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Abstract

The development of wireless communication technology, where a large amount of private

information is transmitted through open wireless channels, increases the risk of informa-

tion leakage. Eavesdroppers may obtain sensitive information by capturing and analyzing

transmitted signals, posing a threat to the confidentiality and integrity of communication.

Therefore, preventing interference from eavesdropping signals is crucial for ensuring secure

communication. This paper proposed a scheme to counter eavesdropper interference.

This paper proposed to combat active eavesdropping using intelligent reflecting surface

(IRS) backscatter techniques. IRS is a revolutionary technology that significantly enhances

wireless communication performance. By altering the amplitude and phase of incident

signals, IRS can reconstruct the entire wireless channel environment, leading to improved

communication efficiency and reliability. Backscatter technology relies on reflection to

utilize existing radio waves in the environment for communication, without the need for

active signal transmission, resulting in extremely low energy consumption. Due to the

low power and difficulty in detecting backscattered signals, this technology has strong

concealment and helps improve communication security. The combination of backscatter and

IRS effectively enhances the security of wireless communication and reduces interference

from eavesdroppers.

This paper provided a specific communication environment for the proposed scheme.

The source (Alice) sends the confidential information to the intended user (Bob), while the

eavesdropper (Willie) transmits a jamming signal to interrupt the transmission for more data

interception. To enhance the secrecy, an IRS is deployed and connected with Alice through

fiber to transform the jamming signal into the confidential signal by employing backscatter
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techniques. Based on the considered model, an optimization problem is formulated to

maximize the signal-to-interference-plus-noise ratio (SINR) at Bob under the constraints of

the transmit power at Alice, the reflection vector at the IRS, and the allowable maximum the

SINR at Willie. To address the optimization problem, an alternate optimization algorithm

is developed. The simulation results verify the achievable secrecy gain of the proposed

scheme. The proposed scheme is effective in combating active eavesdropping. Furthermore,

the deployment of large-scale IRS significantly enhances the secrecy rate.

Furthermore, this paper proposed a deep reinforcement learning (DRL) algorithm to

solve the optimization problem. Specifically, this paper adopted the deep deterministic policy

gradient(DDPG) algorithm to jointly optimize the transmit power at Alice and the reflection

vector at the IRS. During the optimization process, this paper adjusted the state, actions, and

rewards of the intelligent agent based on the system model. The simulation results show

that the DRL based algorithm can significantly improve the communication security of the

IRS-backscatter system.
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Chapter 1

Introduction

1.1 Research Background

1.1.1 IRS-assisted Communication System

As wireless communication continues to evolve, intelligent reflecting surfaces (IRS) are

emerging as a key technology in the field due to their programmability, low power con-

sumption, and cost-effectiveness. IRS is a plane composed of a large number of low-cost

passive reflective elements. IRS can reconfigure the wireless propagation environment by

intelligently adjusting and controlling the amplitude and phase shift of the reflecting ele-

ments [1]. Each reflection element can independently adjust the phase and amplitude of

the reflected signal. By coordinating these units, IRS can intelligently control the reflec-

tion direction and characteristics of signals, thereby achieving dynamic optimization of the

wireless communication environment [2]. Due to its passive reflection of incident signals in

the environment, IRS excels in energy conservation and low power consumption, making it

suitable for applications with high power consumption requirements [3]. IRS can be flexibly

deployed in various environments, allowing it to expand coverage or enhance communication

capabilities based on the specific needs of the communication system [4]. In brief, IRS can be

applied in a wide range of wireless communication scenarios to enhance the communication

performance in various ways.
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In IRS assisted communication systems, IRS can enhance the required signal while

suppressing interference signals by controlling the reflected phase. In [5], an IRS-assisted

single-input single-output (SISO) broadcast channel is studied. By using iterative gradient

descent method to calculate and find the optimal transmission rate, further maximizing

the effective capacity. In [6], a multiple-input single-output (MISO) downlink multiuser

communication system is considered, where the phase shifts of a single IRS and the transmit

beamforming vector at the access point are optimized using a two-timescale beamforming

optimization algorithm. An IRS-enhanced MISO system with reflection pattern modulation

is proposed, in which the IRS is capable of configuring its reflection state to enhance the

received signal power through analog beamforming while simultaneously conveying its own

information via reflection modulation [7]. A single IRS assisted multiple-input multiple-

output (MIMO) cognitive radio wireless communication system is proposed in [8], which

maximizes the weighted total rate sum of secondary users at the receiving end by jointly

optimizing the transmission precoding of the secondary user transmitter and the reflection

phase of the IRS.

1.1.2 IRS-assisted Secure Communication

The primary wireless communication technologies employed to counter eavesdropping

attacks include cooperative relaying, artificial noise (AN) injecting, and multi-antenna

beamforming. However, these approaches often suffer from high energy consumption and

optimization difficulties caused by the high correlation between legitimate and illegitimate

links. IRS can effectively compensate for the shortcomings brought by the above-mentioned

secure communication technologies, especially by optimizing the IRS reflection phase to

enhance legitimate link signals and suppress illegal link signals in low-power situations,

while reducing the difficulty of system optimization and improving the security rate of the

entire communication system.

Cui et al. investigated how to maximize the security rate of a communication system when

the transmission power is fixed and the reflection parameters set at the IRS are constrained [9].

Wang et al. considered using IRS to assist a MISO system for secure communication in the
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case of unknown eavesdropper’s channel state information (CSI), by jointly optimizing the

beamforming and IRS reflection phase at the transmitting end to minimize the transmission

power at the transmitting end [10]. A MIMO wireless communication system assisted by an

IRS is proposed, which maximizes the secure communication rate of the overall link by jointly

optimizing the transmit power control (TPC), artificial noise covariance matrix, and IRS

reflection phase at the transmitter [11]. These studies demonstrate that IRS can effectively

improve the secure communication performance of various wireless communication systems.

1.1.3 Backscatter Secure Communication

In backscatter communication systems, a backscatter transmitter modulates and reflects

received radio frequency (RF) signals to transmit data, rather than generating RF signals

independently [12]. By utilizing the principle of backscattering, data transmission can be

achieved by reflecting radio waves in the environment without the need for active signal

transmission. This technology has unique advantages in ensuring communication security.

Because backscatter communication devices do not actively transmit signals and the

reflected signal power is extremely low, it becomes challenging for eavesdroppers to detect

meaningful signals. This significantly enhances the concealment of the communication.

The researchers of [13] examined a multi-label backscatter communication system in

the presence of eavesdroppers, taking into account a realistic backscatter communication

scenario where channel correlation might exist between the forward and backscatter links.

A new optimization framework is provided to improve the physical layer security of non-

orthogonal multiple access (NOMA) environment backscatter communication system [3].

This system model considers the simultaneous operation of NOMA internet of things (IoT)

users and backscatter nodes in the presence of multiple eavesdroppers. The model aims to

enhance link security by optimizing the reflection coefficient of the backscatter nodes and

the transmission power of the base station.
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1.1.4 IRS-assisted Communication System Based on DRL

Deep reinforcement learning (DRL) is a technique that utilizes deep learning and rein-

forcement learning algorithms to optimize decisions. Introducing DRL into IRS assisted

communication systems can automatically optimize the control strategy of intelligent reflec-

tors, improving the performance and security of the communication system.

Feng et al. proposed a DRL-based framework to address the non-convex optimization

challenge caused by optimizing the passive phase shift of each IRS component to maximize

the downlink received signal-to-noise ratio (SNR) [14]. In [15], an IRS assisted NOMA

communication system was considered, using DDPG to jointly optimize the beamforming

at the transmitter and the IRS reflection phase to maximize the communication rate at the

receiver. Yang et al. considered an IRS-assisted communication system aimed at maximizing

the secrecy rate for multiple legitimate users in the presence of multiple eavesdroppers within

realistic time-varying channels. To address this, a novel DRL-based secure beamforming

approach was proposed, enabling the system to achieve optimal beamforming policies

against eavesdroppers in dynamic environments [16]. This study highlights that DRL offers

significant advantages in solving non-convex optimization problems in complex and dynamic

communication systems.

1.2 Research Motivations

IRS is a cost-effective passive equipment with low structural complexity, and is not or rarely

equipped with RF link. The advantages of IRS can be introduced into secure communication.

The joint optimization of transmission power and IRS reflection coefficient can improve the

covert communication performance of the system when the eavesdropper’s link statistics are

available [17].

The combination of IRS and backscatter technology has been applied in various communi-

cation scenarios. Idrees et al. designed a noval scheme to improve the error rate performance

of ambient backscattering by utilizing an IRS positioned in close proximity [18]. Backscatter

technology can dynamically change the reflection path and modulation characteristics of
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signals, especially when combined with IRS, making the channel environment extremely

complex and difficult to predict. In [19], a method of using IRS based backscatter com-

munication system to resist interference is proposed. Through the modulation of IRS, the

undesired signal is backscattered to enhance the user’s receiving power, and the undesired

signal is used as a resource to combat its own adverse effects

DRL can effectively solve highly complex problems involving IRSs, such as the joint

optimization of phase shifts and other related parameters [20]. The study in [21], employed

a DRL-based framework to jointly optimize IRS and reader beamforming in IRS-assisted

ambient backscatter communication systems.

Motivated by the above research, we proposed a noval scheme that combines the IRS

and backscatter to improve the performance of secure communication. We refer to this

approach as Backcom-IRS. To maximize the signal-to-interference-plus-noise ratio (SINR)

at the legitimate user, we jointly optimize the IRS reflection coefficient and the source

beamforming vector. Due to the complexity of the optimization problem, we used two

optimization methods: alternating optimization and DDPG algorithm.

1.3 Research Problem Statement, Aim and Objectives

1.3.1 Research Problem Statement

With the rapid development of wireless communication technologies and the widespread

transmission of sensitive information through open wireless channels, communication sys-

tems face growing risks of active eavesdropping and jamming attacks. Traditional physi-

cal layer security technologies such as cooperative relaying, artificial noise injection, and

multi-antenna beamforming are often limited by high energy consumption and complex

optimization requirements.

IRS have emerged as a promising solution in this background to enhance wireless secu-

rity by intelligently reconfiguring the wireless propagation environment. Simultaneously,

backscatter communication offers low-energy, low-complexity communication that is inher-

ently difficult to detect.
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The challenge lies in how to effectively integrate IRS with backscatter communication

to enhance physical-layer security, especially under active jamming by eavesdroppers. This

involves a non-convex joint optimization problem of IRS reflection coefficients and transmit

beamforming under power and secrecy constraints, which cannot be efficiently solved by

conventional methods.

1.3.2 Research Aim and Objectives

The aim of this research is to design and evaluate a secure communication system that

integrates IRS and backscatter communication to maximize the secrecy rate under active

eavesdropping attacks, while maintaining system efficiency.

To achieve the research aim, the research pursues the following objectives.

1. Develop a theoretical model involving a legitimate user, a transmitter, an IRS and an

active eavesdropper for a backscatter IRS-assisted communication system.

2. Mathematically formulate the secrecy rate maximization problem under active jam-

ming, considering power constraints and signal-to-interference-plus-noise ratio thresholds

for both legitimate and illegitimate receivers. Define the problem as a function of IRS phase

shifts and transmitter beamforming vectors.

3. Design an Alternating Optimization algorithm to jointly optimize the source beam-

forming vector and IRS reflection coefficients. Conduct numerical simulations to validate the

effectiveness of the proposed backscatter IRS-assisted schemes and compare performance

against baseline methods

4. Develop a Deep Deterministic Policy Gradient algorithm to enable the system to

autonomously learn optimal configurations for improved secrecy performance in dynamic

wireless environments. Conduct extensive numerical simulations to validate the flexibility

and effectiveness and of this algorithm.
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1.4 Research Contributions

This thesis proposed a secure communication scheme that integrates backscatter technology

with intelligent reflecting surfaces. The research focuses on optimizing the secure commu-

nication system by employing an alternation optimization (AO) algorithm and the DDPG

algorithm.

Firstly, this thesis established a backcom-IRS secure communication system. The active

eavesdropper continuously transmit interference signals to the system. The IRS leverages

interference signals to enhance the desired signal through backscattering. This thesis maxi-

mized the SINR of the legitimate user by designing the beamforming vector of the source

and the reflection coefficient of the IRS, while limiting the SINR of the eavesdropper. The

optimization problem of the system model designed in this thesis involves coupling of

optimization variables, making the optimization problem non convex and difficult to solve.

This thesis employed an alternating optimization algorithm to solve the non-convex opti-

mization problem. The optimization problem is transformed into two convex subproblems,

which are then optimized alternatively. Both of these subproblems are positive semi-definite

programs (SDPs) that can be efficiently solved using existing convex optimization solvers.

Next, this thesis applied the DDPG algorithm to optimize the communication system

designed in this research. DRL autonomously learns the optimal reflection coefficient

settings for the IRS, maximizing the communication system’s performance across various

environments and conditions. The strategy produced by the DRL agent dynamically adjusts

the reflection unit configurations of the IRS, enabling intelligent control of wireless signals.

1.5 Structure of the Thesis

The content of this thesis is organised as follows.

Chapter 2: Literature review

This chapter first reviews IRS-assisted secure communication. The advantages of low

power consumption, low cost, and flexible deployment of IRS effectively improve the

security performance of wireless communication systems. Then, the secure communication
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combining IRS and backscatter is introduced. This section primarily discusses the positive

impact of backscatter technology in the field of communication security, particularly when it

is combined with IRS. Finally, the relevant concepts of DRL are reviewed, along with the

key components utilized in solving DRL problems, including reward, value function and

Bellman equation.

Chapter 3: The System model and optimization problem formulation

In this chapter, an IRS-assisted secure communication model is designed to maximize the

security performance of the entire communication system by optimizing the beamforming

vector at the source and the reflection coefficient of the IRS.

Chapter 4: Alternating optimization algorithm to solve optimization problem This

chapter proposes using alternation optimization algorithms to solve the system optimization

problem. The AO algorithm decomposes the complex optimization problem into several

smaller sub problems, and then alternately optimizes each sub problem. This algorithm can

effectively solve the non convex optimization problem caused by the coupling of optimization

variables in this system.

Chapter 5: DDPG algrithm to solve optimization problem

This section transforms the optimization problem into an reinforcement learning problem

and solves it using the DDPG algorithm. DDPG adopts a deterministic strategy, which

enables more stable training under a deterministic strategy. DDPG is particularly adept

at handling reinforcement learning problems in continuous action spaces. It combines the

advantages of strategy gradient and Q-learning

Chapter 6: Conclusions and Future work

This chapter provides a summary of the work presented in this thesis and outlines potential

directions for future research.



Chapter 2

Literature Review

Overview

In this chapter, the review begins with IRS-assisted secure communication. Following

that, the integration of IRS and backscatter for secure communication is discussed. Finally,

the chapter delves into the key concepts of DRL algorithm.

2.1 The IRS-aided Secure Communication

With the rapid advancement of wireless communication in recent years, the demand for

more efficient and advanced wireless communication technologies has intensified. IRS have

emerged as a key technology in this field due to their low power consumption, low hardware

complexity, and high degree of flexibility. IRS can significantly improve the performance of

wireless communication by controlling the incident signal.

Figure 2.1 shows the architecture of IRS. IRS consists of three sub layers and one

intelligent controller. The outermost side is the reflecting element layer, and a large number

of reflecting elements made of digital metamaterials are printed on the two-dimensional

medium plane with a certain law. These reflecting elements will independently adjust the

phase and amplitude of the incident signal and then reflect it. The middle layer is a copper

board, which is mainly used to avoid signal energy leakage. The innermost layer is the
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Fig. 2.1 IRS hardware architecture

control circuit board, which is responsible for adjusting the amplitude or phase shift of each

reflecting element and is controlled by the controller.

IRS can dynamically adjust the path of reflected signals, which makes it difficult for

eavesdroppers to obtain effective signals. The IRS reflected signal can be used to cancel the

signal received by the eavesdropper from the base station or to enhance the signal received

by the user. IRS increases the data rate of legitimate receivers and reduces the data rate

of eavesdroppers. This can improve the difference between the two rates and effectively

improve the system safety rate.

In [9], a communication system was designed where a multi antenna access point (AP)

sends confidential messages to a single antenna user with a single antenna eavesdropper

attempting to intercept them. The eavesdropper’s channel in this system is not only stronger,

but also highly correlated with legitimate communication channels. They proposed a strategy

to maximize confidentiality by jointly optimizing the transmit beamforming at the AP and

the reflected beamforming at the IRS and the proposed design significantly increases the

secrecy rate compared to scenarios without using the IRS.

The objective of maximizing secrecy in IRS assisted multi antenna system presented

a non convex optimization challenge in [22], which requires simultaneously satisfying the

transmission power constraint at the source and the unity mode constraint imposed on the

IRS phase shift. The solutions of the emission covariance of the source and the phase shift

matrix of the IRS are implemented in closed form and semi closed form, respectively. In

[2], IRS aided multi-antenna physical layer security is proposed. Chu et al. have designed a
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secure transmission power allocation and surface reflection phase shift scheme to minimize

the transmission power under the confidentiality constraint of legitimate users.

A downlink MISO broadcasting system with multiple eavesdroppers was designed in [23],

where the base station (BS) sends independent data streams to multiple legitimate receivers.

By jointly optimizing the beamformer at BS and the reflection coefficient at IRS, while

considering both continuous and discrete reflection coefficient constraints, the minimum

confidentiality rate is maximized.

In order to maximize the secrecy rate of the IRS assisted secure wireless system in [24],

the beamformer and IRS phase shift at the transmitter were jointly optimized. Two effective

algorithms were developed based on block coordinate descent (BCD) and minimization

maximization (MM) techniques to solve the non convex optimization problems of small-

scale and large-scale IRS, respectively.

Considering an IRS assisted system, Dong et al. proposed an alternating optimization

algorithm to jointly optimize the transmission covariance of the transmitter and the phase

shift coefficient of the IRS [25]. The IRS assisted design achieved higher secrecy rate than

other benchmark schemes.

Tang et al. designed an IRS-assisted secure transmission that leverages "directional

reflection" to enhance physical layer security [26]. Directional reflection enhances the

required signal while weakening the signal strength of any eavesdropper located in other

directions, significantly improving confidentiality performance.

IRS can control a partial of reflection units to inject artificial noise or interference

signals in the direction of eavesdroppers, effectively increasing the decoding difficulty of

eavesdroppers and enhancing the physical layer security of the system.

In [27], a scenario has been proposed where multiple potential eavesdroppers with

multiple antennas have incomplete known CSI. Under the constraints of transmission power

and legal user service quality, they jointly solve the transmitted information beam, artificial

noise and reflection coefficient to maximize the system’s security rate.

Peng et al. studied the IRS assisted secure communication system in the presence of

hardware damage to the IRS and transceiver [28]. In order to maximize the weighted
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minimum approximate traversal secrecy rate, the beamforming vector at the base station and

the phase shift of the reflective elements at the RIS were jointly optimized.

2.2 The Combination of IRS and Backscatter in Secure

Communication

Backscatter technology utilizes existing radio waves in the environment to reflect signals

for communication. The characteristics of backscatter technology provide advantages for

the physical layer security of communication systems [29]. Backscatter communication

is generally categorized into three types: monostatic backscatter communication, bistatic

backscatter communication, and ambient backscatter communication [30].

Backscatter technology communicates by reflecting radio waves in the environment, with

extremely low signal power that is difficult for eavesdroppers to detect. This low-power

characteristic poses a huge challenge for eavesdroppers when attempting to intercept and

decode signals.

A signal strength balance scheduling scheme has been proposed in [31], which intention-

ally generates conflicting signals and uses them for communication between readers and tags

to prevent eavesdroppers from distinguishing between required signal data and noise signals.

Due to the simple structure of backscatter tags, it is difficult to apply complex security

techniques to backscatter networks [32, 33]. A noise injection approach aimed at enhancing

security in backscatter networks is developed, the reader injects noise into the continuous

wave (CW) signal by generating the CW signal and noise signal simultaneously [29] or by

producing random CW signals [34]. These techniques protect the tag’s signal by making it

difficult for attackers to decode the signal without prior knowledge of the noise or random

CW signals, thereby increasing the overall security of the backscatter communication system.

You et al. proposed a new protocol to streamline the communication process and enhance

the security of data transmission between multiple tags and the reader [35]. By optimizing

the number of tags and training symbols, maximizing the data rate gap between the reader

and eavesdropper can improve security performance.
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Combining traditional encryption techniques, backscatter communication can add an

additional layer of encryption protection on the basis of physical layer security, ensuring the

integrity and confidentiality of data during transmission. Ambient Backscatter Communica-

tion (AmBC) allows backscatter devices (BDs) to communicate by reflecting ambient RF

signals while simultaneously harvesting energy. In [36], a novel physical layer key generation

scheme designed for ultra-low-power AmBC systems was proposed.

The traditional backscatter communication security scheme is mainly based on lightweight

symmetric cryptography [37]. Key generation typically requires two devices to send channel

probing signals to each other in order to measure highly correlated channel characteristics at

both ends [38].

Backscatter technology can dynamically change the reflection path and modulation char-

acteristics of signals, especially when combined with IRS. The channel environment becomes

extremely complex and difficult to predict, which increases the difficulty of eavesdropping

and improves the security performance of the system.

2.3 Optimization Algorithms for Solving Nonconvex Prob-

lems in IRS Assisted Communication Systems

2.3.1 Traditional Optimization Algorithms

In IRS assisted wireless communication systems, non convex optimization problems are

commonly present, such as joint optimization of transmit beamforming and IRS phase control

matrix to maximize system rate [39] or minimize power [40]. These types of problems often

become highly non convex due to coupling variables, unit mode constraints, and nonlinear

objective functions. Traditional optimization algorithms can be used to solve these non

convex optimization problems.

The alternating optimization algorithm decomposes the joint optimization problem into

sub problems and iteratively optimizes them. This algorithm has a clear structure and is

easy to implement. It is commonly used in optimizing the transmitter beamforming and
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IRS reflection matrix. Semipositive definite relaxation transforms non convex unit module

constraints into a semi positive definite matrix problem, which can be optimized using

mature convex optimization tools such as CVX. This is commonly used to optimize the

IRS reflection matrix. An alternative optimization algorithm and semidefinite programming

relaxation for designing safe transmit power allocation and surface reflection phase shift are

proposed in IRS aided secure transmission [2]. In [41], a suboptimal algorithman based on

alternative optimization algorithm successive convex approximation, semidefinite relaxation,

and manifold optimization was proposed to solve the non-convex problem. An alternative

optimization algorithm utilizing successive convex approximation and semidefinite relaxation

was proposed to solve trajectory and transmit power optimization problem for IRS assisted

communication in [42]

Fractional Programming aims to maximize processing speed or energy efficiency in the

form of class ratios. Fractional programming can transform non convex ratios into iterative

convex problems. The typical algorithms for fractional programming include Dinkelbach

algorithm and Quadratic Transform. This algorithm is often used for IRS assisted downlink

rate or energy efficiency optimization. In [43], fractional Programming is proposed to find

the optimal solution to the power allocation subproblem. Dinkelbach method was emploed

to jointly select the best set of antennas and optimizes their beamforming [44].

Projected gradient method (PGM) is used for unit mode constrained optimization prob-

lems. This method makes gradient descent to the phase variable and projects it back to the

unit mode set. A PGM-based algorithm was proposed to solve optimal IRS pattern matrix

design focusing on the path angle estimation critical in mmWave communication [45].

2.3.2 The Deep Reinforcement Learning Algorithm

Although the optimization problem of IRS assisted systems can be solved by traditional

optimization algorithms, many researchers choose DRL to solve non convex optimization

problems in communication systems when the environment is dynamic and computational

complexity is high [14, 15, 46]. DRL agent can solve a problem with a large dimensional

state space and action space by learning to make an optimal decision through interacting
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with the environment, such as CSI, transmit power, interference [47]. Therefore, in existing

studies [46, 48], model free DRL algorithms are envisioned as optimization solutions for

dynamic uncertain environments.

The DDPG algorithm is a reinforcement learning (RL) algorithm based on deterministic

policies. The DDPG algorithm is a DRL algorithm used to solve continuous state spaces and

continuous action spaces, utilizing policy gradient theory and Actor-Critic model [49]. To

solve the problem of maximizing the received signal-to-noise ratio in single user IRS assisted

MISO systems, an algorithm based on DDPG was proposed and the results showed that

the DDPG algotithm could achieve a better performance, as compared to the semidefinite

relaxtion method [14]. In [20], a DDPG based algorithm was proposed to maximize the

ergodic sum rate in a multiuser IRS assisted MISO system by jointly optimizing the transmit

beamforming at the base station and the reflect beamforming at the IRS. These works verified

that the DRL algorithms can solve optimization problems for various wireless communication

systems effectively.

Reinforcement learning is the process of an intelligent agent continuously interacting

with its environment and gaining experience, in order to improve its decisions based on

the experience gained, and ultimately learn an optimal strategy. RL can learn and adjust

strategies in dynamic and uncertain environments, adapting to changes in the environment.

DRL is a self-learning artificial intelligence algorithm based on Markov decision process

(MDP). By using MDP, the optimization objective function can be considered as the reward,

and the optimization variables can be used as actions, allowing the agent to continuously

interact with the set environment and ultimately obtain the optimal strategy. This algorithm

directly hands over the optimization problem to the agent, allowing it to learn in MDP and

obtain an approximate optimal solution.

In the learning process, the agent is not told what actions to take, but constantly tries

which actions can generate the maximum total reward. In most cases of RL, the actions

taken by the agent not only affect the reward, but also affect the next state, which in turn

affects the reward for each subsequent decision. Intelligent agents must try various actions
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Fig. 2.2 MDP model

and gradually lean towards actions that appear to receive significant rewards. In a task, each

action must be attempted multiple times to obtain a reliable estimate of its expected reward.

RL usually requires a large number of interactive samples, powerful computing resources,

especially deep reinforcement learning, which has high training time and computational

costs. The training process may experience instability, which may lead to the strategy falling

into local optima or oscillations. Despite these drawbacks, RL has enormous potential in

solving complex decision problems. With the continuous development of algorithms and

the improvement of computing resources, reinforcement learning will play a more important

role in wireless communication.

The MDP model is shown in the following figure 2.2.

For a finite MDP, at each time step t, the agent perceives the current environmental state

st ∈ S, and based on the state selection action at ∈ A(s). The environment will provide

corresponding feedback based on the actions taken by the intelligent agent, rt ∈ R quantify

the quality of actions with rewards. Afterwards, the intelligent agent enters the next state

st+1.

In finite MDP, the set of states S, the set of actions A and reward set R are all finite

element sets. Define a probability function p to describe the finite MDP at each time step, at

a given moment t,

p(s
′
,r|s,a) .

= Pr{st = s
′
,rt = r|st−1 = s,at−1 = a}. (2.1)



2.3 Optimization Algorithms for Solving Nonconvex Problems in IRS Assisted
Communication Systems 17

This represents the probability that the intelligent agent will perform action a in state s, then

receive reward r and enter the next state s
′
at the next moment. The probability function p

provides a probability distribution for each state s and action a,

∑
s′∈S

∑
r∈R

p(s
′
,r|s,a) = 1. (2.2)

The probability function p provides a complete representation of the dynamic changes in the

environment in which the entire agent is located. The probability of each current of state st

and action at is determined only by its previous state st−1 and action at−1, and is independent

of earlier states and actions.

Reward, Value Function, and Bellman Equation

In RL, the ultimate aim of the agent is to maximize the total reward, which means that the

agent does not need to maximize the current reward, but rather the long-term cumulative

reward. Assuming that starting from time t, the reward received by the intelligent agent in

the subsequent sequence is rt ,rt+1,rt+2, . . . , the total reward Gt that the intelligent agent can

receive at time t is

Gt .
= rt + γrt+1 + γ

2rt+2 + · · ·=
∞

∑
k=0

γ
krt+k (2.3)

γ represents the reward discount coefficient, 0≤ γ ≤ 1. The size of γ determines the extent

to which future rewards affect the current cumulative rewards.

As γ increases, it means that in this task, the impact of future decisions on current

decisions also becomes increasingly significant. Therefore, the rewards in a task with

consecutive time steps are interrelated. When γ = 0, in this task, future decisions have no
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impact on current decisions. 2.3 can be transformed into the following equation,

Gt .
= rt + γrt+1 + γ

2rt+2 + · · ·

= rt + γ(rt+1 + γrt+1 + · · ·)

= rt + γ(Gt+1) (2.4)

During the task process, the value function can be used to evaluate whether the strategy

adopted by the agent is good or bad. The strategy is to map the state to the probability

equation for selecting each possible action. Assuming that the intelligent agent follows a

strategy π at time step t, π(a|s) represents the probability of the agent taking action at = a

in state st = s. vπ represents the state value function and qπ denotes the state-action value

function.

The state value function of state s is represented as vπ(s), which is the expected total

reward that the agent can ultimately receive from state s and continues to follow the policy

thereafter. The state value function is defined as

vπ(s)
.
= Eπ

[
Gt |st = s

]
= Eπ

[
∞

∑
k=0

γ
krt+k|st = s

]
. (2.5)

The state-action value function of state s performing action a is represented as qπ(s,a).

It is the expected cumulative reward that the agent can ultimately obtain by taking action a

from state s and continuing to follow policy π thereafter. The state-action value function is

defined as

qπ(s,a)
.
= Eπ

[
Gt |st = s,at = a

]
= Eπ

[
∞

∑
k=0

γ
krt+k|st = s,at = a

]
. (2.6)

When the agent consistently follows the policy π and is able to experience each state

sufficiently multiple times, the expected total reward that the agent can receive will eventually

converge to the value function vπ(s) of that state. Similarly, when an intelligent agent

consistently follows a strategy and is able to experience each state and take all possible

actions a sufficient number of times, the expected total reward that the agent can receive
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will eventually converge to the value function qπ(s,a) of that state action. This method of

estimating the value function is also known as Monte Carlo methods.

The value function in reinforcement learning satisfies a recursive relationship. For any

policy

pi and any state of the state value function, there exists the following recursive relationship

vπ(s)
.
= Eπ

[
Gt |st = s

]
= Eπ

[
rt + γ(Gt+1)|st = s

]
= ∑

a
π(a|s)∑

s
∑
r

p(s
′
,r|s,a)[r+ γEπ [Gt+1|st+1 = s

′
]]

= ∑
a

π(a|s)∑
s′ ,r

p(s
′
,r|s,a)[r+ γvπ(s

′
)]. (2.7)

The action a ∈ A(s), reward r ∈ R and next state s
′ ∈ S. The above equation is the

Bellman equation for state s. The Bellman equation for state-action is denoted as

qπ(s,a) = ∑
s′ ,r

p(s
′
,r|s,a)[r+ γvπ(s

′
)]. (2.8)

For a given state s, whether a policy is superior or equivalent to another policy depends

on whether its state value function is greater than or equal to the state value function of the

other policy. In a task, there will be at least one policy that is superior to or equal to the other

policies, and this policy is the optimal policy π∗. There may be one or more optimal policies,

but they are all referred to as optimal policies.

The state value function and state-action value function corresponding to the optimal

policy π∗ are respectively referred to as

v∗(s)
.
= max

π
vπ(s), (2.9)

and

q∗(s,a)
.
= max

π
qπ(s,a). (2.10)
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2.9 and 2.10 have the following relationship

q∗(s,a) = E[rt + γv∗(st+1)|st = s,at = a]. (2.11)

v∗ is the state value function of the optimal strategy π∗, so it also satisfies the recursive

relationship given by the Bellman equation. Since it is the optimal state value function, its

numerical value is equivalent to making the optimal action on state s.

v∗(s) = max
a∈A(s)

qπ∗(s,a)

= max
a∈A(s)

Eπ∗[G
t |st = s,at = a]

= max
a∈A(s)

Eπ∗[r
t + γ(Gt+1)|st = s,at = a]

= max
a∈A(s)

Eπ∗[r
t + γv∗(st+1)|st = s,at = a]

= max
a∈A(s)

∑
s′ ,r

p(s
′
,r|s,a)[r+ γv∗(s

′
)]. (2.12)

The above equation is the Bellman optimal equation for v∗. The Bellman optimal equation

for q∗ is expressed as

q∗(s,a) = E[rt+1 + γmax
a′

q∗(st+1,a
′
)|st = s,at = a] (2.13)

= ∑
s′ ,r

p(s
′
,r|s,a)[r+ γmax

a′
q∗(s

′
,a
′
)]. (2.14)

In a task, each time step an agent takes an action based on its current state, the environment

rewards the agent with a certain numerical value to evaluate the quality of the action. In

order to numerically describe the quality of actions, a state value function and a state-action

value function are provided, and the goal of the agent is to maximize the value function.

The Bellman equation describes the relationship between the state value function and the

state-action value function at the current and next moments. The Bellman optimal equation is

used to indicate how the agent can find the optimal policy based on the current environment.
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Policy Gradient and Actor-Critic

In practical applications, the tasks that usually need to be solved are high-dimensional state

spaces and action spaces, or both state spaces and action spaces are continuous, so it is almost

impossible for agents to traverse all states and actions and find the optimal strategy based on

the Bellman optimal equation.

The policy gradient method directly models the strategy and optimizes it through gradient

ascent to maximize the expected cumulative reward. The policy gradient method is typically

suitable for handling continuous action spaces.

In the policy gradient, the policy π is usually modeled as a parameterized equation with a

parameter of θ , which is represented by π(a|s;θ). Let

J(θ) = ∑
s∈S

dπ(s)vπ(s) = ∑
s∈S

dπ(s) ∑
a∈A

π(a|s;θ)qπ(s,a). (2.15)

dπ(s) represents the stationary state distribution of the Markov Chain for the strategy. When

J(θ) increases, it means that the state value function increases. Therefore, using gradient

ascent to increase the parameter θ in the direction of increasing J(θ), we can find the optimal

state value function in state s and then find the optimal policy.

Firstly, calculate the gradient of the state value function

▽θ vπ(s) =▽θ

[
∑
a

π(a|s;θ)qπ(s,a)
]

= ∑
a

▽θ π(a|s;θ)qπ(s,a)+π(a|s;θ)▽θ ∑
s′ ,r

p(s
′
,r|s,a)(r+ vπ(s

′
))


= ∑

a

[
▽θ π(a|s;θ)qπ(s,a)+π(a|s;θ)∑

s′
p(s

′
|s,a)▽θ vπ(s

′
)

]
. (2.16)

Derived from the recursive relationship

▽θ vπ(s
′
) = ∑

a′

[
▽θ π(a

′
|s
′
;θ)qπ(s

′
,a
′
)+π(a

′
|s
′
;θ)∑

s′′
p(s

′′
|s
′
,a
′
)▽θ vπ(s

′′
)

]
. (2.17)
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Therefore

▽θ vπ(s) = ∑
x∈S

∞

∑
k=0

Pr(s→ x,k,π)∑
a
▽θ π(a|x;θ)qπ(x,a). (2.18)

Pr(s→ x,k,π) represents the probability of transitioning from state s to state x after k time

steps under policy π .

Initial state from s0

▽θ J(θ) =▽θ vπ(s0)

= ∑
s
(

∞

∑
k=0

Pr(s0→ s,k,π))∑
a
▽θ π(a|s;θ)qπ(s,a)

= ∑
s

η(s)∑
a
▽θ π(a|s;θ)qπ(s,a)

=

[
∑
s

η(s)
]
∑
s

η(s)
∑s η(s)∑

a
▽θ π(a|s;θ)qπ(s,a)

∝ ∑
s

η(s)
∑s η(s)∑

a
▽θ π(a|s;θ)qπ(s,a)

= ∑
s

dπ(s)∑
a
▽θ π(a|s;θ)qπ(s,a). (2.19)

η(s) = ∑
∞
k=0 Pr(s0→ s,k,π), dπ(s) =

η(s)
∑s η(s) represents the stationary state distribution of

the Markov chain for the policy in state s.

▽θ J(θ) ∝ ∑
s

dπ(s)∑
a
▽θ π(a|s;θ)qπ(s,a), (2.20)

this expression is the policy gradient theory. This expression can be further transformed into

▽θ J(θ) ∝ ∑
s

dπ(s)∑
a
▽θ π(a|s;θ)qπ(s,a) (2.21)

= ∑
s

dπ(s)∑
a

π(a|s;θ)qπ(s,a)
▽θ π(a|s;θ)

π(a|s;θ)
(2.22)

= Eπ [qπ(s,a)▽θ lnπ(a|s;θ)] . (2.23)
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From the above equation, it can be intuitively seen that the value function can help update

the policy, because the larger qπ(s,a) means the greater the benefit that this action can obtain,

and the larger▽θ J(θ , the faster the parameter θ changes in the direction of this policy.

The policy gradient theory only considers the updating of policies, and the direction of

policy updates depends on the value function. The actor-critic (AC) algorithm refers to the

model of policy gradient theory and adds a value function update section, allowing the value

function to guide the policy on how to update at each step, enabling the policy to achieve

single step updates.

The AC algorithm includes a critic part and an actor part. Actor generates actions based

on policy, and critic evaluates actor’s actions. The Critic part can be a parameterized state

value equation vπ(s;ω) or a parameterized state-action value function qπ(s,a;ω), and both

can be fitted using a neural network with parameter ω . Critic is used to update the parameter

ω and guide the Actor section on how to update the policy. Actor is a parameterized policy

equation π(a|s;θ), and it can be fitted using a neural network with parameter θ . Actor will

update the policy based on the size of the value function in Critic.

2.4 Gap Analysis

Many researches have been developed in the field of IRS assisted secure communication, but

there are still several gaps in the current literature that have not been addressed. This section

aims to analyze and determine the research gaps filled by this paper.

While IRS and backscatter communication have individually demonstrated potential for

enhancing physical layer security, few studies explore their joint integration in a unified

framework. Most existing works focus on either IRS assisted systems without considering

the passive nature of backscatter, or backscatter systems without leveraging the reconfigura-

bility and beamforming capabilities of IRS. This gap overlooks the synergistic benefits of

combining IRS’s intelligent beam forming with the covert and low-power transmission of

backscatter.
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Lots of the existing research addressed passive eavesdropping, where the attacker only

listens to the channel. In more aggressive and realistic scenarios, active eavesdroppers send

jamming signals to degrade legal user’s received sigal and increase the risk of information

leakage. This research gap is to design a secure IRS backscatter communication system

against active jamming attack.

Many studies have used traditional optimization algorithms, such as alternating opti-

mization and semidefinite programming, to effectively solve the coupled variables in non

convex optimization problems for IRS assisted systems. Most optimization schemes for

IRS systems are model-based static optimization schemes. These methods are struggled

to adapt to real-time dynamic scenarios under unknown or rapidly changing conditions.

Meanwhile, DRL has significant advantages in these scenario. This research gap indicates

the need for DRL to autonomously adjust IRS configuration to maximize secrecy in real

world environments.



Chapter 3

The System model and optimization

problem formulation

Overview
This chapter first establishes an IRS-assisted MISO secure communication system. Then

analyze the optimization problem of maximizing the security performance of the system.

3.1 The System model

Consider an IRS-based backscatter wireless communication system countermeasure against

active eavesdropping, as shown in Figure 3.1. A source (Alice), an IRS, a legitimate user

(Bob), and an eavesdropper (Willie) constitute the communication system of this thesis.

In this system, Alice continuously transmits information to all directions. Willie is

sending interference signals to prevent Bob from receiving the required signals to eavesdrop.

Generally, the stronger the interference signals from an eavesdropper like Willie, the lower

the communication system security is, which needs the IRS to enhance this system’s security.

The IRS, as a transmitter, aims to convert all received signals into desired signals through

backscattering. The signal processed by IRS uses the interference signal from Willie to

ensure the communication safety of legal user Bob. The number of antennas equipped by

Alice is N, while Willie and Bob are equipped with one antenna each. IRS has L elements. It
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Fig. 3.1 IRS-aided backscatter wireless communication system under active eavesdropper’s
attack.

is assumed that all channels in the system experience quasi-static flat fading. Additionally,

we consider that the channel state information of all the involved channels in the system

is precisely and accurately known in order to determine the limit of the security rate. We

assume the frequency is non-selective and constant in each fading block.
The channel gains from Alice to Bob, from the IRS to Bob, from Willie to Bob,

from Willie to the IRS, from Alice to the IRS, from the IRS to Willie, and from Alice

to Willie are represented by the following notations: hAB ∈ CN×1, hIB ∈ CL×1, hWB ∈ C1×1,

hWI ∈ CL×1, HAI ∈ CL×N , hIW ∈ C1×L, and hAW ∈ C1×N . The beamforming vector used by

Alice to transmit the desired signal s is denoted by w ∈ CN×1, while the beamforming vector

used by Willie to transmit the interference signal a is represented by v ∈ C1×1.

The signals s and a represent the transmitted signals from Alice, the legitimate transmitter,

and Willie, the eavesdropper, respectively. In addition, E[|s|2] = 1 and E[|a|2] = 1. nB and nW

represent the Gaussian white noise at Bob and Willie, respectively. These noises have zero

mean and variances of σ2
B and σ2

W, respectively. The amplitude and phase shift incurred by

the l-th reflective element of the IRS are represented by ΘΘΘ = diag(β1e jα1,β2e jα2, · · · ,βLe jαL)

with αl = [0,2π], l ∈L = {1,2, · · · ,L} and βl = [0,1]. In this model, we do not consider

the interaction of IRS-neighboring reflective units and assume that each IRS reflective unit

reflects the signal independently. Due to strong path loss, we overlook signals that were

reflected multiple times by the IRS. After the above design and construction of the whole
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system, the received signals at Bob and Willie can be respectively formulated as

yB = hH
ABws+hH

WBva+hH
IBΘΘΘ(hAIws+hWIva)+nB, (3.1)

yW = hH
AWws+hH

IWΘΘΘ(HAIws+hWIva)+nW. (3.2)

Equation (3.1) mathematically describe the received signal at the legal user Bob includes

direct signal from Alice, reflected signal via the IRS, jamming signal directly from Willie

and additive white Gaussian noise at Bob. The received signal at Bob affected by Alice’s

beamforming and IRS reflection control, which helps to calculate Bob’s SINR. In order to

improve the secrecy of the system, It is necessary to maximize the SINR of Bob.

Equation (3.2) mathematically describe the received signal at the eavesdropper Willie

includes direct signal from Alice, reflected signal from the IRS and additive white Gaussian

noise at Willie. It forms the basis for calculating Willie’s SINR, which must be minimized or

kept under a threshold to ensure secure communication.

3.2 optimization problem formulation

In this system, the backscattering of signals through IRS does not need to distinguish

the source signal s and the interference signal a. The goal of this system is to maximize

the SINR at Bob γ while we constrained Willie’s SINR ξ by setting the maximum value.

The transmit powers at Alice and Willie are represented as Ps and Pa, respectively. Define

θθθ = [β1e jθ1,β2e jθ2, · · · ,βLe jθL ]H . The problem of this system is expressed as

max
θθθ ,w

γ =

∣∣hH
ABw+hH

IBΘΘΘ(HAIw+hWIv)
∣∣2

σ2
B +

∣∣hH
WBv

∣∣2 ,

s.t. Tr(wwH)≤ Ps,

θl ≤ 1,∀l ∈L ,

ξ ≤ ε. (3.3)
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The SINR at Bob is primarily dependent on two key variables: the beamforming vector w

used by Alice and the reflection coefficient vector θθθ utilized by the IRS. The SINR at Willie

is formulated as

ξ =

∣∣hH
AWw+hH

IWΘΘΘ(HAIw+hWIv)
∣∣2

σ2
W

. (3.4)

The goal of this system model is to jointly optimize the transmission power of the

transmitter and the reflection coefficient of the IRS to maximize the SINR of the legitimate

user Bob, while considering the constrain that the signal-to-interference-plus-noise ratio of

the eavesdropper is below the threshold.

To further elaborate the proposed system model, the network configuration and simulation

settings are defined as follows: the source Alice is equipped with N = 4 antennas, while

the legitimate user Bob and the eavesdropper Willie each have a single antenna. The IRS

comprises L = 40 passive reflecting elements, strategically placed near Bob to enhance the

desired signal and suppress jamming. The channel links are modeled using quasi-static

Rician fading with a path loss exponent of 3, and additive white Gaussian noise with a noise

variance of σ2 = 10−5. The transmit power at Alice is Ps = 9 dBW.

The optimization problem in this model is non-convex. To solving this optimization

problem involves transforming problem 3.3 into a quadratically constrained quadratic pro-

gramming (QCQP) problem. Subsequently, finding a sub-optimal solution to problem 3.3

involves employing AO optimization methods. The AO method iteratively optimizes the

source beamforming and IRS configuration under SINR constraints. In addition, the DDPG

based DRL approach was proposed to solve the non-convex optimization problem. The DRL

based method adaptively learns optimal IRS policies based on observed environmental states,

which effectively enhancing the secrecy rate in dynamic settings.



Chapter 4

Alternating Optimization Algorithm and

System Security Performance Analysis

Overview
In this chapter, the AO algorithm is employed to solve the optimization problem. Sub-

sequently, simulations are conducted based on the system model proposed in Chapter 3,

followed by the analysis of the simulation results.

4.1 Alternation Optimization

Alternation optimization is a classical approach for solving optimization problems involving

multiple sets of coupled variables, especially when optimization problem is non-convex.

Solving the problem of all variables simultaneously is computationally challenging. On the

other hand, The AO method fixes one set of variables and optimizes another set of variables,

alternating between them.

We develop an alternating optimization algorithm to solve the optimization problem. Due

to the coupling between the variables θθθ and w, directly solving the non-convex optimization

problem can be challenging. Specifically, we address this non-convex problem by iteratively

solving two sub-problems: sub-problem 1, which focuses on optimizing the beamforming
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vector w with a fixed reflection coefficient vector θθθ , and sub-problem 2, which focuses on

optimizing θθθ with a fixed w.

Before optimizing these two sub-problems respectively, we need to convert the objective

function equivalently. Since ΘΘΘ = diag
{

θθθ
H
}

, that expression can be converted to

hH
ABw+hH

IBΘΘΘ(HAIw+hWIv) = hH
ABw+θθθ

H
ΦΦΦw+θθθ

Ha. (4.1)

ΦΦΦ = diag
{

hH
IB
}

HAI and aaa = diag
{

hH
IB
}

hWIv. This equation simplifies the total received

signal at Bob, which originally includes direct transmission from Alice and reflected signal

via IRS into a more compact, vectorized form suitable for optimization. This transformation

prepares the optimization model for alternationg optimization.

Letting θ̂θθ = [θθθ H ,1]H and Φ̂ΦΦ = [ΦΦΦH ,hAB]
H , then Equation 4.1 is transformed as:

hH
ABw+θθθ

H
ΦΦΦw+θθθ

Ha = ([θθθ H ,1][ΦΦΦH ,hAB]
H)w+θθθ

Ha = θ̂θθ Φ̂ΦΦw+θθθ
Ha. (4.2)

This equation takes the expression from Equation 4.1 and reorganizes it in a compact and

vectorized form by introducing augmented variables θ̂θθ and Φ̂ΦΦ. This transformation is used to

unify the received signal expression into a clean linear form: θ̂θθ Φ̂ΦΦw.

Assuming âaa = [aaaH ,0]H , convert expression 4.2 to:

θ̂θθ Φ̂ΦΦw+θθθ
Ha = θ̂θθ Φ̂ΦΦw+[θθθ H ,1]H [aaaH ,0]H = θ̂θθ Φ̂ΦΦw+ θ̂θθ âaa. (4.3)

This expression combines both desired signal and interference into one linear algebraic

structure. Letting ŵ = [wH ,1]H , and Φ̌ΦΦ = [Φ̂ΦΦ, âaa]H , expression 4.3 can be transformed into:

θ̂θθ Φ̂ΦΦw+ θ̂θθ âaa = θ̂θθ(Φ̂ΦΦw+ âaa) = θ̂θθ Φ̌ΦΦŵ. (4.4)

This equation combines two separate terms from the signal expression 4.3 into a single matrix

vector product, which expresses the full received signal as a bilinear form involving both

optimization variables.
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Therefore, the objective equation can be deduced as

∣∣hH
ABw+hH

IBΘΘΘ(HAIw+hWIv)
∣∣2 = θ̂θθ

H
Φ̌ΦΦŵŵH

Φ̌ΦΦ
H

θ̂θθ . (4.5)

This equation expresses the power of the total received signal at Bob, as a quadratic form. It

converts the objective function into a form suitable for the use of convex solvers (such as

CVX) for efficient calculation.

Similarly, for the expression for the SINR at Willie, we transform it in the same way.

hH
AWw+hH

IWΘΘΘ(HAIw+hWIv) = θ̂θθ δ̌δδ ŵ. (4.6)

letting δ̌δδ = [δ̂δδ , b̂bb]H , δ̂δδ = [δδδ H ,hAW]H , b̂bb = [bbbH ,0]H , δδδ = diag
{

hH
IW
}

HAI and bbb =

diag
{

hH
IW
}

hWIv. This equation expresses the received signal at Willie in the same compact

matrix-vector form used for Bob. This transformation is essential for later deriving the

optimization problem.

Define Ŵ = ŵŵH , Θ̂ΘΘ = θ̂θθ θ̂θθ
H

, rank(Ŵ) = 1, rank(Θ̂ΘΘ) = 1, Ŵ ⪰ 0, Θ̂ΘΘ ⪰ 0. Then opti-

mization problem is reformulated as

max
Θ̂ΘΘ,Ŵ

θ̂θθ
H

Φ̌ΦΦŵŵH
Φ̌ΦΦ

H
θ̂θθ = Tr(ŴΦ̌ΦΦ

H
Θ̂ΘΘΦ̌ΦΦ), (4.7)

s.t. Tr(Ŵ)≤ Ps +1,

ŴWW N+1,N+1 = 1,

Θ̂ΘΘl,l = 1, l ∈L or l = L+1,

Θ̂ΘΘ⪰ 0, rank(Θ̂ΘΘ) = 1,

Ŵ⪰ 0, rank(Ŵ) = 1,

ξ ≤ ε.

This expression reformulated the maximization problem a matrix form using the variable

transformations. It maximizes Bob’s received signal power in a matrix trace version under
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physical and network constraints. These constraints include limiting the total transmit power

of the beamformer, ensuring that the augmented vector maintains the structure, the IRS phase

shift must have a unit modulus, the matrix must be positive semidefinite, the outer product of

the matrix variable execution vector and the constraints of the eavesdropper’s SINR leakage.

Expression 4.7 is the core optimization problem in this system model.

We transform problem 4.7 into its relaxed form by removing the constraints of rank(Ŵ) =

1 and rank(Θ̂ΘΘ) = 1. Subsequently, problem 4.7 is more tractable and can be solved using

convex optimization techniques. This relaxation allows for a wider range of solutions. In

addition, 4.7 can be expressed as

Tr(ŴΦ̌ΦΦ
H

Θ̂ΘΘΦ̌ΦΦ) = vec(Φ̌ΦΦ)H
(

ŴT ⊗ Θ̂ΘΘ

)
vec

(
Φ̌ΦΦ

)
. (4.8)

Equation 4.8 rewrites the objective trace as a vector-matrix-vector quadratic form using Kro-

necker products and vectorized matrices. This form is useful for algorithmic implementation.

(sub-problem 1) When Θ̂ΘΘ is given,

max
Ŵ

Tr(ŴΦ̌ΦΦ
H

Θ̂ΘΘΦ̌ΦΦ), (4.9)

s.t. Tr(Ŵ)≤ Ps +1,

ŴWW N+1,N+1 = 1,

Ŵ⪰ 0,

ξ ≤ ε.

(sub-problem 2) When Ŵ is given,

max
Θ̂ΘΘ

Tr(ŴΦ̌ΦΦ
H

Θ̂ΘΘΦ̌ΦΦ), (4.10)

s.t. Θ̂ΘΘl,l = 1, l ∈L or l = L+1,

Θ̂ΘΘ⪰ 0,

ξ ≤ ε.
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Expression 4.9 corresponds to the beamforming optimization at the transmitter Alice

under fixed IRS configuration. It maximizes the matrix trace form of Bob’s received signal

power. The constrains ensure that the transmit power does not exceed the maximum power,

homogenization in SDR formulation, positive semidefiniteness of the matrix variable and the

SINR at Willie remains below a tolerable threshold. Expression 4.10 addresses the design

of the IRS phase shifts while keeping the beamforming vector fixed. The objective is to

maximize Bob’s signal power. The constraints ensures that each IRS element applies a unit

modulus and the SINR at Willie remains below a threshold.

These two subproblems resulting from the relaxation are convex. We can converge to

an optimized solution for Ŵ∗ and Θ̂ΘΘ
∗

through iteratively solving the relaxed sub-problems 1

and 2 alternately. The above problem currently is a convex-positive semi-definite program

(SDP), and it can be efficiently solved using existing convex optimization solvers. If Ŵ∗

and Θ̂ΘΘ
∗

are rank 1, restore ŵ∗ and θ̂θθ
∗

using singular value decomposition (SVD). When

using the SVD for rank reduction, we can choose to keep the first few largest singular values

and set the others to zero. This will result in a lower rank approximation, but not usually

a complete reduction to rank one. A rank-one solution is a special case and is unlikely to

be realized in the general case. In other cases, recover the approximate solution w∗ and θθθ
∗

using the standard Gaussian randomization method. This randomization method provides an

approximate solution and is particularly useful when dealing with matrices of higher rank.

The quality of the approximation depends on the properties of the original matrices and the

size of the random matrix.

The secrecy rate of this system model denotes as R. It is calculated based on the differece

between the achievable rate of Bob, and the achievable rate of Willie. The mathematical

definition of the secrecy rate is as follows.

R = [RB−RW]+ = [log2(1+ γ)− log2(1+ξ )]+ (4.11)

RB is the data rate at Bob, RW is the data rate at Willie, γ is the SINR at Bob and ξ is the

SINR at Willie.
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According to the above analysis, we recapitulate the overall algorithm for problem 3.3

as Algorithm 1. The objective value of optimizing problem is represented by R(k) with

variables Θ̂ΘΘ
(k)

and Ŵ(k)
in the k-th iteration, while ε denotes a small threshold set to 0.001.

In each iteration of Algorithm 1, after updating either the beamforming vector or the IRS

reflection vector, the algorithm calculates the updated SINR at Bob based on the current

beamforming vector and the IRS reflection vector, the updated SINR at Willie, then computes

R with equation 4.11. At each iteration, Θ̂ΘΘ
(k−1)

is fixed, and Ŵ(k)
is optimized. Then Ŵ(k)

is fixed, and Θ̂ΘΘ
(k)

is updated. This loop continues until the R value convergence. R is used

to track convergence and record the best secrecy achieved so far. The alternating optimiza-

tion algorithm has many applications in wireless communication [9, 2, 27]. Algorithm 1

always converges, as the objective value is non-decreasing over iterations and has a finite

upper bound.

Algorithm 1 Algorithm for Solving Optimization Problem

1: Initialization: Set k = 0, θ̂θθ
(0)

= 1L. Input variables: Θ̂ΘΘ
(0)
,Ŵ(0)

.

2: Compute Θ̂ΘΘ
(0)

= θ̂θθ
(0)H

θ̂θθ
(0)

; R(0) = f (Ŵ(0)
,Θ̂ΘΘ

(0)
), according to 4.8.

3: repeat

4: Set k = k+1.

5: With given Θ̂ΘΘ
(k−1)

, optimize the sub-problem 1, Ŵ(k)
by 4.9.

6: With given Ŵ(k)
, optimize the sub-problem 2, Θ̂ΘΘ

(k)
by 4.10.

7: Compute R(k) = f (Ŵ(k)
,Θ̂ΘΘ

(k)
).

8: until R(k)−R(k−1)

R(k) < ε .

9: Recover rank-one approximate solution output variables w∗ and θθθ
∗.

4.2 Numerical Results

In order to evaluate the security of the proposed approach in this paper, numerical simu-

lations were conducted on an IRS-assisted backscatter communication system. We used

the MATLAB to generate the simulation. To ensure the reliability of the simulation results,

appropriate network circumstances have been carefully considered. The deployment of the
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network is a multiple antenna base station Alice communicates with a single antenna legiti-

mate user Bob, while an active eavesdropper Willie attempts to intercept the transmission.

An IRS is deployed near Bob to assist in enhancing the SINR while suppressing the Willie’s

SINR. All wireless links are modeled as quasi-static flat-fading channels. The direct and

reflected links are assumed to follow Rician or Rayleigh fading, based on their line-of-sight

or non-line-of-sight characteristics. Path loss is calculated using the log-distance model.

The transmit power at Alice is Ps = 9 dBW. The noise variance is fixed at σ2 = 10−5. The

jamming power from Willie and the number of reflecting elements is varied for evaluate the

system robustness and scalability, respectivly. These conditions establish a controlled and

real simulation environment, which can accurately evaluate the performance of the proposed

system model and verify its effectiveness in the actual wireless circumstances. Additionally,

for comparative analysis, this paper also provides several different schemes.

The first scheme considers the transmission scenario of a traditional wireless commu-

nication system that does not incorporate an IRS, which is expressed as Without-IRS. By

comparing the performance of the IRS-assisted system against this Without-IRS scenario,

we can evaluate the added benefits or improvements brought by the IRS. The optimization

for this scheme is specifically for the beamformer w. Therefore, it may not take advantage of

the additional capabilities that an IRS can offer in terms of enhancing communication links,

mitigating interference, or improving the overall system performance.

The second scheme is the wireless communication system assisted by passive reflection

IRS, which is denoted by Reflection-IRS. This scheme involves the integration of an IRS into

the wireless communication system. In this system, the IRS acts as a passive relay, reflecting

signals to enhance communication links. This scheme jointly optimizes the IRS reflection

coefficient θθθ and the source beamformer w. The optimization process considers both the

reflection properties of the IRS and the beamforming at the source. In contrast, the difference

in the scheme proposed in this paper is that the IRS in the backscatter system utilizes

the interference from the eavesdropper to enhance the receiving power of the legitimate

user. This scheme is used to compare the effects of backscatter technology for IRS-assisted

communication systems.



36 Alternating Optimization Algorithm and System Security Performance Analysis

The third scheme involves only optimizing the reflection coefficient vector of the IRS

using the maximum ratio transmission (MRT), referred to as MRT-IRS. In this approach,

the beamforming vector of the source is not involved in optimization. The primary opti-

mization in the MRT-IRS scheme is directed towards the IRS reflection coefficient vector.

The goal is to maximize the received signal power at the legal user by adjusting the IRS

reflections. By optimizing only the IRS reflection coefficients and not involving the source

beamforming vector, it provides a reference for evaluating the impact of IRS reflections alone

on the system performance. This scheme simplifies the optimization process and could limit

the overall performance compared to schemes that optimize both the source and the IRS.

The last scheme is a relay. By introducing a relay with a set number of antennas and

specific transmit power, the performance of this relay-based system can be compared with

the IRS-assisted system. This scheme employs a relay with four antennas in place of the

IRS, and its position is set to be identical to the IRS in the BackCom-IRS approach for

comparison purposes. This positioning ensures a fair and relevant comparison between the

two approaches. Unlike the IRS-assisted system, which primarily reflects signals to enhance

communication, the relay scheme actively amplifies and forwards signals. The transmit

power of this relay is denoted by Pr.

The link from Alice to Willie is modeled as a slow-fading Rayleigh channel. The channel

gain from the IRS to Bob follows a Rician distribution with a Rician factor of 3 on a small

scale. The path loss model for all channels in the system is denoted by PL=PL0−10lg(d/d0)

dB. The path loss at the reference distance of d = d0 and d0 = 1 m is denoted by PL0 = −30

dB. The transmit power at Alice is Ps = 9 dBW. The transmit power of relay is Pr = 0.1 W.

The noise variance is σ2 = 10−5. The distances from Alice to Bob, Alice to the IRS, Alice

to Willie, the IRS to Bob, Willie to Bob, and Willie to the IRS are dAB = 60 m, dAI = 55 m,

dAW = 55 m, dIB = 15 m, dWB = 15 m, and dWI = 15 m, respectively. The summary of the

parameters is presented in Table 4.1.
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Table 4.1 Parameters setting.

Parameter Value

Rician factor κ = 3

Path loss PL0 = −30 dB d0 = 1 m

Transmit power at Alice Ps = 9 dBW

Transmit power of relay Pr = 0.1 W

Noise variance σ2 = 10−5

Distances dAB = 60 m, dAI = 55 m, dAW = 55 m, dIB =

15 m, dWB = 15 m, dWI = 15 m

Figure 4.1 shows the SINR at user Bob in the BackCom-IRS scheme as a function of

the iteration number t under randomly generated observations. It represents a typical result

selected from several generated observations. In this case, Pa = 9 dBW, L = 40. As the

iterations progress, the SINR at the legal user Bob tends to stabilize. When the number

of iterations reaches ten, the objective function converges to 10−3 and the convergence is

monotonically increasing.
Figure 4.2 shows that the SINR at Bob changes with the transmission power of the

eavesdropper Willie. It can be seen from this figure that the SINR at Bob decreases as Pa

increases. Increasing the transmission power at the eavesdropper Willie is detrimental to

the user’s received information. Higher transmission power of the eavesdropper negatively

affects the communication link to user Bob. The proposed scheme outperforms the MRT-

IRS scheme, traditional reflection IRS scheme, Relay scheme, and Without-IRS scheme,

as demonstrated in the simulation results. This implies that, even under conditions of

increased eavesdropper power, the proposed scheme is more effective in maintaining a

satisfactory SINR at user Bob. Especially in comparison to the conventional reflection-IRS,

the IRS with integrated backscatter exhibits a more substantial difference in the SINR as

the eavesdropper’s transmit power increases. This implies that backscatter technology can

enhance the security of IRS-assisted communication systems. There are near linear patterns

in this figure. The linear pattern in the curves arises from interference behavior in the system.
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Fig. 4.1 Convergence of the BackCom-IRS scheme in a random observation.

Because the transmit power of Willie increases linearly, the interference experienced by

Bob also increases approximately linearly. When there are no adaptive mechanisms used at

Bob to suppress this interference in the simulated system, the SINR degradation follows a

predictable and nearly linear trend. In [9, 24], as the transmit power at Tx increases, IRS-

assisted systems exhibit better secrecy rate gains. In [50], the downlink network IRS-aided

system has better performance than full-dupl decode-and-forward relay (FDR)-aided system

in the high SNR. In the low-SNR, the IRS transmission experiences severe path loss and

performs worse than FDR-aided systems.

Figure 4.3 illustrates how the SINR at Bob is affected by the total number of reflective

elements L at the IRS. This figure shows that the SINR at Bob increases as the number of

elements L increases. The number of IRS elements does not affect the Without-IRS and relay

scheme. At first, the relay scheme and the without-IRS scheme will be better than the scheme

proposed in this paper. As the number of IRS components increases, the scheme proposed

in this paper will achieve higher performance gains than other schemes. This implies that a

larger number of elements in the IRS contributes positively to the security of the wireless
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Fig. 4.2 The SINR γ at Bob versus the transmit power Pa at Willie.

communication system. Both [24, 23] indicate that adding more IRS reflective elements is

beneficial for improving the secrecy rate in the IRS-assisted system. When the number of

reflecting elements is small, the received signal at legal user Bob is dominated by the direct

link other than the IRS-assisted link. The performance differences between the proposed

scheme and the MRT-IRS scheme increase with the reflecting elements of IRS. This indicates

that as the number of reflective elements increases, the joint optimization of the beamforming

vector of the source and the reflection coefficient of the IRS becomes more flexible, and the

performance gain also becomes higher.
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Fig. 4.3 The SINR γ at Bob versus the total number of reflecting elements L at the IRS.



Chapter 5

DDPG Algorithm and System Security

Performance Analysis

Overview
In this chapter, the DDPG algorithm is employed to solve the optimization problem. Follow-

ing that, simulations are conducted based on the system model proposed in Chapter 3, and

the simulation results are analyzed.

5.1 DDPG Algorithm

While classical optimization algorithm as alternating optimization are effective for solving

the secrecy rate maximization problem, there are several limitations. It usually requires

perfect and instantaneous CSI. Every time the environment changes, the optimization process

must be rerun from the beginning. It may be computationally intensive, especially in large

scale IRS settings. In order to overcome these limitations and achieve real-time, adaptive and

decision-making, we introduce DRL. By using DRL, we allow an agent to interact with the

wireless environment and learn a strategy that maps the observed state of the system to the

optimal action. The agent learns through trial and error and receives reward based on how

well the action improves the secrecy rate. Over time, it learns to take actions that maximize

long term expected reward, which is secure communication performance in this system.
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Fig. 5.1 DDPG structure

We used DDPG as a typical DRL algorithm in this work. The learning framework used

in this work is mainly based on policy, and the value function is estimated using actor critic

method. The agent in DDPG algorithm learns a deterministic policy: a mapping from state

to action and also learns a value function (the Q value), which helps improve the policy. It is

a hybrid of policy learning and value prediction. The DDPG algorithm framework is shown

in the figure 5.1, which includes four neural networks: critic network, action network, target

critic network, and target action network.

Firstly, we create an experience replay buffer of size D . At time t, the agent performs

the current action at in the current state st and receives the current reward rt from the

environment. At the same time, the agent enters the next state st+1 and describes the

transition characteristics of the agent at time t using tuple (st ,at ,rt ,st+1), which is stored in

the replay buffer.

The learning process of DDPG algorithm is described as follows. Randomly select the

k-th transition tuple (sk,ak,rk,sk+1) from replay buffer. In the policy critic, take (sk,ak) as

the input of the critic network and output the current Q Value qπ(sk,ak;θc) is used to critic

the current policy. θc represents as a critic network parameter. Take sk+1 as the input of the
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target actor network and output the actor ak+1. Take (sk+1,ak+1) as the input of the target

critic network and output the target Q Value qπ(sk+1,ak+1;θc).

In the policy improvement stage, in order to make the current Q value and target Q value

as close as possible, the reward r, the current Q value and target Q value are used to construct

a mean square Bellman error (MSBE) function, and the MSBE is minimized to update the

critic network parameter θc. The action network parameter θa is updated by taking the

derivative of qπ(sk,ak;θc) with respect to the action network parameter using gradient rise.

The target critic network parameter and target action network parameter are updated using

Soft Update.

The updates on the training critic network is given as follow:

θ
t+1
c = θ

t
c−µc∇θ train

c
L(θ train

c ). (5.1)

The loss function of the training critic network is

L(θ train
c ) =

(
rt + γq(θ target

c |st+1,a′)−q(θ train
c |st ,at)

)2
(5.2)

µc is the learning rate for the update on training critic network. a′ is the action output from

the target actor network. γ ∈ (0,1] represents the discount coefficient of Q value.

The update on the training actor network is given as

θ
t+1
a = θ

t
a−µa∇θaq(θ target

c |st ,a)∇θ train
a

π(θ train
a |st). (5.3)

µa is the learning rate for the update on training actor network.

The updates on the target critic network and the target actor network are given as follows,

respectively

θ
target
c ← τcθ

train
c +(1− τc)θ

target
c , (5.4)
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Algorithm 2 DDPG Based Algorithm for Sovling Optimization Problem
1: Initialization: experience replay memory M with size D , training actor network

parameter θ train
a , target actor network parameter θ train

a = θ
target
a , training critic network

parameter θ train
c , target critic network parameter θ train

c = θ
target
c .

2: Input: the transmit beamforming matrix W, the reflection coefficient ΘΘΘ.
3: for episode j = 1,2, ...,J Do
4: Obtain the initial state s0.
5: for time step t = 1,2, ...,T Do
6: Obtain action at = {Wt ,ΘΘΘt}= π(θ train

a ) from the
actor network.

7: Obtain the next state st+1 given the action at , and
calculate the reward rt . Store the experience
(st ,at ,rt ,st+1,) in the replay memory.

8: Obtain the Q value function from the critic network.
Q = q(θ train

c |st ,at)
9: Sample random mini-batches of experiences from

replay memory M with size NB.
10: Update the training critic network θ train

c by 5.1.
11: Update the training actor network θ train

a by 5.3.
12: Update the target critic network θ

target
c by 5.4.

13: Update the target actor network θ
target
a by 5.5.

14: update the state st = st+1

15: end for
16: end for
17: Output: Obtain the optimal action a∗ via the actor network.

θ
target
a ← τaθ

train
a +(1− τa)θ

target
a . (5.5)

The DDPG based algorithm for optimization problem is shown in Algorithm 2.

5.2 Numerical Results

(State)

The current state includes the channel information, the last time slot beamforming vector

at source and reflection coefficients at IRS.

st =
[
hAB,hIB,hWB,hWI,HAI,hIW,hAW,Wt−1,ΘΘΘt−1

]
(5.6)
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Due to the fact that neural networks only accept real inputs, it is necessary to convert the

imaginary parts of the system’s channels into real inputs for the neural network.

(Action)

The action space consists of the beamforming vector at source (Alice) and the updated

reflection coefficients at the IRS based on the current state.

at =
[
Wt ,ΘΘΘt]= [

wt
1, . . . ,w

t
N ,θθθ

t
1, . . . ,θθθ

t
L
]

(5.7)

The agent controls both IRS reflection coefficients and beamforming vector, the size of the

actions list is L+2N. For the beamforming vector, we represent it as a real-valued vector of

size 2N, including real and imaginary parts.

(Reward)

The objective is to maximize the received SINR. Thus, the received SINR at legal user

Bob is used as the reward.

rt = γ
t (5.8)

γ t is denoted as expression 3.3.

The hyper-parameters used in the algorithm are shown in Table 5.1. The transmit power

at Alice is Ps = 9 dBW. The noise variance is σ2 = 10−5. The numbers of reflective elements

at the IRS is 60. The actor and critic networks in the DDPG agent consisted of two hidden

layers, each with 2048 and 1024 neurons. Although the neural network used in this work

is not very deep by deep learning standards, it still qualifies as a deep neural network due

to having multiple hidden layers and the ability to learn complex, nonlinear mappings from

state to action. It required approximately 6 hours to train this model.

The DDPG agent was able to learn an optimal policy that dynamically adjusts transmis-

sion strategies based on the observed environment, without the need to repeatedly solve

complex optimization problems. This enabled real-time adaptation in response to changes

in channel conditions and jamming power. Although training the DDPG model required an

offline phase with multiple episodes of environment interaction, once trained, the agent could
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Table 5.1 Hyper-Parameters for the DDPG based algorithm.

Parameter Description Value
learning rate for training critic network 0.0001
learning rate for training actor network 0.0001
learning rate for target critic network 0.0001
learning rate for target actor network 0.0001

decaying rate for the training networks 0.00001
discounted rate for future reward 0.99

size of experience reply 100000
size of mini-batch 128

quickly determine optimal actions in real time. This is especially useful for fast changing

environments where classical optimization would be too slow or computationally demanding.

Simulation results showed that the DDPG based approach outperformed traditional baseline

methods, especially in dynamic or uncertain environments. The learned policy was able to

enhance the SINR at the legitimate receiver while simultaneously minimizing the received

signal at the eavesdropper, thus boosting the overall secrecy rate.

Figure 5.2 shows the result of average rewards versus time steps under different transmit

powers Pa at the Willie. As the transmit power Pa emitted by the eavesdropper Willie

increases, the average reward decreases. The average reward increases as training progresses

and it demonstrates that the DDPG agent successfully learns an effective policy over time,

gradually improving the secrecy rate through optimized beamforming and IRS phase shifts.

The proposed DDPG based scheme can adaptively optimize system parameters to improve

secrecy performance, even in the presence of active jamming.

Figure 5.3 shows the result of average rewards versus time steps under different numbers

of reflective elements at the IRS. With the increase of elements, the average rewards also

increase gradually. As the number of IRS reflection units increases, the convergence of

the secure communication system designed in this thesis improves. More IRS elements

enable finer grained control over the reflected signal phase, thereby enhancing constructive

interference at Bob and destructive interference at Willie. Deploying more IRS elements

leads to better physical layer security performance of this system.
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Fig. 5.2 Average reward versus time steps under different transmit powers Pa at the Willie.

Fig. 5.3 Average reward versus time steps under different numbers of reflecting elements L
at the IRS.





Chapter 6

Conclusions and Future Work

IRS reconstructs the channel of wireless communication systems by controlling the amplitude

and phase of the incident signal, enhancing the required signal while suppressing interference

signals. Due to its high flexibility, low power consumption, and low hardware complexity,

IRS can effectively improve the performance of communication systems in various wireless

communication scenarios.

The combination of backscatter technology and IRS can effectively utilize the interference

signal sent by the active eavesdropper to the system, enhancing the desired signal at the

legitimate user. Especially when the interference signal power of the eavesdropper is higher,

the energy that IRS can perform backscattering is higher, which significantly improves the

safety performance of the system.

The DRL algorithm learns how to take action to maximize total rewards through the

interaction between the agent and the environment. Reinforcement learning can learn and

adjust strategies in dynamic and uncertain environments, adapt to environmental changes, and

is suitable for a variety of complex tasks. DDPG adopts a deterministic policy, which enables

more stable training under a deterministic policy. It effectively reduces the correlation of

samples and improves the stability of training through experience replay mechanism and

target network.

The objectives achieved are summarized as follows.
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• We proposed a scheme using the combination of IRS and backscatter techniques to

combat active eavesdropping. We provided a specific communication environment for

the proposed scheme. The source (Alice) sends the desired signal to the legitimate user

(Bob), while the eavesdropper (Willie) sends the interference signal. IRS is deployed

in the system to convert the interference signal into the desired signal through the use

of backscatter technology. We developed a MISO system, Alice has multiple antennas,

while Bob and Willie both have single antenna.

• We jointly optimized the transmit power at Alice and the reflection coefficient at IRS to

maximize Bob’s SINR under the SINR constraint at Willie. The optimization problem

is mathematically defined and transformed into a nonconvex problem, which can be

solved by algorithm.

• We proposed an alternating optimization algorithm to solve the non-convex problem. It

was reformulated using matrix trace and vectorization identities and solved using SDR

within an AO framework. Alternating optimization is more suitable for optimization

problems with clear structures that can be decomposed into multiple sub problems,

and it is a relatively stable and easy to implement method. The simulation results

verify the proposed scheme is effective in combating active eavesdropping. It also

have verified that the proposed scheme which combined the IRS and backscattering

outperforms other schemes without IRS and traditional IRS schemes in terms of

security performance

• We developed a DDPG-based algorithm to solve the optimization problem. DDPG is

suitable for RL problems that require handling continuous action spaces, especially

in complex and dynamic environments. It has strong learning ability and flexibility,

but requires high exploration strategies, training stability, and computing resources.

The simulation results show that the DDPG algorithm can significantly improve the

secrecy performance of the system compared to AO algorithm.

Building on the current work, several directions can be explored in future research.
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• Due to the fact that the model established in this article is based on the assumption of

perfect CSI, which is difficult in practical situations, future work will first investigate

the estimation of CSI or further study the above issues under imperfect CSI.

• With the development of communication technology, different application scenarios

will involve different or even more complex communication systems. Extending the

system model to include multiple legitimate users or multiple eavesdroppers would

provide insight into more practical and complex security scenarios. Therefore, in the

following work, various IRS-aided systems will be studied.

• DDPG uses deterministic strategies, which can easily fall into suboptimal strategies,

leading to insufficient exploration and other disadvantage. In the future work, We

will study other DRL algorithms to compensate for the shortcomings of the DDPG

algorithm. In addition, combining traditional optimization algorithms AO and DRL to

leverage their advantages.

• We will consider the practicability of the proposed scheme using a real-world hardware

based testbeds to verify the IRS-assisted secure systems.
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