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Abstract 

 This thesis aimed to investigate the neural basis of linguistic and semantic control 

across brain networks, using fMRI and TMS. Firstly we assessed the contribution of 

premotor cortex (PMC) to speech perception: TMS disrupted phonological but not 

semantic judgments, indicating a constrained role for PMC in tasks involving explicit access 

to phonemic representations, but not in accessing meaning. Chapter 3 examined the role of 

brain regions within the language network to both domain (phonological/semantic) and 

executive control demands. The results suggest that there are specialisations at the 

extreme ends of LIFG for phonology (PMC/BA 44) and semantics (BA 47), as well as 

contributions from posterior temporal and parietal cortex to both domains. Furthermore, 

Chapter 4 investigated the role of these brain areas to amodal semantic cognition using 

picture and verbal semantic associations which varied in their difficulty (to manipulate 

semantic control demands). The findings suggest that while BA45/44 respond to control 

demands across modalities, there are specialisations within the semantic control network; 

for example, bilateral BA 47 showed a verbal semantic preference. Chapter 5 used TMS to 

further probe the role of BA 44, 47 and pMTG across domain (phonology/semantic) and 

modality (picture/verbal), confirming a preference for verbal semantic material in BA 44 

and 47, and highlighting an amodal contribution of pMTG to associative semantic 

judgments. Lastly, Chapter 6 focussed on semantic control and manipulated retrieval and 

selection demands using a cyclical picture naming paradigm. We found that TMS to LIFG 

caused a specific disruption of naming at the point at which the demands on both selection 

and retrieval were maximal, while TMS to pMTG caused no disruption of retrieval or 

selection processes. The findings of this thesis shed additional light on the role of various 

areas throughout the language networks to domain, modality and control.  
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Chapter 1: Introduction and Review of the Literature  

Language Networks 

The ease with which we use language belies the complicated processes that 

support it. For example, not only do we effortlessly produce and perceive speech sounds, 

but we also rapidly map them onto meaning (i.e., semantic knowledge). Models of 

language help to capture the complicated nature of what underlies such a seemingly simple 

process and reveal a distributed network of brain areas that support language processing 

across various dimensions (i.e., speech sound segmentation, meaning across modalities 

(e.g., words and pictures), resolving increased perceptual and conceptual 

difficulty/ambiguity, etc.).     

Many models advocate two processing streams: a ventral speech perception route 

along the temporal lobe and a dorsal auditory-motor stream for auditory-motor integration 

(Hickok & Poeppel, 2000, 2007; Rauschecker & Scott, 2009). Combining evidence from 

humans and non-human primates, Rauschecker and Scott (2009) suggest that the two 

streams originate in auditory cortex, and processing is both hierarchical and parallel, such 

that ‘lower’ cortical areas project to and from ‘higher’ areas (e.g., in frontal cortex) that 

have more complex response properties: posterior superior temporal sulcus (STS) projects 

to the intraparietal lobe (IPL) and premotor cortices (PMC) as part of the ‘what’ stream for 

‘lower level’ speech perception; and the anterior STS projects to inferior frontal cortex (IFC) 

for ‘higher level’ speech comprehension. As such, anterior STS has been shown to be more 

sensitive to the intelligibility of speech, while posterior STS (e.g., planum temporale) may 

act as a computational hub for processing spectro-temporally complex sounds (like music). 

Likewise, many speech perception tasks have required participants to identify/segment 

specific speech sounds (e.g., ‘pa’ embedded in white noise) and Hickok and Poeppel (2000, 

2007; Poeppel & Hickok, 2004) propose that the dorsal stream is engaged for tasks such as 

these serving a role in auditory-motor integration (e.g., in the perceived difficulty of 

producing a sound, silent articulation and gestural processing of speech; Scott, McGettigan, 

& Eisner, 2009), while the ventral stream is involved in comprehension of auditory input 

(i.e., whole words). Paus, Perry, Zatorre, Worsley, and Evans (1996) have shown a motor – 

to – auditory flow in speech production, with increased activation in auditory speech areas 

(i.e., superior temporal cortex) during the articulation of speech sounds (masked by noise 
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so as to ensure that activation in auditory cortex is due to articulation not the perception of 

speech sounds).  

Some models view perception and production as two separate and distinct 

processes, while theories such as the motor theory of speech perception tightly couple the 

two (Pulvermuller & Fadiga, 2010): this account suggests that the processes involved in 

producing speech are also involved in perceiving it (Liberman & Mattingly, 1985). For 

example, Wilson, Saygin, Sereno, and Iacoboni  (2004) provide support for this theory with 

their study which found that the same motor areas used in speech production (i.e., PMC) 

were also activated in speech perception. It seems reasonable to assume that production 

and perception are not mutually exclusive, given that perception must inform motor 

articulatory learning, as accounted for in neurocomputational models that also couple 

action and perception in language acquisition (Garagnani, Wennekers, & Pulvermuller, 

2008; Pulvermuller & Preibl, 1991). In these models, any activation of auditory cortex leads 

to spreading activation across all regions, including motor areas (Garagnani, Shtyrov, & 

Pulvermuller, 2009; Garagnani, et al., 2008). Neuroimaging studies also reveal activation for 

both speech listening and covert speech production in pSTG/Spt (Buchsbaum, Hickok, & 

Humphries, 2001; Hickok, Buchsbaum, Humphries, & Muftuler, 2003; Hickok, Okada, & 

Serences, 2009; Okada & Hickok, 2006). Taken together, the literature suggests an 

integrated view in which motor and sensory processes interact. 

Another key part of language is understanding the meaning (and context) of the 

words we use both in perception and production (e.g., as indicated in the ‘ventral stream’ 

above). A large network of areas has been implicated in this ‘higher order’ use of language 

– with different brain areas reserved for storage of semantic representations and access to 

and appropriate use thereof. For example, when a listener hears the word ‘bank’, they 

must access the stored semantic meaning of this word in memory – and this store is 

thought to involve the anterior temporal lobes (ATL; Jefferies & Lambon Ralph, 2006; 

Lambon Ralph, Pobric, & Jefferies, 2009; Pobric, Lambon Ralph, & Jefferies, 2009). 

Furthermore, the word ‘bank’ has more than one meaning (e.g., money-bank, river-bank) 

and the appropriate meaning must be selected for the given context (example taken from: 

Whitney, Jefferies, & Kircher, 2011). In this case, a distributed network of brain areas is 

engaged to ensure that the ‘correct’ meaning is activated. However, such processes are not 

specific to language – for example, objects also have more than one meaning or use, and 

when we are required to selectively focus on the less frequent or non-canonical meanings 
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of objects, this may involve the recruitment of the same cortical network  associated with 

linguistic semantic control.  

This thesis explores the recruitment of specific areas within frontal cortex during 

explicit semantic and phonological judgements. First, it examines whether premotor cortex 

is essential for speech perception in the context of explicit phoneme decisions and 

semantic judgements. Secondly, it looks at semantic judgements in more detail and 

considers the extent to which the brain networks that contribute to executive control of 

phonological, verbal semantic and picture semantic tasks overlap. This chapter will discuss 

the brain areas contributing to these language networks in an effort to elucidate their role 

in speech perception and comprehension. We will start with the contribution of motor 

areas such as PMC to speech perception and progress towards the many areas recruited for 

semantic cognition/control.  

Coupling of speech perception and production 

The motor theory of speech perception lost popularity due to the apparent 

inconsistency with neuropsychological evidence (i.e.,Basso, Casati, & Vignolo, 1977), but 

the debate was reinvigorated by the discovery of mirror neurons in monkeys (Rizzolatti, 

Fadiga, Gallese, & Fogassi, 1996). The advent of neuroimaging has also provided a new way 

of examining this issue, whereby researchers can see which areas of the brain are active in 

both the production and the perception of speech (e.g., Wilson, et al., 2004).  

Neuropsychological indications 

While Liberman’s motor theory (Liberman & Mattingly, 1985) states that the motor 

cortex is crucial to speech perception, the neuropsychological literature, in particular, 

studies of expressive and receptive aphasia suggest that the motor cortex is not essential 

for speech perception. Patients with Broca’s (also known as expressive or non-fluent) 

aphasia have lesions to left inferior frontal cortex (LIFC), typically including ventral 

premotor areas that are thought to be crucial for the production of speech, and thus these 

patients show marked impairment in language production. The motor theory of speech 

perception would predict that these patients should also suffer from impaired 

comprehension, but this is often not the case (Alexander, 1997). Additionally, the reverse 

pattern is shown by patients with Wernicke’s aphasia (also known as receptive, sensory or 

fluent aphasia), who have lesions to areas crucial for language perception, and thus suffer a 
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loss of auditory comprehension: their spoken language is fluent, however, it does lack 

meaning (Geschwind, 1971). This suggests that the inability to produce language does not 

affect global comprehension and vice-versa. However, these patients do show impairment 

on explicit perceptual categorization tasks (e.g., identifying the acoustic boundary between 

two phonemes), but these impairments are not reflected in general comprehension (Basso, 

et al., 1977; Bishop, Brown, & Robson, 1990; Blumstein, Cooper, Zurif, & Caramazza, 1977; 

Miceli, Gainotti, Caltagirone, & Masullo, 1980; Moineau, Dronkers, & Bates, 2005). Patients 

with inferior frontal lesions (Broca’s aphasia), can show impaired single word 

comprehension if speech is accelerated or overlaid with noise, supporting the view that 

LIFC may only play a vital role in speech perception for particularly difficult tasks (Moineau, 

et al., 2005). Additionally, dysarthria and anarthria are both disorders of language 

production with no impairment in general comprehension (Scott, et al., 2009). However, 

like aphasia, when individuals with dysarthria are tested specifically on language control, a 

deficit is seen. For instance, Bishop et al. (1990) found that phoneme discrimination using 

novel letter strings resulted in impaired performance, while comprehension and even 

discriminating phoneme contrasts showed no impairment. This suggests that they may 

have impaired memory for novel phonological strings, possibly because this sort of task 

requires covert repetition of the novel material inherent in this task type (Bishop, et al., 

1990). Taken together, the neuropsychological literature suggests that speech motor 

knowledge may not be necessary for normal comprehension, but it may be recruited for 

certain features of language processing, such as explicit phoneme segmentation. 

Evidence from Mirror Neurons 

While it is clear that the patient literature provides little support for the motor 

theory (Liberman & Mattingly, 1985), the discovery of mirror neurons in monkeys 

reinvigorated the debate over the necessity of speech motor areas to perception. Single 

cell recordings of ‘mirror-neurons’, in monkey area F5, fire both when performing an action 

and when watching others perform that action (Rizzolatti, et al., 1996). There is also some 

evidence to suggest that these mirror neurons are multi-modal, in that they also seem to 

respond to the consequential sound of an action (Kohler et al., 2002). These findings are 

important for theories of language because monkey area F5 is considered to be the 

homologue of left inferior frontal gyrus (LIFG) in humans - i.e., BA 44, BA 45 and ventral 

PMC (PMv).  
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There have been some attempts to mimic single cell recording using behavioural 

measures in human subjects whereby use-induced motor adaptation is produced through 

repeated movements (e.g., repeated firing of motor cortex). Glenberg et al. (2010) 

blindfolded participants while they made arm movements away (from the body) and 

toward (the body); despite being blindfolded when making the movements (ensuring that 

adaptation is motor rather than visual perception), the motor adaptation biased 

subsequent ambiguous movement perception toward the direction of the repeated 

movements made. Additionally use-induced motor plasticity has been used in studies of 

language. In one study, participants performed 10 minutes of repeated lip or tongue 

movements and then performed a 2AFC syllable decision task (masked by white noise). 

Repeated tongue movements produced a bias to respond ‘ta’, while the repeated lip 

movements created the same congruent bias for ‘pa’, this, the authors argue, reflects the 

motor system’s role in mediating top down processes in higher level categorization tasks 

(Sato et al., 2011). Support was also provided by Yuen, Davis, Brysbaert, and Rastle (2009), 

where participants were required to produce syllables in the face of auditory or written 

distractors which were either congruent or incongruent to the syllable to be produced (i.e., 

the target). The incongruent auditory stimulus modified the participant’s production of the 

target syllable, while the congruent syllables did not affect articulation (nor did the written 

distractors). The authors argued that when encoding an auditory stimulus, encoding the 

articulatory information is automatic, and therefore reflected in the modified speech 

output for incongruent trials in this experiment. These studies suggest that the mirror 

neurons found in monkeys can be successfully mimicked in humans using behavioural 

studies in both action and language perception, and thus help implicate the motor cortex in 

some aspects of speech perception. 

Neuroimaging 

Passive speech listening. While mirror neurons reinvigorated the debate over 

the motor theory of speech perception, neuroimaging techniques have helped researchers 

to test its predictions, namely that the motor areas involved in articulation are also 

involved in speech perception. As such, passive listening to speech sounds has been shown 

to activate motor speech areas. Uppenkamp, Johnsrude, Norris, Marslen-Wilson, and 

Patterson (2006) found that the premotor area was ‘slightly’ more active during vowel 

listening than listening to matched non-speech sounds; a finding which is in line with 
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Wilson et al.’s (2004) finding that the same motor areas involved in producing 

monosyllables were also active when passively listening to them, as well as other findings 

of increased PMC activation for listening to monosyllabic words (e.g., Okada & Hickok, 

2006). Furthermore, TMS studies have shown that listening to speech sounds that require 

strong articulation activates the motor system. For example, using a combination of TMS 

and tongue motor evoked potentials (MEP), Fadiga, Craighero, Buccino, and Rizzolatti 

(2002) found that when participants passively listened to words and pseudowords the 

tongue area of the motor cortex showed an increase in MEPs for words with an embedded 

double ‘r’ consonant (requiring tongue articulation) compared with those with a double ‘f’ 

consonant (no tongue articulation). Likewise, Watkins, Strafella, and Paus (2003) found that 

stimulation of the left face motor area increased MEPs for speech sounds and speech-

related lip movements, but not for non-speech sounds or eye movements. Additionally, not 

only did Pulvermuller et al. (2006) find differential fMRI activation for lip and tongue 

movements, as well as tongue versus lip articulated phonemes - but also differential 

activation in the same areas for the perception of these syllables, with stronger [p] 

activation in ventral motor areas and stronger [t] in dorsal precentral areas (i.e., fine 

grained activation by phoneme type). This receives further support from a study which 

used online double TMS pulses to the lip or tongue areas of motor cortex immediately 

preceding stimulus onset, identifying speech sounds as either [b] / [p] (lip articulated) or [d] 

/ [t] (tongue articulated). This resulted in faster identification of congruent phonemes (i.e., 

perception of ‘pa’ following TMS to lip area) and inhibition of incongruent phonemes (i.e., 

perception of ‘pa’ following TMS to tongue area). The authors suggest that stimulation 

might pre-activate/prime the area increasing the excitability of the neurons therein, and 

the reduction in performance may be due to lateral inhibition between competing 

representations (D'Ausilio et al., 2009). Taken together, these studies suggest fine-grained 

organisation by phoneme type in the motor cortex for both speech production and 

perception (tasks).      

Specific Roles in Speech Perception . Although some studies have shown 

fine-grained phoneme representations for passive listening to speech stimuli (Pulvermuller, 

et al., 2006; Wilson, et al., 2004), most early neuroimaging studies have not reported motor 

cortex activation for general speech perception; if this area were crucial to speech 

perception it should show strong and consistent activation across speech perception tasks, 

and therefore may only be recruited for specific types of tasks (Scott et al. 2009). For 
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example, Buchsbaum et al. (2001) reported a more sluggish BOLD response for auditory 

stimuli in PMC compared to the response for production, perhaps indicating its ‘optional’ 

use in perception. Furthermore, Rogalsky, Love, Driscoll, Anderson, and Hickok (2011) 

argue against a strict motor theory of speech perception, with motor cortex involvement in 

speech perception reserved for 1) strategic modulation of the speech perception process in 

non-natural/challenging conditions, 2) providing a back-up mechanism for processing 

degraded auditory stimuli, or 3) non-natural language tasks such as explicit phoneme 

judgements, when metalinguistic knowledge about speech sounds, not words, is used to 

guide phoneme segmentation. This suggests that the motor cortex may only be involved in 

“meta-linguistic task-specific aspects of performance rather than fundamental processes.” 

(p.185). In addition, Scott et al. (2009), suggest a further role in which the motor cortex is 

recruited for conversational turn taking whereby motor areas are responsible for 

“convergence, interactional synchrony and ensuring smooth turn transition” (p. 301).  

This distinction between general speech comprehension and tasks that manipulate 

certain aspects of perception is seen in early research by Zatorre, Evans, Meyer, and 

Gjedde (1992) who sought to investigate the brain regions involved in speech perception 

using PET. In passive listening, activation was seen in the superior temporal gyrus 

bilaterally, but not in motor areas. However, when participants made perceptual decisions 

on speech syllables, activation was seen in LIFG bordering PMC, again suggesting motor 

recruitment for specific perceptual tasks, but not passive speech listening. Similarly, 

same/different decisions to stimuli that required overt segmentation, produced motor 

activation consistent with that reported in Zatorre, et al. (1992), but not when the same 

decisions were made to stimuli that did not require overt segmentation (Burton, Small, & 

Blumstein, 2000). Other research suggests that perceiving phonetically ambiguous speech 

recruits motor areas, but phonetically unambiguous speech does not (Gow Jr & Segawa, 

2009). These studies support the notion that motor areas may be recruited under certain 

circumstances, for instance, where speech discrimination is particularly challenging (e.g., 

explicit phoneme judgements, increased perceptual difficulty). 

TMS has been used to confirm the involvement of speech motor areas in speech 

perception as it is a useful technique due its ability to produce focal stimulation of brain 

areas purportedly involved in a certain cognitive function. This means that TMS can be used 

to help confirm whether activation seen in particular brain areas is functionally relevant (or 

not). Meister et al. (2007) disrupted speech discrimination relative to baseline following 
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TMS to PMC for tasks that required participants to identify syllables embedded in noise 

(with no TMS disruption for colour or tone discrimination control tasks). Similarly, 

Mottonen and Watkins (2009) applied rTMS pulses to the lip area of the motor cortex (left 

M1) to measure the contribution of motor articulatory representations to the categorical 

perception (CP) of speech. They impaired CP for speech sounds involving the lips (/pa/-

/ta/), but not a continuum supported by tongue articulation (/ka/-/ga/). In contrast, 

Raizada and Poldrack’s (2007) fMRI study of categorical perception did not report motor 

cortex activation, suggesting that the recruitment of PMC is dependent on the demands of 

the speech perception task. Scott & Evans (2010) point out that the task type can strongly 

influence whether effects are seen (i.e., 2AFC vs. 4AFC), and Raizada and Poldrack (2007) 

did not require participants to make discriminations while in the scanner, as they were 

interested in the brain areas that ‘amplify’ the boundary differences (e.g., supramarginal 

gyrus), and PMC activation was not elicited in this case therefore suggesting that PMC 

recruitment may not be necessitated when no explicit perceptual categorisation is 

required. Other research has demonstrated PMC involvement in segmenting speech input, 

using the ‘virtual lesion’ rTMS method: with results suggesting that PMC is not recruited for 

simple phoneme and syllable discriminations, rather it is only essential when segmentation 

is necessary as in some difficult phoneme discrimination tasks (Sato, Tremblay, & Gracco, 

2009). Sato et al. (2009) suggest that these findings align with the Hickok and Poeppel 

(2007) dual stream model of speech perception in that the dorsal auditory-motor circuit is 

not considered to be a crucial component of adult speech processing, its involvement is 

necessitated whenever a ‘translation of phonological information to an articulatory code is 

required’ (p.6), as is seen in these results where the simple tasks were not affected by TMS 

to PMC. Further research is necessary to disambiguate aspects of speech perception and 

speech comprehension in PMC. The literature indicates a role for PMC in some aspects of 

speech perception such as phoneme segmentation tasks (e.g., Burton, et al., 2000; 

D'Ausilio, et al., 2009; Sato, et al., 2009), however, it has not addressed whether this area is 

crucial to speech comprehension, despite the neuropsychological literature indicating that 

this is not likely to be the case (e.g., Bishop, et al., 1990; Miceli, et al., 1980; Rogalsky, et al., 

2011).  

There is some indication that motor cortex activity contributes to phonological but 

not semantic processing. One TMS-MEP study found larger MEP’s in motor cortex for both 

pseudo and rare words, than frequent words (Roy, Craighero, Fabbri-Destro, & Fadiga, 
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2008; see also Fadiga et al. 2002); therefore this site may be less interested in meaning 

analysis, rather it may be recruited for phonological processing of rare/new speech stimuli. 

Kotz et al. (2010) provide compelling support for this interpretation showing that PMC was 

selectively active for ‘meaning-independent’ ‘phoneme analysis’ (e.g., perception of 

meaningless syllables; Meister, Wilson, Deblieck, Wu, & Iacoboni, 2007; Wilson, et al., 

2004), while neighbouring area BA 44/45 was involved in higher level word analysis, 

activated by real words, not pseudowords. Therefore it may be the case that PMC serves a 

domain specific function in phoneme analysis (e.g., segmentation, perception of degraded 

speech, etc.), while the recruitment of LIFG (BA 44/45) may serve a separate function, 

possibly in accessing lexical/semantic representations and/or difficulty resolution, given 

that activity in LIFG is often reported when task demands increase (e.g., Duncan & Owen, 

2000). There is some indication that the two sites may work in concert with a study 

showing that activity in BA 44 was a significant predictor of PMC activation for speech 

listening, suggesting that LIFG may modulate PMC (Watkins & Paus, 2004). Thus, we will 

now turn to a discussion of the role of LIFG in language processing.  

Divisions within LIFG. The LIFG is often separated into three subdivisions as 

described by Broadmann: BA 44, 45, 47. The specific function of these LIFG regions has 

received much attention and there is a body of evidence suggesting that phonological tasks 

activate posterior parts of LIFG (PMC/BA 44), while anterior LIFG (BA 45/47) is often 

activated by semantic tasks. LIFG has been the focus of much research and has been shown 

to be active for language tasks across domains such as phonology, semantics, and syntax 

(Bookheimer, 2002). A great deal of research has been dedicated to the role of LIFG in 

phonological processing, and has shown activation in posterior LIFG (BA 44 sometimes 

extending into BA 45) for a wide variety of phonological tasks. Some of these studies have 

found very similar results to those reported in the PMC literature, for instance, one study 

reported activation of BA 44/45 for long vowel discrimination to both auditory and visual 

presentation of words and for explicit acoustic analysis of stimuli (e.g., parsing rapidly 

changing spectra within tens of ms), but not passive speech listening; thus implicating a 

possible role for this site in retrieving internal representations about the sound of the 

stimulus, independent of input modality (Fiez, Raichle, Miezin, & Peterson, 1995). Similarly 

activation has been reported when participants heard comprehensible compressed speech, 

as well as for (written) rhyme judgements, but, like Kotz et al. (2010), not for 

incomprehensible speech processing (Poldrack et al., 2001).     
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Research as early as Ojemann and Mateer (1979) has shown that direct cortical 

stimulation of pLIFG during surgery disrupts phoneme monitoring; and Bookheimer (2002) 

presents two main arguments as to the role of pLIFG in phonological processing suggesting 

that it is either 1) crucial for phonological articulatory rehearsal (e.g., Baddeley’s (1992) 

articulatory loop) or 2) that pLIFG is recruited for processes such as phoneme 

discrimination and sequencing (Bookheimer, 2002). In line with a role for LIFG in 

phonological rehearsal, Démonet, Price, Wise, and Frackowiak (1994) found LIFG to be 

activated by tasks that required participants to sequence phonologically ambiguous stimuli, 

but this site was not recruited for less complex conditions such as simple phoneme 

detection, phonetically ambiguous stimuli, or sequential phoneme detection alone, 

therefore the authors suggest that BA 44/45 is recruited as part of the verbal rehearsal 

strategy for completing the sequencing task. Similarly, one study forced participants to 

engage in phonological rehearsal by presenting stimuli visually with either same/different 

stress assignment or initial vowel sound, and found that TMS to BA 44 significantly 

disrupted these phonological decisions, but not a pattern span control task (TMS to BA 44 

also disrupted a digit span task; Romero, Walsh, & Papagno, 2006). Stimulation of this site 

has also resulted in disruption of phonological working memory performance for a delayed 

phonological matching task, but not a visual matching control task (Nixon, Lazarova, 

Hodinott-Hill, Gough, & Passingham, 2004).  

In line with a ‘higher-level’ role for LIFG in phoneme discrimination (etc.), one study 

varied VOT along a continuum and found that PMC/LIFG was significantly active for higher-

level phonological processing (i.e., making decisions on phonetic category 

structure/resolving phonetic category membership/selection between competing phonetic 

categories), while, in contrast, STG was activated for lower level processing and was less 

sensitive to category structure as, the authors suggest, activity is redirected to other higher 

level processing areas (i.e., LIFG) for such tasks (Blumstein, Myers, & Rissman, 2005). 

Similarly, Wright, Randall, Marslen-Wilson, and Tyler (2011) report that passive listening of 

morphologically complex words activated BA 44, indicating, they argue, a role for this 

region in ‘automatic segmentation of spoken words with specific morphological properties’ 

(P.408). Furthermore, one study suggests that pLIFG may be differentially specialised for 

phoneme monitoring near the border with the motor cortex, and phoneme discrimination 

in a slightly more inferior and medial part of pLIFG (Zatorre, Meyer, Gjedde, & Evans, 1996). 
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LIFG has also long been implicated in semantic processing (Binder, Desai, Graves, & 

Conant, 2009; Bookheimer, 2002; Noonan, Jefferies, Visser, & Lambon Ralph, submitted; 

Price, 2010; Vigneau et al., 2006) and some studies have attempted to establish whether 

functional specialisations within LIFG exist for phonological and semantic processing.  

Demonet et al. (1992) required sequential phonological monitoring of non-words, and 

semantic monitoring for positive associations (e.g., ‘mouse’ - ‘smaller than a chicken’), and 

found BA 44/45 to be active for the phonological task, but no activation for the semantic 

task in this area (while both tasks activated other parts of the network such as STG for 

phonology and the temporal lobe and angular gyrus (AG) for semantics). Similarly, Devlin, 

Matthews, and Rushworth (2003) found enhanced activation in BA 44 for phonological 

relative to semantic decisions and the reverse for BA 47. They confirmed these findings 

with a TMS study where stimulation of aLIFG produced a reliable increase in RTs when 

subjects made semantic decisions, but not for phonological or perceptual control tasks. 

Although they did not test pLIFG, these results couple nicely with those of Nixon et al. 

(2004) who produced an increase in error rates for a phonological matching task following 

pLIFG stimulation, but no disruption following TMS to aLIFG. 

Other studies have directly compared the roles of pLIFG and aLIFG in phonological 

and semantic processing. For example, one fMRI study showed that for passive listening of 

morphologically complex words pLIFG (BA 44) was selectively activated, while lexical 

decisions increased activation in BA 47 (Wright et al. 2011). Likewise, Gold and Buckner 

(2002) found increased activity in posterior LIFG (BA 44/6) for controlled phonological 

retrieval (decisions about short/long vowel sounds of visually presented words and 

pseudowords) and BA 45/47 for abstract/concrete semantic decisions. Poldrack et al. 

(1999) made a similar distinction with BA 47/45 activated for concrete/abstract decisions 

and BA 44/45 for syllable counting. Gough, Nobre, and Devlin (2005) used TMS to establish 

this double dissociation within LIFG, requiring participants to make phonological or 

semantic decisions on pairs of words presented simultaneously. TMS to pLIFG disrupted 

homophone judgements, reflecting, the authors argue, its role for integrating sensory and 

motor information. In contrast, TMS to aLIFG disrupted performance for their synonym 

judgement task, confirming a role for aLIFG in the semantic executive system. This is 

consistent with Sharp et al.’s (2010) finding that activity increased in aLIFG (BA 47/10) as a 

function of semantic difficulty and pLIFG (BA 45) for perceptual difficulty. This is 

complemented by Bokde, Tagamets, Friedman, and Horwitz (2001) who showed functional 
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connectivity of dorsal LIFG (BA 44/45) to posterior brain areas for accessing phonological 

representations and ventral LIFG (BA 47/11) connections to temporal areas facilitating 

semantic access.  

Fiez (1997) suggests that the ‘neural theme’ of control ties together these LIFG 

regions, with aLIFG (BA 45/47) contributing to semantic control and pLIFG (BA 44/45) 

contributing to controlled phonological processing. This is supported by connectivity 

studies which show pathways between the subdivisions of LIFG to ‘lower level’ posterior 

brain areas specialised by language domain (e.g., ATL for semantic store); and as with the 

models of language discussed above (Language Networks), these are described in terms of 

dorsal and ventral pathways for language. The dorsal pathway along the arcuate fasciculus 

(AF) and the superior longitudinal fascicle (SLF) has been shown to specifically connect BA 

44 and premotor cortices (dorsal PMC and pars opercularis), not extending into the 

ventrolateral prefrontal cortex, with perisylvian language areas and the parietal lobe 

(Anwander, Tittgemeyer, von Cramon, Friederici, & Knosche, 2007; Parker et al., 2005; Saur 

et al., 2008). It should also be noted that there are also less dominant connections along 

the Extreme Capsule (EmC) from BA 44 to ATL (Anwander, et al., 2007). The ventral 

‘comprehension’ pathway has been shown to connect ventrolateral prefrontal cortex (BA 

45/47) with the ATL via the EmC and the uncinate fascicle (Anwander, et al., 2007; 

Friederici, 2009; Saur, et al., 2008). This is also supported by functional connectivity studies 

which have shown BA 44 to be connected to posterior, dorsal areas such as pSTG, superior 

pMTG and aIPL, while BA 47 connectivity was to more inferior temporal regions and 

pMTG/AG (Xiang, Fonteijn, Norris, & Hagoort, 2010). Additionally, BA 45 has been shown to 

be more strongly connected to the ATL via the EmC, and less dominantly, but similar to BA 

44, to parietal and perisylvian language areas via the AF and SLF (Anwander, et al., 2007). 

Short fibres link BA 44-45 and BA 45-47/12, which some authors suggest provides an 

anatomical substrate for integrating semantic and phonological information (Gough, et al., 

2005; Ihara, Hayakawa, Wei, Munetsuna, & Fujimaki, 2007).  

Semantic Network 

Semantic Processing in LIFG  

The aforementioned studies demonstrate that LIFG is involved in semantic 

processing, but do not necessarily indicate which aspect it contributes to (e.g., 
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representation, control). Semantic cognition involves both storage of semantic 

knowledge/representations and control processes that direct our use of language in a 

context appropriate and time sensitive manner. The literature, which includes studies of 

patients with various semantic deficits and neuroimaging techniques (such as fMRI, TMS, 

MEG) implicate a semantic network that includes both a semantic store and a control 

network that acts upon this store. Patients with semantic dementia (SD), who have atrophy 

to the anterior temporal lobes (ATL), are highly sensitive to item frequency and are not 

sensitive to the effects of cueing (i.e., the cue ‘t..’ does not help to retrieve the response 

‘tiger’): both of these findings suggest a degraded store of semantic knowledge; thus the 

ATL are thought to act as a semantic hub for storing semantic representations (Corbett, 

Jefferies, Ehsan, & Lambon Ralph, 2009; Jefferies & Lambon Ralph, 2006; Lambon Ralph, et 

al., 2009). In contrast, patients with semantic aphasia (SA) who typically have lesions in 

frontal or temporoparietal brain areas do show effects of cueing and as such are not 

believed to have degraded knowledge, but rather, show deficits in controlled access to 

intact semantic representations (Corbett, Jefferies, & Lambon Ralph, 2009; Jefferies & 

Lambon Ralph, 2006). Specifically, their deficit reflects impaired semantic control, which 

guides access to semantically stored representations about the meanings of words, 

pictures, sounds, and objects. As such, patients with SA have trouble selecting/detecting 

relevant semantic associations and rejecting distractor items (Jefferies & Lambon Ralph, 

2006). The data from patients with SA is corroborated by fMRI and TMS studies that have 

shown LIFG to be involved in tasks that increase the demands on semantic control (e.g., 

Badre, Poldrack, Pare-Blagoev, Insler, & Wagner, 2005; Whitney, Jefferies, et al., 2011; 

Whitney, Kirk, O'Sullivan, Lambon Ralph, & Jefferies, 2012). For example, TMS to LIFG 

disrupts judgments on weak, but not strong, semantic associative relationships, indicating a 

role for this site when top-down processes are engaged to establish the semantic 

relationship (Whitney, Kirk, O'Sullivan, Lambon Ralph, & Jefferies, 2011); and there is a 

large number of studies showing LIFG recruitment for tasks that manipulate semantic 

control in various ways (e.g., homonym judgments: Hoenig & Scheef, 2009; Whitney, 

Grossman, & Kircher, 2009).  

  There are two main arguments as to the mechanisms that guide context -

appropriate semantic processing: the selection (Thompson-Schill, D'Esposito, Aguirre, & 

Farah, 1997) and the retrieval (e.g., Wagner, Desmond, Demb, Glover, & Gabrieli, 1997) 

hypotheses. Thompson-Schill et al. (1997) have advocated a role for LIFG in which control 
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mechanisms play a crucial role in selecting amongst competing alternatives. Across three 

different semantic tasks (generation, classification and comparison), all varying in their 

selection demands (hard vs. easy), they consistently showed increased activity in LIFG (BA 

44/45) for selection from amongst competing semantic alternatives. Similarly, priming 

studies have used competitor priming of related semantic material in order to create 

increased competition/selection, whilst holding retrieval  demands constant using 

repetition conditions, and have reported increased activity in LIFG for selection, but not 

retrieval (Moss et al., 2005; Thompson-Schill, D'Esposito, & Kan, 1999). While the selection 

hypothesis suggests that LIFG is only necessary when there are competing representations 

vying for selection, the retrieval hypothesis suggests that, when automatic processes are 

insufficient, top-down processes guide controlled retrieval of task relevant information 

(e.g., in tasks with increased difficulty or ambiguity; Wagner, Pare-Blagoev, Clark, & 

Poldrack, 2001). For example, manipulating associative strength has been argued to 

measure/modulate demands on retrieval and in one study participants were required to 

make strong/weak associative judgments with two or four possible targets (i.e., two 

manipulations of semantic retrieval: associative strength, number of targets), and found 

pLIFG to be active across all of their retrieval conditions, but aLIFG was specifically active 

for the conditions where the cue-target associative relationship was weak (Wagner, et al., 

2001), perhaps indicative of a functional dissociation within LIFG, but their data could not 

speak to this possibility. The retrieval hypothesis has received support from a variety of 

studies suggesting that LIFG works as part of the executive system contributing to semantic 

retrieval of relevant information (Buckner, Raichle, Miezin, & Petersen, 1996; Demb et al., 

1995; Fiez, 1997; Gabrieli, Poldrack, & Desmond, 1998; Kapur et al., 1994; Peterson, Fox, 

Posner, Mintum, & Raichle, 1988; Wagner, Koutstaal, Maril, Schacter, & Buckner, 2000), in 

an amodal fashion (Wagner, et al., 1997). As such, the retrieval hypothesis guides selection 

when cue-target associations are weak, regardless of competition.  

In a study that tried to tease apart retrieval and selection, Badre, Poldrack, Pare-

Blagoev, Insler, and Wagner (2005) demonstrated a dissociation of the two processes 

within LIFG: manipulations of associative strength, judgment specificity, congruency and 

number of targets (i.e., retrieval demands) increased activation in BA 45, while associative 

strength selectively activated BA 47. This shows, they argue, a graded distinction within 

LIFG for different aspects of semantic control, with BA 47 recruited exclusively for semantic 

retrieval and BA 45 for selection (see also: Gold et al., 2006). Other studies have used this 
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dissociation to explain their findings, for example, one study which found increased LIFG 

activation in response to sentences that ended with an incongruent homonym (Hoenig & 

Scheef, 2009) claimed that this reflected controlled retrieval processes engaging aLIFG 

(Bedny, McGill, & Thompson-Schill, 2008; Wagner, et al., 2001; Whitney, et al., 2009), and 

selection in pLIFG (Bedny, et al., 2008; Devlin, et al., 2003; Thompson-Schill, et al., 1997; 

Thompson-Schill, et al., 1999). Despite the attempt to tease apart selection and retrieval, it 

may be more accurate to say that these tasks load these two components differently (i.e., 

load more heavily on selection or retrieval). Accordingly, Snyder, Banich, and Munakata 

(2011), showed that when retrieval demands were high, selection did not modulate activity 

in LIFG, while when the demands on retrieval were low, modulation of activity was seen in 

LIFG when the demands on selection increased – suggesting that the two processes may 

interact. Nevertheless, the role for LIFG in semantic control has been shown in numerous 

studies that have not specifically attempted to manipulate retrieval and selection demands.  

It should also be noted that Gold, Balota, Kirchhoff, and Buckner (2005) suggest 

that LIFG acts as a domain general control centre, with specialisation by domain reserved 

for posterior brain areas (i.e., BA 6/40 for phonology; posterior temporal lobe for 

semantics), based on their results where LIFG showed a significant response across 

phonological and semantic tasks (although there was a greater response in aLIFG for 

semantic tasks and in pLIFG (near BA 6) for phonological tasks; Gold, et al., 2005; Snyder, 

Feigenson, & Thompson-Schill, 2007). Rajah, Ames, and D'Esposito (2008) also advocate a 

domain general role in cognitive control for LIFG, reporting motor (BA 6/8) activation when 

stimulus number increased, while BA 44/45 was activated for increased response number. 

In line with these domain general interpretations of LIFG, this site has also been implicated 

in the Stroop task, the anti-saccade task, choosing context sensitive responses (other than 

the prepotent response), weighting of information in working memory, competing 

information in working memory, selection from working memory, and as a supervisory 

attentional system (Thompson-Schill, 2003). Despite these studies implicating LIFG in other 

areas of executive processing, it is clear that LIFG plays an important role in the semantic 

executive control network, regardless of domain specificity. Badre and Wagner (2007) do 

point out that while other parts of LIFG (i.e., BA 45) are perhaps domain general (Duncan & 

Owen, 2000); BA 47 may be specific to the semantic domain. This is supported by a recent 

meta-analysis reporting activation in LIFG across language tasks, but with subtle 
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specialisations along LIFG for phonological and semantic control (Noonan, et al., submitted; 

also Devlin et al. 2003, Gough et al. 2005).  

The larger semantic control network 

Posterior Middle temporal Gyrus 

Data from patients with SA also indicate a semantic control network that extends 

beyond LIFG to the inferior parietal cortex (IPS), including angular gyrus (AG), and posterior 

middle temporal gyrus (pMTG). These patients have lesions to frontal cortex 

(encompassing LIFG), temporoparietal cortex (encompassing AG and pMTG), or both, and 

have deficits across a wide range of semantic control tasks spanning modalities 

(environmental sounds, pictures, object use, and verbal material; Corbett, Jefferies, Ehsan, 

et al., 2009; Corbett, Jefferies, & Lambon Ralph, 2009; Corbett, Jefferies, & Ralph, 2011; 

Jefferies & Lambon Ralph, 2006). Despite very different lesion locations (frontal vs. 

posterior), the two patient groups manifest very similar deficits of semantic control 

(Corbett, et al., 2011; Jefferies & Lambon Ralph, 2006; Noonan, Jefferies, Corbett, & 

Lambon Ralph, 2010); motivating the use of neuroimaging techniques which provide better 

spatial precision to investigate their relative roles in semantic cognition. Perhaps most 

strikingly, a recent meta-analysis of fMRI studies revealed pMTG as the second largest 

cluster (after LIFG) in a comparison of high over low semantic control (Noonan, et al., 

submitted). Accordingly, many studies have reported activation in both LIFG and pMTG for 

tasks manipulating semantic control (e.g., Badre, et al., 2005; Whitney, Hymers, Gouws, & 

Jefferies, submitted; Whitney, Jefferies, et al., 2011). For instance, a recent double prime 

study found both LIFG and pMTG to be active when the demands on semantic control 

increased (Whitney, Jefferies, et al., 2011). Furthermore, a recent TMS study found that 

TMS to either LIFG or pMTG disrupted processing for weakly associated cue-target 

matching, but not for the strong associations – presumably retrieved automatically, not 

requiring semantic control (Whitney, Kirk, et al., 2011), complementing fMRI studies 

showing pMTG and LIFG involvement in semantic association tasks (Badre, et al., 2005; 

Noppeney, Phillips, & Price, 2004; Wagner, et al., 2001). One study found that when TMS 

was applied to LIFG, compensatory activity was elicited in pMTG for control demanding 

semantic tasks (Whitney, et al., submitted). This suggests that the two sites work together 

in order to retrieve/select semantic information for the given context.   
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Despite the evidence suggestive of similar pMTG and LIFG involvement in the 

semantic executive system, there is some evidence to suggest that there are some 

differences between LIFG and pMTG in their contributions to semantic control. For 

example, patients with semantic aphasia have lesions in either frontal or temporoparietal 

areas, but for the most part exhibit similar deficits in semantic control (Jefferies & Lambon 

Ralph, 2006). However, differences in performance do seem to emerge on some tasks, such 

as tasks requiring cyclical/repeated access to semantically related items. This task requires 

participants to identify items that occur in a cycle, where the current target becomes the 

distractor on subsequent trials and vice versa. The cycles are presented in blocks of either 

semantically related or unrelated items, where semantically related items show an increase 

in competition (relative to mixed blocks). While patients with frontal lesions show a 

decrease in performance across cycles, patients with temporoparietal lesions perform 

consistently across cycles on these tasks (Gardner et al., 2012; Jefferies, Baker, Doran, & 

Lambon Ralph, 2007). Therefore, while both LIFG and pMTG contribute to semantic 

control, their roles may differ in discrete, yet distinct, ways and further research is needed 

to clarify these roles. 

Accordingly, a recent meta-analysis found that while LIFG was involved in tasks 

requiring either production or comprehension, pMTG seemed to be more specialised to the 

receptive domain (see also: Price, 2010). Additionally, while LIFG was activated by tasks 

across language domains (e.g., phonology and semantic), pMTG was highlighted as domain 

specific (semantic only; Noonan, et al., submitted; see also: Gold et al., 2005; Gold & 

Buckner, 2002). These findings are in line with a dorsal production route, including LIFG, 

and a ventral comprehension route – possibly through pMTG as a comprehension 

hub/interface (e.g., Turken & Dronkers, 2011), to the ATL (Hickok & Poeppel, 2007). 

However, it should be noted that some studies do show pMTG activation in generation 

tasks (e.g., Martin et al., 1995) and so, the specificity to the receptive domain found in the 

aforementioned meta-analysis may reflect either a genuine comprehension specialisation 

or a reporting bias based on task type (Noonan, et al., submitted). As such, this is a possible 

avenue for further exploration with tasks that make similar demands on semantic control 

to directly compare the recruitment of pMTG for production and comprehension.   

One possibility is that pMTG is recruited for tasks that load on semantic retrieval, 

while LIFG works on ‘post-retrieval selection’ (Badre, et al., 2005; Bedny, et al., 2008; Gold, 

et al., 2006). Some studies have reported greater activation in LIFG for tasks with a high 
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degree of semantic competition, and no pMTG modulation by competition, but rather by 

increased demands on retrieval. For example, Badre et al. (2005) showed increased 

activation in pLIFG for tasks requiring selection, and in contrast, activation in aLIFG and 

pMTG for tasks loading on semantic retrieval. This has also been shown in double prime 

studies – where pMTG has been found to be activate across conditions due to its putative 

role in retrieval, while LIFG activation is seen only in the high competition conditions 

(Bedny, et al., 2008; Gold, et al., 2006; Whitney, Jefferies, et al., 2011). It has therefore 

been suggested that pMTG may act as an ‘entry point’ for semantic knowledge, by 

activating semantic representations when automatic retrieval fails/is not possible, working 

in concert with the LIFG which selects/inhibits amongst competing semantic alternatives 

(Badre, et al., 2005; Gold, et al., 2006). Therefore, while it is clear that pMTG plays a role in 

semantic control, its exact contribution is yet to be clarified. 

Parietal Cortex 

 Angular gyrus (AG) and intraparietal sulcus (IPS) have often been reported for tasks 

requiring semantic control, and as such were key regions to emerge from a recent meta-

analysis contrasting high and low semantic control (Noonan, et al., submitted), as well as 

other meta-analyses of semantic processing (Binder, et al., 2009; Vigneau, et al., 2006). 

fMRI and TMS studies often report activation on the boundary of AG/IPS for tasks that 

require some aspect of semantic control such as homonym judgments (e.g., Hoenig & 

Scheef, 2009; Whitney, Jefferies, et al., 2011), featural semantic judgments (e.g., Sharp, et 

al., 2010; Whitney, et al., 2012), and other aspects of semantic control (e.g., Bedny, et al., 

2008; Hirshorn & Thompson-Schill, 2006; Lee & Dapretto, 2006; Seghier, Fagan, & Price, 

2010; Xiang, et al., 2010). One study showed that stimulation of IPS disrupted difficult 

semantic feature selection tasks and non-semantic feature selection, but not semantic 

associative judgments, suggesting that the more dorsal aspects of parietal cortex (dAG/IPS) 

may be sensitive to featural integration (Whitney, et al., 2012). Moreover, a recent fMRI 

study revealed three segregations within this AG/IPS region, such that: dAG was activated 

across semantic and non – semantic tasks, mid AG was sensitive to semantic tasks and was 

overlapping with the default network (i.e., showing deactivations for meaningless tasks), 

and ventral AG was specifically active for semantic matching (Seghier, et al., 2010). 

Likewise, dAG/IPS and mid AG emerged as significant clusters in Noonan et al.’s (submitted) 

contrast of studies requiring high over low semantic control, while vAG emerged when the 

semantic domain was contrasted with the phonological domain, perhaps due to its role in 



32 

 

semantic conceptual identification (Seghier, et al., 2010). Accordingly, AG/IPS has also been 

shown to be part of the frontoparietal control network (Spreng, Stevens, Chamberlain, 

Gilmore, & Schacter, 2010; Vincent, Kahn, Snyder, Raichle, & Buckner, 2008), and has 

functional connections to other parts of the semantic control network, with the strongest 

connections running between: dAG/IPS and BA 45; mid AG and BA 47; and vAG to ATL 

(Xiang, et al., 2010). These functional connections align well with the aforementioned roles 

emerging from Seghier et al.’s (2010) study, and as such AG/IPS is an interesting area to 

study with regard to its specific role in language processing.  

Empirical Questions for this Thesis 

In view of the literature, this thesis sought to answer questions as to language 

specialisation along the dimensions of domain (phonological and semantic), modality 

(verbal and picture) and control (e.g., retrieval and selection), across a distributed network 

of brain areas. The first question to arise was that of motor cortex contributions to speech 

perception, in light of recent support for the motor theory of speech perception (e.g., 

Fadiga, et al., 2002; Meister, et al., 2007; Wilson, et al., 2004). Recent TMS studies have 

indicated a role for PMC in speech perception, but have only tested the claims of the motor 

theory along one dimension, namely phonology (e.g., D'Ausilio, et al., 2009; Fadiga, et al., 

2002; Wilson, et al., 2004). Therefore they cannot speak to the necessary role of PMC in 

speech comprehension, which given the literature suggesting a specific role for this site 

according to task type, is an important empirical question. If motor areas (i.e., PMC) are 

crucial to speech perception, then stimulation of this area should cause disruption across 

language domains (i.e., phonological and semantic), therefore, in order to confirm the 

motor theory, TMS to PMC would need to disrupt processes engaged in more naturalistic 

speech conditions, such as accessing meaning. We started our exploration of the language 

network with this question, in order to assess the necessary contribution of PMC to other 

aspects of speech perception (Chapter 2).  

Moreover, while domain specificity has received some attention (e.g., the 

dissociation within LIFG between phonological and semantic processing; e.g., Devlin, et al., 

2003; Gough, et al., 2005; Nixon, et al., 2004), the interaction between domain and control 

has not been concurrently assessed. For example, many studies have separately shown the 

phonological/semantic dissociation, and that LIFG is involved in semantic control, but they 

have not concurrently tested how activation is modulated when the demands on both 

increase within the same experiment. Therefore, we turned our attention to assessing any 
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specialisations by domain, control and the interaction of the two, across a network of areas 

previously shown to be involved in linguistic control (LIFG, pMTG, AG/IPS; Chapter 3). 

Furthermore, while patients with SA show multimodal deficits in semantic control (Corbett, 

Jefferies, Ehsan, et al., 2009; Corbett, Jefferies, & Lambon Ralph, 2009; Corbett, et al., 

2011), there has been no study, to our knowledge, that has simultaneously manipulated 

the demands on semantic modality and control within the same experiment. Therefore, we 

again investigated the distributed network of brain areas reported to be involved in 

semantic control to assess their contribution to semantic control across modality (Chapter 

4). Moreover, TMS can be a useful technique when confirming fMRI findings, because often 

different tasks can elicit large swathes of activation in similar areas, with very subtle 

specialisation (e.g., phonological and semantic tasks in LIFG), which TMS can help to 

clarify/confirm. Therefore, we used TMS to probe the role of BA 44, BA 47 and pMTG in 

phonological and amodal semantic control (Chapter 5).  

While the literature clearly indicates that some areas are involved in semantic 

control (i.e., LIFG, pMTG; e.g., Badre, et al., 2005; Corbett, et al., 2011; Whitney, Jefferies, 

et al., 2011; Zempleni, Renken, Hoeks, Hoogduin, & Stowe, 2007), the exact control process 

engaged is still under debate (e.g., selection, retrieval; Badre, et al., 2005; Snyder, et al., 

2011; Thompson-Schill, et al., 1997). Therefore, we attempted to disambiguate retrieval 

and selection processes using a cyclical naming paradigm: we used TMS to investigate the 

role of LIFG and pMTG in semantic control, specifically along the dimensions of retrieval 

and selection, as well as the interaction between the two processes (Chapter 6).  
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Chapter 2: The Selective Role of Dorsal Premotor Cortex in 

Speech Perception - A role in explicit phoneme judgements 

but not speech comprehension 

Introduction 

A key controversy within the neuroscience of language concerns whether speech 

perception relies on purely auditory mechanisms or sensorimotor processing. One account, 

the motor theory of speech perception, states that brain areas involved in producing 

speech, such as the premotor cortex (PMC), necessarily participate in understanding 

spoken language under normal circumstances (Galantucci, Fowler, & Turvey, 2006; 

Liberman & Mattingly, 1985; Rizzolatti & Craighero, 2004). On the other hand, many 

current models of language propose two parallel processing streams: one that runs dorsally 

for auditory motor integration, and a second, ventral route for ‘comprehension’ (Hickok & 

Poeppel, 2004, 2007; Rauschecker & Scott, 2009). Tasks involving speech perception 

differentially recruit these two routes depending on the extent to which they involve access 

to articulatory representations and concepts. Crucially, these accounts do not regard PMC 

as a core part of the ventral stream, which may be sufficient for comprehension of clear 

auditory input without the involvement of a motor code.  

Neuroimaging studies have provided support for the motor theory, reporting 

motor cortex recruitment during tasks involving phonemic judgements (D'Ausilio, et al., 

2009; Meister, et al., 2007; Mottonen & Watkins, 2009), passive speech listening of 

meaningless monosyllables  (i.e., Pulvermuller, et al., 2006; Uppenkamp, et al., 2006; 

Wilson, et al., 2004), and contrasts of synthetic vowel sounds over non speech stimuli 

(musical rain; Uppenkamp, et al., 2006). However, functional neuroimaging studies cannot 

determine whether this motor activation is essential to speech perception and the 

neuropsychological literature largely contradicts this view. Patients with expressive aphasia 

have severe deficits of language production following lesions to left frontal cortex and the 

motor theory would predict that these patients should also be impaired on auditory 

comprehension, however this is often not the case (e.g., Miceli, et al., 1980). They do show 

impairments on explicit perceptual categorisation and phoneme awareness tasks (e.g., 

identifying the boundary between two phonemes; performing explicit phoneme 

segmentation), which require access to explicit/categorical phonological representations, 

but these impairments are not reflected in general comprehension (Basso, et al., 1977; 
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Bishop, et al., 1990; Blumstein, et al., 1977; Miceli, et al., 1980; Moineau, et al., 2005; 

Rogalsky, et al., 2011). This dissociation is captured by studies in which patients were 

impaired on judgements based on perceptual features (same/different judgements), but 

showed no deficit for spoken word-picture judgements based on the semantic content of 

the word (Bishop, et al., 1990; Rogalsky, et al., 2011). 

Recent Transcranial Magnetic Stimulation (TMS) research has confirmed a focal 

role for PMC in some speech perception tasks, including speech discrimination of syllables 

embedded in noise (D'Ausilio, et al., 2009; Meister, et al., 2007), categorical perception 

(Mottonen & Watkins, 2009), and phoneme discrimination of nonsense syllables (Sato, et 

al., 2009). While these TMS studies indicate that PMC plays an important role in explicit 

phoneme judgements, an important caveat remains: other aspects of speech processing, 

such as mapping sounds onto meaning (Marslen-Wilson & Warren, 1994; Morais & 

Kolinsky, 1994), may proceed without the involvement of motor speech areas. Early 

auditory processes do not necessarily resolve ambiguities in the input: instead, some 

models of speech perception suggest that uncertainty is cascaded downstream. 

Phonological ambiguity does not pose a problem for semantic access, at least under normal 

circumstances, since semantically-related items are rarely also phonologically-related and 

comprehension is constrained by context (for example, input which is acoustically 

ambiguous at the mid-point of /pa/ and /ba/ is sufficient to identify a family member). In 

contrast, categorical perception and explicit phoneme judgements require participants to 

access categorical representations of phonology in the absence of meaning. In these 

circumstances, the articulatory features represented within PMC may be recruited in order 

to ‘tune up’ phonological processing, allowing the activation within auditory and 

articulatory areas to settle on a specific phoneme. Similarly, Gaskell, Quinlan et al. (2008) 

describe a model in which categorical representations of phonemes are formed during 

speech perception, but are not required for word recognition, which instead relies on a 

non-categorical representation of speech. This view finds support in studies where 

‘naturalistic’ speech comprehension (e.g., listening to intelligible natural sentences) does 

not recruit motor areas (e.g., Scott, Blank, Rosen, & Wise, 2000; Spitsyna, Warren, Scott, 

Turkheimer, & Wise, 2006); however when perceptual and also semantic difficulty 

increases (i.e., acoustically degraded speech where the degree of semantic relatedness 

between words is weak), activation can be seen in frontal and parietal areas (e.g., Sharp, et 

al., 2010).  
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The current study addressed this possibility using the 1 Hz paradigm to induce 

‘virtual lesions’ in language areas of the left hemisphere. Repetitive trains of TMS were 

delivered to transiently disrupt the neural processing of the underlying tissue, manifested 

in the concurrent behavioural disruption of tasks reliant on this area. We examined the 

effects of dorsal premotor stimulation on the speech perception processes necessary to 

support explicit phoneme judgements, as well as the comprehension of spoken words to 

allow extraction of meaning. The motor theory of speech perception suggests that both 

tasks should show disruption (indicating that dPMC is necessary for both phoneme 

judgement and semantic tasks), while a selective effect on phonological decisions only 

would point to a more restricted role for dPMC, which would not be compatible with the 

view that motor processes contribute to speech perception in normal comprehension. TMS 

to PMC was compared with stimulation of two additional sites: 1) posterior superior 

temporal gyrus (pSTG), which is uncontroversially recruited during normal auditory 

processing (Buchsbaum, et al., 2001; Hickok & Poeppel, 2007; Scott, 2005; Scott & 

Johnsrude, 2003; Seghier et al., 2004) and therefore expected to disrupt performance on 

both tasks and 2) occipital pole (OP), a control site allowing us to characterise any non-

specific effects of stimulation.  

 

Method 

Design 

A within-subjects 2x3x3 factorial design was employed, including TMS (no 

stimulation vs. stimulation), task (phonological, semantic, visual control) and site (OP, PMC, 

pSTG) as factors. We employed an rTMS virtual lesion method, delivering a low-frequency 

train of rTMS pulses offline. Participants then performed the task immediately after 

stimulation, allowing us to rule out the possibility that the loud clicks associated with each 

pulse, jaw contractions, or eye blinks following peripheral nerve stimulation disrupted 

performance on the behavioural tasks. Participants performed the baseline testing 

(without TMS) either before TMS stimulation, or completed baseline testing 30 minutes 

after TMS stimulation (by which time the effects should no longer be present; Lambon 

Ralph, et al., 2009; Pobric, Jefferies, & Lambon Ralph, 2007; Pobric, et al., 2009; Whitney, 

Kirk, et al., 2011). The order of baseline testing was counterbalanced across sessions for 

each participant. The study made use of a non-linguistic control task (scrambled pictures to 
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ensure that disruption was task-specific) and a control stimulation site (OP; to ensure that 

the effects were not due to non-specific effects of TMS).  

Participants 

Fifteen right handed, native English speakers who were recruited from the 

University of York student population were examined in the study (nine males; mean age = 

21.8, SD = 2.4). All participants were reimbursed £30 for their time. Four participants were 

replaced due to difficulties co-registering brain images with scalp locations, and one due to 

technical problems during testing (N = 5). One participant from our final sample, who was 

identified as an outlier in the phonological and semantic conditions for PMC and OP, was 

excluded from the analysis. All participants passed safety screening for MRI and TMS, were 

free from any history of neurological disease or mental illness and were not taking any 

medication. Each participant gave their informed consent before each TMS testing session 

began, and the experiment was reviewed and approved by the York Neuroimaging Centre 

Ethics Board.  

Tasks  

The probe words for the phonological and the semantic tasks were presented 

auditorily, with the targets presented visually. A two alternative forced choice (2AFC) 

format was used across all three tasks (phonological, semantic, visual control; see Table 

2-1). In the phonological task, participants had to decide which phoneme they had heard at 

the end of a word (e.g., auditory probe “cart”, with the answer choices ‘t’ and ‘p’ on the left 

and right hand sides of the screen; both response options produced real words). In the 

semantic task, participants had to make a decision about which semantic category the 

auditory probe word belonged to (e.g., auditory probe “cart”, with choices “manmade” and 

“natural”). There were six types of semantic decision within the experiment 

(concrete/abstract, manmade/natural, nice/nasty, hear/see, large/small, and 

action/object). In the visual control task, a probe image of a scrambled face appeared at 

the top of the screen and participants were asked which of two scrambled figures below 

was identical to the probe. The non-identical figures were produced by rotating the target 

image through 90°. 
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Condition Phonological Semantic Control 

Probe “cart” “cart” 

 

Target p t manmade natural 

  

Table 2-1: Task conditions. The target item is underlined. 

Stimuli 

The auditory stimuli were cross-spliced spoken words taken from a previous study; 

these were modified in order to increase difficulty whilst minimising error rates (Gaskell, 

Quinlan, Tamminen, & Cleland, 2008). The stimuli were constructed from word pairs (such 

as job-jog): the final phoneme from one word (i.e., /b/) was attached to the onset and 

vowel of the second word (i.e., /jo/ of “jog”) and the final phoneme was then attenuated, 

in order to increase task difficulty when making explicit phoneme judgements. In pilot 

testing, task performance at different levels of attenuation (12.5%, 25%, 50%) was 

examined for each item, and the final level of attenuation was selected to maximise 

difficulty while minimising the error rate (given our primary dependent measure was 

response time; RT; median level of attenuation 12.5%). The same auditory probes were 

used across tasks but were never repeated within one testing session, for example, items 

presented in the phonological task in week 1 were not presented in the semantic task in 

week 1, but could occur in the opposite order (semantic/phonological) in week 2. The 

stimuli in the visual control task were pictures of faces, scrambled into 100 blocks 

rendering them unrecognisable. 

Procedure  

A PC running E-Prime software was used to present the tasks and record accuracy 

and RT. Responses were given with left and right index fingers corresponding to the 

positions of the two response options on the screen. The language tasks started with a 

fixation screen for 250ms followed by the presentation of the target and distractor (e.g., for 

‘carp’, ‘p’ is the target and ‘t’ is the distractor) for 500ms, followed by the auditory probe, 
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after which participants were required to make a response. The participant’s response 

triggered the next trial. For the visual control task, the probe and targets appeared on 

screen simultaneously. 

  The experiment began with a practice block, to familiarise participants with the 

tasks (6 trials per task type). There were 30 experimental trials per task (semantic, 

phonological, control), with participants performing a total of 90 trials per condition 

(baseline, post-TMS). No trials were repeated within a session, but some trials (less than 

20%) were repeated across sessions (i.e., one week later). The order in which the trials 

occurred was randomised and the order in which the tasks were presented was pseudo-

randomised across participants. Each task block was preceded by a screen which informed 

participants of the new task type, and participants pressed the space bar to continue. The 

different categories within the semantic task were presented in mini-blocks, and again 

there was an instruction screen at the start of each one, indicating the type of decision 

participants would be making (e.g., concrete or abstract). 

Selection of TMS Sites  

Structural T1-weighted MRI scans were used to identify sites for stimulation in each 

participants’ brain. Sites were identified from previous functional neuroimaging and TMS 

studies of speech perception and an average peak coordinate was taken. The coordinates 

contributing to the left PMC site came from Sato et al. (2009), Meister et al. (2007), Wilson 

et al. (2004), Vigneau et al. (2006) and D’Ausilio et al. (2009), producing the following 

coordinates: -52.67, -6.67, 43 (MNI). The left pSTG site was taken from Meister et al. 

(2007), Okada and Hickok (2006), Dehaene-Lambertz et al. (2005), and Zevin and 

McCandliss (2005) producing the following coordinates: -59.56, -30.53, 7.08 (MNI). These 

sites were then transformed into each participant’s individual brain space. The left occipital 

pole was measured as 20mm superior and 10 mm left of the inion, as in previous TMS 

studies (e.g., Ishibashi, Lambon Ralph, Saito, & Pobric, 2011). 

For 11 participants, the MRI structural image was co-registered to the participant’s 

scalp using an Ascension Minibird magnetic tracking device (www.ascension-tech.com) in 

conjunction with MRIreg software (www.mricro.com/mrireg.html). Five anatomical 

landmarks were identified for co-registration (tip of nose, bridge of nose, vertex, left/right 

tragus).  Stimulation coordinates were transformed into individual subject space using the 

transformation matrix from the ‘segment’ function in SPM5. For the remaining participants, 

Brainsight 2 (Rogue Research, Montreal Canada, www.rogue-research.com/) was used to 
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co-register participant brains and to identify stimulation sites prior to rTMS administration. 

Four landmarks were used for co-registering the participants head to their brain image (tip 

of the nose, bridge of the nose, left/right tragus).  

Stimulation Parameters 

Before TMS testing began, individual active motor threshold was established in 

each testing session. This was determined by the lowest stimulation intensity required to 

elicit visible contraction of the first dorsal interosseous (FDI) muscle in the contralateral 

hand. Motor thresholds ranged between 38% and 65% of maximum stimulator output, with 

an average of 49% of stimulator output. A 70mm figure of eight coil, attached to a MagStim 

Rapid2 stimulator was used to deliver the magnetic pulses. Repetitive trains of TMS were 

applied at 1Hz for 10 minutes; participants were stimulated at 120% of their motor 

threshold. We used a coil orientation established as the least uncomfortable for 

participants prior to stimulation, as it has been shown that orientation does not reliably 

influence behavioural effects (Niyazov, Butler, Kadah, Epstein, & Hu, 2005).   

Data Analysis 

TMS disruption was expected to manifest itself in delayed RT, rather than a decline 

in accuracy (Walsh & Cowey, 2000), since the behavioural task was designed to be as 

demanding as possible whilst minimising error rates. The analyses therefore examined RT 

for correct responses, within 1.5 standard deviations of the mean (accuracy data are 

provided in Table 2-2). The predictions of this study were confirmed using paired t-tests to 

examine if the predicted TMS effects were significant at each site (one-tailed), along with 

within-participants ANOVA (all two-tailed) to test for the predicted interactions between 

TMS and task at each site (i.e., to establish an interaction of task and TMS for PMC). 

Separate ANOVAs (all two-tailed) were used to examine site x TMS interactions for each 

task.  
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  PMC pSTG OP 

  Baseline TMS Baseline TMS Baseline TMS 

Control 

96.99 

(.92) 

94.84 

(2.01) 

96.99 

(1.2) 

96.77 

(1.0) 

97.20 

(.82) 

96.77 

(1.09) 

Phonological 

94.62 

(1.77) 

92.26 

(1.86) 

90.54 

(2.1) 

91.61 

(2.51) 

94.62 

(1.16) 

92.69 

(1.56) 

Semantic 

87.96 

(2.15) 

85.16 

(1.88) 

88.82 

(1.66) 

82.15 

(2.33) 

87.96 

(2.17) 

87.53 

(2.2) 

Table 2-2: Accuracy Data. PMC = Premotor Cortex. pSTG = posterior Superior Temporal 

Gyrus. OP = occipital pole. Average accuracy, standard error in parentheses. The only 

paired comparison that reached significance in accuracy was between the TMS and no-TMS 

conditions for pSTG and the semantic task (t(14) = 2.981, p = .01). 

Results 

Premotor cortex 

  Paired sample t-tests confirmed our prediction that PMC is involved in phoneme 

judgements but not semantic judgements: phonological judgements were significantly 

slowed by TMS to this site (t(14) = -2.03, p < .05), while, crucially, the semantic task was 

unaffected (t(14) = 1.07, p > 0.1). There was also no disruption of the control task after TMS 

to PMC (t(14) < 1). A within-participants ANOVA was used to confirm that the two language 

tasks were affected differently by TMS: this analysis revealed a significant main effect of 

task (F(1,14) = 34.67, p < .001) and a significant interaction of task by TMS (F(1,14) = 4.66, p 

< .05; see Figure 2-1). 
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Figure 2-1: Premotor Cortex (PMC). TMS to PMC produces significant slowing of the 

phonological task but not the semantic task. Error bars represent standard error of the 

mean. Stars represent significant slowing after TMS (p < .05). 

One potential concern relating to the previous analysis is that anatomical 

landmarks might not be a good guide to localisation of function in specific individuals, and 

therefore TMS may have been applied to a non-relevant site in at least some of the 

participants (potentially masking its effect on both tasks). To confirm that TMS failed to 

disrupt the semantic task, even when it was applied to a site confirmed to be functionally 

relevant, we selected those participants (n=11) who showed the expected TMS-induced 

disruption of phoneme detection for PMC (i.e., slowing of 0 ms or more). We were then 

able to establish if there were TMS effects on the other two tasks. Again, both the control 

and the semantic task showed no effect of TMS to PMC (t(10) < 1). The phonological task 

did, unsurprisingly, show a significant disruption after TMS to PMC (t(10) = -3.78, p < .01) 

and a direct comparison of the two language tasks confirmed a significant interaction of 

task by TMS (F(1,10) = 7.36, p < .05; see Figure 2-2). 
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Figure 2-2: Functionally Localised Premotor Cortex (PMC). TMS to functionally localised 

PMC shows a significant slowing of the phonological task but not the semantic or control 

task. Error bars represent standard error of the mean. Stars represent significant slowing 

after TMS (p < .05). 

Posterior Superior Temporal Gyrus 

  Paired sample t-tests confirmed our prediction that pSTG is involved in both 

phonological and semantic judgements to spoken words. TMS had a significant effect on 

both phoneme judgements (t(14) = -1.77, p ≤ .05) and semantic judgements (t(14) = -2.40, 

p < .05), but there was no effect on the control task (t(14) < 1). A within-participants 

ANOVA confirmed that the two language tasks were equally sensitive to disruption by TMS: 

there was a significant main effect of task (F(1,14) = 42.54, p < .001) and TMS (F(1,14) = 

5.47, p < .05), but no interaction (F(1,14) = 2.93, p > 0.1; see Figure 2-3).  
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Figure 2-3: Posterior Superior Temporal Gyurs (pSTG). TMS to pSTG shows significant 

slowing for both phonological and semantic tasks. Error bars represent standard error of 

the mean. Stars represent significant slowing after TMS (p < .05). 

Occipital Pole 

  As predicted, there was no disruption to any task after TMS to OP: paired t-tests 

were non-significant for all tasks (t(14) < 1 in all cases). A direct comparison between the 

two language tasks showed a significant main effect of task (F(1,14) = 63.62, p < .001), no 

effect of TMS (F(1,14) < 1) and no interaction (F(1,14) < 1; see Figure 2-4).  

 

Figure 2-4: Occipital Pole (OP). TMS to OP shows no effect for any of the tasks. Error bars 

represent standard error of the mean. 
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Between Sites Comparison 

  As the control task revealed no significant TMS effects for any of the sites, it was 

not included in this analysis. A 3 x 2 x 2 within-participants ANOVA exploring the 

interactions between site, task and TMS revealed a significant site by TMS interaction (F(2, 

28) = 5.61,  p < .01), confirming that the TMS effects were site specific (i.e., disruption 

following stimulation of PMC and pSTG, not OP). There was also a significant three way 

interaction (F(2, 28) = 3.69, p = .038), confirming that the interaction of task and TMS was 

site specific (i.e., phonological task disruption for PMC, both language tasks disrupted by 

TMS to pSTG).   

Discussion 

This study reveals that premotor cortex (PMC) plays a restricted role in the 

perception of spoken language. We explored the effects of TMS stimulation on a phoneme 

judgement and a semantic decision task. This study also made use of a control task which 

required challenging visual judgements in the absence of language or auditory processing, 

to demonstrate that any TMS effects were specific to the auditory speech domain. The 

results revealed that TMS stimulation of dPMC disrupted explicit phonological judgements, 

but not semantic decisions to the same stimuli. Stimulation of a second region, posterior 

superior temporal gyrus (pSTG), containing auditory association cortex, produced 

disruption of both language tasks. Since the TMS effects at this site were equivalent for 

phonological and semantic decisions, we can be confident that the selective effects of PMC 

stimulation do not reflect general susceptibility of phoneme judgements to interference. A 

control site, occipital pole (OP), confirmed that the TMS effects were site-specific: TMS to 

OP did not affect performance on any of the tasks. Moreover, there were no effects of TMS 

on the visual control task at any of the sites, confirming that the effects we observed were 

specific to the language domain.  

This study reveals that the role of dPMC is constrained to phoneme judgements. In 

contrast, some theories advocate a necessary and automatic role for motor speech 

representations in speech perception, an idea which has received support from the 

discovery of mirror neurons (Rizzolatti & Craighero, 2004; but see, Gallese, Gernsbacher, 

Heyes, Hickok, & Iacoboni, 2011), and neuroimaging studies (Fadiga, et al., 2002; 

Pulvermuller, et al., 2006; Uppenkamp, et al., 2006; Watkins & Paus, 2004; Watkins, et al., 

2003; Wilson, et al., 2004). As functional neuroimaging methods cannot confirm that PMC 
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activity plays a necessary role in speech perception, TMS has been used in several studies 

to show that stimulation of this region does disrupt speech perception tasks (D'Ausilio, et 

al., 2009; Fadiga, et al., 2002; Meister, et al., 2007; Mottonen & Watkins, 2009; Sato, et al., 

2009). However, all of these TMS studies, as well as the majority of fMRI studies, have used 

explicit phoneme judgements which have additional metalinguistic and cognitive control 

demands (Pulvermuller, et al., 2006; Uppenkamp, et al., 2006; Wilson, et al., 2004). This 

research cannot demonstrate, therefore, that PMC plays a vital role in speech perception in 

simple/naturalistic situations, such as the comprehension of spoken words. Additionally, 

evidence from patient studies suggests that motor areas may only be crucial for tasks that 

require overt segmentation or explicit phoneme awareness, and not for speech 

comprehension (e.g., Basso, et al., 1977; Bishop, et al., 1990; Rogalsky, et al., 2011). 

However, patients typically have large and variable lesions and consequently these studies 

lack spatial resolution. Neither functional neuroimaging nor neuropsychological methods 

are ideally placed to confirm an essential role for a specific region such as PMC in aspects of 

speech recognition. In the current study, we overcame these limitations through the use of 

TMS to produce relatively focal disruption of processing within PMC in healthy participants.  

The current findings complement previous TMS findings by confirming the role of 

the PMC in explicit phoneme judgement tasks (e.g., D'Ausilio, et al., 2009; Meister, et al., 

2007; Mottonen & Watkins, 2009), but crucially the study reveals that dPMC is not 

necessary for mapping sound to meaning. A dissociation between auditory comprehension 

and explicit phoneme discrimination tasks fits well with a current model of spoken word 

recognition (Gaskell, Quinlan et al., 2008), and has clear parallels in the neuropsychological 

literature (Blumstein, et al., 1977; Miceli, et al., 1980). For example, Miceli et al. (1980) 

reported 19 patients whose performance on phonological discrimination tasks was 

pathological, but their performance on word (or sentence level) comprehension tasks was 

normal. Patient studies in which the same stimuli are used across phonological 

discrimination and comprehension tasks have also confirmed this 

discrimination/comprehension dissociation (e.g., Bishop, et al., 1990; Rogalsky, et al., 

2011). Patients with impaired speech production performed more poorly than controls on 

syllable discrimination (i.e., same or different? “boy”-“voy”), but crucially, not on picture-

syllable matching (i.e., a picture of a boy, and asked “Is this a voy?” or “Is this a boy?”; 

Bishop et al., 1980). The current study shows a similar dissociation but with higher 

anatomical specificity, confirming that this pattern follows stimulation of dPMC in healthy 

participants. 
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There is strong connectivity between pSTG and PMC (Catani, Jones, & ffytche, 

2005; Osnes, Hugdahl, & Specht, 2011; Pulvermuller & Fadiga, 2010; Saur, et al., 2008): 

what might account for the selective recruitment of motor areas in this large-scale 

distributed language network? (1) dPMC may be involved in strategic modulation of the 

speech perception process in non-natural/challenging conditions such as repetition and 

learning of new words, when speech perception is challenging (Burton, et al., 2000; 

Demonet, et al., 1992). (2) It could also provide a back-up mechanism for processing 

degraded auditory stimuli. Recent support for this explanation comes from Osnes, Hugdahl 

et al. (2011), who saw a decrease in PMC activation as speech became less distorted (see 

also Devlin & Aydelott, 2009; Scott, et al., 2009). (3) dPMC recruitment may also be 

necessitated when explicit knowledge of phoneme segments is required (Hickok & Poeppel, 

2000; Rogalsky, et al., 2011; Sato, et al., 2009), for example in non-natural language tasks 

such as explicit phoneme judgements, where metalinguistic knowledge about speech 

sounds, not words, is used to guide phoneme segmentation (Rogalsky, et al., 2011). Early 

support for this comes from Zatorre et al. (1992) who found syllable judgements, but not 

passive listening, revealed activation in Broca’s area bordering PMC (also corroborated by 

Burton, et al., 2000). Difficult explicit judgements about the constituent sounds of words 

may be aided by mental simulation within action systems. In order to establish that there is 

a /t/ not a /p/ at the end of “cart”, for example, participants may generate the motor plan 

for “cart” and decide if this overlaps with the articulation of /t/ (Halle & Stevens, 1962; 

Yuen, et al., 2009). In contrast, when listening to “cart” and deciding if this is a natural or 

man-made object, auditory representations may be mapped to meaning more directly 

along the ventral language route (Hickok & Poeppel, 2007). 

In most circumstances, task difficulty and the requirement to employ explicit 

phoneme knowledge are correlated. The TMS study of Sato, Tremblay et al. (2009) 

revealed that PMC was not recruited for simple phoneme and syllable discriminations; it 

was only essential for difficult phoneme discrimination tasks requiring segmentation. While 

the results of this study are consistent with ours, difficult tasks are often thought of as 

more vulnerable to TMS effects in a variety of tasks (Devlin & Watkins, 2007) and Sato et al. 

(2009) did not include a control site to demonstrate that disruption of the difficult 

phonological task was specific to PMC. The current findings address this shortcoming, as 

the selective pattern of interference seen for PMC in the current study was not reproduced 

following TMS to another site within the language network (pSTG) or a non-language 

control site (OP).  
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In summary, the current study made use of two language tasks, a visual control task 

and three test sites (dPMC, pSTG, OP) to address the crucial question as to whether dPMC 

recruitment is necessary for all speech perception processes, as postulated by the motor 

theory of speech perception (Galantucci, et al., 2006; Liberman & Mattingly, 1985; 

Rizzolatti & Craighero, 2004). We revealed that although previous research has implicated 

PMC in speech perception, its role is confined to explicit phoneme judgement tasks and 

does not extend to the semantic domain.  
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Chapter 3: An fMRI Investigation of Phonological and 

Semantic Control across Language Networks  

Introduction 

 Two key issues concerning the language networks distributed throughout the 

cortex are 1) which/how these networks are specific to different types of content and 2) 

the modulation of the networks by task demands (i.e., difficulty). Chapter 2 elucidated the 

specific role of premotor cortex (PMC) in speech perception: TMS to PMC disrupted 

phonological, but not semantic judgements. However, this region is part of a larger 

network contributing to both representation and control, and a natural question leading on 

from the confirmation of a domain specific response at a particular site is the interaction of 

domain and control. Therefore, this chapter will focus on phonological and semantic 

control across a wider network using fMRI (PMC, left inferior frontal gyrus (LIFG), posterior 

middle temporal gyrus (pMTG), and parietal cortex).  

Premotor cortex 

There has been some support for the motor theory of speech perception 

(Galantucci, et al., 2006) from neuroimaging and TMS studies showing PMC involvement 

for speech perception tasks (e.g.,Fadiga, et al., 2002; Liberman & Mattingly, 1985; 

Pulvermuller, et al., 2006; Uppenkamp, et al., 2006; Watkins & Paus, 2004; Watkins, et al., 

2003; Wilson, et al., 2004). However, these tasks require participants to make 

metalinguistic judgements, which are not a naturalistic assessment of speech perception. 

Recent studies using ‘naturalistic’ listening/reading (comprehension) tasks, with no explicit 

task requirements, have reported activation in superior temporal sulcus (STS)/superior 

temporal gyrus (STG)/temporoparietal (TP) and anterior temporal lobe (ATL) regions, but 

no activation in areas previously shown to be active for tasks requiring control, such as 

PMC, LIFG and pMTG (Spitsyna, et al., 2006). Our TMS results (Chapter 2) support these 

findings demonstrating a role for PMC in non-natural speech perception tasks, but not 

access to meaning. Additionally, studies of patients with expressive aphasia have lesions to 

left frontal cortex and show marked impairment in language production. Contrary to the 

predictions of the motor theory of speech perception, these patients do not show deficits 

in global comprehension (e.g.,Miceli, et al., 1980), but do show impairment on explicit 

perceptual categorization tasks (i.e., identifying the acoustic boundary between two 

phonemes) that are not reflected in general comprehension (Basso, et al., 1977; Moineau, 
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et al., 2005). Many studies in healthy populations provide evidence that corroborates these 

neuropsychological findings, such as studies showing  premotor response to non-native 

speech sounds (i.e., ingressive clicks; Agnew, McGettigan, & Scott, 2011), syllable 

judgements but not passive listening (Zatorre, et al., 1992), segmentation of consonants 

not simple speech discrimination (Burton, et al., 2000), discerning phonetically ambiguous 

speech (Gow Jr & Segawa, 2009), as well as one study showing that simple phoneme 

discrimination does not necessitate PMC with recruitment only necessary for more 

challenging phoneme discrimination tasks (Sato, et al., 2009), and our finding that TMS to 

PMC disrupted phoneme, but not semantic decisions (Chapter 2); these findings all speak 

to a non-essential role for PMC in speech perception. This suggests that while motor areas 

may be recruited in some language tasks, they are not necessary for general 

comprehension of clear auditory input. While Chapter 2 provided evidence for a non 

essential role for PMC in general comprehension – the exact nature of the role of PMC 

remains unclear. For example, is PMC recruitment modulated by difficulty across linguistic 

tasks, or restricted to the phonological domain – if at all. 

Left Inferior Frontal Gyrus 

Many studies reporting PMC involvement in speech perception tasks also report 

activation spreading into pLIFG (Noonan, et al., submitted; Price, 2010; Vigneau, et al., 

2006); and much research has investigated the contribution of LIFG to linguistic processing, 

with numerous studies exploring specialisation for different domains (e.g., phonology or 

semantics). Many studies report posterior recruitment of LIFG (BA 44) for tasks requiring 

phonological decisions (e.g., Blumstein, et al., 2005; Nixon, et al., 2004; Ojemann & Mateer, 

1979; Poldrack, et al., 2001; Romero, et al., 2006), and anterior recruitment (BA 45/47) for 

tasks that are semantic in nature (e.g., Badre, et al., 2005; Devlin, et al., 2003; Wagner, et 

al., 2001; Whitney, Kirk, et al., 2011). As such, there is evidence to suggest a graded 

response along LIFG for phonological and semantic input; and some studies have directly 

compared the two domains in LIFG, in order to confirm this posterior-anterior 

phonological-semantic dissociation within the same experiment (e.g., Bokde, et al., 2001; 

Gough, et al., 2005; Koechlin & Jubault, 2006; Poldrack, et al., 1999). A theory that unites 

these studies is the idea that LIFG contributes to linguistic control (Fiez, 1997), which finds 

support in a recent meta-analysis which showed that phonological and semantic tasks 

activated the entire LIFG, but with subtle distinctions: specialisation in posterior IFG for 

phonology and anterior IFG for semantic control (Noonan, et al., submitted). However, very 
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few studies have simultaneously manipulated domain (semantic vs. phonology) and 

difficulty/control demands. 

There are, however, some studies that have attempted to manipulate control 

demands while also investigating domain specificity in LIFG. For example, Snyder et al. 

(2007) used a factorial design, with high and low conflict conditions for semantic similarity 

(global vs. specific) and vowel sound judgements. However, the high conflict phonological 

judgements required participants to inhibit semantic information, thereby confounding the 

direct comparison of phonological and semantic control in LIFG. Another study used 

challenging phonological and semantic tasks, but rather than comparing them to easy 

versions of the same task, they were compared to a baseline task, thus domain and 

difficulty (easy vs. hard) could not be directly compared (Gold, et al., 2005). Therefore, our 

study tried to assess the degree to which subdivisions of LIFG are modulated by domain, 

difficulty and the interaction of the two.   

Posterior Middle Temporal Gyrus 

 While the role of LIFG in linguistic processing has been widely studied, the role of 

pMTG remains less certain. The neuropsychological literature indicates a role for this site in 

semantic control, as patients with lesions to temporoparietal cortex show marked 

impairments on tasks requiring controlled access to semantic representations (Corbett, 

Jefferies, Ehsan, et al., 2009; Corbett, Jefferies, & Lambon Ralph, 2009; Jefferies & Lambon 

Ralph, 2006). Additionally, it has been shown to be involved in tasks requiring semantic 

control in both fMRI (Badre, et al., 2005; Noppeney, et al., 2004; Whitney, et al., submitted; 

Whitney, Jefferies, et al., 2011; Zempleni, et al., 2007) and TMS (Whitney, Kirk, et al., 2011; 

Whitney, et al., 2012); and in a recent meta-analysis it was the second largest cluster to 

result from a comparison of high – low semantic control (Noonan, et al., submitted). It has 

also been shown to respond to tool use (Kable, Kan, Wilson, Thompson-Schill, & Chatterjee, 

2005) and actions/verbs (Kable, et al., 2005; Tranel, Martin, Damasio, Grabowski, & 

Hichwa, 2005), which may, as noted by Noonan et al. (submitted), indicate that this area is 

sensitive to changing context (many of these tasks require participants to generate a verb 

given a noun). This site has also been implicated in models of language as an interface 

between speech representations in superior temporal gyrus (STG) and conceptual 

representations in the anterior temporal lobes (ATL; Hickok & Poeppel, 2007). Moreover, 

connectivity studies have suggested that this site acts as a ‘cortical hub’, due to its rich 
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structural and functional connectivity throughout the language network: this may indicate 

a role for this site in both semantic and phonological control, as it has up to six major 

pathways connecting with it. Therefore, our study was interested in investigating the 

degree to which pMTG is domain specific, given a recent meta-analysis that found this site 

to contribute exclusively to the semantic domain (specifically control; Noonan, et al., 

submitted), and as such also measure this sites contribution to control.  

Parietal Cortex 

Another area often implicated in the language network is angular gyrus 

(AG)/intraparietal sulcus (IPS): it has emerged as a key site activated by semantic material 

in numerous meta-analyses (Binder, et al., 2009; Noonan, et al., submitted; Vigneau, et al., 

2006). This site has also been shown to be involved in a wide range of tasks such as 

semantic (Demonet, et al., 1992; Noonan, et al., submitted; Sharp, et al., 2010; Vigneau, et 

al., 2006), sentence comprehension (Mashal, Faust, Hendler, & Jung-Beeman, 2009; 

Obleser & Kotz, 2010), reading (Carreiras et al., 2009) visual search/attention (i.e., feature 

and conjunction search; Donner et al., 2000; Donner et al., 2002), number comparison 

tasks (Gobel, Walsh, & Rushworth, 2001), and, even, left/right decisions (Hirnstein, Bayer, 

Ellison, & Hausmann, 2011). Therefore it is not surprising that it has been implicated as part 

of the multi-demand network (Duncan, 2010). Likewise, Seghier et al. (2004) report that 

dorsal AG responded to both semantic and non-semantic material, consistent with the 

multi-demand network; while the response in other parts of AG, such as mid AG, was less 

domain general and was found to be specifically involved in word reading and semantic 

associations. Additionally, AG activation has been reported for semantic tasks, while 

meaningless tasks cause deactivation, further implicating it as a part of the semantic 

network (Binder et al., 1999; Noonan, et al., submitted; Seghier, et al., 2004). Despite 

activation in this area being reported across various task types (language and non-language 

tasks), there are few reports of phonological tasks eliciting AG activation (and AG is not 

reported in either of these meta-analyses for phonology: Noonan, et al., submitted; 

Vigneau, et al., 2006), with most studies reporting the activation in supramarginal gyrus 

(e.g., Noonan, et al., submitted; Vigneau, et al., 2006) or parietal operculum (e.g., Sharp, et 

al., 2010). This makes AG an interesting site to examine, as two recent investigations 

suggest graded functional specialisations across AG for semantic, domain general and 

default networks (Noonan, et al., submitted; Seghier, et al., 2004).  
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This study assesses the contribution of PMC, LIFG, pMTG and AG to phonological 

and semantic control, using fMRI, with a paradigm where task format is matched as well as 

manipulating difficulty across both language domains. Therefore, we could assess the 

increased activity in each of these brain areas for heightened difficulty which was both 

specific to and shared across domains. In line with the findings from Chapter 2, as well as 

other research suggesting a restricted role for PMC in speech perception (e.g., Lotto, 

Hickok, & Holt, 2009; Rogalsky, et al., 2011; Scott, et al., 2009), we hypothesised that 

activation in PMC would be restricted to resolving phonological, but not semantic, 

judgements. Additionally, the previous literature indicates a functional graded distinction 

along LIFG for phonological and semantic tasks (e.g., Gough, et al., 2005; Poldrack, et al., 

1999; Vigneau, et al., 2006). Therefore, we predicted a heightened response in posterior 

LIFG (BA 44) for phonological tasks, potentially modulated by difficulty (i.e., additional 

recruitment for the phonological hard condition in comparison with the semantic hard, 

while possibly still resolving difficulty in both domains); the opposite effect was expected in 

anterior LIFG (BA 47). The specificity of BA 45 is less certain as it is often reported for both 

task types, and has in some cases been suggested as an integration zone for phonological 

and semantic material (Gough, et al., 2005; Hagoort, 2005; Ihara, et al., 2007), therefore it 

was predicted that this site may not show a specific preference for either task (i.e., domain 

general response). We predicted that pMTG would show a modulation with task difficulty 

for the semantic judgements, given previous studies showing its involvement in semantic 

control (Noonan, et al., submitted; Whitney, et al., submitted; Whitney, Jefferies, et al., 

2011; Whitney, Kirk, et al., 2011; Whitney, et al., 2012). Additionally, pMTG recruitment for 

the phonological tasks was not predicted, as it did not emerge as a key site in the 

comparison of phonology > semantics in a recent meta-analysis, but did emerge in the 

reverse contrast (Noonan, et al., submitted). The last key area to be investigated was AG, 

where much research has shown a response to semantic tasks, but its contribution to 

phonological tasks is somewhat unclear. In line with the multi-demand network and other 

studies showing dAG/IPS activation for a range of tasks, we expected dAG/IPS to be 

activated by tasks requiring semantic control, as well as likely being activated by difficult 

phonological judgements. In mid AG, we expected activation for the semantic tasks as this 

site has been shown to be active for semantic associations (independent of stimulus input; 

Seghier, et al., 2004); it’s contribution to phonological tasks is less clear, however, the 

previous findings of mid AG involvement in word reading suggested that this site may also 

be activated by the phonological tasks as reading involves access to phonology.  
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Method 

Design  

  A within subjects 2 x 2 factorial design was used for the behavioural tasks, with task 

(phonological, semantic verbal) and difficulty (hard/easy) as factors.    

Participants 

Twenty-three participants were examined in the study (16 males; mean age = 23.2, 

SD = 2.9). One participant was removed as their accuracy was too low (53%) and yielded 

too few trials to include in the analysis. All participants examined were right handed, native 

English speakers recruited from the University of York student population and the general 

York population, and were compensated £10 for their time. All participants were screened 

for MRI safety.  

Tasks 

 Each task involved auditory presentation of a probe word and a target and two 

distracters presented on screen. A three alternative forced choice (3AFC) format was used 

for both tasks (see Table 1). The hard phonological task required participants to match a 

phoneme from the auditory probe word to the correct target, which had the relevant 

phoneme missing. Participants performed this task in mini-blocks in which they were 

instructed as to which phoneme to pay attention to (i.e., “match first”, “match last”). The 

task consisted of an auditory probe and three answer choices (for example, a “match last” 

trial would consist of an auditory probe “duck” and three on-screen choices (e.g., tru_ - 

_gar - ga_), where matching “ck” to “tru” is the correct response (truck). The phonological 

easy task required participants to make rhyme judgements: they heard an auditory probe 

such as “duck” and were required to choose the appropriate rhyming word from three on-

screen choices (e.g., “duck” – truck – cigar – game), which in this case would be “truck”. 

Eye-rhymes were also used to prevent participants from simply matching based on 

orthography. The semantic verbal hard and easy tasks involved making associative 

judgements to semantic stimuli, where probes and targets either share low (hard) or high 

(easy) semantic associations. For example, an easy association (highly associated words) 

would include an auditory probe, “duck”, and three answer choices such as lake – cigar – 

door, with lake being the correct response. A hard trial (lowly associated words), the 

association may be duck – gun, a less prevalent association for either word to the other 

(Table 3-1).  



55 

 

 Probe Target Distractor 1 Distractor 2 

Phonological 

Easy 
“duck” truck cigar game 

Phonological 

Hard 
“duck” tru_ _gar ga_ 

Semantic Easy “duck” lake cigar door 

Semantic Hard “duck” gun cigar door 

Table 3-1: Task conditions.  

Stimuli 

Stimuli were auditory probes, and target and distractors appeared on a black 

screen in succession. Auditory probes were recorded by a male native English speaker, 

using Audacity (http://audacity.sourceforge.net/), in a sound-proof room. The stimuli were 

normalised for volume and power by digitally scaling them in Matlab 

(www.mathworks.co.uk/), producing a level of -25db root mean square. The MRI auditory 

stimulus system (MR Confon mkII+, www.mr-confon.de/en/products.html) presentation is 

calibrated to give a maximum level of 80-90 db. The same probes were used for hard and 

easy versions of the two tasks, and the same probes were used across semantic and 

phonological tasks (however, there were additional probes for the semantic condition, that 

did not appear in the phonological task, due to the experimental design in which another 

semantic task also occurred in the same scanning session1). Stimuli were acquired from the 

MRC psycholinguistic database (search criteria: concrete nouns, concreteness and 

imageability > 500; Coltheart, 1981; Wilson, 1988). Targets and distractors were developed 

using the MRC psycholinguistic database (phonological hard), two websites 

(www.rhymezone.com and www.rhymer.com) were used for the phonological easy task, 

and the Edinburgh Association Thesaurus (http://www.eat.rl.ac.uk/) for the semantic tasks. 

There were no significant differences for target words across task and condition for written 

frequency (F(3, 357) < 1) or word length (F(3, 357) = 1.087, p = .355). However, the 

semantic and phonological targets did differ on imageability (F(3, 282) = 10.656, p < .001). 

Additionally, there were no significant differences for imageability between hard and easy 

                                                           
1
 Participants completed three tasks in the scanner: easy/hard phonological, easy/hard verbal 

semantic association judgements, and easy/hard picture semantic association judgements which will 
be discussed in chapter 4.  
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conditions of each task (phonological: t(116) = -1.395, p = .166; semantic: t(142) = -.532, p = 

.595).  

Procedure 

   A PC running Presentation 13.1 software (Neurobehavioural Systems, 

www.neurobs.com) was used to present the tasks and record accuracy and RT. Responses 

were given with the left hand, with three buttons corresponding to the positions of the 

three response options on the screen. The tasks started with a fixation screen for a jittered 

amount of time (500 – 2000 ms) followed by the auditory probe and the on-screen target 

and distracters. Participants were required to make a response, which triggered the next 

trial, if no response was given after a maximum of 5 secs the experiment would move onto 

the next trial.  

The experiment began with a practice prior to entering the MRI scanner, to 

familiarise participants with the tasks. The experimental task consisted of 45 experimental 

trials per task type and difficulty manipulation (phonological (hard/easy), semantic verbal 

(hard/easy), semantic picture (hard/easy)), with participants performing a total of 270 

trials. The tasks were presented in mini blocks of 15 trials per block, with a total of 18 

blocks (3 blocks per condition). Each mini-block was followed by 7 secs of rest, with a 

fixation cross on the screen. The order in which the trials occurred was pseudo-randomised 

and the order in which the tasks were presented was counterbalanced across participants. 

Each task block was preceded by a screen which informed participants of the new task 

type: the duration of this instruction screen was 1 sec. Participants also performed a 

picture semantic task, which was interleaved with the other tasks explained above: this 

task is discussed in the next chapter. 

 

Image Acquisition  

 Data were acquired with a GE 3 Tesla HD Excite MRI scanner at the York 

Neuroimaging Centre (YNiC), in a single scanning session. A Magnex, 8 channel, gradient 

insert head coil with a birdcage, radio frequency coil tuned to 127.4MHz was used. A 

gradient-echo EPI sequence was used to collect data from 39 contiguous axial slices (TR 3s, 

TE = 25 ms, FOV 260 mm2, matrix size = 128 x 128, slice thickness = 3.5 mm). Structural MRI 

images were acquired with a resolution of 1 mm x 1 mm x 1 mm. The functional data was 

co-registered onto structural T1-weighted images (TR = 8.03, TE = 3.07 ms, FOV 290 mm x 
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290 mm x 176 mm, matrix size 256 x 256 x 176, slice thickness = 1.13 mm x 1.13 mm x 1 

mm). Functional data was additionally co-registered to T1 – weighted FLAIR images (5.6 

mm x 5.6 mm x 3.5 mm), taken in the same plane as the EPI slices with interleaved slice 

acquisition.   

 

Data Analysis 

 An event related design was used in which accurate responses only were used in 

the analysis. All first-level and higher-level analyses were run using FEAT (FMRI Expert 

Analysis Tool) Version 5.98, in FSL (FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl). Prior 

to inferential statistical analysis the following pre-processing was applied: Individual brain 

extraction (BET) to remove non-brain material from images for co-registration of the 

functional data, MCFLIRT motion correction (using fMRIB’s Linear Registration Tool), slice 

timing correction using Fourier-space time-series phase shifting (Sinc interpolation with a 

Hanning-windowing kernel), FWHM 6.0 mm spatial smoothing (Gaussian Kernel), high-pass 

temporal filtering (Gaussian – weighted least – squares straight line fitting, with sigma = 

100 sec). We used FILM (FILM; FMRIB’s Improved Linear Model) nonparametric estimation 

of time series autocorrelation to fit the model to the data, on all lower-level analyses. FSL’s 

canonical gamma HRF was used to model the HRF response with a temporal derivative of 6 

seconds. The first two volumes were removed to match the NFI presentation files and 

volumes collected by the scanner. To analyse the data at the group level, we entered lower 

level FEAT directories into a higher level FLAME (FMRIB’S Local Analysis of Mixed Effects) 

Bayesian mixed effects analysis (Beckmann, Jenkinson, & Smith, 2003; Woolrich, 2008; 

Woolrich, Behrens, Beckmann, Jenkinson, & Smith, 2004). Z (Gaussianised T/F) statistic 

images were thresholded using clusters determined by z > 2.3 and a (corrected) cluster 

significance threshold of p < .05 (Worsley, 2001). 

 Each task and condition was modelled separately using event based explanatory 

variables (EV) which were convolved to the haemodynamic response function (gamma 

function). The haemodynamic response function was aligned to the beginning of each 

correct trial and lasted for the duration of the event. Incorrect/removed trials were 

modelled as a separate EV, therefore, any data not modelled was included as rest. Several 

contrasts were run (11 total): A contrast against rest/baseline was conducted for each task 

(phonological easy, phonological hard, semantic verbal easy, semantic verbal hard, 

semantic picture easy, semantic picture hard), the hard version of each task was also 
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contrasted against the corresponding easy version (phonological hard – phonological easy, 

semantic verbal hard – semantic verbal easy, etc.), contrasts of semantic verbal – rhyme 

judgements and of semantic picture – semantic verbal were also included.      

 

Region of Interest Analysis  

 Each region of interest was created using ALE maps (Figure 3-1) resulting from a 

high – low semantic control analysis in a recent meta-analysis investigating semantic 

control (Noonan, et al., submitted). These ALE maps were converted into MNI space using 

FLIRT (fMRIB’s Linear Registration Tool) and the ‘colin1.1.nii’ 

(http://www.brainmap.org/ale/) and standard ‘MNI152_T1_2mm_brain’ (FSL-4.1) images 

were used to align the two coordinate spaces, in order to transform the Talairach ALE maps 

into MNI space maps. Each relevant ROI was created by using the ‘draw tool’ in FLSVIEW to 

remove/erase areas not needed for each individual ROI (e.g., for the AG ROI, LIFG 

activation was removed and vice-versa). The individual demarcations of LIFG (BA 44, 45, 47) 

were created by using the Harvard-Oxford Cortical Structural Atlas ROIs (thresholded at 25) 

and multiplying (using fslmaths) them by the LIFG mask from the ALE maps. BA 44 was 

created using ‘Inferior Frontal Gyrus, pars opercularis’ and BA 45 using ‘Inferior Frontal 

Gyrus, pars triangularis’. BA 47 was created using ‘Frontal Orbital Cortex’ thresholded at 30 

in order to avoid overlap with the posterior LIFG ROIs. Fslmaths was used to ensure that 

each ROI was unilateral and ‘binarised’ (containing only ones and zeroes). An additional 

concern was that while we were using ROIs that were known to be involved in linguistic 

control (i.e., the contrast between high – low control for semantic tasks within the Noonan 

et al., submitted, meta-analysis), we may be truncating activation specific to phonology at 

the extents of the ROIs used (particularly LIFG), therefore we supplemented our LIFG ROI 

with an ROI of PMC/BA44 from an ALE map of phonology > semantics and an aLIFG ROI 

from an analysis of semantics > phonology (Noonan, et al., submitted), to capture any 

truncated activation in the high > low semantic control ROI of LIFG (Figure 3-1b). The PMC 

and pSTG ROI were created using fslmaths to create spheres around the coordinates used 

in chapter 2. The pSTG sphere was 10mm in size to capture all of the coordinates which 

contributed to the mean TMS coordinate, and the PMC sphere was 9mm to capture all of 

the dorsal PMC coordinates in the TMS coordinate. The ROIs were analysed using the FSL 

FEAT tool, as in the whole brain analysis, but here we applied pre-threshold masking to 

constrain the search of activation to voxels within a given ROI. These Z (Gaussianised T/F) 
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statistical images were voxel corrected for multiple comparisons within the ROI volume (p < 

.05; Worsley, 2001), as the voxel-based correction method has good localisation power and 

we were interested in the gradient of functional specialisation within our ROIS (in contrast, 

cluster size inference favours the detection of larger regions of activation). Additionally, the 

featquery tool was used to interrogate the FEAT results for each participant and extract 

mean parameter estimates (pe) for percent signal change of the voxels defined by each ROI 

for each task contrasted over rest. These values were converted to percent signal change, 

and were then subjected to ANOVA analysis.  

 

Figure 3-1. ALE maps resulting from contrasts of (A) high – low semantic control and (B) 

phonology > semantic (blue activation) and semantic > phonology (red activation).  

Results 

Behavioural Results 

 The assignment of semantic associations to easy or hard conditions was based on 

each participant’s reaction time (RT) across all accurate trials. There were 90 verbal 

semantic and 90 phonological trials in total, and an RT was recorded for each trial. In order 

to maximise the difference between easy and hard trials, the fastest one third (of the total 

accurate trials) were taken for each participant for the easy semantic condition; as well as 

the slowest one third (of the total accurate trials) were taken for the semantic hard 

condition. The phonological tasks could not be collapsed in a parallel way because the easy 

and difficult phonological judgements were different: whereas the semantic tasks always 

involved the same instructions – find the associated word – and  only the strength of the 

association changed, the phonological judgements involved two different types of decisions 

(easy rhyme vs hard  segment – match). Therefore, the fastest 24 rhyme trials were taken 
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and the fastest 24 segment (phonological hard) trials were taken, in order to keep the 

semantic and phonological hard/easy tasks well matched. 24 trials for each condition were 

taken because this was the average number of trials used for each semantic condition for 

each participant. We could not use the same criterion as in the semantic task, since using 

1/3 of the trials would have resulted in a maximum of 15 usable trials (45/3 = 15) per 

condition. This method ensured that the effects we were modelling for easy and hard 

conditions were maximally distinct in terms of difficulty and not overlapping. This analysis 

was used because our original assignment of trials to easy and hard conditions revealed a 

large degree of overlap for the semantic conditions - also meaning the semantic and 

phonological tasks were not well matched on RT (Figure 3-2; also see Appendix 3.1 and 

Appendix 3.2 for the original RT analysis and fMRI results). 

 

Figure 3-2. RTs for the original designation of easy and hard trials, where semantic RTs 

were highly overlapping for the hard and easy conditions, thus phonological hard and easy 

conditions did not align well in RT to semantic hard/easy RTs. Error bars indicate minimum 

and maximum RTs, circles (1.5 IQR) and stars (3 IQR) indicate outliers. 

Analysis of RTs Used for the Event Related fMRI Analysis 

 A comparison of RTs, for correct responses only across both verbal tasks revealed 

no overall difference between the two task types (F(1, 21) = 2.279, p = .146), while the 

difficulty manipulation, unsurprisingly, was highly significant across both tasks (F(1, 21) = 
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1059.232, p < .001). Difficulty affected both tasks to the same degree, since there was no 

significant interaction of task by difficulty (F(1, 21) = 1.023, p = .323). This suggests that 

both tasks and difficulty manipulations were well matched at the behavioural level within 

our stimuli subset (Figure 3-3).  

 

Figure 3-3. Behavioural reaction time for correct responses. Error bars indicate standard 

error of the mean. 

Whole Brain Analyses 

 To investigate which areas were activated by the two domains 

(phonological and verbal semantic), a whole brain analysis was used to reveal which areas 

were active against rest for the hard versions of the tasks (cluster corrected, p < .05). This 

ensured that we were capturing activation for these tasks, without the risk of cancelling out 

mutual activity using contrasts (i.e., activity seen in both the hard and easy conditions, 

which would be cancelled out in a hard > easy contrast). This analysis revealed common 

activity throughout LIFG (BA 44, 45, 47), right posterior IFG, left and right parietal areas, left 

and right temporal areas and visual cortex (Figure 3-4). The semantic activation extended 

further into the left anterior temporal lobe. The phonological task showed additional 

recruitment across the cortex, especially within posterior parietal cortex (particularly in the 

right hemisphere). Furthermore, Figure 3-5 and Figure 3-6 reveal activations for each task 

separately to show areas of peak activation as ‘hotspots’ in each domain. In order to 

address the potential concern that the phonological hard and easy tasks may activate 

different areas, an additional figure has been included to demonstrate the large degree of 
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overlap of the two phonological tasks, with some additional recruitment of right IFG and 

more extensive recruitment of LIFG for the difficult phonological task (Figure 3-7). 

Additionally, a contrast of semantic > phonological rhyme revealed activation throughout 

LIFG, AG, pMTG, anterior superior temporal gyrus, and visual cortex (Figure 3-8).  

 

 

Figure 3-4: Whole brain analysis (cluster correction, Z > 2.3, p < .05). Phonological hard 

(green), verbal semantic hard (red) and mutual activity (blue). L = left, R = right hemisphere. 
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Figure 3-5. Cluster corrected whole brain analysis (Z > 2.3, p < .05) of phonological hard 

over rest. L = left, R = right hemisphere. Z values are indicated on the colour scale.     
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Figure 3-6. Cluster corrected whole brain analysis (Z > 2.3, p < .05) of semantic verbal hard 

over rest. L = left, R = right hemisphere. Z values are indicated on the colour scale.     
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Figure 3-7. Whole brain analysis (cluster correction, Z > 2.3, p < .05). Phonological hard 

(green), phonological easy rhyme (violet) and mutual activity (blue). L = left, R = right 

hemisphere. 
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Figure 3-8. Whole brain analysis contrast of semantic over phonological rhyme judgements 

(cluster correction, Z > 2.3, p < .05). L = left, R = right hemisphere. 

  

Contrasts were also used to investigate which areas showed additional recruitment 

when task demands increased. The contrasts for the hard > easy phonological task revealed 

activation in parietal cortex (superior parietal lobule, angular gyrus), paracingulate gyrus, 

frontal gyri (BA 6, 9, 44, 45, 46, 11), and posterior temporal gyri (occipital-temporal, 

fusiform and inferior temporal areas). These contrasts can be found in Table 3-2 and Figure 

3-9, and only clusters showing significant activation after cluster correction (Z = 2.3) are 

reported. Names of brain areas reported are labelled according to the Harvard-Oxford 

Cortical Structural Atlas, Talairach Deamon and the Juelich Histological Atlas built into the 

FSL view software library. The contrast for the hard > easy semantic task revealed 

activation in paracingulate and anterior cingulate gyrus, superior frontal gyrus, parietal lobe 
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(precuneus, superior parietal lobule; BA 7), anterior temporal gyrus, inferior frontal gyrus 

(BA 44, 45, 47), and superior and middle frontal gyri (BA 9, 10, 11). These contrasts can be 

found in Table 3-3 and Figure 3-9.  

 

Figure 3-9. Whole brain analysis contrasts of hard over easy for phonological and semantic 

tasks (cluster correction, Z > 2.3, p < .05). Phonological hard > easy (green), verbal semantic 

hard > easy (red) and mutual activity (blue). L = left, R = right hemisphere. 
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Contrast of phonological hard > easy judgements 

Brain Area BA Voxels Z x y z 

Parietal Lobe 

 

13406 

    

 

L Superior Parietal Lobule 7 

 

5.61 -26 -70 34 

 

R Superior Parietal Lobule/ Lateral 

Occipital Cortex 7 

 

5.52 28 -70 40 

 

R Parietal Lobe (Sub Gyral)  

  

5.42 28 -70 32 

 

L Angular Gyrus 40 

 

5.15 -36 -58 40 

 

L Superior Parietal Lobule/ 

Precuneus 7 

 

5.09 -24 -76 44 

 

L Superior Parietal Lobule/ 

Precuneus 7 

 

5.01 -16 -74 48 

Cingulate Gyrus/ Medial Frontal Areas 

 

8307 

    

 

L Paracingulate Gyrus 32 

 

5.53 -6 26 36 

 

L Paracingulate Gyrus 32 

 

5.46 -2 22 38 

 

L Middle Frontal Gyrus / Premotor 

Cortex ~6 

 

5.32 -28 0 46 

 

L Inferior Frontal Gyrus 44/45 

 

4.92 -48 22 20 

 

L Precentral Gyrus/ Inferior Frontal 

Gyrus 44 

 

4.91 -40 6 26 

 

L Middle Frontal Gyrus/ Precentral 

Gyrus/ Inferior Frontal Gyrus  9/44 

 

4.75 -44 8 32 

Frontal Gyri 

 

2713 

    

 

R  Insula Cortex 

  

4.61 32 22 -6 

 

R Middle Frontal Gyrus / Inferior 

Frontal Gyrus 9/44 

 

4.2 50 22 30 

 

R Precentral Gyrus/ Inferior Frontal 

Gyrus  ~9/44 

 

4.18 42 6 28 

 

R Inferior Frontal Gyrus 45 

 

4.14 46 32 12 

 

R Frontal Cortex 46 

 

4.1 50 38 16 

 

R Sub Gyral Frontal Cortex 11 

 

3.63 22 40 -16 

Table 3-2. Cluster corrected (Z > 2.3) contrast of hard > easy task difficulty for 

phonological judgements. 
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Temporal Gyri 

 

1309 

    

 

L Temporal Occipital Fusiform 

Cortex / Fusiform Gyrus 

  

4.44 -30 -52 -10 

 

L Posterior Inferior Temporal Gyrus 37/20 

 

4.36 -52 -58 -12 

 

L Posterior Inferior Temporal Gyrus 37 

 

4.32 -52 -62 -14 

 

L Temporo-occipital Fusiform Cortex 

/ Fusiform Gyrus  37 

 

4.07 -24 -54 -10 

 

L Posterior Inferior Temporal Gyrus 37 

 

3.5 -52 -42 -14 

  L Occipital Fusiform Gyrus 18   2.77 -28 -72 -14 

Table 3-2. Cluster corrected (Z > 2.3) contrast of hard > easy task difficulty for phonological 

judgements. 
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Contrast of semantic verbal hard > easy judgements 

Brain Area BA Voxels Z x y z 

Cingulate Gyrus/ Medial Frontal Areas   4412         

 

L Paracingulate Gyrus 32 

 

4.6 -4 28 32 

 

L Paracingulate Gyrus 32 

 

4.59 -4 26 36 

 

L Paracingulate Gyrus / Superior 

Frontal Gyrus 

  

4.5 0 18 50 

 

R Superior Frontal Gyrus 8 

 

4.43 4 24 52 

 

R Superior Frontal Gyrus 8 

 

3.91 0 30 46 

 

L Anterior Cingulate Gyrus 24 

 

3.91 -6 28 22 

Parietal Lobe 

 

1504 

    

 

R Superior Parietal Lobule / 

Precuneus 

  

3.49 2 -60 50 

 

R Parietal Lobe / Precuneus ~31 

 

3.49 16 -62 24 

 

L Precuneus / Superior Parietal 

Lobule 7 

 

3.44 -8 -68 34 

 

L Precuneus / Superior Parietal 

Lobule 7 

 

3.43 -4 -70 34 

 

L Precuneus / Superior Parietal 

Lobule 7 

 

3.42 -6 -64 50 

 

L Precuneus / Superior Parietal 

Lobule 7 

 

3.32 -6 -58 48 

Temporal Gyri 

 

957 

    

 

L  Inferior Frontal Gyrus / L Anterior 

Temporal Gyrus 47/38 

 

4.25 -34 22 -10 

 

L Anterior Superior Temporal Gyrus/ L 

Inferior Frontal Gyrus 38/47 

 

3.46 -46 14 -10 

 

L Pallidium 

  

3.45 -14 0 -4 

 

L Anterior Superior Temporal Gyrus/ L 

Inferior Frontal Gyrus 38/47 

 

3.39 -52 20 -12 

 

L Inferior Frontal Gyrus  44/45 

 

3.22 -48 20 2 

Table 3-3. Cluster corrected (Z > 2.3) contrast of hard > easy task difficulty for 

semantic decisons. 
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L Caudate/Putamen 

  

3.02 -16 18 -6 

Frontal Gyri 

 

748 

    

 

L Middle Frontal Gyrus 10 

 

4.45 -32 48 6 

 

L Superior Frontal Gyrus (Sub Gyral) 10 

 

3.23 -22 48 4 

 

L Superior Frontal Gyrus 10 

 

3.14 -26 62 -10 

 

L Superior Frontal Gyrus 10 

 

3.13 -28 62 -6 

 

L Middle Frontal Gyrus 

  

3.04 -28 58 2 

 

L Medial Frontal Gyrus 11 

 

2.87 -16 58 -14 

Frontal Gyri 

 

697 

    

 

R Insula 

  

3.9 32 20 -4 

 

R  Inferior Frontal Gyrus/ Insula 47 

 

3.75 40 18 -12 

 

R  Inferior Frontal Gyrus  47 

 

3.63 30 16 -18 

 

R  Inferior Frontal Gyrus/ Insula 47 

 

3.22 42 20 -6 

 

R Frontal Orbital Cortex 

  

3.13 22 8 -24 

 

R Frontal Orbital Cortex 

  

2.95 22 8 -20 

Frontal Gyri 

 

565 

    

 

R Inferior Frontal Gyrus  44/45 

 

4.08 54 24 18 

 

R Inferior Frontal Gyrus  44 

 

3.66 54 22 26 

 

R Middle Frontal Gyrus 9 

 

3.4 48 26 30 

 

R Inferior Frontal Gyrus  45 

 

3.19 60 24 12 

  R Sub Gyral  ~45   2.8 36 20 16 

Table 3-3. Cluster corrected (Z > 2.3) contrast of hard > easy task difficulty for semantic 

decisons.  
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Region of Interest Analyses (ROI)  

 Voxel corrected (p < .05) ROI analyses were used to further establish the relative 

contribution of brain areas that were the focus of our research questions to the 

phonological and verbal semantic material. The Featquery tool was also used to read out 

activation patterns (percent change) averaged across each ROI. An advantage of 

interrogating specific ROIs using both techniques is that the voxel corrected mask allows 

functional specialisations within an area to be revealed, while the featquery method allows 

interactions between difficulty, tasks, and regions to be easily investigated.  

Premotor Cortex (PMC) 

 To assess the contribution of this site to the two language tasks, featquery was 

used to extract percent signal change within each condition. This yielded a significant main 

effect of task (F(1, 21) = 27.773, p < .001), reflecting the hypothesised higher response for 

phonological than semantic decisions, and a significant main effect of difficulty (F(1, 21) = 

7.012, p = .015), as increased demands on difficulty yielded higher percent change values. 

There was an interaction of task by difficulty which approached significance (F(1, 21) = 

3.013, p = .097). Bonferroni corrected paired-samples t-tests confirmed that premotor 

cortex showed significantly more activation for the hard condition compared to the easy 

condition for the phonological tasks (t(21) = -3.348, p = .006), but not the semantic tasks 

(t(21) = -.61, p = .696). This supports the hypothesis, and the results from Chapter 2, that 

dorsal premotor cortex is recruited for phonological decisions, but is not crucial to 

decisions based on access to semantic representations, even when these involve speech 

perception (Figure 3-10). 

Posterior Superior Temporal Gyrus (pSTG) 

 In line with Chapter 2, we conducted an ROI analysis of pSTG using featquery. This 

analysis of pSTG revealed an unexpected pattern, with a significant main effect of task (F(1, 

21) = 15.614, p < .001) due to a greater increase for the phonological task; and a significant 

main effect of difficulty (F(1, 21) = 64.820, p < .001) which reflected greater activation for 

the easier judgements, as well as a significant task by difficulty interaction (F(1, 21) = 

14.793, p < .001) (Figure 3-10). A comparison of PMC and pSTG revealed no site by task 

interaction (F(1, 21) = 2.695, p = .116), but there was a highly significant site by difficulty 
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interaction (F(1, 21) = 54.675, p < .001), as well as a significant three-way interaction of site 

by task by difficulty (F(1, 21) = 14.282, p = .001).  

The main effect of task type for pSTG was unexpected, as both tasks required 

participants to process an auditory probe. Additionally, the decrease in activation for the 

difficult condition was unexpected, because pSTG is thought to be involved in processing 

auditory stimuli – a requirement which does not change for the difficult version of the 

tasks. However, the contrast between PMC and pSTG supports our conclusions from the 

previous chapter: PMC is engaged by more difficult phonological decisions, while pSTG is 

preferentially activated by simple tasks that involve activating meaning or phonological 

forms from auditory input.   

 

Figure 3-10. PMC and pSTG ROI results. Cyan points in each ROI represent the studies used 

for the average peak coordinate (peak shown in red) in the TMS study in Chapter 2, ROI 

outlined in blue. Error bars indicate standard error of the mean. 

Left Inferior Frontal Gyrus (LIFG: BA 44, 45, 47)  

In order to explore the functional subdivisions in LIFG for phonological and 

semantic material, we used an ROI to show where in LIFG the phonological and semantic 

tasks produced activation for both: 1) phonological hard > rest; and, 2) semantic hard > 

rest. When contrasted with rest, the phonological and semantic hard tasks revealed a 
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pattern of activation consistent with a graded functional specialisation in LIFG, with 

activation for the phonological task through posterior parts of LIFG (PMC, BA 44, 45) and 

activity for the semantic hard task spreading more anteriorly into BA 47. Additionally, there 

was a large degree of overlap for the two domains in ventral parts of pLIFG (BA 44, 45): the 

activation for the semantic task was more constrained to ventral LIFG, while the 

phonological hard task activated both ventral and dorsal LIFG (Figure 3-11).  

Figure 3-11. Voxel corrected (p < .05) ROI analysis of LIFG: The left-hand image shows the 

extent of activity for each task (green: phonological; red: semantic; blue: overlap). The 

right-hand images show the regions in which activation was strongest (A: phonological; B: 

semantic; Z values are indicated by the colour scale).     

This large ROI was further interrogated by using the featquery tool to extract 

percent signal change within individual demarked subdivisions of LIFG (BA 44, 45, 47). 

A direct comparison of the verbal tasks confirmed the hypothesis that BA 44 is 

recruited more for the phonological task than the verbal semantic task with a significant 

main effect of task (F(1, 21) = 5.346, p = .031). There was also a main effect of difficulty 

(F(1, 21) = 91.621, p < .001), and  a marginal interaction of task by difficulty (F(1, 21) = 

3.737, p = .067) indicating that BA 44 showed a greater response to difficulty within the 

phonological domain. Bonferroni t-tests comparing easy and hard conditions for both 

domains confirmed BA 44 recruitment for difficulty across domains (phonological: t(21) = -

8.478, p < .001; verbal: t(21) = -6.013, p < .001). Overall, these results suggest that BA 44 is 
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recruited for difficult tasks across domain, but shows additional activation for phonological 

tasks (Figure 3-12). 

A comparison within BA 45 revealed a marginal main effect of task type (F(1, 21) = 

3.127, p = .092), a significant effect of difficulty (F(1, 21) = 42.956, p < .001) and a significant 

interaction of task by difficulty (F(1, 21) = 6.018, p = .023). Bonferroni t-tests comparing 

easy and hard conditions for both domains showed increased BA 45 recruitment for 

difficult decisions in both domains (phonological: t(21) = -8.13, p < .001; verbal: t(21) = -

3.595, p = .004). In summary, BA 45 shows a similar response profile to BA 44, as both 

domains recruited BA 45 to resolve the difficulty manipulation, however, unlike BA 44, 

there is no clear preference for the phonological domain given the marginal main effect for 

task (Figure 3-12).  

For BA 47 there was no significant main effect of task (F(1, 21) = 1.559, p = .226), 

but there was a main effect of difficulty (F(1, 21) = 47.547, p < .001), which did not interact 

with task type (F(1, 21) < 1); this suggests that BA 47 does not show differential recruitment 

for the two domains. However, the ROI analysis of entire LIFG shows semantic hard activity 

spreading into aLIFG, but the phonological hard task does not extend into aLIFG. Combining 

the results from both ROI analyses, we can infer that BA 47 is significantly involved in 

accessing verbal semantic material when demands on semantic control are increased and 

also resolved difficulty for our phonological manipulations (Figure 3-12).  
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Figure 3-12. Left Inferior Frontal Gyrus percent signal change analysis results. Error bars 

indicate standard error of the mean. 

To further investigate the graded distinction across LIFG for phonological and 

semantic decisions, a between sites ANOVA was used to explore differences between BA 

44 and BA 47 in response to task and difficulty, since these regions have been previously 

shown to be recruited for phonological and semantic decisions, respectively. This revealed 

a significant interaction of site and task (F(1, 21) = 25.131, p < .001): BA 44 showed a 

stronger response to phonological decisions, while BA 47 showed greater activation to 

semantic tasks (Figure 3-13). There was also a significant site by difficulty interaction (F(1, 

21) = 32.497, p < .001), with a greater response to the difficulty manipulations in BA 44 

than BA 47 (Figure 3-13). This analysis also revealed a significant three-way interaction of 

site by task by difficulty (F(1, 21) = 7.573, p = .012), which further suggests that anterior and 

posterior LIFG responded to the domain and difficulty manipulations differently.  
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Figure 3-13. Interactions across BA 44 and BA 47 resulting from an investigation of the 

percent signal change at each site. Error bars indicate standard error of the mean. 

These analyses show that LIFG is recruited for all three task types, with differential 

recruitment in subdivisions of LIFG. While all three subdivisions are recruited for both task 

types and show modulation with increased difficulty, these results point to a graded 

specialisation along LIFG for phonological and semantic material, with BA 44 showing 

greater recruitment for phonological material as well as resolving difficult semantic 

associations, BA 45 revealing less specialisation by domain, and ventral BA 47 showing 

preferential recruitment for semantic decisions (but, again, also resolving difficulty across 

linguistic tasks).  

 The use of ROIs defined by high over low semantic control is useful as it provides 

functionally defined regions that have been shown to be involved in linguistic control, and 

as such can be used to investigate 1) semantic control using our tasks and 2) phonological 

control (i.e., are these ROIs that have been identified in semantic control specific to the 

semantic domain, or is there a degree of linguistic domain generality). However, it is 

possible that in using these ROIs we are truncating activation for phonological tasks (for 

example, in Figure 3-11, the activation appears to be truncated at the boundary of the ROI). 

For this reason, we used two supplemental ROIS to explore the activation with regard to 

the functional specialisation in posterior and anterior LIFG. These ROIs were defined using 

ALE maps that resulted from contrasting phonology > semantic (posterior LIFG) and 

semantic > phonology (anterior LIFG), in a recent meta-analysis (Noonan, et al., submitted). 

Posterior LIFG/PMC 

 There was a large degree of overlap for phonological and semantic hard tasks in 

the anterior and dorsal parts of this ROI, but the activation for the phonological task also 

extended further posteriorly and ventrally (Figure 3-14). Analysis of the percent signal 
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change revealed a highly significant main effect of task (F(1, 21) = 43.549, p < .001) 

reflecting the increased activity for the phonological task. There was also a significant main 

effect of difficulty (F(1, 21) = 56.339, p < .001) and an interaction of task by difficulty (F(1, 

21) = 10.378, p = .004). Bonferroni corrected paired sample t-tests confirm an increase 

across both domains for the difficult judgements (phonological: t(21) = -8.862, p < .001; 

semantic: t(21) = -3.685, p = .002; Figure 3-16).    

 

Figure 3-14. Voxel corrected (p < .05) ROI analysis of LIFG: The left-handed image shows the 

extent of activity for each task (green: phonological; blue: overlap). The right-hand images 

show the regions in which activation was strongest (A: phonological; B: semantic; Z values 

are indicated by the colour scale). 

Anterior LIFG 

 Interrogation of anterior LIFG revealed a dorsal to ventral gradient for the 

phonological and semantic tasks, with overlap in the middle. More specifically, the 

semantic hard judgements elicited significant activation in the most ventral and anterior 

parts of this ROI, while the activity for the difficult phonological decisions was constrained 

to posterior and dorsal parts of this ROI (Figure 3-15). However, there was no main effect 

of task when comparing the percent signal change in this region (F(1, 21) = .279, p = .603), 

but there was a main effect of difficulty (F(1, 21) = 18.482, p < .001). There was also no 

interaction of task by difficulty (F(1, 21) < 1; Figure 3-16). These results indicate some 
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degree of specialisation within aLIFG for semantic material in the most ventral parts of this 

ROI and phonology in the more posterior and dorsal parts of aLIFG.  

 

Figure 3-15. Voxel corrected (p < .05) ROI analysis of LIFG: The left-handed image shows the 

extent of activity for each task (green: phonological; red: semantic; blue: overlap). The 

right-hand images show the regions in which activation was strongest (A: phonological; B: 

semantic; Z values are indicated by the colour scale). 
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Figure 3-16. Percent signal change resulting from interrogation of premotor cortex 

(PMC)/BA44 and anterior left inferior frontal gyrus (aLIFG). Error bars indicate standard 

error of the mean. 

PMC vs LIFG 

To further investigate the relative role of PMC and LIFG to phonological and 

semantic control tasks, between sites ANOVAs were used to examine differences in 

response to task manipulations for PMC and BA 44, which have both been previously 

shown to be recruited for language tasks (e.g., Thompson-Schill, et al., 1997; Zatorre, et al., 

1992; Zatorre, et al., 1996). This revealed a near – significant interaction of site by task (F(1, 

21) = 4.127, p = .055), reflecting the greater involvement of PMC in phonological than 

semantic decisions. There was also a significant site by difficulty interaction (F(1, 21) = 

26.446, p < .001), due to a smaller effect of difficulty in PMC, than BA 44 (Figure 3-17): BA 

44 showed a strong response to difficulty across both tasks (also seen in the above analyses 

of LIFG). This suggests that PMC may not be recruited for difficult judgements even when 

these involve speech perception, rather, specifically for challenging phonological 

judgements (Figure 3-10: PMC shows difficulty effect for phonological domain only).  
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Figure 3-17. Site by task and site by difficulty interactions for PMC and pLIFG area BA 44. 

Error bars indicate standard error of the mean. 

Posterior Middle Temporal Gyrus (pMTG). 

 In order to assess the contribution of pMTG to tasks requiring linguistic control, we 

used an ROI of pMTG resulting from a contrast of semantic high > low control in Noonan et 

al.’s meta-analysis (submitted). This analysis showed overlapping activation of the two 

tasks across the dorsal part of the ROI (Figure 3-18). Additionally, the percent signal change 

values revealed a significant main effect of task (F(1, 21) = 5.945, p = .024) reflecting higher 

values for the phonological tasks. There was no significant effect of difficulty (F(1, 21) = 

2.519, p = .127) and no interaction (F(1, 21) = 1.368, p = .255; Figure 3-19).      



82 

 

 

Figure 3-18. Voxel corrected (p < .05) ROI analysis of pMTG: The left-handed image shows 

the extent of activity for each task (green: phonological; red: semantic; blue: overlap). The 

right-hand images show the regions in which activation was strongest (A: phonological; B: 

semantic; Z values are indicated by the colour scale). 

 

Figure 3-19. Percent signal change resulting from interrogation of posterior middle 

temporal gyrus. Error bars indicate standard error of the mean. 

Left Angular Gyrus/Parietal Cortex: Dorsal/Intraparietal Sulcus (dAG/IPS) and mid Angular 

Gyrus (midAG) 

We also used ROIs of dorsal and mid angular gyrus, resulting from the high over 

low semantic control ALE maps from Noonan et al. (submitted) to assess the degree of 
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functional overlap for phonological and semantic hard tasks, given previous research 

indicating a role for these regions in semantic control (Noonan, et al., submitted; Seghier, 

et al., 2004; Sharp, et al., 2010). Additionally, we were interested to see if the contributions 

of these regions extended beyond semantic material to other domains such as phonology. 

The ROI analysis of dAG/IPS showed activation throughout dAG/IPS for the phonological 

hard task, but more constrained (and less significant) activity for the semantic hard task, 

which overlapped with the phonological hard task in the most anterior part of dAG/IPS 

(Figure 3-20).   

 

Figure 3-20. Voxel corrected (p < .05) ROI of dAG/IPS: The left-hand image shows the extent 

of activity for each task (green: phonological; red: semantic; blue: overlap). The right-hand 

images show the regions in which activation was strongest (A: phonological; B: semantic; Z 

values are indicated by the colour scale).     

Additionally, analysis of the percent signal change in dAG/IPS revealed a significant 

main effect of task (F(1, 21) = 52.406, p < .001) corresponding a greater response for the 

phonological tasks, and a main effect of difficulty (F(1, 21) = 66.629, p < .001). There was 

also a significant interaction of task by difficulty (F(1, 21) = 27.329, p < .001). Bonferonni 

corrected paired sample t-tests demonstrated that dAG/IPS responded significantly more 

to the difficult phonological condition than the easy one (t(21) = -7.627, p < .001), but also 

responded to the semantic difficulty manipulation, to a lesser degree (t(21) = -2.374, p = 

.054). Overall, dAG/IPS was recruited for task difficulty across domain, but showed 
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significantly more activation for the phonological tasks and phonological difficulty (Figure 

3-22). 

Similarly, in order to assess the degree of functional overlap in mid angular gyrus 

(mid AG) for phonological and semantic hard tasks, an ROI analysis was used which showed 

overlapping activation in the most dorsal part of mid AG for the phonological and semantic 

hard tasks (Figure 3-21).  

 

Figure 3-21. Voxel corrected (p < .05) ROI of midAG: The left-hand image shows the extent 

of activity for each task (green: phonological; red: semantic; blue: overlap). The right-hand 

images show the regions in which activation was strongest (A: phonological; B: semantic; Z 

values are indicated by the colour scale).     

A direct comparison of the verbal tasks using percent signal change revealed only a 

marginal main effect of task (F(1, 21) = 3.07, p = .094), and a main effect of difficulty (F(1, 

21) = 55.624, p < .001). There was also a significant interaction of task by difficulty (F(1, 21) 

= 7.103, p = .014). Bonferonni corrected paired sample t-tests, revealed that mid AG 

responded significantly more to the difficult phonological condition than the easy one 

(t(21) = -7.069, p < .001), and also significantly for the semantic hard compared to easy 

condition (t(21) = -5.014, p < .001). In summary, mid AG was recruited to resolve task 

difficulty across both domains (Figure 3-22). 
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Figure 3-22. Percent signal change values for dorsal angular gyrus/intraparietal sulcus 

(dAG/IPS) and mid angular gyrus (mid AG). Error bars indicate standard error of the mean. 

Discussion 

 This study examined phonological and semantic control with fMRI. Using semantic 

association judgements, phonological rhyme and phonological segmentation/matching 

tasks we manipulated difficulty in order to try to assess the relative contribution of areas in 

the language network (premotor cortex (PMC), left inferior frontal gyrus (LIFG), posterior 

middle temporal gyrus (pMTG), angular gyrus (AG)) to tasks tapping phonological and 

semantic control.  

Premotor Cortex (PMC) and Posterior Superior Temporal Gyrus (pSTG) 

One aim of this study was to elucidate the role of premotor cortex in speech 

perception tasks. Many studies have shown PMC to play a crucial role in speech perception, 

using fMRI (e.g., Pulvermuller, et al., 2006; Wilson & Iacoboni, 2006; Wilson, et al., 2004) 

and TMS paradigms (D'Ausilio, et al., 2009; Meister, et al., 2007; Mottonen & Watkins, 

2009). However, many of these tasks require participants to make explicit judgements on 

the constituent sounds of a word, rather than perceiving the word as a whole. This 

demonstrates an advantage of the current study, where phonological and semantic 

judgements made to spoken words were compared directly. Our results suggest that the 
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role of PMC in speech perception is restricted to phonological tasks and is thus not 

essential to perception of clear auditory input. More specifically, our whole brain analysis 

yielded a sub cluster in PMC for the phonological hard - easy contrast, but no such clusters 

in PMC for the semantic hard – easy contrast. Additionally, interrogation of a dorsal PMC 

ROI found a larger contribution of PMC to phonological judgement tasks than semantic 

association judgements, further implicating its role in tasks requiring meta-linguistic task 

performance, not general comprehension. 

These findings are in line with the findings of the previous chapter, where TMS to 

PMC disrupted phonological but not semantic judgements (matched in task format). An 

additional strength of the current design is that the tasks are matched on both format and 

reaction time (reaction time was not matched in our TMS study). These results also align 

well with data from patients showing a discrimination/comprehension dissociation (e.g., 

Bishop et al., 1990; Rogalsky et al., 2011). For example, in one study patients with impaired 

speech production performed more poorly than controls on syllable discrimination (i.e., 

same or different? “boy”-“voy”), but crucially, not on picture-syllable matching (i.e., a 

picture of a boy, and asked “Is this a voy?” or “Is this a boy?”; Bishop et al., 1980). Our 

results sit comfortably with these studies showing that PMC is recruited specifically for 

meta-linguistic tasks, not general comprehension. This is also in line with fMRI studies 

showing PMC activation for tasks requiring syllable discrimination, but not passive listening 

(e.g., Burton, et al., 2000; Zatorre, et al., 1996). For example, Zatorre et al. (1992) reported 

premotor cortex activity for decisions on syllables, but not passive speech listening; 

additionally, Burton et al. (2000) reported PMC activity for segmenting consonants, but not 

for simple discrimination of CVC words, again speaking to the non-essential role of PMC in 

simple language perception, but rather, in solving meta-linguistic judgements.    

 An unexpected result was obtained for pSTG, which showed a decrease in activity 

for difficult judgements/associations. pSTG has been shown to be recruited during normal 

auditory processing (Buchsbaum, et al., 2001; Hickok & Poeppel, 2007; Scott, 2005; Scott & 

Johnsrude, 2003; Seghier, et al., 2004), and was thus expected to show similar activation 

across both tasks and difficulty manipulations. Meister et al. (2007) also reported an 

unexpected null effect following TMS stimulation of pSTG for their phonological 

discrimination task. One possible interpretation is that while the phonological easy task 

was immediately phonological, the phonological hard task required working memory and 

access to lexical representations, thus activation is allocated to other areas (i.e., PMC) for 
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resolution of this task, while the phonological rhyme task required more auditory analysis. 

Support for this argument comes from other studies also reporting deactivation of STG 

when difficulty increased – for example, Sharp et al. (2010) found that when semantic 

difficulty increased, activity in STG decreased, and suggest, as we do, that this change may 

reflect reallocation of resources to other brain areas. Furthermore, Blumstein et al. (2005) 

found that STG was involved in early perceptual analysis, but was insensitive to difficulty 

(as measured by RT), in line with our finding that pSTG activation was lower for the difficult 

versions of the two tasks.  

 Premotor Cortex vs. Left Inferior Frontal Gyrus 

What, then, is the relative contribution of PMC and LIFG to phonological and 

semantic control? The current study further implicates PMC in aspects of non-natural 

language tasks and not general speech perception of clear auditory input (as suggested by 

the motor theory of speech perception; Liberman & Mattingly, 1985): while BA 44 

contributes to both domains (with some degree of specialisation), PMC is more specific to 

the phonological domain, as shown by the significant interaction of site and task type 

(phonological judgement/semantic association). It has been previously suggested that PMC 

may respond to an increase in the number of stimuli presented, while BA 44 is active for an 

increase in the number of required responses (Rajah, et al., 2008), but this is not the case in 

the current study, where stimuli and response number were the same across conditions. 

Another interesting finding arising from the comparison between PMC and BA 44 was that 

while BA 44 is recruited across domains to resolve difficult judgements, PMC only showed 

an increased response to resolving difficult phonological judgements. The factorial design 

of the current study allowed for comparison of difficulty across conditions, permitting us to 

clarify the contribution of PMC to 1) domain, 2) difficulty and 3) the interaction of domain 

and difficulty. This speaks, again, to the specific contribution of PMC to language 

perception: PMC recruitment is only necessitated by non-natural judgements on the 

constituent sounds of a word, but not required for judgements that require access to 

meaning, regardless of difficulty. While both the phonological and semantic tasks recruited 

BA 44, PMC was restricted to the phonological tasks.  

The connections running from BA 44 to both phonological and semantic regions in 

posterior cortex align with this domain general function; and PMC is connected to temporal 

lobe areas sub serving phonological function, via the superior longitudinal fascicle (SLF) and 
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AF (Parker, et al., 2005; Saur, et al., 2008), but not semantic representation, further 

emphasizing the relative contribution of BA 44 and PMC to phonological and semantic 

control. While BA 44 has been consistently shown to be a part of the speech perception 

architecture, the specific role of PMC in speech perception is still unclear – our fMRI (and 

TMS) data help to elucidate the role of PMC, but its exact contribution remains 

unanswered. PMC has been shown to be recruited in a variety of tasks, involving 

phonetically ambiguous (Gow Jr & Segawa, 2009) and distorted speech (Devlin & Aydelott, 

2009; Osnes, et al., 2011; Scott, et al., 2009), again, suggesting that the role of motor cortex 

is restricted to 1) non – natural language tasks, requiring explicit knowledge of phoneme 

segments (Hickok & Poeppel, 2000; Rogalsky, et al., 2011; Sato, et al., 2009) 2) 

distorted/degraded speech (Devlin & Aydelott, 2009; Osnes, et al., 2011; Scott, et al., 2009) 

and 3) repetition/learning new words (Burton, et al., 2000; Demonet, et al., 1992). 

However, whatever its exact role, it is clear that our data, and that of these studies, 

consistently show that PMC is not necessary for comprehension of clear auditory input. 

Certain limitations should be considered, however. For example, while the 

phonological hard task required phonological segmentation, it may also have required 

access to lexical representations in order to match the given phoneme onto the target 

word. Future studies could examine the role of real vs. non-word phoneme matching has 

on the contribution of PMC and BA 44, given previous suggestions that lexicality matters 

(Kotz, et al., 2010; Roy, et al., 2008). In summary, these results combined with those from 

the previous chapter, further confirm the role of PMC for phonological judgements, but not 

semantic association judgements matched in task format and reaction time. While PMC 

may play a role in explicit phonological judgements, it does not appear to be a crucial part 

of the semantic network required for accessing semantic representations, even when 

control demands are maximised. 

Left Inferior Frontal Gyrus (LIFG) 

 Another key aim of this study was to investigate the functional graded distinction 

along LIFG for phonological and semantic control. Previous studies have shown posterior 

LIFG involvement in phonological control and anterior recruitment for semantic control 

(Devlin, et al., 2003; Gold & Buckner, 2002; Gough, et al., 2005; Poldrack, et al., 1999; 

Sharp, et al., 2010; Vigneau, et al., 2006). A recent meta-analysis also confirmed this graded 

functional specialisation along LIFG, while noting that LIFG responds to control demands 
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across domains, but to a varying degree (Noonan, et al., submitted). The results of the 

current study support these previous findings, showing a graded specialisation along LIFG, 

with greater recruitment of posterior LIFG (PMC, BA 44, 45) for challenging phonological 

judgements, and more anterior recruitment for difficult semantic associations (BA 45/47). 

These findings are in line with other studies which have also found a graded LIFG response 

across domains, with additional recruitment for specific task types in pLIFG and aLIFG 

(Gold, et al., 2005).  

There has been some suggestion that the neural theme of control ties these 

inferior frontal regions together, with posterior LIFG for phonological control and aLIFG for 

semantic control (Fiez, 1997). The precise contribution of LIFG to linguistic control is still 

unclear: what might be the reason for this posterior to anterior gradient for phonological 

and semantic control? A hierarchical organisation of the frontal lobe has been previously 

suggested, whereby anterior recruitment is necessitated by increasingly abstract and 

complex information/rules (Badre & D'Esposito, 2009). Our data fit comfortably with this 

view, with more difficult semantic association judgements (which may require more 

abstraction, given the weak relationship between the target and the probe) activating the 

most anterior parts of LIFG. Additionally, the posterior to anterior gradient for the hard and 

easy tasks may reflect the increased demands on maintaining complex information in 

working memory in order to establish the correct target for the difficult phonological 

judgements. This gradient, from easy phonological rhyme judgements (where activity was 

constrained to the most posterior parts of our LIFG ROI), to phonological judgements 

requiring the maintenance of complex information/rules (for which activity spread from 

posterior LIFG to dorsal aLIFG) and finally to the most abstract judgements for the semantic 

associations (spreading into the most ventral and anterior parts of LIFG) reflect this 

posterior to anterior gradient for linguistic control. Moreover, there is some suggestion 

that this gradient exists beyond the linguistic domain (Badre & D'Esposito, 2009; Badre & 

Wagner, 2007; Wagner, et al., 1997), and this will be examined in the next chapter (Chapter 

4), using non-linguistic materials to assess the extent to which LIFG contributes to amodal 

control.       

The graded specialisation for phonological and semantic material along LIFG is also 

in line with various connectivity studies. For example, Anwander, Tittgemeyer, von Cramon, 

Friederici, and Knosche (2007) report similar connections for BA 44/45 along the Arcuate 

Fasciculus (AF) and the Superior Longitudinal Fascicle (SLF) to the parietal lobe and 



90 

 

perisylvian areas, as well as dorsomedial prefrontal cortex and precentral gyrus; and to the 

ATL along the extreme capsule (EmC). Our findings are consistent with this as they show 

involvement of BA 44/45 in both phonological and semantic control, in line with the 

connections to STG (Petrides & Pandya, 2002), motor cortex for phonology, and ATL for 

accessing semantic representations. Additionally, Anwander and colleagues (2007) report 

that BA 44 is more strongly connected to STG/dorsomedial prefrontal cortex, while BA 45 is 

more strongly connected to the ATL via the EmC. Furthermore, BA 47 is strongly connected 

to ATL along EmC and the uncinate fascicle (UF), implicating its role in accessing semantic 

material. Friederici (2009) reports similar findings showing connections from BA 44/45 

along the AF, which separates into two segments, one connecting to STG for lower level 

phonological processing; and the other to middle temporal gyrus for lexical/semantic 

retrieval. Saur et al. (2008) also report strong connections running from aLIFG (BA 47) to 

the temporal lobe along the EmC, again implicating its role in semantic control. Given the 

connections of LIFG to language areas sub serving both domains, our findings are in line 

with a functional graded specialisation along LIFG in accordance with the strength of 

connectivity to posterior association areas. 

Posterior Middle Temporal Gyrus (pMTG) 

 The lack of difficulty effect for the verbal semantic task in pMTG was surprising 

given that the ROI came from an analysis of high over low semantic control. Moreover, this 

was the second biggest cluster resulting from the comparison of high > low semantic 

control (Noonan, et al., submitted). Despite many studies reporting equivalent recruitment 

of pMTG and LIFG for tasks manipulating semantic control using associative judgements, as 

we did (Whitney, et al., submitted; Whitney, Kirk, et al., 2011), and the largely equivalent 

deficits in semantic control seen in patients with semantic aphasia (SA), who have lesions in 

frontal or temporoparietal cortex (Corbett, Jefferies, & Lambon Ralph, 2009; Jefferies & 

Lambon Ralph, 2006; Noonan, et al., 2010), there is some indication that the two sites may 

differ. For example, a recent meta-analysis reported that pMTG differed from LIFG in that 

activation for this site was restricted to: 1) receptive/comprehension tasks; and 2) the 

semantic domain (not domain general executive control; Noonan, et al., submitted). 

Additionally, patients with SA, although presenting largely similar deficits across tasks, do 

dissociate on certain tasks requiring cyclical processing of stimuli (i.e., selection/inhibition) 

(Gardner, et al., 2012; Jefferies, et al., 2007). Therefore, differences between pMTG and 

LIFG are not unprecedented; in our study pMTG did not show modulation with task 
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difficulty, but activation did spread across the dorsal aspect of this ROI when participants 

were making semantic judgements. These results are somewhat compatible with a recent 

double prime study, where participants were required to make a yes/no relatedness 

judgement on the third word presented. Neither pMTG nor LIFG were active for the 

unambiguous double-related condition (e.g., ‘lion – stripe – tiger’), as there was no need 

for semantic control. However, pMTG activation was seen across trials that required 

participants to recognize: 1) ambiguous double-related (game – dance – ball), 2) dominant 

one-related (game – pillow – ball), and 3) subordinate one-related (dance – clock – ball) 

targets. However, aLIFG (BA 45/47) only showed activation for the third type of double 

prime (subordinate, one-related). This is in line with our findings, where LIFG showed 

additional recruitment for more distantly related associations, while pMTG resolved 

associative judgements regardless of semantic distance.  

 In Noonan et al.’s (submitted) meta-analysis, pMTG emerged as a key site in both 

the semantic control and the semantic > phonological task contrasts. Therefore, our main 

effect of task (phonological > semantic) was not predicted, particularly as it has been 

postulated that this site contributes exclusively to semantic control (i.e., not general 

executive control; Noonan, et al., submitted). However, there is some indication that pMTG 

could contribute to other aspects of language processing, such as acting as an interface 

between speech and conceptual representations, as suggested by Hickok and Poeppel 

(2004, 2007). This also fits with the idea that pMTG may act as a ‘cortical hub’ for the 

comprehension network, as it has strong structural and functional connections to frontal, 

parietal, temporal and occipital regions (Turken & Dronkers, 2011), of particular relevance 

to our findings, pMTG is well connected to both BA 47 and STG, and may therefore respond 

to both of our language tasks. Additionally, resting state connectivity studies have shown 

that pMTG is correlated with both regions in the frontal parietal (PFC; IPS/dAG) and 

temporal (i.e., language representations) systems (Spreng, et al., 2010; Vincent, et al., 

2008). We found pMTG to be significantly activated by both phonological and semantic 

tasks and these findings are in line with connectivity studies showing rich connections of 

pMTG to other parts of the language network (Catani, et al., 2005; Turken & Dronkers, 

2011). pMTG activation has been shown to start around 90ms after auditory stimulus 

presentation, while prefrontal regions respond around 120ms, therefore it has been 

suggested that information flows from pMTG to prefrontal regions (Saur et al., 2010). This 

makes it an ideal candidate as an ‘integration’ zone for language comprehension, as it is 
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well placed to receive input from temporal cortices (e.g., STG, ATL) and is connected to 

prefrontal regions allowing for maximal control over language representations.   

Left Angular Gyrus/Parietal Cortex  

 The comparison of phonological and verbal semantic material in parietal 

cortex/angular gyrus (AG), revealed a dissociation between dorsal/intraparietal sulcus 

(dAG/IPS) and mid angular (mid AG) gyrus response profiles for the two domains. The 

dorsal AG/IPS site revealed a greater response to both phonological tasks and a far greater 

increase for the phonological difficulty manipulation than the semantic one; while mid AG 

showed a similar response to both domains. There is research to suggest a graded 

specialisation along AG, with dorsal AG/IPS involved in a variety of perceptual and semantic 

tasks (Noonan, et al., submitted; Seghier, et al., 2004; Whitney, et al., 2012). For example, 

tasks requiring participants to orient attention to specific features (both semantic and non-

semantic) report dAG/IPS recruitment (Cristescu, Devlin, & Nobre, 2006; Donner, et al., 

2002; Whitney, et al., 2012; Woolgar, Hampshire, Thompson, & Duncan, 2011), as do tasks 

requiring conjunction search (which necessitate integration of information) (Donner, et al., 

2000, 2002). Our phonological hard task required participants to 1) attend to a particular 

phoneme segment and 2) match this onto three possible choices: thus dAG/IPS activation 

would be expected in light of previous studies demonstrating its involvement in feature 

selection/orienting attention to specific features and integrating this information to find 

the correct target. This is also in line with the strong connections reported by Xiang, 

Fonteijn, Norris, and Hagoort (2010) between BA 45 and dAG/IPL, with weaker connections 

of this region to BA 47; likewise, our study showed a stronger response of dAG/IPS to the 

phonological task, especially when it involved high-control decisions. 

Meanwhile, mid AG has been suggested to be the point of overlap between the 

default and semantic networks: with deactivations for meaningless stimuli, but activation 

for demanding semantic tasks, word reading and non-stimulus driven semantic associations 

(Noonan, et al., submitted; Seghier, et al., 2010). However, our results show equivalent 

activation of phonological and semantic tasks in mid AG suggesting that it may be the point 

of overlap for the default and language networks more generally. This is in line with Binder 

et al.’s (2009) suggestion that mid AG plays a role in high level amodal integration, as it is 

well connected with various association areas, while receiving little/no direct input from 

sensory cortices. AG activation has often been reported when semantic load increases, 

while phonological activation is often reported in more anterior parts of parietal cortex 
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(e.g., SMG). Sharp et al. (2010) report activation for semantic tasks within an area of AG 

that is ventral to the ROI’s reported here, as well as activation for increased semantic 

difficulty (i.e., more distant featural semantic relationship) in an area just posterior to our 

mid AG ROI, while their phonological task elicited activity in parietal operculum (anterior to 

our AG ROIs). In line with a role for mid AG in tasks involving semantic material, Obleser 

and Kotz, (2010) report activation for sentences over spectrally rotated speech and suggest 

that this region is recruited for top-down activation of concepts. Also, Vigneau et al. (2006) 

suggest that mid AG is the “gateway that coordinates reciprocal interactions between the 

sensory representation of words or objects and the symbolic association that gives them 

meaning” (p. 1424), and is as such a multimodal integration area for conceptual knowledge. 

Strong functional connectivity between mid AG and BA 47 has also been reported, with 

weaker connections between mid AG and BA 44/45 (Xiang, et al., 2010): This would suggest 

the preference for phonological material should be reduced in mid AG, since BA 45 showed 

broadly equivalent activation for the two domains. This is largely consistent with our 

results, where mid AG, in comparison to dAG, shows a reduced response for phonology, 

while resolving difficulty across domain; accordingly, our results point to a domain general 

interpretation for mid AG, where both semantic and phonological material may be 

integrated. Our data also indicate a greater contribution of dAG/IPL to phonological, than 

semantic, control.  

Conclusions 

 This study sought to investigate the role of PMC, LIFG, pMTG and AG in language 

control. We manipulated difficulty across phonological and semantic tasks, and confirmed 

dissociations previously seen in LIFG: i.e., more anterior recruitment for semantic material, 

contrasting with more posterior recruitment in the phonological task. We also add more 

data to the debate over PMC contribution to language perception by showing that PMC is 

recruited for tasks requiring meta-linguistic judgements. Our pMTG ROI revealed a domain 

general response that was not modulated by our manipulation of difficulty (despite prior 

studies indicating pMTG involvement for difficult semantic judgements; e.g., Whitney, et 

al., submitted; Whitney, Kirk, et al., 2011; Whitney, et al., 2012). Additionally, we showed 

dAG/IPL activity for phonological tasks, with a similar contribution to the two domains in 

mid AG.  
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Chapter 4: Amodal Contributions of Distributed Brain Areas 

to Semantic Control – An fMRI Investigation 

Introduction 

Chapter 3 investigated the contribution of the language networks to both domain 

(phonological and semantic) and control, revealing a largely distributed and similar network 

across domain, with discrete differences. For example, we confirmed the posterior to 

anterior gradient for phonological and semantic control in LIFG, while also revealing some 

surprising findings such as the response of pMTG to both domains, with no modulation of 

difficulty. While Chapter 3 was restricted to the linguistic domain, Chapter 4 will focus on 

semantic control across picture and verbal modalities, thus further teasing apart the role of 

areas formerly shown to be involved in language.    

Semantic cognition involves the combination of diverse representations of 

semantic knowledge, in many different forms such as words, pictures, sounds, objects, to 

name a few; as well as efficient access and use of these representations for the given 

context. For example, the word ‘bank’ has multiple meanings and retrieving the 

representation of a money-bank would be inappropriate when discussing a river. The 

various representations of this concept draw on the anterior temporal lobes (ATL; Jefferies 

& Lambon Ralph, 2006; Pobric, et al., 2007), as shown by semantic dementia patients, with 

atrophy in this area, who have degraded semantic knowledge and are insensitive to cueing 

(Jefferies & Lambon Ralph, 2006), as well as neuroimaging studies in healthy individuals 

confirming the ATL as a semantic store (Pobric, et al., 2007; Visser & Lambon Ralph, 2011). 

Additionally, the control processes required for the appropriate use of these 

representations are thought by some researchers to be distributed, drawing on a large-

scale cortical network that includes both anterior and posterior brain areas (e.g., Noonan, 

et al., submitted). For example, patients with semantic aphasia (SA) show semantic control 

deficits following both anterior and posterior lesions, yet their representations are largely 

intact: they are sensitive to the effects of cueing – suggesting that efficient access to 

semantic representations is impaired (Jefferies & Lambon Ralph, 2006). This is consistent 

with a recent activation likelihood estimation meta-analysis of neuroimaging studies of 

semantic control, which revealed reliable activity in both LIFG and pMTG (Noonan et al., 

submitted). Furthermore, the control deficit in SA is amodal in nature, seen in a variety of 
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modalities including environmental sounds, pictures, object use and verbal material 

(Corbett, Jefferies, Ehsan, et al., 2009; Corbett, Jefferies, & Lambon Ralph, 2009; Corbett, et 

al., 2011; Jefferies & Lambon Ralph, 2006). This suggests that semantic control processes 

are (at least partially) amodal in nature; however there has been relatively little 

investigation into semantic control in healthy populations employing non-verbal stimuli. 

This chapter will focus on the distributed network of semantic control areas including left 

inferior frontal gyrus (LIFG), right inferior frontal gyrus (RIFG), posterior middle temporal 

gyrus (pMTG), and angular gyrus/intraparietal sulcus (AG/IPS), using fMRI, with particular 

emphasis on exploring how the response of these regions does or does not vary with 

modality. 

Left inferior frontal gyrus (LIFG: BA 44, 45, 47) has long been shown to be involved 

in varying aspects of language control. For example, LIFG has been implicated in 

phonological, semantic and  syntactic language processing, with these functional 

differences corresponding to a graded distinction along LIFG (for reviews see Binder, et al., 

2009; Bookheimer, 2002; Price, 2010; Vigneau, et al., 2006): Posterior LIFG (BA 44) has 

been widely implicated in phonological control (e.g., Demonet, et al., 1992; Démonet, et 

al., 1994; Gough, et al., 2005; Nixon, et al., 2004; see Chapter 3), but does also show 

increased activation for challenging semantic decisions (e.g., Badre, et al., 2005; Noonan, et 

al., submitted; Thompson-Schill, et al., 1997; Wagner, et al., 2001); BA 45 has been 

implicated in both syntactic processing (e.g., Bookheimer, 2002; Vigneau, et al., 2006; 

Xiang, et al., 2010) and several aspects of semantic control (e.g., selection amongst 

competing alternatives; e.g., Badre, et al., 2005; Whitney, Kirk, et al., 2011; Whitney, et al., 

2012); and, the most anterior part of LIFG, BA 47, has been implicated in semantic 

control/abstract semantic judgements (Badre & D'Esposito, 2009; Devlin, et al., 2003; 

Gough, et al., 2005; Noonan, et al., submitted; Poldrack, et al., 1999; Vigneau, et al., 2006). 

The peak response reported in many semantic control tasks is in BA 45 and there is some 

debate over the role of this site in semantic control: For example, some argue that it plays a 

role in selection amongst competing alternatives (Thompson-Schill, et al., 1999), others in 

controlled semantic retrieval (Wagner, et al., 2001), while some argue for a hybrid of these 

two accounts with more anterior areas (BA 47) recruited for semantic retrieval and BA 45 

for controlled selection of the retrieved items (Badre, et al., 2005). However, one study 

shows that the two processes interact, with no such BA 45 – 47 distinction according to 

selection and retrieval, with BA 45/47 recruitment in both instances (Snyder, et al., 2011). 
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While many of these tasks focus on verbal aspects of control, there has been relatively little 

investigation into the amodal nature of LIFG contribution to semantic control. 

However, there are studies that investigate the LIFG’s contribution to amodal 

semantic processing (with no manipulation of control) and they have often found activation 

for both picture and word semantic tasks. Many studies have reported activation in 

anterior LIFG (BA 45/47) for tasks using both picture and word judgements. For example, 

Vandenberghe, Price, Wise, Josephs, and Frackowiak (1996) report a common semantic 

network for pictures and words when participants were required to make associative or 

semantic size judgements across both modalities, with aLIFG activity (BA 45/47/11) across 

all task types and modalities. Similarly, Wagner et al. (1997) showed repetition priming 

effects for living/non-living and abstract/concrete semantic decisions in anterior LIFG (BA 

45/47/46), for both verbal and picture modalities, however they do report that the picture 

task produced more ‘modest’ activity than the verbal task. While, Bright, Moss, and Tyler 

(2004a) report equal activation for both verbal and picture semantic categorisation tasks in 

anterior LIFG (BA 47). Other studies have used picture combinations to convey a 

meaningful or non-meaningful message, revealing activation for meaningful picture 

combinations in BA 45 (Tylen, Wallentin, & Roepstorff, 2009). There are also some studies 

which report more posterior recruitment of LIFG (BA 44/45) for tasks across semantic 

modalities. For example, Chee et al. (2000) report a common network for semantic tasks 

using Chinese characters, English words and pictures, including LIFG (BA 9/44/45). Another 

study which investigated the amodal contribution of LIFG beyond pictures by assessing 

activation for the subordinate meaning of words for both pictures and environmental 

sounds, reported posterior recruitment of LIFG (BA 6/8/44) (Adams & Janata, 2002). While 

these studies implicate a role for LIFG in amodal semantic processing, the relative 

contribution of the subdivisions along LIFG is not clear, nor is the specific contribution to 

semantic control.  

The contribution of right inferior frontal gyrus (RIFG, i.e., right homologue of LIFG) 

to semantic control is interesting to explore, given a recent meta-analysis that showed 

reliable RIFG activation for semantic control (Noonan, et al., submitted). Many studies have 

reported bilateral IFG activation for tasks involving various aspects of semantic control 

(e.g., Bright, et al., 2004a; Shibata, Abe, Terao, & Miyamoto, 2007; Snyder, et al., 2011), 

especially processing (novel) metaphors (Ahrens et al., 2007; Eviatar & Just, 2006; Hoenig & 

Scheef, 2009; Lee & Dapretto, 2006); as well as studies reporting deficits in matching 
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metaphors to pictures following right hemisphere lesions (Winner & Gardner, 1977). 

However, given the predominance of the left hemisphere in language, the role for RIFG in 

semantic control for verbal metaphors is likely to be quite constrained. For example, right 

hemisphere involvement may be necessitated by the relative salience of a given stimulus; 

for example, when a less conventional meaning of a word is required (Giora, 1997; Giora, 

Zaidel, Soroker, Batori, & Kasher, 2000). Similarly, Jung-Beeman (2005) suggests that right 

hemisphere activation is required for distant semantic relationships. This suggests that 

RIFG may act as a ‘back-up’ system for a more difficult/unconventional semantic 

relationship that the left hemisphere alone cannot resolve. Additionally, the right 

hemisphere has been shown to be involved in processing picture semantic material 

(Gazzaniga & Hillyard, 1971; Henke, Landis, & Markowitsch, 1993), as such RIFG may play a 

role in amodal/picture semantic control, as well as unconventional/metaphorical language.         

There is also strong evidence to suggest that the semantic control network extends 

beyond IFG to posterior temporal and parietal areas. For example, patients with semantic 

aphasia (SA) who have lesions to LIFG (BA 44, 45, 47) and temporoparietal areas (TP: AG, 

pMTG) show similar deficits in semantic control (Noonan, et al., 2010), but have largely 

intact semantic representations (Jefferies & Lambon Ralph, 2006). The deficit is 

multimodal, extending to environmental sounds, action understanding, tool use, and 

pictures (Corbett, Jefferies, Ehsan, et al., 2009; Corbett, Jefferies, & Lambon Ralph, 2009; 

Corbett, et al., 2011). This is paralleled by a recent TMS study showing equivalent 

disruption of executively demanding semantic association judgements following TMS to 

pMTG and LIFG (Whitney, Kirk, et al., 2011). There is also extensive evidence from 

neuroimaging studies revealing pMTG involvement for tasks requiring varying aspects of 

semantic control (Badre, et al., 2005; Gold, et al., 2006; Noppeney, et al., 2004; Rodd, 

Davis, & Johnsrude, 2005; Thompson-Schill, et al., 1997; Whitney, Jefferies, et al., 2011; 

Zempleni, et al., 2007), and also from TMS studies (Whitney, et al., submitted; Whitney, 

Kirk, et al., 2011; Whitney, et al., 2012).  

Furthermore, other posterior/parietal areas such as angular gyrus (AG, and 

intraparietal sulcus/IPL) have been implicated in semantic and domain general control 

(Noonan, et al., submitted; Seghier, et al., 2010). For example in a TMS study manipulating 

both semantic and non-semantic feature selection, TMS to pMTG disrupted the semantic 

decisions only, while TMS to AG/IPS disrupted both semantic and domain general feature 

selection. Recent investigations indicate a functional specialisation along AG for domain 
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general and semantic tasks: for example, while dorsal AG may contribute to domain 

general and semantic control (as, indeed, our results from Chapter 3 confirm), more ventral 

areas may be preferentially recruited specifically for the semantic domain, and possibly 

activated irrespective of control demands (Binder, et al., 2009; Noonan, et al., submitted; 

Seghier, et al., 2004); however, our results in Chapter 3 suggest that there may be some 

modulation of activity in this area with increased demands on control across linguistic 

domain. 

The current study uses verbal and picture semantic association judgements to 

assess the contribution of the semantic control network across the cortex. For example, 

while the graded distinction between phonology and semantics in LIFG has been widely 

investigated, the functional organisation of this area across picture and word semantic 

tasks is still relatively unknown. In line with the pattern of amodal semantic control deficits 

seen in SA, as well as some neuroimaging studies reporting similar activation for verbal and 

picture semantic tasks, we predicted that: 1) LIFG would be involved in both verbal and 

picture semantic control, with more anterior areas (BA 45/47) showing an amodal response 

due to their specialised involvement in semantic control; 2) a right hemisphere preference 

for picture stimuli, as well as for more unusual semantic judgements (e.g., Tylen, et al., 

2009); 3) equivalent contribution of pMTG to verbal and picture semantic judgements; and, 

4) an amodal response to verbal and picture semantic material in AG, given its role in both 

semantic and domain general control. 

Method 

The participants (N = 23), scanning parameters, procedure, and data analysis are the same 

as in Chapter 3.  

Design  

  A within subjects 2 x 2 factorial design was used for the behavioural tasks, with task 

(semantic verbal, semantic picture) and difficulty (hard/easy) as factors.    

Tasks 

 The probes were presented either auditorally (verbal task) or visually in picture 

format (picture task). Targets and distracters were presented either as written words 

(verbal task) or pictures (picture task). A three alternative forced choice (3AFC) format was 

used. The semantic verbal and picture tasks both involved making associative judgements 
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on the same semantic stimuli, where probes and targets either shared low (hard) or high 

(easy) semantic associations. For example, “duck” with lake, cigar, or door; the only 

difference being the presentation modality of probes and answer choices (Table 4-1).  

Condition Probe Target Distractor 1 Distractor 2 

Picture 

Easy 
    

Verbal 

Easy 
Duck Lake Cigar Door 

Picture 

Hard 
 

 
  

Verbal 

Hard 
Duck Gun Cigar Door 

Table 4-1. Task details.  

Stimuli 

The auditory probes were the same as in Chapter 3 (Method, p.54). Picture stimuli 

were coloured pictures all fitted to a standard 255 x 149 pixel size using GNU Image 

Manipulation Programme (GIMP http://www.gimp.org/), Adobe Photoshop 7.0 

(www.adobe.com) and ImageMagick 6.3.7.9 (www.imagemagick.org/script/index.php). 

Stimuli were all concrete nouns acquired from the MRC psycholinguistic database 

(concreteness and imageability > 500; Coltheart, 1981; Wilson, 1988). Targets and 

distractors were developed using Edinburgh Association Thesaurus (www.eat.rl.ac.uk/). 

The same probe, distracters and associations were used across modalities (picture and 

verbal).   

Region of Interest (ROI) Analysis  

 The ROIs for left inferior frontal gyrus, posterior middle temporal gyrus, dorsal 

angular gyrus/intraparietal sulcus, and mid angular gyrus were the same as those used in 

Chapter 3 (Method, p.54). An additional ROI of right inferior frontal gyrus (and the 
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corresponding sub divisions, BA 44, 45, 47) was used in order to investigate the laterality of 

modality. These ROIs were created using ‘fslswapdim’ to ‘flip’ the ROIs to the right 

hemisphere.  

Results 

Behavioural Results 

 The assignment of semantic associations to easy or hard conditions was based on 

each participant’s reaction time (RT) across all accurate trials. There were 90 verbal 

semantic and 90 picture semantic trials, and an RT was recorded for each trial. In order to 

maximise the difference between easy and hard trials, the fastest one third (of the total 

accurate trials) were taken for each participant for the easy semantic condition; as well as 

the slowest one third (of total accurate trials) were taken for the semantic hard condition 

(the average number of trials selected per condition was 24). This method ensured that the 

effects we were modelling for easy and hard conditions were maximally distinct in terms of 

difficulty and not overlapping. This analysis was used because our original assignment of 

trials to easy and hard conditions revealed a large degree of overlap in RT (Figure 4-1; see 

Appendix 4.1 and Appendix 4.2 for the original RT analysis and fMRI results). Moreover, we 

noted that the assignment of items to difficulty conditions was potentially more 

problematic for pictures than words since free-association norms were used and these 

were based on verbal probes and responses. In contrast, the difficulty for picture trials 

depends on the specific choice of picture. By basing our assignment to conditions on RT we 

were able to match verbal and picture tasks for difficulty.  



101 

 

 

Figure 4-1. RTs for the original designation of easy and hard trials, where picture and verbal 

semantic RTs were highly overlapping for the hard and easy conditions. Error bars indicate 

minimum and maximum RTs, circles (1.5 IQR) and stars (3 IQR) indicate outliers. 

Analysis of RTs Used for the Event Related fMRI Analysis 

 A comparison of RTs, for correct responses, across task modalities revealed no 

overall difference between the two tasks (F(1, 21) = 2.234, p = .150), while the difficulty 

manipulation, unsurprisingly, was highly significant across both tasks (F(1, 21) = 832.184, p 

< .001). Difficulty affected both tasks to the same degree, since there was no significant 

interaction of task by difficulty (F(2, 42) < 1). This suggests that the task and difficulty 

manipulation were well matched at the behavioural level within our stimuli subset (Figure 

4-2). 
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Figure 4-2. Behavioural reaction time for correct responses. Error bars indicate standard 

error of the mean. 

Whole Brain Analysis 

 To investigate which areas were activated by the two modalities (verbal and 

picture semantic), whole brain analyses were used to reveal which areas were active 

against rest for the hard versions of the tasks. We used a cluster-based inference in FSL, 

with a cluster forming threshold of Z = 2.3, and corrected for multiple comparisons at p = 

.05. This ensured that we were capturing activation for these tasks, without the risk of 

cancelling out mutual activity using contrasts (i.e., activity seen in both the hard and easy 

conditions, which would be cancelled out in a hard > easy contrast). This analysis revealed 

common activity throughout LIFG (BA 44, 45, 47), left and right angular gyrus/IPL regions, 

right SMA and visual cortex. The verbal semantic task revealed activation of the temporal 

lobe bilaterally, extending into the temporal pole in the left hemisphere (Figure 4-3). 

Furthermore, Figure 4-4 and Figure 4-5 reveal activations for each task separately to show 

areas of peak activation as ‘hotspots’ in each modality.     
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Figure 4-3. Whole brain analysis (cluster correction, Z > 2.3, p < .05). Semantic hard tasks 

over rest: verbal (red), picture (cyan) and overlapping activity (blue). L = left, R = right 

hemisphere.  
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Figure 4-4. Cluster corrected whole brain analysis (Z > 2.3, p < .05) of semantic verbal hard 

over rest. L = left, R = right hemisphere. Z values are indicated by the colour scale bar.   
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Figure 4-5. Cluster corrected whole brain analysis (Z > 2.3, p < .05) of semantic picture hard 

over rest. L = left, R = right hemisphere. Z values are indicated by the colour scale bar. 

 

 Contrasts were also used to investigate which areas show additional recruitment 

when task demands increased. The contrast for the hard > easy verbal semantic task 

revealed activation in para and anterior cingulate gyrus, superior frontal gyrus, parietal 

lobe (precuneus, superior parietal lobule (BA 7)), anterior temporal gyrus, inferior frontal 

gyrus (BA 44, 45, 47), and superior and middle frontal gyri (BA 9, 10, 11). These contrasts 

can be found in Table 4-2 and Figure 4-6, and only clusters showing significant activation 

after cluster correction (Z = 2.3) are reported. Names of brain areas reported are labelled 

according to the Harvard-Oxford Cortical Structural Atlas, Talairach Deamon and the Juelich 

Histological Atlas built into the FSL view software library. The contrasts for the hard > easy 
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picture semantic task revealed activation in paracingulate gyrus, middle frontal and 

superior frontal gyri (BA 10), left inferior frontal gyrus (BA 44), left angular gyrus (BA 39), 

left posterior middle temporal gyrus, posterior supramarginal gyrus (BA 40) and the 

parietal lobe (precuneus). These contrasts can be found in Table 4-3 and Figure 4-6.   
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Contrast of semantic verbal hard > easy judgements 

Brain Area BA Voxels Z x y z 

Cingulate Gyrus/ Medial Frontal Areas   4412         

 

L Paracingulate Gyrus 32 

 

4.6 -4 28 32 

 

L Paracingulate Gyrus 32 

 

4.59 -4 26 36 

 

L Paracingulate Gyrus / Superior Frontal 

Gyrus 

  

4.5 0 18 50 

 

R Superior Frontal Gyrus 8 

 

4.43 4 24 52 

 

R Superior Frontal Gyrus 8 

 

3.91 0 30 46 

 

L Anterior Cingulate Gyrus 24 

 

3.91 -6 28 22 

Parietal Lobe 

 

1504 

    

 

R Superior Parietal Lobule / Precuneus 

  

3.49 2 -60 50 

 

R Parietal Lobe / Precuneus ~31 

 

3.49 16 -62 24 

 

L Precuneus / Superior Parietal Lobule 7 

 

3.44 -8 -68 34 

 

L Precuneus / Superior Parietal Lobule 7 

 

3.43 -4 -70 34 

 

L Precuneus / Superior Parietal Lobule 7 

 

3.42 -6 -64 50 

 

L Precuneus / Superior Parietal Lobule 7 

 

3.32 -6 -58 48 

Temporal Gyri 

 

957 

    

 

L  Inferior Frontal Gyrus / L Anterior 

Temporal Gyrus 47/38 

 

4.25 -34 22 -10 

 

L Anterior Superior Temporal Gyrus/ L 

Inferior Frontal Gyrus 38/47 

 

3.46 -46 14 -10 

 

L Pallidium 

  

3.45 -14 0 -4 

 

L Anterior Superior Temporal Gyrus/ L 

Inferior Frontal Gyrus 38/47 

 

3.39 -52 20 -12 

 

L Inferior Frontal Gyrus  44/45 

 

3.22 -48 20 2 

 

L Caudate/Putamen 

  

3.02 -16 18 -6 

Frontal Gyri 

 

748 

    

 

L Middle Frontal Gyrus 10 

 

4.45 -32 48 6 

 

L Superior Frontal Gyrus (Sub Gyral) 10 

 

3.23 -22 48 4 

Table 4-2. Cluster corrected (Z > 2.3) contrast of hard > easy task difficulty for verbal 

judgements. 
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L Superior Frontal Gyrus 10 

 

3.14 -26 62 -10 

 

L Superior Frontal Gyrus 10 

 

3.13 -28 62 -6 

 

L Middle Frontal Gyrus 

  

3.04 -28 58 2 

 

L Medial Frontal Gyrus 11 

 

2.87 -16 58 -14 

Frontal Gyri 

 

697 

    

 

R Insula 

  

3.9 32 20 -4 

 

R  Inferior Frontal Gyrus/ Insula 47 

 

3.75 40 18 -12 

 

R  Inferior Frontal Gyrus  47 

 

3.63 30 16 -18 

 

R  Inferior Frontal Gyrus/ Insula 47 

 

3.22 42 20 -6 

 

R Frontal Orbital Cortex 

  

3.13 22 8 -24 

 

R Frontal Orbital Cortex 

  

2.95 22 8 -20 

Frontal Gyri 

 

565 

    

 

R Inferior Frontal Gyrus  44/45 

 

4.08 54 24 18 

 

R Inferior Frontal Gyrus  44 

 

3.66 54 22 26 

 

R Middle Frontal Gyrus 9 

 

3.4 48 26 30 

 

R Inferior Frontal Gyrus  45 

 

3.19 60 24 12 

  R Sub Gyral  ~45   2.8 36 20 16 

Table 4-2. Cluster corrected (Z > 2.3) contrast of hard > easy task difficulty for verbal 

judgements. 
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Contrast of semantic picture hard > easy judgements 

Brain Area BA Voxels Z x y z 

Cingulate Gyrus/ Medial Frontal Areas   13938         

 

L Middle Frontal Gyrus (Sub Gyral) 10 

 

5.14 -30 50 4 

 

R Paracingulate Gyrus/ Medial Frontal Gyrus 32 

 

4.88 4 34 28 

 

R Paracingulate Gyrus 32 

 

4.86 2 34 32 

 

R Paracingulate Gyrus/ Superior Frontal Gyrus 32/8 

 

4.82 0 20 48 

 

R Superior Frontal Gyrus (Sub Gyral) 10 

 

4.78 32 50 8 

 

L Inferior Frontal Gyrus  44 

 

4.52 -52 14 10 

Temporal Gyri 

 

1976 

    

 

L Angular Gyrus 39 

 

4.47 -56 -60 26 

 

L Posterior Middle Temporal Gyrus 

  

3.77 -56 -44 6 

 

Lateral Occipital Cortex 

  

3.68 -34 -80 40 

 

L Posterior Middle Temporal Gyrus 

  

3.67 -62 -40 -4 

 

L Posterior Middle Temporal Gyrus 

  

3.42 -58 -40 -8 

 

L Posterior Supramarginal Gyrus 40 

 

3.22 -62 -50 34 

Parietal Lobe 

 

925 

    

 

L Cingulate Gyrus/ Precuneus 31 

 

3.6 -4 -48 40 

 

L Precuneus 

  

3.49 -6 -64 44 

 

L Precuneus 

  

3.43 -4 -54 42 

 

L Cingulate Gyrus/ Precuneus 31 

 

3.4 -12 -50 34 

 

L Precuneus 

  

3.23 -12 -64 26 

  L Precuneus     3.06 -4 -68 38 

Table 4-3. Cluster corrected (Z > 2.3) contrast of hard > easy task difficulty for picture 

judgements.   
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Figure 4-6. Whole brain analysis contrast of semantic hard > easy judgements (cluster 

correction, Z > 2.3, p < .05): Verbal (red), picture (cyan) and overlapping activity (blue). L = 

left hemisphere, R = right hemisphere.  

Region of Interest Analyses (ROI)  

 Voxel corrected (p < .05) ROI analyses were used to further establish the relative 

contribution of brain areas that were the focus of our research questions to the verbal and 

picture semantic material. Featquery results were also used to investigate activation 

patterns (percent change) for each ROI. An advantage of interrogating specific ROIs using 

both techniques is that the voxel corrected mask allows functional specialisations within an 

area to be revealed, while the featquery method allows interactions between difficulty, 

task (modality), and regions to be easily investigated. 
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Left Inferior Frontal Gyrus (LIFG) 

 In order to explore the functional specialisation of LIFG for verbal and picture 

semantic material, we used an ROI to show where our tasks produced activation for 1) 

verbal hard > rest, and 2) picture hard > rest. There was a large degree of overlap in 

posterior to mid LIFG for the two modalities. Additionally, the verbal semantic hard task 

elicited more activation throughout this ROI extending into the most anterior and ventral 

parts of LIFG; however, the picture task activation was restricted to more posterior LIFG, 

with two small clusters in aLIFG (Figure 4-7).       

 

Figure 4-7. Voxel corrected (p < .05) ROI analysis of LIFG: The left-hand image shows the 

extent of activity for each task (red: verbal; cyan: picture; blue: overlap). The right-hand 

images show the regions in which activation was strongest (A: picture; B: verbal; Z values 

are indicated by the colour scale).  

This large ROI was further investigated using the featquery tool in FSL to 

interrogate individual demarked subdivisions of LIFG (BA 44, 45, 47).  

A direct comparison of the semantic tasks revealed that BA 44 responded more to 

the verbal than the picture modality (F(1, 21) = 18.546, p < .001). There was also a 

significant main effect of difficulty (F(1, 21) = 64.663, p < .001), with no interaction of task 

by difficulty (F(1, 21) = 1.163, p = .293). Overall, these results suggest that BA 44 is recruited 



112 

 

for difficult tasks across modality, but shows additional activation for tasks in the verbal 

modality, in this case verbal semantic material (Figure 4-8).  

A comparison within BA 45 revealed no main effect of task (F(1, 21) < 1), but there 

was a significant main effect of difficulty (F(1, 21) = 31.538, p < .001), with no interaction 

(F(1, 21) < 1). In summary, BA 45 is equally recruited by both semantic tasks, and helps to 

resolve difficulty across both modalities (Figure 4-8).  

For BA 47 there was a significant effect of task type (F(1, 21) = 23.589, p < .001) and 

a significant effect of difficulty (F(1, 21) = 35.979, p < .001), but no interaction of the two 

(F(1, 21) < 1). We can infer that BA 47 is significantly involved in accessing verbal and 

picture semantic material when demands on semantic control are increased, while also 

showing a preference for verbal semantic material overall (Figure 4-8).  

These analyses suggest that LIFG is recruited for both modalities, with differential 

recruitment in subdivisions of LIFG (verbal > picture, except in BA 45 which responds 

equally to both). These results provide some evidence towards a graded specialisation 

along LIFG with picture semantic material activating posterior IFG, with minimal activation 

in aLIFG, while the verbal semantic material activates the entire LIFG into the most anterior 

parts of BA 47; however the entire LIFG helped resolve difficulty for both tasks/modalities.  
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Figure 4-8. Left Inferior Frontal Gyrus percent signal change results. Error bars indicate 

standard error of the mean. 

To further investigate any possible graded distinction across LIFG for semantic 

modality, between sites ANOVAs were used to reveal any between sites differences in 

response to modality and difficulty: BA 44 and BA 47 may be comparatively selective for 

verbal material, while BA 45 did not show modality specificity. A between sites ANOVA of 

BA 44 and BA 45 confirmed this difference (Table 4-4, Figure 4-9), with a significant site by 

task interaction (p = .027). Moreover, a comparison between BA 45 and BA 47 (Table 4-4, 

Figure 4-9) further confirms the amodal nature of BA 45 with a significant site by task 

interaction (p = .013). In contrast, a direct comparison of BA 44 and BA 47 (Table 4-4) 

revealed no significant site by task interactions (p =  .361), but did reveal a significant site 

by difficulty interaction (p = .003), with the increase in activation for the difficulty 

manipulation in BA 47 being less than that in BA 44 (Figure 4-10). These between sites 

ANOVAs confirm the functional distinctions, predicted by our within sites ANOVAs, along 

LIFG: BA 44 and BA 47 were more activate for verbal than picture semantic material, and 

BA 45 responded in an amodal fashion to both verbal and picture semantic material.  
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Between Sites Comparisons 

   BA 44 vs. BA 45 BA 45 vs. BA 47 BA 44 vs. BA 47 

df 1, 21 1, 21 1, 21 

Site x Task 5.68* 13.27** < 1 

Site x Difficulty 1.89 1.27 11.35** 

Site x Task x Difficulty < 1 < 1 < 1 

Notes: *p < .05, **p < .01, ***p < .001   

Table 4-4. F  values for between (LIFG) site ANOVAs. 

 

Figure 4-9. Interactions of site by task resulting from an investigation of percent signal 

change in LIFG sub-regions. Error bars indicate standard error of the mean. 

 

Figure 4-10. Interactions of site by difficulty resulting from an investigation of percent 

signal change in LIFG sub-regions. Error bars indicate standard error of the mean. 

Right Inferior Frontal Gyrus (RIFG) 

An ROI analysis of entire RIFG revealed constrained activation for both modalities, 

with the activation for the picture task in posterior LIFG (BA 44) and for the verbal task in 
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anterior LIFG (BA 47). This large ROI was further interrogated using featquery of individual 

demarked subdivisions of RIFG (BA 44, 45, 47) (i.e., homologues of LIFG BA 44, 45, 47).  

 

Figure 4-11. Voxel corrected (p < .05) ROI of RIFG: The right-hand image shows the extent 

of activity for each task (red: verbal; cyan: picture). The left-hand images show the regions 

in which activation was strongest (A: picture; B: verbal; Z values are indicated by the colour 

scale).  

Right BA 44 revealed a significant main effect of task (F(1, 21) = 13.237 p = .002), 

corresponding to higher activation for the picture task. There was also a significant main 

effect of difficulty (F(1, 21) = 66.923, p < .001) but no interaction of task by difficulty (F(1, 

21) < 1).  

Interrogation of right BA 45 revealed a significant effect of modality, with a 

stronger response, again, for the picture task (F(1, 21) = 4.280, p = .05), and stronger 

activation for more difficult trials (F(1, 21) = 18.753, p < .001), with no interaction of task 

and difficulty (F(1, 21) < 1).  

A comparison of the semantic tasks in right BA 47 revealed a significant difference 

between the two modalities (F(1, 21) = 8.508, p = .008) reflected by a higher response to 

the verbal modality. There was a significant main effect of difficulty (F(1, 21) = 20.766, p < 

.001), with no interaction of task by difficulty (F(1, 21) < 1).  
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The results show an increased response to picture stimuli in BA 44 and BA 45, 

whereas BA 47 retained its verbal modality preference.  

 

Figure 4-12. Right inferior frontal gyrus percent signal change analysis results. Error bars 

indicate standard error of the mean. 

To further investigate any possible functional specialisation across RIFG for 

modality, between sites ANOVAs were used to reveal any differences in response to 

modality and difficulty between the subdivisions of RIFG. The within sites ANOVAs for right 

BA 44 and BA 45 suggest that the two sites are similar in their contribution to the semantic 

tasks, with a preference for the picture modality. A between sites ANOVA of the two sites 

(BA 44, 45) confirmed this similarity, with no interactions (F(1, 21) < 1). Comparisons with 

BA 47 confirmed that this site responded differently with significant site by task 

interactions when compared with both BA 45 (F(1, 21) = 9.41, p = .006; Figure 4-13) and BA 

44 (F(1, 21) = 24.82 p < .001; Figure 4-13). There were no site by difficulty interactions (F(1, 

21) < 1) and no three-way interactions (F1, 21) < 1) for any of the site comparisons. These 

between sites ANOVAs suggest functional distinctions along RIFG with BA 44 and BA 45 

activated more by picture semantic material than verbal semantic material, and right BA 47 

more responsive to verbal semantic material. 
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Figure 4-13. Interactions of site by difficulty in RIFG, resulting from interrogation of percent 

signal change. Error bars indicate standard error of the mean. 

Comparisons Between Left and Right Inferior Frontal Gyrus 

 The within sites ANOVAs for left and right BA 44 suggest that left BA 44 is more 

responsive to verbal semantic material and right BA 44 shows a stronger response to 

picture semantic material. This was confirmed with a direct comparison of left and right BA 

44, which revealed a significant hemisphere by modality interaction (F(1, 21) = 33.386, p < 

.001; Figure 4-15), and a hemisphere by difficulty interaction (F(1, 21) = 19.471, p < .001; 

Figure 4-14), due to a more modest increase in activity for the difficulty manipulation in 

right BA 44. This hemisphere by difficulty interaction was replicated in the comparisons of 

left and right BA 45 (F(1, 21) = 6.402, p = .019; Figure 4-14) and left and right BA 47 (F(1, 21) 

= 6.962, p = .015; Figure 4-14). There was no significant site by modality interaction for the 

comparison of left and right BA 45 (Figure 4-15). However, there was a significant site by 

modality interaction for left and right BA 47 (F(1, 21) = 18.976, p < .001; Figure 4-15), due 

to less dramatic difference between verbal and picture material in the right hemisphere. 

These results suggest that posterior and anterior IFG show greatest selectivity for modality, 

while BA 45 is activated equivalently by words and pictures across both hemispheres.   

 

Figure 4-14. Hemisphere by difficulty interactions for BA 44, BA 45, BA 47, resulting from 

percent signal change ANOVAs. Error bars indicate standard error of the mean. 
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Figure 4-15. Hemisphere by modality interactions for BA 44, BA 45, and BA 47, resulting 

from a featquery interrogation of each ROI. Error bars indicate standard error of the mean.    

Posterior Middle Temporal Gyrus (pMTG) 

We used the contrast of high > low semantic control demands in Noonan et al.’s 

(submitted) meta-analysis to delineate a ROI in pMTG, allowing us to further investigate 

the amodal contribution of this site to semantic control. Only the verbal semantic task 

(hard > rest) revealed activation for this site (Figure 4-16). This was confirmed by a direct 

comparison of the two semantic tasks using featquery which revealed a significant main 

effect of task on percent signal change (F(1, 21) = 33.159, p < .001). There was also a main 

effect of difficulty (F(1,2 1) = 4.186, p = .054), and a significant interaction of task by 

difficulty (F(1, 21) = 6.207, p = .021). These effects were due to a greater overall response 

to the verbal semantic task, which showed no effect of difficulty (t(21) < 1), and in contrast 

an effect of difficulty for the picture semantic task (t(21) = -4.581, p < .001) was seen 

(Figure 4-17).  
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Figure 4-16. Voxel corrected (p < .05) ROI analysis of pMTG: the left-hand image shows the 

extent of activity for verbal semantic hard > easy task. There was no activity for the picture 

hard task. The right-hand image shows where the verbal hard activation was the strongest 

(Z values are indicated by the colour scale).  

 

Figure 4-17. Percent signal change resulting from featquery interrogation of posterior 

middle temporal gyrus. Error bars indicate standard error of the mean. 

Left Angular Gyrus:  Dorsal/Intraparietal Sulcus (dAG/IPS) and mid Angular Gyrus (mid AG) 

We used ROIs of dorsal angular gyrus/intraparietal sulcus (dAG/IPS) and mid 

angular gyrus (mid AG), resulting from a contrast of high > low semantic control in Noonan 

et al.’s (submitted) meta-analysis, to assess the degree to which these areas are specialised 
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by modality. The ROI of dorsal angular gyrus/intraparietal sulcus (dAG/IPS) revealed 

overlapping activation in the anterior part of the ROI for both modalities (Figure 4-18). 

 

Figure 4-18. Voxel corrected (p < .05) ROI analysis of dorsal angular gyrus: The left-hand 

image shows the large degree of overlap for both modalities (blue). The right-hand images 

show the extent of the activation (A: picture; B: verbal; Z values are indicated by the colour 

bar).  

Additionally, a direct comparison of the two modalities using featquery revealed no 

significant main effect of task (F(1, 21) < 1), but there was a main effect of difficulty (F(1, 

21) = 14.769, p < .001) with no interaction of task and difficulty (F(1, 21) < 1; Figure 4-20). 

This suggests that a subregion in dAG shows greater activation for more difficult tasks, with 

no preference for either modality. 

 An ROI of mid angular gyrus (mid AG) showed overlapping activation in the most 

dorsal part of the ROI, with no further activation seen for either task in more ventral parts 

of the ROI (Figure 4-19).  
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Figure 4-19. Voxel corrected (p < .05) ROI analysis of dorsal angular gyrus: The left-hand 

image shows the overlap of the two modalities in this site (blue). The right-hand images 

show the extent of the activation (A: picture; B: verbal; Z values are indicated by the colour 

bar). 

The featquery interrogation of mid AG also suggests that this site does not respond 

preferentially to either semantic modality, with no main effect of task (F(1, 21) < 1). There 

was a main effect of difficulty (F(1, 21) = 49.681, p < .001), which did not interact with 

modality (F(1, 21) < 1; Figure 4-20).  

 The analysis of AG (dorsal/IPS and mid) shows similar recruitment across 

modalities, for both sites. There were no significant interactions between the two sites (site 

by task, site by difficulty, and site by task by difficulty: F(1, 21) < 2.4, p > .14).  
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Figure 4-20. Percent signal change values for dorsal and mid angular gyrus. Error bars 

indicate standard error of the mean. 

Discussion 

This study aimed to address the relative contribution, across the cortex, of areas 

involved in amodal semantic control. Patients with semantic aphasia (SA) have semantic 

control deficits which are amodal in nature as they extend across a variety of stimulus 

types (e.g., words, pictures, sounds, objects; Corbett, Jefferies, Ehsan, et al., 2009; Corbett, 

Jefferies, & Lambon Ralph, 2009). However there is a relative paucity of neuroimaging 

studies manipulating modality and semantic control demands simultaneously. While there 

is evidence to suggest a similar distribution of picture (and other modalities) and verbal 

semantic material across the cortex (e.g., Adams & Janata, 2002; Bright, et al., 2004a; 

Vandenberghe, et al., 1996; Wagner, et al., 1997), the question still remains as to how 

varying semantic control demands effects processing of semantic associations that are 

matched for items used (i.e., the same association for both verbal and picture tasks); given 

that almost all studies of semantic control have employed verbal materials and there 

appears to be only partial overlap between the network underpinning verbal semantic 

control and the domain-general multimodal network (Duncan, 2010). Our study reveals a 

highly similar distribution of picture and word semantic control across the network, with 
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discrete differences. Given the number of regions investigated, each region will be 

discussed separately.    

Left Inferior Frontal Gyrus 

 We used an ROI approach to investigate the graded distinctions often seen within 

LIFG, in accordance with its subdivisions. This approach allowed us to investigate discrete 

changes according to both modality and semantic control demands. Broadly, our findings 

confirm previous literature showing involvement of LIFG in verbal semantic control (Badre, 

et al., 2005; Thompson-Schill, et al., 1997; Whitney, et al., 2009; Whitney, Kirk, et al., 2011), 

while also revealing LIFG contribution to nonverbal (picture) semantic control (i.e., more 

challenging association judgements). We found that both BA 44 and BA 47, while showing 

increased activation for heightened difficulty across modalities, were preferentially 

recruited for verbal semantic material, while BA 45 responded to both modalities to an 

equal extent.  

The finding that BA 47 responds to both modalities, but shows a stronger 

preference for the verbal semantic material is a novel finding, as some previous studies 

have found a similar contribution to the two modalities (Bright, et al., 2004a; 

Vandenberghe, et al., 1996; Wagner, et al., 1997), even without any manipulation of 

difficulty/semantic control. Our results are consistent with these studies as we saw 

significant activation throughout IFG into aLIFG when the tasks were contrasted against 

rest. However, our data highlight the discrete differences in the response seen in BA 47 to 

the two modalities: 1) there is a preference for verbal semantic material, but 2) the 

additional recruitment/activity for resolving difficult semantic associations is equivalent 

across both modalities. The lesser recruitment of BA 47 for picture semantic material may 

be explained by previous research implicating this area in abstract semantic control (Badre 

& D'Esposito, 2009). While the picture semantic judgements used the same associations (as 

the verbal judgements), the items are more concrete, as there can be no ambiguity as to 

which meaning of a word is to be associated. Not only this, but pictures also afford faster 

access to semantic representations than words (Potter & Faulconer, 1975; Wagner, et al., 

1997). The verbal domain provides fewer constraints on semantic activation, making it a 

more abstract task, and BA 47 activity has previously been reported to be stronger for 

abstract/concrete judgements (in comparison to living/non-living) for both pictures and 

words (Wagner, et al., 1997), suggesting that this site may be modulated by ‘abstractness’ 
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(Badre & D'Esposito, 2009). Taken together, BA 47 may be recruited for efficient access to 

semantic material in both the picture and verbal modalities, and is more likely to be 

recruited when the nature of the association is less concrete (i.e., when the demands on 

semantic control are heightened).  

Additionally, the equivalent activation seen in BA 45 for the verbal and picture 

semantic material highlights this site’s amodal contribution to semantic control. This site 

has been implicated in a wide variety of semantic tasks including semantic priming 

(Wagner, et al., 2000), word generation (Peterson, et al., 1988; Thompson-Schill, et al., 

1997; Thompson-Schill, et al., 1999), selection (Thompson-Schill, et al., 1997), heightened 

response to novel over repeated semantic stimuli (Thompson-Schill, et al., 1999), resolving 

semantic ambiguity (Rodd, et al., 2005), and semantic knowledge violations (Hagoort, Hald, 

Bastiaansen, & Petersson, 2004). A role that often emerges for this site is that of selection 

amongst competing alternatives (Badre, et al., 2005; Nagel, Schumacher, Goebel, & 

D'Esposito, 2008; Thompson-Schill, et al., 1997), possibly because at the point at which 

selection is necessary, the relevant ‘abstract’ representation of a word has already been 

established (possibly via BA 47), along with any words associated with this representation, 

and thus selection of the relevant association becomes necessary. While there is still some 

debate over the exact contribution of BA 45 to semantic control, it is clear that its 

contribution is significant as well as amodal, as demonstrated by our results. Some studies 

have also suggested that BA 45 may contribute to domain general executive control 

(Duncan & Owen, 2000; Gold, et al., 2005; Thompson-Schill, 2003). However, Nagel et al. 

(2008) attempted to disambiguate semantic selection from response selection, and found 

that both BA 45 and 47 responded exclusively to semantic selection, while dorsolateral 

prefrontal cortex (BA 9/46) was recruited for response selection. Recent TMS  studies also 

support a specific role for BA 45 in semantic/linguistic control, where TMS to BA 45 

disrupted semantic judgement tasks, but not executively demanding non-semantic tasks 

(Whitney, Kirk, et al., 2011; Whitney, et al., 2012). This is corroborated by other findings 

showing that activation in LIFG is driven by semantic selection, not competition alone, in 

both implicit (Bilenko, Grindrod, Myers, & Blumstein, 2009; Grindrod, Bilenko, Myers, & 

Blumstein, 2008) and explicit tasks (Kan & Thompson-Schill, 2004a, 2004b; Thompson-

Schill, et al., 1997; Thompson-Schill, et al., 1999; Thompson-Schill et al., 2002; Thompson-

Schill et al., 1998; as cited in, Gindrod et al., 2008). While our results do not elucidate the 

role of this site beyond language control; they do show BA 45 recruitment for both 
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phonological (Chapter 3) and amodal semantic control, suggesting that this site plays a 

crucial role in amodal language control.  

Our results indicate that BA 44 shows greater recruitment for verbal semantic than 

picture semantic tasks. However, this site does play a role in amodal control as shown by 

the equivalent degree of additional recruitment for the difficult semantic association 

judgements across modality. While many studies have demonstrated domain general 

executive processing in BA 44, many are exclusive to the verbal domain (e.g., Gold, et al., 

2005; Snyder, et al., 2007). One possible explanation for the verbal modality preference is 

that BA 44 has stronger connections with STG via the Arcuate Fasciculus (Anwander, et al., 

2007; Petrides & Pandya, 2002), as such verbal material benefits from privileged access to 

BA 44 for resolving task difficulty, with a more incidental role in picture semantic difficulty 

due to connections to BA 45 (Petrides & Pandya 2002, as cited in Gough, et al., 2005; 

Hagoort, 2005; Ihara, et al., 2007).  

The current study reveals modality specific dissociations along LIFG for semantic 

control. While LIFG responds to both semantic modalities, there are subtle distinctions, 

with the most anterior and posterior regions showing additional recruitment for verbal 

material, while BA 45 recruitment is equivalent across modalities. In light of the previous 

chapter, this dissociation can be further clarified highlighting further distinctions with 

modality preference. BA 44 appears to be recruited for linguistic control, with a specific 

preference for phonological material despite also being activated by tasks requiring amodal 

semantic control. This site is functionally and anatomically strongly connected with pSTG 

(Anwander, et al., 2007; Xiang, et al., 2010), while also less strongly connected to areas 

such as pMTG (Friederici, 2009; Xiang, et al., 2010) thus facilitating its ‘secondary’ role in 

semantic control. Like BA 44, BA 45 has functional connections to pSTG, pMTG, and inferior 

temporal cortex (Xiang, et al., 2010) and has thus been implicated in a wide range of tasks 

as discussed above. Some anatomical connectivity studies have shown that BA 45 is more 

strongly connected to semantic areas (ATL, via the external/extreme capsule (EmC)) than 

phonological areas (e.g., pSTG; Anwander, et al., 2007); however we did not see a clear 

preference for semantic material, instead we saw a domain and modality invariant 

response with an increase for difficulty across tasks. BA 47 is strongly connected to the ATL 

(and inferior occipitofrontal and inferior longitudinal fascicle) via the EmC, with an 

additional pathway along the uncinate fascicle (UF) into the ATL (Anwander, et al., 2007). 

These connections are in line with a role for BA 47 in semantic control, however our results 



126 

 

indicate that while this site did help resolve difficulty across both modalities there was a 

preference for verbal semantic material.   

Right Inferior Frontal Gyrus (RIFG) 

 Investigation of right IFG yielded a preference for the picture modality across both 

BA 44 and BA 45, however BA 47 remained preferentially recruited for the verbal modality. 

This confirms previous research reporting right hemisphere activation for semantic tasks 

using picture stimuli. For example, Kelley et al. (1998) required participants to encode 

words, pictures (line drawings of objects) or faces for a later memory test, and found RIFG 

to be more activate for the two picture conditions than the one relying strictly on the 

verbal modality alone. Similarly, Adams and Janata (2002) report an amodal response in 

right BA 44/45 when participants were required to match visually presented verbal 

subordinate items to pictures or environmental sounds. RIFG has also been reported in a 

variety of executive control tasks including auditory working memory (e.g., pitch, Zatorre, 

Evans, & Meyer, 1994), visual-spatial working memory (Wagner, 1999), and inhibition 

across modalities (Aron, Robbins, & Poldrack, 2004; Chikazoe, Konishi, Asari, Jimura, & 

Miyashita, 2007; Hampshire, Chamberlain, Monti, Duncan, & Owen, 2010). While these 

studies indicate more domain general contribution of posterior RIFG (BA 44/45) to picture 

(and verbal) semantic control, R BA 47 appears to play a more specialised role in semantic 

control. Snyder, et al. (2011) report R BA 47 activation for tasks tapping selection and 

retrieval of verbal semantic material, as well as Bright, et al. (2004a) who report R BA 47 

activation for picture semantic material. This is in line with our findings, where R BA 47 

showed a clear preference for verbal material, but activation was still modulated by 

difficulty for picture semantic material. This adds more data to the suggestion that IFG may 

be hierarchically organised with more ‘abstract’/complex information activating the most 

anterior parts of IFG (Badre & D'Esposito, 2009), in our case, bilaterally. 

 Additionally, the relative contribution of left and right IFG is of considerable 

interest. We found a dissociation between left and right BA 44, with a clear leftward 

asymmetry for the verbal material, and a right sided preference for the picture modality. 

Meanwhile, left and right BA 45 did not differ greatly in response to modality. In contrast, 

BA 47 showed a clear preference for verbal material across hemispheres. Amunts et al. 

(1999) report a greater leftward asymmetry for left BA 44, but not 45, consistent with our 

results, where BA 44 shows greater asymmetry with respect to modality than more 
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anterior parts of IFG. Additionally, the left IFG shows a greater relative increase for 

resolving difficulty than RIFG (across all three subdivisions). One possible explanation for 

this finding is the relative contribution of left and right IFG to different aspects of 

competition/difficulty. For example, RIFG has been implicated in inhibition of responses 

across domains/modalities (Aron, et al., 2004; Chikazoe, et al., 2007; Hampshire, et al., 

2010). It may be the case that resolution of the difficult semantic associations in our tasks 

does not require strong inhibition, but rather strategic retrieval or selection. For example, 

our distractor items were not specifically designed to create increased demand for 

inhibition (i.e., no distractor items/information needed to be inhibited in order to allow for 

accurate target identification as in some tasks, where certain aspects of a semantic 

item/association must be attended to (e.g., feature selection; Whitney, et al., 2012)). 

Additionally, damage to RIFG has not been shown to have serious consequences for 

semantic control (Thompson & Jefferies, in prep), and thus suggests that RIFG is not a core 

part of the semantic network; but rather may act as a possible ‘back up’ for tasks requiring 

additional resources (e.g., Giora, et al., 2000; Jung-Beeman, 2005). For example, some 

studies implicate RIFG in metaphor understanding (e.g., Ahrens, et al., 2007; Eviatar & Just, 

2006; Winner & Gardner, 1977), and accessing unconventional meanings of words or 

pictures (Tylen, et al., 2009); however Lee and Dapretto (2006) suggest that this role is not 

exclusive to RIFG as they report bilateral activation of IFG in their tasks which use non-

literal words. As is seen in our study, LIFG is more heavily recruited than RIFG in resolving 

difficulty, but the dissociation between left and right IFG speaks to the widely distributed 

nature of semantic control, suggesting that both have a role to play.  

Posterior Middle Temporal Gyrus (pMTG) 

 Posterior middle temporal gyrus (pMTG) has been implicated as a key part of the 

semantic network across many disciplines. For example, patients with semantic aphasia 

(SA) with temporoparietal infarcts have impairments on tasks requiring semantic control in 

both the verbal and non-verbal domain, but have intact semantic representations (Corbett, 

Jefferies, Ehsan, et al., 2009; Corbett, Jefferies, & Lambon Ralph, 2009; Jefferies & Lambon 

Ralph, 2006). Additionally, neuroimaging studies have consistently shown pMTG activation 

for semantic retrieval/selection (Badre, et al., 2005; Bedny, et al., 2008; Copland et al., 

2003; Gold, et al., 2006; Noppeney, et al., 2004; Noppeney & Price, 2004; Raposo, Moss, 

Stamatakis, & Tyler, 2006; Ruff, Blumstein, Myers, & Hutchison, 2008; Thompson-Schill, et 

al., 1997; Wagner, et al., 2001) and semantic ambiguity resolution (Gennari, MacDonald, 
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Postle, & Seidenberg, 2007; Rodd, et al., 2005; Whitney, Jefferies, et al., 2011). Therefore, 

the results of the pMTG ROI analysis are both surprising and interesting. Firstly, the verbal 

modality preference which emerged is interesting as patients with damage to this area 

show multimodal deficits (Corbett, Jefferies, Ehsan, et al., 2009; Corbett, Jefferies, & 

Lambon Ralph, 2009), however it should be noted that their lesions are large and thus 

could incorporate areas, other than pMTG, involved in picture semantic cognition. 

Secondly, the finding that pMTG was modulated by picture semantic difficulty, but not 

verbal difficulty, is a surprising finding; it does, however, show that while the verbal 

modality elicited significant activity overall with no modulation for difficulty, pMTG was 

modulated by demands on picture semantic control as shown by the increase in activation 

for more challenging picture semantic associations. What might account for the lack of 

increased activity for the difficult verbal semantic associations when many studies report 

pMTG involvement in resolving competition? For example, TMS studies have shown pMTG 

recruitment for semantic associations in both the verbal and non-verbal modality 

(Hoffman, Pobric, Drakesmith, & Lambon Ralph, 2011), and have also shown disruption of 

the difficult, but not easy, verbal semantic associations following TMS to pMTG (Whitney, 

Kirk, et al., 2011). Perhaps most strikingly, pMTG was the second biggest cluster reported in 

a recent meta-analysis, comparing high and low semantic control (high > low) (Noonan, et 

al., submitted), thereby providing clear support for this site in semantic control. Noonan et 

al. (submitted) suggest that pMTG may have a specific role in capturing the context for 

which a given meaning of a word must be extracted. In the current study, using associative 

judgements, the demands on context may be constant across verbal difficulty 

manipulations, where the meaning of a word is less readily apparent than for picture 

semantic associations where there is less ambiguity as to the meaning of the word (as it is 

revealed by the picture). Turken and Dronkers (2011) report that five of the six major 

language pathways connect with MTG, connecting it with frontal (more specifically BA 47 

along the IOFF), parietal (along the AF) and temporal areas (via the MdLF), as well as the 

right hemisphere (via the tapetum). This strong interconnectivity strongly supports the idea 

that pMTG plays a crucial role in the semantic control network, namely as the so-called 

“neural epicentre” or “convergence zone” for contextualizing semantic material.  

Angular Gyrus/Intraparietal Sulcus 

 The comparison of picture and verbal semantic material in angular gyrus (AG), 

revealed a very similar response profile across both dorsal AG/intraparietal sulcus (IPS) and 
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mid AG regions for both modalities. Neither site showed a preference for either modality 

and responded to the difficulty manipulation to an equal degree across modalities. This is 

in line with Binder, et al.’s (2009) suggestion that AG plays a role in high level amodal 

integration, as it is well connected with various association areas, while receiving little/no 

direct input from sensory cortices. Despite its equal contribution to the two semantic 

modalities, AG is unlikely to serve the semantic domain exclusively. For example, Nagel, et 

al. (2008) found LIFG (BA 45/47) to be specifically engaged by semantic selection, while AG 

(BA 7/40) was engaged by response selection (e.g., domain general selection). This is also 

corroborated by the findings from the previous chapter, where AG was engaged by both 

phonological and semantic tasks. More specifically, there is research to suggest a graded 

distinction along AG, with dAG/IPS involved in a variety of tasks such as perceptual, 

semantic, and phonological decisions (Chapter 3; Noonan, et al., submitted; Seghier, et al., 

2004; Whitney, et al., 2012); and mid AG implicated more specifically in semantic tasks 

(Hoenig & Scheef, 2009; Noonan, et al., submitted; Seghier, et al., 2010), although our 

results from Chapter 3 indicate a more domain general interpretation for this site. 

Furthermore, mid AG may be the point at which the default and semantic networks 

overlap, as it shows deactivations for meaningless stimuli, but activation for demanding 

semantic tasks, word reading and non-stimulus driven semantic associations (Noonan, et 

al., submitted; Seghier, et al., 2004), as is the case in our study where a significant increase 

is seen for difficult semantic association judgements across modalities.  

 Furthermore, when combined with the results of Chapter 3, our data are in line 

with a role of dAG/IPS in feature selection (Cristescu, et al., 2006; Donner, et al., 2002; 

Whitney, et al., 2012; Woolgar, et al., 2011), as shown by the significantly greater 

contribution of this site to the phonological hard task (which required participants to 

attend to specific phonemes, as well as matching to other incomplete words), while 

perhaps it’s role in amodal semantic control is incidental due to weak functional 

connections with BA 47 (Xiang, et al., 2010). Mid AG showed equivalent activation for both 

verbal domains in Chapter 3 and across both semantic modalities here. Therefore, this site 

may play a role in amodal integration across domains, as previously suggested by Binder et 

al. (2009). 
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Conclusions 

This study sought to assess the contributions of the semantic control network to 

verbal and picture semantic associative judgements. Our results are compatible with the 

idea that semantic control is amodal and found consistent responses to both modalities 

across the network. However, small differences did emerge with regard to specialisation. 

Posterior and anterior LIFG may be recruited for verbal more than picture language tasks, 

while continuing to resolve difficulty across modalities. Meanwhile BA 45, which may act as 

a ‘convergence zone’ (Hagoort, 2005; Ihara, et al., 2007) was amodal and domain-free 

(Chapter 3) in nature. Additionally, a functional dissociation was found between left BA 44 

and right BA 44, with left BA 44 predominance for verbal material and right for picture 

material. In contrast, BA 47 showed a preference for more abstract verbal semantic 

judgements bilaterally. Additionally, difficulty modulated activity in LIFG to a greater 

degree than RIFG; these findings are in line with the suggestion that RIFG acts as a ‘back up’ 

system for unusual/less salient semantic associations. The role of pMTG is less clear, but 

this site may play a role in contextualizing information, a requirement not always 

necessitated by picture semantic tasks. Lastly, AG also shows graded distinctions across 

domains (Chapter 3), but was amodal in its contributions to our semantic control tasks. 
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Chapter 5: A Transcranial Magnetic Stimulation Investigation 

of Phonological and Semantic Control in Left Inferior 

Frontal Gyrus and Posterior Middle Temporal Gyrus 

Introduction 

 In Chapters 3 and 4 we investigated the contribution of various parts of the 

language network to domain (phonology vs. semantics), modality (picture vs. verbal) and 

control (ease with which the relevant target can be identified). Here, we focus the question 

on three specific areas: posterior left inferior frontal gyrus (LIFG; BA 44), anterior LIFG (BA 

47) and posterior middle temporal gyrus (pMTG) in an attempt to tease apart and confirm 

functional specialisation using a technique that allows for focal, transient, ‘virtual lesions’: 

transcranial magnetic stimulation (TMS).   

TMS is a useful tool for investigating language, as it allows for focal stimulation of 

brain areas purportedly involved in a certain cognitive function. This can be particularly 

helpful because language tasks can create large swathes of activation across the cortex, 

and as such TMS can go some way in helping to indicate which areas are necessary for a 

given function; particularly when the role of an area is contentious. For example, a majority 

of studies report overlap of phonological and semantic material in LIFG across a variety of 

tasks in fMRI, with some degree of posterior to anterior functional specialisation by domain 

(e.g., Amunts et al., 2004; Hagoort, 2005; Heim, Eickhoff, & Amunts, 2008; Noonan, et al., 

submitted; Poldrack, et al., 1999; Roskies, Fiez, Balota, Raichle, & Petersen, 2001; Vigneau, 

et al., 2006). Our results from Chapter 3 also support this assertion, as we found LIFG to be 

activated across phonological and semantic tasks, but with some degree of functional 

specialisation for phonology in posterior and semantics in anterior parts of LIFG. However, 

the extent of overlap can sometimes be so great that no differences are found in LIFG for 

phonological and semantic tasks, with the functional specialisation revealing itself via 

differential coactivation with posterior brain areas specialised by domain. For example, 

Gold and Buckner (2002) report coactivation of LIFG with pMTG for semantic tasks and LIFG 

with BA 6 and parietal cortex (40) for phonological tasks. Therefore, TMS can be a useful 

technique for investigating fine grained functional distinctions as it allows focal stimulation 

of areas purportedly involved in language control. Devlin, Matthews, and Rushworth (2003) 

used a combined fMRI and TMS approach, and stimulated BA 47 to disrupt semantic, but 

not phonological decisions, confirming the functional dissociation reported in their fMRI 
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study. Similarly, Nixon, Lazarova, Hodinott-Hill, Gough, and Passingham (2004) stimulated 

posterior and anterior LIFG and disrupted phonological, but not a visual control task for the 

posterior site only (similar findings: Aziz-Zadeh, Cattaneo, Rochat, & Rizzolatti, 2005). One 

study directly contrasted stimulation of anterior and posterior LIFG with tasks in both 

domains (Gough, et al., 2005), and disrupted homophone judgements following stimulation 

of BA 44, and semantic synonym judgement tasks following BA 47 stimulation, 

demonstrating a functional dissociation within the same experimental paradigm.  

 While the functional dissociation in LIFG for phonological and semantic material 

has received some attention in the TMS literature, no studies have simultaneously 

investigated the effect of LIFG stimulation on control/difficulty across domains and 

modalities. There are two TMS literatures, one on domain across LIFG (e.g., Devlin, et al., 

2003; Gough, et al., 2005; Nixon, et al., 2004) and one on control in BA 45 (e.g., Whitney, et 

al., submitted; Whitney, Kirk, et al., 2011; Whitney, et al., 2012), therefore this study was 

designed to integrate these investigations. TMS to LIFG (BA 45) has been shown to produce 

disruption of demanding verbal semantic association judgments, but not executively 

demanding non-semantic judgements matched in task format (Whitney, Kirk, et al., 2011; 

Whitney, et al., 2012). TMS can also be a useful tool when combined with data from the 

neuropsychological literature. For example, one study used TMS on healthy individuals to 

confirm their finding that patients with semantic aphasia who had damage encompassing 

LIFG, were impaired on abstract, but not concrete semantic judgements. These results are 

particularly powerful as they combine data from patients with brain lesions encompassing 

LIFG and data from the ‘virtual lesion’ method in healthy participants (Hoffman, Jefferies, & 

Lambon Ralph, 2010). One study used picture stimuli and slowed naming of simple line 

drawings when a TMS pulse to LIFG was applied 300 ms after picture presentation (but not 

at 150, 225, 400, 525 ms), but with no requirement of semantic control to complete the 

task (Schuhmann, Schiller, Goebel, & Sack, 2009). Taken together with Whitney et al.’s 

(Whitney, et al., submitted; Whitney, Kirk, et al., 2011; Whitney, et al., 2012) TMS data, this 

suggests that stimulation of LIFG may cause disruption of both verbal and picture tasks that 

place demands on semantic control.  These studies highlight TMS as a useful tool for 

confirming/disambiguating our fMRI data (Chapter 3 & 4) where BA 44 and 47 showed 

preferential activation for the verbal modality (with subtle specialisation by domain – 

phonological/semantic), while still being modulated by difficulty across modality and 

domain.  
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 Our ROI of pMTG in Chapter 3 and 4 contradicted our initial predictions about this 

site’s contribution to language: we did not find an effect for verbal semantic control, nor 

equivalent contribution to the semantic and phonological domains. Instead there was an 

effect of both domain and modality, though pMTG did show a significant response to both 

verbal semantic and phonological tasks, and a significant modulation of activity for picture 

semantic control. This site has, however, been implicated in semantic control across a 

number of disciplines (neuropsychology, fMRI, TMS; Corbett, et al., 2011; Jefferies & 

Lambon Ralph, 2006; Noonan, et al., 2010; Noonan, et al., submitted; Whitney, et al., 

submitted; Whitney, Jefferies, et al., 2011; Whitney, Kirk, et al., 2011; Whitney, et al., 

2012), as such our tasks may not have captured the specific nature of pMTG’s role in 

semantic control (e.g., context integration; Noonan, et al., submitted). Nonetheless, TMS is 

a useful technique for clarifying the functional role of pMTG in language processing. TMS 

has previously been used to confirm the role of pMTG in verbal semantic control and 

revealed equivalent TMS disruption of semantic association judgements following 

stimulation of pMTG and LIFG (Whitney, Kirk, et al., 2011; Whitney, et al., 2012). There is a 

paucity of TMS studies confirming the role of pMTG in amodal semantic control, but one 

TMS study did slow both word and picture associative judgements following TMS to pMTG, 

but without the explicit manipulation of control/difficulty (Hoffman, et al., 2011), providing 

evidence for pMTG recruitment in both verbal and non-verbal semantic cognition. 

Therefore, stimulation of pMTG was of particular interest using our tasks, given our fMRI 

data did not strongly confirm the role of pMTG in semantic control across modalities, while 

these previous TMS studies have confirmed the role of this site in (amodal) semantic 

control.   

 The current study was designed to complement the fMRI findings in Chapters 3 and 

4, therefore the same task manipulations were used for phonological, verbal and picture 

semantic material. Stimulation of BA 44 was expected to disrupt difficult phonological 

judgements, while TMS to BA 47 was expected to slow verbal semantic judgements (in line 

with other studies showing this dissociation; e.g., Devlin, et al., 2003; Gough, et al., 2005). 

Our fMRI results indicate that stimulation of LIFG may cause disruption of all demanding 

tasks, as we saw significant modulation of all three LIFG sites with difficulty. However, we 

also saw a verbal modality preference across BA 44 and BA 47 (Chapter 4), therefore 

stimulation of these sites may result specifically in verbal semantic disruption. Based on the 

literature which indicates a domain specific contribution of pMTG to semantic control 
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(Noonan, et al., submitted; Whitney, Jefferies, et al., 2011; Whitney, et al., 2012; Zempleni, 

et al., 2007), we predicted slowing of both verbal and picture semantic, but not 

phonological, judgments following stimulation of this site; however, our predictions were 

somewhat exploratory due to our unexpected main effect of domain (phonological > 

semantic verbal) and modality (verbal > picture) in Chapters 3 and 4. We also made use of a 

control site (as in Chapter 2), occipital pole, to confirm that any effects seen were site 

specific, and not due to general non-specific effects of TMS stimulation; as such no TMS 

effects were predicted at this site.  

Method 

Design  

  A within subjects 2 x 3 x 2 x 4 factorial design was used, with TMS (no stimulation 

vs. stimulation), task (phonological, verbal semantic, picture semantic), difficulty (hard vs. 

easy) and site (BA 44, BA 47, pMTG, OP) as factors. This study used the rTMS virtual lesion 

method, delivering a train of rTMS pulses offline; participants then performed the task 

immediately after stimulation, allowing us to rule out the possibility that the loud clicks 

associated with each pulse, jaw contractions, or eye blinks following peripheral nerve 

stimulation disrupted performance on the behavioural tasks. The order in which 

participants performed the task was counterbalanced, such that half of the participants 

performed the baseline (without TMS) behavioural task before TMS stimulation and the 

other half performed the baseline 30 mins or more post TMS stimulation, by which time 

the effects are believed to have washed out (Pobric, et al., 2007). 

The stimuli and tasks used in this experiment are the same as in Chapter 3 

(Method, p. 54) and 4 (Method, p. 98). Table 5-1 provides an example of each task. 
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Condition Probe Target Distractor 1 Distractor 2 

Phonological 

Easy 
“duck” truck cigar game 

Phonological 

Hard 
“duck” tru_ _gar ga_ 

Picture  

Semantic 

Easy     

Verbal  

Semantic 

Easy 

duck lake cigar door 

Picture 

Semantic 

Hard  
 

  

Verbal 

Semantic 

Hard 

duck gun cigar door 

Table 5-1. Examples of phonological, verbal and picture semantic trial manipulations. 

Participants  

  Twenty-two participants were examined in this study (16 males; mean age = 23, SD 

= 2.3). All participants were right-handed, native English speakers recruited from the 

University of York student population and the general York population, and were 

compensated £40 for their time (£10 per TMS session). All participants were screened for 

TMS and MRI safety and were thus free from any history of neurological disease or mental 

illness and were not taking any prohibited medication.  

Procedure 

   A PC running E-Prime software was used to present the tasks and record accuracy 

and RT. Responses were given with the right hand, using the first three fingers, 

corresponding to the positions of the three response options on the screen. The tasks 

started with a fixation screen for 400ms followed by the presentation of the auditory or 

picture stimulus along with the target and two distractor items, these remained on the 

screen until the participant made a response, triggering the next trial. 
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Participants performed practice trials before the experimental conditions began, in 

order to re-familiarise participants with the tasks. There were 30 experimental trials per 

task type and difficulty manipulation: phonological (hard/easy), semantic verbal 

(hard/easy), semantic picture (hard/easy); with participants performing a total of 180 trials 

per TMS condition (baseline, post-TMS). No trials were repeated within a session (the same 

trials were used for the semantic verbal and semantic picture tasks, but they never 

occurred in the same testing session: for example “bridge” – water might be presented as a 

verbal trial in week one, and a picture trial in week two). The order in which the trials 

occurred was randomised. Each task block was preceded by a screen which informed 

participants of the new task type, and participants pressed the space bar to continue. The 

majority of participants performed two baselines either before TMS or one before TMS and 

one 30 minutes post TMS stimulation – only one baseline was used for data analysis and 

we attempted to counterbalance this across trials.  

Selection of TMS Site 

Structural T1-weighted MRI scans were used to identify sites for stimulation in each 

participant’s brain. For sixteen of the participants, the stimulation sites were identified 

from each participant’s individual peak activations within the test-sites of interest (using 

Brainsight 2): we used the functional peak for the phonological task that fell within 

anatomically constrained area BA 44, and the semantic verbal tasks within BA 47 and 

pMTG. The average coordinate across participants for each site was as follows: BA 44: -52, -

42, 2; BA 47: -46, 25, -2; pMTG: -45, 9, 13; and the occipital pole was measured as 20mm 

superior and 10 mm left of the inion, as in previous TMS studies (e.g., Ishibashi, et al., 

2011). For the remaining six participants, the group average coordinate from the initial 

sixteen participants was used to identify the stimulation site, since we did not acquire 

functional MRI data for these six participants. 

Brainsight 2 (Rogue Research, Montreal Canada, www.rogue-research.com/) was 

used to co-register participant brains and to identify stimulation sites prior to rTMS 

administration. Four landmarks were used for co-registering the participants head to their 

brain image (tip of the nose, bridge of the nose, left/right tragus).  

Stimulation Parameters 

  Before TMS testing began, individual motor threshold was determined in each 
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testing session. This was determined by the lowest stimulation intensity required to elicit 

contraction of the first dorsal interosseous (FDI) muscle in the contralateral hand. Motor 

thresholds ranged between 40% and 65%, with an average of 58% of maximum stimulator 

output. A 50 mm figure of eight coil, attached to a MagStim Rapid2 stimulator was used for 

repetitive magnetic pulses. Repetitive trains of TMS were delivered at 1 Hz for 15 mins; 

participants were stimulated at 120% of their motor threshold.  

Data Analysis  

  We used a similar approach to data analysis as in Chapters 3 and 4, where 

participant reaction time was used as a measure of difficulty. Here, we used baseline data 

across all participants to create an average RT for each item, and used this to create sets of 

fast and slow semantic trials. For the semantic tasks, all 60 trials were collapsed and the 

fastest 25 items were assigned to the easy condition, the slowest 25 to the hard condition 

and the middle 10 items were discarded. For the phonological task, the fastest 25 rhyme 

trials (of 30) were used for the easy phonological condition, and the fastest 25 (of 30) 

phonological segment trials for the hard phonological task. We used the fastest trials for 

the phonological segment condition because this task was particularly challenging, 

therefore the average RT for trials for this task was higher than that of the other hard tasks; 

therefore in an attempt to match RT we selected the fastest trials. This new assignment of 

trials/items to hard and easy conditions was then applied to all of the baseline and post 

TMS data for each participant.      

TMS disruption was expected to manifest itself in delayed RT, rather than a decline 

in accuracy (Walsh & Cowey, 2000), therefore, our primary dependent variable was RT for 

correct responses. Accuracy data can be found in Appendix 5.1: mean accuracy was lower 

for the hard versions of all three tasks; TMS effects emerged at site BA 44 for the picture 

and verbal hard tasks, and BA 47 for the phonological easy task. A composite score analysis 

that accounts for RT and accuracy can be found in Appendix 5.3. The data was screened for 

any RTs lying outside of 3 standard deviations of the participants mean for each task 

(phonological, semantic verbal, semantic picture), difficulty (hard/easy) and TMS condition 

(TMS/baseline), for that testing session.  

Within subjects ANOVAs were used to analyze the effect of TMS on each condition, 

for each individual site (e.g., to establish an interaction of TMS by task by difficulty in BA 

44). Additionally, effects emerging from ANOVAs were explored using paired sample t-

tests. We did not correct our t-tests for multiple comparisons as the TMS effects were 
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relatively weak and, in most cases, would not have survived the correction. As such, our 

results can only be interpreted tentatively, but are nevertheless interesting in light of the 

fMRI findings in Chapters 3 and 4. 

Results 

Posterior LIFG (BA 44) 

Statistical tests for this site were used to test the functional specialisation of BA 44 

for phonological material, and for verbal as opposed to picture semantic tasks.  

Phonological and Verbal Semantic Comparisons  

There was no significant effect of TMS (F(1, 21) < 1), and no interactions between 

TMS and task (F(1, 21) < 1), or TMS and difficulty (F(1, 21) = 2.405, p = .136). There was, 

however, a significant three-way interaction of TMS by task by difficulty (F(1, 21) = 6.558, p 

= .018). Paired-tests revealed significant disruption of the easy verbal semantic condition (p 

= .026), but no other significant TMS effects (Table 5-2). The significant three-way 

interaction therefore appears to reflect an absence of TMS effects for the phonological 

task, in the context of facilitation for demanding semantic decisions (Figure 5-1).  

 

Figure 5-1. Baseline and TMS RTs for phonological and semantic tasks following TMS to BA 

44. Error bars indicate standard error of the mean.  
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Verbal and Picture Semantic Comparisons 

There was a marginal effect of TMS (F(1, 21) = 3.002, p = .098), and a significant 

interaction of TMS and difficulty (F(1, 21) = 15.375, p = .001), but no interaction of TMS and 

task (F(1, 21) < 1), and no three-way interaction of TMS by task by difficulty (F(1, 21) < 1). 

Paired t-tests for the picture semantic tasks revealed significant facilitation for the hard 

picture condition (p = .021; Table 5-2), that resembled the facilitation seen for the hard 

verbal semantic condition. The significant TMS by difficulty interaction therefore reflected 

the increase in RT for the easy versions of the tasks and the decrease in RT for the hard 

versions of the tasks following TMS (Figure 5-2).  

 

Figure 5-2. Baseline and TMS RTs for verbal and picture semantic tasks following TMS to BA 

44. Error bars indicate standard error of the mean. 
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21) = 13.574, p = .001), but no three-way interaction of TMS by task by difficulty (F(1, 21) < 

1). Paired-tests revealed a significant inhibitory effect of TMS for the easy verbal semantic 

association judgements (p = .016), and significant facilitation for the phonological hard task 

(p = .048), but no other significant TMS effects (Table 5-2). The significant TMS by difficulty 

interaction is likely to be the result of the facilitation seen for both hard tasks following 

TMS. The significant slowing of the easy verbal semantic judgements shows some overlap 

with our fMRI results where BA 47 was preferentially involved in verbal semantic 

judgements (Figure 5-3).  

 

Figure 5-3. Baseline and TMS RTs for phonological and semantic tasks following TMS to BA 

47. Error bars indicate standard error of the mean. 
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6.356, p = .020). The three-way interaction of TMS by task by difficulty was not significant 

(F(1, 21) < 1). Paired-tests revealed no significant TMS effects for the picture tasks (Table 

5-2). The significant TMS by difficulty interaction is therefore likely to be a result of the 

facilitation seen for both hard tasks following TMS (Figure 5-4).  
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Figure 5-4. Baseline and TMS RTs for verbal and picture semantic tasks following TMS to BA 

47. Error bars indicate standard error of the mean. 

Posterior Middle Temporal Gyrus (pMTG) 

Statistical tests for this site were used to explore the role of pMTG in both verbal 

and non-verbal semantic control.  

Phonological and Verbal Semantic Comparisons  

There was no significant effect of TMS (F(1, 21) < 1), and there were no significant 

interactions involving TMS (TMS by task, TMS by difficulty, TMS by task by difficulty: F(1, 

21) < 2.6, p > .12). As there were no significant effects, no further statistical tests were 

performed (Figure 5-5).  
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Figure 5-5. Baseline and TMS RTs for phonological and semantic tasks following TMS to 

pMTG. Error bars indicate standard error of the mean. 

Verbal and Picture Semantic Comparisons 

There was no effect of TMS (F(1, 21) < 1), and no significant interaction of TMS by 

task (F(1, 21) < 1), but there was a significant interaction of TMS and difficulty (F(1, 21) = 

11.659, p = .003). The three-way interaction of TMS by task by difficulty was not significant 

(F(1, 21) < 1). Paired-tests revealed significant slowing of the easy picture condition (p < 

.001), and the easy verbal judgements (p = .053), as well as significant facilitation for the 

hard picture task (p = .021; Table 5-2; Figure 5-6). The significant TMS by difficulty 

interaction is likely to be a result of the facilitation seen for both hard tasks, while there 

was slowing for both easy semantic tasks, following TMS to this site. The finding that the 

semantic picture associations were slowed following TMS to pMTG is consistent with the 

significant increase in pMTG activity for hard relative to easy picture judgements (despite 

this task not producing significant activation over rest).  
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Figure 5-6. Baseline and TMS RTs for verbal and picture semantic tasks following TMS to 

pMTG. Error bars indicate standard error of the mean. 

Occipital Pole (OP) 

OP was used as a control site; therefore statistical tests were used to capture any 

non-specific effects of TMS (typically behavioural facilitation; Lambon Ralph, et al., 2009; 

Whitney, Kirk, et al., 2011).  

Phonological and Verbal Semantic Comparisons  

There was no significant effect of TMS (F(1, 21) < 1), and no interactions between 

TMS and task (F(1, 21) = 1.119, p = .302), and TMS and difficulty (F(1, 21) < 1), but there 

was a three-way interaction of TMS by task by difficulty (F(1, 21) = 7.135, p = .014). This 
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TMS effects (Table 5-2, Figure 5-7). The interaction may have resulted from the facilitation 
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750 

1250 

1750 

2250 

2750 

Easy Hard Easy Hard 

Semantic Verbal Semantic Picture 

R
T 

(m
s)

 

pMTG 

Baseline 

TMS * 
* 



144 

 

 

Figure 5-7. Baseline and TMS RTs for phonological and semantic tasks following TMS to OP. 

Error bars indicate standard error of the mean. 

Verbal and Picture Semantic Comparisons  

There was no significant effect of TMS (F(1, 21) = 1.831, p = .190), and no significant 

TMS interactions (TMS by task, TMS by difficulty, TMS by task by difficulty: F(1, 21) < 1). As 

there were no significant effects, no further statistical tests were performed (Figure 5-8). 

 

Figure 5-8. Baseline and TMS RTs for verbal and picture semantic tasks following TMS to 

OP. Error bars indicate standard error of the mean. 
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Table 5-2. T-tests comparing RTs for baseline and post TMS performance at each site 

  Phonological Verbal Picture 

 

Easy Hard Easy Hard Easy Hard 

df 21 21 21 21 21 21 

BA 44 

      t 0.13 -0.34 -2.07 1.99 -1.5 2.49 

p 0.9 0.741 0.026*a 0.059† 0.075a 0.021† 

BA 47 

      t -1.54 2.1 -2.32 0.87 -1.11 1.33 

p 0.138 0.048† 0.016*a 0.395 0.28 0.2 

pMTG 

      t 0.76 .763 -1.69 1.06 -4.55 2.49 

p 0.456 .454 0.053*a 0.3 .000*** .021† 

OP 

      t 1.03 -0.5 -1.52 1.221 -1.19 -.306 

p 0.316 0.62 0.144 0.236 0.247 .762 

Table 5-2. Paired sample t-tests. Notes: pMTG = posterior middle temporal gyrus, OP = 

Occipital Pole; *p < .05, ***p < .001, all comparisons are two-tailed; * denotes 

significant disruption; †denotes significant facilitation; aone-tailed t-test 

 

Summary of Findings 

The hard versions of each task did not show significant slowing following TMS for 

any of the sites. Participant RTs may have been at ceiling performance and therefore 

insensitive to the disruptive effects of TMS. Thus it may be the case that stimulation 

produces either no effect at all, or has an alerting effect on performance (for a graphical 

representation, see Appendix 5.2). Therefore, the TMS effects for the ‘easy’ versions of 

each task have been plotted in order to help summarise the TMS disruption for each task at 

each site. We found that TMS significantly disrupted verbal semantic judgements following 

stimulation of BA 44 and BA 47, with perhaps some indication that picture semantic 

judgments were slowed following TMS to BA 44 (non-significant) and that stimulation of 

pMTG resulted in significant slowing of picture and verbal semantic association judgments, 

but not phonological tasks. 
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Figure 5-9. TMS effects. Difference in RT between TMS and baseline performance (TMS – 

no TMS) for each site. Positive values indicate a decline in performance following TMS. 

Error bars indicate standard error of the mean, *indicates a significant effect of TMS 

relative to baseline, p < .05.  

 

Figure 5-10. TMS effects. Difference in RT between TMS and baseline performance (TMS – 

no TMS) for each site. Positive values indicate a decline in performance following TMS. 

Error bars indicate standard error of the mean, *indicates a significant effect of TMS 

relative to baseline, p < .05. 

An additional analysis using composite scores can be found in Appendix 5.3. 
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Discussion 

 This study sought to confirm the functional dissociations within the language 

control network seen in both the literature and our own data (Chapters 3 and 4) by using 

TMS to disrupt performance in three test sites, BA 44, BA 47 and pMTG on tasks spanning 

domain and modality. We attempted to manipulate difficulty, but this manipulation proved 

insensitive to TMS: baseline performance for our ‘difficult’ tasks was so slow that if any 

TMS effects were seen, they resulted in generic facilitation. Thus in order to answer 

questions as to 1) specialisation by domain and 2) modality, the difficulty manipulation was 

discarded, and we focused our interpretation on the ‘easy’ version of each task only. Given 

the long RTs for the easy condition, these tasks may be better classed as challenging 

phonological rhyme, verbal and picture semantic decisions. In comparison to many other 

studies, our ‘easy’ RTs are long: For example, Gough et al. (2005) report RTs under 1,000 

ms, even after TMS, across both their phonological and semantic tasks (as did: Devlin, et 

al., 2003; Nixon, et al., 2004), whereas our RTs exceed 1,200 ms on the ‘easy’ trials even 

without TMS. Using the ‘easy’ only trials we found: 1) disruption of verbal semantic 

judgements following stimulation of BA 44 that exceeded the effects for the phonological 

task; 2) significant slowing of verbal semantic judgements following TMS to BA 47 that 

exceeded the effects for the picture task; 3) TMS to pMTG resulted in slowing of semantic, 

not phonological, judgements, including a highly significant effect for picture semantic 

judgements, and slowing of the verbal semantic judgments; and 4) no effects of stimulation 

for occipital pole (OP).  

 The disruption of the verbal semantic judgements following stimulation of BA 44 

partially confirms our fMRI findings (Chapter 4), where a preferential response to verbal 

semantic material was seen. Additionally, BA 44 showed significant activity for the picture 

semantic judgments which was also modulated by difficulty, despite being preferentially 

activated by verbal material overall (Chapter 4); similarly, stimulation of BA 44 showed 

slight (marginally significant) slowing of picture semantic judgments in our TMS study. 

However, the greater fMRI response in BA 44 to the phonological tasks (Chapter 3) was not 

confirmed by our TMS results, possibly because the phonological tasks were insensitive to 

TMS (as we did not see disruption for either phonological task following stimulation of any 

of our sites). However, significant disruption of phonological tasks following TMS to BA 44 

has previously been shown (with less than half our N: Gough, et al., 2005; Nixon, et al., 

2004): both of our phonological tasks had longer RTs than those in these studies which may 
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have reduced the capacity for TMS to lengthen RTs. The verbal semantic disruption is in line 

with previous fMRI studies reporting BA 44 activation in tasks requiring selection from 

amongst competing semantic alternatives (Badre, et al., 2005; Thompson-Schill, et al., 

1997). Furthermore, many studies shown posterior LIFG activation for tasks requiring both 

phonological and semantic control (Gabrieli, et al., 1998; Gold, et al., 2005; Noonan, et al., 

submitted; Snyder, et al., 2007). Our TMS data therefore add to the literature suggesting 

that BA 44 may contribute to linguistic (and possibly non-linguistic) control across 

modalities/tasks.  

 TMS to anterior BA 47 disrupted verbal, but not picture semantic judgements, 

which is in line with our findings in Chapter 4, where BA 47 showed preferential activation 

for verbal semantic material. Our results are also in accordance with previous TMS studies 

reporting disruption of semantic tasks in anterior LIFG (Devlin, et al., 2003; Gough, et al., 

2005; Hoffman, et al., 2010; Whitney, Kirk, et al., 2011; Whitney, et al., 2012), while adding 

that stimulation of BA 47 does not affect picture semantic judgements, which is contrary to 

some fMRI studies reporting equivalent activation of verbal and picture semantic material 

(Wagner, et al., 1997; Wright, et al., 2011). This provides more evidence to suggest that 

aIFG is reserved for more abstract semantic judgments, whereby LIFG shows a gradient of 

specificity with tasks requiring use of abstract information necessitating recruitment of BA 

47 (Badre & D'Esposito, 2009). Additionally, the lack of TMS effect for the phonological task 

agrees with both fMRI (Roskies, et al., 2001) and TMS studies (Devlin, et al., 2003; Gough, 

et al., 2005) reporting anterior IFG to be specific to the semantic domain. The combined 

fMRI and TMS study conducted by Devlin and colleagues (2003) speaks to our data: they 

found activation throughout LIFG for phonological and semantic tasks, and used TMS to 

show that despite the activation of anterior IFG areas for phonological tasks, stimulation of 

this site only disrupted the semantic task (with no disruption of their phonological task). 

This is similar to our data, as we found BA 47 to be active in fMRI for both phonological and 

semantic decisions (although upon further inspection, our ROI also highlighted a degree of 

domain specificity from dorsal to ventral BA 47) (Barde & Thompson-Schill, 2002; Gold & 

Buckner, 2002), but there was no effect of TMS at BA 47 for the phonological tasks. It is 

helpful to discuss our findings in light of other studies, as we did not manage to disrupt the 

phonological task at any of our stimulation sites, therefore the lack of effect cannot be 

taken as strong evidence against a role for BA 47 in phonology. However, other studies 
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have confirmed this functional dissociation using TMS, and thus are helpful in drawing 

conclusions with regard to our own data.  

 Interestingly, while our picture semantic tasks did not elicit significant activation in 

pMTG, stimulation of pMTG was the only site which showed disruption of the picture 

semantic task. This finding is in line with another TMS study which disrupted picture 

semantic judgements following TMS to pMTG, while also disrupting verbal semantic tasks 

(Hoffman, et al., 2011). Previous TMS studies have shown that TMS to this site does 

significantly affect RTs for verbal semantic tasks (Hoffman, et al., 2011; Whitney, Kirk, et al., 

2011; Whitney, et al., 2012); in fact stimulation of pMTG has disrupted numerous semantic 

task types involving both associative and feature selection judgements (Whitney, et al., 

2012). Our TMS results showing significant slowing for picture semantic judgements have 

parallels with the neuropsychological literature where patients with semantic aphasia, who 

have lesions to temporoparietal regions, have been shown to have deficits in amodal 

semantic control (Corbett, Jefferies, Ehsan, et al., 2009; Corbett, Jefferies, & Lambon Ralph, 

2009), and this demonstrates an advantage of combining techniques (neuropsychology, 

fMRI, TMS). We also found no disruption of the phonological task following TMS to pMTG, 

in line with other studies suggesting a specific role for this site in semantic control (Noonan, 

et al., submitted), but our TMS results cannot confirm the involvement (or not) of this site 

in phonological tasks, as there is no evidence our phonological tasks were sensitive to the 

effects of TMS. 

 While our results show some similarities to both our fMRI data (Chapters 3 

& 4) and previous findings in the literature, they also highlight some of the difficulties 

associated with using TMS. For example, while we used functional peaks from the fMRI 

data for sixteen of our twenty-two participants, the selection of TMS site was anatomically 

constrained, and as such we may not have been stimulating a site of maximal functional 

relevance. Previous TMS studies have stimulated BA 45 for their investigations of semantic 

control (Whitney, et al., submitted; Whitney, Kirk, et al., 2011; Whitney, et al., 2012), 

however our TMS sites were restricted to peaks falling within BA 44 and BA 47, and 

therefore may have reduced the likelihood of producing large TMS effects. Moreover, the 

facilitation seen for the majority of the hard conditions (Appendix 5.2, Figure 1 & 2) 

demonstrates the importance of creating tasks that are sensitive to the effects of TMS. 

Other studies have also reported general arousal following TMS to both control tasks and 

sites (Hoffman, et al., 2011; Lambon Ralph, et al., 2009; Pobric, Jefferies, & Ralph, 2010; 
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Whitney, Kirk, et al., 2011; Whitney, et al., 2012), and in some cases the experimental tasks 

as well (Drager, Breitenstein, Helmke, Kamping, & Knecht, 2004). While no strong 

conclusions can be drawn based on our TMS data, they do align well with our fMRI findings, 

and as such, are informative in that they: 1) tentatively confirm BA 44 and BA 47 

preference for verbal over picture semantic material, and 2) cautiously implicate a role for 

pMTG in semantic associative judgements across modality (i.e., verbal and picture). 
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Chapter 6: A Study of Retrieval and Selection Processes in 

Left Inferior Frontal Gyrus and Posterior Middle Temporal 

Gyrus Using Cyclical Picture Naming 

Introduction 

We have shown that a distributed network of brain areas contributes to amodal 

semantic control (Chapters 4, 5), and in this chapter we turn to the contribution of, two 

areas within this network, left inferior frontal gyrus (LIFG) and posterior middle temporal 

gyrus (pMTG) to different aspects of semantic control. Patients with semantic aphasia (SA) 

who manifest deregulated semantic control provide an opportunity to investigate deficits 

across the semantic network, as they have lesions in both frontal (encompassing LIFG) and 

temporoparietal (TP; encompassing pMTG) brain areas. These patients have been shown to 

have deficits in semantic control across a wide variety of tasks and across modalities (e.g., 

environmental sounds, pictures, object use, verbal material; Corbett, Jefferies, Ehsan, et al., 

2009; Corbett, Jefferies, & Lambon Ralph, 2009; Corbett, et al., 2011; Jefferies, et al., 2007; 

Noonan, et al., 2010). Additionally, a large body of neuroimaging and TMS literature 

implicate the two areas in semantic control (e.g., Gold, et al., 2005; Gold & Buckner, 2002; 

Hoenig & Scheef, 2009; Hoffman, et al., 2010; Noonan, et al., submitted; Noppeney, et al., 

2004; Price, 2010; Whitney, et al., submitted; Whitney, Jefferies, et al., 2011; Whitney, et 

al., 2012).    

The left inferior frontal gyrus (LIFG) has been extensively studied with regard to its 

contribution to semantic control, with some debate over the exact mechanisms (selection 

and retrieval) involved in recovering context-appropriate semantic information. Some 

research has shown LIFG recruitment for semantic tasks in which competing 

representations vie for selection: Thompson-Schill, D’Esposito, Aguirre and Farah (1997) 

found consistent increased activity in BA44/45 for selection from amongst competing 

semantic alternatives, across three different semantic tasks (generation, classification and 

comparison). This is corroborated by other research which has also found activation 

throughout LIFG (BA 47, 45, 46) when selection demands are increased (Badre, et al., 2005; 

Moss, et al., 2005). However, LIFG has also been shown to be recruited when automatic 

processes are insufficient, so top-down processes guide controlled retrieval of task relevant 

information (i.e., in tasks with increased difficulty or ambiguity; Wagner, et al., 2001). For 

example, a study which manipulated retrieval demands by requiring participants to make 
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decisions on strong or weak associations, with either two or four possible targets, 

demonstrated that even when selection demands were held constant, BA 47 showed 

increased activation for heightened demands on retrieval (Wagner et al., 2001; see also, 

Buckner, et al., 1996; Demb, et al., 1995; Fiez, 1997; Gabrieli, et al., 1998; Kapur, et al., 

1994; Peterson, et al., 1988; Wagner, et al., 2000). As such, retrieval guides semantic 

activation when cue-target associations are weak, regardless of competition (i.e., 

selection).  

Furthermore, Badre, Poldrack, Pare-Blagoev, Insler, and Wagner (2005) suggest a 

dissociation between retrieval and selection, within the semantic control network. They 

demonstrated that manipulations of retrieval and selection increased activation in BA 45, 

while only retrieval selectively activated BA 47. This shows, they argue, a graded distinction 

within LIFG for different aspects of semantic control, with aLIFG (BA 47) recruited for 

semantic retrieval (Bedny, et al., 2008; Wagner, et al., 2001; Whitney, et al., 2009) and 

pLIFG (BA 45) for selection (Gold, et al., 2006). Despite the attempt to tease apart selection 

and retrieval, it may be more accurate to say that these tasks load these two components 

differently (i.e., load more heavily on selection or retrieval; Snyder, et al., 2011; Whitney, 

Kirk, et al., 2011). Snyder, Banich and Munakata (2011) suggest that aLIFG (BA 47) and 

pLIFG (BA 45) play a role in both selection and retrieval. Using verb generation tasks, they 

manipulated difficulty for retrieval and selection demands using competition (selection) 

and associative strength (retrieval). They revealed very similar activation across the tasks 

for both BA 45 and BA 47, suggesting that selection and retrieval interact in LIFG.  

Similar to BA 47, pMTG has often been implicated in retrieval, not selection (Badre, 

et al., 2005; Gold, et al., 2006; Noppeney, et al., 2004). For example, Badre et al. (2005) 

ascribe a role to pMTG in controlled semantic retrieval, showing increased activity for low 

semantic associations and increased target number, but not for increases in selection 

difficulty (i.e., insensitive to manipulations of judgement specificity and congruency), 

implicating a possibly exclusive role for this area in retrieval but not selection. However, 

other studies have reported pMTG recruitment across a range of semantic control tasks 

(i.e., not exclusive to retrieval; e.g., Bedny, et al., 2008; Eviatar & Just, 2006; Gennari, et al., 

2007; Thompson-Schill, et al., 1997; Whitney, et al., submitted; Zempleni, et al., 2007). For 

example, Whitney et al. (2012) used tasks that manipulated either retrieval (associative 

strength) or selection (semantic feature selection) and disrupted performance on both 

manipulations following TMS to LIFG and pMTG. Therefore, it is clear that pMTG is 
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recruited for tasks that place increased demands on semantic control, but the exact 

contribution of this site is unclear.  

Therefore, developing tasks that manage to tease apart retrieval and selection 

processes is crucial to understanding the role of LIFG and pMTG in semantic control. A task 

often used when assessing semantic control deficits in patients with SA is the cyclical 

naming task (with versions across modalities, e.g., cyclical word to picture matching), which 

these patients perform poorly on. In cyclical naming/matching tasks, the same set of 

semantically related items is presented repeatedly, in cycles, such that targets become 

distractors on the next cycle. Performance on related items is compared to unrelated sets 

of items which are made up of those presented in the related blocks (i.e., carrot from a 

related set of vegetables occurs in the unrelated sets along with items such as car (from a 

related set of cars), football (related balls set), shoe (related clothing set), and so on). This 

repetition of semantically related items is thought to increase competition amongst related 

items (possibly due to spreading activation, and the task requires selection of concepts that 

have just been inhibited), making naming (or matching) the appropriate item more 

challenging (i.e., having to inhibit previously relevant semantic items of the same category; 

Belke, Meyer, & Damian, 2005; Campanella & Shallice, 2010; Gardner, et al., 2012; 

Jefferies, et al., 2007). An advantage of this task is that, in healthy participants, retrieval 

and selection can be assessed separately. Participants are slow to identify the first cycle of 

items (both related and unrelated), as each one must be retrieved for the first time, 

however, the sharp decrease in latencies from cycle one to two indicates that retrieval is no 

longer challenging. It is from cycle two onwards that the selection demands are seen, 

where semantically related sets of items are slower to be named/identified than unrelated 

items (as there is no within category competition).  

Gotts and Plaut (2002) have provided a model to explain why repetition of 

semantically related items increases control demands. They suggest that there is an 

increase in pre-synaptic depression, which reduces the efficiency with which new stimuli 

can be dealt with, resulting in a ‘refractory period’ in which errors occur. According to this 

model, the cyclical naming/matching task offers a measure of neuromodulatory control 

over intact semantic representations: In semantically related sets – where more units are 

shared, synaptic depression builds up (because transmitter release is no longer suppressed, 

which allows synaptic depression to build up amongst related items as they share the same 

active units) therefore more errors are made than for unrelated sets (where synaptic 
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depression is lower because items do not share active units). Alternatively, the blocking 

effect may not result from inhibition (‘hyper-inhibition’, as in the Gotts and Plaut (2002) 

model), but rather from ‘hyper-facilitation’ in which the concepts remain abnormally active 

interfering with subsequent trials (Campanella & Shallice, 2010). As such, the blocking 

effect occurs when semantically related items are presented at a fast rate, and there is 

little time for the activated items to de-activate causing the entire set of related items to be 

co-active, resulting in strong competition between the semantically related ‘distractors’ 

and the ‘target’ (i.e., ‘hyper-facilitation’) . This is supported by cases in which participants 

make more perseverations, suggesting that the previous item remains abnormally active 

(Campanella & Shallice, 2010).  

Patients with SA show impaired performance for both naming and matching 

versions of these cyclical tasks as competition amongst related items builds up across 

cycles – causing more errors/perseverations; while patients with SD do not show a build-up 

of competition with item repetition across cycles (Jefferies, et al., 2007; Warrington & 

Shallice, 1984). Furthermore, not all patients with SA struggle on this task: patients with 

temporoparietal infarcts (TP; encompassing pMTG) show weaker blocking effects than 

patients with frontal lesions, on all versions of these cyclical semantic tasks (Gardner, et al., 

2012; Jefferies, et al., 2007; Schnur, Schwartz, Brecher, & Hodgson, 2006; Schnur et al., 

2009). A direct comparison of SA patients with frontal and TP lesions on comprehension 

versions of the cyclical matching task, reveals that patients with posterior lesions do not 

show an ‘abnormal’ blocking profile, despite being similar to the left frontal SA patients on 

other assessments of semantic and non-semantic control (Gardner, et al., 2012). This 

dissociation has also been demonstrated using cyclical naming tasks, where a correlation is 

seen between the size of LIFG damage, but not left temporal damage, and the size of the 

blocking effect (i.e., lesion size and location predicted the size of the blocking effect; 

Schnur, et al., 2006). 

  Furthermore, Schnur et al. (2009), using healthy participants, found that LIFG was 

significantly more active during semantically blocked naming compared to unrelated 

naming, as well as eliciting more activity than temporal cortex for semantically related 

naming: this replicates, in healthy individuals, the trend seen in patients with 

frontal/posterior lesions (e.g., Gardner, et al., 2012; Jefferies, et al., 2007; Schnur, et al., 

2006). More specifically, they found a relationship between the number of errors produced 

and signal difference for LIFG, but not for left temporal cortex (left superior and middle 
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temporal gyri). This suggests that LIFG is sensitive to competition arising in semantically 

related naming (i.e., difficulty selecting the appropriate name, when several others of the 

same semantic category ‘node’ are active), as measured by selection difficulty during 

blocked naming. Taken together, these results suggest that LIFG is recruited for the 

resolution of the type of competition (e.g., selection difficulty) that arises through cyclical 

naming of semantic items, as evidenced by this complementary fMRI and patient data. 

Additionally, a recent meta-analysis of neuroimaging work has also found a difference 

between LIFG and pMTG in their contribution to semantic control, namely a lesser 

involvement of pMTG in tasks requiring production (such as those in the Schnur et al. 

(2009) task in which pMTG activation is not seen; Noonan, et al., submitted). Taken 

together, this suggests that there may be fine distinctions in the semantic control network 

with regard to the specific contributions of LIFG and pMTG. 

 The current study uses rTMS to modify performance on the cyclical naming task 

(picture naming), with related and unrelated sets. The 1 Hz paradigm is used to induce 

“virtual lesions” in LIFG and pMTG. Our aim is to further clarify the role of these regions in 

semantic control, more specifically, using a task in which selection and retrieval demands 

are manipulated using the same stimuli. This is the first study, to our knowledge, that 

disrupts the cyclical naming task using TMS, exploring the relationship of selection and 

retrieval. Repetitive trains of TMS were delivered to transiently disrupt the neural 

processing of the underlying tissue, manifested in the concurrent behavioural disruption of 

tasks reliant on this area. Given that LIFG and pMTG have been widely shown to be a 

crucial part of the semantic control network (Badre, et al., 2005; Whitney, et al., submitted; 

Whitney, Jefferies, et al., 2011; Whitney, Kirk, et al., 2011; Whitney, et al., 2012), this study 

uses rTMS to provide insight into how these two key areas may be differentially recruited in 

semantic control. TMS is a useful tool for investigating this dissociation, as it can be used on 

healthy subjects and with much greater control over the ‘lesion’ size and location. Studies 

investigating deficits in SA have already provided useful information as to tasks in which 

LIFG and pMTG are differentially recruited, namely the cyclical naming task. In line with 

these findings from temporoparietal SA (Gardner, et al., 2012; Jefferies, et al., 2007; 

Schnur, et al., 2006), stimulation of pMTG was not expected to affect task performance, 

making it a useful ‘control’ site, while stimulation of LIFG was expected to show 

behavioural disruption on subsequent naming. More specifically, in line with the 

behavioural blocking effect, in which healthy participants show a reaction time detriment 
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in later cycles, rTMS disruption of LIFG may manifest itself as longer reaction times on later 

cycles of semantically related sets (where selection demands increase). As such, rTMS 

disruption is measured using related and unrelated sets in the cyclical naming paradigm 

after stimulation of pMTG and LIFG.  

Method 

Design  

  A within subjects 2 x 2 x 3 x 2 factorial design was used, with TMS (no stimulation 

vs. stimulation), condition (related, unrelated), cycle (1+2, 3+4 or 5+6) and site (LIFG, 

pMTG) as factors. This study used the rTMS virtual lesion method, delivering a train of 

rTMS pulses offline; participants then performed the task immediately after stimulation, 

allowing us to rule out the possibility that the loud clicks, jaw contractions, or eye blinks 

associated with each pulse disrupted performance on the behavioural tasks. The order of 

the baseline and TMS tasks was counterbalanced, such that half of the participant  

behavioural performance without TMS (i.e., “baseline performance”) was measured before 

TMS stimulation and the other half was measured 30 mins or more post TMS stimulation, 

by which time the effects have washed out (Pobric, et al., 2007).    

Participants  

  Thirteen participants were examined in the study (9 females; mean age = 20.15, SD 

= 1.72). One participant who showed blanket facilitation across both sites for both 

conditions (related/unrelated) was excluded from the analysis, as well as one other 

participant who spoke Singaporean English. All participants examined were right handed, 

native British English speakers recruited from the University of York student population, 

and were compensated £38 for their time. All participants were screened for TMS and MRI 

safety and were thus free from any history of neurological disease or mental illness and 

were not taking any prohibited medication.  

Stimuli  

All stimuli were colour pictures, which appeared on a white screen in succession in 

either related blocks or unrelated blocks. The categories for these sets were as follows: 

balls, balls 2, baked goods, birds, boats, cars, cartoons, cartoons 2, cereals, clothing, 

computer goods, dogs, drinks, evening wear, flowers, fruits, garden tools, hats, 

herbs/spices, instruments, instruments 2, jewellery, kitchen goods, kitchen goods 2, 

kitchen goods 3, pastries, pets, puddings, sea creatures, transport, tools, vegetables, 
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vegetables 2, winter gear, zoo animals, zoo animals 2. For a full list of items in each of these 

categories see Appendix 6.1. 

Tasks 

 Picture probes were presented individually on a computer screen and participants 

named each picture as it appeared. The naming sets alternated between related and 

unrelated sets. In each set, five items were named in cycles, with six cycles per set, with a 

ready screen between sets, which was self-paced. Therefore TMS effects are cycle specific, 

and cannot be attributed to TMS effects being stronger or weaker at any cycle, given that 

all cycles are presented for a particular set, after which the next set of items (and cycles) 

begins, thus the TMS effects cannot be stronger on cycle one or wear off for the last cycle, 

because the last cycle occurs every six cycles (over a total of 72 cycles per condition). 

Procedure  

  A PC running E-Prime software allowed for presentation and recording of response 

times. Responses were given verbally into a microphone which was connected to a Serial 

Response (SR) Box (Psychology Software Tools). Each trial started with a fixation screen for 

50 ms followed by the presentation of the probe to which participants were required to 

make a verbal response (i.e., name the picture). The participant response triggered a blank 

screen (550ms) for the participant’s verbal response to end after which the next trial 

began. Each block was preceded by a “ready?” screen to which participants gave a button 

response, on the SR box, to move onto the next block (see Figure 6-1). 
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Figure 6-1: Experimental task procedure. Figure 6-1A provides a schematic of the trial 

structure; Figure 6-1B shows the repetition of cycles (related sets example).   

 

  Participants were familiarized with the stimuli before the experiment: participants 

were presented with each stimulus with its name on screen and could proceed at their own 

pace. They went through the stimuli twice before beginning the task. This familiarisation 

ensured that participants knew all the items so that we could examine the effects of task 

context (related/unrelated and cycle) on retrieval and selection.  

We attempted to reduce/eliminate any task learning effects (that could potentially 

interfere with behavioural TMS effects), by requiring participants to practice the 

behavioural task the day prior to each TMS experimental session. This practice session 

required participants to practice the task two times (different items in each practice task), 

with a total of 12 related blocks and 12 unrelated blocks (6 per practice task). No practice 

items were used for the experiment.  
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The TMS experimental session began with a practice block, which included 6 

related blocks and 6 unrelated blocks. There were 6 blocks per condition 

(related/unrelated), with participants performing a total of 12 blocks (360 trials) per 

experimental condition (baseline, post-TMS). Participants performed the baseline task once 

before TMS and once post TMS, but only one baseline was used for data analysis per 

participant, and this once counterbalanced across subjects and sites. Each block contained 

5 items repeated 6 times randomly, but with no item occurring twice in a row (i.e., radish, 

carrot, potato, onion, pepper, onion). Related and unrelated blocks were alternated, such 

that participants performed a set of related items, followed by unrelated, followed by 

related and so on (or vice-versa, with an unrelated block first). No trials were repeated 

within a session, or across sessions (i.e., one week later). The order that categories were 

presented in was counterbalanced across participants (e.g., participant A: clothing in week 

one, dogs in week two; and vice versa for participant B: dogs in week one, clothing in week 

two), as was whether the task started with a related or an unrelated set (e.g., participant A: 

related-unrelated; participant B: unrelated-related) , as well as the order in which each site 

was tested (i.e., LIFG-pMTG, pMTG-LIFG).  

 

Selection of TMS Site 

Structural T1-weighted MRI scans were used to identify sites for stimulation in each 

participant’s brain. These stimulation sites were identified from a neuroimaging meta-

analysis examining semantic control, by way of a semantic high > low control contrast, with 

the two strongest clusters being LIFG and pMTG (Noonan, et al., submitted). The 

coordinates (x, y, z) for the LIFG site were -45, 19, 18 (MNI), and for pMTG were -54, -49, -2 

(MNI). Brainsight 2 (Rogue Research, Montreal Canada, www.rogue-research.com/) was 

used to co-register participant scalps to their MRI structural image and to identify 

stimulation sites prior to rTMS administration. Four landmarks were used for co-registering 

the participants head to their brain image (tip of the nose, bridge of the nose, left/right 

tragus).  

Stimulation Parameters 

  Before TMS testing began, individual motor threshold was determined in each 

testing session. This was determined by the lowest stimulation intensity required to elicit 

contraction of the first dorsal interosseous (FDI) muscle in the contralateral hand. Motor 

thresholds ranged between 39% and 65%, with an average of 49% of maximum stimulator 
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output. A 70 mm figure of eight coil, attached to a MagStim Rapid2 stimulator was used for 

repetitive magnetic pulses. Repetitive trains of TMS were delivered at 1 Hz for 10 mins; 

participants were stimulated at 120% of their motor threshold.  

Data Analysis  

   TMS disruption was expected to manifest itself in delayed reaction time (RT), 

rather than a decline in accuracy (Walsh & Cowey, 2000), therefore, RT data for correct 

responses only was used for all analyses (the accuracy data can be found in Appendix 6.2). 

The data was screened for any reaction times lying outside 2 standard deviations of the 

participant’s mean for each cycle (1, 2, 3, 4, 5, 6), condition (related/unrelated) and TMS 

condition (TMS/baseline), for that testing session. We collapsed the six cycles into three for 

the purpose of analysis: 1) cycles 1 and 2; 2) cycles 3 and 4; 3) cycles 5 and 6. An analysis 

across all six cycles, yielding very similar results, can be found in Appendix 6.3. 

Repeated measures ANOVAs were used to analyze the effect of TMS on each 

condition, for each individual site (to establish an interaction of TMS x condition x cycle in 

LIFG). Additionally, effects emerging from ANOVAs were confirmed using Bonferroni-

corrected two-tailed paired sample t-tests (to confirm at which cycles TMS affected naming 

RT). Additionally, an omnibus ANOVA was used to compare effects across sites: The 

behavioural effects emerged as expected with a significant effect of condition (F(1, 12) = 

54.768, p < .001), a significant effect of cycle (F(2, 24) = 98.158, p < .001) and an interaction 

of the two (F(2, 24) = 90.613, p < .001). This is seen in other cyclical naming studies in 

healthy populations, where there is a decrease in initial reaction time between the first two 

cycles and a relative increase for the related sets compared to the unrelated sets as the 

cycles progress (Belke, et al., 2005).  

Results 

Left Inferior Frontal Gyrus 

 Statistical tests for this site examined the hypothesis that TMS to LIFG would 

differentially disrupt retrieval of semantically related items and to examine if these effects 

interact with cycle. A within participants (2 x 2 x 3) ANOVA revealed a significant three-way 

interaction of TMS by condition by cycle (F(2, 24) = 4.98, p = .016). This interaction reflects, 

in part, the difference in response to the related and unrelated sets. The unrelated sets 

show priming after cycle one, so the RT decreases across cycles, whereas there is strong 
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competition in the related sets therefore there is no facilitation of RTs in subsequent cycles. 

Therefore, the TMS by condition by cycle interaction is expected to be driven by a 

significant TMS effect for the related items where competition is greater.   

A further 2 x 3 repeated measures ANOVA, investigating the effects of TMS and 

cycle, for each condition (related, unrelated) was used to investigate this three-way 

interaction. The ANOVA for related sets revealed a significant interaction of TMS by cycle 

(F(2, 24) = 3.85, p = .036). TMS to LIFG produced significant slowing at cycles 1+2, as 

evidenced by Bonferonni corrected paired t-tests (adjusted alpha of .0125 per test (.05/4)). 

There was a significant difference between cycle 1+2 and cycle 3+4 post TMS (t(12) = 3.15, 

p < .05), but no difference between cycles 1+2 and 3+4 in the no TMS condition (t(12) = -

.14, p = .890). There were no significant differences between cycles 3+4 and 5+6 for TMS or 

baseline (t(12) < 1). TMS did not produce slowing of later cycles, where selection demands 

might be highest, but instead earlier cycles were differentially affected, when retrieval 

demands were highest (Figure 6-2). 

 

 

Figure 6-2: Left Inferior Frontal Gyrus: Related Sets. TMS to LIFG significantly increased the 

difference in RTs for cycles one and two of the semantically related sets but not the no TMS 

baseline. Error bars represent standard error of the mean. Asterisk represents significant 

change in RT (p < .05). 
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The ANOVA for unrelated sets showed a trend towards an effect of TMS (F(1, 12) = 

3.704, p = .078), but no significant interaction of TMS x cycle (F(2, 24) = 1.394, p = .267; 

Figure 6-3).  

 

 

Figure 6-3: Left Inferior Frontal Gyrus: Unrelated Sets. TMS to LIFG did not slow RTs for 

semantically unrelated sets relative to the no TMS baseline. Error bars represent standard 

error of the mean.  

 

 TMS to LIFG only slowed naming on early cycles of naming related sets, with no 

such slowing for unrelated sets. If TMS were to disrupt retrieval, then this slowing should 

have been seen for cycle 1+2 of the unrelated sets, but this was not the case, suggesting 

that LIFG plays a crucial role when retrieval and selection demands are high due to the 

competition between related items.  

Posterior Middle Temporal Gyrus (pMTG) 

 Statistical tests for this site examined the hypothesis that TMS to pMTG may not 

slow naming of the cyclical naming task. A within participants (2 x 2 x 3) ANOVA revealed 

no significant effects of TMS at this site (F(1, 12) < 1) and no three-way interaction between 

these factors (F(2, 24) = 2.008, p = .156; Figure 6-4). Given that no TMS effects or 
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interactions emerged, no further analyses were conducted for this site, as TMS to pMTG 

does not appear to affect behavioural performance of the cyclical naming task.  

 

Figure 6-4: Posterior Middle Temporal Gyrus : TMS to pMTG had no effect on naming for 

either semantically related or unrelated sets, relative to baseline. Error bars represent 

standard error of the mean.  

Between Sites 

An omnibus ANOVA did not reveal a significant main effect of site but there was a 

site by condition interaction. There was also a significant interaction of TMS by condition by 

cycle (p = .008), possibly driven by the significant slowing of naming for the LIFG site, but 

there was no four way interaction of site by TMS by condition by cycle (F(2, 24) < 1; Table 

6-1). The data presented above suggests that the two sites show different patterns, with 

effects of TMS at early cycles of related naming for LIFG, but not for pMTG; however, the 

omnibus ANOVA does not provide conclusive evidence for this difference. 
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Between Sites df F p 

Site  1, 12 1.363 .266 

TMS 1, 12 1.972 .186 

Site x TMS 1, 12 2.132 .170 

Site x Condition 1, 12 5.626 .035* 

TMS x Condition 1, 12 < 1 .396 

Site x TMS x Condition 1, 12 < 1 .486 

Site x Cycle 2, 24 < 1 .853 

TMS x Cycle 2, 24 2.318 .120 

Site x TMS x Cycle 2, 24 < 1 .530 

Site x Condition x Cycle 2, 24 2.49 .104 

TMS x Condition x Cycle 2, 24 5.883 .008** 

Site x TMS x Condition x Cycle 5, 60  <1 .434 

Table 6-1. F and p Values for between sites omnibus ANOVA; **p < . 001, *p < .05. 

Discussion 

This study sought to confirm the role of LIFG and pMTG in semantic control, namely 

retrieval and selection processes, using the cyclical naming task, with rTMS. Studies of 

patients with semantic aphasia (SA) have previously indicated that there may be a 

difference between LIFG and pMTG in their contribution to semantic control (Gardner, et 

al., 2012; Jefferies, et al., 2007; Schnur, et al., 2006), despite many studies showing similar 

involvement of the two areas in many control demanding tasks (Noppeney, et al., 2004; 

Whitney, Jefferies, et al., 2011; Whitney, Kirk, et al., 2011; Whitney, et al., 2012; Wright, et 

al., 2011). This study confirms that there is a dissociation, with TMS to LIFG causing 

disruption of performance on a naming version of the cyclical naming task, but no such 

disruption following TMS to pMTG. More specifically, this disruption manifests itself as a 

significant and specific slowing of naming latencies, relative to baseline, in the first cycles of 

repeated cyclical naming of semantically related items. Meanwhile, TMS to pMTG caused 

no change in naming latencies for either condition of the task – confirming, in healthy 

participants, the pattern seen in temporoparietal SA. This is in contrast to previous TMS 

studies showing parallel TMS effects after stimulation of LIFG and pMTG for semantic 

association tasks (Whitney, Kirk, et al., 2011; Whitney, et al., 2012); and therefore helps to 

elucidate the discrete specialisations within semantic control for these two sites. 
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Lexical vs. Semantic Access 

LIFG is associated with speech production/lexical selection, as well as semantic 

selection, and our task involved both. Some studies propose that the effects seen in the 

cyclical naming task occur at the ‘lemma’ level of speech production, both in patients and 

with healthy participants (Belke, et al., 2005; Maess, Friederici, Damian, Meyer, & Levelt, 

2002; Schnur, et al., 2006), and therefore effects for cyclical tasks would only be predicted 

for tasks requiring production. However, Jefferies et al. (2007) directly compared 

production and word-picture matching versions of the cyclical semantic task and revealed 

that patients with lesions encompassing LIFG showed a decline in performance on both 

tasks, suggesting that the competition occurs prior to lexical selection (see also: Gardner, et 

al., 2012). If the blocking effect occurs at ‘lemma selection’, then the effect should be 

specific to picture naming and not generalize to other versions of the task that do not 

require naming, such as word-picture matching tasks. However, the effect is seen in such 

tasks, thus the cyclical naming/matching task likely loads on some aspect of semantic 

control. Similarly, Campanella and Shallice (2010) found impaired recognition of items 

across serial presentations on a word to picture matching task, for healthy participants. The 

authors argue that the most compatible explanation with their findings is that competition 

occurs within the semantic system (also formerly proposed by Levelt, Roelofs, and Meyer 

(1999), and compatible with findings from Mahon, Costa, Peterson, Vargas, and Caramazza 

(2007)), as the competition can only occur after the concepts have been elicited by the 

pictures (there is no need for activation of post-semantic lexical representations).  

Additionally, there is some debate as to the cause of this blocking effect: 

Campanella and Shallice (2010) claim that their results are due to hyper-facilitation, as 

participants made a greater number of perseverations – suggesting that the previous target 

is still ‘abnormally’ active; alternatively, the items might suffer from ‘hyper-habituation’, 

where items become inhibited after their initial activation due to increased synaptic 

depression (Campanella & Shallice, 2010; Gotts & Plaut, 2002). Low frequency TMS is 

thought to induce synaptic depression (Reithler, Peters, & Sack, 2011), which according to 

Gotts and Plaut (2002), results in more errors (in patients). This could be one possible 

explanation as to why we see TMS effects on early cycles, where TMS may have caused a 

decrease in post synaptic activity – which would usually result from repetitions of the same 

stimuli (Gotts & Plaut, 2002). 
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Left Inferior Frontal Gyrus 

A recent study specifically investigated the role of retrieval and selection in LIFG 

using verb generation tasks to manipulate the difficulty of retrieval (associative strength) 

and selection (increased competition; Snyder, et al., 2011). They found that when retrieval 

demands were low, selection modulated activity in BA 45/47, whereas when retrieval 

demands were high (more difficult/lower associative strength), there was no further 

modulation of activity for selection (activation was constant for both low/high selection 

within the high retrieval condition) – this suggests that it may be difficult to see an effect of 

selection when retrieval demands are high. Our study demonstrates an interaction of the 

two processes in LIFG where on cycle one the demands on retrieval and selection are high: 

cycle one requires a) initial retrieval of each item and b) selection from amongst competing 

semantically related items. In contrast, on the second cycle of semantically related naming, 

the demands on retrieval are considerably reduced (due to repetition and within category 

facilitation), whereas the demands on selection remain, however TMS did not impact 

selection of the target item. Thus, stimulation of LIFG interfered with naming at the point 

when the requirement for retrieval and selection peaked, producing a cycle specific effect 

of TMS for the related sets on initial cycles.  

The TMS effects emerge in our study at the point at which the demands on 

retrieval and selection are at their highest. This is in contrast to the pattern seen in SA, 

where the effects of competition emerge on later cycles of cyclical naming (or indeed, 

matching). It is possible that TMS to LIFG increases the difficulty of retrieving/selecting 

items at cycle one, but healthy participants manage to overcome this difficulty across 

multiple presentations, as such the TMS effect only manifests itself on the first cycle of 

each semantic set. More difficult tasks are often thought of as more vulnerable to TMS 

effects (Devlin & Watkins, 2007), as such, disrupting LIFG using TMS could make the most 

challenging part of the task more difficult which in this study would be the time at which 

the demands on retrieval and selection are at their highest (cycle one). It is important to 

note that this is not a result of the TMS effects wearing off across cycles, as all cycles are 

presented for a particular set, after which the next set of items (and cycles) begins, thus the 

TMS effects cannot wear off for the last cycle, because the last cycle occurs every six cycles 

(over a total of 72 cycles per condition). 
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Similarly, TMS has previously been shown to disrupt selection and retrieval 

processes in LIFG. For example, Whitney et al. (2012) used semantic associative judgments 

(to assess retrieval) and semantic feature selection tasks (to assess selection) and found 

equal disruption of tasks following TMS to either LIFG or pMTG; this suggests that LIFG is 

recruited for both executively demanding processes (retrieval and selection), as there was 

no disruption for the easy conditions of either task. Furthermore, Hoffman, Jefferies, and 

Lambon Ralph (2010) slowed abstract (synonym) judgments that were preceded by an 

irrelevant contextual cue (making the executive demands higher), but not abstract word 

judgments preceded by a relevant cue (lowering executive demands), following rTMS to 

LIFG. This task places demands on selection and retrieval: it requires participants to 

retrieve a word based on a cue, but to also select from amongst three alternatives. The 

current study complements these previous TMS findings with disruption of LIFG for tasks 

that load on both selection and retrieval (i.e., early cycles of the naming tasks where 

selection and retrieval are hard to tease apart), while also demonstrating a dissociation 

between LIFG and pMTG.  

Posterior Middle Temporal Gyrus 

Another key question motivating this study was the relative contribution of pMTG 

and LIFG to semantic control. Previous studies have found the two sites to be very similar in 

their contribution to tasks purportedly loading on selection and retrieval (Noppeney, et al., 

2004; Whitney, Jefferies, et al., 2011; Whitney, Kirk, et al., 2011; Wright, et al., 2011). Some 

studies report pMTG activation for tasks purportedly loading on semantic retrieval, while 

LIFG activation has been reported for semantic selection (Badre, et al., 2005; Bedny, et al., 

2008; Gold, et al., 2006). This framework would predict a double dissociation such that TMS 

to pMTG should slow naming for the first cycle of naming (for either the related or 

unrelated sets2) where the demands on retrieval are high, and in contrast, stimulation of 

LIFG should leave the first cycle of naming unaffected, with disruption at later cycles (i.e., 

when retrieval demands are low, but selection peaks). However, we found no disruption of 

naming following stimulation of pMTG, which suggests that the role of this site in semantic 

control lies beyond retrieval. One possibility is that the items presented at cycle one were 

no longer novel (i.e., no need for controlled retrieval), due to the familiarisation phase prior 

to testing (in which participants were exposed to the with-in semantic category items over 

                                                           
2
 In fact, the demands on retrieval are highest for the first cycle of unrelated naming, where there is 

no within category facilitation, but even here, stimulation of pMTG showed no disruption.   
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two cycles). Campanella and Shallice (2010) found that when participants were familiarised 

with stimuli prior to testing, they were faster (and more accurate) at identifying items on 

the first cycle, than in cycles two and three. However, this is unlikely to be the sole 

explanation because although the participants in our study were familiarised with the items 

prior to testing, which may have reduced the initial facilitation normally seen from cycle 

one to two, they were still slower on the initial cycle of naming than later cycles, indicating 

that there was an initial retrieval stage. Therefore, the lack of TMS effect in pMTG is likely 

to reflect the role of this site beyond retrieval in semantic control. 

Indeed, our data from Chapters 3, 4, and 5 also indicate differential involvement of 

LIFG and pMTG in semantic control, as well as other studies reporting differences for the 

two sites (Gardner, et al., 2012; Gennari, et al., 2007; Noonan, et al., submitted; Price, 

2010). Two recent meta-analyses have noted that pMTG recruitment appears to be 

confined to the receptive domain, predominantly activated for comprehension, but not 

production, tasks (Noonan, et al., submitted; Price, 2010; Turken & Dronkers, 2011). 

However, this account may be too simplistic with regard to the cyclical naming task, 

because temporoparietal patients do not show performance outside the normal range for 

other versions of the cyclical semantic task, such as matching (non-production; Gardner, et 

al., 2012), suggesting that the cyclical naming/matching task may recruit other aspects of 

semantic control (e.g., selection difficulty) not specifically engaged by pMTG. The 

predominance of pMTG activation reported for receptive tasks may, however, reflect its 

role in semantic control, which has been suggested to lie in the domain of context-

integration (Noonan, et al., submitted; Price, 2010) and therefore may not be recruited in 

traditional production tasks. A fruitful avenue for further investigation would be use a 

version of the cyclical matching task that does not require overt production (i.e., word-

picture matching), post TMS to LIFG and pMTG would be a good starting point to establish 

whether the difference between these two sites is due to a production/comprehension 

dichotomy, or whether it is something more integral to the type of semantic control which 

is recruited by this task.   

Conclusions 

The cyclical naming tasks provides a unique opportunity to separate retrieval (cycle 

one, particularly unrelated sets) and selection (later cycles of related naming) processes, as 

well as the interaction of the two (cycle one of related naming). We show that neither 
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pMTG nor LIFG were recruited for retrieval or selection alone, but that LIFG was crucially 

involved when the demands on selection and retrieval peaked. In summary, this study 

confirms, using rTMS, the dissociation of LIFG and pMTG in cyclical naming tasks previously 

seen in SA and neuroimaging studies. More specifically, we demonstrated that 1) LIFG is 

recruited by executive demands on selection and retrieval and 2) that pMTG recruitment 

may lie beyond the domain of semantic retrieval/selection. 
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Chapter 7: Thesis Summary and Discussion 

 This thesis sought to investigate the neural basis of language processing. While 

research has uncovered the broad organisation of language and semantic processing in the 

brain, this thesis focused on using TMS and fMRI to explore controversial issues such as 

overlap between different aspects of language processing (phonological/semantic; verbal 

vs. non-verbal). The empirical work investigates which regions within distributed 

language/semantic networks are critical for processing irrespective of context, and which 

regions show a response profile consistent with a contribution to executive linguistic 

and/or semantic processing. Moreover, the use of TMS allows us to explore hypotheses 

that have emerged from other methods (neuroimaging, neuropsychology) in a causal 

manner. Therefore, we interrogated specialisations within language networks with regard 

to three major themes: 

Themes 

i. Domain (phonological/semantic) and Modality (verbal/picture) 

We were interested in elucidating how particular parts of the language 

network contribute to domain general and domain specific processing. A key 

question was whether areas previously implicated in language processing were 

specialised by domain: for example, more responsive to making decisions on 

the individual constituents of a word (i.e., phonology), than the meaning of the 

word (i.e., semantics) and vice-versa. This is an important distinction, for 

several reasons: (1) Many studies have used phonological tasks to indicate an 

essential role for motor areas in speech perception (e.g., Fadiga, et al., 2002; 

Meister, et al., 2007; Wilson, et al., 2004); however, without the requirement 

of access to meaning these tasks cannot speak to other aspects of language 

processing such as comprehension of auditory input, arguably the goal of 

speech perception. By examining this distinction between speech perception 

tasks requiring semantic judgements and explicit phonological awareness, we 

can test divergent theoretical accounts that alternatively suggest that (i) 

articulatory representations within premotor cortex (PMC) are critical for 

speech perception in general or (ii) that PMC is only required for phonological 

tasks that require production and/or the harnessing of subvocal articulation for 

challenging explicit phonological decisions (Chapter 2). (2) Within semantic 

tasks, the issue of modality also remains controversial. An amodal semantic 
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network, activated by semantic decisions to both words and pictures, has been 

revealed in bilateral anterior temporal lobes (ATL; Pobric, et al., 2010; Visser, 

Jefferies, & Lambon Ralph, 2009; Visser & Lambon Ralph, 2011), left inferior 

frontal gyrus (LIFG; Bright, Moss, & Tyler, 2004b; Chee, et al., 2000; 

Vandenberghe, et al., 1996; Wagner, et al., 1997) and posterior middle 

temporal gyrus (pMTG; Chee, et al., 2000; Hoffman, et al., 2011; 

Vandenberghe, et al., 1996). However, these sites are hypothesised to differ in 

terms of their contribution to semantic representation and executive control 

processes, which bring task-relevant semantic features to the fore. ATL is 

thought to form amodal semantic representations, while the anterior parts of 

LIFG are thought to contribute specifically to semantic control (as opposed to 

domain and modality-free executive processes). The contribution of pMTG is 

also unclear, with some accounts (e.g., Hickok & Poeppel, 2007) emphasising 

its role in linguistic processing, for the mapping from words to meanings, 

others suggesting it represents specific semantic features (e.g., action 

knowledge) and a third literature primarily based on neuropsychological 

studies suggesting it contributes to semantic control in conjunction with LIFG. 

Chapters 4-6 report TMS and fMRI investigations designed to clarify the 

contribution of LIFG and pMTG to semantic processing for semantic decisions 

to words and pictures, and the mapping between meanings and words in the 

context of picture naming. 

.  

ii. Control  

We also investigated how domain specific and domain general areas 

responded to increased demands on controlled use of language and semantic 

knowledge (both pictures and words). In order to do this, we manipulated the 

difficulty with which the relevant target/information was accessible, for 

example, in the phonological tasks we used in Chapters 3 and 5, rhyme 

judgments were made quickly and with high accuracy, whereas judgments 

based on segmenting auditory stimuli for a matching task were slower and less 

accurate, and therefore required greater ‘control’. Within the domain of 

semantic cognition, control refers to the executive processes that are engaged 

to direct activation of the semantic store in a task relevant and time sensitive 

manner (e.g., when semantic distance increases between two words, making 
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the relationship less apparent). We wanted to investigate specific 

contributions of language areas to control within and across domain in order 

to assess whether there are functional dissociations by domain 

(phonological/semantic) that interact with controlled use of language. The 

literature to date has often focussed on one of these aspects (i.e., domain or 

control), but given that areas such as LIFG have been shown to be specialised 

by domain and also recruited when the demands on control increase (e.g., 

large swathes of activation throughout LIFG for increased semantic control; 

Noonan, et al., submitted), a factorial design that interrogates the interaction 

between domain and control helps tie the two literatures together. We also 

wanted to assess any differential contributions within the semantic control 

network to modality (e.g., picture semantic control), as previous studies have 

shown similar networks recruited for picture and verbal semantic material, but 

not assessed their contribution to control across modality (e.g., Bright, et al., 

2004a; Wagner, et al., 1997). Therefore, while it has been shown that the ATL 

store semantic knowledge amodally (e.g., Visser, et al., 2009), it may be the 

case that the way in which the brain accesses this material may differ 

according to modality. For example, while LIFG has often been shown to be 

recruited when the demands on linguistic/verbal semantic control increase, do 

areas within LIFG play the same role in accessing picture semantic material 

when automatic retrieval processes are insufficient to guide selection of 

concepts stored in ATL? Additionally, the umbrella term ‘semantic control’ can 

refer to any number of processes (e.g., retrieval, selection, context integration) 

and some studies have previously attempted to disambiguate two of these 

processes, namely retrieval and selection, and have reported differential 

recruitment across the semantic control network for these two processes 

(Badre, et al., 2005; Badre & Wagner, 2007; Thompson-Schill, et al., 1997; 

Wagner, et al., 2001). In Chapter 6, we attempted to further separate retrieval 

and selection within a cyclical picture naming task in order to assess the role of 

brain areas within the semantic control network (LIFG; pMTG) to these varying 

aspects of semantic control, given previous suggestions that there may be 

differential involvement across the network for the two processes (Badre, et 

al., 2005; Gold, et al., 2006; Noonan, et al., submitted; Noppeney, et al., 2004; 

Wagner, et al., 2001).  
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iii. Distributed network 

Language is a complex process, with a diverse network of brain areas 

contributing to the apparent ease with which we use it. We were interested in 

investigating the way in which this diverse network interacts with both 

domain/modality (theme i) and control (theme ii), often by way of 

dissociations along these dimensions. For example, the semantic control 

network implicated in a recent meta-analysis suggests a diverse number of 

brain areas for semantic control – such as LIFG, pMTG and divisions of AG, 

however it is likely that these areas have differential contributions within the 

network. We also investigated the partial overlap between networks of brain 

regions specifically implicated in semantic control and those that contribute to 

domain-general executive processing (Duncan, 2010; Spreng & Schacter, 2012; 

Spreng, et al., 2010; Vincent, et al., 2008). LIFG has often emerged as a domain 

general control region across many language studies (Duncan, 2010; Duncan & 

Owen, 2000; Gold, et al., 2005; Gold & Buckner, 2002; Rajah, et al., 2008; 

Snyder, et al., 2007; Thompson-Schill, 2003), however, there is some evidence 

to suggest that dissociable parts of LIFG may be less domain general: anterior 

LIFG has often been implicated exclusively in semantic control (Badre, et al., 

2005; Noonan, et al., submitted; Poldrack, et al., 1999). Additionally other 

areas such as pMTG have in some cases emerged as exclusive to the semantic 

domain (Noonan, et al., submitted), while other posterior areas within and 

around AG are often activated by a wide range of tasks, including phonological 

and semantic (e.g., Carreiras, et al., 2009; Seghier, et al., 2010; Sharp, et al., 

2010). AG has been predominantly reported for semantic tasks, while SMG has 

been widely implicated in the phonological domain (e.g., Sharp, et al., 2010; 

Vigneau, et al., 2006). Furthermore, within AG there has been some suggestion 

that there are specialisations such that dorsal AG may be domain general, and 

mid AG may be more specific to control demanding semantic tasks (e.g., 

Noonan, et al., submitted; Seghier, et al., 2010). Our tasks were well placed to 

assess contributions throughout the network across language domain, 

modality and control processes (e.g., retrieval/selection).   
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Main Findings 

1. Chapter 2 used TMS to establish the contribution of premotor cortex (PMC) to 

speech perception, using a phonological task that required explicit phoneme 

judgments and a semantic task requiring participants to identify the category 

membership of the stimulus. We showed that this site is recruited for non-natural, 

explicit phoneme judgments, but not mapping sound to meaning (theme i). 

Therefore, it is unlikely that PMC participates in general speech comprehension, 

but rather its role is reserved for other aspects of speech perception, such as these 

explicit phoneme judgment tasks.     

2. Chapter 3 focussed on a larger network of brain areas (theme iii) in order to 

understand the specialisation by domain (theme i) and control (theme ii) of areas 

previously implicated in language processing. This study used phonological and 

semantic tasks, and we manipulated the demands on control by creating hard and 

easy versions of each task type (phonology: rhyme (easy), segment (hard); verbal 

semantic: high (easy), low (hard) semantic association strength). We were 

particularly interested in assessing the interaction of domain and control in areas 

such as left inferior frontal gyrus (LIFG), posterior middle temporal gyrus (pMTG) 

and inferior parietal cortex (i.e., dorsal angular gyrus/intraparietal sulcus (dAG/IPS) 

and mid AG), because each of these regions has previously been implicated in 

either domain specificity (e.g., pLIFG: phonological; aLIFG: semantic), control (e.g., 

pMTG, LIFG) or a combination of the two (e.g., semantic control in pMTG), but a 

direct comparison of both domain and control (i.e., domain by control) has not 

previously been made. Our key findings were that: 

a. Although LIFG was activated by linguistic control across phonological and 

semantic domains, there was some degree of graded specialisation along 

the posterior to anterior gradient: with posterior/dorsal recruitment of 

LIFG for phonological judgements, and specific recruitment of the most 

anterior/ventral parts of LIFG for verbal semantic judgements – showing 

that while there is a large degree of overlap across this site for the two 

domains, the extreme ‘ends’ show some specialisation by domain (theme 

i).  

b. There was no effect of difficulty/control in pMTG for either the 

phonological or the verbal semantic task (theme ii), despite previous 

indications predicting that this site would respond to our manipulation of 
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semantic control (e.g., its emergence as the second largest cluster in an 

analysis of high > low semantic control; Noonan, et al., submitted). There 

was, however, a significant main effect of domain with more activation for 

phonological than semantic tasks (theme i).   

c. Our investigation of parietal cortex (dAG/IPS and mid AG) showed that this 

site was both modulated by our difficulty manipulation (theme ii) and 

showed specialisation by domain (theme i). We found a greater response 

of dAG/IPS to phonological than semantic material, with no such 

specialisation by domain in mid AG – while both sites were recruited for 

increased demands on control (theme ii) across domain. 

This chapter showed functional specialisations by domain along LIFG, with PMC and 

posterior LIFG showing greater specialisation for phonology, while the most anterior 

part of LIFG was more specialised for verbal semantic judgments. This finding is similar 

to the specialisation previously reported in the literature (e.g., Devlin, et al., 2003; 

Gough, et al., 2005), but also demonstrates the subtle nature of this gradation, with 

LIFG modulation for difficulty across domains. Furthermore, there was a gradient into 

anterior LIFG such that the difficult phonological judgments activated dorsal aLIFG, but 

only the verbal semantic associative judgments activated the most anterior part of 

LIFG, and this maps onto the rostro-caudal gradient put forth by Badre and D’Esposito 

(2009), where more complex and abstract information is processed along a gradient 

into anterior IFG. That pMTG was not modulated by difficulty was unexpected, but the 

significant activation of this site across both tasks provides further support for its role 

in language processing, particularly as a cortical hub due to its rich connections with 

other areas in the network (Turken & Dronkers, 2011). Furthermore, the greater 

contribution of dAG/IPS to phonology, whilst still resolving difficulty across domains is 

in line with previous suggestions that dAG/IPS plays a domain general function in 

language control (Seghier, et al., 2010), while the finding that mid AG contributed 

equivalently to the two domains is somewhat surprising given other studies indicating 

greater activation for the semantic than the phonological domain at this site (Binder, et 

al., 1999).      

3. fMRI was used to investigate the network of areas previously shown to be involved 

in semantic control (theme iii) in Chapter 4 in order to assess each regions 

contribution to both modality (theme i) and any interactions with control (theme 
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ii). We used verbal and picture semantic tasks where the probe and target shared 

either high (easy) or low (hard) association strength, allowing for manipulation of 

the demands on semantic control. Previous studies indicate that there should be 

some degree of overlap for the two modalities (e.g., Bright, et al., 2004a; Corbett, 

Jefferies, Ehsan, et al., 2009; Hoffman, et al., 2011; Wagner, et al., 1997), however 

there has been a relative paucity of studies investigating amodal semantic control 

with healthy participants. We found: 

a. More extensive and more significant recruitment of LIFG for verbal, than 

picture semantic control, as well as specialisation by modality, such that 

more anterior LIFG (i.e., BA 47) was recruited for verbal semantic 

judgements, with minimal recruitment for picture semantic associations.  

b. A dissociation between left and right IFG, with greater recruitment of 

posterior right IFG for pictures than words, but anterior IFG was specialised 

to the verbal domain across hemispheres. 

c. Significant activation of pMTG for verbal, but not, picture semantic 

material. However, interestingly, the picture semantic task was the only 

one where the difficulty manipulation significantly modulated activity for 

this site. 

d. Equivalent recruitment of dAG/IPS and mid AG across semantic modality 

for resolving difficulty arising from increased need for semantic control. 

These findings corroborate our assertion in Chapter 3 that the pattern of activation 

seen in aIFG may reflect its role in processing abstract semantic information: there was 

bilateral activation for the verbal associations, and less recruitment for the picture 

semantic associative judgments, as they may be more concrete in nature (i.e., meaning 

is constrained by the picture). Furthermore, the significant modulation of pMTG activity 

for increased picture semantic difficulty is in line with the literature suggestive of a role 

for this site in semantic control (e.g., Whitney, Jefferies, et al., 2011; Whitney, Kirk, et 

al., 2011). It has previously been suggested that pMTG may be recruited for context 

integration (e.g., Noonan, et al., submitted; Price, 2010), as such we may not have seen 

modulation by difficulty for our verbal semantic judgments because they did not 

change in their requirement for context. Hard picture semantic tasks may have placed a 

greater strain on context integration, than the easy picture associations where the 

context is readily available due to the constraints offered by presenting semantic 
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material in picture format; however the verbal semantic task may have required 

context across easy and hard trials, where context is not constrained as words are 

inherently more ambiguous than pictures. The equivalent recruitment of dAG/IPS and 

mid AG to control demanding associative judgments for the two modalities is in line 

with previous studies suggesting a role for these sites in semantic processing (Binder, et 

al., 2009; Noonan, et al., submitted; Seghier, et al., 2010; Sharp, et al., 2010).        

4. We narrowed our investigation to focus on pLIFG (BA 44), aLIFG (BA 47) and pMTG 

in the TMS study in Chapter 5, with the intention of confirming the involvement of 

these areas in phonological, and amodal semantic (pictures and words) processing, 

using the same tasks as in Chapters 3 and 4. . We found: 

a. A disruption of verbal semantic judgements following stimulation of both 

LIFG sites, but no effect of stimulation for the phonological or picture 

semantic tasks. 

b. Highly significant picture semantic disruption, as well as some verbal 

semantic disruption, but no TMS effects for phonological decisions, 

following stimulation of pMTG.  

These data helped to confirm the findings in Chapters 3 and 4 where both posterior 

and anterior LIFG manifested a preference for the verbal semantic modality. Moreover, 

the significant disruption of picture semantic judgments following stimulation of pMTG 

is in line with a recent TMS study showing disruption of picture semantic judgments 

following TMS to pMTG (Hoffman, et al., 2011), and the results are also useful in view 

of our fMRI findings, where pMTG only showed modulation by difficulty for the picture 

semantic tasks. 

5. In Chapter 6 we conducted a TMS study that focussed specifically on semantic 

control (theme ii) using a cyclical naming paradigm. We required participants to 

name sets of semantically related or unrelated items across cycles, and this allowed 

us to disambiguate retrieval and selection processes: early cycles of unrelated 

naming place high demands on retrieval, while later cycles of related naming load 

on selection. We found that: 

a. TMS to LIFG disrupted performance on this task when the demands on 

selection and retrieval were maximal. 
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b. pMTG was not recruited to resolve competition over the course of the 

cyclical naming task, even when the demands on selection and retrieval 

were separated (i.e., no involvement of pMTG for retrieval, selection or an 

interaction of the two). 

These results add data to the debate over retrieval and selection, and are in line with a 

recent paper suggesting that the two processes interact in LIFG (Snyder, et al., 2011). 

Linking Data to Theory 

 Premotor Cortex 

 The motor theory of speech perception regained momentum with the discovery of 

mirror neurons in monkeys as well as various fMRI and TMS studies reporting involvement 

of this area in speech perception tasks (e.g., Meister, et al., 2007; Rizzolatti, 2004; Wilson, 

et al., 2004). However, these tasks often require participants to make metalinguistic 

judgments on the constituent sounds of a word, and not the word as a whole. Therefore, 

we were interested in investigating the specific contribution of this site and our data 

suggest a revision of the motor theory: we found that PMC was recruited for tasks that 

required phonological, but not semantic judgments (based on access to meaning), both in 

fMRI using hard and easy phonological and verbal semantic tasks (Chapter 3) and with TMS 

through explicit phoneme and semantic judgments to the same stimuli (Chapter 2). 

Therefore, the role of PMC as an essential part of the speech perception architecture falls 

into question as it was not shown to be essential for accessing word meaning in either of 

our studies (Chapter 2 & 3). Thus, in view of the previous literature and our findings, the 

role for PMC is likely restricted to 1) non – natural language tasks (e.g., identifying 

individual phonemes, not whole words for meaning; Burton, et al., 2000; Hickok & Poeppel, 

2000; Rogalsky, et al., 2011; Sato, et al., 2009; Zatorre, et al., 1992), 2) distorted/degraded 

speech (e.g., as a ‘back up’ mechanism when perception is challenging; Devlin & Aydelott, 

2009; Gow Jr & Segawa, 2009; Osnes, et al., 2011; Scott, et al., 2009) or 3) for repetition of 

and learning new words (e.g., Burton, et al., 2000; Demonet, et al., 1992; and results 

showing PMC recruitment for new/rare words: Kotz, et al., 2010; Roy, et al., 2008).  
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Inferior Frontal Gyrus 

 While the functional specialisation of LIFG by domain has received attention in 

previous studies (e.g., Devlin, et al., 2003; Gold & Buckner, 2002; Gough, et al., 2005; 

Nixon, et al., 2004), very few studies have manipulated domain (theme i) and difficulty 

(theme ii) simultaneously. While LIFG responded to the difficulty manipulation (theme ii) 

for all of our tasks across domain and modality (theme i), there was still a gradient such 

that pLIFG was specialised to phonology, and also presented a verbal modality preference; 

mid LIFG (BA 45) was domain and modality invariant; and perhaps most strikingly, the most 

anterior part of aIFG was most significantly activated by the verbal semantic tasks 

(bilaterally; Figure 7-1); corroborated by TMS stimulation of aLIFG disrupting only the 

verbal semantic judgments). These findings are consistent with the theory put forth by 

Badre and D'Esposito (2009), which suggests that IFG is hierarchically organised along a 

rostro-caudal gradient, with greater recruitment in anterior IFG for more abstract/complex 

information. Control-demanding semantic tasks are likely to require abstract processing to 

establish which possible semantic relationship is relevant: this may be especially true for 

verbal as opposed to picture association tasks, as the presence of a picture may help to 

highlight the relevant relationship being probed.  

Furthermore, we demonstrated that LIFG recruitment is necessitated by high 

demands on both retrieval and selection, similar to one other study demonstrating an 

interaction between these two processes in aLIFG (Snyder, et al., 2011). We did not see 

TMS disruption of naming when the demands on these factors occurred in isolation (e.g., 

only retrieval; only selection) over the course of the cyclical naming paradigm we used in 

Chapter 6 (Finding 5a,b). More specifically, if LIFG recruitment were necessitated by 

retrieval alone, then we should have seen a specific slowing of cycle one of the unrelated 

sets, where the need for retrieval is high since there is no within category facilitation of 

items (e.g., no category ‘node’ can be activated as each item is unrelated; Belke, et al., 

2005). Similarly, if LIFG recruitment occurred only when the demands on selection peaked, 

then we should have seen disruption of naming across later cycles: these have high 

selection yet low retrieval requirements (owing to both within category facilitation and 

familiarity with the items over repeated cycles). However, we saw a cycle specific slowing 

when the demands on both processes were maximised, suggesting that while previous 

studies have attempted to disambiguate the two processes (e.g., Badre, et al., 2005; 

Thompson-Schill, et al., 1997; Wagner, et al., 2001), it may be more accurate to say that the 
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two processes interact and are resolved in LIFG (BA 45/47). As such, retrieval processes are 

engaged to activate representations (which have strong and weak synaptic weights), and 

selection works to increase “the difference in activation levels between the most active 

representation and its competitors” through lateral inhibition in order for one “winning” 

item to be selected (Snyder, et al., 2011, p. 3479).     

 

Figure 7-1. This image is used to illustrate the gradient of specialisation in LIFG based on 

our data (Chapters 3, 4 and 6) with regard to the suggestion put forth by Badre and 

D’Esposito (2009). Coloured boxes/text are used to denote the domain of specialisation (as 

in Chapters 3 and 4): red is used for verbal semantic, green for phonology, cyan for picture 

semantic, and blue for domain/modality general contributions. The symbols are used as 

follows: “>” denotes preferences within each LIFG subdivision (for example phonological > 

verbal semantic represents greater preference for phonological than verbal semantic 

material, yet still significantly activated for both task types); “/” denotes overlap of 

activation in specific ROIs (e.g., phonological segmentation / verbal semantic represents 

overlap of the two), “}” is used to group information (e.g., grouping dorsal and ventral 

anterior IFG to summarise its overall modality preference across hemispheres).  

Posterior Middle Temporal Gyrus 

 The role of pMTG in language processing is less clear, and our results go some way 

in helping to elucidate the role of this site. For example, we confirmed the finding from 
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patients with semantic aphasia (SA) who have lesions in temporoparietal cortex and are 

impaired on most tests of semantic control, but do not perform poorly on cyclical semantic 

tasks (Gardner, et al., 2012; Jefferies, et al., 2007), suggesting that this site has a specific 

role to play in semantic cognition that is not captured by cyclical tasks. While our results 

from the cyclical naming study (Chapter 6) cannot confirm what the specific role is, they 

can speak to prior suggestions that this site plays a specific role in semantic retrieval 

(Badre, et al., 2005; Wagner, et al., 2001), as our results suggest that the role for pMTG 

may lie beyond retrieval. If pMTG were involved in retrieval, we should have seen a specific 

disruption of naming for the first cycle; particularly for the unrelated sets where retrieval is 

most challenging due to the lack of within category facilitation afforded by related naming. 

We also did not see any slowing of naming following TMS for cycles where selection 

amongst semantically competing alternatives was necessary, therefore, the role of pMTG 

may lie beyond both retrieval and selection processes.  

Additionally, in Chapters 3 and 4 we saw that for verbal semantic tasks which were 

designed to increase the need for semantic control (using RT to index difficulty), there was 

no modulation of activity in pMTG, rather this site showed an equivalent response to our 

hard and easy verbal semantic tasks. This further suggests that while pMTG is involved in 

semantic control (as shown by tasks that have found a necessary role for pMTG in semantic 

control; e.g., Noppeney, et al., 2004; Whitney, et al., submitted; Whitney, Jefferies, et al., 

2011; Whitney, Kirk, et al., 2011), its exact role is still somewhat unclear. There is some 

suggestion that this site may play a specific role in context integration (Noonan, et al., 

submitted; Price, 2010), therefore activation of pMTG for the picture semantic associations 

may not be expected/necessitated, because the need for context integration is greatly 

reduced with the semantic relationship readily available as it has been constrained by the 

pictures (e.g., words are often more ambiguous, therefore more context integration may 

be needed). Further support comes from the significant modulation of pMTG activity for 

the difficult picture semantic tasks, presumably because the need for context is greater 

when the semantic relationship is less readily available. This hypothesis gains further 

support from studies that used semantically plausible and implausible sentences and found 

pMTG activation for the plausible sentences only (Adank & Devlin, 2010; Mashal, et al., 

2009), and another study in which pMTG activation was seen for context integration for 

verbs rather than nouns (Gennari, et al., 2007). Other studies have found pMTG to be 

active when participants combine information provided by spoken input and hand gestures 
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in an attempt to extract meaning (Dick, Goldin-Meadow, Hasson, Skipper, & Small, 2009; 

Holle, Obleser, Rueschemeyer, & Gunter, 2010; Kircher et al., 2009), making it a good 

candidate as a context integration ‘zone’. Additionally, the pMTG recruitment seen for 

tasks requiring feature selection may also reflect context integration as the ‘context’ may 

be driven by the relevant feature to attend to (i.e., liquid consistency – rather than 

association – in order to match custard with oil; Whitney, et al., 2012). 

However, we also found significant activation of the phonological tasks in pMTG, 

contrary to a recent meta-analysis which found this site to be semantic specific (Noonan, et 

al., submitted). Hickok and Poeppel (2000, 2007) suggest that this site is an interface 

between speech representations in STG and ATL, however, this interpretation is not 

compatible with our findings as we did see a significant modulation of difficulty for the 

picture semantic tasks, and when taken in conjunction with other studies that have shown 

involvement of pMTG for picture semantic tasks, this explanation, which is restricted to the 

linguistic domain, is unlikely to be the case. Perhaps the most helpful framework within 

which to assess the role of pMTG in language processing, given our findings, is that of a 

cortical hub, as suggested by Turken and Dronkers (2011), due to the wealth of connections 

this area has to other parts of the network. Therefore it may show some characteristics of 

both representation and control because it may be essential to the interaction of these two 

networks, and thus pMTG would be crucial for contextualising information, as well as 

possibly for integrating phonological and semantic information in order to comprehend 

spoken input. 

Angular Gyrus/Parietal Cortex 

 Angular gyrus has often been implicated in semantic cognition, and recent 

evidence suggests that there are several functional specialisations within this large area. 

dAG/IPS has been shown to be involved in tasks spanning several domains (e.g., reading, 

visuospatial search and 'number line' tasks, left/right discrimination; Carreiras, et al., 2009; 

Gobel, et al., 2001; Hirnstein, et al., 2011), including semantic processing (e.g., Noonan, et 

al., submitted; Price, 2010; Seghier, et al., 2004; Sharp, et al., 2010; Vigneau, et al., 2006). 

We found a greater response to phonological than semantic material (theme i); however, 

this site on the boundary of IPS, AG and SMG was still significantly activated for resolving 

difficulty across semantic modalities (theme i and ii) – corroborating previous findings that 

this site is involved in domain general cognitive control (theme ii). Our finding that this site 
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showed the strongest response to the phonological hard task may relate to its role in 

feature selection and integration (e.g., Donner, et al., 2000; Friedman-Hill, Robertson, & 

Treisman, 1995). A recent TMS study showed that stimulation of this site caused disruption 

of feature selection tasks (across domain), but not verbal associative semantic judgments 

(Whitney, et al., 2012); we found a greater contribution of this site to the phonological 

segmentation than the semantic association tasks, and it is possible that the phonological 

segmentation task captured some aspect of feature selection and integration. One could 

speculate that if our semantic tasks had required feature selection we might have seen an 

equivalent response for phonological segmentation and semantic feature selection. 

However, despite the greater response for the phonological tasks, dAG/IPS was significantly 

activated by our semantic tasks, and showed a significant modulation of activity when 

demands on semantic control increased, corroborating previous studies that have reported 

activation at this site for tasks requiring some aspect of semantic control (e.g., Bedny, et al., 

2008; Hirshorn & Thompson-Schill, 2006; Lee & Dapretto, 2006; Noonan, et al., submitted). 

Additionally, our results align with other studies implicating mid AG as a part of the 

semantic control network (e.g., Hoenig & Scheef, 2009; Noonan, et al., submitted; Seghier, 

et al., 2004; Sharp, et al., 2010): we found an amodal response in this area to semantic 

association judgements, that was modulated by difficulty. It is therefore unlikely that this 

site acts as a ‘second’ cortical hub for storage of semantic representations, as the 

significant modulation of activity for the difficulty manipulation seen at this site for both 

semantic modalities does not align with this suggestion. There has been some suggestion 

that mid AG acts as a multimodal integration area for conceptual knowledge, and our 

results could reflect this role, where mid AG “coordinates reciprocal interactions between 

the sensory representation of words and objects and the symbolic association that gives 

them meaning” (Vigneau, et al., 2006, p. 1424), reflected in the amodal response of this 

area to our semantic judgements . Additionally, if mid AG were a semantic hub it should 

respond exclusively to the semantic domain, and we would not predict a significant 

response for our phonological tasks, however, mid AG was also significantly activated by 

the phonological domain. The equivalent response to the phonological and semantic 

domains may reflect previous findings that this site is involved in reading (e.g., Carreiras, et 

al., 2009) – which requires access to phonology. This indicates a slight revision of existing 

theories that postulate a specific role of mid AG in semantic cognition, as it may be better 
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conceptualised as an interface for language across domains, due to its connections to 

various association areas (Binder, et al., 2009).  

Distributed Network (Figure 7-2) 

 We present a complex network of brain areas that are often both domain/modality 

(theme i) invariant and sensitive to changing demands on control (theme ii). Combining the 

data in this thesis with the literature suggests that while some areas may show 

specialisation by domain, they often still help to resolve difficulty across other language 

domains. Our data suggest that the control processes in frontal and posterior cortices may 

be distinguishable such that frontal cortex may be more involved in retrieval/selection and 

posterior cortex in integrating information. We found LIFG to be essential to 

retrieval/selection processes and suggest that the most anterior aspect of IFG is most likely 

recruited for abstract semantic processing. The role for information integration in posterior 

cortices may fall along the following gradient: feature selection in dAG/IPS (via the 

allocation of attention to internal representations); domain general (language) integration 

in mid AG, e.g., for reading which requires accessing both phonology and semantics; and 

context integration in pMTG, due to its rich connections across the cortex (Gennari, et al., 

2007; Noonan, et al., submitted; Price, 2010; Turken & Dronkers, 2011). Therefore, frontal 

and posterior cortices interact in order to select and use language in a time sensitive and 

appropriate manner. The anatomical and functional connections between frontal and 

posterior brain areas support this assertion (Catani, et al., 2005; Parker, et al., 2005; Spreng 

& Schacter, 2012; Turken & Dronkers, 2011; Xiang, et al., 2010), as well as a recent 

combined TMS and fMRI study demonstrating that pMTG and LIFG may work together via 

reciprocal connections in order to disambiguate the given semantic context, as shown by 

increased activation in pMTG following ‘virtual lesion’ stimulation of LIFG (i.e., 

compensatory activation; Whitney, et al., submitted). Additionally, the literature suggests 

that BA 44 and PMC may work together in resolving phonological tasks, with a possible 

modulation of PMC by BA 44 (Watkins & Paus, 2004), for instance when motor articulatory 

simulation is required, such as when rare/pseudowords are encountered (Kotz, et al., 

2010). 
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Figure 7-2. Distributed network of areas investigated in this thesis. Areas found to be 

preferential for phonology in green, semantic in red, and domain general in blue.  

Future Directions 

 This thesis provides evidence for a distributed network of brain areas contributing 

to both domain general and domain specific control over language representations. 

Naturally, there are questions which remain to be answered in view of the findings 

presented here. An important first step might be to replicate our findings from Chapter 2, 

using different tasks. For example, using a task that better mimics ‘natural’ speech 

perception, such as hearing degraded speech with or without context to test whether PMC 

is necessitated when phonetic ambiguity cannot be resolved based on context. Also, our 

data go some way in clarifying the role of LIFG in language processing across domain and 

modality; but future studies may wish to clarify the degree to which aIFG is activated by 

abstract picture semantic associations, by specifically creating picture semantic associative 

questions designed to vary in degree of ‘abstractness’. Our study used verbal ratings of 

‘associativeness’ to create the picture semantic tasks, however, these ratings may be less 

‘accurate’ for the picture modality; a more tightly constrained task would help to identify 
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this sites role in amodal abstract semantic processing. Therefore, collecting independent 

ratings of the semantic associative relationship for the picture trials would help to elucidate 

the degree to which the picture semantic associative relationship accurately captures the 

‘assumed’ association strength based on previous verbal ratings. Furthermore, a picture 

metaphor task might better capture ‘abstract’ picture semantic processing, whereby 

metaphors could be presented across verbal and picture domains in order to assess the 

contribution across the network of verbal and picture semantic ‘abstract’ processing, and 

with specific ROI’s in aIFG bilaterally to assess activation to amodal ‘abstractness’.  

Additionally, our verbal semantic tasks were not expressly designed to be abstract, 

therefore a study which uses judgments that have been specifically designed to vary in 

degree of ‘abstractness’ (e.g., perhaps by using a continuum from concrete – abstract and 

using this as a regressor in the model) would help confirm the role of aIFG in abstract 

semantic control. We also confirmed the role of mid LIFG (BA 45) in both retrieval and 

selection processes, and Snyder et al. (2011) suggest that the response in anterior LIFG is 

the same. Our result that aIFG showed greater specialisation for verbal, and thus possibly 

more abstract judgments, is in line with their finding where low association strength 

showed the greatest response, regardless of added competition. Therefore, a worthwhile 

advance would be to disambiguate the need for abstract semantic processing from 

competition and retrieval. For example, a possible avenue for exploration could be using 

tasks such as cyclical spoken word-to-written word matching where retrieval and selection 

processes can be separated across related and unrelated conditions and cycles – but with 

abstract and concrete groupings (e.g., concrete: apple – banana – pear - orange; abstract: 

democracy – freedom –  politics – republic, but matched for frequency; Crutch, Ridha, & 

Warrington, 2006). This could be done using fMRI as a first step, in a factorial design (site: 

BA 47/ BA 45/ pMTG; by condition: related/unrelated; by concreteness: abstract/concrete; 

by cycle: one – three) where anterior IFG may show a greater response when retrieval and 

selection interact for abstract, but not concrete words; BA 45 when the demands on 

retrieval and selection are maximal across both abstract and concrete words; and pMTG 

may show a maximal response across cycles for the abstract condition, as these words may 

often require greater ‘context’ integration.   

One major line of investigation is the role of pMTG in language processing. The 

results presented in this thesis suggest that the role of this site may have only been 

partially captured by the tasks we used. For example, future studies could investigate the 
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contribution of pMTG to context integration, a role previously suggested in the literature 

(Gennari, et al., 2007; Noonan, et al., submitted; Price, 2010); our tasks were not designed 

to assess context integration, and therefore may not have been well placed to identify the 

specific role of this site. Therefore, designing tasks that require context integration and 

possibly comparing these with traditional tasks (e.g., semantic association judgments) may 

be a good starting point. Additionally, a recent meta-analysis found that the majority of 

studies reporting pMTG activation lay in the receptive domain (Noonan, et al., submitted), 

and we too did not find any involvement of pMTG for our production tasks (Chapter 6), 

however these results cannot confirm a role for pMTG in comprehension, but not 

production, because we did not have a comprehension task for comparison and it could 

therefore be the task requirements, not the domain, that we failed to disrupt with TMS. 

Future studies directly comparing pMTG involvement across speech modalities would be 

invaluable in further elucidating the role of this site in semantic cognition. A natural 

starting point may be a TMS study using comprehension versions of the cyclical semantic 

task we used in Chapter 6 to confirm pMTG recruitment (or lack thereof) across cyclical 

tasks types, and therefore helping to elucidate the role for this site in either/both 1) 

production/comprehension and 2) control processes engaged by cyclical tasks. 

Furthermore, tasks that required context integration across production and comprehension 

domains would help to assess the contribution of pMTG to both context and 

comprehension/production; pMTG recruitment may thus far only have been seen for 

comprehension tasks, because these have required more context integration than 

production tasks. Additionally, the exact contribution of this site to phonological and 

semantic processing is unclear given the tension between our results indicating a role for 

this site in phonological processing and other studies suggesting that this site is exclusive to 

the semantic domain (Noonan, et al., submitted). Other models of language have included 

a role for pMTG as an interface between the two domains (Hickok & Poeppel, 2000, 2007); 

it would, therefore, be interesting to clarify the role of this site in language processing in 

order to discover the specific role pMTG has to play: our ROI may have encompassed some 

of pSTG as it was fairly large and not anatomically defined for each participant. Therefore, 

studies using more precise functional and anatomical localisers may better elucidate the 

role of pMTG in phonological and semantic processing. For example, it would be useful to 

use a semantic task which has previously been shown to modulate activity in pMTG 

according to the difficulty/control manipulation, and contrast this with a phonological task. 

In this case, the data could reveal a functional dissociation, such that the phonological 
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activation lies closer to/within STG, and semantic control within pMTG (e.g., ventral to 

STG); particularly if a functional localiser is used to identify these areas on a participant by 

participant basis.     

 Further elucidating the role of angular gyrus would also be a beneficial avenue for 

investigation, given that it has been implicated in a variety of task types. We found a 

significantly greater response to the phonological than the semantic domain in dAG/IPS, 

therefore it would be useful to investigate the specific role of this site in tasks requiring 

phonological segmentation and feature selection across domains (i.e., phonological, 

semantic, visual) to investigate whether the response is domain specific or due to a role for 

this site in domain-free feature selection/conjunction tasks. Additionally, mid AG would 

benefit from further study as the role of this site is still largely under debate and has been 

reported as an area of overlap between default and semantic networks (Seghier, et al., 

2010), with some studies reporting greater activation for semantic than phonological tasks 

(Binder, et al., 2009; Binder, et al., 1999); but our results indicate a domain general 

function for this site. Therefore, further clarification is needed using non-language tasks to 

compare the response of this region directly with tasks such as ours which investigated 

controlled access to language representations (phonological, verbal, picture semantic), to 

firstly establish if this site is indeed specific to language. Then, further studies could 

investigate the role for this site as a language interface with tasks designed to force 

integration of language domains and asses mid AG activity in resolving these tasks. 

Conclusions 

 This thesis sought to investigate the neural basis of linguistic and semantic 

processing within established brain networks by using convergent methods of fMRI and 

TMS. Much of the empirical work in this thesis takes inspiration from the 

neuropsychological literature which has helped to form our hypothesis as to specialisations 

by both domain/modality and control. We found that PMC was not recruited for meaning 

extraction, but rather for meta-linguistic tasks, possibly due to its role in articulation. 

Moreover, our data suggest a gradient of processing from PMC to anterior LIFG, such that 

PMC and more posterior parts of LIFG (BA 44) preferentially process phonological material, 

with domain and modality free processing in mid LIFG (BA 45), and the most anterior 

aspects of LIFG processing abstract semantic material. Furthermore, we confirmed the role 

of aLIFG (BA 45/47) in semantic control, and revealed that the retrieval and selection 

processes required for controlled access to semantic representations interact in LIFG.  
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Appendices 

Appendix 3.1  

Behavioural Results 

  Phonological vs. Verbal Semantic 

Task 

 df 1, 21 

F 46.98 

p < .001 

Difficulty 
 

F 590.53 

p < .001 

Task x Difficulty 

F 330.25 

p < .001 

F and p values for within subject ANOVAs comparing phonological and verbal semantic 

tasks. 

 

Behavioural performance across the phonological and verbal semantic experimental tasks. 

Error bars represent standard error of the mean. Asterisks represent significant differences 

in RT for difficulty manipulations (p < .001).  

  Phonological Verbal Semantic 

df 1, 21 1, 21 

t -26.67*** -9.47*** 

T-tests comparing RTs for easy and hard conditions for each task type.   

1 

1.2 

1.4 

1.6 

1.8 
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2.6 
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3 

Phonological Verbal Semantic 
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Appendix 3.2 

fMRI Results 

 

Whole brain analysis (cluster correction, Z > 2.3, p < .05). Phonological hard (green), verbal 

semantic hard (red) and mutual activity (blue). L = left, R = right hemisphere. 
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Cluster corrected whole brain analysis (Z > 2.3, p < .05) of phonological hard over rest. L = 

left, R = right hemisphere. Z values are indicated on the colour scale.     
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Cluster corrected whole brain analysis (Z > 2.3, p < .05) of semantic verbal hard over rest. L 

= left, R = right hemisphere. Z values are indicated on the colour scale.     
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Contrast of phonological hard > easy judgements 

          Voxel (MNI) 

  Brain Area BA Voxels Z x y z 

R Parietal Lobe, Precuneus  7 9375 5.75 28 -72 38 

L Middle Frontal Gyrus ~6 8038 5.05 -30 2 46 

R Fusiform Gyrus 37 1136 5.11 50 -62 -18 

L Inferior Temporal Gyrus 

 

525 4.72 -54 -62 -14 

R Middle Frontal Gyrus 8 426 4.17 28 8 46 

L Fusiform Gyrus 19 387 4.06 -24 -54 -12 

R Fusiform Gyrus 37 364 3.6 32 -50 -12 

L Brainstem 

 

109 3.6 -2 -24 -28 

R Fusiform Gyrus 36 98 3.1 42 -36 -26 

R Anterior Cingulate 25 80 3.63 8 4 -4 

L Inferior Temporal Gyrus 37 67 3 -52 -38 -20 

R Middle Frontal Gyrus 11 48 3.03 22 40 -16 

R Cerebellum 

 

45 2.94 34 -68 -36 

L Posterior Cingulate 29 44 2.79 -8 -42 6 

L Posterior Cingulate 23 32 3.02 -6 -34 24 

L Occipital Lobe 18 31 2.69 -16 -100 8 

R Caudate 

 

27 2.93 20 -24 26 

L Occipital Lobe 17 19 3 -10 -100 -4 

L Precentral Gyrus ~3 18 2.93 -38 -16 28 

L Orbitofrontal ~47 16 2.62 -28 32 -26 

R Lingual Gyrus 18 13 2.92 6 -94 -18 

L Sub Gyral ~45 12 2.69 -20 32 6 

R Posterior Cingulate 

 

10 2.61 10 -34 22 

L Rectal Gyrus 11 10 2.74 -4 16 -22 

Cluster corrected (Z > 2.3) contrast of hard > easy task difficulty for phonological 

judgements.  

 

 



194 

 

Contrast of semantic verbal hard > easy judgements  

          Voxel (MNI) 

  Brain Area BA Voxels Z x y z 

L IPL 40 698 3.8 -38 -58 44 

 
Sub peak 

  
3.35 -42 -44 34 

L/R Cingulate Gyrus 32 290 3.58 2 20 40 

L IFG 45/46 384 3.43 -48 32 18 

 
Sub peak; BA 9/44 

  
3.28 -40 6 24 

L MFG 8 150 3.25 -30 14 48 

L MFG 10 146 3.16 -38 52 6 

L 
Posterior Inferior 
Temporal Gyrus 37 57 3.1 -50 -62 -14 

L MFG 11 29 2.77 -34 54 -10 

L IFG 45 13 2.73 -48 38 2 

L Superior Frontal Gyrus  8 28 2.67 -8 20 56 

L IFG 47 12 2.61 -30 20 -6 

L Ventral Angular Gyrus 
 

25 2.6 -24 -74 30 

L Parietal Lobe 7 15 2.5 -18 -70 38 

        R Cerebellum 
 

200 3.54 32 -70 -36 

R Superior Parietal Lobule 7 113 3.39 28 -66 50 

R IFG 44/9 62 3.14 46 8 26 

R IFG 47 26 2.88 32 20 -4 

R pITG  37 25 2.69 48 -56 -12 

R Cingulate Gyrus 2 14 2.69 26 -24 32 

R IFG 45 15 2.56 44 24 18 

Cluster corrected (Z > 2.3) contrast of hard > easy task difficulty for semantic decisions. 
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Appendix 4.1 

Behavioural Results 

  Verbal vs. Picture Semantic 

Task 

 df 1, 21 

F 2.51 

p 0.13 

Difficulty 
 

F 109.97 

p < .001 

Task x Difficulty 

F 1.06 

p 0.32 

F and p values for within subject ANOVAs comparing verbal and picture semantic tasks. 

 

Behavioural performance across the verbal and picture semantic experimental tasks. Error 

bars represent standard error of the mean. Asterisks represent significant differences in RT 

for difficulty manipulations (p < .001). 

  Verbal Semantic Picture Semantic 

df 1, 21 1, 21 

t -9.47*** -6.26*** 

T-tests comparing RTs for easy and hard conditions for each task type. 
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Appendix 4.2 

fMRI Results 

 

Whole brain analysis (cluster correction, Z > 2.3, p < .05). Semantic hard tasks over rest: 

verbal (red), picture (cyan) and overlapping activity (blue). L = left, R = right hemisphere.  
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Cluster corrected whole brain analysis (Z = 2.3, p < .05) of semantic picture hard over rest. L 

= left, R = right hemisphere. Z values are indicated by the colour scale bar. 
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Contrast of semantic picture hard > easy judgements 

          

Voxel 

(MNI) 

  

  Brain Area BA Voxels Z x y z 

L Mid Occipital Gyrus 18 361 3.4 -30 -94 -6 

R Brainstem 

 

74 3.18 10 -22 -24 

R Mid Occipital Gyrus 19 33 3.09 46 -84 0 

R Occipital Lobe 18 134 2.79 28 -100 -8 

R Temporal Lobe 28/38 11 2.76 32 12 -24 

R Temporal Lobe 20 13 2.72 44 -18 -24 

R IFG 47 14 2.66 54 22 -6 

R Posterior ITG/MTG 21 10 2.64 66 -42 -14 

Cluster corrected (Z = 2.3) contrast of hard > easy task difficulty for picture judgements. 
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Appendix 5.1 

Accuracy Data. 

  Phonological Semantic Picture Semantic Verbal 

 

Easy Hard Easy Hard Easy Hard 

BA 44 

            Baseline 0.97 (0.01) 0.89 (0.02) 0.99 (0) 0.89 (0.01) 0.95 (0.01) 0.9 (0.02) 

TMS 0.98 (0.01) 0.91 (0.02) 0.98 (0.01) 0.84* (0.02) 0.95 (0.01) 0.86* (0.02) 

BA 47 

            Baseline 0.98 (0.01) 0.93 (0.01) 0.96 (0.01) 0.84 (0.02) 0.97 (0.01) 0.88 (0.02) 

TMS 0.97* (0.01) 0.87 (0.02) 0.97 (0.01) 0.85 (0.02) 0.96 (0.01) 0.89 (0.01) 

pMTG 

            Baseline 0.97 (0.01) 0.9 (0.01) 0.98 (0.01) 0.86 (0.02) 0.97 (0.01) 0.87 (0.02) 

TMS 0.98 (0.01) 0.9 (0.01) 0.98 (0.01) 0.87 (0.02) 0.97 (0.01) 0.89 (0.02) 

OP 

            Baseline 0.98 (0.01) 0.92 (0.01) 0.98 (0.01) 0.84 (0.02) 0.95 (0.01) 0.89 (0.02) 

TMS 0.98 (0.01) 0.93 (0.02) 0.98 (0.01) 0.83 (0.02) 0.95 (0.01) 0.87 (0.02) 

Accuracy data for baseline and TMS data. pMTG = posterior middle temporal gyrus, OP = 

occipital pole. Asterisks indicate any uncorrected, two-tailed, paired planned comparisons 

that were significant for the comparison between baseline and post TMS performance; 

standard error in parentheses.  
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Appendix 5.2 

TMS effects to demonstrate facilitation for hard tasks. 

 

TMS effects. Difference in RT between TMS and baseline performance (TMS – no TMS) for 

each site. Positive values indicate a decline in performance following TMS. Error bars 

indicate standard error of the mean. 
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Hard only: TMS effects. Difference in RT between TMS and baseline performance (TMS – no 

TMS) for each site. Positive values indicate a decline in performance following TMS. Error 

bars indicate standard error of the mean.  
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Appendix 5.3 

Composite Scores 

Average RT  

  Phonological Semantic Picture Semantic Verbal 

 

Easy Hard Easy Hard Easy Hard 

BA 44 

            Baseline 1317 (56) 3267 (252) 1259 (45) 2404 (141) 1516 (44) 2479 (133) 

TMS 1307 (69) 3156 (208) 1330 (63) 2432 (136) 1607 (68) 2489 (121) 

BA 47 

            Baseline 1267 (51) 2837 (110) 1320 (44) 2386 (108) 1425 (44) 2423 (159) 

TMS 1332 (59) 2995 (187) 1361 (49) 2340 (87) 1587 (65) 2273 (92) 

pMTG 

            Baseline 1369 (73) 3113 (187) 1259 (48) 2509 (141) 1482 (47) 2616 (140) 

TMS 1356 (76) 3090 (175) 1388 (53) 2313 (116) 1552 (69) 2468 (155) 

OP 

            Baseline 1305 (59) 2894 (142) 1270 (51) 2436 (133) 1515 (46) 2472 (137) 

TMS 1286 (57) 2959 (172) 1340 (75) 2580 (147) 1602 (58) 2475 (187) 

Composite Score Average RTs. Reaction time given in ms, standard error of the mean in 

parentheses. 

  TMS TMS x Task TMS x Diff TMS x Task x Diff 

df 1, 21 1, 21 1, 21 1, 21 

BA 44 

    F 0.013 1.483 1.146 0.015 

p 0.909 0.237 0.297 0.905 

BA 47 

    F 0.802 1.249 1.925 3.14 

p 0.381 0.276 0.18 0.091 

pMTG 

    F 0.434 0.055 1.921 1.244 

p 0.517 0.817 0.18 0.277 

OP 

    F 0.467 0.075 0 0.999 

p 0.502 0.787 0.999 0.329 

F and p values for phonological vs semantic verbal tasks. pMTG = Posterior Middle 

Temporal Gyrus, OP = Occipital Pole. 
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  TMS TMS x Task TMS x Diff TMS x Task x Diff 

df 1, 21 1, 21 1, 21 1, 21 

BA 44 

    F 0.798 0 0.442 0.083 

p 0.382 0.992 0.513 0.776 

BA 47 

    F 0.001 0.017 4.961 2.854 

p 0.971 0.898 0.037* 0.106 

pMTG 

    F 0.714 0.012 10.814 0.824 

p 0.408 0.915 .004** 0.374 

OP 

    F 1.831 0.778 0.003 0.763 

p 0.19 0.388 0.958 0.392 

F and p values for verbal and picture semantic tasks. pMTG = Posterior Middle Temporal 

Gyrus, OP = Occipital Pole ***p < .001, **p < .005 *p < .01. 

 

  Phonological Verbal Picture 

 

Easy Hard Easy Hard Easy Hard 

df 21 21 21 21 21 21 

BA 44 

      t .344 .890 -1.764 -.091 -1.88 -.214 

p .734 .384 .046*a .929 .037*a .833 

BA 47 

      t -1.608 -.970 -2.668 1.28 -1.282 .509 

p .123 .343 .007*a .214 .214 .616 

pMTG 

      t .436 .165 -1.774 1.438 -4.021 2.370 

p .667 .870 .046*a .165 .0005*a .027† 

OP 

      t .728 -.553 -2.512 -.024 -1.338 -1.226 

p .475 .586 .020* .981 .195 .219 

T-tests comparing RTs for baseline and post TMS performance at each site. pMTG = 

posterior middle temporal gyrus, OP = Occipital Pole; *p < .05, ***p < .001, all 

comparisons are two-tailed. * denotes significant disruption; †denotes significant 

facilitation; aone-tailed t-test 
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Appendix 6.1  

balls balls 2 
baked 
goods birds boats cars 

boomerang rugby ball  cookie dove speed-boat taxi 

shuttlecock basketball ball  
Gingerbrea
d pigeon submarine beetle / bug 

tennis ball beachball croissant seagull rowboat smartcar 

golf ball bowling ball muffin robin cruise-ship mini  

frisbee football ball  waffles magpie sailboat limo 

cartoons cartoons 2 cereals clothing 
computer 
goods dogs 

pinocchio snow white muesli jeans mouse chihuahua 

dumbo homer cornflakes leggings laptop dalmatian 

eeyore cheshire cat porridge dungarees printer labrador 

mickey 
mouse bugs bunny shreddies skirt scanner terrier 

piglet  shrek weetabix shorts keyboard poodle 

drinks evening wear flowers fruits garden tools hats 

coffee ballgown rose apricot shears cowboy-hat 

coke bowtie poppy grapes shovel baseball-cap 

water cufflinks daffodil  kiwi fork hard-hat 

orange juice waistcoat tulip strawberry spade helmet 

tea tuxedo dandelion plum trowel chef-hat 

herbs/spices instruments 
instruments 
2 jewelry kitchen goods 

kitchen 
goods 2 

garlic recorder violin locket jug 
coffee 
machine 

salt flute piano bracelet Kettle kettle 

herbs saxophone cello Earrings bottle fridge 

chillies bagpipes guitar necklace teapot microwave 

pepper drums xylophone ring mug toaster 

kitchen 
goods 3 pastries pets puddings sea creatures transport 

grater cornish pasty tortoise 
christmas 
pudding jellyfish Bus 

kitchenknife pie  goldfish trifle seahorse train 

ladle sausage roll snake  donut starfish tube 

peeler 
yorkshire 
pudding hamster cake octopus taxi 

spatula quiche rabbit cheesecake stingray tram 

tools vegetables 
vegetables 
2 wintergear zoo animals zoo animals 2 

axe cauliflower Radish gloves koala giraffe 

screw driver bean carrot coat camel rhinocerous 

chainsaw broccoli potato hat kangaroo elephant 

cordless drill  cabbage onion scarf panda gorilla 

saw peas pepper mittens monkey polar bear 
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Appendix 6.2 

Accuracy Data 

  LIFG pMTG 

 

Baseline TMS Baseline TMS 

Related 

        Cycle 1 94.1 (1.776) 94.62 (1.336) 94.87 (1.628) 93.08 (1.622) 

Cycle 2 94.36 (1.328) 97.18 (0.913) 95.64 (1.528) 93.08 (1.867) 

Cycle 3 94.87 (1.628) 93.59 (2.15) 94.1 (1.563) 94.36 (1.786) 

Cycle 4 94.1 (1.776) 96.15 (1.057) 93.59 (2.083) 92.56 (1.893) 

Cycle 5 94.1 (1.261) 92.56 (1.93) 95.13 (1.755) 93.33 (1.688) 

Cycle 6 93.08 (2.083) 94.36 (1.618) 93.59 (2.279) 94.36 (1.939) 

Unrelated 

       Cycle 1 92.56 (1.893) 93.85 (1.919) 94.36 (0.954) 94.62 (1.389) 

Cycle 2 94.36 (1.574) 96.41 (1.098) 96.92 (1.098) 94.87 (1.17) 

Cycle 3 97.18 (0.913) 96.15 (1.123) 98.21 (0.894) 96.15 (1.502) 

Cycle 4 97.44 (0.936) 95.9 (1.736) 97.95 (0.804) 98.21 (0.61) 

Cycle 5 97.44 (0.936) 95.9 (1.009) 95.13 (1.947) 97.18 (0.913) 

Cycle 6 95.13 (2.789) 97.95 (0.71) 97.95 (0.804) 97.18 (0.74) 

Accuracy Data. LIFG = left inferior frontal gyrus, pMTG = posterior superior temporal gyrus. 

Average Accuracy, standard error in parentheses. No paired comparisons (Baseline - TMS) 

reached significance. 
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Appendix 6.3 

Six Cycle Refractory Data 

 

df F p 

Condition 1, 12 54.768 .000** 

Cycle 5, 60 55.712 .000** 

Condition x Cycle 5, 60  67.805 .000** 

Site  1, 12 1.266 .092 

TMS 1, 12 1.972 .186 

TMS x Condition 1, 12 5.626 .035* 

TMS x Condition x Cycle 5, 60  3.363 .010* 

Site x TMS x Condition x Cycle 5, 60  <1 .738 

F and p Values for between sites ANOVA; **p < . 001, *p < .05 

  TMS x Condition x Cycle 

df 5, 60 

LIFG 

 F 2.416 

p .046* 

pMTG 

 F 1.45 

p .220 

F and p values for ANOVA at each site for to assess TMS by condition by cycle interaction; 

*p < .05. 

  Related Unrelated 

 

TMS TMS x Cycle TMS TMS x Cycle 

df 1, 12 5, 60 1, 12 5, 60 

F 1.677 2.172 3.704 2.416 

p .220 .069 .078 < 1 

F and p values for LIFG ANOVAs of related and unrelated sets. 

TMS df t p 

 

Baseline df t p 

Cycles 1-2 12 3.578 .004* 

 

Cycles 1-2 12 2.994 .011 

Cycles 2-3 12 1.176 .263 

 

Cycles 2-3 12 -1.371 .196 

Cycles 3 - 4 12 -2.049 .063 

 

Cycles 3 - 4 12 -0.503 .624 

Cycles 4 - 5 12 0.593 .564 

 

Cycles 4 - 5 12 -0.289 .778 

Cycles 5 - 6 12 0.727 .481 

 

Cycles 5 - 6 12 0.183 .858 

Bonferroni corrected two-tailed T-tests (adjusted alpha of .01 (.05/5) per test) for LIFG 

comparing RTs between cycles, for TMS and baseline performance; *p < .05. 
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