
 
 

Application of Rasch Analysis in Sensory Difference Testing 

 

 

 

 

Nnenna Cynthia Ariakpomu 

 

 

 

 

Submitted in accordance with the requirements for the degree of  

Doctor of Philosophy 

 

 

 

The University of Leeds 

School of Food Science and Nutrition 

 

 

 

 

July 2025 



 ii  
 

Intellectual Property Rights Statement 

I confirm that the work submitted is my own, except where work which has formed 

part of jointly authored publications has been included. My contribution and the 

other authors to this work has been explicitly indicated below. I confirm that 

appropriate credit has been given within the thesis where reference has been made 

to the work of others. 

Chapter 4: Measuring Overall Difference with the Many-Facet Rasch Model 

(MFRM): The Total Intensity Measure (TIM) Method is based on the jointly  authored 

publication with the following details. 

Publication 

Ariakpomu, N. C., Holmes, M. J., & Ho, P. (2025). Measuring overall difference from 
a combination of attribute ratings with the many-facet Rasch model. Food Quality 
and Preference, 127, 105442. https://doi.org/10.1016/j.foodqual.2025.105442  

Author Contributions 

Ariakpomu, N. C.: conceptualisation, writing (original draft, revisions and  
refinement), methodology design, ethics application, data collection, analysis, 
visualisation, curation and publication in Research Data Leeds Repository, 
funding  acquisition, project management and administration.   

Holmes, M. J.: supervision, conceptualisation, and reviewing manuscript.  

Ho, P.: supervision, conceptualisation, reviewing manuscript, methodology 
design, provision of Rasch analysis software, and data analysis. 

 

This copy has been supplied on the understanding that it is copyright material and that 

no quotation from the thesis may be published without proper  acknowledgement.  

 

The right of Nnenna Cynthia Ariakpomu to be identified as Author of this work has been 

asserted by her in accordance with the Copyright, Designs and Patents Act 1988. 

 

© 2025 The University of Leeds and Nnenna Cynthia Ariakpomu. 

  

https://doi.org/10.1016/j.foodqual.2025.105442


 iii  
 

Research Outputs and Professional Development 

Published article 

▪ Ariakpomu, N. C., Holmes, M. J., & Ho, P. (2025). Measuring overall difference 

from a combination of attribute ratings with the many-facet Rasch model. Food 

Quality and Preference, 127, 105442.https://doi.org/10.1016/j.foodqual.2025.  

105442  

Manuscript in preparation 

▪ Ariakpomu, N. C., Gill, V., Holmes, M. J., & Ho, P. (not yet submitted). Monitoring 

Assessor performance with the many-facet Rasch model. 

 

Conference Presentations 

▪ Ariakpomu, N. C., Holmes, M. J., & Ho, P. “Measuring overall difference from a 

combination of attribute ratings with the many-facet Rasch model” (September 

2024). 11th European Conference on Sensory and Consumer Research- 

EUROSENSE 2024: A Sense of Global Culture, Dublin, Ireland. (Poster 

presentation). 

▪ Ariakpomu, N. C., Gill, V., Holmes, M. J., & Ho, P. “Monitoring assessor 

performance using a many-facet Rasch approach: a comparison of trained and 

untrained panels” (August 2025). 16th Pangborn Sensory Science Symposium: 

Connecting Sense and Minds, Philadelphia, USA. (Poster presentation). 

 

Conference Attendance (No Presentation) 

▪ IFT FIRST Annual Conference: focused on the latest global advancements in food 

technology, innovation, and consumer trends (July 2024), Chicago, USA. 

▪ IFST Oxford Food Summit 2025 – Designing adaptive food systems for 

sustainable nutrition: focused on exploring innovative strategies to design 

sustainable and adaptive food systems (July 2025), Oxford, UK.  

▪ Growth Asia Summit: focused on food, beverage and nutrition trends and 

innovation in the Asian market (July 2025), Singapore. 

https://doi.org/10.1016/j.foodqual.2025.%20​%20105442
https://doi.org/10.1016/j.foodqual.2025.%20​%20105442


 iv  
 

▪ International Society of Neurogastronomy (ISN) 2025 Symposium: focused on 

the interdisciplinary science of flavour perception, integrating neuroscience and 

culinary arts, to explore how taste and smell influence food preferences and well-

being (August 2025), Philadelphia, USA. 

 

Professional Development  

▪ Your Entrepreneurs Scheme (YES23) Competition (2023): A bootcamp on 

commercialising research, in partnership with The University of Nottingham’s 

Haydn Green Institute for Innovation and Entrepreneurship. 

▪ 100 Black Women Professors Now (2024): Career accelerator program offered by 

the University of Leeds and Women’s Higher Education Network (WHEN). 

▪ Industry Engagement: site visits to food manufacturing companies (such as 

Cranswick Plc and Premier Foods), and discussions with consultants from 

Cambridge Market Research, Sense:lab, Campden BRI, MMR Sensory, 

Compusense, and independent consultants. These interactions offered practical 

insights that were instrumental in establishing the study’s relevance and 

applicability to industry practice. 

  

https://cranswick.plc.uk/
https://www.premierfoods.co.uk/
https://www.cambridgemr.com/
https://sense-lab.co.uk/
https://www.campdenbri.co.uk/
https://mmr-research.com/
https://compusense.com/


 v  
 

Dedication 

 

 

 

 

 

 

 

 

 

In loving memory of my beloved dad, Dr. Ray Unamma who taught me to always 
fully experience education rather than just cruise by. 

I let the PhD pass through me as well. 

 

  



 vi  
 

Acknowledgements 

I am perpetually grateful to God Almighty for His abundant grace and favour that 

daily saturate my life. My PhD journey has been a tremendous opportunity for 

growth, supported by many incredible individuals and organisations. 

I am especially thankful to the Commonwealth Scholarships Commission in the UK 

for recognising my leadership potential and funding my doctoral studies. It has 

made a profound impact on my life; one I intend to carry forward. I am also grateful 

to Michael Okpara University of Agriculture, Umudike (MOUAU), for nominating me 

for the scholarship and for believing in my potential as a change-maker.  

To the inspirational women I have met through the 100 Black Women Professors 

Now programme, thank you for your empowering words and the supportive 

community you have created. To OD&PL (Organisational Development and 

Professional Learning), Skills@Library, and IT Training, thank you for the invaluable 

knowledge and skills I gained through your many programmes at the University of 

Leeds. 

To my supervisors, Dr. Peter Ho and Dr. Melvin Holmes, I am deeply grateful for your 

patient support, invaluable guidance, and thoughtful feedback throughout my 

doctoral studies, especially for grounding me in the statistical rigour that underpins 

my research. Your insight and encouragement challenged me to think more 

critically, and I am better for it. I am also very thankful to Ian and Miles for providing 

technical support during the sensory evaluation studies, and to the study 

participants for always showing up and lending us your time and attention.  

To Lauren Rogers, Simon Woods, Bryson Bolton, and Dr. Stella Salisu, thank you for 

your mentorship and for giving me a window into the world of food industry 

practices, which helped shape the relevance of my research and career plans.  

A very special note of appreciation goes to the Food Admin team. Words are not 

enough to express how thankful I am for your incredible support throughout my time 

at the University of Leeds. Jenna, Gita, George, Sarah, Katelyn, Matthew and 

Catherine, thank you so much for always listening and for your responsive, 

generous help. To my office mates at Room 1.07; Sadia, Dolapo, Arig and Gizem, 

thank you for making this journey such a memorable experience. To Teresa, 



 vii  
 

Blessing, Ann, Chinwe, Flora, Nadia, and Kaya, thank you for your beautiful 

friendship and for being such an important support system. 

My beloved family have always been my greatest cheerleaders. From the voice of  

my late dad, always reminding me, “Nnenna, you have to let the school pass 

through you too”, to the pride I see in my siblings, even when they make fun of their 

baby sis, thank you! Thank you, Emeka, for taking on the responsibility of putting me 

through school, among everything else. Thank you, Mma, Eddie, Aunty Chinenye, and 

Uncle Tunde, for always being there for me. Thank you, Mummylistic! I know your 

prayers are working in my life, and I hope I continue to make you proud. 

Finally, to my dearest husband Clifford, my very own personal industry standards 

and pragmatism consultant, I am endlessly grateful. The support from you and our 

boys has been my greatest source of inspiration and motivation. We have 

conquered so many challenges and beaten so many odds together, and I am 

honoured to have you by my side. Thank you so much. We have done it again! 

To everyone whose names I could not include here, please know that your kindness, 

support, and encouragement are deeply appreciated and will always be cherished. 

1  

 
1

 This document contains internal hyperlinks (e.g., in the table of contents and cross-references to 
figures, tables, sections, and footnotes). For the best navigation and reading experience, it is 
recommended to view the PDF in Adobe Acrobat Reader, as it currently supports returning to 
the previous location after clicking a hyperlink.  

To return, press Alt + Left Arrow (←) on Windows or Command + Left Arrow (←) on Mac. 



 viii  
 

Abstract 

Traditional discrimination methods either provide holistic product difference scores or 

focus on specific sensory attributes, often requiring multiple tests to capture both 

qualitative and quantitative insights. While aggregate-based analyses like ANOVA can 

statistically adjust product comparisons for assessor effects, they do not identify 

which individual assessors exhibit problematic rating behaviours, such as using limited 

parts of the scales or being too lenient or severe. Obtaining these diagnostic insights to 

guide targeted interventions (e.g., retraining or panel refinement) requires separate 

analyses that are not integrated into the standard discrimination testing framework.  

This research explores the application of a Many-Facet Rasch Model (MFRM) as a 

diagnostic and analytical tool in sensory difference testing. MFRM addresses these 

challenges by estimating a single latent measure of overall product difference from 

combined ratings of multiple attributes, while simultaneously adjusting for individual 

differences in scale use. It also offers integrated quality control metrics that support 

panel diagnostics and highlight the discriminative value of individual attributes. 

Across three studies, trained and untrained panels evaluated the intensity of various 

sensory attributes in three different food products. Rasch-derived overall difference 

measures aligned closely with results from the Difference-from-Control (DFC) overall 

difference test. Wright maps visualised the relative difficulty of perceiving attributes 

and the rating tendencies of individual assessors, while fit statistics and residual 

analyses revealed the contributions of individual attributes to perceived product 

differences and systematic rating patterns. MFRM further identified distinct types of 

individual scale-use bias, supporting targeted assessor training. 

This study establishes the MFRM as a scalable, more insightful approach for sensory 

data analysis, with applications in quality control, product development, and panel 

management. Further research is encouraged to explore its utility across broader 

sensory and consumer testing contexts. 

Keywords: Many-Facet Rasch Model (MFRM), Sensory difference, Attribute 

discrimination, Difference-from-Control (DFC), Assessor performance monitoring, 

Scale-use bias, Sensory data analysis, Quality control, Product development, ANOVA.  
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Chapter 1   

Introduction 

1.1 Background of study 

The sensory evaluation of food products plays a critical role in the food industry, 

informing product development, quality control, marketing, regulatory compliance, 

and consumer satisfaction (Stone et al., 2012; Heymann, 2019; Moskowitz & 

Meiselman, 2020). Accurate and reliable product characterisation, through 

methods such as descriptive analysis or sensory profiling, and sensory difference 

testing, help manufacturers understand how product variations influence 

consumer perception and acceptance. 

Current difference testing methods involve trade-offs between qualitative and 

quantitative insights. For example, triangle tests reveal if products differ overall, 

while attribute-specific tests like paired comparison (2-AFC) tests identify which 

product differs with respect to a single attribute (e.g., sweetness). These 

approaches provide qualitative information about the existence of differences but 

not their magnitude. In contrast, the Difference-from-Control (DFC) test quantifies 

the overall magnitude of difference between products but does not indicate which 

attributes are responsible. As a result, multiple tests and statistical analyses are 

often required to gather both qualitative and quantitative insights, (Rogers, 2017; 

Higgins & Hayes, 2020), making the process time-consuming and resource-

intensive. 

Attribute Rating (AR) tests on the other hand, typically part of descriptive analysis 

enable the simultaneous rating of multiple attributes. However, interpreting overall 

product differences from AR data requires complex multivariate analysis. 

Moreover, these methods rely on extensively trained panels, which are costly to 

maintain since they must remain motivated and consistently calibrated to rating 

scales over time (Raithatha & Rogers, 2018; Moskowitz & Meiselman, 2020; 

Meilgaard et al., 2025).  

Analysing sensory data presents further challenges related to reliability and validity 

(Kemp et al., 2018). Because panel ratings are typically aggregated, it is difficult to 
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estimate the true differences between samples without confounding effects from 

individual assessor variability, an issue that even rigorous training cannot fully 

eliminate (Næs, 1990; Romano et al., 2008). Statistical models such as Analysis of 

Variance (ANOVA) are used to account for these effects, but they rely on 

assumptions that may not always hold, and they can still be influenced by 

inconsistent rating styles. 

Monitoring assessor performance is essential for identifying individuals whose 

responses deviate from panel expectations and determining when additional 

training or removal from the panel is necessary. Individual-level analyses, such as 

assessor-specific ANOVAs, are often used to evaluate panel performance. 

However, these approaches rely on aggregated data (e.g., mean scores across 

replicates), which can obscure subtle inconsistencies in rating behaviour or 

individual variability. In practice, effective monitoring often depends heavily on the 

expertise of the panel leader in recognising these deviations and implementing 

corrective actions. Detecting inconsistencies can require multiple layers of 

analysis and visualisation, which may be time-consuming and slow decision-

making in commercial environments (Raithatha & Rogers, 2018), despite the 

availability of sensory analysis software to automate parts of the process (Fuentes 

et al., 2021; Sipos et al., 2021).  

Beyond monitoring, addressing individual differences in sensory responses during data 

analysis presents additional challenges. Although some studies have proposed 

methods to account for these differences, such as adjusting for overall scale use 

through the assessor model (Romano et al., 2008) or evaluating consumer 

inconsistency using Kendall’s rank correlation coefficient between paired scales 

(Sipos et al., 2025) these approaches still involve multiple analytical steps. 

Collectively, these challenges underscore a need for analytical techniques that can 

efficiently integrate product differentiation with attribute diagnostics and panel 

performance monitoring within a single analytical framework. Addressing this need 

could streamline sensory workflows, reduce analytical costs, and provide more 

actionable insights for product developers, quality managers, and panel leaders. 

This study explores the application of Rasch analysis, a psychometric modelling 

approach that analyses data based on individual response patterns (Bond et al., 
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2020), in sensory difference testing. Rasch analysis offers the potential to unify 

intensity ratings across multiple sensory attributes into a single latent measure of 

overall difference, while simultaneously providing diagnostic insights into attribute 

contributions and assessor reliability within a unified framework. In this study, 

intensity ratings were collected for multiple sensory attributes across a range of 

product samples. These attribute ratings were then combined into an overall 

difference measure and compared with holistic Difference-from-Control (DFC) 

scores. Panel performance was assessed concurrently through the Rasch model. 

1.2 Research hypothesis 

Hypothesis 1: 

Rasch analysis of intensity ratings for multiple sensory attributes can provide a 

comprehensive estimate of the overall difference between food product samples, 

based on the ratings provided by the panel, and enable identification of the 

attributes that contribute most to these differences. 

Rationale: 

Rasch models combine multiple observable items (e.g., test questions) to estimate 

unobservable latent variables (e.g., mathematical ability). When applied to sensory 

evaluation, the model can combine intensity ratings of multiple sensory attributes 

(e.g., sweetness or sponginess) to derive a single latent measure representing the 

overall difference between products. This approach enables (i) the detection of 

whether a significant difference exists between samples, (ii) quantifies the 

magnitude of difference if one exists, and (iii) determines the relative contribution 

of individual attributes to the perceived differences, all based on the panel ratings 

from a single sensory test. In contrast to conventional approaches, which often rely 

on multiple separate tests and analyses, Rasch analysis provides a more 

streamlined, cost effective, and diagnostic tool for sensory analysts. 

Hypothesis 2 

Using Rasch analysis to monitor assessor performance enables earlier identification 

of assessors needing additional training, thereby reducing overall training time and 

resources. 
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Rationale: 

Rasch models inherently account for individual differences in rating tendencies 

(e.g., severity or leniency) and include diagnostic tools such as residual fit statistics 

(e.g. outfit mean square) and Wright maps that visualise the overall structure of the 

data. These features enable individualised evaluation of assessor performance and 

consistency relative to the panel expectations. This approach allows for a rapid 

overview of individual assessor performance and offers insights to support early 

and targeted training interventions, all within the same integrated analysis used to 

evaluate overall product differences (as described in Hypothesis 1). As a result, it 

has the potential to reduce both training time and resource demands. In 

comparison, conventional approaches do not adjust for individual rating behaviour. 

Instead, they emphasise rigorous training to standardise assessors as objective 

rating instruments and depend on multiple separate analyses to evaluate 

performance. 

1.3 Research aims  

This study explores the potential of Rasch analysis to provide a streamlined, 

integrated diagnostic framework for sensory difference testing, enabling 

simultaneous evaluation of overall product differences and individual assessor 

reliability.  

The specific objectives are: 

1. To demonstrate the use of Rasch analysis in estimating an overall difference 

(latent variable) between food product samples from a combination of sensory 

attribute intensity ratings. 

▪ Collect sensory data using the Difference-from-Control (DFC) test method. 

▪ Collect attribute intensity ratings for multiple sensory attributes on the same 

food samples and using the same group of assessors. 

▪ Compare the DFC-derived overall difference results with Rasch-generated 

measures of the Overall Difference as a latent variable. 

2. To demonstrate how Rasch model quality control features can be used to 

assess the reliability of assessors as objective measurement instruments. 
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▪ Evaluate individual assessor performance using Rasch-based diagnostics, 

such as fit statistics and Wright maps. 

▪ Identify assessors whose ratings deviate from panel expectations to inform 

potential retraining. 

3. To assess the reproducibility of the proposed method in a new context using an 

integrated approach. 

▪ A validation study conducted to assess both assessor performance and 

overall product differences within a single Rasch analysis, applied in a 

context that closely reflects practical conditions found in food production 

settings. 

1.4 Thesis structure 

This thesis consists of seven chapters, and a brief overview of the chapters 

following Chapter 1 (this introductory chapter) is provided below. 

Chapter 2 reviews the literature on sensory difference testing methods, highlighting 

the role of humans as measuring instruments and the challenges posed by 

individual variability. It then introduces Rasch models, illustrating their current 

applications and their potential relevance to sensory quality control. 

Chapter 3 outlines the general methodologies used in this study for Rasch and 

statistical analysis. It explains how Rasch measurement approaches are applied 

across three research themes, which will be discussed in Chapters 4 to 6. 

Chapters 4 to 6 outline the specific sensory methodologies used in the three sub-

studies, and present the results and discussions for each, exploring the different 

applications of Rasch analysis in sensory difference testing and quality control. 

Specifically: 

Chapter 4 focuses on using the Many-Facet Rasch Model (MFRM) to measure the 

overall difference between samples through a holistic Rasch measure, termed the 

Total Intensity Measure (TIM). TIM is estimated for each sample based on a 

combination of intensity ratings from five sensory attributes. Sensory attribute 

ratings and Difference from Control (DFC) ratings of Jaffa cakes were used for the 
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study, and the results from TIM were compared to those from DFC. Additionally, the 

chapter discusses how Rasch quality control statistics provide deeper insights into 

the contribution of each attribute to the overall difference latent variable, as well as 

how easy or challenging it was for the panel to evaluate an attribute, highlighting the 

added benefits of the TIM method over traditional overall difference methods. 

Chapter 5 focuses on monitoring assessor and panel performance using the MFRM 

approach. It compares trained and untrained panels based on their sensory 

attribute ratings on chocolate spreads. Results from Rasch quality control statistics 

were compared with those from ANOVA-based methods, alongside response 

distribution plots of individual ratings for each attribute. Based on the insights from 

the analysis, a subset of better-performing untrained assessors was identified and 

compared with the trained panel. 

Chapter 6 demonstrates how a Rasch approach can streamline sensory quality 

programmes. In summary, the Total Intensity Measure (TIM) was used to assess the 

overall difference between tomato soup samples based on a combination of 

eighteen sensory attributes, while also providing insights into each attribute’s 

contribution to the overall difference latent variable, and which of the attributes 

were easy or challenging to evaluate. Within the same analysis, Rasch quality 

control statistics were also used to monitor assessor performance and identify 

areas for targeted training. A subset of the most consistent assessors, as identified 

by the model, was then selected to run the study, demonstrating how the Rasch 

approach can aid assessor selection and guide targeted training. The TIM overall 

difference results were compared with those from the Difference from Control 

(DFC) test on the same samples to validate the findings while addressing limitations 

identified in the previous chapters. 

Chapter 7 summarises the key findings of the thesis and their implications, 

concluding with recommendations for areas where future research could build on 

the research findings.  
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Chapter 2   

Literature Review 

2.1 Overview of Sensory evaluation 

The field of sensory science and consumer research has evolved over the decades 

through interrelated generations of scientific work. Foundational contributions 

from academic figures such as Rose Marie Pangborn and Maynard Amerine, along 

with the growth of the food industry after World War II, particularly in sectors like 

wine and brewing, have shaped its trajectory. Shapin (2016), Lahne and Spackman 

(2018) and Moskowitz and Meiselman (2020) provide detailed historical accounts 

of this evolution, complemented by a more personal narrative in Heymann (2019) 

and an account of developments and ongoing challenges in the field by Meiselman 

et al. (2022). 

Sensory evaluation, as originally defined by the Institute of Food Technologists (IFT), 

Chicago in 1975 (Heymann, 2019), refers to the scientific methods used to evoke, 

measure, analyse and interpret human responses to the properties of foods as 

perceived by the human senses including taste, smell, touch, sight, and hearing. 

This definition was later expanded to include the role of the trigeminal nerves, which 

contribute to sensations such as heat, cooling, and irritation (Lawless & Heymann, 

2010; Stone et al., 2012).  

In recent times the field has become increasingly interdisciplinary and is now 

applied across a broad range of consumer products beyond the food industry 

(Kemp et al., 2018; Heymann, 2019; Meiselman et al., 2022; Jaeger et al., 2025; 

Meilgaard et al., 2025). These include, pharmaceuticals (Mohamed-Ahmed et al., 

2016; Guedes et al., 2021; Clapham et al., 2023), personal and household care 

products (Sanderson & Hollowood, 2017; Deubler et al., 2022; Turek & Kowalska, 

2024), automobiles (Poirson et al., 2010; Verriele et al., 2012; Othman et al., 2021; 

Fuchs et al., 2022), fashion & textiles (Ghalachyan et al., 2024; Üren, 2024), and 

even pet foods evaluated using animal assessors (Li et al., 2018; Lema Almeida et 

al., 2022; Rogues et al., 2022; Calderón et al., 2024; Le Guillas et al., 2024). 
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Sensory evaluation of foods supports a wide range of industrial applications, 

including product optimisation, shelf-life and stability testing, quality control, 

market audits, benchmarking, and substantiating legal or advertising claims (Stone 

et al., 2012). It aims to derive objective insights from inherently subjective human 

perceptions, providing essential guidance for commercial decision-making. Guided 

by seminal foundational texts, cited here in their latest editions (Amerine et al., 

1965; Muñoz et al., 1992; Lawless & Heymann, 2010; Næs et al., 2010; Stone et al., 

2020; Meilgaard et al., 2025), sensory evaluation methods have been developed 

and refined to reflect current best practices. These methods apply principles of 

experimental design and statistical analysis, enabling sensory professionals to 

make valid inferences and generate actionable insights about food products. 

Sensory test methods are broadly classified as objective or subjective. Objective 

methods aim to characterise the sensory attributes of products and typically rely 

on trained or expert panels; these include discrimination and descriptive tests. 

Subjective methods assess how product changes affect consumer perception and 

generally involve larger panels of untrained assessors or consumers, such as in 

preference and acceptance tests. Marques et al. (2022) provides a comprehensive 

review of both classical and emerging sensory evaluation methodologies within the 

food and beverage industry. 

2.2 Sensory evaluation in quality control 

According to Meilgaard et al. (2025), “sensory quality” refers to the procedures 

implemented to ensure that products leaving a manufacturing facility meet 

established design parameters and consumer expectations regarding sensory 

attributes. It encompasses both proactive sensory quality assurance, aimed at 

preventing defects, and reactive sensory quality control, which focuses on 

identifying and correcting them. In sensory quality programmes, the product-

oriented methods i.e. discrimination and descriptive tests are typically employed. 

Several researchers (Muñoz et al., 1992; Costell, 2002; Muñoz, 2002; Rogers, 2017; 

Meiselman et al., 2022; Meilgaard et al., 2025) have identified discrimination tests 

such as the “In Out” and Difference from Control (DFC) methods, along with 

attribute descriptive tests, as effective approaches in this context.  
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2.2.1 Discrimination Tests 

Discrimination tests are one of the key product-oriented sensory methods used in 

quality control programmes, as mentioned earlier. They aim to evaluate whether 

perceptible differences exists between two or more products and have been 

classified into overall and attribute-specific tests (Lawless & Heymann, 2010; Bi, 

2015; Rogers, 2017; Meilgaard et al., 2025), depending on whether the test specifies 

the nature of the difference in advance. These methods are also referred to as 

“Unspecified and Specified” difference methods (Amerine et al., 1965; Bi, 2015) or 

“Non-directional and Directional” discrimination methods (Lawless & Heymann, 

2010) respectively. 

Overall difference tests require assessors to identify if a sample among a set differs 

from the others, without specifying the attribute of interest. These include: 

▪ Triangle test: Identify the odd sample out from three samples (two identical, 

one different). 

▪ Tetrad test: Evaluate the four samples and group them into two groups of two 

based on similarity. 

▪ Duo-Trio test: Identify which of two coded samples matches a known 

reference. 

▪ Two-Out-of-Five test: Out of the five samples presented, three are of one kind 

and two are of another. Identify the two samples that are different from the other 

three.  

▪ Same–Different/simple difference test: Judge whether two samples are the 

same or different. 

▪ Difference-from-control (DFC): Rate how much a test sample differs from a 

control or reference sample on a specified rating scale. 

Attribute-specific tests focus the attention of assessors on a particular sensory 

characteristic, ignoring other differences. These include as examples: 

▪ Paired comparison, 2-AFC: which of the samples is sweeter? 

▪ Alternative forced choice methods (3-AFC, 4-AFC): which of the samples is 

the sweetest?  
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▪ A-NOT A: in terms of saltiness, is this sample the same as A or Not A? The In-Out 

test is a variation of the A-NOT A method, in which assessors classify samples 

as either within or outside the acceptable range of variation defined by a target 

product (Muñoz, 2002; Meilgaard et al., 2025). 

▪ Rank test: Rank this samples in order of increasing intensity of an attribute 

(sweetness, saltiness, etc). 

▪ Attribute rating test: Rate the samples on a specified scale according to the 

intensity of an attribute (sweetness, saltiness, etc). 

Overall difference tests rely on a holistic comparison strategy, require relatively 

minimal training, and do not indicate which specific sensory attributes differ. 

Attribute-specific tests, on the other hand, focus on a single attribute but demand 

greater cognitive effort, adequate sensitivity to that attribute, and often additional 

assessor training.  

Detailed test procedures for each test are provided in several texts including 

(Lawless & Heymann, 2010; Stone et al., 2012; Rogers, 2017; Meilgaard et al., 2025). 

Depending on the objective, the goal of most discrimination tests (except for 

ranking and rating tests) may be to demonstrate that products differ (difference 

testing), or to establish that they are similar enough to be used interchangeably 

(similarity testing). In similarity testing, the same test designs are used, but the 

statistical hypotheses are reversed to determine whether any sensory differences 

are small enough to be regarded as negligible. In some cases, such as with the DFC 

test, the goal extends to quantifying the magnitude of difference, providing more 

actionable insights beyond simple binary responses.  

The DFC test, originally introduced by (Aust et al., 1985) as the Degree of Difference 

(DoD) test, is valued for its simplicity and unique ability to capture not only the 

presence of a perceptible difference but also the magnitude of that difference 

relative to a control sample. This sets it apart from tests like the Triangle and Duo-

Trio, which only produce binary outcomes, and is particularly useful for tracking 

batch-to-batch variation in heterogeneous products. 

However, while these methods can identify whether a perceptible difference exists, 

they do not provide insight into why products differ in terms of attributes. Attribute-
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specific tests, for instance, indicate the presence of a difference in only a single 

attribute but neither quantify the magnitude of that difference nor capture multiple 

contributing factors, unless separate tests are conducted per attribute. In contrast, 

the DFC test offers a quantitative measure of the magnitude of perceived 

differences but still does not reveal the specific sensory attributes responsible for 

those differences. 

To address this limitation, several studies have explored combining the DFC test 

with additional qualitative methods. Rogers (2017) suggests including a comment 

section to capture assessor perceptions of what might be causing the differences. 

Compusense (2020), a white paper on quality control using the DFC test, suggested 

incorporating check-all-that-apply (CATA) follow-up questionnaires to improve 

manufacturers’ chances of identifying product faults. Similarly, Higgins and Hayes 

(2020) combined CATA questions with an open-ended comment box to further 

characterise differences in beer samples. 

Despite these enhancements, the resulting attribute insights remain qualitative, 

providing only basic information about the presence or absence of certain 

attributes. Although statistical tests such as the Cochran’s Q can be applied to the 

CATA responses to determine which attributes are selected significantly more 

frequently across samples (Meyners et al., 2013; Meyners & Hasted, 2021), thereby 

identifying attributes that likely differ between products, this approach remains 

fundamentally frequency-based. It does not directly measure the intensity or the 

relative contribution of individual attributes to the overall perceived difference, 

highlighting a gap that warrants further methodological development. 

2.2.2 Attribute Rating (AR) Tests / Descriptive analysis 

According to Muñoz et al. (1992), Attribute Rating (AR) tests, are one of the most 

powerful tools for assessing the sensory quality of products. They are central to 

descriptive analysis or sensory profiling methods, enabling the quantification of 

specific sensory characteristics using intensity rating scales. Over time, the 

development of descriptive analysis has reflected a continuous effort to overcome 

limitations in panel reliability, objectivity, and comparability across time and 

products. The major methods in this category illustrate this progression: 
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▪ The Flavour profile™ method (Caul, 1957) was one of the earliest techniques. It 

used a consensus-based approach, where assessors discussed and agreed on 

the description and intensity of aroma, flavour, and aftertaste. However, its 

reliance on panel consensus limited reproducibility and masked individual 

variability in perception, which posed challenges for statistical analysis and 

scalability. 

▪ In response, Quantitative Descriptive Analysis (QDA™) was developed in 1974 

(Stone et al., 2004). This method shifted from group consensus on attribute 

intensities to independent evaluation, training each assessor to rate the 

consensus-generated sensory attributes individually on unstructured line 

scales. This improved statistical robustness and allowed for more objective 

data collection. However, the method lacked standardised reference points, 

leading to potential inconsistencies between panels and over time. 

▪ As a refinement to both the Flavour profile™ and the QDA™, the Spectrum™ 

method developed by Gail Vance Civille and officially named “Spectrum 

Descriptive Analysis” in 1986 (Civille & Osdoba, 2020; Meilgaard et al., 2025), 

introduced anchored rating scales based on physical and conceptual reference 

standards. This ensured improved calibration and consistency, making it 

especially suitable for long-term product tracking and cross-laboratory 

comparisons. Spectrum retains the independent evaluation of QDA but adds 

rigor through standardised training and reference materials. 

This evolution reflects a deliberate shift toward methods that balance individual 

sensitivity, panel consistency, and data reproducibility, each stage refining the 

scientific reliability of sensory measurement for quality control and product 

development. Among these, Quantitative Descriptive Analysis (QDA) and the 

Spectrum method are widely used in industrial practice (Meiselman et al., 2022) for 

their structured approaches, which promote consistency, comparability, and 

reliable interpretation of sensory data. 

In sensory quality programs, these methods focus on identifying critical sensory 

attributes, those known to introduce variability within a product (Muñoz et al., 1992; 

Meilgaard et al., 2025). Consumer acceptance data are used to establish sensory 
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specifications and define acceptable limits for these attributes, ensuring the 

product consistently meets consumer expectations. 

Highly trained or expert panels are essential for this approach, which makes the 

method resource intensive. Assessors must generate a sensory lexicon (a 

standardised vocabulary of relevant attributes), undergo extensive training and 

calibration to ensure that the rating scales are used uniformly, and maintain 

consistency through ongoing performance checks (Raithatha & Rogers, 2018; 

Meilgaard et al., 2025). As such, while descriptive profiling provides rich 

quantitative data for decision-making, it can be time-consuming and costly due to 

its complexity and reliance on skilled personnel (Næs, 1990; Ares, 2015; Raithatha 

& Rogers, 2018; Moskowitz & Meiselman, 2020; Torrico et al., 2023; Meilgaard et al., 

2025). 

To accelerate product development and deliver innovations that meet consumer 

expectations with minimal training, rapid sensory profiling methods emerged in the 

2000s.  

▪ Flash Profiling (FP) (Delarue & Sieffermann, 2004) allows assessors to generate 

their own descriptive terms and rank products based on the perceived intensity 

of these attributes.  

▪ Napping® (Pagès, 2005) and Sorted Napping (Pagès et al., 2010) , are projective 

mapping techniques in which assessors place products on a 2D surface based 

on perceived similarities; the latter adds a grouping step for similar items.  

▪ Polarised Sensory Positioning (PSP) (Teillet et al., 2010) where assessors 

compare test products to a small set of selected reference products (poles), 

and rate how similar or different each product is to each pole. This results in a 

holistic, perceptual map that visualises the overall sensory relationships among 

all products and poles. 

▪ Check-All-That-Apply (CATA) (Ares et al., 2010), presents assessors with a 

predefined list of sensory attributes, from which they check all the attributes 

perceived in the product being evaluated. 

Time-dependent methods were also developed to capture dynamic sensory 

perception.  
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▪ Temporal Dominance of Sensations (TDS) (Pineau et al., 2009) requires 

assessors to continuously select the most dominant sensory attribute over 

time.  

▪ Temporal Check-All-That-Apply (TCATA) (Castura et al., 2016) an evolution of 

the CATA but similar to the TDS requires assessors to check all attributes that 

apply to the product at different points in time instead of the most dominant 

attribute. 

Of all the rapid methods, CATA has become the most widely applied (Jaeger et al., 

2015; Vidal et al., 2018; Ruiz-Capillas & Herrero, 2021; Kim et al., 2023) due to its 

simplicity and consumer-centric approach. However, because it does not capture 

intensity data, extensions like the Rate-All-That-Apply (RATA) (Ares et al., 2014) 

were developed.  

▪ RATA enables untrained assessors or consumer panels to rate the intensities of 

only the sensory attributes they perceive to be present in the samples based on 

a predefined list of sensory descriptors, offering a practical yet quantitative 

alternative to traditional profiling. It has been shown to improve product 

discrimination compared to CATA (Ares et al., 2014; Reinbach et al., 2014).  

Despite the growing interest in rapid methods, attribute rating tests have remained 

essential in sensory quality control. Another of their key advantage over the 

Difference-from-Control (DFC) test is that samples are assessed independently, 

without requiring comparison to a reference. This makes them less cognitively 

demanding for assessors and reduces fatigue, particularly when a large number of 

samples must be evaluated. In contrast, DFC tests, although useful for quantifying 

overall product difference, can be resource-intensive, especially when multiple 

products are involved. Even when test sessions are spread out over time, they often 

require a greater time commitment from both assessors and researchers. 

Recent methods like RATA have increased the accessibility and consumer 

relevance of sensory profiling and attribute rating tests, but trade-offs remain. 

Attribute rating provides detailed quantitative data on individual attributes but does 

not directly measure overall product difference. Instead, overall differences must 

be inferred through multivariate analysis, which can add complexity to result 

interpretation. In contrast, DFC tests capture overall product differences but 
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require additional tests to identify the key sensory drivers. This highlights the 

ongoing need for an integrated approach that reliably and efficiently captures both 

overall product differences and the contributions of individual attributes in a 

reliable, interpretable, and efficient manner.  

2.3 Measuring responses in sensory evaluation 

At the core of all sensory testing methods is an unavoidable challenge, which is the 

inherent variability of the human sensory system. Regardless of the evaluation 

method used, the data collected must remain reliable and interpretable, even 

though humans serve as the measuring instruments. As the link between technical 

product development and market realities, the sensory analyst plays a critical role 

in ensuring that product changes are accurately measured and that findings are 

translated into insights that reflect real consumer experiences and expectations. 

2.3.1 Humans as measuring instruments 

A defining feature of all sensory evaluation methods is the use of humans, 

commonly referred to as subjects, assessors, panellists, judges, raters, 

participants, or tasters, or a group of humans known collectively as a “sensory 

panel” (ISO 8586:2023 - British Standards Institution (2023)), as the measuring 

instruments. Unlike mechanical or digital devices, human responses are influenced 

by a range of internal and external variables, making individual variability inherent 

to sensory science. This variability stems from differences in past experiences, 

sensory acuity, health status, and contextual factors (Stone et al., 2012; Meilgaard 

et al., 2025), as well as from genetic differences in taste receptor genes that create 

fundamentally different sensory experiences across individuals (Bartoshuk et al., 

2005; Feeney et al., 2011). These sources of variability contribute to inconsistencies 

and background noise in sensory data, making the assessment and management 

of panel performance a key focus in sensory evaluation (Sipos et al., 2021). 

Even with rigorous training, assessors vary not only from each other but also within 

themselves over time Næs et al. (2010); Stone et al. (2012); and Sipos et al. (2021). 

This inherent variability highlights the importance of well-designed testing protocols, 

assessor calibration, and appropriate statistical tools to reduce noise and support 

valid interpretations. Such fluctuations in perception beyond differences in the 
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products themselves are an accepted and inherent part of sensory evaluation 

(Meilgaard et al., 2025). 

2.3.2 Individual differences in sensory evaluation  

The factors contributing to individual variation and response bias in sensory 

evaluation, summarised in Table 2.1, are broadly classified as intrinsic (inherent to 

the individual) and extrinsic (external factors contributing to response bias). 

Intrinsic factors influence how individuals perceive and interpret sensory stimuli 

and often persist despite training. Extrinsic factors, by contrast, stem from the 

testing environment or methodology, such as sample presentation, location, and 

questionnaire design, and are generally easier to control through clear protocols. 

Both types of factors have significant implications for the design of sensory tests 

and the interpretation of results. Minimising their impact is essential for obtaining 

valid and reliable data. Current approaches to address these include assessor 

training and calibration to the rating scale, addressing common sources of bias in 

sample handling, environmental conditions, and test instructions, and using well-

structured experimental designs with randomised and balanced presentation 

(Lawless & Heymann, 2010; Kemp et al., 2018; Meilgaard et al., 2025). 

In the wake of increasing globalisation and the post-COVID-19 era, certain factors 

influencing sensory response have gained prominence, particularly cultural 

considerations and the influence of contextual testing environments. 

Cultural differences can significantly affect how rating scales are used and how 

assessors interpret the meaning, importance, and intensity of sensory attributes 

(Lee & Lopetcharat, 2017; Yang & Lee, 2019; Dupas de Matos et al., 2025). As a 

result, cultural sensitivity has become crucial in the design of questionnaires and 

rating scales. A global approach to sensory research is encouraged, with growing 

emphasis on ethical relevance and cultural adaptability to ensure that methods and 

conclusions remain valid across diverse populations (Muñoz, 2002; Meiselman et 

al., 2022; Hort, 2024). 
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Table 2.1. Common sources of individual variation and response bias in sensory evaluation 

INTRINSIC FACTORS (Inherent to individuals) 

Factors Relevance 

Age 
As individuals age, there is a natural decline in the number and function of taste buds and olfactory receptors, leading to 
diminished taste and smell sensitivity; while children often have heightened sensory sensitivity compared to adults 
(Guinard, 2000; Issanchou, 2015) 

Cognitive ability 
Cognitive traits like attention span, learning ability, and memory capacity can influence sensory judgements especially in 
tests that require mental recalls of stimuli like the Two-Out-of-Five Test (Meilgaard et al., 2025).  

Experience 
An individual’s background including culture, environment, knowledge, and skills affects sensory perception. For example, 
cultural differences influence culinary experiences and expectations of how food should taste (Ares, 2018). 

Genetic predisposition 
Genetic differences influence sensory perception (Feeney et al., 2021), as seen in classifications such as supertasters, 
medium tasters, or non-tasters of phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP) (Bartoshuk, 1979). 

Health variations 
Health conditions can impair sensory perception, such as anosmia (complete loss of smell), parosmia (distorted sense of 
smell), ageusia (complete loss of taste), or dysgeusia (altered taste) (Parker et al., 2022; The John Hopkins University 
Hospital, 2023) 

Sensory acuity  
Individuals vary in their sensitivity to different stimuli. Threshold detection tests are commonly used to screen sensory 
assessors for acuity. The lowest concentration of a stimulus detectable is called the absolute threshold, while the highest 
concentration perceivable is the limit of detection (Breslin, 1996; Lawless & Heymann, 2010) 

Biological sex 
This has been shown to affect sensory capabilities due to hormonal differences and a higher density of taste papillae 
(Bartoshuk et al., 1994). Research indicates that women generally possess a more acute sense of smell and taste compared 
to men (Doty & Cameron, 2009).  
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EXTRINSIC FACTORS (External influences) 

Factors Relevance 

Environmental context and 
test conditions 

These include consistency of sample presentation, testing locations, test site setup, ambience of the sensory room and 
surroundings, carefully designed text questionnaire, etc. British Standards Institution (2019) describes the general guidance 
for the design of test rooms for sensory evaluation. 

Physiological Influences 

These include adaptation or mental fatigue (a decrease or change in sensitivity to a stimulus due to continued exposure), 
flavour carry-over effects (when test samples possess strong, lingering flavours) or cross-potentiation (where, for 
instance tasting a sweet sample first heightens the sensitivity to sweetness and results in a higher rating for bitterness in  a 
subsequent bitter sample) (Meilgaard et al., 2025). 

Psychological bias 

These are the most common sources of bias and refer to systematic mental shortcuts not due to sensory acuity but rather 
due to external influence on cognitive processes leading to inaccurate ratings and deviations from objective product 
assessments (Torrico et al., 2023). Common effects (Lawless & Heymann, 2010; Stone et al., 2012; Kemp et al., 2018; 
Meilgaard et al., 2025) include: 

▪ Dumping effect 
Where assessors assign intensity ratings for perceived but unlisted attributes to a listed attribute instead, effectively 
inflating that attribute’s rating. 

▪ Expectation error 
Prior knowledge about the sample, acquired before or during testing, can influence perception due to preconceived 
expectations. 

▪ Habituation error 
A tendency to continue giving the same response when the series of test samples presented over time possess gradually 
increasing or decreasing stimuli. 

▪ Halo effect 
Where the general impression of a product, or the rating for one (dominant) attribute, influences the ratings for other 
unrelated attributes when multiple attributes are assessed simultaneously. 
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▪ Logical error 
When assessors associate several sample characteristics in their minds, like relating green coloured juices with a vegetable 
or bitter flavour. 

▪ Stimulus error Where assessor verdicts are influenced by irrelevant characteristics of the sample itself or its presentation. 

▪ Mutual suggestion 
Where assessor responses are influenced by other assessors’ reactions to the product, either through verbal or facial 
expressions. 

▪ Lack of motivation Where assessors are not adequately engaged, interested, or committed to the task of accurately assessing samples.  

▪ Physical condition 
Short-term physical states such as taking medications, smoking, ill health, consuming strongly flavoured food or beverages, 
or wearing strong perfumes can influence the perception of stimuli.  

▪ Presentation order 

This is a major source of response bias and can manifest in several ways. Presenting a good quality sample just before a 
poor one may lead to a lower rating for the second sample, and vice versa (contrast effect). A good sample presented 
among poor ones may receive a lower rating than if presented alone (group effect). Presenting samples in a particular 
sequence can lead assessors to anticipate the next sample (pattern effect). Assessor attitude may also change over time, 
with greater anticipation for the first sample and eventual indifference or fatigue toward the last samples (time-error bias). 

Scale-use bias 
This refers to systematic differences in the way assessors use rating scales not reflecting their actual sensory experiences. 
Differences arise not from the product perception itself but from how individuals choose to express what they perceive. 
Common forms (Næs, 1990; Myford & Wolfe, 2003; Romano et al., 2008; Kemp et al., 2018; Heymann, 2019) include: 

▪ Level effect When assessors consistently rate products higher (leniency) or lower (severity) on the scale than others. 

▪ Scaling effect 
Where assessors restrict their ratings to a narrow portion of the scale (restriction of range), reducing the scale’s sensitivity 
to differences. Central tendency is a specific case where extreme categories are avoided and responses cluster around 
the midpoint. 

▪ Extreme response Where some assessors use the ends of the scale more than necessary, exaggerating differences. 

▪ Variability effect Refers to the internal consistency of assessors when rating repeated evaluations of the same sample. 
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Environmental context is another evolving area of interest. Home Use Tests (HUTs) 

have grown in popularity due to their potential to enhance ecological validity by 

allowing product evaluations in familiar, real-life settings (Niimi et al., 2022; Torrico 

et al., 2023). However, HUTs present challenges such as distractions and lack of 

control over serving conditions, which may compromise data consistency and 

reliability (Torrico et al., 2020; Giezenaar & Hort, 2021). In contrast, Central 

Location Tests (CLTs) typically conducted in sensory booths, provide better 

control and reduce variability but may introduce response bias, as the artificial 

setting can influence assessor behaviour (Boutrolle et al., 2007; Hannum et al., 

2019). 

To bridge these gaps, immersive technologies are being employed to simulate real-

life consumption contexts within controlled environments. These include Virtual 

Reality (VR), which uses head-mounted displays to present contextual settings 

(Torrico et al., 2020; Yang et al., 2022); Augmented Reality (AR), which overlays 

digital elements such as decorations or a certain ambience within the real-world 

booth via AR glasses, tablets, or smartphones (Dong et al., 2021); and digital 

immersion, where the physical testing space is enhanced using 360° projection 

screens, surround sound, and even scent delivery to recreate realistic 

environments, and include setups like immersive walls (Hannum et al., 2019) and 

fully immersive rooms (Sinesio et al., 2019; Worch et al., 2020; Lichters et al., 

2021). These approaches allow for context-relevant testing, without compromising 

experimental control. Comprehensive reviews of these technologies are available 

in Fuentes et al. (2021), Giezenaar and Hort (2021), Chai et al. (2022), Torrico et al. 

(2023)_ENREF_76, and Cosme et al. (2025).  

Notably, most research to date has focused on the use of these technologies in 

affective, consumer-oriented testing, rather than product-focused analytical tests 

typically used within sensory quality programmes. However, enhancing ecological 

validity could also support product characterisation, particularly during product 

development, where understanding product performance in realistic contexts is 

essential (Ares & Varela, 2017). 

Despite advances in sensory methods, critical challenges remain, particularly 

individual variability and response bias linked to the use of rating scales (Ares, 2018; 
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Hannum et al., 2019). Tomic et al. (2010) further highlight issues with evaluating 

panel proficiency i.e., the ability of multiple sensory panels to consistently and 

accurately evaluate products, across different geographical or global locations. 

Such inconsistencies can undermine the comparability and harmonisation of 

results, which are crucial for informed product development. These issues continue 

to affect the precision and interpretability of sensory data, especially as testing 

shifts toward more naturalistic settings and diverse consumer populations. 

Overcoming them requires sophisticated analytical techniques that can distinguish 

true product differences from variation caused by assessors (Romano et al., 2008) 

or contextual factors, thereby enhancing the robustness of sensory evaluations and 

producing results that better reflect real-world consumer perceptions. 

2.4 Some considerations in sensory evaluation for quality control 

There has been ongoing debate about the use of trained or untrained panels for 

sensory quality assessment of products, especially with regards to obtaining 

relevant and representative results that align with consumer expectations 

(Meiselman, 2013; Ares & Varela, 2017; Moskowitz, 2017). Also, concerns regarding 

the reliability and validity of results derived from sensory panel assessments 

continue to be a significant issue within the industry (Raithatha & Rogers, 2018). 

2.4.1 The Trained - Untrained panel spectrum 

Traditionally, sensory panels have been clearly divided into two categories: trained 

panels, often treated as analytical instruments, functioning like machines and 

expected to provide predictable and repeatable data without the influence of 

personal preference; and consumer panels, valued for their subjective judgements 

that reflect real world consumer experiences and are usually based on liking and 

emotional response rather than objective analysis. The two types of panels have 

typically been kept separate (Meiselman, 2013; Ares & Varela, 2017). 

According to ISO 8586:2023 - British Standards Institution (2023), trained 

assessors are screened for sensory acuity relevant to the attributes under 

evaluation, trained in specific sensory methods (or multiple methods), and 

maintained over time through follow-up training and validation involving practice 

with product attributes and rating scales. With continued experience and 
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demonstrated sensitivity, these individuals become expert sensory assessors, 

capable of delivering consistent, repeatable sensory assessments across various 

products. 

Outside of this classification are untrained assessors, who could be naïve 

assessors with no prior sensory evaluation experience, as well as initiated or 

experienced assessors who may have some exposure to sensory testing methods 

but lack formal training. Somewhere between these groups are “semi-trained” 

assessors, typically industry employees or co-workers who have received some 

familiarisation with the products and methods but lack the extensive training of a 

trained panel. This group appears to have evolved as a practical compromise in 

contexts where time and resources are limited. 

Since Meiselman’s decade-long prediction that the line between trained and 

untrained or consumer panels would become increasingly blurred (Meiselman, 

2013), this shift appears to be materialising. Ares and Varela (2017) and Moskowitz 

(2017) make a strong case for both panel types, arguing that the choice between 

them should depend on the test objective. Both are valuable tools for sensory 

quality control and product development. 

Several studies have shown that untrained assessors can effectively carry out 

analytical attribute difference tests, particularly when using alternative rapid 

methods (Giacalone & Hedelund, 2016; Mello et al., 2019; Barton et al., 2020; 

Maheeka et al., 2021; Wang et al., 2022; Xiangli et al., 2024). Across these studies, 

a consistent finding is that trained panels tend to use more technical and precise 

descriptors, whereas untrained or semi-trained assessors rely more on hedonic or 

general (umbrella) terms. 

Interestingly, when comparing performance, trained panels are not always more 

discriminative overall. Their superior sensitivity emerges primarily for attributes 

with low detection thresholds which they have been specifically trained to notice. 

However, this sensitivity is often limited to those attributes. As Chollet et al. (2005) 

and Ares and Varela (2017) argue, this perceptual advantage doesn’t necessarily 

generalise to stimuli outside their training. 
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Trained panels are also taught to use more complex rating scales, such as 

unstructured line scales, often with minimal verbal anchors (discussed in the next 

section). These scales are assumed to allow for finer discrimination and are treated as 

yielding interval-level data (Lawless & Heymann, 2010; Meilgaard et al., 2025). In 

contrast, untrained assessors are expected to produce more variable results. This is 

partly due to a lack of consensus on where attribute intensities lie along the scale, and 

partly because their responses are influenced by personal experiences and 

preferences. Without a shared frame of reference for scaling, different assessors may 

interpret the same attribute in different ways. As Antmann et al. (2011) showed in their 

cross-cultural study of creaminess perception, consumers differed considerably in 

how they understood and rated this attribute, even when evaluating identical samples. 

Similarly, Ares et al. (2011) reported that consumer panels used unstructured line 

scales inconsistently, leading to low reliability in texture-intensity ratings of dairy 

desserts. When results from trained and untrained panels are averaged, however, the 

rank order of differences between samples is often similar (Worch et al., 2010; Xiangli 

et al., 2024). 

That said, averaging consumer panel intensity scores should be approached with 

caution. Their inconsistent, heterogeneous use of scale and other scale-related effects 

can compromise data reliability (Ares & Varela, 2017; Hannum et al., 2019). 

Familiarity with the product being evaluated has also been shown to increase 

sensitivity to specific attributes (Moskowitz, 2017); and a limited amount of training 

can significantly enhance performance in analytical tasks (Ares & Varela, 2017). These 

suggest that experienced, assessors who have been oriented to the sensory method 

could offer a viable alternative in situations where time, resources, or sample 

availability are constrained, especially in industrial applications (Giacalone & 

Hedelund, 2016; Barton et al., 2020; Wang et al., 2022). 

There is growing consensus in the field that the choice between trained and 

untrained panels should be guided by the objective of the test (Meiselman, 2013; 

Ares & Varela, 2017; Barton et al., 2020; Maheeka et al., 2021), not by assumptions 

of superiority. When the goal is analytical, such as ingredient substitution, changes 

to formulation, or similarity testing, where smaller differences may be important 
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even if consumers might not notice them (Meilgaard et al., 2025), a trained panel is 

often more appropriate due to their heightened sensitivity. 

However, for product development, consumer-relevant difference and consumer 

acceptability testing, where real-world usage and emotional responses matter, 

untrained or semi-trained consumer panels offer more relevant insights. While their 

responses may be less consistent, they more closely reflect how the average 

consumer experiences the product. This makes them especially valuable in early 

product development stages, and benchmark testing. 

Even when trained panel data are available, there is still a need for additional tools to 

connect those results to actual consumer perceptions. Researchers note that data 

from trained panels often need to be matched with consumer liking data to fully 

understand product performance in the market (Ishii et al., 2007; Kemp et al., 2018). 

This remains an active area of research, highlighting an ongoing gap between technical 

sensory profiles and consumer relevance. 

This ongoing debate about the appropriate sensory panel raises a number of questions: 

If trained assessors detect differences that consumers may not notice or care about, 

how meaningful is that added sensitivity in a typical use scenario (Ares & Varela, 

2017)? If they function as analytical rating machines, do they belong more in fields like 

product engineering, given the aim of sensory evaluation is to capture subjective 

human perceptions, albeit in a structured and more objective manner (Meiselman, 

2013)? And even if they are calibrated to use rating scales consistently, does that truly 

remove the influence of individual variability and scale-use bias?  

The evidence suggests not. Moreover, individual variability persists across disciplines 

requiring human judgement, including sensory science (Næs, 1990; Romano et al., 

2008; Sipos et al., 2021), psychometrics and educational assessment (Linacre, 1994; 

Myford & Wolfe, 2003; Engelhard & Wind, 2018), regardless of training or expertise. 

There will always be a need for techniques that can isolate true product differences, 

independent of the idiosyncratic use of scales by the assessors. 

2.4.2 Rating scales: measurement, reliability and validity of results 

In sensory analysis, various types of scales are used to convert subjective 

perceptions and associated sensory scores into measurable data. These scales 
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can be categorised into four basic types: nominal, ordinal, interval, and ratio 

(Stevens, 1946), and the type of scale chosen has significant implications for the 

validity of the measurements, the statistical methods used for analysis, and the 

interpretability of results (McEwan & Lyon, 2003; Meilgaard et al., 2025). 

▪ Nominal scales classify data into distinct categories without any implied order. 

Common examples include binary responses such as yes or no, sweet or not 

sweet, or same or different, often used in paired comparisons and other 

difference tests. They also apply to classification tasks, such as sorting samples 

by colour or identifying the presence of an attribute, as in CATA questionnaires. 

▪ Ordinal scales introduce a ranked order such as “weak”, “moderate”, and 

“strong”, and are sometimes used in attribute rating and hedonic testing. 

However, they do not convey the magnitude of difference between levels. While 

it is common practice to assign numerical values to these categories (e.g., a 1 - 

9 hedonic scale where 1 signifies “dislike extremely” and 9 signifies “like 

extremely”) and treat the data as interval-level, this can be misleading, as it 

assumes equal spacing between categories, which often does not align with 

actual sensory perception (McEwan & Lyon, 2003; Næs et al., 2010; Boone, 

2016). 

▪ Interval scales place items into numbered groups separated by equal intervals, 

such as line scales. The numbers indicate both the order and a meaningful 

relative distance between values on the scale. However, they lack a true zero 

point (McEwan & Lyon, 2003; Bond et al., 2020), so statements about ratios (e.g., 

“twice as sweet”) are not valid. 

▪ Ratio scales use numbers to express the magnitude of a stimulus as a multiple 

or factor of another. For example, indicating that a sample is twice as sweet as 

a reference sample. By including a true zero, which represents the absence of 

an attribute, ratio scales enable proportional comparisons. Magnitude 

estimation is an example of a ratio scale method (McEwan & Lyon, 2003; 

Meilgaard et al., 2015; Rogers, 2017). 

Two main families of scaling methods dominate in sensory science and consumer 

research: line scales and category scales, each with advantages and limitations. 
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Line scales typically use a continuous visual analogue line, often 10 or 15 cm long, 

anchored with descriptors like “None” and “Very Intense” (Stone et al., 2012; Kemp 

et al., 2018; Meilgaard et al., 2025). Assessors indicate their perception by marking 

a point along the line, and the distance from the origin is measured and used for 

statistical analysis. These are widely used in QDA™ and Spectrum™ methods for 

their sensitivity and resolution, and results are often treated as interval-level for 

statistical purposes. Their continuous nature allows for a wide range of subtle 

responses, especially in trained panels. 

However, their use can be cognitively demanding, particularly for untrained assessors, 

and they are sometimes prone to ceiling and floor effects. Ceiling effects occur when 

responses cluster at the top of the scale, limiting detection of improvements or 

distinctions among high-intensity stimuli, thereby reducing product differentiation. 

Conversely, floor effects occur when responses cluster at the bottom, obscuring 

subtle differences at low intensities. Both effects restrict the usable range of the scale, 

reduce variability, and compromise the sensitivity and interpretability of the data 

(Stone et al., 2012; Kemp et al., 2018). 

Category scales simplify response collection by offering discrete options, typically in 

the form of hedonic or intensity categories anchored with verbal labels. The most 

familiar example is the 9-point hedonic scale, ranging from “Dislike Extremely” to “Like 

Extremely” (Peryam & Pilgrim, 1957). These scales are intuitive and widely used in 

large consumer tests for assessing preference and acceptability (Peryam & Pilgrim, 

1957; Yao et al., 2003; Pham et al., 2008; Lesschaeve et al., 2012; Zhi et al., 2016; 

Ho, 2019). 

Ordinal categorical scales are also used in overall difference testing (Schlossareck & 

Ross, 2019; Higgins & Hayes, 2020; Montero & Ross, 2022; Cela et al., 2023), as well 

as for attribute rating and descriptive analysis (Findlay et al., 2007; Reinbach et al., 

2014; Puputti et al., 2019; Pineau et al., 2022). However, while convenient, these 

scales yield only ordinal data. 

It is common practice, though methodologically debated, to treat ordinal responses 

as interval-level data for the purposes of statistical analysis, particularly using 

ANOVA. This approach assumes equal spacing between categories, normal 

distribution of residuals, and homogeneity of variance. These assumptions, 
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however, are not always met in response data (Næs, 1990; McEwan & Lyon, 2003; 

Ho, 2015; Boone, 2016; Raithatha & Rogers, 2018; Ho, 2019). While ANOVA is 

generally robust to moderate violations of its assumptions, particularly with larger 

sample sizes due to the central limit theorem (Kwak & Kim, 2017), the ordinal nature 

of categorical scales can present challenges when violations are severe (Stone et 

al., 2012) or sample sizes are small (Meilgaard et al., 2025). Specifically, residuals 

may not be normally distributed, and variances can be heterogeneous across 

groups due to individual differences in scale use, potentially compromising result 

validity. Most studies fail to report whether these assumptions were tested or met, 

raising concerns about the robustness of conclusions drawn. 

Sensory data occasionally depart from normality because rating scales have fixed 

upper and lower limits (i.e., they are bounded), are ordinal in nature, and can be 

skewed by individual differences in scale use or reluctance to use extreme 

categories (Kemp et al., 2018). When data deviate substantially from normality, 

estimates of central tendency and variability may become biased (Stone et al., 

2012; Meilgaard et al., 2025), reducing the sensitivity and interpretability of 

subsequent analyses. Understanding the distributional nature of sensory 

responses is therefore essential for selecting appropriate analytical techniques and 

ensuring that statistical conclusions accurately reflect perceived differences 

(Raithatha & Rogers, 2018). 

Categorical-Ratio scales including the Labelled Magnitude Scale (LMS) (Green et 

al., 1993) and the Generalised Labelled Magnitude Scale (gLMS) (Bartoshuk et al., 

2005) were developed to overcome limitations of both line and category scales. 

These are vertical, semi-logarithmic scales anchored with empirically spaced 

perceptual labels like “barely detectable”, “moderate”, and “strongest imaginable 

[the sensory stimulus being measured]”. Unlike linear or ordinal scales, the LMS 

aims to approximate ratio-level measurement by aligning verbal anchors with 

psychophysical intensity intervals derived and validated using ratio scaling (i.e., the 

magnitude estimation scale) (Lim et al., 2009). Bounded by “no sensation” and 

“strongest (or maximal) imaginable sensation” at each end, these scales enable 

comparison of individual and group differences within the full range of perceived 

intensities. Additionally, the inclusion of the verbal anchor “strongest imaginable” 
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was intended to minimise ceiling effects (Kemp et al., 2018), as assessors are 

instructed to rate sensations relative to the most intense version of the specific 

stimulus they can imagine (e.g., the strongest imaginable oral sensation). This 

personalisation broadens the scale’s dynamic range and enhances discrimination 

among high-intensity experiences, reducing response clustering near the top and 

allowing for more accurate comparisons across individuals and stimuli. 

The gLMS extends this approach by asking assessors to rate sensations relative to 

the strongest imaginable sensation of any kind, not limited to the same sensory 

modality. This adjustment was intended to reduce variability between individuals 

with differing sensory sensitivity levels, such as supertasters and non-tasters of 

bitterness (Bartoshuk, 1979), and to enable more meaningful cross-individual 

comparisons. However, the gLMS has faced criticism for assuming that individuals 

can reliably compare across sensory modalities. For example, a participant may be 

asked to rate the intensity of a bitter taste relative to the strongest imaginable 

sensation of any kind, such as the pain of a broken bone or the sound of a fire alarm. 

This type of cross-modal comparison can be cognitively demanding and may not be 

intuitive (Lim et al., 2009), especially when the sensations differ dramatically in both 

intensity and emotional relevance. Moreover, individual differences in prior 

experience, cultural background, and sensory exposure may influence how the 

upper anchor is interpreted, potentially reintroducing the very variability the scale 

was designed to minimise. 

Both the LMS and gLMS scales have been criticised for their complexity and 

practical limitations, particularly when used by untrained assessors (Hayes et al., 

2013). Common issues include the cognitive burden of interpreting their abstract 

anchors like “strongest imaginable”, which requires conceptual effort and can lead 

to misuse or compression of the scale range. Scale bias arises when participants 

with limited exposure to high-intensity stimuli underuse the upper end of the scale, 

effectively narrowing the measured range (Schifferstein, 2012). There can also be 

considerable individual variability in how anchors are interpreted; what one 

assessor considers “very strong” or “moderate” can differ widely based on prior 

sensory experiences. Additionally, there is a tendency to use the scales as 
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categorical scales, with assessors relying solely on the semantic label anchors to 

assign ratings (Hayes et al., 2013). 

Moreover, the semi-logarithmic and ordinal nature of LMS/gLMS data often violates 

key assumptions underlying parametric analyses such as ANOVA. Specifically, 

residuals may not be normally distributed, and variances can be heterogeneous 

across groups due to individual differences in scale use. These violations can 

compromise the validity of ANOVA results, highlighting the need for alternative 

approaches such as data transformations or non-parametric methods (Ho, 2015; 

Raithatha & Rogers, 2018) that better accommodate the unique properties and 

variability inherent in these semi-logarithmic scales and in ordinal rating scales. 

However, non-parametric tests like the Friedman (Friedman, 1937) and Kruskal-

Wallis (Kruskal & Wallis, 1952) are rank-based and often considered a practical 

compromise, as they tend to reduce statistical power (Conover & Iman, 1981; Politi 

et al., 2021). Conversely, data transformations require an iterative and complex 

process, making them less feasible in many practical settings, especially in 

consumer or industry studies where time is constrained. 

As Meiselman (2013) recommended, the choice of rating scales should be context-

dependent, as there are no inherently good or bad scales. Instead, the focus should 

be on identifying the most user-friendly scale for the specific panel of assessors and 

the one most efficient in achieving the required results. However, regardless of the 

scale used, issues related to individual variability and response bias remain 

persistent challenges. Several studies have proposed methods to minimise and 

correct for the confounding influence of individual rating styles from true 

differences between samples (Næs, 1990; Romano et al., 2008; Brockhoff et al., 

2015; Großmann et al., 2023), and (Sipos et al., 2025); however, these approaches 

generally address the issue at an aggregate data level. Working solely with averaged 

data can obscure important individual differences, masking individual rating 

tendencies and inflating measurement error. 

Given these limitations in rating scale validity and individual variability, alternative 

approaches that model individual responses directly, rather than relying on 

aggregated data, offer promising solutions. Unlike traditional aggregation methods, 

a Rasch-based approach models the latent traits of both individuals and items, 
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enabling the disentangling of individual biases from true sensory differences. 

Specifically, the Many-Facet Rasch Model (MFRM) extends these principles to 

simultaneously account for multiple sources of variation including assessor 

severity, product differences, attribute characteristics, and other explanatory 

factors within a single measurement framework (Linacre, 1989). This approach 

enables the separation of person and item parameters, allowing for more precise 

measurement of sensory perceptions while accounting for variability in individual 

rating styles. The following section details the core principles and methodological 

extensions of Rasch measurement that position it as an effective framework for 

addressing these sensory evaluation challenges. 

2.5 Rasch measurement 

Rasch measurement is a psychometric approach used to measure latent traits i.e., 

unobservable characteristics or abilities (such as mathematical ability, user 

attitudes, or sensory sensitivities), by modelling the relationship between 

individuals and test items (i.e. survey or examination questions). Latent traits 

cannot be directly observed but are inferred through patterns in responses to 

carefully designed items or stimuli. 

Developed by Danish mathematician Georg Rasch (Rasch, 1960), Rasch models 

use mathematical formulas to express the probability of a specific response (e.g., a 

correct answer or a sensory rating) as a logistic function of the difference between 

a person’s latent trait level and the difficulty or intensity of an item on a linear scale 

(Lunz & Linacre, 1998; Boone et al., 2014; Ho, 2019; Bond et al., 2020). 

Unlike traditional statistical models, such as regression or ANOVA, which fit a 

model to the observed data to explain patterns or differences, Rasch analysis 

operates by testing whether the data fit a predefined measurement model. 

Traditional tests require assumptions to be met, such as normality of residuals and 

homogeneity of variance, and typically rely on aggregated data. In contrast, Rasch 

analysis does not assume any specific underlying data distribution. Instead, it 

focuses on individual response patterns as the primary source of information 

(Wright, 1991; Linacre, 1999; Boone, 2016; Bond et al., 2020; Linacre, 2023b). When 

responses deviate from the model’s predictions, these inconsistencies are flagged 
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for further investigation using built-in diagnostic tools based on residual analysis, 

such as fit statistics like outfit mean squares, which assess the response patterns 

of both persons (the respondents being examined) and items (the questions used 

in estimating the latent trait being measured), indicating how well they fit the 

model’s expectations. 

2.5.1 Types of Rasch Models 

The original Rasch model was a basic dichotomous model and has since been 

extended by several researchers to address emerging research questions as its 

application became more widespread, as summarised in Table 2.2. 

2.5.2 Key requirements and principles of the Rasch model 

Rasch models specify several key criteria for a latent variable measurement to be 

meaningfully interpreted.  

Unidimensionality: the core idea behind measuring latent variables is to draw 

inferences from observable data (what you have) to unobservable qualities (what 

you want but cannot measure directly) (Boone, 2016). For example, the questions 

in a math test should strictly measure mathematical knowledge, or perceived 

overall differences in flavour from a set of attribute intensity ratings should reflect 

the intended overall difference in flavour rather than unrelated factors.  

Achieving unidimensionality is concept-dependent and empirically verified. It is a 

construct design decision, and so tests must be carefully designed to isolate and 

accurately capture the target latent variable by selecting theoretically aligned items 

and validating unidimensionality with the model (Smith, 2002; Linacre, 2023a, 

2024a). If response patterns reveal that items measure multiple independent 

dimensions rather than contributing coherently to a single construct, the definition 

of the latent variable can be refined, or items split into separate analyses, either 

way, it provides valuable diagnostic insights to the researcher. 

In sensory contexts where perception is often multidimensional and attributes 

often interact, the Rasch model does not claim to capture this full perceptual 

complexity. Rather, it measures whether a deliberately defined set of attributes 

works together coherently to reflect the researcher's intended construct, whether a 
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specific sensory modality (e.g., differences in flavour attributes) or an overall 

difference integrating multiple sensory dimensions (across taste, aroma, and 

texture). A construct can be unidimensional even when it includes cross-modal 

attributes, provided assessors use those attributes consistently to express the 

same underlying dimension. Researchers must therefore ensure unidimensionality 

through careful attribute selection and validation of response patterns. 

Parameter separation: ensures that item difficulty (such as how bitter a sample is) 

is independent of the sample of respondents, and that individual sensitivity or 

ability is independent of the specific items tested. The model simultaneously 

estimates both individual sensitivity/trait levels and item difficulties directly from 

response patterns in the data, without requiring prior information about individual 

characteristics. This means that individual differences in sensitivity are accounted 

for. E.g., if a person consistently rates all samples as more bitter than other 

assessors, the model identifies this as higher sensitivity, independent of which 

samples were rated. This property, known as invariance, allows for fair and 

consistent comparisons across different samples and assessors, enabling 

measurement that is both sample-free and item-free (Wright & Masters, 1982). In 

other words, a respondent’s estimated ability does not depend on which items they 

answered, and item difficulties remain stable regardless of which respondents 

completed them, providing the foundation for objective and meaningful 

measurement.  

Local item independence: as the model dictates that responses to each item 

depend only on the underlying latent variable, not on responses to other items. 

When items are more strongly related to each other than to the latent trait, they 

exhibit local item dependence (LID), which can bias measurement results (Sick, 

2010). 

Functioning of rating scale categories: Rasch analysis evaluates whether each 

response option on a scale is used consistently and in the intended order. If 

respondents struggle to distinguish between adjacent categories (e.g., confusion 

between “moderate” and “moderately strong”), the thresholds become disordered, 

signalling that the scale may need redesign or clearer definitions (Engelhard & Wind, 

2018; Bond et al., 2020; Eckes, 2023).  
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Table 2.2. Summary of Rasch Models 

Type of Rasch model Use Mathematical log-odds representation 

Dichotomous Model 
(Rasch, 1960) 

Used for binary responses. It estimates the probability that respondent 𝑛 scores 1 
instead of 0 on item 𝑖 based on the difference between the respondent’s ability (𝜽𝒏) 

and the item difficulty (𝜹𝒊). 
𝐥𝐧 [

𝑷𝒏𝒊

𝟏 −  𝑷𝒏𝒊

] =  𝜽𝒏 −  𝜹𝒊 

Rating Scale Model 
(Andrich, 1978) 

The RSM is a polytomous model used when all items share the same response 
categories. It compares the probability of choosing category 𝒌 to category 𝑘−1, with 
a threshold parameter (𝝉𝒌) representing the boundary between adjacent categories. 

ln [
𝑷𝒏𝒊𝒌

 𝑷𝒏𝒊𝒌−𝟏

] =  𝜽𝒏 − 𝜹𝒊 − 𝝉𝒌 

Partial Credit Model 
(Masters, 1982) 

The PCM is ideal for instruments where items have different scale structures, such as 
a mix of yes/no and rating questions. It handles varying numbers of response 
categories and allows each item to have unique step or threshold parameters (𝝉𝒊𝒌). 

ln [
𝑷𝒏𝒊𝒌

 𝑷𝒏𝒊𝒌−𝟏

] =  𝜽𝒏 − 𝜹𝒊 − 𝝉𝒊𝒌 

Many-Facet Rasch 
Model (Linacre, 1989) 

The MFRM extends the Rasch model to include multiple facets beyond persons and 
items, such as raters, samples, replicates, occasions, or other factors that could 
influence the responses. Where 𝝉𝒌 represents the threshold parameter, while the 
other symbols denote the various facets being modelled. 

ln [
𝑷𝒎𝒏𝒓𝒊𝒌

𝑷𝒎𝒏𝒓𝒊𝒌−𝟏

] = 𝜷𝒎 −  𝜽𝒏 − 𝝆𝒓 −  𝜹𝒊 −  𝝉𝒌 

Hybrid Rasch Models These provide some flexibility to adapt the model to complex data, combining 
features of both the RSM and PCM models as described in (Linacre, 1994) and 
(Myford & Wolfe, 2003). 
For instance, in an MFRM, they can model how each rater 𝒎 applies either a shared 
or a unique rating scale. Similarly, each item 𝒊 can be evaluated using its own distinct 
scale structure. In these cases, the threshold parameter becomes 𝝉𝒎𝒌 (rater-
specific) or 𝝉𝒊𝒌 (Item-specific) respectively, allowing the model to account for 
variations in scale use across raters or items. 

ln [
𝑷𝒎𝒏𝒓𝒊𝒌

𝑷𝒎𝒏𝒓𝒊𝒌−𝟏

] = 𝜷𝒎 −  𝜽𝒏 − 𝝆𝒓 − 𝜹𝒊 −  𝝉𝒎𝒌 

or 

ln [
𝑷𝒎𝒏𝒓𝒊𝒌

𝑷𝒎𝒏𝒓𝒊𝒌−𝟏

] = 𝜷𝒎 − 𝜽𝒏 − 𝝆𝒓 −  𝜹𝒊 −  𝝉𝒊𝒌 
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Non-linearity of ratings: Rasch models do not assume that response categories on 

a scale are equally spaced. Traditional methods such as ANOVA often treat ratings 

as interval-level data, implying equal psychological distances between categories, 

e.g., between “like moderately” and “like slightly”. However, this assumption can 

distort results, since category rating scales inherently provide ordinal data (Boone, 

2016). This issue is particularly important in sensory research, where perceptions 

vary across individuals and scale intervals are unlikely to be uniform (Ho, 2019). 

Moreover, different items or attributes (e.g., sweetness vs. bitterness) may interact 

differently with the scale, producing unequal step patterns in the ratings. 

Rasch analysis addresses this by using a probabilistic framework to transform 

ordinal responses into interval-level measures. This approach accounts for 

differences in both item difficulty (e.g., stimulus intensity) and respondent ability or 

trait level, enabling more valid comparisons across items and individuals (Wright & 

Masters, 1982; Linacre, 1994; Boone et al., 2014; Boone, 2016; Bond et al., 2020). 

Reliability: Rasch analysis produces reliability indices that assess the consistency 

of measures across the latent trait continuum for persons (i.e. respondent), items, 

raters, and any other modelled variables. For example, if a sensory panel reliably 

distinguishes between mild and strong bitterness across samples, rater reliability 

will be high. Similarly, item reliability reflects how well the set of attributes spans 

the sensory continuum, ensuring adequate coverage of intensity levels. These 

metrics parallel classical reliability tests, but are grounded in the probabilistic 

Rasch framework (Wright & Masters, 1982; Linacre, 2023b).  

Differential Item Functioning (DIF): Rasch models support the identification of 

differential functioning across various components of the measurement process, 

ensuring that results remain fair, interpretable, and reproducible across groups and 

testing conditions (Myford & Wolfe, 2004; Bond et al., 2020; Eckes, 2023). In sensory 

evaluation, this is especially important in global contexts where cultural 

background, language, and perceptual norms can influence how products are rated 

(Muñoz, 2002; Meiselman et al., 2022; Hort, 2024). DIF occurs when sensory 

attributes are interpreted differently by subgroups, such as assessors from different 

cultural backgrounds or with varying training levels, even when their underlying 

sensory acuity is comparable. These differences may reflect biases in perception, 
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scale interpretation, or prior experience rather than actual sensory differences. This 

makes DIF a valuable tool for supporting fairness and validity in diverse panels as 

well as in understanding drivers of product acceptability and satisfaction across 

cultures or target consumer groups. Rasch analysis can also detect Differential 

Rater Functioning (DRF) (Myford & Wolfe, 2004), which refers to systematic 

variations in how individual assessors use the rating scale. For example, some 

raters may consistently give higher or lower ratings to a specific group, which can 

suggest some bias towards that group affecting the reliability of results. This 

detection is especially important in longitudinal studies such as panel proficiency 

monitoring or repeated product evaluations (Tomic et al., 2010; Raithatha & Rogers, 

2018), where systematic changes to an assessor’s responses can be identified and 

further investigated. More broadly, Eckes (2023) groups these forms of differential 

functioning under Differential Facet Functioning (DFF), which extends beyond 

items and raters to include other contextual factors such as time points, testing 

environments, or protocols. 

Rasch analysis offers a powerful, diagnostic framework that simultaneously 

evaluates multiple critical aspects of measurement quality. This comprehensive 

approach provides researchers with a rapid yet thorough assessment of whether 

their data meet the rigorous requirements for valid and reliable measurement. By 

identifying responses that deviate from model expectations, disordered categories, 

local dependencies, and differential functioning across respondents, items, or 

contexts, the model ensures that observed differences truly reflect underlying 

sensory traits rather than artifacts of bias or inconsistency. Together, these 

principles establish a robust foundation for producing precise, fair, reproducible, 

and generalisable measurements of latent variables. 

2.5.3 Current applications of the Rasch models 

Several software packages are available for Rasch analysis (Rasch Measurement 

Transactions, 2025), with prominent options including RUMM2030+ (Andrich, 1997-

2025), ConQuest (Adams et al., 1997-2020), and WINSTEPS® with its many-facet 

version FACETS©, (Linacre, 2004a; Linacre, 2013; Linacre, 2025a, 2025e). Open-

source alternatives exist in R, such as the eRm package (Mair et al., 2019) and TAM 

package (Robitzsch et al., 2021), expanding accessibility for researchers. Practical 
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guides for Rasch modelling are available in R Wind and Hua (2021) and Debelak et 

al. (2022). Despite difference in interface, algorithms, and terminology, these 

software packages implement core Rasch measurement models and provide 

relatively consistent assessments of data and measurement quality (Tennant & 

Conaghan, 2007; Ho, 2019). 

Since it was first introduced in 1960 (Rasch, 1960), Rasch modelling has 

revolutionised objective measurement in social sciences. It was initially applied in 

educational assessments to measure constructs such as intelligence and 

mathematical ability. Today, its use extends to psychological testing, language 

assessment, medical and healthcare research, as well as consumer behaviour in 

business and marketing. 

In Education, and Language Assessment, where Rasch analysis is most 

established (Eckes, 2023), it has been widely applied for the evaluation and 

validation of survey instruments and rating scales (Galli et al., 2008; Oon & and Fan, 

2017; Samir & Tabatabaee-Yazdi, 2020); assess student and teacher performance 

(Zhang, 1996; Tavakol & and Dennick, 2013; Fan & Bond, 2019; Chi et al., 2021; 

Gordon et al., 2021; Quansah, 2022; Hiğde et al., 2024; Hariyono et al., 2025) and 

monitor rater behaviour (Engelhard Jr & Myford, 2003; Myford & Wolfe, 2009; Polat, 

2020; Eckes, 2023). It has also supported bias detection through Differential Facet 

Functioning (DFF) and Differential Item Functioning (DIF) analyses. For example, 

Eskin (2023) applied DFF to identify native language bias in writing assessments, 

while Khalaf and Omara (2022) examined DIF across gender groups in an anxiety 

scale. Monitoring rater drift via Differential Rater Functioning (DRF) has been 

demonstrated by Myford and Wolfe (2009) and Eckes (2023), with recent extensions 

assessing differences between human and AI raters (Shin & Lee, 2024; Lamprianou, 

2025). Comprehensive reviews and guidance on Rasch applications in education 

and language assessment contexts are available in (McNamara & Knoch, 2012; 

Aryadoust et al., 2021), underscoring the model’s value in promoting fairness and 

validity in measurement. 

In Psychology, Rasch models are widely used to measure latent traits such as 

anxiety, depression, and cognitive abilities. Freitas et al. (2014) validated the 

Montreal Cognitive Assessment Scale using Rasch analysis, while Dabb et al. 



37 
 

(2025) developed the Paternal Pregnancy-Related Anxiety Scale ensuring cross-

continental relevance. Similarly, Adu et al. (2025) examined cross-cultural validity 

of the Depression Anxiety Stress Scales (DASS-21). In school psychology, Rasch 

models are often applied to assess student learning, behaviour, and rating scale 

performance. Boone and Noltemeyer (2017) provide practical guidance on the use 

of Rasch analysis in educational and school-based assessments. 

Medical and Healthcare applications extensively utilise Rasch models to assess 

health-related quality of life and patient-reported outcomes, as well as to support 

the validation and cross-cultural adaptation of clinical and research 

questionnaires. Applications span fields such as rheumatology, nursing, 

physiotherapy, and pain management (Tennant et al., 2004; Taylor & McPherson, 

2007; Tennant & Conaghan, 2007; Catley et al., 2013; Miller et al., 2016; Huang et 

al., 2018; Mohsen & Gill, 2019; Stolt et al., 2022; Tesio et al., 2024; Touzani et al., 

2024; González-Pérez et al., 2025; Kim et al., 2025; Lu et al., 2025). Reviews by 

(Belvedere & de Morton, 2010) and (Christensen et al., 2024) highlight how Rasch 

analysis has evolved from a theoretical framework into a practical methodology, 

now routinely used to improve the accuracy and objectivity of patient assessments 

in both clinical care and medical research. 

In Business, Marketing and Consumer Behaviour Research, Rasch models 

measure latent constructs like preferences, satisfaction, and brand perception. 

Early foundational work includes Bechtel (1985) who generalised Rasch models for 

consumer rating scales, and Lunz and Linacre (1998) who introduced multifaceted 

Rasch modelling for business and marketing applications. De Battisti et al. (2005) 

applied Rasch analysis to assess service quality perceptions amongst university 

students, while Pagani and Zanarotti (2010) applied it to analyse customer 

satisfaction data. Salzberger and Sinkovics (2006) utilised Rasch methods including 

DIF to detect bias across countries in international marketing data, and, Conejo et 

al. (2017) applied DIF to refine brand personality scales across demographic 

groups. Camargo and Henson (2015b) and Chalk (2020) used Rasch models to 

better align product features with user experience. More recently, Bassi et al. (2022) 

examined consumer responses to mountain product labels that indicated that 

product originated from mountain regions using Rasch analysis; Grispoldi et al. 
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(2023) validated scales measuring attitudes toward insect-based foods; and 

Prasetyaningrum et al. (2024) examined the impact of gamification on customer 

engagement in the banking sector. Collectively, these applications demonstrate 

how Rasch analysis continues to evolve beyond technical modelling to become an 

essential tool for enhancing the fairness, and interpretability of consumer-related 

measurement. 

In the context of Sensory Evaluation of Foods, Rasch models have been applied to 

measure latent traits such as overall quality and overall liking by combining ratings 

of individual sensory attributes. They have also been used to evaluate assessor 

consistency and validate rating scales. Early studies laid foundational work for the 

use of Rasch models in this field. Garcia et al. (1996) demonstrated its utility in 

measuring sensory quality in Iberian ham as a latent trait derived from multiple 

sensory characteristics, showing that the Rasch model could successfully combine 

attributes such as flavour intensity, saltiness, and texture into a unidimensional 

quality scale. Alvarez and Blanco (2000) used the model to evaluate the reliability of 

olive oil tasting panels, finding that the Rasch model effectively identified 

inconsistent assessors and could improve panel reliability through targeted 

training. However, these applications remained largely isolated despite the 

methodological advantages Rasch modelling offers. Later studies, such as Andrés 

et al. (2004) on salt content and ham processing, and Bi et al. (2019) on aroma 

quality in hams treated with essential oils, cited the Rasch model for validating 

assessor consistency but failed to describe how the model was applied or what 

insights it provided, merely citing “García et al. (1996)” without further explanation. 

Thompson (2003) applied Rasch scaling in wine judging to evaluate rater 

consistency and to refine both the sensory panel and the rating scales used, 

demonstrating that Rasch analysis could identify problematic rating categories and 

highlight judges whose ratings deviated systematically from the panel. Faye et al. 

(2013) focused on incorporating assessor expertise in wine glass sorting tasks and 

found that accounting for subject experience improved the interpretability of free-

sorting data. A common issue across these earlier studies has been a lack of 

transparency and accessibility, with overly technical reports offering little guidance 
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on how Rasch modelling was implemented or why it provides advantages beyond 

traditional methods. 

More recent studies have moved toward clearer and more accessible uses of Rasch 

models in sensory research. Ho (2019) introduced a multi-faceted model to 

measure overall liking based on several attribute ratings, arguing that single 

composite scores lack diagnostic depth. Mile et al. (2021) used a similar framework 

to study hedonic preferences for tilapia fish jerky, while Wu et al. (2021) explored 

the sensory impact of ginger-enriched pasta on both acceptability and satiety. 

Arboleda et al. (2021) developed perceptual scales for texture and refreshment in 

fruit juices, and Li's (2019) doctoral thesis investigated Rasch models for new 

product development and consumer research instrument refinement. Although 

Owusu et al. (2022) did not implement Rasch modelling, they proposed its future 

use for deriving composite liking scores in soymilk formulation research. 

These more recent studies show that Rasch modelling can potentially improve the 

rigor, objectivity, and interpretive depth of sensory evaluation by accounting for 

assessor variability and uncovering the latent structure of sensory responses. The 

model offers several advantages demonstrated in sensory contexts: estimation of 

latent variables such as overall quality or liking from composite attribute ratings 

(Garcia et al., 1996; Ho, 2019; Arboleda et al., 2021; Mile et al., 2021), identification 

of inconsistent assessors and systematic bias patterns (Alvarez & Blanco, 2000; 

Thompson, 2003) and diagnostic identification of problematic rating categories 

(Thompson, 2003; Li, 2019; Wu et al., 2021).  

However, compared to fields such as education, psychology, and healthcare, 

where the model is routinely used to address issues with rater bias and subjective 

scoring, its uptake in sensory evaluation remains relatively slow, even though 

sensory analysts routinely grapple with these very same challenges. This may be 

due to the technical complexity and lack of practical guidance on how to implement 

the model or apply its results. Ho (2019) and subsequent studies have begun to 

address this gap by demonstrating clearer, more accessible applications. 

Nonetheless, Rasch modelling is still rarely used in routine sensory evaluation 

practice. Sensory data continue to be analysed primarily by aggregating raw scores 

or means. While familiar and straightforward, it tends to mask assessor 
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inconsistencies, introduce scale-use bias, and offer limited diagnostic insight unless 

supplemented by several additional analyses.  

Despite the methodological advantages of Rasch modelling, it remains underutilised 

in sensory evaluation contexts. This is likely because there is a lack of direct 

comparative studies demonstrating how the model performs against established 

methods such as traditional descriptive analysis or discrimination testing. Without 

such comparisons, practitioners may be reluctant to adopt it without clear evidence 

of practical benefits. Additionally, the psychometric and educational origins of Rasch 

measurement mean that existing guidance is often technical and lacks sensory-

specific applications, creating barriers for practitioners trained primarily in traditional 

sensory methods. Addressing this gap through comparative studies and practical 

demonstrations tailored to sensory contexts is essential for advancing the adoption 

of Rasch modelling in sensory and consumer research.  

2.6 Justification of study 

This study explores and demonstrates the benefits of applying Rasch modelling to 

sensory difference testing. While existing research has used the Many-Facet Rasch 

Model (MFRM) to estimate latent variables such as overall sensory quality and 

overall liking based on combinations of sensory attributes, it has not yet been 

applied to quantify overall difference between products as a latent variable, which 

in turn can reveal which specific sensory attributes most influence perceived 

differences. This represents a missed opportunity, as current methods are typically 

limited in one of several ways: some analyse sensory attributes individually without 

integrating them into an overall difference score; others provide a single holistic 

measure without identifying the specific sensory attributes driving that difference; 

and some rely on qualitative insights without quantitative support or require 

complex, separate analyses to estimate overall difference. In contrast, modelling 

overall perceived difference as a latent variable within a Rasch framework offers a 

unified approach that provides both diagnostic clarity and quantitative rigour by 

combining holistic and attribute-level insights in a single interpretable analysis. 

Moreover, sensory quality programs continue to struggle with individual differences 

in rating scale use. Existing statistical methods often fall short in adequately 
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accounting for individual rating tendencies and the inherently subjective nature of 

sensory data. These are precisely the kinds of challenges that Rasch modelling was 

designed to address and has effectively tackled for nearly seven decades in fields 

such as education, healthcare, and psychology, where human judgment is central. 

This study presents a clear, step-by-step application of Rasch analysis in sensory 

difference testing, attempting to bridge the gap between the model’s 

methodological strengths and its limited adoption in sensory evaluation. It 

highlights how a Rasch-based approach can improve data interpretation, reduce 

subjectivity, and support more consistent and actionable results. The Many-Facet 

Rasch Model (MFRM) is shown to be particularly useful for quality control and 

diagnostic analysis in contexts such as product development, ingredient 

substitution, benchmark tests, panel performance monitoring, and consumer 

research. The proposed method is especially beneficial to sensory analysts seeking 

faster, clearer, and more data-driven insights in a streamlined manner to support 

decisions about product differences.  
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Chapter 3   

Rasch and General Analytical Methodology 

3.1 Overview 

This chapter provides an overview of the Rasch analysis and statistical procedures 

used across all three sub-study chapters. 

3.1.1 A Rasch approach to sensory difference testing explained 

Rasch analysis is a statistical method used to convert categorical data, such as 

surveys or rating responses, into interval-level measurements. Originally developed 

for educational assessments (Rasch, 1960), it is now widely applied across various 

disciplines that rely on human judgments. 

Fundamentally, it allows researchers to estimate unobservable traits or latent 

variables such as mathematical ability, overall attitudes, or perceptions, based on 

patterns of responses to a set of observable items (e.g., exam or survey questions). 

The model estimates the probability of a given response as a function of the 

difference between the respondent's ability or trait level and the difficulty of the 

item. This approach places both item difficulties and respondent abilities on a 

common linear scale, converting ordinal raw scores into interval level measures, 

which supports more precise quantitative analysis (Boone et al., 2014; Bond et al., 

2020). 

In sensory evaluation, Rasch analysis can be adapted to address the challenges of 

subjective human ratings. Each sensory attribute is treated as an item (similar to 

questions in a survey), and each product or sample is considered the subject of 

measurement (similar to respondents in the model). Assessors often interpret and 

use rating scales differently, and these inconsistencies can obscure true 

differences between products (Raithatha & Rogers, 2018).  

Rasch analysis addresses this issue by explicitly modelling and adjusting for such 

variability (discussed in section 2.5.2: pg.34). To measure differences between 

products, Rasch models estimate how each product scores on the underlying latent 

trait, in this case “Overall Difference”, based on the intensity ratings across 
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multiple attributes. The assessors are included as the rater/judge facet using the 

Many-Facet Rasch Model. The goal is to derive a fairer estimate of the overall 

sensory difference between products by accounting for variability in individual 

rating styles (e.g., scale level effects), rather than relying solely on aggregated 

averages. Averages can distort measurement results when assessors exhibit 

different rating effects or biases (Myford & Wolfe, 2003; Lawless & Heymann, 2010; 

Stone et al., 2012; Kemp et al., 2018; Sipos et al., 2021; Meilgaard et al., 2025). 

Aggregating scores without accounting for individual biases and differences in scale 

usage may lead to inaccurate representations of the true sensory characteristics of 

products. 

3.1.2 The Many-Facet Rasch Model (MFRM) 

The Many-Facet Rasch model (Linacre, 1989) extends the basic Rasch model (as 

shown in Table 2.2. Summary of Rasch Models) by allowing for the simultaneous 

analysis of multiple variables, referred to as facets, that represent additional 

sources of variation. In sensory testing, these facets may encompass combinations 

of the various variables including product samples, sensory attributes, order of 

presentation, panel groups, time of evaluation, replicate evaluations, and the 

assessors themselves, similar to parametric ANOVA methods. 

Unlike traditional parametric approaches, which assume that all assessors 

interpret and use the rating scale in the same way, the MFRM explicitly models 

individual differences in rating behaviour by estimating a separate severity 

parameter for each assessor. These parameters reflect how strictly or leniently 

each assessor uses the scale compared to a neutral reference point. The model 

then adjusts the observed ratings based on these parameters using an iterative 

probabilistic process. Starting with initial parameter estimates, it calculates the 

likelihood of the observed ratings and repeatedly adjusts the severity parameters 

and other facets to maximise this likelihood. This fitting continues until the model 

converges on the best overall fit to the data, effectively calibrating all ratings onto a 

common scale (Linacre, 2023b). This adjustment allows for more accurate and fair 

comparisons across products by removing these systematic biases introduced by 

differences in individual rating tendencies (i.e., severe or lenient raters).  
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Even with comprehensive panel training, substantial variability remains in how 

individuals use rating scales, reflecting the influence of both stable individual 

variations such as genetic differences in sensory sensitivity (Bartoshuk et al., 2005), 

cultural background and prior experience (Brockhoff, 2011; Meilgaard et al., 2025), 

and transient conditions like fatigue, distraction, or mood during evaluation (Stone 

et al., 2012; Raithatha & Rogers, 2018). Thurstone (1927) showed that variability in 

human judgment can distort comparative evaluations, and subsequent 

measurement research has demonstrated how such rater effects can be 

systematically identified and, in the case of rater severity or leniency, statistically 

adjusted for using the MFRM (Myford & Wolfe, 2003). However, the model does not 

replace panel training but complements it by providing a diagnostic framework to 

detect and correct residual rater effects that persist despite training. By explicitly 

modelling assessor severity, it offers an approach to reducing extensive calibration 

sessions. Rather than attempting to enforce perfectly uniform scale use through 

training, it statistically adjusts for systematic individual differences in scale use 

(severity/leniency), thereby allowing training efforts to focus more on attribute 

understanding and discrimination. While training improves overall consistency, 

complete uniformity in scale use remains difficult to achieve in practice (Lawless & 

Heymann, 2010; Kemp et al., 2018). 

While the ANOVA approach is generally robust to moderate violations of its 

assumptions due to the Central Limit Theorem especially with larger samples (Kwak 

& Kim, 2017), and can include assessors or replicates as fixed or random effects, it 

still treats differences among assessors as random noise rather than explicitly 

modelling them. In contrast, the MFRM treats these same factors as measurable 

facets estimated on a shared latent scale, allowing their direct comparison and 

providing individual-level diagnostics on rater severity and consistency within a 

unified probabilistic framework. This simultaneous estimation of product, attribute, 

assessor, and replicate parameters enables richer diagnostic insight and fairer 

comparisons than ANOVA alone. 

When assessors use the scale consistently, ANOVA and MFRM may yield similar 

conclusions. However, when assessors differ systematically in scale use, for 

example when two assessors perceive the same sweetness level but one is more 
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expressive and routinely gives higher scores while another is more conservative, 

ANOVA does not separate these biases from true product effects. MFRM addresses 

this limitation by estimating and adjusting for individual severity parameters, 

thereby producing fairer product comparisons. While ANOVA remains appropriate 

when assessor variability is minimal or random, the MFRM provides an extension 

for cases where such effects are systematic and of diagnostic interest. 

The MFRM results are often presented in a visual summary known as a Wright map, 

named after Benjamin D. Wright, a pioneer in Rasch measurement and educational 

assessment (Boone et al., 2014). In a sensory context, this map displays the relative 

positions of products, attributes, assessors, replicate evaluations, and any other 

modelled facets along a common latent continuum expressed in logits, providing a 

nuanced overview of the data structure. 

In addition, the MFRM includes built-in diagnostic tools designed to evaluate the 

quality and integrity of the data. While the model accounts for individual differences 

in how assessors use rating scales, it still requires that their ratings remain 

internally consistent, as the estimation of all other facet parameters depends on 

these inputs. To evaluate this, MFRM provides several key diagnostics: 

1. Residual fit analysis: the model identifies unexpected or inconsistent 

responses by flagging assessors who use the scale unreliably, and by detecting 

attributes whose ability to discriminate across products, assessors, and 

replicate evaluations (as relevant in this study) differs from that of other 

attributes in the facet (Linacre, 2012a; Wu & Adams, 2013; Eckes, 2023; Linacre, 

2024b; and Linacre, 2025b).  

2. Rating scale category diagnostics: detect when rating scale categories are 

used in a manner that deviates from the model’s expectations, such as being 

underused or misunderstood. For example, if a seven-point scale is employed 

but certain categories are rarely selected, the model may suggest collapsing 

those categories. Unused or poorly defined categories may not contribute 

meaningful information, can confuse assessors, and may reduce measurement 

precision. Similarly, if categories are not clearly separated, it can lead to a lack 

of distinction between different intensity levels, compromising the 

effectiveness of the rating scale. In such cases, adjusting the scale can improve 
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measurement quality (Linacre, 2002b; Engelhard & Wind, 2018; Bond et al., 

2020; Eckes, 2023). This is further discussed in section 3.3.1.4: Rating scale 

category diagnostics. 

3. Principal Component Analysis of Residuals (PCAR): detects systematic 

variation or correlation among items or attributes that are assumed to measure 

a single underlying latent variable (discussed further in section 3.3.1.3: 

Response dependency - Unidimensionality and Local Item Dependence (LID). 

Rasch models assume that item responses are independent (i.e., the response 

to one item should not influence the response to another). When response 

dependency is observed and the rating on one attribute appears to determine 

the rating on another, it suggests that the attributes may be conceptually or 

perceptually related. This prompts further investigation into the nature of these 

relationships and their implications for the validity of the measurement (Tennant 

& Conaghan, 2007; Linacre, 2024a). 

These diagnostics features will be discussed in more detail later in the chapter. 

Overall, the Many-Facet Rasch Model (MFRM) offers a more transparent and 

nuanced approach to evaluating sensory data by modelling the process through 

which ratings are generated, rather than focusing solely on the final scores. This 

study aims to demonstrate how MFRM provides a complementary perspective by 

enabling analysis at the individual level and accounting for variation across multiple 

facets. It offers a practical and effective way to improve the reliability of sensory 

data and to gain deeper insight into the sources of variation within a test, without 

the need for extensive additional statistical analyses. 

3.2 Framework for measuring Overall Difference using attribute 

intensity ratings 

In this study, the MFRM was used to evaluate overall sensory differences between 

products based on the perceived intensity of multiple sensory attributes. Assessors 

rated each product on several attributes using ordinal categorical labelled scales. 

Ratings on these sensory attributes were collected across the products through 

sensory questionnaires. The goal was to combine these attribute ratings into a 



47 
 

single latent measure representing the overall difference between products, 

referred to as the Total Intensity Measure (TIM). 

The basic assumption of this framework is that products with higher perceived 

intensity or more distinct attribute profiles are positioned higher on the Rasch logit 

scale. In this context, a product with a distinct attribute profile elicits strong 

responses across several sensory attributes that make it stand out relative to other 

products. This ease of differentiation by assessors can inform product 

development, positioning, or quality control decisions. 

Sensory attributes are treated as items, each with its own difficulty parameter. 

Easier attributes tend to receive higher intensity ratings because they are easier to 

perceive, while harder attributes receive lower ratings due to being more difficult to 

detect. Products are treated as persons and are placed on the logit scale based on 

their combined attribute ratings. Assessors and repetitions are modelled as facets 

to account for differences in rating severity and variability across sessions, 

respectively.  

The model estimates the probability of an assessor 𝑚, assigning a particular rating 

𝑘 to a product 𝑛, during a replicate evaluation 𝑟 for a given attribute 𝑖, by considering 

several influencing factors. These include: 

▪ The degree of leniency or severity (𝛽𝑚) of an assessor (𝑚) in assigning ratings. 

▪ Total Intensity Measure (TIM) (𝜃𝑛) of the product (𝑛), reflecting the overall 

difference and determining its location on the logit scale. 

▪ The effect of the replicate evaluations (𝜌𝑟) accounting for variation across 

repeated assessments (𝑟).  

▪ The degree of intensity (𝛿𝑖) of a sensory attribute (𝑖), indicating how easily it was 

perceived across products. 

▪ The thresholds (𝜏𝑘) between adjacent rating scale categories (𝑘); for example, 

how much more intense an attribute must be to move the rating from “weak” to 

“moderate” intensity. 

Mathematically, the probability of observing a rating in category 𝑘 is modelled as a 

function of the relative distance between these facets: 
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𝐥𝐧 ( 𝑷𝒎𝒏𝒓𝒊𝒌 /𝑷𝒎𝒏𝒓𝒊𝒌−𝟏) = 𝜷𝒎 −  𝜽𝒏 − 𝝆𝒓 −  𝜹𝒊 −  𝝉𝒌 
...Equation 3.1 

  
This modelling approach allows for product comparisons that are adjusted for 

assessor rating behaviour and attribute difficulty, making the results more reliable 

than those from simple average scores. Unlike conventional methods such as 

ANOVA, which rely on assumptions about normal distribution and equal intervals 

between scale points, the Rasch model relies solely on response patterns in the 

data (Smith, 2002; Linacre, 2004b; Boone et al., 2014; Bond et al., 2020). 

Observations that do not fit the expected patterns are flagged and can be further 

examined. This provides a layer of quality control that traditional methods do not 

offer. 

The Total Intensity Measures (TIM) generated by the model are then used to perform 

post hoc pairwise comparisons to identify significant differences between 

products. Since the measures are adjusted for assessor severity and attribute 

difficulty, they capture product differences more accurately than raw averages. 

Linacre (1989) explains that Rasch calibration places all facets on a common logit 

scale, enabling direct comparisons, while Myford and Wolfe (2004) noted that 

adjusting for individual rater severity improves the fairness and precision of 

comparative evaluations. In sensory data, lenient assessors’ higher scores and 

strict assessors’ lower scores are calibrated on the logit scale, ensuring that 

product differences reflect sensory variations devoid of their rating tendencies. This 

adjustment improves the quality of the data, making it more suitable for both 

parametric and non-parametric statistical tests. Boone et al. (2014) illustrate how 

Rasch-derived measures yield more valid interval-level estimates than raw mean 

scores, and Bond et al. (2020) noted that the resultant interval scaling and reduced 

bias better meet assumptions of parametric tests. Even when parametric 

assumptions remain unmet, non-parametric tests applied to Rasch measures gain 

increased sensitivity and accuracy because the calibrated data reduce 

uncontrolled variability and noise. Together, these advantages support better 

decision-making by identifying perceptual differences with minimal confounding 

effects from individual rating styles or other modelled sources of bias. While these 

advantages are well documented in psychometric and educational measurement, 
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their practical implications for sensory and consumer research remain largely 

unexplored. 

The Rasch model also provides useful diagnostic tools, including: 

▪ Assessor fit statistics: which indicate which assessors rated consistently and 

which ones deviated from the model’s expected patterns for the panel. 

▪ Attribute fit statistics: that identify which attributes contributed most or least 

to the overall difference latent variable. 

▪ Category diagnostics: which reveal whether all parts of the rating scale 

function as intended, and 

▪ Principal Component Analysis of Residuals (PCAR): which helps detect 

underlying sensory dimensions or interactions between attributes that might not 

be evident from conventional analysis.  

This Rasch-based framework enhances traditional sensory analysis by providing 

clear, actionable insights. It adds depth and precision that support product 

development, innovation, panel management, and quality control in a more 

targeted and resource-efficient way, making it a valuable addition to existing 

sensory quality management methods. 

3.2.1 Conceptualising Overall Difference as a latent variable 

The content of this section is reproduced from Ariakpomu et al. (2025b). 

The theoretical development of measurement instruments for Rasch analysis 

requires careful design to accurately capture the parameters of the latent variable 

being measured (Boone, 2016; Engelhard & Wind, 2018). For this study, the 

construct modelling framework described by (Ho, 2019) was adapted to define 

Overall Difference as a latent variable, as presented in Figure 3.1. As previously 

discussed, this latent variable is estimated from assessors’ intensity ratings of 

selected attributes. Within the Rasch framework, each attribute functions as an 

item defining the latent variable, each sample represents the respondent being 

assessed, and each assessor represents a rater with a unique severity level.
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Figure 3.1. Framework for the conceptualisation of Overall Difference as a latent variable.  
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Step 1: Defining the theoretical construct of Overall Difference 

Sensory attributes representing the sensory characteristics and modalities of the 

samples should be identified to capture different aspects of the Overall Difference 

latent variable. It is recommended to select a minimum of 3 to 5 sensory attributes 

to ensure sufficient variability in the data and allow the Rasch model to effectively 

separate the effects of different facets. 

Step 2: Selection of attributes and survey design 

Survey questions were developed for assessors to rate the perceived intensity of 

each attribute for each sample. For example: “How strong is the orange flavour for 

sample XXX?” These questions represent the items in the Rasch model. 

Step 3: Choosing a rating scale 

Labelled category rating scales (as described in the sensory testing procedures for 

the AR tests) representing levels of perceived intensity, were used by the panel of 

assessors - the raters for the Rasch model. 

Step 4: Data collection 

Observations were collected as attribute intensity ratings for each sample using the 

survey questionnaire developed in step 2. 

Step 5: Fitting the Model 

A Many-Facet Rasch Model (MFRM) with four facets - assessors (raters), samples 

(persons), attributes (items), and repetitions (replicate assessments), was fitted as 

described in ...Equation 3.1. The resulting Total Intensity Measures (TIM) for each 

sample were then used for post hoc multiple comparison tests to identify the 

significant differences between samples. 

Step 6: Visual representation 

The Rasch model’s Wright map visually represents the location estimates for each 

individual element within each facet (i.e., each assessor, product, attribute, and 

replicate assessment, referred to as parameters in this study), as well as the rating 

scale thresholds. These are all mapped on a common logit scale, providing a rapid 

overview of the underlying data structure and the relationships between the 

modelled variables. 
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This framework formed the basis for the data analysis applied across all three 

studies in this thesis. 

3.3 Data analysis 

All statistical analyses were conducted using RStudio version 2023.3.1.446, 

"Cherry Blossom" release (Posit Team, 2023), while Rasch analyses were 

performed using FACETS © version 4.3.0 (Linacre, 2025a) and WINSTEPS® version 

5.9.0.0 (Linacre, 2025e). 

3.3.1 Rasch analysis 

Rasch analysis across all three studies was conducted using the Many-Facet Rasch 

Rating Scale Model (Andrich, 1978), as all attributes were assessed using a 

common rating scale. 

3.3.1.1 Fitting the Many-Facet Rasch Model (MFRM) 

The Many Facet Rasch Model (MFRM) simultaneously accounts for multiple 

variables, or facets, by modelling the log odds of observed ratings on a common 

interval scale known as the logit scale. Parameter estimates for the facets were 

obtained using Joint Maximum Likelihood Estimation (JMLE) in the FACETS software 

(Wright & Panchapakesan, 1969; Linacre, 2023b and ; 2025a). This method 

estimates all the facet parameters (i.e. assessor severity, product differences, 

effect of replicates, attributes intensity) at the same time, maximising the likelihood 

that the observed data fit the model. This joint estimation process continues until 

the model converges on the most probable set of facet locations on the logit scale. 

The resulting parameter estimates for individual elements within each facet (i.e. 

facet parameters) were then visualised using a Wright map, providing a clear 

representation of their relative positions along the latent continuum. On the Wright 

map, the Sample facet was left non-centred, while the other three facets, Assessor, 

Repetition, and Attribute, were centred so that the mean of their parameters was 

zero. This centring established a common reference point on the Wright map, 

allowing the relative positions of samples to be interpreted in terms of the Total 

Intensity Measure (TIM). Consequently, sample locations were adjusted by 
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accounting for assessor severity, attribute intensity, and replicate session effects, 

corresponding to the Assessor, Attribute, and Repetition facets, respectively. 

3.3.1.2 Global model fit 

Rasch models are idealisations of empirical data, assuming that a single latent 

variable represents the underlying truth. For example, when data do not align with 

model expectations, they may distort this representation but can also reveal 

important issues such as disengaged students or flawed scoring rubrics, which are 

potential sources of measurement bias in educational contexts (Linacre, 2023b). 

Assessing global model fit helps determine the practical usefulness of the data 

before further analysis. This involves evaluating whether the data fit the model in a 

meaningful way (Engelhard & Wind, 2018; Eckes, 2023; Linacre, 2023b), identifying 

the extent of any misfit, understanding its sources, and deciding how to address 

them. Model fit is typically assessed by comparing observed responses to those 

expected by the model, with differences usually expressed as standardised 

residuals. In this study, a satisfactory model fit is indicated when no more than 5% 

of absolute standardised residuals are ≥2, and no more than 1% is ≥3 as is 

recommended by (Linacre, 2022), 

A meaningful fit means that, despite some imperfections in real data, the response 

patterns are still consistent enough with the model to support valid and 

interpretable measurement of the intended construct. It reflects a balance between 

the model’s expectations and the complexity of real-world data. When misfit is 

observed, a closer inspection of the deviations from model expectations can reveal 

sources of bias. Based on these findings, model specifications can be adjusted, 

such as by removing an inconsistent rater, or combining overlapping items to 

improve overall fit. 

3.3.1.3 Response dependency - Unidimensionality and Local Item Dependence (LID) 

The Rasch model assumes that all items measure a single underlying trait. In this 

study, the items are the sensory attributes, and the trait is Overall Difference. To 

test this assumption, Principal Component Analysis of Residuals (PCAR) was 

conducted using WINSTEPS®, a Rasch measurement program designed for 
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rectangular data matrices with only two variables. Following the procedure 

described by (Eckes, 2023), each attribute was placed in a column, and each 

combination of assessor and sample was placed in a row using the dialog box 

provided in FACETS. 

PCAR was used to examine whether the unexplained variance in the residuals is 

small compared to the variance explained by the Rasch measures. If certain items 

exhibit similar unexpected patterns, this may indicate the presence of a second 

dimension. Whether or not this second dimension affects measurement depends 

on its strength. According to (Linacre, 2024a), a secondary dimension must have 

the strength of at least two items to be considered meaningful. If the variance in the 

residuals is large and attributable to a second dimension that the researcher deems 

significant enough to affect the interpretation or usefulness of the measures, 

remedial steps may include removing the responsible items or grouping items into 

subtests to define additional latent variables. 

A related concern is Local Item Dependence (LID), where the response to one item 

can predict responses to another, contradicting the Rasch model’s requirement for 

independent item responses (Tennant & Conaghan, 2007). LID is typically flagged 

when the correlation of standardised residuals between two items is greater than 

0.3 (Ramp et al., 2009; Christensen et al., 2017). 

However, the primary goal of PCAR is to detect these systematic patterns of co-

variation. It is then the researcher's task to explore whether these patterns reflect 

meaningful conceptual differences or measurement bias, and to decide whether to 

retain, combine, or remove items (Smith, 2002; Hagell, 2014; Eckes, 2023; Linacre, 

2024a). 

In this study, the latent variable of interest was Overall Difference, based on a 

combination of sensory attributes across multiple modalities, and therefore 

inherently multidimensional. Signs of secondary dimensions or local dependency 

were expected and were not treated as sources of error, but as meaningful 

perceptual interaction between attributes. For this reason, no attributes were 

 
 PCAR functionality is currently only available in WINSTEPS®. 
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removed or combined, as doing so would have resulted in the loss of valuable 

information about how sensory differences were perceived. 

3.3.1.4 Rating scale category diagnostics 

In Rasch analysis, scale category diagnostics evaluate whether the rating scale 

functions as intended, by examining how assessors use each category and whether 

this usage aligns with the model’s assumptions. For the scale to function properly, 

categories should be used in a logical, ordered manner, with each one clearly 

representing a distinct level of the latent trait (e.g., intensity or difference) and 

receiving a sufficient number of responses. This helps determine how well the scale 

captures the latent trait and can inform improvements to both the scoring 

instrument and assessor training (Engelhard & Wind, 2018).  

Guidelines recommended by Linacre (2002a); Engelhard and Wind (2018); Ho 

(2019); Bond et al. (2020); and Eckes (2023) for diagnosing the functioning of rating 

scales are summarised in Table 3.1 below. These category diagnostics should be 

used in combination, as they typically tell the same story in different ways, and one 

often affects the other (Bond et al., 2020). For example, low category frequencies 

can cause disordered Andrich thresholds, resulting in probability curves without 

distinct peaks, reducing the precision and interpretability of the model’s estimates 

(see Appendix D). 

Some criteria are essential for evaluating the quality and measurement accuracy of 

the current dataset, while others are crucial when the scale is intended for use 

across multiple datasets, such as in developing new measurement instruments 

(Tennant et al., 2004; Galli et al., 2008; Conejo et al., 2017; Grispoldi et al., 2023; 

Dabb et al., 2025), exam rubrics (Tarricone & Cooper, 2014; Bond et al., 2020; Fidan 

et al., 2025), or rating scales for specific product categories in sensory quality 

programs (Thompson, 2003; Camargo & Henson, 2015a), where inference and 

generalisation are required. 
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Table 3.1. Guidelines for assessing the functionality of a rating scale. 

Source (Linacre, 2002a; Engelhard & Wind, 2018; Ho, 2019; Bond et al., 2020; Eckes, 2023). 

Criteria Description  Implication 

Item Polarity 

(Essential for description of the 

samples1, measure stability2, 

measure accuracy3 & inference4) 

Scales should be positively oriented in the direction 
of the latent variable, so that higher ratings imply 
more of the latent variable. Point-Biserial (PT 

measure) correlation5 for the item facet (attributes) 
should not reveal both negatively and positively 
orientated items (attributes). 

 A negative PT measure for an item suggests that items do not 
align with the theoretical expectation of how the latent 
variable should be measured. E.g., where higher item scores 
indicate less of the trait being measured. This often reflects 
confusion about the interpretation of the rating scale, i.e., do 
higher scores indicate more or less the attribute’s intensity? 

Category Frequency 

(Essential for measure stability) 

There should be at least 10 observations in each 
scale category.  

 Category thresholds may be estimated poorly making it 
difficult for categories to describe distinct locations on the 
latent variable.  

Observed Average Measures 
(Essential for sample description, 
measure accuracy & inference) 

Computed as the average of the combined measure 
statistics of all the facets involved in producing 
scale category ratings. It should monotonically  

 Higher average measures will indicate ratings in higher scale 
categories and vice versa.  

 
1 Description of the sample refers to accurately summarising the observations in the study, i.e. how assessors perceived and rated sensory attributes across the samples. 
2 Measure stability refers to the consistency of a measurement system when repeated over time in the same context. E.g. the reproducibility of sensory ratings across different panels. 
3 Measure accuracy indicates how closely a measurement reflects the true value of the latent trait being assessed, i.e. how well categories and attributes differentiate between levels of 

overall difference 
4 Inference involves drawing conclusions about a broader population based on the sampled data and measurement results enabling generalisations beyond the current panel or samples. 
5 This measure is the MFRM equivalent of the Pearson point-biserial correlation (Linacre, 2023b). It assesses the relationship between responses to a specific item and the overall latent trait. 

A positive point-biserial indicates that the item aligns with the latent construct, while a negative value suggests misalignment, possibly due to item wording or misunderstanding.  
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increase as the scale categories advance.  

Category model fit 

(Essential for measure accuracy) 

Scale category outfit mean-squares indicate the 
deviation of average measure from the expected 
measures if data fit the Rasch model.  

 
Category outfit mean-square statistics with values above 2.0 
indicate that the category has been used in a different context 
than is expected. 

Category Frequency Distribution Frequency distribution of scale categories should be 
unimodal and tend towards a uniform distribution.  

Intermittent low-frequency categories within the distribution 
may indicate irregular scale usage and the presence of 
redundant categories.  

Ordering of category thresholds Rasch-Andrich thresholds should advance 
monotonically up the scale categories. Graphical 
probability curves produced should have distinct 
peaks, resembling a range of hills. 

 As scale categories increase along the latent variable, each 
category, in turn, should be the most probable choice. 
Disordered thresholds may indicate that a category has been 
skipped as one advances along the variable or that the 
category has a very low frequency. 

Distance between category 
thresholds 

The minimum recommended distance between 

Rasch-Andrich thresholds is calculated6 as 1.4, 1.1, 
0.81, 0.70, 0.57, 0.51, and 0.45 logits for rating 
scales with 3, 4, 5, 6, 7, 8, and 9 categories, 
respectively. The increase between thresholds 
should not exceed 5.0 logits. 

 Too close categories may be less distinctive than intended, 
while categories too far apart represent performance that is 
much wider than intended and introduces gaps in the variable 
leading to loss of information. 

 
 Central distance =ln (𝑥/(𝑚 − 𝑥 + 1). For 𝑥 =1,…, 𝑚, where 𝑚 = 𝑛-1 for a 𝑛-category scale (Ho, 2019). 
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When indicators for the proper functioning of rating scales are unmet, remedial 

actions generally involve combining adjacent categories and sequentially 

renumbering the scale. In cases of item polarity, where some items are positively 

worded and others are negatively worded, it is important to ensure that items are 

reworded or properly reverse-coded to align with the theoretical expectations of the 

latent variable. A common example in sensory testing occurs when an attribute 

descriptor is not clearly defined, making higher and lower intensity ratings 

ambiguous. For instance, if assessors are unsure whether a higher rating means 

more or less of the attribute, their responses can become inconsistent. Failure to 

do address this issue is often flagged by a negative point-biserial correlation, 

indicating that the item may be misaligned with the construct and potentially 

misinterpreted by respondents. However, revising scale categories should not be 

undertaken without clear justification. As Linacre (2002a) notes, collapsing 

categories can reduce the precision and diagnostic value of the data, and should be 

approached with caution. 

In this study, no category revisions were made, as the objective was not to optimise 

the rating scale for broader generalisability, but to examine how assessors utilised 

the existing scale structure. Retaining the original categories enabled a more 

accurate assessment of response patterns and scale functioning within the context 

of the current datasets. Revisions to the scale would have been necessary if the goal 

had been to adapt the scale for use with other samples of the same product or to 

enhance the measurement tools for broader application. 

3.3.1.5 Separation statistics 

Rasch separation statistics indicate how well a measurement instrument can 

distinguish between different levels of the latent variable across facets, such as 

persons (sample products), items (attributes), raters (assessors), and replicate 

sessions and how reliably those distinctions can be made. In other words, they 

show how effectively the scale differentiates between parameters in all modelled 

facets along the latent trait continuum (logit scale), as well as the consistency of 

these distinctions (Myford & Wolfe, 2004; Bond et al., 2020). 



59 
 

▪ Fixed effect Chi-Square (χ²): This statistic, also referred to as the homogeneity 

index (Eckes, 2023) and reported as the fixed (all same) chi-square in FACETS 

(Linacre, 2023b), tests the null hypothesis that all elements within a given facet 

have the same measure after accounting for measurement error. In other words, 

it assesses whether all raters are equally severe or lenient, all attributes have 

the same intensity, samples differ significantly, or replicate evaluations are 

consistent. A significant fixed chi-square value (p < 0.05) indicates that at least 

two elements within the facet differ statistically (Myford & Wolfe, 2003; Eckes, 

2023; Linacre, 2023b). 

▪ Separation ratio: is a measure of the spread of the measures relative to their 

precision and is expressed as a ratio of the true variance to the error variance. 

Where true variance is the standard deviation after adjusting for measurement 

error (Myford & Wolfe, 2003; Linacre, 2023b). Higher values within a facet 

indicate better separation. 

▪ Strata: refers to the number of distinct, measurable levels that a measurement 

instrument can differentiate along the latent trait continuum (represented on 

the logit scale), after accounting for measurement error (Myford & Wolfe, 2003). 

This measure is derived from the separation ratio and is based on the 

assumption that the extreme ends of the trait distribution reflect meaningful and 

interpretable differences. According to Linacre (2023b), strata are appropriate 

when low or high values are interpreted as true differences, whereas separation 

is preferred if such extremes are considered to result from random variation. 

While separation indicates how widely measures are spread relative to 

measurement error, strata offer a more intuitive interpretation by representing 

the number of distinct levels or bands that the measurement can reliably 

differentiate within a facet. 

In this study, strata were reported both for ease of interpretation and for consistent 

analysis across facets, rather than using a mix of strata and separation indices. This 

approach was intended to support uniform reporting across the modelled facets and 

maintain methodological coherence, while allowing for meaningful interpretation of 

 
 Strata = (4 × Separation +1) / 3. 
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observed variation along the latent trait. 

▪ Reliability (Separation reliability): is the MFRM’s equivalent of the Cronbach’s 

alpha test reliability statistic (Linacre, 2023b). It indicates how confidently the 

measurement tool can distinguish between elements within a facet. It is 

calculated as the ratio of true variance to total observed variance. A higher 

reliability value means that the ordering of measures (e.g. which sample scored 

higher, or which assessor was more lenient) is likely to remain stable if the 

assessment were repeated, suggesting that observed differences reflect real 

variation rather than random error. Values below 0.5 indicate poor reliability, 

suggesting that most of the variation is due to measurement error rather than 

true differences (Wright & Masters, 2002; Myford & Wolfe, 2003; Linacre, 2023b).  

Facet reports both population and sample standard deviations (SD). Population 

S.D. is used when the dataset represents the entire population of interest, reflecting 

the true variability within that group. Sample S.D. is applied when the data are 

considered a subset drawn from a larger population, supporting generalisation 

beyond the group (Linacre, 2023b). In this study, population S.D. were used for each 

dataset because the focus was on variability within the specific assessors and 

samples studied, with no intention to generalise findings beyond them. 

3.3.1.6 Residual fit statistics  

“Fit is at the core of Rasch measurement” (Bond et al., 2020, p. 54). Fit statistics are 

fundamental to Rasch analysis, guiding the refinement of measurement 

instruments by identifying discrepancies between observed responses and the 

model’s expectations, known as residuals. Residual fit statistics play a central role 

in evaluating data quality and underpin the diagnostic depth of MFRM by providing 

fit indicators for each element in every modelled facet (e.g., each assessor, 

attribute, or samples). Misfit arises when observed response patterns deviate from 

what the Rasch model predicts.  

The two primary fit statistics used in WINSTEPS and FACETS are INFIT and 

OUTFIT. INFIT is information-weighted and more sensitive to unexpected responses 

near the predicted measure for an element, while OUTFIT is unweighted and 

more sensitive to outliers or extreme responses far from the expected values 
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 (Smith, 2002; Eckes, 2023; Linacre, 2025b). 

The unstandardised form of fit statistics, known as mean squares, represents the 

mean of the squared residuals (Bond et al., 2020; Linacre, 2025b). Larger residuals 

indicate greater misalignment between model expectations and observed ratings. 

The standardised form, expressed as a Z-statistic, adjusts for sample size and 

reflects how likely the observed level of misfit is to occur by chance under the model 

(Bond et al., 2020; Eckes, 2023; Linacre, 2025b). However, they are more sensitive 

to sample size and less informative about the practical magnitude of misfit as they 

only reflect whether misfit is statistically significant, but not whether it is large 

enough to matter for the measurement process. 

In this study, unstandardised outfit mean square (OUTFIT Mnsq) statistics were 

selected for assessing fit. This choice was based on the nature of sensory data, 

especially from untrained panels, where extreme or inconsistent ratings are more 

likely to occur. OUTFIT statistics are more sensitive to these unexpected values 

than infit statistics, enhancing the ability to detect anomalies and assess 

measurement quality in detail. Furthermore, outfit mean squares are already 

adjusted for sample size as they are chi square statistics divided by their degrees of 

freedom, thus indicating the magnitude of the misfit rather than its probability of 

occurring (Linacre, 2025b). 

Mean square values have an expected value of 1.0. Values significantly below 1.0 

suggest overfit where responses are too predictable and contribute little additional 

information, often indicating redundancy and poor discrimination among variables, 

while values significantly above 1.0 suggest underfit or unmodelled noise, meaning 

responses are more erratic than expected. Values greater than 2.0 may indicate 

responses that distort the measurement. Although a commonly accepted fit range 

of mean square values considered “productive for measurement” is 0.5-1.5 

(Linacre, 2025b), acceptable limits can vary depending on the context and sample 

size. This is because the variance of mean square statistics is inversely related to 

sample size (i.e., asymptotic variance = 2/Nr), so smaller datasets produce wider 

fluctuations around 1.0 (Wu & Adams, 2013). Consequently, fit ranges should be 

tailored to the assessment context (Bond et al., 2020; Eckes, 2023), and some 

researchers suggest using tighter ranges for high-stakes decisions and more 
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relaxed ones for exploratory or low-stakes assessments (Engelhard & Wind, 2018; 

Linacre, 2025b). 

To calculate sample-size-adjusted fit ranges, Wu and Adams (2013) and Eckes 

(2023) recommended the formula shown in ...Equation 3.2, which yields wider 

acceptable ranges for small Nr and narrower ranges for large Nr, thereby improving 

the precision of fit diagnostics. 

Acceptable fit range = 𝟏 ± 𝟐√
𝟐

𝑵𝒓
 

       ...Equation 3.2 

Where Nr is the number of responses contributing to the parameter estimate within 

the facet of interest. For example, in the Assessor facet, Nr is the total number of 

ratings assigned by an assessor; in the Attribute facet, it is the total number of 

assessor ratings on that attribute. This formula was applied across all three studies 

to evaluate the performance of individual assessors and the contribution of 

attributes to the overall difference. 

In this study, the results from the Rasch analysis were used primarily for diagnostic 

purposes rather than to develop a new measurement scale or refine an existing one, 

tailored to a specific set of items or products. Accordingly, no remedial actions such 

as collapsing rating scale categories or modifying item structures were taken, as 

these are typically part of an iterative development process (Engelhard & Wind, 

2018; Tesio et al., 2024). Instead, the focus was on uncovering nuanced insights into 

the data and evaluating the performance of the modelled facets in terms of their 

consistency, interrelationships, and overall contribution to measuring the Overall 

Difference between products. 

This diagnostic approach aligns with the perspective of Tesio et al. (2024) who 

emphasise that the Rasch model is not meant to “transform messy data” but to 

prompt researchers to reflect on the underlying causes of model deviations 

(Linacre, 1989; Linacre, 1994, 2023b) and iterate from there. Consequently, this 

study adopts a diagnostic stance in applying the Many-Facet Rasch Model (MFRM) 

to sensory difference testing.  
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3.3.2 Statistical analysis 

Data preparation: No additional preprocessing or data transformation was applied 

to the sensory ratings. Raw assessor scores were entered directly into the 

respective analysis software without modification. For the ANOVA-based analyses, 

the ordinal ratings were analysed as recorded, while for the Rasch analyses, the 

same raw ratings were input into the FACETS program for parameter estimation. The 

resulting Rasch measures were then subjected to Kruskal–Wallis multiple 

comparison tests to evaluate overall product differences. 

3.3.2.1 Product comparisons for Overall Difference 

Statistical analyses for product comparisons were conducted on both raw score 

data and Rasch-transformed measures across all datasets to enable comparison 

of results of the two approaches. Differences between sample products were 

evaluated using both parametric and non-parametric analysis of variance (ANOVA) 

methods. 

▪ Parametric ANOVA: ANOVA models were fitted using the R packages MASS 

(Venables & Ripley, 2002), and car (Fox & Weisberg, 2011). Residual analysis was 

performed with nortest (Gross & Ligges, 2015), and post hoc Tukey’s HSD (Tukey, 

1949) test for pairwise comparisons were performed with the multcomp package 

(Hothorn et al., 2008). 

▪ Non-parametric ANOVA: through the kwManyOneDunnTest function, the Kruskal-

Wallis test (Kruskal & Wallis, 1952), and the Dunn’s Many-to-One Rank 

Comparison test (Dunn, 1964) for pairwise comparisons with a control were 

implemented using the PMCMRplus package (Pohlert, 2023). The Friedman test 

(Friedman, 1937), along with pairwise comparisons against a control using 

Nemenyi's Many-to-One Test for Unreplicated Blocked Data (Hollander et al., 2014) 

(via the frdManyOneNemenyiTest function), was also performed with this package.  

A Benjamini-Horchberg (BH) p-adjustment (Benjamini & Hochberg, 1995) was 

applied to control the false discovery rate, rather than the more conservative 

Bonferroni correction (Bonferroni, 1936), which controls the familywise error 

rates. The BH adjustment was preferred because it maintains greater statistical 

power and reduces the risk of Type II errors (i.e., failing to detect real differences 
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when they exist). This balance is important with Rasch measures of latent traits 

because these measures estimate subtle underlying constructs, and overly strict 

corrections can mask real differences.  

For the Dunn many-to-one comparisons, a one-tailed alternative hypothesis 

("greater") was specified for the DFC test results. This was justified because the 

pairwise comparison involved the DFC of the blind control (expected to show no 

difference or less effect as a placebo) and the DFC of the test samples, where 

differences were expected to be greater than those of the blind control. Conversely, 

for the Total Intensity (Rasch) Measures (TIM), a two-tailed alternative hypothesis 

(“two-sided”) was used, since differences between samples and the control could 

be either an increase or a decrease in intensity. 

3.3.2.2 Panel and assessor performance 

Panel and individual assessor performance were examined trained and untrained 

panels by ANOVA-based methods in accordance with the performance criteria 

outlined in ISO 11132:2021 (British Standards Institution, 2021). The previously 

mentioned statistical packages were also employed in this analysis. Detailed 

descriptions of the analytical procedures are provided in the relevant chapters. 

To investigate response patterns as recommended by (Stone et al., 2012; Ho, 2015; 

Raithatha & Rogers, 2018): 

▪ Response distribution plots (Trellis or lattice plots) were used to evaluate 

the scoring behaviour of individual assessors across samples and replicate 

evaluations. 

▪ Assessor by Sample interaction plots were used to investigate the 

agreement among assessors in the panel by plotting each assessor’s mean 

responses relative to the panel average. 

3.3.2.3 Data visualisation 

Attribute contribution plots were created using Microsoft Excel 365 (Microsoft 

Corporation, 2019). All other data visualisations, including convergence, 

interaction and response distribution plots, were generated using ggplot2 

(Wickham, 2016) in R. 
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3.4 Data Collection 

Quantitative data for this research were collected through sensory evaluation 

studies. All sensory questionnaires were developed and administered using 

RedJade sensory software (Redjade Software Solutions, 2023). 

All three sensory studies were conducted in individual booths under white light at 

the Sensory Laboratory of the School of Food Science and Nutrition, University of 

Leeds, except for the trained panel data in Chapter 5, which were collected at a 

global chocolate manufacturing company’s sensory testing facility in the UK.  

The next three chapters provide a detailed discussion of the research themes under 

which Rasch analysis has been applied in sensory difference testing and quality 

control. As sensory evaluation methodologies varied across the three studies, each 

chapter includes a dedicated sensory methodology section. A brief overview is 

provided below. 

Chapter 4 examines how Rasch analysis can be used to measure overall product 

differences by combining multiple attribute intensity ratings. The study used 

Difference from Control (DFC) and attribute intensity ratings from an untrained 

panel (n = 67) on three Jaffa cake samples. Attributes were selected based on an 

existing dataset whose corresponding study is discussed in Chapter 5. 

Chapter 5 focuses on examining assessor performance with the Rasch model and 

compares the performance of a trained (n=7) and untrained panel (n=24) using three 

chocolate spread samples. Attributes were selected by the trained panel following 

a training phase. 

Chapter 6 uses data from DFC and attribute intensity ratings from an untrained 

panel (n=54) on three tomato soup samples to explore the application of the Many-

Facet Rasch Model (MFRM) as a unified approach for sensory quality programmes. 

Prior to the evaluation sessions, a preliminary session with untrained assessors 

(n=7) was conducted to generate sensory descriptors. From this, eighteen 

attributes were selected based on how frequently terms were mentioned.  
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Chapter 4   

Measuring Overall Difference with the Many-Facet Rasch Model 

(MFRM): The Total Intensity Measure (TIM) Method 

4.1 Overview 

As part of routine quality assurance (QA) and quality control (QC), as well as in 

market research and product development, products are evaluated to identify 

differences between samples. The choice of a sensory test depends on whether the 

objective is to determine overall differences between samples or differences in 

specific attributes. To assess overall differences, the Difference from Control (DFC) 

(Aust et al., 1985) is quite beneficial as it evaluates the magnitude of differences 

between samples relative to a chosen standard, rather than just identifying whether 

differences exist (Whelan, 2017; Compusense, 2020; Montero & Ross, 2022). When 

the objective is to identify differences in specific attributes, methods like paired 

comparison tests and alternative forced-choice tests are used. These tests focus 

on one attribute at a time. However, sensory QC/QA often requires insights into 

multiple attribute differences between samples, which these methods do not 

efficiently provide. To address this, sensory descriptive methods are used to obtain 

intensity ratings for several attributes. Multivariate data analysis techniques like the 

Principal Component Analysis (PCA), are commonly used to interpret the data. PCA 

helps reveal patterns in the underlying data by reducing multiple attributes into 

fewer dimensions, providing a more comprehensive understanding of sample 

differences. However, interpreting results from such methods can be complex. 

A Rasch approach could serve as an efficient alternative for measuring product 

differences offering both qualitative and quantifiable insights. As outlined in section 

3.2: Framework for measuring Overall Difference using attribute intensity 

ratings, the Many-Facet Rasch Model (MFRM) estimates a holistic Total Intensity 

Measure (TIM) for each sample, by combining attribute intensity ratings. TIM results 

are then subjected to univariate multiple comparison tests to quantify the overall 

difference between samples. Additionally, inherent Rasch quality control statistics 

provide deeper, easily interpretable insights, identifying which attributes were more 
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challenging for assessors to evaluate and determining the relative contribution of 

each attribute to the overall difference. This enhances diagnostic information, 

supporting more informed decision-making in sensory quality programmes with 

fewer tests. 

This chapter compares overall difference measurement using two approaches: the 

traditional DFC test and the Rasch-based multi-attribute (TIM) approach, and forms 

part of the published article (Ariakpomu et al., 2025b). 

4.1.1 Objectives 

The aim of this study was to determine whether the TIM approach to measuring 

product differences is equally as effective as the DFC. The hypothesis is that the TIM 

method would yield similar overall difference results to those from the DFC, while 

the MFRM will provide additional insights on how individual attributes contribute to 

the Overall Difference construct. 

The specific objectives were: 

1. To evaluate the overall difference between three Jaffa cake samples using the 

DFC test. 

2. To assess the intensities of five sensory attributes in the three Jaffa cake samples 

with the Attribute Rating (AR) test 

3. To estimate the Total Intensity Measures (TIM) by combining the intensity ratings 

from the five attributes using the MFRM. 

4. To compare the overall difference results from the DFC ratings and the TIM from 

the combined attributes using multiple comparison tests. 

5. To interpret the additional insights provided by the MFRM’s quality control 

statistics. 

4.1.2 Study highlights 

▪ TIM could differentiate between all three Jaffa cake samples while DFC could 

only differentiate between one of the samples and the control. 

▪ The MFRM Wright map illustrated which attributes were easier and more 

challenging for the panel to perceive. 
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▪ Outfit mean square statistics for the attributes, combined with attribute logit 

values, revealed that Orange flavour had the highest contribution to the sample 

differences while Saltiness was the most challenging attribute for the panel to 

evaluate. 

4.2 Sensory study: materials and methods 

Sensory data were from the dataset referenced here as (Ariakpomu et al., 2024). 

4.2.1 Samples 

Jaffa cakes were chosen for this study as they share similar taste and flavour 

attributes (Orange flavour, Sweetness, Cocoa flavour, Milky flavour and Saltiness) 

with the chocolate spread samples used in a related study (discussed in Chapter 

5). They were selected to extend the MFRM validation to a more complex food matrix 

while maintaining experimental control. Jaffa cakes are sponge cakes with three 

layers: a sponge base, an orange-flavoured jam layer, and a chocolate top coating 

covering the side with the jam layer. This provided a heterogeneous food matrix with 

similar flavour characteristics to the chocolate spreads. The specific brands used 

in this study were chosen for their relatively uniform appearance, which was 

important for isolating taste and flavour differences from visual cues during sensory 

evaluation. Alternative chocolate-orange products, such as cookies or bars, were 

not selected because of their variable appearance across pieces and brands, which 

could introduce unwanted visual biases. Using products that share similar sensory 

attributes across both studies allowed examination of whether MFRM performs 

consistently across different food matrices when evaluating comparable sensory 

dimensions.  

To facilitate comparability of the AR test with the DFC, efforts were made to ensure 

that all other sensory characteristics except taste/flavour were consistent across 

the samples to be tested. This was necessary because the DFC test only assesses 

overall product differences, meaning that attributes not included in the AR tests 

 
 Step one (in Figure 3.1:Framework): conceptualise the latent variable by identifying sensory 

attributes to capture the overall difference dimension from the samples. 
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could still be perceived in the DFC, potentially influencing the conclusions drawn 

from the comparison.  

The three selected samples comprised of one premium brand and two store-brand 

Jaffa cakes. These were chosen based on informal tasting sessions within the 

research team, and information from their back-of-pack labels. They were 

purchased from major supermarkets in the United Kingdom and differed in their 

nutritional and ingredient composition (Table B 1). The store brands were very 

similar in appearance, and one was selected as the reference for the DFC test, while 

the premium brand had a slightly different shape (Figure B 1). However, a significant 

limitation of this sample selection approach is that no instrumental analysis was 

conducted to verify that samples differed only in the target taste/flavour 

characteristics. While sample selection was guided by label information and visual 

inspection confirmed general uniformity in appearance, differences in texture 

properties (e.g., sponge density, jam consistency, chocolate coating hardness) and 

other non-target sensory attributes could not be ruled out and may have 

confounded the interpretation of the five focal taste/flavour differences. 

The samples were stored in odour-free, airtight, plastic containers at room 

temperature (20±3°C) until they were ready to be presented. 

4.2.2 Participants 

Ethical approval for the sensory study was granted by the Business, Environment 

and Social Sciences Faculty Research Ethics Committee at the University of Leeds.  

Participants (n=67) were residents of Leeds, the majority of whom were staff and 

students at the University of Leeds. They were recruited through, emails, poster 

adverts and personal referrals and were selected based on the following criteria: 

▪ Aged between 18 and 65 years  

▪ Not having any chronic health conditions 

▪ Not allergic or intolerant to the ingredients in the Jaffa cake samples 

▪ Not on any routine medication (except contraceptives) 

▪ Not on any special or restricted diets 

▪ Not pregnant or lactating 
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▪ Available to attend two 1-hour-long sensory test sessions, within one month 

and with a minimum of four days between sessions. 

Each participant was provided with detailed information about the study 

requirements, as well as the data protection and sharing disclaimer. They were then 

required to give informed consent by signing consent forms, both at the point of 

enrolment and a hard copy when they attended their first study session, to ensure 

they understood all study requirements and were happy to proceed. 

The final untrained panel consisted of 43 females (64%) and 24 males (36%), aged 

between 18 and 54 years. They represented various ethnicities: 28 Asian (42%), 16 

Black (24%), 15 White (22%), 2 Mixed (3%), and 6 from other ethnic groups (9%). To 

encourage commitment, participants were able to select two convenient dates for 

the sensory tests through an online form (Jotform Inc, 2023). The form was 

programmed to automatically send reminder emails 1 day, 2 hours, and 1 hour 

before their scheduled appointment. After completing the two required sessions, 

each assessor received a £20 Amazon voucher as incentive for their participation. 

Ideally, trained panels with fewer assessors are used in QC settings. However, this 

study employed a larger number of untrained assessors to explore the TIM 

approach across varying levels of sensory expertise. 

4.2.3 Study design 

A Randomised Complete Block Design (RCBD) and Latin Square (Figure 4.1) were used 

to account for order effects and other sources of variation in the sensory experiments.  

 

 

 

 

Figure 4.1. Illustration of sample presentation order in a Latin Square, showing 
three assessors (1029, 1030, and 1031) for the three samples (represented by 
different colours) across three replicated sessions. Source (Redjade Software 
Solutions, 2023). 

 

Assessor Repetition 1 Repetition 2 Repetition 3 
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In this design, each assessor evaluated three samples in a different order across 

replicate sessions, with each sample appearing in every position and following every 

other sample an equal number of times (Næs et al., 2010).  

Each assessor participated in two separate sessions, one for the DFC test and 

another for the AR test, with a minimum interval of four days between each test 

session. To minimise expectation biases (Meilgaard et al., 2015), half of the 

participants completed the AR test first, while the other half started with the DFC 

test. Additionally, to reduce experimental variations due to the time of day, 

participants could only choose two morning sessions or two afternoon sessions for 

both tests, with the appointment booking form programmed to automatically 

account for this. Attendance was balanced according to both the time of day and 

which of the two tests the participants first completed.  

In each test session, three samples were presented; for the AR test, samples were 

presented monadically (one at a time), while for the DFC, the samples were 

presented in pairs consisting of a test sample and the reference sample. Each 

sample was evaluated three times, making a total of nine evaluations for AR and 

eighteen for the DFC. All samples were served at room temperature (20±3°C) on 15 

cm white paper plates labelled with random 3-digit codes. The reference sample for 

the DFC was labelled “R”. 

4.2.4 Sensory evaluation procedures 

The Difference-from-control (DFC) test followed the procedure described by 

(Meilgaard et al., 2015). Assessors were informed that some coded test samples 

might be the same as the reference and were instructed to taste each sample by 

taking a semi-circle shaped (half) bite. This instruction was necessary because Jaffa 

cakes are designed with the layer of orange-flavoured jam centrally positioned on 

one side of the sponge base, which is then covered with a layer of chocolate (see 

Figure 4.2). Without this guidance, assessors might only take a bite from the edge, 

missing the orange-flavoured centre and compromising the uniformity of the 

sample evaluation. 
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Figure 4.2. Photo showing the side of a Jaffa cake with centrally located orange-
flavoured jam layer on the sponge base (with a portion of the chocolate top coating 
removed) justifying why assessors were instructed to take semi-circle-shaped half 
bites. 

They were instructed to first taste the sample labelled "R", then taste the coded test 

sample, assess the overall difference between them and then rate the size of 

difference perceived. Assessors used a unidirectional labelled 7-point categorical 

difference scale (0-6), where 0 = no difference, 1 = barely detectable difference, 2 = 

slight difference, 3 = moderate difference, 4 = large difference, 5 = very large 

difference, and 6 = extremely different, to rate the size of differences between a 

coded test sample and the reference sample (R).  

For the Attribute Rating (AR) test, assessors rated the perceived intensities of five 

taste/flavour attributes: Orange flavour, Sweetness, Cocoa flavour, Milky flavour, 

and Saltiness. As previously mentioned (4.2.1 Samples), these attributes were 

selected based on a preliminary study involving products with similar taste/flavour 

characteristics, where a trained panel from a global chocolate manufacturing 

company identified these attributes for orange-flavoured chocolate spreads. The 

same attributes were used in this study to explore the Rasch-based method with a 

different product. Assessors were asked to taste each sample and rate how strong 

each of the five attributes were. All the attributes were presented on the same page 

of the questionnaire, but the order was randomised for each sample and assessor, 

as suggested by (Ares et al., 2014) attempting to reduce errors of habituation, logic 

 
 Step two (in Figure 3.1:Framework): design questions based on selected sensory attributes to 

capture different amounts of the latent variable. 
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and halo effect (Lawless & Heymann, 2010). -An 8-point categorical intensity 

scale ranging from 0-7 with labels adapted from the Labelled Magnitude Scale (LMS) 

(Green et al., 1996) was used. The intensity labels were 0 = none, 1 = barely 

detectable, 2 = weak, 3 = moderate, 4 = strong, 5 = very strong, 6 = extremely strong, 

and 7 = strongest imaginable oral sensation. The primary purpose of adapting LMS 

labels for this ordinal categorical scale was to leverage the well-established verbal 

descriptors to help assessors interpret and apply the intensity categories 

consistently, rather than to replicate the quasi-logarithmic perceptual spacing of 

LMS. Including the “none” label represented the 0 point on the LMS, while adding 

“extremely strong” seemed an appropriate intensity rating between “very strong” 

and “strongest imaginable sensation” for use in a labelled categorical scale, where 

there is no continuous line to mark intensity estimates, unlike the LMS. Additionally, 

the term “extremely” has been used in other category-ratio intensity scales, such 

as the Borg scale and its modifications (Borg, 1982; Borg & Kaijser, 2006).  

This approach prioritised ease of practical usability over preserving the mathematical 

properties of the original LMS. It is important to note that while the category labels are 

evenly spaced, the Rasch modelling approach does not assume these categories 

represent equal perceptual intervals. Rather, the model empirically estimates the 

threshold parameters between each category based on actual response patterns in 

the data, transforming the ordinal ratings into interval-level logit measures (Bond et al., 

2020; Eckes, 2023). This means that the perceptual spacing between categories is 

calibrated based on how the panel actually used the scale to rate the attributes across 

the samples, rather than imposing uniform intervals. 

Assessors were provided with a cup of water to cleanse their palate between sample 

evaluations and given breaks between replicates (5 minutes for the DFC and 10 

minutes for the AR test) to minimise sensory fatigue and memory bias, respectively. 

Samples of the questionnaires for the DFC and AR tests are provided in Appendix 

C.1. 

 
 Step three (in Figure 3.1:Framework): choose an intensity rating scale to categorise attribute 

intensities into ordinal scores, and  
4 Step four, collect ratings through sensory evaluation. 
  
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4.2.5 Data analysis 

Rasch and statistical analyses were according to the procedures described in the 

previous chapter (in section 3.3). The attribute intensity ratings (AR) data were 

fitted to a MFRM with four facets: Assessors, Samples, Repetition, and Attributes. 

To facilitate the comparison between the two approaches, a separate model was 

used for the DFC data. Each test had two variations of the model, one with and one 

without the Repetition facet as outlined below. TIM1 and DFCM1 models include all 

four facets, with data generated from all three replicate sessions grouped under the 

Repetition facet, while TIM2 and DFCM2 models exclude the Repetition facet and 

instead fit the data from individual replicated sessions of both tests to the MFRM. 

This was necessary to investigate whether assessors provide consistent ratings 

within single sessions or if averaging across multiple replicate sessions is required 

for reliable measurement.  

TIM1: 𝒍𝒏 ( 𝑷𝒎𝒏𝒓𝒊𝒌 /𝑷𝒎𝒏𝒓𝒊𝒌−𝟏) = 𝜷𝒎 −  𝜽𝒏 − 𝝆𝒓 −  𝜹𝒊 −  𝝉𝒌  
...Equation 4.1 

TIM2:𝒍𝒏 ( 𝑷𝒎𝒏𝒊𝒌 /𝑷𝒎𝒏𝒊𝒌−𝟏) = 𝜷𝒎 −  𝜽𝒏 − 𝜹𝒊 − 𝝉𝒌  
...Equation 4.2 

DFCM1: 𝒍𝒏 ( 𝑷𝒎𝒏𝒓𝒌 /𝑷𝒎𝒏𝒓𝒌−𝟏) =  𝜷𝒎 −  𝜽𝒏 − 𝝆𝒓 −  𝝉𝒌  
...Equation 4.3 

DFCM2: 𝒍𝒏 ( 𝑷𝒎𝒏𝒌 /𝑷𝒎𝒏𝒌−𝟏) =  𝜷𝒎 −  𝜽𝒏 −  𝝉𝒌  
...Equation 4.4 

Where: in the DFC models (DFCM), the 𝛿𝑖 parameter was not included due to the 

absence of attributes in the analysis. 

𝑃𝑚𝑛𝑟𝑖𝑘= probability that sample (𝑛) is rated (𝑘) for a sensory attribute (𝑖) by 

assessor (𝑚) in replicate session (𝑟) 

𝑃𝑚𝑛𝑟𝑖𝑘−1= probability that sample (𝑛) is rated (𝑘 − 1) for sensory attribute (𝑖) by 

assessor (𝑚) in replicate session (𝑟) 

𝛽𝑚= degree of leniency or severity of assessor (𝑚) in rating attribute intensities  

𝜃𝑛= degree of difference in the total intensity measure for sample (𝑛)  

ρ𝑟 = degree of difference between ratings of samples in a replicate session (𝑟) 

 
 Step five (in Figure 3.1:Framework): fit a MFRM to obtain interval-scaled Total Intensity Measures 

(TIM) based on combined attributes that will be used for univariate statistical analysis. 
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𝛿𝑖 = the average degree of intensity of sensory attribute (𝑖) across all samples 

𝜏𝑘 = points on the latent variable continuum where the samples are equally likely to 

be rated between scale category (𝑘) and category (𝑘 − 1) .  

Statistical analyses were conducted on the DFC raw scores, DFC Rasch measures, 

and the Total Intensity Measures (TIM), and the results were compared for 

discriminatory ability and diagnostic detail. 

4.2.5.1 Rasch Model Fit 

To recap, an acceptable global model fit of the data is when no more than 5% of 

absolute standardised residuals is ≥2, and no more than 1% is ≥3 (Linacre, 2022; 

Eckes, 2023).  

For individual fit of each parameter within each facet (i.e., Assessor, Sample, 

Repetition and Attributes) adequate model fit is assessed using OUTFIT mean 

square values. Values between 0.5 and 1.5 are considered useful for measurement, 

while values >2.0 may degrade the measures, and values <0.5 may indicate 

redundancy or insufficient discrimination (Linacre, 2025b).  

“Response dependency” checks (Tennant & Conaghan, 2007) were conducted to 

examine unidimensionality (i.e., ensuring that attributes are measuring a single 

construct) and local item dependence (i.e., ensuring that responses to different 

attributes are not overly correlated unless they are truly measuring the same thing, 

making them redundant). Linacre (2024a) suggests using a Principal Component 

Analysis of Residuals (PCAR), where unidimensionality is confirmed when the 

eigenvalue of the unexplained variance in the first contrast is <2. Local item 

dependence is identified when the residual correlation between two attributes is 

>0.3 (Ramp et al., 2009; Christensen et al., 2017). Response dependency checks 

were only applied to the TIM1 model, as it is based on multi-attribute responses and 

is the proposed model for difference testing. 

4.3 Results and Discussion 

4.3.1 Fit of data to the Many-Facet Rasch Model (MFRM) 

Rasch model fit statistics were examined for all fitted models (TIM1, DFCM1, TIM2 and 

DFCM2) to determine whether the data support unidimensional measurement.  
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Table 4.1. Summary of Rasch model fit statistics for DFC and Total Intensity Measure (TIM) models 

 
 

 
 OUTFIT Mean-Square1 

Model 
 

Global fit2  
 

Assessor 
 

Sample 
 

Repetition 
 

Attribute 
 

 Criteria 
% StRes 
≤5% ≥ 2 

% StRes 
≤1% ≥ 3 Total3  

 % Fit 
0.5 - 1.54 

% Misfit 
>2.05 

 
% Fit  

 
% Fit  

 
% Fit  

TIM1 
 

4.6 (138) 0.3 (9) 3015 
 

82 5 
 

100 
 

100 
 

100 

TIM2.Rep1 
 

4.5 (45) 0.4 (4) 1005 
 

69 2 
 

100 
 

NA6 
 

100 

TIM2.Rep2 
 

4.9 (45) 0.2 (2) 1005 
 

67 8 
 

100 
 

NA 
 

100 

TIM2.Rep3 
 

4.3 (43) 0.4 (4) 1005 
 

61 8 
 

100 
 

NA 
 

100 

DFCM1 
 

2.8 (17) 0 (0) 603 
 

65 6 
 

100 
 

100 
 

100 

DFCM2.Rep1 
 3.5 (7) 0.5(1) 201  40 10  100  NA  100 

DFCM2.Rep2 
 3.5 (7) 0(0) 201  52 13  100  NA  100 

DFCM2.Rep3  4.5 (9) 0 (0) 201  35 13  100  NA  100 

 
1 Outlier-sensitive measure of unweighted mean squares (subsequently OUTFIT Mnsq) indicating deviation of the estimates from predictions of the Rasch model. 
2 Percentage (number of observations in brackets) of absolute standardised residuals (StRes). 
3 Total number of observations used for the estimation of the model parameters. 
4 OUTFIT Mnsq values between 0.5 and 1.5 are considered productive for measurement (Linacre, 2024b). The same criteria apply to the percentage fit for all facets. 
5 OUTFIT Mnsq values >2.0 may degrade the measurement (Linacre, 2024b). 
6 NA implies Not Applicable as the Rasch models per replicate did not have a Repetition facet. 
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As shown in Table 4.1 and Table 4.2, all models showed an acceptable global model 

fit suggesting that overall, the data in each model aligns with the assumptions of the 

Rasch model and there are no major inconsistencies that may distort the 

measurement. 

Evidently, all facets across all fitted models, except the Assessor facet, showed a 

100% fit. Assessor fit indices estimate how consistently an assessor’s ratings align 

with the expectations of the model. (Myford & Wolfe, 2004; Linacre, 2012a; Eckes, 

2023). While there is evidence of a few misfitting assessors across all models, the 

focus of this chapter was on investigating MFRM's ability to measure sample 

differences rather than comprehensive assessor performance evaluation. 

Monitoring assessor performance with the MFRM is discussed in Chapter 5. 

Moreover, according to (Wright & Linacre, 1994), a few misfitting assessors in 

sample and item (attribute) estimates are negligible. Notably, the TIM1 and DFCM1 

models with the Repetition facet showed better assessor fit than the corresponding 

models without the Repetition facet. This suggests that including Repetition as an 

explanatory factor and averaging across replicated ratings helps smooth out 

random variations, making the data from these models more reliable. Meilgaard et 

al. (2025) highlight repeating measurements as one of the techniques to minimise 

variability in product ratings due to individual differences. 

Response dependency checks (Table 4.2) on the TIM1 model confirmed that the 

combined attributes formed a unidimensional measurement construct. PCAR 

showed that after removing the Rasch factor, the unexplained variance in the first 

contrast (representing residuals in the largest secondary dimension) with an 

eigenvalue of 1.9 indicated a strength of 2 out of 5 items, suggesting the possibility 

of a secondary dimension. However, examination of the standardised residuals 

correlation matrix showed that correlations between suspected attributes were 

<0.3 indicating that any observed associations were weak and likely due to local 

variations in attribute intensity (Linacre, 2024a). That said, the observed association 

between Orange flavour and Sweetness could theoretically reflect sensory 

interactions where citric acid can enhance sweetness perception (Veldhuizen et al., 

 
 The Rasch factor is the primary dimension representing the latent trait measured by the 

Rasch model and reflects the expected response pattern. 
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2017). However, the correlation value of 0.05 is negligible and more likely reflects 

random measurement variation. Meanwhile, the weak correlation between Milky 

flavour and Saltiness (0.11) may be attributed to their similarly low intensities and 

erratic ratings by assessors, as discussed later in the chapter. 

Table 4.2. Summary of response dependency based on standardised residuals  

Model 
  

Response Dependency 

  Unidimensionality1  Local Item Dependence 

    
Attributes 

 Corr. of 
StRes2 

TIM1  1.9  Milky flavour-Saltiness 

 

0.11 

        Orange flavour-Sweetness 

 

0.05 

Criteria 
eigenvalue <2 in 1st 

contrast    <0.3 

 

 

4.3.2 Rating scale category diagnostics  

Scale category diagnostics, one of the many quality control statistics offered by 

Rasch models provide insights into how the categories on a rating scale have been 

interpreted. Following established guidelines in Table 3.1: Guidelines for 

assessing the functionality of a rating scale, deviations in the interpretation and 

operational use of the scale from the Rasch model’s expectations can be 

empirically investigated.  

Table 4.3 shows the category functioning of the rating scales for the Intensity and 

DFC rating scales for the Rasch models that include a Repetition facet- TIM1 and 

DFCM1 respectively. The scales were examined against the previously discussed 

criteria (Table 3.1). Criteria which were essential for measure accuracy and for 

description of the samples in this study were met.  

 
1

 Eigenvalue of the unexplained variance in the first contrast, not accounted for by the Rasch model, in the Principal Component Analysis of Residuals (PCAR). 
2

 Correlation of standardised residuals (Corr. of StRes) <0.3 confirm responses on attributes are not related. 
 

1 Eigenvalue of the unexplained variance in the first contrast, not accounted for by the Rasch model, in the 
Principal Component Analysis of Residuals (PCAR). 

2 Correlation of standardised residuals (Corr. of StRes) <0.3 confirm responses on attributes are not related. 
. 
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Table 4.3. Summary of scale category statistics for Intensity and DFC rating scales used in the TIM1 and DFCM1 models (with Repetition facet) 
Scale           Scale Categories Frequency1 Average Measure2 OUTFIT Mnsq3 Rasch-Andrich Threshold 

   Observed  Expected  Measure  Distance4 
INTENSITY  -         

Rating Scale 0 None 148 (5) -2.26  -2.03 0.8    
8-category  1 Barely detectable 392 (13) -1.60  -1.61 1.0 -2.81  0.97 
01234567 2 Weak 641 (21) -1.00  -1.08 1.0 -1.84  0.65 

 3 Moderate 937 (31) -0.54  -0.55 1.0 -1.19  1.35 
 4 Strong 583 (19) -0.13  -0.1 1.1 0.16  0.82 

 5 Very strong 239 (8) 0.23  0.25 1.0 0.98  0.65 

 6 Extremely strong 69 (2) 0.44  0.52 1.1 1.63  1.44 
 7 Strongest imaginable oral sensation 6 (0)* 0.88  0.73 0.9 3.07   

           
DFC           

Rating Scale 0 No difference 69 (11) -1.43  -1.44 1.1    
7-category 1 Barely detectable difference 131 (22) -0.82  -0.83 1.1 -1.71  1.00 

0123456 2 Slight difference 135 (22) -0.57  -0.54 0.9 -0.71  0.23 
 3 Moderate difference 146 (24) -0.26  -0.26 1.0 -0.48  0.97 

 4 Large difference 79 (13) 0.00  0.01 1.0 0.49  0.59 

 5 Very large difference 31 (5) 0.35  0.27 0.8 1.08  0.26 
 6 Extremely different 12 (2) 0.45  0.50 1.0 1.34   

 
1 Total count (percentage distribution in brackets) of observations used in each scale category. 
2 Observed average measure (in log odds unit or logits), and expected average measure if data fits the Rasch model. 
3 OUTFIT Mnsq refers to the outlier-sensitive measure of unweighted mean squares and indicates the deviation of responses from predictions of the Rasch model. 
4 Absolute difference between Rasch-Andrich threshold measures (i.e., the thresholds between adjacent scale categories. For 8 and 7 category scales, the minimum threshold distances 

are 0.51 and 0.57, respectively. 
− Unmet Criteria from 3.3.1.4: Rating scale category diagnostics 
 Each scale category should have at least 10 observations as this is essential for measure stability. 
 Minimum advancing distance for Rasch-Andrich threshold are helpful for inference on subsequent studies 
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Specifically, the Rasch-Andrich thresholds were ordered, and probability curves 

had distinct peaks (see Figure 4.3 for graphical representations of the probability 

curves for the Intensity scale). No misfitting categories were observed, as OUTFIT 

Mnsq values were close to 1.0, and the observed average measures increased 

monotonically across the scale categories. These findings suggest that responses 

to attributes in the TIM are consistent with the estimates of the latent variable 

(Tennant & Conaghan, 2007) and meet the model expectations. Additionally, no 

scale categories were skipped along the variable (Eckes, 2023). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, there were only 6 total observations in the last category (7 - Strongest 

imaginable oral sensation) of the Intensity scale. According to Linacre (2002b), a 

minimum of 10 observations per category is essential for ensuring measure 

 

Figure 4.3. Probability curves for TIM1 Intensity scale showing ordered Rasch-
Andrich thresholds resembling a range of hills with distinct peaks. As scale 
categories advance along the latent variable, each category becomes the most 
probable choice. The points where each category curve intersects with the adjacent 
category curve represent the half-point (Measure in Table 4.3), where the 
probability of a sample receiving a higher rating begins to exceed the likelihood of 
being rated in the lower adjacent category. These correspond to the half-point 
thresholds on the Wright maps. 
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stability, which refers to the consistency of a measurement system when repeated 

over time in the same context.  

The DFC scale also did not meet the required minimum advancing distance 

between category thresholds for scales with 7 categories. Specifically, the 

thresholds categories 2 - Slight difference and 5 - Very large difference, respectively 

were less than the minimum required 0.57, suggesting that these categories were 

too close to be distinctive (Eckes, 2023). However, meeting this requirement is only 

helpful for making inferences in subsequent studies. Therefore, it was not 

necessary to revise either of the rating scales, as doing so would have been beyond 

the scope of this study, which focused primarily on exploring the MFRM for 

measuring overall differences, rather than modifying tools to improve 

measurement procedures for Jaffa cakes.  

4.3.3 Representing the Overall Difference construct on the Wright map  

Wright maps for the TIM1 and DFCM1 models are presented in Figure 4.4 and Figure 

4.5 respectively. As previously discussed in section 3.3.1.1: Fitting the Many-Facet 

Rasch Model (MFRM), all four facets (Assessors, Samples, Repetition and 

Attributes) were positively oriented so that on average, for each facet the following 

applies. 

▪ Assessor facet: assessors with higher logit values are more lenient, generally 

assigning higher scores on the rating scale. 

▪ Sample facet: samples with higher logit values have higher Total Intensity 

Measure (TIM) or for the DFC measure (DFCM), are more different from the 

control. 

▪ Repetition facet: replicate sessions where higher intensity ratings were 

assigned on average have higher logit values. 

▪ Attribute facet: attributes with higher average intensity ratings have higher logit 

values. 

 
 Step six (in Figure 3.1:Framework): represent the construct on the Wright map to visualise the 

location of facet parameters on the logit scale. Rasch measures from steps five and six are 
exported for statistical analysis, and Rach quality control statistics (OUTFIT Mnsq) provide 
insights into specific attribute contribution to the latent variable of overall difference. 
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The individual parameters within each facet (e.g., each assessor in the Assessor facet, 

each sample in the Sample facet, etc) are relatively located on the Wright map 

according to their logit values. The Sample facet was non-centred, while the other 

facets were centred at the mean (0 on the logit scale) to serve as a reference point. 

Consequently, sample locations were adjusted by considering the severity of 

assessors, the average intensity of attributes, and the intensity ratings in repeated 

sessions representing the Assessor, Attribute, and Repetition facets, respectively. 

4.3.3.1 Total Intensity Measure (TIM1) 

The TIM Wright map (Figure 4.4 above) showed that assessors exhibited varying 

degrees of severity in their use of the intensity rating scale. On the Assessor facet, 

Assessor 1014 had the highest logit value and emerged as the most lenient assessor 

in the panel. This suggested that they consistently assigned the highest ratings to 

the samples compared to other assessors.  

For the Sample facet, on average, attribute intensity ratings for the samples were below 

average (0 on the logit scale), and ratings across the three replicated sessions were 

consistent. Samples positioned higher on the scale were perceived to have greater 

intensity of the combined attributes. Their values on the logit scale, relative to their 

location, represent the Total Intensity Measure, which will be used for multiple 

comparison tests and reflects the latent variable of Overall Difference between the 

samples. 

The Attributes facet revealed the location of the attributes based on the average ratings 

from the samples. Attributes higher on the scale had the highest intensity ratings 

across all the samples and repeated sessions. Orange flavour and Sweetness had the 

highest average intensity, while Milky flavour and Saltiness had the lowest. 

Initial interpretation suggested this hierarchy indicated how much each attribute 

contributed to differences between samples, with Orange flavour and Sweetness 

appearing most influential. However, further examination using MFRM across different 

contexts revealed that this hierarchy actually reflects average intensity levels rather 

than discriminating power. Attributes with high average intensity are more easily 

perceived overall and do not necessarily mean they contribute most to sample 

differentiation.  



83 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 4.4. Many-Facet Wright map for TIM1.  
The first column “Measr” represents Rasch model measures on the logit scale. The four 
facets are displayed from left to right: 1001-1072 represent unique assessor IDs for 67 
assessors in the Assessor facet; Brands A and B represent the test samples, and Control 
refers to the reference sample in the Sample facet. Numbers 1-3 indicate replicate 
evaluations in the repetition facet, and attributes are listed in the Attribute facet. The 
rightmost column illustrates the functioning of the AR intensity rating scale, with horizontal 
lines marking half-point thresholds, where the probability of a sample receiving a higher 
rating begins to exceed the likelihood of being rated in the lower adjacent category.  
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The interpretation of attribute intensities in the MFRM depends on the 

measurement context and the construct being modelled. In Ho (2019), the construct 

was overall liking, where individual attribute intensities served as items contributing to 

that liking judgment. In that context, attribute locations on the logit scale directly 

indicated their contribution to overall liking, as higher attribute intensities translated to 

higher liking scores. In contrast, the construct examined in this thesis is overall 

difference between samples, with attribute intensities also serving as items. Here, 

higher logit values reflect higher average intensity across all samples rather than a 

stronger contribution to sample discrimination. When statistically significant 

differences exist between samples, the Outfit mean square values for the attributes 

(discussed later in this chapter) provide insight into their relative contributions to those 

differences. 

The intensity scale shows the average rating range used by the panel for the 

attributes. Notably, the gaps between adjacent scale categories are not 

equidistant, and tend to widen toward the extreme categories. The Rasch model 

empirically estimates these category thresholds from the observed response 

patterns as rated by the assessor panel rather than imposing uniform spacing, with 

the non-uniformity reflecting how assessors actually used the scale categories 

when rating the samples. On average, all samples were rated as having moderate 

intensity across the combined attributes.  

To estimate the overall difference analogous to the DFC method, pairwise 

comparison tests against a control would determine the existence of significant 

overall differences between Brand A and Brand B compared to the Control, based 

on their Total Intensity Measures (TIM) from the logit scale. Rasch quality control 

statistics, specifically the OUTFIT mean square for individual attributes, would 

further reveal the importance of each attribute to the overall sample differences. 

4.3.3.2 DFC Measure (DFCM1) 

In Figure 4.5 below, the DFCM1 Wright map revealed varying degrees of severity 

among assessors in the Assessor facet. Assessor 1011 was the most severe, 

consistently assigning the lowest ratings to samples on average, standing out from 

the rest of the panel by nearly 2 logits. This extreme severity indicates they used the 
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rating scale very differently from their peers, systematically rating all samples 

lower. Rasch quality control statistics would flag this assessor as misfitting due to 

their deviation from the model’s expected response patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Many-Facet Wright map for DFCM1.  

 

 

 

 

This type of assessor behaviour, where an individual systematically rates differently 

from the panel consensus, poses challenges for traditional sensory analysis methods. 

In ANOVA approaches, such assessors contribute to increased error variance, but their 

The first column “Measr” represents Rasch model measures on the logit scale. The four facets 
are displayed from left to right: 1001-1072 represent unique assessor IDs for the 67 assessors 
in the assessor facet; Brands A and B represent the test samples, and Control refers to the 
reference sample (R) in the sample facet. Numbers 1-3 indicate replicate evaluations in the 
repetition facet, and "item" refers to the single difference from control question use to evaluate 
the samples. The rightmost column illustrates the functioning of the difference rating scale for 
the DFC, with horizontal lines marking half-point thresholds, where the probability of a sample 
receiving a higher rating exceeds the likelihood of being rated in the lower adjacent category.  

 



86 
 

 

specific problematic patterns may not be readily identified without additional tests. 

MFRM, in contrast, provides immediate individual-level fit statistics that highlight these 

issues, enabling targeted assessor retraining or data quality decisions. A detailed 

evaluation of assessor performance using MFRM, including the implications of 

different types of misfit patterns, is addressed in Chapter 5.  

For the Sample facet, Brand A was notably located higher on the logit scale 

compared to Brand B and the CONTROL which had similar logit values. While on 

average, assessors rated Brand A as moderately different from the CONTROL, the 

slight difference rating between Brand B and CONTROL was not statistically 

significant. Some assessors may have considered differences in other sensory 

attributes across different modalities such as appearance, texture, and other 

flavours, which were not intended to be captured in the study. Efforts to maintain 

consistency across other sensory characteristics, aside from those of interest, 

during sample selection may not have been entirely successful. Brand A had a slight 

difference in shape compared to the other samples (Figure B 1), which some 

assessors may have noticed. Furthermore, post-study feedback revealed that 

several participants were able to easily identify Brand A, due to their frequent 

consumption and familiarity with Jaffa cakes. 

In the Repetition facet, average DFC ratings increased in successive repeated 

sessions, with the third session showing the highest DFC ratings. This increase may 

be due to assessors probably experiencing fatigue and some context bias from 

tasting numerous samples during the test. As fatigue and cognitive overload set in, 

assessors may simplify their responses by restricting the range of their ratings to a 

particular section of the scale. Due to sensory adaptation, this restricted range may 

shift toward the higher end of the scale. As noted by Lawless and Heymann (2010) 

and Meilgaard et al. (2025), repetitive and demanding testing conditions can 

compromise panel performance, leading to increased response variability and a 

reliance on habitual rating patterns. 

As with the TIM Wright map, the gaps between adjacent scale categories are not 

equidistant and tend to widen toward the extreme categories. As reported by (Tennant 

& Conaghan, 2007), values at the extremes of the scale capture a wider range of the 

underlying construct, in this case, the difference of the samples from the control (DFC).  
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4.3.4 Comparing overall difference between samples: DFC versus TIM 

The overall difference results from DFC raw scores were compared with those from 

the Rasch-based TIM as well as to DFC Rasch measures (DFCM) for their sensitivity 

to product differences and the level of diagnostics information they provide.  

Table 4.4 below summarises the statistical test results for DFC raw scores, TIM and 

DFCM, together with their replicates. Strata and Reliability values from Rasch 

separation statistics are also presented. Strata refers to the number of statistically 

distinct groups distinguishable by the respondents in a measurement instrument 

(Wright & Masters, 2002; Myford & Wolfe, 2003). A Strata of 1 indicates that the 

instrument cannot reliably distinguish between different levels of the latent variable. 

2 Strata shows a distinction between high and low levels only. 3 Strata indicate low, 

medium, and high levels of a latent variable while 4 or more Strata signify that the 

instrument can distinguish between 4 or more distinct groups. Low Strata statistics 

may suggest a need to add more discriminative items or refine existing ones to 

capture more of the latent variable. On the other hand, the Reliability index indicates 

whether differences found between the samples are due to measurement error. A 

Reliability value <0.50 suggests that differences between measures are primarily due 

to measurement error (Wright & Masters, 2002).  

All datasets for the DFC Rasch measures showed Strata values greater than 4, 

indicating that the model could reliably distinguish multiple statistically distinct 

levels of perceived DFC among the samples. Reliability values close to 1.0 further 

support the precision of the measures. These indicators reflect strong overall 

discriminatory ability, as supported by the Wright map, which showed that Brand A 

was notably different from the Control and Brand B, being located approximately 

0.5 logits away from them. Pairwise comparisons would help identify which specific 

samples differed significantly from the control. 

Strata for the samples in TIM varied between repeated sessions. For the first two 

replicate sessions (TIM2.Rep1 and TIM2.Rep2), Strata values were less than 2, with 

reliability values of 0.45 and 0.35, respectively. These low values suggest that, in the 

first and second evaluations of sample replicates, assessors were unable to reliably 

distinguish between the samples.
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Table 4.4. Comparison of Sample facet summary statistics for all TIM and DFCM Rasch models and raw DFC scores, with mean comparisons 
based on the Friedman test.  

 TIM Models   DFCM Models  DFC RAW Scores 

Test/Dataset12   TIM2.R1 TIM2.R2 TIM2.R3   TIM1   DFCM2.R1 DFCM2.R2 DFCM2.R3   DFCM1  R1 R2 R3   R. Avge 

Rasch Separation Statistic                 
Reliability Sample 0.45 0.35 0.68  0.83  0.94 0.92 0.97  0.98  

     
Strata Sample 1.53 1.31 2.27  3.31  5.4 5.01 7.86  8.78  

     
Rasch Fixed χ²Sample 5.4~ 4.6~ 9.4**  17.9***  48.1*** 41.0*** 101.9***  128.6***       
                
ANOVA Residual Analysis (P-values)                
Normality                  
Shapiro-Wilks <0.001 <0.001 <0.001  <0.001  <0.001 <0.001 <0.001  <0.001  0.043 0.071 0.311  0.29 
Outlier Test                  
Bonferroni 0.033 NA NA  NA  NA 0.243 <0.001  NA  0.026 0.683 0.319  0.034 
Constancy of Error Variance                 
Breusch-Pagan <0.001 0.006 <0.001  0.081  0.07 <0.001 <0.001  0.271  <0.001 0.011 0.002  <0.001 

                  
Friedman Test                  
χ² 134*** 134*** 134***  134***  134*** 134*** 134***  134***  20.39*** 14.21*** 45.80***  46.72*** 

                  
Nemenyi Many-to-One Test (Pairwise Comparisons)               
Mean differences                  

Control-Brand A -0.19*** -0.08*** -0.23***  -0.19***  -1.13*** -0.92*** -1.43***  -0.82***  -0.94*** -1.01*** -1.39***  -1.11*** 
Control-Brand B -0.07*** -0.07*** -0.08***   -0.07***   0.02 -0.01*** 0.2   0.05   0.01 -0.01 0.18   0.06 

 
1P-value levels of significance: <0.001***, <0.01**, <0.05*, <0.1~; measures with no superscript symbols have p-values >0.1. 
2 NA indicates “Not applicable” as no outliers were found.  

TIM = Total Intensity Measure; DFCM = Difference-from-Control Model. TIM1 and DFCM1 = models including the Repetition facet; TIM2 and DFCM2 = models excluding the Repetition facet (i.e. individual replicate datasets).  
R1–R3 = Repetitions 1–3 for the corresponding model; Raw DFC scores are presented for individual replicates (R1–R3) and for the averaged values. R. Avge = average across repetitions. 
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The Reliability values below 0.5 indicate the dominance of measurement error 

(Wright & Masters, 2002; Myford & Wolfe, 2003; Linacre, 2023b), suggesting more 

inconsistent ratings during the earlier replicate sessions, possibly due to initial 

uncertainty or unfamiliarity with the methods and samples. 

TIM2.Rep3 revealed a distinction between high and low levels of intensities for the 

sample with a Strata value of 2 and a Reliability statistic greater than 0.5. However, 

the TIM1 model which included the fourth facet for repetition by combining the three 

repeated sessions, showed a Strata value of 3 indicating three statistically distinct 

levels among the samples, supported by a Reliability value closer to 1.0. This 

suggests that modelling all replicate sessions simultaneously and accounting for 

variability from repeated evaluations reduced inconsistencies in assessor ratings 

and thereby improved the discriminatory ability of the measurement. The model 

accounted for the variability by estimating separate parameters for the repetition 

effect or facet, effectively removing its influence from the sample comparisons. 

The differences in separation statistics between the DFCM and TIM models likely 

reflect differences in the constructs being measured. DFCM captures a holistic 

judgement with a single item (overall Difference From Control), whereas TIM 

assesses five separate attribute intensities. As a result, the observed separation 

values may reflect genuine differences in how discriminable the samples are along 

these distinct measurement dimensions. 

Test design and cognitive strategy also likely influenced discrimination. The DFCM 

used a comparative presentation in which assessors directly evaluated each 

sample against a control, a process that can support more consistent responses. 

In contrast, TIM used monadic presentation, requiring assessors to rate five 

attributes separately without the control present and to rely on their own internal 

reference for each attribute. The overall difference score for TIM was then derived 

as a latent variable from these individual ratings. 

The higher Strata values observed for DFCM may additionally reflect the substantial 

perceptual differences between the products assessed, particularly the strong 

contrast between Brand A and the control. 
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These approaches serve different research purposes. DFC was chosen as the 

comparison because it is the established method for directly measuring overall 

difference and quantifying its magnitude. It produced higher separation in this 

study, making it efficient for determining whether products differ. In contrast, TIM 

derives overall difference from individual attribute ratings and therefore provides 

diagnostic information about which specific attributes contribute to the perceived 

differences. This makes it particularly useful when the research goal extends 

beyond simple differentiation to understanding attribute contributions to product 

differences. The trade-off is that TIM's predefined attributes may not capture all 

perceptible differences detected in holistic DFC judgments. Therefore, when using 

TIM, test design must ensure that relevant attributes are carefully selected and 

included in the sensory questionnaire to allow accurate estimation. 

Parametric two-way ANOVA tests also indicated statistically significant differences 

between samples across all datasets (p<0.001), except for TIM2.R1 which was only 

marginally significant (p<0.10), and TIM2.R2 with a slightly greater significance 

(p<0.05). These results are consistent with the Rasch model fixed chi-square 

statistics and separation indices, which also showed weaker model performance 

for these replicates, with strata values below 2 and reliability values under 0.5, as 

previously discussed. However, residual analyses revealed violations of key ANOVA 

assumptions (Table 4.4). Specifically, non-normality was detected in both the TIM 

and DFCM estimates, and Breusch-Pagan tests confirmed heteroscedasticity in 

residuals across all datasets (DFC raw scores, DFCM, and TIM models). As a result, 

non-parametric methods were employed. 

In earlier analyses, as reported in (Ariakpomu et al., 2025b), differences between 

samples were assessed using non-parametric mean comparison and post hoc 

tests that included sample x assessor interaction effects. While this approach is 

commonly used to detect subtle differences in raw score data, it is not suitable for 

Rasch-derived measures such as TIM and DFCM, unless the Rasch model used 

explicitly includes the assessor x sample interaction effects. This is because the 

Rasch estimation process already adjusts for each assessor’s severity or leniency 

when generating measures. Rasch model estimates account for assessor effects, 

as well as those of other modelled facets, effectively removing their influence.  
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Reintroducing these assessor effects in rank-based mean comparison tests, such 

as the Friedman test, leads to double-counting the variance. This makes the test 

overly sensitive, increasing the risk of Type I errors, as the between-group variations 

have already been separated out during the Rasch modelling process. Any 

remaining unexplained variations, including interaction effects are modelled as 

measurement error and reflected in the residuals (Linacre, 1995).  

This issue is evident in Table 4.4, where applying the Friedman test produced a chi-

square value of 134, and indicated a highly statistically significant difference (p<0.001) 

between the samples across the Rasch-derived measures (TIM and DFCM models). 

Any observed statistical significance may be reflecting redundant variance rather than 

true differences between samples. This is because the Friedman test treats assessors 

as blocks, ranking the samples within each assessor based on the raw scores they 

provided, and then compares these ranks across assessors to test for differences. 

However, when the Rasch model already reveals significant differences in assessor 

severity levels, as with this study, those effects have already been statistically adjusted 

for in the estimation process. Specifically, the model includes rater severity as a 

separate parameter, so systematic variance associated with individual assessors is 

modelled and removed from the resulting Rasch measures. Residual assessor 

inconsistency not captured by the severity parameter is absorbed as measurement 

error in the Rasch residuals. Applying the Friedman test to these adjusted measures 

therefore reintroduces assessor effects that the Rasch model has already accounted 

for, exaggerating the detection of between-sample differences.  

To illustrate, consider an excerpt from the Rasch-derived Total Intensity Measures (TIM) 

for the three Jaffa cakes samples, based on evaluations from three assessors: 

Assessors/Samples Brand A  Brand B Control  

Assessor 1 0.05 -0.15 -0.22 

Assessor 2 -0.16 -0.27 -0.35 

Assessor 3 0.12 0.00 -0.07 

Assessors … n=67(mean) -0.59 -0.71 -0.78 

 

While the absolute values differ between assessors due to differences in severity, 

the within-assessor ranking of the samples remains consistent: Brand A > Brand B 
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> Control. Because the Friedman test operates on these within-assessor block 

ranks, it will consistently indicate significant differences between the sample ranks. 

Analyses of additional datasets further corroborated this issue (see Table E 1), 

consistently showing inflated significant sample differences with the Friedman test. 

Since Rasch-derived measures already adjust for rater severity and other modelled 

sources of variance (Boone et al., 2014; Bond et al., 2020), post hoc comparisons 

for Rasch measures should focus solely on differences between samples and avoid 

including assessors as blocking factors. Where parametric assumptions are 

unmet, non-parametric alternatives such as the Kruskal-Wallis and Dunn’s tests 

are more appropriate. 

Using these revised methods, the findings presented in Table 4.5 more accurately 

reflect the sample differences and align with the results of the Rasch fixed chi-

square statistics. As noted by Boone et al. (2014), when data fit the Rasch model, 

the resulting interval-level measures are generally suitable for parametric analyses. 

However, because sensory data sometimes violate parametric assumptions (Kemp 

et al., 2018), non-parametric alternatives can still be used with confidence when 

applied to Rasch measures, not as a compromise, but as equally robust options. 

This robustness stems from the model’s use of raw scores as “sufficient statistics” 

(Linacre, 2004b; Bond et al., 2020), meaning that the total score contains all the 

necessary information to estimate the location of the person or items (in this 

context, the samples or attributes) on the latent trait, based solely on the structure 

of response patterns rather than assumptions about the underlying distribution. 

The sample differences identified by the Kruskal-Wallis test, which evaluates group 

differences based on differences in mean rank sums per sample, closely aligned 

with the results from the Rasch analysis (Rasch fixed χ²). All results, except the 

individual replicates of the TIM model (TIM2), indicated that the difference between 

Brand A and the Control was highly significant (p < 0.001). For the TIM2 model, the 

degree of significance increased progressively across replicates 1 to 3, with 

corresponding Dunn’s test p-values of 0.14, 0.08, and 0.003, respectively. This 

pattern likely reflects a learning effect where repeated exposure reduced initial 

uncertainty and allowed assessors to develop a stable internal frame of reference, 

enhancing their ability to discriminate subtle sensory differences. 
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Table 4.5. Comparison of Sample facet summary statistics for all TIM and DFCM Rasch models and raw DFC scores, with mean comparisons 
based on the Kruskal-Wallis test. 

  TIM Models   DFCM Models   DFC RAW Scores 

Test/Dataset1   TIM2.R1 TIM2.R2 TIM2.R3   TIM1   DFCM2.R1 DFCM2.R2 DFCM2.R3   DFCM1  R1 R2 R3   R. Avge 

Rasch Separation Statistic 
                

Reliability Sample 0.45 0.35 0.68  0.83  0.94 0.92 0.97  0.98  
     

Strata Sample 1.53 1.31 2.27  3.31  5.4 5.01 7.86  8.78  
     

Rasch Fixed χ² Sample 5.4~ 4.6~ 9.4**  17.9***  48.1*** 41.0*** 101.9***  128.6***       
                  

Mean Comparison Tests                 

Friedman Test (χ²)2 134*** 134*** 134***  134***  134*** 134*** 134***  134***  20.39*** 14.21*** 45.80***  46.72*** 

                   

Kruskal-Wallis Test 
(H)3 3.94 5.09~ 11.78**  18.99***  38.33*** 42.21*** 78.91***  210***  20.50*** 18.18*** 44.52***  79.12*** 

Mean differences (Dunn's Many-to-One Test)               

Control-Brand A -0.19~ -0.08* -0.23**  -0.19***  -1.13*** -0.92*** -1.43***  -0.82***  -0.94*** -1.01*** -1.39***  -1.11*** 

Control-Brand B -0.07 -0.07 -0.08  -0.07~  0.02 -0.01 0.2  0.05  0.01 -0.01 0.18  0.06 

 
1P-value levels of significance: <0.001***, <0.01**, <0.05*, <0.1~; measures with no superscript symbols have p-values >0.1.  
  For degrees of freedom (df) = 2, the chi square (χ²) critical values are 5.991 (α = 0.05) and 4.605 (α = 0.1). 
2 Friedman test results are included for comparison only. The inflated significance reflects redundant variance already modelled by the Rasch estimation. 
3 The Kruskal-Wallis test statistic (H) provides the primary analysis for between-sample differences and also follows a χ² distribution for significance testing.  

TIM = Total Intensity Measure; DFCM = Difference-from-Control Model. TIM1 and DFCM1 = models including the Repetition facet; TIM2 and DFCM2 = models excluding the Repetition facet (i.e. individual 
replicate datasets). R1–R3 = Repetitions 1–3 for the corresponding model; Raw DFC scores are presented for individual replicates (R1–R3) and for the averaged values. R. Avge = average across repetitions. 
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This effect is consistent with findings by Peltier et al. (2018), who observed that 

replicating evaluations enhances the ability to discriminate between flavour 

attributes. In contrast, the DFCM results showed high discrimination from the first 

evaluation, likely because assessors directly compared each sample against a 

physical reference (control) rather than relying solely on a mental internal 

reference. The comparative design of the DFC test inherently provided a physical 

reference that facilitated immediate discrimination, leading to higher Strata and 

reliability estimates, whereas the monadic presentation of the attribute rating test 

used for TIM required repeated exposures for assessors to construct an equivalent 

internal reference, explaining the progressive increase in sensitivity across 

replicates. 

Beyond presentation design, the higher Strata values for DFCM compared to TIM may 

also reflect that the holistic DFC rating allowed assessors to integrate any perceptible 

difference into their judgment. When rating overall difference from the control with a 

physical reference present, assessors could detect differences across multiple 

sensory modalities, not just taste. However, these ratings could have been 

influenced by perceived differences other than the taste of the samples. As 

previously discussed in 4.3.3.2: DFC Measure (DFCM1), the perceived difference 

in non-taste attributes and familiarity with Brand A may have influenced assessors' 

DFC ratings, despite efforts to minimise these influences. In comparison, low Strata 

values for TIM suggest that the range of taste attributes selected to capture the 

latent variable of overall difference could be refined to be more discriminative. 

Perhaps a different set of taste attributes or even the inclusion of other sensory 

modalities may help distinguish the samples more effectively based on combined 

ratings, as will be explored in Chapter 6. 

4.3.5 Examining attribute contributions to the overall difference (TIM) 

This section examines how individual attributes contribute to the overall difference 

as a latent variable using the TIM model. Rasch outfit mean squares for the Attribute 

facet were used to assess how well each attribute distinguished between the 

samples. As discussed earlier in Chapter 3, Rasch residual fit statistics - Infit and 

Outfit evaluate how well data associated with individual parameters in a facet align 

with the expectations of the Rasch model. To recap, as a general rule (Linacre, 
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2024b), after accounting for measurement error, mean square values less than 1 

(<1) indicate overfit, meaning the observed ratings are more predictable than the 

model expects. Conversely, values greater than 1 (>1) indicate underfit, where 

observed values deviate more from the model’s expectations. However, fit criteria 

have been found to be context dependent (Wu & Adams, 2013; Eckes, 2023) and so 

acceptable ranges should be set accordingly as detailed in 3.3.1.6:Residual fit 

statistics.  

For the Item facet, the Rasch model assumes equal discrimination across all items. 

The OUTFIT statistic measures how well each item’s response patterns fit the 

model’s expectations, i.e. whether an item’s response pattern deviates from the 

expected pattern of equal discrimination across items (Wu & Adams, 2013), 

indicating how much unexpected variation there is in the response data for item. In 

this study, "items" refer to the sensory attributes, and the Outfit mean square 

indicates how much variation is present in the ratings assigned to an attribute by 

assessors across the different samples. Therefore, variations in attribute ratings 

between samples may occur due to one or more of the following: actual perceptible 

differences between samples, individual differences in assessor perception, or 

unclear or inconsistently understood attribute definitions. The results provide a 

high-level indication of where variations in attribute ratings occur across the 

samples, guiding further investigation into potential underlying causes, and 

whether these variations are primarily due to differences between the samples or 

assessor bias. 

The OUTFIT mean square for each attribute can indicate the following. 

▪ Values below the acceptable range (overfit): The attribute may not 

discriminate well between samples, as the responses are overly predictable.  

▪ Values above the acceptable range (underfit) in high-intensity attributes: 

This suggests that the discrimination of the attribute differs significantly from 

that of other attributes (Wu & Adams, 2013). According to (Linacre, 2025b), when 

an easy item (i.e. a high-intensity attribute) shows underfit, it may indicate that 

the item behaves qualitatively different from the others. 
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▪ Underfit in low-intensity attributes: When low-intensity attributes (i.e., those 

with negative logit values or values below the mean) have Outfit mean square 

values above the acceptable range (underfit), in most cases it may reflect 

inconsistency in how assessors rate the attribute. Inconsistent ratings could 

result from individual perceptual differences, ambiguous attribute definitions, or 

response bias, where assessors interpret the attribute in different ways or are 

uncertain whether they actually perceive the attribute. This uncertainty may lead 

to considerable variation in ratings across repeated sessions (i.e., low internal 

consistency). Linacre (2025b) reports that when a difficult item (in this context, a 

low-intensity attribute) is underfit, it is often ambiguous, debatable or contains 

misleading options. 

However, this is not always the case. Underfit may still reflect genuine variation 

in the attribute across samples, particularly when an attribute receives 

consistently low ratings due to its absence in one or more samples. This can 

distort the overall ratings, pulling the attribute to the low end of the logit scale, as 

the low rating for a sample consequently lowers the average ratings across all 

samples. Careful interpretation is therefore required to distinguish whether 

underfit is due to assessor inconsistencies, rating distribution issues or inherent 

attribute characteristics. 

When differences between samples are statistically significant, higher Outfit mean 

square (Outfit Mnsq) values suggest that the attribute was contributing more to the 

observed differences between samples. In contrast, Outfit Mnsq values below the 

acceptable range indicate that the attribute shows little variation across samples, 

possibly because it was redundant or measured with limited sensitivity. This lack of 

variability suggests that the attribute does not effectively differentiate between the 

samples after accounting for measurement error. 

In this study, the total number of responses (Nr) for each attribute was 603, hence 

the acceptable OUTFIT Mnsq range was calculated (as discussed in 

3.3.1.6:Residual fit statistics) to fall within 0.89 -1.12. Table 4.6 presents the 

OUTFIT Mnsq results from the Rasch analysis, alongside results from the three-way 

 
 1 ± 2√

2

𝑁𝑟
 , where Nr (number of responses) for each of the attributes is 603. 
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ANOVA conducted on the raw attribute intensity ratings for the panel. The ANOVA 

was used to assess whether there were statistically significant differences between 

samples for each attribute and to evaluate the effects of other variables (facets), 

such as Assessor and Repetition, on the ratings. 

Table 4.6. Summary of TIM Rasch analysis, and ANOVA results on raw attribute 
scores, showing attribute contributions to sample differences. 

                     Attributes 
+Ve Logit   -Ve Logit 

Orange Fl. Sweetness Cocoa Fl.  Saltiness Milky Fl. 

Rasch Model Results       

Attributes Logit Measure1 0.75 0.74 0.21  -1.2 -0.5 

Attributes OUTFIT Mnsq2 1.23 0.95 0.95  0.97 0.91 

       

Panel ANOVA3       

F Sample 14.12*** 5.66** 2.13  4.34* 0.38 

F Assessors 5.71*** 8.45*** 8.11***  17.43*** 13.10*** 

F Repetition 1.85 3.24* 0.84  8.10*** 12.76*** 

F Assessors X Samples 0.95 0.85 0.96  1.00 1.15 

F Assessors X Repetition 1.27 1.32* 1.49**  1.56** 1.25 

F Sample X Repetition 0.83 0.20 0.19  0.39 0.59 
Attributes are arranged from left to right by decreasing OUTFIT Mnsq value and are differentiated based on whether 
they were located on the positive (+Ve logit > mean) or negative (-Ve logit < mean) side of the logit scale. 

1Value of the location of an attribute on the Rasch logit scale. Negative (-Ve) logit values signify low-intensity 
attributes (below the mean), and attributes are more challenging to rate when they are not overfit. 

2 Outlier-sensitive mean squares for attributes indicating whether the discrimination of an attribute differs from 
the average discrimination of other attributes in the test. The acceptable range for this data is 0.89 -1.12 and 
values <0.89 (overfit) signify a non-discriminating attribute. 

3ANOVA on raw scores; F-values with p-value levels of significance: <0.001***, <0.01**, <0.05*; measures with 
no superscript symbols >0.05. 

 
Notably, none of the attributes overfit the Rasch model (i.e., OUTFIT Mnsq < 0.89), 

suggesting that they were perceived differently across the samples. Further 

investigations using F-values from the ANOVA results revealed which samples were 

significantly different. For sample (F Sample), the attribute with the highest F-value and 

the most significant p-value was Orange flavour, suggesting that it had a significant 

impact on sample differences. This finding aligned with the Rasch analysis results, 

 
1

 Value of the l ocation of an attribute on the Ras ch l ogit scale. Negative (-Ve) logit values sig nify low-i ntensity attributes (below the mean), and attributes are more chall engi ng to rate when they are not overfit.  
2

 Outlier-sensitive mean squares for attributes indicating whet her the discrimination of an attribute differs from the average discrimi nation of other attributes in the test. The acceptable rang e for this data is 0.89 -1.12 and values <0.89 (overfit) sig nify a non-discriminati ng attribute. 
3

ANOVA on raw scores ; F-values with p-value levels of sig nificance: <0.001***, <0.01**, <0.05* ; measures with no superscript symbols >0.05.  
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where Orange flavour, the most intense attribute (highest logit value = 0.75), 

underfit the Rasch model with an OUTFIT Mnsq value of 1.23 implying that on 

average, Orange flavour had the most variable intensity ratings across the samples. 

This was followed by Sweetness and Cocoa flavour which had identical OUTFIT 

Mnsq values. However, low-intensity attributes, Milky flavour and Saltiness (with 

negative logit values) also had high OUTFIT Mnsq values and were flagged as more 

challenging for the panel to rate. Although the ratings did not underfit the model, 

assessors assigned the most varied ratings, as indicated by the higher F-value for 

assessors (FAssessors), with Milky flavour identified as slightly less challenging 

compared to Saltiness. The greater variance amongst parameters within a facet, the 

higher the OUTFIT Mnsq value (Linacre, 1995). 

A visual representation of the hierarchy of attribute contributions to product 

differences is shown in Figure 4.6. This provides a clear and high-level basis for 

identifying key drivers of product differences, enabling analysts to target 

reformulation or quality control efforts accordingly.  

 

  

 

 

 

 

 

Figure 4.6. Sensory attribute contribution to overall differences between Jaffa cake 
samples based on Rasch logit measures (in brackets) and residual fit statistic (OUTFIT 
Mnsq). Attributes are colour-coded by logit sign: blue fill = positive logits (higher intensity, 
contributing more to product differences); red textured fill = negative logits (lower intensity, 
rated more inconsistently). This division helps distinguish attributes driving sample 
differences from those that were more challenging for the panel to rate. 
 
When further insights such as assessing statistical significance or exploring 

specific attribute interactions, this information can be complemented with 

additional analyses like pairwise comparison tests and visualisation plots. It also 

supports decisions about whether the panel requires further training on more 
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challenging attributes or if certain attributes contribute little, if at all, to product 

differentiation and can be excluded from further analysis. 

From the ANOVA results (Table 4.6) Sweetness had a significant impact on sample 

differences, while Cocoa flavour did not. However, Rasch results showed that these 

two attributes had the same OUTFIT Mnsq, indicating similar levels of inconsistency 

in how assessors rated them across the samples. This suggests that, although 

Sweetness was rated as more intense, both attributes exhibited comparable 

response irregularities possibly due to perceptual interaction or contextual 

influences. A likely explanation is the cognitive bias known as logical error (Myford 

& Wolfe, 2003; Kemp et al., 2018; Meilgaard et al., 2025), where assessors associate 

certain product characteristics in their minds, such as sweetness and chocolate 

(cocoa flavour), leading them to rate these attributes in a similar way despite their 

differences in average ratings. 

Based on the Rasch analysis results, Orange flavour emerges as the primary 

contributor to the differences between the Jaffa cake samples. Upon reviewing the 

sample composition (Appendix B.1), it was found that the orange flavouring used in 

Brand A differed from that of Brand B and the Control, which both used the same 

flavouring. However, this conclusion was based solely on the information on the 

back-of-pack labels, and it is possible that the concentrations of the flavourings 

varied within Brand B and the Control. For salt content which had the most 

inconsistent ratings, the Control sample contained 1.9g, while Brands A and B 

contained 0.27g and 0.2g, respectively. While this might have constituted a 

perceptible difference at higher concentrations, the low intensity ratings for 

Saltiness suggest otherwise. Low-intensity attributes can be challenging to detect 

as they may be close to or below the threshold of detection for assessors (Lawless 

& Heymann, 2010; Meilgaard et al., 2015). Therefore, assessors may have struggled 

to rate them on the scale, and the variation in their ratings may have resulted from 

uncertainty about whether they were truly perceiving the attributes, hence the 

inconsistent ratings across repeated sessions and highly significant F-values for 

Repetition (FRepetition). Discrepancies in the rating of Saltiness could have contributed 

to additional differences between the samples. While removing some inconsistent 

assessors could provide clarification, this was beyond the scope of the current 

study.  
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Since the TIM approach required assessors to focus on specific attributes, the 

results indicated that Orange flavour was the primary driver of the sample 

differences. As such, it should be the focus of any sample reformulation for product 

development or quality control, while assessors may need training on rating 

Saltiness and Milky flavour if these are to remain as key differentiators for the 

products, particularly when using a trained panel. Detecting and quantifying low-

intensity attributes often requires extensive training (Lawless & Heymann, 2010; 

DLG, 2020). Although higher-intensity attributes are generally easier to perceive, 

this does not necessarily mean that assessors will rate them consistently. The 

results suggest that there were likely some erratic ratings from the untrained panel 

even for easily perceived attributes like Orange flavour and Sweetness, not only for 

low-intensity ones like Saltiness. This indicates that inconsistency may arise not 

only because some attributes are difficult to detect, but also because assessors 

interpret or apply attribute definitions differently. Therefore, targeted training to 

improve assessors’ understanding of the attributes and where they lie on the scale 

remains relevant, even for attributes that are easily perceived. 

4.4 Limitations of the study 

Poor attribute representation 

This study compared overall difference results from the DFC and those from Rasch-

combined taste/flavour attribute ratings. However, the selection of the test 

products and attributes did not fully account for differences that might have been 

perceivable during the DFC test. 

As an overall difference test, the DFC allows assessors to either differentiate 

samples based on the most prominent perceived attribute difference, or average 

across all perceived attributes before making a distinction. As a result, some 

assessors may have considered additional sensory aspects beyond flavour/taste 

attributes in rating the Jaffa cake samples. The former was the case for Brand A, 

where assessors’ familiarity and possibly its appearance, led to it being rated as 

much more significantly different from the control, with the magnitude of the 

difference larger than that found in the TIM (corresponding Dunn’s test p-values for 

TIM1 and DFCM1 = 4.54e-05 and 1.31e-33 respectively).  
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In contrast, the AR test focused solely on selected taste/flavour attributes, leaving 

potential variations in other sensory characteristics unaccounted for. As a result, 

the Total Intensity Measure (TIM) was estimated based only on these attributes. This 

narrow focus may have increased the risk of a Type I error in the TIM approach, 

where differences are identified that might not fully represent the overall product 

perception. While earlier analysis using the Friedman test yielded stronger 

significant differences, the current Kruskal Wallis results still identified differences, 

albeit to a lower degree. Similarly, the narrow focus could have led to a Type II error 

in the DFC, where assessors may have missed meaningful differences in the 

samples by focusing on the most prominent attribute difference from the control 

sample "R", which may not have been included in the AR test. Incorporating a 

broader range of attributes or integrating other sensory modalities could have 

reduced these potential errors, improved measurement accuracy, and 

strengthened the comparison between TIM and the DFC results. 

To enhance future comparisons of the TIM and DFC approaches, it is recommended 

that all attributes that would be perceivable in an overall assessment of the test 

samples, as done in the DFC, be included in the Attribute Rating (AR) test to ensure 

a more comprehensive evaluation. This can be achieved by conducting preliminary 

sensory tests to identify and guide the choice of attributes, ensuring a more robust 

comparison between the two approaches. The study discussed in Chapter 6 

attempts to address this limitation. 

Lack of instrumental analysis to verify product characteristics 

A further limitation of this study is the absence of instrumental or analytical 

verification of the Jaffa cake samples’ sensory attribute profiles. Sample selection 

relied on subjective informal tasting sessions and ingredient label information 

rather than instrumental confirmation that the samples differed in the selected 

attributes. The possibility that samples varied in other sensory dimensions, such as 

sponge texture, jam consistency, chocolate coating thickness, or secondary flavour 

notes, cannot be ruled out.  

Although the target attributes for the AR test were primarily taste and flavour 

characteristics, assessors may have been influenced by texture-flavour 

interactions, where the physical structure of the product could be modulating the 
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release, diffusion, and perception of flavour volatiles. As Brouwer et al. (2024) 

found, variations in a product’s physical matrix, such as changes in viscosity, can 

significantly alter flavour intensity, illustrating how structural factors can mediate 

sensory experience. In the present study, similar effects may have arisen from 

differences in sponge thickness or in jam gel consistency or chocolate coating 

properties, each of which could influence flavour release during consumption. 

These interactions align with the broader concept of the food matrix effect 

described by Aguilera (2019), where the structure and composition of foods shape 

their sensory perception. 

Ideally, instrumental verification including texture profile analysis, compositional 

analysis, and headspace GC-MS for volatile flavour compounds like orange flavour 

would complement sensory assessment to confirm samples varied exclusively in the 

target attributes. 

Differences in test structure and presentation design 

Differences in presentation design and scaling between the DFC and AR tests 

represent another limitation. The DFC employed a comparative design in which 

assessors directly compared each sample with a physical reference. Together with 

the ordinal difference scale, this format not only heightens perceived differences 

but also provides an external scale anchor that simplifies judgments and supports 

consistent discrimination.  

In contrast, the TIM used a monadic design combined with a category scale with 

anchors adapted from the Labelled Magnitude Scale (LMS), requiring assessors to rate 

each sample independently using internal references. Because the LMS is an absolute-

intensity scale, assessors often interpret its verbal anchors literally, reserving extreme 

categories (e.g., “strongest imaginable”) for stimuli perceived as unusually intense 

(Lawless & Heymann, 2010). This conservative response behaviour, together with the 

absence of a physical reference, may have compressed the effective scale range, and 

increased cognitive variability. Consequently, some of the observed differences in 

discrimination, strata, and reliability may reflect presentation and scaling-related 

effects rather than true analytical differences between the methods. 

Ultimately, while the DFC served as the benchmark method because it is an 

established approach for measuring the magnitude of overall product differences, 
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it addresses a different sensory testing purpose than TIM. DFC confirms whether 

products differ overall, whereas TIM is diagnostic, identifying which specific 

attributes contribute to those differences. These distinctions in presentation 

design, scaling, and model structure should therefore be considered when 

interpreting the comparative results of this study. 

4.5 Significance of the study 

When Rasch measures of combined attributes (TIM) are subjected to univariate 

pairwise comparison tests, they reveal overall differences between products 

relative to a reference sample, like the DFC test. However, the sample requirements 

for the DFC are more demanding than for the AR tests used in the TIM approach, 

because each sample is evaluated in direct comparison to a reference. This 

effectively doubles the number of evaluations required for the DFC, especially when 

replicate assessments are included, as illustrated in Figure B 2. Consequently, it 

can be more resource-intensive, and assessors are more likely to experience 

sensory fatigue. 

Additionally, while the DFC test is useful for quantifying the magnitude of perceived 

differences between samples, it only indicates that a difference of a certain 

magnitude exists without identifying which attributes drive that difference. 

Moreover, because assessors evaluate differences based on their own perceptions 

without specific guidance to what attributes to look for, there is a risk that irrelevant 

or unintended attributes may influence their assessments.  

In contrast, the TIM method provides detailed, actionable insights that support 

decision-making in sensory quality control and product development. Targeted 

attributes can be included in the AR test, and Rasch measures of combined 

attributes can be used to compare individual test products or compare test 

products against a control using the appropriate post hoc tests. The DFC test, on 

the other hand, only allows for comparisons against a control and does not permit 

direct comparisons between individual test samples (Rogers, 2017). With the TIM 

method, the control sample can either be predetermined during the 

conceptualisation phase or selected retrospectively. Additionally, an action 

standard can be established to guide decisions on implementing product changes 
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and to identify areas where further investigation is needed to determine which 

attributes are significantly different. Researchers like Næs et al. (2010) have 

expressed that the margin between a significant and non-significant difference 

between samples may not always be clearly reflected by p-values, and significant 

p-values do not always translate into commercial importance (Kemp et al., 2018). 

Additionally: 

▪ The MFRM converts ordinal scores into interval-scaled measures and can separate 

the effects of multiple influencing variables (facets), resulting in a fairer and more 

accurate assessment of sample differences. Compared to conventional analysis 

methods (ANOVA / MANOVA) that assume data are interval-scaled, the MFRM 

provides a more robust evaluation of product differences. These insights are 

visually represented on an easily interpretable Wright map. 

▪ The position of attributes on the logit scale reflects the hierarchy of dominant 

attributes perceived across all samples. 

▪ Rasch model fit statistics (such as OUTFIT Mnsq) provide insights into which 

attributes most influence these differences. This helps analysts prioritise 

attributes for reformulation or quality control troubleshooting. 

▪ The combination of OUTFIT Mnsq and the logit scale position reveals which 

attributes were easier or more challenging for the panel to evaluate, helping 

panel leaders identify which attributes may require additional assessor training. 

▪ These results on attribute rating variations across samples can also be visually 

represented in easily interpretable plots, as shown in Figure 4.6 above. 

In the present study, attribute contributions from Rasch analysis were compared 

with ANOVA panel results, the standard statistical approach for evaluating 

assessor performance during selection, training, and descriptive analysis (Stone et 

al., 2012; Kemp et al., 2018; Meilgaard et al., 2025). However, no method currently 

integrates attribute intensity results into a single measure to quantify product 

differences while accounting for the effects of other variables (like assessor bias, 

and inconsistencies across replicates). Even Principal Component Analysis (PCA), 

at best, combines attributes into fewer dimensions, providing an overview of 

product differences, but it lacks the specificity that the MFRM-based TIM method 
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offers, including the ability to consolidate these results into a single measure of 

overall difference. Meanwhile, the MANOVA has limited diagnostics capacity, as it 

only indicates that samples differ based on combined attributes, without revealing 

which attributes are driving those differences. The TIM approach, in contrast, allows 

for the identification of which specific attributes are primarily driving product 

differences, consolidating these results into a single, comprehensive measure. 

Furthermore, the MFRM approach streamlines sensory evaluation by also providing 

diagnostic details for assessors, using residual fit statistics for the Assessor facet and 

other quality control features. These insights help evaluate both panel and individual 

assessor performance and will be explored further in the next chapter. However, 

while MFRM offers clear analytical and interpretive advantages, its application 

requires specialised statistical expertise and access to dedicated software 

packages. These requirements may limit its broader adoption, particularly in routine 

industrial contexts where such resources or expertise may not be readily available. 

The TIM approach relies on the use of pre-selected sensory attributes, meaning that 

the validity and completeness of conclusions depend on the adequacy of the chosen 

set of attributes. As shown in this chapter, omission of key attributes can lead to 

potentially misleading interpretations. To address this limitation, systematic attribute 

generation and selection procedures should be applied, such as preliminary profiling 

or descriptive analysis, to identify all relevant attributes likely to vary due to process 

changes, ingredient modifications, or product lifecycle stages. Careful attention to 

these factors ensures robust application across research and industrial contexts. 

Nonetheless, the TIM approach provides some advantages over overall difference 

tests like the DFC. By directing assessors’ attention to specific, relevant sensory 

attributes, TIM helps ensure ratings focus on the intended characteristics of interest. 

In contrast, holistic DFC ratings can be influenced by unrelated factors such as brand 

familiarity, or other incidental differences in presentation, even when efforts are 

made to control these factors. By constraining assessors to rate predefined 

attributes, TIM reduces the risk that such irrelevant or non-critical characteristics will 

confound judgments about product differences.  

The following chapter builds on these insights by applying the MFRM to evaluate 

panel and assessor performance in both trained and untrained panels.  
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Chapter 5   

Monitoring Panel and Assessor Performance with the Many-Facet 

Rasch Model (MFRM): A Comparison of Trained and Untrained 

Panels 

5.1 Overview 

In sensory quality programmes, the ability of trained assessors to detect product 

differences accurately is crucial for making informed research and development 

(R&D) decisions (Stone et al., 2012). This means that decisions are based on reliable 

evidence about product differences provided by these assessors, and inaccuracies 

can, for instance, lead to launching products with undetected flaws, or failing to 

identify a reduction in product quality due to ingredient substitutions. However, 

despite the level of training, individual differences continue to challenge the 

consistency and reliability of sensory difference and descriptive tests. Variability in 

perception, driven by factors such as culture, environment, experience, genetics, 

and personal preferences remains a persistent source of measurement variation 

(Næs et al., 2010; Meilgaard et al., 2025).  

Additionally, systematic differences may arise during the sensory evaluation, 

further contributing to measurement variation. For instance, assessors may use 

rating scales differently, either limiting their responses to a narrow range of the 

scale, or consistently placing ratings at the higher or lower ends of the scale (Næs, 

1990; Romano et al., 2008). This underscores the need for assessor performance 

checks, continuous panel monitoring and panel proficiency testing (Kemp et al., 

2018) to ensure reliable and consistent results. Tomic et al. (2007) suggested 

combining several visualisation techniques, such as eggshell and correlation plots, 

to examine individual and panel performance, approaches that remain widely used 

today. However, they emphasised that methods to compensate for rater drift, as 

well as for level and range effects among assessors, are still lacking and would be 

highly beneficial for improving panel reliability. 

While it is ideal for assessors to function as a machine, giving ratings in the same 

way, this is unrealistic. Sensory assessments rely on human judgment, so some 
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level of subjectivity is unavoidable, even with well-trained panels. Assessors may 

interpret sensory attributes in slightly different ways or become fatigued or 

distracted during evaluations (as discussed in section 2.3.2: Individual 

differences in sensory evaluation). Traditional approaches that rely on consensus 

scoring assume that perfect agreements are both possible and necessary. When 

this expectation is not met, it raises concerns about the reliability and validity of the 

sensory data (Kemp et al., 2009; Raithatha & Rogers, 2018). The Rasch model does 

not require perfect agreement among assessors but rather expects consistency 

within individual assessors (internal consistency) in terms of the use and 

understanding of the rating scale (Linacre, 1994). Each assessor's ratings are 

treated individually, and their tendency to rate higher or lower compared to the rest 

of the panel is accounted for in the model (assessor severity). By simultaneously 

estimating both attribute intensities and assessor severity, Rasch analysis enables 

fairer comparisons on samples, across assessors with different standards without 

requiring extensive training on the uniform use of scales (as discussed in section 

3.1.2: The Many-Facet Rasch Model (MFRM)). Additionally, the model converts 

ordinal sensory ratings into interval-scale data, enabling the use of simpler 

categorical rating scales for rating intensity, provided assessors are trained to 

understand where attribute intensities fall on the scale for the specific products 

being evaluated.  

Rasch model fit statistics for the Assessor facet detect rater effects and 

idiosyncrasies in individual ratings, identifying assessors whose scoring patterns 

deviate from the model’s expectations relative to the rest of the panel. The model’s 

separation statistics also provide insights into panel agreement, and overall panel 

reliability similar to conventional panel performance criteria as discussed later in 

this chapter (section 5.3.3: Comparison of trained and untrained panel 

performance). In the conventional approach, several statistical techniques are 

available to monitor assessor performance, including univariate (e.g., ANOVA) and 

multivariate approaches (e.g., PCA). However, the ANOVA method requires 

separate analyses for each attribute and each assessor, which can be cumbersome 

and provides only a small fraction of the diagnostic information needed for a 

comprehensive evaluation. While multivariate methods, though useful for data 
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reduction, can be challenging to interpret. In contrast, Rasch analysis integrates 

both product differences and assessor performance within a single framework, 

offering a more direct overview of panel agreement and individual performance 

issues. These insights can be further complemented by traditional statistical tests 

to obtain a more nuanced understanding of assessor and panel sensory data. 

Furthermore, the Rasch model subset linking capabilities (Linacre, 2012b; 

Engelhard & Wind, 2018; Andrich & Marais, 2019) enable comparisons across 

different groups or datasets over time. Differential Facet Functioning (DFF) (as 

discussed in section 2.5.2) provides insights into systematic biases or group-

related differences in product sensory assessments. This approach is particularly 

valuable for panel proficiency studies (monitoring assessor or panel performance 

overtime), as well as for understanding how sensory attributes contribute to 

product differences across cultures in global panels, or between trained assessors 

and target consumer panels with varying levels of expertise. Although DFF was not 

explored in this study, it presents a promising direction for future research. 

This chapter explores the use of the MFRM for assessor performance evaluations 

and compares trained and untrained panel attribute intensity ratings on chocolate 

spread samples. 

5.1.1 Objectives 

The aim of this study was to explore the potential of the Many-Facet Rasch Model 

(MFRM) in examining panel and assessor performance.  

The specific objectives were: 

1. To compare the performance of trained and untrained panels in rating attributes 

intensities of chocolate orange spreads. 

2. To examine the implications of Rasch assessor fit statistics for standard 

assessor performance criteria. 

3. To identify untrained assessors whose performance is comparable to trained 

assessors, and to compare their results with the trained panel using Rasch 

analysis. 
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5.1.2 Study highlights 

▪ Rasch group-level statistic (fixed chi-square for the Assessor facet) indicated 

generally consistent scale use for the trained panel, but greater inconsistencies 

for the untrained panel. 

▪ The trained panel demonstrated a greater ability to discriminate reliably between 

the chocolate spread samples, whereas the untrained panel did not. 

▪ OUTFIT mean square ranges revealed specific rating effects in both panels, 

aligning with raw rating scores observed in trellis plots. 

▪ The MFRM Wright map revealed differences in how each panel interpreted and 

rated the sensory attributes, indicating variability in scale use between the 

trained and untrained assessors.  

▪ OUTFIT mean square and logit values revealed which sensory attributes were 

consistently assessed by each panel and which attributes posed greater 

challenges for them to rate reliably. 

▪ PCAR revealed response dependency between attributes, driven by the 

presence of milk chocolate as an ingredient. 

5.2 Sensory study: materials and methods 

Data for this study were obtained from an existing dataset (Gill et al., 2024). 

5.2.1 Samples 

Chocolate spread was chosen for this study, as the trained panel from the global 

chocolate manufacturing company had prior experience evaluating chocolate 

products, though not specifically chocolate spreads. Three brands of chocolate 

spread were selected, based on noticeable differences in orange flavour and sugar 

content, as indicated on the back-of-pack labels. The three brands, purchased from 

UK retail stores, consisted of two chocolate orange spreads and one chocolate 

spread without orange flavouring. In terms of Sweetness, one sample contained 

 
 Trellis plots are multi-panel charts used here to show each assessor’s raw score distributions for each 

attribute, product, and replicate, helping to visualise variation and potential rating effects across the 
panel. 
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maltitol, a sugar replacer, while the others used sucrose. The sample composition 

is provided in Table B 2. 

Plain white bread was used as a “carrier” (Lawless & Heymann, 2010) for all three 

samples, with 5g of each chocolate spread applied to one side of a rectangular slice 

measuring 2.5cm x 4cm. This approach was necessary to represent the typical 

context in which chocolate spreads are consumed, thereby minimising potential 

psychological biases. Samples were stored at room temperature (20±3°C) in their 

original packaging until they were ready to be presented. 

5.2.2 Participants 

Ethical approval for the sensory study was granted by the MaPS and Engineering 

Joint Faculty Research Ethics Committee at the University of Leeds (Appendix A.2).  

Participants were comprised of a trained (n=7) and an untrained panel (n=24), as 

mentioned previously. Minimal demographic information was provided; however, it 

was noted that the trained panel, loaned by the global chocolate manufacturing 

company, were all females with at least 2 years of experience evaluating the 

sensory profile of chocolate products. The untrained panel comprised students 

from the University of Leeds, who participated voluntarily and received no incentive. 

Each participant received detailed information about the study requirements, as 

well as the data protection and sharing disclaimer, and was required to sign 

consent forms before commencing the study. 

5.2.3 Panel training 

As the trained panel was already quite experienced in evaluating chocolate bars, 

there were only two training sessions conducted on separate days. The first session 

familiarised the assessors with the chocolate spread samples, methodology, and 

the modified LMS rating scale (described in 5.2.4), which differed from the 

unstructured line scales typically used for Qualitative Descriptive Analysis (QDA) 

(discussed in section 2.4.2: Rating scales), which they were already familiar with. 

The second session focused on generating descriptor terms for the product. During 

this session, they identified five attributes: three flavour attributes (Orange, Milky, 

and Cocoa) and two taste attributes (Sweetness and Saltiness) from their 
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evaluation of a chocolate orange spread sample with similar nutritional and flavour 

characteristics to those intended for the study. This approach was necessary to 

prevent sensory bias due to overexposure and memory effects (Meilgaard et al., 

2015), as using the same samples for both the preliminary session and the main 

evaluations could influence the panel's perception. To ensure a focused lexicon, 

assessors were instructed to concentrate on the taste and flavour characteristics 

of the products while disregarding any textural differences. 

5.2.4 Sensory evaluation procedures 

In both panels, a Randomised Complete Block Design (RCBD) with counterbalancing 

was used for the experiments to minimise potential biases, such as carryover and 

order effects, and samples were evaluated in triplicates. The trained panel 

completed their replicate sessions over two days due to time constraints, with the 

first two sessions held on the first day and the third session on the following day. 

The untrained panel, on the other hand, completed all replicate sessions on the 

same day. Samples were presented monadically, at room temperature (20±3°C), on 

15 cm white paper plates, each labelled with random 3-digit codes.  

The assessors rated the perceived intensities of five taste/flavour attributes: Orange 

flavour, Sweetness, Cocoa flavour, Milky flavour, and Saltiness, which were 

generated by the trained panel. They were instructed to taste each sample, focusing 

on the specified attributes, chew and swallow the bread (carrier) with the chocolate 

spread sample, and then proceed to the next page of the questionnaire. On this 

page, they were asked to rate the strength of each attribute in the sample they had 

just tasted. All five attributes were presented on the same page of the questionnaire 

with an additional comment section for any other impressions about the sample.  

The same 8-point categorical intensity scale, as used in Chapter 4 was employed in this 

study. It ranged from 0 to 7 with labels adapted from the Labelled Magnitude Scale 

(LMS) (Green et al., 1996). The intensity labels were 0 = none, 1 = barely detectable, 2 

= weak, 3 = moderate, 4 = strong, 5 = very strong, 6 = extremely strong, and 7 = strongest 

imaginable oral sensation. A copy of the questionnaire can be found in Appendix C.2. 

Assessors were provided with some water to cleanse their palate between sample 

evaluations. 
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5.2.5 Data analysis 

As with the previous chapter, Rasch and statistical analyses were according to the 

procedures described in section 3.3. The attribute intensity ratings (AR) data from 

each panel were fitted separately to the MFRM; that is, one model for the trained 

panel and another for the untrained panel, each including four facets (Assessors, 

Samples, Repetition and Attributes), covering the variables under study. The 

Rasch model used in this study is the same as ...Equation 4.1. and is outlined 

below.  

 

𝒍𝒏 ( 𝑷𝒎𝒏𝒓𝒊𝒌 /𝑷𝒎𝒏𝒓𝒊𝒌−𝟏) = 𝜷𝒎 −  𝜽𝒏 − 𝝆𝒓 −  𝜹𝒊 − 𝝉𝒌  
...Equation 4.1 

Where: 

𝑃𝑚𝑛𝑟𝑖𝑘= probability that sample (𝑛) is rated (𝑘) for a sensory attribute (𝑖) by 

assessor (𝑚) in replicate session (𝑟) 

𝑃𝑚𝑛𝑟𝑖𝑘−1= probability that sample (𝑛) is rated (𝑘 − 1) for sensory attribute (𝑖) by 

assessor (𝑚) in replicate session (𝑟) 

𝛽𝑚= degree of leniency or severity of assessor (𝑚) in rating attribute intensities  

𝜃𝑛= degree of difference in the total intensity measure for sample (𝑛)  

ρ𝑟 = degree of difference between ratings of samples in a replicate session (𝑟) 

𝛿𝑖 = the average degree of intensity of sensory attribute (𝑖) across the samples 

𝜏𝑘 = points on the latent variable continuum where the samples are equally likely to 

be rated between scale category (𝑘) and category (𝑘 − 1) .  

 

5.2.5.1 Panel Performance Evaluation 

Rasch analysis and ANOVA techniques were used to evaluate individual and 

panel performance, based on standard performance indices (discrimination, 

panel agreement and repeatability) as described later in the chapter. Insights 

from both methods were compared to highlight the strengths and limitations of 

each approach, and results from the trained and untrained panels were also 

examined. 
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5.2.5.2 Convergence analysis 

Convergence analysis was conducted to examine how panel size influenced 

product discrimination ability in the Many-Facet Rasch Model (MFRM). To assess 

the stability of the convergence patterns, the sampling procedure was repeated 

across two iterations, each using a different random draw of assessor subsets. 

Random subsets of assessors at panel sizes n = 7, 10, 12, 15, 18, 21, and 24 were 

generated from both the untrained panel (n = 24) and trained panel (n = 7) using 

random sampling without replacement in RStudio, with a fixed random seed 

(set.seed(123)) within each iteration to ensure reproducibility.  

To enable comparison across equivalent panel sizes, the trained panel data were 

expanded by duplicating the ratings from the 7 assessors to create a pool of 24 

simulated assessors, from which subsets were then randomly sampled using 

the same procedure as for the untrained panel. Rasch analyses were conducted 

in FACETS for each subset, and the resulting fixed chi-square statistics for the 

product (Sample facet) were extracted as indicators of product differentiation. 

Convergence plots were generated to visualise the relationship between panel 

size and discrimination ability for both panel types. 

5.3 Results and Discussion 

5.3.1 Fit of data to the Many-Facet Rasch Model (MFRM)  

As in the previous chapter (section 4.3.1), Rasch model fit statistics were examined 

for both panels to assess whether their data met the model assumptions for 

unidimensional measurements. The results of the global model fit, Assessor facet 

fit statistics and response dependency checks are presented in Table 5.1.  

An acceptable global model fit of the data is when about 5% or less of absolute 

standardised residuals is ≥2, and about 1% or less is ≥3 (Linacre, 2022; Eckes, 

2023). All models showed an acceptable global model fit suggesting that overall, 

the data in each model aligns with the assumptions of the Rasch model and there 

are no major inconsistencies that may distort the measurement. Only the individual 

fit statistics for the Assessor facet are presented, as assessors were the focus of this 

study. However, all other facets showed a 100% fit to the models, except for the 
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Attributes facet, where Orange flavour showed underfit in both panels. This will be 

discussed further in section 5.3.3.3.1. 

Table 5.1. Summary of Rasch model fit and assessor fit indices for the trained and 
untrained panels. 

Criteria Trained Panel (n=7) Untrained Panel (n=24) 

Global Fit (%StRes)1     
 ≤ 5% ≥ 2   5.0 (16)  2.8 (30) 
≤ 1% ≥ 3   0.3 (1)  0.1 (1) 
Total count2  315  1080 
     
Assessor Fit (OUTFIT Mnsq, Nr =45)3     
% Fit (0.57-1.42)  71.4 (5)  63.0 (15) 
%Overfit (≤ 0.57)  14.3 (1)  21.0 (5) 
% Underfit (≥1.42)  14.3 (1)  12.0 (3) 
% Extreme Misfit (>2.0)  0.0 (0)  4.0 (1) 
     
Unidimensionality4     
1st contrast eigenvalue (<2)  1.81  1.96 

     
LID (Corr. of StRes <0.3)5     
Sweetness-Milky flavour  0.13  0.31 
Cocoa flavour - Milky flavour  0.09  NA6 
1 Percentage (number of observations in brackets) of absolute standardised residuals (StRes). 
2 Total number of observations used for the estimation of the Rasch model parameters. 
3 Outlier-sensitive measure of unweighted mean squares indicating deviation of the Assessor facet estimates 

from Rasch model predictions. The acceptable fit range (0.57-1.42) was determined using 1 ± 2√(2/𝑁𝑟) 
(Wu & Adams, 2013; Eckes, 2023), where Nr is the number of responses used for parameter 
estimation. 

4 Eigenvalue of the unexplained variance in the first contrast, not accounted for by the Rasch model, in PCAR. 
5 Local Item Dependency (LID) examined through the correlation of standardised residuals (Corr. of StRes) 

between attributes, with values > 0.3 indicating that items (attributes) are dependent. 
6 NA =Not applicable meaning that the attributes were not flagged as potentially dependent for the panel. 

 

The acceptable range for the OUTFIT Mnsq for assessors was calculated following 

Eckes (2023), based on the number of responses per assessor in each panel 

(Nr=45), as discussed in section 3.3.1.6. Each assessor had an equal number of 

responses, having rated the five attributes across three samples in three replicates 

(5 x 3 x 3 = 45). Although Linacre (2024b) and (2025b) suggests a rule of thumb for 

an acceptable mean square fit statistics, with lower and upper limits of 0.5 and 1.5 

 
1 Percentag e (

number of observations in brack ets) of absolute standardised residuals (StRes).  
2

 Total number of observations used for the estimati on of the R asch model param eters.  

3

 Outlier-sensitive measure of unweig hted mean squares indi cating deviation of the ass ess or facet estimates fr om Rasch model predictions. T he acceptable fit range (0.57-1.42) was determined using 1 ± 2√(2/𝑁𝑟 ) (Wu & Adams, 2013; Eckes, 2023), where Nr is the number of respons es used for paramet er estimation. 
4 Eigenvalue of the unexplained variance in the first contrast, not accounted for by the Rasch model, in PCAR. 
5

 Local Item Dependency (LID) ex amined through the correl ation of standardised residuals (Corr. of StRes) between attributes, with values > 0.3 indicating that items (attributes) are dependent.  
6

 NA =Not applicable meaning attributes were not fl agged as potentially dependent for the panel.  
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respectively, several researchers (Myford & Wolfe, 2009; Wu & Adams, 2013; 

Engelhard & Wind, 2018; Bond et al., 2020; Eckes, 2023; Linacre, 2025b) have 

shown that these critical ranges can vary and should be determined based on the 

specific assessment context and sample size.  

Unidimensionality and Local Item Dependence (LID) were examined by Principal 

Component Analysis of Residuals (PCAR). Unidimensionality is confirmed when the 

eigenvalue of the unexplained variance in the first contrast is <2, and Local item 

dependence (LID) is identified when the residual correlation between two attributes 

exceeds 0.3 (Ramp et al., 2009; Christensen et al., 2017). 

In both panels, the unexplained variance in the first contrast (representing residuals 

in the largest secondary dimension) had an eigenvalue of 1.81 and 1.96 for the 

trained and untrained panels, respectively. This indicated a strength of 2 out of 5 

attributes, suggesting the possibility of a secondary dimension. The standardised 

residuals correlation for the attributes in the trained panel indicated no dependent 

attributes, while in the untrained panel, a correlation of 0.31 was observed between 

Sweetness and Milky flavour, suggesting a potential local dependency. Although 

this value barely exceeded the typical threshold of 0.3, it warranted further 

investigation into possible underlying causes, as discussed later in the chapter. 

5.3.2 Representing the Overall Difference Construct 

Wright maps for the trained and untrained panels are presented in Figure 5.1 and 

Figure 5.2 respectively, with all four facets (Assessors, Samples, Repetition, and 

Attributes) positively oriented, as described in previous chapters. The Sample facet 

was non-centred, while the other facets were centred at the mean (0 on the logit 

scale) to serve as a reference point. Consequently, sample locations were adjusted 

by considering the severity of assessors, the average intensity of attributes, and the 

intensity ratings in repeated sessions, representing the Assessor, Attribute, and 

Repetition facets, respectively. In the Assessor facet, assessors with higher logit 

values are more lenient, generally assigning higher scores on the rating scale; in the 

Sample facet, samples with higher logit values have higher Total Intensity Measure 

(TIM); in the Repetition facet, replicate sessions where higher intensity ratings were 
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assigned on average have higher logit values; and in the Attribute facet, attributes 

with higher average intensity ratings have higher logit values. 

5.3.2.1 Trained Panel Representation 

The Wright map in Figure 5.1 below provides an overview of the trained panel's 

ratings of the overall difference between the samples.  

   

Figure 5.1. Trained Panel Many-Facet Wright Map. 
From left to right, the columns represent: Rasch model measures on the logit scale (Measr); the 
Assessor facet, showing 7 assessors (IDs 2002-2011); the Sample facet, displaying Brands A-C; the 
Repetition facet, indicating replicates 1-3; the Attribute facet, listing the 5 attributes; and finally, the 
AR intensity rating scale, with horizontal lines marking half-point thresholds where the probability 
of assigning a higher rating exceeds that of assigning a lower adjacent rating. 
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In the Assessors facet, all assessors were distributed around the mean within a 

narrow range (−0.2 to 0.2 logits), suggesting that after accounting for measurement 

error (such as inconsistent replicate ratings), they used similar parts of the scale to 

assign ratings.  

For the Sample and Repetition facets, the combined attribute intensity ratings 

across each sample were below the average (0 on the logit scale). The Repetition 

facet showed that differences across the three replicated sessions were not 

significant, indicating that the assessors most likely rated the samples consistently 

across sessions. Samples positioned higher on the scale were perceived to have 

greater intensity, based on ratings averaged across all attributes.  

The latent variable “Overall Difference” is reflected in the Total Intensity Measure 

(TIM), which is represented by the location of the samples on the logit scale. Brands 

A and C were located very close together, with logit measures of -0.51 and -0.54 

respectively, whereas Brand B was positioned much lower at -0.86 logits, indicating 

a noticeable difference from the others. The standard error for all three samples 

was 0.10. Given that Brand B’s difference from Brands A and C is approximately 

three times the standard error, this suggests a potentially significant difference. 

Rasch separation statistics will reveal whether the observed difference is 

statistically significant, while TIM values will be used in multiple comparison tests 

to determine how much specific samples differed from one another. 

The Attribute facet and intensity scale showed that Sweetness was the most 

dominant attribute (i.e., the most intense or easiest perceived attribute across the 

samples). Orange flavour and Cocoa flavour were perceived as strong, while Milky 

flavour was positioned at the threshold between moderate and strong, indicating it 

was generally perceived as strong, since the probability of a strong rating has 

exceeded that of moderate. Saltiness, however, was positioned at the barely 

detectable level, suggesting that assessors generally gave it the lowest ratings, 

which averaged within this range across samples, making it the least intense 

attribute (see Table 5.4). The OUTFIT Mnsq for individual attributes will reveal which 

attributes are driving the differences between the samples, as discussed later in the 

chapter. Additionally, the intensity scale revealed redundant scale categories, as 

category 6 - Extremely Strong was barely used, while 7 - Strongest Imaginable Oral 
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Sensation was never used by the panel and did not appear on the Wright map (see 

Appendix D: Rating Scale Category Statistics). 

5.3.2.2 Untrained Panel Representation 

For the untrained panel represented in Figure 5.2 below, two assessors appeared 

to be using different parts of the scale.  

 

  

Figure 5.2. Untrained Panel Many-Facet Wright Map.   
From left to right, the columns represent: Rasch model measures on the logit scale (Measr); the 
Assessor facet, showing 24 assessors (IDs 1001-1024); the Sample facet, displaying Brands A-C; 
the Repetition facet, indicating replicates 1-3; the Attribute facet, listing the 5 attributes; and 
finally, the AR intensity rating scale, with horizontal lines marking half-point thresholds where the 
probability of assigning a higher rating exceeds that of assigning a lower adjacent rating. 
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Assessor 1015 was the most lenient, consistently assigning higher ratings to the 

samples, while Assessor 1017 was the most severe, consistently assigning lower 

ratings on average. Their different rating behaviours will be flagged in the Assessor 

OUTFIT analysis, discussed later in the chapter. Overall, assessors were 

distributed around the mean within a narrow range (−0.2 to 0.2 logits), similar to 

the trained panel, suggesting that most assessors used similar parts of the scale 

to assign ratings. Attribute intensity ratings for the samples were also generally 

below average on the logit scale, and the averaged ratings were consistent across 

replicate evaluations. In contrast to the trained panel, although the relative 

positioning of the samples was consistent, with Brand B rated lower than the 

others, the average ratings did not differ significantly as later confirmed by the 

separation statistics (Table 5.3). 

The Attribute facet and intensity scale revealed that Sweetness and Saltiness were 

again, the most and least intense attributes, respectively, consistent with the 

trained panel. However, the locations of Milky flavour and Orange flavour were 

reversed, with Orange flavour now positioned below average, raising the question 

of whether the trained panel had perceived Milky flavour as stronger than Orange 

flavour across the samples. This will be further investigated in the following 

discussions. The half-point thresholds were narrower, indicating that ratings were 

more evenly distributed across the scale categories, which reflects some 

imprecision in how products were rated. However, from category 6 (Extremely 

Strong) onward, the thresholds widened, likely due to the less frequent use of the 

highest categories (see Appendix D: Rating Scale Category Statistics). 

Rating scale category diagnostics are not discussed in this chapter, as the focus 

is primarily on examining individual and panel performance using insights from the 

OUTFIT mean square. However, as demonstrated in Chapter 4, the Many-Facet 

Rasch Model (MFRM) can also be used to assess the functionality of the rating 

scale and guide decisions regarding the need for scale revisions, which can be 

particularly beneficial when developing sensory quality programmes. “Hybrid 

models” (Myford & Wolfe, 2003) as described in Table 2.2. Summary of Rasch 

Models, can provide further insights into how each individual utilises the rating 
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scale. Summary statistics for rating scale functionality for both panels are provided 

in Appendix D. 

5.3.3 Comparison of trained and untrained panel performance  

The performance of the two panels were compared with respect to standard 

performance indices in ISO 11132:2021 (British Standards Institution, 2021), where 

performance is defined as “the measure of the ability of a panel or an assessor to 

make reliable and valid attribute assessments across the products being 

evaluated”. Kemp et al. (2009) define validity as the proximity of an assessors 

ratings to the average ratings of the panel, while Raithatha and Rogers (2018) 

broaden this to overall validity, referring to the extent to which sensory panel results 

can be reliably used to inform business action standards. The panel agreement, 

discriminatory ability, and repeatability (described in detail in the following 

sections) were assessed using both the Rasch model, which provides a holistic 

overview of the panel, and the conventional three-way ANOVA approach, which was 

conducted on the raw sensory scores, and analysed separately for each attribute 

under study. In both methods, the variables are treated as fixed effects; that is, as 

population model statistics within the Rasch framework, following Linacre (2025d), 

since the focus is specifically on these variables, and no generalisation beyond the 

observed data is intended. The results are summarised in Table 5.2 and Table 5.3. 

5.3.3.1 Panel agreement 

This refers to the degree of alignment between assessors’ average product scores 

as defined by ISO 1132:2021. It describes the ability of assessors within a panel to 

be consistent, demonstrating the same sample order where differences based on 

an attribute exist. The level of agreement should be sufficient for the panel mean to 

serve as a representative measure of the product differences (Raithatha & Rogers, 

2018).  

In the ANOVA, the panel lacks agreement when the interaction factor between 

sample and assessor (FAssessors X Samples in Table 5.2) is significant (p<0.05). This 

suggests that some assessors differed in the relative ordering of samples, as implied 

by their assigned ratings for an attribute. This is illustrated in the trellis plots discussed 
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later in section 5.3.4. According to IS0 1132:2021, the higher the number of “key” 

attributes with a significant interaction factor, the less consistent the panel is.  

Key attributes are those that either show significant product discrimination by the 

entire panel or are associated with predefined differences between the samples. 

When inconsistencies are observed, further investigation at the individual assessor 

level is required, followed by appropriate corrective actions (e.g. assessor re-

training).  

Table 5.2 revealed that the trained panel consistently rated three out of five 

attributes (see FAssessors X Sample). The key attributes were Milky flavour and Cocoa 

flavour, while Saltiness was a non-key attribute as there was no significant 

difference between the samples (FSample). Notably, Orange flavour had the highest F-

value (F = 78.82, p<0.001), indicating it as a key attribute contributing to product 

differences. However, a significant Assessor x Sample interaction (FAssessors X Sample) 

was also observed for this attribute. The interaction plots (Figure 5.4) revealed that 

while most assessors rated Brand B lowest, a few reversed the order for Brand A 

and Brand C, suggesting inconsistency in how the attribute was evaluated across 

assessors. This highlights the need for additional training to improve panel 

consistency and reliability. Similarly, Sweetness, which was slightly less significant 

(p<0.05), also showed some inconsistencies among assessors. These findings 

warrant further investigation, and individual ANOVAs for each assessor will be 

examined in the following section, to identify those who may need further training.  

On the other hand, the untrained panel was not in agreement, as they were highly 

inconsistent in rating all the attributes, with the FAssessors X Sample interaction effect 

showing significant differences (p<0.01) across all attributes. 

From a Rasch model perspective, panel performance is evaluated holistically using 

the model’s separation statistics (Table 5.3 below), which are based on the 

average ratings assigned by the panel across all attributes, samples, and replicate 

evaluations.  

The fixed Chi-square (χ²) statistic is used as an indicator of panel agreement 

testing the hypothesis that, after accounting for measurement errors, the severity 

of all assessors is the same (Myford & Wolfe, 2004; Linacre, 2025c).
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Table 5.2. Summary of trained and untrained panel Rasch analysis and ANOVA results on attribute contributions to sample differences. 

 Trained Panel (N=7)  Untrained Panel (N=24) 

Attributes 
+Ve Logit   -Ve Logit   +Ve Logit  -Ve Logit 

Orange Fl. Milky Fl. Sweetness Cocoa Fl.  Saltiness  Milky Fl. Cocoa Fl. Sweetness  Orange Fl. Saltiness 

Rasch Model Results              

Attributes Logit Measure1 0.26(0.13) 0.10(0.12) 0.91(0.14) 0.39(0.13)  -1.66(0.14)  0.06(0.04) 0.19(0.04) 0.47(0.05)  -0.16(0.04) -0.55(0.05) 

Attributes OUTFIT Mnsq2 1.92 0.73 0.65 0.47  1.22  1.05 0.83 0.71  1.60 0.77 
              

Panel ANOVA3              

F Sample 78.82*** 10.87*** 3.65* 6.44**  1.27  188.34*** 23.16*** 92.27***  87.82*** 3.78* 

F Assessors X Sample 5.44*** 1.14 3.24** 2.07  1.59  2.58*** 3.87*** 4.98***  2.05** 2.78*** 

F Assessors 10.02*** 6.84*** 21.53*** 5.10**  25.92***  10.70*** 8.27*** 7.63***  2.93*** 21.32*** 

F Repetition 4.08* 1.67 3.65* 1.49  0.27  3.20* 0.52 2.77  2.27 0.91 

F Assessors X Repetition 2.64* 1.09 4.47*** 0.97  1.05  1.67* 1.52* 2.66***  0.82 1.25 

F Sample X Repetition 3.29* 0.79 2.24 0.74  0.57  1.41 2.04 1.46  0.45 2.40 
For both panels, attributes are arranged from left to right by decreasing OUTFIT Mnsq value and are differentiated based on whether they were located on the positive (+Ve logit > mean) or 
negative (-Ve logit < mean) side of the logit scale. N signifies the total number of assessors in a panel. 

 
1 Value of the location of an attribute on the Rasch logit scale: Negative (-Ve) logit values signify attributes with intensities below the mean (low intensity), while positive (+Ve) logit values 

signify attributes with intensities above the mean (high intensity). Standard errors (S.E) for each estimate are shown in brackets. 
2 Outlier-sensitive mean squares for attributes indicating whether an attribute's discrimination differs from the average. For the trained panel, the acceptable range is 0.64-1.36, with values 

<0.64 (overfit) signalling a non-discriminating attribute. For the untrained panel, the acceptable range is 0.81-1.19, with values <0.81 indicating non=discrimination. 
3 ANOVA on raw scores; F-values with p-value levels of significance: <0.001***, <0.01**, <0.05*; measures with no superscript symbols >0.05. 
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In this context, severity refers to an assessor's tendency to consistently assign 

higher (lenient) or lower (severe) intensity ratings across samples, relative to other 

assessors in the panel. The panel is not in agreement when χ² is significant (p < 

0.05), indicating that at least two assessors have significantly different severity 

levels. The Separation Index (Strata) indicates how many statistically distinct 

levels of severity exist among the assessors. The separation Reliability reflects how 

precisely these differences in severity are measured, relative to the error in the 

estimates. The separation statistics for the Sample facet are used to assess the 

panel’s ability to discriminate between the samples.  

For the Assessor facet, reliability values closer to zero (0) are desirable, as they 

indicate that there is no statistical distinction between lenient and severe 

assessors, suggesting that, on average they rated the samples using similar parts 

of the scale. For the Sample facet, however, higher reliability values closer to one 

(1) are ideal, as they suggest greater discrimination between the samples by the 

panel. 

From Table 5.3, Rasch model chi square (χ²) for assessors in the trained panel was 

not significant, indicating that they exhibited the same severity level on average, 

reflecting the effectiveness of their training. Meanwhile, assessors in the untrained 

panel showed different severity levels after accounting for measurement errors, as 

indicated by the highly significant assessor chi-square (p<0.001). A Strata value of 

2.87 and a reliability index of 0.78 indicate the presence of approximately three 

statistically distinct levels of assessor severity, as was revealed in the Assessor 

facet of the untrained panel Wright map (Figure 5.2).  

The MFRM examines panel agreement in terms of the order in which products 

differences are ranked (as in the ANOVA), at an individual level, using the Point-

Biserial Measure correlation (PT measure) also termed the Single Rater – Rest of 

Raters (SR/ROR) correlation (Myford & Wolfe, 2004). This reflects how assessors 

rank samples relative to other assessors in the panel and is further discussed in 

individual performance evaluations (section 5.3.4).  
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Table 5.3 . Comparison of trained and untrained panel based on Rasch Model Statistics. 

Rasch Model Statistics1 Trained Panel (n=7) Untrained Panel (n=24) 

Panel Agreement (Assessor facet)     
Fixed χ² Assessor (p>0.05)  0.54  0.00 
Strata Assessor  0.33  2.87 
Reliability Assessor  0.00  0.78 
     
Panel Discrimination (Sample facet)     
Fixed χ²Sample (p<0.05)  0.02  0.46 
Strata Sample  1.95  0.33 
Reliability Sample  0.59  0.00 
1 Rasch model separation statistics (with required criteria in brackets) corresponding with standard panel 

performance criteria (and the related facet in brackets). The null hypothesis (H₀) for the fixed chi-square 
test is that all elements within the facet are the same. Therefore, p < 0.05 indicates a statistically 
significant difference in the facet parameters.  

 Panel performance criteria is unmet. the same 

Likewise, the FAssessor main effect in the ANOVA reflects variations in ratings assigned 

by assessors on average, independent of samples (Stone et al., 2012), which is 

similar to the MFRM in its assessment of panel agreement in terms of rating severity 

levels. However, while the ANOVA (Table 5.2) found that assessor tendencies in 

using the rating scale differed across all attributes, the Rasch model did not. This is 

because the Rasch model offers a more precise measurement by considering 

individual rating patterns across all samples, attributes, and replicate evaluations, 

adjusting for how consistently assessors tend to rate with varying severity or 

leniency. After which it then models leftover inconsistencies, both between-group 

(main effects) and within-group (interaction effects) as unexplained variations, 

captures them as measurement errors, and flags them in the OUTFIT statistics 

(Linacre, 1995). What remains, then, is the true variance from the main effects, 

reflecting the real differences between the parameters in each facet (assessors, 

samples, and repetition). The OUTFIT Mnsq results for attributes and assessors, 

which illustrate how misfitting ratings were identified and addressed, are discussed in 

detail in sections 5.3.3.3.1 and 5.3.4, respectively. Unlike ANOVA, which reports 

averaged differences across all assessors, the Rasch model provides these insights on 

a more granular, individual level. 

 
1

 Rasch model separation statistics (with required criteria in brackets) corresponding with standard panel perform ance criteria (and the rel ated facet in brackets ). The null hypot hesis (H₀) for the fixed chi-square test is that all elem ents withi n the facet are the same. Ther efore, p < 0.05 i ndicates a statistically sig nificant difference i n the facet parameters.  



 Panel performance criteria is unmet: assessor severity levels are not the same 
 Panel perform ance criteria is unmet: the samples ar e not sig nificantly different. 
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5.3.3.2 Panel repeatability 

This refers to the average degree of homogeneity between replicate assessments of 

the same product per assessor (ISO 1132:2021). In other words, it measures how 

consistently assessors evaluate the same products under similar test conditions, 

typically across replicate sessions. The Repetition main effect and interaction 

terms in the panel ANOVA (FRepetition, FAssessor x Repetition, and FSample x Repetition) offer a high-

level indication of which attributes assessors rated inconsistently across replicate 

evaluations on average (Ho, 2015). The Repetition main effect (FRepetition) tests for 

overall mean differences across replicate evaluations, the Assessor x Repetition 

interaction (FAssessor x Repetition) checks if assessors differ in consistency in rating the 

samples, and the Sample x Repetition interaction (FSample x Repetition) checks if some 

samples are more consistently rated than others. 

As shown in Table 5.2, replicate evaluations for some assessors (FAssessor x Repetition) in 

the trained panel varied for Orange flavour and Sweetness. However, these 

variations only influenced the Orange flavour ratings of the samples (FSample x Repetition). 

In the untrained panel, replicate ratings for Milky flavour, Cocoa flavour, and 

Sweetness varied within assessors, but these variations were not substantial 

enough to influence their overall sample ratings when averaged. This was also 

reflected in the respective panel Wright maps where replicate evaluations for the 

trained panel (Figure 5.1), ranged from 0.06 to -0.10 logits (SE = 0.10), showing 

greater dispersion across repeated ratings. In contrast, the untrained panel’s 

replicate evaluations (Figure 5.2) clustered tightly between 0.01 and -0.01 logits (SE 

= 0.03), indicating higher repeatability in overall sample ratings. 

For a more detailed assessment, repeatability can be estimated by analysing individual 

assessor response patterns, through the use of distribution plots (Stone et al., 2012). 

This approach will be examined later in the chapter. 

5.3.3.3 Panel discrimination 

The panel discrimination measures the ability of a panel to significantly distinguish 

between products. It is indicated by a significant difference in sample means for an 

attribute (p<0.05) in the three-factor panel ANOVA (FSample in Table 5.2). When the 

samples are significantly different, post hoc multiple comparisons are conducted 
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to determine which specific samples differ from one another. However, as 

previously mentioned, these results are only reliable when ratings are generally 

consistent, and the analyst judges that there is sufficient agreement between 

assessors within the panel (Raithatha & Rogers, 2018). The ANOVA results revealed 

that for the untrained panel, all the attributes significantly differentiated the 

samples (p<0.05). However, this panel also showed inconsistency in ratings for all 

the attributes (FAssessor x Sample) and showed variation in their rating tendencies across 

all attributes (FAssessor). Consequently, their results are not reliable. The Rasch 

separation statistics in Table 5.3 above showed that differences between samples 

were not significant (α=0.05), as the differences across attributes were not 

systematic enough to be considered meaningful. 

Rasch analysis of the trained panel data revealed significant differences between 

the samples (Table 5.3), with a χ² p value of 0.02. A strata value of 1.95 indicated the 

presence of approximately two distinct sample groups. However, the separation 

reliability was relatively low at 0.59, suggesting that a portion of the observed 

differences may have been due to measurement error. In the trained panel ANOVA 

(Table 5.2), rating tendencies differed across all attributes (FAssessor) similar to the 

untrained panel, indicating individual differences in scale use despite assessor 

training. Additionally, four out of five attributes (except for Saltiness) were 

significantly different (p<0.05). However, two of these attributes, Orange flavour 

and Sweetness were rated inconsistently by the panel indicated by a significant 

FAssessor x Sample. Although these attributes would typically be considered as key 

attributes for evaluating individual assessor performance, the within-group 

variations render the results unreliable. Only Milky flavour and Cocoa flavour 

supposedly emerged as key attributes for which the samples were reliably 

differentiated. Yet, the individual assessor ANOVAs (Table 5.5) showed no 

significant sample differences (α=0.05) for any assessor on these attributes, 

suggesting that all the assessors may require retraining.  

While agreement across assessors (FAssessors) may often be overlooked in practice 

(Næs et al., 2010), it can sometimes influence the identification of key attributes 

when basing this on overall panel sample discrimination. Significant differences in 

the Sample effect in the panel ANOVA are based on averaged scores across all the 
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assessors, which can smooth out inconsistencies in individual ratings. 

Consequently, even if assessors demonstrate poor repeatability and fail to 

discriminate between samples individually, pooling their data at the group level can 

reduce the noise, revealing consistent trends that result in significant differences. 

Raithatha and Rogers (2018) show how an assessor’s poor replication can 

contribute to non-discrimination of samples especially when the variability in 

scoring is high for a specific sample. This may have been responsible for the loss of 

sample discrimination for individual assessors for Milky flavour and Cocoa flavour 

in this study. 

The Rasch approach determines key attributes more effectively as it estimates each 

parameter independently based on average ratings across all facets, while 

accounting for variability in assessors' individual tendencies or biases in scale use. 

This ensures that the results are not influenced by these variations. The OUTFIT 

mean square, a residual fit statistic in the Rasch model, identifies responses that 

deviate from the model’s expectations. Although these variations are controlled 

when estimating sample measures (TIM), assessors whose behaviour deviates from 

the group are flagged by their OUTFIT Mnsq values, as demonstrated in section 

5.3.4. Additionally, OUTFIT Mnsq for the attributes highlight the contribution of each 

attribute to product differentiation after accounting for individual differences in 

scale use, further improving the precision in determining key attributes. 

5.3.3.3.1 Key attributes as determined by the Rasch Model 

As discussed in the previous chapter (section 4.3.5), the Rasch model assumes 

equal discrimination between attributes. In this context, the OUTFIT values for each 

attribute reflect the variability in its ratings across different samples relative to that 

of other attributes in the analysis. This provides a clearer indication of the key 

discriminating attributes. However, it captures unexpected measurement variance 

arising from two sources: between-group variations (differences in how attributes 

are rated across samples) and within-group variations (differences caused by 

interactions between modelled facets, such as assessors or repetition), as 

previously discussed in section 4.3.4: pg. 90 (Linacre, 1995). 
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OUTFIT values below the acceptable range (overfit) indicate that an attribute does 

not reliably discriminate between samples, whereas values above the acceptable 

range (underfit) highlight the key attributes driving the differences amongst the 

samples. Meanwhile as discussed in the previous chapter (section 4.3.5) , when 

underfit occurs with a low-intensity attribute, it suggests that, although the attribute 

may discriminate between samples, its ratings are strongly influenced by individual 

assessor variations in interpreting the attribute or internal inconsistencies. In some 

cases, however, the underfit may result from unusually low ratings for a single 

sample, which pull down the average rating for that attribute across all samples. 

When this occurs, the underfit for the low-intensity attribute is not mainly due to 

assessor inconsistencies, but rather due to this downward shift in the mean, which 

ultimately pulls the affected attribute to the negative side of the logit scale, as 

demonstrated later with the untrained panel’s rating of Orange flavour (Figure 5.5).  

Insights from the attribute outfit statistics can help analysts decide whether an 

attribute should be removed from the analysis or whether further training is needed 

for the panel or specific assessors. 

Figure 5.3 illustrates the attribute contributions to the overall difference between 

the chocolate spread samples for the trained panel. As discussed in section 

3.3.1.6: Residual fit statistics , acceptable OUTFIT ranges are context-dependent 

and can be calculated using the formula (Wu & Adams, 2013; Eckes, 2023). For this 

panel, the acceptable range is between 0.64 and 1.36, based on 63 responses per 

attribute. and Milky flavour emerged as the key discriminating attributes. Orange 

flavour was underfit with an OUTFIT Mnsq values of 1.92, indicating greater 

variability in ratings across samples, while Milky flavour, with an OUTFIT Mnsq of 

0.73, fell well within the acceptable range, showing lesser variations and relatively 

more consistent ratings across the samples. In contrast, Sweetness (0.65) was 

nearly overfit, and Cocoa flavour (0.47) showed clear overfit, indicating that their 

rating patterns were overly predictable by the model, and thus did not contribute 

meaningful differentiation between the samples. 

 
 1 ± 2√

2

𝑁𝑟
 , where Nr (number of responses) for each of the attributes is 63 for trained panel and 216 for the 

untrained panel, respectively. 
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Further investigations were made using the Assessor x Sample interaction plots 

(Figure 5.4), trellis plots for each assessor showing the raw data distribution 

(Section 5.3.4), and two-way ANOVAs for individual assessors (Table 5.5).  

The ANOVA results showed that five out of seven assessors identified significant 

differences between the samples for Orange flavour (p<0.01), aligning with its high 

underfit value of 1.92. Minor inconsistencies in the rank order between Brands A 

and C were also reflected in the same OUTFIT value, even though differences 

between those samples were not significant as shown in Table 5.4 below. While the 

sample effect for Milky flavour was not significant for any assessor in the individual 

ANOVA results (Table 5.5), the panel interaction plots in Figure 5.4 below, and their 

individual trellis plots in Figure 5.8 below showed that most assessors consistently 

rated Brand B as significantly higher in Milky flavour, whereas Brand B and the 

Control were rated similarly. 

In contrast, only one assessor detected a slightly significant difference for Cocoa 

flavour (p<0.10) according to the individual ANOVA results in Table 5.5, while two 

assessors did for Sweetness (p<0.05). 

Figure 5.3. Attribute contributions to overall product differences for the Trained Panel based on 
Rasch logit measures (in brackets) and residual fit statistic (OUTFIT Mnsq). Attributes are colour-
coded by logit sign: blue fill= positive logits (higher intensity, contributing more to product 
differences); red textured fill= negative logits (lower intensity, rated more inconsistently). 
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Figure 5.4. Trained panel interaction plots for all attributes. 
Attribute titles indicate F-values from panel ANOVA results, with p-value levels 
significance: <0.001***, <0.01**, <0.05*; measures with no superscript symbols >0.05. 
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From the interaction plot above, Sweetness and Cocoa flavour showed both 

crossover interactions, where the ratings on the samples by some assessors were 

reversed, and magnitude interactions, where assessors differed in rating severity 

(Stone et al., 2012). The magnitude effects likely contributed to the loss of 

discriminatory power for these attributes as indicated by the OUTFIT Mnsq, since 

the Rasch model already accounts for such interactions when estimating the 

measures. Crossover interactions, which are reflected in the OUTFIT Mnsq, were 

more pronounced for Sweetness than for Cocoa flavour, explaining the slightly 

higher value observed for Sweetness.  

Additionally, the trellis plots for the few discriminating assessors revealed poor 

rating repeatability, possibly due to adaptation or altered sensitivity across 

replicate evaluations (Sipos et al., 2021). As noted by Stone et al. (2012), crossover 

interactions reflect insensitivity to the differences between products, unless, 

perhaps, there are no noticeable differences between the samples. In that case, 

they may reflect a failure to use the scale correctly, as assessors may be uncertain 

about whether they are perceiving the attribute and may assign internally 

inconsistent ratings. In this study, however, there were formulation differences for 

sweetener and cocoa content (Table B 2), so the crossover interactions for 

Sweetness and Cocoa flavour could be reflecting that some assessors struggled to 

detect these differences reliably, resulting in inconsistent ratings. 

Saltiness, a low-intensity attribute (logit measure = -1.66), was flagged as 

problematic due to its underfitting OUTFIT Mnsq value of 1.22. Assessor ratings 

were inconsistent, showing significant magnitude and crossover interactions, with 

one assessor revealing a slightly significant difference in Saltiness intensity (p<0.1) 

in the individual ANOVA (Table 5.5). 

In all, the interaction plots revealed crossover and magnitude effects for most 

attributes, except Milky flavour, suggesting inconsistent use of the rating scale and 

varying sensitivity to product differences among assessors. This is likely due to the 

lack of specific training on scale use in this study, leading to inconsistencies that 

undermine both the reliability of the panel and the validity of the results. Further 

targeted training, particularly on scale familiarisation, is recommended to improve 

panel alignment. 
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For the untrained panel, the acceptable OUTFIT Mnsq range was 0.81-1.19 (Nr = 

216). Despite the panel’s unreliable results, the model still offers valuable insights 

into the underlying reasons, as shown in Figure 5.5. Rating patterns were generally 

inconsistent, as indicated by the interaction and trellis plots (Figure 5.6 and Figure 

5.10, respectively), and these were reflected in the attributes’ OUTFIT Mnsq values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Milky flavour and Orange flavour were identified as the key attributes, with 

corresponding OUTFIT Mnsq values of 1.05 and 1.60, respectively. Orange flavour 

was the strongest contributor to perceived differences among the samples, but 

Brand B was generally rated as having the lowest intensity for Orange flavour, with 

ratings ranging from barely detectable to non-existent. This is a clear example where 

an otherwise high intensity attribute received a low rating on one sample, resulting in 

a low logit measure (-0.16) as previously discussed in section 4.3.5: pg.96.  

For Milky flavour, Brand B was consistently distinguishable from the others by most 

assessors, and crossover interactions appeared less pronounced compared to those 

observed with Orange flavour, suggesting a more stable perception. Saltiness and 

Figure 5.5. Attribute contributions to overall difference for the Untrained Panel 
based on Rasch logit measures (in brackets) and residual fit statistic (OUTFIT Mnsq). 
Attributes are colour-coded by logit sign: blue = positive logits (higher intensity, 
contributing more to product differences); red textured fill= negative logits (lower 
intensity, rated more inconsistently). 
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Sweetness were flagged as redundant, with OUTFIT Mnsq values of 0.77 and 0.71, 

respectively, indicating they did not meaningfully differentiate between the samples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. Untrained panel interaction plots for all attributes. 
Attribute titles indicate F-values from panel ANOVA results, with p-value levels significance: 
<0.001***, <0.01**, <0.05*; measures with no superscript symbols >0.05. 
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Cocoa flavour, on the other hand, approached overfitting with a value of 0.83, as the 

interaction plot revealed a higher degree of crossover interactions, leading to the 

higher OUTFIT Mnsq value.  

Orange flavour and Milky flavour were the primary contributors to actual product 

differences, even for the inconsistent untrained panel. In contrast, Sweetness and 

Cocoa flavour were not reliable key attributes for either panel, as the presence of 

crossover interaction effects, reflected more individual differences and noise than 

actual product differences. 

Saltiness was a redundant attribute for both panels, but one assessor in the trained 

panel had highly unusual ratings, which caused it to be flagged as a challenging 

attribute. In the next section, this assessor is also flagged as inconsistent in the 

assessor OUTFIT analysis. 

5.3.3.3.2 Product differences 

Table 5.4 presents the sample comparisons based on Kruskal-Wallis mean rank 

sums of the Rasch measures and Tukey’s HSD for the individual attributes.  

Table 5.4. Product comparison results for both panels based on Tukey’s HSD on 
raw score mean ratings for individual attributes and Kruskal-Wallis test on mean 
rank sums of Rasch measures for overall sample comparison. 

 Sample1 Orange Fl Milky Fl Cocoa Fl Sweetness Saltiness 
Rasch 

Measure2 

Tr
ai

ne
d 

Pa
ne

l 

      
 

Brand A 3.67b 2.67a 3.43b 3.76a 0.57a -0.25 b 

Brand B 1.67a 3.38b 2.86a 3.71a 0.81a -0.60 a 

Brand C 3.86b 2.62 a 3.29ab 3.48a 0.71a -0.28 b 

       

        

U
nt

ra
in

ed
 P

an
el

 

      
 

Brand A 3.64b 2.62a 3.85b 3.94a 1.94a -0.28 a 

Brand B 0.92a 4.75b 3.00a 5.04b 1.62a -0.33 a 

Brand C 3.60b 2.42a 3.92b 3.67a 1.86a -0.32 a 

   
 

  
 

 
1 Sample differences based on Tukey’s HSD analysis of raw score sample means across individual attributes 

and Kruskal-Wallis mean rank sums for Rasch measures, where sample Rasch measures with different 
superscript letters are significantly different (p<0.05). Fl=Flavour. 

2 Rasch measures of samples are estimated based on average intensity ratings (Total Intensity Measure -TIM) 
across all modelled facets (assessors, repetitions, and attributes) after accounting for their influences. 
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In relation to the product compositions (Table B 2), the differentiating ingredients 

were orange flavouring, milk content, and whether sugar or sugar replacers were 

used. Based on these differences, it was expected that Brand B would be 

significantly different from the other samples in terms of Orange and Milky flavour, 

as it was not a chocolate-orange spread like the other two and contained higher milk 

content from both milk chocolate and added milk powder. This expectation was 

confirmed by the attributes OUTFIT for both panels (Figure 5.3 and Figure 5.5), and 

the mean raw intensity ratings from the assessors (Table 5.4). 

While the trained panel rated the Orange flavour for Brand B at a higher average 

intensity than the untrained panel, the extremely low ratings given by most 

assessors in the untrained panel (see individual trellis plots in Figure 5.10) lowered 

the overall mean intensity across all samples, resulting in a negative logit value for 

Orange flavour, as previously discussed. However, the untrained panel appeared to 

accurately score the absence of Orange flavour in Brand B, with many assessors 

scoring it as zero. In contrast, the trained panel may have been influenced by 

expectation error (Meilgaard et al., 2025), anticipating Orange flavour in Brand B due 

to its presence in the other samples, or they may have been playing it safe with their 

ratings, perhaps a consequence of receiving feedback during training (Myford & 

Wolfe, 2004; Castura et al., 2005).  

Although a significant difference in Cocoa flavour might have been anticipated, 

since Brand B primarily used more milk chocolate crumbs than fat-reduced cocoa 

mass (Table B 2), whereas the other brands used only fat-reduced cocoa mass, the 

assessors in both panels were unable to reliably distinguish between the samples 

as discussed earlier (section 5.3.3.3.1, p131). Therefore, the reliability and validity 

of the results regarding the product differences are questionable. Milk chocolate 

has been shown to be perceived as sweeter and characterised by milk flavour 

notes, while dark chocolate tends to have more bitter notes (Liu et al., 2015). 

However, since all samples had similar sugar or sweetener levels (total 

carbohydrates ~50g), and the cocoa mass in the other brands would have been 

sweetened as a result, it was hypothesised that any differences in cocoa content 

due to the addition of milk chocolate would be reflected more as Milky flavour and 

Sweetness, rather than as differences in Cocoa flavour.  
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Recall from section 5.3.1 (Table 5.1) that the Principal Component Analysis of 

Residuals (PCAR) indicated possible local dependency between Sweetness and 

Milky flavour, as well as between Cocoa flavour and Milky flavour. This supports the 

hypothesis that differences in cocoa content from milk chocolate were expressed 

more strongly through variations in Milky flavour and Sweetness than in Cocoa 

flavour itself. Just like with Orange flavour, the untrained panel appeared to be more 

sensitive to the product differences. They rated Brand B highest in Sweetness and 

Milky flavour, and lowest in Cocoa flavour, as shown in Table 5.4. In contrast, the 

trained panel reflected this impact only in Milky flavour, with minimal differences 

observed for Cocoa flavour. 

Regarding Sweetness, Brand C used maltitol as a sugar replacement, while the 

other two brands used similar amounts of sugar. However, this may not have 

contributed to noticeable differences, as maltitol, a sugar alcohol, is known to have 

characteristics very similar to sucrose, except for its lower glycaemic index 

(O'Donnell, 2012).  

Saltiness had the lowest intensity as was reflected on the Wright maps. The salt 

content for the products ranged from less than 0.01 to 0.13. Low-intensity attributes 

like this can be difficult to rate accurately. This challenge was further supported by 

the OUTFIT Mnsq values, which flagged Saltiness as problematic for the trained 

panel, and non-discriminating for the untrained panel. The lack of discrimination in 

the untrained panel was most likely due to inconsistent ratings and poor replication, 

whereas for the trained panel, the issue was traced to a single disagreeing assessor. 

Myford and Wolfe (2004) have demonstrated that the performance of individual 

raters in the Rasch model is assessed relative to the group being evaluated, and that 

deviations from model expectations, such as those indicated by OUTFIT Mnsq also 

depend on this context. In their study, this meant that an individual rater’s fit 

statistic would highlight when their ratings did not align with the rest of the panel. In 

the present study, this principle explains why the trained panel’s overall 

consistency made one assessor’s disagreement stand out clearly, whereas in the 

untrained panel, inconsistent scoring across multiple assessors resulted in overfit, 

since no single rater’s pattern stood out enough to affect the OUTFIT Mnsq 

(discussed further in section 5.3.4). This demonstrates how interpretations of 
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assessor performance and attribute discrimination depend on the panel’s 

collective pattern of responses. In this sense, the approach mirrors the 

conventional method, where individual assessor performance is evaluated relative 

to the panel mean, which serves as the reference standard in the absence of a 

known true attribute mean (Stone et al., 2012; Raithatha & Rogers, 2018; British 

Standards Institution, 2021; Meilgaard et al., 2025). However, from the outset, the 

Rasch model adopts a diagnostic perspective, encouraging a deeper investigation 

of the data through diagnostic tools that are integrated within a single analysis. The 

Rasch-approach to examining individual assessor performance is explored in the 

following section. 

5.3.4 Comparison of individual assessor performance for both panels 

The performance of individual assessors was evaluated based on their 

discriminatory ability, internal consistency or repeatability, relative consistency 

with other assessors, and rating effects or rater bias. Two-way ANOVAs and the 

Rasch model's quality control statistics were used to analyse the data. 

Discriminatory ability refers to the proportion of key attributes on which an assessor 

can distinguish the samples. Internal consistency refers to an assessor's ability to 

consistently rate samples across replicate evaluations and is also referred to as 

repeatability. Relative consistency refers to an assessor’s ability to assign similar 

intensity ratings and rank samples the same way as other assessors in a panel, termed 

"agreement across assessors" by ISO 1132:2021 (British Standards Institution, 2021). 

Rating effects refers to differences in scale usage by each assessor.  

In practice, several techniques are employed to examine panel performance 

criteria. Bárcenas et al. (2000) demonstrated that conducting ANOVA-based 

comparisons of assessor F-ratios and residuals can effectively identify assessors 

who contribute most to variability, allowing detection of inconsistent scoring 

behaviour. Tomic et al. (2007) further showed that visualising these results using 

graphical methods such as eggshell or correlation plots provides a clearer overview 

of assessor differences and panel agreement, and that the most comprehensive 

understanding of panel performance is achieved by combining analytical statistics 
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with several visualisation techniques. This recommendation was echoed by Stone 

et al. (2012), Ho (2015) and Raithatha and Rogers (2018). 

More recent guidelines continue to rely on these established diagnostic techniques, 

using them in combination with mixed ANOVA models, correlation analyses 

between assessor scores and the panel mean, and advanced graphical tools 

(British Standards Institution, 2021; Meilgaard et al., 2025). While these methods 

are comprehensive, they can be demanding for the panel leader, especially when a 

rapid overview is required to identify assessors who may be deviating from the 

group. 

Using the ANOVA approach, individual two-way ANOVAs are conducted for each 

assessor across all attributes. The Sample main effect (FSample) indicates 

discriminatory ability. Agreement across assessors is captured in the three-way 

ANOVA for the panel discussed earlier (Table 5.2) and is inversely related to the 

Assessor main effect (FAssessor)) (ISO 1132:2021 (British Standards Institution, 2021)). 

However, poor scoring repeatability can mask this relationship.  

Each assessor’s internal consistency in assigning ratings across replicate 

evaluations, is estimated using the interaction effect between sample and the 

replicate session/repetition (FSample x Repetition) for each assessor, derived using the 

Tukey’s additivity test (Ho, 2015). A significant interaction term indicates 

inconsistency. While this provides valuable information, it does not offer a 

complete picture. Better insights can be gained by combining the analyses with 

response distribution plots(Stone et al., 2012; Ho, 2015) and applying one or more 

of the complementary methods described above.  

The ANOVA approach assesses discrimination, agreement, and repeatability, but 

does not fully capture assessor severity, scale usage, or consistent understanding of 

attributes. These factors can affect data quality but may not be evident from F-ratios 

alone. Combining statistical results with graphical tools and other diagnostics 

therefore gives a more complete evaluation and supports targeted panel training. 

 
 Tukey’s additivity test is used to check whether the interaction between two factors in a two-way ANOVA 

without replication is negligible, thereby testing if the model assumption of additivity holds true (i.e., that 
the effects of the factors are purely additive). A significant p-value (typically p < 0.05) means the 
assumption is violated and the interaction term is significant. 
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Rasch analysis enhances efficiency by providing an overview of disagreeing 

assessors using inherent quality control statistics. The model accounts for 

individual rater bias resulting from idiosyncratic use of scale, while estimating Total 

Intensity Measures (TIM) for the samples (as discussed in section 3.1.2). It then 

assigns severity logit measures to each assessor based on their tendency to 

consistently assign higher or lower ratings relative to the panel, as shown in the 

Wright maps. All other imprecisions in the response data, including interaction 

effects, are recorded as outfit (Linacre, 1995) as discussed previously in section 

4.3.4. In their study about measuring rating effects with the Many-Facet Rasch 

Model, Myford and Wolfe (2004), provide a detailed account on how the model 

offers insights into various individual rater biases and inconsistencies. 

Using Rasch model fit indices for the Assessor facet, OUTFIT Mnsq ranges indicate 

different types of rater bias. As previously discussed, acceptable OUTFIT Mnsq 

ranges are context-dependent and derived using the formula suggested by (Eckes, 

2023), based on the total number of responses used to estimate the facet 

parameters. The higher the degree of outfit above 1, the more deviation from the 

model expectations. Conversely, the lower the OUTFIT Mnsq below 1, the more 

predictable the response is by the model.  

According to Myford and Wolfe (2003) and (2004), when an assessor’s OUTFIT Mnsq 

is overfit, it indicates a lack of variation in their ratings across samples or attributes. 

This is often due to restriction of range (clustered ratings within a specific portion of 

the scale) or central tendency bias (overusing middle categories) and reflects the 

assessor’s inability to discriminate between samples. In contrast, when the OUTFIT 

Mnsq is above the acceptable range (underfit), it suggests that the assessor is either 

inconsistent in their ratings across replicates or in disagreement with the rest of the 

panel. Assessors’ fit indices indicate their cumulative agreement between observed 

and expected ratings across all attributes, samples and replicate evaluations. 

Therefore, the OUTFIT Mnsq reflects both internal and relative inconsistencies. 

(Myford & Wolfe, 2004) term these inconsistencies the “Randomness effect”, where 

haphazard or seemingly random ratings suggest that the assessor does not reliably 

 
 1 ± 2√

2

𝑁𝑟
 , where Nr (number of responses) for the assessors in both panels is 45 as each assessor rated the 

3 samples, across the 5 attributes in 3 replicates. 
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differentiate between samples. The model further identifies assessors who rank the 

samples differently than the rest of the panel using point-biserial measure 

correlations for the assessor facet, which the authors termed the “Single Rater – 

Rest of Raters (SR/ROR)” correlation. A lower correlation value in this measure flags 

assessors whose rankings deviate from the panel’s overall pattern. The assessors’ 

OUTFIT Mnsq and SR/ROR correlation results will be presented in the following 

section. 

A caveat of the Rasch approach to evaluating individual assessor performance is 

that the results are always relative to the performance of all other assessors in the 

analysis. Therefore, it is most informative when applied to a more homogeneous 

panel rather than to an inconsistent one. The results for the performance of 

assessors in the trained and untrained panels are presented in the following pages. 

5.3.4.1 Performance of trained panel individual assessors 

Figure 5.7 presents a control plot for the OUTFIT Mnsq values of the trained panel. 

The acceptable fit range for assessors was between 0.57 and 1.42. Ratings from 

assessors within this range were generally consistent with the rest of the panel, 

whereas those with values greater than 1.42 exhibited signs of random or 

inconsistent rating behaviour. Assessors 2003 was flagged as slightly inconsistent, 

with an OUTFIT Mnsq value of 1.42, right at the acceptable threshold compared to 

the rest of the panel.  

The ANOVA results in Table 5.5, which also include Rasch model rater performance 

indices, show that Assessor 2003 was able to distinguish between samples for 

Orange flavour (p<0.05) and, to a lesser extent, Saltiness (p<0.10), while no 

significant differences were found for the other attributes. Meanwhile, the Rasch 

model single rater-rest of rater (SR/ROR) correlation provided complementary 

information, showing that Assessor 2003 ranked the samples differently from the 

rest of the panel for these attributes, with a correlation value of 0.46, the lowest 

among all assessors. 

However, it should be noted that the Rasch model evaluates assessor fit relative to 

the collective pattern of responses within the panel. Therefore, although Assessor 

2003’s OUTFIT Mnsq value was at the acceptable threshold, the raw data indicate 
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broader variability across the panel. This suggests that the apparent fit reflects 

relative consistency with a panel that itself exhibited some instability, rather than 

absolute rating consistency. 

The trellis plots in Figure 5.8 further support these findings, showing that Assessor 

2003 perceived a larger difference in the intensity of Orange flavour between the 

samples compared to the rest of the panel. In addition, they reversed the order in 

which Brands A and C were rated, assigning a higher intensity rating to Brand C 

opposite to the pattern observed in most other assessors. They also perceived 

greater differences in Saltiness across the samples compared to the panel average. 

SR/ROR correlation values (Table 5.5) for Assessors 2002 and 2011 were also 

relatively low, at 0.51 and 0.77, respectively. While the OUTFIT Mnsq value for 

Assessor 2002 (1.11) indicated consistency in their ratings, their ANOVA results 

showed they could not discriminate between the samples based on Orange flavour, 

a key attribute. However, they could differentiate Sweetness (p < 0.05), which was 

not a key attribute. Additionally, the trellis plot indicated that, although their 

Saltiness ratings were somewhat erratic, they observed a large difference in 

Saltiness in at least one replicate evaluation. 

Assessor 2011, with an OUTFIT Mnsq value of 1.41, was again close to the misfit 

threshold (1.42). This was likely due to a reversal in the order of Orange flavour 

intensity between Brands A and C, like Assessor 2002. However, the difference 

between the samples was not significant, consistent with the rest of the panel, 

suggesting that the crossover interaction likely resulted from uncertainty about 

which sample had the higher intensity. Further training could help increase their 

sensitivity and improve the refinement of their ratings. 

Assessor 2010, on the other hand, exhibited overfitting, with an OUTFIT Mnsq 

value of 0.44, suggesting they were using a restricted range of the scale and likely 

not discriminating between the samples. This was confirmed by their ANOVA 

results, where none of the attributes showed significant differences, and the trellis 

plot revealed that their ratings never exceeded two scale categories across all 

attributes.  
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Figure 5.7. OUTFIT Mnsq plot for assessors in the Trained panel. 
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 Table 5.5. Summary of individual ANOVA results for the trained panel, showing Rasch model indicators for rater performance. 

 

 

Rasch Model Indices 

 

Orange Flavour***  Milky Flavour***  Sweetness*  Cocoa Flavour** Saltiness 
Assessor  

OUTFIT1  SR/ROR2 

 

F SA
3 FRep FSA X Rep  FSA FRep FSA X Rep  FSA FRep FSA X Rep  FSA FRep FSA X Rep  FSA FRep FSA X Rep 

2002  1.11 
 

0.51  2 3.5 1.5  4 1 NA4  7* 1 0.1  2.8 0.4 0.4  0.1 0.6 0.1 

2003  1.42 
 

0.46  7.9* 0.4 0.3  NA NA NA  2 2 1.8  NA NA NA  4.8~ 1 0.3 

2005  0.97 
 

0.86  43** 7* 0  4 1 NA  8* 2 0  5.2~ 2.8 2  NA NA NA 

2006  1.05 
 

0.81  28** 9* 2.3  2.8 1.6 0  1.6 2.8 0  3 1 NA  1 1 NA 

2007  0.58 
 

0.88  26.8** 0.4 0  4 1 NA  NA NA NA  2.8 1.6 0  1 1 NA 

2010  0.44 
 

0.81  0.25 1.8 2.3  0 0 NA  0.4 1.6 0.3  1 0 NA  1 4 NA 

2011  1.41 
 

0.77  13* 1 0.9  2.9 1.9 8.3~  1 19** 5.4  0.3 1 0.1  NA NA NA 

  

 
1 OUTFIT mean square range: 0.57-1.42 (Nr = 45). Values <0.57 indicate overfit, >1.42 underfit, and >2.0 suggest use of extreme categories. Row shading reflects OUTFIT interpretation: blue 

(overfit) for restriction of range and brown (underfit) for relative inconsistency.  
2 Single Rater–Rest of Rater (SR/ROR) correlation, where values noticeably lower than those of other assessors indicate that an assessor is ranking samples in a different order from the 

panel. Grey-shaded cells highlight assessor response patterns that deviate from the panel. 
3 F-values with p-value levels of significance: <0.001***, <0.01**, <0.05*; <0.10~ measures with no superscript symbols >0.10. Where SA = Sample, Rep=Repetition and SA X Rep= the Sample 

and Replicate interaction factor. The levels of significance also apply to the list of attributes in the first row showing differences for FSample in the panel ANOVA (Table 5.2.).  
4 NA signifies no variation in assessor ratings, limiting the ANOVA model’s ability to estimate the contribution of the effect. 
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Figure 5.8. Trellis plots for the Trained panel showing the response distribution of raw scores and highlighting model misfit for individual assessors.  
Shading indicates types of rating effects: blue for restriction of range and brown for inconsistent ratings. Grey borders correspond to 
assessor response patterns that deviate from the panel, as indicated by low SR/ROR correlation values. 
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This pattern suggests that something else might be affecting their ratings, perhaps 

they were distracted. Further investigation into the "any other comments" section 

of the questionnaire revealed that Assessor 2010 was the only one to leave a 

comment, which simply stated "Bitter" for 8 out of the 9 evaluations, suggesting 

some level of disengagement. 

The performance of the trained panel was more inconsistent than expected. While 

a few assessors demonstrated reasonable discrimination, others showed variable 

or restricted scale use that limited the panel’s overall reliability. These findings 

suggest that targeted retraining and scale calibration would be required to improve 

both individual performance and collective panel agreement. The Rasch model 

supported these observations by identifying assessors whose rating behaviour 

deviated from the collective panel pattern and by quantifying the extent of misfit and 

their interpretation. However, the results also showed that acceptable fit values did 

not always correspond to high data quality, highlighting the importance of 

examining Rasch outputs in conjunction with raw data visualisations to obtain a 

complete understanding of panel performance. 

5.3.4.2 Performance of untrained panel individual assessors 

The control plot for the OUTFIT Mnsq values of the untrained panel is presented in 

Figure 5.9, using the same acceptable fit range of 0.57 to 1.42 as applied to the 

trained panel, since they provided the same number of responses. Unlike the 

trained panel, assessors in this group exhibited more erratic rating patterns, poor 

repeatability, and used extreme scale categories, as seen in the trellis plots in 

Figure 5.10. Assessors 1005, 1007, 1011, 1012, and 1018 were flagged as overfit, 

with OUTFIT Mnsq values of 0.56, 0.56, 0.15, 0.51, and 0.38, respectively, 

suggesting they used restricted parts of the rating scale. In contrast, assessors 

1010, 1013, and 1017 were identified as underfit, with OUTFIT Mnsq values of 1.42, 

1.46, and 1.48, indicating relatively inconsistent ratings compared to the rest of the 

panel. Assessor 1015, identified as the most lenient on the Wright map (Figure 5.2), 

frequently used both the upper and lower extremes of the scale, had the highest 

OUTFIT Mnsq value of 2.49. These flagged rating behaviours from the Rasch analysis 

corresponded with patterns observed in the raw score distribution trellis plots 

(Figure 5.10). 
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Table 5.6 summarises both the Rasch model assessor performance indices and 

individual ANOVA results. The ANOVA indicated that 14, 11, 9, 9, and 6 assessors 

could detect significant differences (α = 0.05) between the samples based on Milky 

flavour, Orange flavour, Sweetness, Cocoa flavour, and Saltiness, respectively. At a 

less stringent level (α = 0.10), a few additional assessors identified differences: 6 for 

Orange flavour, 4 for Milky flavour, 2 for Sweetness, and 1 for Cocoa flavour. These 

assessors likely contributed to the highly significant panel discrimination (p < 0.001) 

across all attributes, with Saltiness being significant to a lesser extent (p < 0.05). 

However, interaction plots revealed substantial crossover and magnitude 

interaction effects, while trellis plots showed poor replication across most 

attributes. Only Orange and Milky flavours exhibited more consistent patterns. 

Assessors flagged as overfit are shaded blue in Figure 5.10, with black borders 

indicating central tendency effects. Lower OUTFIT Mnsq values within the overfit 

range appeared to indicate a central tendency effect, where ratings were restricted 

to the middle categories across attributes, as seen in Assessors 1011 and 1018. In 

contrast, higher OUTFIT Mnsq values within the overfit range pointed toward 

category range restriction, as observed with Assessors 1005 and 1007. However, it 

remains unclear whether there is a specific OUTFIT Mnsq range that consistently 

indicates these effects. 

The Rasch model’s rater performance indices are relative measures, indicating an 

assessor’s performance compared to the rest of the group (Myford & Wolfe, 2004). 

Since many assessors in the untrained panel were inconsistent, the OUTFIT Mnsq 

and SR/ROR correlation values were less informative for analysts attempting to 

identify assessors in disagreement, occasionally flagging assessors who had 

slightly better internal consistency. This was observed for the underfitting Assessor 

1013, who generally ranked the samples consistently across replicates, despite 

some issues with repeatability (Figure 5.10). Saltiness and Orange flavour were 

exceptions, with replicate evaluations showing crossover interactions. This 

assessor was able to distinguish between samples for all attributes (p < 0.001) 

except Saltiness. Orange flavour was only significant at the 10% level (α = 0.10), 

likely due to greater internal inconsistency in both Saltiness and Orange flavour.  
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Figure 5.9. OUTFIT Mnsq plot for assessors in the Untrained panel. 
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Table 5.6. Summary of individual ANOVA results for the Untrained panel, showing Rasch model indicators for rater performance 

Assessor 
 Rasch Model Indices  Orange Flavour***  Milky Flavour***  Sweetness***  Cocoa Flavour***  Saltiness* 
 OUTFIT1  SR/ROR2  FSA

3 FRep FSA X Rep  FSA FRep FSA X Rep  FSA FRep FSA X Rep  FSA FRep FSA X Rep  FSA FRep FSA X Rep 

1001  0.62  0.65  4.3~ 1.6 1  7* 1 0.1  2 2 1.8  6.4~ 2.8 0  NA4 NA NA 
1002  0.68  0.13  3 0.3 1  1 3.3 1.3  2.8 0.4 0  0 1.8 NA  7* 1 0.1 
1003  0.89  0.31  3 0.6 0  38** 2 0.3  26** 2 2.6  14.8* 2.8 0.1  0.2 0.2 1.2 
1004  1.22  0.64  1.5 0.2 0.1  1.5 1.2 23.7*  43** 4 1.8  0.9 2.6 0.2  16* 7* 0.1 
1005  0.56  0.28  1.5 0.1 0.5  12* 1 0.2  5.2 0.4 0.2  4 1 3.9  1 1 NA 
1006  0.75  0.39  24.5* 0.5 6.7~  3.3 1 0.5  73*** 1 0.6  43** 7* 0.4  NA NA NA 
1007  0.56  0.55  18.5** 2 0.1  37** 7* 0.1  3.3 0.3 1.3  13* 1 2.8  8* 8* 0 
1008  1.26  0.54  7.4* 1.3 0.8  9.6* 1 0  7* 73** 0  4 3.3 0.5  12.4* 6.4~ 0 
1009  1.07  0.74  6.8~ 1.6 0  5.4~ 2 1.9  3 13* 49**  0.3 3.3 0.5  1 4 NA 
1010  1.42  0.64  6.8~ 0.3 3.4  6.1~ 4 1.1  13* 0.1 0  3.3 0.1 0.1  NA NA NA 
1011  0.15  0.78  52** 1 2.8  1 1 NA  NA NA NA  4 1 NA  1 1 NA 
1012  0.51  0.63  39** 4 49**  14* 2 2.8  4 3 NA  0.3 0.3 0.1  2.8 0.4 0 
1013  1.46  0.35  6.9~ 1.1 0.3  50** 26** 0.1  19** 1 0  36.4** 2.8 1.4  3.7 0.8 0.6 
1014  0.98  0.46  7.3* 1.3 16.8*  30.5** 0.5 0.1  6.1~ 2.7 3.2  2.3 0.6 0.1  2.7 0.6 6.3~ 
1015  2.49  -0.03  28.9* 1.9 0.2  8.7* 0.2 0.1  3.3 1.8 0.1  19.8*** 1.3 0.1  10.4* 2.7 1.3 
1016  1.02  0.51  10.3* 1.6 0.1  6.5~ 3.5 2.1  52** 13* 0.9  2.4 3.8 0.3  0.2 0.4 0.4 
1017  1.48  0.43  0.8 0.5 1.5  3.7 2 85.5***  3.7 0.3 1.5  0 1.2 1.2  3.8 1 NA 
1018  0.38  0.73  7.6* 2.8 1  0.1 0.3 NA  16* 7* 0.1  16* 1 NA  NA NA NA 
1019  1.09  0.58  3 4 1.9  37** 0 NA  32** 2 1.8  25** 0.3 0.1  1.6 1.6 0.3 
1020  1.29  0.38  0.6 0 1.6  124*** 4 0.4  4.6~ 0.3 2.8  14.7* 0.1 2  7* 4 0.1 
1021  0.75  0.65  4.9~ 2.4 4.3  13* 3 0.1  0 7* NA  3.7 1.9 0.5  2.8 2.8 13.3* 
1022  0.61  0.39  5.3~ 0.3 0.5  14* 0.5 0.8  3 1 0.2  3.3 1 0.5  1 1.8 2.3 
1023  1.16  0.28  12.8* 3.7 15.1*  5.2~ 0.4 0.3  3.1 0.7 1.8  1.6 1.1 2  0.3 0.2 0.7 
1024  1.37  0.58  48.5** 2 2.6  39** 4 0.1  6 2 0  1 0.3 0.1  1.2 1.2 1.3 

 
1

 OUTFIT mean square rang e: 0.57-1.42 (Nr = 45). Values <0.57 indicat e overfit, >1.42 under fit, and >2.0 suggest use of extreme categ ories . Row shading reflects OUT FIT interpretation: blue (overfit) = range restriction and non-discrimination (black borders) , brown (u nderfit) = rel ative or int ernal i nconsistency , and red= use of extreme categ ories.  
2

 Single Rater–Rest of R ater (SR/ROR) correlation, w here values noticeably low er than those of other ass essors would indicate that an assess or is ranki ng samples in a different order from the panel. For this panel , no clear trend was observed, as their ratings were general ly inconsistent.  
3

 F-values with p-value levels of sig nifi cance: <0.001***, <0.01**, <0.05*; <0.10~ measures with no superscript symbols >0.10. Also applies to the attributes (FSample) with signi ficant differences in T able 5.2.  

4

 NA signifies no variation in assessor ratings, limiting the ANOVA model’s ability to estimate the contribution of the effect. 

1 OUTFIT mean square range: 0.57-1.42 (Nr = 45). Values <0.57 indicate overfit, >1.42 underfit, and >2.0 suggest use of extreme categories. Row shading reflects OUTFIT interpretation: 
blue (overfit) = range restriction and non-discrimination (black borders), brown (underfit) = relative or internal inconsistency, and red= use of extreme categories.  

2 Single Rater–Rest of Rater (SR/ROR) correlation, where values noticeably lower than those of other assessors would indicate that an assessor is ranking samples in a different order 
from the panel. For this panel, no clear trend was observed, as their ratings were generally inconsistent. 

3 F-values with p-value levels of significance: <0.001***, <0.01**, <0.05*; <0.10~ measures with no superscript symbols >0.10. Also applies to the attributes (FSample) with significant 
differences in Table 5.2.  

4 NA signifies no variation in assessor ratings, limiting the ANOVA model’s ability to estimate the contribution of the effect. 
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Figure 5.10. Trellis plots for the Untrained panel showing the response distribution of raw scores and highlighting model misfit for individual assessors.  
Where shading indicates a type of rating effect: red for extreme category use; blue for restriction of range; blue with black borders for central tendency; 
and brown, for inconsistent ratings relative to the expected panel performance. 
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Other underfitting assessors with trellis plots highlighted in brown (1010 and 1017) 

seemed to have a higher number on attributes with poor repeatability. Assessor 

1017 identified as the most severe assessor on the Wright map (Figure 5.2), had the 

next highest OUTFIT Mnsq value (1.48) after Assessor 1015, who showed extreme 

misfit. 

SR/ROR correlation values were inconsistent across all assessors, offering no clear 

pattern and limiting their usefulness as a reliable performance indicator for this 

panel.  

Insights from the Rasch performance indices, combined with the ANOVA 

discrimination results for the key attributes Orange flavour and Milky flavour, which 

were identified from the attributes facet outfit analysis, were used to identify 

assessors whose performance more closely aligned with that of the trained panel 

for further analysis. 

5.3.4.3 Rasch analysis of selected untrained assessors 

Eight assessors: 1001, 1008, 1009, 1014, 1016, 1022, 1023, and 1024 were selected 

from the untrained panel based on their relatively consistent rating patterns, as 

indicated by their OUTFIT Mnsq values, and their ability to discriminate between 

samples (Table 5.6) using the key attributes, Orange flavour and Milky flavour, 

identified by the MFRM. The main aim of selecting these assessors was to determine 

whether an untrained but carefully screened subgroup could achieve results 

comparable to those of a trained panel. Their performance was then compared with 

that of the trained panel using Rasch separation statistics and rater performance 

indices to evaluate whether similar sample results could be obtained. 

The global model fit of the data was acceptable, as only 1% of absolute standardised 

residuals exceeded 2, suggesting no major inconsistencies that could distort the 

measurement. The unexplained variance in the first contrast had an eigenvalue of 

2.18, slightly above that of the original panel (1.96), indicating a strength in 2 out of 

5 attributes and suggesting the possibility of a secondary dimension. A correlation 

of 0.46 was observed between the standardised residuals of Sweetness and Milky 

flavour, confirming that the rating for Sweetness was associated with that of Milky 
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flavour, most likely reflecting the impact of milk chocolate in Brand B, as discussed 

earlier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The Wright map for the selected assessors (Figure 5.11) closely resembled that of 

the original untrained panel. However, the selected assessors displayed more 

consistent severity levels, with their measures tightly clustered around the mean 

(−0.2 to 0.2 logits) suggesting they applied the scale more uniformly after 

accounting for measurement error. The sample measures were also more tightly 

clustered, falling within a narrow range of 0.1 logits and remained below average 

based on the TIM, with no significant differences observed between the samples or 

their replicate evaluations on average. Orange flavour was still located below the 

average logit reflecting the continued impact of lower ratings for Brand B on the 

attribute. This was particularly evident as the selected assessors were able to 

 
Figure 5.11. Many-Facet Wright Map for the Selected Untrained Assessors 
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discriminate between the samples based on Orange flavour and were more 

accurate in rating the absence of Orange flavour for Brand B.  

Notably, the half-point thresholds and the locations of assessors and attributes on 

the Wright map remained unchanged. This stability demonstrates the Rasch 

model's invariance property, where parameter estimates stay consistent across 

different subgroups, provided the model fit is adequate and the subgroups exhibit 

similar measurement characteristics (Bond et al., 2020). This consistency enables 

meaningful comparisons, even when panel composition varies, highlighting the 

robustness of the Rasch framework for sensory data analysis. 

The Rasch model separation statistics and sample measures based on the Total 

Intensity Measure (TIM) are summarised in Table 5.7. The samples did not differ 

significantly, as indicated by a high chi-square (χ²) p-value of 0.98, a strata value near 

0, and a reliability of 0, confirming a lack of distinct levels between samples. The 

severity levels of the assessors were also not significantly different at a 95% 

confidence interval. Assessor severity levels also showed no significant differences at 

the 95% confidence level. Although the strata value of 1.45 suggested minimal 

variation among assessors, the reliability value of 0.41 indicated this variation was 

likely due to measurement error. Reliability values below 0.50 suggest that differences 

between measures are primarily due to measurement error (Wright & Masters, 2002). 

Table 5.7. Summary of Rasch model separation statistics for the panel of selected 
untrained assessors 

Rasch separation statistics  Samples  Assessors 

Fixed χ² p-value (α=0.05)  0.98  0.06 

Strata  0.33  1.45 

Reliability  0.00  0.41 

     

Sample Measure1     

Brand A -0.32     

Brand B -0.33     

Brand C -0.32     
1Standard error (S.E) of 0.06 for all sample measures 
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5.3.4.3.1 Attribute contributions to the product differences 

The importance of each attribute in differentiating the products is presented in 

Figure 5.12 below. The acceptable range for Outfit Mnsq values is between 0.66 and 

1.33, based on 72 responses per attribute. Orange flavour and Milky flavour 

emerged as key discriminating attributes, exhibiting underfitting Outfit Mnsq values 

of 1.56 and 1.15, respectively. Unlike the original panel, where Cocoa flavour had a 

higher Outfit Mnsq value (Figure 5.5), Cocoa flavour is now at the lower limit of the 

acceptable range (0.66), suggesting it did not effectively discriminate between 

samples. Sweetness now showed a higher value of 0.70, but both attributes were 

close to the overfit threshold, indicating limited contribution to product 

differentiation.  

 

 

 

 

 

 

 

 

 

 

 

 

The slightly higher value for Sweetness may reflect differences in replicate 

interaction patterns within assessors. As shown later in Figure 5.14 , only assessors 

1016 and 1024 consistently ranked the samples based on Sweetness. However, all 

assessors, including these two, showed crossover interactions for Cocoa flavour. 

These rating patterns likely resulted in the loss of product discrimination for the 

attributes (Stone et al., 2012), and suggested that assessors struggled to 

consistently distinguish samples based on these attributes. 

Figure 5.12. Attribute contributions to overall product differences for the panel of 
selected Untrained assessors 
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The intensity of Orange flavour remained lower than average (logit measure -0.14) 

because the extremely low ratings for Brand B, pulled down the overall average for 

Orange flavour across the samples. Saltiness, with a logit measure of -0.65, proved 

more challenging to rate, exhibiting an underfit (OUTFIT Mnsq = 0.81) for the 

selected assessors due to its low intensity and inconsistent ratings. These patterns 

are clearly reflected in the trellis plots for the selected assessors in Figure 5.14. 

5.3.4.3.2 Relative performance of the selected assessors 

In Figure 5.13, the control plot for the OUTFIT Mnsq values of the selected untrained 

assessors revealed no misfitting assessors, indicating that the rating patterns of all 

assessors were consistent with the panel's overall ability, (i.e., based on standard 

panel performance criteria, they showed panel agreement). However, their rating 

patterns (Figure 5.14) were generally more erratic, compared to the trained panel 

(Figure 5.8), though less so than those of the original untrained panel (Figure 5.10), 

particularly for the key attributes.  

Assessors whose OUTFIT Mnsq values approached the acceptable limits tended to 

show stronger rating effects than others, as seen with Assessor 1001, who showed 

restriction of range effect across most attributes except Orange flavour. This 

supports the idea that the magnitude of a rating effect corresponds to changes in 

OUTFIT Mnsq values, which increase, or decrease based on how prominently an 

assessor displays that effect. As Linacre (1995) states, greater variance among 

parameters within a facet leads to higher OUTFIT Mnsq values. Similarly, lower 

variance corresponds to lower OUTFIT Mnsq values. This pattern is explored further 

in Chapter 6.  

Single rater – rest of rater (SR/ROR) correlations were still inconsistent and 

therefore not as informative as with the trained panel as no clear pattern could be 

identified. 

The selected untrained assessors were indeed the better performers within the 

untrained group, as identified using Rasch diagnostic tools, specifically the OUTFIT 

Mnsq control limits. The model identified the same key sensory attributes across 

both the trained and untrained panels.
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Figure 5.13. OUTFIT Mnsq plot for Selected Assessors from the Untrained panel 
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Figure 5.14. Trellis plots highlighting the Selected Assessors (Unshaded) from the Untrained panel, with shaded areas indicating excluded assessors.  
Shading colours represent Rasch-based interpretations of rater performance: red indicates extreme category use; blue, restriction of range; blue 
with black borders, central tendency; brown, inconsistent ratings; and green, assessors who were consistent based on Outfit Mnsq values but did 
not discriminate key attributes in the ANOVA. 
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However, while the trained panel was able to effectively discriminate between the 

products based on the Rasch measure of overall difference – TIM, neither the full 

untrained panel, nor the selected subset could differentiate the products holistically, 

though they could detect product differences in specific attributes. The untrained 

assessors rated the absence of Orange flavour in Brand B more accurately, whereas 

the trained panel, though rating it lower than the other attributes, appeared more 

conservative and did not rate it as completely absent. Still, the inconsistent and 

erratic ratings from the untrained panels, both for Orange flavour and other attributes, 

led to a loss of discrimination between products when considering the overall 

differences.  

5.3.5 Convergence analysis of panel size on product discrimination 

Convergence analysis was used to examine whether the untrained panel’s lower 

discrimination reflected insufficient panel size or inconsistent rating patterns, and to 

compare how discrimination ability varied with panel size between trained and 

untrained assessors, following the method described in section 5.2.5.2: Convergence 

analysis.  

Figure 5.15 shows the Sample facet fixed chi-square values for both panels across 

two iterations. The untrained panel subsets (orange lines) produced low, irregular, 

and non-significant chi-square values (p>0.05) at all panel sizes, ranging from 0.1-

0.4 at n=7 up to only 1.6 at n=24. Neither iteration reached significance, and the 

curves did not approach the discrimination level of the benchmarked original 

trained assessors. In contrast, the artificially expanded trained panel dataset (blue 

lines) produced a smooth, increasing discrimination trend and consistently high, 

significant chi-square values (p<0.05), increasing from 8.5-11.6 at n=7 to 24.6 at 

n=24. Both iterations followed almost identical patterns. This aligns with Myford 

and Wolfe's (2004) observation that when most raters in a Many-Facet Rasch 

analysis provide erratic ratings, the respondents being rated (in this case, the 

products) appear to differ only minimally in performance level, thereby reducing the 

ability to make reliable distinctions.
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Figure 5.15. Rasch model fixed Chi-square convergence with increasing panel size for trained and untrained panels. 
Trained-panel subsets (blue lines) show a consistent increase in Sample facet chi-square values as panel size increases, with discrimination 
stabilising beyond approximately 15 assessors. Untrained-panel subsets (orange lines) display irregular and generally low chi-square values, 
indicating poor discrimination and lack of convergence relative to the trained panel. 
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The trained panel's convergence curve suggested that discrimination power 

increases in a stable, predictable way when underlying ratings are consistent. The 

untrained panel’s failure to converge indicates that rater inconsistency, rather than 

insufficient sample size, limited the model’s ability to detect product differences. 

Minor fluctuations in the trained panel curve at small subset sizes likely reflect the 

influence of individual assessors on model calibration, with stability reached at 

around 15 assessors. 

Another possible contributor to the untrained panel’s lack of discrimination is the 

opposing attribute directions for Brand B, which was the only sample without added 

orange flavouring. The untrained assessors rated Brand B lowest for Orange flavour 

but highest for Milky flavour. When the Rasch model adjusted these ratings to 

estimate a single latent Overall difference variable, the opposing directions may 

have partially cancelled each other out, reducing apparent product separation on 

the logit scale. Although the trained panel showed similar rating patterns for Brand 

B, their lower measurement noise on the less dominant attributes allowed for 

clearer discrimination between the samples. 

This highlights an important caveat in applying the MFRM to estimate an overall 

difference construct. The present results suggest that when a product exhibits 

opposing attribute intensities (e.g., low on one attribute but high on another), 

variability in ratings can cause the combined latent estimate to mask genuine 

sensory differences. This was evident for Brand B, which lacked added orange 

flavouring but was the only sample containing milk chocolate crumbs and full 

cream milk (Table B 2), a formulation likely reflected in its perceived attribute 

intensities. However, because no analytical tests were conducted to verify the 

flavour composition of the samples, this interpretation should be viewed as 

tentative. 

These findings suggest that the model is most appropriate when products being 

examined do not have extreme opposing attribute profiles and when assessors 

provide relatively consistent ratings, even if severity levels differ. The advantage of the 

MFRM over traditional methods is its integrated diagnostic framework: it 

simultaneously evaluates product discrimination, adjusts for systematic assessor 

severity and leniency, and identifies problematic raters within the same analysis. 
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However, this adjustment only works for consistent bias (e.g., an assessor who is 

always more severe). It cannot correct erratic rating patterns or differences in 

attribute conceptualisation. Analysts also need to consider test design carefully, as 

unidimensionality is ultimately driven by which attributes are selected to represent 

the underlying construct. 

When products are expected to exhibit opposing attribute profiles, examining attribute-

level differences individually through the Rasch bias/interaction plots can reveal 

contrasts that become obscured when scores are collapsed into a single measure. As 

shown in Figure E 2, these plots illustrate the opposing attribute intensities and 

highlight product differences evident in the rating patterns that are not visible in the 

aggregated scores. 

Finally, while the convergence analysis shows that increasing panel size could not 

compensate for a lack of training in this study, MFRM may still offer value for trained 

panels by accounting for residual severity differences and potentially reducing the 

amount of recalibration needed to maintain panel alignment. 

5.4 Limitations of the study 

Panel performance constraints 

Although untrained assessors are expected to exhibit inconsistencies due to 

factors such as lack of expertise, adaptation, or poor sensitivity, the poor scoring 

repeatability observed in many of them may have been influenced by carryover 

effects. Unlike the trained panel, the untrained assessors completed all evaluations 

in a single session without specified time gaps between replicate evaluations, 

which likely contributed to fatigue or reduced focus.  

Motivation may have been an additional contributing factor. The absence of 

incentives could have lowered engagement, whereas reward systems and feedback 

are known to enhance assessor enthusiasm by reinforcing the perceived value of 

their contribution (Findlay et al., 2007; Kemp et al., 2018; Meilgaard et al., 2025). 

Collectively, these factors may have hindered the untrained assessors’ ability to 

generate reliable and consistent data, particularly in contrast to the trained panel, 

who were accustomed to the demands and importance of sensory evaluation tasks. 
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Lack of scale-use training 

A further limitation affecting both panels was the absence of training on scale-use 

which could have contributed to the product interactions observed within the 

trained panel and the more erratic ratings seen among the untrained assessors, 

alongside possible differences in sensory sensitivity and attribute interpretation. 

Although the Rasch model can statistically accommodate individual differences in 

severity, where some assessors consistently rate higher or lower than others 

(Linacre, 1994; Myford & Wolfe, 2004; Bond et al., 2020), training on scale 

interpretation and calibration could have reduced these variations and improved 

measurement precision. This represents a readily addressable limitation for future 

studies, where targeted training on how to apply the scale could enhance assessor 

consistency and reduce measurement error without requiring all assessors to 

adopt identical rating patterns. 

Lack of instrumental analysis to verify product characteristics 

Another limitation was the absence of instrumental analysis to objectively quantify 

sample composition. Sensory data indicated that Brand B was rated highest in Milky 

flavour and lowest in Orange flavour, consistent with its formulation (the only 

product containing milk chocolate crumbs and full cream milk, and the only one 

without added orange flavouring). However, without analytical tests to verify actual 

concentrations of dairy or citrus-related compounds across the three sampled 

brands, it is not possible to confirm whether these perceived attribute intensities 

reflect true chemical differences or perceptual interactions among ingredients. 

Incorporating instrumental analysis (e.g., GC-MS for volatile compounds or HPLC 

for non-volatile flavour components) in future work would strengthen interpretation 

of sensory attribute patterns. 

Sample choice constraints 

Finally, while choosing a sample with no orange flavouring to compare against other 

chocolate-orange spreads was intentional, the opposing attribute intensities it 

produced were not anticipated to cause cancellation effects in the MFRM overall 

difference estimation. This limited the possibility of making meaningful 

comparisons with the Jaffa cakes study (Chapter 4), in which products were 



162 
 

 

deliberately selected to share similar sensory attributes and thereby support cross-

study evaluation of MFRM performance across different food matrices.  

While these limitations influenced panel performance and constrained cross-study 

comparisons, they also clarify where methodological refinements can enhance the 

robustness of future sensory research using the Many-Facet Rasch Model (MFRM). 

5.5 Significance of the study 

In this study, the conventional ANOVA approach to evaluating assessor and panel 

performance provided useful insights into the discriminatory abilities of the 

assessors and the panels. Typically, the discriminatory ability of assessors is 

evaluated based on whether they detect differences in the key attributes identified by 

the panel, with those failing to do so selected for retraining. However, this study 

revealed some limitations in that approach. The trained panel ANOVA results showed 

that four out of the five sensory attributes (except Saltiness) exhibited significant 

differences between products (p<0.01), identifying them as key attributes. While 

Orange flavour and Sweetness showed significant interaction effects, which may 

affect their reliability. As a result, Milky flavour and Cocoa flavour were identified as 

more stable key attributes. However, individual ANOVAs revealed that no assessors 

significantly discriminated between products on Milky flavour, and only two out of 

seven did so for Cocoa flavour (α = 0.05), indicating a misalignment between panel-

level and individual-level findings. Closer examination of the raw data using the trellis 

and interaction plots confirmed this inconsistency, emphasising the importance of 

closely interrogating raw data when evaluating panel performance. As previous 

research has noted, the ANOVA alone does not provide all relevant diagnostic 

information (Tomic et al., 2007; Stone et al., 2012; Ho, 2015; Raithatha & Rogers, 

2018). This disconnect between the panel and individual results can limit its utility 

for selecting key attributes, especially in situations where discriminatory attributes 

are not known a priori, thereby reducing the efficiency of the method for guiding 

assessor selection and training. 

In contrast, Rasch analysis provided more diagnostic and interpretable insights into 

panel performance without requiring multiple statistical tests. By first adjusting for 

assessor severity, it removed a major source of individual variability in sensory data 
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(i.e., scale level effects), so the remaining variance more accurately reflected true 

product differences provided that assessors rated the attributes consistently, as 

was the case for the trained panel. Interaction effects from other modelled 

variables (i.e. Repetition and Sample facets) and crossover variations were 

captured as measurement errors, which were reflected in the residual diagnostics 

indices (OUTFIT Mnsq). Consequently, the OUTFIT Mnsq rankings for each attribute 

were primarily influenced by variations in rating patterns across samples. This 

approach allowed for a more precise identification of key attributes and proves 

potentially beneficial in situations where there is no prior knowledge of expected 

differences. This clarity was further enhanced when Rasch outputs were combined 

with response distribution and interaction plots, which revealed additional insights, 

such as where loss of discrimination by an attribute was a result of crossover 

interactions. 

Additionally, correlation analysis of the standardised residuals allowed for the 

identification of locally dependent attributes, those whose ratings were statistically 

influenced by other attributes. This provided valuable diagnostic insight into subtle 

product nuances that might otherwise go unnoticed. In practice, this information 

can guide the combination or redefinition of attributes for clearer, more reliable 

sensory profiling. In this study, the addition of milk chocolate not only influenced 

perceptions of milky and cocoa flavours but also altered the perceived Sweetness. 

Sweetness and Milky flavour were flagged as locally dependent attributes across 

the trained panel, the full untrained panel, and the selected subset of untrained 

assessors, although the degree of dependence varied across the different panels. 

Recognising and accounting for local dependence ensures that the measures 

reflect meaningful sensory differences, rather than overlapping perceptions that 

could overstate the distinctiveness of individual attributes. 

At the individual performance level, after adjusting for differences in assessor 

severity (as discussed in section 3.1.2), Rasch diagnostics (OUTFIT Mnsq and 

SR/ROR correlation), along with distribution plots of the raw data, revealed 

assessors who rated the samples in an order that differed from the rest. These 

diagnostics also highlighted rating effects such as restriction of range, central 

tendency, inconsistent scoring, and extreme category usage. While the Rasch 
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model clearly offers advantages for identifying assessor bias, rating effects, and 

local dependence, aspects that ANOVA does not easily detect, it does not replace 

the ANOVA.  

ANOVA provides a familiar framework for statistical significance testing but 

assumes homogeneity of scale use, and does not account for individual rating 

behaviours, which can obscure true product differences or lead to inefficient 

assessor selection if discriminatory attributes are not known in advance. In 

contrast, the Rasch model adjusts for these individual differences and provides 

additional diagnostic tools that improve data quality and interpretation. By 

combining Rasch diagnostics with insights from individual ANOVA results, which 

identified assessors capable of discriminating between samples, better-performing 

assessors could be selected from an untrained panel.  

Just like an X-ray that detects problems early and precisely, the Rasch model 

enables panel leaders to pinpoint where there are issues in assessor performance, 

allowing potential concerns to be flagged before more statistical analysis is 

required. While mean-based interaction plots can also reveal inconsistencies and 

crossover patterns among assessors, the Rasch model provides a quantitative and 

model-based assessment of fit, estimating how well each assessor’s ratings align 

with the expected response pattern. This complements the descriptive information 

provided by the plots. Tools such as Wright maps and OUTFIT Mnsq plots provide a 

rapid, visual overview of individual assessor behaviour, and how consistently 

attributes are rated across the panel. This could be useful for identifying individuals 

from untrained panels with potential for recruitment into expert panels, or for 

detecting subtle declines in performance or panel drift within trained panels. 

Additionally, it highlights attributes that may require further training to ensure 

assessors rate them consistently and accurately. It also supports decisions on 

whether certain attributes are worth further measurement, or if they should be 

reconsidered as redundant and removed from the panel evaluation. 

It should be noted, however, that Rasch fit values are relative to the response 

pattern within the panel, not to an ideal standard. Therefore, acceptable fit in a 

poor-quality panel does not mean good performance. In panels where overall 

performance is inconsistent like in untrained panels, acceptable fit values may be 
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misleading because the model is benchmarking them against a weak reference 

group. Therefore, fit statistics should be interpreted alongside raw data visualisations 

and other performance indicators to ensure accurate assessment of assessor 

performance. In line with earlier observations on the importance of always 

examining the raw data, Myford and Wolfe (2004) similarly advise that researchers 

inspect the vectors of observed ratings for any overfitting or misfitting assessors 

before concluding that apparent rater effects, such as central tendency or severity, 

represent genuine behavioural differences rather than artefacts of the data. 

However, the true strength of the Rasch-based approach lies in its ability to 

complement, rather than replace, traditional sensory quality control methods. 

When integrated with ANOVAs, raw data distribution plots and interaction plots, the 

Rasch model enhances the analytical capabilities of sensory analysts, reducing the 

need for extensive statistical testing and resource use. This combination offers a 

more comprehensive, multi-layered understanding of panel performance, merging 

intuitive visual insights with robust statistical analysis and individual diagnostics. 

Ultimately, while the Rasch model adjusts for systematic differences in assessor 

severity, allowing for individual rating tendencies rather than requiring unanimous 

panel ratings, (Linacre, 1994), it cannot compensate for fundamental issues such 

as poor attribute understanding, low sensory sensitivity, or erratic scale use. As 

noted in the limitations, none of the panels received formal training on scale use, 

which likely contributed to the variation observed within the trained panel and the 

inconsistency seen among the untrained assessors, in addition to possible 

differences in sensory sensitivity and attribute interpretation. Despite the limited 

overall reliability of the panels, the Rasch diagnostics still identified differences in 

assessor severity and fit, consistent with the expectation that individual differences 

in scale use (e.g., severity, range restriction) introduce additional variability. 

Therefore, these results support the conclusion that although Rasch analysis can 

adjust for level effects statistically, adequate training remains essential to ensure 

consistent attribute interpretation and rating precision.  

The Rasch model was primarily used as a diagnostic tool to identify individual rating 

behaviours and highlight areas for improvement; however, future work could use 

these individual standards to track each assessor’s consistency over time, ensuring 



166 
 

 

that stable individual patterns are retained while problematic drift or bias is 

identified early. Complementary to conventional methods, Chapters 4 and 5 have 

demonstrated how the Many-Facet Rasch Model (MFRM) provides an efficient 

diagnostic approach for examining panel performance, delivering deeper insights 

into product differences and the attributes perceived to drive those differences. The 

Rasch-based approach supports high standards in sensory quality control by 

statistically adjusting for individual scale-level effects (i.e., consistent severity or 

leniency differences among assessors), which could reduce the reliance on intensive 

training to force all assessors to use the scale identically. By modelling each 

assessor’s severity and consistency, the Rasch model transforms raw scores to a 

common interval scale, ensuring that valid product comparisons can still be made 

even when assessors apply their own consistent standards. This offers the potential 

for significant cost savings in both time and resources, improving overall efficiency in 

sensory quality control without compromising the quality of insights gained. 

Building on the preceding discussion, the next chapter examines the potential of the 

MFRM to strengthen sensory quality diagnosis by integrating product evaluation and 

assessor performance within a unified analytical framework. While this chapter 

highlighted that Rasch fit values (i.e., OUTFIT Mnsq) are relative to the response 

patterns within a panel and must therefore be interpreted cautiously, the next study 

explores how these diagnostics can still support practical decision-making in 

sensory quality programs when used alongside raw data and other performance 

indicators. 

Specifically, the model is applied to sensory data from an untrained panel assessing 

a different product with a broader set of sensory attributes. The analysis investigates 

whether identifying assessors who show more stable response patterns relative to 

their group (i.e., acceptable fit within that context) can improve panel discrimination 

and reliability.  

This exploratory work does not treat fit as an absolute measure of assessor 

competence but instead examines whether Rasch-based diagnostics, applied 

critically, can inform assessor selection and recruitment in sensory quality control 

settings.  
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Chapter 6  

A Unified Rasch Approach to Sensory Difference Testing and 

Quality Control: A Validation Study 

6.1 Overview 

To evaluate the robustness and transferability of the Rasch-based approach for 

sensory difference testing, both the assessment of overall product differences and 

the monitoring of assessor performance were applied in a new context, with the aim 

of validating the framework as a unified tool. As demonstrated in previous chapters, 

the Many-Facet Rasch Model (MFRM) allows for simultaneous evaluation of both 

product differences and assessor performance within the same analysis, providing 

deeper insights on a granular level. 

In this chapter, the MFRM is used to assess product differences and assessor 

performance, while Principal Component Analysis of Residuals (PCAR) is employed 

to uncover patterns and relationships between sensory attributes that may be 

overlooked by conventional methods. The results are interpreted with practical 

implications for sensory quality control, including confirming product differences 

without confounding from individual differences in scale use, evaluating assessor 

reliability, identifying outlying assessor behaviour, selecting better-performing 

assessors, guiding training needs, determining the contribution of attributes to 

product differences, and assessing the utility versus redundancy of attributes. 

The chapter also addresses key limitations from Chapter 4, where the choice of 

attributes used in the Rasch-based TIM approach was not fully representative of the 

perceptible attributes in the products as perceived in a DFC test. To resolve this, a 

preliminary sensory session was conducted to select sensory attributes, as is 

standard practice with attribute difference testing in sensory quality control. 

Although untrained panels were still used, the participant information document 

and preliminary instructions (Appendix C.3) were designed to emphasise the need 

for a high level of commitment, aiming to address the limitation from Chapter 5, 

where the untrained panel seemed less motivated compared to the trained panel. 

This study used DFC and attribute intensity ratings on tomato soup samples. 
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6.1.1 Objectives 

The aim of the study was to evaluate the robustness and transferability of the 

Rasch-based framework for sensory difference testing and quality control, applying 

it to both the measurement of overall product differences and monitoring assessor 

performance, all within the same analysis, but in a new context, while also 

addressing limitations identified in the previous studies. 

The specific objectives were: 

1. To identify perceivable attributes in the tomato soup samples for use in the 

attribute intensity rating (AR) test of the main study. 

2. To evaluate the overall difference between three tomato soup samples using the 

DFC test. 

3. To assess the intensities of identified sensory attributes (from objective 1) in the 

tomato soup samples using the AR test. 

4. To estimate the Total Intensity Measures (TIM) by combining the intensity ratings 

from the identified attributes using the MFRM. 

5. To compare the overall difference results from the DFC ratings with the TIM 

derived from the combined attributes, using pairwise comparison tests. 

6. To assess the performance of the untrained panel in rating the tomato soup 

samples and select the top-performing assessors based on Rasch model 

residual fit statistics (OUTFIT Mnsq). 

7.  To investigate assessor rating behaviour in relation to Rasch model residual fit 

statistics (OUTFIT Mnsq). 

8.  To identify the key attributes responsible for the differences between the 

tomato soup samples. 

6.1.2 Study highlights 

▪ Significant differences were observed between the tomato soup samples and 

the control sample. 



169 
 

 

▪ The MFRM Wright map provided a clear visual summary of the dataset, showing 

assessor severity levels and identifying the attributes most strongly perceived 

across the samples. 

▪ PCAR revealed response dependencies between attributes, including both 

expected correlations (e.g., Rich aroma and Savoury flavour) and less 

conventional ones (e.g., Herby appearance and Viscous appearance). 

▪ Rasch group-level statistics revealed inconsistencies in the application of the 

rating scale, both by the full panel and the selected assessors. 

▪ OUTFIT Mnsq ranges for assessors showed specific rating effects, which were 

aligned with the pattern of the raw rating scores observed in the trellis plots. 

▪ Key and redundant attributes were identified through the OUTFIT Mnsq, with 

Creamy flavour, Thick mouthfeel and Viscous appearance driving the most 

significant differences, while Cooked tomato characteristics and Colour 

intensity were found to be the most redundant.  

▪ Creamy flavour and Rich aroma were among the most challenging attributes for 

the assessors to evaluate, as indicated by the OUTFIT Mnsq. 

6.2 Sensory study: materials and methods 

Sensory data were from the dataset referenced here as (Ariakpomu et al., 2025a). 

6.2.1 Samples 

Tomato soup was selected for this study due to its versatility and widespread 

familiarity, making it appealing for assessors to evaluate. Its ease of modification 

also allowed for the creation of samples with varied sensory characteristics and 

attribute intensities, enabling clear hypotheses about expected differences. Two 

types of ready-made canned tomato soup, “cream of tomato soup” and “cream of 

tomato and basil soup”, were used as the base, and the three final samples were 

prepared by modifying these bases with additional ingredients. This modification 

was also important to mask the original flavours of the base products, reducing the 

likelihood of bias from assessors who might have easily recognised them, as 

previously observed with the Jaffa cakes study in Chapter 4 (pg. 86). The cream of 

tomato and basil soup was used in its original form as the reference sample. 
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To create the second sample, double cream and dried chopped basil leaves were 

added to a cream of tomato soup base, aiming to increase its creamy flavour and 

thickness while aligning it more closely with the basil flavour of the reference 

sample. For the third sample, the cream of tomato and basil soup base was 

modified with the addition of passata and garlic granules to enhance its aromatic 

and savoury characteristics relative to the reference. Consequently, the hypothesis 

was that Sample 2 would be perceived as the thickest and most intense in creamy 

flavour while having a similar herby flavour to the reference sample, and Sample 3 

would have stronger savoury and aromatic notes compared to sample 2 and the 

reference sample. These expected sensory differences formed the basis for the 

product comparisons.  

All soup bases, along with the additional ingredients (passata, garlic granules, and 

dried chopped basil leaves), were purchased from a UK retail store and stored at room 

temperature (20±3°C). The double cream, also purchased from the same store, was 

stored separately in the refrigerator at 4°C until sample preparation. The ingredients 

were then incorporated into their respective soup bases in specified proportions, as 

outlined in Table B 3. The soups were heated in saucepans over medium heat on a 

stove top, with occasional stirring, until they began to gently bubble. After heating, they 

were allowed to cool to a serving temperature of approximately 70°C before being 

transferred to insulated flasks, accounting for potential heat loss during serving. The 

final samples were served to assessors within a temperature range of 60-67°C 

throughout the course of the testing sessions each day, ensuring realistic consumption 

conditions and minimising unexpected bias. 

6.2.2 Participants 

Ethical approval for the sensory study was granted by the Business, Environment 

and Social Sciences Faculty Research Ethics Committee at the University of Leeds. 

Participants (n=54) all residents of Leeds, and the majority being staff or students 

at the University, were recruited through emails, poster advertisements and 

personal referrals. Participants were eligible if they were aged between 18 and 65 

years, did not have any chronic health conditions, were not allergic or intolerant to 

the ingredients in the tomato soup samples or the palate cleanser, were not taking 

any routine medication (with the exception of contraceptives), were not following 
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any special or restricted diets, were not pregnant or lactating, and were available to 

attend two 1-hour sensory testing sessions within one month, with a minimum 

interval of four days between sessions. 

Each participant was provided with detailed information about the study 

requirements, including data protection and the data sharing disclaimer. Informed 

consent was obtained through signed consent forms, completed both at the point 

of enrolment and again in hard copy upon attendance at the first study session, to 

ensure participants fully understood the study requirements and were willing to 

proceed. Detailed instructions for the sensory test procedure were sent within three 

days of the scheduled session, with reminders sent at 1 hour and at 15 minutes 

before the session. These reminders were programmed as in-person Microsoft 

Teams meetings, which were automatically added to participants’ calendars. The 

decision to use Teams was made to improve attendance and punctuality, as the 

previous study had experienced issues with scheduled participants failing to 

attend, arriving late, or missing the second part of the test. As a result, all 54 

participants in this study attended both test sessions and were generally punctual. 

The final untrained panel consisted of 35 females (65%) and 19 males (35%), aged 

between 18 and 54 years. They represented various ethnicities: 16 Asian (30%), 10 

Black (18%), 17 White (31%), 3 Mixed (6%), and 8 belonging to other ethnic groups 

(15%). All assessors, except one, reported consuming soup products at least a few 

times a year. 40 participants (74%) consumed tomato soup at least a few times 

annually, and 30 (55%) had previous experience participating in sensory evaluation 

tests. 

As in the previous study, participants selected two convenient test dates via an online 

form (Jotform Inc, 2023). Upon completion of both sessions, each assessor received 

a £20 Flexi Gift voucher (GiftPay, 2024) as an incentive for their participation. 

6.2.3 Study design 

As in Chapter 4, a Randomised Complete Block Design (RCBD) and Latin Square 

were used to account for order effects and other potential sources of variation in 

the sensory experiments. Each assessor participated in two separate sessions: one 

for the DFC test and another for the AR test, with a minimum gap of four days 
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between the sessions. To minimise expectation biases (Meilgaard et al., 2015), half 

of the participants completed the AR test first, while the other half started with the 

DFC test. Additionally, to reduce variations due to the time of day, participants were 

only able to select either two morning sessions or two afternoon sessions for both 

tests, with the appointment booking form automatically ensuring this balance. 

Attendance was carefully managed to ensure a balance between the time of day 

and the order in which participants completed the tests. 

In each test session, three samples were presented. For the AR test, the samples 

were presented monadically (one at a time), while for the DFC test, the samples 

were presented in pairs, consisting of a test sample and a reference sample. Each 

sample was evaluated three times, resulting in a total of nine evaluations for the AR 

test and eighteen evaluations for the DFC test. All samples were served warm, with 

temperatures ranging from 60 to 67°C, in 30ml clear plastic shot cups labelled with 

random three-digit codes. The reference sample for the DFC test was labelled “R”. 

A limitation of the study discussed in Chapter 4 was that the attributes used for the 

AR test, which are combined to estimate the latent variable (TIM), did not fully 

represent the perceivable differences in the product, as no prior testing was 

conducted to select the relevant attributes. This oversight may have affected the 

results of the comparison between the DFC and AR tests. The DFC test assesses 

only overall product differences, meaning that attributes not included in the AR test 

could have still been perceived in the DFC test, potentially influencing the 

conclusions drawn from the comparison. 

In this study, this limitation was addressed by conducting a preliminary evaluation 

session to identify the perceivable attributes across the samples of interest. 

6.2.4 Attributes selection  

Following the methods described by Lee et al. (2021), Giacalone and Hedelund 

(2016), and Zeppa et al. (2012) with slight modifications, sensory descriptors were 

generated by untrained assessors (n=7), three of whom had experience with 

descriptive analysis. The assessors were presented with the three tomato soup 

samples (described in section 6.2.1), one at a time. For each sample, they were 
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asked to describe the sensory characteristics perceived, and to rate how well each 

sample exhibited those characteristics on a scale from 0 (not at all) to 5 (very well).  

A total of 61 descriptors, both comprehensive and specific, were generated by the 7 

assessors, with some descriptors occurring more frequently across the group. A final 

list of 18 attributes was generated, across 5 sensory modalities based on how often 

they were mentioned. Similar descriptors were consolidated into common terms. The 

selected attributes, along with their corresponding definitions, are outlined below. 

Table 6.1 List of 18 sensory attributes across 5 modalities used for the AR test, 
including definitions 

 Attributes Definitions 

A
pp

ea
ra

nc
e 

Glossy appearance Degree of shine or reflected light from the surface 
(Tomaschunas et al., 2013). 

Herby appearance The presence of small, chopped pieces of herbs. 

Colour intensity Intensity or strength of colour from light to dark (Meilgaard 
et al., 2025). 

Viscous appearance Thick and slow-moving when you tilt the container. 

   

A
ro

m
a 

Pungent aroma Sharp, physically penetrating sensation in the nasal cavity. 

Rich aroma Combination of multiple ingredients creating a deep and 
full aroma. E.g. well-seasoned food. 

Cooked tomato aroma Typical smell of cooked tomato. 

M
ou

th
fe

el
 

  

Smooth mouthfeel Feels velvety or silky in the mouth, not rough or grainy (Cliff 
et al., 2013). 

Homogeneous mouthfeel Feels the same way throughout. 

Thick mouthfeel Feels dense or heavy in the mouth. 
  

Fl
av

ou
r 

Creamy flavour Flavour associated with dairy products. E.g. cream, cheese. 

Savoury flavour Rich, spicy flavour associated with vegetable or meat broth. 

Herbal flavour Underlying flavour of dried herbs. E.g. basil, oregano. 

Cooked tomato flavour Typical cooked tomato flavour. 

   

   
 T

as
te

 Sweet taste Typical sweet taste. E.g. sugar/sucrose. 

Sour taste Sharp, tangy or tart taste. E.g. citric acid in lemons. 

Salty taste Typical salt flavour. E.g. common salt / NaCl or seawater. 

Aftertaste Residual taste in mouth after ingestion (Mitchell et al., 2011). 
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6.2.5 Sensory evaluation procedures 

The sensory evaluation procedures used in this study were similar to those 

described in Chapter 4 (as described in the following paragraphs), with 

adjustments made to suit the specific product type and to address previously 

identified limitations. To enhance time efficiency and ensure assessors were 

familiar with the process, a preview of the test instructions was sent to them ahead 

of their scheduled sessions. This allowed them to review the procedures ahead of 

time and arrive with a clear understanding of what to expect. In the previous study, 

where instructions were provided only on the day of testing, some assessors 

skimmed or skipped them entirely, which impacted the consistency of the 

evaluations. Copies of the preview instructions and the questionnaires used in the 

study are included in Appendix C.3 and C.4, respectively. 

For the DFC test, each assessor received 10ml of each sample and was informed 

that some coded test samples might be identical to the reference. They were 

instructed to drink directly from the sample cups and consume the entire contents 

at once, while assessing the overall sensory experience. This instruction was 

necessary to ensure that all assessors evaluated each sample fully, ensuring 

consistency in the sensory experience when comparing the test and reference 

samples. They were directed to first taste the sample labelled "R", then taste the 

coded test sample, and rate the size of difference perceived between them, using a 

unidirectional labelled 7-point categorical difference scale (0-6), where 0 = no 

difference, 1 = barely detectable difference, 2 = slight difference, 3 = moderate 

difference, 4 = large difference, 5 = very large difference, and 6 = extremely different.  

After completing the third replicate evaluation, assessors were asked to reflect on 

the products they had evaluated and, on the following page, identify the reasons for 

any differences perceived. This section included yes/no questions listing all the 

attributes used in the AR test, along with their corresponding definitions, and asked 

assessors to indicate which attributes they perceived to be different between any 

of the samples, and the control sample (R). An additional comment section was 

included for assessors to note any other perceived differences not captured by the 

listed attributes. This addition was necessary to confirm whether the AR test 

captured all the relevant sensory attributes identified during the DFC test.  
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For the AR test, assessors rated the perceived intensities of the eighteen attributes 

listed in Table 6.1 above. Specific instructions and definitions for each attribute 

were provided, outlining the exact procedure in which the samples should be 

evaluated across the five modalities. These instructions were summarised on the 

first page of the questionnaire for the first replicate evaluation (see Figure C 11). 

Specifically, assessors were instructed to first evaluate the appearance attributes, 

followed by the aroma attributes. For the oral evaluation, they were asked to take 

three sips of the sample: the first sip was for examining mouthfeel, the second for 

assessing flavour attributes, and the final sip for taste attributes. Each assessor 

was presented with 25ml of each sample and asked to rate the intensity of the 

attributes based on the instructions provided (outlined below with the 

corresponding attributes). Attribute definitions were included in brackets for each 

attribute within the questionnaire. 

1.  Appearance: Pick up the sample, examine it by looking directly into the cup and 

rate how strong the following appearance attributes are: glossy, herby, colour 

intensity and viscous appearance. 

2. Aroma: Smell the sample and rate how strong the following aroma attributes 

are: pungent, cooked tomato, and rich aroma. 

These appearance and aroma attributes were listed on the same page of the 

questionnaire. On the following page, the mouthfeel, flavour, and taste 

attributes were presented, with the evaluation instructions as follows: 

3. Mouthfeel: Take the first sip of the sample, and before swallowing, pay 

attention to how it feels in your mouth. While you assess the mouthfeel, rate 

how strong the following attributes are: smooth, homogenous, and thick 

mouthfeel. 

4. Flavour: Take another sip, and before swallowing, focus on the different 

flavours noticed. While assessing the flavours, rate how strong the following 

attributes are: herbal, creamy, savoury, and cooked tomato flavour. The order of 

the flavour attributes was randomised for each sample and assessor, as 

suggested by (Ares et al., 2014) attempting to reduce errors of habituation, 

logical error and halo effect (Lawless & Heymann, 2010; Meilgaard et al., 2025).  
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5. Taste: take the last sip and move it around your tongue to fully experience the 

taste. While assessing the sample, rate how strong the following attributes are: 

sweet, sour, and salty taste, as well as aftertaste. 

The same 8-point categorical intensity scale from the previous studies was used, 

ranging from 0 to 7 with labels adapted from the Labelled Magnitude Scale (LMS) 

(Green et al., 1996). The intensity labels were 0 = none, 1 = barely detectable, 2 = 

weak, 3 = moderate, 4 = strong, 5 = very strong, 6 = extremely strong, and 7 = strongest 

imaginable oral sensation. 

Assessors were provided with a cup of water and plain crackers to cleanse their 

palate between sample evaluations. A mandatory interval was observed between 

each sample; 15 seconds for the DFC test and 30 seconds for the AR test, to ensure 

adequate palate cleansing. To minimise sensory fatigue and memory bias, 

assessors were also given 5-minute breaks between replicates for both tests. 

6.2.6 Data analysis 

Rasch and statistical analyses were conducted following the procedures described 

in section 3.3. As in the previous studies, the Attribute Rating (AR) data were fitted 

to a Many-Facet Rasch Model (MFRM) with four facets: Assessors, Samples, 

Repetition, and Attributes, as detailed below (TIM). To enable comparison between 

the two approaches, a separate model was employed for the DFC data (DFCM). 

Unlike the previous study, where three separate datasets were created, one for 

each replicate evaluation, and separate models were fitted, the TIM and DFCM 

analyses in this study did not involve splitting the data. Instead, all replicate 

evaluations were retained within the datasets, and Repetition was explicitly 

included as a facet in both models. This decision was based on prior findings that 

replicate evaluations enhance measurement reliability and are essential for 

monitoring assessor performance. 

TIM:𝒍𝒏 ( 𝑷𝒎𝒏𝒓𝒊𝒌 /𝑷𝒎𝒏𝒓𝒊𝒌−𝟏) = 𝜷𝒎 −  𝜽𝒏 − 𝝆𝒓 −  𝜹𝒊 − 𝝉𝒌  
...Equation 4.1  

DFCM: 𝒍𝒏 ( 𝑷𝒎𝒏𝒓𝒌 /𝑷𝒎𝒏𝒓𝒌−𝟏) =  𝜷𝒎 −  𝜽𝒏 − 𝝆𝒓 −  𝝉𝒌  
 ...Equation 4.3 
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Where: in the DFC models (DFCM), the 𝛿𝑖 parameter was not included due to the 

absence of attributes in the analysis. 

𝑃𝑚𝑛𝑟𝑖𝑘= probability that sample (𝑛) is rated (𝑘) for a sensory attribute (𝑖) by 

assessor (𝑚) in replicate session (𝑟) 

𝑃𝑚𝑛𝑟𝑖𝑘−1= probability that sample (𝑛) is rated (𝑘 − 1) for sensory attribute (𝑖) by 

assessor (𝑚) in replicate session (𝑟) 

𝛽𝑚= degree of leniency or severity of assessor (𝑚) in rating attribute intensities  

𝜃𝑛= degree of difference in the total intensity measure for sample (𝑛)  

ρ𝑟 = degree of difference between ratings of samples in replicate session (𝑟) 

𝛿𝑖 = the average degree of intensity of sensory attribute (𝑖) across all samples 

𝜏𝑘 = points on the latent variable continuum where the samples are equally likely to 

be rated between scale category (𝑘) and category (𝑘 − 1) .  

6.2.6.1 Selection of assessors based on model fit (TIM) 

A subset of assessors was identified based on their TIM model fit statistics. 

Assessors whose OUTFIT Mnsq values fell within the acceptable fit range 

(discussed later in section 6.3.5), were classified as Selected assessors. A separate 

TIM model was then fitted using only this subset to determine whether panel 

discrimination and diagnostic clarity improved compared with the full panel. 

6.2.6.2 Statistical analyses 

Statistical analyses were conducted for the DFC raw scores and all Rasch models 

(including the DFC Rasch measures and TIM). The TIM analysis was performed for 

both the full set of assessors and the selected assessors, and the results were 

compared in terms of discriminatory ability and diagnostic detail. 

6.3 Results and Discussion 

6.3.1 Fit of data to the Many-Facet Rasch Model (MFRM)  

The results of the global model fit, Assessor facet fit statistics and response 

dependency checks are presented in Table 6.2.  



178 
 

 

Table 6.2 Summary of Rasch model fit statistics and response dependency results 
for DFC and TIM models. 

  TIM  DFCM 
Criteria / Assessors 

 
All 

(n=54)  
Selected 

(n=17)  
All 

(n=54) 

       
Global fit (StRes)1       
≤5% ≥ 2  4.6 (403)  4.1 (113)  3.7 (18) 
≤1% ≥ 3  0.2 (20)  0.0 (0)  0.6 (3) 
Total  8748  2754  486 

       
Assessor Fit       
OUTFIT Mnsq2 (Nr =162)       
% Fit (0.78-1.22)  31 (17)  100 (17)  

―3 

%Overfit (≤ 0.78)  39 (21)  0 (0)  
― 

% Underfit (≥1.22)  28 (15)  0 (0)  
― 

%Extreme Misfit (>2.0)  2 (1)  0 (0)  
― 

       
Unidimensionality4       
1st contrast eigenvalue (<2)  2.45  2.69  ― 

 
 

     
LID (attributes)5      
Corr. of StRes (<0.3)       
Rich Aroma - Savoury Flavour  NA6  0.48 

 
― 

Smooth Mouthfeel - Homogenous 
Mouthfeel 

 0.47  0.45 
 

― 

Viscous Appearance - Thick Mouthfeel  0.39  0.42 
 

― 

Pungent Aroma - Rich Aroma  NA  0.30 
 

― 

Herby Appearance - Viscous Appearance  NA  0.28 
 

― 

Sour Taste - Salty Taste  0.25  NA 
 

― 

Cooked Tomato Aroma - Rich Aroma  0.24  NA 
 

― 

1 Percentage (number of observations in brackets) of absolute standardised residuals (StRes). 
2 Outlier-sensitive measure of unweighted mean squares indicating deviation of the Assessor facet estimates from 

Rasch model predictions. The acceptable fit range (0.78-1.22). 
3  ―  indicates that assessor-performance diagnostics and response-dependency checks were not applicable for the 

DFCM, as this model was used only to compare overall difference results with the TIM-derived measure.  
4 Eigenvalue of the unexplained variance in the first contrast, not accounted for by the Rasch model, in PCAR. 
5 Local Item Dependency (LID) examined through the correlation of standardised residuals (Corr. of StRes) between 

attributes, with values > 0.3 indicating that items (attributes) are dependent. 
6 NA =Not applicable meaning attributes were not flagged as potentially dependent for the panel. 

 

 
1

 Percentag e (number of observations in brack ets) of absolute standardised residuals (StRes).  
2

 Outlier-sensitive measure of unweig hted mean squares indi cating deviation of the Assess or facet  estimates fr om Ras ch m odel predictions . The acceptable fit range (0.78- 1.22).  
3 
4

 Eigenv alue of the unexplai ned variance i n the first contrast, not accounted for by the Rasch m odel, i n PCAR. 
5

 Local Item Dependency (LID) ex amined through the correl ation of standardised residuals (Corr. of StRes) between attributes, w ith values > 0.3 indicating that items (attributes) are dependent.  
6

 NA =Not applicable meaning attributes were not fl agged as potentially dependent for the panel. 
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To recap, an acceptable global model fit of the data is when about 5% or less of 

absolute standardised residuals is ≥2, and about 1% or less is ≥3 (Linacre, 2022; 

Eckes, 2023). Both the TIM and DFCM models showed an acceptable global fit, 

suggesting that overall, the data in each model aligns with the assumptions of the 

Rasch model, with no major inconsistencies likely to distort measurement.  

Only the Assessor facet fit statistics for the TIM models ( All and Selected assessors) 

are presented, as all other facets demonstrated 100% fit in both models. Assessor 

performance was not evaluated for the DFCM because this model was used solely 

to compare the overall difference measure with that obtained from TIM. Therefore, 

assessor-level diagnostics apply only to the TIM models. The DFCM includes only 

one item (DFC), so attribute response-dependency checks are also not applicable. 

The acceptable OUTFIT Mnsq range for assessors was calculated as 0.78 - 1.22, 

based on a total of 162 responses per assessor. The results showed that more than 

half of the assessors in the full panel, exhibited response patterns that deviated 

from the expectations of the Rasch model. As a result, a subset of assessors with 

OUTFIT Mnsq values within the acceptable range was selected, and their data were 

fitted to a separate Rasch model (labelled Selected on Table 6.2), which showed a 

100 percent fit for the Assessor facet. 

Unidimensionality and Local Item Dependence (LID) for the TIM model were 

examined by Principal Component Analysis of Residuals (PCAR). Unidimensionality 

is confirmed when the eigenvalue of the unexplained variance in the first contrast is 

<2, and Local item dependence (LID) is identified when the residual correlation 

between two attributes exceeds 0.3 (Ramp et al., 2009; Christensen et al., 2017). 

The results in Table 6.2. reveal that for both the full and selected panels, the 

unexplained variance in the 1st contrast of the Rasch Principal Component Analysis 

of Residuals (PCAR) had eigenvalues of 2.45 and 2.69, respectively. This might 

suggest the presence of a minor secondary dimension, roughly equivalent to the 

strength of 2-3 items. 

 
 1 ± 2√

2

𝑁𝑟
 (Wu & Adams, 2013; Eckes, 2023), where Nr (number of responses) for each assessor is 162. 
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Examination of standardised residual correlations revealed that several pairs of 

attributes were locally dependent, meaning that their co-variation exceeded what 

would be expected by chance (Linacre, 2024a). Most correlations above the 

conventional 0.3 threshold indicate systematic relationships that warrant further 

investigation. 

Specifically, four attribute pairs exhibited strong residual correlations: Smooth 

Mouthfeel and Homogeneous Mouthfeel (0.47 and 0.45), and Viscous Appearance 

and Thick Mouthfeel (0.39 and 0.42), for the full and selected panels, respectively. 

In the selected panel, additional dependencies emerged between Rich Aroma and 

Savoury Flavour (0.48), and Pungent Aroma and Rich Aroma (0.30). These 

dependencies are not considered problematic, especially since the latent variable 

being measured is the overall difference between samples. Instead, they provide 

useful information about how certain attributes tend to vary together across 

samples. These patterns reflect genuine differences among the samples, rather 

than distortions in the measurement model and may arise from attributes assessing 

the same physical property through different senses (e.g., viscosity) or from cross-

modal sensory interaction (e.g., aroma-flavour perception). 

For example, if a tomato soup sample is rated as having a more Viscous 

Appearance, it is also likely to be rated as having a Thick Mouthfeel. The same 

pattern is seen between Rich Aroma and Savoury Flavour, and between Smooth 

Mouthfeel and Homogeneous Mouthfeel. Notably, the selected assessors seemed 

more aware of the connection between Rich Aroma and Savoury Flavour, 

suggesting a higher level of sensitivity or consistency. 

Attribute pairs below the 0.3 threshold, while not indicating local dependency, still 

provide useful diagnostic insights. Herby Appearance and Viscous Appearance 

showed a correlation of 0.28 for the selected assessors, indicating a potential link 

between these attributes. This may be explained by the sample preparation (see 

Table B 3). Sample A was prepared using a cream of tomato soup base, with extra 

cream, and dried chopped basil, added during heating, to align more closely with 

the other samples, which were made from a cream of tomato and basil soup. 

However, because the basil in Sample A was added only while heating shortly before 

serving, it was likely less integrated into the soup, compared to the basil in the other 
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samples, which had been incorporated during manufacturing and packaged for 

shelf stability. This may have affected the appearance of Sample A, contributing to 

higher ratings for Herby Appearance, and likely explains its flagged correlation with 

Viscous Appearance. 

Similarly, for the full panel, weak correlations were found between Sour Taste and Salty 

Taste (0.25), and between Cooked Tomato Aroma and Rich Aroma (0.24). Although 

these values were below the dependency threshold, they reflect known sensory 

interactions. For instance, Fabian and Blum (1943) found that sodium chloride (NaCl), 

at sub-taste threshold levels, reduced sourness in foods, while Breslin (1996) reported 

that acids, (such as the citric acid found in tomatoes), enhanced saltiness perception. 

More recent work has shown that salt and sour mixtures can mutually enhance each 

other at low intensities and show suppression or no effect at higher intensities (Keast 

& Breslin, 2002; Liem et al., 2011). Additionally, the complexity of tomato soup aroma, 

influenced by various volatile compounds(Kazeniac & Hall, 2006; Gilsenan, 2010; 

Distefano et al., 2022) likely contributed to the perception of rich aroma across 

samples. This was likely due to Sample B, which contained added passata and showed 

higher Rich Aroma ratings than the other samples (Table E 2). 

6.3.2 Rating scale category diagnostics 

Following the established guidelines outlined in Table 3.1, deviations in the 

interpretation and operational use of the scale, relative to the expectations of the 

Rasch model, were empirically investigated.  

The category functioning of the rating scales for the attributes rating (AR) intensity and 

DFC rating scales are presented in Table 6.3. All essential criteria for measure 

accuracy and for description of the tomato soup samples in the study were met. 

Specifically, the Rasch-Andrich thresholds were ordered, and no misfitting categories 

were observed, as OUTFIT Mnsq values were close to 1.0. This suggests that responses 

to attributes in the models, are consistent with estimates of the latent variable 

(Tennant & Conaghan, 2007), and meet the model expectations. Additionally, the 

observed average measures increased monotonically across the scale categories, 

indicating that no scale categories were skipped along the variable (Eckes, 2023).
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Table 6.3 Summary of scale category statistics for Intensity and DFC rating scales used in the TIM and DFCM models 
Panel Scale Categories Frequency1 Average Measure2 OUTFIT Mnsq3 Rasch Andrich Threshold 

    Observed Expected  Measure Distance4 

TIM All 
Intensity 

Rating Scale 
8-category  
01234567 

0 None 149 (2) -0.62 -0.60 1.0   
1 Barely detectable 539 (6) -0.47 -0.50 1.1 -1.84 0.30 
2 Weak 1614 (18) -0.37 -0.38 1.0 -1.54 0.80 
3 Moderate 2452 (28) -0.26 -0.25 0.9 -0.74 0.62 
4 Strong 2305 (26) -0.13 -0.11 1.0 -0.12 0.72 
5 Very strong 1231 (14) 0.07 0.05 1.0 0.60 0.64 
6 Extremely strong 408 5) 0.25 0.22 1.0 1.24 1.17 
7 Strongest imaginable oral sensation 50 (1) 0.36 0.40 1.0 2.41  

TIM Selected 
Intensity 

Rating Scale 
8-category  
01234567 

        
0 None 27 (1) -0.76 -0.71 0.9   
1 Barely detectable 200 (7) -0.64 -0.61 0.9 -2.66 1.17 
2 Weak 505 (18) -0.48 -0.50 1.1 -1.49 0.69 
3 Moderate 718 (26) -0.38 -0.39 1.0 -0.80 0.42^ 
4 Strong 763 (28) -0.28 -0.26 1.0 -0.38 0.72 
5 Very strong 447 (16) -0.11 -0.13 1.0 0.34 1.18 
6 Extremely strong 91 (3) -0.06 0.00 1.1 1.52 1.95 
7 Strongest imaginable oral sensation 3 (0) 0.38 0.12 0.9 3.47  

DFCM All  
DFC 

Rating Scale 
7-category  

0123456 

        
0 No difference 65 (13) -1.20 -1.34 1.2   
1 Barely detectable difference 70 (14) -0.94 -0.91 1.0 -1.21 0.47^ 
2 Slight difference 75 (15) -0.50 -0.42 1.1 -0.74 0.36^ 
3 Moderate difference 91 (19) -0.04 0.04 1.2 -0.38 0.59 
4 Large difference 91 (19) 0.32 0.36 1.0 0.21 0.74 
5 Very large difference 57 (12) 0.69 0.60 0.7 0.95 0.21^ 
6 Extremely different 37 (8) 0.98 0.86 0.9 1.16  

 
1

 Total count (percentage distribution in brackets) of observations used in each scal e categ ory  
2

 Observed average measure (i n log odds unit or logits), and expected averag e measure if data fits the Rasch model.  
3

 OUTFIT Mnsq refers to the outlier-sensitive measure of unweig hted mean squares and indicates the deviation of resp ons es from predictions of the Ras ch m odel.  
4

  Absolute difference between Rasch-Andrich threshold measures (i.e., the thr esholds between adjacent scale cat egories . For 8 and 7 categ ory scal es, the minimum thres hold distances are 0.51 and 0.57, respectively.  


 Minimum advancing distance for Rasch-Andrich thres hold are helpful for inference on subsequent studies. 


 Each scale cat egory should have at least 10 observati ons as this is ess ential for measure stability. 

1 Total count (percentage distribution in brackets) of observations used in each scale category 
2 Observed average measure (in log odds unit or logits), and expected average measure if data fits the Rasch model. 
3 OUTFIT Mnsq refers to the outlier-sensitive measure of unweighted mean squares and indicates the deviation of responses from predictions of the Rasch model. 
4 Absolute difference between Rasch-Andrich thresholds refers to the spacing between adjacent response categories, which is 0.51 and 0.57 for 8 and 7-point category scales, respectively. 
 Insufficient minimum advancing distance between Rasch-Andrich thresholds suggesting that adjacent categories are less distinctive than intended (helpful for inference on subsequent studies). 
 Each scale category should have at least 10 observations as this is essential for measure stability. 
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A criterion for ensuring measure stability (Table 3.1) was not met for the selected 

assessors. Measure stability refers to the consistency of a measurement system 

when repeated over time in the same context. Specifically, there were only 3 

observations in the highest category of the Intensity scale (7 = Strongest imaginable 

oral sensation), whereas Linacre (2002b) recommends a minimum of 10 

observations per category. Additionally, all models failed to meet the minimum 

advancing distance between category thresholds at least once, indicating that 

some categories were too close together and less distinctive than intended (Eckes, 

2023). The recommended minimum distance is 0.51 and 0.57 for 8 and 7-point 

scales (Ho, 2019).  

For the TIM full panel, this issue occurred between categories 1 and 2 (barely 

detectable and weak, respectively), while for the TIM selected panel, it was between 

categories 3 and 4 (moderate and strong)The issue was more pronounced in the 

DFCM, effectively showing that only four categories were clearly distinctive: 0- no 

difference, 3- moderate difference, 4- large difference, and 5- very large difference, 

with category 4 nearly failing to meet the threshold at 0.59. This suggests that 

assessors may have had difficulty distinguishing between adjacent categories 

possibly due to overlapping interpretations of the scale category descriptors. 

This insight is valuable for developing rating scales in sensory quality programs for 

specific products, as meeting these criteria improves the reliability of inferences in 

future studies. The recommended remedial action is to collapse the affected 

adjacent categories before data collection in subsequent studies, provided the 

panel is sufficiently consistent. However, no changes to the scale were made in this 

study because scale development was beyond the scope. 

Conventionally, the rating scales used for attribute evaluation in descriptive 

analysis like the QDA are relative scales anchored to the attribute of interest, often 

established using reference samples (Meilgaard et al., 2025), rather than the 

absolute end-anchors used in the LMS scale (adapted for this study). Absolute 

anchors such as “strongest imaginable oral sensation” are interpreted against a 

much broader experiential frame of reference, so assessors may reserve the 

highest category for exceptionally unusual sensations (Lawless & Heymann, 2010). 

Therefore, the limited use of the upper-end categories in this study was not 
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surprising and reflects how the MFRM diagnoses the operational use of the scale 

based on the observed response patterns. An interesting direction for future 

research would be to examine how the MFRM performs with the relative scales 

commonly used in descriptive analysis. 

6.3.3 Representing the Overall Difference Construct 

Wright maps for TIM models for the full and selected panels, as well as the DFCM 

model, are presented in Figure 6.1, Figure 6.2, and Figure 6.3 respectively, with all 

four facets (Assessors, Samples, Repetition, and Attributes) positively oriented, as 

described in previous chapters. The Sample facet was non-centred, while the other 

facets were centred at the mean (0 on the logit scale) to serve as a reference point. 

Consequently, sample locations were adjusted by considering the severity of 

assessors, the average intensity of attributes, and the intensity ratings in repeated 

sessions, representing the Assessor, Attribute, and Repetition facets, respectively. 

In the Assessor facet, assessors with higher logit values are more lenient, generally 

assigning higher scores on the rating scale; in the Sample facet, samples with higher 

logit values have higher Total Intensity Measure (TIM) or, for the DFC measure 

(DFCM), are more different from the control; in the Repetition facet, replicate 

sessions where higher intensity ratings were assigned on average have higher logit 

values; and in the Attribute facet, attributes with higher average intensity ratings 

have higher logit values. 

6.3.3.1 Total Intensity Measure Representation (Full and Selected Panel) 

Figure 6.1 presents an overview of the full panel’s ratings of the overall difference 

between the tomato soup samples. Assessors’ severity estimates were distributed 

around the mean within a range of approximately -0.6 to 1.0 logits (S.E = 0.07), 

indicating meaningful differences in their severity of scale use, after accounting for 

measurement error. Assessors 3029 and 3016 emerged as the most lenient, as they 

were positioned noticeably higher than the rest of the panel on the map. 

The average attribute intensity ratings for each sample were below the mean (0 on 

the logit scale), and differences across the three replicated sessions were not 

significant. Samples positioned higher on the scale were perceived as having 

greater intensity, based on ratings averaged across all attributes. 
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Figure 6.1. Wright map for the TIM model representing All Assessors (Assessor IDs 3001 - 3054)  
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The latent variable of Overall Difference is reflected in the Total Intensity Measure 

(TIM), shown by each sample’s position on the logit scale. Although the three 

samples were separated by only 0.3 logits (S.E = 0.02), Rasch separation statistics 

will determine whether these differences are statistically meaningful. The TIM 

values will also be used in pairwise comparison tests to evaluate the extent of 

differences between each sample and the control (discussed in section 6.3.4). 

From the Attribute facet and intensity scale, most attributes were, on average, rated 

between categories 3-Moderate intensity and category 4-Strong intensity (see Table 

E 2). Mouthfeel attributes emerged as the most intense, while taste attributes were 

the least intense. Among them, Smooth mouthfeel was the most dominant attribute 

perceived by the panel across all samples. The OUTFIT Mnsq statistics for individual 

attributes (discussed later in the chapter) will indicate which attributes are primarily 

driving differences between the samples. 

In terms of scale category usage, the intensity scale on the Wright map showed that 

attribute ratings were evenly distributed from category 2-Weak to category 5-Very 

strong. The increasing width of half-point thresholds beyond these points on both 

ends suggests less frequent use of the extreme categories. This pattern is also 

reflected in the scale category statistics presented in Table 6.3. 

For the selected assessors presented in Figure 6.2, the assessors were more tightly 

clustered around the mean, within a range of approximately −0.4 and 0.4 logits (S.E 

= 0.07). This suggests smaller differences in scale use severity across the assessors 

after accounting for measurement error. However, the range remains substantial, 

and any meaningful differences will be confirmed through separation statistics 

discussed later.  

As with the full panel, the average attribute intensity ratings across all samples 

remained below the mean (0 on the logit scale). Samples positioned higher were 

perceived to have greater intensity, based on ratings averaged across all attributes.  

In this panel, the distinction between the two test samples and the control sample 

was more pronounced than in the full panel. In the Repetition facet, differences 

across the three replicated sessions showed slight variation, they may not be 

statistically significant. However, Ratings were generally lower in the first replicate,  
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likely reflecting initial uncertainty. By the second and third replicates, ratings had 

stabilised as assessors developed a clearer mental frame of reference.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 6.2. TIM model Wright map representing the 17 Selected Assessors (IDs 3002 - 3052) 
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The latent variable of overall difference is captured in the Total Intensity Measure 

(TIM), represented by the position of each sample on the logit scale. This indicated 

that Sample A and Sample B were less different from each other than either of them 

was from the control sample. Rasch separation statistics will determine whether 

these differences are statistically significant, and TIM values will be used for 

pairwise comparisons with the control.  

Like the full panel, the Attribute facet and intensity scale showed that mouthfeel 

attributes were rated most intensely, with Smooth mouthfeel being most dominant 

across samples, while taste attributes consistently received the lowest intensity 

ratings. Scale category usage patterns were also comparable to those observed in 

the full panel. 

6.3.3.2 DFCM representation for the full panel  

Figure 6.3 shows the Wright map for the Difference from Control measures (DFCM) 

for the full panel of assessors. The Assessor facet reveals varying degrees of severity 

in scale use, with assessors distributed across a range from approximately -1.5 to 

1.7 logits (S.E = 0.27- 0.36) around the mean. Assessor 3054 was the most severe, 

with a 0.7 logit gap from the next closest assessor. The distribution also indicated 

several distinct levels of severity among assessors, particularly toward the more 

severe end of the scale. 

As shown in the Wright map for the selected assessors (Figure 6.2), Sample A and 

Sample B were less different from each other than either of them was from the 

control sample. The control sample was clearly different, positioned approximately 

1.5 and 1.6 logits away from Sample B and Sample A respectively. While there 

appear to be slight variations across replicate evaluations, these differences may 

not be statistically significant. The significance of these differences will be further 

examined using Rasch separation statistics and pairwise comparison tests. 

It is important to note that on the Wright maps for the DFC model, the control 

sample values reflect the ratings assigned to the blind control, and the map 

effectively represents the magnitude and direction of perceived differences 

between the control and test samples. Unlike the findings in Chapter 4, where the 
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control appeared close to one of the test samples, the current results show that 

assessors more accurately rated the blind control as identical to the actual control.  

This improvement is evident in both the DFC Wright map and the category 

diagnostics (Table 6.3), where a sufficient number of assessors assigned the blind 

control a rating of 0, indicating no perceived difference from the control sample. 

These results suggest greater consistency in identifying the control sample in the 

present study, possibly due to more noticeable compositional differences between 

the control and the test samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.3. DFCM Wright map representing All Assessors (Assessor IDs 3001 - 3054)  
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However, ratings were evenly distributed across the DFC scale, suggesting some 

degree of imprecision in the ratings assigned by the assessors on average. In a 

proper-functioning scale, some categories would be used more than others to 

reflect actual differences in performance. An even spread suggests that assessors 

were not consistently distinguishing subtle differences in performance, or that 

some categories overlap in meaning. As noted by Bond et al. (2020) and Eckes 

(2023), intermittent low-frequency categories indicate irregular scale usage and the 

presence of redundant categories. Nonetheless, the improved identification of the 

blind control, highlights the value of targeted assessor preparation in enhancing 

rating accuracy. 

A comparison of the Wright maps for both the full panels (Figure 6.1 and Figure 6.3) 

and the selected TIM panel (Figure 6.2), revealed a consistent pattern in the relative 

positioning of the test samples, compared to the control. Sample A was located 

higher than Sample B, and Sample B higher than the Control sample. While this 

pattern was not visually apparent in the TIM model with all the assessors, further 

analysis using Rasch separation statistics and pairwise comparisons will provide 

additional insights. 

6.3.4 Rasch separation statistics, panel performance, and comparison of 

overall sample differences 

The Rasch separation statistics for assessors, repetitions, and samples, along with 

the pairwise comparisons for the samples, are presented in Table 6.4. 

The fixed Chi-square (χ²) Rasch separation statistic tests the null hypothesis that no 

meaningful differences exist within a given facet. For the assessors, it serves as an 

indicator of panel agreement in the use of the scale, testing whether, after 

accounting for measurement errors, (such as inconsistent ratings across replicate 

evaluations or differing rank ordering of samples), the severity of all assessors is the 

same (Myford & Wolfe, 2004; Linacre, 2025c). 

The χ² values for all the panels, that is, the full and selected TIM panels as well as 

the DFCM panel, revealed that assessors were not in agreement, as all panels 

showed highly significant χ² values (p<0.001). A significant χ² indicates that the 

variation in the severity levels of the assessors is greater than would be expected by 
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chance, meaning that, in each panel, at least some assessors were systematically 

more severe or more lenient than others in the ratings they assigned. 

Strata values, which indicate how many statistically distinct levels of severity exist 

among the assessors, showed that there were approximately 7, 5, and 3 distinct 

groups of assessors in the TIM full, TIM selected and DFCM models respectively. 

However, the reliability of separation, which reflects how precisely these 

differences in severity are measured relative to the error in the estimates, showed 

values of 0.96, 0.91, and 0.75 respectively for the TIM full, TIM selected, and DFCM 

panels. These results suggest that differences in the DFCM panel were somewhat 

influenced by measurement errors. 

Table 6.4 Summary of Rasch separation statistics and sample comparisons 

   TIM  DFC (All Assessors) 

Test/Dataset12   All   Selected  DFCM DFC Raw 

Rasch Separation Statistics    
    

A
ss

es
so

rs
     

    
Reliability Assessor 

 
0.96 

 
0.91 

 
0.75  

Strata Assessor 
 

6.50 
 

4.52 
 

2.63  

Fixed χ² 
 

1169.5*** 
 

182.5*** 
 

182.1***  

         

R
ep

et
it

io
n 

       
 

Reliability Repetition 
 

0.44 
 

0.80 
 

0.11  

Strata Repetition 
 

1.52 
 

2.98 
 

0.80  

Fixed χ² 
 

5.4~ 
 

14.9*** 
 

3.4  
         

Sa
m

pl
es

 

        

Reliability Sample  0.97  0.89  0.99  
Strata Sample  8.16  4.14  14.89  
Fixed χ²  106.3***  27.5***  325.9***  

         
Pairwise Comparisons       

 
Kruskal-Wallis Test (H)3 406.15***  124.4***  286.89*** 180.92*** 

Mean differences (Dunn's Many-to-One Test) 
   

 
Control-Sample A -0.22***  -0.20***  -1.61*** -2.39*** 
Control-Sample B -0.09***  -0.14***  -1.50*** -2.22*** 

 
1 P-value levels of significance: <0.001***, <0.01**, <0.05*, <0.1~; measures with no superscript symbols have 
p-values >0.1. 
2 For degrees of freedom (df) = 2, the chi square (χ²) critical values are 5.991 (α = 0.05) and 4.605 (α = 0.1). 
3 The Kruskal-Wallis test statistic (H) also follows a χ² distribution for determining significance . 



192 
 

 

Reliability values closer to 0 for assessors are desirable, as they suggest that there 

is no statistical distinction between lenient and severe assessors (Myford & Wolfe, 

2004). However, as noted by Wright and Masters (1982) and, by Bond et al. (2020) 

lower reliability, when significant differences are observed, also implies some 

degree of imprecision in the estimates, possibly due to inconsistent use of the scale 

categories, as seen in the DFCM Wright map and scale category statistics. 

Separation statistics for the Repetition facet (Table 6.4), supported the presence of 

a meaningful difference between the replicate evaluations of the selected assessor 

panel in the TIM model, with a highly significant χ² (p<0.001), a strata of 2.98 and 

reliability value of 0.80, as was also suggested by the Wright map illustration. In 

contrast, the lower Strata value of 1.52 and a barely significant χ² (p<0.10) for the 

full panel, along with a low reliability value of 0.44, indicated that any observed 

differences were likely due to measurement error. This shows that the full panel 

produced more consistent results across replicate evaluations, as lower strata and 

reliability in this facet indicate that there were no meaningful differences between 

replicate sessions.  

In the DFCM panel, however, no meaningful differences were found between 

replicate evaluations. This may reflect the design of the DFC presentation, which 

requires assessors to make a direct comparison against a physical control sample. 

This is cognitively simpler and may help stabilise judgements across repetitions. In 

contrast, the monadic presentation used in the attribute rating test requires 

assessors to develop and refine an internal frame of reference over time, which can 

introduce greater variability across replicates. A similar pattern was observed in 

Chapter 4: pg.94, where the DFC results similarly showed more stable replicate 

evaluations and greater overall discrimination than the TIM results. 

For the Sample facet, separation statistics assess the panel’s ability to distinguish 

meaningfully between the samples. Higher reliability values, ideally close to 1, 

indicate that the differences observed between samples are consistent and not due 

to measurement error. In this analysis, all panels demonstrated statistically 

significant differences between samples (p<0.001). The Strata values suggest that 

the full TIM panel and the DFCM panel could differentiate approximately 8 and 15 

statistically distinct levels among the sample measures, respectively. These high 
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values imply considerable variation within the samples, likely reflecting differences 

among assessors and/or measured attributes. For the TIM full panel, this 

differentiation is likely influenced by both the diversity of the 18 attributes and 

inconsistencies among assessors.  

In contrast, the DFCM panel, comprising only three samples and a single item in the 

Attribute facet, achieved an even higher Strata value (15). The comparative test 

design was likely the major contributor. As discussed in Chapter 4: pg.89 the DFC 

test design involves a direct comparison with a control using a difference scale 

anchored to the perceived intensity of that control. This relative judgement is 

cognitively simpler because the control provides a stable reference point for every 

evaluation. Consequently, less cognitive effort is required to rate the test sample 

than in the attribute-rating tests, where samples were presented monadically, one 

at a time, and assessors were required to rate multiple attributes using absolute 

scales anchored with descriptors such as strongest imaginable sensation. Without 

an external comparison reference, assessors must rely on their own mental 

reference, which is more susceptible to inconsistency, introducing greater 

variability into the ratings. Additionally, the higher Strata in DFCM compared to TIM 

likely reflects that DFCM directly measured overall difference (assessors rated 

"difference from control"), while TIM derived it as a latent variable from 18 separate 

attribute intensity ratings. This difference between direct measurement and derived 

estimation may explain the observed separation differences.  

Individual differences in how assessors applied the scale may also have inflated the 

separation. This interpretation is supported by the Wright map (Figure 6.3), which 

shows that the spread of assessor severity was wider than the spread of sample 

measures, and by the scale category statistics (Table 6.3), which indicate that 

ratings were widely and inconsistently distributed across the scale categories. 

Meanwhile, the selected TIM panel produced a more conservative Strata value of 

4.14, indicating that about 4 distinct levels could be reliably identified. This 

suggests that the variation in ratings was more aligned with expected sample 

difference, given that there were only 3 samples, with less additional variation 

attributable to assessors or other factors. High reliability values across all facets 

support that these distinctions are meaningful and not due to random error. 
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Notably, the selected TIM panel showed a lower sample separation reliability (0.89) 

compared to the full TIM panel (0.97) and DFCM panel (0.99), a reduction that may 

be explained by inconsistencies across replicate evaluations, as indicated by the 

significant χ² (p<0.001) in its Repetition facet. 

Pairwise comparisons were conducted using the non-parametric Kruskal-Wallis 

test on the Rasch measures, which has been shown to be robust for such data as 

discussed in Chapter 4. Although parametric tests were initially performed, several 

parametric assumptions, including normality were violated, consistent with 

findings from the other Rasch measures in this study. Previous research has shown 

that Rasch measures of latent variables violates normality assumptions (Guilleux 

A, 2014; Ho, 2019; Lacko, 2023). However, non-parametric methods provide a 

robust alternative and are well-suited for Rasch measures as discussed in Chapter 

4: pg.92. As shown in Table E 1, sample comparison results from the parametric 

Tukey’s HSD test were generally consistent with those from the non-parametric 

Kruskal-Wallis test, suggesting that the non-parametric approach does not 

compromise the validity of the findings. Furthermore, the Kruskal-Wallis test results 

were more closely aligned with those from the Rasch fixed chi-square (χ²) test. 

The mean difference results in Table 6.4 show that both Sample A and Sample B 

were significantly different from the control sample, with the direction of these 

differences being relatively consistent across the DFC and Rasch-based TIM 

approaches, as well as across the panels. Based on the sample formulations (Table 

B 3), these differences were expected; however, it was unclear whether differences 

would be more pronounced in textural properties or flavour across the samples. The 

results indicate that Sample A, which was designed to be thicker than the other 

samples due to the addition of double cream, exhibited a greater magnitude of 

difference from the control compared to Sample B, which was engineered to have 

a stronger savoury flavour, due to the addition of garlic granules. 

A review by Tournier et al. (2007) shows that changes in rheological properties, such 

as viscosity in the case of Sample A, can affect the perception of aroma (Ferry et al., 

2006; Lubbers et al., 2007), flavour, and taste (Hollowood et al., 2002; Saint-Eve et 

al., 2004) attributes through cross-modal interactions. In a recent study on beef 

broths enriched with taste enhancers, Brouwer et al. (2024) found that increasing 
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viscosity of beef broths enriched with sodium chloride, MSG and Kokumi 

compounds resulted in more intense and richer savoury, salty and beef flavour. 

More broadly, Wang et al. (2025) reported that components of the food matrix, 

including proteins, lipids and carbohydrates, can bind or entrap aroma compounds 

and alter their release. This indicates that viscosity and matrix structure can 

substantially influence how aroma and flavour are perceived in real foods. These 

sensory interactions may have contributed to the increased perceived complexity 

of Sample A beyond what would be expected from a typical cream of tomato and 

basil soup.  

Additionally, the panel perceived mouthfeel attributes as the most dominant, and 

Sample A likely had a noticeably different mouthfeel compared to the other 

samples. Mouthfeel attributes are often more readily perceivable compared to 

other sensory attributes, due to their somatosensory and tactile nature (Lawless & 

Heymann, 2010; Stone et al., 2012; Ditschun et al., 2025).  

These findings suggest that textural modifications, such as increased viscosity in 

Sample A, not only produce larger perceived differences but may also have 

enhanced flavour complexity through multisensory interactions. Furthermore, 

mouthfeel attributes, being more directly perceivable, contributed to these 

pronounced differences. Overall, the TIM method was sensitive to subtle sample 

variations across the combined attributes and provided more diagnostic insight 

than the broader DFC tests, highlighting its advantages for evaluating targeted 

sensory attributes in difference testing. 

To address a limitation identified in the previous study, specifically the non-

representative choice of attributes in the AR test, a comment section was added to 

the end of the DFC test questionnaire. Assessors were asked if they had considered 

any additional attributes beyond those listed when evaluating differences between 

the samples. The responses showed that either no new attributes were identified or 

that any additional descriptors mentioned, corresponded to terms or ingredients 

already captured in the attribute list (Table 6.1), with assessors generally 

commenting on the most prominent characteristics. Examples of their comments 

include: 
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“… creamy textures were more obvious” 

“…how the soup coated the entire tongue / mouth” 

“Two of the test samples had a really nice cheesy note…” 

“…one had more garlic (garlic granules taste) the other was 
thicker (maybe xanthan)” 

“…one definitely had beef stock in it” 

Since the comments aligned with the existing attribute descriptors in the lists, it is 

reasonable to conclude that the AR tests in this study effectively captured the 

perceivable differences observed in the DFC test. 

The next section examines the specific attributes perceived as driving the most 

differences, as well as assessor rating behaviour.  

6.3.5 Individual assessor performance analysis  

OUTFIT Mnsq values for the Assessor facet were used to evaluate rating behaviour in 

the TIM model. The trends and results observed across the assessors were 

consistent with those reported in section 5.3.4, where certain value ranges 

corresponded to specific rating behaviours. However, as previously noted, the Rasch 

approach to evaluating individual assessor performance is always relative to the 

performance of other assessors in the analysis (Myford & Wolfe, 2004). Therefore, it 

is most informative when applied to a more homogeneous panel, as demonstrated in 

Chapter 5 with the trained panel. In contrast, the untrained panel in Chapter 5 

showed greater variability, which limited the usefulness of the diagnostics. Since the 

assessors in the current study were also untrained, similar variability is likely. 

Considering this, the analysis in this chapter focuses on identifying assessor 

OUTFIT Mnsq ranges (Figure 6.4) and their implications for rating effects. The 

subset of assessors discussed so far was selected based solely on these metrics, 

unlike in the previous chapter, where selection was informed by both OUTFIT Mnsq 

insights and the assessors' discriminatory ability, as determined by individual 

ANOVAs. 
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Figure 6.4. OUTFIT Mnsq plot for the TIM full untrained tomato soup panel 



198 
 

 

In the discussions (section 5.3.4.3.2: pg.154), it was hypothesised that, just as 

greater variance among parameters within a facet leads to higher OUTFIT Mnsq 

values (Linacre, 1995), lower variance corresponds to lower values. This 

relationship may reflect the severity of overfit rating effects, such as restriction of 

range and central tendency. Each rating effect spans a continuum, and OUTFIT 

Mnsq values vary depending on how strongly an assessor exhibits a particular rating 

behaviour. These patterns are examined in this section. 

Figure 6.4 above presents the OUTFIT Mnsq control chart for all assessors in the 

TIM model. The acceptable OUTFIT Mnsq range for assessors in this study was 0.78 

to 1.22. Assessors with values below the lower limit are considered overfit, 

exhibiting range restriction and central tendency rating effects. Those with values 

above the upper limit are underfit, showing more erratic ratings either within 

themselves or compared to the rest of the panel. Additionally, OUTFIT Mnsq values 

above 2.0 indicate that an assessor is using extreme ends of the rating scale, which 

can skew the overall panel results and cause misleading conclusions. 

The subset of assessors discussed earlier were those with values strictly within the 

acceptable range of 0.78 to 1.22. These assessors, identified for their relatively 

consistent ratings, will be used in subsequent analyses to determine key 

discriminating attributes across the samples.  

The following Figure 6.5, spanning across two pages, presents response 

distribution (trellis) plots for assessors whose OUTFIT Mnsq values fall below the 

lower threshold of 0.78, indicating potential overfitting. This illustration supports 

the hypothesis that rating effects are reflected by the OUTFIT Mnsq values along a 

spectrum. From top to bottom, each row represents an assessor’s responses 

across several attributes. Assessors are arranged from the lowest OUTFIT Mnsq 

value (most overfitting) up to the 0.78 threshold. The corresponding OUTFIT Mnsq 

values are displayed in the rightmost column. The black dotted line marks the 

margin for the central scale categories, specifically scale usage between 2 and 4, 

based on the most frequently used categories across the panel (as shown in the 

scale category statistics on Table 6.3).  
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Figure 6.5. page 1. Trellis plots showing the response distribution of raw scores for overfitting 
assessors. The black dotted horizontal lines representing the central scale categories. 
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As the figure progresses downward, and OUTFIT Mnsq values increase, the response 

distributions begin to extend beyond the central margins. Around 0.57, the responses 

tend to be restricted to other parts of the scale, often away from the centre. This 

restriction gradually decreases as mean square values approach 0.78. Toward the 

bottom of page 2 of Figure 6.5, where mean square values approach the threshold 

for overfit, response patterns become less restricted and relatively more consistent. 

 

Figure 6.5. page 2. Trellis plots showing the response distribution of raw scores for overfitting 
assessors. The black dotted horizontal lines representing the central scale categories. 
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Although Linacre (2025b) and Myford and Wolfe (2004) note that overfitting 

assessors are not necessarily poor raters, in a sensory evaluation context, they can 

substantially affect the validity of the data. Central tendency effects may lead to a 

lack of discrimination across both samples and attributes, while range restriction 

may result in poor discrimination across samples alone. In Figure 6.5, central 

tendency is evident where ratings are tightly clustered within the black dotted 

central margins, while range restriction appears as a narrow band of ratings that 

mostly fall outside these margins, but still cover only a limited portion of the scale. 

These rating behaviours are often a consequence of assessors lacking confidence 

in assigning ratings across the samples, whether due to unfamiliarity with the 

product range or insufficient training in the use of scale ranges (Lawless & 

Heymann, 2010; Sipos et al., 2021; Meilgaard et al., 2025). In this study, however, 

lack of familiarity is unlikely to be the cause, as familiarity with tomato soup was 

one of the main reasons for selecting these samples for the target participants. In 

either case, such rating behaviours are problematic, and affected assessors should 

either receive trainings on confidently using the scale or be removed from the panel. 

While this study involved an untrained panel, similar issues may also arise among 

highly trained assessors, potentially indicating a lack of motivation or distraction. 

This was observed with assessor 2010 in the trained panel discussed in Chapter 5 

(section 5.3.4.1: pg.145).  

Notably, the ratings of assessors 3037 and 3041, both with OUTFIT Mnsq values of 

0.76, appear relatively consistent, with fewer crossover interactions. The panel 

leader may consider retaining such assessors by slightly expanding the cut-off, 

supported by insights into the type of training required. 

As Wright and Masters (1982); Smith (2000), and (Bond et al., 2020) rightly observe, 

residual fit statistics like OUTFIT Mnsq serve as critical quality control mechanisms. 

They allow researchers to make informed, interconnected decisions about their 

data, especially when visual inspection of the full data matrix is impractical. This 

approach is invaluable for sensory analysts and panel leaders making timely 

decisions in business contexts. 
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6.3.6 Key discriminating attributes 

The importance of each attribute in distinguishing between the soup samples is 

presented in Figure 6.6. These results are based on data from the 17 selected 

assessors with relatively consistent rating patterns, compared to the overall panel. 

The acceptable range for the attributes OUTFIT Mnsq values was calculated as 0.77 

to 1.23, based on 153 total responses per attribute. The findings for the same 17 

assessors are discussed in conjunction with the panel interaction plots shown in 

Figure 6.7, the panel ANOVA results (Table 6.5), and the assessor responses to the 

comment section of the DFC questionnaire (Figure 6.8), where these assessors 

indicated which attributes they considered when evaluating the differences 

between the test samples and the control. Although the DFC comments were 

collected during the separate occasion for the DFC test, they were provided by the 

same panel and based on the same set of samples. These comments provide 

supporting evidence that attributes selected for the TIM AR test were perceivable in 

the overall product assessment and thus relevant to the assessors. Individual 

assessor trellis plots are provided in Figure E 1 for reference. 

In Figure 6.6, OUTFIT Mnsq values identified Thick Mouthfeel, Homogeneous 

Mouthfeel and Viscous Appearance as the most discriminating attributes, as they 

had the highest OUTFIT Mnsq values with positive logit values. This suggests minimal 

confounding due to assessor confusion or misinterpretation, likely because these 

attributes were high in intensity and easily perceived. Following these, Smooth 

Mouthfeel, Savoury Flavour, and Herbal Flavour showed the next highest OUTFIT 

values. Mouthfeel attributes showed the strongest contributions, consistent with 

the idea that they are often more readily perceivable than other sensory attributes 

in this product context. In contrast, attributes such as Creamy Flavour and Sour 

Taste had negative logit values and were more difficult to perceive. As discussed in 

section 4.3.5, high OUTFIT values for low-intensity attributes often indicate 

variability, driven more by assessor confusion than by actual product differences. 

While this pattern suggests that Sample A may have been perceived as the most 

distinct from the control due to it being thicker and more viscous, this interpretation 

 
* 1 ± 2√

2

𝑁𝑟
 , where Nr (number of responses) for each of the attributes is 153. 
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is based on perceived differences only, as no rheological measurements were 

collected to confirm differences in viscosity. This association is supported by the 

response patterns reflected in the Rasch model’s PCAR results discussed in 

section 6.3.1, where Thick Mouthfeel and Viscous Appearance exhibited Local Item 

Dependency (LID).  

These findings were generally consistent with the panel ANOVA (FSample) in Table 6.5, 

which revealed the same attributes as significantly different (p<0.05), and with the 

assessor responses from the DFC (Figure 6.8), except for Homogenous Mouthfeel. 

Contrary to the Rasch findings, Homogeneous Mouthfeel was not a significant 

differentiator across the other metrics. Panel ANOVA revealed only marginal 

significance across samples (α = 0.10), and only a few assessors selected it as a 

differentiator in the DFC test. The interaction plot (Figure 6.7) revealed a 

pronounced crossover effect, indicating that one assessor rated the samples in a 

different order than the rest of the panel. Smaller crossover effects were also 

observed among other assessors. These patterns likely contributed to the elevated 

OUTFIT Mnsq, by increasing response variability, and may also explain the reduced 

discriminative power of this attribute (Stone et al., 2012; Raithatha & Rogers, 2018). 

As discussed earlier, OUTFIT Mnsq represents residual variation, after accounting 

for individual scale level effects, and reflect variations arising from interaction 

effects among facets. 

Based on the sample composition, it was expected that Homogeneous Mouthfeel 

would differ across samples due to the addition of garlic granules. However, it was 

uncertain whether this difference would be perceptible and reflected in the tactile 

perception of homogeneity by the assessors during testing. The definition provided 

was “Feels the same way throughout” (Table 6.1). Assessors may have found this 

attribute somewhat ambiguous to rate, as several questioned whether higher 

homogeneity should be scored as higher or lower intensity during the sessions. This 

underscores the importance of clear, unambiguous descriptions in attribute rating 

questionnaires (Lawless & Heymann, 2010; Stone et al., 2012; Kemp et al., 2018; 

Meilgaard et al., 2025).  
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Figure 6.6. Attribute contributions to overall differences between tomato soup samples, based on responses from the selected TIM panel. 
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Figure 6.7. Selected TIM panel interaction plots for all attributes. 
Plots are arranged in order of decreasing attribute OUTFIT Mnsq values, from top left to bottom right. Attributes are grouped according to whether they fall above or below 
the logit mean, consistent with their positioning in Figure 6.6. Attributes above the logit mean are outlined in blue, and those below are outlined in brown. Attribute titles 
indicate F-values from panel ANOVA results, with p-value levels significance: <0.001***, <0.01**, <0.05*, 0.10~; measures with no superscript symbols >0.10. 
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Table 6.5. Rasch analysis and Raw score ANOVA results for the selected TIM panel on attribute contributions to sample differences. 

   Rasch Metrics  Panel ANOVA1 (N-17) 
 

Attributes 
 

OUTFIT2 
Logit 

Measure3 
 

F Sample F Assessor F Assessor x Sample F Repetition F Assessor x Repetition F Sample x Repetition 

+V
e 

Lo
gi

t 

Thick Mouthfeel  1.20 0.41  26.83*** 5.19*** 1.80* 1.03 2.12** 0.78 
Homogenous Mouthfeel  1.09 0.42  2.52~ 3.03*** 1.77* 1.30 1.72* 0.51 
Viscous Appearance  1.09 0.08  63.34*** 10.15*** 1.37 1.65 1.68* 0.17 
Smooth Mouthfeel  0.97 0.63  3.12~ 5.92*** 2.43** 1.34 1.81* 0.34 
Savoury Flavour  0.96 0.17  5.16** 4.90*** 1.68* 0.90 1.12 0.27 
Herbal flavour  0.95 0.03  7.68** 2.33** 1.35 2.46~ 1.50~ 0.63 
Glossy Appearance  0.88 0.26  0.20 4.13*** 1.08 3.73* 1.09 0.46 
Cooked Tomato Flavour  0.76 0.16  0.34 8.61*** 1.50~ 0.80 0.90 1.35 
Colour Intensity  0.47 0.02  13.38*** 16.03*** 2.8*** 15.55*** 2.66*** 2.45~ 

            

-V
e 

Lo
gi

t 

Sour Taste  1.57 -0.32  0.25 16.80*** 0.80 2.55~ 2.06** 0.57 
Creamy Flavour  1.47 -0.13  12.35*** 9.66*** 2.22** 0.09 1.29 0.31 
Aftertaste  1.17 -0.04  1.98 13.17*** 1.24 1.88 1.70* 2.24~ 
Rich Aroma  1.07 -0.10  8.25*** 5.65*** 1.64* 0.38 1.43 1.31 
Sweet Taste  0.96 -0.44  2.69~ 13.64*** 2.09** 2.43~ 1.91* 0.78 
Herby Appearance  0.91 -0.23  19.57*** 3.83*** 1.53~ 7.20** 5.81*** 1.24 
Pungent Aroma  0.91 -0.38  7.78*** 5.97*** 1.30 2.07 1.37 0.93 
Salty Taste  0.87 -0.40  0.25 20.86*** 3.38*** 3.80* 2.90*** 2.37~ 
Cooked Tomato Aroma  0.68 -0.15  0.03 6.69*** 1.34 0.10 1.99** 1.63 

Attributes are arranged from top to bottom by decreasing OUTFIT Mnsq value and are differentiated based on whether they were located on the positive (+Ve logit > mean) or negative (-Ve logit < mean) 
side of the logit scale. N signifies the total number of assessors in the panel. 
 

 
1 F-values with p-value levels of significance: <0.001***, <0.01**, <0.05*, 0.10~; measures with no superscript symbols >0.10. n signifies total number of assessors. 
2 OUTFIT Mnsq for attributes indicating whether an attribute's discrimination differs from the average discrimination of other attributes across the samples. Acceptable fit range is 0.77-1.23. 
3 Value of the location of an attribute on the Rasch logit scale: Negative (-Ve) logit values signify low-intensity attributes (below the mean), while positive (-Ve) logit values signify attributes 

with higher intensities (above the mean). 
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Figure 6.8. Proportion of assessors indicating that a given attribute was considered when evaluating sample differences from the control, based on 
the questionnaire shown in Figure C 10. 

Segments are arranged in a clockwise direction, starting from “Creamy Flavour”, with proportions decreasing accordingly. Colour shading corresponds to 
the attribute positions in the OUTFIT Mnsq plot for the TIM method (Figure 6.6).Brown segments represent low intensity attributes (below the logit mean), 
while blue segments represent high intensity attributes (above the logit mean). Grey segments indicate overfit and potentially redundant attributes.  
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Furthermore, one of the DFC comments cited earlier in section 6.3.4: pg.196, 

mentioned noticeable garlic granules, suggesting that the attribute description 

“feels the same way throughout” might not have been sufficiently clear. 

Semantically, even the presence of granules could be interpreted as “feeling the 

same throughout”, leading to potential ambiguity. While this attribute was not 

found to be a significant differentiator across samples in the ANOVA results and 

from the DFC comments, Rasch model diagnostics detected irregularities in the 

response patterns, prompting further investigation. Additionally, this attribute was 

the only one with a negative point-biserial measure correlation, indicating opposing 

scale category usage by assessors, which caused inconsistent response patterns 

and supporting the hypothesis of misinterpretation. Item polarity (discussed in 

section 3.3.1.4: pg.58, and Table 3.1) further suggests that the item may be 

misaligned with the underlying construct and potentially misunderstood by the 

assessors. This highlights the Rasch model’s diagnostic advantage in evaluating 

product differences and identifying problematic attributes. 

Smooth mouthfeel was also revealed as an important contributor both from the 

DFC responses, and response patterns in the interaction plot, unlike the ANOVA 

results. The major influence of one assessor, who rated Sample B in the opposite 

direction from the panel, may have contributed to its high OUTFIT Mnsq value. 

Smooth Mouthfeel and Homogeneous mouthfeel were found in the LID analysis 

(Table 6.2) to be statistically related, possibly driven by similar patterns of variation 

in the responses. Meanwhile, the importance of Savoury Flavour and Herbal Flavour 

to product differences were consistent across all the analyses and plots.  

Cooked Tomato Flavour, Glossy Appearance, Colour Intensity and Cooked Tomato 

Aroma were found to be redundant attributes, as their OUTFIT Mnsq values were 

overfit (below the lower limit of 0.77) except for Glossy Appearance which had a 

value of 0.88. This slightly higher value for Glossy Appearance may reflect crossover 

interactions and poor repeatability, as indicated by the interaction plot. Generally, 

very few assessors identified these attributes as differentiators in the DFC test, and 

panel ANOVA showed no significant differences across samples for these attributes. 

Interestingly, the only exception among the redundant attributes was Colour 

Intensity, which the ANOVA identified as highly significant (p < 0.001), along with 
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other main effects and most interaction effects. However, based on the sample 

composition (see photos in Table B 3), Colour Intensity was not expected to vary 

meaningfully across the samples, even though slight differences may have been 

noticeable to some assessors with higher visual sensitivity. This expectation was 

supported by the overfitting OUTFIT Mnsq value of 0.47, which is well below the 

lower control limit (0.77), and by the DFC responses, where very few assessors 

identified it as a differentiating factor. The interaction plots (Figure 6.7), and the 

trellis plots (Figure E 1), suggest that the observed differences were mainly due to 

inconsistent use of the rating scale by the individual assessors. After the Rasch 

model accounted for these individual differences in severity (i.e. scale level 

effects), there was likely little true variation in response patterns.  

Although the ANOVA model attempts to adjust for differences in scale use through 

the FAssessor term, the substantial assessor, replicate, and interaction effects, 

together with the erratic ratings evident in the interaction plots, indicate that these 

results are not sufficiently reliable to support meaningful conclusions. As noted by 

Tomic et al. (2007), such adjustments are not always effective when assessors vary 

in both severity and consistency, and additional methods capable of revealing and 

accounting for these severity-level effects are required for reliable panel 

performance monitoring. 

Previous research has shown that relying solely on ANOVA results can be 

misleading when evaluating panel performance and product differences, especially 

if assessor inconsistency reduces the reliability of the data (Raithatha & Rogers, 

2018). To mitigate this, it is recommended that multiple analytical and visualisation 

methods be combined to ensure reliable interpretations in sensory studies (Tomic 

et al., 2007; Stone et al., 2012; Ho, 2015; Kemp et al., 2018). These findings 

therefore highlight the advantage of the Rasch model’s diagnostic approach, which 

provides clearer insight into assessor behaviour and product discrimination and 

can deliver more confident conclusions with fewer complementary analyses. 

The DFC responses revealed that Creamy Flavour and Rich Aroma were considered 

by most assessors to be major distinguishing attributes. This finding was 

corroborated by the Rasch analysis. However, the Rasch model also identified 

these attributes as relatively lower in intensity and more difficult to perceive, 
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placing them on the negative side of the logit scale. As discussed in previous 

chapters, attributes with low intensity scores often reflect confounding effects, 

such as assessor confusion or inconsistent interpretation, even when the attribute 

meaningfully contributes to product differences.  

When low intensity attributes are also found to be underfit, indicated by OUTFIT 

Mnsq values above the acceptable upper thresholds, this suggests irregularities in 

response patterns. This underfit may be due to crossover interactions (where 

different assessors inconsistently rank the samples) or from extreme rating 

patterns (where one sample is rated disproportionately lower than others). Despite 

these effects, the attribute may still be a meaningful differentiator. Typical 

examples of crossover interactions include Creamy flavour and Rich aroma in this 

chapter (Figure 6.7), where assessors inconsistently ranked the samples. Orange 

flavour ratings from the untrained panel in Chapter 5 (Figure 5.5 and Figure 5.6) is 

an example of extreme rating patterns, where one sample received 

disproportionately low scores. Therefore, underfitting low-intensity attributes 

warrants further investigation, as they may reflect critical sensory characteristics 

that are harder for assessors to evaluate reliably. 

Creamy Flavour showed the second highest underfit with an OUTFIT Mnsq value of 

1.57; however, its negative logit value of -0.32 suggested substantial variation in 

individual interpretations. The interaction plot showed greater agreement among 

assessors in rating Sample A the highest, but significant crossover interactions 

between Samples B and the Control, likely contributed to the elevated OUTFIT 

value. Similarly, the ANOVA revealed significant sample differences (p<0.001) and 

a significant assessor x sample interaction (p < 0.01). It was also considered the 

most differentiating attribute in the DFC test.  

The combination of a high underfit score, in a low intensity attribute and 

pronounced interaction effects, suggests that assessors varied in their 

interpretation of this attribute, indicating a need for improved training to enhance 

sensitivity. Difficulties in rating creaminess-related attributes like Creamy Flavour 

have previously been documented. These challenges arise not only from the 

difficulty in understanding the attribute’s meaning (Kilcast & Clegg, 2002) but also 

from its inherently multisensory nature. Frøst and Janhøj (2007) describe 
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creaminess as a meta-descriptor encompassing multiple sensory modalities, 

including taste, texture, mouthfeel, and aroma. More recent work (Corvera-Paredes 

et al., 2022) confirms that creaminess perception in foods depends on complex 

interactions among viscosity, lubrication (tribology), food matrix structure, and 

salivary processes. Although assessors were instructed to evaluate creamy flavour 

specifically, the multidimensional combination of these sensory characteristics 

may have led different assessors to focus on different aspects, such as mouthfeel 

thickness or richness of flavour.  

Similar challenges have been noted for other mouthfeel-related attributes, with 

research showing that attributes such as astringency consist of several perceptual 

sub-qualities, making them more difficult to evaluate consistently (Wang et al., 

2020). Furthermore, individual physiological differences contribute additional 

variability, as variation in salivary composition has been shown to affect the 

perception of astringency sub-qualities and influence how individuals experience 

and rate these mouthfeel sensations (Wang et al., 2021). Oral processing and 

salivary dynamics have been shown to shape texture and mouthfeel perception 

(Stokes et al., 2013), with lubrication properties playing a particularly important role 

(Boehm et al., 2020). These findings reinforce that individual biological differences 

can contribute to inconsistent ratings for complex, multisensory attributes such as 

creaminess. This multisensory complexity likely explains the variability and 

inconsistencies observed in the ratings for Creamy Flavour. 

Rich Aroma was also identified as a challenging attribute for assessors to rate. Its 

OUTFIT Mnsq value of 1.07, approaching the upper acceptable threshold of 1.23, 

along with a negative logit value of -0.10, suggested that the attribute was perceived 

at a relatively low intensity and that assessor responses varied considerably. This 

was further supported by the interaction plot, which showed significant differences 

across samples along with pronounced crossover interactions involving all three 

samples. 

One possible explanation for this inconsistency is the cultural variation among 

assessors, which may have influenced their interpretation of the attribute 

definition. Rich Aroma was defined as “Combination of multiple ingredients 

creating a deep and full aroma. For example, well-seasoned food”. The panel 
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included assessors from Western Europe, Mediterranean Europe, South America, 

and South Asia, regions with diverse culinary traditions and sensory expectations. 

Cross-cultural research has consistently shown that cultural background shapes 

how individuals perceive, evaluate and describe aromas. Recent studies have 

shown that cultural background plays a substantial role in how aromas are 

perceived, categorised and described. For example, Sharma (2023) demonstrated 

that odour vocabulary and conceptualisation vary significantly across cultures, 

influencing how individuals interpret aromatic cues. Majid et al. (2018) similarly 

reported pronounced cross-cultural differences in olfactory naming, discrimination 

and perceptual organisation across diverse linguistic groups. Earlier work by 

Pangborn et al. (1988) found that regional aroma-liking varied significantly across 

geographic areas, likely because of differences in traditional food habits and aroma 

availability rather than purely sensory threshold differences. Together, these 

findings support the likelihood that cultural variation contributed to the 

inconsistent ratings of Rich Aroma in this study.  

For some assessors, Sample A was perceived as having the richest aroma, likely 

also influenced by the enhanced complexity in aroma and flavour perception, 

caused by the increased viscosity when double cream was added (as discussed in 

section 6.3.1: pg.194). For others, Sample B was rated the highest, which aligns with 

the sample design, since the addition of garlic was expected to increase both the 

Savoury Flavour and Rich Aroma attributes. Table E 2 also confirms this, showing 

that Sample B had the highest average intensity score for Rich Aroma and was 

significantly different from the other samples (p<0.05). 

As discussed earlier in section 6.3.1, LID analysis revealed a statistical relationship 

between Rich Aroma and Savoury Flavour, supporting the connection between 

these two sensory attributes. However, according to Table E 2, Sample A had the 

highest intensity for Savoury Flavour, which was defined in the questionnaire as 

“Rich, spicy flavour associated with vegetable or meat broth”. Despite this 

relationship, results indicated that Savoury Flavour was easier for assessors to rate 

consistently than Rich Aroma. This suggests that Rich Aroma was not only more 

culturally variable, but also perceptually more complex, possibly due to it being 

perceived at a relatively lower intensity. The finding that Savoury Flavour was rated 
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highest in Sample A further highlights the alterations to other sensory attributes, 

and sensory interactions resulting from the addition of extra cream. 

Several studies have continued to emphasise the importance of considering 

cultural influences when designing and interpreting results from sensory and 

consumer research (Muñoz, 2002; Harrington, 2005; van Zyl & Meiselman, 2016; 

Ares, 2018; Hort, 2024). 

Notably, except for Herby Appearance and Creamy Flavour, the low intensity 

attributes consisted entirely of taste and aroma characteristics, including 

aftertaste. It is well established in the sensory literature that attributes related to 

smell and taste, particularly those perceived at low intensities or near detection 

thresholds, are often difficult for assessors to rate reliably. This underscores the 

training requirements to improve sensitivity to these attributes within a given 

product range (Lawless & Heymann, 2010; Kemp et al., 2018; DLG, 2020; Meilgaard 

et al., 2025). The interaction plots supported the Rasch analysis findings, revealing 

multiple magnitude and crossover interactions in the rating patterns. However, the 

OUTFIT Mnsq values increased with more crossover interactions because the 

Rasch model had already removed the effects of individual differences in scale use, 

which are reflected by the magnitude interactions (Stone et al., 2012).  

Herby Appearance was another challenging attribute to assess, but was suspected 

to have been influenced more by the sample design. The soup base for Sample A 

was a cream of tomato soup without basil, unlike the other samples. Dried chopped 

basil leaves were added while reheating the sample, shortly before evaluation. As a 

result, some assessors may have received samples with more visible basil specks 

than others, introducing inconsistencies in the perception of this visual attribute. 

In summary, findings from earlier chapters have demonstrated how the Rasch-

based TIM approach offers a streamlined diagnostic framework to identify key 

attributes driving product differences and to highlight individual assessor 

behaviour. By revealing unexpected and inconsistent response patterns, the model 

enables deeper examination of attribute perception and potential interactions, 

informed directly by observed panel ratings, without requiring multiple separate 

statistical techniques as in traditional analyses. 
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However, it is important to clarify that MFRM adjusts only for systematic differences 

in assessor severity (consistent tendencies to assign higher or lower ratings) and 

does not correct for broader individual differences in scale interpretation, attribute 

understanding, or physiological variation. Thus, the model improves comparability 

but does not eliminate the need for careful attribute definitions and panel training. 

Unexpected variations, whether systematic or inconsistent, are flagged through 

diagnostic outputs such as PCAR and residual fit statistics (e.g., OUTFIT Mnsq), 

which support informed interpretation rather than definitive explanations. 

While DFC achieved higher separation and reliability through its simpler 

comparative design, TIM offers distinct advantages when research goals extend 

beyond quantifying overall difference. It simultaneously identifies which specific 

attributes drive product differences, their contribution to the overall difference, and 

sources of measurement variability such as assessor inconsistency or confusion. 

The choice depends on whether only overall difference quantification is needed 

(DFC) or comprehensive diagnostic insights into both products and panel 

performance are required (TIM). These interpretations are most reliable when there 

is acceptable fit to the model, with visualisations of raw data helping to clarify 

patterns and support conclusions. 

6.4 Limitations of the study 

This study aimed to explore the transferability of the Rasch-based approach within 

a simulated context, designed to reflect settings commonly found in sensory quality 

programmes. A panel of untrained assessors was employed to investigate the 

potential of the Rasch model to identify individuals capable of performing at a 

trained assessor level. 

Panel performance constraints 

While some limitations identified in the previous two studies (particularly regarding 

sample and attribute choices discussed in Chapters 4 and 5) were successfully 

addressed, the use of an untrained panel continued to pose challenges due to 

inherently inconsistent ratings within each assessor (as shown in Figure E 1). As 

demonstrated by the trained panel in Chapter 5: section 5.3.4.1, Rasch-based 

diagnostic insights are considerably more informative when the panel operates at a 
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relatively standardised level. This is because the model evaluates rating behaviours 

and flags unexpected variations relative to the overall panel performance (Myford & 

Wolfe, 2004).  

The subset of better-performing assessors (n=17) selected from the full untrained 

panel (n=54) exhibited better consistency than the group overall, but still displayed 

some inconsistency, likely attributable to limited sensitivity to product attributes. 

Consequently, trends for identifying problematic assessors, such as through SR/ROR 

statistics, were not as clear-cut as was shown with the trained panel in Chapter 5.  

Lack of instrumental analysis to verify product characteristics 

Additionally, as with the previous studies, no instrumental analysis was conducted to 

verify the actual presence or intensity of the attributes evaluated. For instance, 

rheological measurements for viscosity, and particle size analysis for smoothness, 

could have provided objective confirmation of the perceived sensory differences. All 

findings are therefore based on panel ratings, and conclusions regarding the physical 

product characteristics underlying these differences remain interpretations rather 

than instrumentally verified properties. 

A trained panel sensitive to the attributes used in this study would likely have more 

clearly demonstrated the strength and impact of Rasch-based diagnostics for 

monitoring assessor performance. Nevertheless, the study yielded valuable 

insights into rating behaviours and attribute contributions, as reflected in OUTFIT 

Mnsq values. It offered nuanced diagnostics of both systematic variations (through 

PCAR) and non-systematic variations, and yielded more accurate assessments of 

product differences by accounting for one of the most significant sources of 

individual variation: the idiosyncratic use of rating scales (Linacre, 1994; Lawless & 

Heymann, 2010; Meilgaard et al., 2025). These findings underscore the potential of 

the MFRM, even when applied in contexts involving untrained assessors. 

6.5 Significance of study 

This final study extends and consolidates the findings from previous chapters by 

examining the adaptability and diagnostic capabilities of the MFRM and TIM approach 

in sensory difference testing across varied contexts. The results demonstrate that the 

MFRM offers diagnostic efficiency, particularly in situations where manual inspections 
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of data matrices or multiple independent statistical tests would be time intensive. By 

modelling products, assessors, attributes, and scale categories simultaneously, the 

model enables unexpected or inconsistent response patterns to be detected in a single 

analytical step. This offers practical benefits for sensory analysts, panel leaders, 

product developers, and quality managers in organisations with established 

sensory programmes and frequent assessment needs. The ability to identify which 

attributes drive perceived differences (as rated by the panel), and which contribute 

noise, can support more targeted reformulation, optimisation, and shelf-life 

decisions, while helping distinguish genuine product changes from panel drift or 

rater instability.  

While Chapters 4 and 5 demonstrated these capabilities across both trained and 

untrained panel contexts, this chapter specifically investigated whether MFRM 

diagnostics could support assessor selection and recruitment decisions in sensory 

quality programmes. Building on the finding from Chapter 5 that fit statistics are 

relative to panel performance, this study examined whether identifying assessors 

with more stable response patterns within an untrained group (i.e., acceptable fit 

within the panel) could improve panel discrimination and reliability. The results 

showed that diagnostic clarity scales with panel quality: highly informative with 

trained assessors (Chapter 5), moderately useful for identifying relatively stable 

performers among untrained groups for potential recruitment (Chapter 6), but with 

important caveats regarding fit statistics interpretation in poor-quality panels 

(discussed in section Chapter 5: pg.164). This progression clarifies both the utility 

of MFRM for practical assessor screening and the boundary conditions for its 

application in sensory quality control settings.  

Compared with traditional ANOVA-based approaches, the Rasch framework offers 

several strengths while remaining complementary rather than substitutive. ANOVA 

remains highly suitable for routine product comparisons with well-established, 

well-trained panels. However, the MFRM provides a unified analytical process that 

simultaneously accounts for systematic rater severity and offers integrated 

diagnostics not accessible through ANOVA. These include finer-grained insight into 

which attributes discriminate products effectively, which assessors deviate from 

panel expectations, and how rating scales are being applied. 
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Tomic et al. (2007) emphasised that robust methods are needed for compensating 

for panel drift, correcting for individual assessor level and range differences in scale 

use, and computing weighted sample estimates. This is particularly relevant given 

the substantial resources required to train and maintain calibrated descriptive 

panels. Panel training commonly ranges from 10 to over 100 hours (Djekic et al., 

2021), and in some cases extends over several months (Lestringant et al., 2019), 

with ongoing calibration and drift monitoring representing continuous operational 

demands. The MFRM contributes to addressing these needs by adjusting for 

individual assessor severity differences (scale level correction), flagging assessors 

with problematic scale use, and pinpointing scale range effects like central 

tendency and range restriction through fit statistics, enabling targeted intervention 

for range correction. When time-related facets like days, months or sessions are 

included in the model design, it can also reveal changes in rating patterns over time 

that may indicate performance drift. These capabilities offer practical operational 

benefits for panel management. Because the model adjusts for consistent 

differences in severity, panel leaders do not need to devote training time to 

enforcing identical rating standards across assessors, allowing them to focus 

instead on attribute understanding and meaningful interpretation of intensity levels. 

Additionally, integrated diagnostics such as fit statistics and SR/ROR correlations 

allow rapid identification of specific assessors who require targeted intervention, 

facilitating timely correction of issues such as scale misuse, inconsistency or 

attribute confusion. While the magnitude of time savings will vary by organisation, 

these diagnostic capabilities indicate meaningful opportunities to streamline panel 

maintenance and reduce the cumulative burden of ongoing calibration. 

While the MFRM offers clear advantages, its implementation also requires 

consideration of practical constraints. The method involves specialised software 

and methodological training, which may limit adoption among stakeholders 

unfamiliar with probabilistic models. Some resistance is likely in organisations that 

rely on established workflows centred on ANOVA. However, once implemented, the 

MFRM can reduce downstream workload by consolidating multiple analyses into a 

single model and by minimising the need for extended panel retraining. As sensory 

analysis software continues to evolve, the integration of Rasch-based tools into 
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commercial platforms may further lower barriers to adoption by automating model 

fitting and diagnostic reporting. The balance between initial setup effort and long-term 

diagnostic gains favours adoption in organisations with sustained quality monitoring 

needs and sufficient technical capacity to support initial implementation. 

An additional caveat concerns attribute selection and the assumption of 

unidimensionality. As shown in Chapter 5: pg.159 , when one product among those 

being compared exhibits an opposing attribute profile (e.g., Brand B with the lowest 

Orange flavour but highest Milky flavour ratings), the latent Overall Difference estimate 

becomes distorted through cancellation effects on the logit scale, reducing product 

separation clarity. This occurs because opposing attributes do not align along a single 

underlying construct, violating the unidimensionality assumption. Careful attribute 

selection is therefore critical to ensure attributes collectively represent a coherent 

sensory dimension. This consideration is particularly important for untrained panels, 

where inconsistent scale use can amplify distortions from poor attribute selection. 

Across the three studies, these diagnostic capabilities were delivered through a 

consistent analytical framework summarised in Figure 6.9. Key tools including the 

Many-Facet Wright map, separation statistics, rating scale category statistics, 

Principal Component Analysis of Residuals (PCAR) and Local Item Dependency 

(LID) analyses, residual fit statistics (OUTFIT mean squares), and Single Rater Rest-

of-Rater (SR/ROR) correlations collectively provide a coherent view of product 

discrimination, assessor behaviour, attribute functioning, and potential sensory 

interactions. Rather than requiring multiple separate analyses, these tools operate 

within a single model and offer a rapid, integrated interpretation of the underlying 

data structure, one of the key practical advantages of the MFRM over traditional 

approaches. 
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Figure 6.9. Schematic summary of the application of Rasch analysis in sensory difference testing.  

The diagram outlines the diagnostic tools employed across the three study contexts, highlights the specific insights each tool provided, and 
demonstrates how they collectively support the use of the Many-Facet Rasch Model (MFRM) as a robust analytical framework for measuring overall 
difference between products. 
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Chapter 7  

Overall Discussion 

7.1 Summary of findings 

This research explored the application of the Many-Facet Rasch Model (MFRM) in 

sensory difference testing with the goals of estimating an overall difference latent 

variable from multiple sensory attributes, evaluating the model’s ability to account 

for individual differences in rating scale usage, and exploring the diagnostic 

potential of Rasch outputs to improve sensory data interpretation and panel 

performance.  

The findings across the three study contexts demonstrate that the model effectively 

addressed the research aims. Specifically, the MFRM successfully estimated a 

single latent measure of Overall Difference, by combining intensity ratings across 

attributes, and this measure was comparable to the holistic overall difference score 

derived from the DFC test. The inclusion of assessors as a distinct facet in the 

model, allowed the analysis to account for individual differences in rating scale 

usage, by estimating each assessor’s severity or leniency. This contrasts with the 

conventional ANOVA, which relies on aggregated data and does not model 

individual-level variability. Additionally, Rasch-based diagnostics such as fit 

statistics, Wright maps, and PCAR, uncovered inconsistencies and the underlying 

structure of the response data. 

As a result, the Rasch-based approach provided valuable, more detailed insights 

than traditional methods, all within a single, integrated analysis. This offered 

enhanced practical value in several ways: (1) identifying inconsistent assessors early 

for targeted retraining and (2) clarifying which attributes contributed meaningfully to 

sample discrimination, both using the fit statistics; and (3) enabling rapid and 

intuitive interpretation of results through Wright maps, which visually place 

assessors and attributes on the same measurement scale, making outputs easier 

to understand for non-technical stakeholders. These advantages support more 

efficient panel management, clearer insights for product development, and better-

informed quality control decisions across the broader business context. While 
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implementation requires specialised software and training in Rasch principles, 

once established the unified analytical framework can reduce the need for multiple 

separate analyses and can streamline panel management. Moreover, integration of 

Rasch capabilities into commercial sensory software platforms could further 

reduce implementation barriers and increase accessibility through automated 

model fitting and diagnostic reporting. 

7.1.1 Estimating overall difference: Integrating quantitative & qualitative insights 

The Rasch approach yielded a single measure - Total Intensity Measure (TIM) for 

each sample using observable ratings across several selected sensory attributes. 

This measure represents the latent variable of Overall Difference. While post hoc 

tests produced conclusions similar to the traditional DFC overall difference test, 

the Rasch method offered enhanced clarity by not only helping to focus assessor 

attention on critical attributes of interest, but also generating valuable qualitative, 

diagnostic insights such as: 

▪ Revealing the relative perceptibility of different attributes using the Wright map, 

indicating which attributes were most easily and prominently perceived, and 

which were the least noticeable to assessors across all samples. 

▪ Identifying the key drivers of the perceived product differences using OUTFIT 

Mnsq statistics, highlighting attributes that contributed most reliably to sample 

discrimination, and 

▪ Clarifying whether observed differences stemmed from true sample variation or 

from panel inconsistency and assessor confusion, also through the OUTFIT 

Mnsq statistics for attributes. 

Previous studies have attempted to enrich the DFC method either by targeting 

specific attributes (Higgins & Hayes, 2020; Cela et al., 2023), or by incorporating 

open comment sections or CATA questions for qualitative insights (Rogers, 2017; 

Compusense, 2020). However, the proposed Rasch approach delivers more 

comprehensive, integrated quantitative and qualitative insights in a single, 

streamlined analysis, eliminating the need for multiple, separate tests. 

Furthermore, ANOVA-based methods operate at an aggregate level, and do not 

account for individual rating behaviours (Næs, 1990; Romano et al., 2008; Næs et 
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al., 2010; Hannum et al., 2019). While ANOVA can detect differences between 

samples and assessors' overall discriminatory ability, it cannot pinpoint which 

assessors struggled with specific attributes or identify sources of disagreement at 

the individual level. In contrast, Rasch modelling, accounts for individual rating 

styles by adjusting for severity or leniency biases and provides attribute-level fit 

diagnostics (e.g., OUTFIT Mnsq) that help distinguish true product differences from 

those driven by assessor inconsistency or confusion. This enhanced interpretability 

supports: 

▪ More targeted assessor training based on areas of inconsistency or confusion. 

▪ Elimination of redundant or non-discriminative attributes, and 

▪ A sharper focus on key drivers of product differences during analysis and 

reporting. 

Finally, response dependency analyses revealed patterns of co-variation among 

attributes, which may suggest potential relationships such as ingredient 

interactions or attribute synergies perceived by the assessors. While these 

correlations do not establish causation, they offer valuable starting points for 

further investigation and can inform product development efforts, providing useful 

cues for product formulation, optimisation, and quality control. 

7.1.2 Comparing rating behaviours of trained and untrained assessors 

Regarding individual variability (outlined in Table 2.1), results from Chapter 5 

confirmed that trained panels are generally more sensitive to product attributes and 

consistent in their ratings. The trained panel in this study consisted of expert 

assessors with extensive sensory profiling experience for a global chocolate 

manufacturer. However, even the experts occasionally exhibited inconsistencies. 

Their tendency to give more conservative ratings, as observed with the Orange 

flavour attribute, is hypothesised to reflect the cumulative influence of feedback 

received over multiple prior training sessions (Castura et al., 2005; Raithatha & 

Rogers, 2018). Notably, the panel had not received specific training on chocolate-

orange spreads prior to this study, which may have contributed to their inaccurate 

ratings for Orange flavour in the chocolate spread samples. This aligns with Chollet 
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et al. (2005) and Ares and Varela (2017), who argue that the perceptual acuity of 

trained assessors does not necessarily generalise to stimuli outside their training. 

In examining scale-use bias, a well-documented challenge in sensory profiling 

(Næs, 1990; Romano et al., 2008), the MFRM in this study adjusts for idiosyncratic 

scale usage (level effects), but still captures individual deviations through residual 

fit statistics. Assessor OUTFIT Mnsq identified various scale-use biases: overfitting 

assessors showed range restriction or central tendency, while underfitting 

assessors exhibited erratic behaviour or extreme responses. Untrained panels 

predominantly displayed high variability, reflecting differing experience levels and 

lower sensitivity to some attributes. Chapter 6 highlighted instances, where the lack 

of a shared frame of reference for scaling among untrained assessors, led to 

inconsistent interpretations of complex attribute descriptors like Creaminess and 

Homogeneous, similar to inconsistencies in attribute understanding and scale use 

reported by Antmann et al. (2011) and Ares et al. (2011).  

As observed by Worch et al. (2010) and Xiangli et al. (2024), the trained and 

untrained panel in Chapter 5 generally produced similar directional results (as 

shown on the Wright maps). However, while there was a significant difference 

between at least one of the samples for the trained panel, this was not the case for 

the untrained panel, as their internal inconsistencies (i.e. the variability effect from 

crossover interactions within themselves), resulted in the loss of discrimination 

(Stone et al., 2012). The Rasch model corrected for this internal variability, filtering 

it out as unsystematic noise rather than meaningful differences. This demonstrates 

the model’s strength in objectively managing variability, albeit conservatively, such 

that only sufficiently systematic differences, beyond severity or leniency in scale 

use, are deemed reliable. Raithatha and Rogers (2018) noted that panel results 

must be consistent enough for the panel mean to represent genuine product 

differences. 

In business contexts, the Rasch models’ objectivity is advantageous. Another 

instance from Chapter 6 was how traditional ANOVA on raw scores indicated a 

significant difference in Colour intensity, including assessor and interaction effects. 

In contrast, the Rasch model, after adjusting for scale-use effects, found no 

meaningful product differences, aligning better with DFC results. This instance 
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highlights how the conventional approach to analysing aggregated sensory data can 

be inefficient. 

That said, in agreement with Ares and Varela (2017), Meiselman (2013), and Barton 

et al. (2020), the choice between trained and untrained assessors should be 

context-dependent. Trained panels are not infallible, and untrained assessors, 

while lacking consistency, bring valuable familiarity with the product of interest. 

When combined with Rasch-based adjustments for individual rating style, 

untrained panels can yield consumer-relevant insights and effectively substitute for 

trained panels, offering significant resource savings, by reducing the need for 

extensive training in some industrial settings. Therefore, untrained assessors can 

represent a practical and valid option in many cases, especially when resource 

constraints or the nature of the product evaluation make trained panels less 

feasible. 

7.1.3 Diagnostic insights into the use of rating scales 

This study employed a category-labelled (ordinal) scale, whose anchors were 

adapted from the Labelled Magnitude Scale (LMS). The rationale was to provide 

well-established intensity descriptors while maintaining the simplicity of 

categorical rating, and to leverage the Rasch model's ability to convert ordinal 

scores to interval measures. The LMS anchors were chosen to enhance 

discriminative capacity and prevent ceiling effects. However, no specific training on 

the use of the scale in this study was provided for either of the panels. Additionally, 

this study did not empirically compare the adapted LMS format against traditional 

category labels or unstructured line scales to determine whether it actually 

improved usability or discrimination. 

Wright maps generated across all studies visualised individual scale categories as 

threshold ranges, indicating transition points between rating categories. Slightly 

unequal distances between adjacent categories, widening toward the extremes, 

are characteristic of category-ratio scales like the LMS (Green et al., 1993), the Borg 

Scale (Borg, 1982), and the generalised Labelled Magnitude Scale (gLMS) 

(Bartoshuk et al., 2005). Notably, the end category “Strongest imaginable oral 

sensation” was the least used across all studies. Prior research by Schifferstein 
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(2012) and Hayes et al. (2013) has highlighted that untrained assessors often 

struggle with abstract anchors like “strongest imaginable”, resulting in scale 

compression and underuse of the upper categories. Interestingly, the trained panel 

also underutilised the “extremely strong” and “strongest imaginable” upper 

categories while consistently using more middle categories. Given the lack of scale 

use training, this pattern likely reflects the actual intensity range of the product 

attributes, or the trained panel’s unfamiliarity with the LMS scale, as they were more 

accustomed to unstructured line scales. This demonstrates that sensory training 

does not necessarily generalise across different scale formats, highlighting the 

need for scale-specific familiarisation even with experienced panels. 

The scale category diagnostic information produced by the MFRM proved valuable for 

identifying these usage patterns. The model successfully identified redundant 

categories (such as the "Strongest Imaginable" category across all three studies) and 

revealed patterns in scale use that inform both scale refinement and training needs. 

However, whether the adapted LMS format actually enhanced discrimination 

compared to traditional labels or reduced rating variability compared to line scales 

cannot be determined from this study, as comparative data were not collected. 

For manufacturers, the Rasch approach can support the design of long-term 

sensory quality programs, by helping to optimise rating scales. In this study, the 

MFRM allowed ordinal category scales to be converted to interval-level measures 

while providing diagnostic insights into how assessors actually applied the scale. 

Rasch analysis adjusts for individual differences in how assessors interpret and 

apply scale categories (in terms of severity and leniency), reducing, but not 

eliminating, the need for intensive training to ensure consistent attribute 

understanding and rating behaviour, which remains a persistent challenge in 

sensory and consumer research (Kemp et al., 2018).  

Ultimately, the Rasch-based framework aligns with Meiselman's (2013) call to 

prioritise efficiency and usability of sensory rating scales, over ongoing debates 

about whether a scale is inherently “good” or “bad”. However, this study 

demonstrates that even with Rasch calibration, scale design choices, particularly 

anchor terminology and the provision of scale-specific training, matter for practical 

application, and warrant systematic empirical investigation in future research. 
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7.2 Limitations 

The studies presented in Chapters 4 to 6 demonstrated the diagnostic capabilities 

of the MFRM across different panel types and product contexts. Several limitations 

warrant consideration when interpreting findings and planning future applications. 

Absence of instrumental verification 

Across all studies, no instrumental analysis was conducted to verify sensory 

attributes. Tests such as headspace GC-MS could have confirmed volatile 

compound profiles underlying perceived aroma and flavour attributes (e.g., orange, 

herbal, cooked tomato), HPLC or titration methods could have quantified non-

volatile compounds contributing to taste perceptions such as sweetness (sugars), 

sourness (acids), and saltiness (sodium content), texture analysis and rheometry 

could have verified structural properties such as viscosity in chocolate spreads and 

tomato soups or sponginess in Jaffa cakes, and particle size analysis could have 

confirmed perceptual differences in smoothness of the soups. This limits the ability 

to distinguish genuine product variation from perceptual variation or measurement 

error. While the MFRM provides robust measurement of perceptual differences, 

conclusions about the physical product characteristics underlying those 

differences remain interpretations rather than instrumentally verified properties. 

Model assumptions and validity 

The validity of Rasch model-derived insights depends on key assumptions being met. 

The model estimates a single latent “Overall Difference” variable, which assumes all 

attributes contribute to a unified sensory dimension (unidimensionality). When 

products exhibit opposing attribute intensities, as observed with Brand B in Chapter 

5 (the only sample with no added orange flavouring, resulting in low Orange flavour 

but high Milky flavour ratings compared to other samples), this assumption may be 

violated, causing cancellation effects on the logit scale that mask true product 

differences. Future applications should carefully select attributes that align along a 

coherent sensory dimension. When one product among those being compared has a 

distinctly different attribute profile, preliminary examination of raw data and attribute 

patterns can inform whether a unidimensional overall difference measure is 

appropriate, particularly when using untrained or inconsistent panels. 
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Additionally, fit statistics are benchmarked against the response patterns within a 

panel, not external standards. Acceptable fit in poor-quality panels (such as the 

untrained panels in Chapter 5 and 6) reflects relative consistency within a weak 

reference group, not good absolute performance. Fit statistics must therefore be 

interpreted alongside raw data visualisations (Myford & Wolfe, 2004), particularly 

when panel baseline performance is inconsistent. 

Test design and presentation differences 

Differences in test structure between DFC and TIM should be considered when 

comparing results. The DFC's comparative design with a physical reference present 

facilitates detection of perceived differences and provides an external anchor for 

consistent judgment. TIM's monadic presentation requires assessors to rate 

attributes independently using internal mental references. These design differences 

may have contributed to differences in separation, reliability, and discrimination, 

independent of the analytical approaches themselves. 

Rating scale design and training 

No panel received specific training on the category scale with anchor labels adapted 

from the LMS. This study did not empirically compare the adapted LMS format against 

traditional category labels or unstructured line scales. The persistent underuse of the 

“Strongest imaginable” category across all panels suggests this abstract anchor was 

problematic regardless of training level. However, whether alternative scale formats 

would have improved usability, reduced rating variability, or enhanced discrimination 

cannot be determined without comparative data. 

An interesting area for future research would be examining how the MFRM performs 

with rating scales using relative anchors, commonly employed in QDA settings, and 

across other scale formats. Meilgaard et al. (2025) emphasise the importance of 

determining how many scale categories are needed to characterise attribute 

intensities, which MFRM category diagnostics can empirically evaluate. 

Panel quality and diagnostic clarity 

MFRM diagnostic value scales with panel quality. The trained panel yielded highly 

informative diagnostics, while the untrained panels exhibited high variability that 

obscured patterns and made it difficult to isolate problematic assessors. Even the 
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selected subset of better-performing assessors in Chapter 6 (n=17 from n=54) 

displayed residual inconsistency likely due to limited attribute and scale 

understanding. While the MFRM could potentially identify relatively stable performers 

within untrained groups for recruitment purposes, some minimum familiarisation with 

sensory methods and terminology would enhance diagnostic utility. 

Experimental design factors also could have influenced panel performance. In 

Chapter 5, untrained assessors completed evaluations in a single session without 

rest intervals, likely contributing to fatigue and carryover effects. The absence of 

incentives may have further reduced engagement. These represent readily 

addressable constraints in future studies. 

7.2.1 Practical implementation considerations 

Several practical questions remain unaddressed, including decision rules for fit 

statistics-based interventions, cost-benefit analysis in industrial settings, and 

integration with consumer preference data. As discussed in previous chapters, 

implementation requires specialised software and training in Rasch modelling 

principles, which may present barriers to adoption. While this thesis demonstrates 

MFRM's capabilities in research settings, validation within an established practical 

quality control setting, could demonstrate greater benefits, and remains a valuable 

direction for future research. 

7.3 Knowledge contribution 

This thesis provides several contributions to the use of the Many-Facet Rasch Model 

(MFRM) in sensory difference testing. While previous work has applied MFRM to 

estimate latent variables such as overall liking or sensory quality, this research 

extends its application to modelling the overall difference between products based 

on intensity ratings of multiple sensory attributes. Chapters 4 to 6 demonstrate that 

the Rasch-derived Total Intensity Measure (TIM) can detect product differences 

while also indicating which attributes contribute most strongly to those differences 

and the relative perceptibility of different attributes. This helps address an 

established limitation in sensory methodology, where existing approaches either 

focus on single attributes, provide overall metrics without diagnostic detail, or 

require multiple separate analyses to obtain a full picture. 
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The research also examines how panel expertise influences the quality and 

interpretability of MFRM diagnostics. Chapter 5 shows that trained panels produce 

results that support detailed interpretation of both product and assessor patterns. 

In contrast, Chapters 4 and 6 show that untrained panels introduce greater 

variability, which can make some diagnostics more difficult to interpret. An 

additional observation is that when products differ on opposing attributes and 

untrained assessors apply ratings inconsistently, the resulting latent difference 

estimates can show cancellation effects that reduce the apparent magnitude of 

product differences, with important implications for attribute selection, panel 

composition, and study design. 

A practical framework for applying MFRM in sensory difference testing across 

different panel types and contexts is also proposed, specifying when and how the 

method should be applied based on considerations such as panel type, product 

complexity, and diagnostic needs. By combining Wright maps, category diagnostics, 

fit statistics, and residual patterns, the framework supports an integrated approach 

to interpreting product differences, assessor performance, attribute functioning, and 

scale use. The model's adjustment for systematic differences in assessor severity 

helps separate genuine performance inconsistencies from individual differences in 

rating style (i.e., severe or lenient raters). 

Additionally, the findings demonstrate how MFRM can provide both measures of 

overall product difference and insight into the structure and reliability of the 

underlying data. The ability to trace inconsistent or unexpected findings back to 

specific assessors or attributes can support more informed interpretation in 

product development and quality control contexts. By identifying conditions where 

the method performs well and those where caution is warranted, the thesis offers 

realistic guidance for integrating MFRM into both research and applied sensory 

evaluation contexts. 

7.4 Recommendations and future perspectives 

Building on the findings and discussions presented throughout this thesis, the 

following recommendations highlight practical improvements and areas for further 

investigation to enhance Rasch modelling in sensory evaluation. 
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7.4.1 Review of mean comparisons with Rasch measures 

As discussed in Chapter 4, certain mean comparison tests may be unsuitable for 

analysing Rasch measures, without explicitly modelling interaction effects. The 

MFRM accounts for main effects across modelled facets and treats unexpected 

variations as residuals, which are reflected in fit statistics such as OUTFIT Mnsq 

(Linacre, 1995). Consequently, tests like the Friedman test, which assume 

interaction structures, may be redundant or misleading in this context. 

Instead, the Kruskal-Wallis test was found to be more appropriate for comparing group 

means on Rasch-transformed measures, as it does not require modelling of 

interactions and aligns better with the structure of Rasch-derived data. Given these 

considerations, further research comparing parametric and non-parametric statistical 

methods for analysing Rasch outputs, could improve methodological transparency, 

and guide researchers in selecting appropriate tools for post hoc comparisons. 

7.4.2 Use of the Partial Credit Rasch Model (PCM) for cross-panel data 

In sensory evaluation, it is not uncommon for different panels within the same 

organisation, often located at geographically distinct sites, to use different rating 

scales when evaluating the same product. These variations may arise from local 

practices, differences in panel training, or historical preferences. Such inconsistencies 

present challenges in data analysis when comparing or consolidating results across 

panels, as traditional methods typically assume uniform rating structures. 

The Partial Credit Model (PCM), described in Table 2.2. Summary of Rasch Models, 

addresses this issue by providing the flexibility to model each attribute using the 

unique rating scale employed by each panel, accommodating differences in scale 

structure. Unlike the Rating Scale Model (RSM), which was used in this study and 

assumes a consistent threshold structure across all attributes and assessors, PCM 

can accommodate variability in both the number of scale categories and the location 

of category thresholds. This flexibility makes it particularly well-suited for harmonising 

data from panels that use different rating formats. 

Applying PCM enables calibration of responses from diverse panels onto a common 

scale, facilitating valid comparisons while preserving the integrity of each panel’s 

original scale. This approach offers a practical method for integrating sensory data 
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from multiple sources, without enforcing rigid standardisation. It can help balance 

flexibility with comparability, thereby supporting the generation of more reliable 

insights to inform product development, quality control, and consumer research. 

7.4.3 DIF Analysis for panel proficiency and cross-cultural studies 

Monitoring panel performance over time and across different assessor groups is 

essential for ensuring data quality and maintaining consistent product evaluation 

standards. Differential Item Functioning (DIF) analysis within the Rasch framework, 

provides a reliable method for detecting whether specific attributes are interpreted 

differently by subgroups, even when those groups have similar underlying perceptual 

sensitivity.  

As demonstrated by Myford and Wolfe (2009), Eckes (2023), Shin and Lee (2024), 

and Lamprianou (2025), MFRM can incorporate time, culture, location, or assessor 

experience as additional facets. This allows systematic differences to be visualised 

via Wright maps, offering valuable insights into rater drift and panel dynamics. These 

capabilities make MFRM particularly useful for both ongoing panel proficiency 

assessment, and for investigating cultural variability in sensory perception.  

In cross-cultural contexts, DIF analysis plays a critical role in validating sensory data 

from diverse populations. Sensory experiences are shaped by cultural factors, 

including culinary norms, linguistic framing, and varying familiarity with product 

categories, which can influence how attributes are perceived and rated (Pangborn et 

al., 1988; Lee & Lopetcharat, 2017; Hort, 2024; Dupas de Matos et al., 2025). DIF 

helps uncover latent response biases or semantic mismatches that may arise when 

comparing panels or test protocols across regions. Persistent DIF in certain 

attributes may signal a need to adapt scale anchors, redefine terms, or adjust 

assessor training, to ensure that observed differences reflect genuine sensory 

perception rather than cultural misalignment. 

DIF analysis thus can be a powerful diagnostic tool, enabling researchers and 

industry practitioners to maintain the integrity of sensory evaluations, while 

expanding testing across borders or evolving panel compositions. Its application can 

ensure that decisions derived from sensory data, whether for product reformulation, 
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quality benchmarking, or market expansion, are based on valid and comparable 

measurements across global assessor groups. 

7.4.4 Application guidance across panel types 

The findings across Chapters 4 to 6 demonstrate that the MFRM offers different 

levels of diagnostic utility depending on panel type and training level. This section 

provides practical recommendations on when and how to apply the method across 

different sensory evaluation contexts. 

▪ Specialist Trained Panels (Industrial QC panels)  

Specialist trained panels represent the optimal context for MFRM application due to 

their product-specific expertise and consistent exposure, which provide the stable 

reference framework necessary for informative diagnostics. Chapter 5 demonstrated 

that trained assessors provided clearer sample discrimination and more stable rating 

patterns compared to the untrained panel, despite some residual inconsistencies. 

The MFRM enables ongoing performance monitoring through fit statistics and Wright 

maps, validates whether new or modified attributes are interpreted consistently by 

assessors, and adjusts for individual severity differences without requiring identical 

rating standards. 

For multi-site operations where different trained panels use varying rating scales, 

the Partial Credit Model (section 7.4.2) enables harmonisation of data across 

locations by calibrating responses onto a common scale while preserving each 

panel's original scale structure. DIF analysis (section 7.4.3) complements this by 

monitoring panel drift over time and detecting systematic differences between 

sites, supporting decisions about recalibration needs or protocol standardisation.  

These capabilities are particularly valuable for specialist panels, where maintaining 

consistent standards across sites and over time is critical for quality assurance. 

Recommended applications include routine quality monitoring, shelf-life testing, 

reformulation validation, and cross-site comparisons. 

▪ General Trained (Research) Panels 

 Panels with sensory training but less specialised expertise conduct evaluations 

across different product categories and projects, requiring periodic recalibration. 

MFRM diagnostics are particularly valuable for these panels in identifying when 
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recalibration is needed and pinpointing specific assessors or attributes showing 

drift or inconsistency. The model helps distinguish genuine performance issues 

from systematic severity differences that do not require intervention.  

DIF analysis detects whether subgroups (e.g., assessors with different experience 

levels or training backgrounds) interpret attributes differently as new products are 

introduced, informing decisions about where training efforts should focus. Raw 

data visualisation alongside model outputs is essential for accurate interpretation. 

Recommended applications include early-stage product formulation testing, 

comparative testing across product categories, and monitoring performance as 

panels transition between product types. 

▪ Untrained and Consumer Panels 

Consumer and untrained panels pose the greatest challenges for product 

discrimination due to high inter-individual variability and inconsistent scale use. Fit 

statistics in such groups reflect consistency relative to other poor-performing 

assessors rather than ideal performance. However, MFRM offers distinctive value by 

explicitly modelling the separate effects of consumers, products, attributes, and scale 

steps, producing measurements adjusted for rater severity and erratic scale use.  

DIF analysis is particularly valuable for subgroup comparisons, revealing whether 

attributes or preference patterns function differently across demographic 

segments, usage occasions, or cultural groups due to culinary norms, linguistic 

differences, product familiarity, etc. This informs decisions about market 

segmentation, scale adaptation, or attribute redefinition for global studies. For 

categorical hedonic or intensity scales commonly used in consumer testing, 

MFRM's scale diagnostics identify problematic response categories (such as 

underutilised categories or item polarity i.e. when the interpretation of the scale is 

reversed), supporting scale optimisation and questionnaire refinement.  

Furthermore, the latent variable approach clarifies the relative contribution of each 

sensory attribute to overall liking or perceived difference, even when consumers 

cannot articulate these factors explicitly. This supports a measurement-based 

understanding of consumer drivers of preference rather than relying solely on self-

reported reasons. Implementing MFRM effectively with untrained and consumer 

panels requires careful attribute definition, maintaining identical attribute labels 
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and scale anchors throughout the study, and sufficient sample sizes to support 

robust facet estimation and DIF detection. 

For semi-trained or familiarised panels with basic orientation to sensory methods, 

MFRM may additionally serve as a screening tool to identify stable performers for 

potential recruitment to trained panels, though findings should be interpreted 

cautiously given the inherent variability in such groups. 

▪ Academic and Exploratory Panels (Convenience Samples) 

Academic and exploratory research settings often rely on student cohorts, opportunity 

samples, or mixed consumer participant groups, presenting unique challenges for 

reliable sensory evaluation. These assessor pools typically lack training, exhibit 

heterogeneous sensory acuity, and vary widely in task comprehension and familiarity 

especially with the novel foods and ingredients commonly investigated in academic 

research settings. Within these contexts, MFRM can explicitly model assessor-related 

inconsistency, separating it from genuine product differences, and enabling more 

defensible interpretation of results from these non-standard panels. 

DIF analysis is also useful for identifying subgroup patterns, such as differences based 

on familiarity, dietary orientation, or sensory sensitivity, and for clarifying whether 

observed product differences are generalisable or segment specific. This is particularly 

valuable for emerging product categories such as alternative proteins, insect-based 

foods, novel fermented ingredients, or products using novel processing technologies, 

where interpretation and acceptance vary widely. Effective application requires clear 

attribute definitions, justified subgroup classifications, some task familiarisation, and 

careful attribute selection to minimise construct-irrelevant variance and ensure stable 

facet estimation.  

7.4.5 Software development and usability 

This recommendation addresses two areas: improvements to existing Rasch 

software, such as FACETS, and the integration of Rasch modelling tools into 

mainstream sensory analysis platforms. 

▪ Enhancing the FACETS Software: FACETS could be improved by incorporating 

post hoc sample comparison features directly into the interface, allowing sensory 

practitioners to streamline analysis and interpretation. Additionally, enhancing 



235 
 

 

the visual design of Wright maps would make them more suitable for business 

presentations and stakeholder discussions, increasing their practical impact. 

▪ Integration into Sensory Software Platforms: While MFRM is powerful, its 

adoption is limited by the need for specialised software and training. Embedding 

Rasch modelling functionalities into existing sensory analysis software, supported 

by simplified user interfaces and clear explanations would significantly broaden 

access to this method. Although most leading Rasch software packages are paid, 

open-source implementations are available (Rasch Measurement Transactions, 

2025). Additionally, Wind and Hua (2021) and Debelak et al. (2022) offer detailed 

procedural accounts using R, which can serve as a foundation for integrating Rasch 

diagnostics into sensory and consumer research programmes. 

7.5 Conclusion 

This thesis has shown that the Many-Facet Rasch Model (MFRM) can be used to quantify 

overall product difference as a latent variable while also providing diagnostics for 

assessors, attributes and scale functioning. Across Chapters 4 to 6, the Total Intensity 

Measure (TIM) approach detected product differences and offered insight into how 

panel expertise and attribute structure influence the clarity of the resulting measures. 

The findings also indicate that inconsistent rating behaviour and opposing attribute 

profiles can mask genuine product differences through cancellation effects on the 

latent scale, particularly with variable untrained assessors. The research demonstrated 

that with adequate panel quality and systematic attribute selection, the Rasch-based 

approach enables more interpretable comparisons by converting responses to a 

common interval scale while accounting for systematic assessor differences. 

The framework developed in this thesis complements recent applications (Camargo & 

Henson, 2015b; Ho, 2019; Li, 2019; Chalk, 2020; Mile et al., 2021; Wu et al., 2021) of the 

MFRM in sensory and consumer research and provides a basis for more informed use 

of the approach in sensory difference testing. As sensory evaluation continues to 

involve a wider range of populations and testing contexts, further work in operational 

quality control settings with trained panels, with alternative scale formats and with 

more diverse panels, would help clarify the practical boundaries of this approach and 

strengthen understanding of when it offers the greatest value to sensory practice.  
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Appendices 

Appendix A : Ethics Approval Letters 

A.1 Jaffa cakes study ethics approval (AREA FREC 2023-0433-496) 

  13 April 2023 
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A.2 Chocolate spreads study ethics approval (MEEC 15 -003) 
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A.3 Tomato soup study ethics approval (BESS+FREC - 2024 0433-2568) 
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Appendix B : Composition of Samples 

B.1 Jaffa Cakes Sample Content 

  Table B 1. Sample composition for the three Jaffa cake samples in the Chapter 4 study 

 

 
✘ indicates that an ingredient was not added to the corresponding sample. Other ingredients that may have influenced differences in product attributes across the samples are written in bold. 
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B.1.1 Sample Appearance and Presentation 

 
Figure B 1. Photo of Jaffa cake samples showing variation in appearance.  
Brand A exhibits greater variation in shape compared to Brands B and C. Samples were labelled with 3-digit codes during the study.  

 

 

 

 

 

 

 

 

  
Figure B 2. Illustration of the presentation of Jaffa cake samples in the Difference from Control (DFC) and Attribute Rating (AR) tests. 
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B.2 Chocolate Spread Sample Content 

Table B 2. Sample composition for the three chocolate spread samples in the Chapter 5 study 
Attributes of Interest Content per 100g Brand A Brand B Brand C 
  Energy (Kcal) 568 572 492 
Orange Flavour Total Fat (g) 35.8 38 39 
Sweetness Saturates(g) 14.5 8.7 9.1 
Cocoa Flavour Total Carbs (g) 56.6 54 50 
Milky Flavour Sugars (g) 54.7 52 <0.5 
Saltiness Fibre (g) 2 1.7 4.4 
  Protein (g) 3.6 3.8 3.1 
  Salt (g) 0.13 0.1 <0.01 

Comparison of 
Orange, Cocoa, and 
Milk flavour Content  

ORANGE FLAVOURING       
Orange Extract ✔  ✘ ✘ 
Natural Orange Flavouring ✘ ✘ ✔  

COCOA CONTENT       
Fat Reduced Cocoa Mass 12% 5% 14% 
Milk Chocolate Crumb ✘ 7% ✘ 

MILK CONTENT       
Whey Powder 5% ✔  ✘ 
Lactose ✔  ✔  ✘ 
Full Cream Milk Powder ✘ 7% ✘ 

List of Ingredients 

Sugar, Palm Oil, Fat Reduced Cocoa 
Powder (12%), Whey Powder (Milk) 
(5%), Lactose (Milk), Hazelnuts, 
Emulsifier (Sunflower Lecithin), Orange 
Extract, Flavouring 

Sugar, Rapeseed Oil, Lactose (Milk), 
Palm Oil, Milk Chocolate Crumb 
(7%) (Milk, Sugar, Cocoa Mass), Full 
Cream Milk Powder (7%), Fat 
Reduced Cocoa (5%), Whey Powder 
(Milk), Emulsifier: Sunflower 
Lecithin, Flavouring 

Natural Sweetener 
(Maltitol), Vegetable Oil 
(Rapeseed, Sustainable 
Palm), Fat Reduced 
Cocoa 14%, Emulsifier 
(Sunflower Lecithin), 
Natural Orange Flavouring 

✔ indicates that an ingredient is present in the sample, but its quantity was not specified on the label, while ✘ indicates that the ingredient was not added to the corresponding sample. Other ingredients 

that may have influenced differences in product attributes across the samples are written in bold. 
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B.3 Tomato Soup Sample Content 

Table B 3 Sample composition for the three tomato soup samples in the Chapter 6 study 
   Sample A Sample B Sample C/Control 

Sample Content BASE SOUP Cream of Tomato Cream of Tomato and Basil Cream of Tomato and Basil 

Extra ingredients added to 
base soup 

Dried Chopped Basil 9% ✘ ✘ 
Tomato passata ✘ 3.8% ✘ 
Double cream 2% ✘ ✘ 
Garlic granules ✘ 6.3% ✘ 

List of ingredients in base soup 

Tomatoes (89%), Water,  
Modified Cornflour, 
Sugar, Rapeseed Oil, Dried 
Skimmed Milk, Salt, Cream 
(Milk), Milk Proteins,  
Acidity Regulator - Citric 
Acid, Spice Extracts, Herb 
Extract 

Tomatoes (84%), Water, Basil, 
Herbs, Modified 
Cornflour, Sugar, Rapeseed Oil, 
Dried Skimmed Milk, Salt, Cream 
(Milk), Milk Proteins,  
Acidity Regulator - Citric 
Acid, Spice Extracts, Herb Extract 

Tomatoes (84%), Water, Basil, 
Herbs, Modified 
Cornflour, Sugar, Rapeseed Oil, 
Dried Skimmed Milk, Salt, Cream 
(Milk), Milk Proteins,  
Acidity Regulator - Citric 
Acid, Spice Extracts, Herb Extract 

Photos showing side and top views of ready-to-serve 
samples 

   

Attributes of Interest 
Appearance Glossy appearance, Viscous appearance, Colour intensity, Herby appearance 
Aroma Rich Aroma, Cooked tomato aroma, Pungent aroma 
Mouthfeel Smooth mouthfeel, Homogeneous mouthfeel, Thick mouthfeel 
Flavour Savoury flavour, Herbal flavour, Cooked tomato flavour, Creamy flavour 
Taste Salty taste, Sour taste, Sweet taste, Aftertaste 
✘ indicates that an ingredient was not added to the corresponding sample. Other ingredients that may have influenced differences in product attributes across the samples are written in bold.  
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Appendix C : Sensory Study Questionnaires 

C.1 Jaffa cakes study questionnaire (RedJade) 

 

 

 

 

 

 

 

 

 

Figure C 1. Questionnaire introductory page for Jaffa cakes study. Participants 
must scroll through the entire consent form before they are able to select the “I 
Agree, or I Decline” button. 

 

 

 

 

 

 

 

 

 

 

 

Figure C 2. Screenshot of DFC test questionnaire for Jaffa cakes study. The blue 
arrow signifies the transition to the next page.  
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Figure C 3. Screenshot of attribute rating questionnaire for Jaffa cakes study. The 
order of questions was randomised for each sample across all assessors. 
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C.2 Chocolate spread study questionnaires (RedJade) 

 

 

  

 

Figure C 4. Questionnaire introductory page and participant consent form for 
chocolate spread study. 



269 
 

 

  

Figure C 5. Screenshot of attribute rating questionnaire for chocolate spread study. 
The blue arrow signifies the transition to the next page. 
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C.3 Preview of test procedure for tomato soup sensory study 

 

  

 

Figure C 6. Screenshot of the preview document for the AR test  
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Figure C 7. Screenshot of the preview document for the DFC test  
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C.4 Tomato soup study questionnaires (RedJade) 

  

Figure C 8. Questionnaire introductory page for tomato soup study. Participants must scroll 
through the entire consent form before they are able to select the “I Agree, or I Decline” 
button. 

Figure C 9. Screenshot of DFC test questionnaire for tomato soup study. The next page 
after each questionnaire shows the palate cleanse instruction with a mandatory 15 secs 
timer before the next question. 
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Figure C 10. Final stage of the DFC test questionnaire for tomato soup, completed after 
all repeated sessions, requesting additional information on perceived attribute 
differences between samples. 
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Figure C 11. Instruction page for the tomato soup attribute rating test, presented at the 
beginning of the test prior to sample presentation. 
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Figure C 12. Page 1 of attribute rating test questionnaire for tomato soup showing only 
appearance and aroma attributes.  
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Figure C 13. Page 2 of attribute rating test questionnaire for tomato soup showing 
mouthfeel, flavour and taste attributes. The order of questions for the flavour attributes 
was randomised for each sample across all assessors. 
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Appendix D Rating Scale Category Statistics 

Table D 1. Category statistics showing the use of the 8-category Intensity Scale by the panels in the chocolate spread study (Chapter 5) 
Panel  Scale Categories Frequency1  Average Measure2 OUTFIT Mnsq3 Rasch Andrich Threshold 

     Observed Expected  Measure Distance4 

Tr
ai

ne
d 

0 None 40 (13)  -2.06 -2.15 1.1   
1 Barely detectable 23 (7)  -1.67 -1.54 0.8 -1.34 -0.60 
2 Weak 53 (17)  -0.79 -0.72 1.0 -1.94 0.86 
3 Moderate 96 (30)  -0.34 -0.32 1.2 -1.08 1.00 
4 Strong 83 (26)  -0.03 -0.13 0.8 -0.08 1.49 
5 Very strong 19 (6)  -0.11 0.01 1.1 1.41 1.61 
6 Extremely strong 1 (1)  -0.22 0.15 1.1 3.02  
7 Strongest imaginable oral sensation 0 (0)  ― ― ― ―  

U
nt

ra
in

ed
 

         
0 None 104 (10)  -0.73 -0.73 1.0   
1 Barely detectable 119 (11)  -0.63 -0.60 0.9 -0.80 -0.09 
2 Weak 170 (16)  -0.48 -0.47 0.9 -0.89 0.19 
3 Moderate 228 (21)  -0.32 -0.34 1.3 -0.70 0.58 
4 Strong 194 (18)  -0.16 -0.22 0.8 -0.12 0.19 
5 Very strong 153 (14)  -0.13 -0.11 1.0 0.07 0.30 
6 Extremely strong 99 (9)  -0.06 -0.02 1.1 0.37 1.69 
7 Strongest imaginable oral sensation 13 (1)  -0.07 -0.07 1.0 2.06  

 
1 Total count (percentage distribution in brackets) of observations used in each scale category. 
2 Observed average measure (in log odds unit or logits), and expected average measure if data fits the Rasch model. 
3 OUTFIT Mnsq refers to the outlier-sensitive measure of unweighted mean squares and indicates the deviation of responses from predictions of the Rasch model. 
4 Absolute difference between Rasch-Andrich threshold measures (i.e., the thresholds between adjacent scale categories. For 8 and 7 category scales, the minimum threshold distances are 0.51 and 0.57, respectively. 
− Unmet Criteria from 3.3.1.4: Rating scale category diagnostics 
 Disordered category thresholds indicate that an adjacent category was never the most probable choice. 
 Average measures do not advance along the latent variable 


 Less than 10 observations in category 
 Minimum advancing distance <0.51 

 Disordered category thresholds due to preceding category with low frequency 

1 Total count (percentage distribution in brackets) of observations used in each scale category. 
2 Observed average measure (in log odds unit or logits), and expected average measure if data fits the Rasch model. 
3 OUTFIT Mnsq refers to the outlier-sensitive measure of unweighted mean squares and indicates the deviation of responses from predictions of the Rasch model. 
4 Absolute difference between Rasch-Andrich threshold measures (i.e., the thresholds between adjacent scale categories. For 8 and 7 category scales, the minimum threshold 

distances are 0.51 and 0.57, respectively. 
− Unmet Criteria from 3.3.1.4: Rating scale category diagnostics 
Disordered category thresholds indicate that an adjacent category was never the most probable choice. 
 Average measures do not advance along the latent variable. 
 Less than 10 observations in category. 
 Minimum advancing distance <0.51. 
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…continued from Table D1 

Panel  Scale Categories Frequency  Average Measure 
OUTFIT 
Mnsq Rasch Andrich Threshold 

     Observed Expected  Measure Distance 

Se
le

ct
ed

 
U

nt
ra

in
ed

 

0 None 38 (11)  -0.63 -0.73 1.1   
1 Barely detectable 43 (12)  -0.75 -0.6 0.6 -0.79 0.22 
2 Weak 45 (13)  -0.39 -0.45 1.1 -0.57 -0.36 
3 Moderate 78 (22)  -0.36 -0.31 1.5 -0.93 0.94 
4 Strong 60 (17)  -0.14 -0.2 0.5 0.01 -0.11 
5 Very strong 57 (16)  -0.09 -0.1 0.9 -0.10 0.55 
6 Extremely strong 34 (9)  -0.05 -0.02 1.0 0.45 1.48 
7 Strongest imaginable oral sensation 5 (1)  -0.06 0.04 1.2 1.93  

  

 
 Disordered category thresholds due to preceding category with low frequency 
 Disordered category thresholds due to preceding category with low frequency Figure D 1. Scale probability curves illustrating disordered Rasch-Andrich thresholds across all three panels.  

The trained panel showed mild threshold disorder, primarily due to redundant scale categories that caused subtle undulation in the curves toward the upper 
end of the scale. In contrast, the full untrained panel and the selected assessors exhibited more disordered thresholds, indicating inconsistent use and poor 
distinction between the scale categories. 
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Appendix E Supplementary Statistics 

Table E 1. Comparison of Rasch measures of product differences across all TIM-based datasets 

 
Model/Sample Rasch χ² 

 Parametric Test  Non-Parametric Test 
1  Tukey's HSD  Kruskal-Wallis  Friedman's  

  Rasch Mean   Mean Ranks   Rank Sum  

Ja
ff

a 
C

ak
es

, n
 =

67
 (C

ha
pt

er
 4

) 

All Reps 17.9***   p=2.3e-07 ***   p=7.5e-05***    p <2.2e-16*** 
Brand A   -0.59 a  1597.82 a  201 a 
Brand B   -0.71 ab~  1496.39 ab~  134 b 
Control   -0.78 b  1429.80 b  67 c 

           
Rep1 5.4~   p=0.051~   p=0.139    p<2.2e-16*** 
Brand A   -0.67 a  526.97 a  201 a 
Brand B   -0.79 ab  499.05 a  134 b 
Control   -0.86 b  482.98 a  67 c 

           
Rep2 4.6~   p=0.022*   p=0.079~    p<2.2e-16*** 
Brand A   -0.59 a  528.57 a~  201 a 
Brand B   -0.68 ab  502.42 ab  134 b 
Control   -0.76 b  478.01 b~  67 c 

           
Rep3 9.4**   p=6.6e-05 ***   p=0.003**    p<2.2e-16*** 
Brand A   -0.67 a  544.44 a  201 a 
Brand B   -0.81 b  496.16 b  134 b 
Control   -0.89 b  468.40 b  67 c 

 
Different superscript letters indicate significant difference (p<0.05), with ~ indicating marginal significance (p<0.1). P-value levels of significance: <0.001***, <0.01**, <0.05*, <0.1~; measures 
with no superscript symbols have p-values >0.1. All results from Rasch measures are based on the Kruskal-Wallis test. n= total number of assessors in a panel. 
 Sample differences were based on Tukey's HSD tests following a main effects ANOVA model: Sample + Assessor + Repetition. 
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…continued from Table E1 
 

Model/Sample Rasch χ² 
 Parametric Test  Non-Parametric Test  Model/Sample 

1  Tukey's HSD  Kruskal-Wallis  Friedman's  

  Rasch Mean   Mean Ranks   Rank Sum  

C
ho

c.
 S

pr
ea

d 
(C

ha
pt

er
 5

)            
Trained Panel (n=7) 7.5*   p=0.008**   p=5.3e-07***   9.1e-04*** 
Brand A   -0.51 a  180.55 a  21 a 
Brand B   -0.86 b  119.15 b  7 b 
Brand C   -0.54 a  174.30 a  14 c 
           
Untrained Panel (n=24) 1.6   p=0.062~   p=0.113   p=3.8e-11*** 
Brand A   -0.30 a  568.02 a  72 a 
Brand B   -0.36 a  522.13 a  24 b 
Brand C   -0.35 a  531.35 a  48 c 
           

            

To
m

at
o 

So
up

 (C
ha

pt
er

 6
)             

All Assessors (n=54) 106.3***   p< 2.2e-16***   p<0.001***   p< 2.2e-16*** 
Sample A   -0.07 a  5083.38 a  162 a 
Sample B   -0.21 b  4279.42 b  108 b 
Control   -0.30 c  3760.70 c  54 c 
           
Selection (n=17) 27.5***   p< 2.2e-16***   p<0.001***   p=4.14e-08*** 
Sample A   -0.25 a  1557.18 a  51 a 
Sample B   -0.32 b  1424.17 b  34 b 
Control   -0.45 c  1151.15 c  17 c 

 
Different superscript letters indicate significant difference (p<0.05), with ~ indicating marginal significance (p<0.1). P-value levels of significance: <0.001***, <0.01**, <0.05*, <0.1~; measures 
with no superscript symbols have p-values >0.1. All results from Rasch measures are based on the Kruskal-Wallis test. n= total number of assessors in a panel. 
 Sample differences were based on Tukey's HSD tests following a main effects ANOVA model: Sample + Assessor + Repetition. 



 

 

281
 

Table E 2. Product mean comparisons across attributes for all TIM-based datasets 

Jaffa Cakes (Chapter 4), (Nr =1005) 
 Brand A Brand B Control Attr. / Sa.1  F. Av.2 Measure 

Orange Flavour 3.87a 3.42b 3.40b 3.56  3.55 0.75 
Sweetness 3.71a 3.49b 3.46b 3.55  3.54 0.74 
Cocoa Flavour 2.97a 3.11a 2.97a 3.02  3.02 0.21 
Milky Flavour 2.30a 2.32a 2.26a 2.29  2.30 -0.50 
Saltiness 1.71a 1.63ab 1.51b 1.62  1.59 -1.2 
Sample / Attr. 3 2.91 2.80 2.72     

Fair Average (F. Av.) 2.90 2.79 2.72  
  

 
Sample Logit -0.59a -0.71ab -0.78b     

 

Chocolate Spreads (Chapter 5) 
 Trained Panel (Nr = 105)    Untrained Panel (Nr =360) 

 Brand A Brand B Brand C Attr. / Sa.  F.Av. Measr.   Brand A Brand B Brand C Attr. / Sa.  F.AV. Measr. 
Sweetness 3.76a 3.71a 3.48a 3.65  3.65 0.91  Sweetness 3.94a 5.04b 3.67a 4.22  4.25 0.47 
Cocoa Flavour 3.43b 2.86a 3.29ab 3.19  3.20 0.39  Cocoa Flavour 3.85b 3.00a 3.92b 3.59  3.60 0.19 
Orange Flavour 3.67b 1.67a 3.86b 3.07  3.07 0.26  Milky Flavour  2.62a 4.75b 2.42a 3.26  3.27 0.06 
Milky Flavour 2.67a 3.38b 2.62a 2.89  2.90 0.10  Orange Flavour 3.64b 0.92a 3.60b 2.72  2.71 -0.16 
Saltiness 0.57a 0.81a 0.71a 0.70  0.68 -1.66  Saltiness 1.94a 1.62a 1.86a 1.81  1.78 -0.55 
Sample / Attr. 2.82 2.49 2.79      Sample / Attr. 3.20 3.07 3.09     
                 
Fair Average (F.Av) 2.93 2.53 2.90      Fair Average (F.Av) 3.21 3.06 3.09     
Sample Logit -0.51a -0.86b -0.54a      Sample Logit -0.30a -0.36a -0.35a     

 
 
1

 Attribute by Sample (Attr. / Sa): Raw mean scor es of each attribute averaged across al l samples .  
2

 Fair averag e (F.Av ): Ras ch m odel expected scor e after adjusting for bias from ot her facets, and determine the relative position of the sampl es, or attributes on the l ogit scale. 
3

 Sample by Attribute (Sample /Attr.): Raw mean scores of each sample averag ed across all attributes. 
 

Values with different superscript letters indicate statistically significant differences (p < 0.05). Nr = Total number of responses used to estimate sample measures. Sa. A = Sample A; Sa. B = Sample B; Ctrl = 
Control. Measr. refers to the Rasch measure expressed on the logit scale, as shown in the Wright maps. Attributes are arranged in order from highest to lowest logit measure value. 
¹ Attribute by Sample (Attr./ Sa): Raw mean scores of each attribute averaged across all samples.  
2 Fair average (F.Av): Rasch model expected score after adjusting for bias from other facets, and determine the relative position of the samples, or attributes on the logit scale. 
3 Sample by Attribute (Sample / Attr.): Raw mean scores of each sample averaged across all attributes. 
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Tomato Soups (Chapter 6) 
 All Assessors (Nr = 2916)  Selected Assessors (Nr = 918) 

 Sa. A Sa. B Ctrl Attr./Sa.1  F.Av 2 Measr.   Sa. A Sa. B Ctrl. Attr./Sa.  F.Av Measr. 
Smooth Mouthfeel 3.90a 3.88a 4.29b 4.02  4.03 0.47  Smooth Mouthfeel 4.02a 4.17a 4.39a 4.20  4.21 0.63 
Homogenous Mouthfeel 3.85a 3.98a 4.11a 3.98  3.99 0.44  Homogenous Mouthfeel 3.75a 3.90a 4.14a 3.93  3.94 0.42 
Cooked Tomato Flavour 3.93a 3.82a 3.88a 3.88  3.88 0.37  Thick Mouthfeel 4.67a 3.43b 3.67b 3.92  3.93 0.41 
Thick Mouthfeel 4.48a 3.25b 3.28b 3.68  3.68 0.22  Glossy Appearance 3.78a 3.71a 3.67a 3.72  3.73 0.26 
Glossy Appearance 3.62a 3.51a 3.52a 3.55  3.55 0.14  Savoury Flavour 3.75ab 3.80a 3.23b 3.59  3.60 0.17 
Colour Intensity 3.53a 3.64a 3.41a 3.53  3.53 0.12  Cooked Tomato Flavour 3.55a 3.67a 3.55a 3.59  3.60 0.16 
Savoury Flavour 3.69a 3.63a 3.22b 3.51  3.52 0.11  Viscous Appearance 4.45a 3.00b 2.96b 3.47  3.48 0.08 
Cooked Tomato Aroma 3.48a 3.43a 3.38a 3.43  3.43 0.05  Herbal flavour 3.39ab 3.80a 3.00b 3.40  3.41 0.03 
Herbal flavour 3.55a 3.64a 3.08b 3.42  3.43 0.05  Colour Intensity 3.20b 3.67a 3.30ab 3.39  3.39 0.02 
Viscous Appearance 4.34a 2.86b 3.05b 3.42  3.42 0.05  Aftertaste 3.43a 3.35a 3.10a 3.29  3.30 -0.04 
Rich Aroma 3.40a 3.62a 3.03b 3.35  3.36 0.00  Rich Aroma 3.05b 3.67a 2.92b 3.22  3.22 -0.10 
Aftertaste 3.45a 3.22ab 3.01b 3.23  3.23 -0.08  Creamy Flavour 3.67a 3.08ab 2.75b 3.16  3.17 -0.13 
Creamy Flavour 3.53a 2.83b 2.63b 2.99  2.99 -0.25  Cooked Tomato Aroma 3.12a 3.14a 3.16a 3.14  3.14 -0.15 
Herby Appearance 3.43a 2.77b 2.70b 2.97  2.97 -0.27  Herby Appearance 3.55a 2.79b 2.75b 3.03  3.03 -0.23 
Salty Taste 2.89a 2.91a 2.77a 2.86  2.86 -0.34  Sour Taste 2.94a 2.82a 2.92a 2.90  2.89 -0.32 
Sour Taste 2.85a 2.85a 2.80a 2.83  2.83 -0.36  Pungent Aroma 2.57b 3.24a 2.63b 2.81  2.81 -0.38 
Pungent Aroma 2.65b 3.18a 2.67b 2.83  2.83 -0.36  Salty Taste 2.78a 2.82a 2.75a 2.78  2.78 -0.40 
Sweet Taste 2.83a 2.86a 2.75a 2.81  2.81 -0.37  Sweet Taste 2.84a 2.78a 2.53a 2.72  2.71 -0.44 
Sample / Attr.3 3.52 3.33 3.20      Sample / Attr. 3.47 3.38 3.19     

Fair Average (F.Av) 3.53 3.33 3.20   
 

  Fair Average (F.Av) 3.49 3.40 3.20   
 

 
Sample Logit -0.07a -0.21b -0.30c      Sample Logit -0.25a -0.31b -0.45c     

Values with different superscript letters indicate statistically significant differences (p < 0.05). Nr = Total number of responses used to estimate sample measures. Sa. A = Sample A; Sa. B = Sample B; Ctrl = 
Control. Measr. refers to the Rasch measure expressed on the logit scale, as shown in the Wright maps. Attributes are arranged in order from highest to lowest logit measure value. 

¹ Attribute by Sample (Attr./ Sa): Raw mean scores of each attribute averaged across all samples.  
2 Fair average (F.Av): Rasch model expected score after adjusting for bias from other facets, and determine the relative position of the samples, or attributes on the logit scale. 
3 Sample by Attribute (Sample / Attr.): Raw mean scores of each sample averaged across all attributes. 
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Figure E 1. Trellis plots showing individual response distributions for the subset of 17 assessors (Page 1 of 2). 
Attributes are arranged in the same order as presented in Figure 5.5 
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Figure E 1. Trellis plots showing individual response distributions for the subset of 17 assessors (Page 2 of 2). 
Attributes are arranged in the same order as presented in Figure 5.5 
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Figure E 2. Rasch-adjusted sample x attribute bias/interaction plots for the untrained panel (left) and trained panel (right).  
The y-axis represents the relative-to-overall logit measure, calculated as the deviation of each sample’s estimated logit rating on an attribute 
from that sample’s overall logit measure in the Many-Facet Rasch Model. Positive values indicate attributes rated higher than expected based 
on the sample’s overall measure, and negative values indicate attributes rated lower than expected. The plots reveal opposing attribute 
intensities, with Brand B displaying a strong negative deviation on Orange flavour and strong positive deviation on Milky flavour. These contrasts 
illustrate product-level differences that may be masked in the overall measure, particularly when inconsistent ratings dilute or cancel attribute-
specific effects. 
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