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Abstract

This thesis investigates advancements in job scheduling within heterogeneous
computing environments, focusing particularly on the domains of software repos-
itory analysis. Two main contributions are presented: the Bidding Scheduler
and the self-correcting worker mechanism, denoted as the Feedback-Based Es-
timator.

Firstly, the Bidding Scheduler is introduced as a novel approach that de-
centralises the job allocation process. In this model, worker nodes engage in a
bidding process to acquire jobs, leveraging localised data and workload condi-
tions to submit bids that reflect expected processing times. The master node
collects these bids and allocates jobs in a manner that minimises overall ex-
ecution time and optimises resource utilisation. This approach addresses the
common inefficiencies in traditional master-worker architectures by integrating
both data locality and worker heterogeneity into the decision-making process.
Experimental work demonstrates the scheduler’s ability to adapt to dynamic
workloads and varying node capacities, resulting in improved performance met-
rics.

Secondly, the Feedback-Based Estimator mechanism is developed to enhance
the accuracy of job completion time estimates. Acknowledging the limitations
in developers’ ability to predict precise processing times due to the variability in
job attributes and system performance, this mechanism introduces a real-time
adjustment process. Based on continuous feedback from executed jobs, the
Feedback-Based Estimator dynamically updates the estimation formula to cor-
rect any persistent discrepancies between estimated and actual job completion
times, thereby reducing the margin of error in time estimates.

Together, these contributions provide a framework for efficient and adaptive
job scheduling in heterogeneous computational environments. Future work will
focus on investigating applicability of these approaches beyond mining software
repositories.
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1 Introduction

Mining software repositories is a fundamental endeavour for extracting valu-
able insights that inform software engineering practices, quality assurance, and
project management. The principal objective of this research is to enhance the
performance of repository mining workflows by leveraging distributed computa-
tion techniques. Specifically, we aim to distribute the workload across multiple
machines, termed “workers”, to optimise execution time and utilisation of com-
putational resources.

1.1 Aim of Research

The primary aim of this research is to improve the performance of repository
mining workflows by distributing the tasks across multiple machines, each
with varying capabilities such as processing power and storage capacity. This
distribution must be both efficient and effective to address the challenges
of cloning and storing potentially large repositories, as well as meeting the
computational requirements of analysing the source code. Central to this study
is the concept of Mining Software Repository (MSR) workflows, which are
defined formally below to ensure clarity and eliminate any ambiguity.

Definition of MSR workflows

In the context of this thesis, an MSR workflow refers to a structured set
of predefined computational operations conducted on software repositories.
These workflows are tailored specifically for mining repositories — that is,
extracting meaningful information such as commit history, code structure,
revision data, or other metrics — from repositories that could reside in remote
environments. Unlike traditional workflow languages such as BPMN[5], which
are designed around explicit representations of control flow (e.g., branches,
loops, and synchronisation), MSR workflows in this thesis are implemented
as task-oriented pipelines. These pipelines can consist of any number of
computational steps, and while the examples used in this work are linear, the
workflow abstraction itself does not preclude conditional or repeated steps.
The defining aspects of an MSR workflow are outlined below:

• Task decomposition. An MSR workflow consists of discrete, atomic
tasks that align largely with data-centric operations found in paradigms
such as map-reduce [6]. These tasks may include operations such as pars-
ing individual files, analysing commit messages, or examining repository
structures. Tasks are typically designed to minimise interdependencies,
ensuring that parallel execution is feasible across multiple worker nodes.

• Step execution. MSR workflows follow a step-based structure. Typi-
cally, a workflow consists of:
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– Source step: A single initial step responsible for initiating the work-
flow by retrieving the list of target repositories from remote locations.

– Operational steps: A series of computational steps, often executed
in parallel, which perform analyses of the cloned repositories. These
may include parsing, metric extraction, or historical commit analysis.

– Sink steps: One or more final steps designed to aggregate results
from operational steps and save them in a structured, machine-
readable format (e.g., JSON or CSV).

The decomposition of MSR workflows into atomic tasks parallels the
principles of the map-reduce computational paradigm. The ’map’ phase
comprises distributed tasks, such as parsing individual repository files or
analysing commit-level data in parallel across worker nodes. The ’reduce’
phase corresponds to the sink steps, where outputs from multiple tasks
are aggregated, processed, and stored in a machine-readable format. The
relationships between these steps are predominantly sequential or loosely
coupled, with interdependencies being highly data-driven. For example,
during the workflow execution, the output of the source step — a list of
repository URLs — is used as the input for operational steps, wherein
repositories are cloned to worker nodes for further analysis. Once an in-
dividual repository is processed, key metrics (e.g., commit history data or
extracted features) are passed to the sink step for aggregation.

• Transmission costs. Although interim result transmission occurs be-
tween source, operational and sink steps, it is assumed to be negligible
compared to the cloning of repositories or the computational overhead of
code analysis. This assumption is based on the observation that the in-
terim data, consisting of structured summaries (e.g., extracted metrics or
historical data), is far smaller in volume than the original cloned repos-
itories. This assumption simplifies the analytical model while focusing
computational optimisations on tasks with substantial resource impacts.

For the scope of this study, the repository mining workflows of interest pos-
sess the following distinct characteristics:

• Remote repositories: The repositories to be mined are not locally avail-
able and must be cloned over the Internet. This introduces significant
overhead due to network latency and bandwidth constraints.

• Multiple analyses for each repository: Each repository needs to be
analysed multiple times during the execution of the workflow. This could
entail examining different points in the repository’s history or extracting
diverse types of data from the same repository.

• Heterogeneous workers: The computational environment comprises
several workers, each with distinct capabilities. These differences may
include varying CPU power, memory size, storage capacity, and network
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bandwidth. Effective task distribution must therefore account for this
heterogeneity in order to maximise overall performance while minimising
idle states and bottlenecks across the system.

1.2 Motivating Example

In the software ecosystem, obtaining comprehensive insights into software sys-
tems is highly important [7]. Analysing software repositories governed by version
control systems (VCSs) such as Git emerges as a pivotal method in obtaining
these crucial insights. These repositories serve as reservoirs of valuable histor-
ical information, encapsulating a project’s status, development progress, and
evolutionary trajectory [8]. As the field of Mining Software Repositories (MSR)
continues to expand, the MSR researchers aim to extract and analyse the het-
erogeneous data housed within software repositories to reveal actionable and
insightful intelligence about software systems [9]. For instance, these analyses
can encompass a range of activities, from calculating code metrics to identifying
specific code patterns or anti-patterns.

Consider, for instance, the objective of measuring how a set of GitHub repos-
itories have grown in lines of code over time. Such an analysis entails several
steps, all depicted in Figure 1:

• Cloning the repositories of interest: This involves using the git clone
command to download the repository to a local machine.

• Checkout files for analysis: This is accomplished by checking out each
commit sequentially and ensures that each version of the files is accessible
for detailed inspection.

• Commit-by-commit analysis: For each commit in every repository,
the total lines of text in relevant code files are counted.

• Data aggregation: The collected data is aggregated to visualise the
growth of the repositories across different time periods.

This seemingly straightforward process, however, presents numerous compu-
tational and logistical challenges when scaled to a large number of repositories
and commits. Distributed execution is crucial for the effective analysis of mul-
tiple repositories and their commits due to several factors associated with such
large-scale data operations. Firstly, the volume of data and the number of op-
erations required for a comprehensive analysis can be overwhelming for a single
machine. Processing thousands of commits across numerous repositories neces-
sitates significant computational power and storage capacity, which can easily
surpass the capabilities of a single node. Distributed execution allows for work-
load partitioning across multiple machines, thereby leveraging their combined
computational and storage resources to handle large datasets efficiently.

Furthermore, the time complexity associated with analysing each commit in
a repository can be substantially high. Each commit may involve parsing code,

9



Figure 1: MSR workflow for measuring line count growth in GitHub repositories

identifying changes, and computing various metrics, which are computationally
intensive tasks. Consequently, executing these operations sequentially on a sin-
gle machine could result in prohibitive processing times. Distributed execution
mitigates this issue by enabling parallel processing of commits across different
nodes. This parallelism significantly reduces the overall execution time, making
it feasible to perform detailed analysis within reasonable timeframes. Moreover,
by distributing the workload, the system can ensure higher throughput and bet-
ter utilisation of resources, thereby optimising the overall performance of the
analysis workflow.

In terms of work allocation, assigning one repository to each worker might
initially seem efficient. However, this allocation strategy is suboptimal due to
potential workload imbalances. Some workers might complete their tasks faster
than others, depending on the size and complexity of the repositories they are
processing. Consequently, this could result in idle workers while there are still
pending repositories/commits to be analysed, thus leading to inefficient resource
utilisation. Alternatively, naively allocating {repository, commit} jobs to work-
ers in a round-robin manner could also be suboptimal. This strategy might re-
sult in multiple workers redundantly cloning the same repository multiple times,
leading to unnecessary data transfer overheads and storage consumption. Such
inefficiencies can significantly slow down the entire analysis process, especially
when dealing with large and complex repositories.

Hence, in order to efficiently tackle execution of MSR workflows that demon-
strate the properties discussed in Section 1.1, there is a need for a more sophisti-
cated approach. This approach would involve striking the right balance between
two key considerations:

• Data locality optimisation: Minimise the number of redundant repos-
itory clones by ensuring that each repository is cloned as few times as
needed. This can be achieved by employing a job scheduling strategy that
takes into account the current state of each worker and assigns them jobs
in a way that reduces data redundancy.
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• Maximised worker utilisation: Ensure an even distribution of work-
load across all workers so that no worker remains idle while others are still
processing.

1.3 Thesis Structure

This thesis is organised into eight chapters, each addressing specific components
of the research on MSR with a focus on distributed data processing frameworks
and job allocation concerning data locality. The structure is designed to pro-
vide a clear trajectory from background and hypotheses formulation through
experimental validation to practical implications and future directions.

Chapter 2 constitutes a comprehensive literature review pertaining to MSR
tools and distributed data processing frameworks. This section examines exist-
ing methodologies, tools, and frameworks. Key works in the domain are scruti-
nised to lay a solid foundation for the subsequent chapters. Chapter 3 analyses
these frameworks and tools, comparing and contrasting them to identify gaps
and opportunities for advancement. It also presents the core research hypothe-
ses and defines specific research goals. Emphasis is placed on the criteria and
metrics that will be utilised to evaluate whether the research objectives are met.
In Chapter 4, we describe a series of experiments conducted to evaluate several
potential baseline frameworks. These experiments are critical to selecting the
most optimal framework that serves as the foundation for the research. The cri-
teria for performance include computational efficiency, job scheduling and data
locality handling.

The core contributions of this thesis are encapsulated in Chapters 5, 6, and
7. These chapters detail our advancements in distributed mining and job alloca-
tion strategies, elaborating on the methodologies developed to optimise overall
execution time through tackling data locality. The final chapter, Chapter 8,
synthesises the findings from the entire thesis, offering a summation of key in-
sights and achievements. Additionally, it presents a forward-looking discussion
on potential future research directions that stem from the present work.

In conclusion, this thesis is structured to provide a logical and in-depth
examination of the chosen research areas, ensuring clarity and coherence in the
presentation of findings and contributions.
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2 Literature Review

This chapter presents literature related to software repository mining and dis-
tributed data processing. The investigation began by formally defining the
scheduling problem for MSR workflows described in Section 1.1. It continued
by evaluating various approaches and tools for mining repositories to ascertain
their capabilities in addressing the use cases described in Section 1.2, with a
primary focus on the suitability of these tools for distributed execution, their
scheduling mechanisms, and their efficacy in leveraging local repository copies.
Subsequent to analysing tools specifically designed for MSR, our focus shifted to
general-purpose data processing frameworks to assess their efficacy in executing
workflows involving repository mining.

2.1 Characterising the Scheduling Problem in Mining
Software Repositories

The central challenge in our MSR workflows lies in scheduling a stream of in-
coming jobs — each representing the analysis of a specific repository - across a
fixed pool of distributed worker nodes. Each job must be assigned to a worker,
where the corresponding repository is either cloned (if not already present) or
reused from a prior analysis. Since cloning large repositories is time-consuming
and computationally expensive, this setup phase introduces non-trivial overhead
that must be managed effectively. This scenario naturally maps to a class of
problems known as Job Shop Scheduling with Sequence-Dependent Setup Times
(JSSP-STsd) [10], but with notable extensions.

In classical job shop scheduling formulations, each job consists of a sequence
of operations that must be processed in a specific order on designated ma-
chines. Scheduling aims to optimise global objectives, such as minimising the
total completion time (makespan), assuming that the set of jobs and their pro-
cessing parameters are known in advance. When setup times are included, they
typically depend on the transition from one job to another and are treated as
fixed and deterministic (e.g., tool changes in manufacturing). These problems
are commonly denoted in Graham’s three-field notation as J/STsd/Cmax [11],
where:

• J denotes a general job shop setting,

• STsd indicates sequence-dependent setup times,

• Cmax refers to the objective of minimising makespan.

In our case, however, the scheduling environment departs from this classical
model in several critical ways:

• Online scheduling: Jobs arrive incrementally over time, one at a time,
and must be scheduled immediately. This removes the possibility of com-
puting globally optimal sequences and necessitates online scheduling poli-
cies that adapt to partial information.
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• Stateful setup cost: Setup time is only incurred the first time a repos-
itory is scheduled on a given worker. If the worker has already cloned the
repository, the setup time for subsequent jobs of the same repository is
effectively zero. This represents a form of state-aware setup, which is not
modelled in traditional JSSP-ST literature, where setup costs typically
apply to every transition between job types.

• Uncertain setup duration: Repository clone times vary in practice, de-
pending on repository size and network conditions. This introduces vari-
ability and partial unpredictability in setup times, diverging from the deter-
ministic assumptions common in manufacturing-based scheduling models.

To formalise the setup behaviour, we define the setup time for job ji on
worker w as follows:

si,w =

{
0, if repository ri is already cloned on worker w

Sri , otherwise

Here, Sri denotes the cloning time for repository ri, which can vary based on
repository size, its metadata and network conditions. From a scheduling theory
perspective, this problem can be described using an extended Graham notation
as:

J/STsd∗/Cmax-online

Where:

• J indicates the job shop environment (multiple workers/machines).

• STsd∗ highlights a non-standard variant of sequence-dependent setup
times where setup cost is stateful — i.e., it depends not only on the current
job, but on persistent system state (repo clone presence).

• Cmax-online signifies that the objective is to minimise the makespan in
an online scheduling context.

These distinctions position our problem within the class of online job shop
scheduling with stateful and non-recurring setup costs. While there exists rich
literature on JSSP with setup times (e.g., [12, 13]), most models assume deter-
ministic, job-related setup costs and globally known job sequences — assump-
tions that are violated in our streaming analysis context.

To formally characterise this class of problems, we define a task as locality-
intensive if the expected job setup time — specifically, the time spent retrieving
remote data — is significantly larger than or in the same order of magnitude as
the actual job processing time. That is, for a given job ji, if E[si,w]pi, where si,w
denotes the setup time on worker w and pi the processing time, then we classify
the task as locality-intensive. In our case, cloning large software repositories
typically takes on the order of tens of seconds to minutes, whereas analysing a
single commit for line counts may require only a fraction of that time.
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Accordingly, we argue that existing job shop formulations are insufficient to
capture the full complexity of our scenario. Our problem requires heuristics and
dispatching strategies that (1) exploit local clone reuse to minimise redundant
setup costs, (2) adapt to real-time system load and network variation, and (3)
perform competitively in the absence of foresight. These requirements create
an opportunity to contribute novel scheduling models and algorithms grounded
in Job Shop theory, but tailored for dynamic, data-aware applications such as
mining software repositories.

2.2 MSR Tools

In recent times, there has been an increase in the number of tools dedicated to
the exploration and extraction of data from Git repositories and hosting services
such as GitHub and GitLab. These tools have garnered considerable attention
and interest as subjects of research. Despite the fact that multiple version
control systems, such as Subversion and Mercurial, are well-suited for mining
software data, Git stands out as the focal point of interest within this realm [14].
When confronted with the task of mining software repositories, researchers and
practitioners face several choices. They can opt to leverage existing tools and
frameworks that are specifically tailored for mining, incorporate their analyses
into higher-level systems or infrastructures, or even develop custom-made tools
that align with their precise requirements. The following section outlines exist-
ing MSR frameworks and libraries identified as commonly used according to a
survey in [15] and work in [9], along with general-purpose frameworks classified
as state-of-the-art as indicated by [16] that can be used for MSR workflows.
Additionally, it examines their functionalities in relation to the MSR example
provided in Section 1.2.

2.2.1 Single-Machine Tools for Mining Repositories

PyDriller is a Python framework within the software repository mining domain.
It simplifies the data extraction process from Git repositories, enabling in-depth
analysis of software projects by researchers and developers [9]. PyDriller facil-
itates the retrieval of information pertaining to commits, developers, files, and
changes within a repository, thereby serving as a valuable tool for the examina-
tion of software engineering and project assessment.

The key functionalities provided by PyDriller include:

• Commit analysis: The feature comprehensively extracts commit details,
encompassing commit messages, authors, dates, and modified files.

• File analysis: It analyses file modifications, detailing the count of added
and deleted lines, alongside the types of alterations.

• Developer analysis: It tracks individual developer contributions and
activity patterns.
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• Repository history: This capability enables the traversal of a reposi-
tory’s history to study its evolution over time.

PyDriller is engineered with user-friendly design, integrating with promi-
nent Python data analysis and visualisation libraries such as pandas [17] and
matplotlib [18]. It is particularly beneficial for researchers conducting empirical
studies on software development practices, for instance, in identifying corre-
lations between code review length, comment quantity, and post-release bug
occurrences. Moreover, developers can leverage PyDriller to comprehend and
enhance their codebases, such as identifying files with extensive changes.

When executing Python code via PyDriller, the program operates exclu-
sively in a single-threaded framework on a single machine. Consequently, all
data mining and processing tasks are handled sequentially by one instance of
the application on one machine. PyDriller inherently lacks the capability to dis-
tribute tasks across multiple machines or to process commits in parallel without
external intervention. To achieve distributed execution across multiple cores or
machines, a developer must manually configure parallelisation through addi-
tional programming efforts. This entails manually dividing the repository anal-
ysis into discrete segments, allowing for parallel analysis of different branches
through separate scripts or processes. Despite this possibility, it is crucial to
note that PyDriller itself does not inherently support distributed execution.
Each individual process would operate its instance of PyDriller independently.

Conversely, PyRepositoryMiner, a more recent tool, offers capabilities akin
to those of PyDriller but the main difference is that it enhances parallelisation by
enabling multi-threaded environments for traversing and extracting data from
Git repositories [19]. Nevertheless, neither of these tools address distributed
processing of software repositories as they were inherently designed to run on a
single machine.

RepoFS is a valuable tool that acts as a virtual filesystem linked to a Git
repository [20]. The tool enables users to engage with the contents of a Git
repository by performing common file system tasks like reading files, viewing
directories, and navigating through the file structure. Importantly, users can do
all this without requiring an in-depth understanding of Git’s inner workings or
commands.

A key feature of RepoFS is its mechanism of making the entire Git repos-
itory accessible through the filesystem, which uniquely provides directories for
each revision. This feature eliminates the need for repetitive checkouts, stream-
lining the process of reviewing the repository’s status at different time points.
This functionality proves particularly beneficial for users examining changes and
snapshots of the repository over various stages of its development.

Despite RepoFS offering a unique and valuable interface for interacting with
Git repositories through a file system-like abstraction, it is not designed for
distributed execution across multiple systems, hence it is also not addressing the
challenges of pairing incoming queries with workers that possess the required
data. Although RepoFS can indeed access remote repositories — repositories
that are not stored locally but are accessible via the network — the execution
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and actual processing of repository data are confined to the local machine on
which RepoFS is running.

Perceval [21] is an open-source utility and Python library designed to gather
data from various platforms essential to software development processes, includ-
ing version control systems, issue tracking systems, and code review systems.
This tool can operate both as a stand-alone application and as a Python library.
However, it is dedicated solely to data collection, necessitating the use of sup-
plementary tools or additional effort for comprehensive analysis or visualisation.
The data collected from a range of sources (such as Git repositories, issue track-
ers, and Continuous Integration (CI) tools) is stored locally in a JSON format,
making it ready for further analysis. Perceval is primarily intended to run on
a single machine, which, consequently, makes it unsuitable for workflows that
require executing MSR tasks in a parallel fashion, such as the ones described in
Section 1.2.

As previously established in Section 1.2, there is a necessity for a distributed
execution, thus subsequent sections will explore frameworks that facilitate this
capability, with a particular emphasis on the repository mining use case.

2.2.2 SmartSHARK

SmartSHARK [22] is a comprehensive software ecosystem designed for the ex-
traction and analysis of data from software repositories. Its primary function
is to collect data from varied sources and integrate this data into a unified
database. Additionally, SmartSHARK offers tools and features that facilitate
data enrichment, visualisation, and elementary analysis. However, its primary
strength lies in data collection and preparation, with more advanced analytical
tasks typically requiring the use of external tools or custom scripts.

Similar to Perceval, SmartSHARK is capable of collecting data from multiple
sources, such as development history from version control systems (currently
limited to Git) and issue tracking systems, including Jira, Bugzilla, and GitHub
issues. The structured JSON format is employed for presenting the collected
data, which ensures consistency once data from various sources is harmonised.
For instance, SmartSHARK’s data model for issue tracking is based on Jira;
fields from other issue trackers are mapped to this model as closely as possible.
The collected data is organised into JSON format and stored in MongoDB [23],
which is suitable for managing large volumes of data using a document-based,
schema-free approach with JSON-like representations.

Programs created with SmartSHARK libraries can be executed on a single
machine or across a distributed cluster. While classified as a repository mining
tool, SmartSHARK is more geared towards analysing data about the code rather
than the code itself, making it less suitable for the workflows discussed in Section
1.2. This is due to its reliance on a centralised database, which stores extensive
metadata about repositories but is of little benefit when analysing the source
code worker nodes obtain through cloning.
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2.2.3 World of Code

World of Code (WoC) [24] is an extensive, open-source platform intended for
the mining, analysis, and examination of software project evolution. It system-
atically retrieves and indexes substantial data from various software reposito-
ries, including Git repositories across platforms such as GitHub, GitLab, and
Bitbucket, aiming to facilitate empirical research in software engineering and re-
lated fields. The platform structures the data into a graph format, where nodes
denote entities (e.g., files, commits, repositories, authors), and edges signify
relationships (e.g., a file modified in a commit, a commit made by an author).

The dataset construction involves three principal stages:

• Project Discovery: Using search engines and search APIs to find repos-
itories.

• Project Retrieval: Establishing a local copy of publicly available repos-
itories on WoC servers.

• Data Extraction: Creating a dataset with information on files, commits,
etc., ready for researchers to query.

WoC also provides several access libraries, such as Python, Shell, or Perl
APIs, to facilitate querying the data. Typically, an application comprises a
query or application layer and an API that communicates with the WoC servers
housing the data. The dataset is maintained across six servers, which process
the queries submitted via the WoC APIs.

Despite its distributed approach, WoC faces certain limitations. The dataset
is predetermined and cannot be customised to meet the specific needs of indi-
vidual researchers (e.g., querying private repositories). Furthermore, access to
the execution environment is restricted to the servers hosting WoC, precluding
the default execution of programs in cloud environments or private dedicated
infrastructure.

2.2.4 Boa

Boa is a specialised language and infrastructure designed for large-scale mining
and analysis of software repositories [25]. It caters to users who may not have
expertise in data mining or version control systems, simplifying the process of
extracting and analysing data from large codebases and software repositories like
those on GitHub. Boa offers a high-level abstraction that allows researchers and
practitioners to specify data mining tasks without getting caught up in the intri-
cacies of low-level data extraction and manipulation. This high-level language
allows users to write queries that are specifically targeting common patterns
and data types found in software development repositories, such as commits,
files, ASTs (Abstract Syntax Trees), and metadata. The design of Boa’s syntax
is inspired by Sawzall, a procedural programming language designed by Google
for processing large numbers of logs [26].
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The primary goal of Boa is to ease the process of analysing ultra-large-scale
software repositories, thus providing support for software engineering research
activities, including software quality assessment and evolutionary studies. One
example of an empirical study that can be conducted using Boa is determining
the average number of changed files per revision, also known as the churn rate,
across all projects [27]. Addressing this question typically requires a consider-
able amount of knowledge, including mining project metadata, understanding
code repository locations, accessing the repositories, implementing additional
filtering code, and managing controller logic.

However, using Boa makes this task much simpler. We start by declaring
the input as a Project type and assign it an alias. Next, we define the output as
accepting integer values and calculating the mean of all the integers it encoun-
ters, indexed by a string. Then, we iterate through the input data, including
each code repository and its revisions. When we encounter a Revision, we send
the number of files changed in that revision to the output variable, indexed by
the project’s ID. This computation yields the churn rate, represented by the
mean value.

Figure 2 shows an example of Boa code illustrating this process.

Figure 2: Example of Boa code

Boa supports a couple of integrated development environments (IDEs), al-
lowing users to write and manage Boa queries more efficiently [28]. Once a
Boa program is written, it must be compiled into an intermediate Java pro-
gram, similar to translating a high-level language into a lower-level format. The
Boa source code is processed by the Boa compiler, which is implemented in
Java. This compiler parses the Boa code and generates equivalent Java code,
maintaining the same logic. Figure 3 below illustrates an example of Boa code
alongside its generated Java counterpart.

Boa leverages a distributed computing infrastructure, based on the Apache
Hadoop framework [29], to process large datasets across multiple computing
nodes. Figure 4 describes the high-level architecture of the framework. Apart
from the execution infrastructure, Boa also offers data infrastructure, through
the use of a distributed file system, particularly HDFS (Hadoop Distributed File
System) [30], to store both its input data (repositories) and the output from
analyses.

The input data for Boa, which includes software repositories, is pre-processed
and stored in a format suitable for efficient analysis, also known as cache. This
data is typically organised and indexed to optimise common access patterns and
queries. Hence, the generated code includes Hadoop’s MapReduce functions,
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(a) Boa example

(b) Generated Java code from Boa

Figure 3: Boa code generation

such as mapping data to keys (e.g., project IDs), reducing data by keys (e.g.,
counting, summing data), and filtering data according to the developer’s queries.

Boa offers an intuitive front-end, a web interface, through which users can
compose and submit their programs. This interface significantly streamlines
interactions with the underlying system, thus rendering the platform accessible
to individuals who may not possess expertise in distributed systems or software
repository mining. Upon submission of the Boa program via the web-based user
interface, it is subjected to a compilation process and packaged into a JAR file,
which is subsequently submitted to the Hadoop cluster for execution. During
this phase, Boa’s infrastructure is tasked with the scheduling and execution of
the operations articulated by the program across the distributed infrastructure.
It manages task distribution, resource allocation, and load balancing across the
cluster. This stage is pivotal as it enables the distributed execution of the Boa
program by harnessing the parallel computation capabilities inherent in the
Hadoop ecosystem.

The same interface utilised for program submission is employed to monitor
execution and retrieve results. Following execution, results are gathered from
the HDFS and consolidated before being returned to the user. The garnered
results can be accessed online or downloaded as a text file, which can then be
imported into external visualisation tools such as Tableau [31], Microsoft Power
BI [32], or various Python visualisation libraries (e.g., matplotlib).

19



Figure 4: Boa architecture [1]

Regarding workload distribution and resource management, Boa relies on its
underlying infrastructure — Hadoop. Consequently, the allocation of incoming
tasks to worker nodes is determined by Hadoop’s scheduler. Data locality within
the Hadoop ecosystem refers to the strategy of relocating computation tasks
closer to the physical location of the data rather than transferring substantial
volumes of data to the computation nodes [33]. This approach reduces overall
network congestion and enhances the system’s throughput. Hadoop defines
three levels of locality:

• Node-local. Data resides on the same node that is processing it.

• Rack-local. Data is located within the same rack but on a different node
from the one processing it.

• Non-local. Data is positioned on a different rack compared to the worker
node processing it.

The workflow is executed on a master/worker architecture, which is common
among distributed Big Data processing engines. Hadoop utilises the MapReduce
model designed for handling large-scale datasets across computer clusters [6],
which is also independent of storage mediums. In Hadoop, the master node is
called the JobTracker, while the worker node is referred to as the TaskTracker.
When a MapReduce job is initiated, Hadoop first divides the input dataset into
evenly sized data blocks (i.e. jobs). Each data block is then scheduled to a
worker node for processing. The task allocation process adheres to a heartbeat
protocol, operating on a First-In-First-Out (FIFO) basis. A worker node signals
the master when it is idle, upon which the scheduler assigns new tasks to it. The
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scheduler considers data locality during data block allocation, striving to pair a
node-local block with a worker. If this is not feasible, the scheduler reduces data
locality by assigning a rack-local or random data block to the worker instead [34].
This methodology, combined with Hadoop’s distributed computing capabilities,
ensures that data analyses can be executed with both accuracy and efficiency,
surpassing the performance of single-threaded tools examined earlier in this
chapter.

However, it is arguable that the Hadoop’s MapReduce is not a suitable
candidate for implementing MSR workflows. This is mainly due to the fact
that this platform was inherently designed to process the data already present
in a storage system such as HDFS, and not handling external operations (like
cloning repositories from their remote locations that would have to be done
as a pre-processing step). Additionally, Boa programs are designed to query
predetermined datasets and inherently lack support for the customised selection
of repositories for analysis. This limitation is addressed by contributions such as
[35], which endeavour to overcome this constraint by enabling custom datasets
and using personal infrastructure for deploying Boa programs. Still, the custom
data would need to be uploaded as a pre-processing step.

Even if implemented, the overhead involved in saving repository clones to
the distributed file system impacts performance. Transferring to HDFS is con-
siderably more time-consuming than storing files on a local disk, as each file
must be uploaded, its replicas created on other nodes, and metadata updated in
the HDFS namenode. This issue is more obvious when workflows involve many
small files rather than a few large ones, as is typical with source code reposito-
ries (e.g., GitHub blocks files larger than 100MB [36], and filesystem’s reports
[37] indicate that 49.3% of files used in online applications are smaller than 1
KB, with only 0.8% exceeding 10 MB). In case of the small files the amount
of memory for the metadata on the namenode dramatically increases [38] lead-
ing to significant performance overhead, known as the small-file problem [39].
For instance, storing 550,000 small files (ranging from 1KB to 10KB each) on
HDFS takes approximately 7.7 hours, compared to just 660 seconds on the ext3
local file system (traditional filesystem used in Linux operating system) [40].
These challenges undermine the suitability of frameworks like Boidae that rely
exclusively on HDFS for running the distributed mining repository workflows.

2.2.5 Crossflow

Crossflow is another specialised tool designed to address MSR requirements
[41]. Crossflow necessitates the workflow specification in its own domain-specific
language, which is not specifically tailored to MSR, but supports general design
of Big Data workflows. It offers both graphical and textual notation, and its
main purpose is to allow the engineer to define tasks and data types to support
the workflow execution. In contrast to Boa which is limited to what its own
domain-specific language has to offer, the flexibility of task logic in Crossflow
is enabled through popular programming languages such as Java and Python,
offering developers unrestricted capabilities.
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Figure 5 showcases one MSR workflow specified in Crossflow, using the
graphical notation. The purpose of this workflow is to check how often dif-
ferent software development technologies appear together in applications. The
workflow first queries GitHub for Git repositories containing source code re-
lated to particular input technologies (this usually means they contain files of
specific extensions) and looks for combinations in which these different tech-
nologies appear in applications together. The rounded boxes (e.g. Repository
and RepositorySearchResult) represent different types of jobs in the workflow,
where each job is defined as a piece of data required to process a task. A task
example would be RepositorySearcher, which is shown in a rectangular shape.
Each task represents a function to be used to process a piece of data wrapped
in an incoming job. Whether a task is represented via the double rectangle or a
single one indicates if it is going to be executed in parallel across multiple ma-
chines or on a single worker. The cylinders represent communication channels,
allowing for different types of jobs to be input or output for connecting tasks.

Figure 5: MSR example in Crossflow

While adhering to the master/worker architecture, Crossflow distinguishes
itself from other technologies in terms of its component functions. Notably,
Crossflow employs “opinionated” nodes, a unique feature that enables workers
to decide on whether to accept or decline a job based on their preferences,
without direction from the master node. In more detail, instead of the master
pushing jobs to the workers it finds appropriate, Crossflow currently deals with
scheduling by enabling worker nodes to pull jobs from the master. Before being
executed, each pulled job is internally evaluated by the worker to check if it
conforms to that worker’s acceptance criteria. If it does, the job is processed,
otherwise, it is returned to the master so another worker can consider it.

The intelligence of workers lies in this evaluation process, where they proceed
to perform a task or decline it based on their internal state, i.e. their opinions.
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In order to ensure the completion of all incoming jobs, workers are required
to keep track of any jobs they have previously declined. This enables them to
accept such jobs upon seeing them for the second time, at which point it is
assumed that no other worker possesses the necessary capabilities to carry out
the task.

Crossflow’s scheduling approach bears resemblance to the MapReduce’s
Matchmaking technique [42], which empowers nodes to request jobs rather than
passively receive them. In this model, a free node will attempt to pull tasks for
which it possesses local data. Failing this, the node remains idle for one heart-
beat interval. Upon a subsequent trial, the node is expected to accept a job,
even in the absence of the necessary local data. However, in Crossflow, com-
pared to the Matchmaking technique, the specific acceptance criteria are highly
application-specific and are defined by the developer. For instance, criteria may
be related to data locality, prompting worker nodes to scan the contents of their
local cache. Alternatively, criteria could involve other conditions, such as the
availability of CPU/RAM capacity or particular attribute-based preferences,
such as job type or whether worker possesses a certain file.

From an architectural perspective, Crossflow is situated within the realm of
model-driven technologies for distributed stream processing. Its architectural
overview is illustrated in Figure 6. The Crossflow metamodel defines the syntax
for Crossflow’s modelling language, which is utilised to represent distributed
data processing workflows. Each workflow model is required to conform to the
specifications of the Crossflow metamodel and undergoes validation prior to code
generation. The Crossflow domain-specific language is built upon the Eclipse
Modelling Framework [43]. Once created and validated, the model is consumed
by the code generator. This component is pivotal to the Crossflow framework,
as it is responsible for generating the foundational scaffolding of the forthcoming
Big Data application. Presently, the code generator outputs Java and Python
code; however, Crossflow can be extended to support additional programming
languages.

The base code produced by the code generator encompasses the essential
functions needed to configure the distributed infrastructure, including the es-
tablishment of communication channels for worker nodes. It also provides spe-
cialised classes to encapsulate the intended behaviour of the application. Nev-
ertheless, it is necessary for the developer to implement the specific algorithms
required for data processing. After the compilation process, the generated Java
code is packaged into JAR files — one designated for the master node and an-
other for the worker nodes — readying them for deployment within a cluster
environment.

Despite the Crossflow scheduler aiming to achieve a high degree of data
locality, it presents several limitations when handling MSR workflows described
in Section 1.2, which could be enhanced. First, upon the initial execution of the
workflow, if the worker nodes do not have any data stored locally, these nodes
are likely to reject repository-related jobs due to the lack of local data clones.
This situation results in an initial overhead affecting performance.

Second, there is no mechanism ensuring that high-performance workers
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Figure 6: Crossflow architecture

are assigned to compute-intensive tasks, and less demanding tasks to lower-
performance workers. Therefore, it is likely there will be redundant clones of
the same repository if a node is offered a job it has previously seen, even though
some other node has that resource locally but is currently occupied. This lack
of alignment can lead to inefficient resource utilisation and increased overall
execution times.

2.3 General-Purpose Big Data Frameworks

Although not specifically engineered for repository mining, arguably general-
purpose Big Data engines such as Apache Spark [44], Apache Flink [45] and
Apache Storm [46] could also be capable of executing MSR workflows effectively.
These three frameworks are widely regarded as state-of-the-art solutions for
batch processing and stream processing [16] respectively, hence we will delve
into the details of their architectures and scheduling.

2.3.1 Apache Spark

Apache Spark is an open-source, distributed computing system optimised for
large-scale data processing. It is a Java-based framework that utilises the mas-
ter/worker architecture. A Spark workflow can be conceptualised as a series of
Spark jobs, with each job representing a unit of work or a set of computations
that accomplish a specific goal within a Spark application. Each Spark job
consists of multiple stages, where each stage is made up of tasks that are identi-
cal in operation but process different physical partitions of data. For instance,
analysing a repository can be seen as a task in Spark, as each analysis requires
workers do some examinations but on different codebases. Consequently, a task
represents the smallest schedulable unit of work, executed on a single machine,
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and tasks can run independently and in parallel across the cluster.
A pivotal component of Spark’s architecture is the Driver manager, which

operates on the master node and is responsible for coordinating the execution
of the Spark application, including the scheduling of tasks across worker nodes.
Executors are worker processes tasked with performing jobs in Spark applica-
tions. These executors are launched on worker nodes and communicate with
the master. Each worker node accommodates one or more executors, which
are essentially Java Virtual Machine (JVM) processes dedicated to executing
individual tasks. Finally, the cluster manager is responsible for allocating re-
sources to worker nodes, and is connected to the master node (driver program)
through the SparkContext object. The worker node cache is the storage mech-
anism used by Spark’s worker nodes to retain data in memory or on disk for
processing during job execution. All of these components are depicted in Figure
7.

Figure 7: Apache Spark architecture [2]

Data locality is considered a fundamental concept that greatly affects the
efficiency of distributed computing frameworks like Apache Spark [47]. Spark
optimises job scheduling based on data locality, aiming to enhance computation
speed by ensuring that data and the corresponding code are in close proxim-
ity. In Apache Spark, data locality is classified into several hierarchical levels,
depending on how far data needs to be moved in order to be processed:

• PROCESS LOCAL: This level represents the scenario where the data
resides within the same Java Virtual Machine (JVM) as the executing
code. Achieving the highest level of locality, accessing data from the same
memory space as the code eliminates the need for network or inter-process
communication, maximising efficiency.

• NODE LOCAL: At this level, the data is located on the same physical
node as the processing unit, but it might be in different processes. For
example, the data can be stored within a Hadoop Distributed File System
(HDFS) on the same node or across different executors on that node. The
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communication between processes introduces slight delays compared to
PROCESS LOCAL.

• RACK LOCAL: Data classified as RACK LOCAL is located within the
same rack of servers but on different nodes. In this situation, data trans-
fer occurs across servers within a single rack, typically routed through
a single network switch. This incurs moderate latency due to intra-rack
communication.

• NO PREF: This category is used when data has no specific locality pref-
erence, meaning it can be accessed equally from any location within the
cluster. Hence, the job is to be scheduled without considering data locality.

• ANY: The broadest level of data locality, where data can be located
anywhere within the network, potentially across different racks. Even
though Spark can execute the task on any node, it but may prioritise
nodes closer to the data if it can improve performance, unlike in the case
with NO PREF.

Spark aims to allocate computational tasks at the highest possible locality
level to enhance execution speeds; however, perfect locality alignment is not
always achievable. When a Spark job encounters a scenario where no idle ex-
ecutor has unprocessed data at a higher locality level, it defaults to lower levels.
The system may either:

• Delay task execution until a processor becomes available within the same
locality, or

• Relocate data to an available processor at a lower locality level.

Typically, Spark adopts a waiting strategy, similar to the delayed scheduling
[48], pausing temporarily with the intent that a processor on the desired server
becomes available. If this wait surpasses the pre-configured timeout period, the
framework proceeds to transfer the data to an available processor, irrespective of
the locality level. These timeout threshold is configurable through a parameter
(spark.locality.waitparameter).

2.3.2 Apache Flink

Similar to Apache Spark, Apache Flink follows the master/worker architecture
[49]. The architecture consists of a single master node, known as the JobMan-
ager, and multiple worker nodes called TaskManagers. Each worker is equipped
with at least one TaskSlot, which represents a unit capable for work. Similarly
to the concept of Executors in Apache Spark, when a task slot is available, it
can be assigned an incoming job. An architectural overview of Flink can be
seen in Figure 8.

In the workflow of Flink, when a workload is submitted to Flink, it parses
the corresponding program and generates a JobGraph. The Client then submits
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Figure 8: Apache Flink architecture

the JobGraph to the master node, which generates the execution graph. Next,
the master node initiates the job scheduling process, which typically involves
two phases: worker selection and job deployment.

The worker selection phase, also known as task assignment or job scheduling,
determines which workers will be allocated for the incoming job. By default,
Flink uses a sequential scheduler that follows the FIFO strategy. This means
that during worker selection, the list of available workers is obtained first, fol-
lowed by the list of workers that meet the resource requirement parameters.
For Flink, these parameters include CPU cores, memory size and disk space.
Once these requirements are evaluated, the master selects a worker from the
list of available workers. It is important to note that Flink’s scheduler does not
consider the relationship between the job’s resource demand and the resources
available on the nodes, as it relies on random selection [50]. Thus, data locality
is not a criterion for scheduling in Flink, and the data stored in local disk space
is not taken into consideration when assigning jobs to workers, potentially mak-
ing it suboptimal candidate for implementing the data-locality-heavy workflows
that are of interest to this research.

2.3.3 Apache Storm

Apache Storm [46] is another popular Big Data stream processing framework.
It focuses on real-time analytics, aiming to enable data engineers to collect
data from streams, generated in real-time, and process it immediately [3]. Its
architecture follows the master/worker paradigm, similar to Apache Spark and
Apache Flink.

Figure 9 illustrates the physical architecture of Storm. In the figure, Nimbus
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acts as the master and Supervisor acts as the worker in Storm, with their meta-
data managed by Apache Zookeeper [51]. The master distributes and allocates
jobs to workers, periodically monitors their status, and addresses faults. Work-
ers directly carry out the jobs assigned by the master node and report their
status back to the master. Communication between the master and workers is
facilitated through reading and writing metadata in Zookeeper.

Figure 9: Apache Storm architecture [3]

Apache Storm has a default job scheduler, which distributes jobs within a
workflow as evenly as possible among the distributed workers. An even job
scheduler aims for high fairness by allocating jobs so that workers utilise system
resources as equally as possible, irrespective of data location. This is akin to
the Round Robin algorithm [52], which circulates tasks and ensures every task
receives an equal amount of CPU time. The round-robin strategy results in a
high average waiting time [53].

While Storm does not inherently manage data locality as explicitly as Spark
does, some degree of locality can be achieved by employing Storm’s stream
grouping strategies, which aim to minimise network costs incurred by inter-
node communication. To illustrate, consider a streaming application counting
clicks per user. This workflow includes three tasks that can run in parallel: filter,
aggregate, and store. The filter task receives a detected click (e.g. ”user id”:
123, ”action”: ”click”, ”timestamp”: 162758 ) and formats its data before pass-
ing it on for aggregation. The aggregation task produces a new piece of data
(e.g. ”user id”: 123, ”click count”: 5 ), which is then passed to the subsequent
task that updates the corresponding database record. Storm’s grouping strate-
gies determine how these output pieces of data are passed through the system.
One strategy, known as local-or-shuffle grouping, reduces communication delay
between nodes by attempting to use the same worker to aggregate and store
the data, as the one that filtered it, provided the necessary tasks are running
on that worker node. Although this might adhere to locality principles to some
extent, [3] argues that such an approach may lead to imbalances in workers’
workloads as it disregards load balancing. Additionally, [54] contends that this
approach contradicts the intentions of the even scheduler employed by Storm,
potentially significantly degrading the performance of the distributed stream
processing engine by causing issues such as worker misuse, worker overuse, or
increased network communication costs.
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Although Apache Storm can be configured to mine software repositories,
given its even scheduler and its inherent design tailored for real-time event
processing rather than complex, multi-step workflows, it is debatable whether
it is a natural fit for this use case. Despite offering distributed processing, it
may not effectively tackle data locality and could unnecessarily prolong workflow
execution.
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3 Analysis and Hypothesis

Upon examining the various methodologies detailed in the literature, we pin-
pointed several key insights that influenced our research. This chapter aims to
highlight the limitations found in the referenced studies and define the research
objectives that, if achieved, could address the identified shortcomings of these
previous contributions.

3.1 Analysis

In examining the implementation approaches for MSR workflows, we observe
several notable differences among tools that warrant discussion. Table 1 outlines
key characteristics of tools and frameworks found in the literature with respect
to executing MSR workflows such as the one described in Section 1.2. To provide
a structured analysis of these characteristics, each column of Table 1 will be
analysed separately.

Framework/
Feature

Distributed
Suitable
for MSR
Workflows

Custom
Dataset

Deployable to
Cloud/Personal
Infrastructure

Scheduler
Considers

Data
Locality

Scheduler
Considers
Cluster

Heterogeneity

Boa ✓ ✓ ✗ ✗ ✓ ✗

Crossflow ✓ ✓ ✓ ✓ ✓ Partially

Apache Spark ✓ ✓ ✓ ✓ ✓ ✗

Apache Flink ✓ ✓ ✓ ✓ ✗ ✗

Apache Storm ✓ ✗ ✓ ✓ ✗ ✗

SmartSHARK ✓ ✗ ✗ ✗ - -

World of Code ✓ ✓ ✗ ✗ - -

PyDriller ✗ ✓ ✓ - - -

PyRepositoryMiner ✗ ✓ ✓ - - -

RepoFS ✗ ✓ ✓ - - -

Perceval ✗ ✗ ✓ - - -

Table 1: Comparison of frameworks and their features with respect to MSR
workflows described in Section 1.2.

1. Distributed
The “Distributed” column indicates whether the framework supports dis-
tributed computing. Distributed computing allows the framework to pro-
cess tasks across multiple nodes, which is crucial for handling large-scale
data. In this context, Boa, Crossflow, Apache Spark, Apache Flink,
Apache Storm, SmartSHARK, and World of Code all support distributed
computing, providing significant advantages in scalability and perfor-
mance. Conversely, frameworks like PyDriller, PyRepositoryMiner, Re-
poFS, and Perceval do not support distributed computing, potentially
limiting their applicability for large-scale analyses.
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2. Suitable for MSR workflows
The “Suitable for MSR Workflows” column assesses the capability of a
framework to effectively manage MSR workflows, which encompass ac-
tivities such as repository cloning, codebase analysis, and aggregation of
results. Frameworks like Boa, Crossflow, Apache Spark, Apache Flink,
World of Code, PyDriller, PyRepositoryMiner, and RepoFS are appro-
priately equipped to handle these functionalities, thus making them suit-
able for MSR workflows. In contrast, frameworks such as Apache Storm,
SmartSHARK, and Perceval exhibit limitations in this regard. Perceval
primarily serves as a data collection tool, lacking features for querying and
visualising the collected data, which diminishes its utility for comprehen-
sive MSR workflows. SmartSHARK’s focus is predominantly on analysing
repository metadata rather than the source code within the repository,
limiting its applicability in scenarios requiring detailed codebase analy-
sis. Additionally, Apache Storm is inherently designed for real-time event
processing and does not support the complex, multi-step workflows char-
acteristic of repository mining, which is restricting its suitability for MSR
applications.

3. Custom dataset
The “Custom Dataset” column denotes the framework’s capacity to anal-
yse any dataset imported by the user, as opposed to being constrained
to predefined datasets. Frameworks such as Crossflow, Apache Spark,
Apache Flink, Apache Storm, PyDriller, PyRepositoryMiner, RepoFS,
and Perceval exhibit the capability to manage datasets created by the
developer. Conversely, frameworks like Boa, SmartSHARK, and World
of Code demonstrate limitations in this regard as they are confined to
analysing datasets that are either preloaded or predefined within the
framework. For instance, Boa confines operations to pre-cached and for-
matted repository snapshots made available within the framework. It
relies heavily on Hadoop and is optimised solely for predefined datasets
stored in the HDFS, requiring additional software to enable analysis of
custom datasets, such as the one coming from GitHub.

4. Deployable to cloud/personal infrastructure
The “Deployable to cloud/personal infrastructure” column evaluates the
adaptability of the framework for deployment across a range of infrastruc-
tural environments, from cloud-based services, such as AWS virtual ma-
chines, to personal computing hardware. The ability to deploy on diverse
infrastructures is integral for meeting varied deployment requirements.
Frameworks such as Crossflow, Apache Spark, Apache Flink, and Apache
Storm exhibit support for such deployability, thereby offering enhanced
operational flexibility with respect to deployment scenarios. In contrast,
frameworks like Boa, SmartSHARK, and World of Code exhibit restric-
tions in terms of deployment capabilities. For example, the infrastructure
underpinning Boa is deployed on clusters administered by Iowa State Uni-
versity, making it largely inaccessible to the wider user base [35]. Similar
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to the constraints observed with World of Code and SmartSHARK, this
specific arrangement prevents the standard execution of programs within
cloud environments such as AWS or on private dedicated infrastructures.
Frameworks aimed at single-machine execution, such as PyDriller or Re-
poFS, are disregarded in this case, as the main focus of this research is
distributed execution of MSR workflows.

5. Scheduler considers data locality
The “Scheduler considers data locality” column describes the extent to
which a framework’s scheduler is capable of optimising task execution
based on the proximity of data. Frameworks such as Boa, Crossflow, and
Apache Spark incorporate schedulers that actively consider data locality,
however frameworks like Apache Flink and Apache Storm do not integrate
data locality principles into their scheduling mechanisms.

For instance, Spark takes data locality into account but follows a stage-
by-stage operational model. In this paradigm, jobs of the same type —
such as repository analysis — are scheduled collectively, and subsequent
stages are only initiated upon the completion of the preceding ones [55].
This scheduling approach is critical because the output of one stage often
serves as the input for the next. While Spark attempts to assign tasks to
workers already possessing the requisite data, it may fail to fully leverage
data locality if the data distribution among workers fluctuates during the
execution of a stage, such is the case with new repositories being cloned
to a worker’s local storage at runtime.

Crossflow attempts to address data locality by scheduling jobs individu-
ally. Nevertheless, this approach has its own shortcomings. Specifically,
since workers operate independently, the master node does not maintain
records of which worker previously handled a particular resource. Conse-
quently, this can lead to scenarios where jobs are assigned to idle workers
when allocating them to engaged workers, who already have part of the
relevant data, could improve data locality and reduce processing times and
data transfer costs. This can also happen when lower-performance workers
are assigned data-intensive or compute-intensive jobs because they have
already seen them in the past and the workers who would process these
jobs more efficiently are occupied.

6. Scheduler considers cluster heterogeneity
The “Scheduler considers cluster heterogeneity” column determines if the
framework can efficiently allocate jobs considering the diverse capabilities
of nodes within a cluster. This feature is essential in heterogeneous envi-
ronments where nodes have varying computational power, memory, and
storage capacities. While both Boa and Crossflow provide mechanisms for
distributed mining, neither these tools nor general-purpose frameworks for
distributed data processing, with their respective schedulers, adequately
account for the dynamism inherent in execution environments at runtime,
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such as network oscillations and differences in the physical characteristics
of worker nodes, which are discussed in Section 6.1.

In the context of dynamic and heterogeneous environments, Crossflow
exhibits a degree of adaptability, provided developers utilise the accep-
tanceCriteria to monitor real-time metrics such as CPU utilisation, RAM
availability, and network connectivity speed. These criteria would enable
worker nodes to pull incoming tasks aligned with their current state. De-
spite this flexibility, Crossflow does not inherently address the broader
scope of cluster heterogeneity.

Moreover, frameworks such as Apache Spark, Flink, and Storm assume
a homogeneous cluster setup, which can lead to inefficiencies in hetero-
geneous environments comprising nodes with varying specifications [56].
This presumption of uniformity results in suboptimal workload distribu-
tion and performance, particularly in clusters exhibiting significant dis-
parities among worker nodes.

In summary, while distributed frameworks like Boa, Crossflow, Spark, Flink,
and Storm offer various strategies for handling MSR workflows, they exhibit sig-
nificant limitations in dynamic, heterogeneous environments. These downsides
include inadequate runtime adaptability, selective approaches to data locality,
and presumptions of cluster homogeneity — each of which can interferes with
optimal performance and cost-effectiveness in complex, real-world scenarios.
Moreover, the inherent limitations of Boa and Storm render them unsuitable
as foundational frameworks for our research. Therefore, we will perform a se-
ries of tests to identify the most suitable framework among Spark, Flink, and
Crossflow, as the frameworks identified to possess most of the key characteristics
for executing MSR workflows. This evaluation will precede the development of
methodologies aimed at proving the hypothesis and achieving the research goals
outlined in the subsequent sections.

3.2 Hypothesis

The hypothesis of this study is that a specialised locality-aware job orchestration
framework and algorithm can outperform current methods for repository mining
workflows, with the following characteristics:

• Distributable. One critical aspect of our repository mining workflows
is that they can be executed in parallel across multiple worker nodes,
thereby leveraging the computational capabilities of a distributed system
to accelerate the processing of large datasets.

• Locality-intensive. Another significant characteristic is that they op-
erate on data that is costly to access over the network or move to the
computation. Given that some workers may already possess local copies
of the required data, it is highly advantageous to allocate relevant com-
putation to those workers and minimise data transfer times and network
congestion, thereby impacting overall workflow efficiency.
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• Heterogeneous workers. The worker nodes involved in the processing
have disparate capabilities, with variations in processing power, storage
capacity, and network bandwidth. This heterogeneity can impact the
efficiency of the workflow significantly if not managed appropriately. For
example, a worker with high processing power but limited storage might
be optimal for CPU-intensive tasks but suboptimal for tasks requiring
significant data storage. Similarly, a worker with high network bandwidth
would be better suited to tasks that involve extensive data transfer. An
effective job orchestration framework must intelligently assign tasks to
the appropriate workers based on these characteristics to maximise overall
efficiency.

For the remainder of this research, such workflows will be referred to as
Locality-Intensive Distributed Mining Software Repository (LID MSR) work-
flows. This terminology underscores the focus on locality-aware job orchestra-
tion in the context of distributed mining of software repositories.

3.3 Research Goals

To investigate the validity of this hypothesis, the following research goals have
been established:

• RG1. Use existing distributed data processing tools and frame-
works to implement representative LID MSR workflows and
measure their performance to establish a baseline for this re-
search. This research goal involves leveraging distributed data processing
tools, such as Apache Spark, Apache Flink, and Crossflow, to develop and
execute representative LID MSR workflows. These tools will be used to
obtain critical performance metrics and establish a baseline to serve as a
point of reference for subsequent evaluations of newly developed method-
ologies.

• RG2. Design and implement novel scheduling algorithms tai-
lored for LID MSR workflows. This research goal is about creating
new scheduling algorithms specifically designed for LID MSR workflows.
These algorithms will be built to optimise workflow processing times by
increasing data-locality. Moreover, these algorithms should account for
the possible differences in physical characteristics of worker nodes.

• RG3. Experimentally evaluate the efficiency of the developed al-
gorithms against the baseline. This research goal involves conducting
experiments to compare the performance of the new scheduling algorithms
with the established baseline by carefully measuring key performance met-
rics, like the time taken to complete the workflow and the amount of data
transferred over the network, to provide clear evidence of how well the
new algorithms perform.
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3.4 Evaluation Metrics

This section outlines a set of metrics to be utilised for the comparative analysis
of proposed methodologies with respect to data locality, resource utilisation, and
data transfer in order to determine if research goals have been achieved. This
set of metrics may include the following attributes, each to be quantitatively
measured:

1. End-to-end execution time. The duration required to execute a work-
flow, encompassing the period from initiating the master and worker nodes
to the termination of their processes.

2. Data load. The volume (in megabytes) of data that is not local and must
be transferred to the worker nodes during execution. Given the nature of
LID MSR workflows that deal with remote repositories, we assume all
repositories must be downloaded over the Internet and that no data will
be transferred between worker nodes.

3. Cache miss. The frequency with which workers lacked the requisite data
locally and consequently had to either download the data or transfer it to
their local environment to execute computations.

4. Average worker usage. The percentage of total execution time workers
spent on processing jobs, rather that being idle or communicating with
the master node.

The algorithms developed through this research aim to reduce the end-to-end
execution time for workflows wherein workers necessitate local data to perform
tasks. Consequently, this metric will be deemed the most important when eval-
uating the proposed contributions. While cache misses are inherently associated
with data load, they are categorised as a separate metric due to the potential
variability in repository sizes over time. Based on the scheduler’s efficiency, the
same number of cache misses does not necessarily equate to the same amount of
data transferred, given that each repository has unique data sizes. Performance-
wise, there is a significant distinction if workers fail to reuse a local copy of a
smaller repository (e.g., 20MB in size) compared to a larger repository, which
might be several hundred megabytes.
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4 Baseline Selection

Before designing new solutions for LID MSR workflows, it is crucial to bench-
mark existing distributed data processing frameworks in order to identify the
most efficient framework for executing them, so that we can then compare the
novel scheduling algorithms developed in this research against it. Therefore,
this chapter focuses on the first research goal as described in Section 3.3:

• RG1. Use existing distributed data processing tools and frame-
works to implement representative LID MSR workflows and
measure their performance to establish a baseline for this re-
search.

The aim is to compare the execution processes and overall performance of
a representative repository mining workflow. We have implemented this work-
flow using several data processing frameworks, each considered as a potential
baseline. Based on insights from Chapter 2 and Section 3.1, our goal was to
compare Apache Spark, Apache Flink, and Crossflow to determine the most
suitable baseline framework. These frameworks were selected as they repre-
sented the top three options, fulfilling the most criteria when comparing their
features and capabilities in relation to LID MSR workflows, as summarised in
Table 1.

Apache Spark and Apache Flink, despite being designed as general-purpose
frameworks, are both capable of executing MSR workflows. While Spark might
initially be considered a more appropriate choice for described subset of reposi-
tory mining workflows due to its data locality features, our evaluation extended
to Flink as well. The rationale for this consideration lies in Flink’s ability to
process jobs as streams, as opposed to Spark’s batch processing model, which
could introduce significant variations in execution dynamics. Moreover, Cross-
flow was selected for its built-in data-locality features and opinionated nodes,
which could prove advantageous in managing cluster heterogeneity.

4.1 MSR Implementation Example

We present one example of a simple LID MSR workflow, shown in Figure 10. In
this context, the workflow will search GitHub for repositories containing source
code related to specific technologies. The objective is to identify combinations
of these technologies that coexist within applications. Such a workflow could
comprise four distinct steps:

1. GitHub search. Query GitHub for technologies of interest and identify
repositories to analyse.

2. Clone. Make local copies of the repositories identified in the GitHub
search results.

3. Analysis. Calculate the frequency with which technologies appear to-
gether.
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4. Report. Store the results in a CSV file.

Figure 10: Sequence diagram showing one LID MSR workflow

For instance, we might analyse open-source GitHub repositories to evaluate
the concurrent utilisation of various model-driven technologies. The procedure
commences by documenting the technologies to be searched for in a structured
format (such as JSON or CSV). An example of the technologies document is
shown in Table 2). This serves as an input for the starting step of the work-
flow, which is searching GitHub for repositories containing files associated with
a particular technology (identified by specific file extensions). For each of the
documented technologies, we run a GitHub query (for example, in Java pro-
gramming language this query would look like:

github.searchContent().q(technology).extension(extension)
In its default configuration, GitHub search returns up to 1000 results, each

one corresponding to a file with the queried technology’s extension. The as-
sociated repository for each file is also identified. This repository is then sent
downstream for further processing.

All selected repositories undergo examination, during which they are in-
spected for the presence of other technologies listed in the input CSV file.
When two technologies are found within the same repository, this instance is
documented as a “co-occurrence hit.” After analysing all repositories, these “co-
occurrence hits” are compiled into a results CSV file.

This workflow has been implemented in Apache Spark, Apache Flink, and
Crossflow. The subsequent sections depict the methodology - in this case, the
experiments carried out - and the manner in which each of these platforms
addresses the execution of the workflow, as well as the degree to which they are
capable of reutilising the local repository clones.
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Technology Keyword File extension
eugenia gmf.node ecore

eol var eol
gmf gmf.graph figure

Table 2: Example of a CSV document with model-driven technologies to query
GitHub

4.2 System Model

In this section, we describe the system model utilised in the development and
evaluation of the potential baseline frameworks and our distributed job allo-
cation methodologies. This model is structured to encapsulate the essential
components and interactions present in a distributed computing environment.
Each component’s characteristics contribute to the overall system performance,
and modifications to any of these elements can cause variations in execution
outcomes.

The constituents of the system model are as follows:

• Workflow
A workflow comprises a series of tasks that must be executed sequentially
or in parallel on a collection of jobs. The workflow orchestrates the flow
of jobs through various transformative and computational tasks, ensuring
that each job undergoes the requisite operations. Sequential execution
occurs when tasks have inter-dependencies and the outputs generated from
the execution of one task serve as inputs for the subsequent task.

• Task
A task represents a transformative function or a set of functions that
are applied to each job. Tasks are the fundamental units of computa-
tion within the workflow. Each task takes a job as input, performs the
designated operations, and produces an output.

• Job
A job is a discrete piece of data that needs to be processed by a single
task. Jobs are the payloads that traverse through the workflow’s tasks. In
case of LID MSR workflows, jobs are describing a repository that should
be processed, hence they hold information about the repository, such as
repository URL, size, commit hashes, number of files or number of lines
of code.

• Job configuration
Job configuration refers to the input collection of jobs in a single workflow
that are to be processed by worker nodes. In a basic three-step work-
flow, which includes obtaining input jobs, processing them, and storing
aggregated outputs, the job configuration represents all jobs to be pro-
cessed during the entire workflow execution. For more complex workflows
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involving multiple steps, the job configuration serves as the initial set of
jobs. As the workflow progresses, additional jobs may be dynamically
generated as a result of tasks executed by the worker nodes.

• Master
The master node is the central coordinator in the distributed environment.
It is responsible for running the job scheduler and managing the overall
workflow execution. The master node collects and aggregates results from
tasks executed by workers. The master node refers to the part of the
application that can only orchestrate a single workflow at a time, and
different workflows would have to be deployed as separate applications
(having their own master nodes).

• Worker
A worker is a node within the distributed environment tasked with ex-
ecuting individual tasks. Each worker node is capable of performing a
single task multiple times by processing different jobs. Workers may vary
in their computational capabilities and network bandwidth. The worker
node refers to the piece of software that can only execute tasks from a sin-
gle workflow at a time, and different workflows would have to be deployed
as separate applications (having their own worker nodes).

• Queue
A queue is a communication component that facilitates message exchange
between the master and worker nodes. Queues can serve different pur-
poses, such as job queues (attached to workers for job processing) or mes-
sage exchanges (such as those used for sending bids or reporting results).

The system utilises two types of queues: broadcast queues and direct
queues. Broadcast queues involve the master node queuing messages,
which are then received and read by all worker nodes. In contrast, in
direct queues the master queues a message for a single worker to dequeue,
or a worker queues a message for the master to dequeue.

For direct communication, queues can be categorised as either dedicated or
general. Dedicated queues facilitate direct interaction between the master
node and a specific worker node. General queues involve the master node
queuing a message that can be dequeued by any available worker node.

• Job scheduler
The job scheduler is a component embedded within the master node. It
encapsulates the logic for allocating jobs to workers that execute tasks
associated with these jobs. For job allocation purposes, the scheduler
uses either dedicated queues (for directly assigning each job to a specific
worker), or general queues (for assigning jobs to the first idle worker).

• Job allocation
Job allocation refers to the pairing of jobs with workers for processing.
Each job is allocated to a single worker only.
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In case of the system using dedicated queues, the scheduler may rely on
the dedicated queue threshold for job allocation, which is the maximum
number of jobs (n) that can be queued for each worker to keep the sched-
uler allocating unprocessed jobs. This threshold pauses job allocation
temporarily once all workers reach (n) jobs in their queues. As soon as
any worker completes some of its assigned jobs and its dedicated queue
falls below the threshold, job allocation resumes. For general queues, such
threshold is equivalent to 1, as the job allocation is triggered by any of
the workers becoming idle and dequeueing the next unprocessed job.

It is important to emphasise that the use of a dedicated queue threshold
is not a universal feature employed by all schedulers. Instead, it is an
implementation choice that may be leveraged depending on the design and
operational requirements of specific systems. For instance, the Crossflow
framework utilises this approach to address scheduling constraints. In
contrast, other general-purpose schedulers may adopt alternative methods
that do not rely on queue thresholds, opting instead for other mechanisms
to balance worker loads or trigger job allocation dynamically.

• Speed
Speed is a critical attribute of a worker, denoting its efficiency in either
transferring data to local storage (network speed) or processing a job (pro-
cessing speed).

• Data transfer time
The time, measured in seconds, required for a worker to clone a single
repository. It is dependent on the repository size and the network speed
of the worker.

• Processing time
The time, measured in seconds, necessary for a worker to analyse a single
repository. Is dependent on the worker’s processing speed and specific
job attributes, which can vary depending on the use case. For instance,
cloning a repository correlates to its size and URL, whereas code linting
might be influenced by the line count of code to be processed.

Problem statement

Using the model described above, we aim to optimise job allocation in dis-
tributed environments where worker nodes potentially operate at different net-
work and processing speeds. The optimisation objective is to minimise the end-
to-end execution time through increasing data locality (i.e. minimising data
load) and average worker usage.

4.3 Experimental Setup for Baseline Framework Selection

To identify an optimal baseline framework for our research, an experimental
setup needed to be established. To achieve this, we decided to control various
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components of the system model to ensure that the comparison of candidate
frameworks was both fair and feasible, within the given time-frame and bud-
get. This section outlines the experimental framework adopted for the baseline
selection process and explains the rationale behind the controlled parameters
within our simulation environment.

Controlled system model components

Similar to the methodologies described in [57, 58, 59, 60, 61, 62] that will be
discussed in detail in Sections 6.1 and 7.1, to make our experimental comparisons
fair and avoid misleading variability, we have chosen to regulate the some key
parts of the system model:

1. Job configuration
Job configuration is controlled to guarantee that exactly the same work-
load is used to run experiments across all candidate frameworks. Prede-
termining jobs within the workflow provided a controlled environment for
evaluating the performance of these frameworks under various computa-
tional workloads - ranging from highly redundant workloads to completely
unique workloads. Hence, we were able to systematically investigate the
frameworks’ efficiency in various scenarios. This approach enabled us to
address a broader spectrum of use cases beyond the specific example’s
GitHub response, which might not generalise well across different LID
MSR workflows.

2. Worker speeds
The heterogeneity in network speeds and processing capabilities among
workers is a common occurrence in distributed data processing environ-
ments. Some workers may be operating on high-speed fibre-optic con-
nections with robust computational hardware, while others may be con-
strained by slower internet connections and less powerful processors. Test-
ing under such varied conditions is crucial to understanding the perfor-
mance dynamics of data processing frameworks like Apache Spark, Apache
Flink, and Crossflow. Controlling these worker characteristics allowed us
to perform extensive benchmarking without the logistical and temporal
constraints associated with setting up a heterogeneous real-world infras-
tructure, and ensure the reliability and reproducibility of our results.

3. Network and processing times
Network and processing times were controlled as functions of worker
speeds. By containing these aspects in conjunction with worker speeds,
we maintained consistency throughout the evaluations, thereby focusing
our experiments on the actual performance of the frameworks rather than
external network and performance conditions.

The adoption of simulation techniques which controlled both worker char-
acteristics and job configurations was crucial in the analysis of data processing
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frameworks. Not only did it allow us to control and manipulate the experimental
conditions finely, but it also provided a versatile platform for exploring a wide
range of scenarios. From understanding the impact of network and processing
heterogeneity to evaluating the performance under different job loads, this con-
trolled setup enabled a degree of experimental rigour that would be unattainable
with real-world infrastructure. Our findings, therefore, offer robust insights into
the operational efficiency of frameworks like Apache Spark, Apache Flink, and
Crossflow under varied conditions, providing a solid foundation for development
of optimisation strategies.

4.3.1 Worker Speed Configuration

Across all experiments, we tested four different worker speeds configurations1:

• All-equal. A configuration where all workers possess the same, or nearly
the same, network and processing speeds.

• One-fast. A configuration where one worker is significantly faster than
the others in terms of network and processing speed.

• One-slow. A configuration where one worker is significantly slower than
the others in terms of network and processing speed.

• Fast-slow. A configuration encompassing one slow worker and one fast
worker, while the remaining workers have average download and process-
ing speeds.

To assess the extent to which variations in workers’ speeds impact overall
execution, we configured the fast workers to be 5-10 times faster than the aver-
age worker (used in the all-equal configuration) and the slow workers to be 5-10
times slower than the average worker. Internet access speed can be represented
as a function of the repository size and the worker’s pre-configured speed. For
example, an average worker node may have a pre-configured network speed of
40Mb/s for downloading repositories, meaning that an 800MB-sized repository
will be cloned in approximately 20 seconds, depending on network fluctuations
during the cloning process. In contrast, processing speed is more dependent on
the specific workflow implementation. For instance, searching for popular npm
libraries [4] in TypeScript projects is not computationally equivalent to per-
forming static analysis of the code due to the fact that static analysis requires
creating and traversing the abstract syntax tree and therefore uses significantly
more RAM and CPU capacity than searching for npm dependencies in pack-
age .json files. These pre-configured speeds are used as a guideline, but they
are subjected to noise to account for the situations when internet connectivity
fluctuates, and the processor can have other pending tasks during execution. In
our experiments we used a noise characterised by a Gaussian distribution with

1The details of worker configurations can be found in https://github.com/ana-markovic/

lid-msr/tree/master/baseline-modeldriven/tests-old/experiment/techrank/in

42

https://github.com/ana-markovic/lid-msr/tree/master/baseline-modeldriven/tests-old/experiment/techrank/in
https://github.com/ana-markovic/lid-msr/tree/master/baseline-modeldriven/tests-old/experiment/techrank/in


a mean value that is 85% of the maximum speed and a standard deviation of
5% of the maximum speed.

4.3.2 Job Model

Similar to the worker speed configurations, the incoming jobs were set up to
test variance in overall performance during workflow execution. We defined
the total number of source code repositories to be processed during the work-
flow execution. For each repository in the input dataset we set the following
parameters:

• Repository name/URL. The unique identifier of the repository, typi-
cally represented by the URL used to access the code.

• Repository size. The total number of bytes of all files stored in a repos-
itory.

These parameters, combined with the worker speed configurations, enable us
to closely monitor the execution flow across various deployment and workload
scenarios, thereby allowing us to determine when and if mechanisms of the
observed framework offer advantages during execution.

4.3.3 Job Configuration

To evaluate the performance of the three frameworks in conjunction with the de-
scribed workflow, we created five different job configurations with 120 jobs each.
For all jobs across these configurations, we adhered to the structure described in
Section 4.3.2, which entailed the pre-specification of URLs and sizes. The repos-
itories varied in size, spanning small, medium, and large categories, with sizes
ranging from 1MB to 1GB. Furthermore, the jobs were designed to be either
unique or repetitive, depending on whether jobs requiring the same repository
are repeated within the same workflow execution. The specific configurations
are detailed as follows 2:

• All diff equal. This configuration features an equal distribution of repos-
itory sizes, with each job in the scenario utilising a different repository.

• All diff large. Predominantly large repositories are utilised, with each
job employing a different repository.

• All diff small. Predominantly small repositories are utilised, with each
job employing a different repository.

• Repetitive large. This configuration exhibits a repetitive pattern with
predominantly large repositories, where 80% of the large-scale jobs require
one of the three repeating repositories.

2The details of job configurations can be found in https://github.com/ana-markovic/

lid-msr/tree/master/baseline-modeldriven/tests-old/experiment/techrank/in
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• Repetitive small. Similarly, this configuration adopts a repetitive pat-
tern with predominantly small repositories, wherein 80% of the small-scale
jobs necessitate one of the three repeating repositories.

For the purposes of this evaluation, we executed all combinations of worker
and job configurations to scrutinise the variances in execution flow and the time
required to complete the entire workload. Considering that the capabilities of
worker nodes are predefined prior to the commencement of workflow execution,
much like the jobs are, it is arguable that it is these differences in job schedules
that impact the overall execution times. Therefore, the following subsection
aims to elaborate the implications of job distribution for each of the processing
frameworks.

4.3.4 Deployment Configuration

When conducting experiments, we created a local environment that initiates
multiple processes on a single machine: one for each of the workers, one for the
master, and one for the communication infrastructure (message queues). In this
setup, we allocated dedicated filesystem space to each worker (e.g., a directory
maintained by a single worker process), thus mimicking a situation in which
files are not shared between VMs in a cloud environment. The local setup is
advantageous for simulated experiments as they are independent of the physical
characteristics of the machine on which they run. Instead, workers in simulated
experiments utilise pre-determined speeds to support various configurations,
meaning the time required to fetch or process the repository is dictated by the
worker parameters and repository attributes.

4.4 MSR Execution Overview

4.4.1 Apache Spark

To begin, let us investigate the implementation of the depicted MSR workflow
within Apache Spark3. By importing the job configuration, we can create a
list of repositories to be searched for files related to specific model-driven tech-
nologies, subsequently providing their URLs as input to the Spark workflow.
Upon receiving these URLs, Spark, as a distributed data processing engine, will
allocate the jobs of cloning and code analysis among its workers.

For this purpose, the Spark scheduler first generates jobs for individual ac-
tions and subsequently organises them into stages, which are aggregations of
jobs. In our particular scenario, we can distinguish two primary stages: one for
cloning the repositories and another for analysing the codebase. As an example,
one job in a stage might be the cloning of repository r1, while another could be
examining r1 for technologies of interest.

As a batch processing platform, Spark schedules each stage in its entirety
before the execution commences. Furthermore, the scheduler adheres to the

3The details of executing MSR example using Apache Spark can be found in https://

github.com/ana-markovic/lid-msr/tree/master/spark-modeldriven
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First-In-First-Out (FIFO) paradigm, where the first stage in the queue receives
precedence over all available resources, provided its jobs are ready to be per-
formed. Subsequently, following stages in the queue are prioritised accordingly.
It is significant to note that if the initial stages are substantial in scale, there
might be a notable delay for the subsequent stages and its jobs [63]. By default,
Spark’s operational paradigm mandates that workers must await the comple-
tion of all repository cloning activities before initiating the subsequent stage
involving repository analysis. This bottleneck could be particularly pronounced
in scenarios where the cloning process is time-consuming, leading to delays in
downstream tasks and the underutilisation of available computational resources.

Considering data awareness and the scheduling of cloning operations, it is
vital to recognise that the required data is stored on GitHub and is not initially
local to any worker prior to execution (the cloning process relocates the neces-
sary data closer to the computation). Each worker node in the Spark cluster is
assigned a subset of repository URLs to clone. However, looking into the job
configuration, if there are multiple URLs of the same Git repository, we cannot
ensure that the scheduler will adhere to the principle of data locality during
the scheduling as none of the repositories are local at the time of scheduling.
Consequently, the scheduler will attempt to distribute the jobs evenly across
all workers in the cluster. Data locality will become relevant only during the
scheduling of the subsequent stage, wherein code analysis will be aligned with
the workers that have local copies of the repositories stored on their hard drives.
Once the repository analysis is complete, the results will be stored in the filesys-
tem of the master node.

4.4.2 Apache Flink

In contrast, Flink4, functioning as a stream processing engine, schedules jobs
as they become available with the objective of achieving balanced resource util-
isation. In the context of the described LID MSR workflow, the repository
URLs are ingested as a stream of data records, and Flink distributes these
repository URLs across its parallel processing workers. The primary advan-
tage of this methodology is that Flink inherently attempts to prevent worker
idleness, thereby avoiding scenarios where workers must wait for others to com-
plete cloning before proceeding to the analysis phase. Due to the absence of
mechanisms to address locality within Flink’s scheduling, it is not possible to
predetermine which worker will analyse which repository. Upon successful pro-
cessing of a repository, the master will store the resultant data in a single CSV
file.

4The details of executing MSR example using Apache Flink can be found in https://

github.com/ana-markovic/lid-msr/tree/master/flink-modeldriven
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4.4.3 Crossflow

In Crossflow5, the list of repository URLs is similarly ingested as a data stream
into the processing engine. The scheduler within Crossflow allocates these URLs
for processing on a First-In, First-Out (FIFO) basis. Unlike Apache Spark and
Flink, the master node in Crossflow does not directly manage job assignments;
instead, it maintains a queue of unprocessed jobs. The acceptance criteria func-
tions of the worker nodes are designed to enhance data locality by scanning the
contents of local filesystems for existing repository clones. Crossflow’s scheduler
uses a general queue for job allocation by default, meaning that when workers
become idle, they retrieve an available job from the queue and evaluate it against
their acceptance criteria. If a worker node has previously encountered the in-
coming repository and already downloaded its contents, it will accept the job.
Conversely, if it has not, the job will be rejected and returned to the queue for
processing by another worker. The worker node that rejected the job will flag it
in case the job is encountered again in the future. Should all worker nodes reject
the job and return it to the queue, the repository remains uncloned; however,
encountering the same repository subsequently will prompt the worker which
flagged the incoming job to accept it.

An illustrative example of an execution environment comprising three worker
nodes, a single master node, and six jobs is depicted in Figure 11 below. In this
illustration, jobs associated with repositories within the worker nodes’ storage,
denoted by “C:”, have already been accepted, whereas the fourth job in the
general job queue has been observed by all workers but not yet accepted. All
workers have noted this repository (indicated by “F:”) and the next node will,
on encountering job4 again, check its flag and accept the job. This can happen
when:

• executing the workflow for the first time, all worker nodes reject
repository-related jobs due to the absence of local clones,

• a node processes a job it has seen before, even when another node holds
the resource locally but is currently occupied, leading to unnecessary re-
dundant clones.

While all three frameworks possess the capability to execute the workflow
and collect the resultant data, each exhibits specific limitations associated with
the execution of this type of MSR workflows. The subsequent section will pro-
vide a detailed examination of the collected metrics and will determine the
baseline approach for our research.

4.5 Summary of Results

Table 3 presents a detailed comparison of the end-to-end execution times for the
LID MSR workflow across Crossflow, Apache Spark, and Apache Flink. The

5The details of executing MSR example using Crossflow can be found in https://github.

com/ana-markovic/lid-msr/tree/master/baseline-modeldriven
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Figure 11: Snapshot of Crossflow’s state for GitHub mining workflow

data clearly indicates that Crossflow surpassed Spark and Flink in performance
in 80% of the test cases. Figure 12 summarises this data according to different
worker speed configurations. On average, Crossflow exhibited execution speeds
that were 1.14 and 5.31 times faster than those of Spark and Flink, respectively.
It is particularly noteworthy that this speed advantage is most pronounced in
scenarios where the worker nodes exhibit heterogeneous physical characteristics.

Worker Conf Job Conf Time (s) Flink Time (s) Spark Time (s) Crossflow
all equal all diff equal 325 306 285
all equal all diff large 802 1009 660
all equal all diff small 83 108 87
all equal repetitive large 1365 196 412
all equal repetitive small 169 138 95
one fast all diff equal 321 232 139
one fast all diff 720 724 374
one fast all diff small 78 91 69
one fast repetitive large 1372 141 221
one fast repetitive small 123 128 85
one slow all diff equal 2559 673 803
one slow all diff large 9925 2068 1356
one slow all diff small 1200 851 123
one slow repetitive large 1750 1794 636
one slow repetitive small 2244 1422 414
slow fast all diff equal 2545 1558 1124
slow fast all diff large 10058 1477 1382
slow fast all diff small 1202 765 71
slow fast repetitive large 1755 769 701
slow fast repetitive small 2204 801 410

Table 3: Execution times (in seconds) for different worker and job configurations
across Flink, Spark, and Crossflow.

Particularly, Crossflow’s “opinionated” nodes introduce a nuanced layer of
task allocation based on worker preferences, a feature absent in both Spark and
Flink. In Spark and Flink, the master node uniformly distributes tasks without
differentiating worker capabilities. This uniformity can result in delayed task
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Figure 12: Average end-to-end execution time per worker speed configuration

completions, especially when slower workers are allocated larger repositories, as
demonstrated in configurations such as all diff large slow fast. Crossflow miti-
gates this inefficiency by allowing workers to selectively accept tasks based on
their current availability and filesystem contents, thereby significantly reducing
completion times for tasks that would otherwise throttle the entire workflow.

To further discuss the results, Figure 13 highlights a subset of numbers
obtained from four experimental scenarios. The chart is structured into distinct
column groups, each representing various worker and job configurations utilised
to execute the workflow. For example, in the first column group, where the
network speed and processing capabilities of one worker are substantially inferior
to the others and the repositories for analysis are predominantly small (less than
100MB), Spark takes 6.91 times longer to complete the workflow compared to
Crossflow. Under these identical conditions, Flink is found to be 9.75 times
slower than Crossflow. This stark contrast underscores the inefficiencies in the
scheduling mechanisms of Spark and Flink when confronted with heterogeneous
worker capabilities.

Unlike Spark, which allocates all cloning jobs in advance without consider-
ing resources that become locally available during execution, Crossflow sched-
ules repository cloning jobs sequentially. This approach accounts for repository
clones that become accessible during runtime, thereby optimising the resource
utilisation dynamically and enhancing overall efficiency. In the second column
group, representing scenarios where all workers possess homogeneous charac-
teristics and are tasked with processing larger repositories (exceeding 500MB),
Crossflow outperforms Spark by a factor of 1.52 and Flink by a factor of 1.21.
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Figure 13: Execution times of specific example scenarios for Spark, Flink and
Crossflow
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Although the performance gap is narrower in this configuration, it is evident
that Crossflow’s sequential scheduling and resource-aware task allocation offers
a distinct advantage, resulting in faster workflow completion times even in a
uniformly distributed computing environment.

The third column group addresses the runtime for a non-repetitive dataset
processed by workers with heterogeneous characteristics. In this scenario, Cross-
flow achieves 10.77-16.92 times faster execution, which further supports the
efficacy of its sequential scheduling approach. Conversely, the fourth column
group involves varying network and processing speeds while handling a repet-
itive dataset, wherein multiple jobs necessitated the same repository. In this
complex scenario, Crossflow exhibits a 2.75-2.82 times speedup compared to
both Spark and Flink, which can be attributed to its ability to dynamically
adjust task allocation based on real-time resource availability and worker pref-
erences.

When compared to Apache Spark and Apache Flink, Crossflow exhibits su-
perior performance in executing the exemplary MSR workflow described in Sec-
tion 1.2. Specifically, in one particular example and setup, Crossflow delivers
up to 16.93 times faster processing than Flink and up to 10.77 times faster than
Spark, primarily due to differences in scheduling methodologies. Considering
Crossflow’s substantial performance advantages over the two general-purpose
frameworks, particularly in environments characterised by heterogeneous worker
characteristics, we have selected Crossflow as the foundational framework for our
proposed enhancements. The forthcoming sections will delve into methodolo-
gies aimed at augmenting Crossflow. Key areas of focus will include advanced
scheduling algorithms that further exploit “opinionated” nodes to optimise job
allocation in heterogeneous environments during runtime and techniques to in-
crease adaptability of workers when it comes to dynamically changing environ-
ments. These enhancements, if successfully integrated, are expected to further
distinguish Crossflow from both Spark and Flink in the context of executing
LID MSR workflows.

4.6 Threats to Validity

The selection of an appropriate baseline is a fundamental aspect that underpins
the integrity and relevance of any comparative study. In the context of this
research, where the objective is to evaluate repository mining workflows using
Apache Spark, Apache Flink, and Crossflow, it is imperative to acknowledge po-
tential threats to validity that may arise from the baseline selection process.This
section discusses potential threats to the validity of the experimental findings,
following the established categories from Wohlin et al. [64]: conclusion validity,
internal validity, construct validity, and external validity.

4.6.1 Internal Validity

Internal validity refers to whether observed effects can be attributed to the
experimental variables (i.e., the choice of framework) rather than external or
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confounding factors.

• Controlled environment. All frameworks were evaluated using seman-
tically equivalent MSR workflows within a local, simulated environment.
Worker parameters and resource separation were explicitly defined to min-
imise unintended variance.

• Framework-specific effects. Despite efforts to equalise conditions, dif-
ferences in framework internals — such as task scheduling logic, default
caching strategies, or error handling — may influence observed perfor-
mance independently of the framework’s support for data locality.

4.6.2 Construct Validity

Construct validity concerns how well the metrics and experimental setup repre-
sent the concepts being studied.

• Simulated timing variability. While the experiments ran in a con-
trolled local environment, simulated worker parameters (e.g., network
speed, processing speed) and a controlled noise parameter were used to
emulate heterogeneity. Although this enhances reproducibility, the sim-
plified timing model might omit nuances present in real-world distributed
systems.

• Operationalisation of data locality. Data locality was measured using
a combination of cache hit/miss ratios and the volume of data transferred
between workers (in MB). These are reasonable and commonly used prox-
ies, but they may not fully capture qualitative aspects of data placement
or locality awareness mechanisms internal to each framework.

4.6.3 External Validity

External validity refers to the extent to which results generalise beyond the
experimental setup.

• Limited data sample size. The experimental setup explored a fixed
number of repository sets and system configurations, as described earlier
in Sections 4.3.1 and 4.3.3. While this provides meaningful variation in
workload characteristics and execution environments, the dataset remains
limited in scope, and broader statistical inferences should be made with
caution.

• Scope of workloads. The repository sets were deliberately chosen to
vary in structure, size, and data overlap. However, the findings primarily
apply to MSR scenarios with repository or commit-level analysis. Work-
flows that do not involve data reuse, such as stateless transformations
or purely sequential access patterns, may not benefit from locality-aware
scheduling, and may instead favour alternative scheduling strategies fo-
cused on load balancing or resource fairness.
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• Controlled vs. real-world conditions. The simulated environment
approximates a distributed system by emulating download times and iso-
lating worker storage, but lacks elements such as hardware diversity, net-
work contention, and runtime faults. This abstraction supports controlled
comparison but limits generalisability to production-scale systems.
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5 Resource-Registry: a Worker Preference-
Based Scheduling Algorithm

The objective of this chapter is to explore a novel scheduling approach for Cross-
flow, wherein worker preferences and capabilities are integrated into the job allo-
cation procedure. In the current version of Crossflow, the scheduling framework
operates on a straightforward producer-consumer model as described in Section
2.2.5. The master node functions as the job producer, responsible for the pub-
lishing jobs to job queue, while the worker nodes act as consumers, tasked with
job execution. This mechanism, however, lacks any form of directed job alloca-
tion, wherein specific jobs are assigned to the most suitable workers based on
predefined preferences or capabilities. This shortcoming can lead to extended
execution times if, for example, a worker is given a job that necessitates a repos-
itory already cloned by a different worker that would thus be able to execute
the job more efficiently.

5.1 Resource-Registry Approach

To address RG2, the proposed enhancement to Crossflow’s scheduling mech-
anism is encapsulated in the Resource-Registry approach. The primary moti-
vation behind this approach is to prevent the non-local assignment of jobs to
workers when possible, thereby enhancing efficiency and performance. In the
context of executing jobs that involve cloning and analysing software reposito-
ries, the absence of a direct job assignment protocol poses an efficiency chal-
lenge. Ideally, to optimise overall execution time and minimise data transfer
costs, incoming jobs should be assigned to workers who have previously cloned
the required repositories. This approach leverages existing data locality, thus
avoiding redundant cloning processes which are time-consuming. The core is-
sue arises when an optimal worker — one who has already cloned the needed
repository — is preoccupied with another job. In the the Crossflow’s default
non-directed model relying on general job queue, the incoming can be allocated
to an alternative worker. This new worker must perform the cloning operation
afresh before proceeding to the analysis phase. This results in increased ex-
ecution times and higher data transfer overhead compared to waiting for the
more suitable, although currently occupied, worker to become available. For
instance, if Worker A, which has repository R cloned, is busy, and the incom-
ing job requiring repository R is assigned to Worker B, this worker must first
clone repository R before analysis can begin. The cloning process incurs ad-
ditional time, and this combined with the analysis could exceed the total time
it would have taken had the system waited for Worker A to finish the ongoing
job. Thus, the lack of directed job assignment can lead to suboptimal utilisa-
tion of resources, increased execution times, and elevated data transfer costs,
ultimately impeding overall system efficiency.

To mitigate this issue, the Resource-Registry approach proposes a database
(a key-value store) accessible to both the master and worker nodes, which facili-
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tates the exchange of worker preferences and capabilities with the master node.
This database serves as a critical intermediary, ensuring that jobs are assigned
in accordance with the specific skills and preferences of available workers. To
illustrate, consider the use case involving GitHub repository mining described
in Section 1.2. In this case the proposed database could be used to enhance
data locality as workers could indicate which repositories they have already
cloned and are thereby positioned to inspect again without the redundancy of
re-cloning. This information could then be used in guiding the master node’s
scheduling decisions.

The introduction of a key-value database is integral to implementing this ap-
proach. Such a database enables tracking worker capabilities and preferences.
The master node associates each job in the workflow with a unique identifier,
referred to as jobID, which serves as the key in the key-value store. Correspond-
ingly, the value for each key would be a set of workers who are either skilled
at or interested in handling the specified job. For instance, in the context of
GitHub repository mining, the jobID may be represented as the URL of the
repository in question. The corresponding value in the key-value store would
then comprise the list of workers who have previously cloned or inspected the
repository, thereby enabling tailored job scheduling in order to reduce redun-
dancy and optimise resource utilisation.

Similar to the methodology presented in [65], this job scheduling approach
is implemented through extending Crossflow’s default use of general queues for
scheduling with additional dedicated job queues. Each worker maintains its
own dedicated job queue into which the master node can allocate jobs aligned
with the worker’s declared preferences. The pre-existing general job queue in
Crossflow serves a queue where the master node publishes incoming jobs for
which no worker has expressed specific interest or preference. Workers prioritise
their directly assigned jobs (i.e., those for which they have shown interest).
However, should the workers become idle and have no jobs in their dedicated
queues, they will proceed to retrieve and execute the first available job from the
general jobs queue.

For the Resource-Registry scheduler, the dedicated queue threshold is set
to infinity. This configuration is due to the fact that scheduling decisions are
predicated on the preferences recorded by workers in the database, rather than
the idle status of worker nodes. Consequently, if a worker w1 has declared a
preference for jobs associated with repository r1, those jobs will be assigned to
w1 irrespective of the availability of other workers or the job counts in their re-
spective queues. Imposing a limit on the number of jobs assigned to each worker
within this approach can adversely impact the overall execution time. This is
because the pause in job allocation does not affect the eventual assignment of
a job to a specific worker; it merely defers the allocation, thereby potentially
leading to a prolonged execution time.

The execution flow in this adapted Crossflow framework can be encapsulated
in the following hypothetical scenario:

1. Workflow initialisation: The master node (m1) initiates the workflow
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and reads the input CSV with technologies. Based on technologies, it
queries GitHub for repositories of interest and instantiates jobs associated
with these repositories.

2. Registry check: m1 queries the key-value database. Assuming that the
workers were initiated with clean slates, meaning their local file systems
did not store any pre-existing data, the database returns an empty set,
confirming the absence of workers with pre-cached resources.

3. Job allocation:

• All workers are ready and waiting for incoming jobs.

• An incoming job j1 associated with the repository r1 (j1-r1) is pub-
lished to the jobs queue and first gets dequeued by worker w1. w1
commits to performing the job (j1-r1) and is now busy.

• Worker w1 records its cloning of the repository r1 in the registry.

• Subsequently, another job associated with repository r2 (j2-r2) is
published to the jobs queue and gets dequeued by w2. w2 commits
to performing the job (j2-r2) and is now busy.

• Worker w2 records its cloning of the repository r2 in the registry.

4. Direct job assignment: When m1 encounters a subsequent job re-
quiring repository r1, it queries the registry, identifies w1 as already-
possessing r1, and sends the job downstream to the dedicated job queue
of w1.

5. Registry maintenance: The master node m1 periodically receives
heartbeat signals from the worker nodes and utilises this information to
maintain the accuracy of the Resource-Registry. If an arbitrary worker
node ceases to function or requires a restart, its records are removed from
the database. Should the previously non-functional worker node become
operational again with its local file system data intact, it will automati-
cally update the Resource-Registry upon startup.

Thus, the Resource-Registry refines the scheduling process by incorporating
a feedback loop wherein job assignment is guided by real-time worker capabil-
ity data. This algorithm is executed across both master and worker nodes, as
illustrated in Listings 1 and 2. The algorithm defined in Listing 1, “Resource-
Registry Scheduler - master side”, handles job allocation by explicitly consid-
ering worker preferences based on the resource requirements of each job. Com-
mencing with the sendJob function on line 4, it begins by retrieving a list of
workers with a preference for the job’s resource from the ResourceRegistry (line
5). If the result is empty, indicating no worker preferences are established, it
defaults to sending the job to a general jobs queue (line 7). In a LID MSR work-
flow this could happen when, for example, the workflow has been initialised but
workers have no pre-cached repository clones in their local file systems and are
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yet to perform jobs and report their clones to the registry. Conversely, if work-
ers with preferences are available (i.e. workers that already have a local copy
of the required repository), it calls the getPreferredWorker function to identify
an appropriate worker (line 9). This function, defined on line 14, iterates over
the list of candidate workers (line 15) and selects the least burdened node from
this list (lines 15-16). Upon selecting a preferred worker, the job is assigned
to this worker via the consumeJob method (line 10). This approach effectively
balances resource-specific job allocation and falls back to the general job queue
when necessary.

Listing 2, titled “Resource-Registry Scheduler - worker side”, describes the
process executed by a worker when consuming a job, along with the startup
sequence to initialise local resources. The primary consumeJob function begins
on line 5, where worker updates the ResourceRegistry to associate the job’s
resource and the current worker ID (line 8). It proceeds to process the job,
storing the output (line 6). The sendJobResult function is then invoked to return
the job result to the master node (line 7). Complementarily, the onStartup
function, beginning on line 11, scans local resources (line 11) and iterates over
each resource (line 12), registering them with the ResourceRegistry using the
current worker ID (line 13). Finally, it establishes a connection to the general
job queue to participate in job processing for non-preferred jobs too (line 15).

Listing 1 Resource-Registry scheduler - master side

1: global variables
2: ResourceRegistry, global map
3: end global variables
4: function sendJob(job)
5: workersWithPreference = ResourceRegistry[job.resource];
6: if workersWithPreference = empty then
7: sendToGeneralQueue(job);
8: else
9: preferredWorker = getPreferredWorker(job, workersWithPrefer-

ence);
10: preferredWorker.consumeJob(job);
11: end if
12: end function
13:

14: function getPreferredWorker(job, workers)
15: leastBusyWorker = findLeastBusyWorker(workers);
16: return leastBusyWorker;
17: end function

While much of the code is generalised, it is the concrete implementation of
the getPreferredWorker(job, workers) that defines the behaviour of the sched-
uler. This function incorporates the specific logic required to select the most
suitable worker for a given job. It queries the key-value store to retrieve a list
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Listing 2 Resource-Registry scheduler - worker side

1: global variables
2: ResourceRegistry, global map
3: end global variables
4: function consumeJob(job)
5: ResourceRegistry[job.resource].add(currentWorkerId);
6: jobResult = process(job);
7: sendJobResult(jobResult);
8: end function
9:

10: function onStartup
11: localResources = scanLocalResources();
12: for resource in localResources do
13: ResourceRegistry[resource].add(currentWorkerId);
14: end for
15: connectToGeneralQueue();
16: end function

of workers who have declared their preference for handling the job identified by
jobID. If such a worker exists, the job is sent directly to them; otherwise, it is
passed as per the default behaviour (sent to general job queue to be processed
by the first worker that becomes idle). Hence, this is the method to be changed
if one was to address a specific use case. For instance, the getPreferredWorker
function can incorporate additional checks, such as minimum RAM requirement
or specific job type worker is supposed to run. Any changes to the getPreferred-
Worker are to be specified by the application developer.

For LID MSR workflows and associated challenges that motivated this re-
search, the Resource-Registry serves as a mechanism for workers to declare the
repository clones they already possess locally. Leveraging the Resource-Registry
enables the master node to direct incoming jobs to workers who have previously
cloned the repositories relevant to these jobs. By aligning job allocation with
worker capabilities, the system optimises resource utilisation, mitigates redun-
dancy, and enhances overall performance. Specifically, assigning jobs to workers
already in possession of the required clones reduces the communication over-
head by eliminating the initial round of job rejections and ensures that jobs
are executed locally whenever possible, regardless of workers’ availability at the
time of job assignment.

However, several challenges accompany this approach. Initially, the key-
value store must be populated with data regarding worker capabilities, a process
that can introduce startup overhead. Additionally, maintaining the accuracy of
the Resource-Registry through dynamic updates to reflect real-time changes in
worker capabilities can also impose overhead.

The subsequent section evaluates the Resource-Registry scheduler by ex-
tending the Crossflow framework to incorporate a key-value database and a
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dedicated job queue for each worker. Experiments conducted based on an MSR
application seek to determine whether this scheduler’s potential benefits can
surpass the performance metrics of the Crossflow baseline.

The current implementation of the Resource-Registry does not include mech-
anisms for reassigning jobs that fail during execution. This behaviour is consis-
tent with Crossflow, the underlying framework on which the scheduler is built,
which records and reports job failures but does not attempt to reallocate them.
As a result, failed or unresponsive jobs remain unprocessed unless manually re-
submitted. This is a known limitation of the current approach, which is to be
addressed as part of future work.

5.2 Resource-Registry Evaluation

To evaluate the Resource-Registry approach against the Crossflow baseline, and
thereby fulfil the objectives set by RG3, we employed the same MSR example
described in Section 4.1, combined with the local experimental setup outlined in
Section 4.3. We configured five worker nodes to work with a single master node.
This evaluation encompassed various worker and job configurations depicted
in Sections 4.3.1 and 4.3.2 to ensure a comprehensive analysis. The detailed
instructions for how to setup and run the experiments using Crossflow with the
Resource-Registry scheduler are shared as part of the research artefact 6.

Workers’ preferences were expressed through repositories that had been pre-
viously cloned and analysed. The principal metric examined was total execution
time. Additionally, we considered worker usage percentage, cache misses, and
data load, all of which are vital for improved data locality, as detailed in Section
3.4. Figures 14 present the average end-to-end execution time, grouped by job
and worker speed configuration, respectively. These aggregations were analysed
to assess the performance of the Resource-Registry (RR) scheduler for LID MSR
workflows, focusing on the influence of workload’s locality intensity — whether
involving repetitive repository jobs — and performance in heterogeneous envi-
ronments.

In Figure 14a, workflows using the Resource Registry scheduler showed exe-
cution times 1.37 times shorter for workload types involving unique repositories
with equal size distribution or predominantely large, whereas for the repeti-
tive large and all diff small job configurations execution times were on average
2.37 times longer. Figure 14b illustrates that the Resource-Registry scheduler
performs worst in heterogeneous environments, with execution times 17% slower
on average. Conversely, in homogeneous setups, the scheduler performed nearly
the same as the baseline and it recorded a 28.20 seconds variance in execution
time on average, which can be attributed to the noise in execution.

Figure 16 indicates that data load and cache misses are almost the same
(±3) for workflows running with either scheduler. Groupings by job configura-
tions report that cache misses for workflows processing varied repositories are

6Instructions for running experiments using Crossflow with the Resource-Registry scheduler
https://github.com/ana-markovic/lid-msr/tree/master/rr-modeldriven
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fairly consistent, regardless of worker node characteristics, as is the data load.
This was expected, as the cache misses and data load are directly linked to
incoming jobs and are not dependent on the worker environment. Thus, a part
of the observed speedups for job configurations involving unique repositories
can be attributed to eliminating rejection cycles for first-time repository jobs.
With the Resource-Registry scheduler, in contrast to the Baseline, when a job
is submitted to the general jobs queue and no worker node possesses the corre-
sponding clone, an arbitrary worker node will process the job without rejection.
Another aspect leading to more efficient executions are variations in average
worker usage percentages as shown in Figure 15.

For instance, the Resource-Registry scheduler achieved a 1.36 times speedup
for workflows processing unique repositories with equally distributed sizes (de-
noted as all diff equal), which correlated with an 11% higher worker usage
compared to the Baseline. Likewise, for unique, predominantely large repos-
itory workflows, a 17.90% higher worker usage translated to a 1.38 times
speedup. Conversely, for workflows involving large repetitive repositories, the
Resource-Registry scheduler increased execution time by 2.31 times on average,
attributable to a 24.8% decrease in worker usage percentage.

Let us examine the scenarios where the Resource-Registry scheduler demon-
strated inferior performance relative to the Baseline. The differences were par-
ticularly evident in configurations involving large, repetitive repositories and
workflows executed in heterogeneous environments where one worker was sig-
nificantly slower than the rest. Tables 4a and 4b provide the total execution
time in seconds for each scenario using the respective schedulers.

In Table 4b, the repetitive small job configuration was executed within a sim-
ilar timeframe, considering the variability in network and processing speeds of
workers, whereas the most significant deviation occurs with the repetitive large
job configuration. This performance gap can be attributed to the method of
job assignment employed by the Resource-Registry scheduler. Once a worker
begins processing a job, it marks itself as interested in related jobs involving
the same repository. Consequently, the master node directs all related jobs to
this worker. While this approach complies with data-locality principles, it can
negatively affect overall execution time by monopolising the worker’s capacity
for such jobs, leaving other workers idle. This monopolisation prevents other
workers from expressing preference for the same repository, as they will not be
assigned jobs that require it on the account of the worker that expressed the
interest first, thereby nullifying potential load balancing benefits unless workers’
storage contents are pre-populated ahead of execution.

To validate this assertion, let us consider the data locality details for this
particular job configuration processed in a heteroeneous environment, as pre-
sented in Table 5. Execution of workflows with both schedulers resulted in 37
cache misses, however the workflow relying on the Resource-Registry recorded
637MB less of downloaded data. Nevertheless, the cache miss and work time
distribution among worker nodes in the two experiments underscore the afore-
mentioned issue. Specifically, worker w5-slow experienced only 1 cache miss
with the Resource-Registry scheduler and recorded a total work time of 2212
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(a) Average total execution time (in seconds) per job configuration

(b) Average total execution time (in seconds) per worker speed configuration

Figure 14: Accumulated results for end-to-end execution time (in seconds)
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(a) Average worker usage per job configuration

(b) Average worker usage per worker speed configuration

Figure 15: Accumulated results for worker usage (percentage, illustrated as a
number between 0 and 1)
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(a) Average cache miss count (number) job configuration

(b) Average data load per job configuration (MB)

Figure 16: Accumulated results for cache misses (number) and data load (MB)
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seconds, compared to the Baseline’s 1 cache miss and 695 seconds of execution
time for the same worker. This indicates that w5-slow primarily handled local
jobs, evidenced by the prolonged work time, however, the Baseline scheduler
achieved better load balancing on the account of slighlty increased data load.
To support this claim, we observe that the w1-fast remained idle for most of
the execution time with the Resource-Registry scheduler, thereby necessitating
3.16 times more seconds to complete the workflow compared to the Baseline.

This trend is observed in the repetitive workflow scheduled by the Resource-
Registry in all the worker environments, as depicted in Table 4a. Notably,
results in the second, third and fourth rows, which are obtained from workflows
executed on heterogeneous worker nodes, confirm that the Resource-Registry
scheduler can prolong execution times when a slower worker picks up a repetitive
job. Subsequently, this slower worker must handle all future jobs requiring
the same repository, regardless of other workers’ idleness, thus extending the
execution time due to enforced data-locality principles.

Resource
Registry

Baseline

all equal 538 412
one fast 474 221
one slow 1534 636
fast slow 2218 701

(a) End-to-end execution times (in seconds)
for workers processing repetitive large job con-
figuration.

Resource
Registry

Baseline

all diff equal 650 803
all diff large 831 1356
all diff small 604 123
repetitive large 1534 636
repetitive small 404 414

(b) End-to-end execution times (in seconds)
for environments with a single slow worker
processing different job configurations.

Table 4: Comparison of Resource-Registry scheduler and Baseline results across
configurations in which the Resource-Registry scheduler underperformed.

Resource-Registry Baseline

Worker Time (s)
Cache
miss

Data
load (MB)

Time (s)
Cache
miss

Data
load (MB)

w1-fast 63 27 7575 201 26 8252
w2 451 3 1113 223 3 941
w3 435 2 934 236 5 1911
w4 92 4 1808 221 2 1508
w5-slow 2212 1 910 695 1 910

Table 5: Comparison of Resource-Registry scheduler and Baseline performance
metrics for workers with heterogeneous physical characteristics processing the
repetitive large job configuration.

To summarise, the Resource-Registry effectively addresses the issue of all
workers rejecting jobs that lack preferred attributes, thereby enhancing data
locality and striving for entirely local execution. However, it has limitations,
particularly in load balancing and managing the physical differences between
worker nodes. Although the Resource-Registry method results in faster exe-
cution in some test scenarios, whether the most suitable node processes a job
can depend on various external factors. These primarily include the order and
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timing of incoming jobs and the activity levels of other nodes, with the predom-
inant factor being worker preference. Specifically, if a worker has indicated a
preference for certain types of jobs, it will be assigned these jobs, even if other
workers in the execution environment could perform these tasks more efficiently,
for instance, by completing them faster. The following chapter introduces an
approach that continues to consider data locality but also addresses the limita-
tions identified in the Resource-Registry method.
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6 Distributed Scheduling with the Bidding
Scheduler

With regards to RG2, in order to make use of opinionated nodes and prevent
suboptimal worker selection that can occur when scheduling work solely based
on worker preferences, we developed a new scheduling mechanism that takes
both data locality and physical characteristics of worker nodes into account.
Again, it is proposed as an improvement to the Crossflow framework discussed
in Section 2.2.5, however, it presents a general solution that could be integrated
with other data processing engines too.

6.1 Background: Dynamic Job Scheduling in Big Data
Applications

In Section 1.2, we highlighted the importance of considering data locality when
scheduling jobs pertaining to the analysis of source code repositories. The issue
of data locality has received substantial attention from the research community,
and schedulers that achieve data locality have been proposed in the literature
[66]. Nevertheless, the concern of data locality must be addressed in conjunc-
tion with the concern of load-balancing in task scheduling. This is because
improving data locality — by assigning more tasks to nodes that possess the
requisite input data — can lead to an imbalanced load distribution among nodes,
thereby adversely impacting overall performance [65]. Consequently, one of the
primary challenges of job allocation in master/worker environments is to dis-
tribute incoming jobs among workers in a manner that minimises job execution
time while avoiding an imbalance of overloaded and underloaded workers [53].
This requires schedulers to achieve the right balance between data locality and
load-balancing.

Furthermore, an additional challenge associated with MSR workflows is that
data distribution, specifically the location of repository clones, is not predeter-
mined, but instead emerges during execution. Prior to executing such workflows,
it is possible that no local copies are available to worker nodes, necessitating the
scheduler’s data locality capabilities to become effective only once the analysis
stage commences. In essence, the contents of workers’ local storage will vary
throughout the workflow execution, requiring the scheduling of incoming tasks
to adjust to these fluctuations. The work in [65] deals with this problem by en-
abling job re-assigning during execution, particularly to worker nodes who may
possess the necessary data locally. This approach also advocates a decentralised
job scheduling, removing the explicit responsibility of task assignment from the
master node. Instead, job allocation is entrusted to the worker nodes, which
maintain separate queues for local and non-local jobs and implement logic to
prioritise jobs for which they possess the necessary data locally. These workers
can reassign non-local jobs to other workers more likely to have the required
data, thereby enhancing both data locality and system throughput.

Similarly, the work in [67] delves into the application of the MapReduce
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framework with a distinct focus on optimising task scheduling to exploit the
disparate capacities of various nodes within a cluster. The scheduler employed
dynamically partitions the input data and subsequently allocates the resulting
data blocks to nodes based on their respective processing capabilities. This al-
location is contingent upon each node’s estimated processing power, which is
determined by metrics such as average job execution time and the availability
of CPU power and RAM memory, all measured at regular intervals. This dy-
namic assessment ensures that the scheduler accommodates fluctuations in the
performance of each node over time, allowing more powerful nodes to handle
larger and more complex tasks, thereby optimising resource utilisation.

However, given that Big Data workflows can persist for multiple days or
even weeks [68], not only might the contents of local storage change, but also
the remaining storage capacity, CPU power, and network bandwidth available
to worker nodes. Workers may exhibit variations in their physical characteristics
prior to the start of execution, which is often referred as platform heterogeneity.
In this context, heterogeneity is characterised by each node potentially having
different physical parameters, such as data storage and processing units, coupled
with the fact that Big Data analysis jobs may not have uniform data and com-
putation requirements. The aforementioned scheduling strategies — Hadoop’s
default scheduler, Matchmaking, and Delay scheduling — demonstrate limited
performance when applied to heterogeneous environments, which may result in
diminished performance during workflow execution [67].

Collectively, this context establishes the groundwork for investigating job
allocation techniques suitable for dynamic and heterogeneous environments in
the realm of Big Data analytics.

6.1.1 Heterogeneous Environments and Volunteer Computing

Among the forerunners in the domain of heterogeneous environments is BOINC
[69], a middleware system specifically designed for volunteer and grid computing.
Initially developed at the University of California, Berkeley, the platform has
proven to be crucial in leveraging otherwise underutilised computational power
to facilitate a wide array of scientific projects. BOINC represents an open-source
paradigm in distributed computing architecture, enabling researchers to access
a global repository of computational resources.

The fundamental premise of BOINC is anchored in the concept of volunteer
computing. In this model, individuals offer their idle computing resources to sci-
entific initiatives, thus enhancing the collective computational capacity available
for research. This approach builds upon the principles of distributed computing
and parallel processing. Volunteer computing can be traced back to the con-
cepts of grid computing and cloud computing, where computational tasks are
distributed across multiple nodes to optimise resource utilisation and improve
task completion efficiency. The system is composed of several key components:

• Client software: End-users install the BOINC client on their personal
computers. The software manages the download, execution, and upload
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of computational tasks.

• Server infrastructure: Central servers distribute tasks to client ma-
chines and collect results. These servers handle application scheduling,
data management, and result validation.

• Project applications: BOINC supports a variety of scientific appli-
cations, each encapsulated within its own project. Examples include
SETI@home [70] for analysing radio signals from space and Rosetta@home
[71] for protein folding simulations.

BOINC utilises a master/worker architecture, where the server functions as
the master, responsible for distributing tasks to the worker clients. In terms
of scheduling, the baseline policy implemented within BOINC is the Weighted
Round-Robin (WRR) algorithm [72]. The WRR scheduling algorithm extends
the classical Round-Robin approach by incorporating weight factors to manage
varying priorities among tasks or projects.

In a traditional Round-Robin model, tasks are managed in a simple, sequen-
tial manner without regard to priority. In contrast, WRR allocates time slices
to tasks based on their assigned weights, thereby enabling higher-priority tasks
to secure a larger share of computational resources. The weight assigned to a
task typically mirrors its importance, urgency, or the resource share specified
by the project administrators.

Consider a project P with an assigned weight Wp. The number of time
slices allocated to P within each scheduling cycle is proportional to Wp relative
to the weights of other concurrent projects. The scheduling cycle is divided into
discrete time slices, and projects receive a number of time slices correspond to
their weights. For instance, if Project A has a weight of 3 and Project B has a
weight of 1, then within a given cycle, Project A will receive three times more
time slices than Project B.

This weighted allocation mechanism ensures that computational resources
are systematically distributed in alignment with project priorities, thereby op-
timising resource utilisation and maximising overall system throughput. While
BOINC could, in theory, distribute the tasks of cloning repositories and
analysing code across multiple machines, this platform assumes that each job
operates independently, requiring minimal inter-node communication and mak-
ing it challenging to schedule work if cloning and analysing are configured as
separate tasks. Moreover, it does not take into account the data locality, mean-
ing that if workload requires scanning one repository more than once, there is no
guarantee that the processing will be assigned to workers already possessing the
local copy. The inefficiency becomes particularly pronounced when managing
large volumes of data, such as large repositories, due to the logistical complexity
and overhead associated with downloading this data to client machines, which
may suffer from unstable network connections. Furthermore, BOINC projects
utilise only a fraction of the RAM memory available on a given machine, thus
the available resources may be inadequate to execute compute-intensive tasks,
such as static code analysis, effectively.
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6.1.2 Auction-Based Job Scheduling and Resource Allocation in Dis-
tributed Environments

The application of auction mechanisms for decentralised problem-solving is ex-
tensively documented in the literature on distributed load balancing and re-
source allocation within distributed computing systems [73]. In particular, the
work by Malone et al. [74] utilises auctions to allocate tasks to computational
resources, such as machines with varying processing speeds. Bids are formu-
lated based on estimated completion times, which consider both the machine’s
speed and its current load. The task is then assigned to the machine with the
earliest estimated completion time. However, it is noteworthy that in this study,
the processing time estimates were part of the job’s metadata — essentially an
estimation provided by the user regarding the expected duration of the task.
This estimate serves as a baseline for calculating the job’s duration on each
machine, indicating that discrepancies between estimated and actual processing
times originate from the user’s estimation errors, not the machine’s function-
ality. The authors evaluated this auction-based approach against random task
assignment through two variants: the ”lazy” approach, which initiates auctions
only when a processor is idle, and the ”eager” approach, which permits continu-
ous bidding regardless of processor activity. These comparisons were conducted
within a simulated environment to evaluate scheduler performance under vary-
ing conditions, such as estimation errors (up to ±100% error in jobs), different
machine speeds (machines were assigned one of eight predefined speeds) and job
loads (by configuring job arrival rates and processing times).

Similarly, Ferguson et al. [57] present an auction model for load balancing
in a distributed system. Jobs compete for resources (i.e., workers with CPU
power) by placing bids. This approach introduces an additional parameter in
bid construction by assigning a budget to each job at the beginning of the
auction and it makes the bidding process iterative. Jobs can bid only within
their budget constraints, with bids calculated based on service time and worker
price. The worker determines the winner (the next job to process) by finding
the bid that optimally balances service time and price — the objective being
to achieve maximum value in the least amount of time. As with the work by
Malone et al. [74], this auction model was evaluated in a simulated environment.
However, this approach operates under a homogeneous environment assumption
with no specific data being required for job processing, which poses a limitation
in heterogeneous, data-intensive environments due to the lack of considerations
for data movement and locality.

In [75], an adaptive scheduling approach is introduced through a dynamic
reallocation mechanism. Here, workers can delegate tasks to other less burdened
workers during execution. This task reassignment is facilitated via an auction
mechanism, allowing workers to negotiate the completion price (i.e., the time
required to finish a job) of incomplete tasks and delegate them to the worker
node that wins the auction. This mechanism effectively reduces the workload
of the most heavily loaded worker, thus decreasing the overall execution time of
the Big Data workflow.
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The concept of negotiation or auction-based job allocation is further explored
in the context of the Internet of Things and High-Performance Computing sys-
tems. For instance, [76] proposes a bidding approach for incoming jobs, wherein
the nodes bid for the allocation of incoming jobs based on their processing ca-
pacity (number of available cores). Each node aims to win the allocation of jobs
to maximise the overall system profit. The bids reflect the computational power
each node can offer for job execution. Additionally, this approach includes job
pre-emption — a scenario where the execution of a low-value job can be paused
to free up worker resources for a higher-value task. The paused job can be
resumed when the necessary resources become available, collectively leading to
reduced overall execution times and enhanced resource utilisation.

For resource allocation, Zhou and Bambos [77] propose an auction-based
decentralised approach in client-server environments. In this model, clients
(the bidders) submit job requests to a server (the resource provider), requiring
resources such as CPU cycles, memory, or storage. Clients bid a specific amount
they are willing to pay for the necessary resources, and the server allocates
resources proportionally based on these bids. Each client’s share of resources is
proportional to their bid relative to the total bids. The approach is decentralised
in way that the server does not require detailed knowledge of each client’s job
or resource needs, as the bids encapsulate the client’s priority and willingness
to pay.

Similarly, Zheng et al. propose an online auction mechanism for procuring
Infrastructure-as-a-Service (IaaS) instances and scheduling parallel jobs in cloud
computing environments. Users (the bidders) submit job requests to the cloud
operator. Each user is job-oriented, meaning they focus on the completion of
their jobs rather than specific resource details. The users bid for job execution
with specific deadlines by submitting bids that include completion time (the
deadline by which their job should be completed) and the willingness to pay
(the monetary value they are willing to bid for completing their job within the
specified deadline). This mechanism operates in real-time, making allocation
decisions upon each user’s arrival without knowledge of future requests.

6.2 Bidding Scheduler Approach

In this approach, which we will refer to as the Bidding Scheduler in the remain-
der of the thesis, we describe a job allocation method in which the distributed
worker nodes influence scheduling decisions by reporting their internal state to
the master node. The sequence diagram shown in Figure 17 illustrates a series
of operations that enable continuous interaction between the master and worker
nodes to distribute unprocessed jobs.

The following description explains each step of the process:

1. Job publication initiation
The process begins with the master node attempting to assign each job in
the job configuration. Each job can be published for bidding only provided

69



Figure 17: Sequence diagram showing job scheduling with the Bidding Scheduler
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that workers’ queues are below the dedicated queue threshold (i.e. workers
are not overloaded).

2. Dedicated worker queue threshold monitoring
The Master node checks worker nodes present queue sizes by querying data
about allocated and completed jobs. If all worker nodes queue sizes exceed
the predefined dedicated queue threshold (MAX QUEUE THRESHOLD),
a control flow is triggered to manage the overload. Specifically, the master
node pauses job publication and waits a short period of time before re-
querying the worker nodes’ queue sizes.

3. Job publishing
Whenever there is at least one worker node with a queue size below
the maximum threshold (MAX QUEUE THRESHOLD), the master node
proceeds to publish the job for bidding. This publication invites all work-
ers to evaluate and bid on the job. In this process the master shares the
job (with all the repository-related information as described in Section
4.2) with all the workers in the distributed environment by using a queue
for broadcasting unprocessed jobs yet to be assigned.

4. Bid submission by workers
Upon receiving the notification about the published job, worker nodes in-
dependently assess their capability to handle the job. This involves check-
ing their current queue sizes and estimating the total cost for processing
the job, which can include both data transfer and processing times. Each
worker submits a bid to the master node, encapsulating the estimated
cost.

5. Master node bid evaluation
The master node evaluates all received bids to determine the most suit-
able worker for the job. This evaluation is performed within a specified
timeout period (WAITING FOR BIDS TIME THRESHOLD). If bids are
received within the timeout, the job is allocated to the worker presenting
the lowest bid. In scenarios where no bids are received within the timeout,
the master node may choose to either retry the job bidding process (until
reaching a maximum retry threshold - MAX RETRIES) or queue the job
to an arbitrary worker if none of the workers submit bids for retried job
publishings.

6. Worker nodes job processing
Once a job is assigned, it enters the job queue of the designated worker
node. The worker node then processes the job, which results in updating
its queue size to reflect the new workload. Upon completion of the job,
the worker node submits the job result back to the master node. This
feedback loop enables the master to reassess the availability and load of
worker nodes for subsequent jobs.
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Process description

With the Bidding Scheduler, worker nodes are not responsible for accepting and
rejecting jobs, but they enhance the traditional master/worker architecture by
participating in the job allocation process and making scheduling a distributed
decision-making activity. The main focus of the approach is that the bids the
master receives provide it with insight regarding both data locality and pre-
viously committed workload and allow it to distribute work in a manner that
will reduce the total execution time and data transfer costs. The master node
broadcasts incoming jobs to all available worker nodes, and, in this algorithm,
the workers create offers and bid for work. Their bids include their estimate of
when they can get that job done, i.e. how much time they think they need to
complete a particular job. Since worker nodes schedule tasks in FIFO order and
do not take into account the jobs that are yet to be allocated after the job they
are bidding for, this estimate must include the time to obtain any necessary
resources and execute the new job, as well as the time to download resources
and execute all unfinished jobs that have been previously allocated (i.e. bids
won previously). Bidding for work is an asynchronous activity handled by a sep-
arate thread and the master waits for workers to make submissions within the
threshold period, in our implementation set to one second. After that threshold
period, the master looks into all the received bids before allocating the job to
the worker who made a submission with the lowest estimate. The same applies
to the situation when not all the workers sent their bids on time: the master
chooses the bid with the lowest estimate of all received bids or waits for a short
time window (parameterisable, and set as one second in our implementation)
before re-publishing the job for bidding in case none of the workers submitted
their estimates before the threshold period exceeded.

One of the main challenges in this approach is the nature of the workload,
specifically its arrival pattern. The issue arises when all jobs arrive simultane-
ously. Although workers will bid for each job individually, when all jobs are
available at once, the master is likely to distribute the entire workload before
the workers complete the initial set of jobs. This creates a significant problem in
dynamic environments, where the physical characteristics of the workers, such
as network or processing speeds used for estimating job completion times, may
fluctuate over time. In such cases, a worker might bid for a job at time (t), but
only commence processing the job at time (t + x), when operating on different
network speed, for example. This discrepancy can lead to substantial differences
between the estimated and actual execution times, thus resulting in estimation
errors. To mitigate these discrepancies, we use the dedicated queue threshold
described in the Section 4.2. The threshold is used to set a maximum number of
jobs (n) that can be queued for each worker to keep the master publishing more
jobs for bidding, when there is still work awaiting allocation. This mechanism
halts new bidding activities as soon as all workers reach (n) jobs in their queues
and resumes it once any worker queue falls below the threshold. This strategy
ensures that workers focus on completing current jobs and do not distribute ad-
ditional work until at least one worker is on the verge of becoming idle, thereby
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minimising estimation errors resulting from performance variabilities over time.
The value of (n) can be adjusted in code by the application developer, set to
as low as 1 to delay bidding for jobs that require more processing time, or
configured to a higher value for jobs that are quickly processed.

The Bidding Scheduler approach is designed to be flexible, with time esti-
mates tailored to the specific nature of the jobs being processed. For software
repository jobs, worker nodes will submit bids that include the time required
to clone the repository onto the local filesystem and the time necessary to pro-
cess it. Conversely, in scenarios where data transfer is not needed to perform
computations, the estimate will exclude the time for data transfer. It is crucial
to allow developers the autonomy to define their own time estimation formu-
las, as different workflows and tasks may require unique methods for accurate
prediction.

Listings 3 and 4 contain pseudo-codes for the Bidding Scheduler from the
master’s and the worker’s perspective when dealing with cloning and process-
ing remote software repositories. In Listing 3, lines 2–7 define global variables
critical to managing the bidding process. The BidsStatus map tracks the cur-
rent bidding status (e.g., open or closed) for each job, while the BidsValues map
stores bids submitted for each job. The ActiveWorkers array contains the list of
currently available workers. The JobStatus map records the status of jobs, such
as whether they are queued or being processed. The RetryCount map tracks
the number of retry attempts for each job, ensuring retries are limited by the
constant MAX RETRIES, set to 3 in this implementation.

The sendJob function, defined in lines 10–15, initiates the bidding process
when a new job arrives. It first publishes the job for bidding (line 11) and sets
its status to open in line 12, indicating the bidding contest is active. The retry
count for the job is initialised to 0 in line 13. To monitor the bidding process,
an alarm is set in line 14, which will trigger after 1 second if the bidding is
incomplete.

The receiveBid function, defined in lines 17–26, is responsible for processing
bids as they are received. Line 18 identifies the job associated with the bid,
and lines 19 and 20 store the bid in the BidsValues map. Line 21 invokes the
biddingFinished function to determine whether the bidding contest should be
concluded. If the contest is deemed complete, the status of the job is updated to
closed in line 22, and the preferred worker is identified using the getPreferred-
Worker function in line 23. Finally, the job is assigned to the selected worker
in line 24 through the sendToWorker function.

The biddingFinished function, defined in lines 28–34, evaluates whether the
bidding contest should end. It returns true if all active workers have submitted
their bids or if at least one bid has been received and the contest has exceeded
the 1-second threshold (lines 30–31). Otherwise, it returns false, allowing the
bidding process to continue.

The alarmTriggered function, defined in lines 36–51, is invoked when the
alarm set in sendJob expires. If no bids are received (line 38), the function
checks whether the retry count for the job has reached the MAX RETRIES
limit. If retries remain (line 39), the job is republished for bidding in line 41,
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and the alarm is reinitialised for another 1-second period in line 42. If the retry
limit is reached (line 44), the job is assigned to a random worker as a fallback in
line 44, ensuring it does not remain unallocated indefinitely. If bids are received
(line 46), the job status is updated to closed, and the job is allocated to the
preferred worker in lines 48–349.

The initialiseAlarm function, defined in lines 53–55, sets a timer for the
specified job and duration, linking it to the alarmTriggered function. This
ensures that each job is monitored independently and handled appropriately
based on its bidding progress.

The getPreferredWorker function, defined in lines 57–61, identifies the
worker with the lowest estimated cost for the job. It sorts the received bids
in ascending order based on cost in line 59 and returns the worker ID of the
lowest bid in line 60.

Finally, the sendToWorker function, defined in lines 63–66, updates the job’s
status to queued (line 64) and instructs the selected worker to process the job
(line 65).

The alarmExpired function, defined in lines 67–69, provides a minimal ab-
straction for checking whether the alarm timer associated with a job has elapsed.
This helper function returns true if the timer has expired, indicating that the
bidding period has reached its predefined 1-second limit. It is used within the
biddingFinished function to determine whether the bidding process should be
concluded based on elapsed time, without requiring explicit timestamp manage-
ment.
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Listing 3 Bidding Scheduler - master side

1: global variables
2: BidsStatus, global map
3: BidsV alues, global map
4: ActiveWorkers, global array
5: JobStatus, global map
6: RetryCount, global map
7: MAX RETRIES = 3, constant
8: end global variables
9:
10: function sendJob(job)
11: publishForBidding(job);
12: BidsStatus[job.id] = open;
13: RetryCount[job.id] = 0;
14: initialiseAlarm(job, 1s);
15: end function
16:
17: function receiveBid(bid)
18: job id = bid.job id;
19: bids for job = BidsValues[job id];
20: bids for job.add(bid);
21: if biddingFinished(job id) then
22: BidsStatus[job id] = closed;
23: w = getPreferredWorker(job id);
24: sendToWorker(job id, w);
25: end if
26: end function
27:
28: function biddingFinished(job)
29: bids count = BidsValues[job.job id].length;
30: if (bids count = ActiveWorkers.length) ∨ (bids count > 0 ∧ alarmExpired(job)) then
31: return true;
32: end if
33: return false;
34: end function
35:
36: function alarmTriggered(job id)
37: bids count = BidsValues[job id].length;
38: if bids count = 0 then
39: if RetryCount[job id] < MAX RETRIES then
40: RetryCount[job id] += 1;
41: publishForBidding(job id);
42: initialiseAlarm(job id, 1s);
43: else
44: sendToWorker(job id, randomWorker);
45: end if
46: else
47: BidsStatus[job id] = closed;
48: w = getPreferredWorker(job id);
49: sendToWorker(job id, w);
50: end if
51: end function
52:
53: function initialiseAlarm(job, time duration)
54: setTimer(job.id, time duration, alarmTriggered);
55: end function
56:
57: function getPreferredWorker(job id)
58: receivedBids = BidsValues[job id];
59: receivedBids.sort(bid as bid.cost in sec, ASC);
60: return receivedBids[0].workerID;
61: end function
62:
63: function sendToWorker(job id, worker)
64: JobStatus[job id] = queued;
65: worker.consumeJob(job id);
66: end function
67: function alarmExpired(job)
68: return timer for job has elapsed;
69: end function
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The worker functionalities in this algorithm are grouped into two main func-
tions. The first function, as depicted in lines 4 to 10, is responsible for estimating
the workload and submitting a bid. In line 5, the worker estimates the time re-
quired to complete the current workload by aggregating the costs of previously
won queued jobs. This estimation serves as the baseline for creating a new bid,
as stated in line 6. The algorithm exhibits data awareness in line 7, wherein each
worker is mandated to calculate the cost of acquiring the required data. The
data transfer time could be determined by dividing the size of the repository by
the current network speed, however the concrete formula is application specific
and should be left to the developer to define. Minimum expenses are incurred
when the worker possesses the data stored locally, which leads to lower time
estimates and subsequently increases the chances of winning the bid. The bid
amount is increased in line 8, according to the job processing time estimation.
Similarly to the data transfer time, the processing time in the MSR example
could be computed by dividing the repository size by the current processing
speed, yet this is specific to different types of jobs and should be defined at the
application level. Finally, the bid is transmitted to the master, as specified in
line 9.

The algorithm’s second function, described in lines 12 to 17, comes into play
when the worker wins the bidding contest and is required to process the job. In
line 13, the worker initiates the job processing by updating its status to started.
The actual work is executed in line 14. The worker updates the current job
status in line 15 and submits the result to the master node in line 16.

Listing 4 Bidding Scheduler - worker side

1: global variables
2: JobStatus, global map
3: end global variables
4: function sendBid(job)
5: currentWorkloadCost = totalCostOfUnfinishedJobs();
6: bid = currentWorkloadCost;
7: bid += estimateDataTransferTime(job);
8: bid += estimateProcessingTime(job);
9: bidForJob(job, bid);

10: end function
11:

12: function consumeJob(job)
13: JobStatus[job.jobID].status = started;
14: jobResult = process(job);
15: JobStatus[job.jobID].status = finished;
16: sendJobResult(jobResult);
17: end function

Upon closer examination of the bidding algorithm, it becomes clear that
no job needs to be rejected by all workers before being processed. This is be-
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cause, unlike the original acceptance criteria, the “opinionated” nodes offer job
completion estimates that factor in details, such as workers’ network and pro-
cessing speeds in this example, when allocating work. Moreover, this approach
to scheduling where the job allocation is controlled by the dedicated queue
threshold also allows for volatile environments, as workers’ performance metrics
can fluctuate over time and still be leveraged to reduce execution time and data
load. Additionally, because the estimates are based on worker speed configu-
rations, the Bidding Scheduler ensures that redundant resources (i.e. copies of
the same repository cloned in different workers in this example) occur only to
accelerate overall execution. This is the case if, for example, the worker that
has resources locally has too many queued jobs, therefore the cost of waiting
for it to become available might be greater than the cost of assigning the job to
another worker that needs to download the resources for itself.

While classic auction-based scheduling algorithms often adopt a double-
auction approach, where both jobs and resources submit bids or asks, this work
employs a single-sided bidding mechanism. In the proposed scheduler, the mas-
ter node publishes a job, and workers respond with bids based on their locally
estimated cost of execution. Jobs are passive entities in this interaction and do
not express preferences or priorities.

This design reflects the reactive and online nature of the scheduling context,
where jobs arrive one at a time and must be assigned promptly. There is no
global backlog of tasks to optimise over, and jobs cannot meaningfully act as
bidders. In this setting, implementing a double-auction mechanism would in-
troduce unnecessary coordination overhead without improving job assignment
quality.

The simplified bidding approach supports decentralised, low-latency schedul-
ing while preserving cost-awareness at the worker level. Similar trade-offs be-
tween decentralisation and complexity have been noted in prior distributed
scheduling research, particularly when auction-based coordination is adapted
to real-time or stream-based environments [78, 79].

6.3 Bidding Scheduler Evaluation

To address the RG3 and assess the performance of our scheduling approach,
we executed the MSR workflow from Section 4.1, employing five worker nodes
and one master node. The setup involved seven instances total: one for each
worker, one for the master, and one for the messaging system. We based the
job configurations and worker speeds on the configurations detailed in Sections
4.3.1 and 4.3.2. The source code and instructions for running these experiments
and reproducing the results are located in the GitHub repository dedicated to
thesis artefacts 7.

We tested all combinations of worker and job settings. To manage network
and processing speeds, like for baseline and Resource-Registy evaluation, work-
ers were equipped with pre-set speeds that, in this approach, guided bid values.

7Instructions for running experiments using Crossflow with the Bidding Scheduler https:
//github.com/ana-markovic/lid-msr/tree/master/bidding-modeldriven
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We have again applied a noise scheme to mimic real-world network fluctua-
tions during job execution, ensuring bidding costs slightly differed from actual
completion times.

Figures 18, 19 and 20 provide insights into the performance differences be-
tween the Bidding Scheduler and the Crossflow baseline. These charts illustrate
four factors: average execution time per job and worker speed configuration in
Figure 18, average worker usage per job and worker speed configuration in Fig-
ure 19 and average megabytes downloaded per job configuration together with
the average number of cache misses per job configuration in Figure 20.

To evaluate the performance of the Bidding Scheduler, we aggregated the
execution results per job configuration to observe how the bidding approach
impacts different workloads and per worker speed configuration to observe per-
formance variations in heterogeneous environments. The similar number of
repository cloning operations (±3) during execution for both schedulers, as il-
lustrated in Figure 20a, indicates that the observed speedup results from elimi-
nating the round of rejections that was outlined as an unnecessary overhead in
the Crossflow baseline, and improved worker usage. The amount of data load,
which is directly associated with cache misses, remains consistent across both
schedulers for unique workloads, as depicted in Figure 20b. The 400-1000MB
variances for repetitive ones correspond to the denoted difference in cache misses
and present 1-3% of the entire workload’s data load for respective configuration.
However, Figure 18 indicates that workflows using the Bidding Scheduler gener-
ally complete faster, with speedups ranging from 1.23 to 2.51 times on average
for different job configurations and from 1.56 to 3.30 times for different worker
speed configuration, on average.

The Bidding Scheduler optimises worker utilisation by considering the work-
ers’ physical characteristics and not only their locally available resources. It
creates a different work schedule based on various criteria, assigning jobs to
workers that promise the fastest completion, considering current downloading
and processing speeds and the time needed to complete previously queued jobs.
This aim to optimise worker utilisation is shown in Figure 19. For instance, the
Bidding Scheduler achieves 79.08% worker usage on average for environments
with one worker slower than the rest, while the Baseline scheduler only reaches
60.56%, as illustrated in Figure 19b. This indicates that workers remain idle
for 18.52% more time during execution with the Baseline scheduler, likely due
to waiting for the slow worker to complete processing large repositories. This
difference is even more prominent in environments with one slow and one fast
worker, where the Baseline scheduler’s average worker usage is 32.44% lower
than the one obtained with the Bidding Scheduler.

Analysing the Bidding Scheduler against the Resource-Registry approach,
particularly when the latter underperformed, reveals significant speedups for
workflows executed with the Bidding Scheduler. Table 6 provides an overview of
execution times, in seconds, for various worker speed configurations processing
the repetitive large job configuration. The most notable example is for the
execution environment with both slow and fast workers where the Resource-
Registry execution took 2218 seconds, significantly longer than the Baseline’s
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(a) Average total execution time (in seconds) per job configuration

(b) Average total execution time (in seconds) per worker speed configuration

Figure 18: Accumulated results for end-to-end execution time (in seconds)
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(a) Average worker usage per job configuration

(b) Average worker usage per worker speed configuration

Figure 19: Accumulated results for worker usage (percentage, illustrated as a
number between 0 and 1)
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(a) Average cache miss count per job configuration

(b) Average data load per job configuration (MB)

Figure 20: Accumulated results for cache misses (number) and data load (MB)
per job configuration
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701 seconds, with an average worker usage of 0.45. This suggests the slow worker
preferred the repetitive large job, resulting in the master routing all repetitive
repository jobs to the slow worker. Conversely, the same workflow with the
Bidding Scheduler completed in 342 seconds, with an average worker usage of
0.73, indicating a more balanced job distribution among worker nodes.

Jobs: repetitive large Bidding Resource-Registry Baseline
all equal 460 538 412
one fast 243 474 221
one slow 548 1534 636
slow fast 342 2218 701

Table 6: Execution times (in seconds) for experiments processing the repeti-
tive large job configuration with different worker speed configurations.

As stated in Section 3.2, our primary focus are LID MSR workflows running
in heterogeneous execution environments, where workers do not have the same
physical characteristics. Table 7 presents the execution times for workers with
varying network and processing speeds. The greatest speedup of 6.48 times com-
pared to the Resource-Registry approach occurs in repetitive workflows dealing
with large repositories. Misassigning a single repository repeated in later jobs
can greatly slow execution for Resource-Registry. Such misassignments reduce
worker usage to 0.29, leading to higher idle times for faster workers. In repetitive
workflows, though both Bidding and Baseline record similar cache misses (38-
40) and data load for repetitive large and repetitive small, the Bidding Scheduler
not only adheres to data locality principles but also distributes incoming work
based on other worker characteristics, leading to 6.31 times faster execution for
repetitive small and 2.05 times for repetitive large, with an average worker usage
increase of approximately 9%.

In scenarios involving workloads composed exclusively of unique repositories,
such as all diff equal, all diff small and all diff large, where the importance of
data locality is diminished (under the assumption that workers do not maintain
local copies of repositories acquired before execution), the Bidding Scheduler
demonstrates clear advantages in situations when the job is considered inten-
sive (i.e. repository is large and takes longer to clone and process). Specifi-
cally, in this case it achieves performance improvement of 1.99 times over the
Resource-Registry scheduler and 2.98 times over the Baseline scheduler. The
distinct nature of the repository jobs results in an identical number of cache
misses and a consistent volume of data transmission over the network. There-
fore, any observed improvements are attributed to more refined job allocation
strategies and enhanced utilisation of worker resources, underscoring the Bid-
ding Scheduler’s suitability for environments with diverse worker capabilities.
In situations where the repositories are of comparable size or the jobs to be pro-
cessed are minor (resulting in repositories requiring minimal time for cloning
and processing), the differences in execution times can be attributed to noise
and minor variances in execution.
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Workers: all equal Bidding Resource-Registry Baseline
all diff equal 187 604 1124
all diff large 464 925 1382
all diff small 59 65 71
repetitive large 342 2218 701
repetitive small 65 412 410

Table 7: Execution times (in seconds) for different job configurations running
in environments with all worker nodes having equal physical characteristics

6.4 Empirical Assessment of Scheduling Efficacy

To assess the validity of our controlled tests, we performed various experiments
in a real-world environment, engaging with factual repository analysis to observe
the behaviour of both the Bidding and Baseline schedulers.

6.4.1 MSR Example

We examine a workflow which queries GitHub for Git repositories containing
applications that rely on specific libraries, and we explore the frequency with
which these libraries are utilised together. More precisely, we investigate the in-
stances in which popular NPM libraries [4] for JavaScript co-occur in prominent,
large-scale projects on GitHub (e.g., repositories exceeding 500MB in size with
at least 5000 stars and forks) by examining package.json files in the repository
and analysing their dependencies, if present. To do this, we initially documented
all the target libraries found in [4]. Subsequently, we carried out the following
steps to assess the co-occurrences of various libraries:

1. Clone. Search GitHub for favoured large-scale repositories (e.g. repos-
itories larger than 500MB with at least 5000 stars and forks) and clone
them.

2. Checkout. Query the repositories found in the previous step for
package.json files and look into their dependencies.

3. Analysis. Calculate the number of times libraries appear together.

4. Report. Store the results in a CSV file.

6.4.2 Experimental Setup

For conducting a series of experiments executing the LID MSR example depicted
in the previous section, we established an AWS cluster using t3 instances, which
are AWS instances designed to provide a cost-efficient and scalable compute op-
tion for applications with variable workloads that don’t consistently require
high CPU usage. These instances are burstable, meaning they offer baseline
CPU performance but can “burst” above the baseline when needed, utilising
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accrued CPU credits [80]. This cluster was used to run experiments involv-
ing non-simulated workloads, where the time taken to complete incoming jobs
depended solely on the characteristics of the employed t3 instances. These ex-
periments were reliant on the bandwidth and processing speeds available to the
AWS instances, in conjunction with the responsiveness of the GitHub API. We
executed the workflow with both schedulers three times each, to gather results
and observe the nuances between executions. The source code for running these
experiments and reproducing results can be found in the artefact repository8 9.

Considering all workers were configured as t3 instances, we expect them to
possess approximately comparable physical characteristics, notably the network
and processing speeds, although these speeds were not known to us in prior exe-
cution. Before executing the experiment, each worker’s network and processing
speeds were calibrated by analysing the time taken to clone and process an ini-
tial 100MB repository. These calibrated values were then used as input to the
worker’s initial job estimation model. These calibrated speeds were necessary as
the workers needed to form their estimates for the first set of jobs. Configuring
network speed based solely on AWS t3 instance specifications could prove to be
suboptimal for several reasons. Notably, AWS provides only the upper limit of
network capabilities [81], without accounting for other critical factors influencing
the cloning process. These factors include the size of the repository, the number
of commits and branches, and the speed of the local disk [82, 83]. Consequently,
conducting preliminary tests on workers using a single repository ensures that
subsequent performance estimates are as accurate as possible. Upon completing
each job, workers were required to compute their latest network and processing
speeds. Network speed was calculated by dividing the repository size by the
time taken to download, while processing speed was determined by dividing the
repository size by the time taken to examine its contents. These newly obtained
speeds were then utilised to set the network and processing speeds for the sub-
sequent bid by calculating the historical average for all speeds determined from
previous jobs. We also considered a windowed average (average of last N jobs),
but this approach was not used in the end, due to the burstable nature of the
AWS t3 instances, which is characterised by periodic increases and decreases in
network and processing speeds. A windowed average, being sensitive to recent
data, would disproportionately reflect these temporary spikes or drops, leading
to inaccurate and unstable estimates. For example, if an instance experiences
an anomalously high burst in network speed during one recent job, a windowed
average over the last N jobs would misleadingly inflate the estimated network
speed for subsequent jobs.

8Instructions for running experiments dedicated to non-simulated MSR workflow using
the Crossflow Baseline https://github.com/ana-markovic/lid-msr/tree/master/baseline-
npm-realdata

9Instructions for running experiments dedicated to non-simulated MSR workflow using
the Crossflow with the Bidding Scheduler https://github.com/ana-markovic/lid-msr/tree/
master/bidding-npm-realdata
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MSR Bidding Baseline
run 1 2670 3575
run 2 2432 3544
run 3 2493 4183

Table 8: MSR execution times (in seconds)

6.4.3 Discussion of Results

The results obtained from this set of experiments, organised according to the
metrics outlined in Section 3.4, are presented in Tables 8, 9, and 10. In Table
8, it is observed that, when none of the workers have any locally downloaded
repositories, the Bidding Scheduler completes execution with a 25.3%-40.4%
reduction in time compared to the Baseline. For instance, during run3 this
difference is greatest, with the Bidding Scheduler setup completing in 2493.2
seconds whereas the Baseline completes in 4183.5 seconds. Conversely, the
lowest acceleration was noted for run1 where the Bidding Scheduler finished
in 2670.5 seconds compared to the Baseline’s 3575.55 seconds.

To further explore these findings, we should evaluate the data presented in
Tables 9 and 10. In run1, the workflow using the Bidding Scheduler down-
loaded 332935.90 MB, whereas the same workflow with the Baseline scheduler
transferred 891165.59 MB. This equates to 205 and 405 cache misses in Table
10, respectively, highlighting a significant reduction of 62.6% in data load due
to a decrease of 49.4% in cache misses. In run3, as shown in Table 10, the
Bidding Scheduler resulted in 200 fewer repository clones, contributing to a de-
crease in downloads by 559546.07 MB, as indicated in Table 9. Consequently,
since all the workers can be considered equal due to running on the same AWS
VMs, the Baseline scheduler demonstrated a 40.4% longer execution time owing
to higher data transfer rates by approximately 62.9% compared to the Bidding
Scheduler, indicating that the Bidding Scheduler effectively optimises the perfor-
mance of LID MSR workflows by enhancing data locality. These findings align
with insights obtained from the results obtained in a controlled environment,
collectively demonstrating the efficacy of the Bidding Scheduler in real-world
deployments and affirming the validity of our controlled experimental setup.

Figure 24, located in the appendix of this thesis, presents the aggregated
results detailing the frequency with which popular npm libraries are used in
conjunction. These results are derived from the comprehensive workflow de-
picted in Section 6.4.2. The table serves as a resource for understanding the
patterns of library co-usage, providing granular data that can be utilised for
nuanced analysis. However, it is not essential for further research in the domain
of job scheduling for data processing platforms.
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MSR Bidding Baseline
run 1 332935.90 891165.59
run 2 325461.08 847802.57
run 3 330048.70 889594.77

Table 9: Data load (MB)

MSR Bidding Baseline
run 1 205 405
run 2 191 394
run 3 186 386

Table 10: Cache miss count

6.5 Threats to Validity

The implementation of the Bidding Scheduler approach, though advantageous
in several scenarios, presents specific risks and limitations that require careful
consideration. This section discusses threats to the validity of the empirical
assessment of the Bidding Scheduler, following the structure proposed by Wohlin
et al. [64]: conclusion validity, internal validity, construct validity, and external
validity.

6.5.1 Conclusion Validity

Conclusion validity refers to the degree to which conclusions drawn from the
data are justified.

• Limited number of configurations. The experimental results were
derived from a fixed set of repository workloads and worker configura-
tions. Although these combinations were systematically constructed to
vary job size and worker speed, the conclusions are limited by the absence
of statistical tests or repeated trials.

• Simplified timing model. Job execution times were estimated from
worker parameters and controlled download/processing speeds. This ab-
stracted model facilitates controlled comparison but may lack the fidelity
required to capture certain real-time scheduling dynamics.

6.5.2 Internal Validity

Internal validity concerns whether observed performance differences can be
causally attributed to the use of the Bidding Scheduler, rather than to un-
controlled or confounding factors.

• Queueing threshold interaction. The use of a configurable queue
threshold to limit how many jobs a worker can queue before triggering new
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bids introduces temporal coupling between worker speed and scheduling
responsiveness. This may create bias in favour of faster workers who
deplete their queues more quickly.

6.5.3 Construct Validity

Construct validity refers to how well the experimental design measures the con-
cepts it intends to evaluate, in this case, performance, fairness, and locality-
awareness.

• Locality measurement. The evaluation uses cache miss count and data
transferred (MB) as proxies for data locality. While these are meaningful
indicators, they may not fully capture finer-grained aspects of data affinity,
such as checking out a specific branch or commit on a repository that is
already available locally.

• Workflow realism. The jobs represent codebases from different repos-
itories with varying levels of overlap. While this captures many aspects
of locality-intensive workloads, the master’s lack of global knowledge and
the job-level granularity may not reflect more complex interdependent task
structures found in other domains.

6.5.4 External Validity

External validity addresses the extent to which results generalise beyond the
specific testbed.

• Generalisation to other workflows. The evaluation focuses on MSR
workloads that involve repeated access to potentially remote repositories.
In scenarios with very short-lived or homogeneous jobs, the overhead of
bidding may outweigh its benefits, limiting the scheduler’s applicability.

• Real-world variability. Although network variability was emulated via
noise injection, the testbed remains a simulation of distributed behaviour.
Factors such as hardware heterogeneity, concurrent user activity, or VM-
level contention were not included and may influence scheduler behaviour
in real deployments.
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7 Enhancing the Bidding Scheduler with Self-
correcting Workers

The Bidding Scheduler is argued to be advantageous for job scheduling of large
and computationally intensive jobs in heterogeneous environments, particularly
within the domain of LID MSR workflows. However, this approach is not with-
out its inherent challenges. In the previous chapter we assumed that developers
could provide an accurate formula for estimating the job completion time, as
outlined in Section 6.2. However, this is not always feasible. In many workflows,
the speed at which jobs are processed is influenced by various job attributes,
and developers might not always have the precise formula needed. Additionally,
if the workflow runs on the cloud, the performance of virtual machines might
vary, as noted by Schroeder and Harchol-Balter [84]. The main problem here is
the gap between the actual time a job takes to complete and the time estimated
by a worker node, a problem stemming predominantly from estimation errors
as opposed to normal system throttling. When the formulas for estimating job
completion time are not accurate, it affects the scheduling process and can lead
to inefficient use of resources and delays in completing jobs. These issues can
significantly impact overall system performance, making it less efficient in using
computational resources.

To illustrate, consider a scenario where a workflow needs to be processed
within a specific time frame using heterogeneous workers. If the estimated
time (te) for repository (r) given by a slow worker (ws) is lower than all other
estimations provided by other workers, due to the inaccurate estimation for-
mula together with the slow worker having least jobs pending processing, the
scheduling system might assign the (r) to (ws), regardless of the fact that (te) is
significantly less than the actual execution time (ta), causing delays. Conversely,
overestimations might lead to reduced worker usage percentage for performant
workers, which is both costly and inefficient. Such discrepancies are particu-
larly problematic in environments requiring precise job scheduling and resource
optimisation to maintain high throughput and low latency.

A significant challenge lies in the reliance on the developer’s domain knowl-
edge to provide accurate formulas for bidding within the context of the im-
plemented workflow. The presumption here is that the developer must have
comprehensive knowledge of the domain to devise the correct formula. How-
ever, this formula is not always evident or formally documented. Take, for
example, the process of verifying code style to ensure Java code complies with
specified coding standards. It is reasonable to assume that the time required for
such a task is closely linked to the volume of code, measured in lines. Neverthe-
less, this relationship is typically absent from the documentation accompanying
the libraries performing the style checks. Consequently, the developer might
resort to an empirical approach, running the checkstyle on a limited number of
repositories, collecting data on line counts and execution times to establish a
correlation.

However, this method is fraught with potential inaccuracies. The sample

88



size of repositories may not be sufficiently comprehensive to derive an accurate
formula. For instance, a limited dataset might not capture the variability in
code complexity, coding patterns, or specific library behaviour. Furthermore,
empirical methods may not account for outliers or edge cases, leading to skewed
estimations. Additionally, workers with different physical characteristics, such
as varying processing power and memory capabilities, may necessitate distinct
formulas, as they operate at different speeds. This variability introduces fur-
ther complexity into the estimation process. For example, a high-performance
worker may process code style verification significantly faster than a less pow-
erful one. Therefore, a one-size-fits-all formula may not suffice, as it does not
account for the varying execution environments, even though it is often man-
dated in master/worker architectures. In such architectures, the deployment
involves a single program executing on the master node and another on each
of the worker nodes. Only these two programs are dispatched to the execution
environment, with the worker program being replicated as many times as nec-
essary to achieve parallelism in execution. This approach does not allow for
the manual adjustment of processing speeds to account for individual worker
characteristics unless the developer possesses detailed knowledge of how these
physical attributes translate into processing performance. Therefore, the lack
of specific control over worker speeds can result in suboptimal performance and
inefficiencies in execution.

In environments where job scheduling is critical, such as real-time data pro-
cessing or large-scale analysis tasks, the inaccurate estimation of job execution
times can lead to cascading inefficiencies [59]. These inefficiencies can manifest
as increased latency, resource misuse, and ultimately, reduced overall system
performance with increased monetary costs for cloud deployments. Moreover,
the scalability of the Bidding Scheduler is compromised, as it becomes challeng-
ing to maintain consistent performance across diverse workloads and systems.

7.1 Background: Scheduling Jobs with Estimation Errors

While auction-based schedulers are suitable for distributed environments, it
must be noted that almost all of those reviewed in Section 6.1.2, with the ex-
ception of [74], fail to account for differences between the estimated execution
times and the actual times observed. In other words, they do not consider the
variation between the performance that workers promise in their bids and what
they actually deliver, which may not always be the same.

In scenarios where job processing times are known beforehand, the Shortest
Remaining Processing Time (SRPT) policy is proven to be optimal. This was
demonstrated by Schrage [85], who showed that SRPT minimises the number of
jobs in the system at any given time. The SRPT policy prioritises jobs with the
smallest remaining processing time. It is a pre-emptive strategy, meaning that
a new job with a shorter processing time can interrupt the currently running
job.

However, assuming that job processing times are known exactly is often im-
practical [86]. For distributed data processing systems, while job sizes might be
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known, the exact processing times may not be. Schroeder and Harchol-Balter
[84] point out that this is partly due to the latency inherent in network data
transmission and the acknowledgment process. This necessitates the use of es-
timated processing times. Additionally, the performance of virtual machines,
commonly used in web servers, can vary, further complicating accurate time
estimations. Estimation errors can arise under these conditions, creating po-
tential issues for scheduling policies that depend on known processing times,
potentially leading to performance problems [86]. This becomes especially crit-
ical in distributed systems where users pay for processing time, where demand
for computation resources exceeds availability, or where jobs must be processed
as quickly as possible [87].

Research on scheduling approaches for distributed systems that consider er-
rors in job processing time estimations is limited [88]. Lu et al. [58] designed
a simulator to test various scheduling strategies, including SRPT, and deter-
mine the error threshold that significantly impacts performance. Dell’Amico et
al. [59] demonstrated how underestimating job processing times can severely
degrade performance, especially in distributions with a few large jobs among
many small ones. If estimation errors scale with job size, underestimating large
jobs can result in long delays for smaller ones.

Mailach et al. [86] introduced a scheduling method for distributed environ-
ments that classifies jobs based on estimated processing times. The estimated
processing times are given the lower bound of 1 unit of time for short-running
jobs, and the upper bound of 106 units of time for extremely large jobs. This
method aims to overcome the limitations of SRPT, such as underestimated large
jobs blocking smaller jobs. When a job arrives, the scheduler compares its esti-
mated processing time with that of recently processed jobs and assigns it to a
class. Shortest jobs are prioritised to be processed first. Extremely large jobs
are given the lowest priority to avoid delaying smaller jobs.

In [87], a scheduler for distributed and heterogeneous environments was pro-
posed, which estimates the time required by each worker to complete jobs based
on historical performance data (using k-Nearest Neighbors). It also calculates
the accuracy of these predictions by estimating the likely error for a job on a
specific worker. Two strategies were tested: one prioritising execution of jobs
with minimal estimation error and the other prioritising jobs with maximal es-
timation error. The former assumes the best case scenario with the minimum
estimation error being zero, thereby ignoring the predicted estimation error in
the estimated job execution time. To the contrary, the latter applies the maxi-
mum amount of predicted estimation error to the estimated job execution time.
The results showed that considering estimation errors when allocating work led
to more efficient scheduling compared to ignoring these errors.

The work in [58, 59] outlines the importance of having the estimated pro-
cessing times of jobs in distributed systems with minimal estimation errors
to prevent performance degradation. It is therefore crucial to predict the re-
source/performance requirements of jobs as accurately as possible before they
are assigned, so that suitable resources can be allocated for their execution [89].
Predicting these requirements is a complex task due to the continually changing
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and diverse nature of modern distributed systems [90].
Regarding the prediction of job completion times, a user-guided resource

prediction policy is discussed in various studies [74, 91, 60]. This technique is
generally unreliable and can often lead to significant overestimation or underes-
timation of resources [61]. An alternative approach involves a feedback-guided
job modeling scheme, as outlined in [89]. In this method, when a new job is
accepted, its job model is created and compared with previously executed jobs,
before being classified based on the detected similarity [92]. The new job’s re-
source requirements are predicted based on this similarity, and the job is then
scheduled for execution. After the job is executed, its runtime data is stored in
an Execution History database, which is used to detect similarities among jobs
through statistical methods. As the Execution History accumulates data, the
scheduler becomes more accurate in predicting resource requirements for new
jobs, leading to more optimal resource allocation without human intervention.

Similarly, Sen et al. propose a job scheduling approach for distributed sys-
tems based on clone detection [61]. Their objective is to use historical execution
data to predict resource requirements and completion times for new jobs iden-
tified as “clones” of previously executed jobs. Like the feedback-guided job
modelling schemes in [89] and [92], this system identifies “exact clones” from
historical data. An “exact clone” refers to a new job that is identical to a pre-
viously executed job in terms of resource requirements and CPU cycles. The
algorithm calculates the expected completion times for each job-resource pair-
ing and prioritises those that minimise execution time while maintaining cost
efficiency. When jobs are executed on “favoured resources” — those that closely
match the historical execution environments of their clones — the scheduler is
effective because predicted and actual execution times align closely. However,
if jobs are assigned to non-favoured resources, the actual completion time may
differ significantly due to varying resource capabilities.

Ali et al. [93] introduces a Prediction Engine to estimate the runtime and
resource requirements (CPU, memory, and bandwidth) for jobs submitted to
a grid computing system. The engine aims to improve resource allocation effi-
ciency by enabling grid schedulers to select optimal execution sites. The predic-
tion engine uses a history-based approach to estimate job runtimes. It operates
on the principle that jobs with similar characteristics are likely to have similar
resource requirements. Historical data from previously executed jobs is stored
and analysed to identify patterns and similarities, through a notion of a simi-
larity template, which includes attributes that strongly influence job runtimes.
Jobs get classified based on similarity templates into an equivalence class, the
predicted runtime is calculated using statistical measures (e.g. mean or linear
regression) of runtimes for jobs in the same class. While maintaining historic
records similar to [89, 61, 92], this approach offers both centralised and decen-
tralised history based on whether there is a single database that maintains the
entire history for all execution sites or each execution site maintains its own job
history and estimates runtimes locally.

Reig et al. [62] propose a scheduler that focuses on a prediction system to
improve the allocation of cloud resources, ensuring jobs meet their deadlines
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while adhering to Service Level Agreements (SLAs). Upon receiving a job, the
scheduler queries the Prediction System and it decides, depending on the on
the policy being used and resources’ status, how to allocate resources to the
incoming jobs. The Prediction System is in charge of predicting the minimum
resource requirements needed to meet SLAs. The Prediction System leverages
machine learning models for predicting job execution times using historical data.
Completed job data — covering job specifications, resource allocations, and
execution times — is stored in the Prediction System to train prediction models
continually.

Bohlouli and Analoui [94] describe a centralised prediction model that
utilises execution history to estimate resource requirements for grid comput-
ing jobs. This execution history database is employed to identify similar jobs
and predict resource demands via statistical methods such as linear regression
and similarity-based calculations. Historical job attributes are normalised for
consistency, and a similarity algorithm determines the distance between new
job attributes and those stored in the history. Based on the closest matches,
resource usage estimates are derived using weighted averages or regression mod-
els. The execution history database is updated regularly to reflect new data,
ensuring that the prediction model evolves and improves its accuracy over time.
Duplicate or near-identical entries are purged to maintain database efficiency
and relevance.

7.2 The Feedback-Based Estimator Approach

The Feedback-Based Estimator approach is an algorithm designed to optimise
job scheduling and mitigate estimation errors within distributed systems depen-
dent on time predictions. This approach utilises a self-correcting worker mech-
anism, which dynamically refines prediction formulas based on historical data.
The sequence diagram depicted in Figure 21 illustrates the Feedback-Based Es-
timator approach by presenting an extension to the Bidding Scheduler. This
extension introduces a series of operations executed by worker nodes to collect
metrics related to actual executions and iteratively enhance their estimation
formulas.

Building upon the Bidding Scheduler explained in Section 6.2, the Feedback-
Based Estimator approach modifies the terminal phase of the bidding process:

1. Worker nodes job processing
Upon the arrival of jobs in the worker node’s dedicated queue, the worker
node proceeds to sequentially process each job. The worker node dequeues
an assigned job, processes it and submits the processing results back to
the master node.

2. Collecting execution metrics and storing historic data
In addition to processing the job and reporting the results back to the
master node, the worker node is responsible for collecting metrics about
the job’s execution. Such metrics include, but are not limited to, actual
processing time and relevant data from the job model, such as repository
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size, file or line count. These data points are gathered and stored as his-
toric data within the worker node’s working memory or local storage. The
historic data serves as a crucial resource for future estimations, enabling
the worker node to maintain a comprehensive log of its performance over
time.

3. Analysing historic data and updating the estimation formula
The final aspect of the worker node’s responsibilities involves the con-
tinuous improvement of its job execution time estimation formula. By
analysing the historic execution data, the worker node can identify dis-
crepancies between the estimated and actual processing times. Various
analytical methods can be employed to update the estimation formula.
For instance, the worker node might use a historic average of past pro-
cessing times to derive a more accurate mean estimation. Alternatively,
more sophisticated methods such as linear regression can be applied to
identify linear relationships between job attributes and processing times,
thereby developing a predictive model. In other instances, machine learn-
ing techniques such as random forest might be utilised to capture non-
linear relationships within the dataset. The worker node iteratively refines
its estimation formula based on the chosen method, thereby minimising
prediction errors and enhancing the precision of future job time estima-
tions.

Process description

As stated in the previous section, developers might face situations where they are
uncertain about the exact bidding formula, such as during static code analysis,
where the estimate might be linked to line count but lacks a clear-cut calcula-
tion method. Still, accurately estimating the time required to complete jobs is
crucial for successful completion of the workflow with effective resource and cost
management as described in Section 7.1, which also outlines some approaches to
improve these estimations. To improve the accuracy of time estimations within
the Bidding Scheduler, we propose a self-correcting worker approach that relies
on historical data to refine prediction formulas dynamically and optimise job
scheduling through reducing estimation errors.

When job attributes show a correlation with processing time that is not
straightforward or linear, simple linear estimation methods fall short. For ex-
ample, job attributes might affect processing times in complex ways due to
various factors in the execution environment. To address this, we introduce a
Feedback-Based Estimator (fbe) that can adjust estimation models based on
past performance. Similar to the approach used in Section 6.4.2, where workers
calculated the average download speed from past tasks to estimate the time
needed for future repository cloning, workers in this approach can use historical
data to adjust their future bids.

The Feedback-Based Estimator can be a simple average of speeds from previ-
ous runs or a more complex model such as linear regression or machine learning
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Figure 21: Sequence diagram showing job scheduling with the Bidding Scheduler
and self-correcting workers
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(ML). ML models, for instance, can predict network speed spikes that are in-
fluenced by external environmental factors rather than specific job attributes.

The implementation of the Feedback-Based Estimator is designed to be flex-
ible, allowing developers to choose whether and which type of Feedback-Based
Estimator to apply based on the specific requirements of their workflows. This
flexibility enables the integration of the model into various project scenarios
without being restricted to a single predictive method. As a result, developers
can benefit from a more accurate prediction mechanism that can be tailored to
their unique needs.

A critical aspect of this approach is using the dedicated queue threshold (n)
for each worker node within the Bidding Scheduler, described in Section 4.2.
This threshold prevents workers from bidding on additional jobs as soon as all
workers reach (n) queued jobs. This ensures that workers focus on complet-
ing current jobs and gathering valuable data to improve future time estimates.
Without this mechanism, workers would continually bid for new jobs, leading to
long queue lists and inaccurate estimates due to a lack of learning from current
and queued jobs.

The description below breaks down the most crucial steps in the bidding
process with self-correcting workers. A detailed example of this approach is as
follows:

Initial bidding and job assignment

• Step 1.1: Initial bidding. Workers’ queues are empty. The master
publishes one job for bidding. Each worker in the system submits a bid
for the published job. The bidding process encompasses an estimation
formula provided by the developer. This formula can be based on job
attributes such as the line count of code, the size of input data, etc., to
predict the processing time for each job.

• Example scenario:

– Worker A, B, and C all bid for Job 1, estimating it will take 3 hours
to process 900000 lines of source code.

– Worker A wins the job.

This step loops until all of the workers have enough queued jobs (i.e., until
all of their queues reach the dedicated queue threshold (n)).

Pausing bidding

• Step 2a.1: Reach dedicated queue threshold. The system imposes a
pause on further bidding once all workers reach a predetermined maximum
threshold of queued tasks.

• Example scenario:

– Assuming the dedicated queue threshold is set to 3 jobs, Worker A,
B, and C now each have 3 or more jobs queued.
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Execution and monitoring

• Step 2b.1: Job execution. Workers execute the jobs assigned to them.
During execution, each worker monitors the actual processing time and
records additional job attributes.

• Example scenario:

– Worker A completes Job 1 in 3.5 hours.

– Worker B completes Job 2 in 3.8 hours.

– Worker C completes Job 3 in 5.2 hours.

• Step 2b.2: Data collection. The actual processing times (3.5, 3.8, and
5.2 hours) are collected and compared against the initial estimates (e.g. 3,
4, and 5 hours) in each of the workers, respectively. Discrepancies between
estimated and actual times are recorded.

Updating the estimation formula with the Feedback-Based Estimator

• Step 3.1: Calculation. Each of the workers calculates its own new
estimation formula based on the Feedback-Based Estimator. This could
be a simple average or involve complex statistical methods such as lin-
ear/polynomial regression or machine learning models.

• Example scenario: Suppose the Feedback-Based Estimator is incor-
porated through the application of linear regression, utilised to forecast
subsequent bids based on the historic data. Each worker comes up with
its own estimation formula. For instance:

– Worker A: a× lineCount + a1

– Worker B: b× lineCount + b1

– Worker C: c× lineCount + c1

Resuming bidding with updated estimation The bidding is resumed once
one of the workers’ queues reaches is below the dedicated queue threshold.

• Step 4.1: Updated bidding. Workers now incorporate their new es-
timation formulas, dynamically acquired through their Feedback-Based
Estimators, into their future bidding estimates to minimise prediction er-
rors.

• Example scenario:

– Worker A bids for Job 4 using its own estimation formula, estimating
that for Job 4 it would need x number of hours.

– Worker B bids for Job 4 using its own estimation formula, estimating
that for Job 4 it would need y number of hours.
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– Worker C bids for Job 4 using its own estimation formula, estimating
that for Job 4 it would need z number of hours.

– Assuming that x > y > z, Worker C wins the bid. This bidding
continues until all of the workers queues reach the dedicated queue
threshold (n).

Iterative improvement

• Step 5.1: Continuous learning. The bidding-pausing-calculating cycle
is repeated iteratively. Each cycle refines the accuracy of the time estima-
tion process. With each iteration, discrepancies between estimated and
actual processing times should decrease as the system learns and incorpo-
rates new data.

• Example scenario:

– After several iterations, the Feedback-Based Estimator approaches
a point where time estimates become sufficiently accurate, thereby
improving the overall workflow efficiency.

By following these steps, the self-correcting worker approach leverages histor-
ical data and Feedback-Based Estimators to refine job time estimations continu-
ously. This approach aims to ensure that time predictions become progressively
accurate in order to optimise resource usage and overall system performance.
The fact that some aspects of self-corrective behaviour can be tailored by the de-
veloper, makes this approach integrable into various workflow scenarios, thereby
ensuring scalability and adaptability across diverse technological environments.

An important consideration when designing prediction models is the trade-
off between model complexity and generalisability. More expressive models can
potentially fit past observations more closely, but they also risk overfitting —
capturing noise rather than true patterns — and may fail to generalise to future
inputs. Simpler models, on the other hand, may underfit the data, missing
important structure [95].

This phenomenon is well understood in the machine learning literature and
is often described through the bias–variance trade-off. The total prediction
error of a model, commonly measured using mean squared error (MSE), can be
decomposed as:

MSE = Bias2 +Variance + Irreducible Error

Bias refers to error introduced by overly simplistic assumptions (e.g., assuming a
linear relationship when a more complex pattern exists), while variance reflects
sensitivity to fluctuations in training data. High-bias models tend to be stable
but inaccurate, while high-variance models may fit past data well but perform
poorly on unseen data [96].

In this chapter, each worker employs a Feedback-Based Estimator that up-
dates a linear model of job execution time (based on repository line count) using
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only its own history of completed jobs. This estimation model is continually re-
fined via linear regression as more data becomes available. The approach is
fully decentralised: workers maintain separate historical views of job execution
and evolve their prediction models independently, without any shared mem-
ory or coordination. This supports scalability and robustness in asynchronous
distributed environments, where hardware variability, network bandwidth, and
workload distribution can differ significantly across nodes.

The significance of this design lies in its combination of simplicity, adaptabil-
ity, and autonomy. By enabling workers to learn from past job executions and
customise their cost estimators based on local conditions, the system promotes
more truthful and precise bidding over time. This, in turn, leads to more efficient
scheduling decisions, improved load balancing, and faster job completions. The
online nature of updating the Feedback-Based Estimator’s model ensures that
the model evolves with changing workloads, while remaining computationally
inexpensive.

While linear regression provides a strong baseline, the approach could be
extended with adaptive model selection. For instance, each worker could main-
tain a sliding window of recent jobs, fit several candidate models (e.g., linear,
quadratic, and cubic) periodically, and select the best-fitting one based on MSE
or adjusted R2. To prevent overfitting, selection could incorporate complexity
penalties or require a minimum improvement threshold before accepting a more
complex model. Such enhancements would allow estimators to remain both
accurate and generalisable as job patterns evolve.

7.3 The Feedback-Based Estimator Evaluation

This section aims to evaluate the impact of the Feedback-Based Estimator on
estimation errors and job distribution within a single workflow when the precise
estimation formula is either unknown or assumed. The setup for self-correcting
workers makes certain assumptions to specifically examine the effectiveness of
the Feedback-Based Estimator approach, deliberately excluding considerations
of worker heterogeneity in terms of internet speeds that affect the data transfer
times. Forecasting internet speeds required for repository cloning can experi-
ence unpredictable fluctuations, such as spikes and drops, necessitating complex
machine learning models for accurate predictions and estimation error minimisa-
tion. Therefore, this setup focuses on estimating and correcting the predictions
of processing time, which involves simpler predictive logic.

The primary assumption is that all workers maintain uniform internet
speeds. This assumption ensures that data locality remains a critical factor,
but it negates the adverse effects of any worker’s ability or inability to accu-
rately estimate data transfer times, as all workers would require approximately
the same amount of time to clone an identical repository. With workers shar-
ing a common initial formula for estimating data transfer times, any estimation
error, denoted as te seconds, would manifest uniformly across workers. In this
scenario, for the end-to-end execution time it is still crucial whether a worker
has already cloned the repository, influencing whether the transfer time for that

98



repository is zero or a positive value.
Consequently, assuming consistent computation performance across workers,

we assessed the performance of our approach using the simpler-to-predict task
of analysing source code to detect code quality issues, such as indentation con-
sistency, adherence to naming conventions for variables, classes, and methods,
and the identification of empty methods or catch blocks.

7.3.1 MSR Example

Let us describe a workflow designed to conduct historical code analysis of com-
mits across large-scale public Java repositories, with the objective of identifying
trends in code warnings, thereby providing insights into the evolution of code
quality in the repositories under scrutiny. Initially, this workflow queries GitHub
for repositories containing Java code and investigates their commit histories to
generate jobs for processing. Each job is conceptualised as a pair {repositoryn,
commiti}, which will be handled by a worker through the following steps:

1. Clone. Checkout the repository, unless there is a local copy of it already
stored in the local filesystem.

2. Checkout. Check out the specific commit to be analysed.

3. Analysis. Execute the code analysis on the source code to identify trends
in warnings.

4. Report. Record the identified trends into a CSV file.

7.3.2 Experimental Setup

The initial experiments were controlled, which is common approach in research
focusing on estimating processing time and reducing estimation errors, where
works in [86, 88, 58, 59, 61, 62] all rely on simulated environments to evalu-
ate the effects of estimation errors. The experimental setup controlled several
components of the system model depicted in Section 4.2. Controlling workers’
processing speeds, the setup included total of five worker nodes with varying
speeds: one fast, two slow, and two average workers, all managed by a master
node. The source code for running this experiment is presented as a research
artefact10.

To test the self-correcting workers, we prepared a job configuration consisting
of 120 repositories. These repositories were comparable to those described in
Section 4.3.2 and were randomly selected from GitHub’s API response for public
Java repositories larger than 500MB. The assumption is that larger repositories
have a more extensive codebase that take longer to analyse compared to smaller
repositories, thereby benefiting more from reduced estimation errors.

10Instructions for running the MSR workflow with and without self-correcting workers:
https://github.com/ana-markovic/lid-msr/tree/master/bidding-cf

99

https://github.com/ana-markovic/lid-msr/tree/master/bidding-cf


The repositories from the job configuration were downloaded by worker
nodes, and their commit histories were analysed to create realistic job mod-
els for predicting completion time. This lead to creation of additional jobs to be
processed during workflow execution, in form of {repositoryn, commiti}. Since
our main focus was on observing and correcting time estimations for processing
the repositories, we controlled the processing speeds of worker nodes and their
respective processing times.

Instead of actual source code processing, we simulated the execution of this
task by introducing controlled delays (sleep intervals) that represented the ac-
tual processing time. This simulated processing time was calculated as a func-
tion of predefined worker processing speed and lines of code, with added vari-
ations to closely mimic real-world conditions. To introduce variances in the
simulated processing time, we used a noise level parameter. For instance, by
setting a noise level to 10%, the simulated processing time was constrained
within a specified range: tp = (0.95± 0.05)× fn(processingSpeed, lineCount).
Worker speeds were set and controlled as described in Section 4.3.1.

Workers used an initial estimation formula to predict the time required to
complete each job based on the number of lines in the source code. This for-
mula was intentionally different from the predefined processing speeds of worker
nodes to reflect a scenario where the developer formulated the estimation from
a limited dataset. Predefined processing speeds were assigned to each worker
type — “fast,” “slow,” and “average” — similar to the setup used for network
and processing speeds in the Resource-Registry and Bidding Scheduler systems,
as discussed in Sections 5.2 and 6.4.2.

Due to the inherent unpredictability in processing times and the expected
deviations from estimated values, we incorporated a self-correcting mechanism
to improve the precision of performance predictions. To achieve this, we em-
ployed a self-correction approach grounded in linear regression. Although con-
sidering the use of an average of past execution times or a windowed average,
we recognised that predicting future task execution times using these averages
is prone to errors when faced with a diverse set of jobs and workers [87]. In
this context, not only were the workers varied, but the repositories’ source code
also differed significantly, ranging from tens of thousands to millions of lines
of code. While size generally indicates the extent of the codebase, repositories
may contain binary files and extensive code metadata, such as commit histories
and branch details. Moreover, although neural networks and support vector
machines can model job execution times, they typically require extensive prior
data and training [97], rendering them unsuitable for LID MSR workflows that
necessitate ad-hoc model re-creation and training during execution with limited
datasets. The chosen linear regression method differs, as it allows for the cre-
ation of a new estimation formula ad-hoc, immediately after a worker completes
processing a repository and execution details become available. Consequently,
we utilised linear regression to iteratively refine the initial estimation formula by
continuously adjusting it based on observed performance metrics. This approach
seeks to align predicted processing times with the specific speeds predetermined
for each worker type. The linear regression model functions by analysing the
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discrepancies between estimated and actual processing times and subsequently
adjusting the estimation formula to mitigate these discrepancies over time.

7.3.3 Discussion of Results

The evaluation was conducted by executing multiple runs of the code analysis
example described in Section 7.3.1 while controlling the system model as ex-
plained in the previous section. The experiments were executed both with and
without the self-correction mechanism in place. This dual approach enabled a
comparative analysis of worker performance under the two different configura-
tions.

In configurations lacking the self-correcting mechanism, the duration re-
quired for each worker to analyse code — calculated based on the total lines
of code within the repository and the worker’s processing speed, often exhib-
ited significant discrepancies from the estimates provided for that repository.
This misalignment resulted in overall inefficiency in job completion. In contrast,
the application of the self-correction mechanism demonstrated marked improve-
ments in alignment between estimated and actual processing times, evidencing
the efficacy of linear regression in bringing performance closer to the expected
benchmarks. As anticipated, an increase in the percentage of noise correlates
with more pronounced variances in processing times for identical repositories.
Consequently, this diminishes the advantages derived from the self-correcting
mechanisms.

The workers were instructed to analyse four commits of each repository
present in the job configuration. The noise levels were ranging from 5 to 20%.
To evaluate the results, we turn to the data illustrated in Table 11, which
compares metrics obtained from executions with and without the self-correction
mechanism, under conditions of a 10% noise applied to the actual processing
time. Initially, our observations reveal an approximate 13% increase in speed
when the self-correction mechanism is employed. The workflow incorporating
self-correction transferred an additional 2455 MB of data (2% of the size of the
dataset), a consequence of encountering seven more cache misses. Since both
sets of executions operated under the same scheduler, we can conclude that
the variations in execution times are attributable to differences in job schedules
produced with and without the self-correcting workers and their Feedback-Based
Estimators.

Total execution time (s) Data load (MB) Cache misses
no correction 45 758 149 535 193
with self-correction 40 176 151 990 200

Table 11: Comparison of metrics for executions with and without self-correcting

To examine this hypothesis, assuming higher line counts correspond to more
complex and time-consuming jobs, Table 12 details the number of lines pro-
cessed by each worker, revealing that the fast worker analysed 28% more lines
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Figure 22: Average processing time and waiting in queue time

when the self-correction logic was applied, despite the increased data load. Con-
versely, slower workers processed 26,009,682 fewer lines overall, indicating that
they were assigned less complex jobs. This suggests that their assignments were
better matched to their capabilities under the self-correcting workflow. Addi-
tionally, Figure 22 highlights two crucial performance indicators: the average
processing time for jobs remained consistent between the two configurations -
implying comparable physical characteristics and workloads among workers -
yet, with self-correcting workers, the average queue time (time after job allo-
cation but before processing begins) decreased by 36%. These variations in
job allocation can be attributed to the reduction of estimation errors resulting
from the refined estimation formula, which leverages historical execution data
over time, as illustrated in Figure 23. The red lines in this figure represent the
discrepancies between estimated and actual processing times for two workers
within the execution environment, whereas the blue lines depict these discrep-
ancies when the Feedback-Based Estimator is applied. Clearly, the estimation
errors diminish with an increase in the number of jobs processed by each worker
node over time.

No correction With self-correction
slow worker 1 48 661 595 36 216 561
slow worker 2 47 798 969 34 234 321
average worker 1 81 455 695 83 988 390
average worker 2 86 675 345 77 706 130
fast worker 114 486 605 146 925 659

Table 12: Number of lines processed per worker with and without self-correcting
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(a) Worker 1

(b) Worker 2

Figure 23: Estimation error (percentage) change over the number of processed
jobs

Furthermore, it should be noted that the speed of the fastest worker signif-
icantly influences the start/pause bidding dynamics. The fastest worker, likely
reaching the dedicated queue job threshold sooner than other workers, prompts

103



a more frequent initiation of the bidding process. Consequently, average and
slower workers require additional time to adjust their bids accurately. This
adjustment process involves updating the estimation formula upon job comple-
tion, but misaligned bidding occurs whenever the threshold set by the fastest
worker triggers the process. Thus, the system necessitates an overhead of (x )
jobs to recalibrate, resulting in less pronounced speed improvements for smaller
workloads compared to larger datasets. For instance, processing 120 repositories
with four commits each yields an approximate 13% speedup; larger datasets are
likely to exhibit even more significant performance gains.

7.4 Threats to Validity

This section reflects on the threats to validity associated with the evaluation of
the dynamic estimation model for self-correcting workers, following the standard
classification proposed by Wohlin et al. [64]: conclusion, internal, construct, and
external validity.

7.4.1 Internal Validity

Internal validity refers to whether the observed improvements can be attributed
to the dynamic estimation model rather than confounding factors.

• Consistent baseline and comparison. Both configurations with and
without the self-corrective models were performed under the same sched-
uler and job definitions. However, since worker speeds and initial esti-
mation parameters were predefined, residual effects from these values may
confound the results — especially during the early stages before the model
converges.

• Fast-worker trigger effect. Faster workers reach their dedicated queue
thresholds earlier, which influences the timing of when bidding resumes.
This dynamic may unintentionally favour faster workers in the early stages
of learning, impacting the rate of convergence for slower workers’ estima-
tion models.

7.4.2 Construct Validity

Construct validity addresses whether the chosen metrics and setup accurately
reflect the theoretical concepts being tested here: estimation accuracy, adapt-
ability, and workload balance.

• Controlled synthetic noise. Execution times were simulated using con-
trolled delays based on worker speed and job size, with noise factors added
to approximate real-world variability. While this allowed for consistent
comparisons, the artificial nature of this noise may not reflect all patterns
of stochastic variability seen in practice.
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• Metric selection. The evaluation uses job completion time, cache miss
count, data transferred (MB), and average waiting time in queue as per-
formance indicators. These metrics offer a reasonable approximation of
system responsiveness and scheduling efficiency. However, queue time is
an indirect measure of worker balance and may not capture all dimensions
of fairness or adaptability.

• Simplified estimation model. The dynamic model was implemented as
a linear relationship over a single job attribute (line count). This abstrac-
tion enables clarity and repeatability but may not capture multidimen-
sional influences on job execution time, such as I/O intensity or branching
structures in code.

7.4.3 External Validity

External validity refers to how well the findings generalise to other systems,
workflows, or environments.

• Task and domain specificity. The experiments focused on a reposi-
tory mining scenario involving large Java repositories and commit-level
job definitions. Other domains with different data structures, runtime
characteristics, or job types may not benefit equally from the dynamic
estimation mechanism.

• Overhead in lightweight workloads. The benefits of dynamic esti-
mation may diminish for workflows with very short-lived jobs, where the
overhead of maintaining and applying estimation logic could outweigh per-
formance gains. In such cases, simpler static estimators may suffice.

• Synthetic environment. The evaluation was conducted in a controlled
local environment with simulated execution times. While this allowed fine-
grained control over noise and performance factors, the absence of true
distributed deployment (e.g., network variability, hardware contention)
limits generalisability to real-world systems.
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8 Conclusions and Future Work

This thesis has proposed methods aimed at enhancing the overall efficiency of
distributed execution of MSR workflows. The proposed approaches focus on
minimising end-to-end execution time while optimising data locality through
job scheduling. The hypothesis of this research was articulated in Section 3.2:

A specialised locality-aware job orchestration framework and algo-
rithm can outperform current methods for distributable and locality-
intensive repository mining workflows executed in a heterogeneous
environment.

The structure of the remaining sections in this chapter is as follows. Section
8.1 provides a comprehensive overview of the primary discussions presented in
the thesis. Section 8.2 elaborates on the contributions made to the field. Finally,
Section 8.3 outlines potential directions for future research.

8.1 Summary

In this thesis, we have examined methodologies for addressing data locality
within distributed repository mining and job allocation frameworks. The re-
search is structured to enhance the understanding of distributed data processing
in the context of mining software repositories. Chapter 2 established the the-
oretical foundation by conducting a comprehensive literature review that scru-
tinised the capabilities and limitations of existing MSR tools and distributed
data processing frameworks. This chapter effectively identified the critical gaps
in current methodologies, setting the stage for subsequent investigative work.

Chapter 3 described the research problem, detailed the hypothesis, and
defined research objectives, thereby providing a framework that underpinned
the empirical investigations. This chapter also established the specific criteria
and metrics required to evaluate the effectiveness and efficiency of the proposed
methodologies.

Chapter 4 presented the experiments conducted to assess the performance
of potential baseline frameworks. This involved comparative analysis of existing
frameworks’ performance with regards to various types of workloads executed
by workers with varying physical characteristics to determine the most suitable
environment for our research objectives, focusing on computational efficiency,
job scheduling capabilities, and data locality management.

Chapters 5, 6, and 7 embody the main contributions of this thesis, intro-
ducing novel strategies developed to optimise execution time through improved
data locality handling. These chapters provide in-depth explanations of the
distributed job allocation methodologies, supported by comprehensive experi-
mental results that highlight the performance variations when compared to the
baseline.

Finally, Chapter 8 synthesises the key findings, offering a detailed summary
of the insights obtained from the research, along with several concrete proposals
for future work.
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8.2 Thesis Contributions

The primary contributions of this research encompass the development of the
Resource-Registry and the Bidding Scheduler (Chapters 5 and 6) for increasing
data locality and reducing the overall execution time of LID MSR workflows,
as well as the introduction of a Feedback-Based Estimator in Chapter 7 for
minimising estimation errors when scheduling jobs based on completion time
estimates. Specifically, this research includes: (a) the design and implementa-
tion of the Resource-Registry scheduler, which assigns jobs by aligning compu-
tational tasks with the location of necessary data resources, thereby minimising
data transfer overhead; (b) the introduction of the Bidding Scheduler, which
employs a competitive auction-based mechanism to dynamically allocate tasks
to worker nodes based on bid values that reflect each node’s current load and ca-
pabilities; (c) the integration of a Feedback-Based Estimator within the Bidding
Scheduler to adjust for discrepancies in worker’s performance estimations and
actual performances, thus ensuring more accurate and efficient job distribution;
and (d) a comprehensive evaluation and analysis of the effectiveness of these
schedulers in both homogeneous and heterogeneous worker environments, pro-
viding insights into their performance, strengths, and limitations, and proposing
directions for future research.

The Resource-Registry scheduler is a methodology designed to improve
data locality and reduce data load, thereby decreasing the end-to-end execution
time. The scheduler shows effectiveness in homogeneous worker environments,
where all nodes have similar processing capabilities and configurations, as well
as in allocating jobs with large, non-repetitive data resources, as it addresses
a limitation identified in the Baseline where all worker nodes first reject a job
they do not possess the resource for, leading to diminished performances when
processing non-repetitive data resources. The scheduler’s performance is less
effective in cases where jobs require long processing times and most of them need
access to the same resource, therefore prolonging the end-to-end execution time.
This happens because Resource-Registry prioritises data locality, overlooking
the idleness of other workers in favour of one that holds the preferred resource.
In heterogeneous environments, where worker nodes have varying processing
speeds, this limitation becomes more pronounced. For example, if a slow worker
node is assigned the majority of tasks due to its resource preference, the overall
execution time can increase. This is because other, faster worker nodes remain
underutilised.

The Bidding Scheduler presents a novel approach to decentralised job al-
location. This methodology leverages the concept of “opinionated” nodes, which
submit bids for jobs based on locally available data and individual worker con-
ditions. Consequently, the scheduler achieves notable efficiency by considering
intrinsic attributes of worker nodes, such as network and processing speeds,
thereby addressing heterogeneity within the cluster.

The adaptive workload allocation is a key advantage of the Bidding Sched-
uler, dynamically distributing workloads according to data locality and node-
specific capabilities, ensuring an equitable task distribution. For example, if a
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node possesses high network latency but superior processing power, the sched-
uler might prioritise computationally intensive tasks for this node while assign-
ing network-heavy tasks to nodes with faster connectivity. Such adaptability
is particularly beneficial for long-running workflows, where nodes might exhibit
fluctuations in performance characteristics over time.

Moreover, increased worker utilisation is achieved by tailoring job schedules
based on workers’ physical characteristics and current resource availability, lead-
ing to an average worker usage increase in heterogeneous work environments,
effectively balancing the load across the system. The Bidding Scheduler man-
ages to decrease the end-to-end execution time through reduced data load and
increased worker utilisation, striking a balance between data locality and load-
balanced scheduling, thus delivering faster overall workflow completion rates,
with observed speedups ranging from 1.23 to 3.30 times on average across vari-
ous job and worker configurations.

Nonetheless, the Bidding Scheduler is not without its challenges and limita-
tions. It may underperform for small or inexpensive jobs because the overhead
from negotiating job distribution can outweigh its benefits in such scenarios.
Additionally, its advantages diminish in homogeneous worker environments that
process non-repetitive jobs of nearly same sizes, where the uniformity of workers
and job negates the necessity for the bidding process. Accurate job completion
time estimation is crucial for the scheduler’s efficacy, as inaccuracies can lead
to suboptimal scheduling and inefficient resource utilisation.

In conclusion, while the Bidding Scheduler represents an advancement in
decentralised job allocation by incorporating data locality and worker hetero-
geneity into its decision-making processes, its success relies on the specific char-
acteristics of the jobs and the computational environment. A detailed under-
standing and careful consideration of these factors are essential to leverage the
full potential of the Bidding Scheduler, ensuring optimal performance across
varied computational scenarios.

The Feedback-Based Estimator approach represents a method for re-
fining job completion estimates within the Bidding Scheduler, thereby reducing
estimation errors over time. By iteratively improving the estimation formula,
this methodology enhances the overall efficiency and reduces the end-to-end
execution time. One of its primary advantages lies in its flexibility, capable
of accommodating various statistical models, such as the historic average, lin-
ear or polynomial regression. This allows for adjustments tailored to different
data distributions and workflow characteristics. This approach improves the
performance of “opinionated” nodes by enabling them to use historical data to
make more accurate time predictions. This is especially advantageous in het-
erogeneous environments, where reducing estimation errors leads to better job
assignments. Consequently, more capable nodes are tasked with more complex
jobs, resulting in a balanced and efficient system.

However, the complexity of the learning models can introduce significant
overheads, potentially offsetting the benefits of improved accuracy if the models
become excessively complex. Moreover, selecting an inappropriate model for the
data, such as using a linear regression model when a polynomial model would
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better capture the relationship between job attributes and execution time, can
lead to suboptimal scheduling decisions and reduced performance gains. Addi-
tionally, this approach is less suited for short-running workflows, as the iterative
improvement process requires substantial historical data to develop accurate
models. Such data may not be available within the limited timeframe of short-
running tasks, restricting the applicability of the Feedback-Based Estimator
approach in these scenarios.

In summary, the Feedback-Based Estimator approach offers means to en-
hance job completion time predictions and optimise scheduler performance,
particularly in heterogeneous computational environments. However, its suc-
cessful implementation necessitates careful consideration of the learning model
selection and the availability of sufficient historical data to ensure effectiveness
and avoid potential issues.

8.3 Future Research

The Bidding Scheduler and the Feedback-Based Estimator approach have
demonstrated considerable potential in optimising job allocation and execution
within heterogeneous computational environments. However, further research
and development are essential to address existing limitations and extend their
applicability.

1. Investigating applicability beyond software repository mining
workflows
While the current implementation of the Bidding Scheduler has proven
effective within the context of LID MSR workflows, there is value in ex-
ploring its applicability across a wider array of computational workflows.
Future research should address its integration into workflows involving dif-
ferent types of locality-intensive computing, such as image processing or
large-scale machine learning training. By applying the Bidding Scheduler
to these varied scenarios, we could evaluate its versatility and scalability
across diverse domains.

2. Job reassignment and fault recovery
While job failures are currently recorded by Crossflow, the framework does
not support automatic job reassignment. Future work should address this
by enabling the Resource-Registry and Bidding Scheduler to detect failed
or stalled jobs and reassign them to other available workers. This could be
achieved through heartbeat monitoring, execution timeouts, and soft-state
tracking, and would contribute to improved fault tolerance and resilience
under failure-prone conditions.

3. Adaptive model selection for online estimators. While this work
used a linear Feedback-Based Estimator for its simplicity and efficiency,
future versions could evaluate multiple candidate models (e.g., linear,
quadratic, cubic) and select the best fit using goodness-of-fit metrics such
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as mean squared error or adjusted R2. By maintaining a sliding win-
dow of recent jobs, each worker could incrementally compare models and
adapt its prediction strategy accordingly. This would enable each worker
to remain both accurate and generalisable as job characteristics evolve.

4. Monetary cost consideration
Another possible direction is to extend the Bidding Scheduler to factor
in dual optimisation criteria — time and monetary cost. This involves
incorporating mechanisms to optimise not only for task completion time
but also for associated costs, particularly in cloud environments where re-
source usage translates directly into financial expenditure. While the Bid-
ding Scheduler currently supports implementations that could minimise
either time or cost, future work could develop models to find an optimal
balance between both, depending on the priorities of the workflow. For
example, in a cloud-based data processing scenario, the scheduler could
choose between more expensive, high-performance instances for critical
tasks and more cost-effective instances for less time-sensitive tasks.

5. Mitigating estimation errors in early stages
Addressing estimation errors before accumulating sufficient historical exe-
cution data is crucial for the effectiveness of the Feedback-Based Estimator
mechanism. Future research should explore methods for initial estimation
error mitigation. Techniques such as leveraging similar jobs’ performance
data can be investigated. For instance, employing transfer learning where
a model created based on one type of job can inform estimations for an-
other similar new job, could be an interesting direction to explore to reduce
early-stage estimation inaccuracies.

6. Applicability in homogeneous worker environments
While the Feedback-Based Estimator approach has primarily proven ben-
eficial for heterogeneous worker environments, future research should also
investigate its applicability in homogeneous worker environments. In such
settings, instead of relying on decentralised historical data tailored to indi-
vidual worker characteristics, a shared repository of historical data could
be utilised to collectively improve the estimation formula. For instance, in
a homogeneous environment where worker nodes have similar performance
characteristics, a centralised database containing historical job execution
data could be maintained. This repository would allow the entire cluster
to benefit from collective historical insights, thereby refining job comple-
tion time predictions to enable efficient scheduling decisions more rapidly
than it is the case with storing the execution data separate for each worker
node.
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A Source Code and Artefacts

The complete source code for this research is available in the following GitHub
repository:

https://github.com/ana-markovic/lid-msr

This repository includes project setups necessary to replicate the conducted
experiments for baseline selection, as well as the evaluation of the Resource-
Registry scheduler, Bidding Scheduler, and the Feedback-Based Estimator ap-
proach. It also contains a source code setup aimed at packaging the LID MSR
workflow with the Bidding and Baseline scheduler for execution in cloud envi-
ronments.
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B Appendix: Additional Figures

Figure 24: Co-occurence matrix of 30 popular npm libraries [4] in favoured GitHub projects
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