
experience, cultural background, and sensory exposure may influence how the
upper anchor is interpreted, potentially reintroducing the very variability the scale

was desighed to minimise.

Both the LMS and gLMS scales have been criticised for their complexity and
practical limitations, particularly when used by untrained assessors (Hayes et al.,
2013). Common issues include the cognitive burden of interpreting their abstract
anchors like “strongest imaginable”, which requires conceptual effort and can lead
to misuse or compression of the scale range. Scale bias arises when participants
with limited exposure to high-intensity stimuli underuse the upper end of the scale,

effectively narrowing the measured range (Schifferstein, 2012). There can also be

considerable individual variability in how anchors are interpreted; what one
assessor considers “very strong” or “moderate” can differ widely based on prior

sensory experiences. Additionally, there is a tendency to use the scales as
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categorical scales, with assessors relying solely on the semantic label anchors to

assign ratings (Hayes et al., 2013).

Moreover, the semi-logarithmic and ordinal nature of LMS/gLMS data often violates
key assumptions underlying parametric analyses such as ANOVA. Specifically,
residuals may not be normally distributed, and variances can be heterogeneous
across groups due to individual differences in scale use. These violations can
compromise the validity of ANOVA results, highlighting the need for alternative
approaches such as data transformations or non-parametric methods (Ho, 2015;

Raithatha & Rogers, 2018) that better accommodate the unique properties and

variability inherent in these semi-logarithmic scales and in ordinal rating scales.

However, non-parametric tests like the Friedman (Friedman, 1937) and Kruskal-

Wallis (Kruskal & Wallis, 1952) are rank-based and often considered a practical

compromise, as they tend to reduce statistical power (Conover & Iman, 1981; Politi

et al., 2021). Conversely, data transformations require an iterative and complex

process, making them less feasible in many practical settings, especially in

consumer or industry studies where time is constrained.

As Meiselman (2013) recommended, the choice of rating scales should be context-

dependent, as there are no inherently good or bad scales. Instead, the focus should
be onidentifying the most user-friendly scale for the specific panel of assessors and
the one most efficient in achieving the required results. However, regardless of the
scale used, issues related to individual variability and response bias remain
persistent challenges. Several studies have proposed methods to minimise and
correct for the confounding influence of individual rating styles from true

differences between samples (Nees, 1990; Romano et al., 2008; Brockhoff et al.,

2015; GroBmann et al., 2023), and (Sipos et al., 2025); however, these approaches
generally address the issue at an aggregate data level. Working solely with averaged
data can obscure important individual differences, masking individual rating

tendencies and inflating measurement error.

Given these limitations in rating scale validity and individual variability, alternative
approaches that model individual responses directly, rather than relying on
aggregated data, offer promising solutions. Unlike traditional aggregation methods,

a Rasch-based approach models the latent traits of both individuals and items,
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enabling the disentangling of individual biases from true sensory differences.
Specifically, the Many-Facet Rasch Model (MFRM) extends these principles to
simultaneously account for multiple sources of variation including assessor
severity, product differences, attribute characteristics, and other explanatory

factors within a single measurement framework (Linacre, 1989). This approach

enables the separation of person and item parameters, allowing for more precise
measurement of sensory perceptions while accounting for variability in individual
rating styles. The following section details the core principles and methodological
extensions of Rasch measurement that position it as an effective framework for

addressing these sensory evaluation challenges.

2.5 Rasch measurement

Rasch measurementis a psychometric approach used to measure latent traits i.e.,
unobservable characteristics or abilities (such as mathematical ability, user
attitudes, or sensory sensitivities), by modelling the relationship between
individuals and test items (i.e. survey or examination questions). Latent traits
cannot be directly observed but are inferred through patterns in responses to

carefully designed items or stimuli.

Developed by Danish mathematician Georg Rasch (Rasch, 1960), Rasch models
use mathematical formulas to express the probability of a specific response (e.g., a
correct answer or a sensory rating) as a logistic function of the difference between

a person’s latent trait level and the difficulty or intensity of an item on a linear scale

(Lunz & Linacre, 1998; Boone et al., 2014; Ho, 2019; Bond et al., 2020).

Unlike traditional statistical models, such as regression or ANOVA, which fit a
model to the observed data to explain patterns or differences, Rasch analysis
operates by testing whether the data fit a predefined measurement model.
Traditional tests require assumptions to be met, such as normality of residuals and
homogeneity of variance, and typically rely on aggregated data. In contrast, Rasch
analysis does not assume any specific underlying data distribution. Instead, it
focuses on individual response patterns as the primary source of information

(Wright, 1991; Linacre, 1999; Boone, 2016; Bond et al., 2020; Linacre, 2023b). When

responses deviate from the model’s predictions, these inconsistencies are flagged
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for further investigation using built-in diagnostic tools based on residual analysis,
such as fit statistics like outfit mean squares, which assess the response patterns
of both persons (the respondents being examined) and items (the questions used
in estimating the latent trait being measured), indicating how well they fit the

model’s expectations.

2.5.1 Types of Rasch Models

The original Rasch model was a basic dichotomous model and has since been
extended by several researchers to address emerging research questions as its

application became more widespread, as summarised in Table 2.2.

2.5.2 Key requirements and principles of the Rasch model

Rasch models specify several key criteria for a latent variable measurement to be

meaningfully interpreted.

Unidimensionality: the core idea behind measuring latent variables is to draw
inferences from observable data (what you have) to unobservable qualities (what
you want but cannot measure directly) (Boone, 2016). For example, the questions
in a math test should strictly measure mathematical knowledge, or perceived
overall differences in flavour from a set of attribute intensity ratings should reflect

the intended overall difference in flavour rather than unrelated factors.

Achieving unidimensionality is concept-dependent and empirically verified. It is a
construct design decision, and so tests must be carefully designed to isolate and
accurately capture the target latent variable by selecting theoretically alighed items

and validating unidimensionality with the model (Smith, 2002; Linacre, 2023a,

2024a). If response patterns reveal that items measure multiple independent
dimensions rather than contributing coherently to a single construct, the definition
of the latent variable can be refined, or items split into separate analyses, either

way, it provides valuable diagnostic insights to the researcher.

In sensory contexts where perception is often multidimensional and attributes
often interact, the Rasch model does not claim to capture this full perceptual
complexity. Rather, it measures whether a deliberately defined set of attributes

works together coherently to reflect the researcher's intended construct, whether a
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specific sensory modality (e.g., differences in flavour attributes) or an overall
difference integrating multiple sensory dimensions (across taste, aroma, and
texture). A construct can be unidimensional even when it includes cross-modal
attributes, provided assessors use those attributes consistently to express the
same underlying dimension. Researchers must therefore ensure unidimensionality

through careful attribute selection and validation of response patterns.

Parameter separation: ensures that item difficulty (such as how bitter a sample is)
is independent of the sample of respondents, and that individual sensitivity or
ability is independent of the specific items tested. The model simultaneously
estimates both individual sensitivity/trait levels and item difficulties directly from
response patterns in the data, without requiring prior information about individual
characteristics. This means that individual differences in sensitivity are accounted
for. E.g., if a person consistently rates all samples as more bitter than other
assessors, the model identifies this as higher sensitivity, independent of which
samples were rated. This property, known as invariance, allows for fair and
consistent comparisons across different samples and assessors, enabling

measurement that is both sample-free and item-free (Wright & Masters, 1982). In

other words, a respondent’s estimated ability does not depend on which items they
answered, and item difficulties remain stable regardless of which respondents
completed them, providing the foundation for objective and meaningful

measurement.

Local item independence: as the model dictates that responses to each item
depend only on the underlying latent variable, not on responses to other items.
When items are more strongly related to each other than to the latent trait, they
exhibit local item dependence (LID), which can bias measurement results (Sick,

2010).

Functioning of rating scale categories: Rasch analysis evaluates whether each
response option on a scale is used consistently and in the intended order. If
respondents struggle to distinguish between adjacent categories (e.g., confusion
between “moderate” and “moderately strong”), the thresholds become disordered,

signalling that the scale may need redesign or clearer definitions (Engelhard & Wind,

2018; Bond et al., 2020; Eckes, 2023).




Table 2.2. Summary of Rasch Models

Type of Rasch model

Use

Mathematical log-odds representation

Dichotomous Model
(Rasch, 1960)

Rating Scale Model
(Andrich, 1978)

Partial Credit Model
(Masters, 1982)

Many-Facet Rasch
Model (Linacre, 1989)

Hybrid Rasch Models

Used for binary responses. It estimates the probability that respondent n scores 1
instead of 0 on item i based on the difference between the respondent’s ability (8,,)
and the item difficulty (8;).

The RSM is a polytomous model used when all items share the same response
categories. It compares the probability of choosing category k to category k-1, with
a threshold parameter (t}) representing the boundary between adjacent categories.

The PCM is ideal for instruments where items have different scale structures, such as
a mix of yes/no and rating questions. It handles varying numbers of response
categories and allows each item to have unique step or threshold parameters (t;j).

The MFRM extends the Rasch model to include multiple facets beyond persons and
items, such as raters, samples, replicates, occasions, or other factors that could
influence the responses. Where 1), represents the threshold parameter, while the
other symbols denote the various facets being modelled.

These provide some flexibility to adapt the model to complex data, combining
features of both the RSM and PCM models as described in (Linacre, 1994) and
(Myford & Wolfe, 2003).

For instance, in an MFRM, they can model how each rater m applies either a shared

or a unique rating scale. Similarly, each item i can be evaluated using its own distinct
scale structure. In these cases, the threshold parameter becomes t,,, (rater-
specific) or t;, (Item-specific) respectively, allowing the model to account for
variations in scale use across raters or items.
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Non-linearity of ratings: Rasch models do not assume that response categories on
a scale are equally spaced. Traditional methods such as ANOVA often treat ratings
as interval-level data, implying equal psychological distances between categories,
e.g., between “like moderately” and “like slightly”. However, this assumption can
distort results, since category rating scales inherently provide ordinal data (Boone,
2016). This issue is particularly important in sensory research, where perceptions

vary across individuals and scale intervals are unlikely to be uniform (Ho, 2019).

Moreover, different items or attributes (e.g., sweetness vs. bitterness) may interact

differently with the scale, producing unequal step patterns in the ratings.

Rasch analysis addresses this by using a probabilistic framework to transform
ordinal responses into interval-level measures. This approach accounts for
differences in both item difficulty (e.g., stimulus intensity) and respondent ability or
trait level, enabling more valid comparisons across items and individuals (Wright &

Masters, 1982; Linacre, 1994; Boone et al., 2014; Boone, 2016; Bond et al., 2020).

Reliability: Rasch analysis produces reliability indices that assess the consistency
of measures across the latent trait continuum for persons (i.e. respondent), items,
raters, and any other modelled variables. For example, if a sensory panel reliably
distinguishes between mild and strong bitterness across samples, rater reliability
will be high. Similarly, item reliability reflects how well the set of attributes spans
the sensory continuum, ensuring adequate coverage of intensity levels. These
metrics parallel classical reliability tests, but are grounded in the probabilistic

Rasch framework (Wright & Masters, 1982; Linacre, 2023b).

Differential Item Functioning (DIF): Rasch models support the identification of
differential functioning across various components of the measurement process,
ensuring that results remain fair, interpretable, and reproducible across groups and

testing conditions (Myford & Wolfe, 2004; Bond et al., 2020; Eckes, 2023). In sensory

evaluation, this is especially important in global contexts where cultural
background, language, and perceptual norms can influence how products are rated

(Munoz, 2002; Meiselman et al., 2022; Hort, 2024). DIF occurs when sensory

attributes are interpreted differently by subgroups, such as assessors from different
cultural backgrounds or with varying training levels, even when their underlying

sensory acuity is comparable. These differences may reflect biases in perception,
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scale interpretation, or prior experience rather than actual sensory differences. This
makes DIF a valuable tool for supporting fairness and validity in diverse panels as
well as in understanding drivers of product acceptability and satisfaction across
cultures or target consumer groups. Rasch analysis can also detect Differential

Rater Functioning (DRF) (Myford & Wolfe, 2004), which refers to systematic

variations in how individual assessors use the rating scale. For example, some
raters may consistently give higher or lower ratings to a specific group, which can
suggest some bias towards that group affecting the reliability of results. This
detection is especially important in longitudinal studies such as panel proficiency

monitoring or repeated product evaluations (Tomic et al., 2010; Raithatha & Rogers,

2018), where systematic changes to an assessor’s responses can be identified and
further investigated. More broadly, Eckes (2023) groups these forms of differential
functioning under Differential Facet Functioning (DFF), which extends beyond
items and raters to include other contextual factors such as time points, testing

environments, or protocols.

Rasch analysis offers a powerful, diagnostic framework that simultaneously
evaluates multiple critical aspects of measurement quality. This comprehensive
approach provides researchers with a rapid yet thorough assessment of whether
their data meet the rigorous requirements for valid and reliable measurement. By
identifying responses that deviate from model expectations, disordered categories,
local dependencies, and differential functioning across respondents, items, or
contexts, the model ensures that observed differences truly reflect underlying
sensory traits rather than artifacts of bias or inconsistency. Together, these
principles establish a robust foundation for producing precise, fair, reproducible,

and generalisable measurements of latent variables.

2.5.3 Current applications of the Rasch models

Several software packages are available for Rasch analysis (Rasch Measurement

Transactions, 2025), with prominent options including RUMM2030+ (Andrich, 1997-

2025), ConQuest (Adams et al., 1997-2020), and WINSTEPS® with its many-facet

version FACETS®, (Linacre, 2004a; Linacre, 2013; Linacre, 2025a, 2025¢). Open-

source alternatives exist in R, such as the eRm package (Mair et al., 2019) and TAM

package (Robitzsch et al., 2021), expanding accessibility for researchers. Practical
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guides for Rasch modelling are available in R Wind and Hua (2021) and Debelak et
al. (2022). Despite difference in interface, algorithms, and terminology, these
software packages implement core Rasch measurement models and provide
relatively consistent assessments of data and measurement quality (Tennant &

Conaghan, 2007; Ho, 2019).

Since it was first introduced in 1960 (Rasch, 1960), Rasch modelling has
revolutionised objective measurement in social sciences. It was initially applied in
educational assessments to measure constructs such as intelligence and
mathematical ability. Today, its use extends to psychological testing, language
assessment, medical and healthcare research, as well as consumer behaviour in

business and marketing.

In Education, and Language Assessment, where Rasch analysis is most

established (Eckes, 2023), it has been widely applied for the evaluation and

validation of survey instruments and rating scales (Galli et al., 2008; Oon & and Fan,

2017; Samir & Tabatabaee-Yazdi, 2020); assess student and teacher performance

(Zhang, 1996; Tavakol & and Dennick, 2013; Fan & Bond, 2019; Chi et al., 2021;

Gordon et al., 2021; Quansah, 2022; Higde et al., 2024; Hariyono et al., 2025) and

monitor rater behaviour (Engelhard Jr & Myford, 2003; Myford & Wolfe, 2009; Polat,

2020; Eckes, 2023). It has also supported bias detection through Differential Facet

Functioning (DFF) and Differential Item Functioning (DIF) analyses. For example,
Eskin (2023) applied DFF to identify native language bias in writing assessments,

while Khalaf and Omara (2022) examined DIF across gender groups in an anxiety

scale. Monitoring rater drift via Differential Rater Functioning (DRF) has been

demonstrated by Myford and Wolfe (2009) and Eckes (2023), with recent extensions

assessing differences between human and Al raters (Shin & Lee, 2024; Lamprianou,
2025). Comprehensive reviews and guidance on Rasch applications in education

and language assessment contexts are available in (McNamara & Knoch, 2012;

Aryadoust et al., 2021), underscoring the model’s value in promoting fairness and

validity in measurement.

In Psychology, Rasch models are widely used to measure latent traits such as

anxiety, depression, and cognitive abilities. Freitas et al. (2014) validated the

Montreal Cognitive Assessment Scale using Rasch analysis, while Dabb et al.
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(2025) developed the Paternal Pregnancy-Related Anxiety Scale ensuring cross-

continental relevance. Similarly, Adu et al. (2025) examined cross-cultural validity

of the Depression Anxiety Stress Scales (DASS-21). In school psychology, Rasch
models are often applied to assess student learning, behaviour, and rating scale

performance. Boone and Noltemeyer (2017) provide practical guidance on the use

of Rasch analysis in educational and school-based assessments.

Medical and Healthcare applications extensively utilise Rasch models to assess
health-related quality of life and patient-reported outcomes, as well as to support
the validation and cross-cultural adaptation of clinical and research
questionnaires. Applications span fields such as rheumatology, nursing,

physiotherapy, and pain management (Tennant et al., 2004; Taylor & McPherson,

2007; Tennant & Conaghan, 2007; Catley et al., 2013; Miller et al., 2016; Huang et

al., 2018; Mohsen & Gill, 2019; Stolt et al., 2022; Tesio et al., 2024; Touzani et al.,

2024; Gonzalez-Pérez et al., 2025; Kim et al., 2025; Lu et al., 2025). Reviews by

(Belvedere & de Morton, 2010) and (Christensen et al., 2024) highlight how Rasch

analysis has evolved from a theoretical framework into a practical methodology,
now routinely used to improve the accuracy and objectivity of patient assessments

in both clinical care and medical research.

In Business, Marketing and Consumer Behaviour Research, Rasch models
measure latent constructs like preferences, satisfaction, and brand perception.

Early foundational work includes Bechtel (1985) who generalised Rasch models for

consumer rating scales, and Lunz and Linacre (1998) who introduced multifaceted

Rasch modelling for business and marketing applications. De Battisti et al. (2005)

applied Rasch analysis to assess service quality perceptions amongst university

students, while Pagani and Zanarotti (2010) applied it to analyse customer

satisfaction data. Salzberger and Sinkovics (2006) utilised Rasch methods including

DIF to detect bias across countries in international marketing data, and, Conejo et

al. (2017) applied DIF to refine brand personality scales across demographic

groups. Camargo and Henson (2015b) and Chalk (2020) used Rasch models to

better align product features with user experience. More recently, Bassietal. (2022)

examined consumer responses to mountain product labels that indicated that

product originated from mountain regions using Rasch analysis; Grispoldi et al.
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(2023) validated scales measuring attitudes toward insect-based foods; and

Prasetyaningrum et al. (2024) examined the impact of gamification on customer

engagement in the banking sector. Collectively, these applications demonstrate
how Rasch analysis continues to evolve beyond technical modelling to become an
essential tool for enhancing the fairness, and interpretability of consumer-related

measurement.

In the context of Sensory Evaluation of Foods, Rasch models have been applied to
measure latent traits such as overall quality and overall liking by combining ratings
of individual sensory attributes. They have also been used to evaluate assessor
consistency and validate rating scales. Early studies laid foundational work for the

use of Rasch models in this field. Garcia et al. (1996) demonstrated its utility in

measuring sensory quality in Iberian ham as a latent trait derived from multiple
sensory characteristics, showing thatthe Rasch model could successfully combine
attributes such as flavour intensity, saltiness, and texture into a unidimensional

quality scale. Alvarez and Blanco (2000) used the model to evaluate the reliability of

olive oil tasting panels, finding that the Rasch model effectively identified
inconsistent assessors and could improve panel reliability through targeted
training. However, these applications remained largely isolated despite the
methodological advantages Rasch modelling offers. Later studies, such as Andrés

et al. (2004) on salt content and ham processing, and Bi et al. (2019) on aroma

quality in hams treated with essential oils, cited the Rasch model for validating
assessor consistency but failed to describe how the model was applied or what

insights it provided, merely citing “Garcia et al. (1996)” without further explanation.

Thompson (2003) applied Rasch scaling in wine judging to evaluate rater

consistency and to refine both the sensory panel and the rating scales used,
demonstrating that Rasch analysis could identify problematic rating categories and
highlight judges whose ratings deviated systematically from the panel. Faye et al.
(2013) focused on incorporating assessor expertise in wine glass sorting tasks and
found that accounting for subject experience improved the interpretability of free-
sorting data. A common issue across these earlier studies has been a lack of

transparency and accessibility, with overly technical reports offering little guidance
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on how Rasch modelling was implemented or why it provides advantages beyond

traditional methods.

More recent studies have moved toward clearer and more accessible uses of Rasch
models in sensory research. Ho (2019) introduced a multi-faceted model to

measure overall liking based on several attribute ratings, arguing that single

composite scores lack diagnostic depth. Mile et al. (2021) used a similar framework

to study hedonic preferences for tilapia fish jerky, while Wu et al. (2021) explored

the sensory impact of ginger-enriched pasta on both acceptability and satiety.

Arboleda et al. (2021) developed perceptual scales for texture and refreshment in

fruit juices, and Li's (2019) doctoral thesis investigated Rasch models for new
product development and consumer research instrument refinement. Although

Owusu et al. (2022) did not implement Rasch modelling, they proposed its future

use for deriving composite liking scores in soymilk formulation research.

These more recent studies show that Rasch modelling can potentially improve the
rigor, objectivity, and interpretive depth of sensory evaluation by accounting for
assessor variability and uncovering the latent structure of sensory responses. The
model offers several advantages demonstrated in sensory contexts: estimation of
latent variables such as overall quality or liking from composite attribute ratings

(Garcia et al., 1996; Ho, 2019; Arboleda et al., 2021; Mile et al., 2021), identification

of inconsistent assessors and systematic bias patterns (Alvarez & Blanco, 2000;

Thompson, 2003) and diagnostic identification of problematic rating categories

(Thompson, 2003; Li, 2019; Wu et al., 2021).

However, compared to fields such as education, psychology, and healthcare,
where the model is routinely used to address issues with rater bias and subjective
scoring, its uptake in sensory evaluation remains relatively slow, even though
sensory analysts routinely grapple with these very same challenges. This may be
due to the technical complexity and lack of practical guidance on how to implement
the model or apply its results. Ho (2019) and subsequent studies have begun to
address this gap by demonstrating clearer, more accessible applications.
Nonetheless, Rasch modelling is still rarely used in routine sensory evaluation
practice. Sensory data continue to be analysed primarily by aggregating raw scores

or means. While familiar and straightforward, it tends to mask assessor
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inconsistencies, introduce scale-use bias, and offer limited diagnostic insight unless

supplemented by several additional analyses.

Despite the methodological advantages of Rasch modelling, it remains underutilised
in sensory evaluation contexts. This is likely because there is a lack of direct
comparative studies demonstrating how the model performs against established
methods such as traditional descriptive analysis or discrimination testing. Without
such comparisons, practitioners may be reluctant to adopt it without clear evidence
of practical benefits. Additionally, the psychometric and educational origins of Rasch
measurement mean that existing guidance is often technical and lacks sensory-
specific applications, creating barriers for practitioners trained primarily in traditional
sensory methods. Addressing this gap through comparative studies and practical
demonstrations tailored to sensory contexts is essential for advancing the adoption

of Rasch modelling in sensory and consumer research.

2.6 Justification of study

This study explores and demonstrates the benefits of applying Rasch modelling to
sensory difference testing. While existing research has used the Many-Facet Rasch
Model (MFRM) to estimate latent variables such as overall sensory quality and
overall liking based on combinations of sensory attributes, it has not yet been
applied to quantify overall difference between products as a latent variable, which
in turn can reveal which specific sensory attributes most influence perceived
differences. This represents a missed opportunity, as current methods are typically
limited in one of several ways: some analyse sensory attributes individually without
integrating them into an overall difference score; others provide a single holistic
measure without identifying the specific sensory attributes driving that difference;
and some rely on qualitative insights without quantitative support or require
complex, separate analyses to estimate overall difference. In contrast, modelling
overall perceived difference as a latent variable within a Rasch framework offers a
unified approach that provides both diagnostic clarity and quantitative rigour by

combining holistic and attribute-level insights in a single interpretable analysis.

Moreover, sensory quality programs continue to struggle with individual differences

in rating scale use. Existing statistical methods often fall short in adequately
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accounting for individual rating tendencies and the inherently subjective nature of
sensory data. These are precisely the kinds of challenges that Rasch modelling was
designed to address and has effectively tackled for nearly seven decades in fields

such as education, healthcare, and psychology, where human judgment is central.

This study presents a clear, step-by-step application of Rasch analysis in sensory
difference testing, attempting to bridge the gap between the model’s
methodological strengths and its limited adoption in sensory evaluation. It
highlights how a Rasch-based approach can improve data interpretation, reduce
subjectivity, and support more consistent and actionable results. The Many-Facet
Rasch Model (MFRM) is shown to be particularly useful for quality control and
diagnostic analysis in contexts such as product development, ingredient
substitution, benchmark tests, panel performance monitoring, and consumer
research. The proposed method is especially beneficial to sensory analysts seeking
faster, clearer, and more data-driven insights in a streamlined manner to support

decisions about product differences.
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Chapter 3

Rasch and General Analytical Methodology

3.1 Overview

This chapter provides an overview of the Rasch analysis and statistical procedures

used across all three sub-study chapters.

3.1.1 A Rasch approach to sensory difference testing explained

Rasch analysis is a statistical method used to convert categorical data, such as
surveys or rating responses, into interval-level measurements. Originally developed
for educational assessments (Rasch, 1960), it is now widely applied across various

disciplines that rely on human judgments.

Fundamentally, it allows researchers to estimate unobservable traits or latent
variables such as mathematical ability, overall attitudes, or perceptions, based on
patterns of responses to a set of observable items (e.g., exam or survey questions).
The model estimates the probability of a given response as a function of the
difference between the respondent's ability or trait level and the difficulty of the
item. This approach places both item difficulties and respondent abilities on a
common linear scale, converting ordinal raw scores into interval level measures,

which supports more precise quantitative analysis (Boone et al., 2014; Bond et al.,

2020).

In sensory evaluation, Rasch analysis can be adapted to address the challenges of
subjective human ratings. Each sensory attribute is treated as an item (similar to
questions in a survey), and each product or sample is considered the subject of
measurement (similar to respondents in the model). Assessors often interpret and
use rating scales differently, and these inconsistencies can obscure true

differences between products (Raithatha & Rogers, 2018).

Rasch analysis addresses this issue by explicitly modelling and adjusting for such
variability (discussed in section 2.5.2: pg.34). To measure differences between
products, Rasch models estimate how each product scores on the underlying latent

trait, in this case “Overall Difference”, based on the intensity ratings across
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multiple attributes. The assessors are included as the rater/judge facet using the
Many-Facet Rasch Model. The goal is to derive a fairer estimate of the overall
sensory difference between products by accounting for variability in individual
rating styles (e.g., scale level effects), rather than relying solely on aggregated
averages. Averages can distort measurement results when assessors exhibit

different rating effects or biases (Myford & Wolfe, 2003; Lawless & Heymann, 2010;

Stone et al., 2012; Kemp et al., 2018; Sipos et al., 2021; Meilgaard et al., 2025).

Aggregating scores without accounting forindividual biases and differences in scale
usage may lead to inaccurate representations of the true sensory characteristics of

products.

3.1.2 The Many-Facet Rasch Model (MFRM)

The Many-Facet Rasch model (Linacre, 1989) extends the basic Rasch model (as

shown in Table 2.2. Summary of Rasch Models) by allowing for the simultaneous
analysis of multiple variables, referred to as facets, that represent additional
sources of variation. In sensory testing, these facets may encompass combinations
of the various variables including product samples, sensory attributes, order of
presentation, panel groups, time of evaluation, replicate evaluations, and the

assessors themselves, similar to parametric ANOVA methods.

Unlike traditional parametric approaches, which assume that all assessors
interpret and use the rating scale in the same way, the MFRM explicitly models
individual differences in rating behaviour by estimating a separate severity
parameter for each assessor. These parameters reflect how strictly or leniently
each assessor uses the scale compared to a neutral reference point. The model
then adjusts the observed ratings based on these parameters using an iterative
probabilistic process. Starting with initial parameter estimates, it calculates the
likelihood of the observed ratings and repeatedly adjusts the severity parameters
and other facets to maximise this likelihood. This fitting continues until the model
converges on the best overall fit to the data, effectively calibrating all ratings onto a

common scale (Linacre, 2023b). This adjustment allows for more accurate and fair

comparisons across products by removing these systematic biases introduced by

differences in individual rating tendencies (i.e., severe or lenient raters).
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Even with comprehensive panel training, substantial variability remains in how
individuals use rating scales, reflecting the influence of both stable individual

variations such as genetic differences in sensory sensitivity (Bartoshuk et al., 2005),

cultural background and prior experience (Brockhoff, 2011; Meilgaard et al., 2025),

and transient conditions like fatigue, distraction, or mood during evaluation (Stone

et al., 2012; Raithatha & Rogers, 2018). Thurstone (1927) showed that variability in

human judgment can distort comparative evaluations, and subsequent
measurement research has demonstrated how such rater effects can be
systematically identified and, in the case of rater severity or leniency, statistically

adjusted for using the MFRM (Myford & Wolfe, 2003). However, the model does not

replace panel training but complements it by providing a diagnostic framework to
detect and correct residual rater effects that persist despite training. By explicitly
modelling assessor severity, it offers an approach to reducing extensive calibration
sessions. Rather than attempting to enforce perfectly uniform scale use through
training, it statistically adjusts for systematic individual differences in scale use
(severity/leniency), thereby allowing training efforts to focus more on attribute
understanding and discrimination. While training improves overall consistency,
complete uniformity in scale use remains difficult to achieve in practice (Lawless &

Heymann, 2010; Kemp et al., 2018).

While the ANOVA approach is generally robust to moderate violations of its
assumptions due to the Central Limit Theorem especially with larger samples (Kwak

& Kim, 2017), and can include assessors or replicates as fixed or random effects, it

still treats differences among assessors as random noise rather than explicitly
modelling them. In contrast, the MFRM treats these same factors as measurable
facets estimated on a shared latent scale, allowing their direct comparison and
providing individual-level diagnostics on rater severity and consistency within a
unified probabilistic framework. This simultaneous estimation of product, attribute,
assessor, and replicate parameters enables richer diagnostic insight and fairer

comparisons than ANOVA alone.

When assessors use the scale consistently, ANOVA and MFRM may yield similar
conclusions. However, when assessors differ systematically in scale use, for

example when two assessors perceive the same sweetness level but one is more
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expressive and routinely gives higher scores while another is more conservative,
ANOVA does not separate these biases from true product effects. MFRM addresses
this limitation by estimating and adjusting for individual severity parameters,
thereby producing fairer product comparisons. While ANOVA remains appropriate
when assessor variability is minimal or random, the MFRM provides an extension

for cases where such effects are systematic and of diagnostic interest.

The MFRM results are often presented in a visual summary known as a Wright map,

named after Benjamin D. Wright, a pioneer in Rasch measurement and educational

assessment (Boone et al., 2014). In a sensory context, this map displays the relative
positions of products, attributes, assessors, replicate evaluations, and any other
modelled facets along a common latent continuum expressed in logits, providing a

nuanced overview of the data structure.

In addition, the MFRM includes built-in diagnostic tools designed to evaluate the
quality and integrity of the data. While the model accounts forindividual differences
in how assessors use rating scales, it still requires that their ratings remain
internally consistent, as the estimation of all other facet parameters depends on

these inputs. To evaluate this, MFRM provides several key diagnhostics:

1. Residual fit analysis: the model identifies unexpected or inconsistent
responses by flagging assessors who use the scale unreliably, and by detecting
attributes whose ability to discriminate across products, assessors, and
replicate evaluations (as relevant in this study) differs from that of other

attributes in the facet (Linacre, 2012a; Wu & Adams, 2013; Eckes, 2023; Linacre,

2024b; and Linacre, 2025b).

2. Rating scale category diagnostics: detect when rating scale categories are
used in a manner that deviates from the model’s expectations, such as being
underused or misunderstood. For example, if a seven-point scale is employed
but certain categories are rarely selected, the model may suggest collapsing
those categories. Unused or poorly defined categories may not contribute
meaningful information, can confuse assessors, and may reduce measurement
precision. Similarly, if categories are not clearly separated, it can lead to a lack
of distinction between different intensity levels, compromising the

effectiveness of the rating scale. In such cases, adjusting the scale can improve
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measurement quality (Linacre, 2002b; Engelhard & Wind, 2018; Bond et al.,
2020; Eckes, 2023). This is further discussed in section 3.3.1.4: Rating scale

category diagnostics.

3. Principal Component Analysis of Residuals (PCAR): detects systematic
variation or correlation among items or attributes that are assumed to measure
a single underlying latent variable (discussed further in section 3.3.1.3:
Response dependency - Unidimensionality and Local Item Dependence (LID).
Rasch models assume that item responses are independent (i.e., the response
to one item should not influence the response to another). When response
dependency is observed and the rating on one attribute appears to determine
the rating on another, it suggests that the attributes may be conceptually or
perceptually related. This prompts further investigation into the nature of these
relationships and theirimplications for the validity of the measurement (Tennant

& Conaghan, 2007; Linacre, 2024a).

These diagnostics features will be discussed in more detail later in the chapter.

Overall, the Many-Facet Rasch Model (MFRM) offers a more transparent and
nuanced approach to evaluating sensory data by modelling the process through
which ratings are generated, rather than focusing solely on the final scores. This
study aims to demonstrate how MFRM provides a complementary perspective by
enabling analysis at the individual level and accounting for variation across multiple
facets. It offers a practical and effective way to improve the reliability of sensory
data and to gain deeper insight into the sources of variation within a test, without

the need for extensive additional statistical analyses.

3.2 Framework for measuring Overall Difference using attribute
intensity ratings

In this study, the MFRM was used to evaluate overall sensory differences between
products based on the perceived intensity of multiple sensory attributes. Assessors
rated each product on several attributes using ordinal categorical labelled scales.
Ratings on these sensory attributes were collected across the products through

sensory questionnaires. The goal was to combine these attribute ratings into a



47

single latent measure representing the overall difference between products,

referred to as the Total Intensity Measure (TIM).

The basic assumption of this framework is that products with higher perceived
intensity or more distinct attribute profiles are positioned higher on the Rasch logit
scale. In this context, a product with a distinct attribute profile elicits strong
responses across several sensory attributes that make it stand out relative to other
products. This ease of differentiation by assessors can inform product

development, positioning, or quality control decisions.

Sensory attributes are treated as items, each with its own difficulty parameter.
Easier attributes tend to receive higher intensity ratings because they are easier to
perceive, while harder attributes receive lower ratings due to being more difficult to
detect. Products are treated as persons and are placed on the logit scale based on
their combined attribute ratings. Assessors and repetitions are modelled as facets
to account for differences in rating severity and variability across sessions,

respectively.

The model estimates the probability of an assessor m, assigning a particular rating
k to a productn, during a replicate evaluation r for a given attribute i, by considering

several influencing factors. These include:
» The degree of leniency or severity (f5,,) of an assessor (m) in assigning ratings.

= Total Intensity Measure (TIM) (6,,) of the product (n), reflecting the overall

difference and determining its location on the logit scale.

= The effect of the replicate evaluations (p,,) accounting for variation across

repeated assessments ().

» The degree of intensity (§;) of a sensory attribute (i), indicating how easily it was

perceived across products.

* The thresholds (1) between adjacent rating scale categories (k); for example,
how much more intense an attribute must be to move the rating from “weak” to

“moderate” intensity.

Mathematically, the probability of observing a rating in category k is modelled as a

function of the relative distance between these facets:
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In (Punrik /Pmnrik-1) = Bm — On — Pr — 6i — T
...Equation 3.1
This modelling approach allows for product comparisons that are adjusted for
assessor rating behaviour and attribute difficulty, making the results more reliable
than those from simple average scores. Unlike conventional methods such as
ANOVA, which rely on assumptions about normal distribution and equal intervals
between scale points, the Rasch model relies solely on response patterns in the

data (Smith, 2002; Linacre, 2004b; Boone et al.,, 2014; Bond et al., 2020).

Observations that do not fit the expected patterns are flagged and can be further
examined. This provides a layer of quality control that traditional methods do not

offer.

The Total Intensity Measures (TIM) generated by the model are then used to perform
post hoc pairwise comparisons to identify significant differences between
products. Since the measures are adjusted for assessor severity and attribute
difficulty, they capture product differences more accurately than raw averages.

Linacre (1989) explains that Rasch calibration places all facets on a common logit

scale, enabling direct comparisons, while Myford and Wolfe (2004) noted that

adjusting for individual rater severity improves the fairness and precision of
comparative evaluations. In sensory data, lenient assessors’ higher scores and
strict assessors’ lower scores are calibrated on the logit scale, ensuring that
product differences reflect sensory variations devoid of their rating tendencies. This
adjustment improves the quality of the data, making it more suitable for both

parametric and non-parametric statistical tests. Boone et al. (2014) illustrate how

Rasch-derived measures yield more valid interval-level estimates than raw mean

scores, and Bond et al. (2020) noted that the resultant interval scaling and reduced

bias better meet assumptions of parametric tests. Even when parametric
assumptions remain unmet, non-parametric tests applied to Rasch measures gain
increased sensitivity and accuracy because the calibrated data reduce
uncontrolled variability and noise. Together, these advantages support better
decision-making by identifying perceptual differences with minimal confounding
effects from individual rating styles or other modelled sources of bias. While these

advantages are well documented in psychometric and educational measurement,
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their practical implications for sensory and consumer research remain largely

unexplored.
The Rasch model also provides useful diagnostic tools, including:

= Assessor fit statistics: which indicate which assessors rated consistently and

which ones deviated from the model’s expected patterns for the panel.

= Attribute fit statistics: that identify which attributes contributed most or least

to the overall difference latent variable.

= Category diagnostics: which reveal whether all parts of the rating scale

function as intended, and

= Principal Component Analysis of Residuals (PCAR): which helps detect
underlying sensory dimensions or interactions between attributes that might not

be evident from conventional analysis.

This Rasch-based framework enhances traditional sensory analysis by providing
clear, actionable insights. It adds depth and precision that support product
development, innovation, panel management, and quality control in a more
targeted and resource-efficient way, making it a valuable addition to existing

sensory quality management methods.

3.2.1 Conceptualising Overall Difference as a latent variable

The content of this section is reproduced from Ariakpomu et al. (2025b).

The theoretical development of measurement instruments for Rasch analysis
requires careful design to accurately capture the parameters of the latent variable

being measured (Boone, 2016; Engelhard & Wind, 2018). For this study, the

construct modelling framework described by (Ho, 2019) was adapted to define

Overall Difference as a latent variable, as presented in Figure 3.1. As previously
discussed, this latent variable is estimated from assessors’ intensity ratings of
selected attributes. Within the Rasch framework, each attribute functions as an
item defining the latent variable, each sample represents the respondent being

assessed, and each assessor represents a rater with a unique severity level.



DEFINE THEORETICAL CONSTRUCT

Conceptualise the latent variable or construct
to be measured

CHOOSE SENSORY ATTRIBUTES

Develop items (characteristic sensory attributes) that
capture different amounts of the latent variable

CHOOSE A RATING SCALE

Categorise items to ordinal raw scores

OVERALL
DIFFERENCE

as a latent variable

COLLECT OBSERVATIONS

Collect ratings on the items

FIT A MANY-FACET RASCH MODEL Run univariate
statistical analysis
Obtain interval-scaled Rasch measures ( ANOVA & MuItipI e

-Total Intensity Measures (TIM) g
Comparison tests)

REPRESENT CONSTRUCT (WRIGHT MAP)

Visualise Rasch measures on a Wright map for the
contribution of each item to the latent variable

Figure 3.1. Framework for the conceptualisation of Overall Difference as a latent variable.

0S
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Step 1: Defining the theoretical construct of Overall Difference

Sensory attributes representing the sensory characteristics and modalities of the
samples should be identified to capture different aspects of the Overall Difference
latent variable. It is recommended to select a minimum of 3 to 5 sensory attributes
to ensure sufficient variability in the data and allow the Rasch model to effectively

separate the effects of different facets.

Step 2: Selection of attributes and survey design
Survey questions were developed for assessors to rate the perceived intensity of
each attribute for each sample. For example: “How strong is the orange flavour for

sample XXX?” These questions represent the items in the Rasch model.

Step 3: Choosing a rating scale
Labelled category rating scales (as described in the sensory testing procedures for
the AR tests) representing levels of perceived intensity, were used by the panel of

assessors - the raters for the Rasch model.

Step 4: Data collection
Observations were collected as attribute intensity ratings for each sample using the

survey questionnaire developed in step 2.

Step 5: Fitting the Model

A Many-Facet Rasch Model (MFRM) with four facets - assessors (raters), samples
(persons), attributes (items), and repetitions (replicate assessments), was fitted as
described in ...Equation 3.1. The resulting Total Intensity Measures (TIM) for each
sample were then used for post hoc multiple comparison tests to identify the

significant differences between samples.

Step 6: Visual representation

The Rasch model’s Wright map visually represents the location estimates for each
individual element within each facet (i.e., each assessor, product, attribute, and
replicate assessment, referred to as parameters in this study), as well as the rating
scale thresholds. These are all mapped on a common logit scale, providing a rapid
overview of the underlying data structure and the relationships between the

modelled variables.
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This framework formed the basis for the data analysis applied across all three

studies in this thesis.

3.3 Data analysis

All statistical analyses were conducted using RStudio version 2023.3.1.446,

"Cherry Blossom" release (Posit Team, 2023), while Rasch analyses were

performed using FACETS © version 4.3.0 (Linacre, 2025a) and WINSTEPS® version

5.9.0.0 (Linacre, 2025e).

3.3.1 Rasch analysis

Rasch analysis across all three studies was conducted using the Many-Facet Rasch

Rating Scale Model (Andrich, 1978), as all attributes were assessed using a

common rating scale.

3.3.1.1 Fitting the Many-Facet Rasch Model (MFRM)

The Many Facet Rasch Model (MFRM) simultaneously accounts for multiple
variables, or facets, by modelling the log odds of observed ratings on a common
interval scale known as the logit scale. Parameter estimates for the facets were
obtained using Joint Maximum Likelihood Estimation (JMLE) in the FACETS software

(Wright & Panchapakesan, 1969; Linacre, 2023b and ; 2025a). This method

estimates all the facet parameters (i.e. assessor severity, product differences,
effect of replicates, attributes intensity) at the same time, maximising the likelihood
that the observed data fit the model. This joint estimation process continues until

the model converges on the most probable set of facet locations on the logit scale.

The resulting parameter estimates for individual elements within each facet (i.e.
facet parameters) were then visualised using a Wright map, providing a clear
representation of their relative positions along the latent continuum. On the Wright
map, the Sample facet was left non-centred, while the other three facets, Assessor,
Repetition, and Attribute, were centred so that the mean of their parameters was
zero. This centring established a common reference point on the Wright map,
allowing the relative positions of samples to be interpreted in terms of the Total

Intensity Measure (TIM). Consequently, sample locations were adjusted by
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accounting for assessor severity, attribute intensity, and replicate session effects,

corresponding to the Assessor, Attribute, and Repetition facets, respectively.

3.3.1.2 Global modelfit

Rasch models are idealisations of empirical data, assuming that a single latent
variable represents the underlying truth. For example, when data do not align with
model expectations, they may distort this representation but can also reveal
important issues such as disengaged students or flawed scoring rubrics, which are

potential sources of measurement bias in educational contexts (Linacre, 2023b).

Assessing global model fit helps determine the practical usefulness of the data
before further analysis. This involves evaluating whether the data fit the modelin a

meaningful way (Engelhard & Wind, 2018; Eckes, 2023; Linacre, 2023b), identifying

the extent of any misfit, understanding its sources, and deciding how to address
them. Model fit is typically assessed by comparing observed responses to those
expected by the model, with differences usually expressed as standardised
residuals. In this study, a satisfactory model fit is indicated when no more than 5%
of absolute standardised residuals are 22, and no more than 1% is =23 as is

recommended by (Linacre, 2022),

A meaningful fit means that, despite some imperfections in real data, the response
patterns are still consistent enough with the model to support valid and
interpretable measurement of the intended construct. Itreflects a balance between
the model’s expectations and the complexity of real-world data. When misfit is
observed, a closer inspection of the deviations from model expectations can reveal
sources of bias. Based on these findings, model specifications can be adjusted,
such as by removing an inconsistent rater, or combining overlapping items to

improve overall fit.

3.3.1.3 Response dependency - Unidimensionality and Local Item Dependence (LID)

The Rasch model assumes that all items measure a single underlying trait. In this
study, the items are the sensory attributes, and the trait is Overall Difference. To
test this assumption, Principal Component Analysis of Residuals (PCAR) was

conducted using WINSTEPS®, a Rasch measurement program designed for
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rectangular data matrices with only two variables®. Following the procedure
described by (Eckes, 2023), each attribute was placed in a column, and each
combination of assessor and sample was placed in a row using the dialog box

provided in FACETS.

PCAR was used to examine whether the unexplained variance in the residuals is
small compared to the variance explained by the Rasch measures. If certain items
exhibit similar unexpected patterns, this may indicate the presence of a second
dimension. Whether or not this second dimension affects measurement depends

on its strength. According to (Linacre, 2024a), a secondary dimension must have

the strength of at least two items to be considered meaningful. If the variance in the
residuals is large and attributable to a second dimension thatthe researcherdeems
significant enough to affect the interpretation or usefulness of the measures,
remedial steps may include removing the responsible items or grouping items into

subtests to define additional latent variables.

Arelated concern is Local Item Dependence (LID), where the response to one item
can predict responses to another, contradicting the Rasch model’s requirement for

independent item responses (Tennant & Conaghan, 2007). LID is typically flagged

when the correlation of standardised residuals between two items is greater than

0.3 (Ramp et al., 2009; Christensen et al., 2017).

However, the primary goal of PCAR is to detect these systematic patterns of co-
variation. It is then the researcher's task to explore whether these patterns reflect
meaningful conceptual differences or measurement bias, and to decide whether to

retain, combine, or remove items (Smith, 2002; Hagell, 2014; Eckes, 2023; Linacre,

2024a).

In this study, the latent variable of interest was Overall Difference, based on a
combination of sensory attributes across multiple modalities, and therefore
inherently multidimensional. Signs of secondary dimensions or local dependency
were expected and were not treated as sources of error, but as meaningful

perceptual interaction between attributes. For this reason, no attributes were

* PCAR functionality is currently only available in WINSTEPS®.
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removed or combined, as doing so would have resulted in the loss of valuable

information about how sensory differences were perceived.

3.3.1.4 Rating scale category diagnostics

In Rasch analysis, scale category diagnostics evaluate whether the rating scale
functions as intended, by examining how assessors use each category and whether
this usage aligns with the model’s assumptions. For the scale to function properly,
categories should be used in a logical, ordered manner, with each one clearly
representing a distinct level of the latent trait (e.g., intensity or difference) and
receiving a sufficient number of responses. This helps determine how well the scale
captures the latent trait and can inform improvements to both the scoring

instrument and assessor training (Engelhard & Wind, 2018).

Guidelines recommended by Linacre (2002a); Engelhard and Wind (2018); Ho
(2019); Bond et al. (2020); and Eckes (2023) for diagnosing the functioning of rating

scales are summarised in Table 3.1 below. These category diagnostics should be
used in combination, as they typically tell the same story in different ways, and one

often affects the other (Bond et al., 2020). For example, low category frequencies

can cause disordered Andrich thresholds, resulting in probability curves without
distinct peaks, reducing the precision and interpretability of the model’s estimates

(see Appendix D).

Some criteria are essential for evaluating the quality and measurement accuracy of
the current dataset, while others are crucial when the scale is intended for use
across multiple datasets, such as in developing new measurement instruments

(Tennant et al., 2004; Galli et al., 2008; Conejo et al., 2017; Grispoldi et al., 2023;

Dabb et al., 2025), exam rubrics (Tarricone & Cooper, 2014; Bond et al., 2020; Fidan

et al., 2025), or rating scales for specific product categories in sensory quality

programs (Thompson, 2003; Camargo & Henson, 2015a), where inference and

generalisation are required.



Table 3.1. Guidelines for assessing the functionality of a rating scale.

Source (Linacre, 2002a; Engelhard & Wind, 2018; Ho, 2019; Bond et al., 2020; Eckes, 2023).

Criteria

Description

Implication

Item Polarity

(Essential for description of the
samples1, measure stabilityz,

measure accuracy3 & inference4)

Category Frequency

(Essential for measure stability)

Observed Average Measures
(Essential for sample description,
measure accuracy & inference)

Scales should be positively oriented in the direction
of the latent variable, so that higher ratings imply
more of the latent variable. Point-Biserial (PT

measure) correlation® for the item facet (attributes)
should not reveal both negatively and positively
orientated items (attributes).

There should be at least 10 observations in each
scale category.

Computed as the average of the combined measure
statistics of all the facets involved in producing
scale category ratings. It should monotonically

A negative PT measure for an item suggests that items do not
align with the theoretical expectation of how the latent
variable should be measured. E.g., where higher item scores
indicate less of the trait being measured. This often reflects
confusion about the interpretation of the rating scale, i.e., do
higher scores indicate more or less the attribute’s intensity?

Category thresholds may be estimated poorly making it
difficult for categories to describe distinct locations on the
latent variable.

Higher average measures will indicate ratings in higher scale
categories and vice versa.

1 Description of the sample refers to accurately summarising the observations in the study, i.e. how assessors perceived and rated sensory attributes across the samples.

2 Measure stability refers to the consistency of a measurement system when repeated over time in the same context. E.g. the reproducibility of sensory ratings across different panels.

3 Measure accuracy indicates how closely a measurement reflects the true value of the latent trait being assessed, i.e. how well categories and attributes differentiate between levels of

overall difference

4 |nference involves drawing conclusions about a broader population based on the sampled data and measurement results enabling generalisations beyond the current panel or samples.

S This measure is the MFRM equivalent of the Pearson point-biserial correlation (Linacre, 2023b). It assesses the relationship between responses to a specific item and the overall latent trait.
A positive point-biserial indicates that the item aligns with the latent construct, while a negative value suggests misalignment, possibly due to item wording or misunderstanding.

9%



Category model fit

(Essential for measure accuracy)

Category Frequency Distribution

Ordering of category thresholds

Distance between category
thresholds

increase as the scale categories advance.

Scale category outfit mean-squares indicate the
deviation of average measure from the expected
measures if data fit the Rasch model.

Frequency distribution of scale categories should be
unimodal and tend towards a uniform distribution.

Rasch-Andrich  thresholds should advance
monotonically up the scale categories. Graphical
probability curves produced should have distinct
peaks, resembling a range of hills.

The minimum recommencaed distance between

Rasch-Andrich thresholds is calculated® as 1 4,11,
0.81, 0.70, 0.57, 0.51, and 0.45 logits for rating
scales with 3, 4, 5, 6, 7, 8, and 9 categories,
respectively. The increase between thresholds

should not exceed 5.0 logits.

Category outfit mean-square statistics with values above 2.0
indicate that the category has been used in a different context
than is expected.

Intermittent low-frequency categories within the distribution
may indicate irregular scale usage and the presence of
redundant categories.

As scale categories increase along the latent variable, each
category, in turn, should be the most probable choice.
Disordered thresholds may indicate that a category has been
skipped as one advances along the variable or that the
category has a very low frequency.

Too close categories may be less distinctive than intended,
while categories too far apart represent performance that is
much wider than intended and introduces gaps in the variable
leading to loss of information.

6 Central distance =In (x/(m —x + 1). Forx =1,...,, m, where m = n-1 for a n-category scale (Ho, 2019).

LS
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When indicators for the proper functioning of rating scales are unmet, remedial
actions generally involve combining adjacent categories and sequentially
renumbering the scale. In cases of item polarity, where some items are positively
worded and others are negatively worded, it is important to ensure that items are
reworded or properly reverse-coded to align with the theoretical expectations of the
latent variable. A common example in sensory testing occurs when an attribute
descriptor is not clearly defined, making higher and lower intensity ratings
ambiguous. For instance, if assessors are unsure whether a higher rating means
more or less of the attribute, their responses can become inconsistent. Failure to
do address this issue is often flagged by a negative point-biserial correlation,
indicating that the item may be misaligned with the construct and potentially
misinterpreted by respondents. However, revising scale categories should not be

undertaken without clear justification. As Linacre (2002a) notes, collapsing

categories can reduce the precision and diagnostic value of the data, and should be

approached with caution.

In this study, no category revisions were made, as the objective was not to optimise
the rating scale for broader generalisability, but to examine how assessors utilised
the existing scale structure. Retaining the original categories enabled a more
accurate assessment of response patterns and scale functioning within the context
ofthe current datasets. Revisions to the scale would have been necessary if the goal
had been to adapt the scale for use with other samples of the same product or to

enhance the measurement tools for broader application.

3.3.1.5 Separation statistics

Rasch separation statistics indicate how well a measurement instrument can
distinguish between different levels of the latent variable across facets, such as
persons (sample products), items (attributes), raters (assessors), and replicate
sessions and how reliably those distinctions can be made. In other words, they
show how effectively the scale differentiates between parameters in all modelled
facets along the latent trait continuum (logit scale), as well as the consistency of

these distinctions (Myford & Wolfe, 2004; Bond et al., 2020).
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» Fixed effect Chi-Square (x°): This statistic, also referred to as the homogeneity

index (Eckes, 2023) and reported as the fixed (all same) chi-square in FACETS

(Linacre, 2023b), tests the null hypothesis that all elements within a given facet
have the same measure after accounting for measurementerror. In otherwords,
it assesses whether all raters are equally severe or lenient, all attributes have
the same intensity, samples differ significantly, or replicate evaluations are

consistent. A significant fixed chi-square value (p < 0.05) indicates that at least

two elements within the facet differ statistically (Myford & Wolfe, 2003; Eckes,

2023; Linacre, 2023b).

= Separation ratio: is a measure of the spread of the measures relative to their
precision and is expressed as a ratio of the true variance to the error variance.
Where true variance is the standard deviation after adjusting for measurement

error (Myford & Wolfe, 2003; Linacre, 2023b). Higher values within a facet

indicate better separation.

=  Strata: refers to the number of distinct, measurable levels that a measurement

instrument can differentiate along the latent trait continuum (represented on

the logit scale), after accounting for measurement error (Myford & Wolfe, 2003).
This measure is derived from the separation ratio* and is based on the
assumptionthatthe extreme ends of the trait distribution reflect meaningful and

interpretable differences. According to Linacre (2023b), strata are appropriate

when low or high values are interpreted as true differences, whereas separation
is preferred if such extremes are considered to result from random variation.
While separation indicates how widely measures are spread relative to
measurement error, strata offer a more intuitive interpretation by representing
the number of distinct levels or bands that the measurement can reliably

differentiate within a facet.

In this study, strata were reported both for ease of interpretation and for consistent
analysis across facets, rather than using a mix of strata and separation indices. This
approach wasintended to support uniform reporting across the modelled facets and

maintain methodological coherence, while allowing for meaningful interpretation of

* Strata = (4 x Separation +1) / 3.
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observed variation along the latent trait.

= Reliability (Separation reliability): is the MFRM’s equivalent of the Cronbach’s

alpha test reliability statistic (Linacre, 2023b). It indicates how confidently the

measurement tool can distinguish between elements within a facet. It is
calculated as the ratio of true variance to total observed variance. A higher
reliability value means that the ordering of measures (e.g. which sample scored
higher, or which assessor was more lenient) is likely to remain stable if the
assessment were repeated, suggesting that observed differences reflect real
variation rather than random error. Values below 0.5 indicate poor reliability,
suggesting that most of the variation is due to measurement error rather than

true differences (Wright & Masters, 2002; Myford & Wolfe, 2003; Linacre, 2023b).

Facet reports both population and sample standard deviations (SD). Population
S.D.isused when the dataset represents the entire population of interest, reflecting
the true variability within that group. Sample S.D. is applied when the data are

considered a subset drawn from a larger population, supporting generalisation

beyond the group (Linacre, 2023b). In this study, population S.D. were used for each
dataset because the focus was on variability within the specific assessors and

samples studied, with no intention to generalise findings beyond them.

3.3.1.6 Residual fit statistics

“Fit is at the core of Rasch measurement” (Bond et al., 2020, p. 54). Fit statistics are

fundamental to Rasch analysis, guiding the refinement of measurement
instruments by identifying discrepancies between observed responses and the
model’s expectations, known as residuals. Residual fit statistics play a centralrole
in evaluating data quality and underpin the diagnostic depth of MFRM by providing
fit indicators for each element in every modelled facet (e.g., each assessor,
attribute, or samples). Misfit arises when observed response patterns deviate from

what the Rasch model predicts.

The two primary fit statistics used in WINSTEPS and FACETS are INFIT and
OUTFIT. INFIT is information-weighted and more sensitive to unexpected responses
near the predicted measure for an element, while OUTFIT is unweighted and

more sensitive to outliers or extreme responses far from the expected values
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(Smith, 2002; Eckes, 2023; Linacre, 2025b).

The unstandardised form of fit statistics, known as mean squares, represents the

mean of the squared residuals (Bond et al., 2020; Linacre, 2025b). Larger residuals

indicate greater misalignment between model expectations and observed ratings.
The standardised form, expressed as a Z-statistic, adjusts for sample size and
reflects how likely the observed level of misfitis to occur by chance underthe model

(Bond et al., 2020; Eckes, 2023; Linacre, 2025b). However, they are more sensitive

to sample size and less informative about the practical magnitude of misfit as they
only reflect whether misfit is statistically significant, but not whether it is large

enough to matter for the measurement process.

In this study, unstandardised outfit mean square (OUTFIT Mnsq) statistics were
selected for assessing fit. This choice was based on the nature of sensory data,
especially from untrained panels, where extreme or inconsistent ratings are more
likely to occur. OUTFIT statistics are more sensitive to these unexpected values
than infit statistics, enhancing the ability to detect anomalies and assess
measurement quality in detail. Furthermore, outfit mean squares are already
adjusted for sample size as they are chi square statistics divided by their degrees of
freedom, thus indicating the magnitude of the misfit rather than its probability of

occurring (Linacre, 2025b).

Mean square values have an expected value of 1.0. Values significantly below 1.0
suggest overfit where responses are too predictable and contribute little additional
information, often indicating redundancy and poor discrimination among variables,
while values significantly above 1.0 suggest underfit orunmodelled noise, meaning
responses are more erratic than expected. Values greater than 2.0 may indicate
responses that distort the measurement. Although a commonly accepted fit range
of mean square values considered “productive for measurement” is 0.5-1.5

(Linacre, 2025b), acceptable limits can vary depending on the context and sample

size. This is because the variance of mean square statistics is inversely related to
sample size (i.e., asymptotic variance = 2/Nr), so smaller datasets produce wider

fluctuations around 1.0 (Wu & Adams, 2013). Consequently, fit ranges should be

tailored to the assessment context (Bond et al., 2020; Eckes, 2023), and some

researchers suggest using tighter ranges for high-stakes decisions and more
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relaxed ones for exploratory or low-stakes assessments (Engelhard & Wind, 2018;

Linacre, 2025b).

To calculate sample-size-adjusted fit ranges, Wu and Adams (2013) and Eckes

(2023) recommended the formula shown in ...Equation 3.2, which yields wider
acceptable ranges for small Nr and narrower ranges for large Nr, thereby improving

the precision of fit diagnostics.

Acceptable fitrange=1 + 2\/%
...Equation 3.2

Where Nr is the number of responses contributing to the parameter estimate within
the facet of interest. For example, in the Assessor facet, Nr is the total number of
ratings assigned by an assessor; in the Attribute facet, it is the total number of
assessor ratings on that attribute. This formula was applied across all three studies
to evaluate the performance of individual assessors and the contribution of

attributes to the overall difference.

In this study, the results from the Rasch analysis were used primarily for diagnostic
purposes rather than to develop a new measurement scale orrefine an existing one,
tailored to a specific set of items or products. Accordingly, no remedial actions such
as collapsing rating scale categories or modifying item structures were taken, as

these are typically part of an iterative development process (Engelhard & Wind,

2018; Tesio et al., 2024). Instead, the focus was on uncovering nuanced insights into

the data and evaluating the performance of the modelled facets in terms of their
consistency, interrelationships, and overall contribution to measuring the Overall

Difference between products.

This diagnostic approach aligns with the perspective of Tesio et al. (2024) who

emphasise that the Rasch model is not meant to “transform messy data” but to
prompt researchers to reflect on the underlying causes of model deviations

(Linacre, 1989; Linacre, 1994, 2023b) and iterate from there. Consequently, this

study adopts a diagnostic stance in applying the Many-Facet Rasch Model (MFRM)

to sensory difference testing.
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3.3.2 Statistical analysis

Data preparation: No additional preprocessing or data transformation was applied
to the sensory ratings. Raw assessor scores were entered directly into the
respective analysis software without modification. For the ANOVA-based analyses,
the ordinal ratings were analysed as recorded, while for the Rasch analyses, the
same raw ratings were inputinto the FACETS program for parameter estimation. The
resulting Rasch measures were then subjected to Kruskal-Wallis multiple

comparison tests to evaluate overall product differences.

3.3.2.1 Product comparisons for Overall Difference

Statistical analyses for product comparisons were conducted on both raw score
data and Rasch-transformed measures across all datasets to enable comparison
of results of the two approaches. Differences between sample products were
evaluated using both parametric and non-parametric analysis of variance (ANOVA)

methods.

= Parametric ANOVA: ANOVA models were fitted using the R packages MASS
(Venables & Ripley, 2002), and car (Fox & Weisberg, 2011). Residual analysis was

performed with nortest (Gross & Ligges, 2015), and post hoc Tukey’s HSD (Tukey,

1949) test for pairwise comparisons were performed with the multcomp package

(Hothorn et al., 2008).

= Non-parametric ANOVA: through the kwManyOneDunnTestfunction, the Kruskal-
Wallis test (Kruskal & Wallis, 1952), and the Dunn’s Many-to-One Rank

Comparison test (Dunn, 1964) for pairwise comparisons with a control were

implemented using the PMCMRplus package (Pohlert, 2023). The Friedman test

(Friedman, 1937), along with pairwise comparisons against a control using

Nemenyi's Many-to-One Test for Unreplicated Blocked Data (Hollander et al., 2014)

(via the frdManyOneNemenyiTest function), was also performed with this package.

A Benjamini-Horchberg (BH) p-adjustment (Benjamini & Hochberg, 1995) was

applied to control the false discovery rate, rather than the more conservative

Bonferroni correction (Bonferroni, 1936), which controls the familywise error

rates. The BH adjustment was preferred because it maintains greater statistical

power and reduces the risk of Type Il errors (i.e., failing to detect real differences
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when they exist). This balance is important with Rasch measures of latent traits
because these measures estimate subtle underlying constructs, and overly strict

corrections can mask real differences.

For the Dunn many-to-one comparisons, a one-tailed alternative hypothesis
("greater") was specified for the DFC test results. This was justified because the
pairwise comparison involved the DFC of the blind control (expected to show no
difference or less effect as a placebo) and the DFC of the test samples, where
differences were expected to be greater than those of the blind control. Conversely,
for the Total Intensity (Rasch) Measures (TIM), a two-tailed alternative hypothesis
(“two-sided”) was used, since differences between samples and the control could

be either an increase or a decrease in intensity.

3.3.2.2 Panel and assessor performance

Panel and individual assessor performance were examined trained and untrained
panels by ANOVA-based methods in accordance with the performance criteria

outlined in ISO 11132:2021 (British Standards Institution, 2021). The previously

mentioned statistical packages were also employed in this analysis. Detailed

descriptions of the analytical procedures are provided in the relevant chapters.

To investigate response patterns as recommended by (Stone et al., 2012; Ho, 2015;

Raithatha & Rogers, 2018):

= Response distribution plots (Trellis or lattice plots) were used to evaluate
the scoring behaviour of individual assessors across samples and replicate

evaluations.

= Assessor by Sample interaction plots were used to investigate the
agreement among assessors in the panel by plotting each assessor’s mean

responses relative to the panel average.

3.3.2.3 Data visualisation

Attribute contribution plots were created using Microsoft Excel 365 (Microsoft

Corporation, 2019). All other data visualisations, including convergence,
interaction and response distribution plots, were generated using ggplot2

(Wickham, 2016) in R.
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3.4 Data Collection

Quantitative data for this research were collected through sensory evaluation
studies. All sensory questionnaires were developed and administered using

RedJade sensory software (Redjade Software Solutions, 2023).

Allthree sensory studies were conducted in individual booths under white light at
the Sensory Laboratory of the School of Food Science and Nutrition, University of
Leeds, except for the trained panel data in Chapter 5, which were collected at a

global chocolate manufacturing company’s sensory testing facility in the UK.

The next three chapters provide a detailed discussion of the research themes under
which Rasch analysis has been applied in sensory difference testing and quality
control. As sensory evaluation methodologies varied across the three studies, each
chapter includes a dedicated sensory methodology section. A brief overview is

provided below.

Chapter 4 examines how Rasch analysis can be used to measure overall product
differences by combining multiple attribute intensity ratings. The study used
Difference from Control (DFC) and attribute intensity ratings from an untrained
panel (n = 67) on three Jaffa cake samples. Attributes were selected based on an

existing dataset whose corresponding study is discussed in Chapter 5.

Chapter 5 focuses on examining assessor performance with the Rasch model and
comparesthe performance of atrained (n=7) and untrained panel (n=24) using three
chocolate spread samples. Attributes were selected by the trained panel following

a training phase.

Chapter 6 uses data from DFC and attribute intensity ratings from an untrained
panel (n=54) on three tomato soup samples to explore the application of the Many-
Facet Rasch Model (MFRM) as a unified approach for sensory quality programmes.
Prior to the evaluation sessions, a preliminary session with untrained assessors
(n=7) was conducted to generate sensory descriptors. From this, eighteen

attributes were selected based on how frequently terms were mentioned.
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Chapter 4

Measuring Overall Difference with the Many-Facet Rasch Model

(MFRM): The Total Intensity Measure (TIM) Method

4.1 Overview

As part of routine quality assurance (QA) and quality control (QC), as well as in
market research and product development, products are evaluated to identify
differences between samples. The choice of a sensory test depends on whether the
objective is to determine overall differences between samples or differences in
specific attributes. To assess overall differences, the Difference from Control (DFC)

(Aust et al., 1985) is quite beneficial as it evaluates the magnitude of differences

between samples relative to a chosen standard, rather than just identifying whether

differences exist (Whelan, 2017; Compusense, 2020; Montero & Ross, 2022). When
the objective is to identify differences in specific attributes, methods like paired
comparison tests and alternative forced-choice tests are used. These tests focus
on one attribute at a time. However, sensory QC/QA often requires insights into
multiple attribute differences between samples, which these methods do not
efficiently provide. To address this, sensory descriptive methods are used to obtain
intensity ratings for several attributes. Multivariate data analysis techniques like the
Principal Component Analysis (PCA), are commonly used to interpret the data. PCA
helps reveal patterns in the underlying data by reducing multiple attributes into
fewer dimensions, providing a more comprehensive understanding of sample

differences. However, interpreting results from such methods can be complex.

A Rasch approach could serve as an efficient alternative for measuring product
differences offering both qualitative and quantifiable insights. As outlined in section
3.2: Framework for measuring Overall Difference using attribute intensity
ratings, the Many-Facet Rasch Model (MFRM) estimates a holistic Total Intensity
Measure (TIM) for each sample, by combining attribute intensity ratings. TIM results
are then subjected to univariate multiple comparison tests to quantify the overall
difference between samples. Additionally, inherent Rasch quality control statistics

provide deeper, easily interpretable insights, identifying which attributes were more
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challenging for assessors to evaluate and determining the relative contribution of
each attribute to the overall difference. This enhances diagnostic information,
supporting more informed decision-making in sensory quality programmes with

fewer tests.

This chapter compares overall difference measurement using two approaches: the
traditional DFC test and the Rasch-based multi-attribute (TIM) approach, and forms

part of the published article (Ariakpomu et al., 2025b).

4.1.1 Objectives

The aim of this study was to determine whether the TIM approach to measuring
product differences is equally as effective as the DFC. The hypothesis is thatthe TIM
method would yield similar overall difference results to those from the DFC, while
the MFRM will provide additional insights on how individual attributes contribute to

the Overall Difference construct.
The specific objectives were:

1. To evaluate the overall difference between three Jaffa cake samples using the

DFC test.

2. To assess the intensities of five sensory attributes in the three Jaffa cake samples

with the Attribute Rating (AR) test

3. To estimate the Total Intensity Measures (TIM) by combining the intensity ratings

from the five attributes using the MFRM.

4. To compare the overall difference results from the DFC ratings and the TIM from

the combined attributes using multiple comparison tests.
5. To interpret the additional insights provided by the MFRM’s quality control

statistics.

4.1.2 Study highlights

= TIM could differentiate between all three Jaffa cake samples while DFC could

only differentiate between one of the samples and the control.

= The MFRM Wright map illustrated which attributes were easier and more

challenging for the panel to perceive.
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= Qutfit mean square statistics for the attributes, combined with attribute logit
values, revealed that Orange flavour had the highest contribution to the sample
differences while Saltiness was the most challenging attribute for the panel to

evaluate.

4.2 Sensory study: materials and methods

Sensory data were from the dataset referenced here as (Ariakpomu et al., 2024).

4.2.1 Samples
Jaffa cakes were chosen for this study as they share similar taste and flavour

attributes! (Orange flavour, Sweetness, Cocoa flavour, Milky flavour and Saltiness)
with the chocolate spread samples used in a related study (discussed in Chapter
5). They were selected to extend the MFRM validation to a more complex food matrix
while maintaining experimental control. Jaffa cakes are sponge cakes with three
layers: a sponge base, an orange-flavoured jam layer, and a chocolate top coating
covering the side with the jam layer. This provided a heterogeneous food matrix with
similar flavour characteristics to the chocolate spreads. The specific brands used
in this study were chosen for their relatively uniform appearance, which was
important forisolating taste and flavour differences from visual cues during sensory
evaluation. Alternative chocolate-orange products, such as cookies or bars, were
not selected because of theirvariable appearance across pieces and brands, which
could introduce unwanted visual biases. Using products that share similar sensory
attributes across both studies allowed examination of whether MFRM performs
consistently across different food matrices when evaluating comparable sensory

dimensions.

To facilitate comparability of the AR test with the DFC, efforts were made to ensure
that all other sensory characteristics except taste/flavour were consistent across
the samples to be tested. This was necessary because the DFC test only assesses

overall product differences, meaning that attributes not included in the AR tests

1 Step one (in Figure 3.1:Framework): conceptualise the latent variable by identifying sensory
attributes to capture the overall difference dimension from the samples.
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could still be perceived in the DFC, potentially influencing the conclusions drawn

from the comparison.

The three selected samples comprised of one premium brand and two store-brand
Jaffa cakes. These were chosen based on informal tasting sessions within the
research team, and information from their back-of-pack labels. They were
purchased from major supermarkets in the United Kingdom and differed in their
nutritional and ingredient composition (Table B 1). The store brands were very
similarin appearance, and one was selected as the reference for the DFC test, while
the premium brand had a slightly different shape (Figure B 1). However, a significant
limitation of this sample selection approach is that no instrumental analysis was
conducted to verify that samples differed only in the target taste/flavour
characteristics. While sample selection was guided by label information and visual
inspection confirmed general uniformity in appearance, differences in texture
properties (e.g., sponge density, jam consistency, chocolate coating hardness) and
other non-target sensory attributes could not be ruled out and may have

confounded the interpretation of the five focal taste/flavour differences.

The samples were stored in odour-free, airtight, plastic containers at room

temperature (20+3°C) until they were ready to be presented.

4.2.2 Participants

Ethical approval for the sensory study was granted by the Business, Environment

and Social Sciences Faculty Research Ethics Committee at the University of Leeds.

Participants (n=67) were residents of Leeds, the majority of whom were staff and
students at the University of Leeds. They were recruited through, emails, poster

adverts and personal referrals and were selected based on the following criteria:

= Aged between 18 and 65 years

= Not having any chronic health conditions

= Notallergic orintolerant to the ingredients in the Jaffa cake samples
= Noton anyroutine medication (except contraceptives)

= Noton any special or restricted diets

= Not pregnant or lactating
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= Available to attend two 1-hour-long sensory test sessions, within one month

and with a minimum of four days between sessions.

Each participant was provided with detailed information about the study
requirements, as well as the data protection and sharing disclaimer. They were then
required to give informed consent by signing consent forms, both at the point of
enrolment and a hard copy when they attended their first study session, to ensure

they understood all study requirements and were happy to proceed.

The final untrained panel consisted of 43 females (64%) and 24 males (36%), aged
between 18 and 54 years. They represented various ethnicities: 28 Asian (42%), 16
Black (24%), 15 White (22%), 2 Mixed (3%), and 6 from other ethnic groups (9%). To
encourage commitment, participants were able to select two convenient dates for

the sensory tests through an online form (Jotform Inc, 2023). The form was

programmed to automatically send reminder emails 1 day, 2 hours, and 1 hour
before their scheduled appointment. After completing the two required sessions,

each assessorreceived a £20 Amazon voucher as incentive for their participation.

Ideally, trained panels with fewer assessors are used in QC settings. However, this
study employed a larger number of untrained assessors to explore the TIM

approach across varying levels of sensory expertise.

4.2.3 Study design

ARandomised Complete Block Design (RCBD) and Latin Square (Figure 4.1) were used

to account for order effects and other sources of variation in the sensory experiments.

Assessor Repetition 1 Repetition 2 Repetition 3

3508 473 | 441

267 RS

1031

Figure 4.1. lllustration of sample presentation order in a Latin Square, showing
three assessors (1029, 1030, and 1031) for the three samples (represented by
different colours) across three replicated sessions. Source (Redjade Software
Solutions, 2023).
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In this design, each assessor evaluated three samples in a different order across
replicate sessions, with each sample appearing in every position and following every

other sample an equal number of times (Naes et al., 2010).

Each assessor participated in two separate sessions, one for the DFC test and
another for the AR test, with a minimum interval of four days between each test

session. To minimise expectation biases (Meilgaard et al.,, 2015), half of the

participants completed the AR test first, while the other half started with the DFC
test. Additionally, to reduce experimental variations due to the time of day,
participants could only choose two morning sessions or two afternoon sessions for
both tests, with the appointment booking form programmed to automatically
account for this. Attendance was balanced according to both the time of day and

which of the two tests the participants first completed.

In each test session, three samples were presented; for the AR test, samples were
presented monadically (one at a time), while for the DFC, the samples were
presented in pairs consisting of a test sample and the reference sample. Each
sample was evaluated three times, making a total of nine evaluations for AR and
eighteen for the DFC. All samples were served at room temperature (20+3°C) on 15
cmwhite paper plates labelled with random 3-digit codes. The reference sample for

the DFC was labelled “R”.

4.2.4 Sensory evaluation procedures

The Difference-from-control (DFC) test followed the procedure described by

(Meilgaard et al., 2015). Assessors were informed that some coded test samples

might be the same as the reference and were instructed to taste each sample by
taking a semi-circle shaped (half) bite. This instruction was necessary because Jaffa
cakes are designed with the layer of orange-flavoured jam centrally positioned on
one side of the sponge base, which is then covered with a layer of chocolate (see
Figure 4.2). Without this guidance, assessors might only take a bite from the edge,
missing the orange-flavoured centre and compromising the uniformity of the

sample evaluation.
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Orange-flavoured
jam layer

Figure 4.2. Photo showing the side of a Jaffa cake with centrally located orange-
flavoured jam layer on the sponge base (with a portion of the chocolate top coating
removed) justifying why assessors were instructed to take semi-circle-shaped half
bites.

They were instructed to first taste the sample labelled "R", then taste the coded test
sample, assess the overall difference between them and then rate the size of
difference perceived. Assessors used a unidirectional labelled 7-point categorical
difference scale (0-6), where 0 = no difference, 1 = barely detectable difference, 2=
slight difference, 3 = moderate difference, 4 = large difference, 5 = very large
difference, and 6 = extremely different, to rate the size of differences between a

coded test sample and the reference sample (R).

For the Attribute Rating (AR) test, 2assessors rated the perceived intensities of five
taste/flavour attributes: Orange flavour, Sweetness, Cocoa flavour, Milky flavour,
and Saltiness. As previously mentioned (4.2.1 Samples), these attributes were
selected based on a preliminary study involving products with similar taste/flavour
characteristics, where a trained panel from a global chocolate manufacturing
company identified these attributes for orange-flavoured chocolate spreads. The
same attributes were used in this study to explore the Rasch-based method with a
different product. Assessors were asked to taste each sample and rate how strong
each of the five attributes were. All the attributes were presented on the same page
of the questionnaire, but the order was randomised for each sample and assessor,

as suggested by (Ares et al., 2014) attempting to reduce errors of habituation, logic

2 Step two (in Figure 3.1:Framework): design questions based on selected sensory attributes to
capture different amounts of the latent variable.



73

and halo effect (Lawless & Heymann, 2010). 3-4An 8-point categorical intensity

scaleranging from 0-7 with labels adapted from the Labelled Magnitude Scale (LMS)

(Green et al., 1996) was used. The intensity labels were 0 = none, 1 = barely

detectable, 2 = weak, 3 =moderate, 4 = strong, 5 = very strong, 6 = extremely strong,
and 7 = strongest imaginable oral sensation. The primary purpose of adapting LMS
labels for this ordinal categorical scale was to leverage the well-established verbal
descriptors to help assessors interpret and apply the intensity categories
consistently, rather than to replicate the quasi-logarithmic perceptual spacing of
LMS. Including the “none” label represented the 0 point on the LMS, while adding
“extremely strong” seemed an appropriate intensity rating between “very strong”
and “strongestimaginable sensation” for use in a labelled categorical scale, where
there is no continuous line to mark intensity estimates, unlike the LMS. Additionally,
the term “extremely” has been used in other category-ratio intensity scales, such

as the Borg scale and its modifications (Borg, 1982; Borg & Kaijser, 2006).

This approach prioritised ease of practical usability over preserving the mathematical
properties of the original LMS. It is important to note that while the category labels are
evenly spaced, the Rasch modelling approach does not assume these categories
represent equal perceptual intervals. Rather, the model empirically estimates the
threshold parameters between each category based on actual response patterns in
the data, transforming the ordinal ratings into interval-level logit measures (Bond et al.,

2020; Eckes, 2023). This means that the perceptual spacing between categories is

calibrated based on how the panel actually used the scale to rate the attributes across

the samples, rather than imposing uniform intervals.

Assessors were provided with a cup of water to cleanse their palate between sample
evaluations and given breaks between replicates (5 minutes for the DFC and 10
minutes for the AR test) to minimise sensory fatigue and memory bias, respectively.
Samples of the questionnaires for the DFC and AR tests are provided in Appendix

C.1.

3 Step three (in Figure 3.1:Framework): choose an intensity rating scale to categorise attribute
intensities into ordinal scores, and

4 Step four, collect ratings through sensory evaluation.
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4.2.5 Data analysis

Rasch and statistical analyses were according to the procedures described in the

previous chapter (in section 3.3). 3The attribute intensity ratings (AR) data were
fitted to a MFRM with four facets: Assessors, Samples, Repetition, and Attributes.
To facilitate the comparison between the two approaches, a separate model was
used for the DFC data. Each test had two variations of the model, one with and one
without the Repetition facet as outlined below. TIM1 and DFCM1 models include all
four facets, with data generated from all three replicate sessions grouped under the
Repetition facet, while TIM2 and DFCM2 models exclude the Repetition facet and
instead fit the data from individual replicated sessions of both tests to the MFRM.
This was necessary to investigate whether assessors provide consistent ratings
within single sessions or if averaging across multiple replicate sessions is required
for reliable measurement.
TIM1: In (Punrik /Pmnrik-1) = Bm — On — Pr — 8i — Ty

...Equation 4.1
TIM2:In (P ik /Pmnik-1) = Bm — 0n — 8; — Tk

...Equation 4.2
DFCM1: In (Pmnsk /Pmnrk-1) = Bm — On — Pr — Tk

...Equation 4.3
DFCM2: In (Pmnk /Pmnk—l) = Bm— 00— T

...Equation 4.4

Where: in the DFC models (DFCM), the §; parameter was not included due to the

absence of attributes in the analysis.

Ponrik= probability that sample (n) is rated (k) for a sensory attribute (i) by

assessor (m) in replicate session (r)

Pnrik—1= probability that sample (n) is rated (k — 1) for sensory attribute (i) by

assessor (m) in replicate session (r)
Bm= degree of leniency or severity of assessor (m) in rating attribute intensities
0,= degree of difference in the total intensity measure for sample (n)

p, = degree of difference between ratings of samples in a replicate session (r)

5 Step five (in Figure 3.1:Framework): fit a MFRM to obtain interval-scaled Total Intensity Measures
(TIM) based on combined attributes that will be used for univariate statistical analysis.
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d; = the average degree of intensity of sensory attribute (i) across all samples

T, = points on the latent variable continuum where the samples are equally likely to

be rated between scale category (k) and category (k — 1) .

Statistical analyses were conducted on the DFC raw scores, DFC Rasch measures,
and the Total Intensity Measures (TIM), and the results were compared for

discriminatory ability and diagnostic detail.

4.2.5.1 Rasch Model Fit

To recap, an acceptable global model fit of the data is when no more than 5% of

absolute standardised residuals is 22, and no more than 1% is =23 (Linacre, 2022;

Eckes, 2023).

For individual fit of each parameter within each facet (i.e., Assessor, Sample,
Repetition and Attributes) adequate model fit is assessed using OUTFIT mean
square values. Values between 0.5 and 1.5 are considered useful formeasurement,
while values >2.0 may degrade the measures, and values <0.5 may indicate

redundancy or insufficient discrimination (Linacre, 2025b).

“Response dependency” checks (Tennant & Conaghan, 2007) were conducted to

examine unidimensionality (i.e., ensuring that attributes are measuring a single
construct) and local item dependence (i.e., ensuring that responses to different
attributes are not overly correlated unless they are truly measuring the same thing,

making them redundant). Linacre (2024a) suggests using a Principal Component

Analysis of Residuals (PCAR), where unidimensionality is confirmed when the
eigenvalue of the unexplained variance in the first contrast is <2. Local item
dependence is identified when the residual correlation between two attributes is

>0.3 (Ramp et al., 2009; Christensen et al., 2017). Response dependency checks

were only applied to the TIM1 model, as itis based on multi-attribute responses and

is the proposed model for difference testing.

4.3 Results and Discussion
4.3.1 Fit of data to the Many-Facet Rasch Model (MFRM)

Rasch modelfit statistics were examined for all fitted models (TIM1, DFCM1, TIM2 and

DFCM2) to determine whether the data support unidimensional measurement.



Table 4.1. Summary of Rasch model fit statistics for DFC and Total Intensity Measure (TIM) models

OUTFIT Mean-Square’

Model Global fit? Assessor Sample Repetition Attribute
Criteria Z’szze; Z’ﬁ/zze; Total3 O';/o_ F;'ts . %>zi§§t % Fit % Fit % Fit
TIM1 4.6 (138) 0.3(9) 3015 82 5 100 100 100
TIM2.Rep1 4.5 (45) 0.4 (4) 1005 69 2 100 NAS 100
TIM2.Rep2 4.9 (45) 0.2(2) 1005 67 8 100 NA 100
TIM2.Rep3 4.3 (43) 0.4 (4) 1005 61 8 100 NA 100
DFCM1 2.8(17) 0(0) 603 65 6 100 100 100
DFCM2.Rep1 3.5(7) 0.5(1) 201 40 10 100 NA 100
DFCM2.Rep2 3.5(7) 0(0) 201 52 13 100 NA 100
DFCM2.Rep3 4.5(9) 0 (0) 201 35 13 100 NA 100

1 Qutlier-sensitive measure of unweighted mean squares (subsequently OUTFIT Mnsq) indicating deviation of the estimates from predictions of the Rasch model.
2 Percentage (number of observations in brackets) of absolute standardised residuals (StRes).

3 Total number of observations used for the estimation of the model parameters.

4 OUTFIT Mnsq values between 0.5 and 1.5 are considered productive for measurement (Linacre, 2024b). The same criteria apply to the percentage fit for all facets.

S QUTFIT Mnsq values >2.0 may degrade the measurement (Linacre, 2024b).
6 NA implies Not Applicable as the Rasch models per replicate did not have a Repetition facet.

9L
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As showninTable 4.1 and Table 4.2, all models showed an acceptable global model
fit suggesting that overall, the data in each model alighs with the assumptions of the
Rasch model and there are no major inconsistencies that may distort the

measurement.

Evidently, all facets across all fitted models, except the Assessor facet, showed a
100% fit. Assessor fit indices estimate how consistently an assessor’s ratings align

with the expectations of the model. (Myford & Wolfe, 2004; Linacre, 2012a; Eckes,

2023). While there is evidence of a few misfitting assessors across all models, the
focus of this chapter was on investigating MFRM's ability to measure sample
differences rather than comprehensive assessor performance evaluation.

Monitoring assessor performance with the MFRM is discussed in Chapter 5.

Moreover, according to (Wright & Linacre, 1994), a few misfitting assessors in

sample and item (attribute) estimates are negligible. Notably, the TIM1 and DFCM1
models with the Repetition facet showed better assessor fit than the corresponding
models without the Repetition facet. This suggests that including Repetition as an
explanatory factor and averaging across replicated ratings helps smooth out
random variations, making the data from these models more reliable. Meilgaard et
al. (2025) highlight repeating measurements as one of the techniques to minimise

variability in product ratings due to individual differences.

Response dependency checks (Table 4.2) on the TIM1 model confirmed that the
combined attributes formed a unidimensional measurement construct. PCAR
showed that after removing the Rasch factor*, the unexplained variance in the first
contrast (representing residuals in the largest secondary dimension) with an
eigenvalue of 1.9 indicated a strength of 2 out of 5 items, suggesting the possibility
of a secondary dimension. However, examination of the standardised residuals
correlation matrix showed that correlations between suspected attributes were

<0.3 indicating that any observed associations were weak and likely due to local

variations in attribute intensity (Linacre, 2024a). That said, the observed association
between Orange flavour and Sweetness could theoretically reflect sensory

interactions where citric acid can enhance sweetness perception (Veldhuizen et al.,

*The Rasch factor is the primary dimension representing the latent trait measured by the
Rasch model and reflects the expected response pattern.
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2017). However, the correlation value of 0.05 is negligible and more likely reflects
random measurement variation. Meanwhile, the weak correlation between Milky
flavour and Saltiness (0.11) may be attributed to their similarly low intensities and

erratic ratings by assessors, as discussed later in the chapter.

Table 4.2. Summary of response dependency based on standardised residuals

Model Response Dependency
Unidimensionality1 Local Item Dependence

. Corr. of
Attributes StRes2

TIM1 1.9 Milky flavour-Saltiness 0.1

Orange flavour-Sweetness 0.05

eigenvalue <2 in 1
Criteria contrast <0.3

1 Eigenvalue of the unexplained variance in the first contrast, not accounted for by the Rasch model, in the
Principal Component Analysis of Residuals (PCAR).

2 Correlation of standardised residuals (Corr. of StRes) <0.3 confirm responses on attributes are not related.

4.3.2 Rating scale category diagnhostics

Scale category diagnostics, one of the many quality control statistics offered by
Rasch models provide insights into how the categories on a rating scale have been
interpreted. Following established guidelines in Table 3.1: Guidelines for
assessing the functionality of a rating scale, deviations in the interpretation and
operational use of the scale from the Rasch model’s expectations can be

empirically investigated.

Table 4.3 shows the category functioning of the rating scales for the Intensity and
DFC rating scales for the Rasch models that include a Repetition facet- TIM1 and
DFCM1 respectively. The scales were examined against the previously discussed
criteria (Table 3.1). Criteria which were essential for measure accuracy and for

description of the samples in this study were met.



Table 4.3. Summary of scale category statistics for Intensity and DFC rating scales used in the TIM1 and DFCM1 models (with Repetition facet)

Scale Scale Categories Frequency' Average Measure? OUTFIT Mnsq® Rasch-Andrich Threshold
Observed Expected Measure Distance*
INTENSITY
Rating Scale 0 None 148 (5) -2.26 -2.03 0.8
8-category 1 Barely detectable 392 (13) -1.60 -1.61 1.0 -2.81 0.97
01234567 2 Weak 641 (21) -1.00 -1.08 1.0 -1.84 0.65
3 Moderate 937 (31) -0.54 -0.55 1.0 -1.19 1.35
4 Strong 583 (19) -0.13 -0.1 1.1 0.16 0.82
5 Very strong 239 (8) 0.23 0.25 1.0 0.98 0.65
6 Extremely strong 69 (2 0.44 0.52 1.1 1.63 1.44
7 Strongestimaginable oral sensation 6 (o)* 0.88 0.73 0.9 3.07
DFC
Rating Scale 0 Nodifference 69 (11) -1.43 -1.44 1.1
7-category 1 Barely detectable difference 131 (22) -0.82 -0.83 1.1 -1.71 1.00
0123456 2 Slight difference 135 (22) -0.57 -0.54 0.9 -0.71 0.23~
3 Moderate difference 146 (24) -0.26 -0.26 1.0 -0.48 0.97
4 Large difference 79 (13) 0.00 0.01 1.0 0.49 0.59
5 Very large difference 31 (5) 0.35 0.27 0.8 1.08 0.26"
6 Extremely different 12 (2) 0.45 0.50 1.0 1.34

1 Total count (percentage distribution in brackets) of observations used in each scale category.
2 Observed average measure (in log odds unit or logits), and expected average measure if data fits the Rasch model.
3 OUTFIT Mnsq refers to the outlier-sensitive measure of unweighted mean squares and indicates the deviation of responses from predictions of the Rasch model.

4 Absolute difference between Rasch-Andrich threshold measures (i.e., the thresholds between adjacent scale categories. For 8 and 7 category scales, the minimum threshold distances
are 0.51 and 0.57, respectively.

Unmet Criteria from 3.3.1.4: Rating scale category diagnostics

* Each scale category should have at least 10 observations as this is essential for measure stability.
A Minimum advancing distance for Rasch-Andrich threshold are helpful for inference on subsequent studies

6L



80

Specifically, the Rasch-Andrich thresholds were ordered, and probability curves
had distinct peaks (see Figure 4.3 for graphical representations of the probability
curves for the Intensity scale). No misfitting categories were observed, as OUTFIT
Mnsq values were close to 1.0, and the observed average measures increased
monotonically across the scale categories. These findings suggest that responses
to attributes in the TIM are consistent with the estimates of the latent variable

(Tennant & Conaghan, 2007) and meet the model expectations. Additionally, no

scale categories were skipped along the variable (Eckes, 2023).

Category Probability

4 35 -3 25 -2 15 -1 -05 0 05 1 1.5 2 25 3 35 B

Measure Relative to Attribute Intensity

== Category probabilty: 0 == Category probabilty: 2 == Category probabilty: 4 == Category probability: 6
== Category probability: 1 == Category probability: 3 == Category probabilty: S == Category probability: 7

Figure 4.3. Probability curves for TIM1 Intensity scale showing ordered Rasch-
Andrich thresholds resembling a range of hills with distinct peaks. As scale
categories advance along the latent variable, each category becomes the most
probable choice. The points where each category curve intersects with the adjacent
category curve represent the half-point (Measure in Table 4.3), where the
probability of a sample receiving a higher rating begins to exceed the likelihood of
being rated in the lower adjacent category. These correspond to the half-point
thresholds on the Wright maps.

However, there were only 6 total observations in the last category (7 - Strongest

imaginable oral sensation) of the Intensity scale. According to Linacre (2002b), a

minimum of 10 observations per category is essential for ensuring measure



81

stability, which refers to the consistency of a measurement system when repeated

over time in the same context.

The DFC scale also did not meet the required minimum advancing distance
between category thresholds for scales with 7 categories. Specifically, the
thresholds categories 2 - Slight difference and 5 - Very large difference, respectively
were less than the minimum required 0.57, suggesting that these categories were

too close to be distinctive (Eckes, 2023). However, meeting this requirementis only

helpful for making inferences in subsequent studies. Therefore, it was not
necessary to revise either of the rating scales, as doing so would have been beyond
the scope of this study, which focused primarily on exploring the MFRM for
measuring overall differences, rather than modifying tools to improve

measurement procedures for Jaffa cakes.

4.3.3 Representing the Overall Difference construct on the Wright map¢

Wright maps forthe TIM1 and DFCM1 models are presented in Figure 4.4 and Figure
4.5 respectively. As previously discussed in section 3.3.1.1: Fitting the Many-Facet
Rasch Model (MFRM), all four facets (Assessors, Samples, Repetition and
Attributes) were positively oriented so that on average, for each facet the following

applies.

= Assessor facet: assessors with higher logit values are more lenient, generally
assigning higher scores on the rating scale.

= Sample facet: samples with higher logit values have higher Total Intensity
Measure (TIM) or for the DFC measure (DFCM), are more different from the
control.

= Repetition facet: replicate sessions where higher intensity ratings were
assigned on average have higher logit values.

= Attribute facet: attributes with higher average intensity ratings have higher logit

values.

6 Step six (in Figure 3.1:Framework): represent the construct on the Wright map to visualise the
location of facet parameters on the logit scale. Rasch measures from steps five and six are
exported for statistical analysis, and Rach quality control statistics (OUTFIT Mnsq) provide
insights into specific attribute contribution to the latent variable of overall difference.
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The individual parameters within each facet (e.g., each assessor in the Assessor facet,
each sample in the Sample facet, etc) are relatively located on the Wright map
according to their logit values. The Sample facet was non-centred, while the other
facets were centred at the mean (0 on the logit scale) to serve as a reference point.
Consequently, sample locations were adjusted by considering the severity of
assessors, the average intensity of attributes, and the intensity ratings in repeated

sessions representing the Assessor, Attribute, and Repetition facets, respectively.

4.3.3.1 Total Intensity Measure (TIM1)

The TIM Wright map (Figure 4.4 above) showed that assessors exhibited varying
degrees of severity in their use of the intensity rating scale. On the Assessor facet,
Assessor 1014 had the highest logit value and emerged as the most lenient assessor
in the panel. This suggested that they consistently assigned the highest ratings to

the samples compared to other assessors.

Forthe Sample facet, on average, attribute intensity ratings for the samples were below
average (0 on the logit scale), and ratings across the three replicated sessions were
consistent. Samples positioned higher on the scale were perceived to have greater
intensity of the combined attributes. Their values on the logit scale, relative to their
location, represent the Total Intensity Measure, which will be used for multiple
comparison tests and reflects the latent variable of Overall Difference between the

samples.

The Attributes facet revealed the location of the attributes based on the average ratings
from the samples. Attributes higher on the scale had the highest intensity ratings
across all the samples and repeated sessions. Orange flavour and Sweetness had the

highest average intensity, while Milky flavour and Saltiness had the lowest.

Initial interpretation suggested this hierarchy indicated how much each attribute
contributed to differences between samples, with Orange flavour and Sweetness
appearing mostinfluential. However, further examination using MFRM across different
contexts revealed that this hierarchy actually reflects average intensity levels rather
than discriminating power. Attributes with high average intensity are more easily
perceived overall and do not necessarily mean they contribute most to sample

differentiation.
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Figure 4.4. Many-Facet Wright map for TIM1.

|+sample |+Repetition|+Attributes (Less intense)

INTENSITY SCALE

The first column “Measr” represents Rasch model measures on the logit scale. The four
facets are displayed from left to right: 1001-1072 represent unique assessor IDs for 67
assessors in the Assessor facet; Brands A and B represent the test samples, and Control
refers to the reference sample in the Sample facet. Numbers 1-3 indicate replicate
evaluations in the repetition facet, and attributes are listed in the Attribute facet. The
rightmost column illustrates the functioning of the AR intensity rating scale, with horizontal
lines marking half-point thresholds, where the probability of a sample receiving a higher
rating begins to exceed the likelihood of being rated in the lower adjacent category.
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The interpretation of attribute intensities in the MFRM depends on the
measurement context and the construct being modelled. In Ho (2019), the construct
was overall liking, where individual attribute intensities served as items contributing to
that liking judgment. In that context, attribute locations on the logit scale directly
indicated their contribution to overall liking, as higher attribute intensities translated to
higher liking scores. In contrast, the construct examined in this thesis is overall
difference between samples, with attribute intensities also serving as items. Here,
higher logit values reflect higher average intensity across all samples rather than a
stronger contribution to sample discrimination. When statistically significant
differences exist between samples, the Outfit mean square values for the attributes
(discussed later in this chapter) provide insight into their relative contributions to those

differences.

The intensity scale shows the average rating range used by the panel for the
attributes. Notably, the gaps between adjacent scale categories are not
equidistant, and tend to widen toward the extreme categories. The Rasch model
empirically estimates these category thresholds from the observed response
patterns as rated by the assessor panel rather than imposing uniform spacing, with
the non-uniformity reflecting how assessors actually used the scale categories
when rating the samples. On average, all samples were rated as having moderate

intensity across the combined attributes.

To estimate the overall difference analogous to the DFC method, pairwise
comparison tests against a control would determine the existence of significant
overall differences between Brand A and Brand B compared to the Control, based
on their Total Intensity Measures (TIM) from the logit scale. Rasch quality control
statistics, specifically the OUTFIT mean square for individual attributes, would

further reveal the importance of each attribute to the overall sample differences.

4.3.3.2 DFC Measure (DFCM1)

In Figure 4.5 below, the DFCM1 Wright map revealed varying degrees of severity
among assessors in the Assessor facet. Assessor 1011 was the most severe,
consistently assigning the lowest ratings to samples on average, standing out from

the rest of the panel by nearly 2 logits. This extreme severity indicates they used the
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rating scale very differently from their peers, systematically rating all samples
lower. Rasch quality control statistics would flag this assessor as misfitting due to

their deviation from the model’s expected response patterns.
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Figure 4.5. Many-Facet Wright map for DFCM1.

The first column “Measr” represents Rasch model measures on the logit scale. The four facets
are displayed from left to right: 1001-1072 represent unique assessor IDs for the 67 assessors
in the assessor facet; Brands A and B represent the test samples, and Control refers to the
reference sample (R) in the sample facet. Numbers 1-3 indicate replicate evaluations in the
repetition facet, and "item" refers to the single difference from control question use to evaluate
the samples. The rightmost column illustrates the functioning of the difference rating scale for
the DFC, with horizontal lines marking half-point thresholds, where the probability of a sample
receiving a higher rating exceeds the likelihood of being rated in the lower adjacent category.

This type of assessor behaviour, where an individual systematically rates differently
from the panel consensus, poses challenges for traditional sensory analysis methods.

In ANOVA approaches, such assessors contribute to increased error variance, but their
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specific problematic patterns may not be readily identified without additional tests.
MFRM, in contrast, provides immediate individual-level fit statistics that highlight these
issues, enabling targeted assessor retraining or data quality decisions. A detailed
evaluation of assessor performance using MFRM, including the implications of

different types of misfit patterns, is addressed in Chapter 5.

For the Sample facet, Brand A was notably located higher on the logit scale
compared to Brand B and the CONTROL which had similar logit values. While on
average, assessors rated Brand A as moderately different from the CONTROL, the
slight difference rating between Brand B and CONTROL was not statistically
significant. Some assessors may have considered differences in other sensory
attributes across different modalities such as appearance, texture, and other
flavours, which were not intended to be captured in the study. Efforts to maintain
consistency across other sensory characteristics, aside from those of interest,
during sample selection may not have been entirely successful. Brand A had a slight
difference in shape compared to the other samples (Figure B 1), which some
assessors may have noticed. Furthermore, post-study feedback revealed that
several participants were able to easily identify Brand A, due to their frequent
consumption and familiarity with Jaffa cakes.

In the Repetition facet, average DFC ratings increased in successive repeated
sessions, with the third session showing the highest DFC ratings. This increase may
be due to assessors probably experiencing fatigue and some context bias from
tasting numerous samples during the test. As fatigue and cognitive overload set in,
assessors may simplify their responses by restricting the range of their ratings to a
particular section of the scale. Due to sensory adaptation, this restricted range may

shift toward the higher end of the scale. As noted by Lawless and Heymann (2010)

and Meilgaard et al. (2025), repetitive and demanding testing conditions can

compromise panel performance, leading to increased response variability and a

reliance on habitual rating patterns.

As with the TIM Wright map, the gaps between adjacent scale categories are not
equidistant and tend to widen toward the extreme categories. As reported by (Tennant

& Conaghan, 2007), values at the extremes of the scale capture a wider range of the

underlying construct, in this case, the difference of the samples fromthe control (DFC).
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4.3.4 Comparing overall difference between samples: DFC versus TIM

The overall difference results from DFC raw scores were compared with those from
the Rasch-based TIM as well as to DFC Rasch measures (DFCM) for their sensitivity

to product differences and the level of diagnostics information they provide.

Table 4.4 below summarises the statistical test results for DFC raw scores, TIM and
DFCM, together with their replicates. Strata and Reliability values from Rasch
separation statistics are also presented. Strata refers to the number of statistically
distinct groups distinguishable by the respondents in a measurement instrument

(Wright & Masters, 2002; Myford & Wolfe, 2003). A Strata of 1 indicates that the

instrument cannot reliably distinguish between different levels of the latent variable.
2 Strata shows a distinction between high and low levels only. 3 Strata indicate low,
medium, and high levels of a latent variable while 4 or more Strata signify that the
instrument can distinguish between 4 or more distinct groups. Low Strata statistics
may suggest a need to add more discriminative items or refine existing ones to
capture more of the latent variable. On the other hand, the Reliability index indicates
whether differences found between the samples are due to measurement error. A
Reliability value <0.50 suggests that differences between measures are primarily due

to measurement error (Wright & Masters, 2002).

All datasets for the DFC Rasch measures showed Strata values greater than 4,
indicating that the model could reliably distinguish multiple statistically distinct
levels of perceived DFC among the samples. Reliability values close to 1.0 further
support the precision of the measures. These indicators reflect strong overall
discriminatory ability, as supported by the Wright map, which showed that Brand A
was notably different from the Control and Brand B, being located approximately
0.5 logits away from them. Pairwise comparisons would help identify which specific

samples differed significantly from the control.

Strata for the samples in TIM varied between repeated sessions. For the first two
replicate sessions (TIM2.Rep1 and TIM2.Rep?2), Strata values were less than 2, with
reliability values of 0.45 and 0.35, respectively. These low values suggest that, in the
firstand second evaluations of sample replicates, assessors were unable to reliably

distinguish between the samples.



Table 4.4. Comparison of Sample facet summary statistics for all TIM and DFCM Rasch models and raw DFC scores, with mean comparisons

based on the Friedman test.

TIM Models DFCM Models DFC RAW Scores
Test/Dataset12 TIM2.R1 TIM2.R2 TIM2.R3 TIM1 DFCM2.R1 DFCM2.R2 DFCM2.R3 DFCM1 R1 R2 R3 R. Avge
Rasch Separation Statistic
Reliability sampte 0.45 0.35 0.68 0.83 0.94 0.92 0.97 0.98
Strata sample 1.53 1.31 2.27 3.31 5.4 5.01 7.86 8.78
Rasch Fixed X*sample 5.4" 4.6” 9.4” 17.9™ 48.1™ 41.0"™ 101.9"™ 128.6™
ANOVA Residual Analysis (P-values)
Normality
Shapiro-Wilks <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.043 0.071 0.311 0.29
Outlier Test
Bonferroni 0.033 NA NA NA NA 0.243 <0.001 NA 0.026 0.683 0.319 0.034 %
Constancy of Error Variance
Breusch-Pagan <0.001 0.006 <0.001 0.081 0.07 <0.001 <0.001 0.271 <0.001 0.011 0.002 <0.001
Friedman Test
)(2 134™ 134™ 134™ 134 134™ 134 134 134 20.39™ 14.21"" 45.80™" 46.72"
Nemenyi Many-to-One Test (Pairwise Comparisons)
Mean differences
Control-Brand A -0.19™  -0.08™" -0.23™ -0.19™ -1.13™ -0.92™ -1.43™ -0.82"" -0.94™  -1.01"™ -1.39™ -1.11™
Control-Brand B -0.07""  -0.07"" -0.08™" -0.07"" 0.02 -0.01™ 0.2 0.05 0.01 -0.01 0.18 0.06

Tp_value levels of significance: <0.001***, <0.01**, <0.05*, <0.17; measures with no superscript symbols have p-values >0.1.

2 NAindicates “Not applicable” as no outliers were found.

TIM =Total Intensity Measure; DFCM = Difference-from-Control Model. TIM1 and DFCM1 = models including the Repetition facet; TIM2 and DFCM2 = models excluding the Repetition facet (i.e. individual replicate datasets).
R1-R3 = Repetitions 1-3 for the corresponding model; Raw DFC scores are presented for individual replicates (R1-R3) and for the averaged values. R. Avge = average across repetitions.
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The Reliability values below 0.5 indicate the dominance of measurement error

(Wright & Masters, 2002; Myford & Wolfe, 2003; Linacre, 2023b), suggesting more

inconsistent ratings during the earlier replicate sessions, possibly due to initial

uncertainty or unfamiliarity with the methods and samples.

TIM2.Rep3 revealed a distinction between high and low levels of intensities for the
sample with a Strata value of 2 and a Reliability statistic greater than 0.5. However,
the TIM1 modelwhichincluded the fourth facet for repetition by combining the three
repeated sessions, showed a Strata value of 3 indicating three statistically distinct
levels among the samples, supported by a Reliability value closer to 1.0. This
suggests that modelling all replicate sessions simultaneously and accounting for
variability from repeated evaluations reduced inconsistencies in assessor ratings
and thereby improved the discriminatory ability of the measurement. The model
accounted for the variability by estimating separate parameters for the repetition

effect or facet, effectively removing its influence from the sample comparisons.

The differences in separation statistics between the DFCM and TIM models likely
reflect differences in the constructs being measured. DFCM captures a holistic
judgement with a single item (overall Difference From Control), whereas TIM
assesses five separate attribute intensities. As a result, the observed separation
values may reflect genuine differences in how discriminable the samples are along

these distinct measurement dimensions.

Test design and cognitive strategy also likely influenced discrimination. The DFCM
used a comparative presentation in which assessors directly evaluated each
sample against a control, a process that can support more consistent responses.
In contrast, TIM used monadic presentation, requiring assessors to rate five
attributes separately without the control present and to rely on their own internal
reference for each attribute. The overall difference score for TIM was then derived

as a latent variable from these individual ratings.

The higher Strata values observed for DFCM may additionally reflect the substantial
perceptual differences between the products assessed, particularly the strong

contrast between Brand A and the control.
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These approaches serve different research purposes. DFC was chosen as the
comparison because it is the established method for directly measuring overall
difference and quantifying its magnitude. It produced higher separation in this
study, making it efficient for determining whether products differ. In contrast, TIM
derives overall difference from individual attribute ratings and therefore provides
diagnostic information about which specific attributes contribute to the perceived
differences. This makes it particularly useful when the research goal extends
beyond simple differentiation to understanding attribute contributions to product
differences. The trade-off is that TIM's predefined attributes may not capture all
perceptible differences detected in holistic DFC judgments. Therefore, when using
TIM, test design must ensure that relevant attributes are carefully selected and

included in the sensory questionnaire to allow accurate estimation.

Parametric two-way ANOVA tests also indicated statistically significant differences
between samples across all datasets (p<0.001), except for TIM2.R1 which was only
marginally significant (p<0.10), and TIM2.R2 with a slightly greater significance
(p<0.05). These results are consistent with the Rasch model fixed chi-square
statistics and separation indices, which also showed weaker model performance
for these replicates, with strata values below 2 and reliability values under 0.5, as
previously discussed. However, residual analyses revealed violations of key ANOVA
assumptions (Table 4.4). Specifically, non-normality was detected in both the TIM
and DFCM estimates, and Breusch-Pagan tests confirmed heteroscedasticity in
residuals across all datasets (DFC raw scores, DFCM, and TIM models). As a result,

non-parametric methods were employed.

In earlier analyses, as reported in (Ariakpomu et al., 2025b), differences between

samples were assessed using non-parametric mean comparison and post hoc
tests that included sample x assessor interaction effects. While this approach is
commonly used to detect subtle differences in raw score data, it is not suitable for
Rasch-derived measures such as TIM and DFCM, unless the Rasch model used
explicitly includes the assessor x sample interaction effects. This is because the
Rasch estimation process already adjusts for each assessor’s severity or leniency
when generating measures. Rasch model estimates account for assessor effects,

as well as those of other modelled facets, effectively removing their influence.
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Reintroducing these assessor effects in rank-based mean comparison tests, such
as the Friedman test, leads to double-counting the variance. This makes the test
overly sensitive, increasing the risk of Type I errors, as the between-group variations
have already been separated out during the Rasch modelling process. Any
remaining unexplained variations, including interaction effects are modelled as

measurement error and reflected in the residuals (Linacre, 1995).

This issue is evident in Table 4.4, where applying the Friedman test produced a chi-
square value of 134, and indicated a highly statistically significant difference (p<0.001)
between the samples across the Rasch-derived measures (TIM and DFCM models).
Any observed statistical significance may be reflecting redundant variance rather than
true differences between samples. This is because the Friedman test treats assessors
as blocks, ranking the samples within each assessor based on the raw scores they
provided, and then compares these ranks across assessors to test for differences.
However, when the Rasch model already reveals significant differences in assessor
severity levels, as with this study, those effects have already been statistically adjusted
for in the estimation process. Specifically, the model includes rater severity as a
separate parameter, so systematic variance associated with individual assessors is
modelled and removed from the resulting Rasch measures. Residual assessor
inconsistency not captured by the severity parameter is absorbed as measurement
error in the Rasch residuals. Applying the Friedman test to these adjusted measures
therefore reintroduces assessor effects that the Rasch model has already accounted

for, exaggerating the detection of between-sample differences.

Toillustrate, consider an excerpt from the Rasch-derived Total Intensity Measures (TIM)

for the three Jaffa cakes samples, based on evaluations from three assessors:

Assessors/Samples Brand A Brand B Control
Assessor 1 0.05 -0.15 -0.22
Assessor 2 -0.16 -0.27 -0.35
Assessor 3 0.12 0.00 -0.07
Assessors ... n=67(mean) -0.59 -0.71 -0.78

While the absolute values differ between assessors due to differences in severity,

the within-assessor ranking of the samples remains consistent: Brand A> Brand B
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> Control. Because the Friedman test operates on these within-assessor block
ranks, itwill consistently indicate significant differences between the sample ranks.
Analyses of additional datasets further corroborated this issue (see Table E 1),
consistently showing inflated significant sample differences with the Friedman test.
Since Rasch-derived measures already adjust for rater severity and other modelled

sources of variance (Boone et al., 2014; Bond et al., 2020), post hoc comparisons

for Rasch measures should focus solely on differences between samples and avoid
including assessors as blocking factors. Where parametric assumptions are
unmet, non-parametric alternatives such as the Kruskal-Wallis and Dunn’s tests

are more appropriate.

Using these revised methods, the findings presented in Table 4.5 more accurately
reflect the sample differences and align with the results of the Rasch fixed chi-

square statistics. As noted by Boone et al. (2014), when data fit the Rasch model,

the resulting interval-level measures are generally suitable for parametric analyses.
However, because sensory data sometimes violate parametric assumptions (Kemp

et al., 2018), non-parametric alternatives can still be used with confidence when

applied to Rasch measures, not as a compromise, but as equally robust options.

This robustness stems from the model’s use of raw scores as “sufficient statistics”

(Linacre, 2004b; Bond et al., 2020), meaning that the total score contains all the
necessary information to estimate the location of the person or items (in this
context, the samples or attributes) on the latent trait, based solely on the structure

of response patterns rather than assumptions about the underlying distribution.

The sample differences identified by the Kruskal-Wallis test, which evaluates group
differences based on differences in mean rank sums per sample, closely aligned
with the results from the Rasch analysis (Rasch fixed x2). Al results, except the
individual replicates of the TIM model (TIM2), indicated that the difference between
Brand A and the Control was highly significant (p < 0.001). For the TIM2 model, the
degree of significance increased progressively across replicates 1 to 3, with
corresponding Dunn’s test p-values of 0.14, 0.08, and 0.003, respectively. This
pattern likely reflects a learning effect where repeated exposure reduced initial
uncertainty and allowed assessors to develop a stable internal frame of reference,

enhancing their ability to discriminate subtle sensory differences.



Table 4.5. Comparison of Sample facet summary statistics for all TIM and DFCM Rasch models and raw DFC scores, with mean comparisons
based on the Kruskal-Wallis test.

TIM Models DFCM Models DFC RAW Scores
Test/Dataset’ TIM2.R1 TIM2.R2 TIM2.R3 TIM1 DFCM2.R1 DFCM2.R2 DFCM2.R3 DFCM1 R1 R2 R3 R. Avge
Rasch Separation Statistic
Reliability sampe 0.45 0.35 0.68 0.83 0.94 0.92 0.97 0.98
Strata sampte 1.53 1.31 2.27 3.31 5.4 5.01 7.86 8.78
Rasch Fixed X* sampte 5.4" 4.6” 9.4" 17.9™ 48.1™ 41.0™ 101.9™ 128.6™"
Mean Comparison Tests
Friedman Test (x%)2 134 134 134 134 134™ 134™ 134™ 134" 20.39"" 14.21™" 45.80™ 46.72"
Kruskal-Wallis Test
(H)3 3.94 5.09" 11.78™ 18.99™ 38.33"™" 42.21™ 78.91™ 210™ 20.50"" 18.18™" 44.52™ 79.12™

Mean differences (Dunn's Many-to-One Test)

ek

Control-Brand A -0.19” -0.08" -0.23™ -0.19™ -1.13™ -0.92™ -1.43™ -0.82"" -0.94™  -1.01™"  -1.39™ -1.11

Control-Brand B -0.07 -0.07 -0.08 -0.07~ 0.02 -0.01 0.2 0.05 0.01 -0.01 0.18 0.06

TIM = Total Intensity Measure; DFCM = Difference-from-Control Model. TIM1 and DFCM1 = models including the Repetition facet; TIM2 and DFCM2 = models excluding the Repetition facet (i.e. individual
replicate datasets). R1-R3 = Repetitions 1-3 for the corresponding model; Raw DFC scores are presented for individual replicates (R1-R3) and for the averaged values. R. Avge = average across repetitions.

Tp-value levels of significance: <0.001™*, <0.01™, <0.05", <0.1~; measures with no superscript symbols have p-values >0.1.
For degrees of freedom (df) = 2, the chi square (xz) critical values are 5.991 (a = 0.05) and 4.605 (a=0.1).
2 Friedman test results are included for comparison only. The inflated significance reflects redundant variance already modelled by the Rasch estimation.
3 The Kruskal-Wallis test statistic (H) provides the primary analysis for between-sample differences and also follows a x> distribution for significance testing.

€6
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This effect is consistent with findings by Peltier et al. (2018), who observed that
replicating evaluations enhances the ability to discriminate between flavour
attributes. In contrast, the DFCM results showed high discrimination from the first
evaluation, likely because assessors directly compared each sample against a
physical reference (control) rather than relying solely on a mental internal
reference. The comparative design of the DFC test inherently provided a physical
reference that facilitated immediate discrimination, leading to higher Strata and
reliability estimates, whereas the monadic presentation of the attribute rating test
used for TIM required repeated exposures for assessors to construct an equivalent
internal reference, explaining the progressive increase in sensitivity across

replicates.

Beyond presentation design, the higher Strata values for DFCM compared to TIM may
alsoreflectthatthe holistic DFC rating allowed assessors to integrate any perceptible
difference into their judgment. When rating overall difference from the control with a
physical reference present, assessors could detect differences across multiple
sensory modalities, not just taste. However, these ratings could have been
influenced by perceived differences other than the taste of the samples. As
previously discussed in 4.3.3.2: DFC Measure (DFCM1), the perceived difference
in non-taste attributes and familiarity with Brand A may have influenced assessors'
DFC ratings, despite efforts to minimise these influences. In comparison, low Strata
values for TIM suggest that the range of taste attributes selected to capture the
latent variable of overall difference could be refined to be more discriminative.
Perhaps a different set of taste attributes or even the inclusion of other sensory
modalities may help distinguish the samples more effectively based on combined

ratings, as will be explored in Chapter 6.

4.3.5 Examining attribute contributions to the overall difference (TIM)

This section examines how individual attributes contribute to the overall difference
as alatentvariable using the TIM model. Rasch outfit mean squares for the Attribute
facet were used to assess how well each attribute distinguished between the
samples. As discussed earlier in Chapter 3, Rasch residual fit statistics - Infit and
Outfit evaluate how well data associated with individual parameters in a facet align

with the expectations of the Rasch model. To recap, as a general rule (Linacre,
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2024b), after accounting for measurement error, mean square values less than 1
(<1) indicate overfit, meaning the observed ratings are more predictable than the
model expects. Conversely, values greater than 1 (>1) indicate underfit, where
observed values deviate more from the model’s expectations. However, fit criteria

have been found to be context dependent (Wu & Adams, 2013; Eckes, 2023) and so

acceptable ranges should be set accordingly as detailed in 3.3.1.6:Residual fit

statistics.

For the Item facet, the Rasch model assumes equal discrimination across all items.
The OUTFIT statistic measures how well each item’s response patterns fit the
model’s expectations, i.e. whether an item’s response pattern deviates from the

expected pattern of equal discrimination across items (Wu & Adams, 2013),

indicating how much unexpected variation there is in the response data for item. In
this study, "items" refer to the sensory attributes, and the Outfit mean square
indicates how much variation is present in the ratings assigned to an attribute by
assessors across the different samples. Therefore, variations in attribute ratings
between samples may occur due to one or more of the following: actual perceptible
differences between samples, individual differences in assessor perception, or
unclear or inconsistently understood attribute definitions. The results provide a
high-level indication of where variations in attribute ratings occur across the
samples, guiding further investigation into potential underlying causes, and
whether these variations are primarily due to differences between the samples or

assessor bias.
The OUTFIT mean square for each attribute can indicate the following.

= Values below the acceptable range (overfit): The attribute may not

discriminate well between samples, as the responses are overly predictable.

= Values above the acceptable range (underfit) in high-intensity attributes:
This suggests that the discrimination of the attribute differs significantly from

that of other attributes (Wu & Adams, 2013). According to (Linacre, 2025b), when

an easy item (i.e. a high-intensity attribute) shows underfit, it may indicate that

the item behaves qualitatively different from the others.
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= Underfit in low-intensity attributes: When low-intensity attributes (i.e., those
with negative logit values or values below the mean) have Outfit mean square
values above the acceptable range (underfit), in most cases it may reflect
inconsistency in how assessors rate the attribute. Inconsistent ratings could
result from individual perceptual differences, ambiguous attribute definitions, or
response bias, where assessors interpret the attribute in different ways or are
uncertain whether they actually perceive the attribute. This uncertainty may lead
to considerable variation in ratings across repeated sessions (i.e., low internal

consistency). Linacre (2025b) reports that when a difficult item (in this context, a

low-intensity attribute) is underfit, it is often ambiguous, debatable or contains

misleading options.

However, this is not always the case. Underfit may still reflect genuine variation
in the attribute across samples, particularly when an attribute receives
consistently low ratings due to its absence in one or more samples. This can
distort the overall ratings, pulling the attribute to the low end of the logit scale, as
the low rating for a sample consequently lowers the average ratings across all
samples. Careful interpretation is therefore required to distinguish whether
underfitis due to assessor inconsistencies, rating distribution issues or inherent

attribute characteristics.

When differences between samples are statistically significant, higher Outfit mean
square (Outfit Mnsq) values suggest that the attribute was contributing more to the
observed differences between samples. In contrast, Outfit Mnsq values below the
acceptable range indicate that the attribute shows little variation across samples,
possibly because it was redundant or measured with limited sensitivity. This lack of
variability suggests that the attribute does not effectively differentiate between the

samples after accounting for measurement error.

In this study, the total number of responses (Nr) for each attribute was 603, hence
the acceptable OUTFIT Mnsq range was calculated* (as discussed in
3.3.1.6:Residual fit statistics) to fall within 0.89 -1.12. Table 4.6 presents the

OUTFIT Mnsq results from the Rasch analysis, alongside results from the three-way

*142 /% , where Nr (number of responses) for each of the attributes is 603.
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ANOVA conducted on the raw attribute intensity ratings for the panel. The ANOVA
was used to assess whether there were statistically significant differences between
samples for each attribute and to evaluate the effects of other variables (facets),
such as Assessor and Repetition, on the ratings.

Table 4.6. Summary of TIM Rasch analysis, and ANOVA results on raw attribute
scores, showing attribute contributions to sample differences.

Attributes +Ve Logit -Ve Logit
Orange Fl. Sweetness CocoaFL Saltiness  Milky FL.

Rasch Model Results
Attributes Logit Measure?  0.75 0.74 0.21 -1.2 -0.5
Attributes OUTFIT Mnsg?2  1.23 0.95 0.95 0.97 0.91
Panel ANOVA3
F sample 14.12"" 5.66" 2.13 4.34° 0.38
F assessors 5.71" 8.45™ 8.11™ 17.43™ 13.10"™
F Repetition 1.85 3.24° 0.84 8.10™" 12.76™
F assessors x samples 0.95 0.85 0.96 1.00 1.15
F Assessors x Repetition 1.27 1.32 1.49” 1.56™ 1.25
F sample x Repetition 0.83 0.20 0.19 0.39 0.59

Attributes are arranged from left to right by decreasing OUTFIT Mnsq value and are differentiated based on whether
they were located on the positive (+Ve logit > mean) or negative (-Ve logit < mean) side of the logit scale.

TValue of the location of an attribute on the Rasch logit scale. Negative (-Ve) logit values signify low-intensity
attributes (below the mean), and attributes are more challenging to rate when they are not overfit.

2 Qutlier-sensitive mean squares for attributes indicating whether the discrimination of an attribute differs from
the average discrimination of other attributes in the test. The acceptable range for this datais 0.89-1.12 and
values <0.89 (overfit) signify a non-discriminating attribute.

3ANOVA on raw scores; F-values with p-value levels of significance: <0.001***, <0.01**, <0.05*; measures with
no superscript symbols >0.05.

Notably, none of the attributes overfit the Rasch model (i.e., OUTFIT Mnsq < 0.89),
suggesting that they were perceived differently across the samples. Further
investigations using F-values from the ANOVA results revealed which samples were
significantly different. For sample (F sampie), the attribute with the highest F-value and
the most significant p-value was Orange flavour, suggesting that it had a significant

impact on sample differences. This finding alighed with the Rasch analysis results,
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where Orange flavour, the most intense attribute (highest logit value = 0.75),
underfit the Rasch model with an OUTFIT Mnsq value of 1.23 implying that on
average, Orange flavour had the most variable intensity ratings across the samples.
This was followed by Sweetness and Cocoa flavour which had identical OUTFIT
Mnsq values. However, low-intensity attributes, Milky flavour and Saltiness (with
negative logit values) also had high OUTFIT Mnsq values and were flagged as more
challenging for the panel to rate. Although the ratings did not underfit the model,
assessors assigned the most varied ratings, as indicated by the higher F-value for
assessors (Fassessors), With Milky flavour identified as slightly less challenging
compared to Saltiness. The greater variance amongst parameters within a facet, the

higher the OUTFIT Mnsq value (Linacre, 1995).

A visual representation of the hierarchy of attribute contributions to product
differences is shown in Figure 4.6. This provides a clear and high-level basis for
identifying key drivers of product differences, enabling analysts to target
reformulation or quality control efforts accordingly.

Attributes OUTFIT MNSQ - Jaffa Cakes ARk M

(attributes logit measures in brackets)

(=)

0.2 0.4 0.6 0.8 1 1.2 1.4

Orange Flavour 1.23(0.75)

Sweetness 0.95(0.74)

Cocoa Flavour 0.95(0.21)

Logit Measures
I > Logit Mean (0)

Figure 4.6. Sensory attribute contribution to overall differences between Jaffa cake
samples based on Rasch logit measures (in brackets) and residual fit statistic (OUTFIT
Mnsq). Attributes are colour-coded by logit sign: blue fill = positive logits (higher intensity,
contributing more to product differences); red textured fill = negative logits (lower intensity,
rated more inconsistently). This division helps distinguish attributes driving sample
differences from those that were more challenging for the panel to rate.

When further insights such as assessing statistical significance or exploring
specific attribute interactions, this information can be complemented with
additional analyses like pairwise comparison tests and visualisation plots. It also

supports decisions about whether the panel requires further training on more
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challenging attributes or if certain attributes contribute little, if at all, to product
differentiation and can be excluded from further analysis.

From the ANOVA results (Table 4.6) Sweetness had a significant impact on sample
differences, while Cocoa flavour did not. However, Rasch results showed that these
two attributes had the same OUTFIT Mnsq, indicating similar levels of inconsistency
in how assessors rated them across the samples. This suggests that, although
Sweetness was rated as more intense, both attributes exhibited comparable
response irregularities possibly due to perceptual interaction or contextual
influences. A likely explanation is the cognitive bias known as logical error (Myford

& Wolfe, 2003; Kemp et al., 2018; Meilgaard et al., 2025), where assessors associate

certain product characteristics in their minds, such as sweetness and chocolate
(cocoa flavour), leading them to rate these attributes in a similar way despite their
differences in average ratings.

Based on the Rasch analysis results, Orange flavour emerges as the primary
contributor to the differences between the Jaffa cake samples. Upon reviewing the
sample composition (Appendix B.1), it was found that the orange flavouring used in
Brand A differed from that of Brand B and the Control, which both used the same
flavouring. However, this conclusion was based solely on the information on the
back-of-pack labels, and it is possible that the concentrations of the flavourings
varied within Brand B and the Control. For salt content which had the most
inconsistent ratings, the Control sample contained 1.9g, while Brands A and B
contained 0.27g and 0.2g, respectively. While this might have constituted a
perceptible difference at higher concentrations, the low intensity ratings for
Saltiness suggest otherwise. Low-intensity attributes can be challenging to detect
as they may be close to or below the threshold of detection for assessors (Lawless

& Heymann, 2010; Meilgaard et al., 2015). Therefore, assessors may have struggled

to rate them on the scale, and the variation in their ratings may have resulted from
uncertainty about whether they were truly perceiving the attributes, hence the
inconsistent ratings across repeated sessions and highly significant F-values for
Repetition (Frepetition). Discrepancies in the rating of Saltiness could have contributed
to additional differences between the samples. While removing some inconsistent
assessors could provide clarification, this was beyond the scope of the current

study.
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Since the TIM approach required assessors to focus on specific attributes, the
results indicated that Orange flavour was the primary driver of the sample
differences. As such, it should be the focus of any sample reformulation for product
development or quality control, while assessors may need training on rating
Saltiness and Milky flavour if these are to remain as key differentiators for the

products, particularly when using a trained panel. Detecting and quantifying low-

intensity attributes often requires extensive training (Lawless & Heymann, 2010;

DLG, 2020). Although higher-intensity attributes are generally easier to perceive,

this does not necessarily mean that assessors will rate them consistently. The
results suggest that there were likely some erratic ratings from the untrained panel
even for easily perceived attributes like Orange flavour and Sweetness, not only for
low-intensity ones like Saltiness. This indicates that inconsistency may arise not
only because some attributes are difficult to detect, but also because assessors
interpret or apply attribute definitions differently. Therefore, targeted training to
improve assessors’ understanding of the attributes and where they lie on the scale

remains relevant, even for attributes that are easily perceived.

4.4 Limitations of the study

Poor attribute representation

This study compared overall difference results from the DFC and those from Rasch-
combined taste/flavour attribute ratings. However, the selection of the test
products and attributes did not fully account for differences that might have been

perceivable during the DFC test.

As an overall difference test, the DFC allows assessors to either differentiate
samples based on the most prominent perceived attribute difference, or average
across all perceived attributes before making a distinction. As a result, some
assessors may have considered additional sensory aspects beyond flavour/taste
attributes in rating the Jaffa cake samples. The former was the case for Brand A,
where assessors’ familiarity and possibly its appearance, led to it being rated as
much more significantly different from the control, with the magnitude of the
difference larger than that found in the TIM (corresponding Dunn’s test p-values for

TIM1 and DFCM1 = 4.54e-05 and 1.31e-33 respectively).
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In contrast, the AR test focused solely on selected taste/flavour attributes, leaving
potential variations in other sensory characteristics unaccounted for. As a result,
the Total Intensity Measure (TIM) was estimated based only on these attributes. This
narrow focus may have increased the risk of a Type | error in the TIM approach,
where differences are identified that might not fully represent the overall product
perception. While earlier analysis using the Friedman test yielded stronger
significant differences, the current Kruskal Wallis results still identified differences,
albeit to a lower degree. Similarly, the narrow focus could have led to a Type Il error
in the DFC, where assessors may have missed meaningful differences in the
samples by focusing on the most prominent attribute difference from the control
sample "R", which may not have been included in the AR test. Incorporating a
broader range of attributes or integrating other sensory modalities could have
reduced these potential errors, improved measurement accuracy, and

strengthened the comparison between TIM and the DFC results.

To enhance future comparisons of the TIM and DFC approaches, itisrecommended
that all attributes that would be perceivable in an overall assessment of the test
samples, as done in the DFC, be included in the Attribute Rating (AR) test to ensure
a more comprehensive evaluation. This can be achieved by conducting preliminary
sensory tests to identify and guide the choice of attributes, ensuring a more robust
comparison between the two approaches. The study discussed in Chapter 6

attempts to address this limitation.

Lack of instrumental analysis to verify product characteristics

A further limitation of this study is the absence of instrumental or analytical
verification of the Jaffa cake samples’ sensory attribute profiles. Sample selection
relied on subjective informal tasting sessions and ingredient label information
rather than instrumental confirmation that the samples differed in the selected
attributes. The possibility that samples varied in other sensory dimensions, such as
sponge texture, jam consistency, chocolate coating thickness, or secondary flavour

notes, cannot be ruled out.

Although the target attributes for the AR test were primarily taste and flavour
characteristics, assessors may have been influenced by texture-flavour

interactions, where the physical structure of the product could be modulating the
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release, diffusion, and perception of flavour volatiles. As Brouwer et al. (2024)
found, variations in a product’s physical matrix, such as changes in viscosity, can
significantly alter flavour intensity, illustrating how structural factors can mediate
sensory experience. In the present study, similar effects may have arisen from
differences in sponge thickness or in jam gel consistency or chocolate coating
properties, each of which could influence flavour release during consumption.
These interactions align with the broader concept of the food matrix effect

described by Aguilera (2019), where the structure and composition of foods shape

their sensory perception.

Ideally, instrumental verification including texture profile analysis, compositional
analysis, and headspace GC-MS for volatile flavour compounds like orange flavour
would complement sensory assessment to confirm samples varied exclusively in the

target attributes.

Differences in test structure and presentation design

Differences in presentation design and scaling between the DFC and AR tests
represent another limitation. The DFC employed a comparative design in which
assessors directly compared each sample with a physical reference. Together with
the ordinal difference scale, this format not only heightens perceived differences
but also provides an external scale anchor that simplifies judgments and supports

consistent discrimination.

In contrast, the TIM used a monadic design combined with a category scale with
anchors adapted from the Labelled Magnitude Scale (LMS), requiring assessors to rate
each sample independently usinginternalreferences. Because the LMSis an absolute-
intensity scale, assessors often interpret its verbal anchors literally, reserving extreme
categories (e.g., “strongest imaginable”) for stimuli perceived as unusually intense

(Lawless & Heymann, 2010). This conservative response behaviour, together with the

absence of a physical reference, may have compressed the effective scale range, and
increased cognitive variability. Consequently, some of the observed differences in
discrimination, strata, and reliability may reflect presentation and scaling-related

effects rather than true analytical differences between the methods.

Ultimately, while the DFC served as the benchmark method because it is an

established approach for measuring the magnitude of overall product differences,
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it addresses a different sensory testing purpose than TIM. DFC confirms whether
products differ overall, whereas TIM is diagnhostic, identifying which specific
attributes contribute to those differences. These distinctions in presentation
design, scaling, and model structure should therefore be considered when

interpreting the comparative results of this study.

4.5 Significance of the study

When Rasch measures of combined attributes (TIM) are subjected to univariate
pairwise comparison tests, they reveal overall differences between products
relative to areference sample, like the DFC test. However, the sample requirements
for the DFC are more demanding than for the AR tests used in the TIM approach,
because each sample is evaluated in direct comparison to a reference. This
effectively doubles the number of evaluations required for the DFC, especially when
replicate assessments are included, as illustrated in Figure B 2. Consequently, it
can be more resource-intensive, and assessors are more likely to experience

sensory fatigue.

Additionally, while the DFC test is useful for quantifying the magnitude of perceived
differences between samples, it only indicates that a difference of a certain
magnitude exists without identifying which attributes drive that difference.
Moreover, because assessors evaluate differences based on their own perceptions
without specific guidance to what attributes to look for, there is a risk that irrelevant

or unintended attributes may influence their assessments.

In contrast, the TIM method provides detailed, actionable insights that support
decision-making in sensory quality control and product development. Targeted
attributes can be included in the AR test, and Rasch measures of combined
attributes can be used to compare individual test products or compare test
products against a control using the appropriate post hoc tests. The DFC test, on
the other hand, only allows for comparisons against a control and does not permit
direct comparisons between individual test samples (Rogers, 2017). With the TIM
method, the control sample can either be predetermined during the
conceptualisation phase or selected retrospectively. Additionally, an action

standard can be established to guide decisions on implementing product changes



104

and to identify areas where further investigation is needed to determine which

attributes are significantly different. Researchers like Nees et al. (2010) have

expressed that the margin between a significant and non-significant difference
between samples may not always be clearly reflected by p-values, and significant

p-values do not always translate into commercial importance (Kemp et al., 2018).

Additionally:

=  The MFRM converts ordinal scores into interval-scaled measures and can separate
the effects of multiple influencing variables (facets), resulting in a fairer and more
accurate assessment of sample differences. Compared to conventional analysis
methods (ANOVA / MANOVA) that assume data are interval-scaled, the MFRM
provides a more robust evaluation of product differences. These insights are

visually represented on an easily interpretable Wright map.

= The position of attributes on the logit scale reflects the hierarchy of dominant

attributes perceived across all samples.

= Rasch model fit statistics (such as OUTFIT Mnsq) provide insights into which
attributes most influence these differences. This helps analysts prioritise

attributes for reformulation or quality control troubleshooting.

= The combination of OUTFIT Mnsqg and the logit scale position reveals which
attributes were easier or more challenging for the panel to evaluate, helping

panel leaders identify which attributes may require additional assessor training.

=  These results on attribute rating variations across samples can also be visually

represented in easily interpretable plots, as shown in Figure 4.6 above.

In the present study, attribute contributions from Rasch analysis were compared
with ANOVA panel results, the standard statistical approach for evaluating
assessor performance during selection, training, and descriptive analysis (Stone et

al., 2012; Kemp et al., 2018; Meilgaard et al., 2025). However, no method currently

integrates attribute intensity results into a single measure to quantify product
differences while accounting for the effects of other variables (like assessor bias,
and inconsistencies across replicates). Even Principal Component Analysis (PCA),
at best, combines attributes into fewer dimensions, providing an overview of

product differences, but it lacks the specificity that the MFRM-based TIM method
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offers, including the ability to consolidate these results into a single measure of
overall difference. Meanwhile, the MANOVA has limited diagnostics capacity, as it
only indicates that samples differ based on combined attributes, without revealing
which attributes are driving those differences. The TIM approach, in contrast, allows
for the identification of which specific attributes are primarily driving product

differences, consolidating these results into a single, comprehensive measure.

Furthermore, the MFRM approach streamlines sensory evaluation by also providing
diagnostic details for assessors, using residual fit statistics forthe Assessorfacetand
other quality control features. These insights help evaluate both panel and individual
assessor performance and will be explored further in the next chapter. However,
while MFRM offers clear analytical and interpretive advantages, its application
requires specialised statistical expertise and access to dedicated software
packages. These requirements may limit its broader adoption, particularly in routine

industrial contexts where such resources or expertise may not be readily available.

The TIM approach relies on the use of pre-selected sensory attributes, meaning that
the validity and completeness of conclusions depend on the adequacy of the chosen
set of attributes. As shown in this chapter, omission of key attributes can lead to
potentially misleading interpretations. To address this limitation, systematic attribute
generation and selection procedures should be applied, such as preliminary profiling
or descriptive analysis, to identify all relevant attributes likely to vary due to process
changes, ingredient modifications, or product lifecycle stages. Careful attention to

these factors ensures robust application across research and industrial contexts.

Nonetheless, the TIM approach provides some advantages over overall difference
tests like the DFC. By directing assessors’ attention to specific, relevant sensory
attributes, TIM helps ensure ratings focus on the intended characteristics of interest.
In contrast, holistic DFC ratings can be influenced by unrelated factors such as brand
familiarity, or other incidental differences in presentation, even when efforts are
made to control these factors. By constraining assessors to rate predefined
attributes, TIM reduces the risk that such irrelevant or non-critical characteristics will

confound judgments about product differences.

The following chapter builds on these insights by applying the MFRM to evaluate

panel and assessor performance in both trained and untrained panels.
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Chapter 5

Monitoring Panel and Assessor Performance with the Many-Facet
Rasch Model (MFRM): A Comparison of Trained and Untrained

Panels

5.1 Overview

In sensory quality programmes, the ability of trained assessors to detect product
differences accurately is crucial for making informed research and development

(R&D) decisions (Stone et al., 2012). This means that decisions are based on reliable

evidence about product differences provided by these assessors, and inaccuracies
can, for instance, lead to launching products with undetected flaws, or failing to
identify a reduction in product quality due to ingredient substitutions. However,
despite the level of training, individual differences continue to challenge the
consistency and reliability of sensory difference and descriptive tests. Variability in
perception, driven by factors such as culture, environment, experience, genetics,
and personal preferences remains a persistent source of measurement variation

(Nees et al., 2010; Meilgaard et al., 2025).

Additionally, systematic differences may arise during the sensory evaluation,
further contributing to measurement variation. For instance, assessors may use
rating scales differently, either limiting their responses to a narrow range of the
scale, or consistently placing ratings at the higher or lower ends of the scale (Nees,

1990; Romano et al., 2008). This underscores the need for assessor performance

checks, continuous panel monitoring and panel proficiency testing (Kemp et al.,

2018) to ensure reliable and consistent results. Tomic et al. (2007) suggested

combining several visualisation techniques, such as eggshell and correlation plots,
to examine individual and panel performance, approaches that remain widely used
today. However, they emphasised that methods to compensate for rater drift, as
well as for level and range effects among assessors, are still lacking and would be

highly beneficial for improving panel reliability.

While it is ideal for assessors to function as a machine, giving ratings in the same

way, this is unrealistic. Sensory assessments rely on human judgment, so some
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level of subjectivity is unavoidable, even with well-trained panels. Assessors may
interpret sensory attributes in slightly different ways or become fatigued or
distracted during evaluations (as discussed in section 2.3.2: Individual
differences in sensory evaluation). Traditional approaches thatrely on consensus
scoring assume that perfect agreements are both possible and necessary. When
this expectation is not met, it raises concerns about the reliability and validity of the

sensory data (Kemp et al., 2009; Raithatha & Rogers, 2018). The Rasch model does

not require perfect agreement among assessors but rather expects consistency
within individual assessors (internal consistency) in terms of the use and

understanding of the rating scale (Linacre, 1994). Each assessor's ratings are

treated individually, and their tendency to rate higher or lower compared to the rest
of the panel is accounted for in the model (assessor severity). By simultaneously
estimating both attribute intensities and assessor severity, Rasch analysis enables
fairer comparisons on samples, across assessors with different standards without
requiring extensive training on the uniform use of scales (as discussed in section
3.1.2: The Many-Facet Rasch Model (MFRM)). Additionally, the model converts
ordinal sensory ratings into interval-scale data, enabling the use of simpler
categorical rating scales for rating intensity, provided assessors are trained to
understand where attribute intensities fall on the scale for the specific products

being evaluated.

Rasch model fit statistics for the Assessor facet detect rater effects and
idiosyncrasies in individual ratings, identifying assessors whose scoring patterns
deviate from the model’s expectations relative to the rest of the panel. The model’s
separation statistics also provide insights into panel agreement, and overall panel
reliability similar to conventional panel performance criteria as discussed later in
this chapter (section 5.3.3: Comparison of trained and untrained panel
performance). In the conventional approach, several statistical techniques are
available to monitor assessor performance, including univariate (e.g., ANOVA) and
multivariate approaches (e.g., PCA). However, the ANOVA method requires
separate analyses for each attribute and each assessor, which can be cumbersome
and provides only a small fraction of the diagnostic information needed for a

comprehensive evaluation. While multivariate methods, though useful for data
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reduction, can be challenging to interpret. In contrast, Rasch analysis integrates
both product differences and assessor performance within a single framework,
offering a more direct overview of panel agreement and individual performance
issues. These insights can be further complemented by traditional statistical tests

to obtain a more nuanced understanding of assessor and panel sensory data.

Furthermore, the Rasch model subset linking capabilities (Linacre, 2012b;

Engelhard & Wind, 2018; Andrich & Marais, 2019) enable comparisons across

different groups or datasets over time. Differential Facet Functioning (DFF) (as
discussed in section 2.5.2) provides insights into systematic biases or group-
related differences in product sensory assessments. This approach is particularly
valuable for panel proficiency studies (monitoring assessor or panel performance
overtime), as well as for understanding how sensory attributes contribute to
product differences across cultures in global panels, or between trained assessors
and target consumer panels with varying levels of expertise. Although DFF was not

explored in this study, it presents a promising direction for future research.

This chapter explores the use of the MFRM for assessor performance evaluations
and compares trained and untrained panel attribute intensity ratings on chocolate

spread samples.

5.1.1 Objectives

The aim of this study was to explore the potential of the Many-Facet Rasch Model

(MFRM) in examining panel and assessor performance.
The specific objectives were:

1. Tocompare the performance of trained and untrained panels in rating attributes
intensities of chocolate orange spreads.

2. To examine the implications of Rasch assessor fit statistics for standard
assessor performance criteria.

3. To identify untrained assessors whose performance is comparable to trained
assessors, and to compare their results with the trained panel using Rasch

analysis.
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5.1.2 Study highlights

= Rasch group-level statistic (fixed chi-square for the Assessor facet) indicated
generally consistent scale use for the trained panel, but greater inconsistencies

for the untrained panel.

®» Thetrained panel demonstrated a greater ability to discriminate reliably between

the chocolate spread samples, whereas the untrained panel did not.

= QUTFIT mean square ranges revealed specific rating effects in both panels,

aligning with raw rating scores observed in trellis plots®*.

= The MFRM Wright map revealed differences in how each panel interpreted and
rated the sensory attributes, indicating variability in scale use between the

trained and untrained assessors.

= QUTFIT mean square and logit values revealed which sensory attributes were
consistently assessed by each panel and which attributes posed greater

challenges for them to rate reliably.

= PCAR revealed response dependency between attributes, driven by the

presence of milk chocolate as an ingredient.

5.2 Sensory study: materials and methods

Data for this study were obtained from an existing dataset (Gill et al., 2024).

5.2.1 Samples

Chocolate spread was chosen for this study, as the trained panel from the global
chocolate manufacturing company had prior experience evaluating chocolate
products, though not specifically chocolate spreads. Three brands of chocolate
spread were selected, based on noticeable differences in orange flavour and sugar
content, as indicated on the back-of-pack labels. The three brands, purchased from
UK retail stores, consisted of two chocolate orange spreads and one chocolate

spread without orange flavouring. In terms of Sweetness, one sample contained

* Trellis plots are multi-panel charts used here to show each assessor’s raw score distributions for each
attribute, product, and replicate, helping to visualise variation and potential rating effects across the
panel.
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maltitol, a sugar replacer, while the others used sucrose. The sample composition

is provided in Table B 2.

Plain white bread was used as a “carrier” (Lawless & Heymann, 2010) for all three

samples, with 5g of each chocolate spread applied to one side of a rectangular slice
measuring 2.5cm x 4cm. This approach was necessary to represent the typical
context in which chocolate spreads are consumed, thereby minimising potential
psychological biases. Samples were stored at room temperature (20+3°C) in their

original packaging until they were ready to be presented.

5.2.2 Participants

Ethical approval for the sensory study was granted by the MaPS and Engineering

Joint Faculty Research Ethics Committee at the University of Leeds (Appendix A.2).

Participants were comprised of a trained (n=7) and an untrained panel (n=24), as
mentioned previously. Minimal demographic information was provided; however, it
was noted that the trained panel, loaned by the global chocolate manufacturing
company, were all females with at least 2 years of experience evaluating the
sensory profile of chocolate products. The untrained panel comprised students

from the University of Leeds, who participated voluntarily and received no incentive.

Each participant received detailed information about the study requirements, as
well as the data protection and sharing disclaimer, and was required to sign

consent forms before commencing the study.

5.2.3 Panel training

As the trained panel was already quite experienced in evaluating chocolate bars,
there were only two training sessions conducted on separate days. The first session
familiarised the assessors with the chocolate spread samples, methodology, and
the modified LMS rating scale (described in 5.2.4), which differed from the
unstructured line scales typically used for Qualitative Descriptive Analysis (QDA)
(discussed in section 2.4.2: Rating scales), which they were already familiar with.
The second session focused on generating descriptor terms for the product. During
this session, they identified five attributes: three flavour attributes (Orange, Milky,

and Cocoa) and two taste attributes (Sweetness and Saltiness) from their
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evaluation of a chocolate orange spread sample with similar nutritional and flavour
characteristics to those intended for the study. This approach was necessary to

prevent sensory bias due to overexposure and memory effects (Meilgaard et al.,

2015), as using the same samples for both the preliminary session and the main
evaluations could influence the panel's perception. To ensure a focused lexicon,
assessors were instructed to concentrate on the taste and flavour characteristics

of the products while disregarding any textural differences.

5.2.4 Sensory evaluation procedures

In both panels, a Randomised Complete Block Design (RCBD) with counterbalancing
was used for the experiments to minimise potential biases, such as carryover and
order effects, and samples were evaluated in triplicates. The trained panel
completed their replicate sessions over two days due to time constraints, with the
first two sessions held on the first day and the third session on the following day.
The untrained panel, on the other hand, completed all replicate sessions on the
same day. Samples were presented monadically, at room temperature (20+3°C), on

15 cm white paper plates, each labelled with random 3-digit codes.

The assessorsrated the perceived intensities of five taste/flavour attributes: Orange
flavour, Sweetness, Cocoa flavour, Milky flavour, and Saltiness, which were
generated by the trained panel. They were instructed to taste each sample, focusing
on the specified attributes, chew and swallow the bread (carrier) with the chocolate
spread sample, and then proceed to the next page of the questionnaire. On this
page, they were asked to rate the strength of each attribute in the sample they had
just tasted. All five attributes were presented on the same page of the questionnaire

with an additional comment section for any other impressions about the sample.

The same 8-point categoricalintensity scale, as used in Chapter 4 was employed in this
study. It ranged from 0 to 7 with labels adapted from the Labelled Magnitude Scale

(LMS) (Green et al., 1996). The intensity labels were 0 = none, 1 = barely detectable, 2

=weak, 3=moderate, 4 = strong, 5 =very strong, 6 = extremely strong, and 7 = strongest

imaginable oral sensation. A copy of the questionnaire can be found in Appendix C.2.

Assessors were provided with some water to cleanse their palate between sample

evaluations.
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5.2.5 Data analysis

As with the previous chapter, Rasch and statistical analyses were according to the
procedures described in section 3.3. The attribute intensity ratings (AR) data from
each panel were fitted separately to the MFRM; that is, one model for the trained
panel and another for the untrained panel, each including four facets (Assessors,
Samples, Repetition and Attributes), covering the variables under study. The
Rasch model used in this study is the same as ...Equation 4.1. and is outlined

below.

In (Pomnrik /Pmnrik-1) = Bm — On — pr — 6; — T
...Equation 4.1

Where:

Pnrik= probability that sample (n) is rated (k) for a sensory attribute (i) by
assessor (m) in replicate session (r)

Pnrik—1= probability that sample (n) is rated (k — 1) for sensory attribute (i) by

assessor (m) in replicate session (r)

Bm= degree of leniency or severity of assessor (m) in rating attribute intensities
0,= degree of difference in the total intensity measure for sample (n)

p, = degree of difference between ratings of samples in a replicate session (1)

6; = the average degree of intensity of sensory attribute (i) across the samples

T, = points on the latent variable continuum where the samples are equally likely to

be rated between scale category (k) and category (k — 1) .

5.2.5.1 Panel Performance Evaluation

Rasch analysis and ANOVA techniques were used to evaluate individual and
panel performance, based on standard performance indices (discrimination,
panel agreement and repeatability) as described later in the chapter. Insights
from both methods were compared to highlight the strengths and limitations of
each approach, and results from the trained and untrained panels were also

examined.
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5.2.5.2 Convergence analysis

Convergence analysis was conducted to examine how panel size influenced
product discrimination ability in the Many-Facet Rasch Model (MFRM). To assess
the stability of the convergence patterns, the sampling procedure was repeated
across two iterations, each using a different random draw of assessor subsets.
Random subsets of assessors at panelsizesn=7,10, 12,15, 18, 21, and 24 were
generated from both the untrained panel (n = 24) and trained panel (n = 7) using
random sampling without replacement in RStudio, with a fixed random seed

(set.seed(123)) within each iteration to ensure reproducibility.

To enable comparison across equivalent panelsizes, the trained panel data were
expanded by duplicating the ratings from the 7 assessors to create a pool of 24
simulated assessors, from which subsets were then randomly sampled using
the same procedure as for the untrained panel. Rasch analyses were conducted
in FACETS for each subset, and the resulting fixed chi-square statistics for the
product (Sample facet) were extracted as indicators of product differentiation.
Convergence plots were generated to visualise the relationship between panel

size and discrimination ability for both panel types.

5.3 Results and Discussion

5.3.1 Fit of data to the Many-Facet Rasch Model (MFRM)

As in the previous chapter (section 4.3.1), Rasch model fit statistics were examined
for both panels to assess whether their data met the model assumptions for
unidimensional measurements. The results of the global model fit, Assessor facet

fit statistics and response dependency checks are presented in Table 5.1.

An acceptable global model fit of the data is when about 5% or less of absolute

standardised residuals is 22, and about 1% or less is 23 (Linacre, 2022; Eckes,

2023). All models showed an acceptable global model fit suggesting that overall,
the data in each model aligns with the assumptions of the Rasch model and there
are no major inconsistencies that may distort the measurement. Only the individual
fit statistics for the Assessor facet are presented, as assessors were the focus of this

study. However, all other facets showed a 100% fit to the models, except for the
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Attributes facet, where Orange flavour showed underfit in both panels. This will be

discussed further in section 5.3.3.3.1.

Table 5.1. Summary of Rasch model fit and assessor fit indices for the trained and
untrained panels.

Criteria Trained Panel (n=7) Untrained Panel (n=24)
Global Fit (%StRes)?
<5%=2 5.0 (16) 2.8 (30)
<1%=3 0.3(1) 0.1(1)
Total count? 315 1080

Assessor Fit (OUTFIT Mnsq, Nr =45)3

% Fit (0.57-1.42) 71.4 (5) 63.0 (15)
%Overfit (< 0.57) 14.3 (1) 21.0 (5)
% Underfit (=1.42) 14.3 (1) 12.0 (3)
% Extreme Misfit (>2.0) 0.0 (0) 4.0 (1)

Unidimensionality?
1°'contrast eigenvalue (<2) 1.81 1.96

LID (Corr. of StRes <0.3)3
Sweetness-Milky flavour 0.13 0.31
Cocoa flavour - Milky flavour 0.09 NAS

1 Percentage (humber of observations in brackets) of absolute standardised residuals (StRes).

2 Total number of observations used for the estimation of the Rasch model parameters.

3 Outlier-sensitive measure of unweighted mean squares indicating deviation of the Assessor facet estimates
from Rasch model predictions. The acceptable fit range (0.57-1.42) was determined using 1 + 2\/(2/Nr)

(Wu_& Adams, 2013; Eckes, 2023), where Nr is the number of responses used for parameter
estimation.

4 Eigenvalue of the unexplained variance in the first contrast, not accounted for by the Rasch model, in PCAR.

S Local Item Dependency (LID) examined through the correlation of standardised residuals (Corr. of StRes)
between attributes, with values > 0.3 indicating that items (attributes) are dependent.

6 NA =Not applicable meaning that the attributes were not flagged as potentially dependent for the panel.

The acceptable range for the OUTFIT Mnsq for assessors was calculated following
Eckes (2023), based on the number of responses per assessor in each panel
(Nr=45), as discussed in section 3.3.1.6. Each assessor had an equal number of
responses, having rated the five attributes across three samples in three replicates

(5 x 3 x 3 =45). Although Linacre (2024b) and (2025b) suggests a rule of thumb for

an acceptable mean square fit statistics, with lower and upper limits of 0.5 and 1.5
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respectively, several researchers (Myford & Wolfe, 2009; Wu & Adams, 2013;
Engelhard & Wind, 2018; Bond et al., 2020; Eckes, 2023; Linacre, 2025b) have

shown that these critical ranges can vary and should be determined based on the

specific assessment context and sample size.

Unidimensionality and Local Iltem Dependence (LID) were examined by Principal
Component Analysis of Residuals (PCAR). Unidimensionality is confirmed when the
eigenvalue of the unexplained variance in the first contrast is <2, and Local item
dependence (LID) is identified when the residual correlation between two attributes

exceeds 0.3 (Ramp et al., 2009; Christensen et al., 2017).

In both panels, the unexplained variance in the first contrast (representing residuals
in the largest secondary dimension) had an eigenvalue of 1.81 and 1.96 for the
trained and untrained panels, respectively. This indicated a strength of 2 out of 5
attributes, suggesting the possibility of a secondary dimension. The standardised
residuals correlation for the attributes in the trained panel indicated no dependent
attributes, while in the untrained panel, a correlation of 0.31 was observed between
Sweetness and Milky flavour, suggesting a potential local dependency. Although
this value barely exceeded the typical threshold of 0.3, it warranted further

investigation into possible underlying causes, as discussed later in the chapter.

5.3.2 Representing the Overall Difference Construct

Wright maps for the trained and untrained panels are presented in Figure 5.1 and
Figure 5.2 respectively, with all four facets (Assessors, Samples, Repetition, and
Attributes) positively oriented, as described in previous chapters. The Sample facet
was non-centred, while the other facets were centred at the mean (0 on the logit
scale) to serve as a reference point. Consequently, sample locations were adjusted
by considering the severity of assessors, the average intensity of attributes, and the
intensity ratings in repeated sessions, representing the Assessor, Attribute, and
Repetition facets, respectively. In the Assessor facet, assessors with higher logit
values are more lenient, generally assigning higher scores on the rating scale; in the
Sample facet, samples with higher logit values have higher Total Intensity Measure

(TIM); in the Repetition facet, replicate sessions where higher intensity ratings were
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assigned on average have higher logit values; and in the Attribute facet, attributes

with higher average intensity ratings have higher logit values.

5.3.2.1 Trained Panel Representation

The Wright map in Figure 5.1 below provides an overview of the trained panel's

ratings of the overall difference between the samples.
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Figure 5.1. Trained Panel Many-Facet Wright Map.

From left to right, the columns represent: Rasch model measures on the logit scale (Measr); the
Assessor facet, showing 7 assessors (IDs 2002-2011); the Sample facet, displaying Brands A-C; the
Repetition facet, indicating replicates 1-3; the Attribute facet, listing the 5 attributes; and finally, the
AR intensity rating scale, with horizontal lines marking half-point thresholds where the probability
of assigning a higher rating exceeds that of assigning a lower adjacent rating.
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In the Assessors facet, all assessors were distributed around the mean within a
narrow range (0.2 to 0.2 logits), suggesting that after accounting for measurement
error (such as inconsistent replicate ratings), they used similar parts of the scale to

assign ratings.

For the Sample and Repetition facets, the combined attribute intensity ratings
across each sample were below the average (0 on the logit scale). The Repetition
facet showed that differences across the three replicated sessions were not
significant, indicating that the assessors most likely rated the samples consistently
across sessions. Samples positioned higher on the scale were perceived to have

greater intensity, based on ratings averaged across all attributes.

The latent variable “Overall Difference” is reflected in the Total Intensity Measure
(TIM), which is represented by the location of the samples on the logit scale. Brands
A and C were located very close together, with logit measures of -0.51 and -0.54
respectively, whereas Brand B was positioned much lower at -0.86 logits, indicating
a noticeable difference from the others. The standard error for all three samples
was 0.10. Given that Brand B’s difference from Brands A and C is approximately
three times the standard error, this suggests a potentially significant difference.
Rasch separation statistics will reveal whether the observed difference is
statistically significant, while TIM values will be used in multiple comparison tests

to determine how much specific samples differed from one another.

The Attribute facet and intensity scale showed that Sweetness was the most
dominant attribute (i.e., the most intense or easiest perceived attribute across the
samples). Orange flavour and Cocoa flavour were perceived as strong, while Milky
flavour was positioned at the threshold between moderate and strong, indicating it
was generally perceived as strong, since the probability of a strong rating has
exceeded that of moderate. Saltiness, however, was positioned at the barely
detectable level, suggesting that assessors generally gave it the lowest ratings,
which averaged within this range across samples, making it the least intense
attribute (see Table 5.4). The OUTFIT Mnsq for individual attributes will reveal which
attributes are driving the differences between the samples, as discussed laterin the
chapter. Additionally, the intensity scale revealed redundant scale categories, as

category 6 - Extremely Strong was barely used, while 7 - Strongest Imaginable Oral
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Sensation was never used by the panel and did not appear on the Wright map (see

Appendix D: Rating Scale Category Statistics).

5.3.2.2 Untrained Panel Representation

For the untrained panel represented in Figure 5.2 below, two assessors appeared

to be using different parts of the scale.
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Figure 5.2. Untrained Panel Many-Facet Wright Map.

From left to right, the columns represent: Rasch model measures on the logit scale (Measr); the
Assessor facet, showing 24 assessors (IDs 1001-1024); the Sample facet, displaying Brands A-C;
the Repetition facet, indicating replicates 1-3; the Attribute facet, listing the 5 attributes; and
finally, the AR intensity rating scale, with horizontal lines marking half-point thresholds where the
probability of assigning a higher rating exceeds that of assigning a lower adjacent rating.
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Assessor 1015 was the most lenient, consistently assigning higher ratings to the
samples, while Assessor 1017 was the most severe, consistently assigning lower
ratings on average. Their different rating behaviours will be flagged in the Assessor
OUTFIT analysis, discussed later in the chapter. Overall, assessors were
distributed around the mean within a narrow range (-0.2 to 0.2 logits), similar to
the trained panel, suggesting that most assessors used similar parts of the scale
to assign ratings. Attribute intensity ratings for the samples were also generally
below average on the logit scale, and the averaged ratings were consistent across
replicate evaluations. In contrast to the trained panel, although the relative
positioning of the samples was consistent, with Brand B rated lower than the
others, the average ratings did not differ significantly as later confirmed by the

separation statistics (Table 5.3).

The Attribute facet and intensity scale revealed that Sweetness and Saltiness were
again, the most and least intense attributes, respectively, consistent with the
trained panel. However, the locations of Milky flavour and Orange flavour were
reversed, with Orange flavour now positioned below average, raising the question
of whether the trained panel had perceived Milky flavour as stronger than Orange
flavour across the samples. This will be further investigated in the following
discussions. The half-point thresholds were narrower, indicating that ratings were
more evenly distributed across the scale categories, which reflects some
imprecision in how products were rated. However, from category 6 (Extremely
Strong) onward, the thresholds widened, likely due to the less frequent use of the

highest categories (see Appendix D: Rating Scale Category Statistics).

Rating scale category diagnostics are not discussed in this chapter, as the focus
is primarily on examining individual and panel performance usinginsights from the
OUTFIT mean square. However, as demonstrated in Chapter 4, the Many-Facet
Rasch Model (MFRM) can also be used to assess the functionality of the rating
scale and guide decisions regarding the need for scale revisions, which can be
particularly beneficial when developing sensory quality programmes. “Hybrid

models” (Myford & Wolfe, 2003) as described in Table 2.2. Summary of Rasch

Models, can provide further insights into how each individual utilises the rating
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scale. Summary statistics for rating scale functionality for both panels are provided

in Appendix D.

5.3.3 Comparison of trained and untrained panel performance

The performance of the two panels were compared with respect to standard

performance indices in ISO 11132:2021 (British Standards Institution, 2021), where

performance is defined as “the measure of the ability of a panel or an assessor to
make reliable and valid attribute assessments across the products being

evaluated”. Kemp et al. (2009) define validity as the proximity of an assessors

ratings to the average ratings of the panel, while Raithatha and Rogers (2018)

broaden this to overall validity, referring to the extent to which sensory panelresults
can be reliably used to inform business action standards. The panel agreement,
discriminatory ability, and repeatability (described in detail in the following
sections) were assessed using both the Rasch model, which provides a holistic
overview of the panel, and the conventional three-way ANOVA approach, whichwas
conducted on the raw sensory scores, and analysed separately for each attribute
under study. In both methods, the variables are treated as fixed effects; that is, as

population model statistics within the Rasch framework, following Linacre (2025d),

since the focus is specifically on these variables, and no generalisation beyond the

observed data is intended. The results are summarised in Table 5.2 and Table 5.3.

5.3.3.1 Panel agreement

This refers to the degree of alignment between assessors’ average product scores
as defined by ISO 1132:2021. It describes the ability of assessors within a panel to
be consistent, demonstrating the same sample order where differences based on
an attribute exist. The level of agreement should be sufficient for the panel mean to

serve as a representative measure of the product differences (Raithatha & Rogers,

2018).

In the ANOVA, the panel lacks agreement when the interaction factor between
sample and assessor (Fassessors x sampes IN Table 5.2) is significant (p<0.05). This
suggests that some assessors differed in the relative ordering of samples, as implied

by their assigned ratings for an attribute. This is illustrated in the trellis plots discussed
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later in section 5.3.4. According to IS0 1132:2021, the higher the number of “key”

attributes with a significant interaction factor, the less consistent the panelis.

Key attributes are those that either show significant product discrimination by the
entire panel or are associated with predefined differences between the samples.
When inconsistencies are observed, further investigation at the individual assessor
level is required, followed by appropriate corrective actions (e.g. assessor re-

training).

Table 5.2 revealed that the trained panel consistently rated three out of five
attributes (see Fassessors x sampte). The key attributes were Milky flavour and Cocoa
flavour, while Saltiness was a non-key attribute as there was no significant
difference between the samples (Fsampie). Notably, Orange flavour had the highest F-
value (F = 78.82, p<0.001), indicating it as a key attribute contributing to product
differences. However, a significant Assessor x Sample interaction (Fassessors x sampte)
was also observed for this attribute. The interaction plots (Figure 5.4) revealed that
while most assessors rated Brand B lowest, a few reversed the order for Brand A
and Brand C, suggesting inconsistency in how the attribute was evaluated across
assessors. This highlights the need for additional training to improve panel
consistency and reliability. Similarly, Sweetness, which was slightly less significant
(p<0.05), also showed some inconsistencies among assessors. These findings
warrant further investigation, and individual ANOVAs for each assessor will be

examined in the following section, to identify those who may need further training.

On the other hand, the untrained panel was not in agreement, as they were highly
inconsistent in rating all the attributes, with the Fassessors x sample interaction effect

showing significant differences (p<0.01) across all attributes.

From a Rasch model perspective, panel performance is evaluated holistically using
the model’s separation statistics (Table 5.3 below), which are based on the
average ratings assigned by the panel across all attributes, samples, and replicate

evaluations.

The fixed Chi-square (xz) statistic is used as an indicator of panel agreement
testing the hypothesis that, after accounting for measurement errors, the severity

of all assessors is the same (Myford & Wolfe, 2004; Linacre, 2025c¢).




Table 5.2. Summary of trained and untrained panel Rasch analysis and ANOVA results on attribute contributions to sample differences.

Trained Panel (N=7)

Untrained Panel (N=24)

Attributes +Ve Logit -Ve Logit
Orange FL. Milky FL. Sweetness Cocoa FL. Saltiness
Rasch Model Results
Attributes Logit Measure 0.26(0.13)  0.10(0.12) 0.91(0.14) 0.39(0.13) -1.66(0.14)
Attributes OUTFIT Mnsg?2 1.92 0.73 0.65 0.47 1.22
Panel ANOVA3
F sample 78.82"" 10.87"" 3.65 6.44" 1.27
F Assessors x sample 5.44™ 1.14 3.24" 2.07 1.59
F Assessors 10.02" 6.84™ 21.53™ 5.10™ 25.92™
F Repetition 4.08" 1.67 3.65" 1.49 0.27
F Assessors x Repetition 2.64 1.09 4.47 0.97 1.05
F sample X Repetition 3.29" 0.79 2.24 0.74 0.57

+Ve Logit -Ve Logit
Milky FL. CocoaFL. Sweetness Orange FL. Saltiness
0.06(0.04)  0.19(0.04) 0.47(0.05) -0.16(0.04) -0.55(0.05)
1.05 0.83 0.71 1.60 0.77

3

188.34™" 23.16™" 92.27"" 87.82™ 3.78"
2.58™" 3.87"™ 4.98™ 2.05™ 2.78™
10.70™ 8.27"" 7.63™ 2.93™ 21.32™
3.20" 0.52 2.77 2.27 0.91
1.67" 1.52" 2.66™ 0.82 1.25
1.41 2.04 1.46 0.45 2.40

For both panels, attributes are arranged from left to right by decreasing OUTFIT Mnsq value and are differentiated based on whether they were located on the positive (+Ve logit > mean) or
negative (-Ve logit < mean) side of the logit scale. N signifies the total number of assessors in a panel.

1 Value of the location of an attribute on the Rasch logit scale: Negative (-Ve) logit values signify attributes with intensities below the mean (low intensity), while positive (+Ve) logit values

signify attributes with intensities above the mean (high intensity). Standard errors (S.E) for each estimate are shown in brackets.

2 Qutlier-sensitive mean squares for attributes indicating whether an attribute's discrimination differs from the average. For the trained panel, the acceptable range is 0.64-1.36, with values
<0.64 (overfit) signalling a non-discriminating attribute. For the untrained panel, the acceptable range is 0.81-1.19, with values <0.81 indicating non=discrimination.

3 ANOVA on raw scores; F-values with p-value levels of significance: <0.001™, <0.01™, <0.05"; measures with no superscript symbols >0.05.
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In this context, severity refers to an assessor's tendency to consistently assign
higher (lenient) or lower (severe) intensity ratings across samples, relative to other
assessors in the panel. The panel is not in agreement when )(2 is significant (p <
0.05), indicating that at least two assessors have significantly different severity
levels. The Separation Index (Strata) indicates how many statistically distinct
levels of severity existamong the assessors. The separation Reliability reflects how
precisely these differences in severity are measured, relative to the error in the
estimates. The separation statistics for the Sample facet are used to assess the

panel’s ability to discriminate between the samples.

For the Assessor facet, reliability values closer to zero (0) are desirable, as they
indicate that there is no statistical distinction between lenient and severe
assessors, suggesting that, on average they rated the samples using similar parts
of the scale. For the Sample facet, however, higher reliability values closer to one
(1) are ideal, as they suggest greater discrimination between the samples by the

panel.

From Table 5.3, Rasch model chi square ()(2) for assessors in the trained panel was
not significant, indicating that they exhibited the same severity level on average,
reflecting the effectiveness of their training. Meanwhile, assessors in the untrained
panel showed different severity levels after accounting for measurement errors, as
indicated by the highly significant assessor chi-square (p<0.001). A Strata value of
2.87 and a reliability index of 0.78 indicate the presence of approximately three
statistically distinct levels of assessor severity, as was revealed in the Assessor

facet of the untrained panel Wright map (Figure 5.2).

The MFRM examines panel agreement in terms of the order in which products
differences are ranked (as in the ANOVA), at an individual level, using the Point-
Biserial Measure correlation (PT measure) also termed the Single Rater — Rest of

Raters (SR/ROR) correlation (Myford & Wolfe, 2004). This reflects how assessors

rank samples relative to other assessors in the panel and is further discussed in

individual performance evaluations (section 5.3.4).
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Table 5.3. Comparison of trained and untrained panel based on Rasch Model Statistics.

Rasch Model Statistics’ Trained Panel (n=7) Untrained Panel (n=24)
Panel Agreement (Assessor facet)

Fixed X° assessor (0>0.05) 0.54 0.00%

Strata Assessor 0.33 2.87

Reliability assessor 0.00 0.78

Panel Discrimination (Sample facet)

Fixed X sample (0<0.05) 0.02 0.46*
Strata sample 1.95 0.33
Reliability sample 0.59 0.00

1 Rasch model separation statistics (with required criteria in brackets) corresponding with standard panel
performance criteria (and the related facet in brackets). The null hypothesis (H,) for the fixed chi-square
testis that all elements within the facet are the same. Therefore, p <0.05 indicates a statistically
significant difference in the facet parameters.

* Panel performance criteria is unmet.

Likewise, the Fassessor main effect in the ANOVA reflects variations in ratings assigned

by assessors on average, independent of samples (Stone et al., 2012), which is

similar to the MFRM in its assessment of panel agreement in terms of rating severity
levels. However, while the ANOVA (Table 5.2) found that assessor tendencies in
using the rating scale differed across all attributes, the Rasch model did not. This is
because the Rasch model offers a more precise measurement by considering
individual rating patterns across all samples, attributes, and replicate evaluations,
adjusting for how consistently assessors tend to rate with varying severity or
leniency. After which it then models leftover inconsistencies, both between-group
(main effects) and within-group (interaction effects) as unexplained variations,
captures them as measurement errors, and flags them in the OUTFIT statistics

(Linacre, 1995). What remains, then, is the true variance from the main effects,

reflecting the real differences between the parameters in each facet (assessors,
samples, and repetition). The OUTFIT Mnsq results for attributes and assessors,
which illustrate how misfitting ratings were identified and addressed, are discussed in
detail in sections 5.3.3.3.1 and 5.3.4, respectively. Unlike ANOVA, which reports
averaged differences across all assessors, the Rasch model provides these insights on

a more granular, individual level.
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5.3.3.2 Panel repeatability

This refers to the average degree of homogeneity between replicate assessments of
the same product per assessor (ISO 1132:2021). In other words, it measures how
consistently assessors evaluate the same products under similar test conditions,
typically across replicate sessions. The Repetition main effect and interaction
terms in the panel ANOVA (Frepetition, Fassessor x Repetitions @8N0 Fsample x repetition) Offer a high-
level indication of which attributes assessors rated inconsistently across replicate

evaluations on average (Ho, 2015). The Repetition main effect (Frepetition) te€sts for

overall mean differences across replicate evaluations, the Assessor x Repetition
interaction (Fassessor x repetition) Checks if assessors differ in consistency in rating the
samples, and the Sample x Repetition interaction (Fsample x repetition) checks if some

samples are more consistently rated than others.

As shown in Table 5.2, replicate evaluations for some assessors (Fassessorx Repetition) iN
the trained panel varied for Orange flavour and Sweetness. However, these

variations only influenced the Orange flavour ratings of the samples (Fsampte x Repetition) -

In the untrained panel, replicate ratings for Milky flavour, Cocoa flavour, and
Sweetness varied within assessors, but these variations were not substantial
enough to influence their overall sample ratings when averaged. This was also
reflected in the respective panel Wright maps where replicate evaluations for the
trained panel (Figure 5.1), ranged from 0.06 to -0.10 logits (SE = 0.10), showing
greater dispersion across repeated ratings. In contrast, the untrained panel’s
replicate evaluations (Figure 5.2) clustered tightly between 0.01 and -0.01 logits (SE

=0.03), indicating higher repeatability in overall sample ratings.

Fora more detailed assessment, repeatability can be estimated by analysing individual

assessor response patterns, through the use of distribution plots (Stone et al., 2012).

This approach will be examined later in the chapter.

5.3.3.3 Panel discrimination

The panel discrimination measures the ability of a panel to significantly distinguish
between products. Itis indicated by a significant difference in sample means for an
attribute (p<0.05) in the three-factor panel ANOVA (Fsampie in Table 5.2). When the

samples are significantly different, post hoc multiple comparisons are conducted
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to determine which specific samples differ from one another. However, as
previously mentioned, these results are only reliable when ratings are generally
consistent, and the analyst judges that there is sufficient agreement between

assessors within the panel (Raithatha & Rogers, 2018). The ANOVA results revealed

that for the untrained panel, all the attributes significantly differentiated the
samples (p<0.05). However, this panel also showed inconsistency in ratings for all
the attributes (Fassessorxsample) aNd showed variation in their rating tendencies across
all attributes (Fassessor). Consequently, their results are not reliable. The Rasch
separation statistics in Table 5.3 above showed that differences between samples
were not significant (a=0.05), as the differences across attributes were not

systematic enough to be considered meaningful.

Rasch analysis of the trained panel data revealed significant differences between
the samples (Table 5.3), with a x* p value of 0.02. A strata value of 1.95 indicated the
presence of approximately two distinct sample groups. However, the separation
reliability was relatively low at 0.59, suggesting that a portion of the observed
differences may have been due to measurement error. In the trained panel ANOVA
(Table 5.2), rating tendencies differed across all attributes (Fassessor) Similar to the
untrained panel, indicating individual differences in scale use despite assessor
training. Additionally, four out of five attributes (except for Saltiness) were
significantly different (p<0.05). However, two of these attributes, Orange flavour
and Sweetness were rated inconsistently by the panel indicated by a significant
Fassessor x sample- Although these attributes would typically be considered as key
attributes for evaluating individual assessor performance, the within-group
variations render the results unreliable. Only Milky flavour and Cocoa flavour
supposedly emerged as key attributes for which the samples were reliably
differentiated. Yet, the individual assessor ANOVAs (Table 5.5) showed no
significant sample differences (0=0.05) for any assessor on these attributes,

suggesting that all the assessors may require retraining.

While agreement across assessors (Fassessors) May often be overlooked in practice

(Nees et al., 2010), it can sometimes influence the identification of key attributes

when basing this on overall panel sample discrimination. Significant differences in

the Sample effect in the panel ANOVA are based on averaged scores across all the
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assessors, which can smooth out inconsistencies in individual ratings.
Consequently, even if assessors demonstrate poor repeatability and fail to
discriminate between samples individually, pooling their data at the group level can
reduce the noise, revealing consistent trends that result in significant differences.

Raithatha and Rogers (2018) show how an assessor’s poor replication can

contribute to non-discrimination of samples especially when the variability in
scoringis high for a specific sample. This may have been responsible for the loss of
sample discrimination for individual assessors for Milky flavour and Cocoa flavour

in this study.

The Rasch approach determines key attributes more effectively as it estimates each
parameter independently based on average ratings across all facets, while
accounting for variability in assessors' individual tendencies or biases in scale use.
This ensures that the results are not influenced by these variations. The OUTFIT
mean square, a residual fit statistic in the Rasch model, identifies responses that
deviate from the model’s expectations. Although these variations are controlled
when estimating sample measures (TIM), assessors whose behaviour deviates from
the group are flagged by their OUTFIT Mnsq values, as demonstrated in section
5.3.4. Additionally, OUTFIT Mnsq for the attributes highlight the contribution of each
attribute to product differentiation after accounting for individual differences in

scale use, further improving the precision in determining key attributes.

5.3.3.3.1 Key attributes as determined by the Rasch Model

As discussed in the previous chapter (section 4.3.5), the Rasch model assumes
equal discrimination between attributes. In this context, the OUTFIT values for each
attribute reflect the variability in its ratings across different samples relative to that
of other attributes in the analysis. This provides a clearer indication of the key
discriminating attributes. However, it captures unexpected measurement variance
arising from two sources: between-group variations (differences in how attributes
are rated across samples) and within-group variations (differences caused by
interactions between modelled facets, such as assessors or repetition), as

previously discussed in section 4.3.4: pg. 90 (Linacre, 1995).
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OUTFIT values below the acceptable range (overfit) indicate that an attribute does
not reliably discriminate between samples, whereas values above the acceptable
range (underfit) highlight the key attributes driving the differences amongst the
samples. Meanwhile as discussed in the previous chapter (section 4.3.5) , when
underfit occurs with a low-intensity attribute, it suggests that, although the attribute
may discriminate between samples, its ratings are strongly influenced by individual
assessor variations in interpreting the attribute or internalinconsistencies. In some
cases, however, the underfit may result from unusually low ratings for a single
sample, which pull down the average rating for that attribute across all samples.
When this occurs, the underfit for the low-intensity attribute is not mainly due to
assessor inconsistencies, but rather due to this downward shift in the mean, which
ultimately pulls the affected attribute to the negative side of the logit scale, as

demonstrated later with the untrained panel’s rating of Orange flavour (Figure 5.5).

Insights from the attribute outfit statistics can help analysts decide whether an
attribute should be removed from the analysis or whether further training is needed

for the panel or specific assessors.

Figure 5.3 illustrates the attribute contributions to the overall difference between
the chocolate spread samples for the trained panel. As discussed in section
3.3.1.6: Residual fit statistics , acceptable OUTFIT ranges are context-dependent

and can be calculated using the formula* (Wu & Adams, 2013; Eckes, 2023). For this

panel, the acceptable range is between 0.64 and 1.36, based on 63 responses per
attribute. and Milky flavour emerged as the key discriminating attributes. Orange
flavour was underfit with an OUTFIT Mnsq values of 1.92, indicating greater
variability in ratings across samples, while Milky flavour, with an OUTFIT Mnsq of
0.73, fell well within the acceptable range, showing lesser variations and relatively
more consistent ratings across the samples. In contrast, Sweetness (0.65) was
nearly overfit, and Cocoa flavour (0.47) showed clear overfit, indicating that their
rating patterns were overly predictable by the model, and thus did not contribute

meaningful differentiation between the samples.

*142 /% , where Nr (number of responses) for each of the attributes is 63 for trained panel and 216 for the

untrained panel, respectively.
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Logit Measures
B > Logit Mean (0)

W <LogitMean (0) Acceptable Range = 0.64 - 1.36

Attributes OUTFIT MNSQ (Trained Panel )-Choc. Spread

(attributes logit measures in brackets)

0 0.5 1 1.5 2 2.5

L L 1 1 1 J

— =
_ 0.73(0.10)

B os50.97)

B 047 (0.39)

salfiness NIMMHIDMDMUBROG 122 (-2.6s)

Orange flavour

Milky flavour
Sweetness

Cocoa flavour

Figure 5.3. Attribute contributions to overall product differences for the Trained Panel based on
Rasch logit measures (in brackets) and residual fit statistic (OUTFIT Mnsq). Attributes are colour-
coded by logit sign: blue fill= positive logits (higher intensity, contributing more to product
differences); red textured fill= negative logits (lower intensity, rated more inconsistently).

Further investigations were made using the Assessor x Sample interaction plots
(Figure 5.4), trellis plots for each assessor showing the raw data distribution

(Section 5.3.4), and two-way ANOVAs for individual assessors (Table 5.5).

The ANOVA results showed that five out of seven assessors identified significant
differences between the samples for Orange flavour (p<0.01), aligning with its high
underfit value of 1.92. Minor inconsistencies in the rank order between Brands A
and C were also reflected in the same OUTFIT value, even though differences
between those samples were not significant as shown in Table 5.4 below. While the
sample effect for Milky flavour was not significant for any assessor in the individual
ANOVA results (Table 5.5), the panelinteraction plotsin Figure 5.4 below, and their
individual trellis plots in Figure 5.8 below showed that most assessors consistently
rated Brand B as significantly higher in Milky flavour, whereas Brand B and the

Control were rated similarly.

In contrast, only one assessor detected a slightly significant difference for Cocoa
flavour (p<0.10) according to the individual ANOVA results in Table 5.5, while two

assessors did for Sweetness (p<0.05).
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Figure 5.4. Trained panel interaction plots for all attributes.
Attribute titles indicate F-values from panel ANOVA results, with p-value levels
significance: <0.001***, <0.01**, <0.05*; measures with no superscript symbols >0.05.
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From the interaction plot above, Sweetness and Cocoa flavour showed both
crossover interactions, where the ratings on the samples by some assessors were
reversed, and magnitude interactions, where assessors differed in rating severity

(Stone et al., 2012). The magnitude effects likely contributed to the loss of

discriminatory power for these attributes as indicated by the OUTFIT Mnsq, since
the Rasch model already accounts for such interactions when estimating the
measures. Crossover interactions, which are reflected in the OUTFIT Mnsq, were
more pronounced for Sweetness than for Cocoa flavour, explaining the slightly

higher value observed for Sweetness.

Additionally, the trellis plots for the few discriminating assessors revealed poor
rating repeatability, possibly due to adaptation or altered sensitivity across

replicate evaluations (Sipos et al., 2021). As noted by Stone et al. (2012), crossover

interactions reflect insensitivity to the differences between products, unless,
perhaps, there are no noticeable differences between the samples. In that case,
they may reflect a failure to use the scale correctly, as assessors may be uncertain
about whether they are perceiving the attribute and may assign internally
inconsistent ratings. In this study, however, there were formulation differences for
sweetener and cocoa content (Table B 2), so the crossover interactions for
Sweetness and Cocoa flavour could be reflecting that some assessors struggled to

detect these differences reliably, resulting in inconsistent ratings.

Saltiness, a low-intensity attribute (logit measure = -1.66), was flagged as
problematic due to its underfitting OUTFIT Mnsq value of 1.22. Assessor ratings
were inconsistent, showing significant magnitude and crossover interactions, with
one assessor revealing a slightly significant difference in Saltiness intensity (p<0.1)

in the individual ANOVA (Table 5.5).

In all, the interaction plots revealed crossover and magnitude effects for most
attributes, except Milky flavour, suggesting inconsistent use of the rating scale and
varying sensitivity to product differences among assessors. This is likely due to the
lack of specific training on scale use in this study, leading to inconsistencies that
undermine both the reliability of the panel and the validity of the results. Further
targeted training, particularly on scale familiarisation, is recommended to improve

panel alignment.
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For the untrained panel, the acceptable OUTFIT Mnsq range was 0.81-1.19 (Nr =
216). Despite the panel’s unreliable results, the model still offers valuable insights
into the underlying reasons, as shown in Figure 5.5. Rating patterns were generally
inconsistent, as indicated by the interaction and trellis plots (Figure 5.6 and Figure

5.10, respectively), and these were reflected in the attributes’ OUTFIT Mnsq values.

Logit Measures
Il > Logit Mean (0)

W < Logit Mean (0) Acceptable Range =0.81-1.19

Attributes OUTFIT MNSQ (Untrained Panel )-Choc. Spread

(attributes logit measures in brackets)

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8

[l 1 1 1 1 1 1 1 1 ]

Milky flavour _ 1.05(0.06)
Cocoa flavour _ 0.83(0.19)
Sweetness _ 0.71(0.47)
Orange flavour N\MW 1.6(-0.16)
Saltiness &\\\\\\\\\\\\\\\\\N 0.77 (-0.55)

Figure 5.5. Attribute contributions to overall difference for the Untrained Panel
based on Rasch logit measures (in brackets) and residual fit statistic (OUTFIT Mnsq).
Attributes are colour-coded by logit sign: blue = positive logits (higher intensity,
contributing more to product differences); red textured fill= negative logits (lower
intensity, rated more inconsistently).

Milky flavour and Orange flavour were identified as the key attributes, with
corresponding OUTFIT Mnsq values of 1.05 and 1.60, respectively. Orange flavour
was the strongest contributor to perceived differences among the samples, but
Brand B was generally rated as having the lowest intensity for Orange flavour, with
ratings ranging from barely detectable to non-existent. This is a clear example where
an otherwise high intensity attribute received a low rating on one sample, resulting in

a low logit measure (-0.16) as previously discussed in section 4.3.5: pg.96.

For Milky flavour, Brand B was consistently distinguishable from the others by most
assessors, and crossover interactions appeared less pronounced compared to those

observed with Orange flavour, suggesting a more stable perception. Saltiness and
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Sweetness were flagged as redundant, with OUTFIT Mnsq values of 0.77 and 0.71,

respectively, indicating they did not meaningfully differentiate between the samples.

Orange Flavour*** Milky Flavour ***
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Figure 5.6. Untrained panelinteraction plots for all attributes.
Attribute titles indicate F-values from panel ANOVA results, with p-value levels significance:
<0.001***, <0.01**, <0.05*; measures with no superscript symbols >0.05.
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Cocoaflavour, on the other hand, approached overfitting with a value of 0.83, as the
interaction plot revealed a higher degree of crossover interactions, leading to the

higher OUTFIT Mnsq value.

Orange flavour and Milky flavour were the primary contributors to actual product
differences, even for the inconsistent untrained panel. In contrast, Sweetness and
Cocoa flavour were not reliable key attributes for either panel, as the presence of
crossover interaction effects, reflected more individual differences and noise than

actual product differences.

Saltiness was a redundant attribute for both panels, but one assessor in the trained
panel had highly unusual ratings, which caused it to be flagged as a challenging
attribute. In the next section, this assessor is also flagged as inconsistent in the

assessor OUTFIT analysis.

5.3.3.3.2 Product differences

Table 5.4 presents the sample comparisons based on Kruskal-Wallis mean rank

sums of the Rasch measures and Tukey’s HSD for the individual attributes.

Table 5.4. Product comparison results for both panels based on Tukey’s HSD on
raw score mean ratings for individual attributes and Kruskal-Wallis test on mean
rank sums of Rasch measures for overall sample comparison.

Rasch

Sample’ OrangeFl MilkyFL CocoaFl Sweetness Saltiness Measure?
E
S BrandA 3.67° 2.67° 3.43° 3.76° 0.572 -0.25°
©® BrandB 1.672 3.38° 2.86° 3.712 0.812 -0.60°
§ Brand C 3.86" 2.62° 3.29% 3.48° 0.712 -0.28"
=
E
@ BrandA 3.64° 2.62° 3.85° 3.942 1.942 -0.28°
§ Brand B 0.92° 4.75° 3.00° 5.04° 1.622 -0.33°
'g Brand C 3.60° 2.422 3.92° 3.67° 1.862 -0.32°
[=
)

1 Sample differences based on Tukey’s HSD analysis of raw score sample means across individual attributes
and Kruskal-Wallis mean rank sums for Rasch measures, where sample Rasch measures with different
superscript letters are significantly different (p<0.05). Fl=Flavour.

2 Rasch measures of samples are estimated based on average intensity ratings (Total Intensity Measure -TIM)
across all modelled facets (assessors, repetitions, and attributes) after accounting for their influences.
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In relation to the product compositions (Table B 2), the differentiating ingredients
were orange flavouring, milk content, and whether sugar or sugar replacers were
used. Based on these differences, it was expected that Brand B would be
significantly different from the other samples in terms of Orange and Milky flavour,
asitwas notachocolate-orange spread like the other two and contained higher milk
content from both milk chocolate and added milk powder. This expectation was
confirmed by the attributes OUTFIT for both panels (Figure 5.3 and Figure 5.5), and

the mean raw intensity ratings from the assessors (Table 5.4).

While the trained panel rated the Orange flavour for Brand B at a higher average
intensity than the untrained panel, the extremely low ratings given by most
assessors in the untrained panel (see individual trellis plots in Figure 5.10) lowered
the overall mean intensity across all samples, resulting in a negative logit value for
Orange flavour, as previously discussed. However, the untrained panel appeared to
accurately score the absence of Orange flavour in Brand B, with many assessors
scoring it as zero. In contrast, the trained panel may have been influenced by

expectation error (Meilgaard et al., 2025), anticipating Orange flavourin Brand B due

toits presence in the other samples, or they may have been playing it safe with their

ratings, perhaps a consequence of receiving feedback during training (Myford &

Wolfe, 2004; Castura et al., 2005).

Although a significant difference in Cocoa flavour might have been anticipated,
since Brand B primarily used more milk chocolate crumbs than fat-reduced cocoa
mass (Table B 2), whereas the other brands used only fat-reduced cocoa mass, the
assessors in both panels were unable to reliably distinguish between the samples
as discussed earlier (section 5.3.3.3.1, p131). Therefore, the reliability and validity
of the results regarding the product differences are questionable. Milk chocolate
has been shown to be perceived as sweeter and characterised by milk flavour

notes, while dark chocolate tends to have more bitter notes (Liu et al., 2015).

However, since all samples had similar sugar or sweetener levels (total
carbohydrates ~50g), and the cocoa mass in the other brands would have been
sweetened as a result, it was hypothesised that any differences in cocoa content
due to the addition of milk chocolate would be reflected more as Milky flavour and

Sweetness, rather than as differences in Cocoa flavour.
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Recall from section 5.3.1 (Table 5.1) that the Principal Component Analysis of
Residuals (PCAR) indicated possible local dependency between Sweetness and
Milky flavour, as well as between Cocoa flavour and Milky flavour. This supports the
hypothesis that differences in cocoa content from milk chocolate were expressed
more strongly through variations in Milky flavour and Sweetness than in Cocoa
flavour itself. Just like with Orange flavour, the untrained panel appeared to be more
sensitive to the product differences. They rated Brand B highest in Sweetness and
Milky flavour, and lowest in Cocoa flavour, as shown in Table 5.4. In contrast, the
trained panel reflected this impact only in Milky flavour, with minimal differences

observed for Cocoa flavour.

Regarding Sweetness, Brand C used maltitol as a sugar replacement, while the
other two brands used similar amounts of sugar. However, this may not have
contributed to noticeable differences, as maltitol, a sugar alcohol, is known to have
characteristics very similar to sucrose, except for its lower glycaemic index

(O'Donnell, 2012).

Saltiness had the lowest intensity as was reflected on the Wright maps. The salt
contentforthe productsranged from less than 0.01to 0.13. Low-intensity attributes
like this can be difficult to rate accurately. This challenge was further supported by
the OUTFIT Mnsq values, which flagged Saltiness as problematic for the trained
panel, and non-discriminating for the untrained panel. The lack of discrimination in
the untrained panelwas most likely due to inconsistent ratings and poor replication,

whereas for the trained panel, the issue was traced to a single disagreeing assessor.

Myford and Wolfe (2004) have demonstrated that the performance of individual

ratersinthe Rasch modelis assessed relative to the group being evaluated, and that
deviations from model expectations, such as those indicated by OUTFIT Mnsq also
depend on this context. In their study, this meant that an individual rater’s fit
statistic would highlight when their ratings did not align with the rest of the panel. In
the present study, this principle explains why the trained panel’s overall
consistency made one assessor’s disagreement stand out clearly, whereas in the
untrained panel, inconsistent scoring across multiple assessors resulted in overfit,
since no single rater’s pattern stood out enough to affect the OUTFIT Mnsq

(discussed further in section 5.3.4). This demonstrates how interpretations of
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assessor performance and attribute discrimination depend on the panel’s
collective pattern of responses. In this sense, the approach mirrors the
conventional method, where individual assessor performance is evaluated relative
to the panel mean, which serves as the reference standard in the absence of a

known true attribute mean (Stone et al., 2012; Raithatha & Rogers, 2018; British

Standards Institution, 2021; Meilgaard et al., 2025). However, from the outset, the

Rasch model adopts a diagnostic perspective, encouraging a deeper investigation
of the data through diagnostic tools that are integrated within a single analysis. The
Rasch-approach to examining individual assessor performance is explored in the

following section.

5.3.4 Comparison of individual assessor performance for both panels

The performance of individual assessors was evaluated based on their
discriminatory ability, internal consistency or repeatability, relative consistency
with other assessors, and rating effects or rater bias. Two-way ANOVAs and the

Rasch model's quality control statistics were used to analyse the data.

Discriminatory ability refers to the proportion of key attributes on which an assessor
can distinguish the samples. Internal consistency refers to an assessor's ability to
consistently rate samples across replicate evaluations and is also referred to as
repeatability. Relative consistency refers to an assessor’s ability to assign similar
intensity ratings and rank samples the same way as other assessors in a panel, termed

"agreement across assessors" by ISO 1132:2021 (British Standards Institution, 2021).

Rating effects refers to differences in scale usage by each assessor.

In practice, several techniques are employed to examine panel performance

criteria. Barcenas et al. (2000) demonstrated that conducting ANOVA-based

comparisons of assessor F-ratios and residuals can effectively identify assessors
who contribute most to variability, allowing detection of inconsistent scoring

behaviour. Tomic et al. (2007) further showed that visualising these results using

graphical methods such as eggshell or correlation plots provides a clearer overview
of assessor differences and panel agreement, and that the most comprehensive

understanding of panel performance is achieved by combining analytical statistics
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with several visualisation techniques. This recommendation was echoed by Stone

etal. (2012), Ho (2015) and Raithatha and Rogers (2018).

More recent guidelines continue to rely on these established diagnostic techniques,
using them in combination with mixed ANOVA models, correlation analyses
between assessor scores and the panel mean, and advanced graphical tools

(British Standards Institution, 2021; Meilgaard et al., 2025). While these methods

are comprehensive, they can be demanding for the panel leader, especially when a

rapid overview is required to identify assessors who may be deviating from the
group.

Using the ANOVA approach, individual two-way ANOVAs are conducted for each
assessor across all attributes. The Sample main effect (Fsampe) indicates
discriminatory ability. Agreement across assessors is captured in the three-way
ANOVA for the panel discussed earlier (Table 5.2) and is inversely related to the
Assessor main effect (Fassesson) (ISO 1132:2021 (British Standards Institution, 2021)).

However, poor scoring repeatability can mask this relationship.

Each assessor’s internal consistency in assigning ratings across replicate
evaluations, is estimated using the interaction effect between sample and the
replicate session/repetition (Fsampie x repetition) fOr €ach assessor, derived using the

Tukey’s additivity test! (Ho, 2015). A significant interaction term indicates

inconsistency. While this provides valuable information, it does not offer a
complete picture. Better insights can be gained by combining the analyses with

response distribution plots(Stone et al., 2012; Ho, 2015) and applying one or more

of the complementary methods described above.

The ANOVA approach assesses discrimination, agreement, and repeatability, but
does not fully capture assessor severity, scale usage, or consistent understanding of
attributes. These factors can affect data quality but may not be evident from F-ratios
alone. Combining statistical results with graphical tools and other diagnostics

therefore gives a more complete evaluation and supports targeted panel training.

1 Tukey’s additivity test is used to check whether the interaction between two factors in a two-way ANOVA
without replication is negligible, thereby testing if the model assumption of additivity holds true (i.e., that
the effects of the factors are purely additive). A significant p-value (typically p < 0.05) means the
assumption is violated and the interaction term is significant.



139

Rasch analysis enhances efficiency by providing an overview of disagreeing
assessors using inherent quality control statistics. The model accounts for
individual rater bias resulting from idiosyncratic use of scale, while estimating Total
Intensity Measures (TIM) for the samples (as discussed in section 3.1.2). It then
assigns severity logit measures to each assessor based on their tendency to
consistently assign higher or lower ratings relative to the panel, as shown in the
Wright maps. All other imprecisions in the response data, including interaction
effects, are recorded as outfit (Linacre, 1995) as discussed previously in section
4.3.4. In their study about measuring rating effects with the Many-Facet Rasch

Model, Myford and Wolfe (2004), provide a detailed account on how the model

offers insights into various individual rater biases and inconsistencies.

Using Rasch model fit indices for the Assessor facet, OUTFIT Mnsq ranges indicate
different types of rater bias. As previously discussed, acceptable OUTFIT Mnsq

ranges are context-dependent and derived using the formula suggested by* (Eckes

2023), based on the total number of responses used to estimate the facet
parameters. The higher the degree of outfit above 1, the more deviation from the
model expectations. Conversely, the lower the OUTFIT Mnsq below 1, the more

predictable the response is by the model.

According to Myford and Wolfe (2003) and (2004), when an assessor’s OUTFIT Mnsq

is overfit, it indicates a lack of variation in their ratings across samples or attributes.
This is often due to restriction of range (clustered ratings within a specific portion of
the scale) or central tendency bias (overusing middle categories) and reflects the
assessor’s inability to discriminate between samples. In contrast, when the OUTFIT
Mnsq is above the acceptable range (underfit), it suggests thatthe assessoris either
inconsistentin their ratings across replicates or in disagreement with the rest of the
panel. Assessors’ fit indices indicate their cumulative agreement between observed
and expected ratings across all attributes, samples and replicate evaluations.
Therefore, the OUTFIT Mnsq reflects both internal and relative inconsistencies.

(Myford & Wolfe, 2004) term these inconsistencies the “Randomness effect”, where

haphazard or seemingly random ratings suggest that the assessor does not reliably

142 ’% , where Nr (number of responses) for the assessors in both panels is 45 as each assessor rated the

3 samples, across the 5 attributes in 3 replicates.
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differentiate between samples. The model further identifies assessors who rank the
samples differently than the rest of the panel using point-biserial measure
correlations for the assessor facet, which the authors termed the “Single Rater —
Rest of Raters (SR/ROR)” correlation. A lower correlation value in this measure flags
assessors whose rankings deviate from the panel’s overall pattern. The assessors’
OUTFIT Mnsqg and SR/ROR correlation results will be presented in the following

section.

A caveat of the Rasch approach to evaluating individual assessor performance is
that the results are always relative to the performance of all other assessors in the
analysis. Therefore, it is most informative when applied to a more homogeneous
panel rather than to an inconsistent one. The results for the performance of

assessors in the trained and untrained panels are presented in the following pages.

5.3.4.1 Performance of trained panel individual assessors

Figure 5.7 presents a control plot for the OUTFIT Mnsq values of the trained panel.
The acceptable fit range for assessors was between 0.57 and 1.42. Ratings from
assessors within this range were generally consistent with the rest of the panel,
whereas those with values greater than 1.42 exhibited signs of random or
inconsistent rating behaviour. Assessors 2003 was flagged as slightly inconsistent,
with an OUTFIT Mnsq value of 1.42, right at the acceptable threshold compared to

the rest of the panel.

The ANOVA results in Table 5.5, which also include Rasch model rater performance
indices, show that Assessor 2003 was able to distinguish between samples for
Orange flavour (p<0.05) and, to a lesser extent, Saltiness (p<0.10), while no
significant differences were found for the other attributes. Meanwhile, the Rasch
model single rater-rest of rater (SR/ROR) correlation provided complementary
information, showing that Assessor 2003 ranked the samples differently from the
rest of the panel for these attributes, with a correlation value of 0.46, the lowest

among all assessors.

However, it should be noted that the Rasch model evaluates assessor fit relative to
the collective pattern of responses within the panel. Therefore, although Assessor

2003’s OUTFIT Mnsq value was at the acceptable threshold, the raw data indicate
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broader variability across the panel. This suggests that the apparent fit reflects
relative consistency with a panel that itself exhibited some instability, rather than

absolute rating consistency.

The trellis plots in Figure 5.8 further support these findings, showing that Assessor
2003 perceived a larger difference in the intensity of Orange flavour between the
samples compared to the rest of the panel. In addition, they reversed the order in
which Brands A and C were rated, assigning a higher intensity rating to Brand C
opposite to the pattern observed in most other assessors. They also perceived

greater differences in Saltiness across the samples compared to the panel average.

SR/ROR correlation values (Table 5.5) for Assessors 2002 and 2011 were also
relatively low, at 0.51 and 0.77, respectively. While the OUTFIT Mnsq value for
Assessor 2002 (1.11) indicated consistency in their ratings, their ANOVA results
showed they could not discriminate between the samples based on Orange flavour,
a key attribute. However, they could differentiate Sweetness (p < 0.05), which was
not a key attribute. Additionally, the trellis plot indicated that, although their
Saltiness ratings were somewhat erratic, they observed a large difference in

Saltiness in at least one replicate evaluation.

Assessor 2011, with an OUTFIT Mnsq value of 1.41, was again close to the misfit
threshold (1.42). This was likely due to a reversal in the order of Orange flavour
intensity between Brands A and C, like Assessor 2002. However, the difference
between the samples was not significant, consistent with the rest of the panel,
suggesting that the crossover interaction likely resulted from uncertainty about
which sample had the higher intensity. Further training could help increase their

sensitivity and improve the refinement of their ratings.

Assessor 2010, on the other hand, exhibited overfitting, with an OUTFIT Mnsq
value of 0.44, suggesting they were using a restricted range of the scale and likely
not discriminating between the samples. This was confirmed by their ANOVA
results, where none of the attributes showed significant differences, and the trellis
plot revealed that their ratings never exceeded two scale categories across all

attributes.
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Figure 5.7. OUTFIT Mnsq plot for assessors in the Trained panel.



Table 5.5. Summary of individual ANOVA results for the trained panel, showing Rasch model indicators for rater performance.

Rasch Model Indices Orange Flavour™ Milky Flavour™ Sweetness’ Cocoa Flavour™ Saltiness
Assessor

OUTFIT'  SR/ROR?  Fsi®  Frep  Fsaxrep Fsa  Frep Fsaxrep Fsa Frep Fsaxmep  Fsa  Frep  Fsaxrep Fsa  Frep  Fsaxrep
2002 1.11 0.51 2 3.5 1.5 4 1 NA4 7 1 0.1 28 04 04 0.1 0.6 0.1
2003 1.42 0.46 7.9 0.4 0.3 NA NA NA 2 2 1.8 NA NA NA 4.8 1 0.3
2005 0.97 0.86 43" 7 0 4 1 NA 8 2 0 527 28 2 NA NA NA
2006 1.05 0.81 28" 9 2.3 28 16 O 16 28 0 3 1 NA 1 1 NA
2007 0.58 0.88 26.8" 0.4 0 4 1 NA NA NA NA 28 16 O 1 1 NA
2010 0.44 0.81 0.25 1.8 2.3 0 0 NA 04 16 0.3 1 0 NA 1 4 NA
2011 1.41 0.77 13" 1 0.9 29 19 8.3 1 19" 5.4 0.3 1 0.1 NA NA NA

1 OUTFIT mean square range: 0.57-1.42 (Nr = 45). Values <0.57 indicate overfit, >1.42 underfit, and >2.0 suggest use of extreme categories. Row shading reflects OUTFIT interpretation: blue
(overfit) for restriction of range and brown (underfit) for relative inconsistency.

2 Single Rater—Rest of Rater (SR/ROR) correlation, where values noticeably lower than those of other assessors indicate that an assessor is ranking samples in a different order from the
panel. Grey-shaded cells highlight assessor response patterns that deviate from the panel.

3 F-values with p-value levels of significance: <0.001***, <0.01**, <0.05*; <0.10™ measures with no superscript symbols >0.10. Where SA = Sample, Rep=Repetition and SA X Rep=the Sample
and Replicate interaction factor. The levels of significance also apply to the list of attributes in the first row showing differences for Fsamplein the panel ANOVA (Table 5.2.).

4NA signifies no variation in assessor ratings, limiting the ANOVA model’s ability to estimate the contribution of the effect.
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This pattern suggests that something else might be affecting their ratings, perhaps
they were distracted. Further investigation into the "any other comments" section
of the questionnaire revealed that Assessor 2010 was the only one to leave a
comment, which simply stated "Bitter" for 8 out of the 9 evaluations, suggesting

some level of disengagement.

The performance of the trained panel was more inconsistent than expected. While
a few assessors demonstrated reasonable discrimination, others showed variable
or restricted scale use that limited the panel’s overall reliability. These findings
suggest that targeted retraining and scale calibration would be required to improve
both individual performance and collective panel agreement. The Rasch model
supported these observations by identifying assessors whose rating behaviour
deviated from the collective panel pattern and by quantifying the extent of misfitand
their interpretation. However, the results also showed that acceptable fit values did
not always correspond to high data quality, highlighting the importance of
examining Rasch outputs in conjunction with raw data visualisations to obtain a

complete understanding of panel performance.

5.3.4.2 Performance of untrained panel individual assessors

The control plot for the OUTFIT Mnsq values of the untrained panel is presented in
Figure 5.9, using the same acceptable fit range of 0.57 to 1.42 as applied to the
trained panel, since they provided the same number of responses. Unlike the
trained panel, assessors in this group exhibited more erratic rating patterns, poor
repeatability, and used extreme scale categories, as seen in the trellis plots in
Figure 5.10. Assessors 1005, 1007, 1011, 1012, and 1018 were flagged as overfit,
with OUTFIT Mnsq values of 0.56, 0.56, 0.15, 0.51, and 0.38, respectively,
suggesting they used restricted parts of the rating scale. In contrast, assessors
1010, 1013, and 1017 were identified as underfit, with OUTFIT Mnsq values of 1.42,
1.46, and 1.48, indicating relatively inconsistent ratings compared to the rest of the
panel. Assessor 1015, identified as the most lenient on the Wright map (Figure 5.2),
frequently used both the upper and lower extremes of the scale, had the highest
OUTFIT Mnsq value of 2.49. These flagged rating behaviours from the Rasch analysis
corresponded with patterns observed in the raw score distribution trellis plots

(Figure 5.10).
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Table 5.6 summarises both the Rasch model assessor performance indices and
individual ANOVA results. The ANOVA indicated that 14, 11, 9, 9, and 6 assessors
could detect significant differences (a = 0.05) between the samples based on Milky
flavour, Orange flavour, Sweetness, Cocoa flavour, and Saltiness, respectively. At a
less stringent level (a =0.10), afew additional assessors identified differences: 6 for
Orange flavour, 4 for Milky flavour, 2 for Sweetness, and 1 for Cocoa flavour. These
assessors likely contributed to the highly significant panel discrimination (p <0.001)
across all attributes, with Saltiness being significant to a lesser extent (p < 0.05).
However, interaction plots revealed substantial crossover and magnitude
interaction effects, while trellis plots showed poor replication across most

attributes. Only Orange and Milky flavours exhibited more consistent patterns.

Assessors flagged as overfit are shaded blue in Figure 5.10, with black borders
indicating central tendency effects. Lower OUTFIT Mnsq values within the overfit
range appeared to indicate a central tendency effect, where ratings were restricted
to the middle categories across attributes, as seen in Assessors 1011 and 1018. In
contrast, higher OUTFIT Mnsqg values within the overfit range pointed toward
category range restriction, as observed with Assessors 1005 and 1007. However, it
remains unclear whether there is a specific OUTFIT Mnsqg range that consistently

indicates these effects.

The Rasch model’s rater performance indices are relative measures, indicating an

assessor’s performance compared to the rest of the group (Myford & Wolfe, 2004).

Since many assessors in the untrained panel were inconsistent, the OUTFIT Mnsq
and SR/ROR correlation values were less informative for analysts attempting to
identify assessors in disagreement, occasionally flagging assessors who had
slightly better internal consistency. This was observed for the underfitting Assessor
1013, who generally ranked the samples consistently across replicates, despite
some issues with repeatability (Figure 5.10). Saltiness and Orange flavour were
exceptions, with replicate evaluations showing crossover interactions. This
assessor was able to distinguish between samples for all attributes (p < 0.001)
except Saltiness. Orange flavour was only significant at the 10% level (a = 0.10),

likely due to greater internal inconsistency in both Saltiness and Orange flavour.
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Table 5.6. Summary of individual ANOVA results for the Untrained panel, showing Rasch model indicators for rater performance

14"

A Rasch Model Indices Orange Flavour™ Milky Flavour™ Sweetness™ Cocoa Flavour™ Saltiness”
ssessor OUTFIT! SR/ROR2 Fsad Frep  Fsaxrep Fsa Frep  Fsaxrep Fsa Frep  Fsaxrep Fsa Frep  Fsaxrep Fsa Frep  Fsaxrep

1001 0.62 0.65 4.37 1.6 1 7 1 0.1 2 2 1.8 6.4" 28 0 NA4  NA NA
1002 0.68 0.13 3 0.3 1 1 3.3 1.3 2.8 04 O 0 1.8 NA 7 1 0.1
1003 0.89 0.31 3 06 O 38" 2 0.3 26" 2 2.6 14.8" 2.8 041 0.2 0.2 1.2
1004 1.22 0.64 1.5 0.2 01 1.5 1.2 23.7 43" 4 1.8 0.9 26 0.2 16" 7 0.1
1005 0.56 0.28 1.5 0.1 0.5 12" 1 0.2 5.2 0.4 0.2 4 1 3.9 1 1 NA
1006 0.75 0.39 24.5° 0.5 6.7 3.3 1 0.5 73" 1 0.6 43" 7 0.4 NA NA NA
1007 0.56 0.55 18.57 2 0.1 377 7 0.1 3.3 0.3 1.3 13" 1 2.8 8 8" 0
1008 1.26 0.54 7.4 1.3 0.8 9.6" 1 0 7 737 0 4 3.3 0.5 124 6.4 0
1009 1.07 0.74 6.8” 1.6 O 5.4~ 2 1.9 3 13" 497 0.3 3.3 0.5 1 4 NA
1010 1.42 0.64 6.8” 0.3 34 6.17 4 1.1 13" 0.1 0 3.3 0.1 01 NA NA NA
1011 0.15 0.78 52" 1 2.8 1 1 NA NA NA NA 4 1 NA 1 1 NA
1012 0.51 0.63 39” 4 49™ 14" 2 2.8 4 3 NA 0.3 0.3 01 2.8 04 O
1013 1.46 0.35 6.9” 1.1 0.3 50" 26™ 0.1 197 1 0 36.4" 28 14 3.7 0.8 0.6
1014 0.98 0.46 7.3 1.3 16.8 30.57 0.5 0.1 6.1~ 2.7 3.2 2.3 0.6 01 2.7 0.6 6.3
1015 2.49 -0.03 28.9° 1.9 0.2 8.7 0.2 0.1 3.3 1.8 0.1 19.8™ 1.3 0.1 104" 2.7 1.3
1016 1.02 0.51 10.3° 1.6 0.1 6.5" 3.5 2.1 52" 13" 0.9 2.4 3.8 0.3 0.2 0.4 04
1017 1.48 0.43 0.8 0.5 1.5 3.7 2 85.5™ 3.7 0.3 1.5 0 1.2 1.2 3.8 1 NA
1018 0.38 0.73 7.6" 2.8 1 0.1 0.3 NA 16" 7 0.1 16" 1 NA NA NA NA
1019 1.09 0.58 3 4 1.9 377 0 NA 32" 2 1.8 25" 0.3 041 1.6 1.6 0.3
1020 1.29 0.38 0.6 0 1.6 124 4 0.4 4.6 0.3 2.8 14.7 0.1 2 7 4 0.1
1021 0.75 0.65 4.9” 2.4 4.3 13" 3 0.1 0 7 NA 3.7 1.9 0.5 2.8 2.8 13.3
1022 0.61 0.39 5.37 0.3 0.5 14" 0.5 0.8 3 1 0.2 3.3 1 0.5 1 1.8 2.3
1023 1.16 0.28 12.8" 3.7 151 5.27 0.4 0.3 3.1 0.7 1.8 1.6 1.1 2 0.3 0.2 0.7
1024 1.37 0.58 48.5" 2 2.6 397 4 0.1 6 2 0 1 0.3 01 1.2 1.2 1.3

1 OUTFIT mean square range: 0.57-1.42 (Nr = 45). Values <0.57 indicate overfit, >1.42 underfit, and >2.0 suggest use of extreme categories. Row shading reflects OUTFIT interpretation:
blue (overfit) = range restriction and non-discrimination (black borders), brown (underfit) = relative or internal inconsistency, and red= use of extreme categories.

2 Single Rater-Rest of Rater (SR/ROR) correlation, where values noticeably lower than those of other assessors would indicate that an assessor is ranking samples in a different order
from the panel. For this panel, no clear trend was observed, as their ratings were generally inconsistent.

3 F-values with p-value levels of significance: <0.001***, <0.01**, <0.05*; <0.10~ measures with no superscript symbols >0.10. Also applies to the attributes (Fsampte) with significant
differences in Table 5.2.

4NA signifies no variation in assessor ratings, limiting the ANOVA model’s ability to estimate the contribution of the effect.
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Other underfitting assessors with trellis plots highlighted in brown (1010 and 1017)
seemed to have a higher number on attributes with poor repeatability. Assessor
1017 identified as the most severe assessor on the Wright map (Figure 5.2), had the
next highest OUTFIT Mnsq value (1.48) after Assessor 1015, who showed extreme

misfit.

SR/ROR correlation values were inconsistent across all assessors, offering no clear
pattern and limiting their usefulness as a reliable performance indicator for this

panel.

Insights from the Rasch performance indices, combined with the ANOVA
discrimination results for the key attributes Orange flavour and Milky flavour, which
were identified from the attributes facet outfit analysis, were used to identify
assessors whose performance more closely aligned with that of the trained panel

for further analysis.

5.3.4.3 Rasch analysis of selected untrained assessors

Eight assessors: 1001, 1008, 1009, 1014, 1016, 1022, 1023, and 1024 were selected
from the untrained panel based on their relatively consistent rating patterns, as
indicated by their OUTFIT Mnsq values, and their ability to discriminate between
samples (Table 5.6) using the key attributes, Orange flavour and Milky flavour,
identified by the MFRM. The main aim of selectingthese assessors was to determine
whether an untrained but carefully screened subgroup could achieve results
comparable to those of a trained panel. Their performance was then compared with
that of the trained panel using Rasch separation statistics and rater performance

indices to evaluate whether similar sample results could be obtained.

The global modelfit of the data was acceptable, as only 1% of absolute standardised
residuals exceeded 2, suggesting no major inconsistencies that could distort the
measurement. The unexplained variance in the first contrast had an eigenvalue of
2.18, slightly above that of the original panel (1.96), indicating a strength in 2 out of
5 attributes and suggesting the possibility of a secondary dimension. A correlation
of 0.46 was observed between the standardised residuals of Sweetness and Milky

flavour, confirming that the rating for Sweetness was associated with that of Milky
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flavour, most likely reflecting the impact of milk chocolate in Brand B, as discussed

earlier.
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Figure 5.11. Many-Facet Wright Map for the Selected Untrained Assessors

The Wright map for the selected assessors (Figure 5.11) closely resembled that of
the original untrained panel. However, the selected assessors displayed more
consistent severity levels, with their measures tightly clustered around the mean
(-0.2 to 0.2 logits) suggesting they applied the scale more uniformly after
accounting for measurement error. The sample measures were also more tightly
clustered, falling within a narrow range of 0.1 logits and remained below average
based on the TIM, with no significant differences observed between the samples or
their replicate evaluations on average. Orange flavour was still located below the
average logit reflecting the continued impact of lower ratings for Brand B on the

attribute. This was particularly evident as the selected assessors were able to
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discriminate between the samples based on Orange flavour and were more

accurate in rating the absence of Orange flavour for Brand B.

Notably, the half-point thresholds and the locations of assessors and attributes on
the Wright map remained unchanged. This stability demonstrates the Rasch
model's invariance property, where parameter estimates stay consistent across
different subgroups, provided the model fit is adequate and the subgroups exhibit

similar measurement characteristics (Bond et al., 2020). This consistency enables

meaningful comparisons, even when panel composition varies, highlighting the

robustness of the Rasch framework for sensory data analysis.

The Rasch model separation statistics and sample measures based on the Total
Intensity Measure (TIM) are summarised in Table 5.7. The samples did not differ
significantly, as indicated by a high chi-square ()(2) p-value of 0.98, a strata value near
0, and a reliability of 0, confirming a lack of distinct levels between samples. The
severity levels of the assessors were also not significantly different at a 95%
confidence interval. Assessor severity levels also showed no significant differences at
the 95% confidence level. Although the strata value of 1.45 suggested minimal
variation among assessors, the reliability value of 0.41 indicated this variation was
likely due to measurement error. Reliability values below 0.50 suggest that differences

between measures are primarily due to measurement error (Wright & Masters, 2002).

Table 5.7. Summary of Rasch model separation statistics for the panel of selected
untrained assessors

Rasch separation statistics Samples Assessors
Fixed X° p-value (a=0.05) 0.98 0.06
Strata 0.33 1.45
Reliability 0.00 0.41

Sample Measure'’

Brand A -0.32
Brand B -0.33
Brand C -0.32

'Standard error (S.E) of 0.06 for all sample measures
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5.3.4.3.1 Attribute contributions to the product differences

The importance of each attribute in differentiating the products is presented in
Figure 5.12 below. The acceptable range for Outfit Mnsq values is between 0.66 and
1.33, based on 72 responses per attribute. Orange flavour and Milky flavour
emerged as key discriminating attributes, exhibiting underfitting Outfit Mnsq values
of 1.56 and 1.15, respectively. Unlike the original panel, where Cocoa flavour had a
higher Outfit Mnsq value (Figure 5.5), Cocoa flavour is now at the lower limit of the
acceptable range (0.66), suggesting it did not effectively discriminate between
samples. Sweetness now showed a higher value of 0.70, but both attributes were
close to the overfit threshold, indicating limited contribution to product

differentiation.

Logit Measures
M > Logit Mean (0)

W < Logit Mean (0) Acceptable Range = 0.66-1.33

Attributes OUTFIT MNSQ for Selected Untrained Assessors - Choc Spread
(attribute logit measures in brackets)
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1:2 1.4 1.6 1.8

Milky flavour 1.15(0.11)

Sweetness 0.70(0.517)

Cocoa flavour

0.66(0.76)

ermaerovar {160
Saltiness &\\\\\\\\\\\\\\\\\\\\\\\\\\\\\% 0.81(-0.65)

Figure 5.12. Attribute contributions to overall product differences for the panel of
selected Untrained assessors

The slightly higher value for Sweetness may reflect differences in replicate
interaction patterns within assessors. As shown laterin Figure 5.14 , only assessors
1016 and 1024 consistently ranked the samples based on Sweetness. However, all
assessors, including these two, showed crossover interactions for Cocoa flavour.
These rating patterns likely resulted in the loss of product discrimination for the

attributes (Stone et al., 2012), and suggested that assessors struggled to

consistently distinguish samples based on these attributes.
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The intensity of Orange flavour remained lower than average (logit measure -0.14)
because the extremely low ratings for Brand B, pulled down the overall average for
Orange flavour across the samples. Saltiness, with a logit measure of -0.65, proved
more challenging to rate, exhibiting an underfit (OUTFIT Mnsq = 0.81) for the
selected assessors due to its low intensity and inconsistent ratings. These patterns

are clearly reflected in the trellis plots for the selected assessors in Figure 5.14.

5.3.4.3.2 Relative performance of the selected assessors

In Figure 5.13, the control plot for the OUTFIT Mnsq values of the selected untrained
assessors revealed no misfitting assessors, indicating that the rating patterns of all
assessors were consistent with the panel's overall ability, (i.e., based on standard
panel performance criteria, they showed panel agreement). However, their rating
patterns (Figure 5.14) were generally more erratic, compared to the trained panel
(Figure 5.8), though less so than those of the original untrained panel (Figure 5.10),

particularly for the key attributes.

Assessors whose OUTFIT Mnsq values approached the acceptable limits tended to
show stronger rating effects than others, as seen with Assessor 1001, who showed
restriction of range effect across most attributes except Orange flavour. This
supports the idea that the magnitude of a rating effect corresponds to changes in
OUTFIT Mnsq values, which increase, or decrease based on how prominently an

assessor displays that effect. As Linacre (1995) states, greater variance among

parameters within a facet leads to higher OUTFIT Mnsq values. Similarly, lower
variance corresponds to lower OUTFIT Mnsq values. This pattern is explored further

in Chapter 6.

Single rater — rest of rater (SR/ROR) correlations were still inconsistent and
therefore not as informative as with the trained panel as no clear pattern could be

identified.

The selected untrained assessors were indeed the better performers within the
untrained group, as identified using Rasch diagnostic tools, specifically the OUTFIT
Mnsq control limits. The model identified the same key sensory attributes across

both the trained and untrained panels.
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However, while the trained panel was able to effectively discriminate between the
products based on the Rasch measure of overall difference — TIM, neither the full
untrained panel, nor the selected subset could differentiate the products holistically,
though they could detect product differences in specific attributes. The untrained
assessors rated the absence of Orange flavour in Brand B more accurately, whereas
the trained panel, though rating it lower than the other attributes, appeared more
conservative and did not rate it as completely absent. Still, the inconsistent and
erratic ratings from the untrained panels, both for Orange flavour and other attributes,
led to a loss of discrimination between products when considering the overall

differences.

5.3.5 Convergence analysis of panel size on product discrimination

Convergence analysis was used to examine whether the untrained panel’s lower
discrimination reflected insufficient panel size or inconsistent rating patterns, and to
compare how discrimination ability varied with panel size between trained and
untrained assessors, following the method described in section 5.2.5.2: Convergence

analysis.

Figure 5.15 shows the Sample facet fixed chi-square values for both panels across
two iterations. The untrained panel subsets (orange lines) produced low, irregular,
and non-significant chi-square values (p>0.05) at all panel sizes, ranging from 0.1-
0.4 at n=7 up to only 1.6 at n=24. Neither iteration reached significance, and the
curves did not approach the discrimination level of the benchmarked original
trained assessors. In contrast, the artificially expanded trained panel dataset (blue
lines) produced a smooth, increasing discrimination trend and consistently high,
significant chi-square values (p<0.05), increasing from 8.5-11.6 at n=7 to 24.6 at

n=24. Both iterations followed almost identical patterns. This aligns with Myford

and Wolfe's (2004) observation that when most raters in a Many-Facet Rasch
analysis provide erratic ratings, the respondents being rated (in this case, the
products) appear to differ only minimally in performance level, thereby reducing the

ability to make reliable distinctions.
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The trained panel's convergence curve suggested that discrimination power
increases in a stable, predictable way when underlying ratings are consistent. The
untrained panel’s failure to converge indicates that rater inconsistency, rather than
insufficient sample size, limited the model’s ability to detect product differences.
Minor fluctuations in the trained panel curve at small subset sizes likely reflect the
influence of individual assessors on model calibration, with stability reached at

around 15 assessors.

Another possible contributor to the untrained panel’s lack of discrimination is the
opposing attribute directions for Brand B, which was the only sample without added
orange flavouring. The untrained assessors rated Brand B lowest for Orange flavour
but highest for Milky flavour. When the Rasch model adjusted these ratings to
estimate a single latent Overall difference variable, the opposing directions may
have partially cancelled each other out, reducing apparent product separation on
the logit scale. Although the trained panel showed similar rating patterns for Brand
B, their lower measurement noise on the less dominant attributes allowed for

clearer discrimination between the samples.

This highlights an important caveat in applying the MFRM to estimate an overall
difference construct. The present results suggest that when a product exhibits
opposing attribute intensities (e.g., low on one attribute but high on another),
variability in ratings can cause the combined latent estimate to mask genuine
sensory differences. This was evident for Brand B, which lacked added orange
flavouring but was the only sample containing milk chocolate crumbs and full
cream milk (Table B 2), a formulation likely reflected in its perceived attribute
intensities. However, because no analytical tests were conducted to verify the
flavour composition of the samples, this interpretation should be viewed as

tentative.

These findings suggest that the model is most appropriate when products being
examined do not have extreme opposing attribute profiles and when assessors
provide relatively consistent ratings, even if severity levels differ. The advantage of the
MFRM over traditional methods is its integrated diagnostic framework: it
simultaneously evaluates product discrimination, adjusts for systematic assessor

severity and leniency, and identifies problematic raters within the same analysis.
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However, this adjustment only works for consistent bias (e.g., an assessor who is
always more severe). It cannot correct erratic rating patterns or differences in
attribute conceptualisation. Analysts also need to consider test design carefully, as
unidimensionality is ultimately driven by which attributes are selected to represent

the underlying construct.

When products are expected to exhibit opposing attribute profiles, examining attribute-
level differences individually through the Rasch bias/interaction plots can reveal
contrasts that become obscured when scores are collapsed into a single measure. As
shown in Figure E 2, these plots illustrate the opposing attribute intensities and
highlight product differences evident in the rating patterns that are not visible in the

aggregated scores.

Finally, while the convergence analysis shows that increasing panel size could not
compensate for a lack of training in this study, MFRM may still offer value for trained
panels by accounting for residual severity differences and potentially reducing the

amount of recalibration needed to maintain panel alignment.

5.4 Limitations of the study

Panel performance constraints

Although untrained assessors are expected to exhibit inconsistencies due to
factors such as lack of expertise, adaptation, or poor sensitivity, the poor scoring
repeatability observed in many of them may have been influenced by carryover
effects. Unlike the trained panel, the untrained assessors completed all evaluations
in a single session without specified time gaps between replicate evaluations,

which likely contributed to fatigue or reduced focus.

Motivation may have been an additional contributing factor. The absence of
incentives could have lowered engagement, whereas reward systems and feedback
are known to enhance assessor enthusiasm by reinforcing the perceived value of

their contribution (Findlay et al., 2007; Kemp et al., 2018; Meilgaard et al., 2025).

Collectively, these factors may have hindered the untrained assessors’ ability to
generate reliable and consistent data, particularly in contrast to the trained panel,

who were accustomed to the demands and importance of sensory evaluation tasks.
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Lack of scale-use training

A further limitation affecting both panels was the absence of training on scale-use
which could have contributed to the product interactions observed within the
trained panel and the more erratic ratings seen among the untrained assessors,
alongside possible differences in sensory sensitivity and attribute interpretation.
Although the Rasch model can statistically accommodate individual differences in

severity, where some assessors consistently rate higher or lower than others

(Linacre, 1994; Myford & Wolfe, 2004; Bond et al., 2020), training on scale
interpretation and calibration could have reduced these variations and improved
measurement precision. This represents a readily addressable limitation for future
studies, where targeted training on how to apply the scale could enhance assessor
consistency and reduce measurement error without requiring all assessors to

adoptidentical rating patterns.

Lack of instrumental analysis to verify product characteristics

Another limitation was the absence of instrumental analysis to objectively quantify
sample composition. Sensory data indicated that Brand B was rated highestin Milky
flavour and lowest in Orange flavour, consistent with its formulation (the only
product containing milk chocolate crumbs and full cream milk, and the only one
without added orange flavouring). However, without analytical tests to verify actual
concentrations of dairy or citrus-related compounds across the three sampled
brands, it is not possible to confirm whether these perceived attribute intensities
reflect true chemical differences or perceptual interactions among ingredients.
Incorporating instrumental analysis (e.g., GC-MS for volatile compounds or HPLC
for non-volatile flavour components) in future work would strengthen interpretation

of sensory attribute patterns.

Sample choice constraints

Finally, while choosing a sample with no orange flavouring to compare against other
chocolate-orange spreads was intentional, the opposing attribute intensities it
produced were not anticipated to cause cancellation effects in the MFRM overall
difference estimation. This limited the possibility of making meaningful

comparisons with the Jaffa cakes study (Chapter 4), in which products were
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deliberately selected to share similar sensory attributes and thereby support cross-

study evaluation of MFRM performance across different food matrices.

While these limitations influenced panel performance and constrained cross-study
comparisons, they also clarify where methodological refinements can enhance the

robustness of future sensory research using the Many-Facet Rasch Model (MFRM).

5.5 Significance of the study

In this study, the conventional ANOVA approach to evaluating assessor and panel
performance provided useful insights into the discriminatory abilities of the
assessors and the panels. Typically, the discriminatory ability of assessors is
evaluated based on whether they detect differences in the key attributes identified by
the panel, with those failing to do so selected for retraining. However, this study
revealed some limitations in that approach. The trained panel ANOVA results showed
that four out of the five sensory attributes (except Saltiness) exhibited significant
differences between products (p<0.01), identifying them as key attributes. While
Orange flavour and Sweetness showed significant interaction effects, which may
affect their reliability. As a result, Milky flavour and Cocoa flavour were identified as
more stable key attributes. However, individual ANOVAs revealed that no assessors
significantly discriminated between products on Milky flavour, and only two out of
seven did so for Cocoa flavour (a = 0.05), indicating a misalighment between panel-
level and individual-level findings. Closer examination of the raw data using the trellis
and interaction plots confirmed this inconsistency, emphasising the importance of
closely interrogating raw data when evaluating panel performance. As previous
research has noted, the ANOVA alone does not provide all relevant diagnostic

information (Tomic et al., 2007; Stone et al., 2012; Ho, 2015; Raithatha & Rogers,

2018). This disconnect between the panel and individual results can limit its utility
for selecting key attributes, especially in situations where discriminatory attributes
are not known a priori, thereby reducing the efficiency of the method for guiding

assessor selection and training.

In contrast, Rasch analysis provided more diagnostic and interpretable insights into
panel performance without requiring multiple statistical tests. By first adjusting for

assessor severity, it removed a major source of individual variability in sensory data
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(i.e., scale level effects), so the remaining variance more accurately reflected true
product differences provided that assessors rated the attributes consistently, as
was the case for the trained panel. Interaction effects from other modelled
variables (i.e. Repetition and Sample facets) and crossover variations were
captured as measurement errors, which were reflected in the residual diagnostics
indices (OUTFIT Mnsq). Consequently, the OUTFIT Mnsq rankings for each attribute
were primarily influenced by variations in rating patterns across samples. This
approach allowed for a more precise identification of key attributes and proves
potentially beneficial in situations where there is no prior knowledge of expected
differences. This clarity was further enhanced when Rasch outputs were combined
with response distribution and interaction plots, which revealed additionalinsights,
such as where loss of discrimination by an attribute was a result of crossover

interactions.

Additionally, correlation analysis of the standardised residuals allowed for the
identification of locally dependent attributes, those whose ratings were statistically
influenced by other attributes. This provided valuable diagnhostic insight into subtle
product nuances that might otherwise go unnoticed. In practice, this information
can guide the combination or redefinition of attributes for clearer, more reliable
sensory profiling. In this study, the addition of milk chocolate not only influenced
perceptions of milky and cocoa flavours but also altered the perceived Sweetness.
Sweetness and Milky flavour were flagged as locally dependent attributes across
the trained panel, the full untrained panel, and the selected subset of untrained
assessors, although the degree of dependence varied across the different panels.
Recognising and accounting for local dependence ensures that the measures
reflect meaningful sensory differences, rather than overlapping perceptions that

could overstate the distinctiveness of individual attributes.

At the individual performance level, after adjusting for differences in assessor
severity (as discussed in section 3.1.2), Rasch diagnostics (OUTFIT Mnsq and
SR/ROR correlation), along with distribution plots of the raw data, revealed
assessors who rated the samples in an order that differed from the rest. These
diagnostics also highlighted rating effects such as restriction of range, central

tendency, inconsistent scoring, and extreme category usage. While the Rasch
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model clearly offers advantages for identifying assessor bias, rating effects, and
local dependence, aspects that ANOVA does not easily detect, it does not replace

the ANOVA.

ANOVA provides a familiar framework for statistical significance testing but
assumes homogeneity of scale use, and does not account for individual rating
behaviours, which can obscure true product differences or lead to inefficient
assessor selection if discriminatory attributes are not known in advance. In
contrast, the Rasch model adjusts for these individual differences and provides
additional diagnostic tools that improve data quality and interpretation. By
combining Rasch diagnostics with insights from individual ANOVA results, which
identified assessors capable of discriminating between samples, better-performing

assessors could be selected from an untrained panel.

Just like an X-ray that detects problems early and precisely, the Rasch model
enables panel leaders to pinpoint where there are issues in assessor performance,
allowing potential concerns to be flagged before more statistical analysis is
required. While mean-based interaction plots can also reveal inconsistencies and
crossover patterns among assessors, the Rasch model provides a quantitative and
model-based assessment of fit, estimating how well each assessor’s ratings align
with the expected response pattern. This complements the descriptive information
provided by the plots. Tools such as Wright maps and OUTFIT Mnsq plots provide a
rapid, visual overview of individual assessor behaviour, and how consistently
attributes are rated across the panel. This could be useful for identifying individuals
from untrained panels with potential for recruitment into expert panels, or for
detecting subtle declines in performance or panel drift within trained panels.
Additionally, it highlights attributes that may require further training to ensure
assessors rate them consistently and accurately. It also supports decisions on
whether certain attributes are worth further measurement, or if they should be

reconsidered as redundant and removed from the panel evaluation.

It should be noted, however, that Rasch fit values are relative to the response
pattern within the panel, not to an ideal standard. Therefore, acceptable fit in a
poor-quality panel does not mean good performance. In panels where overall

performance is inconsistent like in untrained panels, acceptable fit values may be
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misleading because the model is benchmarking them against a weak reference
group. Therefore, fit statistics should be interpreted alongside raw datavisualisations
and other performance indicators to ensure accurate assessment of assessor
performance. In line with earlier observations on the importance of always

examining the raw data, Myford and Wolfe (2004) similarly advise that researchers

inspect the vectors of observed ratings for any overfitting or misfitting assessors
before concluding that apparent rater effects, such as central tendency or severity,

represent genuine behavioural differences rather than artefacts of the data.

However, the true strength of the Rasch-based approach lies in its ability to
complement, rather than replace, traditional sensory quality control methods.
When integrated with ANOVAs, raw data distribution plots and interaction plots, the
Rasch model enhances the analytical capabilities of sensory analysts, reducing the
need for extensive statistical testing and resource use. This combination offers a
more comprehensive, multi-layered understanding of panel performance, merging

intuitive visual insights with robust statistical analysis and individual diagnostics.

Ultimately, while the Rasch model adjusts for systematic differences in assessor
severity, allowing for individual rating tendencies rather than requiring unanimous

panel ratings, (Linacre, 1994), it cannot compensate for fundamental issues such

as poor attribute understanding, low sensory sensitivity, or erratic scale use. As
noted in the limitations, none of the panels received formal training on scale use,
which likely contributed to the variation observed within the trained panel and the
inconsistency seen among the untrained assessors, in addition to possible
differences in sensory sensitivity and attribute interpretation. Despite the limited
overall reliability of the panels, the Rasch diagnostics still identified differences in
assessor severity and fit, consistent with the expectation that individual differences
in scale use (e.g., severity, range restriction) introduce additional variability.
Therefore, these results support the conclusion that although Rasch analysis can
adjust for level effects statistically, adequate training remains essential to ensure

consistent attribute interpretation and rating precision.

The Rasch model was primarily used as a diagnostic tool to identify individual rating
behaviours and highlight areas for improvement; however, future work could use

theseindividual standards to track each assessor’s consistency over time, ensuring
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that stable individual patterns are retained while problematic drift or bias is
identified early. Complementary to conventional methods, Chapters 4 and 5 have
demonstrated how the Many-Facet Rasch Model (MFRM) provides an efficient
diagnostic approach for examining panel performance, delivering deeper insights
into product differences and the attributes perceived to drive those differences. The
Rasch-based approach supports high standards in sensory quality control by
statistically adjusting for individual scale-level effects (i.e., consistent severity or
leniency differences among assessors), which could reduce the reliance on intensive
training to force all assessors to use the scale identically. By modelling each
assessor’s severity and consistency, the Rasch model transforms raw scores to a
common interval scale, ensuring that valid product comparisons can still be made
even when assessors apply their own consistent standards. This offers the potential
for significant cost savings in both time and resources, improving overall efficiency in

sensory quality control without compromising the quality of insights gained.

Building on the preceding discussion, the next chapter examines the potential of the
MFRM to strengthen sensory quality diagnosis by integrating product evaluation and
assessor performance within a unified analytical framework. While this chapter
highlighted that Rasch fit values (i.e., OUTFIT Mnsq) are relative to the response
patterns within a panel and must therefore be interpreted cautiously, the next study
explores how these diagnostics can still support practical decision-making in
sensory quality programs when used alongside raw data and other performance

indicators.

Specifically, the model is applied to sensory data from an untrained panel assessing
a different product with a broader set of sensory attributes. The analysis investigates
whether identifying assessors who show more stable response patterns relative to
their group (i.e., acceptable fit within that context) can improve panel discrimination

and reliability.

This exploratory work does not treat fit as an absolute measure of assessor
competence but instead examines whether Rasch-based diagnostics, applied
critically, can inform assessor selection and recruitment in sensory quality control

settings.
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Chapter 6

A Unified Rasch Approach to Sensory Difference Testing and

Quality Control: A Validation Study

6.1 Overview

To evaluate the robustness and transferability of the Rasch-based approach for
sensory difference testing, both the assessment of overall product differences and
the monitoring of assessor performance were applied in a new context, with the aim
of validating the framework as a unified tool. As demonstrated in previous chapters,
the Many-Facet Rasch Model (MFRM) allows for simultaneous evaluation of both
product differences and assessor performance within the same analysis, providing

deeper insights on a granular level.

In this chapter, the MFRM is used to assess product differences and assessor
performance, while Principal Component Analysis of Residuals (PCAR) is employed
to uncover patterns and relationships between sensory attributes that may be
overlooked by conventional methods. The results are interpreted with practical
implications for sensory quality control, including confirming product differences
without confounding from individual differences in scale use, evaluating assessor
reliability, identifying outlying assessor behaviour, selecting better-performing
assessors, guiding training needs, determining the contribution of attributes to

product differences, and assessing the utility versus redundancy of attributes.

The chapter also addresses key limitations from Chapter 4, where the choice of
attributes used in the Rasch-based TIM approach was not fully representative of the
perceptible attributes in the products as perceived in a DFC test. To resolve this, a
preliminary sensory session was conducted to select sensory attributes, as is
standard practice with attribute difference testing in sensory quality control.
Although untrained panels were still used, the participant information document
and preliminary instructions (Appendix C.3) were designed to emphasise the need
for a high level of commitment, aiming to address the limitation from Chapter 5,

where the untrained panel seemed less motivated compared to the trained panel.

This study used DFC and attribute intensity ratings on tomato soup samples.
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6.1.1 Objectives

The aim of the study was to evaluate the robustness and transferability of the

Rasch-based framework for sensory difference testing and quality control, applying

it to both the measurement of overall product differences and monitoring assessor

performance, all within the same analysis, but in a new context, while also

addressing limitations identified in the previous studies.

The specific objectives were:

1.

To identify perceivable attributes in the tomato soup samples for use in the

attribute intensity rating (AR) test of the main study.

To evaluate the overall difference between three tomato soup samples using the

DFC test.

To assess the intensities of identified sensory attributes (from objective 1) in the

tomato soup samples using the AR test.

To estimate the Total Intensity Measures (TIM) by combining the intensity ratings

from the identified attributes using the MFRM.

To compare the overall difference results from the DFC ratings with the TIM

derived from the combined attributes, using pairwise comparison tests.

To assess the performance of the untrained panel in rating the tomato soup
samples and select the top-performing assessors based on Rasch model

residual fit statistics (OUTFIT Mnsq).

To investigate assessor rating behaviour in relation to Rasch model residual fit

statistics (OUTFIT Mnsq).

To identify the key attributes responsible for the differences between the

tomato soup samples.

6.1.2 Study highlights

Significant differences were observed between the tomato soup samples and

the control sample.
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= The MFRM Wright map provided a clear visual summary of the dataset, showing
assessor severity levels and identifying the attributes most strongly perceived

across the samples.

= PCAR revealed response dependencies between attributes, including both
expected correlations (e.g., Rich aroma and Savoury flavour) and less

conventional ones (e.g., Herby appearance and Viscous appearance).

= Rasch group-level statistics revealed inconsistencies in the application of the

rating scale, both by the full panel and the selected assessors.

=  QUTFIT Mnsq ranges for assessors showed specific rating effects, which were

aligned with the pattern of the raw rating scores observed in the trellis plots.

= Key and redundant attributes were identified through the OUTFIT Mnsq, with
Creamy flavour, Thick mouthfeel and Viscous appearance driving the most
significant differences, while Cooked tomato characteristics and Colour

intensity were found to be the most redundant.

= Creamy flavour and Rich aroma were among the most challenging attributes for

the assessors to evaluate, as indicated by the OUTFIT Mnsq.

6.2 Sensory study: materials and methods

Sensory data were from the dataset referenced here as (Ariakpomu et al., 2025a).

6.2.1 Samples

Tomato soup was selected for this study due to its versatility and widespread
familiarity, making it appealing for assessors to evaluate. Its ease of modification
also allowed for the creation of samples with varied sensory characteristics and
attribute intensities, enabling clear hypotheses about expected differences. Two
types of ready-made canned tomato soup, “cream of tomato soup” and “cream of
tomato and basil soup”, were used as the base, and the three final samples were
prepared by modifying these bases with additional ingredients. This modification
was also important to mask the original flavours of the base products, reducing the
likelihood of bias from assessors who might have easily recognised them, as
previously observed with the Jaffa cakes study in Chapter 4 (pg. 86). The cream of

tomato and basil soup was used in its original form as the reference sample.
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To create the second sample, double cream and dried chopped basil leaves were
added to a cream of tomato soup base, aiming to increase its creamy flavour and
thickness while aligning it more closely with the basil flavour of the reference
sample. For the third sample, the cream of tomato and basil soup base was
modified with the addition of passata and garlic granules to enhance its aromatic
and savoury characteristics relative to the reference. Consequently, the hypothesis
was that Sample 2 would be perceived as the thickest and most intense in creamy
flavour while having a similar herby flavour to the reference sample, and Sample 3
would have stronger savoury and aromatic notes compared to sample 2 and the
reference sample. These expected sensory differences formed the basis for the

product comparisons.

All soup bases, along with the additional ingredients (passata, garlic granules, and
dried chopped basil leaves), were purchased from a UK retail store and stored at room
temperature (20+3°C). The double cream, also purchased from the same store, was
stored separately in the refrigerator at 4°C until sample preparation. The ingredients
were then incorporated into their respective soup bases in specified proportions, as
outlined in Table B 3. The soups were heated in saucepans over medium heat on a
stove top, with occasional stirring, until they began to gently bubble. After heating, they
were allowed to cool to a serving temperature of approximately 70°C before being
transferred to insulated flasks, accounting for potential heat loss during serving. The
final samples were served to assessors within a temperature range of 60-67°C
throughout the course of the testing sessions each day, ensuring realistic consumption

conditions and minimising unexpected bias.

6.2.2 Participants

Ethical approval for the sensory study was granted by the Business, Environment
and Social Sciences Faculty Research Ethics Committee at the University of Leeds.
Participants (n=54) all residents of Leeds, and the majority being staff or students
at the University, were recruited through emails, poster advertisements and
personal referrals. Participants were eligible if they were aged between 18 and 65
years, did not have any chronic health conditions, were not allergic or intolerant to
the ingredients in the tomato soup samples or the palate cleanser, were not taking

any routine medication (with the exception of contraceptives), were not following
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any special or restricted diets, were not pregnant or lactating, and were available to
attend two 1-hour sensory testing sessions within one month, with a minimum

interval of four days between sessions.

Each participant was provided with detailed information about the study
requirements, including data protection and the data sharing disclaimer. Informed
consent was obtained through signed consent forms, completed both at the point
of enrolment and again in hard copy upon attendance at the first study session, to
ensure participants fully understood the study requirements and were willing to
proceed. Detailed instructions for the sensory test procedure were sent within three
days of the scheduled session, with reminders sent at 1 hour and at 15 minutes
before the session. These reminders were programmed as in-person Microsoft
Teams meetings, which were automatically added to participants’ calendars. The
decision to use Teams was made to improve attendance and punctuality, as the
previous study had experienced issues with scheduled participants failing to
attend, arriving late, or missing the second part of the test. As a result, all 54

participants in this study attended both test sessions and were generally punctual.

The final untrained panel consisted of 35 females (65%) and 19 males (35%), aged
between 18 and 54 years. They represented various ethnicities: 16 Asian (30%), 10
Black (18%), 17 White (31%), 3 Mixed (6%), and 8 belonging to other ethnic groups
(15%). All assessors, except one, reported consuming soup products at least a few
times a year. 40 participants (74%) consumed tomato soup at least a few times
annually, and 30 (55%) had previous experience participating in sensory evaluation

tests.

Asinthe previous study, participants selected two convenient test datesvia an online

form (Jotform Inc, 2023). Upon completion of both sessions, each assessor received

a £20 Flexi Gift voucher (GiftPay, 2024) as an incentive for their participation.

6.2.3 Study design

As in Chapter 4, a Randomised Complete Block Designh (RCBD) and Latin Square
were used to account for order effects and other potential sources of variation in
the sensory experiments. Each assessor participated in two separate sessions: one

for the DFC test and another for the AR test, with a minimum gap of four days
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between the sessions. To minimise expectation biases (Meilgaard et al., 2015), half
of the participants completed the AR test first, while the other half started with the
DFC test. Additionally, to reduce variations due to the time of day, participants were
only able to select either two morning sessions or two afternoon sessions for both
tests, with the appointment booking form automatically ensuring this balance.
Attendance was carefully managed to ensure a balance between the time of day

and the order in which participants completed the tests.

In each test session, three samples were presented. For the AR test, the samples
were presented monadically (one at a time), while for the DFC test, the samples
were presented in pairs, consisting of a test sample and a reference sample. Each
sample was evaluated three times, resulting in a total of nine evaluations for the AR
test and eighteen evaluations for the DFC test. All samples were served warm, with
temperatures ranging from 60 to 67°C, in 30ml clear plastic shot cups labelled with

random three-digit codes. The reference sample for the DFC test was labelled “R”.

A limitation of the study discussed in Chapter 4 was that the attributes used for the
AR test, which are combined to estimate the latent variable (TIM), did not fully
represent the perceivable differences in the product, as no prior testing was
conducted to select the relevant attributes. This oversight may have affected the
results of the comparison between the DFC and AR tests. The DFC test assesses
only overall product differences, meaning that attributes notincluded in the AR test
could have still been perceived in the DFC test, potentially influencing the

conclusions drawn from the comparison.
In this study, this limitation was addressed by conducting a preliminary evaluation

session to identify the perceivable attributes across the samples of interest.

6.2.4 Attributes selection

Following the methods described by Lee et al. (2021), Giacalone and Hedelund

(2016), and Zeppa et al. (2012) with slight modifications, sensory descriptors were

generated by untrained assessors (n=7), three of whom had experience with
descriptive analysis. The assessors were presented with the three tomato soup

samples (described in section 6.2.1), one at a time. For each sample, they were
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asked to describe the sensory characteristics perceived, and to rate how well each

sample exhibited those characteristics on a scale from 0 (not at all) to 5 (very well).

A total of 61 descriptors, both comprehensive and specific, were generated by the 7

assessors, with some descriptors occurring more frequently across the group. A final

list of 18 attributes was generated, across 5 sensory modalities based on how often

they were mentioned. Similar descriptors were consolidated into common terms. The

selected attributes, along with their corresponding definitions, are outlined below.

Table 6.1 List of 18 sensory attributes across 5 modalities used for the AR test,
including definitions

Attributes

Definitions

Mouthfeel Aroma Appearance

Flavour

Taste

Glossy appearance

Herby appearance

Colour intensity

Viscous appearance

Pungent aroma

Rich aroma

Cooked tomato aroma

Smooth mouthfeel

Homogeneous mouthfeel

Thick mouthfeel

Creamy flavour
Savoury flavour
Herbal flavour

Cooked tomato flavour

Sweet taste
Sour taste
Salty taste
Aftertaste

Degree of shine or reflected
(Tomaschunas et al., 2013).

light from the surface

The presence of small, chopped pieces of herbs.

Intensity or strength of colour from light to dark (Meilgaard
et al., 2025).

Thick and slow-moving when you tilt the container.

Sharp, physically penetrating sensation in the nasal cavity.

Combination of multiple ingredients creating a deep and
full aroma. E.g. well-seasoned food.

Typical smell of cooked tomato.

Feels velvety or silky in the mouth, not rough or grainy (CLiff
etal., 2013).

Feels the same way throughout.

Feels dense or heavy in the mouth.

Flavour associated with dairy products. E.g. cream, cheese.
Rich, spicy flavour associated with vegetable or meat broth.

Underlying flavour of dried herbs. E.g. basil, oregano.

Typical cooked tomato flavour.

Typical sweet taste. E.g. sugar/sucrose.
Sharp, tangy or tart taste. E.g. citric acid in lemons.
Typical salt flavour. E.g. common salt / NaCl or seawater.

Residual taste in mouth after ingestion (Mitchell et al., 2011).
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6.2.5 Sensory evaluation procedures

The sensory evaluation procedures used in this study were similar to those
described in Chapter 4 (as described in the following paragraphs), with
adjustments made to suit the specific product type and to address previously
identified limitations. To enhance time efficiency and ensure assessors were
familiar with the process, a preview of the test instructions was sent to them ahead
of their scheduled sessions. This allowed them to review the procedures ahead of
time and arrive with a clear understanding of what to expect. In the previous study,
where instructions were provided only on the day of testing, some assessors
skimmed or skipped them entirely, which impacted the consistency of the
evaluations. Copies of the preview instructions and the questionnaires used in the

study are included in Appendix C.3 and C.4, respectively.

For the DFC test, each assessor received 10ml of each sample and was informed
that some coded test samples might be identical to the reference. They were
instructed to drink directly from the sample cups and consume the entire contents
at once, while assessing the overall sensory experience. This instruction was
necessary to ensure that all assessors evaluated each sample fully, ensuring
consistency in the sensory experience when comparing the test and reference
samples. They were directed to first taste the sample labelled "R", then taste the
coded test sample, and rate the size of difference perceived between them, using a
unidirectional labelled 7-point categorical difference scale (0-6), where 0 = no
difference, 1 = barely detectable difference, 2 = slight difference, 3 = moderate

difference, 4 = large difference, 5 =very large difference, and 6 = extremely different.

After completing the third replicate evaluation, assessors were asked to reflect on
the products they had evaluated and, on the following page, identify the reasons for
any differences perceived. This section included yes/no questions listing all the
attributes used in the AR test, along with their corresponding definitions, and asked
assessors to indicate which attributes they perceived to be different between any
of the samples, and the control sample (R). An additional comment section was
included for assessors to note any other perceived differences not captured by the
listed attributes. This addition was necessary to confirm whether the AR test

captured all the relevant sensory attributes identified during the DFC test.
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For the AR test, assessors rated the perceived intensities of the eighteen attributes
listed in Table 6.1 above. Specific instructions and definitions for each attribute
were provided, outlining the exact procedure in which the samples should be
evaluated across the five modalities. These instructions were summarised on the
first page of the questionnaire for the first replicate evaluation (see Figure C 11).
Specifically, assessors were instructed to first evaluate the appearance attributes,
followed by the aroma attributes. For the oral evaluation, they were asked to take
three sips of the sample: the first sip was for examining mouthfeel, the second for
assessing flavour attributes, and the final sip for taste attributes. Each assessor
was presented with 25ml of each sample and asked to rate the intensity of the
attributes based on the instructions provided (outlined below with the
corresponding attributes). Attribute definitions were included in brackets for each

attribute within the questionnaire.

1. Appearance: Pick up the sample, examine it by looking directly into the cup and
rate how strong the following appearance attributes are: glossy, herby, colour

intensity and viscous appearance.

2. Aroma: Smell the sample and rate how strong the following aroma attributes

are: pungent, cooked tomato, and rich aroma.

These appearance and aroma attributes were listed on the same page of the
questionnaire. On the following page, the mouthfeel, flavour, and taste

attributes were presented, with the evaluation instructions as follows:

3. Mouthfeel: Take the first sip of the sample, and before swallowing, pay
attention to how it feels in your mouth. While you assess the mouthfeel, rate
how strong the following attributes are: smooth, homogenous, and thick

mouthfeel.

4. Flavour: Take another sip, and before swallowing, focus on the different
flavours noticed. While assessing the flavours, rate how strong the following
attributes are: herbal, creamy, savoury, and cooked tomato flavour. The order of
the flavour attributes was randomised for each sample and assessor, as

suggested by (Ares et al., 2014) attempting to reduce errors of habituation,

logical error and halo effect (Lawless & Heymann, 2010; Meilgaard et al., 2025).
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5. Taste: take the last sip and move it around your tongue to fully experience the
taste. While assessing the sample, rate how strong the following attributes are:

sweet, sour, and salty taste, as well as aftertaste.

The same 8-point categorical intensity scale from the previous studies was used,

ranging from 0 to 7 with labels adapted from the Labelled Magnitude Scale (LMS)

(Green et al., 1996). The intensity labels were 0 = none, 1 = barely detectable, 2 =
weak, 3=moderate, 4 = strong, 5 =very strong, 6 = extremely strong, and 7 = strongest

imaginable oral sensation.

Assessors were provided with a cup of water and plain crackers to cleanse their
palate between sample evaluations. A mandatory interval was observed between
each sample; 15 seconds for the DFC test and 30 seconds for the AR test, to ensure
adequate palate cleansing. To minimise sensory fatigue and memory bias,

assessors were also given 5-minute breaks between replicates for both tests.

6.2.6 Data analysis

Rasch and statistical analyses were conducted following the procedures described
in section 3.3. As in the previous studies, the Attribute Rating (AR) data were fitted
to a Many-Facet Rasch Model (MFRM) with four facets: Assessors, Samples,
Repetition, and Attributes, as detailed below (TIM). To enable comparison between
the two approaches, a separate model was employed for the DFC data (DFCM).
Unlike the previous study, where three separate datasets were created, one for
each replicate evaluation, and separate models were fitted, the TIM and DFCM
analyses in this study did not involve splitting the data. Instead, all replicate
evaluations were retained within the datasets, and Repetition was explicitly
included as a facet in both models. This decision was based on prior findings that
replicate evaluations enhance measurement reliability and are essential for

monitoring assessor performance.

TIM:In (Ppurik /Pmnrik-1) = Bm — On — Pr — 6; — Ty
...Equation 4.1

DFCM: In (Ppurk /Pmnrk-1) = Bm — On — Pr — Tk
...Equation 4.3
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Where: in the DFC models (DFCM), the §; parameter was not included due to the

absence of attributes in the analysis.

Pnrik= probability that sample (n) is rated (k) for a sensory attribute (i) by

assessor (m) in replicate session (r)

Pnrik—1= probability that sample (n) is rated (k — 1) for sensory attribute (i) by

assessor (m) in replicate session (r)

b= degree of leniency or severity of assessor (m) in rating attribute intensities
0,= degree of difference in the total intensity measure for sample (n)

p, = degree of difference between ratings of samples in replicate session (r)

0; = the average degree of intensity of sensory attribute (i) across all samples

T}, = points on the latent variable continuum where the samples are equally likely to

be rated between scale category (k) and category (k — 1) .

6.2.6.1 Selection of assessors based on model fit (TIM)

A subset of assessors was identified based on their TIM model fit statistics.
Assessors whose OUTFIT Mnsqg values fell within the acceptable fit range
(discussed laterin section 6.3.5), were classified as Selected assessors. A separate
TIM model was then fitted using only this subset to determine whether panel

discrimination and diagnostic clarity improved compared with the full panel.

6.2.6.2 Statistical analyses

Statistical analyses were conducted for the DFC raw scores and all Rasch models
(including the DFC Rasch measures and TIM). The TIM analysis was performed for
both the full set of assessors and the selected assessors, and the results were

compared in terms of discriminatory ability and diagnostic detail.

6.3 Results and Discussion

6.3.1 Fit of data to the Many-Facet Rasch Model (MFRM)

The results of the global model fit, Assessor facet fit statistics and response

dependency checks are presented in Table 6.2.
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Table 6.2 Summary of Rasch model fit statistics and response dependency results

for DFC and TIM models.

TIM DFCM

Criteria / Assessors Al Selected Al

(n=54) (n=17) (n=54)
Global fit (StRes)’
<5% =2 4.6 (403) 4.1 (113) 3.7(18)
<1%=3 0.2 (20) 0.0(0) 0.6 (3)
Total 8748 2754 486
Assessor Fit
OUTFIT Mnsq? (N, =162)
% Fit (0.78-1.22) 31(17) 100 (17) —3
%Overfit (= 0.78) 39 (21) 0(0) -
% Underfit (21.22) 28 (15) 0(0) -
%Extreme Misfit (>2.0) 2(1) 0(0) -
Unidimensionality4
1'contrast eigenvalue (<2) 2.45 2.69 —
LID (attributes)®
Corr. of StRes (<0.3)
Rich Aroma - Savoury Flavour NA® 0.48 -
Smooth Mouthfeel - Homogenous 0.47 0.45 .
Mouthfeel
Viscous Appearance - Thick Mouthfeel 0.39 0.42 -
Pungent Aroma - Rich Aroma NA 0.30 -
Herby Appearance - Viscous Appearance NA 0.28 -
Sour Taste - Salty Taste 0.25 NA —
Cooked Tomato Aroma - Rich Aroma 0.24 NA -

1 Percentage (humber of observations in brackets) of absolute standardised residuals (StRes).

2 Qutlier-sensitive measure of unweighted mean squares indicating deviation of the Assessor facet estimates from
Rasch model predictions. The acceptable fit range (0.78-1.22).

3

— indicates that assessor-performance diagnostics and response-dependency checks were not applicable for the

DFCM, as this model was used only to compare overall difference results with the TIM-derived measure.

4 Eigenvalue of the unexplained variance in the first contrast, not accounted for by the Rasch model, in PCAR.

5 Local Item Dependency (LID) examined through the correlation of standardised residuals (Corr. of StRes) between
attributes, with values > 0.3 indicating that items (attributes) are dependent.

6 NA =Not applicable meaning attributes were not flagged as potentially dependent for the panel.
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To recap, an acceptable global model fit of the data is when about 5% or less of
absolute standardised residuals is =2, and about 1% or less is =3 (Linacre, 2022;
Eckes, 2023). Both the TIM and DFCM models showed an acceptable global fit,
suggesting that overall, the data in each model alighs with the assumptions of the

Rasch model, with no major inconsistencies likely to distort measurement.

Only the Assessorfacetfit statistics for the TIM models (Alland Selected assessors)
are presented, as all other facets demonstrated 100% fit in both models. Assessor
performance was not evaluated for the DFCM because this model was used solely
to compare the overall difference measure with that obtained from TIM. Therefore,
assessor-level diagnostics apply only to the TIM models. The DFCM includes only

one item (DFC), so attribute response-dependency checks are also not applicable.

The acceptable OUTFIT Mnsq range for assessors was calculated* as 0.78 - 1.22,
based on a total of 162 responses per assessor. The results showed that more than
half of the assessors in the full panel, exhibited response patterns that deviated
from the expectations of the Rasch model. As a result, a subset of assessors with
OUTFIT Mnsq values within the acceptable range was selected, and their data were
fitted to a separate Rasch model (labelled Selected on Table 6.2), which showed a

100 percent fit for the Assessor facet.

Unidimensionality and Local Item Dependence (LID) for the TIM model were
examined by Principal Component Analysis of Residuals (PCAR). Unidimensionality
is confirmed when the eigenvalue of the unexplained variance in the first contrastis
<2, and Local item dependence (LID) is identified when the residual correlation

between two attributes exceeds 0.3 (Ramp et al., 2009; Christensen et al., 2017).

The results in Table 6.2. reveal that for both the full and selected panels, the
unexplained variance in the 1t contrast of the Rasch Principal Component Analysis
of Residuals (PCAR) had eigenvalues of 2.45 and 2.69, respectively. This might
suggest the presence of a minor secondary dimension, roughly equivalent to the

strength of 2-3 items.

*142 }%(Wu & Adams, 2013; Eckes, 2023), where Nr (humber of responses) for each assessor is 162.
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Examination of standardised residual correlations revealed that several pairs of
attributes were locally dependent, meaning that their co-variation exceeded what

would be expected by chance (Linacre, 2024a). Most correlations above the

conventional 0.3 threshold indicate systematic relationships that warrant further

investigation.

Specifically, four attribute pairs exhibited strong residual correlations: Smooth
Mouthfeel and Homogeneous Mouthfeel (0.47 and 0.45), and Viscous Appearance
and Thick Mouthfeel (0.39 and 0.42), for the full and selected panels, respectively.
In the selected panel, additional dependencies emerged between Rich Aroma and
Savoury Flavour (0.48), and Pungent Aroma and Rich Aroma (0.30). These
dependencies are not considered problematic, especially since the latent variable
being measured is the overall difference between samples. Instead, they provide
useful information about how certain attributes tend to vary together across
samples. These patterns reflect genuine differences among the samples, rather
than distortions in the measurement model and may arise from attributes assessing
the same physical property through different senses (e.g., viscosity) or from cross-

modal sensory interaction (e.g., aroma-flavour perception).

For example, if a tomato soup sample is rated as having a more Viscous
Appearance, it is also likely to be rated as having a Thick Mouthfeel. The same
pattern is seen between Rich Aroma and Savoury Flavour, and between Smooth
Mouthfeel and Homogeneous Mouthfeel. Notably, the selected assessors seemed
more aware of the connection between Rich Aroma and Savoury Flavour,

suggesting a higher level of sensitivity or consistency.

Attribute pairs below the 0.3 threshold, while not indicating local dependency, still
provide useful diagnostic insights. Herby Appearance and Viscous Appearance
showed a correlation of 0.28 for the selected assessors, indicating a potential link
between these attributes. This may be explained by the sample preparation (see
Table B 3). Sample A was prepared using a cream of tomato soup base, with extra
cream, and dried chopped basil, added during heating, to align more closely with
the other samples, which were made from a cream of tomato and basil soup.
However, because the basilin Sample Awas added only while heating shortly before

serving, it was likely less integrated into the soup, compared to the basilin the other
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samples, which had been incorporated during manufacturing and packaged for
shelf stability. This may have affected the appearance of Sample A, contributing to
higher ratings for Herby Appearance, and likely explains its flagged correlation with

Viscous Appearance.

Similarly, for the full panel, weak correlations were found between Sour Taste and Salty
Taste (0.25), and between Cooked Tomato Aroma and Rich Aroma (0.24). Although
these values were below the dependency threshold, they reflect known sensory

interactions. Forinstance, Fabian and Blum (1943) found that sodium chloride (NaCl),

at sub-taste threshold levels, reduced sourness in foods, while Breslin (1996) reported
that acids, (such as the citric acid found in tomatoes), enhanced saltiness perception.
More recent work has shown that salt and sour mixtures can mutually enhance each
other at low intensities and show suppression or no effect at higher intensities (Keast

& Breslin, 2002; Liem et al., 2011). Additionally, the complexity of tomato soup aroma,

influenced by various volatile compounds(Kazeniac & Hall, 2006; Gilsenan, 2010;

Distefano et al., 2022) likely contributed to the perception of rich aroma across

samples. This was likely due to Sample B, which contained added passata and showed

higher Rich Aroma ratings than the other samples (Table E 2).

6.3.2 Rating scale category diagnostics

Following the established guidelines outlined in Table 3.1, deviations in the
interpretation and operational use of the scale, relative to the expectations of the

Rasch model, were empirically investigated.

The category functioning of the rating scales for the attributes rating (AR) intensity and
DFC rating scales are presented in Table 6.3. All essential criteria for measure
accuracy and for description of the tomato soup samples in the study were met.
Specifically, the Rasch-Andrich thresholds were ordered, and no misfitting categories
were observed, as OUTFIT Mnsq values were close to 1.0. This suggests that responses
to attributes in the models, are consistent with estimates of the latent variable

(Tennant & Conaghan, 2007), and meet the model expectations. Additionally, the

observed average measures increased monotonically across the scale categories,

indicating that no scale categories were skipped along the variable (Eckes, 2023).



Table 6.3 Summary of scale category statistics for Intensity and DFC rating scales used in the TIM and DFCM models

Panel Scale Categories Frequency' Average Measure? OUTFIT Mnsq® Rasch Andrich Threshold
Observed Expected Measure Distance?
0 None 149 (2) -0.62 -0.60 1.0
TIM ALl 1 Barely detectable 539 (6) -0.47 -0.50 1.1 -1.84 0.30"
Intensity 2 Weak 1614 (18) -0.37 -0.38 1.0 -1.54 0.80
Rating Scale 3 Moderate 2452 (28) -0.26 -0.25 0.9 -0.74 0.62
8-category 4 Strong 2305 (26) -0.13 -0.11 1.0 -0.12 0.72
01234567 5 Very strong 1231 (14) 0.07 0.05 1.0 0.60 0.64
6 Extremely strong 408 5) 0.25 0.22 1.0 1.24 1.17
7 Strongest imaginable oral sensation 50 (1) 0.36 0.40 1.0 2.41
0 None 27 (1) -0.76 -0.71 0.9
TIM Selected 1 Barely detectable 200(7) -0.64 -0.61 0.9 -2.66 1.17 -
Intensity 2 Weak 505 (18) -0.48 -0.50 1.1 -1.49 0.69 3
Rating Scale 3 Moderate 718 (26) -0.38 -0.39 1.0 -0.80 0.42~
8-category 4 Strong 763 (28) -0.28 -0.26 1.0 -0.38 0.72
01234567 5 Very strong 447 (16) -0.11 -0.13 1.0 0.34 1.18
6 Extremely strong 91 (3) -0.06 0.00 1.1 1.52 1.95
7 Strongest imaginable oral sensation 3 (0)* 0.38 0.12 0.9 3.47
0 No difference 65 (13) -1.20 -1.34 1.2
DFCMAL 4 parely detectable difference 70 (14) -0.94 -0.91 1.0 -1.21 0.47*
DFC 2 Slight difference 75 (15) -0.50 -0.42 1.1 -0.74 0.36
R;_E’;fezzar;e 3 Moderate difference 91 (19) -0.04 0.04 1.2 -0.38 0.59
0123456 4 Large difference 91 (19) 0.32 0.36 1.0 0.21 0.74
5 Very large difference 57 (12) 0.69 0.60 0.7 0.95 0.21*
6 Extremely different 37 (8) 0.98 0.86 0.9 1.16

1 Total count (percentage distribution in brackets) of observations used in each scale category

2 Observed average measure (in log odds unit or logits), and expected average measure if data fits the Rasch model.

3 OUTFIT Mnsq refers to the outlier-sensitive measure of unweighted mean squares and indicates the deviation of responses from predictions of the Rasch model.

4 Absolute difference between Rasch-Andrich thresholds refers to the spacing between adjacent response categories, which is 0.51 and 0.57 for 8 and 7-point category scales, respectively.

" Insufficient minimum advancing distance between Rasch-Andrich thresholds suggesting that adjacent categories are less distinctive than intended (helpful for inference on subsequent studies).
* Each scale category should have at least 10 observations as this is essential for measure stability.
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A criterion for ensuring measure stability (Table 3.1) was not met for the selected
assessors. Measure stability refers to the consistency of a measurement system
when repeated over time in the same context. Specifically, there were only 3
observations in the highest category of the Intensity scale (7 = Strongest imaginable

oral sensation), whereas Linacre (2002b) recommends a minimum of 10

observations per category. Additionally, all models failed to meet the minimum
advancing distance between category thresholds at least once, indicating that
some categories were too close together and less distinctive than intended (Eckes,
2023). The recommended minimum distance is 0.51 and 0.57 for 8 and 7-point

scales (Ho, 2019).

For the TIM full panel, this issue occurred between categories 1 and 2 (barely
detectable and weak, respectively), while for the TIM selected panel, it was between
categories 3 and 4 (moderate and strong)The issue was more pronounced in the
DFCM, effectively showing that only four categories were clearly distinctive: 0- no
difference, 3- moderate difference, 4- large difference, and 5- very large difference,
with category 4 nearly failing to meet the threshold at 0.59. This suggests that
assessors may have had difficulty distinguishing between adjacent categories

possibly due to overlapping interpretations of the scale category descriptors.

This insight is valuable for developing rating scales in sensory quality programs for
specific products, as meeting these criteria improves the reliability of inferences in
future studies. The recommended remedial action is to collapse the affected
adjacent categories before data collection in subsequent studies, provided the
panelis sufficiently consistent. However, no changes to the scale were made in this

study because scale development was beyond the scope.

Conventionally, the rating scales used for attribute evaluation in descriptive
analysis like the QDA are relative scales anchored to the attribute of interest, often

established using reference samples (Meilgaard et al., 2025), rather than the

absolute end-anchors used in the LMS scale (adapted for this study). Absolute
anchors such as “strongest imaginable oral sensation” are interpreted against a

much broader experiential frame of reference, so assessors may reserve the

highest category for exceptionally unusual sensations (Lawless & Heymann, 2010).

Therefore, the limited use of the upper-end categories in this study was not
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surprising and reflects how the MFRM diagnoses the operational use of the scale
based on the observed response patterns. An interesting direction for future
research would be to examine how the MFRM performs with the relative scales

commonly used in descriptive analysis.

6.3.3 Representing the Overall Difference Construct

Wright maps for TIM models for the full and selected panels, as well as the DFCM
model, are presented in Figure 6.1, Figure 6.2, and Figure 6.3 respectively, with all
four facets (Assessors, Samples, Repetition, and Attributes) positively oriented, as
described in previous chapters. The Sample facet was non-centred, while the other
facets were centred at the mean (0 on the logit scale) to serve as a reference point.
Consequently, sample locations were adjusted by considering the severity of
assessors, the average intensity of attributes, and the intensity ratings in repeated
sessions, representing the Assessor, Attribute, and Repetition facets, respectively.
In the Assessor facet, assessors with higher logit values are more lenient, generally
assigning higher scores on the rating scale; inthe Sample facet, samples with higher
logit values have higher Total Intensity Measure (TIM) or, for the DFC measure
(DFCM), are more different from the control; in the Repetition facet, replicate
sessions where higher intensity ratings were assigned on average have higher logit
values; and in the Attribute facet, attributes with higher average intensity ratings

have higher logit values.

6.3.3.1 Total Intensity Measure Representation (Full and Selected Panel)

Figure 6.1 presents an overview of the full panel’s ratings of the overall difference
between the tomato soup samples. Assessors’ severity estimates were distributed
around the mean within a range of approximately -0.6 to 1.0 logits (S.E = 0.07),
indicating meaningful differences in their severity of scale use, after accounting for
measurement error. Assessors 3029 and 3016 emerged as the most lenient, as they

were positioned noticeably higher than the rest of the panel on the map.

The average attribute intensity ratings for each sample were below the mean (0 on
the logit scale), and differences across the three replicated sessions were not
significant. Samples positioned higher on the scale were perceived as having

greater intensity, based on ratings averaged across all attributes.
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Figure 6.1. Wright map for the TIM model representing All Assessors (Assessor IDs 3001 - 3054)
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The latent variable of Overall Difference is reflected in the Total Intensity Measure
(TIM), shown by each sample’s position on the logit scale. Although the three
samples were separated by only 0.3 logits (S.E = 0.02), Rasch separation statistics
will determine whether these differences are statistically meaningful. The TIM
values will also be used in pairwise comparison tests to evaluate the extent of

differences between each sample and the control (discussed in section 6.3.4).

From the Attribute facet and intensity scale, most attributes were, on average, rated
between categories 3-Moderate intensity and category 4-Strong intensity (see Table
E 2). Mouthfeel attributes emerged as the most intense, while taste attributes were
the leastintense. Amongthem, Smooth mouthfeel was the most dominant attribute
perceived by the panelacross all samples. The OUTFIT Mnsq statistics for individual
attributes (discussed laterin the chapter) willindicate which attributes are primarily

driving differences between the samples.

In terms of scale category usage, the intensity scale on the Wright map showed that
attribute ratings were evenly distributed from category 2-Weak to category 5-Very
strong. The increasing width of half-point thresholds beyond these points on both
ends suggests less frequent use of the extreme categories. This pattern is also

reflected in the scale category statistics presented in Table 6.3.

Forthe selected assessors presented in Figure 6.2, the assessors were more tightly
clustered around the mean, within a range of approximately —0.4 and 0.4 logits (S.E
=0.07). This suggests smaller differences in scale use severity across the assessors
after accounting for measurement error. However, the range remains substantial,
and any meaningful differences will be confirmed through separation statistics

discussed later.

As with the full panel, the average attribute intensity ratings across all samples
remained below the mean (0 on the logit scale). Samples positioned higher were

perceived to have greater intensity, based on ratings averaged across all attributes.

In this panel, the distinction between the two test samples and the control sample
was more pronounced than in the full panel. In the Repetition facet, differences
across the three replicated sessions showed slight variation, they may not be

statistically significant. However, Ratings were generally lower in the first replicate,
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likely reflecting initial uncertainty. By the second and third replicates, ratings had

stabilised as assessors developed a clearer mental frame of reference.

¥ R [ U o = R T T R vttt g
|Measr|+Assessor

+sample  |+Repetition|+Attributes (More intense) INTENSITY SCALE

| | |
J=ene + + + + + |
| 5+ + + + + @) |
| | | | | | strongest Imaginable oral Sensation
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| 4 + + + + + |
| | | | | | |
| | | | | |memmemnennnneaanna s s e s e naean |
| | | | | [ |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| 3+ + + + + |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | 6 |
| | | | | | Extremely Strong
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| 2% + + + + |
| | | | | | |
| | | | | | |
| | | | | |srmmme e e e e |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | H |
| 1+ + + + + Very strong |
| | | | | | |
| | | | | | |
| | | | | | |
w! | | | | smooth Mouthfeel | = e e e |
o | | | | | . | |
<t | | 3035 | | | Homogenous Mouthfeel Thick Mouthfeel | |
| | 3010 | | | Glossy Appearance | |
U | | 3019 3022 | | | Cooked Tomato Flavour Savoury Flavour | |
v | 3004 3014 3031 | | | Viscous Appearance | 4 |
“ 0 * 3008 3046 3050 * €2 3 * Aftertaste Colour Intensity Herbal Flavour o strong *
'— | | 3002 3015 | | | Creamy Flavour Rich Aroma | |
| | 3042 3053 | sample A | | Cooked Tomato Aroma Herby Appearance | m e |
UI | 3027 | sample B | | Sour Taste | |
O | | 3038 3039 | | | Pungent Aroma salty Taste Sweet Taste | |
| | | control | | | |
- l | | \ 3 |
| | | | | | Moderate |
| | | | | | |
| | | | | e |
[ =Lt + + + + |
| | | | | | |
| | | | | | |
| | | | | | 2 |
| | | | | | weak |
| | | | | | |
| | | | | | |
| | | | | Jassladiae |
| | | | | | |
| | | | | | |
|| =t + + + + |
| | | | | | |
| | | | | | |
| | | | | | 1 |
| | | | | | Barely Detectable
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | [ |
| | | | | | |
| -3+ + + + + |
| | | | | | |
| | | | | e |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | (O] |
| -4+ + + + + None |
| + + + fommeemmemeemeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseseeeeee s eeeeaeaaa- + |
|Measr | +AssessOF™® **Y*"®) |.sample  |+Repetition|+Attributes (Less intense) | INTENSITY SCALE |
+ +

Figure 6.2. TIM model Wright map representing the 17 Selected Assessors (IDs 3002 - 3052)
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The latent variable of overall difference is captured in the Total Intensity Measure
(TIM), represented by the position of each sample on the logit scale. This indicated
that Sample A and Sample B were less different from each other than either of them
was from the control sample. Rasch separation statistics will determine whether
these differences are statistically significant, and TIM values will be used for

pairwise comparisons with the control.

Like the full panel, the Attribute facet and intensity scale showed that mouthfeel
attributes were rated most intensely, with Smooth mouthfeel being most dominant
across samples, while taste attributes consistently received the lowest intensity
ratings. Scale category usage patterns were also comparable to those observed in

the full panel.

6.3.3.2 DFCM representation for the full panel

Figure 6.3 shows the Wright map for the Difference from Control measures (DFCM)
forthe full panel of assessors. The Assessorfacetreveals varying degrees of severity
in scale use, with assessors distributed across a range from approximately -1.5 to
1.7 logits (S.E = 0.27- 0.36) around the mean. Assessor 3054 was the most severe,
with a 0.7 logit gap from the next closest assessor. The distribution also indicated
several distinct levels of severity among assessors, particularly toward the more

severe end of the scale.

As shown in the Wright map for the selected assessors (Figure 6.2), Sample A and
Sample B were less different from each other than either of them was from the
control sample. The control sample was clearly different, positioned approximately
1.5 and 1.6 logits away from Sample B and Sample A respectively. While there
appear to be slight variations across replicate evaluations, these differences may
not be statistically significant. The significance of these differences will be further

examined using Rasch separation statistics and pairwise comparison tests.

It is important to note that on the Wright maps for the DFC model, the control
sample values reflect the ratings assigned to the blind control, and the map
effectively represents the magnitude and direction of perceived differences

between the control and test samples. Unlike the findings in Chapter 4, where the
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control appeared close to one of the test samples, the current results show that

assessors more accurately rated the blind control as identical to the actual control.

This improvement is evident in both the DFC Wright map and the category
diagnostics (Table 6.3), where a sufficient number of assessors assigned the blind
control a rating of 0, indicating no perceived difference from the control sample.
These results suggest greater consistency in identifying the control sample in the
present study, possibly due to more noticeable compositional differences between

the control and the test samples.
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Figure 6.3. DFCM Wright map representing All Assessors (Assessor IDs 3001 - 3054)
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However, ratings were evenly distributed across the DFC scale, suggesting some
degree of imprecision in the ratings assigned by the assessors on average. In a
proper-functioning scale, some categories would be used more than others to
reflect actual differences in performance. An even spread suggests that assessors
were not consistently distinguishing subtle differences in performance, or that

some categories overlap in meaning. As noted by Bond et al. (2020) and Eckes

(2023), intermittent low-frequency categories indicate irregular scale usage and the
presence of redundant categories. Nonetheless, the improved identification of the
blind control, highlights the value of targeted assessor preparation in enhancing

rating accuracy.

A comparison of the Wright maps for both the full panels (Figure 6.1 and Figure 6.3)
and the selected TIM panel (Figure 6.2), revealed a consistent pattern in the relative
positioning of the test samples, compared to the control. Sample A was located
higher than Sample B, and Sample B higher than the Control sample. While this
pattern was not visually apparent in the TIM model with all the assessors, further
analysis using Rasch separation statistics and pairwise comparisons will provide

additional insights.

6.3.4 Rasch separation statistics, panel performance, and comparison of

overall sample differences

The Rasch separation statistics for assessors, repetitions, and samples, along with

the pairwise comparisons for the samples, are presented in Table 6.4.

The fixed Chi-square ()(2) Rasch separation statistic tests the null hypothesis that no
meaningful differences exist within a given facet. For the assessors, it serves as an
indicator of panel agreement in the use of the scale, testing whether, after
accounting for measurement errors, (such as inconsistent ratings across replicate
evaluations or differing rank ordering of samples), the severity of all assessorsis the

same (Myford & Wolfe, 2004; Linacre, 2025c).

The X* values for all the panels, that is, the full and selected TIM panels as well as
the DFCM panel, revealed that assessors were not in agreement, as all panels
showed highly significant X° values (p<0.001). A significant x° indicates that the

variation in the severity levels of the assessors is greater than would be expected by
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chance, meaning that, in each panel, at least some assessors were systematically

more severe or more lenient than others in the ratings they assigned.

Strata values, which indicate how many statistically distinct levels of severity exist
among the assessors, showed that there were approximately 7, 5, and 3 distinct
groups of assessors in the TIM full, TIM selected and DFCM models respectively.
However, the reliability of separation, which reflects how precisely these
differences in severity are measured relative to the error in the estimates, showed
values of 0.96, 0.91, and 0.75 respectively for the TIM full, TIM selected, and DFCM
panels. These results suggest that differences in the DFCM panel were somewhat

influenced by measurement errors.

Table 6.4 Summary of Rasch separation statistics and sample comparisons

TIM DFC (All Assessors)
Test/Dataset12 All Selected DFCM DFC Raw
Rasch Separation Statistics
&
o Reliability assessor 0.96 0.91 0.75
©  Strata assessor 6.50 4.52 2.63
n
& Fixed X 1169.5™ 182.5™ 182.1™
c
2 Reliability repetition 0.44 0.80 0.11
‘g Strata gepetition 1.52 2.98 0.80
& Fixedx’ 5.4 14.9™ 3.4
§ Reliability sampte 0.97 0.89 0.99
g- Strata sampte 8.16 4.14 14.89
& Fixed x* 106.3™ 27.5™ 325.9™
Pairwise Comparisons
Kruskal-Wallis Test (H)3 406.15™ 124.4™ 286.89™ 180.92™
Mean differences (Dunn's Many-to-One Test)
Control-Sample A -0.22™ -0.20™ -1.61™ -2.39™
Control-Sample B -0.09™ -0.14™ -1.50™ -2.22™

1p.value levels of significance: <0.001™, <0.01™, <0.05", <0.1~; measures with no superscript symbols have
p-values >0.1.

2 For degrees of freedom (df) = 2, the chi square (x2) critical values are 5.991 (a = 0.05) and 4.605 (a =0.1).
3 The Kruskal-Wallis test statistic (H) also follows a x2 distribution for determining significance
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Reliability values closer to O for assessors are desirable, as they suggest that there

is no statistical distinction between lenient and severe assessors (Myford & Wolfe,

2004). However, as noted by Wright and Masters (1982) and, by Bond et al. (2020)

lower reliability, when significant differences are observed, also implies some
degree of imprecision in the estimates, possibly due to inconsistent use of the scale

categories, as seen in the DFCM Wright map and scale category statistics.

Separation statistics for the Repetition facet (Table 6.4), supported the presence of
a meaningful difference between the replicate evaluations of the selected assessor
panel in the TIM model, with a highly significant )(2 (p<0.001), a strata of 2.98 and
reliability value of 0.80, as was also suggested by the Wright map illustration. In
contrast, the lower Strata value of 1.52 and a barely significant )(2 (p<0.10) for the
full panel, along with a low reliability value of 0.44, indicated that any observed
differences were likely due to measurement error. This shows that the full panel
produced more consistent results across replicate evaluations, as lower strata and
reliability in this facet indicate that there were no meaningful differences between

replicate sessions.

In the DFCM panel, however, no meaningful differences were found between
replicate evaluations. This may reflect the design of the DFC presentation, which
requires assessors to make a direct comparison against a physical control sample.
This is cognitively simpler and may help stabilise judgements across repetitions. In
contrast, the monadic presentation used in the attribute rating test requires
assessors to develop and refine an internal frame of reference over time, which can
introduce greater variability across replicates. A similar pattern was observed in
Chapter 4: pg.94, where the DFC results similarly showed more stable replicate

evaluations and greater overall discrimination than the TIM results.

For the Sample facet, separation statistics assess the panel’s ability to distinguish
meaningfully between the samples. Higher reliability values, ideally close to 1,
indicate that the differences observed between samples are consistent and not due
to measurement error. In this analysis, all panels demonstrated statistically
significant differences between samples (p<0.001). The Strata values suggest that
the full TIM panel and the DFCM panel could differentiate approximately 8 and 15

statistically distinct levels among the sample measures, respectively. These high
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values imply considerable variation within the samples, likely reflecting differences
among assessors and/or measured attributes. For the TIM full panel, this
differentiation is likely influenced by both the diversity of the 18 attributes and

inconsistencies among assessors.

In contrast, the DFCM panel, comprising only three samples and a single itemin the
Attribute facet, achieved an even higher Strata value (15). The comparative test
design was likely the major contributor. As discussed in Chapter 4: pg.89 the DFC
test design involves a direct comparison with a control using a difference scale
anchored to the perceived intensity of that control. This relative judgement is
cognitively simpler because the control provides a stable reference point for every
evaluation. Consequently, less cognitive effort is required to rate the test sample
than in the attribute-rating tests, where samples were presented monadically, one
at a time, and assessors were required to rate multiple attributes using absolute
scales anchored with descriptors such as strongest imaginable sensation. Without
an external comparison reference, assessors must rely on their own mental
reference, which is more susceptible to inconsistency, introducing greater
variability into the ratings. Additionally, the higher Strata in DFCM compared to TIM
likely reflects that DFCM directly measured overall difference (assessors rated
"difference from control"), while TIM derived it as a latent variable from 18 separate
attribute intensity ratings. This difference between direct measurement and derived

estimation may explain the observed separation differences.

Individual differences in how assessors applied the scale may also have inflated the
separation. This interpretation is supported by the Wright map (Figure 6.3), which
shows that the spread of assessor severity was wider than the spread of sample
measures, and by the scale category statistics (Table 6.3), which indicate that

ratings were widely and inconsistently distributed across the scale categories.

Meanwhile, the selected TIM panel produced a more conservative Strata value of
4.14, indicating that about 4 distinct levels could be reliably identified. This
suggests that the variation in ratings was more aligned with expected sample
difference, given that there were only 3 samples, with less additional variation
attributable to assessors or other factors. High reliability values across all facets

support that these distinctions are meaningful and not due to random error.



194

Notably, the selected TIM panel showed a lower sample separation reliability (0.89)
compared to the full TIM panel (0.97) and DFCM panel (0.99), a reduction that may
be explained by inconsistencies across replicate evaluations, as indicated by the

significant x* (p<0.001) in its Repetition facet.

Pairwise comparisons were conducted using the non-parametric Kruskal-Wallis
test on the Rasch measures, which has been shown to be robust for such data as
discussed in Chapter 4. Although parametric tests were initially performed, several
parametric assumptions, including normality were violated, consistent with
findings from the other Rasch measures in this study. Previous research has shown
that Rasch measures of latent variables violates normality assumptions (Guilleux

A, 2014; Ho, 2019; Lacko, 2023). However, non-parametric methods provide a

robust alternative and are well-suited for Rasch measures as discussed in Chapter
4: pg.92. As shown in Table E 1, sample comparison results from the parametric
Tukey’s HSD test were generally consistent with those from the non-parametric
Kruskal-Wallis test, suggesting that the non-parametric approach does not
compromise the validity of the findings. Furthermore, the Kruskal-Wallis testresults

were more closely aligned with those from the Rasch fixed chi-square (x°) test.

The mean difference results in Table 6.4 show that both Sample A and Sample B
were significantly different from the control sample, with the direction of these
differences being relatively consistent across the DFC and Rasch-based TIM
approaches, aswell as across the panels. Based on the sample formulations (Table
B 3), these differences were expected; however, it was unclear whether differences
would be more pronounced in textural properties or flavour across the samples. The
results indicate that Sample A, which was designed to be thicker than the other
samples due to the addition of double cream, exhibited a greater magnitude of
difference from the control compared to Sample B, which was engineered to have

a stronger savoury flavour, due to the addition of garlic granules.

Areview by Tournier et al. (2007) shows that changes in rheological properties, such

asviscosityinthe case of Sample A, can affect the perception of aroma (Ferry et al.,

2006; Lubbers et al., 2007), flavour, and taste (Hollowood et al., 2002; Saint-Eve et

al., 2004) attributes through cross-modal interactions. In a recent study on beef

broths enriched with taste enhancers, Brouwer et al. (2024) found that increasing
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viscosity of beef broths enriched with sodium chloride, MSG and Kokumi
compounds resulted in more intense and richer savoury, salty and beef flavour.

More broadly, Wang et al. (2025) reported that components of the food matrix,

including proteins, lipids and carbohydrates, can bind or entrap aroma compounds
and alter their release. This indicates that viscosity and matrix structure can
substantially influence how aroma and flavour are perceived in real foods. These
sensory interactions may have contributed to the increased perceived complexity
of Sample A beyond what would be expected from a typical cream of tomato and

basil soup.

Additionally, the panel perceived mouthfeel attributes as the most dominant, and
Sample A likely had a noticeably different mouthfeel compared to the other
samples. Mouthfeel attributes are often more readily perceivable compared to
other sensory attributes, due to their somatosensory and tactile nature (Lawless &

Heymann, 2010; Stone et al., 2012; Ditschun et al., 2025).

These findings suggest that textural modifications, such as increased viscosity in
Sample A, not only produce larger perceived differences but may also have
enhanced flavour complexity through multisensory interactions. Furthermore,
mouthfeel attributes, being more directly perceivable, contributed to these
pronounced differences. Overall, the TIM method was sensitive to subtle sample
variations across the combined attributes and provided more diagnostic insight
than the broader DFC tests, highlighting its advantages for evaluating targeted

sensory attributes in difference testing.

To address a limitation identified in the previous study, specifically the non-
representative choice of attributes in the AR test, a comment section was added to
the end of the DFC test questionnaire. Assessors were asked if they had considered
any additional attributes beyond those listed when evaluating differences between
the samples. The responses showed that either no new attributes were identified or
that any additional descriptors mentioned, corresponded to terms or ingredients
already captured in the attribute list (Table 6.1), with assessors generally
commenting on the most prominent characteristics. Examples of their comments

include:
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“... creamy textures were more obvious”

“...how the soup coated the entire tongue / mouth”

“Two of the test samples had a really nice cheesy note...”

“...one had more garlic (garlic granules taste) the other was
thicker (maybe xanthan)”

“...one definitely had beef stock in it”

Since the comments aligned with the existing attribute descriptors in the lists, itis
reasonable to conclude that the AR tests in this study effectively captured the

perceivable differences observed in the DFC test.

The next section examines the specific attributes perceived as driving the most

differences, as well as assessor rating behaviour.

6.3.5 Individual assessor performance analysis

OUTFIT Mnsq values for the Assessor facet were used to evaluate rating behaviour in
the TIM model. The trends and results observed across the assessors were
consistent with those reported in section 5.3.4, where certain value ranges
corresponded to specific rating behaviours. However, as previously noted, the Rasch
approach to evaluating individual assessor performance is always relative to the

performance of other assessors in the analysis (Myford & Wolfe, 2004). Therefore, it

is mostinformative when applied to a more homogeneous panel, as demonstrated in
Chapter 5 with the trained panel. In contrast, the untrained panel in Chapter 5
showed greater variability, which limited the usefulness of the diagnostics. Since the

assessors in the current study were also untrained, similar variability is likely.

Considering this, the analysis in this chapter focuses on identifying assessor
OUTFIT Mnsq ranges (Figure 6.4) and their implications for rating effects. The
subset of assessors discussed so far was selected based solely on these metrics,
unlike in the previous chapter, where selection was informed by both OUTFIT Mnsq
insights and the assessors' discriminatory ability, as determined by individual

ANOVAs.
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In the discussions (section 5.3.4.3.2: pg.154), it was hypothesised that, just as
greater variance among parameters within a facet leads to higher OUTFIT Mnsq

values (Linacre, 1995), lower variance corresponds to lower values. This

relationship may reflect the severity of overfit rating effects, such as restriction of
range and central tendency. Each rating effect spans a continuum, and OUTFIT
Mnsq values vary depending on how strongly an assessor exhibits a particular rating

behaviour. These patterns are examined in this section.

Figure 6.4 above presents the OUTFIT Mnsq control chart for all assessors in the
TIM model. The acceptable OUTFIT Mnsq range for assessors in this study was 0.78
to 1.22. Assessors with values below the lower limit are considered overfit,
exhibiting range restriction and central tendency rating effects. Those with values
above the upper limit are underfit, showing more erratic ratings either within
themselves or compared to the rest of the panel. Additionally, OUTFIT Mnsq values
above 2.0 indicate that an assessor is using extreme ends of the rating scale, which

can skew the overall panel results and cause misleading conclusions.

The subset of assessors discussed earlier were those with values strictly within the
acceptable range of 0.78 to 1.22. These assessors, identified for their relatively
consistent ratings, will be used in subsequent analyses to determine key

discriminating attributes across the samples.

The following Figure 6.5, spanning across two pages, presents response
distribution (trellis) plots for assessors whose OUTFIT Mnsq values fall below the
lower threshold of 0.78, indicating potential overfitting. This illustration supports
the hypothesis that rating effects are reflected by the OUTFIT Mnsq values along a
spectrum. From top to bottom, each row represents an assessor’s responses
across several attributes. Assessors are arranged from the lowest OUTFIT Mnsq
value (most overfitting) up to the 0.78 threshold. The corresponding OUTFIT Mnsq
values are displayed in the rightmost column. The black dotted line marks the
margin for the central scale categories, specifically scale usage between 2 and 4,
based on the most frequently used categories across the panel (as shown in the

scale category statistics on Table 6.3).
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As the figure progresses downward, and OUTFIT Mnsq values increase, the response
distributions begin to extend beyond the central margins. Around 0.57, the responses
tend to be restricted to other parts of the scale, often away from the centre. This
restriction gradually decreases as mean square values approach 0.78. Toward the
bottom of page 2 of Figure 6.5, where mean square values approach the threshold

for overfit, response patterns become less restricted and relatively more consistent.
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Although Linacre (2025b) and Myford and Wolfe (2004) note that overfitting
assessors are not necessarily poor raters, in a sensory evaluation context, they can
substantially affect the validity of the data. Central tendency effects may lead to a
lack of discrimination across both samples and attributes, while range restriction
may result in poor discrimination across samples alone. In Figure 6.5, central
tendency is evident where ratings are tightly clustered within the black dotted
central margins, while range restriction appears as a narrow band of ratings that
mostly fall outside these margins, but still cover only a limited portion of the scale.
These rating behaviours are often a consequence of assessors lacking confidence
in assigning ratings across the samples, whether due to unfamiliarity with the
product range or insufficient training in the use of scale ranges (Lawless &

Heymann, 2010; Sipos et al., 2021; Meilgaard et al., 2025). In this study, however,

lack of familiarity is unlikely to be the cause, as familiarity with tomato soup was
one of the main reasons for selecting these samples for the target participants. In
either case, suchrating behaviours are problematic, and affected assessors should
either receive trainings on confidently using the scale or be removed from the panel.
While this study involved an untrained panel, similar issues may also arise among
highly trained assessors, potentially indicating a lack of motivation or distraction.
This was observed with assessor 2010 in the trained panel discussed in Chapter 5

(section 5.3.4.1: pg.145).

Notably, the ratings of assessors 3037 and 3041, both with OUTFIT Mnsq values of
0.76, appear relatively consistent, with fewer crossover interactions. The panel
leader may consider retaining such assessors by slightly expanding the cut-off,

supported by insights into the type of training required.

As Wright and Masters (1982); Smith (2000), and (Bond et al., 2020) rightly observe,
residual fit statistics like OUTFIT Mnsq serve as critical quality control mechanisms.
They allow researchers to make informed, interconnected decisions about their
data, especially when visual inspection of the full data matrix is impractical. This
approach is invaluable for sensory analysts and panel leaders making timely

decisions in business contexts.
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6.3.6 Key discriminating attributes

The importance of each attribute in distinguishing between the soup samples is
presented in Figure 6.6. These results are based on data from the 17 selected
assessors with relatively consistent rating patterns, compared to the overall panel.
The acceptable range for the attributes OUTFIT Mnsq values was calculated*as 0.77
to 1.23, based on 153 total responses per attribute. The findings for the same 17
assessors are discussed in conjunction with the panel interaction plots shown in
Figure 6.7, the panel ANOVA results (Table 6.5), and the assessor responses to the
comment section of the DFC questionnaire (Figure 6.8), where these assessors
indicated which attributes they considered when evaluating the differences
between the test samples and the control. Although the DFC comments were
collected during the separate occasion for the DFC test, they were provided by the
same panel and based on the same set of samples. These comments provide
supporting evidence that attributes selected for the TIM AR test were perceivable in
the overall product assessment and thus relevant to the assessors. Individual

assessor trellis plots are provided in Figure E 1 for reference.

In Figure 6.6, OUTFIT Mnsq values identified Thick Mouthfeel, Homogeneous
Mouthfeel and Viscous Appearance as the most discriminating attributes, as they
had the highest OUTFIT Mnsq values with positive logit values. This suggests minimal
confounding due to assessor confusion or misinterpretation, likely because these
attributes were high in intensity and easily perceived. Following these, Smooth
Mouthfeel, Savoury Flavour, and Herbal Flavour showed the next highest OUTFIT
values. Mouthfeel attributes showed the strongest contributions, consistent with
the idea that they are often more readily perceivable than other sensory attributes
in this product context. In contrast, attributes such as Creamy Flavour and Sour
Taste had negative logit values and were more difficult to perceive. As discussed in
section 4.3.5, high OUTFIT values for low-intensity attributes often indicate
variability, driven more by assessor confusion than by actual product differences.
While this pattern suggests that Sample A may have been perceived as the most

distinctfrom the control due to it being thicker and more viscous, this interpretation

"1 +2 /% , where Nr (number of responses) for each of the attributes is 153.
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is based on perceived differences only, as no rheological measurements were
collected to confirm differences in viscosity. This association is supported by the
response patterns reflected in the Rasch model’s PCAR results discussed in
section 6.3.1, where Thick Mouthfeel and Viscous Appearance exhibited Local Item

Dependency (LID).

These findings were generally consistent with the panel ANOVA (Fsampie) in Table 6.5,
which revealed the same attributes as significantly different (p<0.05), and with the
assessor responses from the DFC (Figure 6.8), except for Homogenous Mouthfeel.
Contrary to the Rasch findings, Homogeneous Mouthfeel was not a significant
differentiator across the other metrics. Panel ANOVA revealed only marginal
significance across samples (a = 0.10), and only a few assessors selected it as a
differentiator in the DFC test. The interaction plot (Figure 6.7) revealed a
pronounced crossover effect, indicating that one assessor rated the samples in a
different order than the rest of the panel. Smaller crossover effects were also
observed among other assessors. These patterns likely contributed to the elevated
OUTFIT Mnsq, by increasing response variability, and may also explain the reduced

discriminative power of this attribute (Stone et al., 2012; Raithatha & Rogers, 2018).

As discussed earlier, OUTFIT Mnsq represents residual variation, after accounting
for individual scale level effects, and reflect variations arising from interaction

effects among facets.

Based on the sample composition, it was expected that Homogeneous Mouthfeel
would differ across samples due to the addition of garlic granules. However, it was
uncertain whether this difference would be perceptible and reflected in the tactile
perception of homogeneity by the assessors during testing. The definition provided
was “Feels the same way throughout” (Table 6.1). Assessors may have found this
attribute somewhat ambiguous to rate, as several questioned whether higher
homogeneity should be scored as higher or lower intensity during the sessions. This

underscores the importance of clear, unambiguous descriptions in attribute rating

questionnaires (Lawless & Heymann, 2010; Stone et al., 2012; Kemp et al., 2018;

Meilgaard et al., 2025).
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Figure 6.7. Selected TIM panel interaction plots for all attributes.

Plots are arranged in order of decreasing attribute OUTFIT Mnsq values, from top left to bottom right. Attributes are grouped according to whether they fall above or below
the logit mean, consistent with their positioning in Figure 6.6. Attributes above the logit mean are outlined in blue, and those below are outlined in brown. Attribute titles
indicate F-values from panel ANOVA results, with p-value levels significance: <0.001™, <0.01™, <0.05", 0.10"; measures with no superscript symbols >0.10.



Table 6.5. Rasch analysis and Raw score ANOVA results for the selected TIM panel on attribute contributions to sample differences.

Rasch Metrics Panel ANOVAT (N-17)
Logit
Attributes OUTF|T2 Measu re3 F Sample Fa o Fa x Sample F Repetition F Assessor x Repetition F Sample x Repetition
Thick Mouthfeel 1.20 0.41 26.83™ 5.19™ 1.80° 1.03 2.12" 0.78
Homogenous Mouthfeel 1.09 0.42 2.52" 3.03™ 1.77° 1.30 1.72" 0.51
.  ViscousAppearance 1.09 0.08 63.34™ 10.15™ 1.37 1.65 1.68" 0.17
'gb Smooth Mouthfeel 0.97 0.63 3.127 5.92™ 2.43" 1.34 1.81" 0.34
; Savoury Flavour 0.96 0.17 5.16" 4.90™ 1.68" 0.90 1.12 0.27
E Herbal flavour 0.95 0.03 7.68" 2.33" 1.35 2.467 1.50” 0.63
Glossy Appearance 0.88 0.26 0.20 4.13™ 1.08 3.73" 1.09 0.46
Cooked Tomato Flavour 0.76 0.16 0.34 8.61™ 1.50” 0.80 0.90 1.35 o
Colour Intensity 0.47 0.02 13.38"™ 16.03™ 2.8 15.55™ 2.66™ 2.45” P
Sour Taste 1.57 -0.32 0.25 16.80"™ 0.80 2.557 2.06™ 0.57
Creamy Flavour 1.47 -0.13 12.35"" 9.66™ 2.22" 0.09 1.29 0.31
Aftertaste 1.17 -0.04 1.98 13.17"™ 1.24 1.88 1.70" 2.24"
'§n Rich Aroma 1.07 -0.10 8.25™" 5.65™ 1.64 0.38 1.43 1.31
z Sweet Taste 0.96 -0.44 2.69 13.64™ 2.09" 2.43 1.91" 0.78
>  Herby Appearance 0.91 -0.23 19.57"" 3.83™ 1.53" 7.20™ 5.81™ 1.24
Pungent Aroma 0.91 -0.38 7.78" 5.97"™ 1.30 2.07 1.37 0.93
Salty Taste 0.87 -0.40 0.25 20.86™ 3.38"™ 3.80" 2.90™ 2.377
Cooked Tomato Aroma 0.68 -0.15 0.03 6.69™ 1.34 0.10 1.99™ 1.63

Attributes are arranged from top to bottom by decreasing OUTFIT Mnsq value and are differentiated based on whether they were located on the positive (+Ve logit > mean) or negative (-Ve logit < mean)
side of the logit scale. N signifies the total number of assessors in the panel.

1 F-values with p-value levels of significance: <0.001™*, <0.01*, <0.05%, 0.10; measures with no superscript symbols >0.10. n signifies total number of assessors.
2 QUTFIT Mnsq for attributes indicating whether an attribute's discrimination differs from the average discrimination of other attributes across the samples. Acceptable fit range is 0.77-1.23.

3 Value of the location of an attribute on the Rasch logit scale: Negative (-Ve) logit values signify low-intensity attributes (below the mean), while positive (-Ve) logit values signify attributes
with higher intensities (above the mean).
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the questionnaire shown in Figure C 10.

Segments are arranged in a clockwise direction, starting from “Creamy Flavour”, with proportions decreasing accordingly. Colour shading corresponds to
the attribute positions in the OUTFIT Mnsq plot for the TIM method (Figure 6.6).Brown segments represent low intensity attributes (below the logit mean),
while blue segments represent high intensity attributes (above the logit mean). Grey segments indicate overfit and potentially redundant attributes.
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Furthermore, one of the DFC comments cited earlier in section 6.3.4: pg.196,
mentioned noticeable garlic granules, suggesting that the attribute description
“feels the same way throughout” might not have been sufficiently clear.
Semantically, even the presence of granules could be interpreted as “feeling the
same throughout”, leading to potential ambiguity. While this attribute was not
found to be a significant differentiator across samples in the ANOVA results and
from the DFC comments, Rasch model diagnostics detected irregularities in the
response patterns, prompting further investigation. Additionally, this attribute was
the only one with a negative point-biserial measure correlation, indicating opposing
scale category usage by assessors, which caused inconsistent response patterns
and supporting the hypothesis of misinterpretation. Item polarity (discussed in
section 3.3.1.4: pg.58, and Table 3.1) further suggests that the item may be
misaligned with the underlying construct and potentially misunderstood by the
assessors. This highlights the Rasch model’s diagnostic advantage in evaluating

product differences and identifying problematic attributes.

Smooth mouthfeel was also revealed as an important contributor both from the
DFC responses, and response patterns in the interaction plot, unlike the ANOVA
results. The major influence of one assessor, who rated Sample B in the opposite
direction from the panel, may have contributed to its high OUTFIT Mnsq value.
Smooth Mouthfeel and Homogeneous mouthfeel were found in the LID analysis
(Table 6.2) to be statistically related, possibly driven by similar patterns of variation
inthe responses. Meanwhile, the importance of Savoury Flavour and Herbal Flavour

to product differences were consistent across all the analyses and plots.

Cooked Tomato Flavour, Glossy Appearance, Colour Intensity and Cooked Tomato
Aroma were found to be redundant attributes, as their OUTFIT Mnsq values were
overfit (below the lower limit of 0.77) except for Glossy Appearance which had a
value of 0.88. This slightly higher value for Glossy Appearance may reflect crossover
interactions and poor repeatability, as indicated by the interaction plot. Generally,
very few assessors identified these attributes as differentiators in the DFC test, and

panel ANOVA showed no significant differences across samples for these attributes.

Interestingly, the only exception among the redundant attributes was Colour

Intensity, which the ANOVA identified as highly significant (p < 0.001), along with
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other main effects and most interaction effects. However, based on the sample
composition (see photos in Table B 3), Colour Intensity was not expected to vary
meaningfully across the samples, even though slight differences may have been
noticeable to some assessors with higher visual sensitivity. This expectation was
supported by the overfitting OUTFIT Mnsq value of 0.47, which is well below the
lower control limit (0.77), and by the DFC responses, where very few assessors
identified it as a differentiating factor. The interaction plots (Figure 6.7), and the
trellis plots (Figure E 1), suggest that the observed differences were mainly due to
inconsistent use of the rating scale by the individual assessors. After the Rasch
model accounted for these individual differences in severity (i.e. scale level

effects), there was likely little true variation in response patterns.

Although the ANOVA model attempts to adjust for differences in scale use through
the Fassessor term, the substantial assessor, replicate, and interaction effects,
together with the erratic ratings evident in the interaction plots, indicate that these
results are not sufficiently reliable to support meaningful conclusions. As noted by

Tomic et al. (2007), such adjustments are not always effective when assessors vary

in both severity and consistency, and additional methods capable of revealing and
accounting for these severity-level effects are required for reliable panel

performance monitoring.

Previous research has shown that relying solely on ANOVA results can be
misleading when evaluating panel performance and product differences, especially

if assessor inconsistency reduces the reliability of the data (Raithatha & Rogers,

2018). To mitigate this, itis recommended that multiple analytical and visualisation

methods be combined to ensure reliable interpretations in sensory studies (Tomic

et al., 2007; Stone et al., 2012; Ho, 2015; Kemp et al., 2018). These findings
therefore highlight the advantage of the Rasch model’s diagnostic approach, which
provides clearer insight into assessor behaviour and product discrimination and

can deliver more confident conclusions with fewer complementary analyses.

The DFC responses revealed that Creamy Flavour and Rich Aroma were considered
by most assessors to be major distinguishing attributes. This finding was
corroborated by the Rasch analysis. However, the Rasch model also identified

these attributes as relatively lower in intensity and more difficult to perceive,
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placing them on the negative side of the logit scale. As discussed in previous
chapters, attributes with low intensity scores often reflect confounding effects,
such as assessor confusion or inconsistent interpretation, even when the attribute

meaningfully contributes to product differences.

When low intensity attributes are also found to be underfit, indicated by OUTFIT
Mnsq values above the acceptable upper thresholds, this suggests irregularities in
response patterns. This underfit may be due to crossover interactions (where
different assessors inconsistently rank the samples) or from extreme rating
patterns (where one sample is rated disproportionately lower than others). Despite
these effects, the attribute may still be a meaningful differentiator. Typical
examples of crossover interactions include Creamy flavour and Rich aroma in this
chapter (Figure 6.7), where assessors inconsistently ranked the samples. Orange
flavour ratings from the untrained panel in Chapter 5 (Figure 5.5 and Figure 5.6) is
an example of extreme rating patterns, where one sample received
disproportionately low scores. Therefore, underfitting low-intensity attributes
warrants further investigation, as they may reflect critical sensory characteristics

that are harder for assessors to evaluate reliably.

Creamy Flavour showed the second highest underfit with an OUTFIT Mnsq value of
1.57; however, its negative logit value of -0.32 suggested substantial variation in
individual interpretations. The interaction plot showed greater agreement among
assessors in rating Sample A the highest, but significant crossover interactions
between Samples B and the Control, likely contributed to the elevated OUTFIT
value. Similarly, the ANOVA revealed significant sample differences (p<0.001) and
a significant assessor x sample interaction (p < 0.01). It was also considered the

most differentiating attribute in the DFC test.

The combination of a high underfit score, in a low intensity attribute and
pronounced interaction effects, suggests that assessors varied in their
interpretation of this attribute, indicating a need for improved training to enhance
sensitivity. Difficulties in rating creaminess-related attributes like Creamy Flavour
have previously been documented. These challenges arise not only from the

difficulty in understanding the attribute’s meaning (Kilcast & Clegg, 2002) but also

from its inherently multisensory nature. Frgst and Janhgj (2007) describe
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creaminess as a meta-descriptor encompassing multiple sensory modalities,

including taste, texture, mouthfeel, and aroma. More recent work (Corvera-Paredes

et al., 2022) confirms that creaminess perception in foods depends on complex
interactions among viscosity, lubrication (tribology), food matrix structure, and
salivary processes. Although assessors were instructed to evaluate creamy flavour
specifically, the multidimensional combination of these sensory characteristics
may have led different assessors to focus on different aspects, such as mouthfeel

thickness or richness of flavour.

Similar challenges have been noted for other mouthfeel-related attributes, with
research showing that attributes such as astringency consist of several perceptual
sub-qualities, making them more difficult to evaluate consistently (Wang et al.,
2020). Furthermore, individual physiological differences contribute additional
variability, as variation in salivary composition has been shown to affect the
perception of astringency sub-qualities and influence how individuals experience

and rate these mouthfeel sensations (Wang et al., 2021). Oral processing and

salivary dynamics have been shown to shape texture and mouthfeel perception

(Stokes et al., 2013), with lubrication properties playing a particularly important role

(Boehm et al., 2020). These findings reinforce that individual biological differences

can contribute to inconsistent ratings for complex, multisensory attributes such as
creaminess. This multisensory complexity likely explains the variability and

inconsistencies observed in the ratings for Creamy Flavour.

Rich Aroma was also identified as a challenging attribute for assessors to rate. Its
OUTFIT Mnsq value of 1.07, approaching the upper acceptable threshold of 1.23,
along with a negative logit value of -0.10, suggested that the attribute was perceived
at a relatively low intensity and that assessor responses varied considerably. This
was further supported by the interaction plot, which showed significant differences
across samples along with pronounced crossover interactions involving all three

samples.

One possible explanation for this inconsistency is the cultural variation among
assessors, which may have influenced their interpretation of the attribute
definition. Rich Aroma was defined as “Combination of multiple ingredients

creating a deep and full aroma. For example, well-seasoned food”. The panel
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included assessors from Western Europe, Mediterranean Europe, South America,
and South Asia, regions with diverse culinary traditions and sensory expectations.
Cross-cultural research has consistently shown that cultural background shapes
how individuals perceive, evaluate and describe aromas. Recent studies have
shown that cultural background plays a substantial role in how aromas are

perceived, categorised and described. For example, Sharma (2023) demonstrated

that odour vocabulary and conceptualisation vary significantly across cultures,

influencing how individuals interpret aromatic cues. Majid et al. (2018) similarly

reported pronounced cross-cultural differences in olfactory naming, discrimination
and perceptual organisation across diverse linguistic groups. Earlier work by

Pangborn et al. (1988) found that regional aroma-liking varied significantly across

geographic areas, likely because of differences in traditional food habits and aroma
availability rather than purely sensory threshold differences. Together, these
findings support the likelihood that cultural variation contributed to the

inconsistent ratings of Rich Aroma in this study.

For some assessors, Sample A was perceived as having the richest aroma, likely
also influenced by the enhanced complexity in aroma and flavour perception,
caused by the increased viscosity when double cream was added (as discussed in
section 6.3.1: pg.194). For others, Sample B was rated the highest, which aligns with
the sample design, since the addition of garlic was expected to increase both the
Savoury Flavour and Rich Aroma attributes. Table E 2 also confirms this, showing
that Sample B had the highest average intensity score for Rich Aroma and was

significantly different from the other samples (p<0.05).

As discussed earlier in section 6.3.1, LID analysis revealed a statistical relationship
between Rich Aroma and Savoury Flavour, supporting the connection between
these two sensory attributes. However, according to Table E 2, Sample A had the
highest intensity for Savoury Flavour, which was defined in the questionnaire as
“Rich, spicy flavour associated with vegetable or meat broth”. Despite this
relationship, results indicated that Savoury Flavour was easier for assessors to rate
consistently than Rich Aroma. This suggests that Rich Aroma was not only more
culturally variable, but also perceptually more complex, possibly due to it being

perceived at a relatively lower intensity. The finding that Savoury Flavour was rated
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highest in Sample A further highlights the alterations to other sensory attributes,

and sensory interactions resulting from the addition of extra cream.

Several studies have continued to emphasise the importance of considering
cultural influences when designing and interpreting results from sensory and

consumer research (Munoz, 2002; Harrington, 2005; van Zyl & Meiselman, 2016;

Ares, 2018; Hort, 2024).

Notably, except for Herby Appearance and Creamy Flavour, the low intensity
attributes consisted entirely of taste and aroma characteristics, including
aftertaste. It is well established in the sensory literature that attributes related to
smell and taste, particularly those perceived at low intensities or near detection
thresholds, are often difficult for assessors to rate reliably. This underscores the

training requirements to improve sensitivity to these attributes within a given

product range (Lawless & Heymann, 2010; Kemp et al., 2018; DLG, 2020; Meilgaard
et al., 2025). The interaction plots supported the Rasch analysis findings, revealing
multiple magnitude and crossover interactions in the rating patterns. However, the
OUTFIT Mnsq values increased with more crossover interactions because the
Rasch model had already removed the effects of individual differences in scale use,

which are reflected by the magnitude interactions (Stone et al., 2012).

Herby Appearance was another challenging attribute to assess, but was suspected
to have been influenced more by the sample design. The soup base for Sample A
was a cream of tomato soup without basil, unlike the other samples. Dried chopped
basil leaves were added while reheating the sample, shortly before evaluation. As a
result, some assessors may have received samples with more visible basil specks

than others, introducing inconsistencies in the perception of this visual attribute.

In summary, findings from earlier chapters have demonstrated how the Rasch-
based TIM approach offers a streamlined diagnostic framework to identify key
attributes driving product differences and to highlight individual assessor
behaviour. By revealing unexpected and inconsistent response patterns, the model
enables deeper examination of attribute perception and potential interactions,
informed directly by observed panel ratings, without requiring multiple separate

statistical techniques as in traditional analyses.
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However, itis important to clarify that MFRM adjusts only for systematic differences
in assessor severity (consistent tendencies to assign higher or lower ratings) and
does not correct for broader individual differences in scale interpretation, attribute
understanding, or physiological variation. Thus, the model improves comparability
but does not eliminate the need for careful attribute definitions and panel training.
Unexpected variations, whether systematic or inconsistent, are flagged through
diagnostic outputs such as PCAR and residual fit statistics (e.g., OUTFIT Mnsq),

which support informed interpretation rather than definitive explanations.

While DFC achieved higher separation and reliability through its simpler
comparative design, TIM offers distinct advantages when research goals extend
beyond quantifying overall difference. It simultaneously identifies which specific
attributes drive product differences, their contribution to the overall difference, and
sources of measurement variability such as assessor inconsistency or confusion.
The choice depends on whether only overall difference quantification is needed
(DFC) or comprehensive diagnhostic insights into both products and panel
performance are required (TIM). These interpretations are most reliable when there
is acceptable fit to the model, with visualisations of raw data helping to clarify

patterns and support conclusions.

6.4 Limitations of the study

This study aimed to explore the transferability of the Rasch-based approach within
a simulated context, designed to reflect settings commonly found in sensory quality
programmes. A panel of untrained assessors was employed to investigate the
potential of the Rasch model to identify individuals capable of performing at a

trained assessor level.

Panel performance constraints

While some limitations identified in the previous two studies (particularly regarding
sample and attribute choices discussed in Chapters 4 and 5) were successfully
addressed, the use of an untrained panel continued to pose challenges due to
inherently inconsistent ratings within each assessor (as shown in Figure E 1). As
demonstrated by the trained panel in Chapter 5: section 5.3.4.1, Rasch-based

diagnostic insights are considerably more informative when the panel operates at a
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relatively standardised level. This is because the model evaluates rating behaviours
and flags unexpected variations relative to the overall panel performance (Myford &

Wolfe, 2004).

The subset of better-performing assessors (n=17) selected from the full untrained
panel (n=54) exhibited better consistency than the group overall, but still displayed
some inconsistency, likely attributable to limited sensitivity to product attributes.
Consequently, trends for identifying problematic assessors, such as through SR/ROR

statistics, were not as clear-cut as was shown with the trained panel in Chapter 5.

Lack of instrumental analysis to verify product characteristics

Additionally, as with the previous studies, no instrumental analysis was conducted to
verify the actual presence or intensity of the attributes evaluated. For instance,
rheological measurements for viscosity, and particle size analysis for smoothness,
could have provided objective confirmation of the perceived sensory differences. All
findings are therefore based on panel ratings, and conclusions regarding the physical
product characteristics underlying these differences remain interpretations rather

than instrumentally verified properties.

A trained panel sensitive to the attributes used in this study would likely have more
clearly demonstrated the strength and impact of Rasch-based diagnostics for
monitoring assessor performance. Nevertheless, the study yielded valuable
insights into rating behaviours and attribute contributions, as reflected in OUTFIT
Mnsq values. It offered nuanced diagnostics of both systematic variations (through
PCAR) and non-systematic variations, and yielded more accurate assessments of
product differences by accounting for one of the most significant sources of

individual variation: the idiosyncratic use of rating scales (Linacre, 1994; Lawless &

Heymann, 2010; Meilgaard et al., 2025). These findings underscore the potential of

the MFRM, even when applied in contexts involving untrained assessors.

6.5 Significance of study

This final study extends and consolidates the findings from previous chapters by
examining the adaptability and diagnhostic capabilities of the MFRM and TIM approach
in sensory difference testing across varied contexts. The results demonstrate that the

MFRM offers diagnostic efficiency, particularly in situations where manualinspections
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of data matrices or multiple independent statistical tests would be time intensive. By
modelling products, assessors, attributes, and scale categories simultaneously, the
model enables unexpected orinconsistent response patterns to be detected in asingle
analytical step. This offers practical benefits for sensory analysts, panel leaders,
product developers, and quality managers in organisations with established
sensory programmes and frequent assessment needs. The ability to identify which
attributes drive perceived differences (as rated by the panel), and which contribute
noise, can support more targeted reformulation, optimisation, and shelf-life
decisions, while helping distinguish genuine product changes from panel drift or

rater instability.

While Chapters 4 and 5 demonstrated these capabilities across both trained and
untrained panel contexts, this chapter specifically investigated whether MFRM
diagnostics could support assessor selection and recruitment decisions in sensory
quality programmes. Building on the finding from Chapter 5 that fit statistics are
relative to panel performance, this study examined whether identifying assessors
with more stable response patterns within an untrained group (i.e., acceptable fit
within the panel) could improve panel discrimination and reliability. The results
showed that diagnostic clarity scales with panel quality: highly informative with
trained assessors (Chapter 5), moderately useful for identifying relatively stable
performers among untrained groups for potential recruitment (Chapter 6), but with
important caveats regarding fit statistics interpretation in poor-quality panels
(discussed in section Chapter 5: pg.164). This progression clarifies both the utility
of MFRM for practical assessor screening and the boundary conditions for its

application in sensory quality control settings.

Compared with traditional ANOVA-based approaches, the Rasch framework offers
several strengths while remaining complementary rather than substitutive. ANOVA
remains highly suitable for routine product comparisons with well-established,
well-trained panels. However, the MFRM provides a unified analytical process that
simultaneously accounts for systematic rater severity and offers integrated
diagnostics not accessible through ANOVA. These include finer-grained insight into
which attributes discriminate products effectively, which assessors deviate from

panel expectations, and how rating scales are being applied.
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Tomic et al. (2007) emphasised that robust methods are needed for compensating
for panel drift, correcting for individual assessor level and range differencesin scale
use, and computing weighted sample estimates. This is particularly relevant given
the substantial resources required to train and maintain calibrated descriptive
panels. Panel training commonly ranges from 10 to over 100 hours (Djekic et al.,

2021), and in some cases extends over several months (Lestringant et al., 2019),

with ongoing calibration and drift monitoring representing continuous operational
demands. The MFRM contributes to addressing these needs by adjusting for
individual assessor severity differences (scale level correction), flagging assessors
with problematic scale use, and pinpointing scale range effects like central
tendency and range restriction through fit statistics, enabling targeted intervention
for range correction. When time-related facets like days, months or sessions are
included inthe model design, it can also reveal changes in rating patterns over time
that may indicate performance drift. These capabilities offer practical operational
benefits for panel management. Because the model adjusts for consistent
differences in severity, panel leaders do not need to devote training time to
enforcing identical rating standards across assessors, allowing them to focus

instead on attribute understanding and meaningful interpretation of intensity levels.

Additionally, integrated diagnostics such as fit statistics and SR/ROR correlations
allow rapid identification of specific assessors who require targeted intervention,
facilitating timely correction of issues such as scale misuse, inconsistency or
attribute confusion. While the magnitude of time savings will vary by organisation,
these diagnostic capabilities indicate meaningful opportunities to streamline panel

maintenance and reduce the cumulative burden of ongoing calibration.

While the MFRM offers clear advantages, its implementation also requires
consideration of practical constraints. The method involves specialised software
and methodological training, which may limit adoption among stakeholders
unfamiliar with probabilistic models. Some resistance is likely in organisations that
rely on established workflows centred on ANOVA. However, once implemented, the
MFRM can reduce downstream workload by consolidating multiple analyses into a
single model and by minimising the need for extended panel retraining. As sensory

analysis software continues to evolve, the integration of Rasch-based tools into
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commercial platforms may further lower barriers to adoption by automating model
fitting and diagnostic reporting. The balance between initial setup effort and long-term
diagnostic gains favours adoption in organisations with sustained quality monitoring

needs and sufficient technical capacity to support initial implementation.

An additional caveat concerns attribute selection and the assumption of
unidimensionality. As shown in Chapter 5: pg.159 , when one product among those
being compared exhibits an opposing attribute profile (e.g., Brand B with the lowest
Orange flavour but highest Milky flavour ratings), the latent Overall Difference estimate
becomes distorted through cancellation effects on the logit scale, reducing product
separation clarity. This occurs because opposing attributes do not align along a single
underlying construct, violating the unidimensionality assumption. Careful attribute
selection is therefore critical to ensure attributes collectively represent a coherent
sensory dimension. This consideration is particularly important for untrained panels,

where inconsistent scale use can amplify distortions from poor attribute selection.

Across the three studies, these diagnostic capabilities were delivered through a
consistent analytical framework summarised in Figure 6.9. Key tools including the
Many-Facet Wright map, separation statistics, rating scale category statistics,
Principal Component Analysis of Residuals (PCAR) and Local Item Dependency
(LID) analyses, residual fit statistics (OUTFIT mean squares), and Single Rater Rest-
of-Rater (SR/ROR) correlations collectively provide a coherent view of product
discrimination, assessor behaviour, attribute functioning, and potential sensory
interactions. Rather than requiring multiple separate analyses, these tools operate
within a single model and offer a rapid, integrated interpretation of the underlying
data structure, one of the key practical advantages of the MFRM over traditional

approaches.
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Chapter 7

Overall Discussion

7.1 Summary of findings

This research explored the application of the Many-Facet Rasch Model (MFRM) in
sensory difference testing with the goals of estimating an overall difference latent
variable from multiple sensory attributes, evaluating the model’s ability to account
for individual differences in rating scale usage, and exploring the diagnostic
potential of Rasch outputs to improve sensory data interpretation and panel

performance.

The findings across the three study contexts demonstrate that the model effectively
addressed the research aims. Specifically, the MFRM successfully estimated a
single latent measure of Overall Difference, by combining intensity ratings across
attributes, and this measure was comparable to the holistic overall difference score
derived from the DFC test. The inclusion of assessors as a distinct facet in the
model, allowed the analysis to account for individual differences in rating scale
usage, by estimating each assessor’s severity or leniency. This contrasts with the
conventional ANOVA, which relies on aggregated data and does not model
individual-level variability. Additionally, Rasch-based diagnostics such as fit
statistics, Wright maps, and PCAR, uncovered inconsistencies and the underlying

structure of the response data.

As a result, the Rasch-based approach provided valuable, more detailed insights
than traditional methods, all within a single, integrated analysis. This offered
enhanced practical value in several ways: (1) identifying inconsistent assessors early
for targeted retraining and (2) clarifying which attributes contributed meaningfully to
sample discrimination, both using the fit statistics; and (3) enabling rapid and
intuitive interpretation of results through Wright maps, which visually place
assessors and attributes on the same measurement scale, making outputs easier
to understand for non-technical stakeholders. These advantages support more
efficient panel management, clearer insights for product development, and better-

informed quality control decisions across the broader business context. While
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implementation requires specialised software and training in Rasch principles,
once established the unified analytical framework can reduce the need for multiple
separate analyses and can streamline panel management. Moreover, integration of
Rasch capabilities into commercial sensory software platforms could further
reduce implementation barriers and increase accessibility through automated

model fitting and diagnostic reporting.

7.1.1 Estimating overall difference: Integrating quantitative & qualitative insights

The Rasch approach yielded a single measure - Total Intensity Measure (TIM) for
each sample using observable ratings across several selected sensory attributes.
This measure represents the latent variable of Overall Difference. While post hoc
tests produced conclusions similar to the traditional DFC overall difference test,
the Rasch method offered enhanced clarity by not only helping to focus assessor
attention on critical attributes of interest, but also generating valuable qualitative,

diagnostic insights such as:

= Revealing the relative perceptibility of different attributes using the Wright map,
indicating which attributes were most easily and prominently perceived, and
which were the least noticeable to assessors across all samples.

= |dentifying the key drivers of the perceived product differences using OUTFIT
Mnsq statistics, highlighting attributes that contributed most reliably to sample
discrimination, and

= Clarifyingwhether observed differences stemmed from true sample variation or
from panel inconsistency and assessor confusion, also through the OUTFIT

Mnsq statistics for attributes.

Previous studies have attempted to enrich the DFC method either by targeting

specific attributes (Higgins & Hayes, 2020; Cela et al., 2023), or by incorporating

open comment sections or CATA questions for qualitative insights (Rogers, 2017;

Compusense, 2020). However, the proposed Rasch approach delivers more

comprehensive, integrated quantitative and qualitative insights in a single,

streamlined analysis, eliminating the need for multiple, separate tests.

Furthermore, ANOVA-based methods operate at an aggregate level, and do not

account for individual rating behaviours (Naes, 1990; Romano et al., 2008; Naes et
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al., 2010; Hannum et al., 2019). While ANOVA can detect differences between
samples and assessors' overall discriminatory ability, it cannot pinpoint which
assessors struggled with specific attributes or identify sources of disagreement at
the individual level. In contrast, Rasch modelling, accounts for individual rating
styles by adjusting for severity or leniency biases and provides attribute-level fit
diagnostics (e.g., OUTFIT Mnsq) that help distinguish true product differences from
those driven by assessorinconsistency or confusion. This enhanced interpretability

supports:

=  More targeted assessor training based on areas of inconsistency or confusion.
= Elimination of redundant or non-discriminative attributes, and
= A sharper focus on key drivers of product differences during analysis and

reporting.

Finally, response dependency analyses revealed patterns of co-variation among
attributes, which may suggest potential relationships such as ingredient
interactions or attribute synergies perceived by the assessors. While these
correlations do not establish causation, they offer valuable starting points for
further investigation and can inform product development efforts, providing useful

cues for product formulation, optimisation, and quality control.

7.1.2 Comparing rating behaviours of trained and untrained assessors

Regarding individual variability (outlined in Table 2.1), results from Chapter 5
confirmed that trained panels are generally more sensitive to product attributes and
consistent in their ratings. The trained panel in this study consisted of expert
assessors with extensive sensory profiling experience for a global chocolate
manufacturer. However, even the experts occasionally exhibited inconsistencies.
Their tendency to give more conservative ratings, as observed with the Orange
flavour attribute, is hypothesised to reflect the cumulative influence of feedback

received over multiple prior training sessions (Castura et al., 2005; Raithatha &

Rogers, 2018). Notably, the panel had not received specific training on chocolate-
orange spreads prior to this study, which may have contributed to their inaccurate

ratings for Orange flavour in the chocolate spread samples. This aligns with Chollet
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et al. (2005) and Ares and Varela (2017), who argue that the perceptual acuity of

trained assessors does not necessarily generalise to stimuli outside their training.

In examining scale-use bias, a well-documented challenge in sensory profiling

(Nees, 1990; Romano et al., 2008), the MFRM in this study adjusts for idiosyncratic

scale usage (level effects), but still captures individual deviations through residual
fit statistics. Assessor OUTFIT Mnsq identified various scale-use biases: overfitting
assessors showed range restriction or central tendency, while underfitting
assessors exhibited erratic behaviour or extreme responses. Untrained panels
predominantly displayed high variability, reflecting differing experience levels and
lower sensitivity to some attributes. Chapter 6 highlighted instances, where the lack
of a shared frame of reference for scaling among untrained assessors, led to
inconsistent interpretations of complex attribute descriptors like Creaminess and
Homogeneous, similar to inconsistencies in attribute understanding and scale use

reported by Antmann et al. (2011) and Ares et al. (2011).

As observed by Worch et al. (2010) and Xiangli et al. (2024), the trained and

untrained panel in Chapter 5 generally produced similar directional results (as
shown on the Wright maps). However, while there was a significant difference
between at least one of the samples for the trained panel, this was not the case for
the untrained panel, as their internal inconsistencies (i.e. the variability effect from
crossover interactions within themselves), resulted in the loss of discrimination

(Stone et al., 2012). The Rasch model corrected for this internal variability, filtering

it out as unsystematic noise rather than meaningful differences. This demonstrates
the model’s strength in objectively managing variability, albeit conservatively, such
that only sufficiently systematic differences, beyond severity or leniency in scale

use, are deemed reliable. Raithatha and Rogers (2018) noted that panel results

must be consistent enough for the panel mean to represent genuine product

differences.

In business contexts, the Rasch models’ objectivity is advantageous. Another
instance from Chapter 6 was how traditional ANOVA on raw scores indicated a
significant difference in Colourintensity, including assessor and interaction effects.
In contrast, the Rasch model, after adjusting for scale-use effects, found no

meaningful product differences, aligning better with DFC results. This instance
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highlights how the conventional approach to analysing aggregated sensory data can

be inefficient.

That said, in agreement with Ares and Varela (2017), Meiselman (2013), and Barton

et al. (2020), the choice between trained and untrained assessors should be
context-dependent. Trained panels are not infallible, and untrained assessors,
while lacking consistency, bring valuable familiarity with the product of interest.
When combined with Rasch-based adjustments for individual rating style,
untrained panels canyield consumer-relevantinsights and effectively substitute for
trained panels, offering significant resource savings, by reducing the need for
extensive training in some industrial settings. Therefore, untrained assessors can
represent a practical and valid option in many cases, especially when resource
constraints or the nature of the product evaluation make trained panels less

feasible.

7.1.3 Diagnostic insights into the use of rating scales

This study employed a category-labelled (ordinal) scale, whose anchors were
adapted from the Labelled Magnitude Scale (LMS). The rationale was to provide
well-established intensity descriptors while maintaining the simplicity of
categorical rating, and to leverage the Rasch model's ability to convert ordinal
scores to interval measures. The LMS anchors were chosen to enhance
discriminative capacity and prevent ceiling effects. However, no specific training on
the use of the scale in this study was provided for either of the panels. Additionally,
this study did not empirically compare the adapted LMS format against traditional
category labels or unstructured line scales to determine whether it actually

improved usability or discrimination.

Wright maps generated across all studies visualised individual scale categories as
threshold ranges, indicating transition points between rating categories. Slightly
unequal distances between adjacent categories, widening toward the extremes,

are characteristic of category-ratio scales like the LMS (Green et al., 1993), the Borg

Scale (Borg, 1982), and the generalised Labelled Magnitude Scale (gLMS)

(Bartoshuk et al., 2005). Notably, the end category “Strongest imaginable oral

sensation” was the least used across all studies. Prior research by Schifferstein
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(2012) and Hayes et al. (2013) has highlighted that untrained assessors often
struggle with abstract anchors like “strongest imaginable”, resulting in scale
compression and underuse of the upper categories. Interestingly, the trained panel
also underutilised the “extremely strong” and “strongest imaginable” upper
categories while consistently using more middle categories. Given the lack of scale
use training, this pattern likely reflects the actual intensity range of the product
attributes, or the trained panel’s unfamiliarity with the LMS scale, as they were more
accustomed to unstructured line scales. This demonstrates that sensory training
does not necessarily generalise across different scale formats, highlighting the

need for scale-specific familiarisation even with experienced panels.

The scale category diagnostic information produced by the MFRM proved valuable for
identifying these usage patterns. The model successfully identified redundant
categories (such as the "Strongest Imaginable" category across all three studies) and
revealed patterns in scale use that inform both scale refinement and training needs.
However, whether the adapted LMS format actually enhanced discrimination
compared to traditional labels or reduced rating variability compared to line scales

cannot be determined from this study, as comparative data were not collected.

For manufacturers, the Rasch approach can support the design of long-term
sensory quality programs, by helping to optimise rating scales. In this study, the
MFRM allowed ordinal category scales to be converted to interval-level measures
while providing diagnostic insights into how assessors actually applied the scale.
Rasch analysis adjusts for individual differences in how assessors interpret and
apply scale categories (in terms of severity and leniency), reducing, but not
eliminating, the need for intensive training to ensure consistent attribute
understanding and rating behaviour, which remains a persistent challenge in

sensory and consumer research (Kemp et al., 2018).

Ultimately, the Rasch-based framework aligns with Meiselman's (2013) call to

prioritise efficiency and usability of sensory rating scales, over ongoing debates
about whether a scale is inherently “good” or “bad”. However, this study
demonstrates that even with Rasch calibration, scale design choices, particularly
anchor terminology and the provision of scale-specific training, matter for practical

application, and warrant systematic empirical investigation in future research.
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7.2 Limitations

The studies presented in Chapters 4 to 6 demonstrated the diagnostic capabilities
of the MFRM across different panel types and product contexts. Several limitations

warrant consideration when interpreting findings and planning future applications.

Absence of instrumental verification

Across all studies, no instrumental analysis was conducted to verify sensory
attributes. Tests such as headspace GC-MS could have confirmed volatile
compound profiles underlying perceived aroma and flavour attributes (e.g., orange,
herbal, cooked tomato), HPLC or titration methods could have quantified non-
volatile compounds contributing to taste perceptions such as sweetness (sugars),
sourness (acids), and saltiness (sodium content), texture analysis and rheometry
could have verified structural properties such as viscosity in chocolate spreads and
tomato soups or sponginess in Jaffa cakes, and particle size analysis could have
confirmed perceptual differences in smoothness of the soups. This limits the ability
to distinguish genuine product variation from perceptual variation or measurement
error. While the MFRM provides robust measurement of perceptual differences,
conclusions about the physical product characteristics underlying those

differences remain interpretations rather than instrumentally verified properties.

Model assumptions and validity

The validity of Rasch model-derived insights depends on key assumptions being met.
The model estimates a single latent “Overall Difference” variable, which assumes all
attributes contribute to a unified sensory dimension (unidimensionality). When
products exhibit opposing attribute intensities, as observed with Brand B in Chapter
5 (the only sample with no added orange flavouring, resulting in low Orange flavour
but high Milky flavour ratings compared to other samples), this assumption may be
violated, causing cancellation effects on the logit scale that mask true product
differences. Future applications should carefully select attributes that align along a
coherent sensory dimension. When one product among those being compared has a
distinctly different attribute profile, preliminary examination of raw data and attribute
patterns can inform whether a unidimensional overall difference measure is

appropriate, particularly when using untrained or inconsistent panels.
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Additionally, fit statistics are benchmarked against the response patterns within a
panel, not external standards. Acceptable fit in poor-quality panels (such as the
untrained panels in Chapter 5 and 6) reflects relative consistency within a weak
reference group, not good absolute performance. Fit statistics must therefore be

interpreted alongside raw data visualisations (Myford & Wolfe, 2004), particularly

when panel baseline performance is inconsistent.

Test design and presentation differences

Differences in test structure between DFC and TIM should be considered when
comparing results. The DFC's comparative design with a physical reference present
facilitates detection of perceived differences and provides an external anchor for
consistent judgment. TIM's monadic presentation requires assessors to rate
attributes independently using internal mental references. These design differences
may have contributed to differences in separation, reliability, and discrimination,

independent of the analytical approaches themselves.

Rating scale design and training

No panel received specific training on the category scale with anchor labels adapted
from the LMS. This study did not empirically compare the adapted LMS format against
traditional category labels or unstructured line scales. The persistent underuse of the
“Strongest imaginable” category across all panels suggests this abstract anchor was
problematic regardless of training level. However, whether alternative scale formats
would have improved usability, reduced rating variability, or enhanced discrimination

cannot be determined without comparative data.

Aninteresting area for future research would be examining how the MFRM performs
with rating scales using relative anchors, commonly employed in QDA settings, and

across other scale formats. Meilgaard et al. (2025) emphasise the importance of

determining how many scale categories are needed to characterise attribute

intensities, which MFRM category diagnostics can empirically evaluate.

Panel quality and diagnostic clarity
MFRM diagnostic value scales with panel quality. The trained panel yielded highly
informative diagnostics, while the untrained panels exhibited high variability that

obscured patterns and made it difficult to isolate problematic assessors. Even the
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selected subset of better-performing assessors in Chapter 6 (n=17 from n=54)
displayed residual inconsistency likely due to limited attribute and scale
understanding. While the MFRM could potentially identify relatively stable performers
within untrained groups for recruitment purposes, some minimum familiarisation with

sensory methods and terminology would enhance diagnostic utility.

Experimental design factors also could have influenced panel performance. In
Chapter 5, untrained assessors completed evaluations in a single session without
rest intervals, likely contributing to fatigue and carryover effects. The absence of
incentives may have further reduced engagement. These represent readily

addressable constraints in future studies.

7.2.1 Practical implementation considerations

Several practical questions remain unaddressed, including decision rules for fit
statistics-based interventions, cost-benefit analysis in industrial settings, and
integration with consumer preference data. As discussed in previous chapters,
implementation requires specialised software and training in Rasch modelling
principles, which may present barriers to adoption. While this thesis demonstrates
MFRM's capabilities in research settings, validation within an established practical
quality control setting, could demonstrate greater benefits, and remains a valuable

direction for future research.

7.3 Knowledge contribution

This thesis provides several contributions to the use of the Many-Facet Rasch Model
(MFRM) in sensory difference testing. While previous work has applied MFRM to
estimate latent variables such as overall liking or sensory quality, this research
extends its application to modelling the overall difference between products based
on intensity ratings of multiple sensory attributes. Chapters 4 to 6 demonstrate that
the Rasch-derived Total Intensity Measure (TIM) can detect product differences
while also indicating which attributes contribute most strongly to those differences
and the relative perceptibility of different attributes. This helps address an
established limitation in sensory methodology, where existing approaches either
focus on single attributes, provide overall metrics without diagnostic detail, or

require multiple separate analyses to obtain a full picture.
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The research also examines how panel expertise influences the quality and
interpretability of MFRM diagnostics. Chapter 5 shows that trained panels produce
results that support detailed interpretation of both product and assessor patterns.
In contrast, Chapters 4 and 6 show that untrained panels introduce greater
variability, which can make some diagnostics more difficult to interpret. An
additional observation is that when products differ on opposing attributes and
untrained assessors apply ratings inconsistently, the resulting latent difference
estimates can show cancellation effects that reduce the apparent magnitude of
product differences, with important implications for attribute selection, panel

composition, and study design.

A practical framework for applying MFRM in sensory difference testing across
different panel types and contexts is also proposed, specifying when and how the
method should be applied based on considerations such as panel type, product
complexity, and diagnostic needs. By combining Wright maps, category diagnostics,
fit statistics, and residual patterns, the framework supports an integrated approach
to interpreting product differences, assessor performance, attribute functioning, and
scale use. The model's adjustment for systematic differences in assessor severity
helps separate genuine performance inconsistencies from individual differences in

rating style (i.e., severe or lenient raters).

Additionally, the findings demonstrate how MFRM can provide both measures of
overall product difference and insight into the structure and reliability of the
underlying data. The ability to trace inconsistent or unexpected findings back to
specific assessors or attributes can support more informed interpretation in
product development and quality control contexts. By identifying conditions where
the method performs well and those where caution is warranted, the thesis offers
realistic guidance for integrating MFRM into both research and applied sensory

evaluation contexts.

7.4 Recommendations and future perspectives

Building on the findings and discussions presented throughout this thesis, the
following recommendations highlight practical improvements and areas for further

investigation to enhance Rasch modelling in sensory evaluation.
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7.4.1 Review of mean comparisons with Rasch measures

As discussed in Chapter 4, certain mean comparison tests may be unsuitable for
analysing Rasch measures, without explicitly modelling interaction effects. The
MFRM accounts for main effects across modelled facets and treats unexpected
variations as residuals, which are reflected in fit statistics such as OUTFIT Mnsq

(Linacre, 1995). Consequently, tests like the Friedman test, which assume

interaction structures, may be redundant or misleading in this context.

Instead, the Kruskal-Wallis test was found to be more appropriate for comparing group
means on Rasch-transformed measures, as it does not require modelling of
interactions and aligns better with the structure of Rasch-derived data. Given these
considerations, further research comparing parametric and non-parametric statistical
methods for analysing Rasch outputs, could improve methodological transparency,

and guide researchers in selecting appropriate tools for post hoc comparisons.

7.4.2 Use of the Partial Credit Rasch Model (PCM) for cross-panel data

In sensory evaluation, it is not uncommon for different panels within the same
organisation, often located at geographically distinct sites, to use different rating
scales when evaluating the same product. These variations may arise from local
practices, differences in paneltraining, or historical preferences. Such inconsistencies
present challenges in data analysis when comparing or consolidating results across

panels, as traditional methods typically assume uniform rating structures.

The Partial Credit Model (PCM), described in Table 2.2. Summary of Rasch Models,
addresses this issue by providing the flexibility to model each attribute using the
unique rating scale employed by each panel, accommodating differences in scale
structure. Unlike the Rating Scale Model (RSM), which was used in this study and
assumes a consistent threshold structure across all attributes and assessors, PCM
can accommodate variability in both the number of scale categories and the location
of category thresholds. This flexibility makes it particularly well-suited for harmonising

data from panels that use different rating formats.

Applying PCM enables calibration of responses from diverse panels onto a common
scale, facilitating valid comparisons while preserving the integrity of each panel’s

original scale. This approach offers a practical method for integrating sensory data
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from multiple sources, without enforcing rigid standardisation. It can help balance
flexibility with comparability, thereby supporting the generation of more reliable

insights to inform product development, quality control, and consumer research.

7.4.3 DIF Analysis for panel proficiency and cross-cultural studies

Monitoring panel performance over time and across different assessor groups is
essential for ensuring data quality and maintaining consistent product evaluation
standards. Differential Item Functioning (DIF) analysis within the Rasch framework,
provides a reliable method for detecting whether specific attributes are interpreted
differently by subgroups, even when those groups have similar underlying perceptual

sensitivity.

As demonstrated by Myford and Wolfe (2009), Eckes (2023), Shin and Lee (2024),

and Lamprianou (2025), MFRM can incorporate time, culture, location, or assessor

experience as additional facets. This allows systematic differences to be visualised
via Wright maps, offering valuable insights into rater drift and panel dynamics. These
capabilities make MFRM particularly useful for both ongoing panel proficiency

assessment, and for investigating cultural variability in sensory perception.

In cross-cultural contexts, DIF analysis plays a critical role in validating sensory data
from diverse populations. Sensory experiences are shaped by cultural factors,
including culinary norms, linguistic framing, and varying familiarity with product
categories, which can influence how attributes are perceived and rated (Pangborn et

al., 1988; Lee & Lopetcharat, 2017; Hort, 2024; Dupas de Matos et al., 2025). DIF

helps uncover latent response biases or semantic mismatches that may arise when
comparing panels or test protocols across regions. Persistent DIF in certain
attributes may signal a need to adapt scale anchors, redefine terms, or adjust
assessor training, to ensure that observed differences reflect genuine sensory

perception rather than cultural misalignment.

DIF analysis thus can be a powerful diagnostic tool, enabling researchers and
industry practitioners to maintain the integrity of sensory evaluations, while
expanding testing across borders or evolving panel compositions. Its application can

ensure that decisions derived from sensory data, whether for product reformulation,
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quality benchmarking, or market expansion, are based on valid and comparable

measurements across global assessor groups.

7.4.4 Application guidance across panel types

The findings across Chapters 4 to 6 demonstrate that the MFRM offers different
levels of diagnostic utility depending on panel type and training level. This section
provides practical recommendations on when and how to apply the method across

different sensory evaluation contexts.

= Specialist Trained Panels (Industrial QC panels)

Specialist trained panels represent the optimal context for MFRM application due to
their product-specific expertise and consistent exposure, which provide the stable
reference framework necessary forinformative diagnostics. Chapter 5 demonstrated
that trained assessors provided clearer sample discrimination and more stable rating
patterns compared to the untrained panel, despite some residual inconsistencies.
The MFRM enables ongoing performance monitoring through fit statistics and Wright
maps, validates whether new or modified attributes are interpreted consistently by
assessors, and adjusts for individual severity differences without requiring identical

rating standards.

For multi-site operations where different trained panels use varying rating scales,
the Partial Credit Model (section 7.4.2) enables harmonisation of data across
locations by calibrating responses onto a common scale while preserving each
panel's original scale structure. DIF analysis (section 7.4.3) complements this by
monitoring panel drift over time and detecting systematic differences between

sites, supporting decisions about recalibration needs or protocol standardisation.

These capabilities are particularly valuable for specialist panels, where maintaining
consistent standards across sites and over time is critical for quality assurance.
Recommended applications include routine quality monitoring, shelf-life testing,

reformulation validation, and cross-site comparisons.

= General Trained (Research) Panels
Panels with sensory training but less specialised expertise conduct evaluations
across different product categories and projects, requiring periodic recalibration.

MFRM diagnostics are particularly valuable for these panels in identifying when
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recalibration is needed and pinpointing specific assessors or attributes showing
drift or inconsistency. The model helps distinguish genuine performance issues

from systematic severity differences that do not require intervention.

DIF analysis detects whether subgroups (e.g., assessors with different experience
levels or training backgrounds) interpret attributes differently as new products are
introduced, informing decisions about where training efforts should focus. Raw
data visualisation alongside model outputs is essential for accurate interpretation.
Recommended applications include early-stage product formulation testing,
comparative testing across product categories, and monitoring performance as

panels transition between product types.

= Untrained and Consumer Panels

Consumer and untrained panels pose the greatest challenges for product
discrimination due to high inter-individual variability and inconsistent scale use. Fit
statistics in such groups reflect consistency relative to other poor-performing
assessors rather than ideal performance. However, MFRM offers distinctive value by
explicitly modelling the separate effects of consumers, products, attributes, and scale

steps, producing measurements adjusted for rater severity and erratic scale use.

DIF analysis is particularly valuable for subgroup comparisons, revealing whether
attributes or preference patterns function differently across demographic
segments, usage occasions, or cultural groups due to culinary norms, linguistic
differences, product familiarity, etc. This informs decisions about market
segmentation, scale adaptation, or attribute redefinition for global studies. For
categorical hedonic or intensity scales commonly used in consumer testing,
MFRM's scale diagnostics identify problematic response categories (such as
underutilised categories or item polarity i.e. when the interpretation of the scale is

reversed), supporting scale optimisation and questionnaire refinement.

Furthermore, the latent variable approach clarifies the relative contribution of each
sensory attribute to overall liking or perceived difference, even when consumers
cannot articulate these factors explicitly. This supports a measurement-based
understanding of consumer drivers of preference rather than relying solely on self-
reported reasons. Implementing MFRM effectively with untrained and consumer

panels requires careful attribute definition, maintaining identical attribute labels
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and scale anchors throughout the study, and sufficient sample sizes to support

robust facet estimation and DIF detection.

For semi-trained or familiarised panels with basic orientation to sensory methods,
MFRM may additionally serve as a screening tool to identify stable performers for
potential recruitment to trained panels, though findings should be interpreted

cautiously given the inherent variability in such groups.

= Academic and Exploratory Panels (Convenience Samples)

Academic and exploratory research settings often rely on student cohorts, opportunity
samples, or mixed consumer participant groups, presenting unique challenges for
reliable sensory evaluation. These assessor pools typically lack training, exhibit
heterogeneous sensory acuity, and vary widely in task comprehension and familiarity
especially with the novel foods and ingredients commonly investigated in academic
research settings. Within these contexts, MFRM can explicitly model assessor-related
inconsistency, separating it from genuine product differences, and enabling more

defensible interpretation of results from these non-standard panels.

DIF analysis is also useful for identifying subgroup patterns, such as differences based
on familiarity, dietary orientation, or sensory sensitivity, and for clarifying whether
observed product differences are generalisable or segment specific. This is particularly
valuable for emerging product categories such as alternative proteins, insect-based
foods, novel fermented ingredients, or products using novel processing technologies,
where interpretation and acceptance vary widely. Effective application requires clear
attribute definitions, justified subgroup classifications, some task familiarisation, and
careful attribute selection to minimise construct-irrelevant variance and ensure stable

facet estimation.

7.4.5 Software development and usability

This recommendation addresses two areas: improvements to existing Rasch
software, such as FACETS, and the integration of Rasch modelling tools into

mainstream sensory analysis platforms.

= Enhancing the FACETS Software: FACETS could be improved by incorporating
posthoc sample comparison features directly into the interface, allowing sensory

practitioners to streamline analysis and interpretation. Additionally, enhancing
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the visual design of Wright maps would make them more suitable for business

presentations and stakeholder discussions, increasing their practical impact.

= Integration into Sensory Software Platforms: While MFRM is powerful, its
adoption is limited by the need for specialised software and training. Embedding
Rasch modelling functionalities into existing sensory analysis software, supported
by simplified user interfaces and clear explanations would significantly broaden
access to this method. Although most leading Rasch software packages are paid,

open-source implementations are available (Rasch Measurement Transactions,

2025). Additionally, Wind and Hua (2021) and Debelak et al. (2022) offer detailed

proceduralaccounts using R, which can serve as a foundation for integrating Rasch

diagnostics into sensory and consumer research programmes.

7.5 Conclusion

This thesis has shown that the Many-Facet Rasch Model (MFRM) can be used to quantify
overall product difference as a latent variable while also providing diagnostics for
assessors, attributes and scale functioning. Across Chapters 4 to 6, the Total Intensity
Measure (TIM) approach detected product differences and offered insight into how
panel expertise and attribute structure influence the clarity of the resulting measures.
The findings also indicate that inconsistent rating behaviour and opposing attribute
profiles can mask genuine product differences through cancellation effects on the
latent scale, particularly with variable untrained assessors. The research demonstrated
that with adequate panel quality and systematic attribute selection, the Rasch-based
approach enables more interpretable comparisons by converting responses to a

common interval scale while accounting for systematic assessor differences.

The framework developed in this thesis complements recent applications (Camargo &

Henson, 2015b; Ho, 2019; Li, 2019; Chalk, 2020; Mile et al., 2021; Wu et al., 2021) of the
MFRM in sensory and consumer research and provides a basis for more informed use
of the approach in sensory difference testing. As sensory evaluation continues to
involve a wider range of populations and testing contexts, further work in operational
quality control settings with trained panels, with alternative scale formats and with
more diverse panels, would help clarify the practical boundaries of this approach and

strengthen understanding of when it offers the greatest value to sensory practice.
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Appendices
Appendix A : Ethics Approval Letters

A.1 Jaffa cakes study ethics approval (AREA FREC 2023-0433-496)

13 April 2023

Dear Nnenna Ariakpomu,
0433 - Application of Rasch Analysis in Sensory Difference Testing
NB: All approvals/comments are subject to compliance with current University of Leeds and UK Government advice regarding the Covid-19 pandemic.

I am pleased to inform you that the above research ethics application has been reviewed by the Business, Earth & Environment, Social Sciences (AREA
FREC ) Committee and on behalf of the Chair, I can confirm a favourable ethical opinion based on the documentation received at date of this email.

Please retain this email as evidence of approval in your study file.
Please notify the committee if you intend to make any amendments to the original research as submitted and approved to date. This includes recruitment methodology;

all changes must receive ethical approval prior to impl ion. Please see https:/ris.leeds.ac.uk/research-ethics-and-integrity/applying-for-a |
the Research Ethics Administrator for further information (EthicsEnquiries@leeds.ac.uk) if required.

or contact

Ethics approval does not infer you have the right of access to any member of staff or student or documents and the premises of the University of Leeds. Nor does it

imply any right of access to the premises of any other org; luding clinical areas. The ittee takes no responsibility for you gaining access to staff, students
and/or premises prior to, during or following your research activities.
Please note: You are expected to keep a record of all your approved d ion, as well as d such as sample consent forms, risk assessments and other

documents relating to the study. This should be kept in your study file, which should be readily available for audit purposes. You will be given a two week notice period
if your project is to be audited.

It is our policy to remind everyone that it is your responsibility to comply with Health and Safety, Data Protection and any other legal and/or professional guidelines there
may be.

I hope the study goes well.
Best wishes
Ms Rachel De Souza, Lead Research Ethics & Governance Administrator, Secretariat

On behalf of Dr Judith Hanks, Chair, Joint AREA FREC
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A.2 Chocolate spreads study ethics approval (MEEC 15 -003)

>I-I’I

Leeds, LS2 SNL

Tel: 0113 343 4873 UNIVERSITY OF LEED

Email: ResearchEthics@leeds.ac.uk

Dr Peter Ho

School of Food Science and Nutrition
University of Leeds

Leeds, LS2 9JT

MaPS and Engineering joint Faculty Research Ethics Committee (MEEC FREC)
University of Leeds

4 May 2017
Dear Peter

Title of study Introduction to Food Product Development

Ethics reference MEEC 15-003 amendment Oct 2016

Module references FOO0D2192; FOOD3371; FOOD5472M;
FOOD5455M;FOOD3050; FOOD5071M

| am pleased to inform you that the amendment to the application listed above has
been reviewed by a representative of the MaPS and Engineering joint Facuity
Research Ethics Committee (MEEC FREC) and | can confirm a favourable ethical
opinion as of the date of this letter. The following documentation was considered:

Document Version| Date
MEEC 15-003 amendment May 2017 Amendmentv3_form MEEC_003.doc 1 04/05/17

MEEC 15-003 amendment May 2017
Application_form_for_taught_student_modules__block_approval_food update2017.doc

MEEC 15-003 amendment Oct 2016 Amendment_form MEEC_003.doc 1 05/10/16
MEEC 15-003 amendment Oct 2016

1 04/05/17

Application_form_for_taught_student_modules__block_approval_food update.doc L 0510116
MEEC 15-003 Application_form_for_taught_student_modules__block_approval_food.doc 2 09/10/15
MEEC 15-003 Focus group Consent Form food.docx 2 09/10/15
MEEC 15-003 Survey Consent Form food.docx 2 09/10/15
MEEC 15-003 Taste panel practical Consent Form food.docx 2 09/10/15
MEEC 15-003 Taste panel project Consent Form food.docx 2 09/10/15

Please notify the committee if you intend to make any further amendments to the
original research as submitted at date of this approval. All changes must receive
ethical approval prior to implementation. The amendment form is available at
http://ris.leeds.ac.uk/EthicsAmendment.

Please note: You will be given a two week notice period if your project is to be
audited. There is a checklist listing examples of documents to be kept which is
available at http:/ris.leeds.ac.uk/EthicsAudits.

We welcome feedback on your experience of the ethical review process and
suggestions for improvement. Please email any comments to
ResearchEthics@leeds.ac.uk.

Yours sincerely

Jennifer Blaikie
Senior Research Ethics Administrator, Research & Innovation Service
On behalf of Dr Dawn Groves, Chair, MEEC FREC
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A.3 Tomato soup study ethics approval (BESS+FREC - 2024 0433-2568)

o5

UNIVERSITY OF LEEDS

4 November 2024

Dear Nnenna,

Your research ethics application reference: 0433

Amendment reference number: BESS+ FREC - 2024 0433-2568

Your research project: Application of Rasch Analysis in Sensory Difference Testing

| am pleased to inform you that the above amendment application has been reviewed by the Business, Environment, Sccial Sciences (BESS+
FREC) Faculty Research Ethics Committee (FREC) which has issued a favourable ethical opinion based on the application submitted. Please
retain this email in your project file as it is evidence of the Committee's approval.

Matters you should note:

+ Ethics approval does not infer you have the right of access to any member of staff or student or documents and the premises of the University
of Leeds. Nor does it imply any right of access to the premises of any other organisation, including clinical areas. The Committee takes no
responsibility for you gaining access to staff, students and/or premises prior to, during or following your research activities.

It is your responsibility to comply with all relevant Health and Safety, Data Protection and other legal and professional requirements and
guidelines.

You are expected to keep a record of all your approved documentation, as well as documents such as sample consent forms, risk
assessments and other documents relating to the research project. This should be kept in your project file.

Audits are undertaken on app d ethics licati Your project could be chosen for such an audit. You should therefore ensure your project files are kept up to
date and readily available for audit purposes. You will be given a two week nofice period if your project is selected.

Please always include the above research ethics application reference and Amendment request reference in any correspondence with the
Research Ethics team.

.

.

If you need to make amendments to the original research project as submitted, you are expected to seek approval from the Committee before

taking any further action. Changes could |nc|ude (but are not Ilmlled to] the project end date, prqect deS|gn or recruitment methodology, or study
documentation. Please go to htips: a
Research Ethics team for further |nformat|on alEesaaLQh_E]‘.hm

| hope your research project continues to go well.
Yours sincerely,
Ms Taylor Haworth, Phoenix Lead, Research Ethics, Secretariat. University of Leeds

On behalf of Dr Judith Hanks, Chair, BESS+ FREC
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B.1 Jaffa Cakes Sample Content

Appendix B : Composition of Samples

Table B 1. Sample composition for the three Jaffa cake samples in the Chapter 4 study

Cocoa, and Milk flavour

\Attributes of Interest Content per 100g Brand A Brand B Brand C/Reference
Energy (Kcal) 377 385 388
Orange Flavour Total Fat (g) 8.1 9 9.4
Sweetness Saturates(g) 4 4.8 5.1
Cocoa Flavour Total Carbs (g) 69.8 70 70
Milky Flavour Sugars (g) 50.2 46 51.5
Saltiness Fibre (g) 24 2.1 2.2
Protein (g) 5 4.6 4.7
Salt (g) 0.27, 0.2 1.9

ORANGE FLAVOURING

Concentrated Orange Juice X 1% 1%
Comparison of Orange,  |Orange Juice Equivalent 8% X X

Bicarbonate, Disodium Diphosphate, Sodium Bicarbonate),
Dried Whole Egg, Acidity Regulator (Sodium Citrates),
Natural Orange Flavouring, Colour (Curcumin), Emulsifier
(Soya Lecithin), Product containsthe equivalent of 8%
Orange Juice

Content Dark Chocolate 19% 22%) 22%
ADDED MILK CONTENT
Milk as Butter oil X X
Glucose-Fructose Syrup, Dark Chocolate (19%) [Sugar, Glucose-Fructose Syrup, Dark Chocolate (22%)  |Glucose-Fructose Syrup, Dark Chocolate
Cocoa Mass, Vegetable Fats (Palm, Shea), Butter Oil (Milk), [[Sugar, Cocoa Mass, Cocoa Butter, Emulsifier (22%)(Sugar, Cocoa Mass, Cocoa Butter, Emulsifier
Cocoa Butter, Emulsifiers (Soya Lecithin, E476), Natural (Soya Lecithins)], Sugar, Fortified Wheat Flour (Soya Lecithins)), Sugar, Wheat Flour (Wheat Flour,
Flavouring], Sugar, Flour (Wheat Flour, Calcium, Iron, [Wheat Flour, Calcium Carbonate, Iron, Niacin Calcium Carbonate, Iron, Niacin, Thiamin),
Niacin, Thiamin), Whole Egg, Water, Dextrose, (B3), Thiamin (B1)], Egg, Dextrose, Glucose Syrup, |Pasteurised Egg, Dextrose, Glucose Syrup,
Concentrated Orange Juice, Glucose Syrup, Vegetable Oils [Concentrated Orange Juice (1%), Gelling Agents  |Concentrated Orange Juice (1%), Gelling Agents
(Sunflower, Palm), Humectant (Glycerine), Gelling Agent  |(Citric Acid, Pectins), Humectant (Glycerol), (Pectin, Citric Acid), Humectant(Glycerine),
List of Ingredients (Pectin), Acid (Citric Acid), Raising Agents (Ammonium Rapeseed Oil, Raising Agents (Ammonium Sunflower Oil, Raising Agents (Ammonium

Carbonates, Diphosphates, Sodium Carbonates),
Acidity Regulators (Sodium Citrates, Citric Acid),
Flavourings, Colour (Curcumin), Wheat Bran

Bicarbonate, Disodium Diphosphate, Sodium
Bicarbonate), Acidity Regulators (Sodium Citrate,
Citric Acid), Flavouring, Colour (Curcumin), Wheat
Bran.

X indicates that an ingredient was not added to the corresponding sample. Other ingredients that may have influenced differences in product attributes across the samples are written in bold.
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B.1.1 Sample Appearance and Presentation

Figure B 1. Photo of Jaffa cake samples showing variation in appearance.
Brand A exhibits greater variation in shape compared to Brands B and C. Samples were labelled with 3-digit codes during the study.

Repetition 1

/ Presentati jon 1

Presentation 2

esentation 3

e )<
(@) (®

XXX:
YY:

DFC Test

‘Repetition 2

Presentation 1

<‘><

Presentation 2

e (®

tation 3

(07 () (@) (@)

\\\ /‘/

(®) (R

Repetition3

Presentation 1

Presentation 2

(®)(®

Presentation 3

RR:
XXs

®) (9

YYYs

VS

Attribute Rating Test

Repetition 3
Presentation 1

<$f>

Presentation 2

eeeeeeeee

<9>

Figure B 2. Illustration of the presentation of Jaffa cake samples in the Difference from Control (DFC) and Attribute Rating (AR) tests.
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B.2 Chocolate Spread Sample Content

Table B 2. Sample composition for the three chocolate spread samples in the Chapter 5 study

Comparison of

Attributes of Interest Content per 100g Brand A Brand B Brand C

Energy (Kcal) 568 572 492
Orange Flavour Total Fat (g) 35.8 38 39
Sweetness Saturates(g) 14.5 8.7 9.1
Cocoa Flavour Total Carbs (g) 56.6 54 50
Milky Flavour Sugars (g) 54.7 52 <0.5
Saltiness Fibre (g) 2 1.7 4.4

Protein (g) 3.6 3.8 3.1

Salt (g) 0.13 0.1 <0.01

ORANGE FLAVOURING
Orange Extract v X X
Natural Orange Flavouring X X v

Extract, Flavouring

Reduced Cocoa (5%), Whey Powder
(Milk), Emulsifier: Sunflower
Lecithin, Flavouring

Fat Reduced Cocoa Mass 12% 5% 14%
Orange, Cocoa, and Milk Ch late C b -y
Milk flavour Content ! ocoate Lrum X 0 X
MILK CONTENT
Whey Powder 5% v X
Lactose v v X
Full Cream Milk Powder X 7% X
Sugar, Palm Oil, Fat Reduced Cocoa Sugar, Rapeseed Oil, Lactose (Milk), | Natural Sweetener
Powder (12%), Whey Powder (Milk) Palm Oil, Milk Chocolate Crumb (Maltitol), Vegetable Oil
(5%), Lactose (Milk), Hazelnuts, (7%) (Milk, Sugar, Cocoa Mass), Full | (Rapeseed, Sustainable
List of Ingredients Emulsifier (Sunflower Lecithin), Orange | Cream Milk Powder (7%), Fat Palm), Fat Reduced

Cocoa 14%, Emulsifier
(Sunflower Lecithin),
Natural Orange Flavouring

v indicates that an ingredient is present in the sample, but its quantity was not specified on the label, while X indicates that the ingredient was not added to the corresponding sample. Other ingredients
that may have influenced differences in product attributes across the samples are written in bold.
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B.3 Tomato Soup Sample Content

Table B 3 Sample composition for the three tomato soup samples in the Chapter 6 study

Sample Content

Extra ingredients added to
base soup

Sample A Sample B Sample C/Control
BASE SOUP Cream of Tomato Cream of Tomato and Basil Cream of Tomato and Basil
Dried Chopped Basil 9% X X
Tomato passata X 3.8% X
Double cream 2% X X
Garlic granules X 6.3% X

List ofingredients in base soup

Tomatoes (89%), Water,
Modified Cornflour,

Sugar, Rapeseed QOil, Dried
Skimmed Milk, Salt, Cream
(Milk), Milk Proteins,
Acidity Regulator - Citric

Tomatoes (84%), Water, Basil,
Herbs, Modified

Cornflour, Sugar, Rapeseed Oil,
Dried Skimmed Milk, Salt, Cream
(Milk), Milk Proteins,

Acidity Regulator - Citric

Tomatoes (84%), Water, Basil,
Herbs, Modified

Cornflour, Sugar, Rapeseed Oil,
Dried Skimmed Milk, Salt, Cream
(Milk), Milk Proteins,

Acidity Regulator - Citric

Acid, Spice Extracts, Herb Acid, Spice Extracts, Herb Extract | Acid, Spice Extracts, Herb Extract
Extract
Sample A Sample B Control
i 7
495 387 692
Photos showing side and top views of ready-to-serve ‘ i

samples

"\

Attributes of Interest

Appearance Glossy appearance, Viscous appearance, Colour intensity, Herby appearance
Aroma Rich Aroma, Cooked tomato aroma, Pungent aroma

Mouthfeel Smooth mouthfeel, Homogeneous mouthfeel, Thick mouthfeel

Flavour Savoury flavour, Herbal flavour, Cooked tomato flavour, Creamy flavour

Taste Salty taste, Sour taste, Sweet taste, Aftertaste

X indicates that an ingredient was not added to the corresponding sample. Other ingredients that may have influenced differences in product attributes across the samples are written in bold.

g9¢
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Appendix C : Sensory Study Questionnaires

C.1 Jaffa cakes study questionnaire (RedJade)

Allergen Content

Wheat (Gluten)
Egg
Soya
Milk
= Please ensure you have read and understand the Participant Information

Sheet which was attached as a pdf in your appointment confirmation email
» Ask the researcher if you need further clarification about the study.

PARTICIPANT CONSENT

This study has been reviewed and approved by the Faculty Research Ethics Committee (AREA FREC) on
13/04/2023, ethics reference AREA FREC 2023-0433-496.

| confirm that | have read and understand the Participant Information Sheet (which
was attached as a pdf in my appointment confirmation email) explaining the above
study and | have had the opportunity to ask questions about the study.

| confirm that | am between 18 and 65 years old. | am not pregnant or lactating. | am
not ill or suffering from any underlying health condition. | am not currently taking any

medications.

I confirm that | am aware of and understand the statement of potential allergens and

=

Figure C 1. Questionnaire introductory page for Jaffa cakes study. Participants
must scroll through the entire consent form before they are able to select the “I
Agree, or | Decline” button.

Please taste each sample by taking a semi-circle shaped (half) bite.

1. First, taste the sample labelled "R"
2. Then taste the coded test sample.
3. Assess the overall sensory difference between the two samples.

Using the scale below, indicate the size of the difference between the coded test sample and R.

Barely Detectable
No Difference Difference Slight Difference Moderate Difference Large Difference Very Large Difference Extremely Different

0 1 2 3 4 5 6

Submitted

Noftify your server and they will provide you with your next sample.
Please drink some water to cleanse your palate before evaluating your next sample.

(This page will automatically reroute to the next questionnaire. Please do not close this page.)

Page will redirect in 15 seconds

Figure C 2. Screenshot of DFC test questionnaire for Jaffa cakes study. The blue
arrow signifies the transition to the next page.
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Please taste Sample 853 and and rate its intensity in these 5 attributes.
853
How strong is the Orange flavour ?
Strongest
Imaginable
Barely Very Extremely Oral
None Detectable Weak Moderate Strong Strong Strong Sensation
853
How strong is the Cocoa flavour?
Strongest
Imaginable
Barely Very Extremely Oral
None Detectable Weak Moderate Strong Strong Strong Sensation
853
How strong is the Milky flavour?
Strongest
Imaginable
Barely Very Extremely Oral
None Detectable Weak Moderate Strong Strong Strong Sensation
853
How strong is the Saltiness?
Strongest
Imaginable
Barely Very Extremely Oral
None Detectable Weak Moderate Strong Strong Strong Sensation
853
How strong is the Sweetness?
Strongest
Imaginable
Barely Very Extremely Oral
None Detectable Weak Moderate Strong Strong Strong Sensation

Figure C 3. Screenshot of attribute rating questionnaire for Jaffa cakes study. The
order of questions was randomised for each sample across all assessors.
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C.2 Chocolate spread study questionnaires (RedJade)

Welcome

The following is the Study Participant Agreement. Please indicate your acceptance of the terms and
conditions of the agreement by clicking the "I Agree" button at the bottom of the agreement.

STUDY PARTICIPANT AGREEMENT

You are being invited to participate in a research study titled 'Application of the Rasch Model on
Sensory Panels'. This study is being done by Victoria Gill from the University of Leeds.

The purpose of this research study is to determine how the Rasch model can be applied to different
sensory panels to improve panellist performance and will take you approximately 6 hours to
complete. Your participation in this study is entirely voluntary and can be withdrawn at any time
before the 31st December 2022 by emailing lI18vcg@leeds.ac.uk. You do not have to answer any
questions you do not want to.

We believe there are no known risks associated with this research study; however, as with any online-related
activity, the risk of a breach is always possible. To the best of our ability, your participation in this study
will remain confidential, and only anonymised data will be published. We will minimise any risks
by using Redlade software to anonymise results as they are created . Further information is available
via the University of Leeds.

By clicking the "l Agree" button below, | accept the terms and conditions of this agreement and
confirm | agree with the following points:

» | confirm that | have read and understood the above information explaining the research
project, and | have had the opportunity to as questions about the project

« | understand that my participation is voluntary and that | am free to withdraw without
giving any reason until 31st December 2022 and without there being any negative
consequences. In addition, should | not wish to answer any particular question or questions,
I am free to decline. Please contact Victoria Gill at 118vcg@leeds.ac.uk should you want to
withdraw.

s |l understand that members of the research team may have access to
my anonymised responses. | understand that my name will not be linked with the research
materials, and | will not be identified or identifiable in the report or reports that result from
the research.

s | understand that my responses will be kept strictly confidential

s lunderstand that the data collected from me may be stored and used in relevant future
research in an anonymised form

« lunderstand that relevant sections of the data collected during the study may be looked at
by individuals from the University of Leeds or from regulatory authorities where it is
relevant to my taking part in this research.

« | agreeto participate in the above research project

Figure C 4. Questionnaire introductory page and participant consent form for
chocolate spread study.
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Survey Created Using RedJade Software

- . i Questionnaire Page
Once you have verified the sample code, taste the sample focusing on the following:

= Orange flavour
* Sweet flavour

« Cocoa flavour

* Milk flavour

* Saltiness

Chew and swallow the sample before the countdown ends, and you move on to the next page.

1 How strong is the Orange flavour of the product you just tasted?

Strongest
Imaginable
Barely Extremely Oral
None detectable Weak Moderate Strong Very Strong Strong Sensation
2 How strong is the Sweetness of the product you just tasted?
Strongest
Imaginable
Barely Extremely Oral
None detectable Weak Moderate Strong Very Strong Strong Sensation
3 How strong is the Cocoa flavour of the product you just tasted?
Strongest
Imaginable
Barely Extremely Oral
None detectable Weak Moderate Strong Very Strong Strong Sensation
4 How strong is the Milky flavour of the product you just tasted?
Strongest
Imaginable
Barely Extremely Oral
None detectable Weak Moderate Strong Very Strong Strong Sensation
5 How strong is the Saltiness of the product you just tasted?
Strongest
Imaginable
Barely Extremely Oral
MNone detectable Weak Moderate Strong Very Strong Strong Sensation

6 Do you have any comments on {{sample_code}}?

Figure C 5. Screenshot of attribute rating questionnaire for chocolate spread study.
The blue arrow signifies the transition to the next page.
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C.3 Preview of test procedure for tomato soup sensory study

Your 1%t Test is the Attributes Intensity Rating Test

At your test session, you will receive:
¢ A unique assessor code: This code will be used throughout the study.
o A paper copy of the consent form: You will sign two copies, one for you to keep
and one for the researcher, who will also countersign it.
e A testinstruction document: Please read this document before we start the test

What to expect
Tasting Periods: There will be 3 tasting periods in this test, each assigned to a
different tab on the web browser.
« You will have a 5-minute break between each period.
« After completing a tasting period, the next one will be in the next tab
in your browser.

Servings: During each tasting period, you will receive 3 test samples presented
one at a time.

Sample Evaluation: Your task will be to evaluate and rate the intensity of several
sensory attributes for each sample in the following order:

1. Look: examine the sample at eye level and rate the intensity of the appearance
attributes.
2. Smell: Next, smell it and rate the intensity of the aroma attributes.
3. Taste: Finally, take three sips of the sample, one for each of the following
steps:
e First sip: Assess and rate what it feels like in the mouth
(mouthfeel/consistency/texture attributes).
e Second sip: Assess and rate what flavours you perceive (flavour attributes).
e Third sip: Assess and rate what it tastes like (taste attributes).

Sensory Attributes: A written description of the specific attributes to look for will
be provided during the test.

Remember to arrive on time to ensure we complete your test before the next
participant.

Thanks & see you there.

Figure C 6. Screenshot of the preview document for the AR test
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Your 2" Test is the Difference-from-Control Test

e The signed consent from the first session also covers this session, and you will
receive a test instruction document for this test. Please read this document before
we start.

e After the test, there will be a brief demographic questionnaire. Once you
complete it, you will have finished the study, and your gift voucher will be sent to
the email you used to book your appointment.

What to expect
Tasting Periods: There will be 3 tasting periods in this test, each assigned to a
different tab on the web browser.
¢ You will have a 5-minute break between each period.
e After completing a tasting period, the next one will be in the next tab in
your browser.

Servings: During each tasting period, you will receive 3 servings in sets of 2.
Each set will include:

e A control sample labeled "R"

e Atest-sample labelled with a 3-digit number.

Sample Evaluation: Your task will be to evaluate how different a test-sample is
from the control sample. Occasionally, a duplicate control sample will be included
among the test samples.

Remember to arrive on time to ensure we complete your test before the next
participant.

Thanks & see you there.

Figure C 7. Screenshot of the preview document for the DFC test
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C.4 Tomato soup study questionnaires (RedJade)

Allergen Content

Milk
Wheat (Gluten)

* Please ensure you have read and understand the Participant Information
Sheet which was attached as a pdf in your appointment confirmation
email.

* Ask the researcher if you need further clarification about the study.

PARTICIPANT CONSENT

This study has been reviewed and approved by the Business, Environment, and Social
Sciences Faculty Research Ethics Committee (BESS+ FREC) on 04/11/2024, with ethics
reference BESS+ FREC - 2024 0433-2568.

1 confirm that I have read and understand the Participant Information Sheet provided dated
17/10/2024 version number 4.0 explaining the above research project and I have had the opportunity
to ask questions about the project

1 confirm that I am between 18 and 65 years old. I am not pregnant or lactating. I am not 1l or
suffering from any underlying health condition. I am not currently taking any medications

1 confirm that I am aware of and understand the statement of potential allergens and the list of

=

Figure C 8. Questionnaire introductory page for tomato soup study. Participants must scroll
through the entire consent form before they are able to select the “l Agree, or | Decline”
button.

Assess the overall sensory difference between the samples.
Please consume all the contents in each sample container.

1. First, taste the sample labeled "R"
2. Then taste the coded test sample.

Using the scale below, indicate how different the test sample is from R.

Barely Detectable
No Difference Difference Slight Difference Moderate Difference Large Difference Very Large Difference Extremely Different

\ 4
Submitted

Notify your server and they will provide you with your next sample.

Please have a bite of some crackers and water to cleanse your palate before
evaluating the next sample.

(This page will automatically reroute to the next questionnaire. Please do not close this page.)

Page will redirect in 15 seconds

Figure C 9. Screenshot of DFC test questionnaire for tomato soup study. The next page
after each questionnaire shows the palate cleanse instruction with a mandatory 15 secs
timer before the next question.
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Thank You!
Please think about the products you have evaluated and on the next page, identify the reasons for any differences you detected.

Each time, you were presented with two sets of samples to identify differences from the control sample, R.
Based on the list below, did you notice any differences between the Test Samples and R?

MO YES

Glossy Appearance (degree of shine or reflected light
from the surface)

Herby Appearance (presence of small, chopped pieces
of herbs)

Colour Intensity (intensity or strength of colour from
light to dark)

Viscous Appearance (thick and slow-moving)

Pungent Aroma (sharp, physically penetrating
sensation in the nasal cavity)

Cooked Tomato aroma (typical smell of cooked
tomato)

Rich Aroma (combination of multiple ingredients
creating a deep and full aroma e_g. well-seasoned

food)

Creamy Flavour (flavour associated with dairy
products e.g cream, cheese)

Savoury Flavour (rich, spicy flavour associated with
vegetable stock or meat broth)

Herbal Flavour {underlying flavour of dried herbs e.g.
basil, oregano)

Smooth Mouthfeel (felt velvety or silky in the mouth,
niot rough or grainy)

Homogenous Mouthfeel (felt the same way
throughout)

Thick Mouthfeel {felt dense or heavy in the mouth)

Cooked Tomato Flavour (typical cooked tomato
flavour)

Sweet Taste (typical sweet taste e.g sugar/sucrose)

Sour Taste (sharp, tangy or tart taste e g_ citric acid in
lemons)

Salty Taste (typical salt flavour e.g. common salt/NacCl
or seawater)

Aftertaste (residual taste in the mouth after ingestion)

Please comment on any other differences you noticed that are not on the list.

Figure C 10. Final stage of the DFC test questionnaire for tomato soup, completed after
all repeated sessions, requesting additional information on perceived attribute
differences between samples.
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Your task is to evaluate and rate the intensity of several sensory attributes

for each sample in the order below.

Appearance Aroma Mouthfeel/Flavour/Taste

1. Look: Examine the sample and rate the intensity of the ap;

ance attributes
2. Smell: Next, smell it and rate the intensity of the aroma attributes.
3. Taste: You will need three sips of the sample, one for each of the following steps:
*  First sip: Assess and rate what it feeks like in the mouth [mouthfeel attributes).
* Second sip: Aszess and rate what flavours you perceive (lavour attributes).
* Third sip: Aszess and rate what it tastes ke [taste attributes).
Please follow the sample evaluation instructions carefully
Guidance definitions are provided to help you understand what each attribute means.

Appearance Attributes Aroma Attributes

Glossy Appearance: degree of shine or reflected light from | Pungent Aroma: sharp, physically penetrating sensation in the
the surface. nasal cavity.

Herby Appearance: the presence of small, chopped pieces | Rich Aroma: combination of multiple ingredients creating a
of herbs. deep and full aroma e.g, well-seasoned food

Colour Intensity: intensity or strength of colour from light Cooked Tomato aroma; typical smell of cooked tomata
to dark.

Viscous Appearance: thick and slow-moving when you tilt
the container

Mouthfeel/Flavour/Taste

1* Sip Smooth Mouthfeel: feels velvety or silky in the mouth, not rough or grainy.
Mouthfeel Attributes Homogenous Mouthfeel: feels the same way throughout.
Thick Mouthfeel: feels dense or heavy in the mouth

2" Sip Creamy Flavour: flavour associated with dairy products e.g: cream, cheese
Flavour Attributes Savoury Flavour: rich, spicy flavour associated with vegetable or meat broth
Herbal Flavour: underlying flavour of dried herbs &.g. basil, oregano.
Cooked Tomato Flavour: typical cooked tomato flavour.

3" Sip Sweet Taste: typical sweet taste e.g. sugar/sucrose,
Taste Attributes Sour Taste: sharp, tangy or tart taste e.g. citric acid in lemons,
Salty Taste: typical salt flavour e.g. common salt/NaCl or seawater.

Aftertaste; residual taste in the mouth after ingestion

o~

Figure C 11. Instruction page for the tomato soup attribute rating test, presented at the
beginning of the test prior to sample presentation.
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Appearance Aroma

Pick up sample 495 from the table and examine it closely looking directly into the cup.
Rate how strong the following Appearance attributes are.

Mone Barely Weak Moderate Strong ery Strong Extremely SEI'D!'IgE:E
Dretectable Strong Imaginabile
Glossy (degree
of shine or
reflected light
from the
surface)

Herby (presence
of small,
chopped pieces
of herbs)

Colour Intensity
(intensity or
strength of
colour from
light to dark)

Viscous (thick
and slow-
moving when
you tilt the
container)

Now smell the sample and rate how strong the following Aroma attributes are.

Barely
Detectable

Extremely Strongest

Weak Moderate Strong ery Strong Strong Imaginable

HMone

Pungent aroma
{sharp,
physically
penetrating
sensation in the
nasal cavity)

Cooked Tomato
aroma (typical
smell of cooked
tomato)

Rich aroma
{combination of
multiple
ingredients
creating a deep
and full aroma
eg well-
seasoned food)

Figure C 12. Page 1 of attribute rating test questionnaire for tomato soup showing only
appearance and aroma attributes.
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Mouthfeel/Flavour/Taste

Take the first sip of the sample. and before swallowing. pay attention to how it feels inyour mouth.
While you assess the Mouthfeel, rate how strong the following attributes are.

Baredy

s - o  Shrang
Deteciable Weak Moderate Ttrong Wery Stranz

Mouthfes (feel:
walvety or slioy
in the maouth,
mot rough or

iErainey]

Homogenous
Mouthfes] (feelz
the same wery
throughout)

Thick

dense or heavy
i the mouth)

Take ancther sip. and before swallowing. focus on the different flavors you notice.
While you assess the Flavours, rate how strong the following attributes are.

Mere === Weak “ndenate Ttrang Wery Stranz

Dateciable Strang Imaginzble

Flawour [eypical
aoaked tomato
flawour]

Savoury Flavour
irich, zpicy

smsociated with
wemetable or
meat broth)

Herbal Flavour
funderhying:

Flawour of dried
herbs e bosil

Creany Flavour
avour
amsociated with
dairy products
T Cream.
cheese]

Take the last sip, and mowe it around your tongue so that you fully experience the taste.
While you assess the Taste, rate how strong the following attributes are.

Barsiy " " - e -
Mone Detrctable Weak Maoderats Ztrong ‘ery Stranz S e
Sweet Taste
ftypical sweet
taste eE
SugArsuCrase]

Sour Taste
tishar, tangy or
tarttacte en.
itric acid in

lemnons)

Sality Tacte:
ftymical salt
flavour ez
common
salt Nl or
seTeater]

Aftertaste
lresidual taste:
in the maouth
after ingmetion]

Figure C 13. Page 2 of attribute rating test questionnaire for tomato soup showing
mouthfeel, flavour and taste attributes. The order of questions for the flavour attributes
was randomised for each sample across all assessors.



Appendix D Rating Scale Category Statistics

Table D 1. Category statistics showing the use of the 8-category Intensity Scale by the panels in the chocolate spread study (Chapter 5)

Panel Scale Categories Frequency' Average Measure? OUTFIT Mnsq3 Rasch Andrich Threshold
Observed Expected Measure Distance?

0 None 40 (13) -2.06 -2.15 1.1
1 Barely detectable 23(7) -1.67 -1.54 0.8 -1.34 -0.60

- 2 Weak 53(17) -0.79 -0.72 1.0 -1.94° 0.86

0:3 3 Moderate 96 (30) -0.34 -0.32 1.2 -1.08 1.00

- 4 Strong 83 (26) -0.03 -0.13 0.8 -0.08 1.49

= 5 Very strong 19(8) -0.11% 0.01 1.1 1.41 161 o
6 Extremely strong 1(1)* -0.22% 0.15 1.1 3.02 J
7 Strongestimaginable oral sensation 0 (0)* — — — _
0 None 104 (10) -0.73 -0.73 1.0

- 1 Barely detectable 119 (11) -0.63 -0.60 0.9 -0.80 -0.09%

o 2 Weak 170 (16) -0.48 -0.47 0.9 -0.89° 0.19"

'§ 3 Moderate 228 (21) -0.32 -0.34 1.3 -0.70 0.58

t 4 Strong 194 (18) -0.16 -0.22 0.8 -0.12 0.19"

- 5 Very strong 153 (14) -0.13 -0.11 1.0 0.07 0.30"
6 Extremely strong 99 (9) -0.06 -0.02 1.1 0.37 1.69
7 Strongest imaginable oral sensation 3(1) -0.07% -0.07 1.0 2.06

1 Total count (percentage distribution in brackets) of observations used in each scale category.
2 Observed average measure (in log odds unit or logits), and expected average measure if data fits the Rasch model.

3 OUTFIT Mnsq refers to the outlier-sensitive measure of unweighted mean squares and indicates the deviation of responses from predictions of the Rasch model.

4 Absolute difference between Rasch-Andrich threshold measures (i.e., the thresholds between adjacent scale categories. For 8 and 7 category scales, the minimum threshold
distances are 0.51 and 0.57, respectively.

Unmet Criteria from 3.3.1.4: Rating scale category diagnostics

°Disordered category thresholds indicate that an adjacent category was never the most probable choice.

* Average measures do not advance along the latent variable.

* Less than 10 observations in category.

A Minimum advancing distance <0.51.



...continued from Table D1

OUTFIT
Panel Scale Categories Frequency Average Measure Mnsq Rasch Andrich Threshold
Observed Expected Measure Distance

0 None 38(11) -0.63 -0.73 1.1

1 Barely detectable 43(12) -0.75% -0.6 0.6 -0.79 0.227
g 8 2 Weak 45(13) -0.39 -0.45 1.1 -0.57 -0.36"
"6‘ .g 3 Moderate 78 (22) -0.36 -0.31 1.5 -0.93° 0.94
% s 4 Strong 60 (17) -0.14 -0.2 0.5 0.01 -0.117
(7] g 5 Verystrong 57 (16) -0.09 -0.1 0.9 -0.10° 0.55

6 Extremely strong 34 (9) -0.05 -0.02 1.0 0.45 1.48

7 Strongestimaginable oral sensation 5(1)* -0.06% 0.04 1.2 1.93

N
>
== Category probability: 0 === Category probabilty: 2 === Category probabilty: 4 == Category probability: 6
== Category probability: 1 == Category probabilty: 3 == Category probabilty: S == Category probabilty: 7
Trained Panel Untrained Panel Selected Assessors

E 08 08 08
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Measure Relative to Attribute Intensity

Figure D 1. Scale probability curves illustrating disordered Rasch-Andrich thresholds across all three panels.
The trained panel showed mild threshold disorder, primarily due to redundant scale categories that caused subtle undulation in the curves toward the upper
end of the scale. In contrast, the full untrained panel and the selected assessors exhibited more disordered thresholds, indicating inconsistent use and poor
distinction between the scale categories.



Appendix E Supplementary Statistics

Table E 1. Comparison of Rasch measures of product differences across all TIM-based datasets

Parametric Test Non-Parametric Test
Model/Sample Rasch )(2 Tukey's HSD* Kruskal-Wallis Friedman's
Rasch Mean Mean Ranks Rank Sum
All Reps 17.9"™ p=2.3e-07 ™" p=7.5e-05"" p <2.2e-16™"
Brand A -0.59 a 1597.82 a 201 a
Brand B -0.71 ab” 1496.39 ab” 134 b
. Control -0.78 b 1429.80 b 67 c
N
2 Rep1 5.4 p=0.051" p=0.139 p<2.2e-16™"
_<:u' Brand A 067 a 526.97 a 201 a
(3 Brand B -0.79 ab 499.05 a 134 b
E Control -0.86 b 482.98 a 67 ¢
il
> Rep2 4.6" p=0.022" p=0.079" p<2.2e-16™
2 Brand A -0.59 a 528.57 a~ 201 a
S  BrandB -0.68 ab 502.42 ab 134 b
§ Control -0.76 b 478.01 b~ 67 c
8
Rep3 9.4" p=6.6e-05 """ p=0.003" p<2.2e-16™"
Brand A -0.67 a 544.44 a 201 a
Brand B -0.81 b 496.16 b 134 b
Control -0.89 b 468.40 b 67 c

6/¢C

Different superscript letters indicate significant difference (p<0.05), with ~ indicating marginal significance (p<0.1). P-value levels of significance: <0.001™", <0.01™, <0.05", <0.1”; measures
with no superscript symbols have p-values >0.1. All results from Rasch measures are based on the Kruskal-Wallis test. n=total number of assessors in a panel.

* Sample differences were based on Tukey's HSD tests following a main effects ANOVA model: Sample + Assessor + Repetition.



...continued from Table E1

Parametric Test Non-Parametric Test Model/Sample
Model/Sample Rasch )(2 Tukey's HSD* Kruskal-Wallis Friedman's
Rasch Mean Mean Ranks Rank Sum
g Trained Panel (n=7) 7.5 p=0.008"" p=5.3e-07"" 9.1e-04""
s Brand A -0.51 a 180.55 a 21 a
2 Brand B -0.86 b 119.15 b 7 b
€  BrandC -0.54 a 174.30 a 14 ¢
o
§ Untrained Panel (n=24) 1.6 p=0.062" p=0.113 p=3.8e-11""
&  BrandA -0.30 a 568.02 a 72 a
g Brand B -0.36 a 522.13 a 24 b
£ Brand C -0.35 a 531.35 a 48 c N
o 3
6 F*kk *kk *kk kK
o All Assessors (n=54) 106.3 p<2.2e-16 p<0.001 p< 2.2e-16
‘g Sample A -0.07 a 5083.38 a 162 a
6 Sample B -0.21 b 4279.42 b 108 b
E Control -0.30 c 3760.70 c 54 ¢
5
@  Selection (n=17) 27.5" p<2.2e-16™" p<0.001""* p=4.14e-08""
£  sampleA -0.25 a 1557.18 a 51 a
€ Sample B -0.32 b 142417 b 34 b
2  Control 045 ¢ 1151.15 ¢ 17 ¢

Different superscript letters indicate significant difference (p<0.05), with ~ indicating marginal significance (p<0.1). P-value levels of significance: <0.001™", <0.01™, <0.05", <0.1”; measures
with no superscript symbols have p-values >0.1. All results from Rasch measures are based on the Kruskal-Wallis test. n=total number of assessors in a panel.

* Sample differences were based on Tukey's HSD tests following a main effects ANOVA model: Sample + Assessor + Repetition.



Table E 2. Product mean comparisons across attributes for all TIM-based datasets

Jaffa Cakes (Chapter 4), (Nr=1005)

Brand A Brand B Control Attr. / Sa.l F.Av.2 Measure

Orange Flavour 3.87° 3.42° 3.40° 3.56 3.55 0.75

Sweetness 3.71¢ 3.49° 3.46° 3.55 3.54 0.74

Cocoa Flavour 2.97¢ 3.11° 2.97° 3.02 3.02 0.21

Milky Flavour 2.30° 2.322 2.26° 2.29 2.30 -0.50

Saltiness 1.71° 1.63% 1.51° 1.62 1.59 -1.2

Sample / Attr. 3 2.91 2.80 2.72

Fair Average (F. Av.) 2.90 2.79 2.72

Sample Logit -0.59° -0.712° -0.78° N

ot
Chocolate Spreads (Chapter 5)
Trained Panel (Nr = 105) Untrained Panel (Nr =360)
Brand A BrandB BrandC  Attr./Sa. F.Av. Measr. BrandA BrandB BrandC  Attr./Sa. F.AV. Measr.

Sweetness 3.76°2 3.71¢ 3.48° 3.65 3.65 0.91 Sweetness 3.942 5.04° 3.67° 4.22 4.25 0.47
Cocoa Flavour 3.43° 2.86° 3.29%° 3.19 3.20 0.39 Cocoa Flavour 3.85° 3.00° 3.92° 3.59 3.60 0.19
Orange Flavour 3.67° 1.67° 3.86° 3.07 3.07 0.26 Milky Flavour 2.622 4.75° 2.422 3.26 3.27 0.06
Milky Flavour 2.672 3.38° 2.622 2.89 2.90 0.10 Orange Flavour 3.64° 0.922 3.60° 2.72 2.71 -0.16
Saltiness 0.57° 0.81¢ 0.71° 0.70 0.68 -1.66 Saltiness 1.94° 1.62° 1.86° 1.81 1.78 -0.55
Sample / Attr. 2.82 2.49 2.79 Sample / Attr. 3.20 3.07 3.09
Fair Average (F.Av) 2.93 2.53 2.90 Fair Average (F.Av) 3.21 3.06 3.09
Sample Logit -0.51¢ -0.86° -0.542 Sample Logit -0.30° -0.36° -0.35°

Values with different superscript letters indicate statistically significant differences (p < 0.05). Nr = Total number of responses used to estimate sample measures. Sa. A = Sample A; Sa. B = Sample B; Ctrl =
Control. Measr. refers to the Rasch measure expressed on the logit scale, as shown in the Wright maps. Attributes are arranged in order from highest to lowest logit measure value.
" Attribute by Sample (Attr./ Sa): Raw mean scores of each attribute averaged across all samples.

2 Fair average (F.Av): Rasch model expected score after adjusting for bias from other facets, and determine the relative position of the samples, or attributes on the logit scale.

3 Sample by Attribute (Sample / Attr.): Raw mean scores of each sample averaged across all attributes.



Tomato Soups (Chapter 6)

All Assessors (Nr=2916)

Selected Assessors (Nr=918)

Sa.A Sa.B Ctrl Attr./Sa.’ F.Av2 Meastr.

Smooth Mouthfeel 3.90° 3.88% 4.29° 4.02 4.03 0.47
Homogenous Mouthfeel 3.85% 3.98% 4.112 3.98 3.99 0.44
Cooked Tomato Flavour 3.93® 3.82¢ 3.88° 3.88 3.88 0.37
Thick Mouthfeel 4.48% 3.25° 3.28° 3.68 3.68 0.22
Glossy Appearance 3.62¢ 3.51% 3.52° 3.55 3.55 0.14
Colour Intensity 3.5632 3.64° 3.41° 3.53 3.53 0.12
Savoury Flavour 3.69° 3.63* 3.22° 3.51 3.52 0.11
Cooked Tomato Aroma 3.48% 3.43% 3.382 3.43 3.43 0.05
Herbal flavour 3.55% 3.64° 3.08° 3.42 3.43 0.05
Viscous Appearance 4.34*° 2.86° 3.05° 3.42 3.42 0.05
Rich Aroma 3.40° 3.62° 3.03° 3.35 3.36 0.00
Aftertaste 3.45% 3.22%» 3.01° 3.23 3.23 -0.08
Creamy Flavour 3.537 2.83> 2.63° 2.99 2.99 -0.25
Herby Appearance 3.432 2.77° 2.70° 2.97 2.97 -0.27
Salty Taste 2.89¢ 2912 2.77° 2.86 2.86 -0.34
Sour Taste 2.85¢ 2.85° 2.80° 2.83 2.83 -0.36
Pungent Aroma 2.65° 3.18° 2.67° 2.83 2.83 -0.36
Sweet Taste 2.83% 2.86° 2.75° 2.81 2.81 -0.37
Sample / Attr.3 3,52 3.33 3.20

Fair Average (F.Av) 3.53 3.33 3.20

Sample Logit -0.07¢ -0.21° -0.30°

Sa.A Sa.B Ctrl. Attr./Sa. F.Av Measr.

Smooth Mouthfeel 4.028 4177 4.39° 4.20 4.21 0.63
Homogenous Mouthfeel 3.75% 3.90° 4.14° 3.93 3.94 0.42
Thick Mouthfeel 4.678 3.43° 3.67° 3.92 3.93 0.41
Glossy Appearance 3.78 3.71® 3.67° 3.72 3.73 0.26
Savoury Flavour 3.75% 3.80% 3.23° 3.59 3.60 0.17
Cooked Tomato Flavour 3.55* 3.67* 3.55° 3.59 3.60 0.16
Viscous Appearance 4.45% 3.00° 2.96° 3.47 3.48 0.08
Herbal flavour 3.39%® 3.80° 3.00° 3.40 3.41 0.03
Colour Intensity 3.20° 3.67% 3.30% 3.39 3.39 0.02
Aftertaste 3.43* 3.35° 3.10° 3.29 3.30 -0.04 po
Rich Aroma 3.05° 3.67¢@ 2.92° 3.22 3.22 -0.10 %
Creamy Flavour 3.67° 3.08% 2.75° 3.16 3.177 -0.13
Cooked Tomato Aroma 3.128 3.14® 3.16° 3.14 3.14 -0.15
Herby Appearance 3.552 2.79° 2.75° 3.03 3.03 -0.23
Sour Taste 2,944 2,822 2.92° 2.90 289 -0.32
Pungent Aroma 2.57° 3.24* 2.63° 2.81 2.81 -0.38
Salty Taste 2.78% 2.822 2.75° 2.78 2.78 -0.40
Sweet Taste 2.84* 2.78* 2.53° 2.72 2.71 -0.44
Sample / Attr. 3.47 3.38 3.19

Fair Average (F.Av) 3.49 3.40 3.20

Sample Logit -0.25% -0.31° -0.45°

Values with different superscript letters indicate statistically significant differences (p < 0.05). Nr = Total number of responses used to estimate sample measures. Sa. A=Sample A; Sa. B = Sample B; Ctrl =
Control. Measr. refers to the Rasch measure expressed on the logit scale, as shown in the Wright maps. Attributes are arranged in order from highest to lowest logit measure value.

' Attribute by Sample (Attr./ Sa): Raw mean scores of each attribute averaged across all samples.

2 Fair average (F.Av): Rasch model expected score after adjusting for bias from other facets, and determine the relative position of the samples, or attributes on the logit scale.

8 Sample by Attribute (Sample / Attr.): Raw mean scores of each sample averaged across all attributes.
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Figure E 1. Trellis plots showing individual response distributions for the subset of 17 assessors (Page 1 of 2).
Attributes are arranged in the same order as presented in Figure 5.5
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Sample x Attributes MFRM Bias/Interaction Plots for Chocolate Spread
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Figure E 2. Rasch-adjusted sample x attribute bias/interaction plots for the untrained panel (left) and trained panel (right).

The y-axis represents the relative-to-overall logit measure, calculated as the deviation of each sample’s estimated logit rating on an attribute
from that sample’s overall logit measure in the Many-Facet Rasch Model. Positive values indicate attributes rated higher than expected based
on the sample’s overall measure, and negative values indicate attributes rated lower than expected. The plots reveal opposing attribute
intensities, with Brand B displaying a strong negative deviation on Orange flavour and strong positive deviation on Milky flavour. These contrasts
illustrate product-level differences that may be masked in the overall measure, particularly when inconsistent ratings dilute or cancel attribute-
specific effects.
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