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Synopsis  

Chronic thromboembolic pulmonary hypertension (CTEPH) is a severe, yet curable condition 

characterised by unresolved blood clots in the pulmonary arteries. Accurate diagnosis and 

classification of CTEPH is required for accurate treatment. The development of scar tissue 

from unresolved chronic thromboembolism leads to arterial narrowing, increasing pulmonary 

vascular resistance in the lung circulation and straining the right ventricle, which results in 

right heart failure if left untreated. All patients suspected of having CTEPH, without a 

contraindication, undergo computed tomography pulmonary angiography (CTPA) imaging to 

confirm diagnosis. Recent advancements in artificial intelligence (AI) using deep learning 

methodologies have facilitated automated quantitative analysis of medical imaging 

characteristics. 

 

The primary objective was to determine the important features of CTPA for the diagnosis in 

the lungs and heart, and to develop a scoring system for the thromboembolic disease in the 

pulmonary arteries.  A secondary objective was to create an automated, clinically relevant 

approach employing deep learning models to identify chronic pulmonary embolism and 

assess CTEPH severity from CTPA images, illustrating the capability of AI in detecting CTEPH 

occurrence and severity. 

 

This thesis illustrates the prognostic impact of lung parenchymal abnormalities on CTPA in 

patients with CTEPH. The proposed scoring method for visual assessment of chronic embolic 

disease, which considers both disease location and extent was shown to predict survival 

outcomes. Furthermore, a deep learning model for chronic embolic disease segmentation and 

quantification was developed and clinical validated showing diagnostic value. The impact of 

thromboembolic disease severity on patient survival was also assessed using the AI model. 

The comparison of AI-derived thromboembolic disease volume with conventional manual 

scoring methods demonstrates improved prognostic accuracy in assessing disease severity, 

offering a more robust tool for clinical evaluation of CTEPH. In conclusion, our findings 

highlight the importance of systematically evaluating CTPA images in patients with CTEPH. 
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Thesis structure   

 
This thesis is in a publication layout, as some chapters have been published as peer-reviewed 

journal papers. Each of these chapters consists of a comprehensive introduction, methods, 

results, discussion, and conclusion sections. At the start of each chapter, I have included a 

clear statement of my specific contributions to the relevant work. The whole work includes 

both these refereed research articles (Chapters 3, 5-7) and supporting chapters that provide: 

contextual background (Chapter 1), comprehensive methods framework (Chapter 4), an 

overall discussion (chapter 8), future research directions (Chapter 9), and a conclusion 

(Chapter 10). 

 

Chapter 1 presented an overview of the expanding role of CT pulmonary angiography in the 

diagnosis and assessment of CTEPH.  Chapter 2 outlined the hypothesis, aims, and objectives 

throughout the thesis. Chapter 3 emphasised the increasing development of studies 

employing AI techniques for the automated identification of chronic PE and CTEPH. Chapter 

4 included a brief overview of the CTEPH imaging database building, which included clinical 

and radiological data obtained from the ASPIRE Registry. Chapter 5 demonstrated the 

prognostic impact of common CT measurements, lung parenchymal abnormalities, and 

cardiac changes in patients with CTEPH. Chapter 6 introduced a CTPA-based radiological 

scoring system for chronic thromboembolic disease, combining location and extent to predict 

survival outcomes. Chapter 7 developed, validated, and tested a 3D deep-learning AI model 

(nnU-NET) for automated chronic thromboembolic disease detection on CTPA. The study 

focused on pulmonary artery segmentation accuracy, clot quantification, and prognostic 

assessment by comparing AI-derived metrics with manual scoring to predict survival 

outcomes. 

 

My future aim is to use machine learning algorithms to integrate imaging biomarkers, patient 

outcomes and multimodal clinical data for CTEPH assessment that may enhances diagnostic 

accuracy and management. 
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1 Introduction  
 

 

1.1  Brief History 
The term "venous thromboembolism" is credited to the pioneering work of Rudolf Virchow 

(McFadden and Ochsner, 2002). In 1872, surgeon Friedrich Trendelenburg, who created the 

German Surgery Organisation, made a sobering observation when analysing the deaths of 

nine patients who had pulmonary embolism (PE). Trendelenburg created a surgical technique 

that involved opening the pulmonary artery through a left parasternal thoracotomy to 

remove the embolus. However, none of those patients lived more than 37 hours. The fact 

that pulmonary embolism and venous thrombosis are still significant causes of morbidity and 

mortality today emphasises the continuing relevance of developing work in this area. 

 

Over time, medical understanding of PE advanced, leading to the recognition of chronic 

thromboembolic pulmonary disease (CTEPD) and the more severe form, chronic 

thromboembolic pulmonary hypertension (CTEPH). In the 1950s and 1960s, autopsy findings 

and clinical studies revealed that unresolved thrombi could persist in the pulmonary arteries, 

resulting in chronic obstruction and, in some cases, pulmonary hypertension (Dunnill, 1962). 

The first successful pulmonary endarterectomy (PEA), a surgical procedure to remove these 

chronic clots, was performed in 1961 at the University of California, San Diego, which later 

became a leading centre for the treatment of CTEPH (Moser and Braunwald, 1973). 

Technological advances in imaging, particularly ventilation-perfusion (V/Q) scans and 

computed tomography pulmonary angiography (CTPA), significantly improved diagnostic 

accuracy in the following decades. 

 

In the 1990s and early 2000s, clinical research began to differentiate CTEPD—chronic 

thromboembolic pulmonary obstruction without resting pulmonary hypertension—from 

CTEPH. In 2001, the World Health Organisation classified CTEPH as a distinct form of 

pulmonary hypertension (Group 4). The approval of riociguat in 2013 marked the first 

pharmacological treatment for inoperable CTEPH, while balloon pulmonary angioplasty (BPA) 

emerged as a promising alternative for non-surgical candidates. More recently, attention has 
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turned to patients with CTEPD who, despite normal pulmonary pressures at rest, experience 

significant symptoms on exertion. Ongoing scientific research continues in refining treatment 

strategies and enhancing patient outcomes for both CTEPD and CTEPH. 

 

 

1.2 Pulmonary Embolism 
 PE is a condition characterised by the partial or complete blockage of one or more pulmonary 

arteries, typically caused by emboli formed by thrombi originating in the deep veins of the 

legs. The embolus can obstruct various regions of the pulmonary arterial branches, from the 

main pulmonary artery and its bifurcation to the right or left pulmonary arteries, as well as 

smaller or more distal branches, depending on its size and length (Tritschler et al., 2020). 

There are other causes of PE besides blood thrombi. Other potential causes include air 

bubbles, amniotic fluid embolism, fragments of tumours, or fat released from the marrow of 

a fractured long bone. Despite the fact that pulmonary embolism can affect anyone, the risk 

of developing this condition may be elevated by certain factors. The risk factors include older 

ages, obesity, cancer, varicose veins, and pre-existing medical conditions such as heart failure, 

high blood pressure, chronic bowel inflammation, chronic obstructive pulmonary disease 

(COPD), and stroke (Agusti et al., 2003). 

 

Accurately determining the true incidence of pulmonary embolism in a population is 

challenging due to the wide variability in symptoms that might occur, from minor coughing or 

chest pain to sudden death. According to recent research in the UK, the yearly incidence of 

venous thromboembolism (VTE) is around 2 per 1,000 persons in the general population 

(Evans et al., 2020). Epidemiological research indicates that annual PE incidence rates from 

39 to 115 per 100,000 people. VTE, which includes PE and deep vein thrombosis (DVT), is the 

third most common acute cardiovascular condition worldwide, following myocardial 

infarction and stroke (Righini et al., 2017, Konstantinides et al., 2020). This blockage of the 

pulmonary arteries can lead to an increase in right ventricle afterload, that may combine with 

reduced cardiac output, and cause right ventricular hypertrophy and potentially progressing 

to right heart failure. It also may cause CTEPH, a condition that presents with elevated arterial 
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pressure in the pulmonary arteries. This is a potentially fatal condition that requires instant 

and accurate diagnosis, followed by adequate treatment.  

 

 

1.3 Chronic thromboembolic pulmonary hypertension  
CTEPH is a rare disease that occurs when pulmonary emboli does not resolve despite 

treatment, resulting in long-term consequences and elevated pressure in the pulmonary 

arteries. CTEPH is a type of precapillary pulmonary hypertension (group 4). Precapillary PH 

also include pulmonary arterial hypertension (PAH) (group 1), pulmonary hypertension 

resulting from chronic lung disease and/or hypoxia (group 3), and pulmonary hypertension 

along with several other conditions such as blood disorders, systemic diseases, metabolic 

disorders, and tumours obstructing the pulmonary arteries (Table 1.1). The World Health 

Organisation created these categories to describe pulmonary hypertension based on 

comparable pathophysiological alterations, clinical features, and treatment approaches. 

 

CTEPH is defined by the diagnostic threshold of mean pulmonary arterial pressure (mPAP) 

greater than 20 mmHg (Condon et al., 2019). The updated criteria now include pulmonary 

vascular resistance (PVR) to account changes in cardiac output that occur with pulmonary 

arterial hypertension: specifically, a PVR of 2 Wood units or greater, with a mPAP above 20 

mmHg and characteristic imaging findings (ESC/ERS). Unresolved blood embolus, with 

thickening of the inner lining of the arteries and the creation of scar tissue, lead to higher 

mPAP and PVR in the blood vessels of the lungs (Klok et al., 2020). In the UK, CTEPH is life-

threatening, patients with CTEPH who do not undergo surgical treatment have a 5-year 

survival rate of approximately 30-60% (Quadery et al., 2018). This rate may differ depending 

on the severity of the disease and the accessibility of alternative treatments. 

 

Several factors related to VTE tend to risk patients to the poor resolution of 

thromboembolism and the development of CTEPH. The most predominant relevant risk 

factors for the development of CTEPH are recurrent episodes of PE and inadequate 

anticoagulation. This may be due to either a failure of the body to adequately activate the 

lytic system in dissolving large clots or to sufficiently manage the thrombus. Nevertheless, 
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these factors alone do not explain the majority of CTEPH cases, indicating additional 

underlying mechanisms (Lang et al., 2016). Patients diagnosed with CTEPH are more likely to 

have more comorbidities than those diagnosed with other forms of pulmonary arterial 

hypertension (Simonneau et al., 2017, Simonneau and Hoeper, 2019). Therefore, additional 

risk factors have been associated with an increased risk of CTEPH, including haematological 

diseases, underlying autoimmune conditions, splenectomy, thyroid replacement treatment, 

and a history of tumours were all identified as a factor associated with an increased risk of 

CTEPH (Bonderman and Lang, 2011). 

 

 

 

Table 1.1 Pulmonary hypertension classification adapted from ESC/ERS guidelines 2022  (Humbert et 
al., 2022). 

 

Group Definition Causes 

1 Pulmonary arterial hypertension 
(PAH) 

Idiopathic PAH  

Heritable PAH 

Drugs and toxin induced PAH 

Associated condition 

2 Pulmonary hypertension due to left 
heart disease 

Systolic dysfunction 

Diastolic dysfunction 

Valvular disease 

3 Pulmonary Hypertension due to lung 
disease and /or hypoxia 

Emphysema  

Interstitial lung disease 

Hypoxia without lung disease 

Lung disorder 

4 Pulmonary Hypertension due 
pulmonary artery obstructions. 

 CTEPH 

Other pulmonary artery obstructions (pulmonary 

embolism, stenoses, in situ thrombosis, tumours) 

5 Pulmonary hypertension with unclear 
and/or multifactorial mechanisms 

Systematic and metabolic disorders  

Hematologic disorder 
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1.4 Challenge of diagnosis of CTEPH 
CTEPH is difficult to diagnose since symptoms of right heart failure may not present evidence 

until the illness has progressed to an advanced level, and early disease phases are 

characterised by vague symptoms or even the lack of symptoms altogether. The fact that the 

signs of CTEPH are comparable to those of other kinds of pulmonary hypertension is another 

difficulty associated with the condition. Consequently, an accurate diagnosis may be 

postponed or even be missed, which affects between 2 to 4 percent of those who survive 

acute PE, is the most serious long-term consequence of the condition (Klok et al., 2020). 

Chronic PE is a challenging diagnosis and a commonly overlooked condition that's tough to 

spot and frequently misinterpreted. CTPA is used to diagnose CTEPH, which might be 

complicated to detect the radiologic features with abnormalities detected with the disease 

progression (Ruggiero and Screaton, 2017). Chronic PE may cause pulmonary hypertension, 

morbidity, and death, hence early diagnosis is critical (Doğan et al., 2015). 

 

 

1.5 Incidence of CTEPH 
The true prevalence of CTEPH after an acute PE remains undetermined, with studies reporting 

a wide range from 0.1% to 11.8% in the first two years (Delcroix et al., 2021, Konstantinides 

et al., 2020, Ali et al., 2012). The variability can be related to differences in study methods and 

patient selection criteria, and the difficulty of identifying pre-existing CTEPH from acute PE 

due to overlapping clinical symptoms and a frequent lack of haemodynamic data (Delcroix et 

al., 2021). As the ASPIRE Registry illustrates that the introduction of systematic follow-up 

procedures three months after acute PE enhances population-based identification of CTEPH 

from 5–6 cases per million to 13.2 cases per million per year in Sheffield, and increases the 

number of pulmonary endarterectomy procedures  (Durrington et al., 2024). 

 

Ende-Verhaar et al. (2017) conducted a systematic review and meta-analysis studying the 

incidence of CTEPH in patients after acute PE and according to their research, the incidence 

of CTEPH was between 0.56% and 3.2% (Ende-Verhaar et al., 2017). A study by Pengo et al, 

(2004), found that the incidence of CTEPH in patients with acute PE has grown. with 3.8% of 

survivors developing CTEPH within two years of their first PE incident (Pengo et al., 2004). 
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Similarly, (Klok et al., 2010) observed an incidence ranging from 0.57% to 1.5%, 

demonstrating variability in CTEPH rates across diverse patient demographics following acute 

PE. More recently, Valerio et al. (2022) large multicentre cohort study, which included 1,097 

patients, reported that the cumulative incidence of CTEPH was approximately 2.3% (Valerio 

et al., 2022). According to some research, the incidence of developing CTEPH following an 

acute PE may reach up to 5% (Guérin et al., 2014, Mehta et al., 2010). According to studies, 

extensive examination of CTPA scans obtained at the time of acute PE diagnosis could result 

in the early detection of CTEPH in follow-up evaluations (Boon et al., 2022, Braams et al., 

2021, Ende-Verhaar et al., 2019). 

 

While PE is commonly acknowledged as a substantial risk factor for CTEPH, studies indicate 

that up to 25% of CTEPH patients may not have a documented history of pulmonary embolism 

(Pepke-Zaba et al., 2011). The study demonstrated that CTEPH is possible throughout patients 

who never experienced an acute pulmonary embolism.  

 

 

1.6 Pathophysiology  
Frequent occurrences of pulmonary embolism, along with partial resolution of emboli in the 

lungs, result in intimal thickening of the pulmonary arteries and fibrotic changes in the 

thrombi. These changes lead to arterial blockage and stenosis, which progressively increase 

resistance and pressure in the pulmonary vasculature, eventually causing right heart failure if 

not treated. The actual cause of unresolved emboli and CTEPH development remains unclear. 

Studies indicate that it might be influenced by a multifaceted interplay of immunologic, 

fibrinolytic, and hematologic dysfunction processes (Matthews and Hemnes, 2016, Lang et 

al., 2013, Lang et al., 2016). Studies have demonstrated that CTEPH is characterised not only 

by chronic thromboembolic structured in the main pulmonary arteries, but also by small and 

distal vessel disease, which might be a significant factor during the initiation and development 

of the disease (Klok et al., 2020).  

 

Besides the mechanical blockage induced by thromboembolic, the unobstructed pulmonary 

vasculature experiences considerable remodelling. A study by Dorfmüller et al (2014), 
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performed a comparative histological examination of explanted lung tissue extracted from 17 

patients with CTEPH who received lung transplants because of either an unsuccessful 

pulmonary endarterectomy (PEA) or inoperable distal disease. They found that patients with 

CTEPH exhibit altered vascular remodelling in the lungs, characterised by organised 

thrombosis, eccentric intimal fibrosis, and pulmonary capillary hemangiomatosis. 

Additionally, there was marked dilatation of the bronchial systemic vessels and vasa vasorum 

(Dorfmüller et al., 2014). 

 

CTEPH is often diagnosed with significant delay because it has non-specific clinical symptoms 

(Delcroix et al., 2016, Ende-Verhaar et al., 2018). The patient often presents with shortness 

of breath, dizziness, chest pain and fatigue, which may gradually worsen over time (Kiely et 

al., 2013). As the disease progresses, additional symptoms may evolve, such as signs of right 

heart failure, peripheral oedema, abdominojugular reflux, jugular venous distention, and 

splenomegaly. The patient may also experience low cardiac output condition, which include 

tachycardia, hypotension, oliguria, and cyanosis caused by the inability of the cardiovascular 

system to pump blood sufficient through the lungs, resulting in poor circulation (Sabbula et 

al., 2024). 

 

 

1.7 Diagnostic guidance for CTEPH 
The 2022 European Society of Cardiology (ESC) guidelines for pulmonary hypertension state 

that the diagnostic method should begin with a review of the patient's medical history to 

identify any signs and symptoms of CTEPH. Patients with suspected CTEPH must receive 

anticoagulant treatment to distinguish between PE and CTEPH for a minimum of 3 months. 

Ventilation/perfusion (V/Q) scintigraphy should also be performed on all patients with 

suspected CTEPH to assess perfusion defects and confirm the diagnosis. A V/Q mismatch in a 

segment or a larger defect increases the chance of a CTEPH diagnosis. Additionally, the 

diagnosis must be corroborated with right heart catheterisation (RHC) and the identification 

of characteristic imaging abnormalities associated with CTEPH. Patients are often directed to 

specialised pulmonary hypertension centres for RHC and comprehensive imaging techniques 

to determine the need for surgical intervention (Humbert et al., 2022).  
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Additionally, the diagnosis and characterisation of CTEPH have been greatly enhanced by 

notable developments in CT technology. The Pulmonary Vascular Research Institute imaging 

task force's most recent imaging statement emphasises the significance of CTPA in the 

diagnostic approach. In patients with chronic PE and who are suspected of having additional 

emboli, it is recommended to avoid D-dimer test and rather utilise a more direct approach 

such as a V/Q lung scan or CTPA (Kiely et al., 2019). 

 

Echocardiography 

Echocardiography has a vital role in suspected with CTEPH, mainly for detecting evidence of 

pulmonary hypertension and right heart failure. It is recommended in ESC/ERS guidelines as 

an early, non-invasive diagnostic method by assessing tricuspid regurgitant jet velocity, if 

greater than 2.8m/s as it represents intermediate probability of pulmonary hypertension and 

if >3.4m/s infers high risk , which is a main sign of potential pulmonary hypertension (Galiè et 

al., 2019, Konstantinides et al., 2020). Echocardiography can also assess the cardiac chambers 

and atria, and secondary signs of PH can adjust a patient's risk of pulmonary hypertension as 

per the ESC/ERS guidelines. Additionally, echocardiography can detect leftward septal 

deviation during systole, which is also an indicator of elevated right-sided pressures and 

provides additional evidence of right ventricular strain and dysfunction (Humbert et al., 2022). 

 

Ventilation – Perfusion Scintigraphy (V/Q) 

V/Q scintigraphy is a nuclear medicine imaging technique, using radioactive isotopes to assess 

ventilation and perfusion of the lungs in patients suspected with CTEPH (Moradi et al., 2019). 

V/Q is a widely available test that is recommended in all patients with suspected CTEPH. V/Q 

scan can detect the typical wedge-shaped perfusion defects in the lungs, and correlation with 

the ventilation imaging mismatched regions can be appreciated. When CTEPH symptoms 

present with elevated pulmonary artery pressure, a V/Q scan becomes an effective diagnostic 

technique, exhibiting a sensitivity of up to 96% for CTEPH diagnosis (Tunariu et al., 2007). 

However, a segmental or larger perfusion defect on V/Q imaging can also occur in conditions 

like inflammatory responses, severe air trapping, cancers, and fibrosing mediastinitis, where 

pulmonary arteries are obstructed by non-thrombotic factors (Narechania et al., 2020). 
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The most recent developments have included single-photon emission computed tomography 

(SPECT) and hybrid SPECT/CT imaging, providing three-dimensional assessment and 

enhanced anatomical resolution. Planar V/Q is useful for screening due to its high sensitivity. 

SPECT or SPECT/CT improves specificity, which is important for surgical planning and reducing 

false positive. V/Q SPECT localises perfusion defects more accurately, and SPECT/CT provides 

precise anatomical correlation, helping distinguish artefacts or lung abnormalities from true 

thromboembolic disease (Currie and Bailey, 2023). 

 

High sensitivity at the initial screening stage is vital to detect nearly all CTEPH cases and ensure 

timely referral. A V/Q scan minimises false negatives, which is important considering the 

progressive and curable characteristics of CTEPH disease. For surgical assessment or excluding 

other diagnoses, high specificity is equally important to avoid unnecessary tests or 

mismanagement. Consequently, V/Q SPECT or SPECT/CT enhances specificity while 

maintaining sensitivity, enabling more accurate and efficient treatment decisions in patients 

with CTEPH (Wang et al., 2020). 

 

 
Right heart catheterisation (RHC) 

RHC is the conclusive test for confirming PH and assessing the severity of CTEPH. The current 

criteria for diagnosing CTEPH with RHC include a mPAP of at least 20 mmHg, a pulmonary 

artery wedge pressure (PAWP) of 15 mmHg or less, and a PVR more than 3 Wood units 

(Humbert et al., 2022, Galiè et al., 2015). PVR also plays an important role in determining the 

severity of CTEPH, allowing observation of the progression of the disease and the 

effectiveness of treatment. While the cardiac output and cardiac index are used to determine 

the heart function (Galiè et al., 2015).  

 

Exercise RHC is an additional diagnostic tool used to evaluate patients with suspected CTEPH 

or unexplained symptoms, even if hemodynamic measurements at rest are normal. It is 

particularly useful for identifying abnormal increases in mPAP during physical activity, which 

might indicate early pulmonary vascular disease. For instance, patients with fibrotic thrombi 

or chronic thromboembolic pulmonary disease, demonstrating the value of exercise RHC in 

unmasked hidden haemodynamic abnormalities (van Kan et al., 2016, Hoeper et al., 2013).  
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1.8 CT Imaging 

CT pulmonary angiography (CTPA) 

CTPA is a common and readily available diagnostic imaging tool to assess CTEPH. It offers fast 

acquisition and high-resolution imaging to assess lung parenchyma, vascular and cardiac 

structures (Rajaram et al., 2015, Swift et al., 2020). CTPA is the recommended option to 

evaluate patients with CTEPH by contrast enhanced imaging, as recommended by the 

European Society of Cardiology (Humbert et al., 2022).  

 

The use of contrast media in CTPA allows a detailed assessment of the pulmonary arteries, 

and increases the visibility of abnormalities, including thrombi, stenoses, or lesions. Contrast 

media improves images substantially and separates arteries from adjacent tissue such 

mediastinal tissues or lung parenchyma (McNeil and Dunning, 2007). However, may be 

overstated as a result of other structures of high density, including bone, calcifications, or 

metal. Beam-hardening artefacts by contrast media can mask pathological findings and 

anatomical structures (Kim et al., 2018). Post-processing algorithms and attenuation 

correction techniques can be used to reduce artefacts and enhance the quality of vascular 

imaging (Farrell et al., 2021). 

 

CTPA features  

The direct CTPA signs of the vascular abnormalities in the pulmonary arteries include 

complete or partial obstruction, attenuated vessels, webs, stenosis, calcified and eccentric 

thrombi (Gopalan et al., 2017, Delcroix et al., 2021). In CTPA, acute PE and CTEPH present 

distinctive radiological features that allow for differentiation. Table 1.1 presents a 

comparative analysis of CTPA features observed in acute PE and CTEPH. Identifying these 

differences is essential for accurate diagnosis and treatment. Acute PE typically occurs near 

vascular bifurcations, where it can partially or completely obstruct pulmonary circulation. The 

presence of complete occlusion in acute PE manifests as a hypoattenuating contrast defect 

(dark area) that fully occupies the lumen of the involved artery in CTPA images (Figure 1.1) 

(Sin et al., 2021). Complete acute PE obstruction might lead to small lung infarctions. These 

infarctions may appear on CTPA images as ground-glass opacities, occasionally can be 

associated with reticular alterations or triangular subpleural consolidation (Kaptein et al., 
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2024). On the other hand, the appearance of CTEPH differs depending on the length of time 

it has been present and the degree of vessel obstruction (Figure 1.2). Total CTEPH obstruction 

is characterised by an instant narrowing of the vessel width and the absence of contrast 

further than the obstruction. While partially obstructed vessels are presented as partially 

attenuated vessels, stenosis of arteries or as post-stenotic dilatation vessels distal to the 

obstruction. Compared to the central filling defects in acute PE, chronic thrombus is usually 

eccentrically adhered to the blood vessel wall (Ruggiero and Screaton, 2017, Boon et al., 

2022). Within thrombi, calcification is exceedingly rare in CTEPH. Pulmonary arteries may 

constrict and remnant fibrotic webs or bands that form by chronic obstructions, as opposed 

to the dilation observed in acute PE (Nishiyama et al., 2018, Hahn et al., 2022).  

 

In addition to vascular signs, CTEPH is characterised by common parenchymal features, such 

as mosaic perfusion (Grosse and Grosse, 2010). While these findings are diagnostically 

important, their independent association with disease severity, progression, and clinical 

significance requires further investigation. It is common to observe an inconsistent 

attenuation pattern in the lung parenchyma as a result of areas of normal blood supply and 

decreased blood flow (hypoperfusion). Mosaic perfusion pattern characterised by less blood 

flow in regions where arteries are obstructed or narrowed (Grosse et al., 2017). CTPA presents 

as strongly delineated low attenuation parts with tiny vascular diameters contrasted with 

increasing attenuation areas with greater vessels reflecting the normal/hyper pulmonary 

ventilation (Kligerman et al., 2015) (Figure 1.3). Abnormal bronchial artery dilatation is 

frequently present in CTPA of chronic PE and CTEPH patients that could be responsible for up 

to 30% of all blood flow in the body (Ruggiero and Screaton, 2017). Collaterals of systemic-to-

pulmonary arteries may form; they appear on CTPA as dilated bronchial or intercostal 

arteries. Since lung infarction appears frequently in CTEPH cases and may be associated to 

left heart failure, which might decrease bronchial artery perfusion due to increased 

pulmonary circulation pressure (KATSUMURA and OHTSUBO, 1998). There may also be signs 

of prior lung infarctions, such as volume loss and subpleural scarring (Parambil et al., 2005).  
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Table 1.2 Characteristics of acute pulmonary embolism and CTEPH. 

Feature Acute CTEPH 

Luminal thrombus Location 
Central or occlusive 

(main/lobar/segmental arteries) 
Eccentric, wall adherent. 

Thrombus Appearance 

 

Soft, low-attenuation filling 

defect 

Fibrotic, or organised thrombus, 

webs 

Pulmonary Artery Changes Dilated affected arteries 

Dilated main pulmonary artery, 

stenosis, post-stenotic dilatation, 

attenuated vessels. 

Collateral Formation Absent 
Often present (bronchial or 

intercostal arteries) 

Lung Parenchyma Normal or infarcted lung 
Mosaic perfusion, infarctions, or 

possible volume loss 

Cardiac changes  Acute RV strain RV strain and RV hypertrophy 
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Figure 1.1 Axial CTPA with acute PE within the lateral basal segmental artery of the left lower lobe (Red arrow), in 
the lateral basal segmental artery of the right lower lobe and within the superior segmental artery of the right 
lower lobe (Blue arrow). 

Figure 1.2 Axial CTPA with CTEPH. (A) There is a thrombus within the left main pulmonary arteries, on the left 
involving the origins of the superior and inferior lingular segmental pulmonary arteries, and the left lower lobe 
pulmonary artery; (B) the mural thrombus involves the lobar origins of the right middle and right lower lobe 
pulmonary arteries. 
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CTPA Cardiac features  

There are various parameters that CTPA imaging provides to evaluate CTEPH severity and 

stratification of risk. For instance, right cardiac strain, lung perfusion, and clot load. In 

addition, rising right ventricle (RV)/left ventricular (LV) ratio (greater than 1 in the axial plane, 

or greater than 0.90 in 4 cardiac chambers reconstruction) (Figure 1.4), flattening of the 

ventricular wall septum, and contrast material reflux into the inferior vena cava (IVC) and liver 

veins are all signs of right heart strain (Moore et al., 2018). The use of CT images without 

contrast-enhanced allows for the identification of a number of cardiac characteristics that are 

connected with CTEPH, such as enlargement in the size of the chambers of the heart, 

hypertrophy of the RV and interventricular septal deviation. The combination of pulmonary 

arterial diameter, RV outflow tract muscle thickness and septal deviation (or RV/LV ratio) has 

been shown to accurately predict the presence of pulmonary hypertension (Swift et al., 2020). 

Long-standing pulmonary hypertension causes compensatory thickening of the right 

ventricular wall (Sharifi Kia et al., 2021). 

Figure 1.3 Illustrates key CTPA findings associated with CTEPH. (A) demonstrates bronchial artery dilatation, a 
characteristic feature resulting from increased systemic collateral circulation due to chronic pulmonary artery 
obstruction. (B) mosaic perfusion pattern observed in both lungs, visualised through lung window reconstruction. 
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Identifying the mechanical parameters that influence right ventricular (RV) function is 

essential for accurately evaluating its role in disease and clinical prognosis. A study by Ruigrok 

et al. (2019), found that central disease in patients with CTEPH was more common with larger 

RV dilatation than patients with distal disease. These results demonstrate the possibility of 

other parameters beside standard measurements of RV afterload to significantly define RV 

function and flexibility in CTEPH (Ruigrok et al., 2019). 

 

 

 

 

 

 

 

 

Figure 1.4 Moderately enlarged heart with moderate to severe enlargement of the RA and RV. There 
is moderate RV hypertrophy. While left cardiac chambers are underfilled. 
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Advancement in CT imaging 

CT has shown substantial technical progress. by improving lung imaging and providing 

comprehensive anatomical and functional information. These advancements, such as the 

multidetector (MDCT) method, have enabled a comprehensive examination in a short amount 

of time and wider scan coverage, compared to the long duration of the previous system 

(Chaikriangkrai et al., 2014). Additionally, dual-energy CT (DECT) is capable of providing a 

quantitative assessment of lung perfusion simultaneously. DECT might help differentiate 

CTEPH from other forms of peripheral pulmonary hypertension by detecting distinct patterns 

of vascular irregularities and perfusion deficits. It distinguishes structures based on their X-

ray absorption characteristics, using two different energies with multiple tube potentials, 

while reducing radiation dose (Sin et al., 2021). DECT generates color-coded perfusion maps 

by analysing iodine distribution within the pulmonary vasculature. This functional evaluation 

of blood flow enables the detection of hypoperfused regions caused by CTEPH obstructions. 

Lung subtraction iodine mapping (LSIM) is another novel method applied to diagnose 

pulmonary perfusion in patients with CTEPH. This method used a subtraction algorithm by 

subtracting the non-enhanced tissue from the contrast-enhanced area (pulmonary 

vasculature. This subtraction can produce high-resolution images of the vascular and lung 

parenchymal architecture as well as functional information on lung perfusion (Tamura et al., 

2017). 

 

DECT showed a sensitivity of 80-90% and a specificity of 90-95% for diagnosing CTEPH. 

However, its sensitivity for minor perfusion abnormalities may be lower in comparison to the 

VQ scan. The gold standard for identifying mismatched perfusion abnormalities predictive of 

CTEPH is the VQ scan, which has a sensitivity of up to 96% and a specificity of 90–95% (Kim et 

al., 2019). Despite its high sensitivity, the lack of the anatomical resolution requires 

supplemental imaging for a conclusive diagnosis. Earlier studies reported that the V/Q scan 

had significantly greater sensitivity compared to CTPA (97% vs. 51%) (Tunariu et al., 2007). 

Although this gap has decreased due to advances in CT technology, more recent studies show 

that both approaches have comparably high diagnostic accuracy (He et al., 2012). According 

to a meta-analysis by Lambert et al. (2022), CTPA has a sensitivity of 80–90% and a specificity 
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of above 95% for the diagnosis of CTEPH, especially when interpreted by expert radiologists 

(Lambert et al., 2022).  

 

Photon-counting CT is a state-of-the-art development in imaging technology with superior 

spatial resolution, contrast-to-noise, and decreased exposure to ionising radiation compared 

to standard CT scans. PCCT has promise in improving diagnosis in CTEPH patients. It could 

offer high-resolution imaging of the peripheral small pulmonary arteries, which would help 

distinguish CTEPH from other pulmonary hypertension types and enhance clinical evaluation 

and disease characterisation (Kerber et al., 2023). As accessibility increases, PCCT has the 

potential to become the modality of first choice in the diagnosis and surgical planning of 

CTEPH. However, additional research is necessary to fully assess its clinical utility and to 

develop standardised CTEPH protocols for clinical applications (Remy-Jardin et al., 2025, 

Douek et al., 2023). 

 

 

1.9 Treatment  
According to ESC/ERS guidelines for pulmonary hypertension, the diagnostic evaluation of 

CTEPH should prioritise verifying the diagnosis and evaluating the patient's eligibility for 

surgical intervention. Figure 1.5 shows the ESC/ERS treatment strategy for patients with 

CTEPH. The preferred therapy method for CTEPH is PEA, which remains the sole intervention 

demonstrated to improve long-term results. The treatment goal for patients who are 

ineligible for surgery is to eliminate symptoms, using medication or balloon pulmonary 

angioplasty (BPA) treatment. Moreover, constant anticoagulation is necessary for all patients 

diagnosed with CTEPH.  

 

Anticoagulation 

Anticoagulation therapy is the mainstay therapeutic approach prescribed in patients with 

CTEPH and PE. A three-month anticoagulation interval must be performed to distinguish 

between CTEPH and acute PE. Warfarin is considered to be the standard anticoagulant 

(Humbert et al., 2022). Heparin is another alternative anticoagulant that is usually 

administered via injection. However, direct oral anticoagulants (DOACs) have become in 
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preference due to their simplicity of administration and lack the need for regular monitoring. 

Despite their increasing usage, evidence supporting DOACs in management of CTEPH is 

limited. A study by Bunclark et al. 2020, reported no significant differences in functional or 

hemodynamic results after PEA between patients treated with warfarin and those receiving 

DOACs. Nevertheless, patients treated with DOACs experienced significantly higher rates of 

VTE (Bunclark et al., 2020). 

 

Balloon pulmonary angioplasty 

BPA was recognised as a useful alternative treatment option for inoperable CTEPH, such as 

high-risk surgical patients, segmental and subsegmental disease, or residual CTEPH post-PEA 

(Klok et al., 2018). BPA should exclusively be conducted at specialised PH centres and with 

extensive experience in catheter-based interventions (Kim et al., 2019). In 2018, BPA was 

introduced as a nationally commissioned service and became more extensively used in clinical 

practice across the UK. These PH centres follow a protocol of several sessions between four 

to six procedures for each patient to optimise results while reducing complications. Studies 

and clinical experiences have shown that BPA improves haemodynamic outcomes, exercise 

capacity, and right ventricular function for patients with inoperable and recurrent CTEPH 

(Fukui et al., 2014, Jaïs et al., 2022, Lang et al., 2023, Delcroix et al., 2023). 

 

Pulmonary endarterectomy  

PEA is the gold standard surgical treatment for patients with CTEPH, that involves opening 

the pulmonary trunk. It is performed bilaterally on the pulmonary arteries through a median 

sternotomy incorporated with cardiopulmonary bypass. The specific layer for incision within 

the arterial vessel wall is precisely identified between the lamina intima and the media 

(Delcroix et al., 2016). Insufficient or too deep incision into the vascular wall may result in 

pulmonary artery perforation, hence increasing the risk of severe haemorrhage.  

 

Treatment options are determined by the severity and distribution of the thromboembolic 

disease. Severe left heart failure, distal disease and severe chronic obstructive disease are 

known to be limitations for PEA. However, some characteristics have been identified as 

potentially predicting poor postoperative outcomes. These include the lack of a history of 
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VTE, World Health Organisation functional class IV, right heart failure, no disease detectable 

in the lower lobes, and PVR more than 15 Wood units (Kim et al., 2019). 

 

Specialised centres are currently undertaking procedures on patients with more 

comorbidities and distal diseases, while achieving lower mortality outcomes. PEA significantly 

improves symptomatic and haemodynamic outcomes for patients with CTEPH, especially 

when merged with medication treatments such as riociguat (Madani et al., 2012, Taniguchi 

et al., 2014). Cannon et al. (2016) showed excellent long-term survival and maintained 

functional status with marked reduction of mPAP from around 47 mmHg to 27 mmHg 

following endarterectomy. In research by Quadery et al. (2018) on 550 patients with CTEPH, 

involving 550 patients with CTEPH, those with comorbidities or who were refused surgery had 

much poorer survival rates at 5 years (53%) compared to patients who underwent 

endarterectomy (83%). Delcroix et al. (2016) analysed data from 679 patients in an 

international registry between 2007–2009, including 404 who underwent PEA, and found a 

significantly higher 3-year survival rate (89%) compared to those who did not (70%). 

Endarterectomy is associated with great results and much better survival rates than non-

surgical therapy, regardless of patient preference or inoperable CTEPH (Delcroix et al., 2016, 

Quadery et al., 2018).  
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Figure 1.5 CTEPH therapeutic strategies reproduced with permission of the © European Society of Cardiology 
and European Respiratory Society 2025 (Humbert et al., 2022). 
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1.10 Semi-quantitative and quantitative CT  
Semi-quantitative CT is a method for analysing CT images using qualitative visual assessment 

and limited numerical data to evaluate the severity or extent of a condition. Quantitative CT 

(QCT) is a developing research area, focusing on extracting numerical data from CT images to 

evaluate and quantify different pathogenic and anatomical characteristics. QCT approaches 

extend beyond standard visual analysis, providing quantifiable parameters to support 

diagnosis, disease onset, and treatment plans. 

 

Pulmonary thrombus could be evaluated quantitatively by directly measuring the thrombus 

volume with advanced imaging methods, providing a better estimation of thrombus burden, 

or semi-quantitative assessment by numerous scores such as clot burden scores measuring 

the level of pulmonary arterial tree obstruction. A semi-quantitatively scoring technique is 

used to assess the PE severity. The existence and severity of vascular thrombosis blockage in 

specific branches of the pulmonary arteries were calculated to create these scores, which 

mostly represent the distribution of thrombus (Quadery et al., 2018). While pulmonary 

thrombus volume measurement relies entirely on quantitative methods using efficient image 

analysis techniques, a semi-automated segmentation technique may be used to measure the 

PE from pulmonary CTPA images with an excellent level of accuracy (Furlan et al., 2011). 

Accurately quantifying the size and distribution of thrombus remains challenging, thus current 

practice generally classifies the thrombus as central, segmental, or distal. There are 

radiological grading systems available, such as the QUANDILI score, which quantifies the 

number and severity of abnormal vascular segments on CTPA. These ratings are time-

consuming and difficult to duplicate; hence they are rarely employed in clinical practice or in 

patients with CTEPH (Qanadli et al., 2001, Shayganfar et al., 2020). An automated technique 

for extracting and quantifying chronic thromboembolic disease would enable such measures 

to be examined in a clinical context, potentially aiding with diagnosis, risk prediction, and the 

tendency to develop CTEPH condition. 
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Vessel analysis  

Enlarged proximal arteries, constricted distal vessels, and increased vascular tortuosity are 

some of the morphologic characteristics that are associated with CTEPH in the pulmonary 

arteries. As a direct result of this, research has progressed to the point where it is now possible 

to create a reconstruction in three-dimensional of the pulmonary vasculature in order to 

demonstrate these morphological alterations in pulmonary arteries. The least spanning tree 

model is used to begin the process of extracting this quantitative reconstruction from CTPA 

images. This procedure comprises the manual delineation of blood vessels to precisely label 

them and their branches, resulting in the creation of a comprehensive arterial-venous 

segmentation label map. The map considers the intricate tortuosity and complexity of the 

vascular network, providing an accurate representation of the vascular anatomy. In addition 

to perfusion scans, these 3D reconstructions may clearly illustrate the pulmonary arteries, 

frequently exposing a characteristic "moth-eaten" form. This characteristic feature relates to 

CTEPH, which might demonstrate the irregular, non-uniform arterial blockages and 

remodelling induced by organised thromboembolic disease. BV5 is the amount of all blood 

vessels in a selected area (such as a lung or lobe) that have a cross-sectional region of less 

than 5 mm2, while (TBV) refers to the total blood vessel volume. The distal pulmonary 

vasculature can be quantitatively assessed by utilising the BV5/TBV ratio in combination with 

BV5 after normalising the anthropometric data for each patient. Both of these measures were 

found to be reduced—the first due to enlargement of the proximal pulmonary arteries and 

non-visualisation of distal vessels, and the second due to luminal narrowing in the distal 

vasculature (Rahaghi et al., 2016). 

 

Computer-aided detection (CAD) on CT 

Computer-Aided Detection (CAD) is a software application used in medical imaging that helps 

radiologists diagnose diseases. The main objective of CAD is to enhance disease identification 

by minimising the false negative rate resulting from observational oversights. CAD utilises 

algorithms to identify and highlight characteristics such as nodules, lesions, and thrombosis 

for additional examination (Chan et al., 2008).  
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Previous studies investigated automatic diagnosis of PE using CTPA have mostly focused on 

traditional feature-based methods. Despite demonstrating sensitivities of up to 75%, some of 

these approaches encounter significant limitations. These comprise the need of manual 

feature extraction, time-consuming and resource-intensive complicated preprocessing, and 

the absence of external validation to determine generalisability overfitting (Özkan et al., 2014, 

Tajbakhsh et al., 2015, Park et al., 2010). Nonetheless, CAD for PE has not been integrated 

into clinical practice, potentially due to the significant incidence of false positives generated 

by existing CAD algorithms (Buhmann et al., 2007, Maizlin et al., 2007). In contrast, artificial 

intelligence (AI) and machine learning may enhance performance measures, leading to 

increased interest in CAD. These developments demonstrate how important quantitative CT 

is for increasing the accuracy of diagnoses of patients with CTEPH. 

 

AI approaches and QCT  

This method is used for representing disease patterns and numerical information that may 

help the radiologist follow up the disease in a more robust and less variable fashion. This 

technique might provide radiologists with disease course information as well as disease 

diagnosis based on distinct clinical severity categories (Duzgun et al., 2021). Expert 

radiologists typically rely on visual evaluation to, characterise, and categorise CT imaging 

findings. However, CT images are interrogated with quantitative techniques to extract 

measurable information. There are various advantages to applying AI and QCT approaches, 

such as saving time, decreasing the inherent uncertainty of a visual evaluation, improving 

productivity, reducing errors, improving disease classification, and predicting treatment 

response. As a result, AI and QCT techniques can be used to enhance both radiological 

evaluation and clinical treatment with promising results in terms of minimising errors and 

enhancing sensitivity. However, it is essential to consider the limitation of AI approach in 

medical imaging. Breathing and motion artefacts in CT images can cause errors, and while AI 

can disregard data variables, it still needs human oversight (Dwivedi et al., 2021) 

 

The incapability to see and evaluate the distal pulmonary artery vasculature, which is the site 

of abnormality in pulmonary hypertension and CTEPH, is a constraint shared by all currently 

available imaging techniques. Patients with pulmonary hypertension have large pulmonary 
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arteries that are dilated, thinned out, and suddenly narrow or twist (Kiely et al., 2019). The 

morphology of pulmonary vessels represents a method applicable for quantitative AI analysis. 

The vascular tree was recently segmented with 94% accuracy using a DL CNN technique 

(Nardelli et al., 2018). The results of clinical applications of these methods may have 

diagnostic and prognostic implications (Rahaghi et al., 2021). 

 

 

1.11 Artificial intelligence (AI) 
AI is widely used in a variety of diverse industries and healthcare services. AI uses computer 

system capacity to build models to accomplish tasks typically involving human intelligence. 

The tasks involve a wide variety of capabilities, which include problem-solving, learning, 

analysing, natural language understanding, pattern identification, and making decisions 

(Khemasuwan et al., 2020). AI systems derive the tasks through applying and merging massive 

data sets with sophisticated algorithms and statistical procedures. This approach facilitates 

ongoing improvements in patient care and diagnosis by providing assistance to radiologists in 

managing their increasing workloads. Research and applications on AI have developed rapidly 

in popularity in all aspects of healthcare, from diagnosis to therapy (Vandewinckele et al., 

2020, Van Hartskamp et al., 2019).  

 

Liu et al. 2019, compared the diagnostic accuracy of radiologist experts to that of deep-

learning algorithms in a systematic review of 69 studies. The results show that deep-learning 

algorithms exhibited greater or equal accuracy to radiologist experts' interpretation. 

However, there were some limitations in this systematic review. For example, all the 

investigations included were retrospective and reliant on previously compiled datasets. In 

addition, the reporting on dealing with misplaced data in these datasets was inadequate as 

most studies did not specify if any data was missing and how these data were managed (Liu 

et al., 2019). 
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1.12 Machine learning (ML) 
ML uses historical data (datasets, functions, and algorithms) to find a new output value. Using 

data analysis, expertise knowledge, training, and validation error modelling of prospective 

neural networks, on the other hand, are time-consuming. Consequently, it is essential to 

meticulously evaluate each function's capacity to align with the data and produce usable 

output. There are three types of machine learning including reinforcement learning, 

supervised learning, and unsupervised learning  (Khemasuwan et al., 2020). 

 

 

1.13 Deep learning (DL)  
DL is a sort of ML that extracts characteristics over numerous layers that can accept input and 

compute an output using weights and biases. Many of these layers are included in the neural 

networks, giving them the capacity to learn how to generate predictions from data. DL 

technology improved in the 2000s and several DL algorithms became popular to demonstrate 

substantial ability in image processing, particularly for segmentation of medical images 

(Hesamian et al., 2019). DL uses deep neural network designs to analyse massive volumes of 

data and extract the essential features automatically in order to complete classification tasks 

(Du et al., 2020). One example of the most used type of DL algorithm is the convolutional 

neural networks (CNN), which is primarily composed of several layers, each designed to 

perform a particular function. Each layer uses the output of the preceding layer as its input 

(Yang and Yu, 2021). 

 

The CNN algorithm is widely used for tasks such as semantic segmentation, image 

classification and analysis, as well as object recognition. CNNs are effective at image 

segmentation because they detect local patterns using shared filters. This helps them build 

up features from edges to shapes across multiple layers, similar to how the visual system 

works. CNNs are useful for recognising and analysing detailed patterns within medical images, 

as well as understanding the spatial relationships between these patterns and the annotated 

delineations provided in training data. CNNs use filters that move through the image to 

decompose the images down into smaller pixels, this process is identified as convolution. 

These filters learn to extract and recognise features automatically, for example outlines, and 
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object shapes. In the first layers, they begin with basic details, and in the following layers, 

processing more detailed features. The way the human visual system interprets images is 

illustrated by this hierarchical training. In image segmentation, this feature enables CNNs to 

accurately distinguish between various tissues or structures in an image by recognising 

context and spatial connections. CNNs learn directly from data, enabling more accuracy, and 

generalisability than traditional methods that rely on manually defined rules or features 

(Hesamian et al., 2019). 

 

In contrast to the old manual learning techniques, automatic segmentation based on DL 

methods has been suggested, where a neural network can automatically learn image 

features. CNN operates according to a hierarchical data model that produces a funnel-like 

structure to create a completely connected layer in which all the neurons are linked, and 

outcome is managed. Each layer uses a differentiable function to convert one volume of 

activations to another (Abderrahmane et al., 2020). Convolutional, pooling, and fully 

connected layers are the three types of layers that make up CNN architectures (Figure 1.6). 

The most common structure of CNN comprises the first layer, which is associated with a 

medical image as input. The subsequent layer is the convolution layer that utilises a filter 

(called kernels) to combine two sets of data and generate a feature map as an output from 

the input images. Then, a pooling layer is used to minimise the number of parameters and 

computations from the convolution layer's output. As a final classification, the fully connected 

output layer is extracted to produce the final probabilities for each label (Khemasuwan et al., 

2020).  
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Encoder-decoder CNNs built for image segmentation may classify each voxel in a diagnostic 

image as a target structure, or background tissue. This produces a segmentation mask that 

emphasises each area of interest at the original resolution of the input scan. 

These convolutional networks include two key components: an encoding path, which 

extracts hierarchical features like a standard CNN, and a decoding path, which replaces dense 

layers with transposed convolution processes. This learnt up sampling technique enables the 

network to restore spatial detail and provide exact segmentations that match the diagnostic 

image (Cardenas et al., 2019). 

 

While previous AI approaches frequently resulted in suboptimal performance. Recent 

advancements in DL algorithms have demonstrated the ability to achieve performance levels 

comparable to human capabilities in task-specific applications. For instance, measurement of 

heart wall thickness in hypertrophic cardiomyopathy on magnetic resonance imaging (MRI), 

prediction of lung cancer risk on CT scan and diagnosis of breast cancer in mammography 

(Yang and Yu, 2021, Ardila et al., 2019). In addition, a recent study introduced a fully 

automated model for segmenting the great vessels and cardiac chambers using CTPA images, 

demonstrating high performance and minimal failure rates when validated on separate 

internal and external datasets (Sharkey et al., 2022).  

 

Figure 1.6 Illustration of the layers of CNN architectures. 
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In another study by Li et al. 2020, they developed a deep learning algorithm to identify 

coronavirus (COVID-19) using CT scan and assess the algorithm accuracy. The study included 

4352 CT scans from 3322 patients at 6 different health centres. CT scans for COVID-19, 

community-acquired pneumonia, and other conditions not related to pneumonia, were 

integrated into 4352 scans of the dataset. The results showed that a deep learning algorithm 

could accurately identify COVID-19 and differentiate it from the many other lung disorders by 

the sensitivity of 90 percent and specificity of 96 percent (Li et al., 2020) 

 

Nevertheless, Long et al. created fully convolutional networks (FCNs), which is required to 

address the low-resolution information caused by the final layers in CNN (fully connected 

layers) (Long et al., 2015). FCNs feature both encoding and decoding routes. The encoding 

route is similar to the standard CNNs process representing the input data by creating a high-

dimensional feature. For developing accurate segmentation, the decoding process replaces 

the fully connected layers of CNNs with a learnt up-sampling through pixel-wise loss 

(Cardenas et al., 2019). 

 

The first time a CNN method was used to identify PE was by Tajbakhsh et al. (2015); they 

achieved an 83 percent sensitivity for identifying individual emboli using 121 CTPA scans and 

326 emboli, with two false positives results for every scan. They have demonstrated that a 

CNN-based approach is better than traditional ML methods (Tajbakhsh et al., 2015, Tajbakhsh 

et al., 2019). Another study by Liu et al. (2020) evaluated the DL algorithm to measure and 

identify the clot on acute PE using CTPA. This study was a retrospective study with 878 

patients (232 patients without PE and 646 patients with PE). They found that the sensitivity 

was 94.6 percent, and specificity was 76.5 percent of the CNN algorithm to detect acute PE. 

They also showed that automated segmentation clot measurement was closely linked with 

conventional burden parameters on CTPA (Mastora and Qanadli scores) (Liu et al., 2020). On 

the other hand, Weikert et al. (2020) used a large training dataset of 28,000 CTPA scans to 

assess the functioning of the AI algorithm's ability to detect PE. The sensitivity and specificity 

of AI to detect PE were 92.7 percent and 95.5 percent, respectively. This study also conducted 

a sub-analysis of PE, which found that scans with proximal emboli had the most effective 

detection rates of 95.7 percent, followed by exams with segmental emboli 93.3 percent. The 

detection rate for subsegmental emboli was the lowest at 85.7 percent. As a consequence of 
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this finding, the diagnosis of PE on CTPAs, the AI algorithm was examined and had a high rate 

of diagnostic accuracy, which can be necessary for clinical usage. However, DL auto-

segmentation has some limitations. For example, the segmentation of large structures is more 

accurate than segmenting small structures, such as small vessels (Weikert et al., 2020). 

 

 

1.14 Unsupervised vs supervised 
There are two primary kinds of machine learning methods: supervised AI and unsupervised 

AI. In supervised learning, the system learns from the training dataset by forecasting the data 

repeatedly and modifying it for the correct answer. For example, “origin PA” or “distal PA” 

labels for lung pulmonary artery patterns. Evaluation of the performance is based on how 

well these labels are predicted in a study group. Whereas supervised AI algorithms are more 

precise than unsupervised learning models, they require human input to recognise the 

information correctly. On the other hand, unsupervised learning works independently to find 

the structure of data that hasn't been labelled. A method that groups pixels into regions 

based on features, such as texture, edge information, and intensity. Common methods 

include clustering algorithms such as k-means and Gaussian mixture models (GMM), as well 

as deep learning approaches like autoencoders. These approaches attempt to divide an 

image into meaningful regions by learning patterns directly from the images (Liu et al., 2024). 

K-means and GMM cluster voxels by shared properties such as Hounsfield units, while 

autoencoders extract low-dimensional features for clustering in latent space, aiding 

anatomical structure delineation (Rajasekar et al., 2025). These methods avoid manual 

annotation, reducing time and subjectivity, but often require refinement to address noise or 

incomplete margins. In CTEPH, unsupervised methods may struggle when tissue intensities 

overlap. This makes it harder to group regions without some form of guidance or refinement 

(Ren et al., 2017, Wei, R. and Mahmood, 2020). A small quantity labelled data is merged with 

a larger unlabelled data to form the semi-supervised learning technique. This technique gives 

the advantages of both supervised and unsupervised learning while avoiding the difficulties 

associated with locating a large amount of labelled dataset (Barragán-Montero et al., 2021). 

The overwhelming majority of AI investigations in medical imaging implement supervised 

learning and rely on correct labelling. 
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1.15 Explainable AI (XAI) 
The goal of the XAI system is to provide explanations to make its behaviour more 

understandable to humans. There are specific broad ideas that may be used to assist design 

AI systems that are more successful and intelligible to humans: The XAI system must be able 

to describe its abilities and understandings, as well as what it has performed, what it is about 

to accomplish, and what will occur afterwards. It should also be able to reveal the critical 

information on which it is functioning (Arrieta et al., 2020, Gunning et al., 2019). 

 

There are several techniques that can be used to improve interpretation of the segmentation 

of the model. For example, Gradient-Weighted Class Activation Map (Grad-CAM), saliency 

map, and Shapley additive explanations  (SHAP) ((Mundhenk et al., 2019, Bhattarai et al., 

2024). The Grad-CAM approach is frequently used because of its ability to produce 

informative heatmaps that improve the explainability of the model (Hasannezhad and 

Sharifian, 2025).  SHAP is a technique used to explain the model output by calculating the 

SHAP values and estimate the contributions of each feature to the overall prediction (Saranya 

and Subhashini, 2023). Although these algorithms provide valuable visual and feature-level 

explanations, their clinical application is limited because they lack the fine-grained, pixel-level 

precision that is required to identify detailed subtle abnormalities (Ennab and Mcheick, 

2025b). The Pixel-Level Interpretability model, an integrated convolutional fuzzy system used 

to produce detailed, pixel-level visualisations, therefore improving diagnostic precision and 

explainability. It provides clinically significant findings and outperforms Grad-CAM in terms of 

interpretability, accuracy, and efficiency (Ennab and Mcheick, 2025a, Singh et al., 2025, Nasir 

et al., 2025).  
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1.16 Conclusion  
This literature review described CTEPH pathophysiology, affecting factors, guidelines and 

classifications, imaging modality for CTEPH diagnosis and treatment techniques. Among other 

medical imaging techniques, the review focused on defining the CTPA scan, which is clinically 

acknowledged as the recommended imaging technique in CTEPH diagnosis since it is non-

invasive, rapid, and has high sensitivity. CTPA technology, examination, radiographic features, 

CAD system and acute/chronic PE characteristics are discussed. AI is also highlighted in this 

review, and the impact of the AI on improving the PE diagnoses by allowing radiologists to 

reduce misdiagnosis. The studies suggest that DL algorithms may have greater or similar 

accuracy than radiologist professionals' interpretation for acute PE detection. This review 

highlights the lack of studies that use machine learning to detect CTEPH on CTPA, at the same 

time demonstrates that AI technology has great potential to predict the presence of CTEPH, 

assess the severity and provide an inference of the location of disease in the image.  
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2 Aims, Objectives, and Hypothesis 

 

 

2.1 Hypothesis 
The hypothesis for this thesis is that lung parenchymal and radiographic features in CTPA 

images are related to invasive diagnostic measurements in CTEPH. Additionally, the thesis 

hypothesises that automated AI tools for CTPA can enhance the detection and diagnosis of 

CTEPH. Most existing AI tools are developed for diagnosing acute PE, with minimal research 

has focused on chronic PE and CTEPH, which have significant diagnostic challenges. 

Additionally, AI methods developed for acute PE detection may be underutilised or 

inadequately modified to assess patients with CTEPH.  

 

 

2.2 Aims 
The first aim of this thesis is to evaluate lung parenchymal changes on CTPA and evaluate the 

association of mosaic perfusion and lung infarction with known prognostic indicators in 

patients with CTEPH. Secondly, to quantitatively analyse the extent and severity of CTEPH and 

assess the prognostic implications for patients undergoing PEA compared to those not 

undergoing PEA. The final aim of the thesis is to develop a clinically applicable method for 

automatically segmenting pulmonary vessels and thromboembolic disease. This approach will 

use deep segmentation models with CTPA images to predict patients with CTEPH, assessing 

both its presence and severity. 
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2.3 Objectives 
1. Conduct a systematic review and meta-analysis on AI models to detect CTEPH and 

chronic PE using CT (Chapter 3). 

2. Collect and establish comprehensive CTPA images diagnosed with CTEPH from the 

ASPIRE registry database (Chapter 4). 

3. Analyse the extent and impact of cardiac and lung parenchymal abnormalities on 

survival outcomes in patients with CTEPH (Chapter 5). 

4. Investigate a CTPA based scoring system for CTEPH, incorporating location and 

extent of thrombus and its relationship to radiological features and disease 

severity (Chapter 6). 

5. Develop a fully automated deep learning model for segmentation of the 

pulmonary arteries (PA), pulmonary veins (PV), and thromboembolic disease on 

CTPA (Chapter 7). 

6. Evaluate the performance of artificial intelligence in detecting and quantifying 

thromboembolic disease compared to manual analysis and identify its prognostic 

significance in patients with CTEPH (Chapter 7).  
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3 A systematic review of artificial intelligence 
tools for chronic pulmonary embolism on CTPA 

 

 

*Peer-reviewed journal article published in Frontiers in Radiology (2024) 
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3.1 Abstract 
 

Background: Chronic pulmonary embolism (PE) may result in pulmonary hypertension 

(CTEPH). Automated CT pulmonary angiography (CTPA) interpretation using artificial 

intelligence (AI) tools has the potential for improving diagnostic accuracy, reducing delays to 

diagnosis and yielding novel information of clinical value in CTEPH. This systematic review 

aimed to identify and appraise existing studies presenting AI tools for CTPA in the context of 

chronic PE and CTEPH. 

 

Methods: MEDLINE and EMBASE databases were searched on 11 September 2023. Journal 

publications presenting AI tools for CTPA in patients with chronic PE or CTEPH were eligible 

for inclusion. Information about model design, training and testing was extracted. Study 

quality was assessed using compliance with the Checklist for Artificial Intelligence in Medical 

Imaging (CLAIM). 

 

Results: Five studies were eligible for inclusion, all of which presented deep learning AI 

models to evaluate PE. First study evaluated the lung parenchymal changes in chronic PE and 

two studies used an AI model to classify PE, with none directly assessing the pulmonary 

arteries. In addition, a separate study developed a CNN tool to distinguish chronic PE using 

2D maximum intensity projection reconstructions. While another study assessed a novel 

automated approach to quantify hypoperfusion to help in the severity assessment of CTEPH. 

While descriptions of model design and training were reliable, descriptions of the datasets 

used in training and testing were more inconsistent. 

 

Conclusion: In contrast to AI tools for evaluation of acute PE, there has been limited 

investigation of AI-based approaches to characterising chronic PE and CTEPH on CTPA. 

Existing studies are limited by inconsistent reporting of the data used to train and test their 

models. This systematic review highlights an area of potential expansion for the field of AI in 

medical image interpretation. 
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There is limited knowledge of A systematic review of artificial intelligence tools for chronic 

pulmonary embolism in CT. This systematic review provides an assessment on research that 

examined deep learning algorithms in detecting CTEPH on CTPA images, the number of 

studies assessing the utility of deep learning on CTPA in CTEPH was unclear and should be 

highlighted. 
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3.2 Introduction  
 

Pulmonary hypertension is defined by elevated mean pulmonary artery pressure (mPAP) and 

results in right ventricular failure, with significant associated morbidity and mortality. Chronic 

thromboembolic pulmonary hypertension (CTEPH) is a subgroup of pulmonary hypertension 

in which the rise in mPAP is driven by repeated and/or large volume pulmonary embolism 

(PE) (Simonneau and Hoeper, 2019). Surgical pulmonary endarterectomy remains the gold 

standard treatment for CTEPH and is potentially curative. In patients for whom 

endarterectomy is unsuitable, alternative treatment options include endovascular pulmonary 

angioplasty and medical management with anticoagulation and pulmonary vasodilators. Early 

initiation of treatment is important for preventing disease progression and improving patient 

outcomes in CTEPH, but requires prompt diagnosis (Quadery et al., 2018, Delcroix et al., 2021) 

 

Diagnostic delays are common for CTEPH, with an average of 14 months to diagnosis from the 

onset of symptoms (Pepke-Zaba et al., 2011). This can be attributable to the variability of 

clinical presentations and overlap of symptoms such as dyspnoea with a range of other 

potential causes (Kim et al., 2019). Right heart catheterisation remains the gold standard for 

diagnosis of pulmonary hypertension and CTEPH, but is invasive and not readily accessible in 

most centres. CT pulmonary angiography (CTPA) is well established as a non-invasive tool for 

the assessment of CTEPH. The modality is widely available, frequently performed for patients 

with cardiorespiratory symptoms and can provide information that assists with risk 

stratification, treatment decisions and prognostication (Konstantinides et al., 2020). CTPA not 

only enables localisation and quantification of thromboembolic disease but can also yield 

biomarkers of disease severity (such as changes in pulmonary artery calibre and right 

ventricular morphology) and identify associated parenchymal lung changes (Swift et al., 2020, 

Kiely et al., 2019). 

 

Automation of image identification tasks through AI offers potential improvements in 

diagnostic accuracy and efficiency. Various machine-learning methods have been applied to 

aid the detection and characterisation of acute pulmonary embolism on CTPA, with some 

tools licensed and in use as clinical decision aids (Long et al., 2021, Tajbakhsh et al., 2015, 
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Huang et al., 2020, RAPIDAI, 2022). These include deep learning (DL) algorithms utilising 

neural networks - these comprise layers of interconnected artificial neurons, enabling 

algorithms to learn patterns and relationships from data and generate models that can be 

used to make decisions, such as image interpretation. Convolutional neural networks (CNNs) 

are frequently used in DL and are capable of performing imaging classification, segmentation, 

and detection of objects (Yamashita et al., 2018). Existing AI-based strategies for the 

evaluation of PE on CTPA have included image analysis to aid classification of disease and 

vessel segmentation. These techniques are still being developed and their incorporation into 

clinical practice will need more study, refining, and validation studies to assure their efficacy 

and accuracy (Figure 3.1). While there has been considerable interest in AI for the evaluation 

of acute PE, it is unclear to what extent AI has been used to evaluate CTEPH on CTPA. This 

systematic review aimed to identify and appraise the quality of studies presenting AI tools for 

the evaluation of chronic PE or CTEPH on CTPA. 

 

 

 

   

Figure 3.1 Example of radiological features and artificial intelligence approaches in chronic thromboembolic disease 
detection (Images are from Sheffield institution on illustrating the diagnostic features of chronic pulmonary 
hypertension). 
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3.3 Methods 
 

The study was conducted in compliance with the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) criteria (Page et al., 2021). The study flow is presented 

in Figure 3.2. 

 

 

 

Figure 3.2 Process flow diagram for the inclusion and search steps. 
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Eligibility criteria 

Studies published in peer-reviewed journals from 2012 onwards were eligible for inclusion if 

they 1) presented or assessed any type of AI tool 2) for CTPA images 3) from participants with 

either confirmed chronic PE or CTEPH. Exclusion criteria included non-English-language 

publications, non-original research (such as reviews or letters) and animal or phantom 

studies.  

 

 

Search strategy 

MEDLINE and EMBASE databases were searched on 11 September 2023.  

 

Database search strategy 

Ovid (MEDLINE and EMBASE) Search Strategy: 

1.  (Convolutional OR neural) ADJ1 network 

2.  (Deep or supervised or unsupervised or machine) AND learning 

3.  AI OR (Artificial ADJ1 intelligence) OR Algorithm  

4.  Machine Learning MESH 

5. 1 OR 2 OR 3 OR 4 

6. (Pulmonary emboli) OR PE OR CTEPH or CTEPD 

7. Lung Embolism MESH 

8. 6 OR 7 

9. (CT pulmonary angiography) or CTPA 

10. Computer Tomography MESH 

11. 9 OR 10 

12. 5 AND 8 AND 11 
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Study selection and data extraction 

Search results were screened for eligibility by two authors (LA and AS) independently by 

reviewing titles and abstracts using Rayyan Systematic Review Screening Software (Ouzzani 

et al., 2016). Data were extracted from included studies using a standardised spreadsheet by 

two authors (LA and TA). Extracted data included study information (such as location, year 

and journal type), study design, data selection (such as number of participants, number of 

CTEPH cases and inclusion criteria), and the AI model being presented (such as validation and 

performance results). The quality of each included study was appraised by checking 

compliance with the individual criteria of the Checklist for Artificial Intelligence in Medical 

Imaging (CLAIM) (Mongan et al., 2020), which were divided into four domains (Maiter et al., 

2023, Alabed et al., 2022).  
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3.4 Results 
 

Five studies were eligible for inclusion (Figure 3.2) and are summarised in Table 3.1 (Vainio 

et al., 2021, Ma et al., 2022, Khan et al., 2023, Vainio et al., 2023, Bird et al., 2023). Agreement 

of the studies with the criteria of CLAIM are presented in Table 3.2. 

 

 

 

 

Table 3.1 An overview of the literature review papers that used CTPA to identify chronic pulmonary 
emboli using deep learning algorithms. 

 

 

 

 

 

  

Study No. 
Patients 

Chronic 
PE PE type Setting for 

CTPA scan 
Public 

(source) AI type Network Outcomes 

(Vainio 
et al., 
2021) 

50 25 Chronic Multicentre  No Segmentation U-net-type, 
CNN AUC 0.87 

(Khan et 
al., 

2023) 
9446 NA 

Acute 
and 

chronic 
Public RSNA 

(Kaggle) Classification DenseNet201 AUC 0.90 

(Ma et 
al., 

2022) 
7279 NA 

Acute 
and 

chronic 
Public RSNA 

(Kaggle) Classification 
3D CNN and 

3D ResNet-18 
model 

Full cohort 
AUC 0.93/ 
Chronic PE 
AUC 0.68 

(Vainio 
et al., 
2023) 

Public 
976 

Local 78 

Public 
244 

Local 26 
Chronic Local and 

public RSPECT Classification CNN and 
DenseNet201 

AUC 0.94 
on local 

(Bird et 
al., 

2023) 
161 51 CTEPH Local No Segmentation CNN AUC 0.84 

 (NA= not applicable). 
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Table 3.2 Compliance with CLAIM checklist. Studies and the division of criteria into study 
description, dataset description, model description and model performance domains are shown 
below in (Blue/✓ =Yes) to indicate compliance, (Red/ x =No) for non-compliance and (Gray/ ─ =Not 
applicable). 

 

CLAIM checklist 
(Vainio 
et al. 
2021) 

(Khan 
et al. 
2023) 

(Ma et 
al. 

2022) 

(Vainio 
et al. 
2023) 

(Bird et 
al. 

2023) 

  
Study 

description 
 

  

Identification as a study of AI ✓ ✓ ✓ ✓ ✓ 

Structured summary of study design, 
methods, results, and conclusions 

✓ ✓ ✓ ✓ ✓ 

Scientific and clinical background ✓ ✓ ✓ ✓ ✓ 

Study objectives and hypotheses ✓ ✓ ✓ ✓ ✓ 

Prospective or retrospective study ✓ ✓ ✓ ✓ ✓ 

Study goal ✓ ✓ ✓ ✓ ✓ 
Where the full study protocol can be 
accessed x ✓ ✓ ✓ x 

Dataset 
description 

Data sources ✓ ✓ ✓ ✓ x 
Eligibility criteria, symptoms, results 
from previous tests, inclusion in 
registry 

✓ x x ✓ ✓ 

Data pre-processing steps ✓ ✓ ✓ ✓ x 

Selection of data subsets ✓ ✓ ✓ ✓ ✓ 

Definitions of data elements ✓ x x ✓ ✓ 

De-identification methods ✓ ✓ ✓ ✓ x 

How missing data were handled x x x x x 

Flow of participants ✓ ✓ ✓ ✓ ✓ 

Sample size calculation ✓ ✓ x ✓ x 

How data were assigned to partitions ✓ ✓ ✓ ✓ ✓ 

Level at which partitions are disjoint ✓ ✓ ✓ ✓ ✓ 
Demographic and clinical 
characteristics ✓ x x ✓ ✓ 

Ground 
truth 
reference 
standard 

Definition of ground truth reference 
standard ✓ x x x x 

Rationale for choosing the reference 
standard x x x x x 

Source of ground truth annotations ✓ x x ✓ x 

Annotation tools ✓ ✓ ✓ ✓ x 
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inter- and intrarater variability ✓ x x ✓ x 

Model 
description 

Detailed description of model ✓ ✓ ✓ ✓ x 
Software libraries, frameworks, and 
packages ✓ ✓ ✓ ✓ x 

Initialisation of model parameters ✓ ✓ ✓ ✓ x 

Details of training approach ✓ ✓ ✓ ✓ x 

Method of selecting the final model ✓ ✓ ✓ ✓ x 

Ensembling techniques, if applicable x ✓ ✓ ✓ x 

Model 
performance 

Metrics of model performance ✓ ✓ ✓ ✓ ✓ 
Statistical measures of significance and 
uncertainty ✓ ✓ ✓ x ✓ 

Robustness or sensitivity analysis ✓ ✓ ✓ ✓ ✓ 
Methods for explainability or 
interpretability x ✓ ✓ ✓ ✓ 

Validation or testing on external data x x x ✓ x 
Performance metrics for optimal 
model on all data partitions ✓ ✓ ✓ ✓ x 

Estimates of diagnostic accuracy ✓ ✓ ✓ ✓ ✓ 
Failure analysis of incorrectly classified 
cases ✓ ✓ ✓ ✓ x 

Other 
information 

Study limitations ✓ x ✓ ✓ ✓ 

Implications for practice ✓ ✓ ✓ x x 
Registration number and name of 
registry ¾ ¾ ¾ ¾ ¾ 

Sources of funding ✓ ✓ ✓ ✓ ✓ 

  Overall % Compliance with CLAIM 85% 76% 76% 88% 50% 
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Study 1 - Vainio et al. (2021) 

Vainio et al. (2021) investigated the application of a 3D convolutional neural network (CNN) 

to identify hypoperfusion areas affected only by CTEPH from CTPA images. The overall 

compliance of the study with CLAIM was 85%. Compliance with the model description domain 

of CLAIM was 83%.  The model comprised a U-net CNN (Ronneberger et al., 2015) of twelve 

layers and three max-pooling/upsampling phases with skip connections and one output 

neuron with sigmoid activation in their 3D CNN layers. The Hounsfield Unit (HU) range was 

linearly shifted and scaled in order to resample and normalise the CTPA volumes. The patches 

totally outside the lung area were eliminated after the training data were partitioned into 32 

× 32 × 32 voxel patches. Both learning rate adjustment and Dice loss optimisation were 

employed on manually labelled data to fine-tune the model and improve its accuracy during 

the validation process. The compliance with the dataset description criteria of CLAIM was 

90%.  

 

The study used a dataset of 50 patients of which 25 (50%) had CTEPH. A positive ventilation–

perfusion (V/Q) scan for chronic PE and a CTPA with evidence of chronic PE within 3 months 

without signs of acute PE were the inclusion criteria for the positive patients and confirmed 

with a right heart catheterisation. In all cases, radiological appearances of a parenchymal 

disease unrelated to CTEPH that involved more than two-thirds of the lungs were eliminated. 

The median age of all participants was 67 years and 62% were female. These were distributed 

into training, validation, and testing sets containing 48%, 12% and 40% of the data 

respectively. The study also showed complete compliance with the ground truth description 

criteria of CLAIM. Manual segmentation of affected regions on CTPA by one radiologist using 

ventilation-perfusion scan images was used as the ground truth. The compliance with the 

performance description criteria of CLAIM was 62%. The 3D CNN model performed 

segmentation of hypoperfused lungs with a reported area under the receiver curve (AUC) of 

0.87. Failure analysis identified 63 independent false positive labels frequently attributed to 

beam hardening artefact. 
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Study 2 - Khan et al. (2023) 

Khan et al. (2023) presented a CNN model based on DenseNet201 (Huang et al., 2017) to 

classify a mixed cohort including acute and chronic PE on CTPA. The overall compliance of the 

study with CLAIM was 76%, including complete compliance with the model description 

criteria. The proposed model architecture for PE detection comprised an input module, a 

feature extractor module and a decision-making module. The feature extractor model, based 

on DenseNet201 (Huang et al., 2017), used densely connected convolutional blocks to extract 

rich hierarchical features from CT images, each comprising multiple convolutional layers, 

batch normalisation, and rectified linear activation functions (ReLU). The decision-making 

module took the extracted features and performed the final classification or decision-making 

process. This module consisted of intermediate dense and classification layers to produce the 

final prediction or decision regarding the presence or absence of PE. The compliance with the 

dataset description criteria of CLAIM was 66%. The study included 9446 CTPA scans that were 

gathered from the RSNA-Kaggle public database (Stein et al., 2020) (available at 

https://www.kaggle.com/c/rsna-str-pulmonary-embolism-detection). This dataset is 

classified into nine groups including undetermined PE, negative PE, right-side PE, Left-side PE, 

central PE, acute PE, chronic PE, and RV/LV ratio greater or less than 1. The dataset was 

annotated collaboratively by members of the RSNA and the Society of Thoracic Radiology and 

is a compilation of three previous datasets provided by the RSNA, with contributions from 

institutes in five countries (Canada, Brazil, Australia, Turkey and the USA). The 9446 exams 

that make up the dataset made accessible on Kaggle have been divided in this study into two 

sets: a training set of 7279 exams and a test set of 2167 exams. While the dataset included 

acute and chronic PE cases, the proportion of patients in each group was not reported and 

there were no confirmed CTEPH cases. Compliance with the performance description criteria 

of CLAIM was 87%. The model achieved an overall accuracy of 88%, sensitivity of 88%, 

specificity of 89%, and AUC of 0.90 for all participants in the dataset. Although chronic PE 

subgroup was reported to have a 95% accuracy rate, with an AUC value of 0.95. The mean 

ROC curve - which averages the various ROC curves for each subgroup - had an AUC of 0.90. 

 

https://www.kaggle.com/c/rsna-str-pulmonary-embolism-detection
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Study 3 - Ma et al. (2022) 

Ma et al. (2022) also presented a model to identify PE on CTPA including acute and chronic 

PE in their dataset. The overall compliance of the study with CLAIM was 76% and the study 

also showed complete compliance with the model description criteria. The proposed 

approach entails a two-step pipeline: a 3D CNN model extracts a relevant feature sequence 

based on the surrounding area of slices, and a sequenced framework is used to produce study-

level label predictions. The compliance with the dataset and ground truth description criteria 

were 58% and 20% respectively. The dataset used in this study was collected from the Kaggle 

competition RSNA STR Pulmonary Embolism Detection, which included 7279 studies in total 

(Stein et al., 2020) (available at https://www.kaggle.com/competitions/rsna-str-pulmonary-

embolism-detection/data). The dataset includes labels at both the study and slice levels, with 

each slice including a label indicating if it contains any type of PE. However, the ground truth 

annotations used in their investigation were not defined. Compliance with the performance 

description criteria of CLAIM was 87%. The model performance in terms of PE identification 

had a reported sensitivity of 86% and specificity of 85%. For chronic PE cases, reported 

accuracy was 68%, sensitivity was 62% and specificity was 63%; however, the number of 

chronic PE cases was not reported in the paper, but it is available in the original public source. 

 

Study 4 - Vainio et al. (2023) 

Vainio et al. (2023) developed a CNN tool with the aim of identifying and differentiating 

chronic PE from 2D maximum intensity projection (MIP) reconstructions of CTPA. The overall 

compliance with CLAIM was 88%, with complete compliance with the model description 

criteria.  Deep learning-based lung segmentation was used to prepare the CTPA images for 

MIP reconstructions by removing high-intensity features. A base model trained on ImageNet 

was used as the foundation for their architecture (Deng et al., 2009). 11 MIP images were 

used as input data, with each image representing a different view of the same scan. Images 

were processed individually before being averaged and passed through a three-layer 

multilayer perceptron (MLP) using ReLU activations. During training, alpha dropout and batch 

normalisation techniques were applied to the MLP layers. Transfer learning was also used, 

allowing the model to leverage pre-trained neural network architectures. Compliance for 

both the dataset and ground truth description domains of CLAIM was 82%. The publicly 
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available RSNA-STR Pulmonary Embolism CT (RSPECT) dataset was used for training. This was 

divided into two experiments (Colak et al., 2021). The first included 755 CTPA studies, focusing 

on discriminating between patients with chronic PE (RV/LV ratio ≥1) and a control group 

composed of patients with acute PE (RV/LV <1) and those with negative PE examinations. 

Experiment 2 used the same groups as Experiment 1 but did not apply the RV/LV criterion, 

resulting in 976 CTPA scans. Additionally, a local dataset was utilised for validation and 

testing, consisting of 78 cases in total (26 for each of chronic PE, acute PE, and no PE). 

 

The MIP images were modified by a radiologist manually selecting optimal colour and opacity 

transfer functions. Following the appearance adjustments, the researchers conducted visual 

inspections of the images to ensure that they accurately represented the required features 

and characteristics. Compliance with the performance description domain of CLAIM was 75%. 

In Experiment 1, DenseNet-121 with random 3-degree 2D rotations yielded the best 

performance, achieving an AUC of 0.70. Experiment 2, which used larger CTPA volumes for 

training and omitted RV/LV-based exclusion, resulted in slightly lower performance. An 

ensemble model was introduced, leading to a modest increase in balanced accuracy. The local 

dataset outperformed the public dataset significantly, with an AUC of 0.87 compared to 0.79. 

In the third stage, using a local dataset of 78 cases for model selection and testing led to an 

AUC of 0.94 and an overall accuracy of 0.89. 

 

Study 5 - Bird et al. (2023)  

This study aimed to evaluate a new automated method for quantifying hypoperfusion on dual 

energy CTPA to help in assessing the severity of CTEPH. An established DL CNN model for lung 

segmentation was utilised to automatically segment hypoperfused lung volume, effectively 

removing extraneous thoracic anatomy and delineating lobar boundaries. This involved 

processing CT images alongside iodine-water images to compute and measure the proportion 

of hypoperfused pixels within each lobe (Hasenstab et al., 2021). The overall compliance with 

CLAIM was 50%. The study referenced but did not provide any description of the CNN model 

(Hasenstab et al., 2021). Similarly, there was limited description of the datasets used, with 

66% compliance with the dataset description criteria. The data study used a locally obtained 

data from, 51 CTEPH patients and 110 normal CTPA scans were retrospectively analysed. The 
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model automatically isolated parenchymal iodine values to delineate hypoperfusion areas 

and calculate hypoperfused lung volume. Compliance with the performance description 

criteria was 62%. The model showed that global hypoperfused lung volume distinguished 

CTEPH patients from controls with 0.84 AUC and 90% sensitivity cutoffs and correlated 

positively with hemodynamic severity and changes after surgical treatment. The study 

concluded that automated quantification of hypoperfused areas in CTEPH patients from dual 

energy CTPA may assist in clinical evaluation, especially in cases involving segmental-level 

disease. 
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3.5 Discussion  
 

The application of AI to CTPA interpretation in the context of chronic PE and CTEPH is 

appealing. AI tools have the potential to aid the detection of cardiovascular and lung 

parenchymal changes that are important for diagnosis, risk stratification, prognostication and 

treatment decisions in chronic PE. Previous studies suggested that a lack of sensitivity for PE 

detection may affect radiologists' interpretation, which ranged from 66% to 87% (Das et al., 

2008, Eng et al., 2004). AI tools for the identification of chronic PE could assist the accuracy 

and efficiency of CTPA interpretation by radiologists, such as by highlighting areas of potential 

concern for closer scrutiny. This is particularly relevant given that the changes in chronic PE 

may be incidental or subtle on imaging. 

 

This systematic review aimed to identify and appraise existing studies presenting AI tools for 

CTPA in chronic PE patients. Five studies were eligible for inclusion, identifying a significant 

gap in the field. Study quality was evaluated using compliance with the criteria of CLAIM, an 

established structured checklist designed to aid the presentation and interpretation of studies 

presenting AI approaches. All five studies share a common focus on the application of deep 

learning techniques, particularly CNN algorithm for the detection and diagnosis of PE, using 

texture segmentation of the lung parenchyma without direct assessment of the pulmonary 

arteries. One study divided their analysis into several phases and made use of both public 

RSPECT and local datasets. Vainio et al. (2021) demonstrated that segmentation of the 

hypoperfused lungs was carried out using the CNN model resulting in an AUC of 0.87 for 

detecting chronic PE. Khan et al. (2023) reported that the model achieved an overall AUC of 

0.90, for all participants in the dataset. Ma et al. (2022) showed promising PE detection ability 

whether acute or chronic, with a window-level AUC of 0.93. Vainio et al. (2023), showed that 

a relatively limited local dataset for model selection and testing resulted in an AUC of 0.94, 

indicating efficacy in diagnosing chronic PE. However, there is a potential risk of overfitting, 

increased variability, and uncertainty associated with using a small dataset, as it may not fully 

capture the variability and complexity of the underlying population. 
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Models 

The included studies provided reliable descriptions of their respective deep learning CNN 

models. Khan et al. (2023) explored the use of DL CNN algorithms in computer-aided diagnosis 

of PE. The models were trained on a large dataset of CT scans and employed advanced 

techniques for feature extraction and classification to improve the accuracy of PE diagnosis. 

DenseNet201 is a type of neural network that employs densely connected convolutional 

blocks; each layer receives direct inputs from all preceding layers, resulting in enhanced 

feature propagation and reuse throughout the network (Huang et al., 2017). This connectivity 

pattern allows for better information flow and gradient propagation, potentially improving 

the model's ability to learn complex patterns and features relevant to PE detection. The dense 

connections can lead to increased memory requirements, as the outputs of all preceding 

layers need to be stored for gradient computation during backpropagation. DenseNet201 is a 

highly expressive model with a large number of parameters. In some cases, this can increase 

the risk of overfitting, especially if the dataset is small or not diverse enough. 

 

In the study by Vainio et al. (2023), the model to detect chronic PE used transfer learning from 

a previously trained ImageNet model (Deng et al., 2009), analysed eleven MIP images, 

combined the image characteristics and processed them using an MLP with ReLU activations. 

The use of 2D MIP reconstructions for training an AI tool on CTPA images as opposed to using 

other approaches has benefits in terms of standardisation, computational efficiency and ease 

of use. However, it comes with the risk of missing essential 3D information and location-based 

context, which can have an influence on the tool's diagnostic accuracy. In their earlier study, 

Vainio et al. (2021) focused on the evaluation of a 3D CNN for the detection of hypoperfusion 

in patients with CTEPH. They investigated the feasibility and effectiveness of using a 3D CNN 

architecture to analyse CTPA images and identify regions of hypoperfusion in the lung. Ma et 

al. (2022) presented a multitask DL approach for the detection and identification of PE, with 

a CNN architecture capable of simultaneously performing multiple tasks related to PE 

diagnosis, such as segmenting affected lung regions, classifying the severity, and providing a 

score for diagnosis. The multi-task deep learning model was trained on a diverse dataset and 

is expected to improve the efficiency and accuracy of PE detection and identification, as the 

multitask learning strategy enabled the model to train and execute both PE detection and 
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identification tasks simultaneously. This could lead to more efficient and streamlined 

predictions by leveraging shared information between the tasks. The model may be able to 

identify frequent patterns and features for both identifying and detecting PE, improving the 

predictions made by the model's overall resilience and accuracy. However, multitask learning 

can be challenging if the tasks have conflicting or unrelated objectives. If the tasks have 

different characteristics or require distinct feature representations, jointly training them may 

hinder the performance on individual tasks. Every task needs a substantial amount of labelled 

data. If one task has a considerably smaller dataset or lacks labelled data, the performance of 

both tasks might be affected. This can result in a more complex model architecture, which 

may increase the risk of overfitting and require more computational resources for training 

and inference. While Bird et al. (2023) study focused less on developing and more on 

validating or assessing the algorithm. This approach can save space and reduce redundancy 

in the paper, authors must ensure that they follow ethical and academic standards by 

accurately crediting the original developers of the CNN model and providing readers with 

enough information to understand its implementation and performance in their study.  

 

Overall, these papers share a common objective of leveraging DL techniques to improve the 

detection and diagnosis of PE from CTPA images. Some studies failed to assess the 

performance of their model on external datasets, potentially limiting their validity. However, 

only one study, conducted by Vainio et al. in 2023, addressed this limitation by testing their 

model on external datasets. Vainio et al. (2023) is the only study that reports a validation step 

during the development of their model. Assessing performance on validation data enables 

model fine-tuning (such as through hyperparameter optimisation) and the identification of 

potential issues (such as overfitting) prior to final model selection and testing. A lack of 

validation may limit the overall performance of these models. This raises concerns about the 

model's ability to function effectively and consistently in clinical practice settings. Positively, 

all of the research examined the causes of model underperformance and offered failure 

analyses of cases that were misclassified - an important step in ensuring validity.   
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Datasets 

Descriptions of the datasets were less consistent, potentially limiting the interpretation of 

model performance. Each study did report their data sources, with the exception of Bird et 

al.,2023). Public datasets from the RSNA were used in three of the studies (Khan et al., 2023; 

Ma et al., 2022, Vainio et al., 2023). The use of public datasets offers ease of access to data, 

improves study transparency and helps comparison between models. Using diverse datasets 

results in a bigger annotated dataset with a broad range of samples from around the world. 

However, model performance may be restricted by the availability of data elements or 

variables in public datasets, which were not mentioned in two publications (Khan et al., 2023; 

Ma et al., 2022). These two studies used publicly available Kaggle datasets for the detection 

of acute and chronic PE. Although the proportions of acute and chronic PE cases are available 

from the original data source, these were not stated by the studies themselves, limiting their 

transparency - it is best practice for publications to provide all relevant clinical characteristics 

regardless of whether they can be accessed elsewhere (Maiter et al., 2023, Alabed et al., 

2022). Public datasets utilised in the studies may not have had all the elements or features 

required for an accurate PE diagnosis, which may limit the model's ability to identify the 

spectrum of abnormalities related to PE. Variations in data quality may also affect model 

performance by affecting generalisability across datasets with distinct characteristics. While 

age and sex are important demographic factors, they should be complemented with 

additional information - such as the severity of disease or presence of comorbidities - to 

provide a more comprehensive understanding of generalisability in clinical populations. We 

observed that two out of five studies (Ma et al., 2022; Khan et al., 2023) lacked information 

on the demographics of these patients as well as the percentages of patients with various 

diseases. Studies should not assume that their audience is already acquainted with public 

datasets, and study methodology must be explained in sufficient detail to allow correct 

reproduction of the results. 

 

Image annotations in public datasets may also be limited and restrict how the data can be 

used. For example, Ma et al. (2022) demonstrated that certain labels are directly taken by 

others and cannot be modified or changed. As a result, they do not account for the possibility 

of an inconsistent relationship between the labels and the predicted study-level labels in their 
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model. To increase the generalisability of AI models being trained, different data sets, such as 

retrospective and prospective data sets, might be combined. We found that one of the studies 

in this review was created by combining three other datasets that RSNA had previously 

provided with contributions from five more countries and institutions (Khan et al., 2023). The 

three public dataset studies did not include the description of the ground truth reference 

standard and the rationale for choosing the reference standard in their paper, although this 

information is accessible from the public source. Vainio et al. (2023) trained their model using 

the publicly available RSPECT dataset, but validated and tested the model using an external 

local dataset. Testing model performance on external data is important for ensuring 

generalisability and is an important consideration for clinical translation of AI tools. However, 

it is worth noting that only 78 cases - including only 26 cases of chronic PE - were included in 

this external dataset, which limits interpretation of the model’s performance. It is important 

to carefully analyse the context and objectives of the AI model when deciding to use public 

data for training and local data for testing and model selection. While combining different 

datasets can have benefits like increased variety and generalisation, it also has drawbacks 

including inconsistent data, bias, and small local sample sizes. Improvements are needed in 

public datasets to address the lack of flexibility and adaptability in the labelling process, 

providing detailed information about datasets characteristics, and data augmentation 

applied. Some of these limitations may be addressed, and the robustness and dependability 

of the model can be improved, by making an effort to collect more comprehensive and diverse 

local data or by working with several healthcare facilities.  

 

Performance 

The Vainio et al. (2021) and Bird et al. (2023) studies were the only papers that evaluated 

hypoperfusion areas affected by CTEPH specifically on CTPA images using a DL model. Vainio 

et al. (2021) did not specifically look into the pulmonary vessels, rather evaluated the 

secondary effects on lung parenchyma. The AUC curve was solely used in this study to assess 

the model's performance. The performance of the 3D CNN model could be evaluated using 

various metrics such as sensitivity, specificity, accuracy, and area under the receiver operating 

characteristic curve (AUC-ROC). These metrics provide insights into the model's ability to 

correctly identify positive and negative cases of hypoperfusion. There are several metrics 
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available for evaluating DL models. Using merely a subset may offer a misleading overview of 

a model's real performance, resulting in unexpected findings when applied in a clinical setting. 

Therefore, it is crucial to combine several measures and analyse performance 

comprehensively (Hicks et al., 2022). However, the study might have compared the 

performance of the 3D CNN model with existing methods used for detecting hypoperfusion 

in CT pulmonary angiography. This could involve comparing the AUC to determine if the 3D 

CNN outperforms or is comparable to other approaches. The study demonstrated the 

feasibility of using a 3D CNN for the automated detection of hypoperfusion on CTPA images 

in patients with CTEPH. Furthermore, the results indicated that CNNs were able to 

automatically support radiologists in diagnosing and treating patients with chronic PE. Vainio 

et al. (2023) assessed the CNN model in several phases. The model performed inconsistently 

across the public and local datasets, with the local dataset producing noticeably better 

outcomes. The model's ability to identify chronic PE was greatly enhanced by the application 

of a locally optimised ensemble model, challenging model selection techniques, and the local 

test dataset. The model improved in cross-validation model selection, sensitivity to data 

augmentation, and performance on the local dataset. However, there were differences in 

performance, as well as the effect of different training methods. The use of a limited local 

dataset for early stopping presents issues regarding overfitting. However, the other two 

studies by Khan et al. (2023) and Ma et al. (2022) evaluated PE in general (acute and chronic) 

and RV/LV ratio using CNN on CTPA for classification. Nonetheless, they omitted to present 

the number of acute and chronic cases, which limits interpretation. Khan et al. (2023) trained 

an AI model without applying a validation set, which can have a number of consequences for 

the model’s performance and reliability. Assessing performance using a validation set prior to 

formal testing is important for confirming that a model operates properly on unseen data and 

enables further refinement prior to finalisation. The lack of a validation step may limit 

understanding of model generalisability, increase the risk of overfitting, restrict 

hyperparameter optimisation and impede model selection. Finally, this study analyses the 

possible advantages of IoMT-enabled computer-aided diagnostics for PE classification. 

Gradient-weighted class activation mapping (Grad-CAM) was used by Ma et al. (2022) to 

improve the interpretability of the AI model, although this only applied to the first phase of 

training rather than going over the sequential model's parameters in the second training 

phase. The exclusion of Grad-CAM during the second phase of training may limit the 
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interpretability of the model's updated parameters. The overall results demonstrate that their 

model was accurate in detecting and classifying PE and has the potential to enhance acute PE 

diagnosis. While in chronic PE, the model does not perform effectively although they omitted 

to give the number of chronic PE cases.  

 

While this review focuses on CTEPH-specific models, general-purpose tools like 

TotalSegmentator have shown strong performance in segmenting anatomical structures 

across diverse CT datasets and may aid in detecting features relevant to CTEPH (Wasserthal 

et al., 2023; Hinck et al., 2025). However, their effectiveness is uncertain, as CTEPH presents 

distinctive radiographic signs, organised thrombi and perfusion defects, which are often 

absent from the non-CTEPH datasets used to train such models. These models could provide 

a foundation, but further work is required to evaluate whether these tools can be adapted or 

fine-tuned for CTEPH-specific applications. 

 

Furthermore, the usability and accessibility of the identified models remain limited. None of 

the five studies provided downloadable models or user-ready code for external datasets, and 

there is no evidence of widespread external validation or clinical use. Although some used 

public datasets and common DL architectures, reproducibility is restricted without open 

sharing of model weights and inference pipelines. Broader adoption will require open-access 

resources and documentation to support clinical applications. 

 

Our systematic review has limitations. The eligibility criteria focused on chronic PE detection 

using AI on CTPA images; studies may have been missed if they had not clearly identified the 

presence of chronic PE in their datasets. Unpublished research and non-English language 

studies were not included. Despite the inclusion of conference abstracts within the eligibility 

criteria, the number of included studies was low, preventing formal meta-analysis of model 

performance.  
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3.6 Conclusion   

 

This systematic review identified five existing studies presenting AI tools for CTPA 

interpretation in patients with chronic PE or CTEPH. All studies presented DL CNN approaches 

to the assessment of lung parenchyma, with variable performance. Assessment of studies 

using CLAIM identified overall reasonable reporting of AI model design and training, but 

inconsistent reporting of the datasets used, limiting their transparency. This study highlights 

an area of potential expansion for the field of AI in medical imaging. 

 

 

 

 

 

 

 

 

 

 

  



76 
 

4 Methodology 
 

 

This chapter describes the steps involved in developing the radiological imaging database 

utilised in this thesis. Each corresponding chapter presents methods for particular analyses. 

It also includes introductory explanations of the AI development process. 

 

Sheffield Teaching Hospitals NHS Foundation Trust received ethical permission, which was 

later authorised by the National Research Ethics Service for database study (16/YH/0352). 

 

 

4.1 Patients Database 
The ASPIRE (Assessing the Spectrum of Pulmonary Hypertension Identified at a Referral 

Centre) registry was used to identify patients with CTEPH. Patients referred for pulmonary 

hypertension (PH) care centre are documented in the ASPIRE registry, established by Sheffield 

Pulmonary Vascular Diseases Unit (SPVDU) at Sheffield Teaching Hospitals NHS Trust. Every 

patient transferred to the registry receives an extensive clinical and radiological examination. 

Along with a variety of diagnostic tests like V/Q scan, echocardiography, right heart 

catheterisation (RHC), pulmonary function tests (PFTs), CTPA, and MRI, this also requires a 

consultation with a specialist in PH. A multidisciplinary team (MDT) of specialists from 

radiology, cardiology, and respiratory medicine, then meets to review the condition of all 

patients, leading to a collaborative approach to patient management. The conclusions of the 

multidisciplinary team (MDT) and the outcomes of the previously described tests are 

systematically recorded and archived in digital forms across various databases. Additionally, 

the NHS Personal Demographics Service is responsible for maintaining mortality records. 

 

The POLARIS XNAT (Pulmonary, Lung, and Respiratory Imaging Sheffield) database, which is 

used to identify patient data, stores medical images from the Royal Hallamshire Hospital's 

Academic Unit of Radiology. This includes pseudonymised CT and MRI images saved in DICOM 

format and only accessible with valid authentication. The DICOM CT scans from the POLARIS 

database were matched with clinical data from the ASPIRE registry.  
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Every patient at Sheffield Teaching Hospitals (STH) is assigned a one-of-a-kind identity that is 

connected to their individual hospital number. From the POLARIS XNAT database, the DICOM 

CT images of patients who were found via the ASPIRE registry were retrieved. 

 

 

4.2 CT imaging  
In Sheffield, CT scans are commonly performed using a GE Healthcare LightSpeed 64-slice 

MDCT scanner or TOSHIBA Aquilion PRIME scanner. Typical acquisition parameters are 120 

kV, 0.625 mm collimation, pitch of 1, rotation duration of 0.5 seconds, and 100 mA with 

automatic dose reduction. These values could change based on default setups and algorithms 

that automatically modify settings according to characteristics such as patient body mass 

index. differences may also occur across various scanner types and manufacturers, since each 

may include distinct default settings and algorithms methods. A typical field of view of 400 

mm × 400 mm with a 512 × 512 acquisition matrix is applied across all CT scans. For patients 

with PH in Sheffield, the standard imaging protocol involves CTPA along with HRCT 

reconstructions and expiratory slices acquired consecutively. During CTPA, intravenous 

iodinated contrast (Omnipaque 350, GE Healthcare) is given to improve opacification, which 

enhanced visualisation of the pulmonary vasculature. 

 

When a CT scan is acquired, it is saved as a DICOM file in the POLARIS XNAT database and 

each study has its own distinct ID number. Several scans, each referred to as a "CT series," 

might be included in a single "study." Each CT series parameter is different that may include 

series with thin-slice reconstruction, lung window series, a series with mediastinal window, 

series with contrast or no contrast. Each DICOM file contains a list of information such as the 

scanner model and manufacturer, the series numbers and IDs, the reconstruction techniques 

that were used, slice thickness, radiation dose in Kilovoltage peak (kVp), technical parameters, 

scan date and number of slices. (.csv) files containing this data were created by taking the 

data straight out of the DICOM files. There was also a thorough validation and assessment of 

other factors manually, such as whether the images included IV contrast or respiratory 

artefacts and if the chest had been properly scanned. For each patient only CTPA series was 

downloaded rather than all series. In order to be eligible for AI development, the images were 
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viewed to confirm CTPA and manually checked for diagnostic quality and with respect to PE 

is it normal, acute or chronic. Included in the quality control requirements are CTPA series 

with slice thickness < 0.625 mm, IV contrast, no noise, more than 300 slices and a complete 

chest is scanned. 

 

The inclusion criteria were all adult patients diagnosed with CTEPH at Sheffield Royal 

Hallamshire Hospital who had CTPA in Sheffield using the guideline criteria for CTEPH 

diagnosis (Humbert et al., 2022). Patients who had undergone pulmonary endarterectomy 

(PEA) or received medical treatment were included in the study. However, those who had 

balloon pulmonary angioplasty (BPA) were excluded, because BPA only became nationally 

commissioned in the UK starting in 2018. Furthermore, CTPA images with significant artefacts 

and inadequate contrast of the pulmonary arteries were excluded throughout the image 

processing step. 

 

 

4.3 Image analysis  
Radiological reports were reviewed to confirm patients with CTEPH and verify positive cases, 

with each positive result being evaluated radiologically. CTPA images were then analysed to 

identify radiological CT characteristics and lung parenchymal abnormalities, such as mosaic 

perfusion patterns, lung infarction, bronchial arteries, coronary calcification, and lung 

parenchymal disease. The purpose of the radiological assessment and data quality control 

was to convert raw NHS data into a format applicable for AI development. This stage critically 

impacts project performance, though its time-consuming and requires specialised skills. Every 

stage in this process was conducted by myself, a speciality trainee CT radiographer, with 

assistance from my supervisor, a specialist Cardiothoracic Radiologist. Data from multiple 

sources, including ASPIRE, POLARIS XNAT, NHS Personal Demographics Service, and DICOM 

files, were combined into a single database using Microsoft Excel. 

 

Each CTPA series was manually reviewed, concentrating on the method of scan acquisition 

and the overall radiological quality. This comprised verifying there were no significant 

breathing or motion artefacts, noise interference was limited, and complete scan with full 
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chest coverage. In addition, I reviewed the CTPA contrast phase and confirmed the slice 

thickness was less than 1.25mm. 

Of 1673 scans, 290 patients with CTEPH underwent thin slices, which all met the requirements 

for radiologically acceptable scan quality. External CTPAs and scans with significant artefacts 

were excluded from the analysis. Additionally, scans were excluded based on acquisition type 

and inconsistencies in coded DICOM information. Although several files were labelled as 

'CTPA,' they did not meet the required criteria, such as correct phase timing, thin slice 

thickness, or presence of contrast. Despite time-consuming, the radiological evaluation and 

data refinement were necessary for verifying the reliability of the data before proceeding with 

any clinical assessment or AI model development.  

 

 

4.4 Workflow for AI Development  
After exporting the images from POLARIS XNAT, the DICOM files were inserted into the MIM 

programme (MIM Software Inc., Cleveland, Ohio, United States). We identified the pulmonary 

vessels, acute PE and CTEPH cases, which required the development of a process using MIM's 

built-in tools. This was carried out in conjunction with a clinical scientist (MS). There are two 

primary stages involved in the training and creation of an autonomous AI model that is 

capable of segmenting and identifying patients with CTEPH. First, the pulmonary arteries and 

veins were manually segmented using draw sphere and landmark tools in MIM software. The 

thromboembolic diseases were then segmented, and their anatomical locations were 

classified based on the definitions provided by den Exter et al. (2020): central disease were 

defined as those located in the main or lobar pulmonary arteries, while distal disease were 

defined as those in the segmental or subsegmental branches, with subsegmental arteries 

referring to those beyond the segmental level. An algorithm was then developed to 

automatically segment the pulmonary arteries and thromboembolic disease, distinguishing 

them from surrounding tissues, veins, and lung borders. This is done for each slice that is 

taken during a multi-slice CTPA.  
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The results of this workflow were constantly reviewed manually, with technical parameters 

adjusted as needed to optimise performance (Figure 4.1). Visual assessment was used to 

evaluate segmentation accuracy for the arteries, veins and thromboembolic disease.  

 

 

 

 

 

 

 

Pulmonary arteries, that are included in the study and segmented for both normal and 

abnormal cases (Figure 4.2):  

● Pulmonary artery (PA) _ Bifurcation (origin) 

● Right_ PA_ (mid, distal) 

● Left_ PA_ (mid, distal) 

● Right_ Upper_ Anterior_ (Origin, mid, distal) 

● Right_ Upper_ Apical_ (Origin, mid, distal) 

● Right_ Upper_ Posterior_ (Origin, mid, distal) 

Figure 4.1 Data preparation for AI model. 



81 
 

● Right _Mid_ Medial_ (Origin, mid, distal) 

● Right _Mid_ Lateral_ (Origin, mid, distal) 

● Right _Lower_ Anterior_ (Origin, mid, distal) 

● Right _Lower_ Posterior_ (Origin, mid, distal) 

● Right _Lower_ Medial_ (Origin, mid, distal) 

● Right _Lower _Lateral_ (Origin, mid, distal) 

● Right _Lower _Apical_ (Origin, mid, distal) 

● Left_ Upper _Anterior_ (Origin, mid, distal) 

● Left _Upper _Apico Posterior_ (Origin, mid, distal) 

● Left _Upper_ Superior Lingula_ (Origin, mid, distal) 

● Left _Upper_ Inferior Lingula_ (Origin, mid, distal) 

● Left _Lower_ Apical_ (Origin, mid, distal) 

● Left _Lower_ Anterior_ (Origin, mid, distal) 

● Left _Lower_ Lateral_ (Origin, mid, distal) 

● Left _Lower_ Posterior_ (Origin, mid, distal) 

 

 

In patients with CTEPH, proper segmentation of the pulmonary arteries (PA) and veins (PV) in 

CTPA images is important due to the diagnostic challenges associated with identifying 

vascular obstructions and enhances the development of AI algorithms for automated CTEPH 

diagnosis. In addition, CTPA scans might consist of noise or motion artefacts, which could 

affect accurate segmentation. noise-reduction and image enhancement methods were used 

to improve the accuracy of PA and PV segmentation. Considering individual variations in 

vascular structure and adequate contrast enhancement of CTPA is significant, which can be 

achieved by manual modification of segmentation parameters, hence enhancing model 

effectiveness to ensure consistent accuracy across different patients. 

 

 

 



82 
 

 

 

 

 

 

 

4.5 Statistical analysis  
Analysis was performed using SPSS (version 27.0, IBM) and GraphPad Prism (version 9.0). 

Proper statistical analysis was selected based on the distribution and nature of data. For 

further details on the statistical methods used in each study, please see the statistical analysis 

sections in each chapter. 

  

Figure 4.2 Illustration of thromboembolic disease distribution and anatomical classification based on thrombi 
location within the pulmonary vasculature: central disease (main pulmonary arteries), and distal disease 
including segmental disease (segmental branches), and (subsegmental and more peripheral vessels).  
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5 Lung parenchymal and cardiac appearances on 
CTPA impact survival in chronic 
thromboembolic pulmonary hypertension: 
results from the ASPIRE Registry 
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5.1 Abstract  
 

Background: Chronic thromboembolic pulmonary hypertension (CTEPH) is commonly 

evaluated using CT pulmonary angiography (CTPA). We evaluated the frequency and impact 

of parenchymal and cardiac abnormalities on survival in CTEPH.  

 

Methods: Patients were identified from the ASPIRE (Assessing-the-Spectrum-of-Pulmonary-

Hypertension-Identified-at-a-Referral-Centre) Registry. Kaplan-Meier analysis was used to 

assess survival. 

 

Results: 290 patients (55% female, mean age 65±14 years) with CTEPH were included. Mosaic 

perfusion was noted in 83%, lung infarction in 73% and parenchymal lung disease in 28%. The 

severity of mosaic perfusion and lung infarction correlated with markers of disease severity 

(p<0.001). Whereas the presence of mosaic perfusion was associated with improved survival 

in all patients (p=0.03), it did not predict outcome in those undergoing pulmonary 

endarterectomy (PEA) (p=0.6) and those not undergoing PEA (p=0.22). The presence of lung 

infarction had no impact on mortality. The presence of co-existing lung disease was associated 

with a worse survival (p<0.008), in patients not undergoing PEA. Mosaic perfusion was less 

common in patients with parenchymal lung disease (65%) compared to those without 

parenchymal lung disease (90%), p<0.001. Increased right: left ventricular ratio and aortic 

diameter predicted worse outcome (p<0.002). 

 

Conclusion: Lung parenchymal and cardiac changes on CTPA predict outcome in CTEPH. Co-

existing parenchymal lung disease is not uncommon and when present may mask the 

presence of mosaic perfusion. This study highlights the importance of systematically 

evaluating the lung parenchyma and cardiac changes in patients with CTEPH. 
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Advances in knowledge: Previous studies have not systematically assessed how lung 

parenchymal and cardiac abnormalities observed on CTPA impact survival in CTEPH. This 

study aims to address this gap by evaluating their frequency, correlation with disease severity, 

and impact on survival.   
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5.2 Introduction 
 

Chronic thromboembolic pulmonary hypertension (CTEPH) is due to non-resolution of 

thrombus and is often accompanied by a microvasculopathy (Delcroix et al., 2021). A large 

prospective study and data from the ASPIRE Registry have noted a 2-year incidence of 

approximately 2% following an acute pulmonary embolism (Valerio et al., 2022, Durrington 

et al., 2024). Without treatment CTEPH is a progressive condition resulting in right heart 

failure and death. However, with newer approaches to treatment including pulmonary 

endarterectomy (PEA), balloon pulmonary angioplasty (BPA) and medical therapy outcomes 

are significantly improved (Delcroix et al., 2021).  One of the challenges is the identification 

of the most appropriate therapy or therapies for treating CTEPH. Consequently, patients 

undergo multimodality testing, not only to characterise the extent of clot burden and 

estimate the severity of microvascular involvement but also assess for comorbidities which 

may impact significantly on decisions to proceed to PEA (Pepke-Zaba et al., 2011, Quadery et 

al., 2018). 

 

Computed tomography pulmonary angiography (CTPA) plays an important role in the 

assessment of patients with suspected and confirmed CTEPH; it is non-invasive and is 

recommended in international guidelines and by expert bodies for the evaluation of patients 

with CTEPH (Humbert et al., 2022, Kiely et al., 2019, Remy-Jardin et al., 2021). CTPA allows 

for an assessment of vessels providing a roadmap of the pulmonary vasculature but in 

addition also allows for an assessment of cardiac chambers, lung parenchyma and mediastinal 

structures (Rajaram et al., 2015). Vascular abnormalities include attenuated vessels, stenosis, 

webs, and eccentric thrombi (Delcroix et al., 2021, Gopalan et al., 2017, Simonneau et al., 

2017). Parenchymal abnormalities include mosaic perfusion and the sequelae of lung 

infarction. Lung infarction is more common in the setting of distal rather than central 

pulmonary emboli, as the lung peripheries receive less collateral supply from the bronchial 

arterial circulation (He et al., 2006). Although acute infarction usually appears as areas of 

wedge-shaped defects over time these become organised resulting in subpleural scarring and 

or consolidation/cavitation (Harris et al., 2008).  Cardiac abnormalities reflecting the presence 

of pulmonary hypertension (PH) may be observed on CTPA and a combination of pulmonary 
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artery diameter≥30mm, right ventricular outflow tract hypertrophy ≥6mm and a right 

ventricular: left ventricular (RV/LV) ratio of ≥1 is highly predictive for the presence of PH (Swift 

et al., 2020). 

 

Importantly, comorbidities impact survival in patients with CTEPH (Pepke-Zaba et al., 2011, 

Quadery et al., 2018) and can be appreciated on imaging (Shahin et al., 2022). In patients with 

other forms of PH such as idiopathic pulmonary artery hypertension (IPAH) even minor 

parenchymal lung disease on CT predicts a higher mortality (Lewis et al., 2020, Hoeper et al., 

2022), however, the impact of these changes on outcome in patients with CTEPH is not 

known. The aim of this study was to evaluate the frequency of mosaic perfusion, lung 

infarction and lung parenchymal abnormalities on CTPA in patients with CTEPH, their 

correlation with disease severity and impact on survival. 
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5.3 Methods 
 

Study participants 

Patients were identified from the ASPIRE Registry (Assessing the Spectrum of Pulmonary 

Hypertension Identified at a Referral Centre registry) between January 2008 and January 2018 

(Hurdman et al., 2012). The ASPIRE registry includes data from patients undergoing 

systematic evaluation for suspected PH at the Sheffield Pulmonary Vascular Disease unit 

including multimodality imaging and right heart catheterisation. This is a nationally 

designated PH referral centre serving a population of 15-20 million and adheres to annually 

audited standards of care. The diagnosis of CTEPH in this study was made according to 

international guidelines and detailed discussion by a multidisciplinary team (MDT). Adult 

patients (≥ 18 years) were eligible for inclusion in the study if they underwent CTPA in 

Sheffield and met guideline criteria for a diagnosis of CTEPH, and patients who underwent 

PEA or received medical therapy. No patients who underwent BPA were included in this study; 

BPA was only nationally commissioned in the UK in 2018 (Humbert et al., 2022). Data on 

demographics, pulmonary function tests (PFT) and right heart catheterisation (RHC) were 

obtained from the ASPIRE Registry. 

 

RHC was performed using a 7.5-F balloon-tipped thermodilution catheter (Becton-Dickinson, 

Franklin Lakes, New Jersey). Mean pulmonary artery pressure (mPAP) and pulmonary arterial 

wedge pressure (PAWP) were obtained using fluid-filled pressure. Cardiac output (CO) was 

assessed via the thermodilution method. Pulmonary vascular resistance (PVR) was calculated 

using the following formula: PVR = (mPAP – PAWP)/CO. The cardiac index (CI) was adjusted 

for body surface area (BSA) as: CI = CO/BSA. 

 

CTPA acquisition and evaluation 

CTPA studies were acquired using multidetector scanners (TOSHIBA Aquilion PRIME and GE 

Medical Systems) with standard acquisition parameters: tube current 80-700 mA with 

automatic dose reduction tube voltage 120 kV, pitch 1, slice thickness 0.5 mm x 80 mm, 

rotation speed 0.275. 60 mL of intravenous iodinated contrast (Omnipaque 350, GE 

Healthcare) was injected at a rate of 5 mL/s. Bolus tracking was performed over the 
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pulmonary artery using a manual fast start, with acquisition triggered over a threshold of 220 

HU. Patients were excluded from the study if their CTPA images were considered to be 

suboptimal - for example, where contrast opacification of the pulmonary arteries was poor 

or there was significant movement artefact. This choice was taken during the image analysis 

stage, which evaluated the quality and readability of the CTPA images. Data on pulmonary 

endarterectomy (PEA) status was collected from patient records and surgical databases at the 

time of census. 

 

A semi-quantitative approach was used to evaluate CTPA images, with visual assessment 

being used as a tool to identify and classify abnormalities. CTPA studies were evaluated by a 

single consultant cardiothoracic radiologist (AS, 13 years of experience) blinded to clinical 

parameters. The images were evaluated on axial slices using standard lung (level 362 HU and 

width 1324 HU) and soft tissue (level 40 HU and width 440 HU) windows. A standardised 

scoring method was used to categorise lung parenchymal disease, ensuring consistency: 0 

indicating (no disease), 1 minor (1-25%), 2 mild (26–50%), and 3 moderate-to-severe (>50%). 

The evaluation focused on the following features, each classified as nil, minor, mild, or 

moderate-to-severe: 1) appearances of the lung parenchyma, including mosaic perfusion 

patterns, lung infarction; and any coexisting lung abnormalities (such as fibrosis, emphysema, 

or other lung disease); 2) vascular appearances, including the presence of CTEPH features 

(e.g. eccentric thrombus, strands or webs within pulmonary arteries), the distribution of 

thromboembolic disease (central/segmental/distal) and bronchial artery appearances 

(unopacified/normal/prominent/dilated); 3) technical adequacy, including the presence of 

artefacts. Cardiac chamber and vessel measurements were assessed by one radiographer (LA, 

4 years of cardiac CT experience). All measurements were made in the axial plane following 

training by (AS) as previously described (Rajaram et al., 2015). The maximal diameter of the 

ascending aorta (AO) and pulmonary artery trunk (PA) were measured at the level of the PA 

bifurcation. The diameter of the right ventricle (RV) and left ventricle (LV) were measured on 

the slices at which they appeared maximal. The PA/AO and RV/LV ratios were subsequently 

calculated (Figure 5.1). 
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Figure 5.1 A) Examples of lung parenchymal features of CTEPH on CTPA. Axial CTPA images with 
standard lung windows from two different patients. The patient on the left showed lung infarction 
within the right middle lobe (yellow arrows). This typically appears as focal wedge-shaped 
consolidation at the lung periphery which resolves over time. Both patients exhibit mosaic perfusion. 
This refers to regional hyperattenuating (dashed red arrows) and hypoattenuation (solid red arrows) 
of the lung parenchyma, of which abnormal lung perfusion is a cause. It is important to note that 
neither lung infarction nor mosaic perfusion are specific to CTEPH and there is a broad differential 
diagnosis for both of these imaging findings. B) Examples of cardiac changes commonly seen in CTEPH 
on CTPA. Two axial CTPA images with standard soft tissue windows are shown. The right image shows 
marked dilatation of the right ventricle (RV) relative to the left ventricle (LV), with an RV/LV ratio of > 
1.0, consistent with RV dysfunction. The left image shows dilatation of the pulmonary artery (PA) 
trunk relative to the aorta (AO), with a PA/AO ratio of > 1.0. C) Examples of CTEPH within left and 
right segmental disease (green circles), and emphysema lung disease in both lungs (blue arrows).  
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Statistical analysis 

Continuous data are reported as the mean ± standard deviation (SD) or median with 

interquartile range (IQR). Categorical data are reported as percentages and frequency. 

Pearson correlation coefficient was used to evaluate the association between two continuous 

variables, specifically dichotomized mosaic perfusion and infarction data (grouped as 0 and 

1). Group comparisons were conducted on mosaic perfusion and infarction data compared to 

pulmonary hemodynamic parameters, which were categorised into four levels (nil, minor, 

mild, and moderate/severe), using a one-way ANOVA followed by post-hoc Bonferroni 

correction. Kaplan-Meier analysis was used to determine the relationship between various CT 

parenchyma characteristics and survival after PEA treatment, with the log-rank test used to 

compare survival curves. Cox proportional hazards regression was used to assess the 

prognostic importance of CT measurements and lung parenchymal features. SPSS Statistics 

(SPSS version 27, IBM) and GraphPad Prism (v10; GraphPad, La Jolla, CA, USA) were used to 

conduct all statistical analyses, with a significance threshold of p < 0.05.  

 

As part of the national service specification for patients with pulmonary hypertension, 

patients receiving treatment should undergo regular assessment. There were no patients lost 

to follow-up during the duration of this study. Mortality data was obtained from the NHS 

Personal Demographics Service. The census date for the study was 10/01/2022. This study 

received ethical approval through the ASPIRE Registry (16/YH/0352). 
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5.4 Results 
 

Study population 

Between 2008 and 2018, 700 patients were diagnosed with CTEPH in Sheffield and 294 

underwent CTPA in Sheffield. Four patients were excluded from the study due to poor image 

quality leaving 290 patients for analysis (Figure 5.2). Of these 272 patients (93.7%) had 

available RHC data and 260 patients (89.6%) had available PFT data. 

 

The mean age was 65 ± 14 years and 55% were female (Table 5.1). mPAP was 45 ± 12 mmHg 

and PVR 645 ± 414 dyne.s.cm-5. Twenty-five patients (9%) were in WHO Function Class II, 231 

(79%) WHO FC III and 30 (10%) WHO FC IV. 

 

Pulmonary endarterectomy was performed in 119 patients (41%) with a median duration of 

7 months (IQR 0 to 11) to surgery. 

 



93 
 

 

 

 

 
  

Figure 5.2 Study flow diagram. 



94 
 

Table 5.1 Characteristics of patients undergoing right heart catheterisation and pulmonary function 
tests, with a comparison between patients who underwent pulmonary endarterectomy (PEA) and 
those who did not (No PEA). Data are presented as mean ± standard deviation or counts (percentage). 
P-values (P < 0.05) indicate significant differences between the PEA and No PEA groups. 

 

  

.  

Patient characteristics Full cohort 290 
Endarterectomy  

119 (41%) 
No Endarterectomy 

171 (59%) 
P value 

Age (years) 65 ± 14 60 ± 14 67 ± 14 <0.001 

Sex (Female) 158 (54.5%) 68 (57%) 90 (53%) 0.44 

WHO FC II (25), III (231), IV (30) II (6), III (101), IV (10) II (19), III (130), IV (20) 0.47 

Right heart catheterisation n=272 (94%) n=112 (94%) n=160 (94%) P value 

PVR (dyne.s.cm-5) 646±414 666±424 631±409 0.5 

mPAP (mmHg) 45±12 45±12 45±12 0.99 

PAWP (mmHg) 12.6±5.1 12.6±4.7 12.7±5.4 0.72 

SVO2 (%) 62±9 63±8 61±9.1 0.16 

SaO2 (%) 94±3.8 93±4.1 94±3.4 0.3 

CI (L/min/m2) 2.6±0.8 2.5±0.8 2.6±0.9 0.22 

CO (L/min) 4.7±1.6 4.6±1.5 4.9±1.8 0.12 

Pulmonary function test n=260 (90%) n=114 (96%) n=146 (85%) P value 

Predicted FEV1 (%) 76.3±20.3 80.1±19.06 73.3±20.8 0.008 

Predicted FVC (%) 88.4±21.5 91.8±20.07 85.8±22.2 0.02 

Predicted TLCO (%) 60.2±18.3 62 ± 15.8 59 ± 20 0.17 

Abbreviations: World health organisation (WHO), pulmonary vascular resistance (PVR), mean pulmonary arterial pressure (mPAP), 
pulmonary artery wedge pressure (PAWP), venous oxygen saturation (SVO2), oxygen saturation (SaO2), cardiac index (CI), and 
cardiac output (CO). Pulmonary function, include forced expiratory volume (FEV1), forced vital capacity (FVC), and transfer factor 
of the lung for carbon monoxide (TLCO). 
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CTPA findings 

 

Distribution of CTEPH 

Of patients with CTEPH, 25% had central or lobar disease, 61% segmental disease and 14% 

subsegmental disease. The distribution of CTEPH did not correlate with either extent of lung 

infarction (r=-0.07, p=0.18) or mosaic perfusion (r=-0.03, p=0.61). 

 

Mosaic perfusion pattern and lung infarction 

Mosaic perfusion and lung infarction were present in 83% and 73% of patients respectively, 

with both present in 69% (Table 5.3). The severity of mosaic perfusion showed a significant 

correlation with RV/LV ratio (r= 0.22, p <0.001). There was no significant correlation found 

between lung infarction and RV/LV ratio (r= 0.06, p=0.29). No correlation was found between 

mosaic perfusion or lung infarction with PA/AO ratio (r= 0.01, p=0.73 and r= -0.02, p=0.79 

respectively). 

 

Bronchial circulation 

Dilated bronchial arteries were found in 78% of patients. Bronchial artery dilatation showed 

a weak statistical association with mosaic perfusion (r= 0.12, p=0.035). Bronchial artery 

dilatation showed no statistical association with infarction (r= 0.02, p=0.72). 

 

No statistically significant correlation was identified for either age or sex with different 

chronic PE distributions, mosaic perfusion, bronchial artery dilatation or PA diameter. 

 

Parenchymal lung disease 

81 of 290 patients (28%) had coexisting parenchymal lung disease. Of the total cohort of 

CTEPH, emphysema was present in 45 (15.5%), interstitial lung disease 11 (3.8%) and other 

parenchymal abnormalities in 25 (9%) including air trapping 7 (2.4%), consolidation 4 (1.4%), 

ground glass 2 (0.7%), bronchiectasis 6 (2.1%), lung cyst 2 (0.7%) and pleural involvement 

(pleural plaques/effusion) 4 (1.4%). 
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Mosaic perfusion was present in 53 out of 81 (65%) of patients with parenchymal lung disease 

compared to 188 out of 209 (90%) of patients without parenchymal lung disease, p<0.001. 

Lung infarction was also less common in patients with parenchymal lung disease and was 

present in 45 out of 81 patients (56%) compared to 166 out of 209, (79%) of patients without 

parenchymal lung disease, p<0.001. 

 

Extent of lung parenchymal abnormalities on CTPA and RHC measurements 

RHC was performed at a median of 0 days (IQR 0 to 1 days) around CTPA. The extent of mosaic 

perfusion and lung infarction correlated positively with PVR (r=0.32, p<0.001 and r= 0.24, 

p<0.001), and negatively with SVO2 (r= -0.31, p<0.001 and r= -0.24, p <0.001). Whilst the 

extent of mosaic perfusion (r=0.20, p<0.001) correlated with mPAP there was no correlation 

between infarction severity (r=0.07, p=0.20) and mPAP. Table 5.2 and Figure 5.3 present the 

one-way ANOVA analysis of the severity levels of mosaic perfusion and lung infarction. 

 
 
 
 
 
Table 5.2 One-way ANOVA with post-hoc Bonferroni test to identify significant mean differences 
between groups. The values presented in the table are p-values, indicating the level of statistical 
significance for each comparison between groups. 

 

 

CT feature mPAP PVR SVO2 TLCO RV/LV ratio 

Mosaic perfusion 0.002 <0.001 <0.001 NS <0.001 

Infarction NS <0.001 <0.001 0.03 NS 

Lung disease NS NS NS 0.002 NS 

Clot location 0.041 0.034 <0.001 NS NS 

Bronchial arteries 0.03 0.004 <0.001 NS <0.001 

Abbreviations: include pulmonary vascular resistance (PVR), mean pulmonary arterial pressure (mPAP), venous oxygen saturation 
(SVO2) and predicted transfer factor of the lung for carbon monoxide (TLCO). 
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Figure 5.3 Group comparison of the extent of mosaic perfusion (Top) and lung infarction (Bottom) with right heart 
catheterisation and TLCO using one-way ANOVA. Pulmonary vascular resistance (PVR), mean pulmonary arterial 
pressure (mPAP), venous oxygen saturation (SVO2), and transfer factor of the lung for carbon monoxide (TLCO). 
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The extent of lung parenchymal features on CTPA, spirometry and gas transfer 

measurements 

There was no correlation between the extent of mosaic perfusion with FEV1 or FVC (r= -0.1, 

p= 0.1 and r= -0.05, p= 0.4). The extent of infarction showed a weak negative correlation with 

FEV1 (r=-0.13, p=0.02) but not with FVC (r= -0.07, p=0.25). 

 

There was no correlation between the extent of mosaic perfusion and TLCO whereas the 

extent of infarction correlated negatively (r= -0.15, p=0.015) with TLCO. 

 

Kaplan-Meier survival and Cox regression analysis for parenchymal, vascular and cardiac 

CT features 

For all patients, the presence of mosaic perfusion was associated with improved survival with 

1- and 3-year survival of 90 and 77% compared to 91 and 65%, in patients without mosaic 

perfusion, respectively, p=0.03. In contrast, the presence of lung infarction had no impact on 

mortality. For all patients, the presence of parenchymal lung disease was associated with a 

worse outcome with 1- and 3-year survival of 81 and 61% compared to 93 and 79% in patients 

without parenchymal disease, respectively, p=0.004. For patients undergoing PEA, there was 

no significant difference in survival rates at 1 year (97 vs. 96%), 3 years (96 vs. 88%) and 5 

years (89 vs. 82%) between those with and without parenchymal lung disease, respectively 

(p=0.98). For patients not undergoing PEA, the presence of parenchymal lung disease had 

lower survival rates at 1 year (73 vs. 91%), 3 years (48 vs. 72%), and 5 years (41 vs. 57%) 

compared to patients without parenchymal lung disease, respectively (p = 0.008). 

 

Patients with CTEPH who had pulmonary endarterectomy (PEA) had significantly better 

survival outcomes than those who did not (log rank= 31.8, p < 0.001) (Figure 5.4). Kaplan-

Meier curves examining the impact of mosaic perfusion, lung infarction, co-existing lung 

disease and CT measurements on survival in all patients, those undergoing PEA and those not 

undergoing PEA are presented in Figure 5.5 and 5.6. Characteristics of patients and Cox 

regression analysis of major vessels, and cardiac chambers for patients undergoing and not 

undergoing PEA are shown in Tables 5.3 and 5.4. 
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Table 5.3 Findings on CTPA images in patients with CTEPH patients. (Data are mean values ± standard 
deviations) or counts (percentage).  P-values (P < 0.05) indicate significant differences between the 
PEA and No PEA groups. 

Variables Full cohort   290  Endarterectomy 
119 (41%) 

No Endarterectomy 
171 (59%) P value 

Central CTEPH 73 (25%) 26 (22%) 46 (27%) 0.4 

Segmental CTEPH 177 (61%) 75 (63%) 102 (60%) 0.64 

Subsegmental CTEPH 40 (14%) 18 (15%) 22 (13%) 0.7 

Mosaic perfusion 241 (83%) 105 (88%) 136 (80%) 0.07 

Lung infarction 211 (73%) 90 (76%) 121 (71%) 0.43 

Abnormal Bronchial 
artery 228 (78%) 90 (76%) 138 (81%) 0.37 

Lung disease 
(Emphysema/Fibrosis/ 
other) 

81 (28%) (45/11/25) 
(16%,4%,9%) 

25 (21%) (17/3/5) 
(14%,3%,4%) 

56 (33%) (27/7/22) 
(16%,4%,13%) 0.03 

Lung cavity 11 (3.8%) 6 (5%) 5 (3%) 0.36 

Coronary artery disease 189 (65%) 69 (58%) 120 (70%) 0.03 

Kidney Disease  21 (7%) 5 (4%) 16 (9%) 0.1 

Calcific aortic valve 24 (8%) 7 (6%) 17 (10%) 0.28 

Pulmonary artery 
diameter (centimetre) 3.4±0.49 3.4±0.55 3.4±0.44 0.85 

Aorta (centimetre) 3.26 ± 0.44 3.17±0.44 3.3±0.43 0.007 

Right ventricle 
(centimetre) 4.46 ± 0.68 4.32±0.7 4.57±0.67 0.003 

Left ventricle 
(centimetre) 3.52 ± 0.68 3.6±0.68 3.48±0.69 0.16 

PA/AO ratio 1.05 ± 0.17 1.08±0.17 1.03±0.17 0.03 

RV/LV ratio 1.31 ± 0.34 1.25±0.33 1.36±0.34 0.005 
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Table 5.4 Univariate and multivariate cox-regression analysis for CT assessed vessels, cardiac changers 
and parenchymal change in patients undergoing and not undergoing PEA. *Multivariate including 
significant univariate predictors and with adjustment for age, sex, and pulmonary vascular resistance. 

Variables Univariate analysis Multivariate analysis* 

Endarterectomy (119) HR 95% CI P value HR 95% CI P value 

 Pulmonary artery diameter 
(centimetre) 1.48 0.79 to 2.79 0.22 NA 

Aorta (centimetre) 8.33 3.38 to 20.5 <0.001 6.93 2.5 to 18.6 <0.001 

PA/AO ratio 0.07 0.006 to 0.9 0.04 NA 

Right ventricle (centimetre) 1.53 0.92 to 2.5 0.09 NA 

Left ventricle (centimetre) 0.93 0.56 to 1.5 0.7 NA 

RV/LV ratio 1.7 0.64 to 4.9 0.26 NA 

mosaic perfusion 0.76 0.26 to 2.18 0.6 NA 

Infarction 2.02 0.7 to 5.8 0.19 NA 

Lung disease 1 0.43 to 2.3 0.9 NA 

No endarterectomy (171) HR 95% CI P value HR 95% CI P value 

Pulmonary artery diameter 
(centimetre) 0.76 0.4 to 1.19 0.24 NA 

Aorta (centimetre) 1.29 0.85 to 1.96 0.22 NA 

PA/AO ratio 0.29 0.09 to 0.93 0.03 NA 

Right ventricle(centimetre) 1.51 1.14 to 2.02 0.004 NA 

Left ventricle(centimetre) 0.6 0.45 to 0.85 0.003 NA 

RV/LV ratio 3.59 2.08 to 6.2 <0.001 3.9 2.2 to 6.9 <0.001 

mosaic perfusion 0.75 0.48 to 1.18 0.22 NA 

Infarction 1.09 0.71 to 1.68 0.67 NA 

Lung disease 1.68 1.13 to 2.4 0.009 1.79 1.1 to 2.7 0.005 

 
 

Abbreviations: Hazard ratio (HR). Confidence intervals (95%CI).  
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Figure 5.4 Kaplan-Meier survival curve comparing survival outcomes in CTEPH patients who 
underwent pulmonary endarterectomy (PEA) versus those who did not, for the full cohort. 
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Figure 5.5 Kaplan-Meier survival curve comparing CTEPH patients who underwent pulmonary endarterectomy (PEA) to 
those who did not. along with additional curves predicting mosaic perfusion, infarction and lung disease related mortality 
for patients who had PEA and who did not undergo PEA after CT scan. These curves are based on CT scan findings and 
show numbers at risk by years. 
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Figure 5.6 The Kaplan-Meier survival curves examining the impact of CTPA measured vessels and cardiac chambers 
on survival in all patients with CTEPH, those undergoing PEA and those not undergoing PEA. (pulmonary artery (PA), 
aorta (AO), PA/AO ratio and RV/LV ratio). 



104 
 

5.5 Discussion 

In this study we have shown that the presence of parenchymal lung changes on CTPA is 

common in CTEPH, and we have demonstrated for the first time that it impacts negatively on 

survival. In addition, to our knowledge we have shown for the first time that an increase in 

aortic diameter predicts worse outcomes, likely due to the impact of underlying 

comorbidities. In addition, measurements of vessels and cardiac chambers have prognostic 

value in CTEPH. We have also confirmed that mosaic perfusion and lung infarction are 

common features of CTEPH and correlate albeit weakly with indicators of disease severity. 

This study highlights the value of systematically evaluating vessels, cardiac chambers and the 

lung parenchyma in patients with CTEPH and the adverse impact of parenchymal lung disease 

on survival. 

 

Despite a number of registries reporting on the frequency of comorbidities in patients with 

CTEPH (Pepke-Zaba et al., 2011, Quadery et al., 2018) there is relatively limited published data 

on CT parenchymal lung disease in patients with CTEPH and their correlation with outcome. 

A key finding from this study is the high prevalence of co-existing lung disease (28%) noted 

on imaging in patients with CTEPH including the presence of emphysema in 15.5% and 

interstitial lung disease in 3.8%. This is higher than the prevalence of chronic obstructive 

pulmonary disease (COPD) (9.5%) and interstitial lung disease (1.3%) noted in the first 

International CTEPH Registry (Pepke-Zaba et al., 2011). In patients who meet guideline criteria 

for IPAH the presence of even minor degrees of lung disease impact negatively on survival 

(Lewis et al., 2020). In our study, moderate to severe lung disease was associated with the 

poorest mortality outcomes in both the PEA and non-PEA patients.  The absence of patients 

with severe lung diseases from PEA eligibility is possibly the reason for the increased incidence 

and severity of parenchymal abnormalities seen in the non-PEA group. As a result, PEA 

patients with parenchymal abnormalities commonly present with less severe lung disease. 

However, regardless of PEA intervention, the extent and severity of parenchymal 

abnormalities remain critical in determining the prognosis of the patient. This is thought to 

reflect environmental factors, such as smoking, and their impact on the pattern of pulmonary 

vascular involvement (Olsson et al., 2023). In our study, the presence of lung disease was 

associated with a worse outcome in patients with CTEPH with the exception of patients 
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undergoing surgery. However, in the surgical population those with more significant lung 

disease were excluded due to concerns of increased risk of peri-operative mortality and this 

is reflected in significantly higher FEV1 and FVC in those undergoing surgery compared to 

those who did not. Previous studies in patients with CTEPH have identified a number of other 

comorbidities such as malignancy and chronic kidney disease that were independent 

predictors of a worse outcome in patients with CTEPH (Quadery et al., 2018), however, the 

adverse impact of parenchymal lung disease on outcome in CTEPH, has not to our knowledge, 

been previously reported. For patients with CTEPH, associated CT findings of parenchymal 

lung disease may reflect additional deleterious pulmonary vascular involvement and loss of 

the capillary vascular bed. This form of pulmonary vascular involvement may explain why such 

patients have a worse prognosis. This study highlights the importance of identifying 

parenchymal lung disease given the negative impact it has on survival. 

 

Our study confirms the finding of previous studies that features such as mosaic perfusion and 

lung infarction are common in patients with CTEPH. Previous studies have shown significant 

correlations between the presence of mosaic perfusion and key indicators of disease severity 

in pulmonary hypertension. Haemodynamic markers such as PVR and TLCO have prognostic 

value in various forms of pulmonary hypertension, including CTEPH (Quadery et al., 2018, 

Saouti et al., 2009, Delcroix et al., 2016).  In this study, the extent of mosaic perfusion and 

lung infarction correlated positively with PVR and negatively with SvO2 consistent with the 

observation that these imaging characteristics reflect more severe pulmonary vascular 

disease. Patients with lung infarction compared to those without infarction also had a 

significantly lower TLCO whereas the presence or absence of mosaic perfusion did not impact 

on TLCO. In the present study lower TLCO was also associated with the presence of co-existing 

lung disease. We identified 11 patients with lung cavity (3.8%), the presence of lung cavity 

was not associated with mortality. 

 

Several studies have explored the correlation between mosaic perfusion and hemodynamic 

parameters in CTEPH. A study found that in 145 patients with CTEPH, both mPAP and PVR 

demonstrated a significant correlation with the degree of mosaic perfusion (Leone et al., 

2017). Another study showed that in 27 patients with CTEPH, 25 of whom had RHC data, 

mosaic perfusion had a significant positive correlation with PVR but no correlation with mPAP 
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(Kasai et al., 2017). Our study showed a significant though modest correlation between 

mosaic perfusion with mPAP, PVR and SVO2. In addition to confirming the association of 

mosaic perfusion with disease severity, we have also shown that lung infarction is associated 

with more severe haemodynamic disease but also abnormalities of gas exchange, reflected in 

a lower TLCO. 

 

It has been noted that patients with CTEPH without mosaic perfusion exhibit a higher 

mortality than patients with mosaic perfusion, although the rationale for this is not clear. We 

postulate this may in part be due to the higher incidence of co-existing parenchymal lung 

disease in patients without mosaic perfusion.  In addition to the association of lung disease 

with more widespread vascular damage, parenchymal lung disease by impacting on lung 

attenuation may mask the detection of mosaic perfusion. Our findings suggest that for 

patients undergoing PEA, the presence of mosaic perfusion or infarction does not significantly 

impact all-cause mortality. While in patients not undergoing PEA, the absence of mosaic 

perfusion is associated with increased mortality, likely relating to the higher proportion of 

patients with parenchymal lung disease in this group. However, in patients without lung 

disease, the extent of mosaic perfusion did not predict mortality. These findings highlight the 

importance of comprehensively assessing both vascular and parenchymal abnormalities in 

patients with CTEPH.  

 

Finally, we have shown that CTPA features of vessels and cardiac chambers have prognostic 

value in patients with CTEPH. In particular, we have shown that an increase in RV diameter 

and an increase in RV/LV ratio predict a worse outcome in patients with CTEPH regardless of 

whether patients undergo or do not undergo PEA. The adverse prognostic impact of an 

increased RV:LV ratio has been demonstrated in other forms of PH, but to our knowledge it 

is the first time it has been observed in a large cohort of patients with CTEPH (Doğan et al., 

2015, Forfia et al., 2006). It is known that more severe haemodynamic disease, characterised 

by severe increases in PVR identify patients with CTEPH at high risk of surgical intervention 

(Mayer et al., 2011), whether an elevation for RV:LV ratio over a particular threshold could 

also be used to identify a high-risk group requires further exploration. We have also shown 

that an increased aortic diameter predicts a worse outcome in CTEPH regardless of whether 

patients underwent PEA. An increase in aortic diameter occurs with increasing age but is also 
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a marker of other comorbidities such as hypertension. In CTEPH a large left atrium (frequently 

the sequelae of systemic hypertension) is a risk factor for a worse outcome following PEA 

(Shahin et al., 2022). Lower PA/Ao ratio was found to be a risk factor for worse outcome in 

those not undergoing endarterectomy, we suspect this may again be driven by the relative 

increase in aortic diameter, though further studies are required to confirm. Given that left 

heart disease may be unmasked following PEA, and the left atrial size and pulmonary arterial 

wedge pressure measurement may be less reliable markers of left heart disease in the 

presence of high right sided pressures, further exploration of the aortic diameter as a risk 

factor in patients with CTEPH requires further study. 

 

There are a number of limitations in this study. Patients were retrospectively identified from 

a single centre and a number of the CT assessments are qualitative and were read by a single 

experienced Radiologist. Further work to evaluate the utility of imaging derived lung patterns 

for prediction of outcomes following BPA is required. Surgical resection rates were 41% for 

this population similar to the 43% in the UK as reported in the 14th UK National Audit of 

pulmonary hypertension of 4103 patients with CTEPH undergoing evaluation; suggesting that 

this population is representative of the UK CTEPH population. 

 

In conclusion, systematic assessment of patients with CTEPH undergoing CTPA highlights that 

mosaic perfusion, lung infarction and parenchymal lung disease are commonly observed. 

Parenchymal lung disease and CT features of more severe pulmonary hypertension impact 

negatively on survival regardless of whether patients undergo pulmonary endarterectomy 

and should be considered when counselling patients.  
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6.1 Abstract 
 

Objective: Characterisation of thrombus is important for guiding treatment in chronic 

thromboembolic pulmonary hypertension (CTEPH). This study presents a novel scoring 

system for visual assessment of CTEPH on CT pulmonary angiography (CTPA), incorporating 

both disease location and extent to determine the impact on survival outcomes. 

 

Methods: Patients with CTEPH were identified retrospectively from the ASPIRE registry. The 

scoring system emphasises disease based on their predominant location as central, segmental 

and distal disease. Survival analysis was conducted using Cox-regression and Kaplan–Meier 

survival curves. 

 

Results: 208 patients with CTEPH were included (mean age 66±13.6 years, 52.4% female). 

Mosaic perfusion and infarction were commonly seen in patients with distal disease (92% and 

88%). The severity score demonstrated a statistically significant correlation with 

haemodynamics (p<0.001), higher severity scores were associated with elevated pulmonary 

vascular resistance, reduced mixed venous oxygen saturation and cardiac index. Central and 

distal disease showed similar survival, whereas survival was worse in central compared to 

segmental disease for all patients (p<0.001), including those undergoing (p<0.04) and not 

undergoing endarterectomy (p<0.001). Central disease was an independent predictor of 

mortality in those not undergoing endarterectomy (hazard ratio 1.9, p<0.01). 

 

Conclusion: Our scoring system showed excellent interobserver agreement. Thromboembolic 

disease location was shown to be a predictor of mortality, with central disease independently 

associated with shorter survival in patients not undergoing pulmonary endarterectomy. 
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Advances in knowledge: This is a novel scoring system for characterising CTEPH on CTPA, 

considering disease location and extent. It provides disease location as a predictor of survival, 

introducing a new framework for patient stratification and clinical decision-making. 
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6.2 Introduction  
 
Chronic thromboembolic pulmonary hypertension (CTEPH) occurs in approximately 2% of 

patients following acute pulmonary embolism (PE) due to incomplete resolution of thrombus 

within the pulmonary arteries (Klok et al., 2020). Accurate and early diagnosis of CTEPH is 

increasingly important given the growing number of therapeutic options available 

(Konstantinides et al., 2020). Identifying the optimal therapeutic strategy for managing CTEPH 

poses a significant challenge, and patients often undergo a number of investigations to assess 

their thrombus burden, severity of pulmonary hypertension and comorbidities (Pepke-Zaba 

et al., 2011, Quadery et al., 2018). In particular, characterisation of thromboembolic disease, 

including location and extent is important for determining suitability for and predicting the 

success of pulmonary endarterectomy and balloon angioplasty (He et al., 2012). Addressing 

the precise localisation of thromboembolic and the relationship with disease severity may 

provide essential insights into the pathogenesis of CTEPH, facilitating risk stratification and 

treatment management. 

 

The current preferred method for confirming suspected CTEPH is CT pulmonary angiography 

(CTPA), which allows not only for assessment of specific abnormalities in CTEPH – such as 

intraluminal stenosis, webs and eccentric thrombus within the pulmonary arteries – but also 

for evaluation of lung parenchymal and cardiac changes (Gopalan et al., 2017, Simonneau et 

al., 2017, Delcroix et al., 2021). However, assessing chronic thromboembolic disease on CTPA 

can present significant challenges. CTPA interpretation requires extensive experience due to 

the potential for misinterpretation of subtle abnormalities, which can result in diagnostic 

delays or inappropriate management (Lambert et al., 2022). 

 

The scoring system refers to a standardised tool to quantitatively assess specific findings on 

imaging evaluations, with the potential to enhance interobserver agreement and ensure 

consistent assessment of CTEPH for accurate clinical decisions. Several widely used scoring 

systems have previously been developed to characterise thromboembolism on CTPA in acute 

PE. These have incorporated the number and size of emboli, their location within the 

pulmonary vasculature, and their influence on haemodynamics (Qanadli et al., 2001, Mastora 
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et al., 2003). Scoring systems for evaluating CTEPH are infrequently used in routine clinical 

practice due to their complexity and dependence on modern imaging technology. Dual-

Energy CT (DECT) scans, for example, are designed to detect and quantify perfusion 

abnormalities in the lungs, which are frequently associated with haemodynamic parameters 

to determine disease severity and operability (Takagi et al., 2016, Renapurkar et al., 2024). 

However, to our knowledge, no scoring system has been developed for the characterisation 

of chronic thromboembolic disease on CTPA in CTEPH.  

 

This study aimed to characterise chronic thromboembolic disease features on CTPA in 

patients with CTEPH and assess their relationship with disease severity and survival 

outcomes.  
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6.3 Methodology 
 
 
This retrospective study received ethical approval from our institution with consent waived 

and the National Research Ethics Service (16/YH/0352). 

 

Study population  

Patients were identified through the ASPIRE (Assessing the Spectrum of Pulmonary 

Hypertension Identified at a Referral Centre registry) database from January 2008 to January 

2018 (Hurdman et al., 2012). ASPIRE comprises de-identified data obtained during routine 

clinical care from patients who have undergone evaluation for suspected pulmonary 

hypertension at the Pulmonary Vascular Disease unit. The research included adult patients 

aged ≥ 18 years who underwent CTPA and met guideline criteria for a diagnosis of CTEPH 

(Humbert et al., 2022). Patients who underwent pulmonary endarterectomy or received 

medical therapy were included. Balloon pulmonary angioplasty (BPA) was not nationally 

commissioned in the UK until 2018 and therefore no patients underwent this intervention 

during the conduct of the study. Patients who had external CTPA performed in other 

institutions and those who had severe artefacts were excluded. 

 

CTPA protocol 

CTPA scans were conducted utilising multidetector scanners (TOSHIBA Aquilion PRIME and 

GE Medical Systems) with the following standard acquisition parameters: a tube current 

ranging from 80 to 700 mA with automatic dose reduction, tube voltage of 120 kV, pitch of 1, 

slice thickness of 0.5 mm, and a rotation speed of 0.275. Intravenous contrast media 

(Omnipaque 350, GE Healthcare) was administered at a rate of 5 ml/s with a total volume of 

60 ml. Bolus tracking was performed in the pulmonary artery utilising a manual fast start, 

initiating image acquisition when contrast reached the predefined threshold of 220 

Hounsfield units (HU). 
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Data collection 

The demographics, clinical, and laboratory information of the patients were collected from 

an electronic medical database and document reviews. In addition to the CTPA studies, the 

following data were also retrieved for each included patient where available. 

 

1. Pulmonary function tests (PFTs). Baseline forced vital capacity (FVC), Forced expiratory 

volume (FEV) and transfer factor of the lung for carbon monoxide (TLCO) closest to the 

date of RHC. 

 

2. Right heart catheterisation (RHC) data. RHC was undertaken using a balloon tipped 7.5-F 

thermodilution catheter (Becton-Dickinson, Franklin Lakes, New Jersey). Mean pulmonary 

artery pressure (mPAP) and pulmonary arterial wedge pressure (PAWP) were measured 

by fluid filled pressure. Cardiac output (CO) was measured using the thermodilution 

technique. PVR was determined as follows: PVR = (mPAP – PAWP)/CO. Cardiac index (CI) 

was corrected for the patient's body surface area (BSA): CI = CO/BSA. Right heart 

catheterisation was obtained from the ASPIRE registry. 

 

3. Mortality data obtained from the NHS Personal Demographics Service at the time of 

census. All pulmonary hypertension patients getting treatment are subjected to routine 

follow-up in accordance with the national service guidance.  

 

Image analysis 

Two observers independently evaluated the CTPA images, blinded to clinical information and 

patient demographic to minimise the risk of interpretation bias. The evaluations were 

conducted using MIM software, which was employed for clot segmentation and analysis. In 

addition to disease location, the observers recorded other relevant CTEPH-related features, 

such as lung parenchymal abnormalities, including mosaic attenuation, bronchial artery 

changes, and infarction. CT axial plane was used for all CT cardiac measurements including 

the maximum diameters of the ascending aorta (AO), pulmonary artery (PA), the right and 

left ventricles (RV and LV). Then, the RV/LV and PA/AO ratios were calculated for each patient 

as part of the analysis.  
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The scoring system is designed to classify chronic thromboembolic disease based on their 

predominant location in the pulmonary arterial tree, providing uniformity and clarity in 

determining the severity and anatomical extent of CTEPH. The score mainly represents a 

simplified method for visual assessment of disease distribution and highlights the 

predominant location of CTEPH involvement. Each location is associated with a score that 

reflects the number of diseases present within a specific range. 

 

Chronic thromboembolic disease location within the pulmonary vasculature was classified as 

follows according to conventional anatomical descriptions (Figure 6.1). "Central" disease was 

defined as a thromboembolic involvement in the main pulmonary artery, in addition to the 

proximal segments of the left and right pulmonary arteries (including mid and distal in the 

main branches). Patients identified as having central disease may also have had disease in 

segmental and distal arteries, but when central involvement was present, patients were 

defined as having central disease regardless or extent of clot burden elsewhere. "Segmental" 

was defined as disease in the branches distal to the central arteries, beginning at the lobar 

arteries. Patients with segmental disease may also have had distal involvement, but the 

dominant feature was segmental (higher score than distal). "Distal" involves the smaller, 

more peripheral subsegmental arteries. Patients with distal disease may also have segmental 

involvement, but the dominant characteristic is distal. 
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Figure 6.1 Axial chest CTPA slices illustrate chronic thromboembolic disease location, disease and severity 
classifications into central, segmental and distal subgroups (each column includes three different slices from a single 
patient). (A) In location classification, central included the main pulmonary artery (1) as well as the midsection of 
the main pulmonary artery (2 and 3) and distal aspect of the main pulmonary artery (4 and 5) of both the left and 
right main pulmonary arteries. (B) Segmental location, 10 segments on the right and 9 on the left (yellow arrows). 
(C)The presence of distal was assessed at distal segmental locations 10 segments on the right and 9 on the left 
(Green circle). In disease classification, (D) there is extensive central mural disease present involving both main 
pulmonary arteries and extending primarily into the lower lobe arteries bilaterally (red arrow). (E) In the right 
middle lobe, there is complex web formation at the origin of the lateral segmental branches (yellow arrow). (F) On 
the left side there are subsegmental attenuated vessels showing chronic thromboembolic disease (green circle). If 
any central disease is identified the patient is classified as having ‘central’ chronic thromboembolic disease. In the 
absence of central disease, segmental and distal are classified by the score weighting towards either category.  
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Step 1 (central arteries): evaluate central based on disease involvement in the five main 

central pulmonary artery locations. Assign one point for each thrombus in central, Calculate 

the score as the sum of all involved locations, with a maximum score of 5.  

 

Step 2 Determine the predominant non-central classification: evaluate the segmental and 

distal scores if there is no central disease involvement (Central Score = 0). Segmental and 

distal classifications were simplified using 19 pulmonary arteries for each location. This 

approach simplifies the original scheme (19 segmental and 19 distal branches) into a more 

standardised framework. The scoring system for chronic thrombi operates on a simple 

quantitative categorisation, by assessing the number of thrombi within a specific range and 

assigning a corresponding score based on predefined intervals: 

 

1. Score of 1: Assigned when the thrombi count is between 1 and 5. 

2. Score of 2: Assigned when the thrombi count is between 6 and 10. 

3. Score of 3: Assigned when the thrombi count is between 11 and 14. 

4. Score of 4: Assigned when the thrombi count is between 15 and 19. 

 

Then, assess the differences between the segmental and distal scores, using the higher score 

as the predominant score.  

 

Step 3 Calculate the Total Score: Combine all three locations to calculate the total score: 

Total Score = Central Score+ Segmental Score+ Distal Score.  

Maximum Total Score: 5 (Central)+4 (Segmental)+4 (Distal)=13 (predominant location). 

 

Clinical example: 

• Central disease in 0 locations → Central Score = 0. 

• Segmental disease in 15 arteries → Segmental Score = 4. 

• Distal disease in 5 arteries → Distal Score = 1. 

• Total Score = 0 (Central) + 4 (Segmental) + 1 (Distal) = 5 (segmental). 

• The classification as segmental overall based on segmental disease having the higher 
score (4) than distal disease (1), which prioritises the location with the higher score if 
no central disease.  
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The total score can be grouped into four categories based on severity and extent of the 

chronic thromboembolic disease: Minor (Total Score: 1–3) reflects minimal disease 

involvement. Mild (Total Score: 4–6) represents a moderate disease distribution. Moderate 

(Total Score: 7–9) indicates significant disease involvement affecting multiple regions. Finally, 

Severe (Total Score: 10–13) highlights extensive disease widespread distribution. All patients 

within the severe group by definition have central disease in addition to segmental and distal 

disease in order for their total score to be 10 or more. This is due to the fact that segmental 

and distal disease is unable to achieve the threshold score of 10 under the scoring 

methodology employed in this study. If central involvement is absent (Central Score = 0), 

classification is based on the higher score between segmental and distal disease. When both 

are present, their combined score (e.g., 4 + 4 = 8) places the patient in the severe category 

(Total Score: 10–13) if central disease is present; otherwise, a total score of 8 categorised into 

moderate (Total Score: 7–9). This system provides a structured way to evaluate and grade 

disease presence and severity, offering a standardised method for categorisation in clinical 

research settings. 

 

In a blinded sub-study, the CTPA of 20 patients with CTEPH was assessed by two observers 

with different levels of CT imaging experience (AS, 13 years as a cardiothoracic radiologist and 

LA, a radiographer with 8 years of experience). This sub-study, as part of the overall research, 

aimed to evaluate interobserver agreement and validate the robustness and consistency of 

the scoring system across different levels of imaging expertise.  

 

Statistical analysis  

Statistical analyses were conducted using SPSS Statistics (version 27, IBM) and GraphPad 

Prism (v10; GraphPad, La Jolla, CA, USA), with a significance threshold of p < 0.05. The main 

goal of the study was to examine a disease location for CTEPH assessment. To achieve this, 

we examined the correlations between chronic thromboembolic disease location and several 

clinical and hemodynamic metrics using Spearman's correlation coefficient with 95% 

confidence intervals. Descriptive statistics are presented as the mean ± standard deviation 

(SD) or median and interquartile range (IQR) for continuous variables, and as percentages and 

frequencies for categorical data. Comparison of total scoring disease severity groups (i.e., 
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minor, mild, and moderate-severe) were performed using a one-way ANOVA with post-hoc 

Bonferroni correction. Due to the small number of patients in the severe group (n = 7), they 

were merged with the moderate group for analysis, forming a combined "moderate-severe" 

category. Interobserver agreement was measured using Cohen's weighted κ (linear weights) 

for categorical variables, in addition to intraclass correlation coefficient (ICC) for continuous 

variables. Kappa value was interpreted using the thresholds defined by McHugh(2012): as 

0.01–0.20 indicates slight agreement, (0.21–0.40) fair agreement, (0.41–0.60) moderate 

agreement, (0.61–0.80) substantial agreement, and (0.81–0.99) for excellent agreement 

(McHugh, 2012). The ICC values were interpreted as follows according to established 

thresholds: (< 0.50) indicated poor agreement, (0.50 - 0.75) fair or moderate agreement, (0.75 

- 0.90) moderate to good agreement, (> 0.90) indicated excellent agreement (Koo and Li, 

2016). Correlations between disease location and severity were evaluated by Cox regression 

and Kaplan-Meier analysis.  
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6.4 Results 
 
Patient population 

A total of 208 patients with CTEPH were included in the study (mean age 66 ± 13.6, 52.4% 

female) (Figure 6.2). Of these 195 patients (94%) had available RHC data and 185 patients 

(89%) had available PFT data.  Their clinical characteristics are summarised in full in Table 6.1. 

37% (77/208) had central chronic thromboembolic disease, 38% (80/208 had segmental 

disease, and 25% (51/208) had distal disease. Of the patients, 18 (9%) were categorised as 

WHO Functional Class (FC) II, 165 (79%) as WHO FC III, and 21 (10%) as WHO FC IV. 

 

The chronic thromboembolic disease scores were categorised into four groups based on the 

severity of the disease. The distribution of patients across these groups was as follows: 64 

(31%) patients were classified as minor, 92 (44%) as mild, 45 (22%) as moderate, and 7 (3%) 

as severe. By combining the moderate and severe groups, a total of 52 (25%) patients were 

classified as moderate-severe disease (45 + 7 = 52). When grouped by severity score, patients 

with moderate-severe disease demonstrated significantly higher PVR (p<0.001) and lower 

cardiac index (p<0.001). 
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Figure 6.2 Study flow diagram. 
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Table 6.1 Characteristics of patients who underwent right heart catheterisation and pulmonary 
function tests, comparing those who had pulmonary endarterectomy (PEA) versus those who did not 
(No PEA), as well as comparing patients with central, segmental, and distal CTEPD. Data are expressed 
as mean ± standard deviation or counts (percentage). P-values (P < 0.05) indicate statistically 
significant differences between the PEA and No PEA groups and between the three groups of CTEPD 
respectively. (*) indicates that a result is significantly different from the "central" reference, (#) 
indicates a significant difference from the "segmental" reference, and (^) indicates a significant 
difference from the "distal" reference. 

Patient 
characteristics 

Full 
cohort 

208 

PEA       
83(40%) 

No PEA       
125(60%) 

P 
value 

Central 
77(37%) 

Segmental 
80(38%) 

Distal 
51(25%) 

P value 

Age (years) 66±13.6 62±13.01 68±13.6 0.002 67.2±12.8 64.7±13.2 
65.5±15.

5 
0.51 

Sex (Female) 109(52%) 46(55%) 63(50%) 0.48 36(47%) 42(53%) 31(61%) 0.3 

WHO FC 
II (18), III 
(165), IV 

(21) 

II (3), III 
(70), IV 

(8) 

II (15), III 
(95), IV 

(13) 
0.16 

II (3), III 
(62), IV 
(11) # 

II (12), III 
(67), IV 
(1)*^ 

II (3), III 
(36), IV 

(9) # 

<0.001 

Mosaic 
perfusion 

177(85%) 77(93%) 100(80%) 0.01 66 (86%) 64 (80%) 47(92%) 0.16 

Infarction 159(76%) 67(81%) 92(74%) 0.23 63(82%) # 
51(64%) 

*^ 
45(88%) 

# 
0.002 

Lung disease 57(27%) 16(19%) 41(33%) 0.03 24(31%) 25(31%) 8(16%) 0.09 

Coronary artery 
disease 

140(67%) 51(61%) 89(71%) 0.14 56(73%) 51(64%) 33(65%) 0.44 

RHC 195(94%) 78(94%) 117(94%) 
P 
value 

69(90%) 77(96%) 49(96%) P value 

PVR (wood 
unit) 

8.5±5.4 9.07±5.4 8.1±5.4 0.22 9.9±5.9# 6.3±3.7*^ 10±6.06# <0.001 

mPAP (mmHg) 46±12.01 47.4±11.2 45±12.4 0.15 47.4±12.6 44.6±12.7 45.8±9.5 0.34 

PAWP (mmHg) 12.1±4.6 12.2±4.4 12.1±4.8 0.89 12.5±4.5 12.5±5 11.09±4 0.29 

SVO2 (%) 61.5±8.7 62±8.3 61.3±9 0.62 58.5±9.3# 65±6.4*^ 
60.3±9.4

# 
<0.001 
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Abbreviations: right heart catheterisation (RHC): pulmonary vascular resistance (PVR), mean pulmonary arterial 
pressure (mPAP), pulmonary artery wedge pressure (PAWP), venous oxygen saturation (SvO2), arterial oxygen 
saturation (SaO2), cardiac index (CI), and cardiac output (CO). Pulmonary function tests (PFT):  predicted forced 
expiratory volume in one second (FEV1), predicted forced vital capacity (FVC), and predicted transfer factor of 
the lung for carbon monoxide (TLCO).  

 

 

 
 
 
 
  

SaO2 (%) 93.2±3.8 92.7±4.1 93.5±3.5 0.2 93±4 93.4±3.6 92.9±3.8 0.73 

CI (L/min/m2) 2.5±0.87 2.5±0.85 2.6±0.89 0.3 2.4±0.95# 
2.9±0.83*

^ 
2.3±0.66

# 
<0.001 

PFT 185 (89%) 77 (93%) 108 (86%) 
P 
value 

70 (91%) 69 (86%) 46(90%) P value 

Predicted FEV1 
(%) 

76.8±20.2 80.5±18.7 74.1±20.8 0.03 75.8±21.5 76.5±18.8 
78.7±20.

5 
0.73 

Predicted FVC 
(%) 

90.2±22.5 93.5±21.3 87.9±23.1 0.09 89.5±23.3 89.4±22.2 92.3±22 0.75 

Predicted TLCO 
(%) 

61±18.5 61.3±15.9 60.2±20.3 0.69 56.5±21# 65.9±15.4
* 

59±17.2 0.009 
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Interobserver agreement 

The agreement among observers for the detection of 20 patients with CTEPH was 89% for 

central location, 80% for segmental, and 66% distal. Kappa values and intraclass correlation 

coefficients were utilised to evaluate interobserver agreement for disease location and extent 

assessment, as presented in Table 6.2. 

 

 

 

 

Table 6.2 Interobserver reliability kappa (κ) and interclass coefficient (ICC) between observers (R1 and 
R2) in CT imaging to determine the number and location of CTEPH.   

Disease location R1-R2 _ K(95%CI) 

Central clot ICC 

weighted kappa 

0.97 (0.92-0.98) 

0.89 (0.74-1) 

Segmental ICC 

weighted kappa 

0.93 (0.83-0.97) 

0.8 (0.62-0.99) 

Distal ICC 

weighted kappa 

0.88 (0.63-0.96) 

0.66 (0.46-0.86) 

Total abnormal ICC 

weighted kappa 

0.92 (0.82-0.97) 

0.78 (0.58-0.98) 
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CT, RHC and lung function measurements  

Table 6.3 presents the correlations found between chronic thromboembolic location with CT 

measurements (RV/LV and PA/AO ratios), mosaic perfusion and infarction. 

 

Patients with central and distal disease had more severe pulmonary haemodynamics and 

lower TLCO but similar spirometry to those with segmental disease (p<0.001), Table 6.1.   

 

In all 208 patients, highly significant statistical differences were demonstrated between the 

score system (disease severity) and the hemodynamic parameters (PVR, Svo2 and cardiac 

index), with (p<0.001). Patients with moderate-severe disease demonstrated significantly 

higher PVR and lower cardiac index (Figure 6.3). 

 

 

 

Table 6.3 Spearman's correlations between disease locations severity and CT measurements, 
including RV/LV and PA/AO ratios, as well as the presence of mosaic perfusion or infarction.  
 

 

 

 
 
 
 

Disease location RV/LV ratio PA/AO ratio Mosaic perfusion Infarction 

Central r=-0.07, p=0.27 r=0.19, p=0.009* r=0.85, p= 0.08 r=0.09, p=0.21 

Segmental r=-0.1, p=0.01* r=0.05, p=0.43 r=-0.1, p= 0.09 r=-0.2, p<0.001 

Distal r=0.1, p=0.12 r=-0.07, p=0.28 r=0.27, p<0.001 r=0.17, p=0.01 

Total r=0.14, p= 0.04 r=0.06, p=0.36 r=0.19, p=0.009* r=0.22, p=0.003 
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Figure 6.3 Group comparison of the right heart catheterisation with total abnormal CTEPD using one-
way ANOVA. Pulmonary vascular resistance (PVR), mean pulmonary arterial pressure (mPAP), venous 
oxygen saturation (SVO2) and cardiac index (CI). Minor: Low clot burden. 
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Survival of patients according to disease location 

Endarterectomy was performed in 40% (83/208) patients, at a median time of 7 months (IQR 

0 to 11) from CTPA. Notably, there were no instances of patients being lost to follow-up during 

the study period. 

 

The results of the Kaplan-Meier survival analyses are shown in Figure 6.4. Patients with 

central and distal disease demonstrated similar survival rates. Survival rates were worse for 

patients with central disease compared to segmental disease for all patients (p<0.001), those 

undergoing endarterectomy (p<0.04) and those not undergoing endarterectomy (p<0.001). 

 

Predictors of using univariate and multivariate Cox regression 

Multivariate Cox-regression adjusting for age, sex and haemodynamics parameters (mPAP, 

PVR) is shown in Table 6.4. Whereas central disease remained an independent predictor or a 

worse outcome in those not undergoing endarterectomy (hazard ratio (HR) 1.9, p<0.01)., its 

presence did not impact on survival in those having endarterectomy. 

 
 
 
 

 

Figure 6.4 Kaplan–Meier survival curves for each location (central, segmental and distal) in CTEPH patients, comparing 
the pulmonary endarterectomy (PEA) group with the non-surgical (no PEA) group.  P-values (P < 0.05) indicate 
statistically significant differences between the subgroups of CTEPD respectively. (Red-Purple) indicates that "central" 
is significantly different from the "segmental", (Purple-Blue) indicates a significant difference between "segmental" 
and "distal" CTEPD, and (Red-Blue) indicates the difference between "central" and "distal". 
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Table 6.4 Univariate and multivariate cox-regression analysis for CT assessed vessels, cardiac changers 
and parenchymal change in patients undergoing and not undergoing PEA. (P < 0.05) indicates 
statistically significant association with mortality. PVR group (<400=1, 400-800=2, 800-
1200=3, >1200=4). 

 

 
 

  

Variables  Univariate analysis Multivariate adjusting for age, sex, 
mPAP and PVR 

Endarterectomy HR 95% CI P value HR 95% CI P value  

Central disease  2.64 0.9 to 7.08 0.05 NA 

Segmental disease 0.37 0.12 to 1.12 0.08 NA 

Distal disease 0.8 0.18 to 3.5 0.77 NA 

No endarterectomy HR 95% CI P value HR 95% CI P value 

Central disease 1.91 1.19 to 3.05 0.007 1.9 1.1 to 3.1 0.01 

Segmental disease 0.47 0.29 to 0.77 0.003 NA 

Distal disease 1.2 0.65 to 2.3 0.49 NA 

Abbreviations: mean pulmonary artery pressure (mPAP), pulmonary vascular resistance (PVR). Hazard ratio (HR). Confidence 
intervals (95%CI).  
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6.5 Discussion 
 

This study aimed to address how chronic thromboembolic disease location in CTEPH is 

assessed on CTPA and relates to key clinical outcomes. We developed a scoring system for 

the categorisation of chronic thromboembolic disease location on visual assessment of CTPA 

studies. The scores showed high kappa and ICC values, indicating excellent interobserver 

agreement between two observers. Central disease was an independent predictor of 

outcome in patients not undergoing pulmonary endarterectomy. While in patients who 

underwent endarterectomy the pattern was less clear with no independent predictive value 

identified. 

 

Prior studies have assessed the severity of CTEPH including clinical, hemodynamic, and 

imaging investigations (Meinel et al., 2014, Abozeed et al., 2022, Gharepapagh et al., 2023). 

A prior study used DECT to assess changes in lung perfused blood volume based on the extent 

of pulmonary hypoperfusion, highlighting the value of assessing lung parenchymal tissue and 

perfusion in the setting of suspected chronic thromboembolic (Takagi et al., 2016). Another 

study proposed a CT scoring system in 145 patients with CTEPH, based on CTEPH radiological 

signs and haemodynamic changes, which includes mosaic perfusion, tricuspid regurgitation, 

pulmonary artery diameter, and Unilateral/Bilateral thrombus (Leone et al., 2017). However, 

we are unaware of prior studies that have assessed disease location in the pulmonary artery 

tree compared with haemodynamics, surgical intervention and mortality in CTEPH. 

 

Grafham et al. (2023) established a proximity-based CT pulmonary angiography scoring 

system, exhibiting moderate interobserver agreement among 40 patients with CTEPH and 

demonstrating the value of extensive pulmonary artery location evaluation. The highest 

degree of agreement was found at the main and lobar levels, but as expected decreased 

agreement was found distally. Interestingly the authors evaluated different vessel 

appearances such as webs, eccentric thickening and occlusions and showed variable 

agreement demonstrating the challenge of accurate evaluation in chronic thromboembolic 

disease (Grafham et al., 2023).  In contrast, Hrdlicka et al. (2024) found that radiologists, even 

non-experts, had good sensitivity and interreader agreement when diagnosing CTEPH on 
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CTPA, however in our experience of clinical practice, such high agreement may not be 

achieved (Hrdlicka et al., 2024). These findings emphasise the importance of comprehensive 

scoring systems and the need for standardised methods to assess disease impact and 

distribution. In the present study, the interobserver agreement demonstrated good 

consistency between the two observers in determining the extent of disease. However, 

inaccurate results may arise due to subtle or small thrombi, vessel wall thickening or luminal 

irregularity, alterations in the surrounding lung tissue, or artefacts (Delcroix et al., 2021). The 

lowest level of agreement was found in patients with distal disease, likely due to the fact that 

distal arteries are smaller, and the disease is more challenging to interpret in the distal 

regions.  

 

The results indicate that broad classes of disease location showed clear clinical value, central 

location is independently associated with mortality and distal location with PVR. The more 

detailed scoring system provided may be useful for therapeutic intervention planning, but 

further work is needed to determine if there is incremental clinical value in the 

haemodynamic assessment or mortality prediction. 

 

Distal disease presents a significant challenge in the management of CTEPH due to a lower 

accessibility of endarterectomy and is associated with worse outcomes (Suntharalingam et 

al., 2007). In our study, distal disease was associated with mortality rates comparable to 

central disease. A study by Gan et al. (2010) found that distal disease was a significant 

predictor of mortality compared to proximal CTEPH in both endarterectomy and non-

endarterectomy groups. Several factors could indicate the reason why distal disease 

outcomes are similar to central disease. Distal disease, albeit affecting smaller arteries, can 

cause severe pulmonary hypertension due to the cumulative impact of many blockages, 

leading to a haemodynamic impact comparable to that of central disease.  In the present 

study, PVR was similarly high in distal and central disease, for both of these chronic embolic 

disease locations PVR was higher than that found in segmental disease, suggesting similarly 

severe vascular obstruction in distal and central disease. This is consistent with previous 

study, demonstrating the significance of identifying distal disease as a high-risk characteristic 

in chronic thromboembolic disease, which has been associated with high PVR and severe 

pulmonary hypertension (Gan et al., 2010).  
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The lack of effectiveness of existing scoring systems to precisely evaluate distal disease 

demonstrates the importance of accurately characterising the haemodynamics and 

parenchymal alterations associated with distal disease in patients with CTEPH. Additionally, 

our study also highlights the important relationship between distal disease with lung 

parenchymal abnormalities such as mosaic attenuation (indicating abnormal perfusion) and 

infarction. Distal disease may indirectly affect lung parenchyma through alterations in 

regional blood flow dynamics and subsequent tissue ischemia (Suki et al., 2011, McCabe et 

al., 2020). The presence of mosaic pattern attenuation and infarction may indeed aid the 

diagnosis of CTEPH when distal diseases are not clearly identified (Gopalan et al., 2017).  

 

This study demonstrated that higher chronic thromboembolic disease scores are associated 

with higher PVR and mPAP, indicating a relationship between greater thrombus burden and 

more severe haemodynamic abnormalities in CTEPH. Previous studies have shown that CTEPH 

scoring systems significantly correlate with PVR and mPAP, this associations are either 

determined by visually assessing haemodynamic changes in CT imaging (Leone et al., 2017), 

or by quantifying pulmonary blood volume using DECT (Abozeed et al., 2022). Thrombus 

impedes flow, and it is unsurprising that a greater burden is associated with larger alterations 

in the haemodynamics of the pulmonary circulation.  

 

We acknowledge the limitations of our research. Eligible patients were identified from a 

single-centre registry and only two observers assessed scans. This could affect the 

generalisability of our findings. Additionally, intra-observer variability when using the scoring 

system was not assessed. Patients were identified retrospectively, which limited the ability to 

control for potential confounders. While CTPA was performed on all patients, 

contemporaneous PFT and RHC data were not fully complete. Results can be impacted by a 

variety of factors, including treatment efficacy, comorbidities, and the overall condition of the 

patient.  Future research could focus on using AI to better characterise the location and 

burden of chronic thromboembolic disease, potentially improving diagnosis accuracy in 

patients with CTEPH (Abdulaal et al., 2024). AI algorithms, utilising deep learning models, may 

analyse CTPA images with more accuracy, detecting subtle patterns and estimating disease 

burden more reliably than conventional approaches.   
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6.6 Conclusion 
 

This study presents a scoring system for chronic thromboembolic disease location and extent 

in CTEPH on CTPA. Distal disease was associated with elevated PVR and lung parenchymal 

abnormalities. Our results confirm the effectiveness of determining the chronic 

thromboembolic disease location and extent in the assessment of CTEPH severity and risk 

prediction. The scoring system may still help with planning and reporting, even if it does not 

add clear prognostic value. Further research is needed to determine its additional benefits in 

haemodynamic assessment and mortality prediction. 

 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

 



133 
 

7 Artificial Intelligence to Automate Analysis of 
Chronic Thromboembolic Pulmonary Disease 
on CTPA  

 
 

 

Research article (Ready for submission) 

 

Contribution: First author. My main contributions were completing extensive literature 

reviews, carrying out statistical analyses, and developing the tables and figures included in 

the research. I was primarily responsible for the manual segmentation and detailed correction 

of pulmonary arteries, pulmonary veins, and thromboembolic disease on CTPA scans, creating 

a ground truth dataset for training and validating the AI model. I thoroughly reviewed all 

patient cases and imaging datasets used in this chapter and contributed to the radiological 

assessment and interpretation of imaging findings. This included reviewing all imaging data  

integrating future amendments based on input and recommendations from my co-authors.  

 

 

Authors 

 
L. Abdulaal1, M.J. Sharkey1, K. Dwivedi1,3, S. Rajaram5, S. Alabed1,3,4, M. Saleh1, A. Rothman1,2,3,4, R. 
Condliffe2, D.G. Kiely2,3,4 and A. J. Swift1,3,4 

 
 

1. Division of Cardiovascular Medicine, University of Sheffield 
2. Sheffield Pulmonary Vascular Disease Unit, Sheffield Teaching Hospitals NHS Foundation Trust 
3. INSIGNEO, Institute for in silico Medicine, The University of Sheffield, Sheffield, United Kingdom. 
4. National Institute for Health and Care Research, Sheffield Biomedical Research Centre, Sheffield, UK 
5. Radiology Department, Sheffield Teaching Hospitals NHS Foundation Trust. 

  



134 
 

7.1 Abstract 
Aim: Develop a clinically applicable artificial intelligence (AI) model to quantify the severity of 

chronic thromboembolic pulmonary disease (CTEPD) on computed tomography pulmonary 

angiography (CTPA). Evaluate the performance of the AI model in quantifying CTEPD 

compared to manual clot scoring and determine the prognostic value in patients with CTEPH.  

 

Methods: An nnU-Net-based segmentation model was developed using 256 patients (161 

training / 41 validation / 54 testing) from the Sheffield centre, including cases of CTEPH, acute 

pulmonary embolism (PE), and no clot. A separate clinical evaluation of 179 patients with 

CTEPH was used to assess the clinical utility of the segmentation model and its association 

with survival. A subcohort of 120 patients with CTEPH was selected to match cases with 

available manual scoring (as developed on Chapter 6), assessing both accuracy and reliability. 

 

Results: The model achieved a Dice Similarity Coefficient (DSC) of 0.95 for pulmonary vessels 

segmentations and of 0.58 for thromboembolic disease segmentation. Interobserver 

agreement for thromboembolic disease was 0.69.  Internal testing on cases including acute 

PE, CTEPH, and no clot achieved an AUC of 0.92. There were no segmentation failures in the 

test set. The mean DSC between two observer accuracy for thromboembolic segmentation 

was 0.59 ± 0.21. Survival analysis demonstrated that AI-derived thromboembolic disease 

volume was associated with mortality (central: (HR=1.14, p=0.01); total: (HR=1.04, p=0.03), 

and in those who did not undergo endarterectomy (central: (HR=1.32, p<0.001; total: 

(HR=1.05, p=0.01). In contrast, patients who underwent endarterectomy thromboembolic 

disease volume was not associated with mortality. In the subcohort of 120 patients, AI-

derived thromboembolic disease volume demonstrated a significant correlation with manual 

scoring (r=0.72, p<0.001). 

 

Conclusion: This model enables accurate segmentation of PA and PV. Lower performance in 

thromboembolic disease may reflect variation in manual labels used to train the model. An AI 

approach to segment chronic thromboembolic pulmonary disease may have high diagnostic 

accuracy for detection, and also prognostication.  
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7.2 Introduction 
Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare but severe condition that 

may lead to a high mortality rate if not treated (Pepke-Zaba et al., 2013). Patients suspected 

of having CTEPH are routinely referred for computed tomography pulmonary angiography 

(CTPA), which has become the preferred imaging modality for visualising pulmonary 

vasculature, cardiac structures, and parenchymal abnormalities. However, accurate diagnosis 

of CTEPH remains challenging, as it relies on expert qualitative interpretation. This approach 

introduces subjectivity, interobserver variability, accurate assessments can be time-

consuming, and where disease is missed may cause diagnostic delays (Delcroix et al., 2020; 

Pepke-Zaba et al.,2011; Klok et al., 2022). The lack of standardised quantitative frameworks 

constrains the reproducibility of diagnostic outcomes, highlighting the clinical need for 

automated tools to support accurate diagnosis. Prior research has evaluated the performance 

of deep learning algorithms in identifying pulmonary embolism (PE) in CTPA, demonstrating 

promising performance with reported sensitivities ranging from 73% to 96% and specificities 

between 77% and 96% (Weikert et al., 2020, Soffer et al., 2021, Cheikh et al., 2022, Buls et 

al., 2021). In contrast, as shown in Chapter 3, research on automated CTPA analysis for 

diagnosing CTEPH remains limited (Abdulaal et al., 2024). Developing a universal model for 

automatic evaluation of CTEPH is challenging due to the complexity of the disease. 

 

Recent breakthroughs in artificial intelligence (AI) have transformed medical imaging, 

facilitating detailed assessment of complicated vascular structures. Integrating AI with 

pulmonary vessel segmentation has shown potential in reducing diagnostic delays and 

improving the accuracy of thromboembolic disease detection (Yuan et al., 2021, Chan et al., 

2008). CTEPH occurs in the pulmonary artery (PA), hence improving the accuracy of 

segmenting the arteries is critical for detecting thromboembolic disease characteristics. AI-

based pulmonary vascular segmentation enhances diagnostic methods by automating 

abnormality detection, lowering interobserver variability, and providing quantitative values 

for thromboembolism disease categorisation (Chu et al., 2025, Ming et al., 2025, Pu et al., 

2022, Zhai et al., 2023). Furthermore, these methodologies allow for the creation of advanced 

biomarkers, such as clot load indices, which can increase diagnostic accuracy. As AI continues 

to advance, challenges remain in accurately segmenting the thin and intricately branching 
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distal pulmonary arteries, where segmentation errors can contribute to false negatives (Zhou 

et al., 2023). Therefore, accurate pulmonary vessel segmentation is essential for correctly 

identifying the region of interest, as segmentation errors can negatively affect the entire data 

analysis workflow.  

 

This work develops of a nnU-Net-based framework for the automated segmentation of PA, 

pulmonary vein (PV), and thromboembolic disease using CTPA imaging. 

 

This study aims to: 

• Develop a clinically applicable AI model for patients with CTEPH. 

• Evaluate the performance of PA, PV, and thromboembolic disease segmentation 

outputs generated by the proposed algorithm. 

• Conduct a clinical evaluation of the segmentation results, including scoring and 

validation of the outcomes. 

• Analyse disease location and distribution, quantify clot volume, and compare AI-

generated results with manual clot scoring (Chapter 6) to assess prognostic 

significance and its potential for predicting survival outcomes in patients with CTEPH. 
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7.3 Methods 
 
A retrospective CTPA dataset from the ASPIRE (Assessing the Spectrum of Pulmonary 

Hypertension Identified at a Referral Centre registry) at Sheffield, UK. All analyses were 

conducted at the patient level, with one CT scan corresponding to each patient. The North 

Sheffield Ethics Committee and review board granted ethical approval for this study. The 

National Research Ethics Service also approved the retrospective analysis with a waiver of 

informed consent, (16/YH/0352).  

 

Study cohort 

Datasets were obtained from the ASPIRE registry, with its details previously reported 

(Hurdman et al., 2012). The registry systematically collects extensive clinical and radiological 

information about patients sent to a specialised medical centre for assessment of suspected 

pulmonary hypertension. The confirmed diagnosis of CTEPH, acute PE, and no clot in this 

study were established in accordance with international guidelines and through detailed 

discussions by the multidisciplinary team (MDT). Cases with no clot were identified based on 

the selection of patients without a primary or secondary diagnosis of CTEPH. All scans were 

conducted using two scanners (General Healthcare Lightspeed and TOSHIBA Aquilion PRIME). 

Scanning parameters comprised thin-slice volumetric contrast-enhanced scans as part of the 

CTPA protocol. The study included adult patients aged ≥ 18 years old who underwent CTPA in 

Sheffield and met the diagnostic criteria for either acute PE or CTEPH. This included patients 

who received medical management or underwent pulmonary endarterectomy (PEA) as part 

of their treatment for CTEPH. 

 

The dataset was divided at the patient level, with each patient corresponding to a distinct 

CTPA scan. The reference dataset included a varied cohort of 275 patients with CTEPH, 209 

patients with acute PE, and 120 patients without thromboembolic disease as determined 

using chest CTPA findings. The cohort used for model development is further separated into 

three groups: training, validation, and testing (Figure 7.1). The model was not tested on an 

external dataset. 
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Figure 7.1 STROBE diagram demonstrating patients with CTEPH, Acute PE and no clot selections Sheffield reference 
datasets. Patient subsets are also presented according to the study stage (model development and clinical 
evaluation). 
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Manual segmentation  

Manual ground truth segmentation masks for PA, PV, and thromboembolic diseases were 

created using MIM (Software, Cleveland, USA). A structured workflow was established with 

built-in operators for pre-trained models, to generate an initial segmentation mask. Each 

stage of this workflow was systematically reviewed by an expert radiologist (AS) and a trained 

radiographer (LA). The process was executed in a series of defined phases (Figure 7.2).  

 

Axial slice-based segmentation was first employed to create a 2D whole-body mask, followed 

by 3D lung segmentation and cropping (Sharkey et al., 2023). Subsequently, segmentations 

of eight cardiac structures and the main pulmonary artery (MPA) were performed using a pre-

trained nnU-Net model (Sharkey et al., 2022). The MPA structure was extracted as a 3D 

volumetric mask. The region grow tool was then used to segment the MPA and PV from the 

lung structures, with manual error correction applied. Threshold values were set at 228 to 

713 Hounsfield Units (HU) for the PA and 117 to 407 HU for the PV. The workflow underwent 

a continuous manual assessment, with window width and level adjusted as appropriate to 

allow accurate delineation of the chronic thromboembolic disease and pulmonary vessels in 

general. We manually refined and segmented vessels and thromboembolic disease on a slice-

by-slice basis using a 3D brush tool (Figure 7.3). This final annotated image and segmentation 

served as the ground truth for model development and training. 
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Figure 7.2 AI workflow steps developed using pre trained models to create an initial mask for PA and PV 
segmentation. 

Figure 7.3 Demonstration of 3D brush tool to manually adjust and segment pulmonary vessels, and 
thromboembolic disease. 
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Figure 7.4 Illustration of the manual segmentation process of pulmonary arteries (PA) and pulmonary veins 
(PV) from CTPA images, demonstrating the anatomical delineation required for vascular assessment. 
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Figure 7.5 Illustration of the manual segmentation process of chronic thromboembolic disease from CTPA data, 
demonstrating the anatomical delineation required for CTEPH assessment. 
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Network concept and architecture 

The nnU-Net model was utilised for the segmentation of PA, PV, and thromboembolic disease 

in CTPA images. nnU-Net is a pioneering publicly accessible deep learning segmentation 

model that automatically adapts image preprocessing, network design, data training, and 

post-processing for new imaging task (Isensee et al., 2021). A schematic representation of the 

nnU-Net architecture is presented in Figure 7.6. 

 

CTPA Images and masks underwent pre-processing with resampling all volumetric CTPA data 

to a median pixel spacing of 0.738 × 0.738 × 0.625 mm (x,y,z). Images were obtained using a 

512 × 512 matrix, with median number of slices per volume 358 slices. CTPA intensity values 

were normalised and clipped to the [0.5th, 99.5th] percentile range to exclude outliers using 

foreground classes. The data was clipped to the range of -608 to 753 HU, then normalised by 

subtracting the mean (140.85) and dividing by the standard deviation (291.91). A patch sizes 

of 192 × 350 × 256 was used. A two-stage cascade 3D nnU-Net architecture with seven 

convolutional stages was trained on the dataset using a batch size of 2. Each convolutional 

stage employed a kernel size 3×3×3, feature maps per stage (23, 64, 128, 256, 320, 320, 320), 

and Leaky ReLU activation function without dropout layer. A single-fold training method was 

utilised, with a total of 1000 epochs and early stopping at 212 epochs.  

 

Additionally, we applied data augmentation tools to enhance generalisability of the 

segmentation model. Spatial transformation, Gaussian noise, Gaussian smoothing, intensity 

scaling, and random axis flipping, all applied to increase diversity of the training dataset. Dice 

Similarity Coefficient (DSC) metrics were calculated for the test cohort (n=54). DSC score was 

applied as a metric to assess the overlap between the predicted segmentation and the ground 

truth annotations. 
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Clinical evaluation 

The segmentation outputs were reviewed through a clinical evaluation by a radiologist (AS) 

with 13 years of experience and a radiographer (LA) with 4 years of experience in interpreting 

thoracic CT images. Test set segmentations of the PA, PV, and thromboembolic disease were 

independently reviewed. The following criteria were used to designate an ordinal 

segmentation score to each segmentation output: 

 

0: Segmentation failed entirely. 

1: Segmentation was generated but contains major clinically significant errors. 

2: Segmentation includes minor errors that are clinically insignificant. 

3: Segmentation is accurate, with no clinically significant errors identified.  

 

Figure 7.6 Schematic representation of the nnU-Net model architecture used for automated segmentation of 
pulmonary arteries (PA), pulmonary veins (PV), and thromboembolic disease from CTPA images. 
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Thromboembolic disease volume segmentations were extracted from each CT scan using an 

automated AI segmentation model. Moreover, to assess the accuracy and reproducibility of 

chronic thromboembolic segmentation, an interobserver comparison was conducted on a 

subset of test patients (n = 10), involving the two reviewers independently. 

 

Statistical analysis 

All statistical analyses were performed using SPSS software (version 29.0, IBM), Excel 

(Microsoft Corporation, Redmond, USA), and GraphPad Prism (version 10). Continuous 

variables were summarised as means with standard deviations (SD), while categorical 

variables were reported as counts and percentages. Area Under the Curve (AUC) values were 

produced to assess model performance and minimise variability between ground truth 

segmentation and automated AI outcomes in the test dataset. 

 

Spearman correlation coefficients were calculated to evaluate associations between AI-driven 

segmentation and both CT-based measurements and haemodynamic parameters. Cox 

regression was employed to examine the association between PA, PV and thromboembolic 

volume and patient survival in the clinical evaluation cohort. Hazard ratios (HRs) were 

reported with 95% confidence intervals (CIs), and p-values < 0.05 were considered statistically 

significant. AI-derived data were analysed using both univariate and multivariate models, 

adjusted for known prognostic variables including age, sex, mean pulmonary arterial pressure 

(mPAP), and pulmonary vascular resistance (PVR). Kaplan–Meier survival curves were used to 

compare survival outcomes from the time of diagnostic assessment, using the log-rank test. 

Interobserver comparison was conducted using DSC for thromboembolic disease 

segmentations, and Intraclass correlation coefficients (ICC) for volumetric measurements 

(Maier-Hein et al., 2024). ICC values were interpreted as follows, values < 0.5 indicate poor 

agreement, 0.5–0.75 moderate, 0.75–0.90 good, and > 0.90 excellent agreement. (Koo and 

Li, 2016). 
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7.4 Results 
 
Patient clinical characteristics with CTEPH, acute PE and no clot cohorts are summarised in 

Table 7.1. The CTEPH cohort (n=275) was subdivided into two datasets: a model development 

(n=96) and clinical evaluation (n=179) (Figure 7.1). This was established to differentiate 

between cases utilised for the model or technical development from the clinical evaluation 

cases. The patients showed a wide range of haemodynamic, spirometry, and demographic 

features. 

 

Baseline clinical characteristics of technical development are presented in Table 7.2. A total 

of 161 patients were randomly assigned to different groups: 63 CTEPH, 27 acute PE, and 71 

no clots for training; 41 patients (12 CTEPH, 4 acute PE, 25 no clots) for validation; and 54 

patients (21 CTEPH, 9 acute PE, 24 no clots) for technical performance testing.  
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Table 7.1 Characteristics of the three datasets used for developing the model (CTEPH, acute 
pulmonary embolism and no clot cases). Data are expressed as mean ± standard deviation or counts 
(percentage). 

 
 
 
 
 
 
 

Characteristics CTEPH full cohort      
  n= 275 

Acute PE 
n= 40 

ASPIRE no clot 
n=120 

Age (years) 65 ± 14 78 ± 18 63 ± 13 

Sex (Female) 158 (54.5%) 27 (67.5%) 80 (66.6%) 

WHO FC II (25), III (225), IV (25) NA II (19), III (86), IV (11) 

Right heart 
catheterisation n=272 (94%) NA n=82 (68%) 

PVR (dyne.s.cm-5) 646±414 NA 393±275.4 

mPAP (mmHg) 45±12 NA 35±12.2 

SVO2 (%) 62.1±9 NA 65.6±13.5 

CI (L/min/m2) 2.6±0.8 NA 2.8±0.83 

Pulmonary function 
tests n=260(90%) NA n=71 (59%) 

Predicted FEV1 (%) 76.3±20.3 NA 67.6±23.8 

Predicted FVC (%) 88.4±21.5 NA 76.3±23.6 

Predicted TLCO (%) 60.2±18.3 NA 47.4±21.3 

Abbreviations: World Health Organisation (WHO), pulmonary vascular resistance (PVR), mean pulmonary arterial 
pressure (mPAP), pulmonary artery wedge pressure (PAWP), venous oxygen saturation (SvO2), and cardiac index (CI). 
Forced expiratory volume in one second (FEV1), forced vital capacity (FVC), and transfer factor of the lung for carbon 
monoxide (TLCO). 
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Table 7.2 Patient characteristics for both model development and clinical evaluation subcohort. 

 
 
  

Characteristics 
Model development  Clinical evaluation 

Training 
n=161 

Validation 
 n= 41 

Testing  
n=54 CTEPH =179 

Age (years) 67 ± 15.2 65 ± 16.2 65 ±15.7 64 ± 14 

Sex (Female) 95 (59%) 26 (63%) 37 (69%) 99 (55%) 

WHO FC II (19), III 
(95), IV (15) 

II (5), III (27), 
IV (4) 

II (6), III (35), 
IV (4) II (17), III (144), IV (18) 

Right heart catheterisation n=113 n=27 n=35 n=165 

PVR (dyne.s.cm-5) 583 ± 397.6 449 ± 287.7 582.4 ±373 611.6 ±424.5 

mPAP (mmHg) 41 ± 14.3 41 ± 11 41 ±14 44.2 ±12.6 

SVO2 (%) 63 ± 9.6 66.3 ± 9.2 59 ±17.5 62.6 ±8.4 

CI (L/min/m2) 2.66 ± 0.9 2.9 ±0.93 2.44 ±0.64 2.6 ±0.86 

Pulmonary function tests n=99 n=14 n=26 n=159 

Predicted FEV1 (%) 70.6 ± 23.3 73 ± 19.2 67.7 ±17.4 76.8 ± 20.3 

Predicted FVC (%) 81.3 ± 22.7 83 ± 18.9 82.7 ±19.6 88.8 ±21.6 

Predicted TLCO (%) 54.5 ±22.3 61.5 ± 25.5 54.6 ±19.4 60.2 ±16.5 

Abbreviations: World Health Organisation (WHO), pulmonary vascular resistance (PVR), mean pulmonary arterial pressure 
(mPAP), pulmonary artery wedge pressure (PAWP), venous oxygen saturation (SvO2), and cardiac index (CI). Forced expiratory 
volume in one second (FEV1), forced vital capacity (FVC), and transfer factor of the lung for carbon monoxide (TLCO). 
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Technical evaluation  

The model achieved a mean DSC of 0.95 for PA and PV segmentations in the test set. In 

contrast, thromboembolic disease segmentation showed a significantly lower mean DSC of 

0.58. Sensitivity across the whole test dataset was 80% overall, 93% for PA and PV, and 54% 

for thromboembolic disease. DSC and sensitivity scores for PA, PV, and thromboembolic 

disease segmentations are provided for each patient in (Supplementary table S1).  

 

Mean volumetric measurements of the PA, PV, and thromboembolic disease across different 

patient groups, and clinical evaluation CTEPH cohort are summarised in Table 7.3. 

 

 

 
 
Table 7.3 Mean ± standard deviation of pulmonary artery (PA), pulmonary vein (PV), and 
thromboembolic volumes stratified by disease location, as detected using the nnU-Net-based 
segmentation model. 

 
 
 

Structure  
Millilitres (ml) 

Testing set 54 Clinical evaluation 

CTEPH (n=21) Acute PE (n=9) No clot (n=24) CTEPH (n=179) 

Main PA  120.55 ± 48.5 87.42 ± 35.4 119.32 ± 65.7 126.02 ± 40.3 

PA  232.42 ± 89.1 172.6 ± 47.3 234.6 ± 90.2 243.83 ± 68.1 

PV  145.28 ± 42.1 156.36 ± 31.7 180.75 ± 60.2 174.32 ± 46.1 

Central disease 1.18 ± 2.1 0.09 ± 0.18 0 0.49 ± 1.77 

Non-central disease*  4.62 ± 4.6 1.54 ± 2.7 0.04 ± 0.06 3.12 ± 4.15 

Total clot volume 5.8 ± 5.5 1.63 ± 2.9 0.04 ± 0.06 3.61 ± 5.22 

*Non-central disease includes segmental and distal. 
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The test results including cases of (acute PE, CTEPH, no clot) achieved an AUC of 0.92, 

indicating excellent classification performance. When specifically distinguishing CTEPH from 

no clot cases, the model demonstrated even higher accuracy with an AUC of 0.97. However, 

predictive performance was lower for differentiating acute PE from no clot cases, with an AUC 

of 0.78 (Figure 7.7). 

 

 

 

 

 

 

Figure 7.7 Receiver operating characteristic (ROC) curve for the AI model in identifying thromboembolic clots on 
the test set. The curve demonstrates the relationship between sensitivity and specificity, and the area under the 
curve (AUC) represents the model's overall performance in differentiating between clot-positive and clot-
negative cases. 
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The DSC between observers for thromboembolic disease segmentation on CTPA images (n = 

10) was 0.59 ± 0.21, indicating moderate agreement. Mean DSC scores for total 

thromboembolic volume segmentation between the two independent observers were 

calculated for each case and presented in Table 7.4. 

 

In terms of the clot volume results, interobserver agreement was highest for central disease 

segmentation, with an ICC of 0.89 (Figure 7.8). In comparison, total clot volume showed 

moderate agreement (ICC = 0.69), while non central disease segmentation demonstrated the 

lowest agreement with ICC of 0.57, reflecting greater variability in the segmentation of 

peripheral thromboembolic disease (Table 7.5). The subtle and varied appearance of chronic 

thrombotic disease and the existence of imaging artefacts that may mask thrombus are 

possible causes of this performance reduction (Figure 7.9). 

 

 
 
 

Table 7.4 Mean Dice Similarity Coefficient (DSC) scores for total thromboembolic volume 
segmentation between two independent observers. 

 
 

Cases 
Observer1 Observer 2 

DSC 
Total clot volume (ml) Total clot volume (ml) 

1 4.93  4.81 0.97 

2 7.17 5.41 0.64 

3 4.21 2.77 0.69 

4 1.67 0.54 0.1 

5 1.39 0.85 0.5 

6 12.55 11.49 0.77 

7 3.87 3.13 0.53 

8 4.44 3.49 0.74 

9 28.86 8.97 0.41 

10 1.98 1.26 0.48 
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Figure 7.8 An example case that illustrates the differences in central disease segmentation between observers.  
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Table 7.5 Interobserver agreement for chronic thromboembolic disease outputs between two 
observers, using intraclass correlation coefficients (ICC) with 95% confidence intervals (CI) for total, 
central, and non-central volumes 

 
 
 
 
 
 
 
 

 

 

Segmentation 
Region ICC 95% CI P value Interpretation 

Central disease 0.89 0.61 to 0.97 0.001 Good agreement 

Non-central disease 0.57 -0.39 to 0.88 0.09 Moderate agreement 

Total clot volume 0.69 -0.07 to 0.92 0.03 Moderate agreement 

Figure 7.9 This case illustrates the impact of significant respiratory artefacts on segmental and distal disease, which 
impaired the visualisation of vascular structures and thromboembolic disease. These factors resulted in a decrease in 
segmentation accuracy and an increase in interobserver variability (DSC = 0.1). 
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Segmentation analysis of testing set 
 

The algorithm successfully segmented all cases (n=54), and there were no failures in PA or PV 

segmentation (Figure 7.10). Out of these cases, 30 (56%) achieved PA/PV segmentation with 

no clinically relevant errors (score 3), 19 (35%) exhibited minor clinically insignificant errors 

(score 2), and 5 (9%) showed major clinically significant errors (score 1). Segmentation errors 

were primarily attributed to imaging artefacts (71%), suboptimal contrast opacification (46%), 

and lung parenchymal abnormalities (42%), with some cases exhibiting more than one 

contributing factor. 

 

In the test set of 30 cases, 21 (70%) had excellent clot segmentation without any clinically 

significant error (score 3). Minor clinical errors (score 2) were observed in 6 cases (20%), while 

3 cases (10%) exhibited major clinically significant errors (score 1), as shown in Figure 7.11. 

The most common reasons for segmentation errors were PA and PV segmentations errors 

(27%), poor opacification (17%), artefacts (23%) and distal disease (20%).     

 
 
 
 

 
 
 

Figure 7.10 Examples of AI-derived pulmonary artery (PA) and pulmonary vein (PV) segmentations with corresponding 
clinical error scores: (A) Score 3 – no clinical error; accurate segmentation. (B) Score 2 – minor clinical error due to mild 
misclassification (red arrow). (C) Score 1 – significant clinical error involving major vessel segmentation inaccuracies 
(yellow circle). 
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Clinical evaluation analysis with haemodynamic 
 

Clinical evaluation was conducted on a cohort of 179 patients with CTEPH. A modest 

significant correlation was observed between AI-derived central and non-central (segmental 

and distal) thromboembolic segmentations and pulmonary vascular resistance (PVR) (r=0.21, 

p=0.005). Notably, non-central disease volume demonstrated a marginally stronger 

significant correlation with PVR (r=0.26, p<0.001). 

 

Modest significant correlations were found between non central clot volume and key imaging 

markers of the lung parenchyma. Specifically, associations were observed with mosaic 

perfusion (r=0.21, p=0.005) and lung infarction (r=0.21, p=0.004). In contrast, central clot 

volume showed no significant association with either mosaic perfusion (r=0.09, p=0.23) or 

infarction (r=0.05, p=0.43). 

 

Figure 7.11 Examples of AI-derived thromboembolic disease segmentation with clinical error scoring: (A) Score 3 – no 
clinical error. (B) Score 2 – minor clinical error involving vessel misclassification or artefacts (red circle). (C) Score 1 – 
significant clinical error due to missed clot by the detection algorithm (red arrow). 



156 
 

Additionally, the PA to aorta (PA/AO) ratio was modestly associated with central clot volume 

(r=0.17, p=0.024), while the right ventricle to left ventricle (RV/LV) ratio showed a significant 

correlation with non-central clot volume (r=0.25, p<0.001), as presented in Table 7.6. 

 

No significant correlation was observed between transfer factor of the lung for carbon 

monoxide (TLCO) and central disease (r=0.04, p=0.5), non-central disease (r=0.08, p=0.29), or 

total clot volume (r=0.07, p=0.38). Similarly, no significant associations were identified 

between clot burden and any other PFT parameters. 

 
 
 
 
 
Table 7.6 Spearman correlation analysis between AI-derived volumes in millilitre (ml) of pulmonary 
artery (PA), pulmonary vein (PV), and thromboembolic disease with pulmonary vascular resistance 
(PVR), mean pulmonary arterial pressure (mPAP), and CT measurements.  

 
  

AI Variables (179) PVR 
(dyne.s.cm-5) 

mPAP 
(mmHg) SVO2 (%) PA/AO ratio RV/LV ratio 

Central volume 
(ml) 0.14, p=0.06 0.06, p=0.38 -0.05, p=0.5 0.15, p=0.03 0.09, p=0.2 

Non central 
volume (ml) 0.26, <0.001 0.18, p=0.01 -0.19, p=0.01 0.08, p=0.27 0.26, <0.001 

Total clot 
volume(ml) 0.26, <0.001 0.17, p=0.02 -0.18, p=0.01 0.07, p=0.29 0.25, <0.001 

Main PA 
volume(ml) 0.12, p=0.11 0.24, <0.001 -0.12, p=0.12 0.34, <0.001 0.02, p=0.71 

PA volume (ml) 0.08, p=0.29 0.26, <0.001 -0.06, p=0.4 0.29, <0.001 0.04, p=0.53 

PV volume(ml) -0.37, <0.001 -0.2, p=0.008 0.23, p=0.003 -0.01, p=0.85 -0.27, <0.001 

PA/PV ratio 0.43, <0.001 0.47, <0.001 -0.29, p<0.001 0.28, <0.001 0.26, <0.001 
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Clinical evaluation with survival analysis 
 

Of 179 CTEPH patients, 77 (43%) had endarterectomy, and 102 (57%) did not undergo 

endarterectomy. The median time to pulmonary endarterectomy was 7 months (IQR: 0 to 

11).  The outcome of mortality was observed in 81 (45%) patients. Notably, no patients in this 

cohort underwent balloon pulmonary angioplasty or lung transplantation. 

 

The presence of AI-derived central thromboembolic disease volume was analysed in two 

ways: first, as a binary variable (1 = presence of any central volume, 0 = absence); and second, 

using a median-based severity threshold, where central volume > 0.4 millilitre (mL) were 

assigned a value of 1. The rationale for including the median-based method was to explore 

whether a higher burden of central volume provided additional prognostic value. 

 

Univariate and multivariate analyses examining the association between AI-derived clot 

volume location and mortality are summarised in Table 7.7. In univariate analysis, both 

central clot volume and total clot volume were significantly associated with mortality, both in 

the entire cohort and specifically among patients who did not undergo endarterectomy. After 

adjusting for demographic and clinical variables, including age, sex, mPAP, and PVR, the 

presence of central clot volume remained a significant predictor of mortality (p < 0.001) in 

the subgroup of patients who did not undergo endarterectomy. 

 

According to Kaplan-Meier survival analysis, patients with higher thromboembolic burden 

demonstrated poorer survival outcomes (Figure 7.12). The presence of AI central disease 

showed no significant difference in survival (log=1.4, p=0.22). While AI central median>0.4 ml 

was significantly associated with worse survival in the overall cohort (log=4.3, p=0.03) and in 

patients who did not undergo pulmonary endarterectomy (log=6.7, p=0.009). However, 

patients who underwent endarterectomy were associated with improved survival outcomes 

(log=0.06, p=0.79). 
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Table 7.7 Univariate and multivariate cox-regression analysis for AI segmentation for pulmonary 
artery (PA), vein (PV) and thromboembolic disease (central, non-central, total clot) volumes 
(millilitres) in patients undergoing and not undergoing endarterectomy. (P < 0.05) indicates 
statistically significant association with mortality. 

Variables Univariate analysis Multivariate analysis 

All patients 179 HR 95% CI P value HR 95% CI P value 

Central clot volume 1.14 1.02 to 1.3 0.01 NA 

Central (median >0.4) 1.7 0.9 to 3.4 0.1 NA 

Non-central clot volume 1.04 0.9 to 1.1 0.09 NA 

Total clot volume  1.04 1 to 1.1 0.03 NA 

Main PA volume  1 0.99 to 1 0.15 NA 

PA volume  1 0.99 to 1 0.62 NA 

PV volume 1 0.99 to 1 0.62 NA 

PA/PV ratio 1.1 0.69 to 1.1 0.61 NA 

Endarterectomy 77 HR 95% CI P value HR 95% CI P value 

Central clot volume 1.17 0.98 to 1.4 0.07 NA 

Central (median >0.4) 1.2 0.27 to 5.3 0.79 NA 

Non-central clot volume 1 0.87 to 1.14 0.9 NA 

Total clot volume  1.03 0.94 to 1.12 0.49 NA 

Main PA volume  1 0.99 to 1.02 0.1 NA 

PA volume  1 0.99 to 1 0.92 NA 

PV volume 1 0.99 to 1.02 0.11 NA 

PA/PV ratio 0.45 0.1 to 1.9 0.29 NA 
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No endarterectomy 102 HR 95% CI P value HR 95% CI P value 

Central  1.32 1.1 to 1.55 <0.001 1.42 1.1 to 1.73 <0.001 

Central (median >0.4) 2.2 1 to 4.6 0.03 NA 

Non-central  1.05 0.99 to 1.1 0.059 NA 

Total clot volume  1.05 1 to 1.1 0.01 NA 

Main PA volume  1 0.99 to 1 0.65 NA 

PA volume  1 0.99 to 1 0.55 NA 

PV volume 0.99 0.99 to 1 0.5 NA 

PA/PV ratio 1.3 0.83 to 2.2 0.21 NA 

 
 

 

Not applicable (NA). Volumes in millilitres (ml). 
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Figure 7.12 Kaplan–Meier survival curves for a total of 179 patients with CTEPH, compared by pulmonary 
endarterectomy (PEA) versus no PEA groups. The curves compare survival outcomes based on central disease 
detected using binary AI, and AI with median>0.4. 
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AI-derived clot volume vs. manual scoring system (As described in Chapter 6) 
 

A strong positive correlation was observed between the manual total scoring (scored out of 

13) and the AI-derived total clot volume, as measured by Spearman’s correlation (0.72, 95% 

CI: 0.61 to 0.80, p<0.001). 

 

A subset of 120 patients with CTEPH was used to compare central disease severity between 

AI-derived clot volume and manual scoring outcomes. Including patients who underwent 

endarterectomy (n=55) and those not undergoing endarterectomy (n=65). Binary labels were 

generated by thresholding the median value, with an AI-derived median > 0.35 ml and a 

manual median score > 2 were assigned a value of 1; all others were labelled as 0 (1 = central, 

0 = no central). 

 

Univariate Cox regression analysis identified several significant predictors of mortality in 

central disease based on both AI-derived and manual scoring (Table 7.8). In the full cohort, 

both AI-derived central volume (HR=1.2, p=0.001) and AI-derived median central (HR=2.6, 

p=0.008) were significantly associated with worse outcomes. While manual median scoring 

showed a weaker association with outcomes (HR=1.89, p=0.03), the central manual score was 

(HR=1.7, p=0.05). 

 

Kaplan–Meier survival analysis on AI-derived median > 0.35 ml and manual scoring median > 

2, are demonstrated in Figure 7.13. AI-derived median was significantly associated with worse 

survival in the overall cohort (p=0.006) and in patients who did not undergo endarterectomy 

(p=0.01). No significant difference in survival was observed in the endarterectomy subgroup. 

Likewise, in the manual scoring median-based, there was a significant difference between 

patients with central and no central disease (p=0.03).  However, in patients who did not 

undergo endarterectomy, there was no significant difference in survival between central and 

no central disease (p=0.22). 
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Table 7.8 Univariate cox regression analysis of central thromboembolic burden comparing AI and 
manual scoring across all patients (n=120), patients with endarterectomy (n=55), and those without 
endarterectomy (n=65). Hazard ratios (HR), 95% confidence intervals (CI), and p-values are provided 
for AI-derived binary classification, AI clot volume, AI binary using median>0.35, and manual binary 
scoring median>2.  

 
 

Variables Univariate analysis  

All patients (120) HR 95% CI P value 

Central (AI clot volume) (ml) 1.2 1.07 to 1.34 0.001 

Central (AI median>0.35)  2.6 1.2 to 5.51 0.008 

Central (manual scoring) 1.7 0.99 to 3.1 0.05 

Central (manual median>2)  1.89 1.03 to 3.4 0.03 

Endarterectomy (55) HR 95% CI P value 

Central (AI clot volume) (ml) 1.2 1 to 1.42 0.03 

Central (AI median>0.35) 1.88 0.41 to 8.4 0.41 

Central (manual scoring)  2.1 0.75 to 5.8 0.15 

Central (manual median>2)  2.8 1.04 to 8.01 0.04 

No endarterectomy (65) HR 95% CI P value 

Central (AI clot volume) (ml) 1.2 1.07 to 1.52 0.005 

Central (AI median) 2.7 1.18 to 6.3 0.01 

Central (manual scoring) 1.58 0.78 to 3.1 0.2 

Central (manual median>2)  1.6 0.74 to 3.4 0.22 

Volumes in millilitres (ml). 
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Figure 7.13 Kaplan–Meier survival curves for patients with CTEPH stratified by the presence of central 
thromboembolic disease, assessed using AI-derived median clot volume and manual median scoring. The cohort 
includes 120 patients (PEA: 55 [46%], female: 67 [56%], mean age: 57 ± 25.3 years). 



164 
 

7.5 Discussion  
 

This study presents an automated 3D segmentation for PA, PV and thromboembolic disease 

with clinical validation using clinical CTPA cohorts. The model achieved high accuracy for PA 

and PV segmentation but demonstrated lower accuracy for prediction of the manual 

thromboembolic disease segmentations. To the best of our knowledge, this study is the first 

to apply a volumetric segmentation framework using nnU-Net to automate the segmentation 

of chronic thromboembolic disease, highlighting both the potential and limitations of this 

method. The primary finding of this study is that an AI-driven clot segmentation model 

applied to CT imaging may predict both the presence of CTEPH and patient survival. This work 

has shown that central disease detected by AI may serve as a prognostic indicator for patients 

with CTEPH. AI-driven quantification may reduce interobserver variability, providing a more 

objective and reliable method for detecting high-risk patients (Shin et al., 2025). The strong 

positive correlation between our manual scores and AI-derived clot volumes further supports 

the clinical validity of these automated tools. These results show the possibilities of AI-based 

measurements to improve manual assessment, resulting in enhancing prognosis and along 

with clinical decision-making. 

 

The high Dice score for PA and PV are indicative of a high degree of agreement between the 

model predictions and the ground truth annotations. Our performance metrics are 

comparable to those previously reported in vascular segmentation deep learning methods. 

Prior studies have achieved DSC of 0.94 (Nardelli et al., 2018), 0.92 (Zhang et al., 2019), 0.84 

(Wu et al., 2023), 0.89 (Chu et al., 2025), 0.87 (Zhou et al., 2023), 0.86 (Ming et al., 2025), and 

0.82 (Qin et al., 2021) for segmentation of the PA and PV compared with a DSC of 0.95 in this 

study. The structure of pulmonary vasculature differs across patients, including variations in 

pulmonary vessels diameter, angulation and presence of disease. Accurate differentiation 

between the PA and PV is essential for identifying and treating pulmonary diseases. Clinical 

diagnosis, thrombus localisation, and treatment planning can all depend on the 

automated segmentation of PA and PV in CTPA images. 
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In contrast, segmentation of thromboembolic disease achieved a lower agreement with DSC 

of 0.58. PE segmentation has demonstrated good accuracy, with reported DSC of 0.64 (Pu et 

al., 2023), and 0.74 (Ajmera et al., 2022). Interobserver variability in segmenting chronic 

thromboembolic disease remains a challenge, as demonstrated by the variation in DSC scores 

between the two observers. This variability results from the complex vascular remodelling 

caused by the presence of organised thromboembolic material, leading to intimal 

abnormalities, stenoses, and webs, which further increase the difficulty of the segmentation 

task (Cui et al., 2019, Gopalan et al., 2017). Furthermore, pulmonary arteries and veins show 

in similar grayscale on CT images, especially in smaller distal vessels, challenging both manual 

and AI-based segmentation. Despite these challenges, our study demonstrated moderate 

interobserver agreement for total clot volume quantification (ICC = 0.69). Previous studies 

using CT-based classification have reported comparable findings, with reported kappa values 

of 0.51 (Grafham et al., 2023), 0.55 (Eberhard et al., 2022), and 0.64 (McInnis et al., 2020), 

highlighting the reproducibility radiological assessment of disease extent in patients with 

CTEPH. In addition, our study observed an excellent agreement for central disease, reflecting 

the relative ease of identifying larger, more proximal thromboembolic disease. In contrast, 

agreement for non-central (segmental and subsegmental) disease was lower with ICC = 0.57, 

in line with the low agreement for distal thromboembolic disease reported by Grafham et al. 

(2023), with kappa values of 0.31. This highlights the challenge of reliably assessing distal 

thromboembolic disease. Advanced imaging techniques combined with AI models may help 

address the underdiagnosis of distal disease, often caused by the limited visualisation of 

conventional CTPA (Gotta et al., 2024). 

 

In our test set, the proposed model achieved an overall AUC of 0.92 for thromboembolic 

disease prediction, with a specifically higher AUC of 0.97 for patients with CTEPH. Our model 

performed better at distinguishing chronic thromboembolic disease from no clot cases 

compared to acute PE, which may be attributed to datasets imbalance, artefacts and the 

increased anatomical variability. The lower number of acute PE cases compared to CTEPH 

cases may lead to biased performance estimation towards the most frequent cases (Lobo et 

al., 2008), in addition there was a lower volume of clot in the PE cases as compared to clot 

volume in CTEPH. In contrast, Ma et al. (2022) observed lower detection performance for 

chronic PE with AUC of 0.69, compared to acute PE with AUC of 0.93, thus highlighting the 
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diagnostic difficulties related with chronic PE and the possibility of our approach in addressing 

this gap. While Vainio et al. (2023) achieved an AUC of 0.94 using a multi-network ensemble 

model, their use of maximum intensity projection-derived images resulted in the loss of 

critical spatial detail, limiting the model’s ability to detect important features for the diagnosis 

of CTEPH. Our volumetric approach used important spatial features, which may help explain 

the improved performance of our model in patients with CTEPH. In a recent abstract, Nardelli 

et al. (2023) developed an AI-based method for the detection and quantification of pulmonary 

micro thrombi in patients with CTEPH using CTPA images. The model achieved excellent 

diagnostic performance, with an AUC of 0.89, but more validation is required to ensure its 

robustness and reliability. 

 

We established a standardised radiological grading system to assess the accuracy of 

segmentation in the test set based on the diagnostic impact. Our study demonstrates that AI-

driven segmentation of PA, PV and thromboembolic disease achieve good clinical 

performance, with no segmentation failure. However, even minor errors, such incorrectly 

classifying arteries or failing to fully segment distal arteries, might have a significant clinical 

impact on the evaluation of thromboembolic disease. Previous research has shown a lower 

sensitivity in detecting thrombi in distal arteries compared to central disease, highlighting the 

challenge of identifying less prominent abnormalities in these peripheral areas (Sugiura et al., 

2013, Rogberg et al., 2019). Additionally, misclassification of thrombus, for example false 

negatives in distal arteries, may have clinical impact in patients with CTEPH (Delcroix et al., 

2016, Wittram et al., 2004).  Expert radiological evaluation is still required, for small, distal, or 

low-attenuation thromboembolism disease.  

 

The strong correlation between AI-derived clot volumes and manual scoring demonstrates 

the clinical validity of automated quantification for patients with CTEPH. Recent studies have 

evaluated AI-based PE detection, highlighting the need for better methods to support CTEPH 

diagnosis (Ayobi et al., 2024, Cheikh et al., 2022).  Our results show evidence for the clinical 

relevance of AI-based clot volume quantification in patients with CTEPH.  The study showed 

that segmental and distal disease burden demonstrated a stronger correlation with PVR 

compared to central disease, although the overall strength of the correlation was modest. 

This result is corroborated by previous studies demonstrating that distal pulmonary 
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vasculopathy might elevates PVR in patients with CTEPH (Delcroix et al., 2021, Dorfmüller et 

al., 2014). Furthermore, studies have shown that the performance of pulmonary 

endarterectomy in patients with distal CTEPH, which includes segmental and subsegmental 

disease, is both can be feasible and effective (Yang et al., 2023, Fernandes et al., 2023). 

 

On univariate survival analysis both central and total clot volume exhibited substantial 

relationships with mortality throughout the whole population, with notably strong 

correlations in patients who did not undergo pulmonary endarterectomy. In patients not 

having endarterectomy, central clot volume continued to be a significant predictor of 

mortality, after adjusting for demographic and clinical factors. This demonstrates that central 

clot volume independently correlates to worse survival outcomes and may serve as a key 

prognostic marker in patients who did not undergo endarterectomy.  

 

This study also demonstrated that central thromboembolic burden, quantified using both AI-

derived and manual scoring defined by median-based, is significantly associated with survival 

in patients with CTEPH. Notably, AI-derived central median was associated with worse 

outcomes compared to manual scoring median. Although AI might provide consistency and 

scalability, it may over or underestimate disease severity in certain cases due to limitations in 

training data and an inability to fully account for clinical details that experienced clinicians 

consider during manual assessments (Norori et al., 2021). Additionally, our manual scoring 

identified a significant survival difference between patients with central disease severity, 

supporting the clinical importance of visually assessed thromboembolic distribution. These 

findings may support the integration of AI-derived clot burden as a prognostic tool, 

particularly for identifying high-risk patients who may not be surgical candidates.  

 

Manual segmentation was a time-consuming task, often requiring up to an hour per case 

based on the anatomical variability and CT image quality. On the other hand, the AI-based 

model performed segmentation in approximately 2-3 minutes, indicating a potential 

enhancement in workflow efficiency. 

 

However, our study is subject to several limitations. The model was trained using data 

gathered from a single institution, although it was generated using scanners from multiple 
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manufacturers. The proposed model was not tested on an external cohort, which is required 

to assess its generalisability and performance. The test set included only a limited number of 

patients with suspected CTEPH, which may restrict the generalisability of our findings. The 

evaluation of scans was performed by only two observers. Patients were identified 

retrospectively, limiting our capacity to account for possible confounders. AI performance 

may be limited by imaging artefacts, poor vascular opacification, and segmentation errors in 

the pulmonary arteries. Severe artefacts impede typical visual evaluation for radiologists and 

can lead to misinterpretations. Furthermore, there is a significant methodological difference 

between AI-based and manual scoring: in AI segmentation, central disease includes 

involvement of the lobar arteries, whereas in manual scoring, central disease is defined as 

affecting only the main pulmonary arteries (left and right). This inconsistency may have an 

influence on direct comparisons between AI and manual evaluations, thereby impacting 

model performance interpretation. In addition, this study did not compare AI-derived 

volumes and manual volumes directly for survival prediction. Future work is required to 

explicitly analyse the clinical impact of AI-based evaluations compared to manual to 

determine if AI gives similar or better results in clinical assessment. 
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7.6 Conclusion  
 

A PA, PV, and thromboembolic diseases nnU-Net segmentation model was developed with 

high accuracy for vascular segmentation and moderate for thromboembolic disease 

segmentation. The AI-driven analysis highlights the potential in quantifying the volumetric 

measurements of the chronic thromboembolic disease, predicting CTEPH presence, and 

providing prognostic insight into patient survival. Interobserver comparison in segmenting 

CTEPH demonstrated moderate agreement overall, with the highest consistency achieved in 

the segmentation of central thromboembolic disease. AI-derived volumetric measures 

correlated strongly with haemodynamic parameters and demonstrated performance 

comparable to manual assessments in patients with CTEPH. Future work should focus on 

enhancing model accuracy for non-central disease, expanding annotated datasets, and 

improving the reliability of AI-based assessments across diverse clinical settings. 
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Supplementary Table 
 
Table S1. DSC and Sensitivity scores for each patient in performance testing including (CTEPH, Acute 
PE, and no clot) cases. 

Case 
Dice Similarity Coefficient (DSC) Sensitivity 

PA PV Clots PA PV Clots 

1 0.90 0.91 0.27 0.92 0.89   0.19 

2 0.93 0.94 0.63 0.91 0.93   0.59 

3 0.95 0.94 0.71 0.93 0.92   0.68 

4 0.92 0.93 NA 0.88 0.88   NA 

5 0.93 0.95 0.40 0.89 0.92   0.48 

6 0.93 0.94 0.79 0.88 0.91   0.87 

7 0.96 0.97 0.22 0.94 0.95   0.16 

8 0.95 0.96 0.40 0.92 0.94   0.37 

9 0.96 0.97 0.21 0.94 0.96   0.12 

10 0.96 0.95 0.34 0.94 0.93   0.21 

11 0.96 0.94 0.86 0.95 0.92   0.92 

12 0.97 0.96 NA 0.95 0.95   NA 

13 0.97 0.96 NA 0.96 0.96   NA 

14 0.96 0.97 0.77 0.95 0.95   0.65 

15 0.94 0.94 0.72 0.90 0.90   0.78 

16 0.94 0.96 0.65 0.92 0.94   0.50 

17 0.94 0.91 NA 0.95 0.94   NA 

18 0.97 0.95 0.74 0.95 0.93   0.78 

19 0.96 0.96 0.45 0.95 0.94   0.35 

20 0.95 0.93 0.59 0.92 0.90   0.64 

21 0.95 0.95 NA 0.94 0.93   NA 

22 0.96 0.96 0.71 0.94 0.94   0.83 

23 0.96 0.95 0.74 0.94 0.94   0.73 

24 0.96 0.96 NA 0.93 0.94   NA 

25 0.95 0.95 0.49 0.94 0.93   0.45 

26 0.98 0.97 NA 0.97 0.96   NA 

27 0.98 0.97 0.55 0.96 0.96   0.90 

28 0.95 0.95 NA 0.92 0.91   NA 

29 0.95 0.95 0.63 0.94 0.94   0.48 
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30 0.95 0.95 0.72 0.94 0.92   0.63 

31 0.96 0.96 NA 0.96 0.96   NA 

32 0.96 0.97 0.79 0.96 0.96   0.72 

33 0.96 0.95 0.58 0.95 0.94   0.62 

34 0.93 0.93 NA 0.90 0.90   NA 

35 0.95 0.96 NA 0.93 0.94   NA 

36 0.94 0.95 0.45 0.93 0.93   0.31 

37 0.94 0.96 0.57 0.94 0.95   0.44 

38 0.95 0.96 0.00 0.92 0.94   NA 

39 0.97 0.96 NA 0.96 0.95   NA 

40 0.95 0.94 0.58 0.93 0.91   0.53 

41 0.94 0.97 NA 0.90 0.94   NA 

42 0.95 0.96 NA 0.90 0 NA 

43 0.94 0.95 0.23 0.92 0.89   0.74 

44 0.96 0.97 NA 0.91 0.93   NA 

45 0.97 0.96 NA 0.93 0.92   NA 

46 0.97 0.96 NA 0.88 0.88   NA 

47 0.95 0.95 NA 0.89 0.92   NA 

48 0.98 0.97 NA 0.88 0.91   NA 

49 0.97 0.95 NA 0.94 0.95   NA 

50 0.97 0.97 NA 0.92 0.94   NA 

51 0.96 0.97 NA 0.94 0.96   NA 

52 0.96 0.96 NA 0.94 0.93   NA 

53 0.97 0.96 NA 0.95 0.92   NA 

54 0.96 0.95 0.07 0.95 0.95   0.04 
Mean ± SD 

(95% Confidence 
Interval) 

0.95 ± 0.01 
(0.95 to 

0.95) 

0.95 ± 0.01 
(0.95 to 

0.95) 

0.58 ± 0.19 
(0.49 to 

0.67) 

0.93 ± 0.02 
(0.92 to 

0.94) 

0.93 ± 0.01 
(0.93 to 

0.94) 

0.54 ± 0.24 
(0.45 to 

0.64) 
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8 Discussion  
 
 
 
This is a chapter overview discussion of the work. For a full discussion of each chapter of the 

thesis, kindly review each of the associated chapters. 

 

This thesis evaluated CT lung parenchymal characteristics as predictive indicators in CTEPH 

patients. It also presented a scoring system for visual assessment of chronic thromboembolic 

on CTPA, which incorporates both location and extent to determine the impact of disease 

location on survival outcomes. In addition, we conducted a systematic review of deep learning 

applications in chronic thromboembolic disease and developed a novel AI-based 

segmentation model. This model was clinically validated for automated quantification of 

thromboembolic burden and evaluation of its prognostic significance. 

 

The Methods chapter outlines two key contributions of this thesis in addition to the scientific 

findings and published manuscripts. These contributions described the creation of a clinical 

radiological database and the establishment of a procedure for AI application in patients with 

CTEPH using CTPA. A combination of NHS imaging datasets presented some challenges, 

specifically variations in image quality and acquisition settings. The segmentation of vascular 

and thromboembolic disease requires not only technical expertise but also a thorough 

understanding of the clinical relevance of imaging findings. Additionally, my involvement in 

CT image assessment helped me better understand imaging artefacts, anatomical variances, 

parenchymal features, and disease appearances as a clinical academic radiographer. 

 

Chapter three presented the systematic review (published in Frontiers in Radiology) that 

forms fundamental research into the potential function of artificial intelligence in diagnosing 

and detecting CTEPH using CTPA. This review highlighted both the potential advantages and 

the challenges inherent in this approach, presenting a critical assessment of existing studies 

and identifying gaps in current research, to indicate areas for future study. The results showed 

that, despite the massive research on acute PE, there are limited studies investigating AI 
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applications for chronic PE and CTEPH. However, the study highlighted the potential of AI in 

interpreting CTPA for patients with CTEPH, improving diagnostic accuracy.  

 

In chapter five (published in European Respiratory Journal Open Access), the study 

demonstrated the significance of CT systematic evaluation of parenchymal and cardiac 

chambers abnormalities in patients with CTEPH. A semi-quantitative methodology was 

employed, incorporating CT reports and subjective visual assessments to evaluate the scans 

within the database. This study is the first to report that increased aortic diameter is 

associated with adverse outcomes, potentially reflecting the burden of underlying 

comorbidities. Mosaic perfusion and lung infarction demonstrated as common radiographic 

findings of CTEPH, which correlate with signs of disease severity. In patients who underwent 

PEA, the presence of mosaic perfusion or infarction had no significant influence on mortality. 

However, in patients who did not undergo PEA, the absence of mosaic perfusion was 

associated with increased mortality, potentially due to a higher prevalence of underlying 

parenchymal lung disease. In addition, the study found a significant frequency of co-existing 

lung diseases in patients with CTEPH, indicating their importance in determining clinical 

outcomes. These findings offer valuable insight into the relationship between vascular 

involvement, parenchymal lung abnormalities, and disease severity indicators, providing 

crucial information for the risk assessment and management of patients with CTEPH. 

 

Chapter six (submitted to BJR) described the development and clinical assessment of a novel 

clot scoring system in patients with CTEPH using CTPA. The scoring system was created to 

account for both disease location and extent, resulting in a formal framework for assessing 

disease burden and its effect on survival outcomes. Quantitative CT evaluation of clot burden, 

anatomical distribution, and severity in CTEPH might provide useful diagnostic assistance for 

radiologists. We found that central disease presence is a predictor of mortality in patients 

who do not undergo PEA. The scoring method demonstrated significant interobserver 

agreement, proving its reliability and repeatability in analysing CTEPH distribution. However, 

interobserver agreement was lower in distal disease cases, most likely due to the difficulty in 

evaluating smaller, more peripheral arteries. This highlights the need of utilising clinically 

appropriate AI model resolutions or advanced imaging methods to help improve distal disease 

detection. Additionally, significant correlations were found between distal disease with PVR 
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and lung parenchymal abnormalities such mosaic perfusion and lung infarction, which may 

contribute to disease development through changes in pulmonary blood flow and pulmonary 

tissue ischaemia. A significant correlation was observed between disease burden and 

haemodynamic abnormalities. A greater chronic thromboembolic disease scores were 

associated with higher PVR and mPAP, reflecting the expectation that greater thrombus load 

leads to increased right ventricular afterload. 

 

In chapter seven, we developed AI segmentation models for PA, PV and thromboembolic 

disease using CTPA imaging. The model achieved high accuracy of (0.95) for PA and PV, but 

performed moderately for thromboembolic disease (0.58), with no failures in segmentation 

of the three structures. Interobserver comparison demonstrated that the distal disease 

segmentation showed the most variation between observers. the difficulties of 

segmenting CTEPH resulting from anatomical diversity, organised thrombus, imaging 

artefacts, and a lack of annotated images. We also conducted a clinical evaluation of the AI-

driven thromboembolic segmentation to assess the prognostic value of volume-based disease 

location in patients with CTEPH. This study found that central disease was a significant 

predictor of mortality in those who did not undergo endarterectomy. The accuracy of AI-

driven thromboembolic segmentation was supported by the high correlation between 

automated thromboembolic disease volume and manual scoring analysis (as previously 

described in chapter 6). The integration of radiological assessment with AI-driven 

thromboembolic segmentation enhances the prognostic prediction capability of CTPA 

imaging as a robust imaging biomarker for CTEPH. 
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8.1 Limitations 
 

The purpose of the thesis was to address critical gaps in CTEPH imaging studies by: (1) 

conducting a systematic evaluation of parenchymal and cardiac CT abnormalities and their 

prognostic significance, (2) establishing a standardised thromboembolic burden 

quantification method, and (3) developing an AI algorithm to perform a comprehensive 

clinical evaluation of the segmentation results. 

 

One overarching limitation is that all analyses were conducted on retrospective data. 

Retrospective studies use previously acquired data rather than designing and conducting new 

research to address certain questions. Bias and other restrictions may result from this, which 

might compromise the reliability and applicability of the results. While all patients underwent 

CTPA, varying numbers underwent right heart catheterisation (RHC), pulmonary function test 

(PFT) and pulmonary endarterectomy. None of the patients included in this thesis underwent 

balloon pulmonary angioplasty (BPA), as this treatment option was not available during the 

study period (2008–2018).  In the UK, they are currently accepted plan of treatment for 

patients with inoperable CTEPH. We did not have any information on anticoagulant strategies 

and postoperative targeted medications. 

 

We created a CTEPH clinical radiology database from the ASPIRE registry. The results of this 

thesis were verified in a realistic clinical cohort utilising two CT scanners.  Although the ASPIRE 

registry has data from many centres, both the semi-qualitative CT assessments and the 

application of the AI model in this work were carried out using data from a single site 

(Sheffield). Consequently, the generalisability of the findings could be limited. In Addition, this 

thesis did not use any advanced CT technologies, such as dual-energy CT or photon-counting 

CT, which might restrict the visualisation and the detection of small distal disease and minor 

vascular changes in patients with CTEPH. Advanced CT scanners help to improve the image 

quality and diagnostic accuracy of CTEPH. 

 

A radiologist and a radiographer (both experienced in cardiothoracic imaging) conducted all 

labelling, segmentation, CT measurements, and evaluations of CTPA images. However, the 
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degree of the interobserver variability could limit the generalisability of the study findings, 

specifically in distal disease. For example, RV/LV measurements on CTPA have been shown to 

be poorly reproducible even among experienced radiologists (Lanham et al., 2022). While 

interobserver agreement was assessed through this thesis, variability in interpreting distal 

disease may still influence the consistency and applicability of certain results. 

 

In the systematic review (chapter 3), despite including conference abstracts in the eligibility 

criteria, only five studies met the inclusion requirements, limiting the ability to perform a 

formal meta-analysis of model performance. The review was limited to studies that 

specifically investigated the application of AI for diagnosing chronic pulmonary embolism (PE) 

or CTEPH on CTPA imaging. Methodological techniques and the reporting of dataset 

characteristics, including demographics, disease severity, and the number of chronic PE 

patients, vary between the included studies. This inconsistency affects the ability to 

accurately assess the generalisability and clinical applicability of the AI algorithms. 

 

In chapter 5, The study classified lung parenchymal anomalies (such as mosaic perfusion and 

lung infarction, using a semi-quantitative scoring method. However, the definitions and 

thresholds for these classifications were not standardised, which may limit the comparability 

of the findings with other studies. The study did not evaluate the impact of treatments (such 

as, medical therapy or PEA), which limits the correlation between CT features and outcomes. 

Understanding treatment impact on quality of life offers valuable insight for patient 

management. 

 

The findings from chapter 6 may not fully apply to broader populations with different clinical 

characteristics or treatment approaches. Another limitation is that intra-observer variability 

was not assessed. Although interobserver agreement was high, the consistency of individual 

observers over time remains unknown. Furthermore, the scoring system is still a semi-

quantitative approach that depends on visual assessment; however, it successfully classifies 

the distribution of diseases. 

 

In chapter 7, the primary limitations of AI research in medical imaging for CTEPH are the 

inadequate number of expert annotated training datasets, the lack of extensive clinical 
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datasets, and a limited diversity of patient demographics for model validation. Following 

prospective validation and, if feasible, randomised controlled studies for PA and PV 

segmentation, the next step towards routine clinical application was the initiation of clinical 

trials. While the lower performance in thromboembolic segmentation, emphasises the 

requirement of additional methods for model and data refining. The test set contained only 

a limited number of patients with CTEPH and acute PE, which may limit the reliability of 

performance in general clinical practice.  The absence of external validation is a key gap, as 

the model's performance has yet to be evaluated across multiple institutions, scanner types, 

and patient groups. Without multicentre validation, we cannot analyse possible biases in our 

single-centre dataset, such as institutional imaging techniques and patient selection criteria. 

Artefacts, suboptimal contrast opacification, and pulmonary artery segmentation errors can 

degrade AI performance to identify thromboembolic disease. Severe artefacts, which also 

challenge radiologists, may lead to misclassification in both AI predictions and manual 

radiological assessments. 

 

It is crucial to acknowledge the inherent challenges in achieving a universally accepted, 

ground-truth segmentation of thromboembolic pulmonary disease, as inter-reader variability 

remains a well-documented limitation across medical imaging disciplines (Webb et al., 2021, 

Wilson et al., 2021). AI diagnosis models inherently possess biases that are challenging to 

quantify, shaped by the characteristics of their training datasets. Specifically, the model's 

learning process is influenced by the subjective interpretations, preferences, and biases of 

the two observers responsible for labelling and segmenting the training data. For instance, 

differences in radiologists' capacity to identify small-vessel thrombosis or distinguish between 

organised thrombi and vascular remodelling may introduce bias into the model. Distal disease 

poses a significant diagnostic challenge to identify due to their small size, peripheral location, 

and often subtle imaging appearance, which can contribute to interobserver variability. To 

enhance the robustness and generalisability of the model, incorporating a more diverse group 

of radiologists with varying levels of expertise could improve its applicability across a wider 

range of clinical settings. 

 

Every AI model is specifically trained to address a particular clinical question, with the main 

objective of this thesis is to assess the prognostic impact of diagnosing thromboembolic 



178 
 

disease. Therefore, the AI algorithm was trained on a biased dataset consisting of patients 

with preassigned diagnoses of acute PE and CTEPH. Although the algorithm shows promising 

results in segmenting and predicting thromboembolic pulmonary disease, it is therefore 

limited to this particular group of patients and cannot be generalised to other diseases or 

conditions. Additionally, The AI model also lacks the ability to distinguish patients with CTEPH 

and acute PE, therefore suggesting a diagnostic disadvantage of the model. As a result, 

without additional training, transfer learning, or adaptive techniques the algorithm is 

ineffective as a diagnostic tool in larger clinical applications. AI algorithms are constrained and 

biassed by the demographics, disease subgroups, and data quality of the training dataset. 

These limitations reflect the difficulties encountered even by expert radiologists in identifying 

organised thromboembolic disease in patients with CTEPH. This highlights the importance of 

continuously refining and validating AI models in order to improve diagnosis accuracy and 

clinical applicability. 

 

An important methodological distinction exists between the AI and manual scoring 

approaches regarding disease localisation. The AI system adopts a more inclusive definition 

of central disease, incorporating both main pulmonary arteries (left and right) and lobar 

arteries in its assessment. In contrast, the manual analysis considers only main pulmonary 

artery, left and right involvement as central disease, classifying lobar artery involvement as 

segmental disease. This difference in classification criteria introduces potential challenges 

when comparing AI and manual performance metrics, as cases with isolated lobar 

involvement would be categorised differently by each method. Such inconsistencies may have 

an impact on the apparent agreement between automated and manual assessments and 

should be carefully evaluated when analysing comparative performance outcomes.  

 

Despite these limitations, our study shows both the promise and opportunity for further 

development in AI-derived thromboembolism disease segmentation. 
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9 Future work 
 
 

Building on the results given in this thesis, there are a number of potential opportunities for 

future study that might increase our understanding of the diagnosis and treatment of patients 

with CTEPH. 

 

This thesis presents research based on retrospective analysis. Further research to establish a 

prospective cohort to assess the diagnostic value of chronic thromboembolic disease, as well 

as pulmonary vascular and cardiac measurements, could be helpful. The validity and valuable 

relevance of these results would be further improved by carrying out larger, multi-centre 

investigations and prospective experiments.  

 

The study offers a solid basis for identifying the method by which CTEPH is associated with 

CTPA characteristics, including parenchymal lung disease, mosaic perfusion, and lung 

infarction. However, several directions for additional research might be developed based on 

these outcomes to further progress the field of study. One area for further research is to 

evaluate the effect of CTPA features on outcomes in patients undergoing balloon pulmonary 

angioplasty (BPA). Incorporating patients who have undergone BPA, which is recently utilised 

as a treatment method for CTEPH, may provide a more comprehensive understanding of how 

imaging characteristics affect results across various treatment modalities. Additionally, 

assessing changes in CT features after treatments such as pulmonary endarterectomy (PEA) 

or BPA, may be helpful in determining treatment effectiveness. In order to find more 

prognostic indicators and enhance risk stratification, future research should also investigate 

the function of new biomarkers, such as genetic and inflammatory markers, along with 

radiomics. Longitudinal studies with extensive follow-up periods can be used to estimate the 

long-term effects of CT characteristics on mortality, functional outcomes, and progression of 

CTEPH disease.  

 

While this work had complete CTPA data for all patients, the diversity in the number of 

patients who received right heart catheterisation (RHC) and pulmonary function testing 

(PFT), may restrict comparison analysis. To overcome this, future prospective research should 
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prioritise standardised data collection of multiple tests that ensure diagnostic techniques are 

applied consistently across all study participants. This would provide more comprehensive 

comparisons and correlations between imaging results and haemodynamic or functional 

outcomes. This possible investigation utilising standardised diagnostic approaches might 

confirm and enhance our findings, hence improving patient decision-making. 

 

Further segmentation of chronic thromboembolic disease in patients with CTEPH could be 

considered to improve the performance of the model. However, to enhance our AI model, 

future work should first focus on enhancing the diversity of training data by incorporating 

larger and multi-institutional datasets that include a wider range of CTEPH cases. Second, the 

model architecture should be optimized to reduce overfitting and improve performance 

across diverse patient populations, imaging protocols, and techniques. Several strategies 

might be considered in the future to improve segmentation of chronic thromboembolic 

disease, including patch-based image analysis methods to enhance detection and the use of 

generative techniques to reduce image artefacts. While these generative methods show 

promise for improving segmentation accuracy and model reliability, the risk of image 

hallucination remains a critical concern, as it could introduce false features that may mislead 

clinical interpretation. We are also exploring semi-supervised learning techniques, including 

black-box models capable of utilising both labelled and unlabelled datasets. Tools such as 

Grad-CAM or occlusion sensitivity maps can be used for understanding decisions in image 

classification and highlight the most significant regions of the image. Third, integrating CTPA 

findings with haemodynamic parameters may provide valuable background data to improve 

the diagnostic accuracy of the model. Finally, the pretrained models will be further analysed 

by performing additional fine-tuning and comparing them to the standard pretrained models. 

Further model refinement, training with more diverse and annotated datasets, and external 

validation are essential before clinical application. 

 

The AI methodology and processes applied in this thesis to quantify acute PE and CTEPH can 

be developed to automatically quantify additional imaging characteristics. Possible 

requirements in a chest CTPA scan include quantification of mosaic perfusion, lung infarction, 

air trapping and consolidation. At the same time, some initial development work has been 

done on these approaches. Segmentation of imaging features, including mosaic perfusion, 
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lung infarction, air trapping, and consolidation is initially started using MIM software in 

patients with CTEPH. The aim is to develop an integrated and comprehensive CTPA model 

that combines multiple AI systems to automatically analyse and quantify a variety of imaging 

characteristics in patients with CTEPH. CTPA might then measure the abnormalities in the lung 

parenchyma associated with CTEPH, analyse the pulmonary arteries, and determine the 

severity of CTEPH. This would considerably improve radiological reporting and give 

quantifiable outcomes for measuring prognostic effects. 

 

Advanced imaging techniques, such as dual-energy computed tomography (DECT), lung 

subtraction iodine mapping (CT LSIM), and high-resolution imaging with photon-counting CT, 

have not yet been fully utilised by AI tools. Future research could build on this thesis by 

exploring the integration of AI with these modalities, which hold the potential to enhance 

diagnostic workflows and help in earlier detection of CTEPH. 

 

Another interesting area for future work is to comprehensively examine the correlation 

between haemodynamic flow patterns in the main pulmonary arteries and AI-derived central 

clot volume. Such a study could offer deeper insight into the mechanisms underlying chronic 

thromboembolic disease formation in the main pulmonary arteries. Central chronic 

thromboembolic disease, presumably located in the main pulmonary arteries, may reflect 

slow or turbulent flow in the proximal pulmonary arteries as a consequence of severe 

pulmonary hypertension and reduced cardiac output. Advanced imaging techniques, such as 

computational fluid dynamics (CFD) or 4D flow magnetic resonance imaging (MRI), can be 

utilised to assess flow patterns, including turbulence, shear stress, and velocity 

characteristics, in patients with severe pulmonary hypertension. Using advanced imaging 

techniques to assess patients with severe pulmonary hypertension could help evaluate 

whether a higher thrombus burden is associated with more severe turbulent flow. 
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10 Conclusion  
 

This thesis proposes semi-quantitative assessments and AI-driven quantitative analyses to 

evaluate the role of CTPA in patients with CTEPH. The results demonstrated that parenchymal 

lung changes on CTPA are common in CTEPH and have an adverse impact on survival. An 

increase in aortic diameter predicts poorer outcomes, likely attributable to the influence of 

underlying comorbidities. Patients with CTEPH should undergo a systematic evaluation of the 

lung parenchyma, cardiac chambers and pulmonary vessels, to emphasise its prognostic 

importance. It further presented a novel scoring system to assess the location and severity of 

chronic thromboembolic disease. The presence of central disease was found to be an 

independent risk factor for worse outcome in patients not undergoing endarterectomy. Distal 

thromboembolic disease demonstrated the lowest interobserver agreement compared to 

central and segmental disease. The thesis also developed an automated AI model for 

quantifying PA, PV and thromboembolic disease. Although the segmentation accuracy for 

thromboembolic disease was suboptimal relating to the challenging human task of 

thromboembolic segmentation, the model demonstrated high classification performance and 

robust correlations with haemodynamic parameters. This demonstrates the potential to 

assist in the diagnosis, prognosis, and quantification of the chronic thromboembolic disease 

burden. This work has enhanced understanding of thromboembolic burden in CTEPH and 

demonstrates its potential to help in refining diagnosis, risk stratification, and patient 

management. 

 

This work also acknowledged several limitations and outlined potential future developments, 

including the enhancement of distal disease detection, dataset diversity, and the requirement 

for external validation. An AI model that can both automatically analyse and provide a 

prediction about the outcome of CTEPH would be a ground-breaking in the field of pulmonary 

embolism disease. 
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