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Summary

Energy transport is a fundamental aspect of solar atmospheric dynamics. Plasma motions

can generate concentrated magnetic flux, driving large-scale transients such as solar flares

and coronal mass ejections, which pose an increasing threat to space- and ground-based

infrastructure. However, direct measurement of plasma flows on the Sun remains unfeasible,

raising a critical question: how can plasma flows be accurately recovered from observations?

In a step toward answering this question this thesis employs the neural network Deep-

Vel for estimating flows in new scenarios including active regions and the chromosphere, thus

enabling the estimation of flows by assimilating data from state-of-the-art simulations. Deep-

Vel was further extended to higher regions of the solar atmosphere, where a reduced optical

thickness results in less coherent apparent motions. By training on a simulation containing

swirling motions in the chromosphere, the networks ability to identify coherent swirls against

an incoherent background was tested using a vortex detection method. Network performance

was evaluated by undergoing cross-validation with simulations, performing error analysis and

comparing with the widely-used Fourier-based local correlation tracking technique. Its abil-

ity to imitate the physics present was also tested for the first time by identifying through

Lagrangian coherent structures in the recovered flows.

Results highlight that DeepVel is highly capable for identifying coherent flow structures,

that determine the evolving flow dynamics, across simulations. These flow structures were

shown to correspond well to the presence of emerging active regions thus presenting a promis-

ing performance for use with real-world observations for forecasting and tracking the presence

of active regions. Despite currently available data, both simulated and observed, tests indi-

cate success in applying DeepVel to chromospheric plasmas.
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Chapter 1

Introduction

Our nearest star, the Sun, is responsible for providing energy to, and maintaining of, all life

on Earth. It is home to a great number of phenomena, driven by its magnetic field, which are

constantly interacting with the magnetosphere of the Earth. The effects of this interaction is

called space weather (SW; see Schwenn 2006, for details of its nature and impact). Examples

of phenomena which strongly influence SW are solar flares (SFs) and coronal mass ejections

(CMEs). These are a result of the reconnecting of magnetic fields in the solar atmosphere,

have the potential of disturbing the Earth’s magnetic field and introducing an influx of highly

energetic ions into the ionosphere. These disturbances and particles have the potential to

cause damage to space- and, in extreme cases, ground-based infrastructure. Perhaps the most

famous recent example is when a CME caused an atmospheric disturbance on Earth, causing

a rocket, carrying Starlink satellites into orbit, to burn up and re-enter the atmosphere. In the

case of ground-based infrastructure, in 1989 a powerful SF caused a large perturbation in the

magnetosphere, causing a build-up of currents at the Earth’s surface, resulting in disrupting a

power station in Quebec and thus causing a 12 hour power outage (Boteler 2019). Therefore,

understanding the Sun in its entirety is of great interest, not only for the curiosity of mankind

but also for protecting the infrastructure that is necessary for maintaining our technology-

dependent lifestyle. The transport of energy, including the magnetic field, across the solar

surface and between layers of the atmosphere is largely driven by fluid motions of plasma, of

1
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which the Sun is mostly comprised. To understand how plasma flows influence the magnetic

field topology of the Sun, we need to be able to identify such systems and produce effective

physical models from real-world data. The Sun provides the largest natural laboratory for

magnetised plasma and thus should be studied extensively. However, a key problem with

studying motions in the solar atmosphere is that the velocity field of the plasma cannot be

measured directly, and only inferred through other means. Thus a hugely important question

in the literature for understanding the dynamics of the Sun and processing the large swathes

of data being collected is: how can plasma flows be inferred from observations of the solar

atmosphere, both accurately and efficiently? This thesis aims to answer this by testing a

neural network approach for assimilating data from simulations of the solar atmosphere for

application with observations.

1.1 Solar Structure

The Sun is highly stratified, with each stacked layer being distinguished from the others by

its density, temperature and dynamics (see fig. 1.1 for more details). Deep within the core

of the Sun, energy is produced by means of nuclear fusion, this energy is driven outwards by

different mechanisms, including radiative diffusion and convection. At the surface of the Sun,

the atmosphere begins, where plasma moves more freely and energy can be transported along

magnetic fields. The solar atmosphere is dubbed the heliosphere, which encompasses the

entire solar system (see Priest 2014). In the following paragraphs, these layers are described

in more detail.

Solar Interior

The interior of the Sun has been determined through helioseismology (e.g., see Gizon & Birch

2005), similar to seismology on Earth, different dynamics are determined by measuring how

waves propagate through the solar interior.

Starting from the centre, the core of the Sun is an incredibly dense region, with density of

≈ 1.54× 105kgm−3, in which nuclear fusion takes place as a result of extreme temperatures
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and confinement due to gravity, at the surface g� = 274ms−2 (≈ 28× Earth gravity). The

nuclear fusion of mainly hydrogen into helium produces kinetic energy and thus exerts an

outward pressure, preventing the collapse of the star. The core accounts for 0.25R�, where

1R� = 695.5Mm is the solar radius (Priest 2014).

Radiative zone

Beyond the core is the largest part (0.25–0.7R�) of the solar interior, the radiative zone. In

this region, energy is transported out from the core by means of radiative diffusion.

Convective region

The convective region (0.7–1R�), which sits on top of the radiative zone, transports heat

mainly through means of convection. Here, plasma is heated by radiation at the bottom

and then, under buoyancy, rises to the solar surface, known as the photosphere (the first

visible layer), where the plasma cools via radiation, causing the plasma to fall and repeat

the process. It is presumed that within this region, a dynamo action takes place in which

electrically charged plasma generates magnetic fields through shearing motions, however, the

exact nature of how the Sun’s magnetic field is generated is uncertain.

The plasma in the solar interior is so incredibly dense that if one were to trace the path

of energy produced in the core, the photons responsible for transporting this energy take

hundreds of thousands of years to reach the surface due to the photons being reabsorbed and

re-emitted. Whereas if the photon was unimpeded and travelling through a vacuum, it would

cover the same distance in a little over 2 seconds (Priest 2014).

Solar Atmosphere

The solar atmosphere is highly stratified and contains a wide range of plasma dynamics

including sources for wave excitation. It consists of several layers that are split into the pho-

tosphere, the chromosphere and the solar corona. The aforementioned layers form the outer

region of the Sun which is optically translucent and hence visible in a range of spectra. The
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Figure 1.1: Diagram from Priest (2014), showing a rough description of the
internal and external structure of the Sun. At the centre is the dense core in
which nuclear fusion takes place. Energy radiates outward from the core in the
radiative zone which heats and drives the convective region. The surface of this
region is the first visible layer of the atmosphere, the photosphere. The photosphere
transitions into the chromosphere and then into the corona which fills the entire
heliosphere.

regions are split into regions based on dynamics and properties such as density, temperature

and optical thickness.

The optical thickness of a medium defines how transparent it is. Suppose the intensity of

radiation at the source of an object is given by I0. Then the observed intensity I is measured

to be

I = I0e
−τ , (1.1)

where we call τ the optical thickness (Priest 2014). That is, the optical thickness defines how

much radiation remains not scattered or unabsorbed by a medium at the point of observation.

The first visible layer of the Sun is the photosphere, which is often labelled as the surface.

It measures up to a few hundred km above the top of the convective region. This region

has optical thickness τ . 1 in near-ultraviolet, visible and near-infrared light, however it is

optically thick in most strong spectral lines. Because of the optical thickness across the light

spectrum, the photosphere is typically observed with white light or continuum intensity which

measures radiative intensity over all wavelengths. The entire photosphere facing the Earth
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Figure 1.2: The above figure depicts the structure of the solar atmosphere based
on height, temperature and density. Between 0 and 1000km above the surface lies
the first visible layer, the photosphere. The photosphere is the densest region of
the atmosphere and is also home to the coolest region of the solar exterior. The
next region, by height, is the chromosphere, this region is visible in strong spectral
lines and is significantly less dense than the photosphere, where the magnetic field
begins to dominate. In the upper chromosphere lies the transition region where
there is a sudden heating of the atmosphere and a rapid decline in the density.
The corona is the uppermost region of the solar atmosphere. It fills out the entire
heliosphere, which encloses the solar system. The corona has a temperature range
in the millions of Kelvin, several Mm from the solar surface and is sparse in
plasma, but is dominated by magnetic fields, i.e. β < 1. The figure was taken
from Lang (2007).

is constantly monitored using the Solar Dynamics Observatory/Helioseismic and Magnetic

Imager (SDO/HMI; see Scherrer et al. 2012) instrument which takes images of the continuum

intensity (over the Fe-I line at 6173Å) and the magnetic field via the Zeeman effect (e.g., see

Babcock 1967, for details).

The chromosphere sits above the photosphere and stretches to a few thousand km above

the solar surface, an example image of the chromosphere taken by the Swedish Solar Telescope

(SST; see Scharmer et al. 2003) CHROMospheric Imaging Spectrometer (CHROMIS; e.g.,

see the discussion by Löfdahl et al. 2021) instrument is presented in fig. 1.5. It is optically

thin except in strong spectral lines; strong lines are those with emissions that have a strong

intensity and typically have designated Fraunhofer lines, e.g. the C and F lines corresponding
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Figure 1.3: Examples of photospheric images from the helioseismic and magnetic
imager (HMI) instrument, onboard the solar dynamics observatory (SDO). Shown
on the left are magnetogram images, where dark regions indicate negative polarity
of the magnetic field and the lighter regions have a positive polarity. In the centre,
the continuum intensity is shown, where the dark regions indicate a drop in inten-
sity. On the right, the Doppler measurements over the disk of the Sun are shown.
The lighter regions indicate motion away from away from the viewer; note here
that the rotation of the Sun directly influences measurements. Images courtesy of
NASA.

to H-α and -β respectively, and the H and K lines corresponding to different changes in energy

levels of singly-ionised calcium, which release photons in the near-ultraviolet at 396.847nm

and 393.366nm, respectively (see fig. 1.4). The chromosphere is particularly hard to study

due to the spectral lines produced in this region covering a wide range of heights, presented

in fig. 1.6.

At the top of the chromosphere lies the transition region in which there is a sharp drop in

the density, around 1 order of magnitude, of the plasma and a steep gradient in temperature

corresponding to an increase of around 2 orders of magnitude, contributing a large heating

to the outer atmosphere, shown in fig. 1.2. This is due to a range of complex dynamics which

contribute to the transport of energy and couple it strongly to the next and final layer of the

solar atmosphere.

The solar corona extends out from the transition region into the heliosphere, which en-

closes the solar system. The corona is optically thin in almost all of the electromagnetic

spectrum, but is visible in white light during solar eclipses or using a coronagraph. The

corona is home to almost entirely transient phenomena, which can be viewed in X-ray spec-
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Figure 1.4: Figure depicting some of the key Fraunhofer lines and the elements
responsible for their formation. Each sharp dip in the spectral irradiance highlights
a distinct spectral line. Here, the H-α, -β, Fe and Ca lines, are of specific interest
due to their correspondence with the solar photosphere and chromosphere. Namely,
the H-α and -β lines and the Ca lines are used to observe the chromosphere and
the Fe lines are used to study the photosphere. Image taken from Cyamahat (2022)

.

tra. Observations reveal 3 primary structures in this part of the atmosphere, these are coronal

holes, coronal loops and X-ray bright points. The first appears as darkened regions in the

solar atmosphere due to a drop in the relative density of plasma, which is transported along

open field lines into the solar wind. Coronal loops are large structures consisting of closed

magnetic field lines which connect the opposing polarities of ARs in the photosphere. The

last of these refers to small loop structures with a typical diameter of 22Mm that appear

across the disk of the Sun in great numbers and last only a few hours (Priest 2014).
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Figure 1.5: Example of an image of the chromosphere, highlighting a brightening
caused by footpoints of a magnetic loop structure, taken in the Ca II (K line of
the Fraunhofer spectrum) taken by SST/CHROMIS. Image taken from Testa et al.
(2023).

Active Regions

The structure of the solar atmosphere is highly dynamic, however as described above, we

are able to distinguish the atmosphere into layers based on somewhat static properties. This

distinction is in fact typical in descriptions of the Sun, which can be considered as the

superposition of two paradigms. The first is dubbed the ‘quiet Sun’ (QS); in this paradigm

we consider the Sun to be a large, rotating gaseous body—where properties vary radially out

from the core. The second paradigm is more complex and thus significantly more interesting;

it describes the ‘active Sun’ in which the Sun exhibits largely transient behaviour as a result

of its ever-changing magnetic field (Priest 2014).

The active Sun covers all transient phenomena such as SFs and CMEs, most of which are

driven by the dynamics of the Sun’s magnetic field. Magnetic features on the solar surface

often manifest as sunspots and pores which can be observed, using appropriate protective

equipment, by eye. Any region with a significant level of magnetic flux is termed an active

region (AR). ARs are the hubs of notable activity on the Sun and present an opportunity
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Figure 1.6: Figure showing the Vernazza, Avrett and Loeser (VAL) model for
the solar atmosphere. The axes show the temperature of regions of the solar at-
mosphere against their respective heights. This highlights the formation heights of
spectral lines present in observations. The figure was taken from Vernazza et al.
(1981).

to understand the influence of strong magnetic fields on plasma, which is useful not only

in modelling the Sun and SW, but also in the context of energy production, where strong

magnetic fields are used to confine plasmas for nuclear fusion.

Active regions, defined by van Driel-Gesztelyi & Green (2015) encompass the totality of

observable phenomena represented by magnetic fields from the photosphere up to the corona,

visible from radio waves to high-energy X- and γ-rays, which accompany the emergence of

strong twisted magnetic flux on the ≥ kG scale. This definition is useful but is based on

what can be observed during the presence of a sunspot and leaves questions about how the

flux emerges and decays, as well as ignoring scale and density. A stronger definition should
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discuss preceding physics which appear alongside the AR such as strong up and downflows

(several to tens of kms−1) observed through Doppler velocities (see Strous & Zwaan 1999),

horizontally diverging flows prior to emergence (see Toriumi et al. 2012) and a minimum

lifetime of days (van Driel-Gesztelyi & Green 2015). However, for simplicity and practicality

throughout this thesis, the definition of > 1kG magnetic flux will be used when applicable.

ARs form due to strong near-horizontal flux tubes, which are generated by a dynamo

action at the bottom of the convective region. These magnetic flux tubes are buoyant com-

pared to the surrounding plasma and thus are convected and twisted through the convective

region of the Sun into the photosphere. Once these flux tubes reach the surface, they become

more vertical and strong magnetic loop structures form, which often manifest in the visible

spectrum as pores or sunspots in the photosphere. These ARs vary largely in their complex-

ity based mostly on the stage of their evolution as well as the strength and twisting of the

magnetic field involved in their formation.

Typically, ARs are nested and form on top of pre-existing ARs, thus their evolution is

dependent on each other. When magnetic flux emerges at these sites, they carry with them

magnetic helicity and free magnetic energy. The magnetic helicity can be thought of as a

measure of how entangled the magnetic field lines are, i.e. how complex the topology of

the magnetic field is. This puts a lower bound on the energy carried by the magnetic field.

As these structures move up through the convective zone to the photosphere, they exert a

force on the surrounding plasma, so that as they reach the surface the granules stretch until

they fragment and dark spots appear on the surface of the Sun. These dark spots are called

pores, or sunspots if they become large enough. These regions are dark due to their relative

brightness compared to their surroundings as they contain much less dense plasma, thus the

plasma becomes cooler and radiates less heat.

The emergence of magnetic flux, during AR formation, takes several hours to days for

the magnetic flux to peak in the atmosphere. Once the magnetic flux has peaked, the decay

process begins, which may take several days to several weeks. The decay process is a result of

the fragmentation and reconnection of small parts of the magnetic field, which slowly breaks
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up the large-scale magnetic field. This decay of the magnetic field happens by a process

called magnetic flux cancellation. This is a result of the high magnetic Reynolds number in

the photosphere. The magnetic Reynolds number Rem describes the ratio of advection to

magnetic diffusion in the flow, which depends on the velocity scale and length scale, and the

resistivity of the plasma in question. In the Rem � 1 limit, energy is dissipated from the

flow via the means of magnetic diffusion. In the opposite Rem � 1 limit, advective processes

dominate and thus energy dissipates from the flow via turbulence. Additionally, in the second

limit, the magnetic field becomes frozen-in the plasma and thus magnetic structures are

determined by plasma motions; this is discussed in further detail in section 1.3.2. Dominance

of advection makes dense plasmas easy to study as motions are coherent and correspond

to the evolution of the fluid rather than the magnetic field. Equally the frozen-in property

of the magnetic field lines is of interest as it makes studying the evolution of the magnetic

structure possible through understanding of the evolving flow structures. Thus small regions

of magnetic flux are advected and twisted causing small-scale reconnection events in the

lower atmosphere, restructuring and cancelling out the magnetic field. Advection is the only

process that has a notable influence on the magnetic field as the diffusion time for relatively

small sunspots is on the order of ∼ 1000 years (van Driel-Gesztelyi & Green 2015).

There are two widely recognised classification schemes used in order to categorise sunspots

by a mix of qualitative and quantitative properties. An older, but still frequently used scheme

is the one proposed by Hale et al. (1919), which has three basic classes of ARs:

• α: unipolar;

• β: bipolar;

• β-γ: bipolar structure with no continuous dividing line between polarities;

• γ: multipolar.

This scheme was later altered by Künzel (1960) to include the δ variety of sunspots, adding

to the scheme the classes

• δ: a multipolar sunspot, in which the different poles share the same umbra.
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1.2 Observations of the Sun

Understanding the Sun is difficult, in both observations and theory; a number of reviews

present the difficulties in understanding magnetic flux emergence (e.g., see Cheung & Isobe

2014), in understanding magnetic structures in the solar atmosphere (for observations, see

Parenti (2014), for theoretical and numerical models see Wiegelmann & Sakurai (2012)) and

many others. In recent decades, a number of ground-based and space-based observatories have

been created. Ground-based telescopes include the likes of the Swedish Solar Telescope (SST;

see Scharmer et al. 2002), Gregor (see Schmidt et al. 2012), the big bear solar observatory

(BBSO; see Denker & Wang 1998), the Atacama large millimetre array (ALMA; see Wootten

& Thompson 2009) and most recently, the current largest solar telescope, the Daniel K.

Inouye solar telescope (DKIST; Rimmele et al. 2020). Space-based telescopes include the

solar dynamics observatory (SDO, see Pesnell et al. 2012), solar orbiter (SO, see Müller

et al. 2020), the Parker solar probe (see Raouafi et al. 2023), the imaging magnetograph

experiment (IMaX; a balloon-borne instrument, which observed the Sun from a high altitude

within the Earth’s atmosphere. See Mart́ınez Pillet et al. 2011), the interface region imaging

spectrograph (IRIS; see De Pontieu et al. 2014) and the Hinode solar optical telescope (see

Tsuneta et al. 2008), to name but a few. Observational instruments work by measuring the

emission of spectral lines or specific bands of radiation (see Silje 2008, for details).

A number of other useful measurements can be taken using observational instruments. For

example, Dopplergrams, images of the Doppler shift across the solar surface, can be produced.

Doppler shift measurements can be used to provide the line-of-sight (LOS) component of

motions from the Solar surface. These LOS velocities are not exact as shifts in the wavelength

of light are affected atomic level effects. Doppler and collisional broadening are caused by

random motions and alterations to the excitation state of atoms, respectively, and create

an uncertainty in the spectral profile (see the discussion by Bell & Meltzer 1959). These

effects are enhanced where density increases in the solar atmosphere, thus increasing the

pressure and therefore the number of collisions. When these broadening processes create
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asymmetries in the spectral line profile, they can be interpreted as red or blue shifts, causing

a mismeasurement of motions (e.g. see Chen, Yajie et al. 2022). Motions across the surface,

perpendicular to the LOS, are usually identified by tracking motions of image elements that

are a result of the plasma flows. However, tracking image elements to produce optical flows

is a problem in itself, which has many approaches, some of which are highlighted in detail in

a later subsection. Velocities measured this way cannot ever be truly identified due to the

aperture problem, which states that there are multiple solutions for velocities that produce

the same apparent dynamics (e.g., see Hildreth 1983). Another alternative to measuring

motions is through inversions of the magnetohydrodynamics (MHD) equations, by solving

for components of velocity using the full 3D magnetic field vector. The magnetic field vector

can be determined through the application of the Zeeman effect using spectropolarimetry,

where the polarization of monochromatic light is measured. Recording the proper motion,

that is the motion of an object relative to a fixed background, of features on the Sun is not

a new concept and has been performed numerous times in the literature (e.g., see Newton &

Nunn 1951, Ward 1965). Perhaps the first recorded instance of this are sketches by Galileo

of sunspots, which were drawn each day and show the drifting of magnetic features over the

disk of the Sun, revealing its rotation (Priest 2014).

1.3 Magnetohydrodynamics in the Sun

The Sun, and that which we observe from it, can be modelled as an electrically conduct-

ing fluid. One approach to describing this model mathematically is achieved by imposing

Maxwell’s equations of electromagnetism on a fluid, which is governed by the Navier-Stokes

equations (see, Goedbloed et al. 2004). Such an electrically conducting fluid is the plasma,

which has already been used to describe much of the solar atmosphere.

In the following, the derivation of the closed set of MHD equations is presented, which

consists of the marriage of electromagnetism and fluids mechanics.

The first set of equations describes Maxwell’s laws (see e.g. Maxwell 1865). In their
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differential form (presented by Fleisch 2008), these are given as

∇×E = −∂B

∂t
, (1.2)

∇×B = µ0j +
1

c2
∂E

∂t
, (1.3)

∇ ·E =
τ

ε0
, (1.4)

∇ ·B = 0, (1.5)

where E is the electric field, B is the magnetic induction (or flux density), which, for sim-

plicity, will be referred to as the magnetic field vector, j is the electric current density,

c ≈ 2.998× 108ms−1 is the speed of light, τ is the electric charge density and ε0 = 1/µ0c
2 ≈

8.854× 10−12m−3kg−1s4A2 is the permittivity of free space in a vacuum, which is related to

magnetic permeability of a vacuum µ0 ≈ 1.257× 10−6Hm−1.

Each equation describes a different feature of interacting electric and magnetic fields.

Equation (1.2) describes how changing magnetic fields, with respect to time, may generate

electric fields. Equation (1.3) describes how electrical currents and changing magnetic fields

may generate magnetic fields. The final two equations eq. (1.4) states that sources and sinks

of electrical current are produced by regions of electrical charge, and eq. (1.5) is a statement

about the geometry of a magnetic field, i.e. there are no magnetic monopoles, like a bar

magnet there must always be a north and a south pole to the magnetic field.

We can make a simplifying assumption which still makes the equations valid in most

scenarios, that is we consider plasma motions to be non-relativistic, i.e. the characteristic

speed of the plasma v0 � c. By comparing the magnitudes of the magnetic field and the

electric field contributions in eq. (1.3), we can show that the magnitude of the LHS far

succeeds the magnitude of the RHS by the non-relativistic condition. Thus the electric field

term can be dropped, yielding the result that the magnetic field is a consequence of currents

in the plasma. Taking the divergence of this further shows that ∇ · j = 0, i.e. currents in

MHD have a net zero divergence, that is they flow in closed circuits.

Maxwell’s equations are coupled to the plasma via the magnetic force produced by having
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non-static currents which are induced by plasma motions according to Ohm’s law which is

given by

j = σ(E + v ×B), (1.6)

where v is the plasma velocity and σ is the electrical conductivity. Since in the MHD model

we care only about the interactions between the plasma and magnetic field, it is convenient

to demote the electric field and current density to secondary variables. By using eq. (1.6) we

may combine eq. (1.2) and eq. (1.3) to obtain the induction equation,

∂B

∂t
= ∇× (v ×B) + η∇2B, (1.7)

where η = 1/µ0σ is the magnetic diffusivity. This equation links the evolution of the magnetic

field to the motions in the plasma and is the heart of MHD. Thus the system no longer depends

on the current and electric field which are now given by eq. (1.3) and eq. (1.6), respectively.

The following equations describe the fluid nature of the plasma. Starting with Euler’s

equation (often referred to as the momentum equation) for fluid motion

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ j×B + ρg + ν∇2v, (1.8)

where ρ is the plasma density, p is the plasma pressure, j×B is the Lorentz force produced

by, and acts perpendicular to, the magnetic field, g is the acceleration due to gravity and ν is

the kinematic viscosity. This equation comes from Newton’s second law of motion F = ma,

the left-hand side of eq. (1.8) describes the mass and acceleration whereas the right-hand side

describes the sum of all forces acting on a single fluid element.

Note that, as well as the standard forces pressure and gravity driving the fluid, in a

magnetised plasma there is an additional contribution from the term j × B. This force is

non-trivial. It acts perpendicular to the magnetic field on conducting materials and so does

not contribute any force along the field line. If we express this only in terms of the magnetic
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field according to eq. (1.3), in the non-relativistic limit, we have that the Lorentz force FL is

written

FL =
1

µ0
(∇×B)×B

=
1

µ0
(B · ∇)(B)− ∇B2

2µ0
. (1.9)

Written in this form we see that the Lorentz force has two contributions. The first term on

the RHS is magnetic tension force. Like a guitar string after being plucked, this force acts to

straighten field line when it has a curvature. The second term is magnetic pressure, which

acts across field lines to compress them together/decompress them apart. From this we can

define the plasma-β, the ratio of kinetic and magnetic pressures, given by

β =
2µ0p

B2
. (1.10)

The plasma-β is important in the context of propagating waves, where perturbations may

compress either the fluid or magnetic field.

The continuity equation, which is the mathematical statement that matter is neither

created nor destroyed, is key for any continuous fluid and is of great importance in MHD, it

is written as follows

∂ρ

∂t
+∇ · (ρv) = 0. (1.11)

Here the terms state that the rate of mass increasing and decreasing is equal to the flow of

matter in and out of a given region.

The final equation states how energy in the system flows. In ideal MHD we use the

adiabatic gas law pρ−γ = const where γ = cp/cV is the ratio of specific heats for heating

processes at constant pressure cp and constant volume cV . From this, the total derivative

w.r.t. time is equal to 0 and expanding this we obtain the equation we desire in the following
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form

∂p

∂t
+ v · ∇p+ γp∇ · v = 0, (1.12)

which does for the pressure/energy of the system what the equation of continuity equation

does for the mass. The above set of equations together describes the evolution of an electri-

cally conducting fluid flowing within a magnetic field.

To summarise, the complete set of MHD equations, under the assumption that velocities

are non-relativistic, are as follows

ρ
dv

dt
= −∇p+ j×B + F, (1.13)

∂ρ

∂t
+∇ · (ρv) = 0, (1.14)

∂p

∂t
+ (v · ∇)p = −c2sρ∇ · v, (1.15)

∂B

∂t
= ∇× (v ×B) + η∇2B, (1.16)

∇ ·B = 0, (1.17)

where the gravitational and viscous forces in eq. (1.8) has been contracted to body forces F

in equation eq. (1.13) to account for other external forces and the sound speed cs =
√

γp
ρ has

been introduced into eq. (1.12). With these is the equation of state for ideal gases

p = ρ
R̃

µ̃
T, (1.18)

where R̃ is the gas constant, µ̃ is mean atomic weight and T is temperature.

1.3.1 MHD Waves

Understanding the dynamics of the Sun is a question of understanding how energy is trans-

ported. There are two major mechanisms for transporting energy that are being studied

extensively. These mechanisms are MHD waves (e.g., see Jess et al. 2015) and the other is
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advection via MHD flows (e.g., see Tziotziou et al. 2023, Toriumi & Wang 2019).

MHD waves are perturbations that are carried by the plasma and magnetic field. They

are a solution to the linearised MHD equations for a small perturbation. The derivation is as

follows: assume ideal MHD conditions and include a gravitation force which acts vertically

down. Consider a static, homogeneous plasma with boundaries which extend to infinity

with a background pressure, density and magnetic field denoted by subscript 0 and small

perturbations denoted with subscript 1

p = p0 + p1, ρ = ρ0 + ρ1, B = B0 + B1, (1.19)

respectively. Since the plasma is static we only have perturbations which contribute to the

velocity

v = v1. (1.20)

The result of substituting these into the ideal MHD equations, after some algebra, yields the

wave equation

∂2v1

∂t2
=c2s∇(∇·v1)− (γ − 1)gez(∇·v1)

− g∇v1z + (∇× (∇× (v1 ×B0)))×
B0

µ0ρ0
, (1.21)

where cs is the sound speed of the plasma, for which we seek wave-like solutions of the form

v1(r, t) = v1e
i(k·r−ωt), (1.22)

where k is the wave vector and ω is the wave frequency. This simplifies out calculations as

the differential operators become the linear maps

∂

∂t
→ −iω ∇ → ik. (1.23)
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Substituting these into the wave equation yields the dispersion relation with solutions ω =

ω(k)

ω2v1 =c2sk(k·v1) + i(γ − 1)gez(k·v1)

+ igkv1z + (k× (k× (v1 ×B0)))×
B0

µ0ρ0
. (1.24)

We recover standard pressure waves in a fluid by ignoring the magnetic field (B = 0) and

gravity (g = 0). In this case the dispersion relation eq. (1.24) reduces to

ω2v1 = c2sk(k·v1), (1.25)

which implies that the perturbation is in the direction of the propagation, i.e. the wave is

longitudinal and has a phase speed

vph = ±ω
k

= ±cs. (1.26)

So the only wave which may propagate is a sound wave, also known as an acoustic wave, that

travels in all directions equally.

In order to recover magnetic waves from the dispersion relation, we ignore the effects of

fluid pressure and gravity (p = 0, g = 0). Here the dispersion relation reduces to

ω2v1 = (k× (k× (v1 ×B0)))×
B0

µ0ρ0
. (1.27)

For practicality, write B0 = B0B̂0 where B0 = |B0| and define vA = B0/
√
µ0ρ0 to be the

Alfvén speed. With some algebra the above reveals that B̂0·v1 = 0 and further that

(ω2 − k2v2A)(k·v1) = 0, (1.28)

which has yields two solutions for the dispersion relation.

Firstly, consider the case k·v1 = 0, implying that the waves are incompressible and
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transverse, then eq. (1.27) yields

ω

k
= vA cos θB (1.29)

where θB is the angle between the wave vector and the magnetic field. These are shear Alfvén

waves. These waves travel along the magnetic field with a maximum phase speed when the

wave vector aligns with the magnetic field.

The second solution to eq. (1.28) is ω = kvA, referred to as the compressional Alfvén wave.

This solution results in a wave with travels in the (k,B0) plane in a direction perpendicular to

B0 and so has components both along and transverse to the wave vector, this causes changes

in both pressure and density. The perturbations of the magnetic field, from the induction

equation, are found to be in the (v1,B0) plane and normal to k and the Lorentz force is

in the direction of v1. Depending on the angle of the vector with the magnetic field, the

compressional Alfvén wave may be purely longitudinal or purely transversal—in the former

case, this is equivalent to the shear Alfvén wave.

In real-world scenarios kinetic properties are rarely decoupled from the magnetic proper-

ties of a plasma such as in active regions where it is pointed out by Gary (2001), and shown

in fig. 1.7, that the plasma-β varies as a function of height and it may very well take a value

of plasma-β ≈ 1, i.e. kinetic and magnetic effects are equal.

When plasma-β � 1 then the plasma pressure dominates and effects of magnetic pressure

can be assumed negligible. The plasma-β is not constant for fixed regions of the atmosphere

but changes locally depending on the surrounding plasma properties. Examples of where this

limit is valid is in regions of quiet Sun granulation where convective processes are dominant.

In the opposite limit where plasma-β � 1 the magnetic pressure dominates and assume the

effects of plasma pressure to be negligible. For example, the plasma-β is low in regions where

strong magnetic fields dominates such as active regions in the photosphere, in coronal loops.

In cases where the plasma-β is close to unity we must consider the magnetic field and
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Figure 1.7: A map of the range of values that the plasma-β may take as a function
of height in the solar atmosphere, taken from Gary (2001). The heights shown here
are approximate as the location of each region is determined by a number of factors.

plasma equally. In this case, ignoring gravity, eq. (1.24) becomes

ω2v1/v
2
A = k2 cos2 θBv1 − (k·B1)k cos θBB̂0

+ [(1 + c2sv
2
A)(k·v1)− k cos θB(B̂0·v1)]k, (1.30)

for which the solutions are

ω/k =

[
(c2sv

2
A)/2±

√
c4sv

4
A − 2c2sv

2
A cos 2θB/2

]1/2
. (1.31)

The plus/minus sign in the above shows that there are in fact two phase speeds with one

greater than the other. These modes are appropriately named the fast and slow magnetoa-

coustic waves for the greater and lower phase speeds, respectively.
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The magnetoacoustic modes are, like the shear Alfvén wave, dependent on the angle

between the wave vector and the magnetic field. Since both the magnetic field and thermo-

dynamical properties are included, we obtain this richer number of modes. The slow wave

is a sound wave, which is modified by the magnetic field and the fast wave a compressional

Alfvén wave, modified by the gas pressure.

In summary, the solutions of the linearised MHD equations yield three distinct types of

wave. One is a purely magnetic wave, which travels through along the magnetic field, called

the Alfvén wave. This wave travels at the Alfvén speed, which can be considered to be the

‘sound’ speed of the magnetic field. The other two can be thought of as typical acoustic

sound waves broken into two components. The first component is the slow magnetoacoustic

wave. Slow magnetoacoustic waves are sound waves which propagate through the plasma,

but their propagation is hindered by the magnetic forces. The second component is the fast

magnetoacoustic wave, which is a sound wave whose propagation is enhanced by magnetic

forces. These waves play a vital role in the heating of the solar atmosphere and restructuring

of magnetic fields.

1.3.2 MHD Flows

Whilst the importance of waves in and on the Sun cannot be denied, the transport of energy

via plasma flows is deeply complex. Flows largely contribute to the heating of the solar

atmosphere via the radiative diffusion of heat from hot plasma convected through the solar

interior. Plasma flows are also responsible to the restructuring of the topology of magnetic

fields via their advection.

The behaviour of MHD fluids can be broadly characterised by identifying the dominant

mechanism for material transport. In fluid mechanics, the Reynolds number compares the

ratio of inertial forces to viscous forces; similarly, we can define the magnetic Reynolds Rem,

which compares the ratio of advection to diffusion in the induction equation. Therefore the
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magnetic Reynolds number Rem is defined as

Rem =
|∇ × (v ×B)|
|η∇2B|

≈ uL

η
, (1.32)

where u and L are the characteristic speed and length scale of the plasma. In an ideal plasma

the fluid behaves as a perfect conductor, hence η = 0 meaning that advection of magnetic

flux by the plasma is the only mechanism contributing to the evolution of the magnetic field

(Alfvén 1942). In a non-conducting plasma the resistivity η � 1 means that the magnetic

field diffuses through the fluid and is not strongly influenced by the flow. Most plasmas on

the Sun are highly conducting and therefore diffusion is only expected to be relevant on short

scales, so that the advective term becomes negligible. Thus this limit is of limiting interest.

The transport of magnetic energy by plasma motions is a direct consequence of the induc-

tion equation. In particular, in the ideal plasma limit ReM → ∞ we may ignore the effects

of magnetic diffusion. Thus the induction equation simplifies to

∂B

∂t
= ∇× (v ×B). (1.33)

This form of the induction equation takes on the role of a continuity equation for the magnetic

field. Rewriting the double cross product, as dot products, yields

∂B

∂t
= v(∇ ·B) + (B · ∇)v −B(∇ · v)− (v · ∇)B. (1.34)

By applying Gauss’ law ∇·B = 0 the remaining terms describe the evolution of the magnetic

field as the combination of three effects:

• B(∇ · v): the magnetic field being altered by plasma flowing into and out of a volume;

• (v · ∇)B: the magnetic field being advected along lines of plasma flow;

• (B · ∇)v: the plasma being advected along magnetic field lines.

Hence, from this form of the induction equation we see that the flow is advected along field
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lines and as well as being influenced by the Lorentz force when carrying current perpendicular

to the magnetic field.

Unlike the mass which is being moved by flow, the magnetic field is not a conserved

quantity. However the magnetic flux, which can be loosely defined as the number of magnetic

field lines passing through a closed surface, is conserved. That is, the magnetic flux within

a volume is deformed equally with the motion of plasma. This result is known as Alfvén’s

theorem or the ‘frozen-in flux’ theorem due to the magnetic field lines being frozen into a

volume.

Within the Sun, magnetic fields are generated and compressed together to form magnetic

flux tubes, as a result of the dynamo action produced by magnetoconvection. Flux tubes are

regions that contain dense bundles of magnetic field lines that are tangent to the surface of

the volume they enclose. A number of works have already established that the magnetic field

distribution across the photosphere exhibits a strong correlation with coherent plasma flow

structures (e.g., see Chian et al. 2019, Silva et al. 2023).

1.3.3 Modelling the Sun

Supplementing the great number of observing instruments and therefore wealth of data being

collected, there has been a rapid improvement in computational power. This has brought

about the development of a number of numerical codes for simulating different aspects of the

Sun in great detail. Simulations provide a numerical laboratory for understanding the Sun.

Solving the equations that govern the physics of the Sun allows for the study of a full set of

information pertaining to the Sun at every single grid point, allowing for a greater insight.

For example, fully 3D velocity vectors can be determined throughout an entire simulation

box directly. This is important simulations can provide realistic models including synthesised

images which closely match real-world observations of the Sun.

A number of numerical codes have been produced to study different regions and effects

within the Sun and its atmosphere. These simulations range from modelling the convection

of plasma below the surface that forms solar granules in the photosphere, to the modelling
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of ARs and complex magnetic field structures in the corona and beyond. To name but a few

notable simulations over the last few decades there are the STAGGER (Stein & Nordlund

2012, Stein et al. 2024), MURaM (Vögler, A. et al. 2005, Rempel & Cheung 2014), MANCHA

(Khomenko & Collados 2006), Bifrost (Gudiksen et al. 2011), and most recently the R2D2

(Hotta et al. 2019, Hotta & Iijima 2020) which was developed from the MURaM code, and

RAMENs (Iijima et al. 2023) which can model patches of the Sun from the convective region

out to the solar wind. More detailed descriptions of key simulations are given in chapter 2

and appendix B.

1.4 Flow Recovery methods

The current lack of ability to make any direct measurement of plasma motions in the solar

atmosphere limits the analysis that we can perform in on the solar atmosphere. Without

efficient and robust methodologies the a large portion of data remains inaccessible and there

is a need to produce such methods. To meet this demand, a number of algorithms have been

developed. These algorithms can be split into distinct categories based on their approach

to calculating the velocity field, these are optical tracking, physical inversions and machine

learning (ML).

1.4.1 Traditional Flow Recovery

Optical flows are flows which, when applied to an initial image, advect the pixels in such a

way that it transforms it into a second image. Optical methods are simple to understand

and can be deployed in a number of ways, thus they are extremely popular and used in a

number of scenarios, for example tracking solar granulation (Löptien, B. et al. 2016) as well

as AR inflows (Löptien et al. 2017). Algorithms that identify optical flows, by performing

calculations to determine a velocity field for transforming images into one-another, present as

possibly the most popular method for estimating flows across the solar disk. The algorithm

for producing an optical flow is essentially 4 steps which consists of

• Identify a feature in the first image;
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• Identify the same feature in the second image;

• Calculate the displacement between the features in the two images;

• Using the spatial and temporal displacement of these features, calculate the velocity

vector.

A number of popular optical flow tracking methods exist, namely local correlation track-

ing (LCT: November & Simon 1988), Fourier-based LCT (FLCT: Fisher & Welsch 2008),

feature/coherent structure tracking (FT and CST: Strous 1995, Roudier et al. 1999, respec-

tively) and balltracking (Potts, H. E. et al. 2004). All of the prior listed methods track

objects, either pixels or more well-defined structures, between images over a time window

to produce a velocity map by measuring the distance travelled by the object. It was shown

by Rieutord et al. (2001) that these optical flows correlate well with the proper motions of

mesogranular (> 2.5Mm) structures averaged over ≈ 0.5hours. The exact way that a feature

may be identified differs from algorithm to algorithm.

The local correlation tracking (LCT; see November & Simon 1988) method works by

correlating features within subimages between two time-consecutive frames. In order to

calculate the cross-correlations, filtered intensity images are displaced by a vector, relative to

each other, and then their product is taken with an apodising window. The integral of this

product taken over the size of the window gives the cross-correlation at a central position.

Maximising this correlation provides the best description of the displacement of the pixels

in the image and therefore provide the best velocity field. Variations of this algorithm exist,

namely Fourier-based LCT (FLCT; see Fisher & Welsch 2008) and Induction LCT (ILCT;

see Welsch et al. 2004). The former, FLCT, is almost identical to the LCT in methodology,

but performs calculations using the fast Fourier transform (FFT) to improve the calculation

time of the algorithm and utilises a Gaussian for the apodising window. The choice of the

apodising window is due to the FFT nature of FLCT, which generates high frequencies

at edges of images where gradients are enhanced. The Gaussian smooths gradients and

thus reduces noise generated by the method. The ILCT method uses magnetogram data to
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produce velocities whose normal component is consistent with the MHD induction equation

(see eq. 1.7) in the ideal limit. The overarching principle of correlation tracking is that the

maximised correlations of displaced pixels between two images should describe a fluid motion

which advects the constituents of one image into the other.

Similar to correlation tracking, there are other optical tracking methods, which directly

track the features in the images. One is aptly named feature tracking (FT; see Strous 1995)

and the other is coherent structure tracking (CST; see Roudier et al. 1999), an improved

version of the FT algorithm. FT and CST segments an image into objects, which similar to

the underlying principle of correlation tracking, are expected to be advected by a flow field

into the objects present in the next image. By identifying features between images a flow field

can be derived. For example, solar granules in the photosphere are expected to behave like

tracers, advected by flows across the photosphere. By identifying granules between images,

one can trace a path and therefore a velocity field.

In addition to this, there are other optical methods which identify flows by mapping

images to a surface whose height is proportional to the brightness of the image at each point.

One such method is the balltracking method presented by Potts, H. E. et al. (2004). In

principle, this method works by allowing tracers (balls) to be advected by the corrugations in

a surface which apply a force to them. The tracers in the flow will fall into the minima of the

surface and pushed around by the brightest objects, for example granules, and therefore the

average motions of the tracers will be representative of true flow field. The resultant velocity

field from this method is consistent with the LCT methods (Potts, H. E. et al. 2004).

It should be noted that the authors of the LCT algorithm presented that there are a

number of issues with the LCT approach (see Simon et al. 1995), namely that even when

the signal-to-noise ratio is high through means of spatial and temporal averaging of velocity

fields, the results are discouraging, providing flows that are ≈ 1/3 of what they should be,

which was later highlighted again by Verma et al. (2013). The article from Simon et al. (1995)

states that results from the LCT methodology needs to be studied carefully and validated

properly before use.
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A distinct problem with these optical approaches, aside from balltracking, is that they

demand a distinct change in the position of features in the images to determine a non-zero

velocity. All of the methods listed above perform the best on highly structured images. The

requirement of the clear advection of features makes tracking features on small temporal

and spatial scales prone to inaccuracy due to apparent gaps in the predicted velocity fields,

where no motion is detected. In order to subvert this limitation, the individual velocity fields

produced by the methods are averaged temporally and often smoothed spatially to produce

complete and continuous flow maps, which produce good correlation with the proper motions

at the larger scales, described above.

As mentioned previously, and alternative to using optical tracking to identify flows, one

can use physical inversions to produce a velocity field. For example, the differential affine ve-

locity estimator for vector magnetograms (DAVE4VM; see Schuck 2008) uses magnetograms

from observation in order to produce a velocity field that is consistent with the ideal MHD

induction equation.

The final example of methodologies is machine learning. For example, the DeepVel (DV;

see Asensio Ramos, A. et al. 2017) artificial neural network (NN) which can be trained on

images synthesised from simulations, where the velocity field is known, in order to construct

a model that will output velocities from new images. The details of this network will be

described in the following section.

1.4.2 Neural Networks

In the wake of high performance computing and big data, the task of categorising, understand-

ing and inferencing data has fallen onto computers. The process of computers constructing

models for inferencing from data is called machine learning. One category of machine learn-

ing is supervised learning, where an algorithm is established to generate a mapping between

input data and a labelled output. NNs excel at supervised learning tasks. They attempt

to mimic biological NNs, i.e. the brain, in order to solve supervised learning tasks. They

achieve this by forming layers of neurons, which form non-linear combinations of the inputs.
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Developing NNs has been of interest for the best part of the last century (McCulloch &

Pitts 1943). Rosenblatt (1958) described the perceptron, a basic NN with a single unit that

weights inputs to produce a binary output to solve linear problems, and a learning algorithm

was presented on how to adjust the parameters of the perceptron. This output, which is

based on the weighted sum reaching a threshold, is called an activation function and can take

many forms. Perhaps one of the most common examples is the sigmoid activation function

(Rumelhart et al. 1986, McCulloch & Pitts 1943), and in modern times much success has

been found with the rectified linear unit (ReLU) activation function (Nair & Hinton 2010).

Networks with single layers are limited since they could only be used to solve linearly

separable problems (Minsky et al. 2017). However, it was shown that by layering neurons,

NNs could be used to approximate any non-linear function (Hornik 1991), this, in tandem

with the back propagation algorithm (Rumelhart et al. 1986) allowed for the development of

large scale networks which could solve more complex problems. The structure of NNs can be

broadly split into 3 categories: the input layer, hidden layers and the output layer. The input

and output layers behave as their name suggests with the input layer taking in some data and

the output layer spitting out the expected label associated to the data. The hidden layers

of neurons sit between the input and output layers, their task is to weight the connections

of neurons to build a successful mapping from the first and final layers. Any network which

contains more than one hidden layer is often referred to as a deep NN.

Typical examples of hidden layers are activation layers whose task, like the perceptron, is

to produce an activation signal when a weighted sum reaches a threshold. Another type is a

convolution, in which values for the specific form of the convolution are optimised to identify

features that are deemed important by the network. For example, it is often the case that the

individual inputs to a network, say the pixel values in an image, are not particularly useful,

but groups of inputs will provide useful context. To this end, convolutional NNs (CNNs; see

Lecun et al. 1998) excel at tasks where recognising patterns in data is important, such as

identifying granules or solar pores. The convolutions group together units of data, such as

pixels in an image, in order to reduce the number of parameters. An advantage of CNNs is
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that they have translational invariance, that is once a pattern in the data is learned, they

can then recognise the same patterns regardless of where it appears. However, it should be

noted that this only up to translation—these features should share the similar spatial scales

and magnitudes as those identified in the training data.

NNs typically contain many parameters, all of which needs to be optimised to perform a

task. Networks optimise these parameters by using a weighting system called the loss func-

tion. The loss function (sometimes referred to as the cost function) is a proxy for the success

of the predictions; where the smaller the value of this function, the better the predictive

performance of the network. The loss function can be used to determine how parameters of

the network should be altered through means of gradient descent (GD; e.g., see Rosenblatt

1958). The GD algorithm is computationally expensive as it requires working out gradients

for the weighting of every connection in the network. The back propagation algorithm was

thus developed and was a key step forward in the evolution of ML as it calculates every

gradient as a series of linear operations of the gradients in the last layer.

1.4.3 DeepVel

Recently, DeepVel (see Asensio Ramos, A. et al. 2017), a fully convolutional deep neural

network, has been developed for the use of recovering two- or three-dimensional pixel-to-pixel

velocity fields little using as little as two solar intensitygrams, magnetograms etc. It presents

advantages over other existing methods as it can be trained to give excellent performance

on specific datasets, where inputs require no spatial or temporal smoothing and averaging

like commonly employed correlation tracking techniques. DV learns to inference velocities

using data from numerical simulations of the Sun. As well as efficiency concerns, this method

presents an additional advantage over others by being able to rapidly emulate the physics of

flows that have been calculated in realistic numerical models at the cost of a long initialisation

period for training the network.

The architecture of DV includes several types of layers, including convolutions, ReLU

activations, batch normalisations and sums. The ReLU layers consist of activation functions
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Figure 1.8: Sketch of the architecture of the DeepVel neural network from Asensio
Ramos, A. et al. (2017) showing the layers and transformations acting on an input
(left) to the output (right). The highlighted block reveals the combination of layers
that form the residual blocks of the network.

that take a value of 0 for negative activations or take a value equal to the activation otherwise,

thus effectively switching off the neuron rather than giving it a negative contribution which

helps encourage other neurons to learn and lessens the influence of potentially unhelpful

pathways. Another advantage to these functions is that they have a constant gradient in the

positive region, preventing them from exploding or vanishing and hence improving learning

performance (e.g., see Agarap 2019). Batch normalisation changes inputs to the next layer

to have mean 0 and unit variance, which increases the speed of convergence (e.g., see Ioffe

& Szegedy 2015). These layers are connected together into residual blocks, which therefore

compress and simplify data to make more meaningful and useful connections, and speed up

the training process. A complete diagram of the network architecture is provided in fig. 1.8

and full details of the network architecture and design choices are given in Asensio Ramos,

A. et al. (2017).

DV has shown success in recovering velocity fields from as little as two consecutive images

(Tremblay et al. 2018). The network performance has been shown to be at least as good as

FLCT (Asensio Ramos, A. et al. 2017, Tremblay et al. 2018) in reproducing spatially and

temporally averaged velocity fields from simulations of QS convection. In addition to this,
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some success has been shown for the application of DV within ARs (e.g., see Tremblay &

Attie 2020).

1.5 Lagrangian Flow Analysis

Lagrangian analysis is important as objectivity should be dealt with rigorously when working

with observations of a fluid flow on a distant rotating mass. Without careful analysis, even

in the most simple settings, flows and dynamic behaviour can be erroneously identified with

ease. Perhaps the simplest example, highlighted by Tziotziou et al. (2023), is in the case of

the Couette flow where fluid flow runs parallel to the axis of a pipe and has a magnitude

proportional to the perpendicular distance from one wall of the pipe. This type of flow

generates a shearing effect. Suppose the pipe has an axis along the y-direction and has

infinite depth in the z-direction. In this setup, the flow v is described by

v = (0, ξx, 0). (1.35)

Taking the curl of the velocity field, to measure the vorticity ω, yields a non-zero (assuming

ξ 6= 0) component along the z-axis,

ω = (0, 0, ξ). (1.36)

This non-zero vorticity may be misidentified as a rotational flow; a rotation would be observed

by placing a rod, perpendicular to the pipe’s axis, within the flow. However, it is easy to

see that the resulting flow does not generate any swirling motion; injecting a dye into the

flow, instead of a rod, would instead reveal streaklines that are straight. Thus, in order to

properly record the dynamics of flow processes, a more objective approach is needed.

The Lagrangian approach to motion provides a more rigid framework to characterise fluid

motions as it is concerned with following the frame of the fluid elements as opposed to the

motion of fluid elements within a frame. As in the example of the Couette flow above, a

fluid element moving with the flow will simply become elongated, characterising the shearing

motion that is present in the flow. A number of these examples are presented by Haller



CHAPTER 1. INTRODUCTION 33

(2015a).

1.5.1 Coherent Structures and Lagrangian Coherent Structures

In a flow, a coherent structure is a discernible pattern in a flow which persists on a sufficiently

long temporal or spatial scale. Examples of such structures include saddle points and vortex

motions within a flow, all of which are material surfaces. Identification of coherent structures

enables us to characterize the local behaviour of flow. Material surfaces that are identified by

tracking the flow are called Lagrangian coherent structures (LCSs) and they partition regions

that exhibit similar dynamics, orchestrating the flow into discernible coherent patterns. The

transport barriers are determined by advecting particles along a time series of the flow.

Thus, the LCS theory facilitates a novel and precise analysis of flow properties by identifying

surfaces that locally maximize attraction, repulsion, and shearing (Haller & Yuan 2000, Haller

2015b). In other words, LCSs provides a skeleton for the plasma flow dynamics, decomposing

complex flow behaviours into dynamic building blocks.

1.5.2 Finite-Time Lyupanov Exponent

The Finite-Time Lyupanov Exponent (FTLE) is a value which can be used in order to define

LCSs by seeking repelling and attracting barriers in a flow field. By advecting particles in a

flow, one can measure the distance between particles in the flow as time progresses. The final

distance after some time is used to calculate the FTLE, which then determines the amount

of stretching that has taken place between two particles inside the flow. Since FTLE tracks

particles that move with the flow, the barriers that are formed also move with the flow, thus

providing a Lagrangian structure.

These structures describe regions where the flow is locally repelling and attracting, thus

they behave as barriers over which fluid elements cannot cross. Fluid elements either move

toward or away from these barriers without ever passing through them. As such, the barriers

provide a skeleton for how the flow field as a whole behaves. In order to identify the attracting

and repelling LCSs, a uniform grid of particles is advected over a time-dependant velocity
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field. Consider v as a velocity field in a spatial domain and x(t0) = x0 as a fluid particle at

the initial position that follows a trajectory in space given by solutions of the initial value

problem. Then,

dx

dt
= v(x, t). (1.37)

The displacement of particles at time t = t1 from its initial position at time t = t0 can be

found as:

x1 − x0 =

∫ t1

t0

v(x, t)dt. (1.38)

Then, the flow map can be defined as:

x(t1) = φt1t0(x0), (1.39)

where the operator φt1t0(x0) maps the initial position of a particle at x(t0) to a final position

x(t1). In the 2D case, particles are given initial positions xi,j(t0), where i and j are indexes of

the particle’s initial position relative to a chosen centre point. Distances between the central

particle and its 4 nearest initial neighbours, on a 2D 5-point stencil, are tracked as they are

advected by the flow. The stencil describes a central particle surrounded by 4 particles on

the left, right, top and bottom of the centre on a grid.

The deformation gradient after the advection is given by the Jacobian matrix of partial

derivatives of the flow map

Dφt1t0(xi,j) =

xi+1,j(t1)−xi−1,j(t1)
xi+1,j(t0)−xi−1,j(t0)

xi,j+1(t1)−xi,j−1(t1)
yi,j+1(t0)−yi,j−1(t0)

yi+1,j(t1)−yi−1,j(t1)
xi+1,j(t0)−xi−1,j(t0)

yi,j+1(t1)−yi,j−1(t1)
yi,j+1(t0)−yi,j−1(t0)

 . (1.40)

This matrix is used to compute the Cauchy-Green deformation tensor,

∆ =
[
Dφt1t0(xi,j)

]T
Dφt1t0(xi,j),

where the superscript T denotes the matrix transpose. Finally, the FLTE field is calculated
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by means of

FTLEt1i (x) =
1

|δt|
ln
√

max(λi), i = 1, 2 (1.41)

where λi are the eigenvalues of ∆.

Given a time interval of length δt, particles are integrated forward in time over the interval

[0, δt] and integrated backwards in time over the interval [−δt, 0], to produce the forward-

FTLE and backward-FTLE fields. Ridges formed by the largest FTLEs describe the most

strongly repelling structures in the plasma flow in forward time, the most strongly attracting

structures in backward time.

A number of important findings related to the FTLE and solar observations are presented

in later chapters. Whilst this method is deployed numerous times, the focus of this thesis is

not on advancing the theory of these methods, but the novel applications of existing methods

and validation of them using these advanced Lagrangian and other similar techniques.

1.6 Thesis outline

This thesis evaluates the suitability of the convolutional neural network DeepVel for recovering

plasma flows in magnetically dominated regions of the solar atmosphere. Thereby, answering

the question of how plasma flows in the solar atmosphere can be recovered accurately and

used to understand the dynamics in evolving regions of concentrated magnetic flux.

The contents of this thesis aims to address a number of points in assessing flow recovery

performance and applicability of DeepVel to studying the solar atmosphere in some of the

most complex scenarios. The thesis is therefore organised as follows:

• Chapter 2 addresses how flow in the solar atmosphere can be identified by comparing

DeepVel to the established FLCT method. DeepVel was trained on a high-resolution

simulated data capturing the evolution of a flux tube under magneto-convection, allow-

ing it to learn complex flows in the photosphere. DeepVel has never previously been

used to identify flows in regions containing realistic strong flux emergence. Addition-

ally, no previous studies have aimed to identify how DVs performance on new data
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(e.g. observations) will differ from data used for training. Whilst a proper ground

truth set for flow data on the Sun is missing, a second simulation with a different initial

setup provides the ideal testing ground for checking how well DV generalises to new

data. Training and cross-validating with simulations with similar properties provides a

challenge in ensuring that the recovered flows are not affected by overfitting to specific

boundary conditions. Various metrics assess its physical accuracy and advantages over

FLCT.

• Chapter 3 tests DeepVel’s ability to identify Lagrangian coherent structures in pho-

tospheric flows, addressing the ability of neural networks to emulate the physics of

simulations and ability to generalise to new scenarios, as well as highlighting a novel

method for studying flows within ARs. These structures define the skeleton of plasma

motion, serving as a novel method for evaluating DeepVel’s predictions. By applying

the model to a second simulation, the study examines error propagation and its po-

tential for analysing flow dynamics in observational data. Both chapters 2 and 3 are

summarised in the work of Lennard et al. (2025).

• Chapter 4 introduces a novel method for detecting strong magnetic flux concentrations

using horizontal flow fields—thus highlighting how new and accurate flow information,

derived by neural networks, can be used in the way of forecasting and tracking emerging

magnetic fields on the Sun. Finite-time Lyapunov exponents are computed across

an active region simulation, revealing correlations between flow structures and high

concentrations of magnetic flux. Thus, highlighting a novel classification method for

identifying active regions and assessing DeepVel’s role in magnetic structure detection,

with implications for space weather forecasting.

• Chapter 5 indicates the ability of DeepVel to learn flows from another region of the solar

atmosphere. DeepVel’s initial design was intended to be used on the solar photosphere

where flow structures and images are largely coherent thanks to the density of the

plasma, which contributes to it being optically thick and hence easy to track features
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within. In order to progress past this, DV was used to identify coherent swirling motions

in the solar chromosphere, where the plasma is more sparse and therefore contains many

incoherent flows, making learning of flows tricky. DeepVel was tested by determining

the presence and location of swirls by employing a vortex detection method. The results

show a proof of concept extension of DV’s application to the solar chromosphere where

it is able to identify coherent structures like swirls.

• The final discussion addresses key findings and future refinements including the next

steps in moving toward applying these methods successfully on observations.



Chapter 2

Comparing DeepVel and

Fourier-Local Correlation Tracking

for Flow Recovery in Simulated

Active Regions

2.1 Introduction

Analysing high-resolution solar atmospheric observations requires robust techniques to re-

cover plasma flow features across different scales, especially in active regions. Current

methodologies often fall short in capturing subgranular-scale flows, and there is limited re-

search on the errors introduced by the recovered velocities in analysing the properties flows in

the presence of intense magnetic flux. This chapter concentrates on validating the effective-

ness of DV in recovering subgranular and mesogranular-scale within and surrounding active

regions versus another well-established method as a benchmark.

Presently, observations are restricted to line-of-sight (LOS) measurements of plasma ve-

locity via the Doppler effect. Recovery of the horizontal velocity fields from observational

data is a challenging task (see Rempel et al. 2022) and several techniques have been proposed

38
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to deal with this problem (Tziotziou et al. 2023). Flow recovery techniques can be broadly

split into three distinct categories, these are optical flow tracking, physical inversions and

neural networks and are highlighted in chapter 1.

The study by Tremblay et al. (2018) compared the effectiveness of DV with the optical

flow methods LCT, Fourier-based LCT (FLCT) and coherent structure tracking (CST). These

methods were applied to synthetic photospheric observations at a resolution of the SDO/HMI

instrument (δx = 0.5”pix−1) averaged over 30 minutes. DV was able to reproduce velocities

best at granular and subgranular scales in the quiet Sun (QS). However, FLCT performed

better at the mesogranular scales. Due to the averaging of velocities, the capabilities of the

methods are limited to seeing features that are ≈ 1/2 the size of granules and transient

features which last below 30 minutes are lost. With this and the fact that DV is limited to

QS data, we are unable to see the full capabilities of DV and the range of scenarios it may

be applied. Later studies improved the previous ones by introducing a new architecture to

DV (Tremblay & Attie 2020) and testing this and the original DV architecture on recovering

flows from a sunspot at the same resolution as HMI (Tremblay, Benoit et al. 2021). In both

instances, only the 30-minute time-averaged velocity fields are considered in the analysis,

despite DV being trained on significantly higher cadences of ≈ 45s. The sunspot used in the

AR study is from a MURaM simulation (see Rempel 2015), which presents the decay of an

axis-symmetric cylinder of magnetic flux embedded vertically in the box that covers 18Mm

depth. After an initial relaxation period of around 5.5h the flux tube is left to decay under

the influence of magnetoconvection, however due to the nature of the setup, only a partial

decay takes place over the 100h runtime of the simulation. With this and the fact that the

DV network was only tried and tested on the same simulation used for training, there is still

a gap in understanding the applicability of DV to new data at finer resolutions (< 1”) and in

environments, which present a realistic evolution/decay of intense magnetic flux in the solar

atmosphere.

In addition to the simulated sunspot presented by Rempel (2015), using the MURaM

code, there exists a wealth of simulated solar data from myriad codes. Examples of these
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numerical simulations are the MURaM (Vögler, A. et al. 2005), CO5BOLD (Freytag et al.

2012), Stagger (Stein & Nordlund 1998), Bifrost (Gudiksen et al. 2011) and R2D2 (Hotta

& Iijima 2020) codes. These codes present working models of magnetoconvection up to the

photosphere and beyond. Some of these codes have been modified to simulate the evolution of

a strong magnetic flux of varying initial configurations. The MURaM simulation by Rempel &

Cheung (2014) introduces an untwisted semi-torus of magnetic flux into the convective region

by advecting it through a bottom boundary, < 16Mm below the photosphere. The paper

by Bjørgen, Johan P. et al. (2018) highlights simulations of an AR using the Bifrost code,

which imposes an pre-formed bipolar AR into the uppermost layers of the convective region.

These simulations, and others in the literature, have opted to model magnetoconvective

processes using a shallow box that only covers up to ≈ 16Mm below the surface (see, e.g.

Chen et al. 2023, Beeck, B. et al. 2012, Rempel et al. 2009, Rempel & Cheung 2014). These

setups give only a short time for the magnetic field to evolve naturally under the influence of

magnetoconvection leaving limited information on the effects of the interplay between plasma

and strong magnetic fluxes.

A more recent model for flux emergence was presented by Hotta & Iijima (2020), in

which the entire convection zone (200Mm depth) is simulated. This allows an initial force-free

magnetic flux tube, positioned at a depth of around 35 Mm below the surface, to evolve under

a more realistic boundary condition than simulations with shallow boxes. The simulation

starts with a twisted magnetic flux tube, where the force-free parameter α = 2.43×10−7m−1,

with > 10kG strength is placed at a depth of ≈ 35Mm depth below the photosphere. In this

simulation the α is determined as a ratio of the first root of the Bessel function J0 and the

characteristic length scale of the flux tube, chosen to be the radius. This simulation excludes

the effects of physical resistivity, i.e. assumes the plasma to be physically ideal, however, the

minimum scale in our case is the pixel size, 96km. Khomenko et al. (2014) highlights that

the effects of physical diffusivity and resistivity are negligible at the scales we are interested

in, only having a significant influence at scales around 100m in both quiet and active Sun

conditions at photospheric heights. This setup also better simulates the evolution of the
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magnetic field under the influence of a realistic bottom boundary, since the depth of the box

is much larger than the length scale of the flux tube.

Synthetic observations calculated from realistic simulation data provide a sufficient testing

ground for the success of flow recovery methods. The following sections present how both the

FLCT and DV methodologies have used numerical simulations of sunspots and to determine

their effectiveness in photospheric ARs.

2.2 Methods

2.2.1 Data

For this study, two numerical simulations were used. The first being the R2D2 simulation

presented by Hotta & Iijima (2020), which was used predominantly for training DV. The

version of DV trained on this simulation will be dubbed DVR2D2 throughout this thesis. This

run of the R2D2 code models the evolution of a twisted force-free flux tube placed, at a depth

of 35Mm below the photosphere, under the influence of magnetoconvection. The simulation

box has dimensions 98 × 98 Mm2 with a periodic boundary in the horizontal direction and

uniform grid spacing of 96kmpix−1. In the vertical direction, the simulation covers a depth

of 200Mm spaced over a non-uniform grid, and height up to 700km in the lower photosphere.

The depth of this simulation allows the evolution of the flux tube to remain minimally affected

by the bottom boundary. The R2D2 code uses a set of radiative MHD equations which, in

this setup, assumes an ideal plasma (no physical resistivity) and no background magnetic

field, so the flux tube evolves solely under the effects of magnetoconvection. Snapshots from

the simulation have a temporal resolution of 120s over 180 hours of real-time simulation,

this provides 37 hours of time before the emergence of the magnetic flux and over 100 hours

of the decay process from the peak of the magnetic flux. Flow processes, therefore have a

long time to evolve naturally with the rising magnetic flux prior to the emergence of the

AR. Hence, the R2D2 simulation provides a realistic model of the interaction of convective

plasmas and the magnetic field. An example intensity map and magnetogram, obtained from
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Figure 2.1: An example of the fully developed AR at the time of peak magnetic
flux (i.e. 60 hours after the start of simulation), from the R2D2 magnetoconvection
simulation. On the top row, two panels show the white light intensity and the
bottom row shows the corresponding magnetograms. The right-hand side shows a
close-up view of the intensity and magnetogram of the region bounded by the green
square on the left. The intensity was normalised by the maximum intensity of the
entire region.

the R2D2 simulation at a time of 60 hours after the start of the simulation (i.e. the time of

peak magnetic flux in the photosphere), are shown in fig. 2.1.

The second dataset that was used was from the MURaM AR simulation presented in

Rempel & Cheung (2014). This was used for the testing of flow recovery by the FLCT

and the DVR2D2 network. This simulation presents the realistic emergence of an untwisted

semi-torus of magnetic flux in a box that has a periodic horizontal boundary with dimensions

147.5×73.7Mm2. The depth of this box is 16.4Mm and shares the same 96kmpix−1 horizontal

spatial resolution as the R2D2 simulation. Despite the shallow box relative to R2D2, this

simulation includes the effects of turbulent diffusion, thus providing a more realistic thermal

evolution of the plasma. An example frame of continuum intensity and magnetogram from
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Figure 2.2: An example slice of the AR at 83 hours after the start of the sim-
ulation, from the MURaM simulation. The panels in the left-hand column show
the continuum intensity (a) and the magnetogram (b). The right-hand side panels
show a close-up view of the intensity (top panel) and magnetogram (bottom panel)
of the region bounded by the green square. The intensity was normalised between
to be on a scale between 0 and 1.

the simulation are presented in fig. 2.2.

The R2D2 and MURaM simulations offer valuable insight into different crucial aspects

of the interactions of plasma flow and magnetic flux throughout AR evolution. Thus these

provide an opportunity to properly test the ability of DV to accurately learn and reproduce

flow features across simulations, from sub- to mesogranular scales, in the presence of intense

magnetic flux.

The radiative transfer (RT) schemes between R2D2 and MURaM differ slightly. In R2D2,

the RT scheme uses the Rosseland mean opacity and calculates values along only vertical

rays by using a linear interpolation of the logarithm of the source function. The MURaM
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Figure 2.3: The distribution of normalised intensity from the R2D2 (red) and
MURaM (blue) simulations.

simulation also uses the Rosseland mean opacity but uses a linear interpolation of the source

function in calculations along rays in multiple directions. For full details of the schemes, we

refer to the literature for R2D2 (Hotta & Iijima 2020) and MURaM (Vögler, A. et al. 2005).

These differences in numerical schemes leads to differences in the intensities produced in the

synthetic images. More specifically, since the R2D2 simulation uses a single ray, there is no

RT calculated across the surface. Thus the contrast in the intensities will be greater, however

the normalised intensities reveal a similar distribution to that of MURaM, see fig. 2.3. Testing

DV on different simulations with variations in their numerical schemes, setups and included

physics will provide insight into the limitations of DV when only trained on one simulation.

2.2.2 Preparing FLCT

It was found that images should be smoothed spatially to reduce the influence of small scales

on the recovered velocities, and outputs should be averaged temporally in order to produce

the best results. Previous works have found that FLCT displays the best performance over

scales > 2.5Mm, typically averaged over time windows of 30mins (e.g., see Rieutord et al.
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Figure 2.4: Comparison of the synthesised continuum intensity from the R2D2
simulation with the same image with a Gaussian blur applied, typically used for
the application of LCT methods. The value of σ in corresponds to a FWHM of
≈ 1200km, as was found to be the best sampling size by Verma et al. (2013). Note
that only granular- and above-sized structures remain after the sampling.

2001). For tracking granules, data should be taken from series with cadence no greater than

4mins (see Verma et al. 2013) as in this time the topology of the photosphere has changed

significantly, not due to motions of convective cells, but due to their diffusion, in other words

it becomes difficult to track motions of objects that have fragmented or emerged. Large errors

are associated with the LCT method, for example velocities are largely underestimated by

a factor of ≈ 1/3 and do not necessarily have strong correlation with the ground truth data

used for comparison from simulations (Simon et al. 1995, Verma et al. 2013).

An example of an image from the R2D2 simulation is shown in fig. 2.4, where the image

has been blurred by a Gaussian of FWHM ≈ 1200km, which was found to provide the best

performance by Verma, M. & Denker, C. (2011). The resulting image therefore contains

features on the size of granules.

However, in the absence of any method like DV, and with the work by Tremblay et al.

(2018) already highlighting a comparison of temporally and spatially averaged velocity fields,

the comparison presented here uses the raw inputs at the same cadence and resolution that
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was used to train DV. Thus, here the full capability of DV is shown with the available data

and the improvement in performance over other methods can be detailed fully.

After testing parameters, it was found that for the R2D2 simulation with ∆t = 120s, the

optimum size of the apodising window was found to have a FWHM of ≈ 2500km and proved

to have the highest correlation with features at mesogranular scales (≈ 1800km) and up.

The sampling window, in this case, is roughly double the size of that which is best for data

with half the cadence (e.g., see Verma, M. & Denker, C. 2011, Verma et al. 2013). This was

somewhat expected as its features will travel roughly twice the distance over double the time

interval. This is also in alignment with what was found by Tremblay et al. (2018), where it

was identified that FLCT performed the best at mesogranular scales.

Figure 2.4 shows an example of the resulting image used by FLCT after applying a high-

pass filter. By convolving the image with a Gaussian to remove small-scales, the contrast of

features on the desired scale are enhanced. This boosts the correlation of flows produced by

FLCT with the target velocities. In this figure, a Gaussian with FWHM of ≈ 1200km was

applied to a frame of the R2D2 simulation and shown to reveal features on granular scales

and above.

It was highlighted by Simon et al. (1995) that velocity fields should be temporally av-

eraged to smooth out the rather high associated errors with individual frames. However,

such averaging forces the velocities to fit a normal distribution, which is not typically the

true distribution of photospheric velocities, especially in the presence of ARs (see figs. 2.10

and 2.11). The resulting velocity fields produced by FLCT when images are smoothed and

velocity fields are averaged are presented in fig. 2.5. Comparing the velocities displayed in

panels (b) and (c), we see that without averaging the velocities are noisy and are only weakly

correlated with the simulation whereas the averaged case reveals that FLCT velocities are

more strongly correlated.

In fig. 2.6 scatter plots of the single and averaged recovered speeds are shown. It is

clear from (a) that the flow speeds are largely underestimated and contains a lot of noise as

expected from the study by Verma et al. (2013). In panel (b) the flow speeds are significantly
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Figure 2.5: Velocity fields from (a) simulation, (b) the velocity field recovered
from simulation using FLCT on 2 consecutive frames and (c) the average of 15
recovered velocity fields. The background is coloured by the Gaussian-smoothed
(FWHM = 1200km) continuum intensity of the simulation.

better correlated with the simulation speeds, however the FLCT speeds remain noisy. As

anticipated, the temporal smoothing via averaging does reduce the error in the velocity fields.

This temporal averaging should be dealt with carefully as taking averages over longer windows

does not continue to improve correlation with the true flows. As the time window increases,

the velocity distribution tends toward a Gaussian centred about zero. Given that over a

certain time period granules do not persist, the flow at a given point will be a random sample

from the normal distribution and thus the error will increase as the averaged flow becomes

more randomly distributed.

Additionally, when making like-for-like comparisons with alternative methods, which can

provide accurate velocity fields with no post-processing, many of the small-scale features

are lost. Hence, for this study, the FWHM of the apodising window is chosen to provide

the most consistent results (FWHM ≈ 2500km) as measured by the Pearson correlation

coefficient. No additional spatial smoothing or averaging is applied to the inputs to preserve

the most information at all scales and provide a benchmark for comparisons with DV.

2.2.3 Training DV

For the training process, 3000 time-consecutive pairs of 4.8×4.8Mm2 (50×50pix2) continuum

intensity snapshots, from R2D2, were extracted with a time separation of the simulations
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Figure 2.6: Scatter plots showing how time-averaging of velocity fields produced
by FLCT improves correlation between the normalised recovered and true speed of
plasma. The curves of best fit for each distribution is shown in red and the ideal
case is shown in black. Panel (a) shows the result of recovering only a single frame.
Panel (b) show the 30 minute-averaged speeds.

cadence (120s), along with their corresponding horizontal velocity fields. These training pairs

were chosen at purely random times and positions across the entirety of the τ = 1 surface

of the simulation, and represent < 1% of the total data available. We suggest that this 120s

cadence is suitable for testing the identification and analysis of flows at the (sub)granular

scale since granules have a lifetime of ≈ 10min (e.g., see Bahng & Schwarzschild 1961). Whilst

this is a relatively low cadence in comparison to some of the state-of-the-art telescope data

available, it is a highly composite number, so most telescope imagery can be used at this

lower cadence by selecting frames at this time apart. These pairs were filtered to ensure that

there were no overlaps in the training data to avoid overfitting, that is to help ensure that

DV is able to classify velocities well for new data just as well as the training set.

The training pairs were split into sets of containing 2000, 500 and 500 samples labelled as

training, validation and testing, respectively. The training and validation set were used for

training network. The network parameters are only updated if the predictive performance

improves on the validation set, which is checked at the end of each training epoch, thus helping
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to circumvent the problem of overfitting. The testing set was used to double check that the

network performs well by hand and is presented in tables 2.1 and 2.3, and performance on

the training data is omitted as this does not provide a true measure of how well DV performs

on new data. However, the main focus is on testing with the MURaM data, thus this testing

is presented in full as it is more indicative of the performance of the network acting on new

data with different BCs, as would be typical of observations. Given the random nature of the

sample selection, the snapshots should be representative of the flows present in all scenarios

in the simulation.

It should be noted that, as with any supervised learning method, this training process

poses the risk of introducing overfitting. If the number of samples from the training simulation

is too large, the NN may learn only the images and flows from the training data and therefore

be unable to predict the velocities accurately for new images. Because of this, we kept the

proportion of training samples small to reduce this risk and reduce the computational cost

of training the network.

The network was trained for 100 epochs (i.e. the network weights were adjusted over the

entire set of training samples 100 times) using the Adam optimiser and the mean-squared

error (MSE) loss defined as

MSE =

∑n
i=0 |vsimulation,i − vrecovered,i|2

n
, (2.1)

where i represents the observation (pixel) where the velocity is produced and n is the to-

tal number of observations. The Adam optimiser was chosen for efficiency as, by design, it

includes a momentum for network weights and biases, updating the learning rate to allow

for larger changes to rarely updated parameters and smaller changes for rapidly converging

features—which also improves the stability of the network. Other key network hyperparam-

eters include the number of filters, the kernel size, the number of residual blocks, the noise

level, batch size and learning rate. In coalignment with the literature, which showed good

results and efficiency, the chosen values for the list of hyperparameters were 64 filters, a kernel

size of 3, 20 residual blocks, a noise multiplier of 0.001 and a learning rate of 10−4 (see the
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Figure 2.7: Loss during the first 100 epochs of training from the DV during
training. The black curve represents the loss value from the training data at each
epoch and blue curve represents the loss value for the validation set (calculated at
the end of each epoch). The red-dotted curve shows the minimum validation loss
for the network at each epoch and the green point shows the minimum validation
loss over the whole training process.

network parameters chosen by Asensio Ramos, A. et al. 2017, Tremblay et al. 2018). The

entire 100 epochs of training took approximately 100 minutes using NVIDIA V100 GPU and

10 hours on an Apple M2 card with 10 GPU cores.

The loss from the network throughout the training process is shown in fig. 2.7. This

figure highlights that the network converges quickly and stably within the first few epochs

of training, reaching close to its minimum value after around just 20 epochs. The network

was allowed to continue training in which the learning stabilised at around 50 epochs before

the validation loss started to increase despite the training loss beginning to decrease more

rapidly around 60 epochs, suggesting that the network is now overfitting to the training

samples, however the network reached its optimum performance at the 67th epoch.

In order to avoid overfitting, DV employs a number of methods. It does not update

the network parameters unless the validation loss decreases, therefore the NN has an inbuilt

feature allowing it to only update the weights if the generalisation of the network improves.

It is seen that the tradeoff between number of epochs and the performance of the network



CHAPTER 2. COMPARING DEEPVEL AND FLCT 51

drops off after just a few iterations and thus training can be stopped early to improve the

efficiency of the network. Additionally, during the training process, noise is added to the data

by adding a set multiplier of the standard deviation in order to add variation to the data and

avoid overfitting to the raw training samples. Frequent batch normalisation layers have also

been used throughout the network in order to regularise the weights. Outside of the network

architecture, the training set is augmented to include rotations and reflections of the training

data so that the volume of training samples is increased without simply repeating any data.

Furthermore, only small spatial windows were chosen in order to avoid the network seeing too

much of the training simulation and help force it to understand flows in completely random

regions.

2.2.4 Testing

Pairs of velocity fields and continuum images were used from the testing set in order to

measure the performance of both FLCT and DVR2D2. Examples of full frames from simulation

are displayed in the results section also.

In the case of supervised learning, it is expected that NNs will perform well at reproducing

information from data similar to what the NN has already seen during training. In other

words, if the input data provided to the NN has similar properties to that of the training

set, then the outputs produced will be consistent with the training set and hence consistent

with the input data if it shares the same flow properties/physics of the training set. If the

inputs have different properties to that of the training inputs, the outputted flows will be

inconsistent with the training set flows, and most likely inconsistent with the test set flows

as the NN has not learned to emulate the test simulation. In the case of providing new input

data, the NN expects that most, if not all, of the properties of the input data will remain

within the limits of the training set. Thus, if we test our model with images from a new

simulation, which shares similar physics and properties of the training set, the outputs are

expected to be reasonably good and will typically produce results that are in accordance

with properties from the training set with some expected error. In our case, the physics and
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properties of the MURaM and R2D2 simulations (e.g. cadence, resolution) are in agreement

with each other. Other aspects of the simulation differ, the physical influence of a shallow

bottom boundary, turbulent diffusion and an untwisted flux tube with a different initial shape

present a somewhat different scenario to the R2D2 simulations.

Synthetic images from MURaM also differ slightly to R2D2 due to differences in the RT

schemes. Thus, in order to ensure that the results produced by DVR2D2 were consistent,

the continuum images from MURaM had their histograms matched to those from the R2D2

simulation. This process has little impact on the actual structure of the images and simply

ensures that the intensities are within the limits of what the network has been trained on.

However, it should be noted that this makes some underlying assumptions about the images.

Firstly, that all structures present in the simulations are the same, for example that granules,

penumbral and umbral regions all share the same contrasts and topologies. Additionally, this

implies that the physics presented are the same between simulations, e.g. the boundary and

initial conditions—including field strength/magnetic flux density, twisting of the field and

inclination of the field—play little-to-no role in altering the intensity of features. In the two

simulations presented in this work in particular, these assumptions are not true, the radiative

transfer is computed differently, the boundary conditions differ and the initial setup of the

flux tube is different. However, most simulations will differ in subtle ways like these and no

simulation can account for the full physics present in the Sun. Thus, histogram matching is

a necessary step for optimising the use of DV with new data and this histogram matching

is cheap and efficient for applying to new data and thus provides and opportunity to better

understand how these differences will generate error. These same histogram-matched images

were used as the inputs for FLCT to keep the preprocessing fair for both methods.

After the completion of the training process, individual velocity fields for full 1Mpix

images took under 1 second to recover on both devices using DV. Ignoring the time taken for

training, this is a 40× speedup compared with FLCT; the benefit of the speedup outweighs

the time taken for training when considering large time series.



CHAPTER 2. COMPARING DEEPVEL AND FLCT 53

2.3 Results

Here we present the key results of our analysis for the success of DV in recovering velocities

from the MURaM simulation when trained on flows from R2D2. In particular we present a

number of metrics which show the success of DV in recovering flows at subgranular scales

(96km) over active and quiet regions.

2.3.1 Metrics

In this section the effectiveness of DV at recovering AR flows is presented using a number of

statistical metrics. The following list of metrics have been used:

• Pearson Correlation Coefficient (PC)

PC =

∑
(vMURaM − v̄MURaM)(vrecovered − v̄recovered)√∑

(vMURaM − v̄MURaM)2
∑

(vrecovered − v̄recovered)2
, (2.2)

where the bar over a variable represents the mean value. This correlation coefficient

provides a measurement of the strength of the linear relationship between two variables

between −1 and 1, where −1 describes a perfect negative correlation and positive 1

describes a perfect positive correlation. For perfectly recovered velocities we expect

PC = 1, a strong correlation is typically identified as 0.5 < |PC| < 1.

• Kolmogorov-Smirnov test (KS test)

KS = sup
x
|CDFMURaM(x)− CDFrecovered(x)|, (2.3)

in other words the supremum of the distance between the empirical cumulative distri-

bution functions (CDFs) for the velocities from MURaM and DV, where sup defines the

supremum function over the points x of the CDF. The test-statistic is interpreted as

the maximum percent difference in vertical between values in the distribution (Hodges

1958).
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• Root-mean-squared Error (RMSE)

RMSE =

√∑n
i=0(vMURaM,i − vrecovered,i)2

n
, (2.4)

where n represents the total number pixels in the image. The RMSE provides an

average of distance of the predicted values from the true values

• Median Relative Error (MRE)

MRE = Median

(
|vMURaM − vrecovered|

|vMURaM|

)
. (2.5)

The relative error shows the difference between the predicted and true values as a

proportion of the true value, i.e. percent error. Since the velocities can be typically

large, in any location where the velocity may be, in actuality, close to 0 and is predicted

to be large will cause the relative error to explode. For this reason, the median is chosen

as opposed to the mean as this will ignore the extreme values.

• Normalised dot product (NDP)

Normalised dot product =
vMURaM · vrecovered

|vMURaM||vrecovered|
. (2.6)

The normalised dot product is the cosine of the angle between the predicted and true

velocity vectors. This shows the alignment of the recovered vectors as a value between

−1 and 1 where 1 represents a scenario where all the predicted vectors are parallel to

the true vectors, −1 are antiparallel and 0 represents a case where all the vectors are

at right angles to the true vectors.

2.3.2 Comparing FLCT and DV performance with MURaM

Two-dimensional velocity fields were recovered from the MURaM simulation by applying DV

to time-consecutive pairs of continuum intensity, separated by a cadence of 2 minutes. The x-

and y- components of the velocity fields were estimated for τ = 1 at various times throughout
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the evolution of the photosphere. At t ≈ 2h the magnetic flux in the photosphere has a mean

value of < 1G and a maximum value of 20G. Therefore, this highlights an example of when

the simulation presents mostly QS dynamics in the photosphere, seen in fig. 2.8. An example

of a time when intense magnetic flux densities are present in an AR is presented at t ≈ 83h.

These particular times were chosen to highlight the capability of the flow recovery methods

since they provide examples of the full range of flow dynamics in the presence of QS and

AR levels of magnetic flux density. Examples of the original and recovered velocity fields are

shown in fig. 2.8 and fig. 2.9. The recovered velocity fields were compared to the original

simulated velocities.

Figure 2.8: A close view of the divergence of the horizontal components of ve-
locity, 2 hours into the MURaM simulation. This figure highlights a region where
> kG magnetic flux emerges later in the simulation. Panel (a) shows the diver-
gence field from simulation over a zoomed-in section of the region highlighted in
figure 2.2. Panel (d) shows a closeup of the LIC with the velocity field superim-
posed on the divergence field of the highlighted region from panel (a). Panels (b)
and (c) show the same regions as panels (a), where the velocities have been esti-
mated by FLCT and DV, respectively. Panels (e) and (f) show the same region as
(a), again using velocities from FLCT and DV, respectively.

Figure 2.8 (a) shows the divergence of the horizontal velocity field, ∇ · vh, from the

MURaM simulation at t = 2 hours, when the magnetic flux rope is still being convected

below the surface. Panels (b) and (c) present the divergence of the horizontal velocity field

recovered by FLCT and DV, respectively, over the same region as panel (a). Panels (d), (e)
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and (f) show the line integral convolution (LIC; created by convolving a white noise filter with

the velocity field and integrating over the field lines) over a zoomed-in region, distinguished by

the green square. LIC was first presented by Cabral & Leedom (1993) and it emphasizes the

streamlines of the horizontal velocity field using dark lines. The zoomed-in region highlights

a region where complex magnetic structures later appear. The red and blue colouration

represents regions of positive and negative horizontal divergence, which is referred to just as

the divergence. Panels (b) and (e) highlight that FLCT is unable to recover any meaningful

flow features when being used for instantaneous recovery, with no discernible similarities with

the simulation flows. From panel (c), DVR2D2 is able to reproduce the location of divergent

features in the flow apparently well, with the magnitude of the divergences not being as

high as those present in the simulation. This discrepancy in the divergence is likely due to

differences between speeds in the R2D2 and MURaM simulations. DVR2D2 is able to recover

diverging features accurately from MURaM at length scales of intergranular lanes (< 500km).

Figure 2.9 presents the same region as was shown in fig. 2.8, much later in the simulation

(t = 83 hours) after the magnetic flux tube has emerged. Panels (a) and (d) once again

show the divergence and flows from simulation, which now highlight a region at the edge

of a pore, where many intricate flow structures are present. In this instance, some of the

strongest diverging features have been identified by FLCT and rough large scale shapes can

be discerned such as the boundary of the pore and large granules that have been distorted

by the strong horizontal inflows/outflows. However, flows on local scales are still highly

inconsistent with those from the simulation. On the other hand, DVR2D2 presents the ability

to distinguish flow behaviour between that over the pore and that on the edge in panels

(c) and (f). The distinguishing difference between the simulated and NN-recovered flows is

that DVR2D2 is not able to identify the exact topology of small-scale vortices (< 100km) and

saddle flows within the pore. However, DV is able to to identify some of the apparent swirling

motions, despite velocities having a magnitude of ≈ 1/10 that of the flows surrounding the

AR. This is to be somewhat expected as the images exhibit far less contrast in these regions.

Figures 2.10, 2.11, 2.13 and 2.14 give further insight into the results discussed above;
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Figure 2.9: The same visualization as Figure 2.8 is shown, at a time after the
AR has emerged (83 hours). The zoomed-in regions highlight the boundary of a
pore, containing complex flow structures such as saddles and vortices.

they present the distributions of different velocity field components from simulation, FLCT

and DVR2D2 and the scattering of these quantities, respectively as a means of analysing the

correlation and trends of the recovered velocity fields.

Figure 2.10 (a) and (b) display the horizontal components of the simulation and FLCT

recovered velocity fields. The recovered velocities follow a normal distribution, similar to

the simulation, however their standard deviations are significantly lower with velocities being

concentrated much more strongly about the mean of 0 leading to significant underestimation

of values. The Gaussian width is slightly wider in the x direction, suggesting that FLCT

favours producing velocities in one direction over another, when the frame is rotated this

pattern remains consistent suggesting a bug in the pyflct package used. The underestimation

is apparent in panel (c), which highlights that the speed over quiet regions has a mean that

is about 1/3 that of the true mean. In addition to this, the velocities are not distributed well

spatially, by the divergence where all information is lost due to the nature of FLCT velocities

matching a simple normal distribution.

Table 2.2 displays some values relating to the shape of the simulated and recovered velocity

field distributions, further highlighting that the FLCT distributions contain large outliers and
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Figure 2.10: Histograms showing the distribution of different components of the
velocity field at a time of 83 hours, for the original simulation (solid coloured
backgrounds) and the flows recovered by FLCT (the outlined curves) over regions
of > kG magnetic flux (blue), < kG flux (magenta) and over the entire field of
view (green). Panels (a) and (b) show the distributions for the x and y components
of velocity. Panel (c) shows the distribution of speed and (d) shows the distribution
of divergence. All are shown in cgs units. Note the stark contrast in shapes of the
distributions from FLCT compared to the simulation which indicate the method
is unable to replicate the target distribution which will lead to large errors in the
velocity fields.

do not closely resemble those from simulation. Table 2.4 quantifies the performance of the

FLCT recovery, showing that all components and derivatives are poorly correlated with the

simulation in both active and quiet regions. Further, the distributions differ by up to 50%

as measured by the KS test and flows are generally unaligned with an average angle between

the FLCT-recovered and simulation flows of ≈ 75◦. The significant difference between the

distributions, described by the KS test value, are shown in fig. 2.12, where the centring

about 0 creates a steep gradient in the CDFs from FLCT. The scatter plots in fig. 2.13 also

reveal how the velocities do not correlate well with the simulation flows. The lines of best
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Figure 2.11: Same as fig. 2.10 except using recovered velocities from DVR2D2.
Note here the much closer shapes in distributions compared to the previous figure,
indicating that the performance from DV is a significant improvement over FLCT.

fit show that the horizontal velocity components actually closely follow the same trend as

the simulation, but this is simply an artifact of extreme values that are produced in some

instances skewing the distribution.

The histograms in fig. 2.11 reveal that in both active and quiet regions DVR2D2 is able to

match the horizontal velocity distributions from MURaM well. It appears that DV typically

underestimates the velocities present in QS regions, but the distributions still match the

shapes and general properties of the flows well. This is backed by a Kolmogorov-Smirnov

test, which highlights that the components of the horizontal velocity vector are chosen from

a distribution differing by a maximum of ≈ 10% from the true distribution (see table 2.2

and fig. 2.12). This deviation is due to the tendency of DV to underestimate the velocities

shown in panels (a) and (b), respectively. The distribution of speeds shown in panel (c) and

better highlights the underestimation in velocity components, combining to show an overall
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Figure 2.12: The cumulative distribution function for the horizontal velocity
components (a) vx and (b) vy, and the (c) divergence of the 2D velocity field ∇·v.
The CDF for the MURaM velocities are shown as the filled-in grey background,
and the CDFs for DV and FLCT are shown in blue and orange, respectively. Note
that the CDFs from DV only differs a small amount from MURaM’s, except in
divergence where the gradient is relatively steeper, whereas FLCT produces CDFs
that are significantly steeper and differ a lot from the target distribution.

Figure 2.13: Scatter plots of components of velocities (a) and (b) and their
divergence (c) recovered from by FLCT and their lines of best fit, plotted against
the simulated values from MURaM, shown in cgs units. Values over ARs are shown
in blue, QS are shown in purple. The green line shows the overall line of best fit
over all types of regions and the black line shows the target line of best fit (y = x).
Points have had their opacity lowered to remove outliers and highlight where the
strongest spread of velocities lie.
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Figure 2.14: Same as fig. 2.14, however using comparing velocities predicted by
DVR2D2 against the simulation velocities.

reduced speed, implying that errors in predicting velocities largely come from a shift in the

component distributions. The speeds are still within the same order of magnitude despite

this, highlighted by table 2.2. The divergence distribution of the DV velocity field also shares

similar properties to the simulation, capturing the bimodal nature of the distribution, which

is result of the mostly non-diverging nature of the flow within the AR and the positively

divergent granules that dominate the QS-like regions. The key properties of the divergence

match well despite the differences in the variance and errors introduced by taking derivatives

of data.

The scatter plots in fig. 2.14 highlight the strong correlation of the velocities over all

regions, and that flow speeds are typically slightly underestimated. The divergence is more

weakly correlated over the AR, and carries more error than individual components of velocity

(as to be expected from taking derivatives of data containing errors), however over the QS the

overall divergences of the recovered velocity fields are highly correlated. In fact, it is seen that

DV performs particularly well at reproducing the distributions of AR flows, only struggling

to capture the exact values of divergence in the AR, shown in panel (c) and fig. 2.11.

Tables 2.1 and 2.2 show that DVR2D2 is able to replicate the properties of the velocity

fields well about the means of the distributions, seen by the means and interquartile range

(IQR) matching well for all presented values. Only the divergence and curl, where the error

is expected to be increased from taking derivatives of estimated data, present issues. Despite

this, the divergences of recovered flows correlate strongly in QS regions. Flows still correlate
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well, but not as strongly, within ARs where the contrast in images becomes much weaker

and the dynamics differ largely due to the suppression of plasma motions by the magnetic

field. Comparing the values in the two tables, it can be seen that performance on the test

data of the training simulation is similar to that of the MURaM test simulation. DV does

appear to more closely match the distributions (range and IQR) for R2D2, but this is to be

expected as all the simulation properties fit within the parameters already seen by DV. In

comparison with the distributions of properties over AR, table 2.4 suggests some potentially

contradictory results and that flows identified in these regions by DVR2D2 are more weakly

correlated and that flows contain significant errors. However, the table presents values that

are spatially dependent whereas the distributions are not. In other words recovered flows in

ARs are not recovered spatially as well as those in QS regions, but the properties of the flows

in these regions align better with the simulation.

In order to quantify the success of the recreated flows, tables 2.3 and 2.4 displays metrics

describing the accuracy of flows from DVR2D2, including their alignment and associated errors

when compared against the simulation flows. The square of the PC describes the explained

variance captured by the method. The recovered flows, as mentioned above, are highly

correlated with the simulated flows. This high correlation shows that a significant amount

of information in the flow is recovered. The PC of the divergence is only slightly impacted

over QS regions despite taking derivatives of velocities, which will invariably include some

error. The correlation of the divergence within the pore becomes more moderate compared

to the surrounding flows but still shows a statistically significant correlation to the original

flows. We also observe the same trend in the alignment of the flows measured by the NDP,

that is the cosine of the angle between the recovered flows and the simulation flows. A

normalised dot product close to 1 would imply the flow is well aligned, and a value close to

zero represents a flow with no alignment with the target. The DVR2D2-recovered flows have

a mean alignment of around 0.674 over quiet regions, and a lesser alignment over the AR of

around 0.501. The inverse cosine of these values corresponds to mean differences in angles

of ≈ 47◦ over the QS-like regions and ≈ 60◦ over ARs. This is a significant increase over
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the averaged difference of ≈ 75◦ in the alignment of the FLCT-recovered flows. Additionally,

the median normalised dot product sits at 0.871 and 0.774 for the NN-recovered flows over

both regions, thus half of the velocity vectors are within 30◦ and 40◦ of their true direction

over their respective regions. Furthermore, the RMSE and the MRE are shown. The RMSE

provides an average distance of the NN velocities from the true velocities, however this can

be easily skewed where large velocities are involved. The MRE is more representative of the

performance of the network, as it is less skewed by outliers in the recovered flows. Since

the velocities and divergences from DVR2D2 correlate well with the simulation and the flows

are aligned well over the majority of the simulated surface, the apparently high relative

error should be taken in context. Velocities produced by DV have less variance than the

velocities in MURaM, but correlate strongly. Therefore the topology and features of the

flow field may remain consistent with the simulation but show a different magnitude which

produces a consistently large relative error due to the speed of the flows. This difference in

magnitude is highlighted by fig. 2.11 (c), where there is an underestimation in the speed of

flows, particularly over the QS regions. These values are consistent with the mean relative

error shown by Tremblay et al. (2018), which still prove stronger than other flow recovery

methods. The values from the table pertaining to the performance of DVR2D2 on the R2D2

simulation (see table 2.3) behave very similarly to DVR2D2 on the MURaM simulation, with

the differences being that the network more closely matches the distributions from the R2D2

simulation when compared with MURaM (as measured by the KS test) and the performance

is enhanced over the ARs. This enhanced performance over the AR, versus MURaM, is

likely due to the fact that the images from MURaM were histogram matched to match the

properties of the QS from R2D2, thus limiting DVR2D2’s capacity to correctly reproduce flows

within the AR. The fact that the in NN performance across the simulations implies that the

network has generalised well and shows promise that it will perform similarly across other

new datasets with similar properties.
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Minimum Maximum Mean IQR

vx (kms−1)
R2D2 −10.0 10.0 14.8× 10−2 3.14
DV −12.2 14.2 −88.8× 10−3 3.19

vy (kms−1)
R2D2 −10.0 10.0 −52.5× 10−3 3.18
DV −12.9 11.7 0.119 2.95

∇ · vh (s−1)
R2D2 −0.0861 0.0635 8.04× 10−7 0.0185
DV 0.0660 0.0409 1.07× 10−5 0.0185

(∇× vh)z (s−1)
R2D2 −0.0886 0.0905 4.32× 10−8 0.0503
DV −0.0679 0.0696 −1.25× 10−7 0.0381

Table 2.1: Table displaying the quantitative properties of the distributions of the
horizontal velocity fields (vh) from the R2D2 simulation and those recovered from
DVR2D2.

Minimum Maximum Mean IQR

vx (kms−1)
MURaM -11.1 12.4 −62.1× 10−3 3.11
DV -10.2 12.5 −175× 10−3 2.83
FLCT -285 125 −61.5× 10−3 0.810

vy (kms−1)
MURaM -13.5 12.5 −88.3× 10−3 3.13
DV -12.2 11.0 119× 10−3 2.65
FLCT -37.4 28.6 −31.4× 10−3 0.312

∇ · vh (s−1)
MURaM -0.0815 -0.0728 5.52× 10−7 0.0238
DV -0.0521 0.0355 8.22× 10−6 0.0197
FLCT -1.49 1.50 −1.60× 10−6 1.05× 10−3

(∇× vh)z (s−1)
MURaM -0.0958 0.114 5.61× 10−7 8.63× 10−3

DV -0.0614 0.0662 −3.61× 10−5 6.55× 10−3

FLCT -1.50 1.50 -1.33× 10−6 6.41× 10−4

Table 2.2: Table displaying quantitive properties of the distributions of the hor-
izontal velocity fields (vh) from the MURaM simulation and those recovered from
FLCT and DVR2D2.
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PC KS test statistic RMSE MRE NDP
QS AR QS AR QS AR QS AR QS AR

v - - - - - - - - 0.689 0.605

vx 0.715 0.799 0.0201 0.0279 1.85 1.45 0.607 0.756 - -

vy 0.701 0.804 0.0395 0.0378 1.86 1.50 0.684 0.816 - -

∇ · vh 0.485 0.589 0.0233 0.0702 0.014 0.00797 0.594 0.784 - -

(∇× vh)z 0.248 0.508 0.0396 0.438 0.010 0.072 1.40 1.44 - -

Table 2.3: Metrics for the horizontal velocity fields recovered by DVR2D2 from the
testing dataset of the R2D2 simulation. The values are split over QS conditions
(< kG) and AR conditions (> kG). The RMSE for velocities and derivatives is
given in units of kms−1 and s−1, respectively.

PC KS test statistic RMSE MRE NDP
QS AR QS AR QS AR QS AR QS AR

v
DV - - - - - - - - 0.674 0.501
FLCT - - - - - - - - 0.254 0.249

vx
DV 0.750 0.712 0.072 0.054 1.69 1.47 0.710 0.886 - -
FLCT 0.256 0.167 0.494 0.258 2.43 2.00 3.48 81.9 - -

vy
DV 0.752 0.717 0.096 0.039 1.68 1.49 0.745 0.950 - -
FLCT 0.186 0.0723 0.496 0.254 2.47 2.09 8.62 204 - -

∇ · vh
DV 0.723 0.549 0.112 0.052 0.0116 0.00843 0.642 0.903 - -
FLCT 0.0267 0.0589 0.506 0.348 0.0172 0.0102 20.7 47.1 - -

(∇× vh)z
DV 0.335 0.444 0.053 0.059 0.0118 0.0113 1.51 1.34 - -
FLCT 0.00293 0.00223 0.458 0.297 0.0125 0.0102 7.51 49.2 - -

Table 2.4: Metrics comparing the recovered horizontal velocity field from FLCT
and DVR2D2 to the original velocities from the MURaM simulation. Velocities
were taken over the entire τ = 1 surface at a time where the > kG magnetic flux
was present in the photosphere (i.e 83 hours after the beginning of the simulation).
Compared values are split over QS conditions (< kG) and AR conditions (> kG).
The RMSE for velocities and derivatives is given in units of kms−1 and s−1,
respectively.
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2.4 Summary

For the first time, DV was validated on the recovery plasma flow features on scales from

the mesogranular (several Mm) to subgranular (0.096Mm) scales in simulated AR flows by

cross-testing with a second simulation. This was done in order to remove any bias that

may have come from DV overfitting to the training set. In addition to this, we compared

the flow recovery to the instantaneous outputs from FLCT, to benchmark the like-for-like

effectiveness of the method with a widely-used method. With these we determined how

effective the methods are, especially in QS regions and ARs where magnetic flux density is

higher and therefore strongly influences plasma flow.

One of the main things found was that DV can recover topological flow features accurately,

including diverging and swirling motions at granular scales, within the most complex regions

of an AR. Because of this, DV can be used to uncover information about horizontal inflow

and outflow in ARs at scales that haven’t been studied much before. Little topological

information was present in the instantaneous velocity fields from FLCT that was present in

the simulations. It is suspected that with preprocessing of data, i.e. performing a high-pass

filter, and averaging the results, FLCT would be able to produce velocity fields that are

more consistent with the simulation, as determined by Tremblay et al. (2018), and therefore

provide detailed topological information at mesogranular scales, but not below.

Considering the performance of DVR2D2 on a second simulation, it is expected that it will

also perform well on observational data, when the training set is treated to mimic properties

of telescope imagery. It should be noted that before applying a version of DV to observational

data, there are a number of features present in images such as aberrations due to the point

spread function (PSF) of telescopes, noise due to turbulence in the Earth’s atmosphere (when

dealing with ground-based telescopes) and other physics in the Sun, which has not been

modelled by simulations. Each of these should be studied carefully in order to understand

their impact on the flow recovery by DV. Some of these have been highlighted in appendices A

and B. Whilst there are algorithms for reducing the effects of atmospheric noise such as
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blind deconvolution (e.g., see Liu et al. 2022), there also exists a number of high-resolution

space-based telescopes which remain unaffected by atmospheric effects. Some high-resolution

datasets could be readily used with our model and it is expected that results would be fairly

consistent with the ground truth, however the actual ground truth data does not exist, thus

tests with these are meaningless. With FLCT however, these issues are not as concerning

as the flows are identified by optically tracking features and the proper motions of these

features would be unaffected by consistent effects such as the lensing caused by a telescope.

In addition, the typical smoothing of images and averaging velocity fields reduces randomly

distributed errors, presenting an advantage over DV for working with observations containing

large (mesogranular) scale features of interest.

Convolving images with the optics of the Sunrise/IMAX instrument was shown to have

only a small influence on DVs accuracy, reducing the PC of velocity fields by ≈ 0.1 when

applied to both MURaM and R2D2 (see appendix A). The training set used for the NN

is mutable however, so images may be convolved with the optics of any instrument that

monitors a similar region of the photosphere, and then DV be retrained for application using

the modified images. It is also possible, where the point spread function of an instrument is

known, to deconvolve optical effects from observations, this would make our trained model,

DVR2D2 suitable for recovering the velocity fields from deconvolved images so long as their

cadence and resolution match closely with the R2D2 training set.

Overall, DVR2D2 performed well, though it struggled when recovering smaller-scale fea-

tures like vortices in umbral regions. This is likely because strong magnetic fields in those

areas suppress plasma motions, which only account for a small amount of the data in the

training set. Still, DVR2D2 was able to differentiate between various flow behaviours, showing

it could adapt to different scenarios within the photosphere. DVR2D2 effectively reproduced

the velocity field distributions, though there were some small inaccuracies in the tails of

the velocity distributions. Inaccuracies such as these are somewhat expected, as supervised

learning methods with continuous outputs will tend to produce values that are smoothly

distributed about typical values, observed in the training set. We measured DVR2D2’s ac-
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curacy using Pearson correlation, RMSE, and alignment (dot product) on singular outputs.

In QS regions, the results were good, but in ARs, the performance was a bit lower. For

example, the mean alignment in QS regions was 0.674, but it dropped to 0.501 in ARs. This

is also likely due to the impact that magnetic flux has on plasma motion as well as the inputs

having a lower contrast in umbral regions as opposed to the typical contrasts present in QS

regions. Additionally, the lower correlation for divergence and curl in ARs suggests that DV

has a harder time recovering more complex flow structures when intense magnetic fields are

involved. These issues likely arise due to differences in how intensity maps are constructed

between training and testing data, which becomes more noticeable in ARs where magnetic

fields drastically change plasma flow. Our results highlight that despite differences in BCs in

synthetic data and the exact numerical setup, we are still able to produce consistent results

that provide insight into the types of features present over ARs, even if their exact topology

is not captured fully.

As presented in this chapter, DV is a robust tool, which can be trained to handle complex

dynamical scenarios in a solar context. The validation that was performed shows that DV

has the capability to recover the smallest scale flows present in synthesised images from

simulations, instantaneously with a good level of accuracy, vastly outperforming FLCT in

both speed and accuracy. In conclusion, this study shows that DV has a lot of potential for

recovering velocity fields from continuum intensity data including ARs. While it does have

some limitations within umbral regions, DV is a promising tool for studying solar photospheric

flows and provides a solid foundation for future applications. Future work could focus on

reducing the discrepancies in AR regions, particularly in recovering smaller-scale features

and better capturing how magnetic flux affects plasma flows.

In the next chapter, the ability for DeepVel to recover Lagrangian coherent structures

in flows is tested as a further way to determine the capability of the network. These LCSs

highlight the dynamics present in the flow and thus determine a method for understanding

the flow physics that are captured by the network.



Chapter 3

Recovering Lagrangian Coherent

Structures with DeepVel

3.1 Introduction

A crucial step towards understanding the Sun is to be able to recover physically meaningful

flows from observations. Plasma flow is important in guiding the dynamics of the Sun includ-

ing its magnetic field (see van Driel-Gesztelyi & Green 2015, Tziotziou et al. 2023, for some

examples). In fact Alfvén’s theorem (see Alfvén 1942) states that magnetic flux is conserved

in ideal MHD conditions, in other words the magnetic field lines become frozen into the

plasma and are advected by fluid motions. Despite the Sun not presenting ideal conditions,

the magnetic field and plasma on the Sun do influence each others’ structure, Hence, plasma

has the ability to transport material and energy about the solar surface.

The transport of material by fluids can be pinpointed by distinguishing material surfaces

within the plasma flow that act as transport barriers. These transport barriers prevent ma-

terials, such as magnetic flux, from passing through them. In the context of solar plasma, the

magnetic field is typically strongly linked to the motions of the plasma in the photosphere

where the magnetic Reynolds number is large (e.g., see Parker 1963). To this end, the trans-

port of magnetic flux across the photosphere is dominated by advection through the plasma.

69
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In the Lagrangian point of view, material surfaces are defined by tracing the trajectories of

particles in the flow and identifying regions which are not crossed by them. By their def-

inition of following particle trajectories, these persisting structures are Lagrangian in their

nature and thus are Lagrangian coherent structures. Since fluid elements do not cross these

structures, they partition the flow into regions that exhibit similar dynamics, thus defining

a skeleton for the dynamics of the flow. Thus, LCS theory facilitates a novel and precise

method for analysing flow properties by identifying the strong local repelling, attracting and

shearing surfaces (Haller & Yuan 2000, Haller 2015b). In other words, the skeleton defined by

LCSs decomposes flows into dynamic building blocks. An example of material surfaces/LCSs

appearing in nature is given in fig. 3.1 where the material surfaces, that separate fluid layers

in the atmosphere, are distinguishable by eye. In particular the spot will be delimited by a

strong elliptical LCS and within this will be a complex network of attracting and repelling

structures that contribute to the constant vorticity observed. One can loosely think of the

material surfaces as ever-shifting walls which either pump fluid into or out from either side

of it, guiding and restructuring the surrounding flow.

Analysing the ability of a method to recover LCSs can give a significant insight into the

effectiveness of a method to predict the precise flow topology and hence the evolving dynamics

of photospheric flows. They also provide a key insight into the transport of material by the

flow, i.e. the influence that plasma flows have on transporting magnetic flux.

It has already been evidenced by Chian et al. (2014) that coherent structures dominate

much of the photosphere, and the presence of attracting LCSs correspond to concentrations

of magnetic flux in the photosphere. Additionally, Chian et al. (2019) highlighted how the

skeleton of the flow, provided by the FTLE field, exposes the locations of the centres and

boundaries of supergranular cells. Furthermore, Chian et al. (2020) observed the presence

of persisting Lagrangian saddles, which indicate recurring vortical motions within a complex

magnetic region. More recently, Silva et al. (2023) showed that prior to flux emergence, there

are changes to the FTLE field at the mesogranular scale up to 10 hours before the emergence

of an AR, indicating how Lagrangian analysis can be used to understand and even predict
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Figure 3.1: An observation of Jupiter’s atmosphere, namely the great red spot,
from the Voyager 1 mission in February 1979. Image courtesy of NASA/JPL and
Björn Jónsson. There is a distinct stratification of the gas, separated by material
surfaces which distinguish Lagrangian coherent structures such as an elliptical LCS
surrounding the spot, acting as a transport barrier.
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the evolution of magnetic features at the solar surface.

As DVR2D2 (presented in chapter 2) has been established to be able to identify velocity

fields from simulations well, it is of interest to determine to what extent the network is capable

of producing physically meaningful flows by comparing coherent structures from simulated

and predicted velocity fields. To this end, DVR2D2 was used to study topological plasma

flow features throughout the total evolution of a simulated active region by tracking tracers

and reproducing coherent patterns by means of calculating the FTLE fields. In the previous

chapter, the success of the NNs predictive ability was determined in terms of correlations

and error of velocity fields. As mentioned, advecting particles along a time series of the flow

will compound errors that are contained within velocity fields. Thus, calculating LCSs allows

the study of how well the flow topology has been identified correctly by DVR2D2 and hence

support the understanding of how significantly the flow dynamics deviate from their true

state throughout a time series of recovered velocity fields. Additionally, the calculation of

FTLEs involves taking derivatives of the motions of particles in the flow, which are therefore

expected to amplify any errors present in the velocity fields. Therefore, analysing what

has been recovered by DVR2D2 will help to determine how well the predicted velocity fields

emulate photospheric flow physics from the R2D2 simulation and further determine how well

the model generalises to other realistic and complex flows present in the MURaM simulation.

3.2 Methods

As presented in chapter 2, a version of DV was trained on the R2D2 simulation from Hotta &

Iijima (2020), using randomly selecting pairs of subimages and their corresponding velocity

fields from the τ = 1 optical surface, representing the photosphere. This NN (DVR2D2) is able

to identify instantaneous velocity fields from photospheric simulations containing ARs, with

a good accuracy. The flows produced by the network strongly correlate with the simulation

and diverging structures are captured well.

In this work, the flow dynamics of the R2D2 and MURaM simulations were studied

by seeking coherent flow structures by identifying transport barriers in the flow. These
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transport barriers act as a skeleton for the flow, dictating the general flow topology and thus

the movement of material within the flow. Repelling and attracting material surfaces were

identified by means of identifying ridges in the FTLE field, calculated forward and backward

in time (see, e.g. Haller 2015b). In areas where these ridges overlap, there may be complex

flow behaviours present such as saddles and vortices. Regions with small FTLE values (i.e.

that contain no ridges) highlight regions with simple flows. In order to calculate the FTLE

field, a uniform grid of particles is advected over a time-dependent velocity field and the

distance between neighbouring particles is measured. The full mathematical description

of this process is already given in chapter 1. The integrations of the velocity fields were

performed over two, different length, time intervals of 20 and 100 minutes. These times

were selected as they reveal structures that correspond to granular and mesogranular scales,

which have been shown to correlate with magnetic flux (Chian et al. 2014, Silva et al. 2023).

Therefore, it is anticipated that being able to replicate LCSs and changes in them at these

scales will determine the success of DV in emulating the physics of simulation.

3.3 Results

To further assess the capability of the recovered velocities from DVR2D2, its ability to re-

produce the natural transport barriers from, and therefore emulate the flow physics of, the

MURaM and R2D2 simulations was tested. The forward- and backward-FTLE field was

computed by integrating over short (20 minutes) times and long (100 minutes) times, thus

recovering granular and mesogranular scales, respectively. This was performed at different

key times in the simulations to reveal how flow structures change when high concentrations

of magnetic flux are present in the photosphere. The times chosen reflect where the photo-

sphere is mostly magnetically quiet and when it is magnetically active. Results concerning

their nature and distributions are discussed below.
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3.3.1 Coherent Structures in the R2D2 Simulation

These results present a best-case scenario for validating DVR2D2’s ability to reproduce coher-

ent flow structures, since the image properties, flow properties and physics of the simulation

are all the same as the training set. Thus, the flows produced by the network correlate

more highly with the R2D2 simulation flows than with the MURaM simulation flows, thus

it is expected that more of the LCSs identified correspond strongly with those present in the

simulation.

Figures 3.2 and 3.3 outline the ability of DVR2D2 to capture flow dynamics by reproducing

transport barriers at granular and mesogranular scales, respectively. The longer time inte-

gration used to reveal mesogranular flow structures highlights the presence of structures that

persist longer. These mesogranular structures, in particular the attracting structures, appear

more strongly than their granular scale counterpart, shown in fig. 3.3. These stronger struc-

tures indicate a greater attraction that persists over periods of hours during the peak of an

ARs emergence. Almost all of the ridges present in the simulation are captured by DVR2D2 at

both of the featured scales, only underestimating the attracting ridges and overestimating the

repelling ridges slightly. At the granular scale, both the attracting and repelling structures

weaken over the pore, where flows are suppressed by the magnetic field, however the attract-

ing structures show a lesser reduction in strength suggesting that plasma is flowing into the

pore. DVR2D2 is able to identify this difference, however the consistency of the topology of

the flow structures with the simulation is reduced at the mesogranular scale, suggesting that

flows within pores have highers errors that compound enough to generate notable difference

at larger scales. This is expected as the FTLE is calculated using multiple velocity fields that

contain errors, yet the enhanced attraction within the pore is still captured. The differences

in the FTLE magnitude hints that DVR2D2 is able to distinguish the difference between re-

gions that are dominated by granulation and magnetic fields. The right-most column of the

figure shows that in the R2D2 simulation, there is the presence coherent structures indicative

of Evershed-like flows (e.g., see the discussion by Strecker, H. & Bello González, N. 2022)

surrounding the AR. This is represented by the strong attracting ridge, which delimits the
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pore boundary and is further delimited by a strong repelling ridge in both the short and

long-term integrated fields. This defines a region with strong small and large scale horizontal

flows into the AR, which is typically present around strong pores and sunspots. The NN

correctly identifies the FTLE ridges delimiting the AR at both granular and mesogranular

scales. These results suggest that the NN is able to emulate the flow physics within and

around the AR well.

Figure 3.2: The normalised forward- (red) and backward-FTLE (blue) field su-
perimposed on the magnetic field, corresponds to the highlighted region in fig. 2.1
in the R2D2 simulation at the time of peak magnetic flux in the photosphere (60
hours). Panels (a) and (e) show the magnetic field averaged over the time of in-
tegration. (b) and (f) show the backward-FTLE ridges resulting from a 20-minute
integration of the simulated and recovered velocity fields, respectively. Panels (c)
and (g) show the resulting forward integrated FTLE fields. Panels (d) and (h) both
the forward and backward integrated FTLE fields superimposed on the magnetic
field. The ridges resulting from the 20-minute integration correspond to features
on the length scales of granules.

It is shown further in fig. 3.4 that the distributions of the forward-FTLE fields are

very closely matched by DVR2D2 with the target distributions from simulation. In fact a

Kolmogorov-Smirnov test reveals a test statistic of ≈ 0 implying that there is no discernible

difference between the FTLE distributions from the simulation or NN flows. The distribu-

tions are shown at times before the emergence of any magnetic flux, as well as during the
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Figure 3.3: The same as Figure 3.2 however the FTLE ridges here result from a
100-minute integration corresponding to mesogranular features.

emergence and peak, and the decay of an AR. Throughout the emergence and evolution of

the AR, up until the decay, the mean FTLE value over the < kG shifts slightly to the left.

This shift in the mean indicates a small global change in QS regions where little magnetic

flux is present at all times. A similar trend is seen in the regions where > kG magnetic flux

becomes present, however a more significant change occurs as the magnetic flux emerges and

reaches its peak density. This reduction in the mean forward-FTLE corresponds to reduction

in repelling barriers over the AR, suggesting the presence of stronger attracting structures or

a simplification of the flow behaviour in general. In all cases, DVR2D2 is able to distinguish

the slight differences in the FTLE field between regions where low concentrations and high

concentrations of magnetic flux density are present. This result also highlights the possibility

of monitoring changes, at granular scales, in the transport of magnetic material by the flow.

This has implications for the potential use of forecasting and tracking of dense magnetic fields

with just the flow field.

What these results strongly highlight is that DVR2D2 has successfully learned to emulate

the physics of the R2D2 simulation well.
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3.3.2 Coherent Structures in the MURaM Simulation

The same process, as described above for the R2D2 simulation was carried out for the MURaM

AR simulation (Rempel & Cheung 2014). As established, in chapter 2, the initial setups for

these simulations differ. In this case an untwisted semi-torus of flux was advected through

the bottom boundary, a depth of 16Mm below the surface, and then allowed to evolve under

the influence of convective plasma motions. Therefore, the behaviour exhibited by the flows

is expected to differ somewhat from the R2D2 simulation, in which a twisted cylindrical flux

tube is inserted deep beneath the photosphere, at a depth of 35Mm beneath the surface.

In figs. 3.5 and 3.6, the short and long term integrated forward and backward FTLE fields

are shown for the MURaM simulation as well as those derived from velocities predicted by

DVR2D2. Panels (b) and (c) of both figures highlight a reduction in strength of the FTLE

ridges over the AR, similar to the ridges over the R2D2 pore where flows are suppressed.

Furthermore, attracting barriers delimit the entire pore indicating the presence of inflows at

the umbral boundary. The red repelling barriers are slightly weaker over the pore but still

dominate much of the region, indicating a horizontally outward transport of material by the

flow. These repelling barriers suggest that the magnetic field is dissipating by means of the

plasma transporting it radially outward from the centre of this region. At the time shown

in the figure, the simulated AR is in fact decaying and magnetic flux density is decreasing,

thus the barriers correspond to the physical behaviour of the magnetic fields. DVR2D2 is able

to reconstruct the repelling structures very well, maintaining most of the fine structure at

granular scales. DVR2D2 is also able to reconstruct the strongest attracting features, however

it largely overestimates much of the weaker ridges over the pore. Thus the NN is able to

capture short-lived and granule-sized diverging flow features well, but less so the converging

flow features on these scales. In the 100-minute integrated field, presented in fig. 3.6, the

network is able to reconstruct both attracting and repelling barriers on mesogranular scales

well also. In the MURaM simulation, the dynamics exhibited by the flow are different to

the R2D2 simulation. Within the LCSs, revealed by the FTLE ridges, it is found that

the Evershed-type flows present in the R2D2 AR are not present in the MURaM AR. The
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Evershed-like flows are not present in the MURaM simulation due to insufficient BCs used

for computational efficiency at the photospheric surface in the simulation (see Rempel &

Cheung 2014), whereas some assemblance of penumbrae are found in the R2D2 simulation

(see Hotta & Iijima 2020), however these are still less prominent than in observations. DVR2D2

produces flows that are mostly consistent with the MURaM flows, and the flow dynamics of

the simulation have been identified well as seen through the FTLE fields. Thus showing that

the network has been able to generalise well to the MURaM simulation flows, since the NN

does not simply mimic the flow features present in training set and is therefore emulating

the flow physics present in the simulations. Therefore we determine that DVR2D2 is able

to consistently produce flow structures equally well across simulations. In particular the

forward-FTLE fields correlate well with the originals at granular scales and up, whereas the

backward-FTLE field, while still maintaining much of the structure, is underestimated at

granular scales. This indicates that DV is able to generalise well to new data and, if trained

to deal with the challenges present in observations, it would perform well at identifying flow

dynamics on the surface of the actual Sun.

In fig. 3.7 the distribution of the 20-minute forward-FTLE field is shown for 2 different

regions in the flow, over times when there is little magnetic flux present in the photosphere

and when the AR is fully emerged (2 and 83 hours, respectively). Panels in the left column

of the figure present the forward-FTLE distribution over a section of the photosphere where

<kG magnetic flux is present throughout the simulation. On the other hand, the right column

shows the distribution over the region where >kG magnetic flux has emerged in the later

time. The distributions are shown in blue and red for early and late times, respectively. Panel

(a) of the aforementioned figure shows that the distribution in quiet regions, at both early

and late times, remains almost constant, and panel (b) reveals that there is a difference when

magnetic flux emerges into the photosphere. We can see this more clearly as the mean over

the AR changes significantly, relative to the range of the FTLEs (≈ 10% difference). DV is

able to reproduce this change in the shape of the distribution, however not as accurately, due

to the errors in the predicted velocities. In this instance, a Kolmogorov-Smirnov test produces
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a test statistic of up to 0.06, in other words the maximum difference in the distributions is

6%. Thus, whilst LCSs are produced near-perfectly for the training simulation, the cross-test

with MURaM reveals small errors, but measurable errors. Despite this, DV is recovering

key physical aspects of flows at the granular scale, which determine the its behaviour in the

presence of > kG magnetic flux.

3.4 Summary

This study is the first to present an analysis on how flows recovered by DV are able to repro-

duce the transport barriers present in simulated flows. The version of the network used here

presents a great performance in replicating the overall transport dynamics of photospheric

plasma in regions dominated by intense concentrations of magnetic flux in the simulation.

The reconstruction of attracting and repelling barriers matched well with simulations of ARs,

especially at granular and mesogranular scales. This confirms that despite the inevitable er-

rors in the recovered velocities, DV is able to reconstruct enough information such that these

did not majorly impact particle motions and trajectories in the flow, which shows that DV is

a robust tool for studying the transport of material at small-scales by plasma flows. Further-

more, this indicates that time-dependent structures do not significantly deviate from their

true nature when identified by the NN. On top of this, DVR2D2 successfully captured the

distinct changes in flow behaviour during the formation of ARs, like when magnetic flux

suppresses plasma motion or when magnetic fields are spread outward.

The ability of DV to emulate flow properties from the provided training set means that it

should recover the characteristics of flows, so long as they are in line with flow features present

in the training simulation. Typically, NNs may suffer from over-fitting and create features

that are not present or fail to reproduce anything coherent in the worst case, when passing

new data through the network. However, DV did not introduce the topological features

that were present in the training data into the predicted flows for images from MURaM,

where those topological features were not present. This is a strong indicator that the model

constructed by DV from R2D2 is good at generalising to new data containing similar features
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with differing dynamics and that DV is able to emulate the properties of AR flows well from

the training set.

In addition to these points, the FTLE field exhibits a signal which is indicative of the pres-

ence of magnetic flux in the photosphere. Changes in LCSs produce a quantifiable difference

in the distribution of repelling structures, this difference highlights what is similarly shown

by Silva et al. (2023). Thus the presence of high concentrations of magnetic flux alters the

structure of LCSs in the flow. Not only this, but DV shows that it is a suitable methodology

for recovering enough information on granular and mesogranular scales to accurately identify

such structures and changes within them.

The following chapter studies how changes in the flow topology may be used as a proxy

for identifying where interesting magnetic features are present in the photosphere, by con-

structing a classifier for the presence of intense magnetic flux with a threshold for changes in

the topology of LCSs.
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Figure 3.4: Distributions of the 20-minute forward-FTLE field, at various times
in the R2D2 simulation during the AR lifetime: 1h 40min (early, when there is
little concentration of magnetic flux in the photosphere; dark green), 40h (during
the emergence of the AR in the photopshere; blue), 60h (the time of peak magnetic
flux density in the photopshere; magenta), 166h 40min (close to the time of total
decay of the AR; yellow). The top row shows the FTLE distributions calculated
from the simulation velocities and the bottom shows the distributions calculated
using velocities predicted by DVR2D2. The left column shows the distributions
over a region which contains < kG magnetic flux density throughout the evolution
of the photospheric surface and the right column displays the distributions over
a region where > kG flux is present during the emergence and peak of the AR.
The vertical lines show the corresponding positive foward-FTLE means for each
distribution
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Figure 3.5: The same as fig. 3.2, however highlighting the region from the MU-
RaM simulation shown in fig. 2.2.

Figure 3.6: The same as fig. 3.3, however highlighting the region from the MU-
RaM simulation shown in fig. 2.2.
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Figure 3.7: Distribution of the 20-minute forward-FTLE field at times of 2h
(prior to the emergence of the AR; blue) and 83h (post-emergence of the AR; ma-
genta) in the MURaM simulation. The top row shows the FTLE distributions
calculated using velocities from the simulation and the bottom rows shows the dis-
tributions using velocities recovered by DVR2D2. The left column shows the distri-
butions over a region, which contains < kG magnetic flux density throughout the
simulation and the right column shows the distributions over a region where > kG
magnetic flux density is present when the AR emerges. The vertical lines highlight
the respective positive forward-FTLE distribution means.



Chapter 4

Identifying and Tracking the

Presence of Active Regions with

Coherent Photospheric Flow

Structures

4.1 Introduction

Space weather (SW), as mentioned in chapter 1, is of great importance. The consequences

of its effects are far reaching and threaten electrical systems whose reliability is essential for

maintaining modern human activity (Schwenn 2006). SW is driven by the release of magnetic

flux in the solar atmosphere, nested in ARs (van Driel-Gesztelyi & Green 2015) can manifest

as the appearance of dark spots in the solar photosphere called sunspots or pores, depending

on their size. Forecasting SW presents many challenges (e.g., see Singer et al. 2001, Vassiliadis

et al. 2007). One of these challenges is the timeliness of accurate forecasting, and an aspect of

being able to do this is taking local measurements prior to an event occurring, the difficulty

in this task is that it is hard to identify and classify regions where a solar flare (SF) or coronal

mass ejection (CME) etc. may take place if they are not already being directly observed.

84



CHAPTER 4. TRACKING ACTIVE REGIONS 85

As such, many local forecasting techniques, which predict for the time of observation, are

called nowcasting (Camporeale 2019). Thus it is important that techniques focus more on

the forecasting aspect, and one way to achieve this may be to identify where ARs will emerge,

so that they may be monitored long before the onset of any SW events.

It has been revealed through helioseismology that there are statistically significant subsur-

face signals prior to the emergence of ARs, namely subsurface flows in the Sun are dominated

by convective motions of plasma, and that the emergence of magnetic flux occurs in the inter-

granular regions between supergranular cells (Birch et al. 2013). In addition to this, diverging

horizontal flows have been detected up to 100min prior to emergence in observation (Toriumi

et al. 2012) and up to 3h prior in simulations (Rempel & Cheung 2014). In other words,

there is evidence that plasma motions at the surface level exhibit behaviours that are a direct

result of the interaction between plasma and magnetic fields. As highlighted in chapter 3,

the FTLE field provides an insight to changes in the flow topology in the presence of mag-

netic fields. Recently, it has also been evidenced by Silva et al. (2023) that the FTLE field

presents signals that are indicative of the emergence of magnetic flux. This signal is shown

in fig. 4.1. This novel approach determines the presence of a signal in the FTLE field up to

10h prior to the time of emergence, for example see fig. 4.2 and fig. 4.3. However, a problem

with this methodology is that the identification of the FTLE field demands knowledge of the

horizontal photospheric velocities. DV, as shown in chapters 2 and 3 provides the potential

of recovering flows from observations and preserving structure in the FTLE field. Therefore,

in this chapter, the ability for the FTLE field to indicate the presence of intense regions of

magnetic flux density and track these is presented and we also determine the effectiveness

of DeepVel at supporting such a method. We present that changes in the FTLE field over

a field of view are directly correlated with the presence of photospheric magnetic fields, and

that emulated flows from observations using DV can be used to track the location of ARs at

the mesogranular scale.
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Figure 4.1: Plot from Silva et al. (2023), showing the normalised distance be-
tween peaks in the 100-minute forward FTLE field in the R2D2 simulation around
the time of emergence, which was chosen to be t0 by the authors. The blue line
corresponds to the average distance between peaks (P ∗

d ) of the forward FTLE ridges
and the orange line shows the evolution of the maximum unsigned flux (Bmax) in
Gauss. The green shaded region shows when a significant enough change in the
distances between peaks to identify the presence of an emerging AR

. Up to 6 hours prior to the emergence time of the AR, there is a distinct drop in the FTLE
ridge distance.
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Figure 4.2: Plot from Silva et al. (2023) showing the time-evolution of the mag-
netic field at the τ = 1 surface from the R2D2 simulation about the time of AR
emergence in the photosphere, t0.

Figure 4.3: Plot from Silva et al. (2023) showing the time-evolution of the 100-
minute forward FTLE field over the photosphere about the time of AR emergence,
t0. Distinct material lines form over the region where the magnetic flux is strongest
up to 10 hours before the full emergence.
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4.2 Methodology

4.2.1 The Finite-Time Lyapunov Exponent

As in chapter 3, flows from the R2D2 simulation were used to calculate the 20-minute,

forward-FTLE fields over an AR, revealing structures at the granular scale. The forward-

FTLE field describes diverging flow structures, which are assumed to correspond with the

flows that are present during flux emergence as magnetic fields rise and cause granules to

stretch and fragment. Whilst the backward-FTLE field also shows changes in the flow, these

describe changes to converging flow structures which are expected to be outnumbered and

dominated by the increasing strength and number of diverging features, and are therefore

of less interest. This length of integration for the FTLE field was chosen mainly for two

reasons. In order to maintain timeliness: the FTLE computation is expensive and can take

a long time over large spatial domains, so keeping the integration over a handful of frames

keeps the computational cost low as well as keeping the number of observations required

small. The second reason for this is that for precise tracking: we want to identify fine-scale

changes. In order to produce a useful magnetic flux detection algorithm using LCSs, the

velocities it uses must be attainable at scales which discern fine structure which correlates

strongly to the flux. Chapter 3 has highlighted that DVR2D2 is able to reproduce the FTLE

field with confidence, and detect changes in the LCSs at the granular scale.

Early in the simulation where the magnetic flux is measured to be < 1G on average, the

FTLE field is representative of flow structures which correspond to the QS. From this, a

mean of the positive forward-FTLE value is calculated to represent the QS. It is expected

that flow structures will change locally around sites of intensifying magnetic flux as the AR

emerges, thus the FTLE field will change in time. To this end, the difference in the positive

forward-FTLEs, relative to the QS mean positive forward-FTLE, is calculated locally over

a range of scales from the mesogranular to supergranular by rebinning the surface. Various

thresholds between a relative difference of 0.05 to 1 were chosen to identify the sensitivity of

the method that would produce the most accurate classification of ARs.
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The version of DV used in this chapter is once again the same as that of chapter 2.

4.2.2 Identifying Magnetic structures

In order to identify regions of flux, the photospheric surface of the R2D2 simulation is rebinned

to different scales, breaking the domain into tiles of fixed sizes. These are 4.8×4.8Mm2, 9.6×

9.6Mm2, 19.2×19.2Mm2 and 24×24Mm2, in other words from mesogranular to supergranular

scales. Individual tiles are considered to be active regions if the average unsigned flux over

the region, within the tile, is calculated to be > 1kG, as per the definition from van Driel-

Gesztelyi & Green (2015).

The various thresholds in the mean FTLE differences are then used to determine the

presence of ARs, where if the threshold is reached, then the region is detected as active and

measured against the actual magnetic activity present in the simulation.

In this dataset, only around 10–20% of the data falls in the class of AR since most of the

space is dominated by granulation and prior to AR emergence, the data only contains QS-

like flows. The consequence of this disparity between class sizes introduces a problem with

bias—if the classifier performs well at only identifying true negatives, then the measured

performance is skewed and will make the method appear to work well. However, in the

method presented here, the classification is based on a simple threshold, so the classifier

itself cannot be influenced by the data like typical ML-based classifiers which can be prone

to overfitting. In order to correctly analyse the performance of the classifier, a number of

balanced metrics should be considered which are not skewed by class size, described in the

next section.

4.3 Results

Here, the results of using a threshold on the difference of the mean positive forward-FTLE

over subregions of a simulated active region are presented. In order to determine the success

of the FTLE field as a classifier of the presence of intense magnetic fluxes, confusion matrices

have been calculated for various times and for the various thresholds.
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Confusion matrices display the correctly and incorrectly classified cases, these are true

positives (TP: the correctly classified positive cases), true negatives (TN: the correctly clas-

sified negative cases), false positives (FP: incorrectly classified negative cases) and false neg-

atives (FN: the incorrectly identified positive cases). A positive classification in this case

is one in which a region is considered active. From the various types of the classifications,

the accuracy, precision, recall and F1-score are all calculated. These metrics are defined and

interpreted as follows:

• Accuracy: TP + TN
TP + TN + FN + FP , the ratio of correctly classified cases, i.e. the probability

of correctly classifying a region as active or quiet.

• Balanced Accuracy: 1
2

(
TP

TP+FN + TN
TN+FP

)
, the average of the true positive and true

negative rates (see below). This gives a more balanced value when considering cases

where the number of cases in one of the classes is imbalanced.

• Precision: TP
TP + FP , the proportion of TPs of the predicted positive cases, i.e. this is

the probability of the case being positive given that it has been identified as positive.

• Recall (or TPR): TP
TP + FN , the ratio of positive cases identified of all positive cases, or

the probability of the classifier giving a positive result, given that the case is in fact

positive.

• FPR: FP
FP + TN , the ratio of negative cases identified of all negative cases, or the proba-

bility of the classifier giving a negative result, given that the case is in fact negative.

• F1-score: 2× precision × recall
precision + recall , the harmonic mean of the precision and recall scores,

where the TPR and FPR are the true positive rate and the false positive rate, respectively.

The balanced accuracy, precision, recall and F1-score are not influenced by the class imbalance

as they take into account the class size in their definitions.

For the best case (considered to be the highest F1-score), the TPRs and FPRs were

plotted on the receiver operator characteristic curves shown in fig. 4.6.
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Table 4.1: Performance of various relative FTLE mean differences, calculated
from the R2D2 simulation (Hotta & Iijima 2020) velocities over various grid spac-
ings as a classifier for AR levels of magnetic flux.

Scale

(Mm)

FTLE

(Relative

difference)

Metric

Accuracy
Balanced

Accuracy
Precision Recall f1 Score

4.8

0.00 0.118 0.500 0.118 1.000 0.210

0.05 0.425 0.656 0.165 0.957 0.281

0.10 0.648 0.773 0.242 0.936 0.384

0.15 0.800 0.822 0.354 0.851 0.500

0.20 0.873 0.808 0.472 0.723 0.571

0.25 0.920 0.807 0.660 0.660 0.660

0.30 0.923 0.762 0.722 0.553 0.627

0.35 0.928 0.738 0.821 0.489 0.613

0.40 0.935 0.733 0.957 0.468 0.629

0.45 0.935 0.723 1.000 0.447 0.618

0.50 0.930 0.702 1.000 0.404 0.576

0.55 0.913 0.628 1.000 0.255 0.407

0.60 0.903 0.585 1.000 0.170 0.291

0.65 0.893 0.543 1.000 0.085 0.157

0.70 0.890 0.532 1.000 0.064 0.120

0.75 0.888 0.521 1.000 0.043 0.082

0.80 0.883 0.500 0.000 0.000 0.000

0.85 0.883 0.500 0.000 0.000 0.000

0.90 0.883 0.500 0.000 0.000 0.000

0.95 0.883 0.500 0.000 0.000 0.000

Continued on next page
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Scale

(Mm)

FTLE

(Relative

difference)

Metric

Accuracy
Balanced

Accuracy
Precision Recall f1 Score

1.00 0.883 0.500 0.000 0.000 0.000

Continued on next page
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Scale

(Mm)

FTLE

(Relative

difference)

Metric

Accuracy
Balanced

Accuracy
Precision Recall f1 Score

9.6

0.00 0.130 0.500 0.130 1.000 0.230

0.05 0.420 0.667 0.183 1.000 0.310

0.10 0.670 0.745 0.262 0.846 0.400

0.15 0.830 0.837 0.423 0.846 0.564

0.20 0.850 0.718 0.438 0.538 0.483

0.25 0.890 0.740 0.583 0.538 0.560

0.30 0.900 0.714 0.667 0.462 0.545

0.35 0.890 0.642 0.667 0.308 0.421

0.40 0.910 0.654 1.000 0.308 0.471

0.45 0.910 0.654 1.000 0.308 0.471

0.50 0.900 0.615 1.000 0.231 0.375

0.55 0.900 0.615 1.000 0.231 0.375

0.60 0.890 0.577 1.000 0.154 0.267

0.65 0.880 0.538 1.000 0.077 0.143

0.70 0.870 0.500 0.000 0.000 0.000

0.75 0.870 0.500 0.000 0.000 0.000

0.80 0.870 0.500 0.000 0.000 0.000

0.85 0.870 0.500 0.000 0.000 0.000

0.90 0.870 0.500 0.000 0.000 0.000

0.95 0.870 0.500 0.000 0.000 0.000

1.00 0.870 0.500 0.000 0.000 0.000

Continued on next page
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Scale

(Mm)

FTLE

(Relative

difference)

Metric

Accuracy
Balanced

Accuracy
Precision Recall f1 Score

19.2

0.00 0.080 0.500 0.080 1.000 0.148

0.05 0.360 0.652 0.111 1.000 0.200

0.10 0.560 0.761 0.154 1.000 0.267

0.15 0.760 0.870 0.250 1.000 0.400

0.20 0.840 0.685 0.250 0.500 0.333

0.25 0.880 0.707 0.333 0.500 0.400

0.30 0.920 0.728 0.500 0.500 0.500

0.35 0.920 0.728 0.500 0.500 0.500

0.40 0.880 0.478 0.000 0.000 0.000

0.45 0.880 0.478 0.000 0.000 0.000

0.50 0.920 0.500 0.000 0.000 0.000

0.55 0.920 0.500 0.000 0.000 0.000

0.60 0.920 0.500 0.000 0.000 0.000

0.65 0.920 0.500 0.000 0.000 0.000

0.70 0.920 0.500 0.000 0.000 0.000

0.75 0.920 0.500 0.000 0.000 0.000

0.80 0.920 0.500 0.000 0.000 0.000

0.85 0.920 0.500 0.000 0.000 0.000

0.90 0.920 0.500 0.000 0.000 0.000

0.95 0.920 0.500 0.000 0.000 0.000

1.00 0.920 0.500 0.000 0.000 0.000

Continued on next page
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Scale

(Mm)

FTLE

(Relative

difference)

Metric

Accuracy
Balanced

Accuracy
Precision Recall f1 Score

24.0

0.00 0.125 0.500 0.125 1.000 0.222

0.05 0.438 0.679 0.182 1.000 0.308

0.10 0.625 0.786 0.250 1.000 0.400

0.15 0.688 0.607 0.200 0.500 0.286

0.20 0.875 0.714 0.500 0.500 0.500

0.25 0.875 0.714 0.500 0.500 0.500

0.30 0.875 0.714 0.500 0.500 0.500

0.35 0.875 0.714 0.500 0.500 0.500

0.40 0.875 0.500 0.000 0.000 0.000

0.45 0.875 0.500 0.000 0.000 0.000

0.50 0.875 0.500 0.000 0.000 0.000

0.55 0.875 0.500 0.000 0.000 0.000

0.60 0.875 0.500 0.000 0.000 0.000

0.65 0.875 0.500 0.000 0.000 0.000

0.70 0.875 0.500 0.000 0.000 0.000

0.75 0.875 0.500 0.000 0.000 0.000

0.80 0.875 0.500 0.000 0.000 0.000

0.85 0.875 0.500 0.000 0.000 0.000

0.90 0.875 0.500 0.000 0.000 0.000

0.95 0.875 0.500 0.000 0.000 0.000

1.00 0.875 0.500 0.000 0.000 0.000
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Table 4.2: Performance of various relative FTLE mean differences, calculated
using velocities recovered by DV from the R2D2 simulation (Hotta & Iijima 2020)
intensities, over various grid spacings as a classifier for AR levels of magnetic
flux.

Scale

(Mm)

FTLE

(Relative

difference)

Metric

Accuracy
Balanced

Accuracy
Precision Recall f1 Score

4.8

0.00 0.118 0.500 0.118 1.000 0.210

0.05 0.475 0.684 0.178 0.957 0.300

0.10 0.723 0.806 0.287 0.915 0.437

0.15 0.853 0.852 0.435 0.851 0.576

0.20 0.893 0.828 0.530 0.745 0.619

0.25 0.910 0.801 0.608 0.660 0.633

0.30 0.923 0.762 0.722 0.553 0.627

0.35 0.940 0.763 0.926 0.532 0.676

0.40 0.933 0.731 0.917 0.468 0.620

0.45 0.935 0.723 1.000 0.447 0.618

0.50 0.928 0.691 1.000 0.383 0.554

0.55 0.915 0.638 1.000 0.277 0.433

0.60 0.905 0.596 1.000 0.191 0.321

0.65 0.898 0.564 1.000 0.128 0.226

0.70 0.888 0.521 1.000 0.043 0.082

0.75 0.885 0.511 1.000 0.021 0.042

0.80 0.885 0.511 1.000 0.021 0.042

0.85 0.883 0.500 0.000 0.000 0.000

0.90 0.883 0.500 0.000 0.000 0.000

0.95 0.883 0.500 0.000 0.000 0.000

Continued on next page
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Scale

(Mm)

FTLE

(% difference)

Metric

Accuracy
Balanced

Accuracy
Precision Recall f1 Score

1.00 0.883 0.500 0.000 0.000 0.000

Continued on next page
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Scale

(Mm)

FTLE

(% difference)

Metric

Accuracy
Balanced

Accuracy
Precision Recall f1 Score

9.6

0.00 0.130 0.500 0.130 1.000 0.230

0.05 0.470 0.630 0.177 0.846 0.293

0.10 0.750 0.791 0.324 0.846 0.468

0.15 0.830 0.771 0.409 0.692 0.514

0.20 0.850 0.718 0.438 0.538 0.483

0.25 0.890 0.740 0.583 0.538 0.560

0.30 0.900 0.714 0.667 0.462 0.545

0.35 0.920 0.692 1.000 0.385 0.556

0.40 0.910 0.654 1.000 0.308 0.471

0.45 0.900 0.615 1.000 0.231 0.375

0.50 0.900 0.615 1.000 0.231 0.375

0.55 0.890 0.577 1.000 0.154 0.267

0.60 0.880 0.538 1.000 0.077 0.143

0.65 0.880 0.538 1.000 0.077 0.143

0.70 0.870 0.500 0.000 0.000 0.000

0.75 0.870 0.500 0.000 0.000 0.000

0.80 0.870 0.500 0.000 0.000 0.000

0.85 0.870 0.500 0.000 0.000 0.000

0.90 0.870 0.500 0.000 0.000 0.000

0.95 0.870 0.500 0.000 0.000 0.000

1.00 0.870 0.500 0.000 0.000 0.000

Continued on next page
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Scale

(Mm)

FTLE

(% difference)

Metric

Accuracy
Balanced

Accuracy
Precision Recall f1 Score

19.2

0.00 0.080 0.500 0.080 1.000 0.148

0.05 0.520 0.739 0.143 1.000 0.250

0.10 0.680 0.826 0.200 1.000 0.333

0.15 0.800 0.891 0.286 1.000 0.444

0.20 0.880 0.935 0.400 1.000 0.571

0.25 0.880 0.707 0.333 0.500 0.400

0.30 0.920 0.728 0.500 0.500 0.500

0.35 0.880 0.478 0.000 0.000 0.000

0.40 0.880 0.478 0.000 0.000 0.000

0.45 0.880 0.478 0.000 0.000 0.000

0.50 0.920 0.500 0.000 0.000 0.000

0.55 0.920 0.500 0.000 0.000 0.000

0.60 0.920 0.500 0.000 0.000 0.000

0.65 0.920 0.500 0.000 0.000 0.000

0.70 0.920 0.500 0.000 0.000 0.000

0.75 0.920 0.500 0.000 0.000 0.000

0.80 0.920 0.500 0.000 0.000 0.000

0.85 0.920 0.500 0.000 0.000 0.000

0.90 0.920 0.500 0.000 0.000 0.000

0.95 0.920 0.500 0.000 0.000 0.000

1.00 0.920 0.500 0.000 0.000 0.000

Continued on next page
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Scale

(Mm)

FTLE

(% difference)

Metric

Accuracy
Balanced

Accuracy
Precision Recall f1 Score

24.0

0.00 0.125 0.500 0.125 1.000 0.222

0.05 0.563 0.750 0.222 1.000 0.364

0.10 0.688 0.821 0.286 1.000 0.444

0.15 0.750 0.643 0.250 0.500 0.333

0.20 0.875 0.714 0.500 0.500 0.500

0.25 0.875 0.714 0.500 0.500 0.500

0.30 0.875 0.714 0.500 0.500 0.500

0.35 0.813 0.464 0.000 0.000 0.000

0.40 0.813 0.464 0.000 0.000 0.000

0.45 0.875 0.500 0.000 0.000 0.000

0.50 0.875 0.500 0.000 0.000 0.000

0.55 0.875 0.500 0.000 0.000 0.000

0.60 0.875 0.500 0.000 0.000 0.000

0.65 0.875 0.500 0.000 0.000 0.000

0.70 0.875 0.500 0.000 0.000 0.000

0.75 0.875 0.500 0.000 0.000 0.000

0.80 0.875 0.500 0.000 0.000 0.000

0.85 0.875 0.500 0.000 0.000 0.000

0.90 0.875 0.500 0.000 0.000 0.000

0.95 0.875 0.500 0.000 0.000 0.000

1.00 0.875 0.500 0.000 0.000 0.000

The metrics described in the beginning of this section were calculated for a range of
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different spatial scales and thresholds of the relative forward-FTLE mean difference. The

performance metrics for the classifier when using simulation velocities is presented in table 4.1,

and those using the velocities predicted by DVR2D2 are shown in table 4.2. Both tables show

that the 20-minute forward-FTLE fields perform the best as a classifier for the presence of

ARs at mesogranular scales of 4.8 × 4.8Mm2, where the scores for all performance metrics

achieve their highest values. These forward-FTLE fields correspond to diverging features on

the granular scale, which will have a response to the presence of emerging magnetic fields

during AR formation. Thus, the response of granular features will correspond to changes in

the magnetic field at some scale. Given that, during emergence, the magnetic field does not

dominate the entire region, larger regions of sparse magnetic field will be required to amass

a notable change in flow structures. This result suggests flows on the granular scale have a

persisting influence on magnetic features on the mesogranular scale during AR formation or

vice versa.

The simulation velocities support that a relative threshold in the range of 0.25–0.35 pro-

vide the best balanced accuracies. In fact the best is the threshold of 0.25 for maintaining a

strong f1-score. This value has been selected as the strongest since we wish to optimise the

recall, while still maintaining a good precision. In fact, in this case, the recall is considered

to be more important than the precision, since the target is to identify the location of an AR,

and the cost of mislabelling a local quiet region is less than that of mislabelling a local AR.

Hence, the balanced precision and recall scores of the relative threshold of 0.25 supports the

best overall detection.

Interestingly, DVR2D2 provides a stronger performance measured by the balanced accuracy

up until a relative threshold of 0.25. Additionally, the precision and recall, although similar,

are also greater for most of the thresholds using DV velocities. The changes in these values

is typical as the increasing threshold will cause less positives to be identified, but when they

are they are more likely to be true positives. Thus, as the threshold increases, the TPR

(recall) will decrease since it is less likely for a region to be classified as positive (active)

and the precision therefore increases as the likelihood of detecting a true positive increases.
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The precision and recall scores are roughly balanced for both at a threshold value 0.25.

The improved performance from DV over the simulation velocities is somewhat unexpected,

however the FTLE fields produced from DV appear to show a slightly reduced difference in

quiet and active region means, compared those produced by simulation velocities (see fig. 3.4).

Whilst this is a small error, this difference in sensitivity is likely enough to to change how

likely it is for a region to be classified as containing an AR when using the DV velocities.

Other scales in the tables become a bit more difficult to interpret due to the fact that for

patches of 19.2 × 19.2Mm2 and 24 × 24Mm2 there are only 25 and 16 tiles over the whole

FOV and only a few (2-5) patches considered active in terms of the levels of magnetic flux

at these scales. Thus, identifying larger regions amplifies the significance of any mislabelling

of patches. Additionally, since changes in the forward-FTLE value represents features on the

granular scale, any changes due to the presence of magnetic flux are expected to be highly

localised and hence the chance of error in classifying a region correctly is expected to increase.
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Figure 4.4 (previous page): The 20-minute forward-FTLE fields from R2D2
simulation velocities (left column), magnetic flux (middle) and confusion matrices
of the regions classified as active via the FTLE field vs the magnetic field (right).
The top, second, third and fourth rows display key times throughout the sunspot
evolution of 3 (mostly quiet), 40 (emerging sunspot), 60 (peak photospheric mag-
netic flux) and 170 (near full decay of sunspot) hours. Cases identified as active
via the FTLE field are highlighted in pink when the FTLE mean value differs by
0.25 from the mean FTLE value in the QS. The actual positive cases, determined
by the concentration of magnetic flux, are highlighted in blue.

Figure 4.4 and fig. 4.5 display examples of the AR classifier for simulation FTLEs and

DVR2D2, respectively. It is clear that in both instances, where little magnetic flux is present

(see panels a, b c, d, e, f, j, k and l), the FTLE fields highlight changes in regions close

to those where > kG concentrations of magnetic flux are present. Despite their location

not being exact, roughly the same number of ARs are detected by the FTLE field as their

are measured by the averaged magnetic flux density, early in emergence phase. When the

presence of the magnetic flux is at its peak, changes in the FTLE field coincide largely with

the ARs. Namely, the true positive rate hits 0.67. So for large ARs, 2/3s of the entire region

will be detected correctly. In addition to this, both the R2D2 and DVR2D2 flows detect a

similar number of positives as measured by the levels of flux. It is apparent that these regions,

where they do not coincide exactly with the presence of the AR, are very close to the ARs.

The above highlights two major points. Firstly, changes in the flow topology, determined

by the FTLE field, are indicative of the presence of magnetic flux and can confidently locate

ARs on the mesogranular scale. Secondly, the NN DV has the capacity to predict accu-

rate enough flows, at least from simulation, to provide almost an excellent performance in

recovering flow topology, closely matching that identified within simulations.

The receiver operating characteristic (ROC; which refers to the performance of a detector)

curve shows the trade off between sensitivity (measured by the TPR) and the FPR (1 -

specificity). The area under the curve (AUC) presents a measure for the performance as a

value between 0 and 1. When the AUC is close to 1, the classifier is correctly identifying true

positives almost all the time, if the AUC is close to 0.5 (shown by the dashed line in fig. 4.6)

then the classifier is randomly guessing the labels. In the best case scenario, the sensitivity is
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Figure 4.5: The same as fig. 4.4, however the velocities used for calculating the
FTLEs were estimated by DV.



CHAPTER 4. TRACKING ACTIVE REGIONS 106

Figure 4.6: ROC curves for 20 evenly spaced thresholds of the relative positive
forward-FTLE mean difference and 4 different spatial scales (depicting the length
of one side of the tile). Each point along the curve shows the FPR and TPR for
each threshold. Each curve is labelled with the area under the curve (AUC). The
diagonal, dashed line represents the possible case and the dotted line shows the
best case scenario, where the optimum case is highlighted by the black point. Panel
(a) shows the curves when using the velocities from the R2D2 simulation and (b)
shows the curves when using velocities estimated by DV for calculating the FTLEs.

1 and the specificity is 1, this curve and point are also shown by the dotted line in the figure.

The performance when using both the R2D2 and the DV velocities is very similar for

the FTLE mean difference threshold of 0.25 at a 4.8 × 4.8Mm2 scale. This is highlighted

by table 4.1 and table 4.2. We see that the ROC curves take on similar shapes with DV

showing better specificity at certain thresholds. Whilst the green curves, representing the

smallest studied tile size, does not outperform the larger tiles of 19.2×19.2Mm2 as measured

by the AUC, the classification has a smaller balanced accuracy and a much smaller f1 score,

highlighting that the apparent success of the ROC curve is likely due to the imbalance in

the classes. Thus it is decided that the 4.8 × 4.8Mm2 tiling works best for classifying using

granules.
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4.4 Summary

In this chapter, the pipeline for new method was proposed for the detection of ARs. Using

velocities from simulation, it was shown that to a high degree of accuracy the FTLE field can

indicate the presence of high concentrations (> kG) of magnetic flux. In addition to this, it

was highlighted that the detection of magnetic flux can be revealed with only a short time

series (20 minutes) of continuum images, from which the DeepVel network can be used to

predict the corresponding flow fields, which can then be used to derive the FTLE field, given

the measurement of some baseline FTLE value for quiet Sun flows.

An advantage to this approach is that the classifier itself is based on a threshold relating

to physical properties of the flow, which are expected to correlate to magnetic structures.

This means that this approach, once fine-tuned, is stable across multiple datasets and is

highly reproducible and interpretable. However, it is also possible that the values that this

threshold is based on change from dataset to dataset and thus may in fact fail as it isn’t

adaptive, therefore needing to be analysed and tuned for each new dataset.

Whilst the proposed method is not exact in its accuracy for detecting the location of

flux, it is able to determine its presence almost always, and does not falsely produce positive

classifications when there is no significant magnetic flux present in the photosphere of R2D2

simulation. It is possible that this classifiers performance is good because it more often than

not predicts negative cases, but the balance of precision and recall at the identified best

threshold inspire confidence. The heavily weighted bias in class sizes indicate that threshold

is doing a significantly better job than random guessing, which would require a precision

of ≈ 0.1–0.2. In order to fully test this method, further studies should be carried out by

applying this to QS only simulations to distinguish whether or not this can be used to always

detect the presence of magnetic flux without causing false alarm. Furthermore, this method,

in tandem with the method presented by Silva et al. (2023) showcase a significant step toward

being able to efficiently forecast and locate the presence of emerging ARs. Thus establishing

a method that would provide ample time for researchers to collect high quality observations
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of complex magnetic structures.



Chapter 5

Identifying Coherent Swirling

Structures in the Chromosphere

5.1 Introduction

A major part of understanding the solar atmospheric structure and dynamics is understanding

how energy is transported between layers. Each layer of the solar atmosphere has a strong

influence on the next.

The chromosphere is a region of particular interest as it is home to some highly complex

structures thanks to the lower chromosphere being dominated by gas pressure (β > 1) and

the upper chromosphere being magnetically dominated (β < 1), see fig. 1.7. Below the

chromosphere is the photosphere, in which plasma motions largely influence the structures

present. At the top of the chromosphere is the transition region into the corona, where

magnetic fields constantly change and influence the flow of plasma into the solar wind. In

the transition region, there are steep gradients in both temperature and plasma density.

One particular area of interest in the literature is the coronal heating problem (see Klim-

chuk 2006), which highlights the steep gradients in atmospheric properties, as the temperature

rapidly increases, whilst the density drops. This raises the question: what mechanisms are

responsible for heating the corona? One supposed mechanism for the heating of the corona

109
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is the influence of vortical motions. For example, photospheric vortices have been linked

to the coronal heating problem (e.g., see Zirker 1993). Examples of chromospheric vortices

and corresponding photospheric features (magnetic bright points) are highlighted in fig. 5.1.

Vortices and other swirling motions have been linked to the transport of energy by build-

ing up tension in the magnetic field through the twisting of magnetic flux tubes (e.g., see

Tziotziou et al. 2023). For example, in the aforementioned figure, swirling motions in the

chromosphere surround regions of concentrated magnetic flux in the photosphere (Shelyag,

S. et al. 2011), which are suggested to be magnetic foot points for flux tubes. Figure 5.1

highlights the Doppler shifts upflows in the vortex centres and downflows surrounding this.

Figure 5.1: Image taken from Wedemeyer-Böhm, S. & Rouppe van der Voort,
L. (2009) showing the swirling motions in the chromosphere with corresponding
photospheric bright points. The top 3 rows show images taken in the SST CRISP
wide-band (photosphere), Ca II IRT 8452Å line wing (photosphere), and line core
(chromosphere) respectively. The bottom row shows Doppler measurements.

Vortices, whilst easy to identify visually, are tricky to define (see Haller et al. 2016). A

simple definition may be established by finding regions of non-zero vorticity in a velocity field,
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however this approach is flawed as shear flows exhibit a non-zero vorticity. A strong definition

for coherent vortices will account for material invariance, that is the vortex will persist and

remain detectable regardless of the frame of reference. For example, in a rotating frame of

reference, defined in an Eulerian framework, a vortex may appear still. One definition from

Lugt (1979) is that a vortex is ‘a multitude of material particles rotating around a common

center’. This definition touches on the idea that a vortex should be defined by particle

trajectories and not just by the velocity field. A number of vortex detection methods exist

for identifying coherent vortices in flows and these take either an Eulerian or a Lagrangian

approach. These two approaches are distinct in their methodologies. Eulerian methods

detect vorticity in the instantaneous velocity field with an additional quantity, derived from

the velocity gradient tensor, that is used to distinguish whether the vorticity arises from

a shearing motion or genuine rotations. Some of these Eulerian methods/quantities are

highlighted below. The Lagrangian approach takes a more objective and frame-independent

approach by tracking particle motions that result from an integration over a time-dependent

velocity field. The particle trajectories are used to define contours, which can then identify

the strength and locations of coherent vortical structures.

Two common Eulerian vortex detection methods are the λ2 (see Jeong & Hussain 1995)

and Γ (see Graftieaux et al. 2001) criterion. The first is able to detect vortex cores only whilst

the latter is able to detect vortex boundaries also. Another method is the swirling strength

criterion which identifies rotational motions as the imaginary component of the eigenvalues of

the gradient tensor (see Zhou et al. 1999). Objective vortex detection requires a Lagrangian

formation such as the Lagrangian averaged vorticity deviation (LAVD; see Haller et al. 2016).

A common theme with vortex detection methods is that they require knowledge of the velocity

field. An exception to this are methods which determine the presence of vortices by identifying

morphological characteristics in highly contrasting images (e.g., see Dakanalis et al. 2021)

Studying structures within the solar atmosphere is a difficult task due to several factors.

The first being that the chromosphere is rather elusive and visible only in a sparse number of

wavelengths, which span a wide band and cover a wide range of heights in the chromosphere
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(see fig. 1.6) , thus making it difficult to study coherent structures. The second reason is that

much of the chromosphere is dominated by magnetic fields, thus large scale changes occur

rapidly, making features difficult to track and see. However, vortices tend to be optically

thick and therefore dense—this indicates that motions within vortical structures are easier

to identify than in the background of the chromosphere (see examples from Tziotziou et al.

2023). Thirdly, the chromosphere also transitions from local thermal equilibrium (LTE) to

non-LTE processes. That is, diffusive processes become important in the transfer of energy in

the chromosphere and thus images are much less coherent. This also creates difficulty in mod-

elling chromospheric processes. In recent times a number of numerical codes for modelling

the chromosphere have appeared, for example Bifrost (see Gudiksen et al. 2011), MANCHA

(see Khomenko & Collados 2006) and most recently a chromospheric extension of the MU-

RaM code (see Przybylski et al. 2022). Retrieving plasma motions from the chromosphere is

difficult for the reasons mentioned above, as standard optical tracking techniques and others

cannot be applied. The ability for DV for recovering flows at various different levels of the so-

lar atmosphere has already been presented for simulations of the QS and penumbral flows (see

Tremblay & Attie 2020). The previous work highlighted a performance for lower resolution

images and longer cadences designed to mimic the quality of observations from SDO/HMI.

This, combined with the recent development of high resolution simulations and the devel-

opment of numerical codes for synthesising chromospheric imagery, such as Lightweaver (a

non-LTE RT code for synthesising images; see Osborne & Milić 2021), indicates that for the

first time it may be possible to reproduce coherent flow structures in the chromosphere.

In this chapter, a cascade of two neural networks is proposed in which the outputs of

one version of DV is used as the inputs for a second version. By using the radiation forma-

tion heights of synthesised chromospheric images from the Bifrost code, a version of DV is

trained to predict velocities in chromospheric imagery where swirling structures are present.

Thus what is presented is a first attempt at performing flow recovery for coherent structure

identification in the chromosphere using DV.
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5.2 Methods

5.2.1 Data

As in chapter 2, DV was trained to recover velocities from simulated data of the solar atmo-

sphere as these provide access to a ground truth for velocities. The simulation in question

was the run of the Bifrost (Gudiksen et al. 2011) simulation labelled ‘ch024031’1, which mod-

els the solar atmosphere within a region containing a coronal hole using LTE modelling for

hydrogen in the atmosphere to improve computational efficiency (e.g., see Wedemeyer et al.

2022). As described above, the chromosphere is home to non-LTE processes, thus this sim-

ulation is not a true representation of chromospheric dynamics and attempts to emulate the

chromosphere using LTE-modelling for efficiency, for proof-of-concept modelling and testing

of methods it provides a good, however flawed, starting point. The simulation contains no

large magnetic fluxes, however a horizontal magnetic field of 200G is steadily fed into the

photospheric downflows from the bottom boundary. As the field strength slowly increases,

swirling motions become apparent at chromospheric heights of around 1–2Mm. The speeds

of various layers are shown in fig. 5.2, highlighting that chromospheric swirling structures

may form over regions of QS granulation (i.e. only small-scale vortices are present, if any) in

the lower layers of the atmosphere as suggested by the bright point theory.

Images of the chromosphere were synthesised using the lightweaver code, to match the

3mm band seen by the Atacama large millimetre array (ALMA) radio telescope, which ob-

serves the Sun in submillimetre to millimetre wavelengths. The 3mm band is in the mi-

crowave/far infrared (FIR) spectrum, and images cover a wide range of heights, seeing almost

the entire depth of the chromosphere. Because of this, synthesised 3mm band images provide

a reasonable testing ground for the applicability of DV in the chromosphere. It should be

noted that images from ALMA in this spectrum have a relatively low range resolutions (1.4–

2.1”) compared to most modern telescopes like SDO which sees at 1” and below. Whereas

the synthesised images from Bifrost have a pixel resolution of 31.25kmpix−1 (corresponding

1Available for download at this URL: https://sdc.uio.no/search/simulations

https://sdc.uio.no/search/simulations
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Figure 5.2: Magnitude of the horizontal velocities from the Bifrost simulation
‘ch024031’. These are shown at heights of 0Mm, 1Mm and 2Mm relative to
the surface of the Sun, displaying the photosphere, mid-chromosphere and upper-
chromosphere.

to seeing with an angular resolution of around 0.08”), which is more in line with the effective

resolutions of images available from SST (see Rouppe van der Voort, L. H. M. et al. 2020, for

details). The images are separated with a cadence of 10s, which is on the order of magnitude

of the evolution time of images on the Mm scale (Wedemeyer-Böhm et al. 2005), thus we

expect that enough information is available that DV can discern coherent patterns from one

image to the next. Because of this longer-than-ideal cadence, images were rebinned to half

the resolution, removing the finest scale and therefore most rapidly changing structures.

As mentioned above, the synthesised 3mm images cover a great range of depths. As such,

many features present in images exist at largely different vertical locations despite appearing

to be close together in the horizontal plane. Due to the transient nature of much of the

chromosphere, the formation heights of the 3mm band were also used as input for DV. It

was suspected that the heights will provide valuable material for DV to be able to recover

key structures in velocity fields. It is also known that these heights cannot be identified from
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observations directly, thus for this network to be useful a way of identifying the heights needs

to be determined. As such a second copy of DV was trained purely to recover heights from

the 3mm band images.

5.2.2 DeepVel

Consecutive pairs of sub-images, extracted from the synthesised 3mm band images, were

chosen at random from 618 available times. The sub-images chosen were of size 3.125 ×

3.125Mm2 (50×50pix2) of the 24×24Mm2 full size images. 1500 pairs were used for training,

a further 300 were used for validation and a further 300 were used for testing the network

by hand. The results of the network performance for the test set are shown in the following

section. Contained in these pairs were the 3mm intensities, the formation heights of the lines,

and the horizontal velocity vectors.

A frame of the synthesised images, heights and speeds are shown in fig. 5.3. In this case,

the 3mm surface is so highly corrugated that the horizontal divergence and vorticity fields

are somewhat meaningless as they do not correspond to any well defined surface except in

the few instances surrounding vortices. For this reason, the speed is depicted instead of the

gradients that were typically shown in chapter 2. The figure highlights that the typical nature

of the chromosphere is apparently random with little structure. Where swirling structures are

present, the heights of features becomes notably coherent and plasma motions are consistently

faster in these locations.

The first version of DV used for recovering heights, which for this piece is dubbed DeepVel-

heights (DVh) used only single frames of the sub-image pairs, with the 3mm intensities

as inputs and the heights as the labelled outputs. The second network, dubbed DeepVel-

chromosphere (DVc), was trained using the two time-consecutive images and heights from

simulation as the input, and the horizontal velocities as the output variables. Both networks

converged within 50 epochs. No architectural changes were performed in order to test how

well DeepVel could adapt to new scenarios with its out-of-the-box structure. As such, the

choice of hyperparameters remains the same as in chapter 2.
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Figure 5.3: Example of (a) an image synthesised in 3mm band of the ALMA
radio telescope, from the Bifrost simulation (ch024031), (b) the radiation forma-
tion heights corresponding to the image and (c) the magnitude of the horizontal
velocity at the formation heights.

Whilst these networks were used as a cascade network, feeding into each other, for sim-

plicity their training was performed independently in order to benchmark the respective

performance of each network and set out what may be achievable. That is, DVc was tested

in the ideal case using the calculated heights from the simulation. Its performance was then

also tested using the recovered heights and the performance of these two outputs were com-

pared in order to fully understand the current state of its applicability to the real Sun. The

results of these tests are shown in the following subsection.

5.2.3 Vortex Detection Methods

The λ2 criterion is an Eulerian method for detecting swirling structures in flows. It identifies

the vortex cores by placing a restriction on the eigenvalues of a tensor which determines

the shear and rotation of a velocity field. It works by defining the gradient tensor of the

velocity field ∇v and decomposing it into a symmetric rate-of-strain tensor S = ∇v + (∇v)T

and an antisymmetric vorticity tensor Ω = ∇v − (∇v)T, from which the symmetric tensor

M = S2 + Ω2 is defined. A condition on the second eigenvalue of M being negative (λ2 < 0)

defines a vortex core. This is because 3-dimensional flows have 3 associated eigenvalues with

the symmetric tensor, which are put into descending order, if the second of these values is

negative, then there is a locally decreasing pressure in at least two of the principal direc-
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Figure 5.4: The (a) radiation formation heights of a frame of the Bifrost simu-
lation highlighted in fig. 5.3, (b) heights recovered by the version of DV trained to
recover heights from 3mm band images of the chromosphere and (c) the relative
error of the heights produced by DV.

tions indicating the presence of a vortex. In two-demensional flows, this simplifies to the

requirement that one of the eigenvalues be less than zero. The flow fields were rebinned so

that every pixel represents 1Mm, thus revealing only the largest and most coherent swirls,

reducing the possibility of turbulent flow regions registering as coherent swirling motions, as

well as improving the learning performance of DV by reducing the complexity of the flow

fields.

5.3 Results

5.3.1 DeepVel-heights

The network DVh was trained on synthesised images of the 3mm band from ALMA, at half

of the simulation resolution, to recover the formation heights of the observed radiation. An

example frame from a time in the simulation where swirling features are present is shown in

fig. 5.4. A number of metrics are presented for the success of the two networks, these metrics

are highlighted in the methods of chapter 2.

As seen in fig. 5.4 the measured radiation is generally captured in a range of heights which

are typically associated with the chromosphere (1–2Mm) above the surface). In a handful

of locations, where there is the presence of coherent vortical motions, the radiation forms at
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Figure 5.5: The (a) heights over the field of view of a frame from the Bifrost
simulation. The highlighted regions depicts a slice containing swirling features,
where the averaged true heights (blue curve) from simulation and the predicted
heights by DVh (orange curve) are compared on the left-hand axis of panel (b),
along with the relative error of the predicted heights (dashed line) on the right-
hand axis. Panel (c) depicts a histogram of the height distribution from simulation
(blue) and predicted by DVh (orange) across the entire field of view.

a much greater height (4–6Mm). This is due to the greater temperature and density of the

material trapped within the vortex, increasing the opacity of these features. Panel (b) of the

figure shows the recovered heights from DVh.

Whilst the predicted heights of features are not identical, the shapes of vortical structures

are apparently similar and more importantly the vortical structures are still identifiable from

the background. In fact, the performance for the height recovery is strong. The relative error

for the heights is shown in fig. 5.4(c), in which it is clear that the majority of the heights

present in the FOV are recreated within . 20% error. To be precise, table 5.1 shows that DVh

is able to identify heights with an MRE of 13%, the KS test score highlights that the predicted

height distribution only deviates by a maximum of 8% from the actual. Additionally, the

recovered heights correlate strongly to the synthesised heights with a Pearson correlation of

0.74.

As has already been highlighted in fig. 5.3(c), fig. 5.5(a) shows the radiation formation
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heights over a frame from the Bifrost simulation. Figure 5.5(b) highlights how well the

heights, averaged over the 1.25Mm (20 pixels) of the slice in the y-direction, are recovered

spatially, and fig. 5.5(c) shows how well the distribution of heights is recovered over the

entire field of view. Between x = 0Mm and x = 2.5Mm, and x = 15Mm and x = 20Mm are

swirling structures, highlighted by the significant peaks in height in the blue curve of panel

(b). DVh recovers the height of features reasonably well with a mean relative error of 17.5%,

with relative errors generally increasing inconsistently, over background features that appear

at a height of ≈ 1Mm. The relative error of height also increases in the regions containing

swirls, where there are steep gradients in height and DVh struggles to correctly reproduce

these sharp changes in the height in and surrounding the swirling structures. The height is

overestimated by ≈ 20% over the background features and underestimated by ≈ 12% over the

vortical structures. The distribution of recovered heights is shown in fig. 5.5(c). This figure

reveals that the recovered heights follow a very similar distribution to the synthesised height,

with peaks in approximately the same locations. The only major difference is the second

peak is shifted to the right and has a much steeper drop-off and shorter tail as opposed to

the true distribution which has a much longer tail for features that exist in the upper regions

of the atmosphere. This means that DVh does not identify features in the extremes as well

as the features that sit within the lower chromosphere. However, this is expected as such

high-reaching features correspond to vortical structures, which span a wide range of heights

and are only present in roughly half of the available time points. Thus it is anticipated that

the network will not see so many of these features and be biased to producing more flows

typical of the chromospheric background.

5.3.2 DeepVel-chromosphere

The network for recovering chromospheric velocity fields DVc was tested in two scenarios.

The first using the synthesised heights and the second using the heights recovered by DVh.

In both cases, the synthesised image were used alongside each set of heights as input.

Figure 5.6 shows the results for both of the cases mentioned above. Panel (e) shows
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Figure 5.6: The (a) 3mm intensity of simulated chromosphere from Bifrost,
normalised by the mean intensity, (b) the true values of the horizontal speed at
the heights of the 3mm band line formation, (c) the heights of the 3mm band line
formation, (d) the heights predicted by DV of the 3mm band line formation (see
fig. 5.4), (e) the velocities predicted by DV using both the true heights and (f) the
predicted heights
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the output by combining the inputs (a) and (c) (the true heights) and panel (f) shows the

output produced by combining (a) and (d) (the predicted heights). Panel (b) shows the

target velocity field.

Addressing the first case, in which the true heights of features are used to predict the

velocity field, we see that the predicted flows are typically slower than the actual flows. In

the background flows, flows are underestimated to have around half of the actual speed and

a only some of the fine scale structures are identified by DVc, i.e. the flows from simulation

have lots of small-scale flows which move with 2–3 the speed of the background. Larger scale

structures such as the vortices are apparent in the flows recovered using the true heights.

Their strength is not exact but has the correct order of magnitude. Furthermore, fig. 5.7

shows an example of the a recovered vortex’s direction of rotation. Not only are vortical

flows detected by DVc but they are also oriented with the correct direction of rotation.

In the case where the heights predicted by DVh were used as inputs, the predicted velocity

field contains a good deal of noise, as anticipated due inputs containing error produced by

first network. In particular, the background flows contain small-scale features, but these do

not correspond with any of the flows seen in the simulated velocity fields. Most of the large

scale swirling structures do appear present in the recovered flows, but these are harder to

distinguish against the background.

The results presented in table 5.1 highlight the performance of DVc in both cases. Namely,

it is shown that the correlations of the velocities, when using the true values for the heights of

radiation, are strong (> 0.5), the correlation between the true and predicted flows becomes

weaker when using predicted heights. The derivatives of velocities over the FOV, which

all share a weak correlation with those from simulation. The KS test statistic shows that

distributions of the horizontal velocity components differ by a maximum of ≈ 12% when using

the true heights and by≈ 15% when using the predicted heights. Thus, this suggests that DVc

has learnt to replicated much of the velocity field distribution. The MRE is high, however this

has two major contributing factors: the orientation and the magnitude of velocities. From

fig. 5.6, the speeds of flows are generally captured well over the turbulent background, but
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PC KS MRE NDP

Height 0.74 0.08 0.13 -

v
TH - - - 0.48
PH - - - 0.31

vx
TH 0.66 0.13 0.83 -
PH 0.36 0.18 1.14 -

vy
TH 0.64 0.12 0.81 -
PH 0.36 0.12 1.21 -

∇ · v TH 0.19 0.17 1.01 -
PH 0.11 0.09 1.13 -

∇× v
TH 0.19 0.17 1.01 -
PH 0.11 0.09 1.13 -

Table 5.1: Metrics showing the performance of the DVh and DVc networks. DVc

was tested in two cases, one where the true radiation formation heights (TH) were
used for inputs and one where the predicted heights (PH) from DVh were used.

the orientation less so; the converse is true over regions containing coherent swirls where the

orientation is captured well (see fig. 5.7) but the speeds are under/overestimated depending

on the heights used for the input. The velocities are not as well aligned as those recovered in

the photosphere (see chapter 2), they are misaligned by at least an average angle of ≈ 60◦.

The less-than-ideal performance of DVc is mostly due to the dominance of the background

flows, where motions are mostly incoherent. By restricting attention to only higher speed

flows (> 20kms−1), the performance notably increases. Flow metrics were compared in

regions where high-speed flows were present in the simulation as these correspond strongly

with coherent structures such as vortices. An example of such a region is shown in fig. 5.7.

Visually, this figure highlights that the flows, at least in the case of using the radiation

formation heights from simulation, shown in panel (b), retain much of the shape of the

original vortex, and miss only fine-scale structure which is present on the sub-Mm scale. The

direction and magnitude of the flows within the vortex are aligned well, only the much greater

speeds & 40kms−1 are not identified so well. In addition to this, the PC over these structures

increases to 0.83 and the NDP improves to 0.82 (corresponding to an average difference of

≈ 35◦). These values improve slightly for the flows recovered using the predicted heights to
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Figure 5.7: The speed (shown by the colouration) and orientation of the same
swirling structure from (a) the Bifrost simulation, (b) recovered by DVh using a
synthesised 3mm band image and the radiation formation heights from simulation,
and (c) the same as (b) but using heights predicted by DVh.

a PC of 0.39 and NDP of 0.462 (difference of 62.5◦).

5.3.3 Validation with the λ2-Criterion

The λ2 method for vortex detection was deployed on velocity fields recovered by DV. The

results of this are shown in fig. 5.8. The vortices in the frame shown persist on the order of

10min and in this particular case 11 vortices in the simulation were detected by the method.

The velocity field produced by DVc using the heights from the simulation only presents 6

vortex cores, whereas when the predicted heights were used the method is able to identify 11

also. Of the 11 detected vortex cores found using the true heights, DVc was able to identify the

location for 3, exactly. When using the predicted heights, only 2 were identified in the correct

location. However, the location of the detected vortex cores are all close (within 2Mm) to

the locations of the strongest swirls present in the simulation, aside from one instance where

it is likely flows in the noisy background falsely generated a rotational motion. Additionally,

all of the vortex cores reported from the recovered flow fields sit within the boundary of a

true vortex with the singular exception.
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Figure 5.8: Vortex cores detected in the simulation flows as well as in flows
recovered by DV using both the true formation heights and predicted formation
heights superposed on the 3mm intensities.

5.4 Summary

In this chapter, the first step toward being able to recover flows by means of using simulated

data over a coronal hole in LTE conditions has been evaluated, by training the DV network

on synthetic images in the 3mm band observed by ALMA. The synthetic 3mm images cover

a wide range of heights and share resolutions with modern telescopes such as SST CRISP

and CHROMIS (which view the chromosphere in Hα and Ca II k lines, respectively; see

Scharmer et al. 2002), GREGOR (see Schmidt et al. 2012) and IRIS (see De Pontieu et al.

2014). Whilst this is not a realistic setting for validating DV, and the training data does not

contain all of the qualities of observational images such as atmospheric seeing, point spread

functions (PSFs) and noise, these first results do highlight a promising avenue for recovering



CHAPTER 5. CHROMOSPHERIC FLOW RECOVERY 125

chromospheric velocity fields.

In this chapter, two versions of DV were trained: DVc, for recovering chromospheric

velocity fields from 3mm band images and the radiation formation heights, and DVh for

recovering the radiation formation heights from the 3mm band images. Both networks showed

success at determining features that correlate well with the true fields produce by the Bifrost

simulation.

DVh was able to reproduce the heights of features well with a strong PC and a difference in

distribution of 12% and a mean relative error of 17% over the entire field of view, showing that

the NN is able to recover heights reasonably, which come from a closely matched distribution.

The only significant errors in height were identified where the heights reach the extremes of

the true distribution’s tails. This is somewhat expected as the extreme heights are present

almost exclusively within swirling structures and these take up only a small portion of the

data available for training. Thus the NN will be biased to produce values that fit within

typical parameters. On the other hand the DVc shows promising performance in identifying

velocities in regions containing more distinct structures, however, does not perform as strongly

at identifying the velocities of background flows. In this instance, the NN is able to determine

the difference between the background and the vortical structures of interest, identifying

most of the large-scale vortices present in the simulation as well as correctly identifying their

direction or rotation. This work is a key step forward in flow recovery in the chromosphere

as the coherent structures of interest have significant implications for energy transport in the

chromosphere.

Despite the novelty of the methods presented in this chapter, the results indicate two

major areas for improvement. Firstly, if this method is to be deployed in the future, the

performance of DVh for predicting heights needs to be improved to optimise flow recovery.

Secondly, the recovery of flows within swirling structures must be enhanced to more precisely

identify swirl locations and characterise their vorticity and topology.

The synthetic chromospheric images used for training contain many incoherent, transient

features at sub-Mm scales alongside coherent, persistent vortices at Mm scales and up. This
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multiscale mixture produces noisy signals that appear across a range of heights and compli-

cates learning when the network should focus on the coherent swirls of interest. One route to

address both height and vortex-recovery issues is to better separate the features of interest

from background noise, either by preprocessing or by changing the architecture. For prepro-

cessing, vortices can be located in the simulations using a vortex-detection algorithm; the

resulting vortex masks could be provided as an additional output target or used to weight

the loss function so the network emphasises vortex regions. Alternatively, modal filtering,

e.g. proper orthogonal decomposition, can suppress incoherent background features prior

to training and this same step can be used on new inputs. However, these both require

computation time, slowing the overall pipeline.

For architectural changes, the current DeepVel variant was optimised for dense plasma

regions with coherent motion; a more suitable design could be a multi-scale U-Net for seg-

meting vortices from the flow, improving feature extraction similar to the U-Net designed by

Tremblay & Attie (2020) for ARs. Another approach to better capturing persisting structures

is to exploit the temporal coherence of vortices by extending the input to a longer time series

and employing a convolutional long short-term memory (ConvLSTM; see Shi et al. 2015)

network. ConvLSTMs use recurrent connections to construct temporal relationships between

features as well as convolutions for identifying spatial patterns, which should support the

network in distinguishing persistent vortices from short-lived noise. Finally, errors in regions

with sharp gradients can be mitigated by activation functions that better capture high spatial

frequencies, e.g. sinusoidal representation networks (SIRENs; see Sitzmann et al. 2020), and

by modifying the loss function to penalise gradient errors and incorporate physics-informed

terms such as vorticity. Furthermore, the general performance of the cascade could be im-

proved somewhat by combining their training process. By using a top down approach where

DVc is trained to recover the velocities from simulated heights first, and then training DVh

to recover the heights based on the quality of the predicted velocity fields, the performance

could improve significantly (Zhang et al. 2021). However, this may have unexpected effects

for DVh as it would not be learning to minimise the loss for recovering heights. The network
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for recovering heights is useful on its own for recovering additional in formation from solar

imagery.



Chapter 6

Discussion and Conclusions

The matter of this thesis has address the applicability of a modern machine learning ap-

proach for the recovery of plasma flows in the solar atmosphere by validating its success and

studying new possible outlooks with cutting edge simulations. As computational modelling

and observational instruments improve, there is a vast wealth of new data, which needs to

be analysed and utilised effectively. Neural networks provide a fast computational approach

to dealing with these data as they not only provide access to new data, which is otherwise

irretrievable at the scales and speeds shown in this report, but also give rise to new insights

due to the quality of the data, as has been presented in this work. This thesis reports the

practicality of using DV in some of the most complex solar regions and deals with under-

standing how well it can generalise to new data. In addition, new methods are presented for

the validation of such flow recovery and how CNNs can be applied in observational contexts

whilst adapting it to entirely new scenarios representative of non-LTE dynamics, for which

it was not intentionally designed to deal with.

Chapter 1 highlights that the Sun is a complex and highly stratified object, in which

there are many concerning problems relating to the motions of plasma, namely the dynamics

leading to the onset of solar flares and energy transport through magnetised plasmas. The

problem of measuring and studying plasma flows in magnetically dominated regions is ad-

dressed in chapter 2, and comparisons were made against the current widely used method
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FLCT. Once establishing that DV is successful in recovering flows, moreso than an existing

method, the topology of recovered flows were derived by means of identifying Lagrangian

coherent structures in chapter 3. The LCSs reveal insight to skeleton for the flow dynamics

in the photosphere and therefore evidence DVs ability to generalise well to data from new

simulations and produce high quality flow fields across multiple scales. With the photo-

spheric capabilities of DV established, chapter 4 shifts the focus to a use case of recovered

flow maps, using changes coherent structures as a detection method for the presence of ARs

with notable success, consistently identifying regions of > kG levels of magnetic flux density

at the (meso)granular scale. Chapter 5 extends the use cases of DV into the chromosphere by

training on synthetic images from the Bifrost code and shows success in the way of identifying

coherent vortices.

It was found that DVs performance is unrivalled by the popular FLCT method at short

time scales, both in efficiency and accuracy supporting a strong correlation and alignment

with the true flows even when faced with unseen data from a second simulation. Additionally,

DV flows are accurate enough to reproduce key repelling and attracting coherent structures

that govern the flow throughout the evolution of a pore. This has two major implications for

the use of NNs for flow recovery in solar physics. First, in the absence of any ground truth data

for solar flows, cross-testing the network on other simulations establishes how well the network

is expected to perform on real-world observations. Thus predicting flows with the levels of

accuracy seen for the first time in chapter 2 promotes a promising potential for the application

of NNs for predicting flows from real data containing ARs and pores. Secondly, velocities

are predicted with enough confidence to reproduce LCSs, seen in chapter 3. Thus, the flows

that are identified by DV are physically consistent with the simulation, exhibiting the same

flow dynamics that are present, highlighting that unlike other methods like FLCT that are

consistent with only an advection equation (Schuck 2005), DV is able to emulate flow physics

correctly. Where previous studies highlighted DV performance by testing only on the training

simulations and with image properties that both mimic the SDO/HMI instrument, supporting

the preprocessing steps for FLCT (e.g., see Tremblay & Attie 2020, Tremblay, Benoit et al.
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2021), the work presented in this thesis indicate more strongly how error that is generated

by the network propagates through a time series of velocity fields, without additional spatio-

temporal smoothing which thereby removes them in the first place. However, the results

of the analysis performed in this report do not address observations directly and only aim

to understand how the network adapts to new data. The results reported by Tremblay

et al. (2018) are similar enough to indicate that performance would be generally unaffected

by telescope optics or the presence of 5-minute oscillations. However, effects such as the

curvature of Sun or the drifting of features and differential rotation remain yet to be studied

in the context of using DV. In addition, atmospheric seeing poses a further challenge for

ground-based telescopes with varying degrees to which it affects imagery (Padinhatteeri et al.

2010). In order to mitigate this a number of blind deconvolution methods have been proposed

for removing the effects of turbulence in the atmosphere (e.g. Liu et al. 2022). An advantage

of using DV in observational contexts is that provided a high enough resolution and cadence

data for in the training set, the data can be manipulated and convolved with effects to suit

any desired instrument so long as the optical properties of the telescope are known and hence

removing some of the difficulty in transitioning the network to work with real-world examples.

The ability for DV to accurately determine LCSs in flows was shown to be useful in

chapter 4, where evidence was presented that changes in granular-sized repelling structures

can be used as an indicator for the presence of high concentrations of magnetic flux at granular

to mesogranular scales. From this, results reported by the FTLE fields derived from recovered

flows by DV showed almost the same level of success as a classifier for the presence of ARs as

those derived from simulated velocities. Combined with the fact that simulation flows have

been shown to be able to forecast an emerging AR up to 10 hours prior to its appearance in

the photosphere, there is now significant evidence that DV could be deployed for applying

such forecasting methods for the analysis of ARs from observational data.

In addition, the robustness of NN flow recovery was established further by training DV

on images of radiation synthesised by a non-LTE code, that was representative of the chro-

mosphere. Whilst the method requires more refining in its current state before it can be



CHAPTER 6. DISCUSSION AND CONCLUSIONS 131

determined to be useful in a true solar context, the network was able to identify coherent

vortical motions, detected by the λ2 criterion, against a turbulent background with promising

success in the ideal case. This was in tandem to training a new version of DV which was able

to retrieve the formation heights of features with high levels of accuracy enabling the study

of the 3D structure of chromospheric environments.

In the theme of this thesis, the ability for CNNs such as DV to recover velocities and

identify flow features present in synthesised images was identified to be strong. DV was able

to identify flows at the subgranular scales with a great success in photospheric conditions.

The highly accurate flows could be used to determine precise LCSs present across simulations,

indicating that DV is a robust method for predicting horizontal flows from new data which

can be used for forecasting and identifying ARs. Furthermore, the DV network was shown

to be suitable for predicting flows outside of its intended use, being able to identify coherent

vortices in flows close to the transition region. These results highlight that even though the

application of NNs is still relatively new in the fields of solar physics and space weather, it

already opens up a realm of possibilities for studying the Sun in never-before-seen detail,

shortening the gap between numerical modelling and observational studies.



Chapter 7

Future Works

1. Observational Testing

The application of the version of DV trained in this thesis is yet to be seen in the

context of real solar imagery. Convolving training images with the PSF of a number

of satellites and comparing results with those seen through inversion techniques from

helioseismology is a crucial final step in ensuring that the DV network is reliable when

transitioning to working with observational data since there is no ground truth for

measuring horizontal velocity fields. Another approach to validating the network capa-

bilities is to apply the methods shown in chapter 4 to determine if the forecasting and

tracking capabilities of DV extend to observations. A number of steps can be made

in understanding the influence of observation effects on results such as training with

simulations 5-minute oscillations (p-modes), convolving simulation data with telescope

optics and introducing noise into the testing set to mimic the effects of turbulence in

the Earth’s atmosphere. The initial stages of this testing is highlighted in appendices A

and B.

An additional point linked to this is for the versions of DV presented in chapter 5. These

are currently trained on data which does not inherently match the seeing properties of

any existing telescope. Whilst the 3mm band is observed by ALMA, the resolution of

this radio telescope is significantly lower than the resolutions of the data that DV was

132



CHAPTER 7. FUTURE WORKS 133

trained on. Despite the low resolution of physical observations from ALMA, there is an

advantage to studying the Sun in the 3mm band: longer wavelengths are less susceptible

to atmospheric seeing. For example the Fried parameter, which increases with the

wavelength, is defined such that for a telescope with an aperture diameter smaller than

the Fried parameter, is then diffraction limited and observations are less influenced

by seeing (e.g. see Irbah, A. et al. 2016). The parameter describes the influence of

atmospheric seeing for a given wavelength, such that if the diameter of the aperture is

less than the Fried parameter. Thus ALMA is less affected by atmospheric turbulence

than other similar instruments that see in shorter wavelengths. By synthesising other

spectral lines such as Hα or the Ca-II, seen by SST for example, will be much more

indicative of the NNs performance on the true Sun where plenty of data exists in these

spectral lines.

2. Training and Architecture Changes

An almost endless number of changes could be made to the DeepVel network. However,

there are some notable obvious steps that should be taken for increasing the perfor-

mance of the network in the contexts provided in this thesis. First and foremost would

be to modify the network so that it becomes physics informed. That is alter the loss

function so that it at least includes the induction equation, thus the network will learn

to produce velocities that minimise the residuals of the governing equations and hence

produce flows that are consistent with the physical system and not just identify patterns

from simulation flows. An additional change to the architecture would be to change

the activation function so that it performs better at producing gradients that are more

consistent with flows observed in simulation, one approach to this is the SIREN activa-

tion function (Sitzmann et al. 2020), which were designed to deal with networks that

produce signals as the solution to differential equations.

For the version of DV presented in chapter 5, a full cascade network should be trained

and tested to determine whether the output velocities from the top network can be

optimised further by combining the training process. That is, the training for the DVh
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should be dependent on the losses calculated in DVc.

In addition to changing the network architecture, a more expensive yet simpler solu-

tion is to make changes to the training set. Of which there are two straight forward

approaches: the first being to train DV on a range of simulations, so that a full range

of physics and effects can be seen by DV; the second approach is to train a series of

networks in an ensemble approach (e.g., see Ganaie et al. 2021) where a number of

outputs from networks are combined to produce a coherent output.

3. Lagrangian Vortex Detection

The current results of chapter 5 are not so robust and currently provide a proof of

concept for applying DV to further regions of the solar atmosphere, outside of the

photosphere. In the interest of identifying coherent flow patterns from otherwise noisy

and turbulent images would be to apply Lagrangian techniques such as LAVD (Haller

et al. 2016) in order to further understand and improve the chromospheric version of

DV. In the interest of detecting locations of coherent structures and specific parameters,

the network could also be trained to minimise residuals of parameters such as swirling

strength and vorticity.



Appendix A

Point Spread Functions

Images of the solar atmosphere are subject to optical aberrations due to the lensing of light

by the instrument and obstructions due to atmospheric seeing (see Padinhatteeri et al. 2010).

This optical smearing of light can be modelled using a point spread function (PSF). The PSF

is described in two parts, a central Gaussian core and the tail of the curve. Mathematically

this is given by

PSF(r) = (1− ε)e−( r
w )

2

+
ε

1 +
(
r
W

)κ , (A.1)

where ε determines the relative size of the terms, r is the radial distance across, w describes

the rate at which the Gaussian drops off by 1/e, W describes the half-width half-maximum

of the tail and κ determines the rate at which the tail drops off (see Wachter et al. 2012). As

well as these, instruments will typically pick up noise on their sensors.

Synthetic intensity images from the MURaM simulation were convolved with the PSF of

the SUNRISE/IMAX instrument (see Mart́ınez Pillet et al. 2011). This application of the

PSF helps to determine the influence of optical effects on DVR2D2 without specific retraining

to deal with them. IMAX presents finer scales (see Asensio Ramos, A. et al. 2017, for details)

than what are available in within simulations thus, degrading images to closely match the

training data will allow us to determine the success of the network at the some of the finest
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available resolutions.

The IMAX instrument observed the photosphere at 525.02nm (the Fe I line). The Fe I

line corresponds to temperatures of around 4000-6000K, which relates to heights of the pho-

tosphere to the lower chromosphere. IMAX had an effective resolution of ≈ 0.11” (equating

to ≈ 0.055”pix−1) and has a cadence of ≈ 33s. The telescope has an aperture of 1m. The

instrument took high resolution images of the photosphere from high in the atmosphere and

thus circumvents most atmospheric effects. Additionally, the telescope has a wide aperture

and relatively small FOV, meaning that the light entering the instrument will be weakly

distorted by the lens, as opposed to other instruments which have smaller apertures or much

wider FOVs.

During the training process, noise is already added to images, this is done to reduce the

potentiality of overfitting the network. However, this will also somewhat simulate the effects

of noise in observations. With the large number of high-resolution space-based telescopes,

we argue that DV may be readily deployed for real-world observations by deconvolving the

PSF from observations, or by retraining with the PSF of instruments for uses specific to an

instrument.

In order to simulate the instrument the PSF was calculated and convolved with an image

from the MURaM simulation. This was achieved by selecting a region which covers the same

angular distance as those taken by IMAX, upscaling the image using linear interpolation

to match the resolution of the instrument (MURaM has a pixel resolution of 96kmpix−1,

opposed to the 39.9kmpix−1 resolution of IMAX). The PSF was identified to have a FWHM

of ≈ 80km, since this is smaller than the grid size of the MURaM images it is expected

that almost all of the structure in the image at the 96kmpix−1 resolution of the simulation

will be preserved. However, while this establishes that it is not strictly necessary to apply

the PSF, for completeness images were upscaled to the resolution of IMAX, the PSF was

then convolved with the upscaled images which was then downscaled back to the original

resolution of the MURaM images. Whilst DV is expected to have generalised well enough to

recognise features independent of exact resolution, it will perform best on data which most
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closely matches the training set, and this process highlights how real-world observations may

be transformed for improving performance with the application of DV, for example through

up/downscaling with interpolation algorithms. In addition to this, it is expected that some

non-physical features will have been introduced to the image during the upscaling process,

in effect simulating some additional level of noise.

An example region, PSF and resulting image is presented in Figure A.1. The result of the

PSF on the image is a softening of edges and reduction in contrast, especially noticible on

small brightening in the image. In other words, the PSF causes light to be scattered across

the FOV.

The velocities produced by DVR2D2, when using the PSF-convolved images, is shown in

Figure A.2 in comparison with the true velocities. Whilst the figure shows that DVR2D2 per-

forms worse at the smaller scales in this case, where some of the fine scale structure within

granules has been lost and the transition to the AR is not as clearly defined, the features

reproduced by DVR2D2 are more consistent at the ≥ Mm scale. In contrast with testing

showing that when the network is applied to raw images from the simulation it produces

velocities consistently at the subgranular scale. Despite these differences, the velocity com-

ponents still support a strong Pearson correlation coefficient of 0.6, highlighting a statistically

strong relationship between the recovered flows and the true flows. Similarly, the divergence

also supports a strong Pearson correlation of 0.57. The PSF also results in a normalised dot

product with mean 0.46 (corresponding to an angle of ≈ 60◦) and median 0.76 (≈ 40◦), that

is half of the flows recovered are generally oriented in the same direction as the simulated

flows.

Whilst the performance of DVR2D2 is affected by the inclusion of the PSF in images (as

well as potentially from the introduction of noise through upscaling and downscaling images),

the performance is still strong and presents the potentiality of being used with observations

for identifying velocities the will provide some agreement with the true flow field. It is worth

noting that this version of DV was not trained to deal with telescope optics or any significant

noise within the data. It is therefore reasonable to suggest that the performance of DV would
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Figure A.1: This figure depicts (a) Original synthesised image from simulation,
(b) log plot of PSF to show the effect of the lens and (c) the resulting image
synthesised to look like one from the IMAX telescope after convolving with its
PSF.

be expected to increase if the training set images were to be convolved with telescope optics

and the network retrained, or by deconvolving the PSF from real-world observations.
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Figure A.2: This figure depicts the divergence field over a part of the MURaM
simulation (b) and the LIC visualisation of the flows, superposed on the divergence
in a region with < kG magnetic flux (a), and a region with > kG magnetic flux (c).
The same region as (b) is shown for velocity fields produced by DV when using the
images convolved with the IMAX PSF in (e). The same < kG and > kG regions,
described above, are also shown in (d) and (f), using the DV-recovered velocities
from images convolved with the IMAX PSF.



Appendix B

P-modes

In order to cross-validate the version of DV presented in chapter 2 in the context of the

solar atmosphere, flows from the QS Stagger simulation (see Stein & Nordlund 2012, Stein

et al. 2024) were recovered. The Stagger data presents a model of QS magnetoconvection

in a shallow box, where a weak background magnetic field is advected by plasma and forms

small concentrated regions of magnetic flux. Continuum intensity images, with the same

96kmpix−1 spatial resolution and 120s cadence as the R2D2 simulation. The key aspect of

this simulation, compared to the R2D2 and MURaM simulations used throughout this thesis,

is that it contains the presence of short-lived oscillations that are representative of p-modes.

These p-modes are oscillations driven by pressure waves within the Sun (see Ulrich 1970).

The results of this testing show the performance of DVR2D2 on a QS simulation with

a very different initial setup to the simulations used for training and validating previously.

Previous works from Tremblay et al. (2018), Tremblay, Benoit et al. (2021) already highlight

the ability of DV to recover flows from this simulation when trained on the same data,

thus providing a benchmark for the performance of DV. In order to apply DV and produce

meaningful velocities, the intensities from the synthetic observations were histogram-matched

to the ones used for training, i.e. the cumulative frequency distribution of pixel values was

matched to those of the R2D2 continuum intensity images. It was shown previously that

high-frequency filtering of images provided no real advantage over the default preprocessing
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Figure B.1: Variation of continuum intensity over time against the Pearson cor-
relation of horizontal velocities recovered by DV with the true horizontal velocities
from the Stagger simulation. The intensity varies over time due to 5-minute os-
cillations induced by p-modes. The recovered velocities show negligible variation in
their high correlation with the true velocities.

of images of histogram matching (Tremblay et al. 2018), and therefore similar results were

anticipated with the version of DV presented here.

Figure B.1 shows simply how the Pearson correlation coefficient of flows generated by

DVR2D2 varies in time with the 5-minute oscillations. Clearly, the variations in intensity, once

filtered by histogram-matching the intensities from Stagger to the QS instensity distribution

from R2D2 (as in chapter 2), have no significant effect on the networks ability to identify

horizontal flow fields. This also indicates that the p-modes present in the simulation have no

discernible effect on the horizontal motions of the flows. Only the vertical/LOS component

of the flow would be expected to exhibit any notable difference, however these are not of

interest to this study as they are retrievable by means of Doppler measurements.

The velocity fields shown in fig. B.2 show how flows recovered by the NN compare to

the true flows from simulation. Almost all of the divergence and converging features were

discerned precisely by DVR2D2 with the magnitudes of both speeds and divergence matching

the simulation closely. In addition to this, a number of small scale swirls in the intergranular

lanes were identified and resemble those found in the simulation; only the most complex of

these flow patterns were not precisely recovered. The majority of the flows present in R2D2

and the Stagger simulation are over regions containing near QS-like granulation, thus the
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Figure B.2: Example flows from the Stagger simulation (left column) versus
the flows predicted by DVR2D2 (right column). The regions are coloured by the
horizontal divergence field and the bottom highlight a region where a LIC field has
been superposed on the divergence to highlight the velocity field lines.



APPENDIX B. P-MODES 143

Figure B.3: The 20-minute backward- (left) and forward- (right) FTLE fields
calculated using the flows from the Stagger simulation (top row) and velocities
produced by DVR2D2 (bottom row).

centres of granules where divergence is positive dominate the training data. Therefore the

subgranular structures in intergranular lanes that contain complex structures such as saddles

and vortices are expected to not be recovered as precisely.

To further highlight the success of DVR2D2 the 20-minute FTLE fields were calculated

over the frame presented in fig. B.2. These FTLE fields are shown in fig. B.3. The backwards-

FTLEs shown coalign with integranular lanes and show the attracting downflows that are

present surrounding the granules. The forward-FTLE field highlights the repelling structures

which cross over the centres of granules. Panels similarities between the fields for both

Stagger and NN-recovered flows are highly similar and only significantly differ in regions where

weak transport barriers are present. These results strongly align with what was previously
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established in chapters 2 and 3, that DV is able to recover LCSs well across simulations and

therefore capture the flow dynamics present, even in complex regions.
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