
Enhancing Bayesian
Optimization for Compiler

Auto-tuning

Jiayu Zhao
University of Leeds

School of Computer Science

Submitted in accordance with the requirements for the degree of
Doctor of Philosophy

August, 2025

http://www.leeds.ac.uk
https://eps.leeds.ac.uk/computing

Intellectual Property Statement

I confirm that the work submitted is my own, except where work which
has formed part of jointly authored publications has been included. My
contribution and the other authors to this work has been explicitly indicated
below. I confirm that appropriate credit has been given within the thesis
where reference has been made to the work of others.

Chapter 4 is based on work published in:

• Jiayu Zhao, Renyu Yang, Shenghao Qiu, and Zheng Wang, “Unleash-
ing the Potential of Acquisition Functions in High-Dimensional Bayesian
Optimization”, Transactions on Machine Learning Research (TMLR),
2024.

Chapter 5 is based on work published in:

• Jiayu Zhao, Chunwei Xia, and Zheng Wang, “Leveraging Compilation
Statistics for Compiler Phase Ordering,” IEEE International Parallel
and Distributed Processing Symposium (IPDPS), 2025.

I confirm that I am the first author of all these jointly authored publications,
that the work contained within these publications is directly attributable
to me, and that the contributions of the co-authors have been in terms of
general advice and assistance.

This copy has been supplied on the understanding that it is copyright mater-
ial and that no quotation from the thesis may be published without proper
acknowledgement.

The right of Jiayu Zhao to be identified as Author of this work has been as-
serted by Jiayu Zhao in accordance with the Copyright, Designs and Patents
Act 1988.

© 2025 The University of Leeds and Jiayu Zhao.

i

Acknowledgements

First of all, I want to express my deepest gratitude to my academic advisor,
Professor Zheng Wang. His generous sharing of time, thoughtful insights,
and unwavering support have been instrumental throughout my research
journey. His patience, innovation, enthusiasm, and optimism have continu-
ally motivated and inspired me.

I am also truly grateful to every member of the DSS group at the Uni-
versity of Leeds. Your warmth and collaborative spirit have made this group
a truly rewarding community.

I am indebted to all my friends in both the UK and China, whose encour-
agement and support have enriched my experience in ways too numerous
to list.

I must also acknowledge the unconditional love and support of my family
– my Mum, Dad, and sister Jin – whose faith in me has been a constant
source of strength.

Finally, I would like to thank my girlfriend, Chenfei. Her endless under-
standing, patience, and encouragement have been my rock throughout this
process. No words can adequately convey my gratitude for her support.

ii

Abstract

Modern compilers offer a wide range of passes for code optimisation. Se-
lecting the right combination and order of these passes, known as phase
ordering, can improve the performance of compiled binaries. Autotuning,
which refers to automatically searching the space of possible pass combin-
ations, is a powerful technique for compiler phase ordering. However, its
practical adoption remains challenging due to the vast search space of com-
piler optimisations and the high cost of evaluating candidate configurations.

This thesis enhances compiler autotuning by leveraging Bayesian optimisa-
tion (BO) to efficiently explore the complex space of compiler phase or-
dering. BO builds an online surrogate model to approximate the objective
function to reduce evaluation overhead. It uses an acquisition function (AF)
to guide sampling, improving search efficiency. While promising, applying
BO to compiler autotuning requires addressing multiple open challenges.

First, standard BO struggles with high-dimensional search spaces like com-
piler phase ordering. To address this, this thesis introduces a simple yet
effective AF initialisation strategy to enhance BO’s ability to navigate high-
dimensional optimisation spaces.

Second, the complex interactions between compiler passes make it difficult
to model the relationship between pass sequences and performance to build
an effective surrogate model. To tackle this, a new compiler autotuning
strategy is proposed to incorporate compilation statistics to model these
interactions. This method improves BO’s search efficiency, requiring only
one-third of the search budget compared to previous approaches while de-
livering higher-performance binaries.

Finally, a real-world program often contains multiple source files and com-
plex compilation workflows. Applying compiler autotuning to such settings
requires efficiently allocating the search budget across the compilation tar-
gets. To address this, this thesis presents an adaptive BO scheme that dy-
namically allocates search budgets across source files and develops a frame-
work to automate compiler autotuning setup.

Together, these contributions improve the efficiency, scalability, and usab-
ility of BO-based compiler autotuning, making it a more practical tool for
autotuning compiler phase ordering.

iii

Contents

1 Introduction 1
1.1 Problem Scope . 4
1.2 Research Challenges . 5

1.2.1 High-Dimensional Optimisation Space 5
1.2.2 Complex Interactions between Compiler Passes 6
1.2.3 Practicality Barriers . 7

1.3 Contributions . 8
1.4 Thesis Outline . 9

2 Background 11
2.1 Bayesian Optimisation . 11

2.1.1 Gaussian Process . 13
2.1.2 Acquisition Function . 14

2.2 Heuristic Optimisation . 17
2.2.1 Genetic Algorithm . 17
2.2.2 Covariance Matrix Adaptation Evolution Strategy 19
2.2.3 Discrete 1+λ Evolution Strategy 23

2.3 Summary . 23

3 Related Work 24
3.1 Compiler Autotuning . 24

3.1.1 Search-based Compiler Autotuning 24
3.1.2 Predictive Modelling . 27

3.2 Bayesian Optimisation . 29
3.2.1 High-Dimensional Bayesian Optimisation 29
3.2.2 Acquisition Function Maximization 36

iv

CONTENTS

3.3 Bayesian Optimisation in Code Optimisation 38
3.4 Code Characterization . 40
3.5 Summary . 42

4 Understanding Challenges of High-Dimensional Bayesian Optimisa-
tion 43
4.1 Introduction . 43
4.2 Motivation . 48

4.2.1 A Synthetic Function as Motivation 49
4.2.2 Compiler Autotuning . 51

4.3 Methodology . 52
4.3.1 Heuristic Acquisition Function Maximizer Initialisation 53
4.3.2 Implementation Details . 55

4.4 Experimental Setup . 58
4.4.1 Benchmarks . 58
4.4.2 Evaluation Methodology . 60

4.5 Experimental Results . 61
4.5.1 Comparison with Baselines . 61
4.5.2 Evaluation under Different AFs 65
4.5.3 Over-Exploration of Random Initialisation 65
4.5.4 The Case of Over-Exploitation 71
4.5.5 Ablation Study . 71
4.5.6 Comparison with Other Initialisation Strategies 73
4.5.7 Evaluation under Different Hyper-Parameters 75
4.5.8 Impact of AF Settings on GA Population Diversity 77
4.5.9 Algorithmic Runtime . 77

4.6 Summary . 78

5 Leveraging Compilation Statistics for Compiler Phase Ordering via
Bayesian Optimisation 80
5.1 Introduction . 80
5.2 Motivation . 83
5.3 Our Approach . 85

5.3.1 Overview . 85

v

CONTENTS

5.3.2 Bayesian Optimisation for Compiler Phase Ordering 86
5.3.3 Cost Model for Performance Estimation 88
5.3.4 Acquisition Function Design . 89
5.3.5 Pass Sequence Generator . 91
5.3.6 Autotuning Task Definition . 92

5.4 Experimental Setup . 92
5.4.1 Implementation . 92
5.4.2 Evaluation Platforms . 92
5.4.3 Benchmarks . 94
5.4.4 Competing Baselines . 94
5.4.5 Evaluation Methodology . 96

5.5 Experimental Results . 97
5.5.1 Comparison with Baselines . 97
5.5.2 Ablation Study . 101
5.5.3 Alternative Feature Extraction Methods 101
5.5.4 Hyperparameter Sensitivity Analysis 103
5.5.5 Compilation Statistics Analysis 104
5.5.6 Algorithmic Runtime . 106

5.6 Summary . 106

6 Conclusions 108
6.1 Contributions . 108

6.1.1 A Simple and Effective High-Dimensional BO Method 108
6.1.2 Customisation for Compiler Phase Ordering 109
6.1.3 Practical Multi-Module Autotuning 110

6.2 Critical Analysis . 110
6.2.1 Pass-Related Compilation Statistics 110
6.2.2 Program-Specific Autotuning . 111
6.2.3 Additional Compilation and Modelling Cost 111
6.2.4 Optimisation Objective . 111

6.3 Future Work . 112
6.3.1 Coverage-Based Code Characterization 112
6.3.2 Exploiting Program-Independent Pass Correlations 112
6.3.3 Integrating Coarse Offline and Fine-Grained Online Learning . . 112

vi

CONTENTS

References 114

vii

List of Figures

1.1 The compilation flow for applying customised pass sequences. 4

2.1 The general workflow of Bayesian optimisation. 12
2.2 The general workflow of a genetic algorithm (GA). 18
2.3 Illustration of how CMA-ES evolves on a simple two-dimensional problem. 20

4.1 Illustration of Bayesian optimisation with an EI acquisition function,
where the rows from top to bottom correspond to increasing optimisa-
tion iterations. The left panel shows the optimisation process: red dots
indicate observed data points (evaluated configurations), the red dashed
curve represents the true (unknown) objective function, and the green
dashed curve with shaded area depicts the surrogate model prediction
with its confidence interval. The right panel shows the corresponding
AF (EI), where the blue dot marks the next evaluation point suggested
by the AF. 45

4.2 Heuristic algorithms in AIBO . 47
4.3 Motivation example for AF maximisation in high-dimensional BO . . . 49
4.4 Motivation example of compiler autotuning 51
4.5 Results on synthetic functions. 62
4.6 Results on real-world problems. 63
4.7 Evaluating the performance of AIBO and BO-grad under different AFs 66
4.8 Over-exploration of Random Initialisation with UCB1.96 67
4.9 Over-exploration of Random Initialisation with UCB1 68
4.10 Over-exploration of Random Initialisation with EI 69
4.11 The case of over-exploitation . 71
4.12 Comparing AIBO to its variants . 72

viii

LIST OF FIGURES

4.13 Comparison with other initialisation strategies 74
4.14 The impact of hyper-parameters on AIBO 76
4.15 The impact of AF on the diversity of GA population 78

5.1 An example showing how the phase order matters 83
5.2 Overview of the Citroen framework. 86
5.3 Citroen’s Bayesian optimisation workflow. 86
5.4 Citroen’s candidate configuration generator. 87
5.5 An example of using Citroen for phase ordering. 93
5.6 Average performance of Citroen on cBench and SPEC 98
5.7 Evaluation on cBench and SPEC with different search iteration budgets. 99
5.8 Ablation study . 100
5.9 Comparison with alternative feature extraction methods 102
5.10 Comparison of Citroen and Autophase using LLVM 10 as the compiler.

The y-axis is the speedup relative to -O3. 102
5.11 Hyperparameter Sensitivity Analysis of Citroen. The y-axis is the

speedup relative to -O3. 104
5.12 Average proportion of algorithmic runtime. 106

ix

List of Tables

3.1 Two categories of compiler autotuning techniques. 25
3.2 High-dimensional Bayesian optimisation techniques. 30
3.3 Acquisition function maximisation techniques used in previous BO liter-

ature. 37
3.4 Bayesian Optimisation In Software Optimisation. 39
3.5 Code Characterization. 41

4.1 Benchmarks used in evaluation. 58
4.2 Algorithmic runtime . 78

5.1 Relationship between pass-related compilation statistics and speedup . . 84
5.2 Coverage issue . 90
5.3 LLVM optimisation passes considered in evaluation 93
5.4 Benchmarks used in evaluation. 95
5.5 Top 5 impactful compilation statistics recognised by the Citroen cost

model . 105

x

Abbreviations

BO Bayesian Optimisation
GP Gaussian Process
AF Acquisition Function
EI Expected Improvement
UCB Upper Confidence Bound
GA Genetic Algorithm
ES Evolution Strategy
CMA-ES Covariance Matrix Adaptation Evolution Strategy
DES Discrete 1+λ Evolution Strategy
IR Intermediate Representation
AST Abstract Syntax Tree
CFG Control Flow Graph
GNN graph neural networks
RNN Recurrent Neural Network

xi

Chapter 1

Introduction

Compilers are the cornerstone of modern computer systems, serving as the essential
bridge that translates high-level programming languages such as C/C++ into low-level
machine instructions for execution. With the increasing complexity of hardware archi-
tectures and the growing diversity of software demands, compilers have evolved from
basic translation tools to sophisticated optimisation frameworks, striving to maxim-
ise hardware performance. Over the decades, compiler design and optimisation have
become critical for improving computational efficiency, reducing energy consumption,
and enhancing overall system performance.

Modern compilers like LLVM [1] and GCC [2] provide a large number of optimisa-
tion transformations to select among. These transformations, referred to as passes in
the compiler context, play a crucial role in optimising program performance. Each com-
piler pass performs a specific code analysis and transformation, including techniques
like loop unrolling, instruction scheduling, and register allocation. The optimisation
passes we enable, the order in which we apply them to a program, and the specific
parameters of each applied optimisation pass have a substantial impact on program
performance, such as execution time, code size, or power consumption. Compared to
optimizing runtime or energy consumption, minimizing code size is generally a simpler
task, as it primarily involves static properties of the compiled program. Code size can
be evaluated without running the program, and is less sensitive to dynamic execution
behavior or hardware-specific factors. In contrast, optimizing execution time or energy
consumption requires modeling complex interactions between the program, compiler
transformations, and the underlying hardware. These metrics depend on runtime be-
havior such as memory access patterns, branching, and instruction-level parallelism.

1

Especially, execution time is typically the top priority in industry, as faster programs
directly improve user experience and system efficiency. Moreover, shorter execution
time often leads to lower energy consumption, making runtime optimization beneficial
for both performance and energy efficiency.

By default, compilers provide optimisation level settings, such as -O3 for execution
time optimisation and -Oz for code size reduction, which apply a fixed pass sequence to
enhance program performance on average. However, these default optimisation levels
are not always sufficient for all programs. Each program has unique characteristics and
may benefit from a different set of optimisation passes. For example, some programs
may benefit from aggressive inlining that can increase register pressure but reduce
function calling overhead, while others may benefit from register promotion to reduce
memory access overhead or encourage vectorisation. Carefully selecting and ordering
compiler passes to improve the performance of the generated code for a given program,
known as the compiler phase ordering problem, has been an open problem in the field
for several decades, and it is known to be NP-complete [3]. Compiler phase ordering
is especially valuable for frequently executed programs. Even a minor enhancement in
execution time can yield significant benefits over time.

Autotuning is an approach to address the problem of automatically selecting a good
compiler optimisation configuration for an application. Typically, compiler autotuning
involves searching the optimisation space to find the best optimisation configuration
that maximises the performance of the input program. However, autotuning usually
requires a large number of evaluations to find a good configuration, especially when
involving numerous compiler passes. When focusing on optimising execution time, each
evaluation requires running the generated binary in an isolated environment, which can
be time-consuming.

To address the problem of the high cost of autotuning, predictive model-based tech-
niques have been proposed to accelerate the search process [3, 4]. These techniques rely
on offline data collected from a set of training programs. Specifically, each program is
compiled and executed under hundreds of randomly generated compiler configurations,
each defined by a different combination of optimisation passes, and the performance
of each configuration is measured. The collected data – including program features,
compiler configurations, and their corresponding performance (e.g., execution time) – is
then used to train a machine learning model. This model can either predict the optimal

2

configuration for an unseen program or estimate the performance of configurations to
guide the search without profiling. However, the effectiveness of these learning-based
methods is often limited by the complexity of the optimisation problem and the avail-
ability of high-quality training data. Yet, the application of machine learning-based
predictive models to compiler autotuning has remained a largely academic pursuit,
with little progress adopted in general-purpose, industrial compilers like LLVM [5]. A
small amount of industrial effort has been focused on cases where the optimisation
objectives are code size, and only a single pass, such as inlining, is considered [5]. For
autotuning complex optimisation tasks, such as compiler phase ordering with a focus
on execution time, training a generic, robust, and well-generalised predictive model
offline becomes nearly infeasible due to the extensive data requirements for training.

This thesis aims to improve the autotuning efficiency of compiler phase ordering for
execution time optimisation. Motivated by offline predictive model-based methods [4],
we consider an online model-guided search process without relying on offline training
to avoid the limitations of training data requirements. Given that the online model is
trained on the fly, it can adapt to unseen programs and hardware platforms. However,
online-trained cost models may be inaccurate due to limited data availability. Relying
entirely on such models can lead to overfitting to local observations, causing the op-
timisation process to get stuck in local optima and miss globally better solutions. To
address the issue, we employ Bayesian optimisation (BO), which explicitly accounts for
model uncertainty and balances exploration and exploitation efficiently. BO’s probab-
ilistic framework incorporates uncertainty into the decision-making process, ensuring
that the search is not overly reliant on potentially inaccurate predictions. Instead,
it explores the optimisation space in a way that balances risk and reward, effectively
guiding the search even when model inaccuracies are present. This makes BO a ro-
bust choice for optimising compiler phase ordering in dynamic environments, where
obtaining precise models is inherently difficult.

Unlocking the potential of BO in compiler auto-tuning requires overcoming several
challenges. In particular, the high-dimensional search space of compiler phase ordering
poses a significant obstacle. To address this, we propose an optimised BO method with
a carefully designed initialisation strategy for general high-dimensional optimisation
problems. This method is further customised to leverage the unique characteristics of
phase ordering, enabling its effective application to the problem.

3

1.1 Problem Scope

co
ns

tp
ro

p

Pass sequence

IR

b.ll

a.ll

Optimized
IR

Optimizer

Front-
end

b.c

a.c

Source

Back-
end Binary

co
ns

tp
ro

p

in
lin

e

...

sr
oa

gl
ob

al
op

t

lic
m ... b_opt.ll

a_opt.ll

Figure 1.1: The compilation flow for applying customised pass sequences.

The remainder of this chapter discusses the compiler phase ordering problem in
detail, highlights the challenges of applying BO, and outlines the key contributions of
this thesis. Finally, the overall structure of the document is presented.

1.1 Problem Scope

As depicted in Figure 1.1, modern optimisation compilers are organised as a sequence of
three modules: front-end, optimiser (middle-end), and back-end. The front end trans-
lates the source code into an intermediate representation (IR), which is then optimised
by the optimiser. The optimiser applies a sequence of optimisation passes to the IR to
improve the program’s performance. Finally, the back-end translates the IR into the
target machine code. For programs with multiple source files (e.g., C programs with
‘.c’ files), each file can be treated as an independent optimisation unit, referred to as a
module.

The optimisation passes used in the middle end can be classified into two categories:
analysis and transformation. Analysis passes collect information about the program,
such as control flow graphs, data dependence graphs, and alias information, without
changing the IR. Transformation passes modify the program to improve performance,
such as loop unrolling, inlining, and vectorisation. Transformation passes can be ap-
plied in different orders to the IR, and the order in which the passes are applied can
significantly affect the performance of the generated code.

In this thesis, we focus on compiler phase ordering, which is the problem of finding
the optimal order of optimisation passes to improve the performance of the generated
code. Although compiler phase ordering typically does not affect program correctness,

4

1.2 Research Challenges

rare cases may arise where certain orderings introduce crashes or semantic errors. To
ensure correctness, we apply differential testing, a technique that compares the out-
puts of the original and optimised programs on the same inputs to detect semantic
deviations. In our settings, a pass can be applied multiple times within a single pass
sequence to optimise an individual source file. This leads to the fact that the search
space grows exponentially with the number of optimisation passes and parameters we
consider, making it infeasible to perform an exhaustive search for the optimal config-
uration. Given n optimisation passes, the number of possible sequences of length k is
nk. For example, with 69 passes included in the LLVM 17 -O3 optimisation level and a
maximum sequence length of 120, the number of possible pass sequences is 69120, which
leads to astronomically large search space. Besides, unlike previous work, we allow the
application of different pass sequences to different modules, thus expanding the search
space and imposing higher demands on the search algorithm.

This thesis employs Bayesian optimisation (BO) to improve the autotuning effi-
ciency of compiler phase ordering. However, the unique characteristics of the compiler
phase ordering problem pose several challenges to the application of BO, which are
discussed in the following section.

1.2 Research Challenges

BO provides a principled way to employ an online cost model to improve the efficiency
of autotuning the compiler phase ordering problem. However, there are three challenges
that must be overcome to realise the goal.

1.2.1 High-Dimensional Optimisation Space

BO is known to be competitive in low-dimensional optimisation problems [6], where
it can efficiently balance exploration and exploitation to locate the global optimum.
However, its performance deteriorates significantly as the dimensionality or the size
of the search space increases. This is particularly problematic for the phase order-
ing problem, which is inherently high-dimensional. In compiler phase ordering, the
search space grows exponentially with the number of available optimisation passes and
the maximum sequence length, creating a combinatorial explosion that standard BO
techniques struggle to handle.

5

1.2 Research Challenges

Despite extensive research on extending BO to high-dimensional problems, the
majority of existing methods still exhibit poor performance, particularly in challen-
ging scenarios. Popular approaches like trust region-based local Bayesian optimisation
(TuRBO) [7] have shown promise in high-dimensional continuous optimisation by it-
eratively exploring local regions of the search space. However, they are designed for
continuous optimisation problems and are not directly applicable to the phase ordering
problem with a complex categorical search space. Moreover, while some recent high-
dimensional BO techniques attempt to adapt to categorical or structured spaces, they
often assume that the number of categories (the number of passes in the phase order-
ing problem) is small or rely on additional domain-specific priors to perform well [8, 9].
Neither of these requirements is feasible in the context of compiler autotuning. As a
result, the applicability of high-dimensional BO methods to phase ordering tasks re-
mains largely unexplored, leaving a significant gap in optimisation techniques capable
of addressing this challenging problem.

1.2.2 Complex Interactions between Compiler Passes

The interactions between different compiler passes are highly complex and vary de-
pending on the programs being optimised, making it extremely difficult to model their
combined effects accurately. The non-commutative nature of compiler passes means
that one pass’s effect can significantly alter subsequent passes’ effectiveness. For in-
stance, certain optimisation passes might improve performance in some cases, but if
the preceding or subsequent passes are incompatible, the results could be detrimental.
As a result, the performance impact of a sequence of passes is not simply the sum of
the individual effects but rather is shaped by the complex interdependencies between
the passes.

These interactions complicate the task of predicting the performance impact of a
given pass sequence, requiring a model that can capture the intricate dependencies
between passes. Traditional surrogate models like Gaussian processes [10] used in BO
struggle with this level of complexity. Even with more expressive models designed for
sequence modelling, such as recurrent neural networks (RNNs) [11] and transformers
[12], the high-dimensional and categorical nature of the compiler optimisation search
space presents a significant challenge. These models require a large amount of training
data to effectively capture the complex relationships within such spaces. However, in

6

1.2 Research Challenges

practice, the search budget for compiler autotuning is typically limited to only a few
hundred evaluations, which is far from sufficient to provide the large dataset needed
to train deep learning models like RNNs and transformers without overfitting. Fur-
thermore, incorporating uncertainty estimates into these models would necessitate the
use of Bayesian neural networks [13], which are computationally expensive and require
careful parameter tuning, making their application even more impractical in this con-
text.

In summary, the combination of complex, non-linear interactions between compiler
passes, the high-dimensional and categorical nature of the search space, and the lim-
itations of current machine learning models make it difficult to accurately predict the
performance impact of pass sequences.

1.2.3 Practicality Barriers

Although an extensive body of work shows compiler phase ordering can improve ap-
plication performance [14, 15], the adoption of compiler phase ordering to real-world
applications is limited. Firstly, real-world applications are often composed of multiple
source files (referred to as modules in this thesis). Applying one optimisation sequence
to all source files will restrict the optimisation potential, but autotuning all source files
one by one is too time-consuming and impractical. Many source files might already be
optimised well with a default optimisation sequence like -O3; thus, autotuning them is
unnecessary. This requires a multi-module compiler phase ordering approach. Secondly,
engineering efforts are required to apply compiler phase ordering to a real-world ap-
plication. To integrate custom optimisation sequences into the compilation process,
users need to understand and then manually re-implement the compilation process of
the application as a function to be interacted with by the autotuning algorithms. This
is a barrier for users who are not familiar with compiler internals. For real-world ap-
plications, the compilation process is often complex and involves many source files,
which makes the manual implementation of the compilation process error-prone and
time-consuming.

7

1.3 Contributions

1.3 Contributions

This thesis presents a novel BO-based approach that addresses the challenges outlined
above to compiler phase ordering. The proposed approach leverages pass-related com-
pilation statistics to guide the search for the optimal order of optimisation passes. It
uses an adaptive BO scheme to dynamically allocate the search budget across multiple
source files within a single program. The proposed approach is evaluated on a set of
benchmark programs and compared with existing compiler phase ordering approaches.
The key contributions of this thesis are:

High-dimensional BO. Firstly, it investigates a largely understudied problem in high-
dimensional BO, concerning the impact of acquisition function maximiser initialisation
on exploiting acquisition functions’ capability. It proposes a simple but effective initial-
isation strategy to employ multiple heuristic optimisers to leverage the historical data of
black-box optimisation to generate initial points for the acquisition function maximiser.
Experimental results on a range of heavily studied synthetic functions and real-world
applications show that the proposed technique, while simple, can significantly enhance
the standard BO and outperform state-of-the-art methods by a large margin in most
test cases. In over half of the cases, it achieves better performance than standard BO
using only 1/2 of the search budget required for standard BO to converge. The idea
of heuristic acquisition function maximiser initialisation can be applied to any type of
optimisation problem, including discrete and categorical problems like compiler phase
ordering. This addresses the high-dimensional optimisation space challenge (Sec 1.2.1).
Chapter 4 presents this work.

Modelling Compiler Pass Interactions. Next, based on the high-dimensional BO
method proposed in Chapter 4, it proposes the first BO-based approach for compiler
phase ordering by utilising pass-related compilation statistics to model the compiler
pass interactions. It also identifies and solves a coverage issue brought by the non-
uniform, sparse statistics feature space by customising the acquisition function design.
Evaluations conducted on a variety of benchmarks across different platforms demon-
strate the approach’s superior performance compared to competitive baselines. It
achieves comparable tuning results using only 1/3 of the search budget required by
other methods. The approach is particularly effective under constrained search budgets:
with a budget of 100 runtime measurements, it delivers up to a 17% improvement in

8

1.4 Thesis Outline

program execution speed over random search and up to 10% over the strongest baseline.
Especially, on the SPEC CPU 2017 [16] benchmarks, our approach achieves an average
improvement of 6% over the default -O3 optimisation level and 2% over random search.
These results are particularly meaningful given the size and complexity of the SPEC
benchmarks, where achieving even small performance gains is notably difficult. This
addresses the challenge of complex compiler pass interactions (Sec 1.2.2). Chapter 5
discusses this work.

Addressing Practicality Barrier. Finally, it presents an adaptive BO scheme to
dynamically allocate the search budget across multiple source files within a single pro-
gram. Experimental results show the adaptive BO scheme can achieve up to a 2.5×
faster convergence time. It also develops a user-friendly framework for multi-module
compiler phase ordering. The user-friendly framework allows users to autotune the
compiler phase order of real-world multi-module applications without rewriting a com-
pilation process. This addresses the practicality barrier challenge (Sec 1.2.3). Chapter
5 presents this work.

1.4 Thesis Outline

The remainder of this thesis is organised as follows.

• Chapter 2 provides the background knowledge of Bayesian optimisation and heur-
istic optimisation algorithms used in this work.

• Chapter 3 provides a review of the relevant literature. It first reviews prior
work on high-dimensional BO and then discusses existing approaches to compiler
autotuning. It also outlines the existing work of BO used in code optimisation,
before describing prior code characterisation approaches.

• Chapter 4 investigates a largely ignored bottleneck of the high-dimensional BO
problem, i.e., the acquisition function maximisation. It proposes a simple but
effective strategy to initialise the acquisition function maximiser. By employ-
ing multiple heuristic optimisers to leverage the historical data of black-box op-
timisation to generate initial points for the acquisition function maximiser, it
significantly improves the performance of BO in high-dimensional optimisation
problems. This chapter is based on the work published in:

9

1.4 Thesis Outline

– Jiayu Zhao, Renyu Yang, Shenghao Qiu, and Zheng Wang, “Unleashing the
Potential of Acquisition Functions in High-Dimensional Bayesian Optimiza-
tion”, Transactions on Machine Learning Research (TMLR), 2024.

• Chapter 5 develops a novel approach to compiler phase ordering that integrates
pass-related compilation statistics into the high-dimensional BO method proposed
in Chapter 4. It also presents an adaptive BO scheme to dynamically allocate the
search budget across multiple source files within a single program. It evaluates
the proposed approach on a diverse set of benchmark programs of varying sizes,
highlighting its scalability. This chapter is based on the work published in:

– Jiayu Zhao, Chunwei Xia, and Zheng Wang, “Leveraging Compilation Stat-
istics for Compiler Phase Ordering,” IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), 2025.

• Chapter 6 concludes the thesis and discusses future research directions.

10

Chapter 2

Background

This chapter provides an overview of the techniques and theory used in this thesis.
Section 2.1 introduces the background of Bayesian optimisation (BO). Section 2.2 dis-
cusses heuristic optimisation methods that are employed in the work of this thesis
before summarizing this chapter in Section 2.3.

2.1 Bayesian Optimisation

Bayesian optimisation (BO) is a powerful machine-learning-based approach designed to
solve expensive black-box function optimisation problems [17], typically formulated as
x∗ = arg minx f(x). The primary goal of BO is to identify the optimal solution x∗ with
the minimum number of function evaluations, which is crucial when each evaluation is
costly.

BO consists of two main components: a Bayesian statistical surrogate model and
an acquisition function (AF). The surrogate model, often implemented as a Gaussian
process (GP) [10], provides a probabilistic model of the objective function. This model
generates a posterior probability distribution over the possible values of f(x) at any
candidate point x, which is updated iteratively as new observations are made. The sur-
rogate model’s output includes both the predicted mean and the uncertainty (variance),
which are essential for constructing the AF.

The AF guides the search for the optimum by balancing exploration (sampling
points with high uncertainty) and exploitation (sampling points with high predicted
values). The AF uses the surrogate model’s predictions to determine the most promising
points to sample next.

11

2.1 Bayesian Optimisation

Training set

Surrogate
model

Provide both prediction
and uncertainty

Train

Acquisition
function 𝛼 𝑥

Next evaluation
point 𝑥௧

Black-box
Objective Function

Maximize the
acquisition function:
𝑥௧ = 𝑎𝑟𝑔𝑚𝑎𝑥௫𝛼 𝑥

Trade off the model
prediction and uncertainty

Initialize

(𝑥௧, 𝑦௧)

Update

Figure 2.1: The general workflow of Bayesian optimisation.

The general workflow of BO is illustrated in Figure 2.1. The key steps involved in
BO are as follows:

1. Initialisation: Begin with an initial set of sample points and evaluate the ob-
jective function at these points to gather initial data.

2. Surrogate Model Construction: Use the initial data to construct the surrog-
ate model, typically a GP, which provides a probabilistic estimate of the objective
function.

3. Acquisition Function Maximization: Optimise the AF to identify the next
candidate point for evaluation. This step involves balancing exploration and
exploitation based on the surrogate model’s predictions.

4. Sample Evaluation: Evaluate the objective function at the candidate point
suggested by the AF.

5. Model Update: Update the surrogate model with the new data point, refining
the posterior distribution of the objective function.

6. Iteration: Repeat steps 3 to 5 until a stopping criterion is met, such as a max-
imum number of iterations or convergence to a satisfactory solution.

In the following two subsections, we introduce Gaussian processes (GPs) and ac-
quisition functions (AFs) in more detail, as they are the core components of BO.

12

2.1 Bayesian Optimisation

2.1.1 Gaussian Process

Gaussian processes (GPs) [10] have long been the mainstream surrogate model for
BO due to their ability to provide a principled framework for modelling uncertainty in
function evaluations. To address the computational challenges associated with GPs, al-
ternative approaches such as using random forest [18, 19] and Bayesian neural networks
[20, 21] as surrogate models have been proposed, aiming to reduce the computational
cost. However, recent advancements in scalable Gaussian processes [22] have signi-
ficantly alleviated these concerns, making the computational cost of GPs no longer a
bottleneck in many applications. Given that GPs continue to demonstrate superior
performance across a wide range of tasks, we have also chosen to use GPs in our work
to implement BO.

A GP is a collection of random variables, any finite number of which have a joint
Gaussian distribution. Formally, a Gaussian process is defined as a distribution over
functions, where any finite set of function values evaluated at input points follows a
multivariate Gaussian distribution, denoted as:

f(x) ∼ GP
(
m(x), k(x, x′)

)
where m(x) is the mean function and k(x, x′) is the covariance function, also known
as the kernel function. The mean function m(x) captures the expected value of the
function at each input point, while the covariance function k(x, x′) represents the sim-
ilarity between two points x and x′, determining how correlated their corresponding
function values are in the GP. When used for regression, a GP provides not only the
predicted function values µ(x) but also the uncertainty (variance) σ(x) associated with
those predictions.

Typically, the mean function m(x) is typically set to a constant 0. Hence, the choice
of the kernel k(x, x′) defines the properties of the Gaussian process. Commonly used
kernels include:

RBF Kernel: The Radial Basis Function (RBF) kernel [23], also known as the
squared exponential kernel, is one of the most widely used kernels. It is defined as:

kRBF(x, x′) = σ2
f exp

(
−∥x− x′∥2

2l2

)
(2.1)

where σ2
f is the signal variance and l is the length scale. The RBF kernel assumes that

the function is smooth and varies smoothly over the input space.

13

2.1 Bayesian Optimisation

Matern Kernel: The Matern kernel is a generalisation of the RBF kernel and
provides more flexibility in modelling the smoothness of the function [24]. It is defined
as:

kMatern(x, x′) = σ2
f

21−ν

Γ(ν)

(√
2ν∥x− x′∥

l

)ν

Kν

(√
2ν∥x− x′∥

l

)
(2.2)

where ν is a parameter that controls the smoothness of the function, Γ(·) is the gamma
function, and Kν(·) is the modified Bessel function of the second kind. Common choices
for ν are 1

2 , 3
2 , and 5

2 , which correspond to different levels of smoothness.
These kernels can be combined or extended to create more complex kernels that

capture specific properties of the objective function. The choice of kernel depends on the
prior knowledge about the function and the specific requirements of the optimisation
problem. However, the RBF and Matern kernels are widely used due to their flexibility
and effectiveness in modelling a wide range of functions. The length scale parameter l

in the kernel function determines the smoothness of the function. A smaller length scale
allows the function to vary more rapidly, while a larger length scale enforces smoother
variations. In practice, the length scale can differ for each input dimension, allowing
the Gaussian process to adapt to varying degrees of smoothness in different directions
of the input space. This is achieved by using an anisotropic kernel, where the length
scale is a vector l = [l1, l2, . . . , ld] with a separate length scale for each dimension d.

For example, the anisotropic RBF kernel is defined as:

kRBF(x, x′) = σ2
f exp

(
−1

2

d∑
i=1

(xi − x′
i)2

l2i

)
(2.3)

In this formulation, each dimension i has its own length scale li, allowing the kernel
to capture different levels of smoothness along each dimension. The length scales can
be learned from the data by maximising the marginal likelihood of the Gaussian process
[25], providing a flexible and powerful way to model complex functions.

2.1.2 Acquisition Function

The acquisition function (AF) is a key component of BO that guides the search for
the global optimum. It quantifies the utility of sampling a candidate point x based on
the surrogate model’s prediction and uncertainty. The goal is to maximise the AF to
identify the most promising candidate point for evaluation.

14

2.1 Bayesian Optimisation

One prevalent AF is the Upper Confidence Bound (UCB) function [26], denoted as:

αUCB(x) = µ(x) +
√

βt · σ(x) (2.4)

where µ(x) and σ(x) are the posterior mean (prediction) and posterior standard de-
viation (uncertainty) at point x predicted by the surrogate model, and βt is a hyper-
parameter that trades off between exploration and exploitation. A higher value of βt

encourages exploration by giving more weight to the uncertainty term.
Another commonly used AF is the Expected Improvement (EI) [27], which is defined

as:
αEI(x) = E[max(f(x+)− f(x), 0)] (2.5)

where f(x+) is the best-observed value of the objective function so far, the EI function
quantifies the expected amount of improvement over the current best value. It balances
exploration and exploitation by considering the predicted mean and the uncertainty.

The Probability of Improvement (PI) [6] is another AF, defined as:

αPI(x) = P(f(x) ≤ f(x+)) (2.6)

where f(x+) is the best-observed value of the objective function so far, the PI function
measures the probability that the objective function at point x will improve upon
the current best value. It focuses more on exploitation by favouring points with high
predicted improvement probability.

Each AF has its own advantages and disadvantages. The UCB function is highly
adaptable due to its tunable parameters, making it suitable for a variety of optimisa-
tion scenarios. The EI function is popular because it effectively balances exploration
and exploitation without the need for extensive parameter tuning, which is particularly
useful when evaluating the objective function is costly. The PI function is computa-
tionally simpler and faster but may risk premature convergence if it does not explore
the search space adequately.

In practice, the choice of AF depends on the specific characteristics of the optim-
isation problem and the desired balance between exploration and exploitation. It is
common to experiment with different AFs to determine the most effective one for a
given problem.

15

2.1 Bayesian Optimisation

Monte Carlo Acquisition Function

Monte Carlo acquisition functions (AFs) [28] are introduced here because they offer a
flexible and powerful approach to approximating AFs that are otherwise analytically
intractable. By leveraging Monte Carlo sampling, these functions can handle complex
scenarios, such as batch evaluations and derivative information, which are essential for
efficient and effective BO. In the following, we provide details about how Monte Carlo
AFs are calculated.

Many common AFs, like the aforementioned UCB EI and PI, can be expressed
as the expectation of some real-valued function of the model output(s) at the design
point(s):

α(X) = E
[
a(ξ) | ξ ∼ P(f(X) | D)

]
where X = (x1, . . . , xq), and P(f(X) | D) is the posterior distribution of the function
f at X given the data D observed so far.

Evaluating the AF thus requires evaluating an integral over the posterior distribu-
tion. In most cases, this is analytically intractable. In particular, analytic expressions
generally do not exist for batch AFs that consider multiple design points jointly (i.e.,
q > 1).

An alternative is to use (quasi-) Monte-Carlo sampling to approximate the integrals.
A Monte-Carlo (MC) approximation of α at X using N MC samples is

α(X) ≈ 1
N

N∑
i=1

a(ξi)

where ξi ∼ P(f(X) | D).
For instance, for MC-estimated Expected Improvement, we have:

qEI(X) ≈ 1
N

N∑
i=1

max
j=1,...,q

{
max(ξij − f∗, 0)

}
, ξi ∼ P(f(X) | D)

where f∗ is the best function value observed so far (assuming noiseless observations).
Using the reparameterization trick [29, 30],

qEI(X) ≈ 1
N

N∑
i=1

max
j=1,...,q

{
max

(
µ(X) j + (L(X)ϵi) j − f∗, 0

)}
, ϵi ∼ N(0, I)

where µ(X) is the posterior mean of f at X, and L(X)L(X)T = Σ(X) is a root
decomposition of the posterior covariance matrix.

The advantages of Monte Carlo AFs include:

16

2.2 Heuristic Optimisation

• Batch Support: They can handle batch evaluations, allowing multiple points to
be evaluated simultaneously, which is useful in parallel computing environments.

• Derivative Information: They can incorporate derivative information, improv-
ing the efficiency and accuracy of the optimisation process.

• Flexibility: They can approximate complex integrals that are otherwise intract-
able, making them suitable for a wide range of AFs and optimisation problems.

Because of these advantages, Monte Carlo AFs rather than analytic AFs are widely
used in practice. This thesis also adopts Monte Carlo AFs to handle complex optim-
isation scenarios and improve the efficiency and effectiveness of BO.

2.2 Heuristic Optimisation

This section describes three popular heuristic optimisation techniques which are used
in this thesis: Genetic Algorithms (GAs), Covariance Matrix Adaptation Evolution
Strategy (CMA-ES), and Discrete 1+λ Evolution Strategy (DES). GA can be used for
both continuous and discrete optimisation problems. CMA-ES only supports numerical
continuous optimisation problems. DES is designed for discrete optimisation problems.
These methods are employed in Chapters 4 and 5 to achieve high-dimensional BO by
better initialising the AF maximisation process.

2.2.1 Genetic Algorithm

Genetic Algorithms (GAs) [31, 32] are a class of optimisation algorithms inspired by
the process of natural selection. They are widely used in optimisation problems where
the search space is large and complex. We will apply GA in Chapters 4 and 5 to
improve the initialisation of the AF maximisation process. GAs maintain a population
of candidate solutions and iteratively evolve them to find the optimal solution. The
workflow of GAs is shown in Figure 2.2. The key components of GAs are as follows:

1. Initial Population: The initial population is generated randomly or based on
some heuristic. This population represents a diverse set of potential solutions to
the optimisation problem. The size of the population is a crucial parameter that
can affect the convergence speed and the quality of the final solution.

17

2.2 Heuristic Optimisation

Done Evaluation

Initialize
Population

Survival

Selection

Crossover

Mutation

Figure 2.2: The general workflow of a genetic algorithm (GA).

2. Evaluation: Each individual in the population is evaluated using a fitness func-
tion, which quantifies how good the solution is with respect to the optimisation
objective. The fitness function is problem-specific and plays a critical role in
guiding the search process.

3. Survival: Survival determines which individuals are carried over to the next
generation. This can be done using various strategies, such as:

• Elitism: The best individuals are guaranteed to survive to the next gener-
ation.

• Generational Replacement: The entire population is replaced by the
offspring.

• Steady-State Replacement: Only a few individuals are replaced in each
generation.

4. Selection: Selection is the process of choosing individuals from the current pop-
ulation to create offspring for the next generation. Common selection methods
include:

18

2.2 Heuristic Optimisation

• Roulette Wheel Selection: Individuals are selected based on their fitness
proportionate to the total fitness of the population.

• Tournament Selection: A subset of individuals is chosen randomly, and
the best individual from this subset is selected.

• Rank Selection: Individuals are ranked based on their fitness, and selection
is based on this ranking.

5. Crossover: Crossover, also known as recombination, is the process of combining
two parent solutions to produce offspring. Common crossover methods include:

• Single-Point Crossover: A single crossover point is chosen, and the seg-
ments of the parents are swapped to create offspring.

• Two-Point Crossover: Two crossover points are chosen, and the segments
between these points are swapped.

• Uniform Crossover: Each gene in the offspring is chosen randomly from
one of the corresponding genes of the parents.

6. Mutation: Mutation introduces random changes to individual solutions to main-
tain genetic diversity within the population. This helps to avoid premature con-
vergence to local optima. Common mutation methods include:

• Bit Flip Mutation: Each bit in the individual’s representation is flipped
with a certain probability.

• Swap Mutation: Two genes in the individual’s representation are swapped.

• Scramble Mutation: A subset of genes is chosen, and their order is ran-
domly shuffled.

2.2.2 Covariance Matrix Adaptation Evolution Strategy

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [33, 34] is a popular
evolutionary algorithm for continuous optimisation. It is a variant of the Evolution
Strategy (ES) family, which is inspired by the natural evolution process. The key idea
behind CMA-ES is to maintain a multivariate Gaussian distribution that models the
search space. The distribution is iteratively updated to adapt to the landscape of the

19

2.2 Heuristic Optimisation

3 2 1 0 1 2 3
3

2

1

0

1

2

3
Generation 1

Gaussian Distribution
Candidate Points

3 2 1 0 1 2 3
3

2

1

0

1

2

3
Generation 2

Gaussian Distribution
Candidate Points

3 2 1 0 1 2 3
3

2

1

0

1

2

3
Generation 3

Gaussian Distribution
Candidate Points

3 2 1 0 1 2 3
3

2

1

0

1

2

3
Generation 4

Gaussian Distribution
Candidate Points

3 2 1 0 1 2 3
3

2

1

0

1

2

3
Generation 5

Gaussian Distribution
Candidate Points

3 2 1 0 1 2 3
3

2

1

0

1

2

3
Generation 6

Gaussian Distribution
Candidate Points

Figure 2.3: Illustration of how CMA-ES evolves on a simple two-dimensional prob-
lem. In the plot, the shading indicates the spherical optimisation landscape, where
lighter colours represent lower function values, indicating better areas of the optim-
isation landscape, and darker colours represent higher function values, corresponding
to less optimal regions. It clearly shows how the multivariate Gaussian distribution
(dashed line) evolves during the optimisation. CMA-ES uses the multivariate Gaussian
distribution to generate its candidate evaluation points (dots).

20

2.2 Heuristic Optimisation

optimisation problem. We will apply CMA-ES in Chapter 4 to improve the initialisation
of the AF maximisation process in general continuous BO tasks.

One of the key differences between CMA-ES and standard Evolution Strategies (ES)
is that the Gaussian distribution in CMA-ES evolves over time. In standard ES, the
search distribution is typically fixed or changes in a predefined manner. However, in
CMA-ES, the covariance matrix of the Gaussian distribution is adapted based on the
fitness evaluations of the candidate solutions. This allows CMA-ES to learn and exploit
the structure of the optimisation landscape, making it more effective at navigating
complex, non-linear, and high-dimensional search spaces.

Figure 2.3 illustrates how CMA-ES evolves on a simple two-dimensional problem.
The algorithm starts with a multivariate Gaussian distribution that generates candidate
evaluation points. The candidate points are evaluated, and the distribution is updated
based on the evaluation results. The process is repeated until the algorithm converges
to the optimal solution.

The CMA-ES algorithm follows these steps:

1. Initialisation: Initialise the mean vector m0, step-size σ0, and covariance matrix
C0. Set the generation counter k = 0.

2. Sampling: Generate λ offspring by sampling from the multivariate normal dis-
tribution:

xi ∼ N(mk, σ2
kCk), i = 1, . . . , λ (2.7)

where λ is the population size.

3. Evaluation: Evaluate the fitness of each offspring xi using the objective function.

4. Selection: Select the µ best offspring based on their fitness values. Typically,
µ ≤ λ/2

5. Adaptation: Update the mean vector mk to mk+1, step-size σk to σk+1 and
covariance matrix Ck to Ck+1. Details are show in equations 2.8–2.12.

6. Termination: Check the termination criteria (e.g., maximum number of gen-
erations, convergence tolerance). If the criteria are met, stop the algorithm;
otherwise, increment the generation counter g and repeat from step 2.

21

2.2 Heuristic Optimisation

Details of the adaptation step are as follows: Firstly, the mean vector is updated
using the selected µ offspring:

mk+1 =
µ∑

i=1
wi xi:λ (2.8)

where xi:λ denotes the i-th best offspring (according to their function values) and wk

are predefined weights which satify w1 ≥ w2 ≥ · · · ≥ wµ > 0. This ensures that the
mean vector moves towards the promising regions of the search space. Typically, the
weights are chosen such that µw := 1/

∑µ
i=1 w2

i ≈ λ/4.
The step-size σk is updated via path length control, also known as the cumulative

step-size adaptation (CSA). The evolution path pσ is updated as follows:

pσ ← (1− cσ)pσ +
√

1− (1− cσ)2√µw C
−1/2

k

mk+1 −mk

σk
(2.9)

where the update term follows a standard normal distribution N(0, I) under neutral
selection. The step-size then evolves according to:

σk+1 = σk × exp
(

cσ

dσ

(∥pσ∥
E∥N(0, I)∥ − 1

))
(2.10)

where key parameters include:

• c−1
σ ≈ n/3, determining the adaptation time scale,

• µw =
(∑µ

i=1 w2
i

)−1, representing the variance-effective selection mass,

• C
−1/2

k as the symmetric square root of C−1
k ,

• dσ, a damping factor typically close to one.

The covariance matrix update follows a similar structure, beginning with the update
of the evolution path pc:

pc ← (1− cc)pc + 1[0,α
√

n](∥pσ∥)
√

1− (1− cc)2√µw
mk+1 −mk

σk
(2.11)

and the covariance matrix is adjusted as:

Ck+1 = (1− c1 − cµ + cs)Ck + c1pcp
T
c + cµ

µ∑
i=1

wi
xi:λ −mk

σk

(
xi:λ −mk

σk

)T

(2.12)

where parameters c1 ≈ 2/n2 and cµ ≈ µw/n2 control the learning rates for rank-one
and rank-µ updates, respectively. Other parameters include cc = 4/(n + 4), cs =
(1− µw)c1cc(2− cc), and α ≈ 2.

22

2.3 Summary

2.2.3 Discrete 1+λ Evolution Strategy

Discrete 1+λ Evolution Strategy (DES) [35–38] is a simple and efficient evolutionary
algorithm for discrete optimisation problems. It is based on the Evolution Strategy
(ES) framework and is designed to handle combinatorial optimisation problems where
the search space consists of discrete variables. Unlike continuous evolution strategies
like CMA-ES, which rely on a Gaussian distribution to sample from the search space,
DES adopts a discrete mutation sampling strategy instead. We will apply DES in
Chapter 5 for compiler phase ordering by generating candidate pass sequences to be
evaluated by the AF during BO iterations.

The DES algorithm follows these steps:

1. Initialisation: Start with a randomly chosen solution x0 from the discrete search
space.

2. Mutation-based Sampling: Generate λ offspring by applying discrete muta-
tions to the current solution xt. For example, a simple discrete mutation strategy
involves randomly selecting a variable/dimension and modifying its value.

3. Evaluation: Evaluate the fitness of each offspring using the objective function.

4. Selection: Choose the best-performing solution among the parent and the off-
spring to become the next-generation parent xt+1.

5. Iteration: Repeat the mutation-selection cycle until a termination criterion is
met.

2.3 Summary

This chapter provides background on optimisation techniques used in this thesis to
develop an efficient compiler phase ordering algorithm. The following chapter surveys
research literature relevant to this work.

23

Chapter 3

Related Work

This chapter surveys the literature relevant to this thesis. Section 3.1 reviews the
literature on compiler autotuning. Section 3.2 reviews research in Bayesian optimisa-
tion (BO), focusing first on high-dimensional BO, then discussing previous strategies
for acquisition function (AF) maximisation, as our work shows the AF maximisation
process is critical to high-dimensional BO. Section 3.3 surveys the literature on BO in
code optimisation. Section 3.4 discusses static IR-level code representation approaches.
Finally, Section 3.5 concludes.

3.1 Compiler Autotuning

An extensive body of work shows compiler phase ordering can improve application
performance [3]. Compiler autotuning techniques can be broadly categorised into two
groups: search-based methods and predictive modelling. Table 3.1 summarises these
two categories of compiler autotuning techniques. Search-based methods do not rely on
offline training or pre-built models. Instead, they explore the search space dynamically
during the optimisation process. Predictive model-based methods rely on offline train-
ing to build pre-built models to guide the optimisation process or directly predict the
optimal configuration. We review the two categories of compiler autotuning techniques
in the following sections.

3.1.1 Search-based Compiler Autotuning

Prior work typically takes a search-based auto-tuning process to navigate the compiler
optimisation space. This process involves applying different compiler pass sequences

24

3.1 Compiler Autotuning

Table 3.1: Two categories of compiler autotuning techniques.

Category Characteristic Literature

Search-based methods Can adapt to arbitrary autotuning tasks [14, 39–69]
Predictive Model Optimising one or a few parameters or focusing on

code size reduction
[5, 15, 70–93]

to the target program, profiling the resulting binary, and using the performance meas-
urements as feedback to guide the search. Typical search algorithms, such as random
sampling, genetic algorithms (GA), hill climbing and simulated annealing [94], are com-
monly used to iteratively select the next configuration. The iterative process continues
until specific termination criteria are met, such as reaching the maximum number of
iterations or exhausting the allocated search time.

Cooper et al. [39, 41] are among the pioneers in the field, and their early work
contributes significantly to the literature by exploring the foundational concepts and
methodologies. They utilised genetic algorithms (GA) to identify an effective sequence
of compiler passes for minimising code size in embedded systems and discovered that
GA outperformed random search in finding superior sequences.

Kisuki et al. [40] introduced an iterative compilation framework designed for the
autotuning of loop tile sizes and unroll factors, independent of specific architectural
constraints, with the objective of minimising program execution times. They assess
various iterative strategies, including GA, random sampling, and simulated anneal-
ing. Due to the limited scope of their problem settings, the efficiency of these search
algorithms demonstrates comparable outcomes.

Almagor et al. [14] conducted an extensive experimental investigation into the com-
pilation sequence space using established benchmarks to assess the compiler phase order
space. They employed Genetic Algorithms (GA), hill climbing, and Greedy Construct-
ive Algorithms to navigate this space. Their findings indicate that 80% of local minima
within the compilation sequence space are within 5-10% of the optimal solution. By
utilising customised search algorithms, they demonstrate that personalised sequences,
identified within a range of 200 to 4550 compilation iterations, surpass fixed sequences
by 15-25%, underscoring the economic advantages of adaptive compilation methods.
Furthermore, they observed that GA frequently yields marginally better results than

25

3.1 Compiler Autotuning

other techniques. However, these methods rely heavily on exhaustive search and are
computationally expensive, making them less practical for large-scale or time-sensitive
compilation tasks like compiler phase ordering.

A distinctive characteristic of compiler autotuning is that different compiler con-
figurations can produce identical binaries. This phenomenon is particularly evident in
compiler phase ordering. Kulkarni et al. [44] proposed techniques to improve genetic
algorithms (GA) for compiler phase ordering by reducing redundant executions. Their
approach identifies sequences that generate the same binaries, thereby eliminating un-
necessary application runs and enhancing search efficiency. While effective for pruning
redundant evaluations, this approach still depends on search heuristics and lacks a cost
model to guide the search intelligently.

In addition to single-objective optimisation, Hoste et al. [48] proposed a compiler
flag selection framework that utilises multi-objective evolutionary search to automat-
ically discover Pareto-optimal optimisations. By exploring the trade-offs between ex-
ecution time and compilation time, they analyse the resulting Pareto-optimal flags to
provide insights into the significance of different compiler optimisations.

The diversity of real-world programs and the complexity of compiler parameters
create a demand for frameworks capable of adapting to varied optimisation landscapes.
OpenTuner [62] addresses this challenge by providing ensemble-based search capabilit-
ies, which integrate multiple search algorithms including genetic algorithms (GA), hill
climbing, simulated annealing, and particle swarm optimisation (PSO) to efficiently
navigate the optimisation space. A key feature of OpenTuner is its simultaneous use of
ensembles of disparate search techniques. These techniques are dynamically evaluated
during the search process, and those demonstrating better performance are allocated
a larger proportion of tests. This adaptive approach ensures that the most effective
strategies are prioritised, enabling the framework to achieve high-quality optimisation
results across diverse programs and parameter configurations.

Similarly, Cummins et al. [67] employed Nevergrad [95], another open-source frame-
work that supports multiple search algorithms, to tackle the compiler phase-ordering
problem. Nevergrad adaptively selects the most suitable algorithm based on the prob-
lem settings, demonstrating state-of-the-art performance in the CompilerGym environ-
ment. Together, these frameworks highlight the importance of adaptive and ensemble-
based approaches in addressing the challenges of compiler optimisation. Despite their

26

3.1 Compiler Autotuning

flexibility, OpenTuner and Nevergrad do not incorporate program-specific or compiler-
specific modelling, and lack the ability to capture interactions between compiler phases,
which limits their effectiveness in addressing the phase-ordering problem.

Recently, Bayesian optimisation (BO) has also been introduced in compiler autot-
uning [61]. In Section 3.3, we will discuss in detail how BO has been applied to broader
software autotuning problems, such as algorithm configuration tuning. Furthermore,
we will highlight the key differences between these existing BO-based approaches and
our work, emphasising how our method addresses their limitations and introduces novel
contributions to the field.

Overall, pure search techniques are flexible and adaptable, making them suitable for
a wide range of compiler autotuning tasks. However, they can be time-consuming and
may struggle with high-dimensional search spaces. Predictive model-based techniques
presented in the next section, however, use prior knowledge to build a model offline,
which either directly predicts the best compilation configuration or guides the search
process, thereby significantly reducing the number of executions required for a new
program.

3.1.2 Predictive Modelling

Machine learning and data-driven techniques for compiler autotuning have been ex-
tensively explored in prior research. These techniques require the collection of offline
training data on a set of training programs that sufficiently cover the optimisation space
encountered in practice. Each training program is compiled and executed under various
compiler configurations, and the performance of each configuration is measured. The
resulting data, consisting of program features, compiler configurations, and observed
performance, is then used to train the predictive model. Stephenson et al. [70] were
pioneers in applying supervised classification to predict loop unroll factors, demonstrat-
ing the potential of machine learning in optimising compiler decisions. Their approach
relied on manually crafted features. In later studies on loop optimisation, deep learn-
ing techniques began to replace handcrafted features, offering improved results. For
instance, Ameerhajalicgo et al. [84] developed NeuroVectorizer, an end-to-end frame-
work for predicting vectorisation factors, leveraging deep learning to achieve better
performance.

In the area of compiler flag selection, Cavazos et al. [72] proposed a method to lever-

27

3.1 Compiler Autotuning

age performance counters as features to build predictive models to reduce the search
space and enhance optimisation efficiency. These performance counters are collected by
executing the program compiled with the default -O0 optimisation level and monitor-
ing hardware-level events such as cache misses, branch mispredictions, and instruction
counts. The collected counters serve as a dynamic characterisation of the program’s
behaviour and are used as input features to train machine learning models that pre-
dict the most promising compiler optimisations. The MILEPOST GCC framework,
introduced by Fursin et al. [75], represented a significant milestone by incorporating
machine learning into a self-tuning compiler. This framework automated the selection
of compiler optimisations based on program features, paving the way for more adaptive
and intelligent compilation systems. More recently, Cereda et al. [15] applied col-
laborative filtering techniques to leverage knowledge sharing across programs, further
improving optimisation outcomes.

Another notable development is the MLGO framework [5], which is the first full
integration of ML as a compiler pass in industrial compilers such as LLVM. However,
this framework only focused on optimisation objectives like code size, particularly in
cases involving a single pass, such as inlining.

There are also attempts to build a predictive model to directly predict the compiler
phase order using supervised learning [71, 81, 87] or reinforcement learning [76, 83, 89].
One of the simplest approaches is to predict the optimisation order based on feature-
based program similarity. For example, Agakov et al. [71] leverage this similarity
together with a nearest-neighbour method to guide the selection of compiler optimisa-
tions. However, as collecting sufficient training samples to cover the high-dimensional
phase ordering optimisation space is difficult, these approaches either limit the number
of compiler passes considered or reduce the search space by grouping compiler phases
into sub-sequences. For instance, Kulkarni et al. [76] restricted their approach to con-
sidering only up to 7 compiler passes, significantly reducing the complexity of the search
space. Similarly, MIComp [81] clustered the passes of the -O3 optimisation level into 5
sub-sequences and focused solely on reordering these sub-sequences. These strategies
demonstrate practical compromises to manage the high-dimensional nature of the phase
ordering problem, but they also highlight the limitations of current methods in fully
exploring the vast optimisation space.

Overall, previous studies underscore the growing importance of data-driven meth-

28

3.2 Bayesian Optimisation

ods in addressing the challenges of modern compiler design and optimisation. However,
they often focused on small problems. The application of machine learning-based pre-
dictive models to general-purpose, industrial compilers like LLVM remains a problem
[5]. Especially, the application of compiler phase ordering for execution time optimisa-
tion faces several key challenges that impact its scalability and adaptability. Firstly,
the vast diversity of real-world programs makes it difficult to cover all possible scen-
arios in the training process. Secondly, the optimal pass sequence of programs is highly
dependent on the input data, introducing an additional layer of complexity. We can’t
know in advance the typical workload for an unseen program during training processes.
Thirdly, collecting reliable training datasets is expensive and time-consuming for the
objective of optimising run time, as it requires running programs in isolated environ-
ments to ensure the accuracy of the measurements. Furthermore, the phase ordering
search space is astronomically large, leading to extensive training data requirements.
Together, these factors make applying offline machine learning to phase ordering to
runtime performance optimisation, almost infeasible.

3.2 Bayesian Optimisation

This thesis focuses on high-dimensional Bayesian Optimisation (BO) as a solution to
the challenges introduced by the large number of parameters in compiler autotuning
tasks. We begin by reviewing existing research on high-dimensional BO and discussing
the limitations of applying these methods to the compiler phase ordering problem.
Based on our findings in Chapter 4, which highlight the significance of the acquisition
function (AF) maximisation process in high-dimensional BO, we subsequently examine
prior methods for maximising the AF.

3.2.1 High-Dimensional Bayesian Optimisation

High-dimensional BO has garnered significant attention due to its scalability and prac-
tical applicability challenges. These challenges can be broadly categorised into two
aspects. First, the number of search iterations required increases with the problem’s
dimensionality, while the computational cost of Gaussian processes (GPs) grows cu-
bically with the number of search iterations. This makes it difficult to scale BO for
high-dimensional tasks. Second, in terms of search efficiency, for most high-dimensional

29

3.2 Bayesian Optimisation

Table 3.2: High-dimensional Bayesian optimisation techniques.

Technique Assumption Literature

Low-dimensional Embedding The target function has redundant di-
mensions

[96–102]

Function Decomposition The target function has additive
structures

[103–108]

Block Coordinate Descent None [109–112]
Surrogate Model Re-design None [113–115]
Trust Region None [7–9, 116]

problems, BO yields worse results than model-free heuristic algorithms with the same
number of search iterations (This contrasts with the low-dimensional case, where BO
typically outperforms heuristic algorithms).

Fortunately, the first challenge has been largely alleviated by recent developments in
scalable GPs [22, 117–122]. Sparse Gaussian Process Regression (SGPR), introduced in
[118], reduces the computational cost by approximating the full covariance matrix with
a set of inducing variables. This method leverages a variational approach to efficiently
model the underlying function. On the other hand, Structured Kernel Interpolation
(SKI), proposed in [120], further optimises scalability by interpolating the kernel matrix
to reduce memory and computational complexity. Notably, GPyTorch [22], an open-
source library for scalable GPs, not only supports the SGPR and SKI methods but uses
a modified conjugate gradients algorithm to implement an exact GP inference method
with a time complexity of O(n2), which is significantly faster than the traditional O(n3)
complexity. GPyTorch also provides GPU acceleration and automatic differentiation,
making high-dimensional BO more feasible and efficient.

However, the second challenge remains a significant obstacle. To address this is-
sue, researchers have proposed various strategies, as summarised in Table 3.2. These
strategies can be broadly categorised into five types: low-dimensional embedding, ad-
ditive function decomposition, block coordinate descent, surrogate model re-design,
and trust region-based local BO. Among these strategies, trust region-based local BO
has recently gained popularity due to its simplicity and strong performance. We will
discuss these strategies in detail below.

30

3.2 Bayesian Optimisation

Low-dimensional Embedding

The low-dimensional embedding strategy assumes that the target function has redund-
ant dimensions. By mapping the high-dimensional space to a low-dimensional subspace,
standard BO can be performed in this low-dimensional space and then projected back
to the original space for function evaluations. This idea was first proposed in REMBO
[96] by Wang et al., where the authors introduce the concept of random linear embed-
dings to reduce the dimensionality of the input space. The random embeddings are
implemented by using Gaussian matrix projections, which are supported by theoretical
analysis to demonstrate that REMBO preserves the key characteristics of the original
function, making it well-suited for high-dimensional black-box optimisation problems.
Building upon the REMBO framework, Wang et al. extended the approach to handle
even larger dimensions in [97], up to a billion dimensions, making it applicable to
large-scale, real-world problems that involve massive search spaces.

While random linear embedding techniques have shown promise in reducing the
dimensionality of optimisation problems, their effectiveness has often been limited to
cases where the problem exhibits low effective dimensionality, i.e., where only a sub-
set of dimensions influences the objective function. To address this limitation, Qian
et al. introduced Sequential Random Embeddings [98], an extension that applies to
high-dimensional non-convex problems where all dimensions are effective, but many
have only a small bounded effect on the objective function. It refines the embedding
space sequentially as the optimisation process progresses, improving the efficiency of
optimisation in complex, high-dimensional spaces.

Unlike linear embedding techniques, non-linear embeddings are also used for high-
dimensional BO. The work presented in [99] proposed a structured low-dimensional
embedding method that leverages the structure of the target function to guide the
embedding process. The method uses a variational auto-encoder [123] to capture the
underlying function’s properties and embeds the input space into a low-dimensional
continuous manifold that preserves the neighbourhood relationships of the original
function. This approach is particularly effective for functions with complex structures.
However, random linear embeddings are more commonly used and favoured compared
to non-linear methods due to their simplicity, robustness, and lack of additional mod-
elling requirements.

Then, based on random linear embeddings, Nayebi et al. introduced a theoret-

31

3.2 Bayesian Optimisation

ically grounded approach called Hashing-enhanced Subspace Bayesian Optimisation
(HeSBO) [100]. HeSBO leverages hashing and sketching techniques to perform sur-
rogate modelling and AF optimisation in a low-dimensional subspace. This approach
significantly enhances computational efficiency while maintaining strong accuracy guar-
antees. In contrast to previous methods that relied on Gaussian matrix projections,
HeSBO avoids the complications associated with complex corrections in projections.

Binois et al. addressed the challenge of selecting a suitable low-dimensional do-
main when using linear embeddings for high-dimensional optimisation [101]. They
analyse the properties of random embeddings and propose a minimal low-dimensional
set that effectively represents the original search space. They also introduce an altern-
ative embedding procedure that simplifies the definition of the low-dimensional domain,
improving both practical performance and optimisation efficiency. Their approach is
demonstrated to outperform previous methods in BO tasks.

Benjamin et al. identified several crucial issues about the use of random linear
embeddings for high-dimensional BO and proposed Adaptive Linear Embedding for
Bayesian Optimisation (ALEBO) [102]. ALEBO improves high-dimensional BO by
using adaptive linear embeddings with Mahalanobis kernels and polytope constraints.
These innovations enhance the model’s ability to capture function structure, maintain
feasible search regions, and ensure high probability containment of the global optimum.

Overall, random embeddings, while supported by theoretical guarantees, still re-
quire the target function to have redundant dimensions in order to perform well. How-
ever, since the effective dimensionality is unknown for black-box functions, selecting
the optimal embedding dimension remains a challenge. Even state-of-the-art methods
like ALEBO and HeSBO still lag behind model-free evolutionary algorithms in high-
dimensional real-world tasks [102]. They are also limited to optimisation tasks with
continuous search space, making them unsuitable for compiler autotuning.

Function Decomposition

Function decomposition methods assume that the target function has an additive struc-
ture, i.e., variables in the design space are separable. In that case, the target black-box
function f can be decomposed into the following additive form,

f(x) = f (1)(x(1)) + f (2)(x(2)) + · · ·+ f (M)(x(M))

32

3.2 Bayesian Optimisation

where each x(j) represents a lower-dimensional component that includes several related
variables. This property can be exploited to simplify the optimisation process. By
decomposing the high-dimensional function into a sum of lower-dimensional functions,
the effective dimensionality of the model is the largest dimension among all additive
groups x(1), x(2), ..., x(M), thus reducing the complexity of the optimisation task. One of
the earliest works in this area is Add-GP-UCB [103], which models the target function
as a sum of GPs, each defined over a subset of dimensions. This approach significantly
reduces the search complexity and improves scalability.

Building on the Add-GP-UCB framework, Wang et al. proposed a batched version
of additive BO [104], which allows for parallel evaluations of the target function. This
method leverages the additive structure to efficiently allocate computational resources,
making it suitable for large-scale optimisation tasks. An enhanced version of this
approach is Ensemble Bayesian Optimisation (EBO) [108]. Unlike [104] which only
learns the additive structure, EBO jointly learns both the additive structure and the
kernel parameters.

In practical applications, the additive structure is not always known a priori. Thus,
Gardner et al. introduced a method for discovering additive structures in high-dimensional
functions [105]. Their approach uses a greedy algorithm to identify subsets of dimen-
sions that contribute additively to the target function. By iteratively selecting and
combining dimensions, the method efficiently decomposes the function into additive
components, improving the optimisation process.

Rolland et al. [106] extended the additive model approach by considering additive
models with arbitrary overlap among the subsets of variables. This generalisation lifts
the assumption that the subsets are disjoint, allowing for more flexible modelling of
the target function. By representing the dependencies via a graph, they deduced an
efficient message passing algorithm and provided an algorithm for learning the graph
from samples based on Gibbs sampling. Mutny et al. [107] also proposed a generalised
additive model with possibly overlapping variable groups. For non-overlapping groups,
they provide the first provably no-regret polynomial time algorithm. They introduce a
novel deterministic Fourier Features approximation for the squared exponential kernel,
reducing the kernel matrix inversion complexity from cubic to essentially linear.

While additive function decomposition methods have shown great promise in many
cases, their performance is highly dependent on the presence of additive structures in

33

3.2 Bayesian Optimisation

the target function, which may not always be present in real-world problems like com-
piler autotuning. Besides, even for high-dimensional functions with additive structures,
the state-of-the-art additive method EBO failed to outperform model-free evolutionary
algorithms [7, 108]. This is actually because EBO uses random search to maximise
the AF. In Chapter 4, we will demonstrate the critical role that the AF maximisation
process plays in the performance of high-dimensional BO.

Block Coordinate Descent

Block coordinate descent (BCD) is an optimisation method that iteratively optimises
a subset of variables (called a ’block’) while keeping the others fixed [124]. In the
context of Bayesian optimisation (BO), BCD can be combined with BO to improve
the efficiency of the optimisation process. The main idea is to decompose the high-
dimensional optimisation problem into a series of lower-dimensional sub-problems, each
of which can be solved using BO. By iteratively optimising these sub-problems, BCD-
based BO can effectively navigate the high-dimensional search space.

One of the earliest works that combined BCD with BO is Dropout BO [109], which
randomly selects a subset of dimensions to optimise at each iteration. Another method,
LineBO [110], optimises one dimension at a time by performing a line search along
each dimension using BO. CobBO [112] extends these methods by introducing a two-
stage approach. It first uses a computationally efficient kernel for global exploration
and then switches to a more sophisticated kernel for local optimisation in selected
subspaces. Additionally, CobBO reduces computational costs by introducing virtual
points and dynamically selecting promising subspaces, effectively balancing exploration
and exploitation. These methods are simple and easy to implement, but they still
underperform model-free evolutionary algorithms in most real-world high-dimensional
optimisation tasks. For compiler phase ordering, the effect of one optimisation pass
often depends on the others, meaning that optimising a subset of dimensions in isolation
may not capture the critical interdependencies.

Surrogate Model Re-design

In addition to the aforementioned techniques that aim to reduce the problem dimen-
sionality, some methods focus on redesigning the surrogate model to enhance the per-
formance of high-dimensional BO. These methods are based on the idea that the failure

34

3.2 Bayesian Optimisation

of high-dimensional BO is often due to the surrogate model’s inability to capture the
complex structure of the target function. Note this idea is not always the case, as our
work in Chapter 4 will show that inadequate AF maximisation often leads to the poor
performance of high-dimensional BO.

Rana et al. proposed the Elastic Gaussian Process (EGP) [113], which adapts the
Gaussian process model to high-dimensional spaces by introducing an elastic squared
exponential kernel to dynamically adjust its length-scales from large to small. Oh
et al. found that high-dimensional BO always spends too many evaluations near the
boundary of its search space. They introduced Cylindrical Kernels [114], which use a
cylindrical transformation to transform the ball geometry of the search space to contract
the volume near the boundaries.

Sparse Axis-Aligned Subspaces Bayesian Optimisation (SAASBO) [115] is a most
recent method that addresses the challenge of high-dimensional optimisation by identi-
fying and exploiting sparse, axis-aligned subspaces. SAASBO uses a sparsity-inducing
prior for automatically identifying and selecting significant dimensions. This method
has shown strong performance in high-dimensional tasks, particularly when the under-
lying function depends on only a few important dimensions. However, for problems with
non-axis-aligned structures like compiler autotuning, the performance improvement is
not significant.

Trust region Based Local Bayesian Optimisation

Trust region-based local Bayesian optimisation (TuRBO) [7] is a prominent method
that addresses the challenges of high-dimensional BO motivated by the success of trust
region methods. TuRBO maintains a scalable trust region and performs local Bayesian
optimisation within this region. The size of the trust region is dynamically adjusted
based on the optimisation process: if multiple consecutive searches fail to improve the
objective, the trust region is halved in all dimensions. This process allows TuRBO to
gradually focus on finer regions, identifying sparse high-performance points in high-
dimensional spaces.

Building on the success of TuRBO, several extensions and variations have been
proposed. Wang et al. introduced LaMCTS [116], which integrates Monte Carlo Tree
Search (MCTS) with local BO. This method leverages the hierarchical structure of
MCTS to dynamically partition the search space and apply BO in the partitioned

35

3.2 Bayesian Optimisation

subspace. However, if only using standard BO in its subspaces, this method does not
outperform TuRBO in practice.

Wan et al. proposed a method that extends TuRBO to high-dimensional binary
and continuous mixed search spaces [8]. Their approach defines a customised GP
kernel to deal with the binary or mixed input variables. They also provide a trust
region construction on binary search space. Their strategy enhances the efficiency and
effectiveness of BO in complex search spaces. However, this method cannot be applied
to the compiler phase-ordering problem, which involves a high-dimensional categorical
search space. In the compiler phase-ordering problem, each dimension can have more
than 70 possible categorical values, making it challenging for the proposed kernel to
effectively capture the complex structure of the target function.

Maus et al. applied TuRBO to the field of drug discovery [9], which relies on
Variational Autoencoders (VAE) operating in a latent space learned from structured
inputs. By optimising in the latent space, Local Latent Space Bayesian Optimisation
(LLSBO) can capture the underlying structure of the input space, leading to more
efficient optimisation in high-dimensional tasks with structured inputs.

These advancements demonstrate the potential of trust region-based local BO meth-
ods in addressing the challenges of high-dimensional optimisation. While trust region-
based local BO methods become increasingly popular, they attribute the success of trust
region-based BO algorithms to the local modelling alleviating the surrogate model’s in-
ability in the global space. However, this idea is not verified. Motivated by the success
of TuRBO, we try to explore the reasons for the poor performance of high-dimensional
BO. We note TuRBO not only explicitly changes the global surrogate modelling to
local modelling, but also implicitly limits the search space of the AF maximisation.
This work thus investigates whether the poor performance of high-dimensional BO is
also due to the inadequate AF maximisation process. As we will show in Chapter 4,
by simply changing the initialisation of the AF maximiser, the global surrogate model
which is used in standard BO can outperform TuRBO. In the next section, we will
review the literature on AF maximisation.

3.2.2 Acquisition Function Maximization

Given the posterior belief, BO constructs an AF and maximises it to select new queries.
Table 3.3 summarises the AF maximisation techniques used in previous BO literature.

36

3.2 Bayesian Optimisation

Table 3.3: Acquisition function maximisation techniques used in previous BO literature.

Technique Details Literature

Random Search • Simplest method, effective for low-
dimensional problems

[104, 107,
108, 110,
125–128]

Evolutionary Algorithms • Random initialization by ran-
domly generating initial popula-
tion

• Mainly based on GA and CMA-ES

[96, 97, 100,
103, 129–
131]

Multi-random-start Local
Search

• Random initialisation by selecting
multiple restart points from a set
of randomly generated points

• Local search can be both
derivative-free and derivative-
based

[18, 25, 28,
102, 112,
114, 115,
128, 132–
138]

Top-n Local Search • Non-random initialisation by using
the best-observed points in previ-
ous target black-box function op-
timisation history

[19, 139]

37

3.3 Bayesian Optimisation in Code Optimisation

There are four mainstream AF maximisation techniques: random search, evolutionary
algorithms, multi-random-start local search and top-n local search.

Random search is efficient in low-dimensional problems [125–127] but can be in-
adequate for high-dimensional problems [18]. Evolutionary algorithms are often used
where gradient information is unavailable [130, 131]. For AFs that support gradient
information, a gradient-based optimisation method might be a better choice. However,
given that AFs are generally non-convex and often flat, a gradient-based optimisation
method can be trapped in local optima. To address this issue, a multi-random-start
strategy is used to generate multiple initial restart points for gradient-based optimisa-
tion and shows better performance in AF maximisation than evolutionary algorithms
[28]. Note the multi-random-start strategy can also be combined with derivative-free
local optimisation methods such as a local Gaussian sampling [18], which also achieves
better AF maximisation results than using a single-start evolutionary algorithm.

We note that the aforementioned AF maximisation techniques use randomly gen-
erated raw samples to initialise their AF maximisers. GPyOpt [139] and Spearmint
[19] are two of the few works that provide different initialisation strategies from ran-
dom initialisation. Instead, they rely on the top n best-observed points in the previous
black-box optimisation iterations to initialise the AF maximiser. GPyOpt combines
random points with the best-observed points to serve as the initial points. Spearmint
uses a Gaussian spray around the incumbent best to generate initial points. However,
no empirical study shows that these initialisation strategies are better than random
initialisation. As such, random initialisation remains the most popular strategy for
high-dimensional BO AF maximisation.

As the dimensionality increases, even the state-of-the-art multi-start gradient-based
AF maximiser struggles to globally optimise the AFs. In such cases, the initialisation
of the AF maximiser greatly influences the quality of AF optimisation. The initial-
isation phase of AF maximisers is often overlooked. Chapter 4 will delve into this
underexplored problem.

3.3 Bayesian Optimisation in Code Optimisation

Some works have employed BO for software tuning (including not only compiler auto-
tuning but also the autotuning of other software parameters). We summarised these
works in Table 3.4. These include Flash [142], BOCA [61], Bliss [141], Ytopt [140], and

38

3.3 Bayesian Optimisation in Code Optimisation

Table 3.4: Bayesian Optimisation In Software Optimisation.

Literature Domain #Dimensions Space Size

Ytopt [140] Loop Optimisation Parameters 5− 10 104 − 105

Bliss [141] Parallel Application Configurations 5− 9 104 − 108

Flash [142] Software System Configurations 3− 17 102 − 105

BaCO [143] Kernel Optimisation 4− 15 102 − 1011

BOCA [61] Compiler Flag Selection 64− 71 1019 − 1021

Our work [144] Compiler Phase Ordering 120 10225

BaCO [143]. Flash uses decision trees to build its surrogate model to autotune config-
urations of various software systems. BOCA uses the random forest as its surrogate
model for the compiler flag selection problem. Bliss utilises an ensemble of diverse GP
models and AFs to autotune parallel applications. Ytopt uses the traditional Skopt
[128] BO library to optimise LLVM Clang/Polly pragma configurations on the Poly-
Bench benchmark suite. BaCO customises its BO implementation to support different
parameter types and constraints for kernel optimisation on 15 important kernels from
domains like machine learning, statistics, and signal processing.

These frameworks are mainly used for tuning a small number of parameters in
the code optimisation domain. The only exception is BOCA, which optimises up to
71 parameters. However, BOCA only considers the compiler flag selection problem,
which involves a binary decision space, making the search space much smaller than the
compiler phase-ordering problem. In contrast, this thesis considers a larger and more
realistic optimisation space for compiler phase ordering, involving 76 distinct passes
and pass sequences of length 120. This design is inspired by the structure of the -O3
optimisation level in LLVM 17, which includes 72 passes and a pass sequence of length
96. Besides, existing frameworks also use the original tuning parameters as the input
to fit their surrogate models, which is the same as the standard BO method.

While these frameworks are effective for their respective tasks, they do not apply
to the compiler phase-ordering problem for two main reasons: (1) the high-dimensional
nature of the search space, and (2) the lack of effective surrogate models to capture the
complex interactions between compiler phases. In Chapter 5, our work addresses these
challenges by applying the high-dimensional BO method introduced in Chapter 4 and
utilising pass-related compilation statistics to more effectively capture the interactions

39

3.4 Code Characterization

between compiler phases. One key difference between our work and previous BO-based
code optimisation approaches is that we use post-compilation statistics as features to
fit the surrogate model. In the next section, we will review the literature on code
characterisation to provide further context.

3.4 Code Characterization

Standard BO uses original tuning parameters as the input to fit the surrogate model.
However, for the compiler phase ordering problem, the original tuning parameters may
not be the best features to capture the complex interactions between compiler phases.
The post-compilation information could provide more information about the inter-
actions between compiler phases. In this section, we review the literature on code
characterisation which could be used to extract features from the intermediate repres-
entations (IRs). We focus solely on static code features because our goal is to use these
features to build a cost model that predicts the performance of a given compilation
sequence. Dynamic code features, which require profiling, are unsuitable for our online
autotuning scenario.

Table 3.5 summarises the relevant techniques. DeepTune-IR [145] represents the
IR of OpenCL programs using token sequences. This method leverages tokenisation
to capture the program’s semantics in a sequence-based manner, which can be use-
ful for tasks such as program optimisation and tuning based on sequence patterns.
Autophase [146] develops analysis passes to extract statistical static features from the
IRs, such as the number of branches and the number of add instructions. These fea-
tures provide valuable insights into the program’s structure and behaviour, helping
to identify potential optimisation opportunities such as excessive branching. However,
neither DeepTune-IR’s sequence-based features nor Autophase’s statistical features can
capture the underlying graph structure of the code, which is crucial for representing
dependencies within the program. This limitation can hinder the model’s ability to
fully understand the relationships between different program elements.

To better capture the structured nature of programs, syntactic (tree-based) as well
as semantic (graph-based) representations have been proposed. CDFG [147] uses graph
neural networks (GNNs) to represent the intermediate representation (IR) of OpenCL
programs based on abstract syntax trees (ASTs) and control flow graphs (CFGs). This
approach models the control flow structure of OpenCL programs, making it suitable

40

3.4 Code Characterization

Table 3.5: Code Characterization.

Source
Languages

Represen-
tation

Flow-
sensitive?

Position-
sensitive?

Value-
sensitive?

CDFG
[147]

OpenCL IR graph ✓

DeepTune-
IR [145]

OpenCL IR token
Sequence

✓

inst2vec
[148]

C++, OpenCL IR statement
embedding

✓ ✓

Autophase
[146]

C, C++, Fortran,
Haskell, OpenCL,
Swift

IR statistical
features

IR2vec
[149]

C, C++, Fortran,
Haskell, OpenCL,
Swift

IR embedding ✓

Programl
[150]

C, C++, Fortran,
Haskell, OpenCL,
Swift

IR graph ✓ ✓ ✓

for analysing control dependencies and execution paths within the program. Inst2vec
[148] combines control flow with dataflow in order to learn unsupervised embeddings
of LLVM-IR statements. IR2vec [149] combines representation learning methods with
flow information to directly represent IRs as distributed embeddings in continuous
space. Programl [150] represents programs as graphs with explicit control, data, and
call edge types. Programl captures a greater range of intra-program relations than
prior graph representations to accurately capture the semantics of programs. It also
employs pre-trained inst2vec embeddings to obtain continuous embedding vectors.

These prior feature extraction methods have shown promise in various compiler
tasks. However, they are primarily designed to focus on characterising different pro-
grams, and they struggle to detect the changes in a single program caused by different
compiler passes. For example, the function-attrs pass could significantly affect the
performance of some programs, but its transformation on the program cannot be re-
cognised by the above-mentioned code characterisation techniques. This is because
function-attrs only changes the function attributes which are not considered in those
techniques.

41

3.5 Summary

3.5 Summary

This chapter describes the relevant literature in the fields of high-dimensional BO, com-
piler autotuning, recent applications of BO to code optimisation, and IR-based code
characterisation. We have identified the challenges of high-dimensional BO and com-
piler phase ordering and reviewed the existing techniques that have been proposed to
address these challenges. We have also discussed the limitations of existing methods and
highlighted the gaps in the literature that our work aims to address. The next chapter
will present our proposed approach to address the challenges of high-dimensional BO.

42

Chapter 4

Understanding Challenges of
High-Dimensional Bayesian

Optimisation

This chapter presents an empirical study on the initialisation of the acquisition function
(AF) maximiser and proposes a high-dimensional Bayesian optimisation (BO) method,
which is a crucial step towards applying BO to the high-dimensional compiler phase or-
dering problem. Phase ordering involves complex interactions between compiler passes,
and thus direct application of BO requires further customisation, which is addressed
in Chapter 5. This chapter instead focuses on the high-dimensional BO problem itself,
demonstrating our method’s effectiveness on generic optimisation tasks and validating
it in compiler autotuning scenarios such as compiler flag selection. It is organised as
follows: Section 4.2 motivates the importance of AF maximisation in high-dimensional
BO. Section 4.3 describes the methodology of the study. Section 4.4 presents the ex-
perimental setup. Section 4.5 presents and discusses the experimental results. Finally,
Section 4.6 concludes the chapter.

4.1 Introduction

As a black-box optimisation technique, Bayesian optimisation (BO) has demonstrated
promising results in many fields, such as hyper-parameter tuning [151], material design
[152], and robotic navigation [153, 154]. However, while BO performs well for low-
dimensional problems, its effectiveness in high-dimensional settings often lags behind
other techniques [155]. This limits its applicability to high-dimensional compiler auto-

43

4.1 Introduction

tuning tasks.
To better understand the challenges of high-dimensional BO, it’s essential to re-

examine the process of BO. As shown in Figure 4.1, BO builds an online probabilistic
surrogate model, typically a Gaussian process [24], to guide the search. This surrogate
model defines an acquisition function (AF) that balances exploitation (model predic-
tion) and exploration (model uncertainty). The next query point is determined by
maximising the AF, which helps identify promising candidates for evaluation. Hence,
the performance of BO hinges on both the model-based AF and the process of maxim-
ising this AF, with either potentially becoming a bottleneck in high-dimensional BO.
Most prior research has concentrated on the former, focusing on the design of surrogate
models and AFs [19, 26, 114, 156–159], with limited attention given to improving the
latter.

Recent advancements in AF maximisation have introduced a multi-start gradient-
based AF maximiser for batch BO scenarios, which has shown superior results compared
to random sampling and evolutionary algorithms [28]. However, as the dimensionality
increases, even this advanced AF maximiser faces challenges in globally optimising the
AF. In such high-dimensional cases, the initialisation of the AF maximiser significantly
affects the quality of AF optimisation. Yet, the impact of AF maximiser initialisation
on the realisation of AF’s potential and the overall BO performance remains unclear.
Our examination of state-of-the-art BO packages reveals that random initialisation (se-
lecting initial points from a set of random points) or its variants are commonly used as
default strategies for AF maximiser initialisation. This is the case for widely-used BO
packages like BoTorch [25], Skopt [128], Trieste [132], Dragonfly [130] and GPflowOpt
[133]. Specifically, GPflowOpt, Trieste and Dragonfly select n points with the highest
AF values from a set of random points to serve as the initial points. BoTorch uses
a similar but more exploratory strategy by performing Boltzmann sampling instead
of relying solely on AF values to select from the random candidates. Likewise, Skopt
directly selects initial points by uniformly sampling from the global search domain.
Furthermore, various high-dimensional BO implementations adopt random initialisa-
tion as their default strategy [102–104, 108, 114, 156]. GPyOpt [139] and Spearmint
[19] are two of the few works that provide different initialisation strategies from ran-
dom initialisation. GPyOpt combines random points with the best-observed points to
serve as the initial points. Spearmint uses a Gaussian spray around the incumbent best

44

4.1 Introduction

2 1 0 1 2

1.0

0.5

0.0

0.5

1.0

True (unknown)
GP(x)

Observations

2 1 0 1 2
0.00

0.01

0.02

0.03

EI(x)
Next query point

2 1 0 1 2

1.0

0.5

0.0

0.5

1.0

2 1 0 1 2
0.00

0.01

0.02

0.03

0.04

2 1 0 1 2
1.5

1.0

0.5

0.0

0.5

1.0

2 1 0 1 2
0.00

0.02

0.04

0.06

0.08

Figure 4.1: Illustration of Bayesian optimisation with an EI acquisition function, where
the rows from top to bottom correspond to increasing optimisation iterations. The left
panel shows the optimisation process: red dots indicate observed data points (evaluated
configurations), the red dashed curve represents the true (unknown) objective function,
and the green dashed curve with shaded area depicts the surrogate model prediction
with its confidence interval. The right panel shows the corresponding AF (EI), where
the blue dot marks the next evaluation point suggested by the AF.

45

4.1 Introduction

to generate initial points. However, no empirical study shows that these initialisation
strategies are better than random initialisation. As such, random initialisation remains
the most popular strategy for high-dimensional BO AF maximisation. There is a need
to understand the role of the initialisation phase in the AF maximisation process.

This chapter systematically investigates the impact of AF maximiser initialisation
on high-dimensional BO, with respect to AF optimisation quality and its impact on
final search performance. This is motivated by an observation that the pool of avail-
able candidates generated during AF maximisation often limits the AF’s power when
employing the widely used random initialisation for the AF maximiser. This limita-
tion asks for a better strategy for AF maximiser initialisation. To this end, our work
provides a simple yet effective AF maximiser initialisation method to unleash the po-
tential of an AF. Our key insight is that when the AF is effective, the historical data of
black-box optimisation could help identify areas that exhibit better black-box function
values and higher AF values than those obtained through random searches of AF.

We develop AIBO1, a Python framework to employ multiple heuristic optimisers,
like the covariance matrix adaptation evolution strategy (CMA-ES) [33] and genetic
algorithms (GA) [160], to utilise the historical data of black-box optimisation to gen-
erate initial points for a further AF maximiser. We stress that the heuristics employed
by AIBO are not used to optimise the AF. Instead, they capitalise on the knowledge
acquired from the already evaluated samples to provide initial points to help an AF
maximiser find candidate points with higher AF values. For instance, CMA-ES gen-
erates candidates from a multivariate normal distribution determined by the historical
data of black-box optimisation. To investigate whether performance gains come from
better AF maximisation, AIBO also incorporates random initialisation for compar-
ison. Each BO iteration runs multiple AF initialisation strategies, including random
initialisation on the AF maximiser, to generate multiple candidate samples. It then se-
lects the sample with the maximal AF value for black-box evaluation. Thus, heuristic
initialisation strategies work only when they identify higher AF values than random
initialisation.

To avoid confusion, we compare in Figure 4.2 the heuristic algorithms in AIBO with
two other common use cases: one where the heuristic algorithms are applied directly to
optimise the target black-box function, and another where they are applied to directly

1AIBO =Acquisition function maximiser Initialization for Bayesian Optimization.

46

4.1 Introduction

Black-box
Objective Function

A set of evaluation points
(𝑥௧

ଵ, 𝑥௧
ଶ, … , 𝑥௧

௡)
𝑥௧
ଵ, 𝑦௧

ଵ , 𝑥௧
ଶ, 𝑦௧

ଶ ,…, 𝑥௧
௡, 𝑦௧

௡

Performance
Feedback

Generate candidates
for next iteration’s evaluationHeuristic

algorithms

(a) Use heuristic algorithms to optimise the target black-box function.

Training
set

Surrogate
model

Train Acquisition
function 𝛼 𝑥

Next evaluation
point 𝑥௧

Black-box
Objective Function

Use heuristic
algorithms to
maximize 𝛼 𝑥

 (𝑥௧, 𝑦௧)
Update

(b) Use heuristic algorithms to optimise the acquisition function in BO.

Training
set

Surrogate
model

Train Acquisition
function 𝛼 𝑥

Next evaluation
point 𝑥௧

Black-box
Objective Function

Feedback A set of
Candidate Points

Acquisition
function

Maximizer

InitializeGenerateHeuristic
algorithms

 (𝑥௧, 𝑦௧)

(c) Heuristic algorithms in AIBO.

Figure 4.2: Comparison of heuristic algorithms in AIBO and other optimisation scen-
arios. Here, xi

t denotes the i-th candidate point generated at iteration t, which corres-
ponds to a compiler configuration in the context of compiler autotuning. The associated
yi

t represents its measured objective value (e.g., program runtime).

47

4.2 Motivation

optimise the acquisition function. Note that optimising acquisition functions is usually
more difficult than optimising the target black-box function; recent work has shown
that commonly used acquisition functions often face numerical pathologies [137]. This
is why evolutionary algorithms might succeed in optimising the target function but fail
to effectively optimise the acquisition functions.

To demonstrate the benefit of AIBO, we integrate it with the multi-start gradient-
based AF maximiser and apply the integrated system to synthetic test functions and
real-world applications with a search dimensionality ranging between 14 and 300. Spe-
cifically, we set up a compiler flag selection task to examine whether the proposed
method is applicable to the field of compiler autotuning. Experimental results show
that AIBO significantly improves the standard BO not only in synthetic functions
but also in real-world tasks including compiler autotuning. Our analysis suggests that
the performance improvement comes from better AF maximisation, highlighting the
importance of AF maximiser initialisation in unlocking the potential of AF for high-
dimensional BO.

The contribution of this chapter is two-fold. Firstly, it investigates a largely ignored
yet significant problem in high-dimensional BO concerning the impact of the initialisa-
tion of the AF maximiser on the realisation of the AF capability. It empirically shows
that the commonly used random initialisation strategy limits AFs’ power, leading to
over-exploration and poor high-dimensional BO performance. Secondly, it proposes a
simple yet effective initialisation method for maximising the AF, significantly improving
the performance of high-dimensional BO. Benefiting from the simplicity of the proposed
method, it can be applied to various optimisation scenarios, laying the foundation for
addressing high-dimensional issues in compiler phase ordering.

4.2 Motivation

This section demonstrates that the typical randomly initialised acquisition function
(AF) maximisation process is inadequate for high-dimensional BO. It also highlights
that this issue exists in the compiler autotuning domain.

48

4.2 Motivation

AF-based selection (BO-grad)
Random selection

Optimal selection
global optimum

0 400 800 1200 1600 2000
Number of black-box function evaluations

0
2
4
6
8

10
12
14

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley100

(a) 10 AF maximiser restarts

0 400 800 1200 1600 2000
Number of black-box function evaluations

0
2
4
6
8

10
12
14

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley100

(b) 1000 AF maximiser restarts

Figure 4.3: Evaluating the sample chosen by AF-based selection against random and
optimal selection among all intermediate candidate points generated during the AF
maximisation process when applying BO-grad to 100D Ackley functions. We use two
random initialisation settings for AF maximisation: (a) 10 restarts and (b) 1000 re-
starts. In both settings, the performance of the native BO-grad (AF-based selection)
is close to optimal selection and better than random selection, suggesting that the AF
is effective at selecting a good sample from all candidates but is restricted by the pool
of available candidates. Increasing the number of restarts from 10 to 1000 does not
enhance the quality of intermediate candidates, indicating that a more effective initial-
isation scheme, as opposed to random initialisation, is necessary.

4.2.1 A Synthetic Function as Motivation

As a motivation example, consider applying BO to optimise a 100-dimensional black-
box Ackley function [161] that is extensively used for testing optimisation algorithms.
The goal is to find a set of input variables (x) to minimise the output, f(x1, . . . , x100).
The search domain is −5 ≤ xi ≤ 10, i = 1, 2, . . . , 100, with a global minimum of 0.
For this example, we use a standard BO implementation with a prevalent AF1, Upper
Confidence Bound (UCB) [26], denoted as:

α(x) = −µ(x) +
√

βt · σ(x) (4.1)
1Other acquisition functions include the probability of improvement (PI) and expected improvement

(EI).

49

4.2 Motivation

where µ(x) and σ(x) are the posterior mean (prediction) and posterior standard devi-
ation (uncertainty) at point x predicted by the surrogate model, and βt is a hyperpara-
meter that trades off between exploration and exploitation. we set βt = 1.96 in this
example.

Here, we use random search to create the initial starting points for a multi-start
gradient-based AF maximiser to iteratively generate multiple candidates, from which
the AF chooses a sample for evaluation. In each BO iteration, we first evaluate the AF
on 100000 random points and then select the top n points as the initial points for the
further gradient-based AF maximiser. We denote this implementation as BO-grad. In
this example, we use two settings n = 10 and n = 1000.

As shown in Figure 4.3(a), the function output given by BO-grad with 10 AF max-
imiser restarts is far from the global minimum of 0. We hypothesise that while the AF
is effective, the low quality of candidate samples generated in AF maximisation limits
the power of the AF. To verify our hypothesis, we further consider two strategies: (1)
either randomly select the next query point from all the candidate points generated
during AF maximisation or (2) exhaustively evaluate all candidate points’ objective
function values at each BO iteration and select the best one as the next query point.
The former and latter strategies correspond to “random selection” and “optimal se-
lection” schemes, respectively. Despite the ideal but costly “optimal selection” search
scenario, BO does not converge well, indicating intrinsic deficiencies in the AF maxim-
isation process. Meanwhile, the AF itself can choose a good candidate sample point to
evaluate, as the performance of the native AF-based BO-grad is close to that of “op-
timal selection” and better than that of “random selection”. This observation suggests
that the AF is effective at selecting a good sample in this case but its power is severely
limited by the candidate samples generated during the AF maximisation process. We
also observe similar results manifest when using other representative maximisers like
random sampling and evolutionary algorithms.

We then test what happens when we increase the number of AF maximisation
restarts of BO-grad to generate more candidates for AF to select at each iteration.
However, in Figure 4.3(b), it is evident that even with an increase in random restarts
to 1000, the quality of intermediate candidate points generated during the AF maxim-
isation process remains similar to that with 10 restarts. Furthermore, in the case of
1,000 restarts, the performance of BO-grad is still close to that of “optimal selection”,

50

4.2 Motivation

0 200 400 600 800 1000
Number of black-box function evaluations

1.00

1.05

1.10

1.15

1.20

Sp
ee

d
up

 o
ve

r -
O3

Compiler Flag Selection (higher is better)

AIBO (ours)
BO-grad

Figure 4.4: Replacing the default initialisation strategy of AF maximisation in BO-grad
with the proposed strategy in AIBO leads to improved performance for the compiler
flag selection task.

reinforcing our observation that the pool of candidates restricts AF’s power. This
observation suggests that we need a better initialisation scheme rather than simply
increasing the number of restarts of random initialisation.

This example motivates us to explore the possibility of improving the BO per-
formance by providing the AF with better candidate samples through enhanced AF
maximiser initialisation. Our intuition is that the potential of AF is often not fully
explored in high-dimensional BO. Moreover, the commonly used random initialisation
of the AF maximisation process is often responsible for inferior candidates. We aim to
improve the quality of the suggested samples through an enhanced mechanism for AF
maximiser initialisation. As we will show in Section 4.5, our strategy AIBO signific-
antly improves BO on the 100D Ackley function, finding an output minimum of less
than 0.5, compared to 6 given by BO-grad after evaluating 5,000 samples.

4.2.2 Compiler Autotuning

To investigate whether the issue of inadequate AF maximisation exists in the domain
of compiler autotuning, we further examine the performance of the proposed strategy
in the task of selecting compiler flags to optimise the execution time. Compared to the
compiler phase-ordering problem, compiler flag selection is simpler: it does not involve
determining the ordering of passes, the interactions between passes are less complex,
and each decision dimension is essentially binary (flag on or off). Therefore, Bayesian
optimisation can be directly applied to this problem without additional customisation.

51

4.3 Methodology

For this study, we select the telecom gsm benchmark from the cBench suite [162] as
our test instance, utilising LLVM 17 as the compiler. We chose the telecom gsm bench-
mark because it is a representative compute-intensive program, and its compilation and
execution times are short enough to allow repeated evaluations required by Bayesian
optimisation. The benchmark is run as a single-threaded program on an AMD Ryzen
Threadripper PRO 5995WX CPU clocked at 2.25 GHz. We consider 82 flags at the
-O3 optimisation level, where each compiler flag can be set to 0 or 1 (0/1 refers to
disabling/enabling it). Since the previously mentioned Bayesian optimisation method,
BO-grad, is designed for continuous domains, we reformulate the flag selection prob-
lem as a continuous optimisation task. Specifically, we embed the binary compiler-flag
search space into a continuous domain [0, 1]d to allow Bayesian optimisation to op-
erate smoothly. Each dimension corresponds to a compiler flag, where values below
0.5 are mapped to 0 (flag disabled) and values above or equal to 0.5 are mapped to
1 (flag enabled). Intermediate values (e.g., 0.45) are not directly meaningful to the
compiler; they are only used internally by BO during the optimisation process and are
thresholded to obtain the binary flag configuration for evaluation.

We follow the common practice to deal with the noise in program execution time
measurements and the relatively long runtime of each execution [67]. At each search
iteration, we evaluate the objective function (i.e., program execution time) by running
the program three times and taking the average. After the search process concludes, to
accurately assess the true performance, we select the best configuration found every 100
points, recompile the program, and execute it 50 times to obtain the accurate execution
time.

Figure 4.4 compares BO-grad (10 restarts) and AIBO. Results show that the im-
proved initialisation strategy (of AF maximisation) in AIBO leads to more efficient
optimisation than the default strategy in BO-grad. This underscores that when util-
ising BO for compiler autotuning, the problem of inadequate AF maximisation remains.

4.3 Methodology

Our study focuses on evaluating the initialisation phase of AF maximisation. To this
end, we developed AIBO, an open-source framework to facilitate an exhaustive and
reproducible assessment of AF maximiser initialisation methods.

52

4.3 Methodology

4.3.1 Heuristic Acquisition Function Maximizer Initialisation

AIBO leverages multiple heuristic optimisers’ candidate generation mechanisms to gen-
erate high-quality initial points from the already evaluated samples. Given the proven
effectiveness of heuristic algorithms in various black-box optimisation scenarios, they
are more likely to create initial candidates near promising regions. As an empirical
study, we aim to explore whether this initialisation makes the AF optimiser yield points
with higher AF values and superior black-box function values compared to random ini-
tialisation.

As described in Algorithm 1, AIBO maintains multiple black-box heuristic optim-
isers o0, o2, ..., ol−1 (the size is l). At each BO iteration, each heuristic optimiser oi is
asked to generate k raw points Xi based on its candidate generation mechanisms (e.g.,
CMA-ES generates candidates from a multivariate normal distribution). AIBO then
selects the best n points X̃i (n < k) with the highest AF values from Xi for each optim-
iser oi, respectively. After using these points to initialise and run an AF maximiser for
each initialisation strategy, we obtain multiple candidate points x0

t , x1
t , ..., xl−1

t . Finally,
the candidate with the highest AF value is chosen as the sample to be evaluated by
querying the black-box function. Crucially, the evaluated sample is used as feedback to
update each optimiser oi - for example, updating CMA-ES’s normal distribution. This
process repeats at each subsequent BO iteration.

Our current default implementation employs CMA-ES, GA and random search as
heuristics for initialisation. We use the “combine-then-select” approach because it al-
lows us to examine if GA/CMA-ES initialisation could find better AF values than
random initialisation. Our scheme only chooses GA/CMA-ES initialisation if it yields
larger AF values than random initialisation. Besides, while heuristics like GA already
provide exploratory mechanisms and altering their hyperparameters can achieve differ-
ent trade-offs, the usage of random initialisation here could also mitigate the case of
over-exploitation.

CMA-ES CMA-ES uses a multivariate normal distribution N(m, C) to generate ini-
tial candidates in each BO iteration. Here, the mean vector m determines the centre
of the sampling region, and the covariance matrix C determines the shape of the re-
gion. The covariance matrix m is initialised at the beginning of the BO search, and
each direction (dimension) will be assigned an initial covariance, ensuring exploration

53

4.3 Methodology

Algorithm 1 Acquisition function maximiser initialisation for high-dimensional
Bayesian optimisation (AIBO)

Input: The number of search iterations T

Output: The best-performing query point x∗

1: Draw N points uniformly and evaluate their objective values to form the initial dataset D0

2: Specify a set of heuristic optimisers O = {o0, o2, ..., ol−1}, where the size is l

3: Use D0 to initialize a set of heuristic optimisers O

4: for t = 0 : T − 1 do
5: Fit a Gaussian process G to the current dataset Dt

6: Construct an acquisition function α(x) based on G

7: for i = 0 : l − 1 do
8: Xi ← oi.ask(num = k) ▷ Ask the heuristic to generate k candidates
9: X̃i ← top(α(Xi), n) ▷ Select top-n (n < k) candidates from Xi according to α(x)

10: Use X̃i to initialize an acquisition function maximizer M

11: xi
t ← arg max

x∈X

α(x)|M ▷ Use M to maximize α(x)

12: end for
13: xt ← arg max α(x) x ∈ {x0

t , x1
t , ..., xl−1

t } ▷ Select the point with the highest AF value
14: yt ← f(xt) ▷ Evaluate the selected sample
15: for each oi ∈ O do
16: oi.tell(xt, yt) ▷ Update heuristic optimiser oi with (xt, yt)
17: end for
18: Update dataset Dt+1 = Dt ∪ {(xt, yt)}
19: end for

across all directions. By updating m and C using new samples after each BO iteration,
CMA-ES can gradually focus on promising regions.

GA GA keeps a population of samples to determine its search region. It uses biolo-
gically inspired operators like mutation and crossover to generate new candidates based
on the current population. Its population is updated by newly evaluated samples after
each BO iteration.

Random Most BO algorithms or library implementations use random search for
initialising the AF maximiser. We use it here to eliminate the possibility of AIBO’s
performance improvement stemming from GA/CMA-ES initialisation, yielding points
with better black-box function values but smaller AF values.

Our heuristic initialisation process is AF-related, as the heuristic optimisers are
updated by AF-chosen samples. Usually, a more explorative AF will make the heuristic

54

4.3 Methodology

initialisation also more explorative. For instance, in GA, if the AF formula leans
towards exploration, the GA population composed of samples chosen by this AF will
have greater diversity, leading to generating more diverse raw candidates. The details
of how GA and CMA-ES generate candidates and update themselves are provided in
Section 4.3.2.

4.3.2 Implementation Details

Since this study focuses on the AF maximisation process, we utilise other BO settings
that have demonstrated good performance in prior work. We describe the implement-
ation details as follows.

Gaussian process regression

To support scalable GP regression, we implement the GP model based on an optimised
GP library GPyTorch [22]. GPyTorch implements the GP inference via a modified
batched version of the conjugate gradients algorithm, reducing the asymptotic com-
plexity of exact GP inference from O(n3) to O(n2). The overhead of running BO with
a GP model for a few thousand evaluations should be acceptable for many scenarios
that require hundreds of thousands or more evaluation iterations.

We select the Matérn-5/2 kernel with ARD (each input dimension has a separ-
ate length scale) and a constant mean function to parameterise our GP model. The
details of the Matérn-5/2 kernel have been introduced in the background chapter 2,
and we choose it because it is one of the most widely used kernels and has demon-
strated strong empirical performance across a broad range of real-world optimisation
tasks. The model parameters are fitted by optimising the log-marginal likelihood be-
fore proposing a new batch of samples for evaluation. Following the usual GP fitting
procedure, we re-scale the input domain to [0, 1]d. To improve model stability, we apply
Yeo-Johnson power transforms to function values, which reduces skewness and makes
the data more Gaussian-like. This is particularly useful for highly skewed functions
such as Rosenbrock and has proven effective in real-world applications [131]. We use
the following bounds for the model parameters: length-scale λi ∈ [0.005, 20.0], noise
variance σ2 ∈ [1e−6, 0.01], consistent with parameter settings in previous work [7].

55

4.3 Methodology

Batch Bayesian Optimisation

To support batch evaluation for general high-dimensional problems, we employ the
UCB and EI AFs estimated via Monte Carlo (MC) integration. Wilson et al. [28] have
shown that MC AFs naturally support queries in parallel and can be maximised via
a greedy sequential method. Algorithm 1 shows the case where the batch size is one,
which is the typical setting for compiler autotuning tasks. Assuming the batch size is
q, the process of greedy sequential acquisition function maximisation can be expressed
as follows:

1. Maximize the initial MC acquisition function α0(x) to obtain the first query point
x0.

2. Use the first query sample (x0, α0(x0)) to update α0(x) to α1(x) and maximize α1(x)
to obtain the second query point x1.

3. Similarly, successively update and maximize α2(x), α3(x), ..., αq−1(x) and obtain
query points x2, x3, ..., xq−1.

We implemented it based on BoTorch [25], which provided the MC-estimated acquis-
ition functions and the interface for function updating via query samples. Details of
the calculation of MC-estimated AFs are provided in Section 2.1.2.

Hyper-parameter settings

We use N = 50 samples to obtain all benchmarks’ initial dataset D0. We set k = 500
and n = 1 for each AF maximiser initialisation strategy. We use the implementations
in pycma [163] and pymoo [164] for the CMA-ES and the GA initialisation strategies,
respectively. For CMA-ES, we set the initial standard deviation to 0.2. For GA initial-
isation, we set the population size to 50. The default AF maximiser in AIBO is the
gradient-based optimisation implemented in BoTorch. The default AF is UCB with
βt = 1.96 (default setting in the skopt library [128]), and the default batch size is set to
10. In Section 4.5.7, we will also show the impact of changing these hyper-parameters
in our experiments.

Details of GA and CMA-ES in AIBO

In this part, we explain how GA and CMA-ES optimisers in AIBO are initialised
(Line 3 in Algorithm 1), updated (Line 16 in Algorithm 1) and asked to generate raw

56

4.3 Methodology

candidates (Line 8 in Algorithm 1). We use the implementations in pycma and pymoo
for the CMA-ES and the GA strategies, respectively.

Initialisation of GA At the beginning of the search process in AIBO, we will draw
N samples uniformly and evaluate them to produce GA’s initial population.

Candidate generation of GA To generate new candidates, GA will sequentially
perform selection, crossover and mutation operations. The selection operation aims to
select individuals from the current population of GA to participate in mating (crossover
and mutation). The crossover operation combines parents into one or several offspring.
Finally, the mutation operation generates the final candidates based on the offspring
created through the crossover. It helps increase the diversity in the population. The
selection, crossover and mutation operations used in AIBO are shown as follows.

• Tournament Selection: It involves randomly picking T individuals from the pop-
ulation, comparing their fitness, and selecting the individual with the highest
fitness. This process is repeated to fill the new generation. We use the default
setting of pymoo, i.e., T = 2.

• Simulated Binary Crossover (SBX): This is a widely used crossover technique.
A binary notation can represent real values, and then point crossovers can be
performed. SBX simulated this operation by using an exponential probability
distribution simulating the binary crossover. For this operation, we also use the
default SBX implementation of pymoo, where the crossover probability is set to
0.5.

• Polynomial Mutation: This mutation follows the same probability distribution as
the simulated binary crossover to introduce small, random changes to individuals
in the population to maintain genetic diversity. We use the default polynomial
mutation implementation of pymoo. The mutation probability is set to 1/D,
where D is the dimension of the problem, i.e., the number of design variables.

Update of GA We update the population of GA using the most recently evaluated
samples in AIBO. Here, we sort the samples based on their fitness (black-box function
value), ultimately retaining those with superior fitness.

57

https://github.com/CMA-ES/pycma
https://github.com/anyoptimization/pymoo
https://github.com/anyoptimization/pymoo/blob/82a5189704436b1d1296e3615075bf6115f5dabf/pymoo/operators/selection/tournament.py#L9
https://github.com/anyoptimization/pymoo/blob/82a5189704436b1d1296e3615075bf6115f5dabf/pymoo/operators/crossover/sbx.py#L87
https://github.com/anyoptimization/pymoo/blob/82a5189704436b1d1296e3615075bf6115f5dabf/pymoo/operators/mutation/pm.py#L74

4.4 Experimental Setup

Table 4.1: Benchmarks used in evaluation.

Function/Task #Dimensions Search Range

Ackley 20, 100, 300 [-5, 10]
Rosenbrock 20, 100, 300 [-5, 10]
Rastrigin 20, 100, 300 [-5.12, 5.12]

Synthetic

Griewank 20, 100, 300 [-10, 10]
Robot pushing [108] 14 /
Rover trajectory planning [108] 60 [0, 1]
Half-Cheetah locomotion [165] 102 [-1, 1]Real-world
Nasbench [166] 36 [0, 1]
Lasso DNA [167] 180 [0, 1]

Initialisation of CMA-ES The key of CMA-ES is a multivariate normal distribu-
tion N(mk, σ2

kCk), which is initialised at the beginning of the search process in AIBO.
In particular, we will draw N samples uniformly and evaluate them. The coordinates
of the sample with the best black-box function value will be used as the initial mean
vector m0. The step size σk is initialized to a constant σ0 = 0.2, and the covariance
matrix Ck is initialized as an identity matrix C0 = I.

Candidate generation of CMA-ES At each iteration k, CMA-ES generates can-
didates by sampling from its current multivariate normal distribution, i.e.,

xi ∼ N(mk, σ2
kCk) (4.2)

Update of CMA-ES The update of CMA-ES involves updating the multivariate
normal distribution N(mk, σ2

kCk). Here we follow the standard CMA-ES’s update pro-
cess, which is shown in equations 2.8–2.12 in Section 2.2.2.

4.4 Experimental Setup

4.4.1 Benchmarks

Table 4.1 lists the benchmarks and the problem dimensions used in the experiments.
These include synthetic functions and six real-world tasks.

58

4.4 Experimental Setup

Synthetic functions We first apply AIBO and the baselines to four common syn-
thetic functions [161]: Ackley, Rosenbrock, Rastrigin and Griewank1. These functions
are frequently used in optimisation studies due to their well-understood landscapes
and controlled complexity. Each function allows for flexible dimensionality and shares
a global minimum value of 0, making them ideal for comparing optimisation algorithms
across various settings. The mathematical structures of these functions exhibit different
challenges such as multimodality, narrow ridges, and non-convex regions. For instance,
the Rastrigin function has a high number of local minima, whereas the Rosenbrock
function features a narrow, curved valley. To explore the influence of dimensionality on
BO performance, we conduct experiments in 20, 100, and 300 dimensions. This range
allows us to assess how AIBO scales with increasing dimensionality while preserving
the underlying structure of the problem.

Beyond these synthetic benchmarks, we further evaluate our methods on six real-
world tasks to demonstrate their practical applicability.

Robot pushing This task, first introduced in [108] and later considered in [7], aims
to optimise the control policy for two robotic hands tasked with pushing two objects
to specified target locations. While the dimensionality of this task is relatively low at
14, the sparsity of the reward function poses significant challenges.

Rover trajectory planning The task, also considered in [7, 108], is to maximise
the trajectory of a rover over rough terrain. The trajectory is determined by fitting a
B-spline to 30 points in a 2D plane (thus, the state vector consists of 60 variables). This
task’s best reward is 5. Such trajectory optimisation tasks have practical implications
in autonomous vehicle navigation and exploration robotics.

Half-cheetah robot locomotion We consider the 102D half-cheetah robot loco-
motion task simulated in MuJoCo [165] and use the linear policy a = Ws introduced in
[168] to control the robot walking. Herein, s is the state vector, a is the action vector,
and W is the linear policy to be searched for to maximise the reward. Each component
of W is continuous and within [-1,1]. This task represents a typical reinforcement learn-
ing scenario with continuous control, where the search space is large, and the reward
function is often noisy and non-convex.

1These functions can be seen in https://www.sfu.ca/˜ssurjano/ackley.html

59

https://www.sfu.ca/~ssurjano/ackley.html

4.4 Experimental Setup

Nasbench The Nasbench-101 [166] task is to design a neural architecture cell topo-
logy defined by a DAG with 7 nodes and up to 9 edges to maximise the CIFAR-10
test-set accuracy, subject to a constraint where the training time was less than 30
minutes. We follow the parameterisation approach used by [102] to make the Nasbench
task become a 36-dimensional black-box function. Note while the dimension is 36, the
search space size of Nasbench-101 is small (only 423,624 samples). In such a small
search space size, AF maximisation is no longer a challenge.

Lasso-DNA The Lasso-DNA [167] task minimises the mean squared error (MSE) of
weighted Lasso sparse regression for real-world DNA datasets. This problem features
a high-dimensional search space with 180 tunable parameters, corresponding to the
weights of the Lasso regression model. The task is representative of real-world scientific
applications where sparse and interpretable models are desired, and optimisation must
navigate a highly structured and correlated parameter space. The Lasso-DNA dataset
provides a challenging benchmark due to the complex interactions between variables
and the need to balance sparsity and predictive accuracy.

Compiler Flag Selection The compiler flag selection task is the same as the ex-
ample used in Section 4.2.2.

4.4.2 Evaluation Methodology

We design diverse experiments to validate the significance of the initialisation of the
AF maximisation process. All experiments are run 50 times for evaluation. In Sec-
tion 4.5.1, we evaluate AIBO’s end-to-end BO performance by comparing it to various
baselines including standard BO implementations with AF maximiser random initial-
isation, heuristic algorithms and representative high-dimensional BO methods. In Sec-
tion 4.5.2, we evaluate the robustness of AIBO under different AFs. In Section 4.5.3,
we evaluate AIBO’s three initialisation strategies in terms of AF values, GP posterior
mean, and GP posterior variance to show how pure random initialisation leads to over-
exploration. This will also show whether AIBO’s heuristic initialisation strategies lead
to better AF maximisation compared to commonly used random initialisation. In Sec-
tion 4.5.4, we use an extreme case to test whether adding random initialisation to
AIBO can help alleviate the over-exploitation issue. In Section 4.5.5, we use ablation
experiments to examine the impact of the three individual initialisation strategies in

60

4.5 Experimental Results

AIBO. In Section 4.5.6, we compare AIBO to BO implementations with alternative AF
maximiser initialisation strategies rather than selecting initial points with the highest
AF values from a set of random points. In Section 4.5.7, we show the impact of hyper-
parameters on the performance of AIBO. In Section 4.5.8, we discuss how different
AF settings affect the evolution of AIBO’s heuristic initialisation strategies, providing
evidence that our initialisation process is indeed AF-dependent. Given that different
AF settings represent varying trade-offs between exploration and exploitation, we ar-
gue that an appropriate initialisation strategy should be adjusted based on the chosen
acquisition function, and our approach satisfies this requirement. In Section 4.5.9, we
provide the algorithmic runtime of our method.

4.5 Experimental Results

Highlights of our evaluation results are:

• AIBO significantly improves standard BO and outperforms heuristic algorithms
and representative high-dimensional BO methods in most test cases (Sec. 4.5.1 and
Sec. 4.5.2);

• By investigating AIBO’s three initialisation strategies in terms of AF maximisation,
we show that random initialisation limits AFs’ power by yielding lower AF values
and larger posterior variances, leading to over-exploration, empirically confirming
our hypothesis (Sec. 4.5.3);

• We provide a detailed ablation study and hyper-parameters analysis to understand
the working mechanisms of AIBO (Sec. 4.5.5 and Sec. 4.5.7).

• We demonstrate the importance of leveraging the black-box optimisation history in
the AF maximisation process (Sec. 4.5.6).

4.5.1 Comparison with Baselines

Setup

We first compare AIBO to eight baselines: BO-grad, BO-es, BO-random, TuRBO,
HeSBO, CMA-ES, GA and AIBO-none. We describe the baselines as follows.

BO-grad, BO-es and BO-random respectively refer to the standard BO implement-
ations using three AF maximisers: multi-start gradient-based, CMA-ES and random

61

4.5 Experimental Results

AIBO (ours)
AIBO-none (ours)

BO-grad
BO-es

BO-random
TuRBO

HeSBO
Elastic BO

CMA-ES
GA

0 200 400 600 800 1000
Number of black-box function evaluations

0
2
4
6
8

10
12
14
16

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley20 (lower is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0.0
2.5
5.0
7.5

10.0
12.5
15.0

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley100 (lower is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2
4
6
8

10
12
14
16

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley300 (lower is better)

0 200 400 600 800 1000
Number of black-box function evaluations

101

102

103

104

105

106

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock20 (lower is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

102

103

104

105

106

107

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock100 (lower is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

104

105

106

107

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock300 (lower is better)

0 200 400 600 800 1000
Number of black-box function evaluations

50
100
150
200
250
300
350
400
450

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin20 (lower is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

250
500
750

1000
1250
1500
1750
2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin100 (lower is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

1000
2000
3000
4000
5000
6000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin300 (lower is better)

0 200 400 600 800 1000
Number of black-box function evaluations

0
100
200
300
400
500
600

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank20 (lower is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0

500

1000

1500

2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank100 (lower is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0
1000
2000
3000
4000
5000
6000
7000
8000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank300 (lower is better)

Figure 4.5: Results on synthetic functions. AIBO consistently improves BO-grad on all
test cases and outperforms other competing baselines in most cases. Especially, AIBO
shows clear advantages in higher dimensions (100D and 300D). Note that AIBO differs
from BO-grad only in the initialisation of the AF maximiser.

62

4.5 Experimental Results

AIBO (ours)
AIBO-none (ours)

BO-grad
BO-es

BO-random
TuRBO

HeSBO
Elastic BO

CMA-ES
GA

0 25 50 75 100 125 150 175 200
Number of black-box function evaluations

0.926
0.928
0.930
0.932
0.934
0.936
0.938
0.940

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Nasbench (higher is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

4
5
6
7
8
9

10
11

Re
wa

rd

RobotPush14 (higher is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2
1
0
1
2
3
4
5

Re
wa

rd

Rover60 (higher is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2000

1000

0

1000

2000

3000

Re
wa

rd

HalfCheetah102 (higher is better)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0.28
0.29
0.30
0.31
0.32
0.33
0.34
0.35

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

lasso-DNA (lower is better)

0 200 400 600 800 1000
Number of black-box function evaluations

1.00

1.05

1.10

1.15

1.20

Sp
ee

d
up

 o
ve

r -
O3

Compiler Flag Selection (higher is better)

Figure 4.6: Results on real-world problems. AIBO consistently improves BO-grad on
all test cases and outperforms other competing baselines in most cases.

sampling. These standard BO implementations use the same base settings as AIBO
but with a random initialisation scheme for AF maximisation. To show the effective-
ness of AIBO, BO-grad is allowed to perform more costly AF maximisation; we set
k = 2000 and n = 10.

TuRBO [7], HeSBO [100] and Elastic BO [113] are representative high-dimensional
BO methods. We use N = 50 samples to obtain the initial dataset D0 for all three
high-dimensional BO methods. For HeSBO, we use a target dimension of 8 for the
14D robot pushing task, 20 for the 102D robot locomotion task and 100D or 300D
synthetic functions, and 10 for other tasks. Other settings are default in the reference
implementations.

CMA-ES and GA are used to demonstrate the effectiveness of AF itself. Given
that AIBO employs AF to further search the query point from the initial candidates
generated by CMA-ES and GA black-box optimisers, if the AF is not sufficiently robust,
the performance of AIBO might be inferior to CMA-ES/GA. For CMA-ES, the initial
standard deviation is set to 0.2, and the rest of the parameters are defaulted in pycma
[163]. For GA, the population size is set to 50, and the rest of the parameters are
defaulted in pymoo [164].

AIBO-none is a variant of AIBO. In each BO iteration, following the initialisation

63

4.5 Experimental Results

of the AF maximisation process, AIBO-none directly selects the point with the highest
AF value while AIBO uses a gradient-based AF maximiser to further search points with
higher AF values. This comparison aims to assess whether better AF maximisation can
improve performance.

Results

Figures 4.5 and 4.6 present a comprehensive comparison of AIBO against various
baselines on synthetic functions and real-world benchmarks, respectively. We use
UCB1.96 (UCB with βt = 1.96) as the default AF. The results are averaged over
50 runs. The y-axis shows the best function value found so far, and the x-axis shows
the number of function evaluations. The shaded area represents the standard deviation.

AIBO versus BO-grad While the performance varies across target functions, AIBO
consistently improves BO-grad on all test cases. Especially for synthetic functions which
allow flexible dimensions, AIBO shows clear advantages in higher dimensions (100D
and 300D). We also observe that BO-grad exhibits a similar convergence rate to AIBO
at the early search stage. This is because AF maximisation is relatively easy to fulfil
when the number of samples is small. However, as the search progresses, more samples
can bring more local optimums to the AF, making the AF maximisation process in-
creasingly harder.

AIBO versus CMA-ES/GA As AIBO introduces CMA-ES and GA black-box op-
timisers to provide initial points for AF maximisation, comparing AIBO with CMA-ES
and GA will show whether the AF is good enough to make the AF maximisation pro-
cess find better points than the initial points provided by CMA-ES/GA initialisation.
Results show AIBO outperforms CMA-ES and GA in most cases except for the 20D
Rastrigin function, where GA shows superior performance. However, in the next sec-
tion, we will demonstrate that adjusting UCB’s beta from 1.96 to 1 will enable AIBO
to maintain its performance advantage over GA. This suggests that with the appropri-
ate choice of the AF, BO’s model-based AF can offer a better mechanism for trading
off exploration and exploitation compared to heuristic GA/CMA-ES algorithms.

AIBO versus other high-dimensional BO methods When compared to repres-
entative high-dimensional BO methods, including TuRBO, Elastic BO and HeSBO,

64

4.5 Experimental Results

AIBO performs the best in most cases except for the 20D Rastrigin function, for which
TuRBO shows the fastest convergence. However, for higher dimensions (100D and
300D), AIBO performs better than TuRBO on this function.

AIBO versus AIBO-none Without the gradient-based AF optimiser, AIBO-none
still shows worse performance than AIBO. This indicates that better AF maximisation
can improve the BO performance. This trend can also be observed in the results of
standard BO with different AF maximisers, where BO-grad and BO-es outperform
BO-random.

Overall, these experimental results highlight the importance of the AF maximisa-
tion process for high-dimensional BO, as simply changing the initialisation of the AF
maximisation process brings significant improvement.

4.5.2 Evaluation under Different AFs

We also evaluate the performance of AIBO and BO-grad under different AFs. Besides
the default AF setting UCB1.96 (UCB with βt = 1.96), we also select UCB1 (βt = 1),
UCB4 (βt = 4) and EI as the AF, respectively. This aims to provide insights into
how well AIBO enhances BO-grad across different AF settings, shedding light on its
robustness and effectiveness across diverse contexts.

Figure 4.7 shows a comprehensive evaluation of the effectiveness of our AIBO
method across various AFs. Changing the AF has a noticeable impact on perform-
ance, highlighting the importance of AF selection. If an inappropriate AF is used, such
as using UCB4 in Rastrigin20, the performance improvements achieved through the
use of AIBO remain highly limited. Despite that, the results we obtained are highly
encouraging. While different AFs exhibit varying convergence rates, we consistently ob-
serve a noteworthy enhancement in the performance of our method when compared to
the standard BO-grad approach. The advantage is clearer in higher dimensions (100D
and 300D) than in lower dimensions (20D). These findings highlight the robustness and
effectiveness of our initialisation method across different AFs.

4.5.3 Over-Exploration of Random Initialisation

The aforementioned experimental results have demonstrated that heuristic AF max-
imiser initialisation in AIBO leads to significant end-to-end BO performance improve-

65

4.5 Experimental Results

AIBO-UCB1.96
AIBO-UCB1

AIBO-UCB4
AIBO-EI

BO-grad-UCB1.96
BO-grad-UCB1

BO-grad-UCB4
BO-grad-EI

0 200 400 600 800 1000
Number of black-box function evaluations

0
2
4
6
8

10
12
14
16

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2.5
5.0
7.5

10.0
12.5
15.0
17.5

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley300

0 200 400 600 800 1000
Number of black-box function evaluations

101

102

103

104

105

106

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

102

103

104

105

106

107

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

104

105

106

107

108

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock300

0 200 400 600 800 1000
Number of black-box function evaluations

50
100
150
200
250
300
350
400

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

250
500
750

1000
1250
1500
1750
2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

1000

2000

3000

4000

5000

6000
Bl

ac
k-

bo
x

fu
nc

tio
n

va
lu

e
Rastrigin300

0 200 400 600 800 1000
Number of black-box function evaluations

0

200

400

600

800

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0
200
400
600
800

1000
1200
1400

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0

1000

2000

3000

4000

5000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank300

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

4
5
6
7
8
9

10
11

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

RobotPush14

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0

1

2

3

4

5

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rover60

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2000

1000

0

1000

2000

3000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

HalfCheetah102

Figure 4.7: Evaluating the performance of AIBO and BO-grad under different AFs on
both synthetic functions (lower is better) and real-world problems (higher is better).

66

4.5 Experimental Results

ga initialization cmaes initialization random initialization

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 100D Ackley: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Ackley: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Ackley: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 100D Rosenbrock: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Rosenbrock: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Rosenbrock: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 100D Rastrigin: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Rastrigin: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Rastrigin: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 100D Griewank: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Griewank: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Griewank: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 14D Robotpush: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

14D Robotpush: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 14D Robotpush: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 60D Rover: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

60D Rover: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 60D Rover: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 102D HalfCheetah: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

102D HalfCheetah: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 102D HalfCheetah: #highest variance

Figure 4.8: Evaluating AIBO’s three initialisation strategies in terms of AF values, GP
posterior mean, and GP posterior variance when using UCB1.96 as the AF. The left
column shows the number of times each initialisation achieves the highest AF value
among all the three strategies throughout the search process. Similarly, the middle
column and right column indicate instances of achieving the lowest posterior mean
(exploitation) and the highest posterior variance (exploration), respectively.

67

4.5 Experimental Results

ga initialization cmaes initialization random initialization

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 100D Ackley: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Ackley: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Ackley: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 100D Rosenbrock: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Rosenbrock: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Rosenbrock: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 100D Rastrigin: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Rastrigin: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Rastrigin: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 100D Griewank: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Griewank: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Griewank: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 14D Robotpush: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

14D Robotpush: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 14D Robotpush: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 60D Rover: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

60D Rover: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 60D Rover: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 102D HalfCheetah: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

102D HalfCheetah: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 102D HalfCheetah: #highest variance

Figure 4.9: Evaluating AIBO’s three initialisation strategies in terms of AF values,
GP posterior mean, and GP posterior variance when using UCB1 as the AF. The left
column shows the number of times each initialisation achieves the highest AF value
among all the three strategies throughout the search process. Similarly, the middle
column and right column indicate instances of achieving the lowest posterior mean
(exploitation) and the highest posterior variance (exploration), respectively.

68

4.5 Experimental Results

ga initialization cmaes initialization random initialization

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 100D Ackley: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Ackley: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Ackley: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 100D Rosenbrock: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Rosenbrock: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Rosenbrock: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 100D Rastrigin: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Rastrigin: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Rastrigin: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 100D Griewank: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

100D Griewank: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 100D Griewank: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 14D Robotpush: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

14D Robotpush: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 14D Robotpush: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 60D Rover: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

60D Rover: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 60D Rover: #highest variance

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 A
F

va
lu

e 102D HalfCheetah: #highest AF value

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#l
ow

es
t m

ea
n

102D HalfCheetah: #lowest mean

0 1000 2000 3000 4000 5000
#black-box function evaluations

0
1000
2000
3000
4000
5000

#h
ig

he
st

 v
ar

ia
nc

e 102D HalfCheetah: #highest variance

Figure 4.10: Evaluating AIBO’s three initialisation strategies in terms of AF values,
GP posterior mean, and GP posterior variance when using EI as the AF. The left
column shows the number of times each initialisation achieves the highest AF value
among all the three strategies throughout the search process. Similarly, the middle
column and right column indicate instances of achieving the lowest posterior mean
(exploitation) and the highest posterior variance (exploration), respectively.

69

4.5 Experimental Results

ments compared to random initialisation. In this subsection, we evaluate AIBO’s three
initialisation strategies in terms of AF values, GP posterior mean, and GP posterior
variance under different AF settings.

In each iteration of AIBO, each initialisation oi yields a candidate xi
t after AF

maximisation (Line 11 in Algorithm 1). For each initialisation, we count the number of
times xi

t achieves the highest AF value among {x0
t , x1

t , x2
t } until the current iteration.

This number will show what initialisation dominates the search process by yielding the
highest AF value. Similarly, we also count the number of times xi

t achieves the lowest
GP posterior mean (exploitation) and highest GP posterior variance (exploration),
respectively. This will examine how different initialisation schemes trade-off between
exploration and exploitation.

The left column in Figure 4.8 shows the number of times each initialisation achieves
the highest AF value among all the three strategies throughout the search process when
using UCB1.96 (βt = 1.96) as the AF. The middle and right columns indicate the
number of times each initialisation achieves the lowest posterior mean (exploitation)
and the highest posterior variance (exploration), respectively. Compared to CMA-
ES/GA initialisation, random initialisation always yields lower AF values and higher
posterior variance, leading to over-exploration.

This over-exploration caused by random initialisation is not exclusive to the UCB1.96
AF. As shown in Figures 4.9 and 4.10, when decreasing βt from 1.96 to 1, or using EI
as the AF, random initialisation still yields lower AF values and higher posterior vari-
ance. This is due to the curse of the dimensionality. Since the search space size grows
much faster than sampling budgets as the dimensionality increases, most regions are
likely to have a high posterior variance. Given that more samples can bring more local
optimums to AFs as the search progresses, random initialisation tends to guide the AF
maximiser to find local optimums in regions of high posterior variance. Even if the
AF is designed to prioritise regions with lower GP posterior mean values for exploit-
ation (e.g. UCB with a lower βt), these regions are sparse and may be inaccessible
through random initialisation. AIBO is designed to mitigate the drawback of random
initialisation, and the results presented here validate AIBO indeed achieves better AF
maximisation by optimising the initialisation phase.

70

4.5 Experimental Results

AIBO_gacma (popsize=3, CMA-ES = 0.01)
AIBO_gacma (popsize=50, CMA-ES = 0.2)

AIBO (popsize=3, CMA-ES = 0.01)
AIBO (popsize=50, CMA-ES = 0.2)

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

4
5
6
7
8
9

10
11

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

RobotPush14

Figure 4.11: Comparision of AIBO and AIBO gacma under a standard hyperpara-
meter setting and a over-exploitative setting. Results show that random initialisation
could help mitigate over-exploitation.

4.5.4 The Case of Over-Exploitation

To show AIBO’s random initialisation can help alleviate the over-exploitation issue, we
create a variant of our technique, AIBO gacma, by removing random initialisation. As
shown in Figure 4.11, using default hyperparameters, AIBO gacma performs well in
the RobotPush14 optimisation task. However, after adjusting the hyperparameters to
an over-exploitation case by setting GA population size to 3 and CMA-ES initial stand-
ard deviation to 0.01, we observe that AIBO gacma performs less effectively. Upon
reintroducing random initialisation, we observed significant performance improvement,
suggesting that random initialisation could help mitigate over-exploitation.

4.5.5 Ablation Study

To better understand the role played by each initialisation strategy in AIBO, we eval-
uate the three individual initialisation strategies in AIBO, leading to three variants
of AIBO: AIBO ga, AIBO cmaes and AIBO random. We note that AIBO random
is equivalent to BO-grad discussed earlier. Our fourth variant, AIBO gacma, removes
the random initialisation strategy in AIBO.

As shown in Figure 4.12, advanced heuristic initialisation strategies like GA and
CMA-ES show better performance than random initialisation in most cases, showing
the advantage of a heuristic algorithm over random initialisation. Using a single ad-

71

4.5 Experimental Results

AIBO AIBO_random (BO-grad) AIBO_ga AIBO_cmaes AIBO_gacma

0 200 400 600 800 1000
Number of black-box function evaluations

0
2
4
6
8

10
12
14
16

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0
2
4
6
8

10
12
14
16

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2
4
6
8

10
12
14
16

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley300

0 200 400 600 800 1000
Number of black-box function evaluations

101

102

103

104

105

106

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

102

103

104

105

106

107

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

104

105

106

107

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock300

0 200 400 600 800 1000
Number of black-box function evaluations

50
100
150
200
250
300
350
400

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

250
500
750

1000
1250
1500
1750
2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

1000

2000

3000

4000

5000

6000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin300

0 200 400 600 800 1000
Number of black-box function evaluations

0
100
200
300
400
500
600
700
800

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0
200
400
600
800

1000
1200
1400

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0
500

1000
1500
2000
2500
3000
3500
4000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank300

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

4
5
6
7
8
9

10
11

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

RobotPush14

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0

1

2

3

4

5

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rover60

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2000

1000

0

1000

2000

3000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

HalfCheetah102

Figure 4.12: Comparing AIBO to its variants AIBO gacma, AIBO ga, AIBO cmaes
and AIBO random (BO-grad) . While a single advanced heuristic heuristic strategy
CMA-ES/GA already performs well in most cases, using the ensemble strategy improves
the robustness.

72

4.5 Experimental Results

vanced heuristic initialisation, AIBO ga and AIBO cmaes achieve similar performance
to AIBO in most cases. This suggests that CMA-ES and GA can be the main source
of performance improvement for AIBO. AIBO gacma shows a similar performance
to AIBO in all cases. This is because GA/CMA-ES initialisation dominates AIBO’s
search process.

Besides, although AIBO cmaes is competitive in most problems, it is ineffective for
the 14D robot pushing problem, suggesting there is no “one-fits-for-all” heuristic across
tasks. By incorporating multiple heuristics, the ensemble strategy used by AIBO gives
a more robust performance than the individual components.

4.5.6 Comparison with Other Initialisation Strategies

In previous experiments, we implemented random initialisation by selecting the top-
n points with the highest AF values as the initial points from a large set of random
points. Some existing BO works have implemented random initialisation in other ways
1 or employed non-random initialisation strategies. The impact of these methods has
not been systematically evaluated. We conduct a comparison of the following methods
alongside AIBO: BO-cmaes grad, BO-boltzmann grad and BO-Gaussian grad.

Setup

BO-cmaes grad uses CMA-ES to optimise the AF to provide better initial points for
further gradient-based AF maximisation. We note that in this case, CMA-ES is used
directly for AF optimisation. In contrast, the ”CMA-ES” in AIBO is used to provide
initial points by leveraging the history of black-box optimisation. Comparing these two
methods will reveal the importance of the black-box optimisation history in the AF
maximisation process.

BO-boltzmann grad refers to the default implementation in BoTorch [25], which
uses Boltzmann sampling to generate initial points for the gradient-based AF maxim-
isation. In each BO iteration, it evaluates the AF on a large set of random points and
then uses an annealing heuristic (rather than top-n) to select the restart points.

BO-Gaussian grad uses a Gaussian spray around the incumbent best to generate
initial points for the gradient-based AF maximiser. This initialisation strategy has

1For example, a popular BO package BoTorch implements random initialisation by using an an-
nealing scheme rather than the top-n to select initial points from a large set of random points.

73

4.5 Experimental Results

AIBO BO-cmaes_grad BO-boltzmann_grad BO-Gaussian_grad

0 200 400 600 800 1000
Number of black-box function evaluations

0
2
4
6
8

10
12
14
16

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0
2
4
6
8

10
12
14

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2
4
6
8

10
12
14

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley300

0 200 400 600 800 1000
Number of black-box function evaluations

102

103

104

105

106

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

102

103

104

105

106

107

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

104

105

106

107

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock300

0 200 400 600 800 1000
Number of black-box function evaluations

50
100
150
200
250
300
350
400

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

250
500
750

1000
1250
1500
1750
2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

1000

2000

3000

4000

5000
Bl

ac
k-

bo
x

fu
nc

tio
n

va
lu

e

Rastrigin300

0 200 400 600 800 1000
Number of black-box function evaluations

0
100
200
300
400
500
600

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank20

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0

500

1000

1500

2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank100

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0
1000
2000
3000
4000
5000
6000
7000
8000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank300

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

4
5
6
7
8
9

10
11

Re
wa

rd

RobotPush14

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2
1
0
1
2
3
4
5

Re
wa

rd

Rover60

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2000

1000

0

1000

2000

3000

Re
wa

rd

HalfCheetah102

Figure 4.13: Comparing AIBO to standard BO with other AF initialisation methods
that do not use random search on both synthetic functions (lower is better) and real-
world problems (higher is better).

74

4.5 Experimental Results

been used in Spearmint [19], and we replace the AF maximiser with the advanced
gradient-based method for a fair comparison.

Results

Figure 4.13 presents the comparison result between AIBO and other initialisation
strategies. BO-cmaes grad and BO-boltzmann grad exhibit significantly inferior per-
formance compared to AIBO. Both approaches do not leverage prior black-box op-
timisation history and instead attempt to optimise the AF in the global space directly
to provide initial points for further gradient-based AF optimisation. This underscores
the challenges of AF optimisation in high-dimensional problems and the importance
of utilising the black-box optimisation history. BO-Gaussian grad takes into account
the best points from the past black-box optimisation history as a basis for maxim-
ising the AF. This approach performs well in some cases (e.g., Rastrigin100) but may
lead to a significant performance drop in other situations (e.g., Robotpush14) due to
over-exploitation. Overall, AIBO exhibits significantly better performance compared
to these non-random initialisation strategies.

4.5.7 Evaluation under Different Hyper-Parameters

Multiple hyper-parameters in AIBO, including GA population size, CMA-ES initial
standard deviation σ, the number of raw candidates generated from heuristics k, the
number of selected initial points n, and the batch size could impact its performance.

GA pop size and CMA-ES σ As AIBO employ heuristics to initialise the AF
maximisation process, these heuristics’ hyper-parameters control the quality of initial
points of the AF maximisation process and affect the trade-off between exploration
and exploitation. A larger GA population size and a larger CMA-ES initial standard
deviation will encourage more exploration. As shown in the left column of Figure 4.14,
different tasks favour different trade-offs. A more exploratory setting (popsize=100
and σ = 0.5) works well for the HalfCheetah102 task but reduces the performance on
Ackley100.

k and n Based on Algorithm 1, increasing the number of raw candidates generated
from heuristics k and the number of selected initial points n might help AF maxim-

75

4.5 Experimental Results

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0
2
4
6
8

10
12
14
16

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley100
GA popsize=50, CMA-ES = 0.2
GA popsize=100, CMA-ES = 0.5
GA popsize=20, CMA-ES = 0.1

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0
2
4
6
8

10
12
14

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley100
k=100, n=1
k=1000, n=1
k=1000, n=10

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0
2
4
6
8

10
12
14

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Ackley100
batch size=5
batch size=10
batch size=50

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

102

103

104

105

106

107

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock100
GA popsize=50, CMA-ES = 0.2
GA popsize=100, CMA-ES = 0.5
GA popsize=20, CMA-ES = 0.1

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

102

103

104

105

106

107

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock100
k=100, n=1
k=1000, n=1
k=1000, n=10

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

102

103

104

105

106

107

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rosenbrock100
batch size=5
batch size=10
batch size=50

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

250
500
750

1000
1250
1500
1750
2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin100
GA popsize=50, CMA-ES = 0.2
GA popsize=100, CMA-ES = 0.5
GA popsize=20, CMA-ES = 0.1

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

250
500
750

1000
1250
1500
1750
2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin100
k=100, n=1
k=1000, n=1
k=1000, n=10

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

250
500
750

1000
1250
1500
1750
2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rastrigin100
batch size=5
batch size=10
batch size=50

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0

500

1000

1500

2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank100
GA popsize=50, CMA-ES = 0.2
GA popsize=100, CMA-ES = 0.5
GA popsize=20, CMA-ES = 0.1

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0

500

1000

1500

2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank100
k=100, n=1
k=1000, n=1
k=1000, n=10

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

0

500

1000

1500

2000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Griewank100
batch size=5
batch size=10
batch size=50

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

4
5
6
7
8
9

10
11

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

RobotPush14

GA popsize=50, CMA-ES = 0.2
GA popsize=100, CMA-ES = 0.5
GA popsize=20, CMA-ES = 0.1

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

4
5
6
7
8
9

10
11

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

RobotPush14

k=100, n=1
k=1000, n=1
k=1000, n=10

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

4
5
6
7
8
9

10
11

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

RobotPush14

batch size=5
batch size=10
batch size=50

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2
1
0
1
2
3
4
5

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rover60

GA popsize=50, CMA-ES = 0.2
GA popsize=100, CMA-ES = 0.5
GA popsize=20, CMA-ES = 0.1

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2
1
0
1
2
3
4
5

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rover60

k=100, n=1
k=1000, n=1
k=1000, n=10

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

2
1
0
1
2
3
4
5

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

Rover60

batch size=5
batch size=10
batch size=50

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

3000
2000
1000

0
1000
2000
3000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

HalfCheetah102

GA popsize=50, CMA-ES = 0.2
GA popsize=100, CMA-ES = 0.5
GA popsize=20, CMA-ES = 0.1

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

3000
2000
1000

0
1000
2000
3000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

HalfCheetah102

k=100, n=1
k=1000, n=1
k=1000, n=10

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

3000
2000
1000

0
1000
2000
3000

Bl
ac

k-
bo

x
fu

nc
tio

n
va

lu
e

HalfCheetah102

batch size=5
batch size=10
batch size=50

Figure 4.14: The impact of hyper-parameters on AIBO. The left column shows the
impact of GA population size and CMA-ES initial standard deviation σ. The middle
column reports the impact of the number of raw candidates generated from heuristics
k and the number of selected initial points n. The right column shows the impact of
the batch size.

76

4.5 Experimental Results

ization but requires more calculation. However, as shown in the middle column of
Figure 4.14, increasing k and n does not yield significant performance improvement in
most cases except for the Rover60 task.

Batch size As shown in the right column of Figure 4.14, AIBO performs well across
different batch sizes, and reducing the batch size can slightly enhance convergence speed
in all cases.

4.5.8 Impact of AF Settings on GA Population Diversity

Our heuristic initialisation process is AF-related, as it depends on past samples selected
by the given AF. Usually, a more explorative AF setting will also make the heuristic
initialisation in AIBO more explorative. For instance, if the AF formula leans towards
exploration in GA, the GA population composed of samples chosen by this AF will
have greater diversity, generating more diverse raw candidates.

To illustrate this point, we select two different AF settings: UCB1.96 (βt = 1.96),
and UCB9 (βt = 9, more exploratory). When applying AIBO to Ackley100, we cal-
culate the average distance between individuals in the GA population at each BO
iteration, which is a good measure of the population diversity. We repeated this exper-
iment 50 times. As shown in Figure 4.15, AIBO with UCB9 achieves more diverse GA
populations than AIBO with UCB 1.96, suggesting that a more explorative AF setting
will make GA initialisation more explorative.

4.5.9 Algorithmic Runtime

In Table 4.2, we provide the algorithmic running time (excluding the time spent eval-
uating the objective function) for our method with a batch size of 10. For comparison,
we also show the algorithmic runtime of BO-grad. The experiments are run on an
NVIDIA RTX 3090 GPU equipped with a 20-core Intel Xeon Gold 5218R CPU Pro-
cessor. As described in Sec 4.5.1, to show the effectiveness of AIBO, BO-grad is allowed
to perform more costly AF maximisation. AIBO uses less algorithmic runtime because
it costs less AF maximisation time than the standard BO-grad method. AIBO’s al-
gorithmic runtime is also acceptable for actual expensive black-box optimisation tasks
(only several hours for a few thousand evaluations).

77

4.6 Summary

0 1000 2000 3000 4000 5000
Number of black-box function evaluations

10 1

100

Av
er

ag
e

di
st

an
ce

 o
f G

A
po

p

Ackley100
(higher means more diverse GA population)

AIBO-UCB1.96
AIBO-UCB9

Figure 4.15: Evaluating the average distance between individuals in the GA population
when applying AIBO-UCB1.96 and AIBO-UCB9 (more exploratory) to the Ackley100
function. With the same number of BO iterations, AIBO-UCB9 always owns a more
diverse GA population than AIBO-UCB1.96, suggesting that a more exploratory AF
setting will also make the GA initialisation in AIBO more exploratory.

Table 4.2: Algorithmic runtime

Synthetic RobotPush Rover HalfCheetah
Dimensions 20 100 300 14 60 102
#Samples 1000 5000 5000 5000 5000 5000
AIBO 8 min 2.5 h 3.6 h 1.8 h 2 h 2.5 h
BO-grad 12 min 3.3 h 5 h 2.5 h 3 h 4 h

4.6 Summary

This chapter aims to understand the challenges of high-dimensional BO. It presents a
large-scale empirical study investigating the impact of the acquisition function (AF)
maximiser initialisation process in Bayesian optimisation (BO) for high-dimensional
problems. Our extensive experiments reveal that the choice of AF maximiser initial-
isation significantly influences the AF’s realisation, and the commonly used random
initialisation strategy may fail to fully exploit an AF’s potential.

To address this, we introduce AIBO, a framework designed to optimise the initial-
isation phase of AF maximisation in BO. AIBO is specifically developed to overcome
the limitations of random initialisation in high-dimensional BO. It adopts a simple yet
effective approach by leveraging multiple heuristic optimisers to generate raw samples

78

4.6 Summary

for the AF maximiser, thereby achieving a better balance between exploration and
exploitation.

We evaluate AIBO on synthetic benchmark functions as well as real-world tasks,
including a compiler flag selection problem. Experimental results demonstrate that
AIBO significantly enhances the performance of standard BO in high-dimensional set-
tings and outperforms existing high-dimensional BO methods.

Theoretical studies on BO convergence have often relied on the key assumption
that the AF can be globally optimised. While this assumption generally holds in low-
dimensional scenarios, our large-scale empirical analysis suggests that it may not be
valid in high-dimensional problems. We show that the way the AF is optimised plays
a crucial role in determining the overall effectiveness of the BO method.

Overall, it proposes a general framework for high-dimensional BO that can be ap-
plied to a wide range of tasks including compiler autotuning, thus addressing the high-
dimensional challenge (Section 1.2.1) in compiler phase ordering. The following chapter
will consider the real application of AIBO in the context of compiler phase ordering
optimisation to address other challenges caused by the unique characteristics of the
compiler phase ordering task.

79

Chapter 5

Leveraging Compilation Statistics for
Compiler Phase Ordering via Bayesian

Optimisation

The chapter presents a customised Bayesian optimisation (BO) method, Citroen,
to accelerate compiler phase ordering. Based on the discrete adaptation of the high-
dimensional BO method proposed in Chapter 4, Citroen further leverages pass-related
compilation statistics to model the complex interactions between compiler passes and
uses a dynamic strategy to allocate the search budget across multiple source files within
a single program. The rest of the chapter is organised as follows: Section 5.2 provides a
detailed motivation example, Section 5.3 presents the proposed approach, Sections 5.4
and 5.5 describe the experimental setup and results, and Section 5.6 concludes the
chapter.

5.1 Introduction

A significant challenge in phase ordering is the vast optimisation space. For example,
LLVM 17 offers over 100 transformation passes, leading to an extremely large num-
ber of possible ways for applying these passes - combinations that would take many
machine years to explore exhaustively. Although certain sequences might significantly
outperform compiler default settings, these pass sequences can be sparse [4], making
them hard to find in such a large space.

Search-based autotuning is widely used for phase ordering [3, 43, 44, 49, 54, 56,
58, 62, 67, 71, 169]. Unlike predictive modelling [81, 83, 87, 89], which can only be

80

5.1 Introduction

applied to a limited number of compiler passes or parameters due to the difficulty in
collecting sufficient training samples, search-based methods can be applied to arbitrary
compiler pass sequences. However, while this flexibility can be advantageous, finding
the optimal compiler pass sequence through search can be prohibitively expensive.

Our work aims to improve the efficiency of search-based autotuning methods for
phase ordering. A key drawback of existing search-based approaches for compiler phase
ordering is their difficulty in capturing the complex interactions between compiler passes
and the order in which they are applied. Identifying which passes positively impact
performance during the search allows the algorithm to focus on compiler pass sequences
that are more likely to be beneficial. Unfortunately, modelling the effect of a compiler
pass is challenging, as its impact depends not only on the input program but also on the
other passes it interacts with and the order in which they are applied. For instance, loop
unrolling can influence the effectiveness of register allocation and instruction scheduling.

Furthermore, when optimising programs with multiple source files (referred to as
modules in this work), we aim to apply module-specific pass sequences rather than
relying on a ‘one-size-fits-all’ pass setting for all files. Achieving this requires an ad-
aptive, dynamic strategy for allocating the search budget (i.e., the number of runtime
measurements in this work) across different modules, ensuring the search time is used
efficiently to maximise the overall performance gains within the available budget.

We present Citroen, a better search-based autotuning method for compiler phase
ordering. Our key insight is that pass-related compilation statistics, collected during the
execution of compiler passes, can offer valuable information to model pass interactions
and guide the search process. For instance, LLVM’s loop-vectorise pass reports how
many loops have been vectorised. If a strong positive correlation is observed between
the number of vectorised loops and improved performance from the historical evaluation
data collected during the online search, we can infer that loop vectorisation is likely to
benefit the input program. In such cases, if changing the compiler pass sequences leads
to a reduction in the number of vectorised loops, it suggests that this pass sequence
may negatively affect performance. This avoids profiling the binary generated by this
pass sequence, thus saving search time.

Citroen is designed to leverage compilation statistics provided by modern compiler
infrastructures to accelerate phase ordering autotuning by avoiding the profiling of
pass sequences that offer no performance gain. This is achieved through a customised

81

5.1 Introduction

Bayesian optimisation (BO) method [155], which builds an online probabilistic cost
model (known as the surrogate model) to evaluate candidate pass sequences. These
candidate pass sequences are generated by applying the discrete variant of the heuristic
acquisition function (AF) maximiser initialisation strategy introduced in Chapter 4.
Our cost model takes as input a feature vector consisting of compilation statistics and
predicts both the execution time and the prediction uncertainty. The cost model is
dynamically and constantly updated during the search process using new observations
so that it becomes more accurate as the search progresses.

Citroen leverages an acquisition function to avoid profiling sequences that are
likely to result in poor performance, while encouraging exploration in regions where
the model’s predictions are uncertain. For multi-module programs, Citroen trains
the cost model globally by concatenating the compilation statistics of individual source
files. This enables the system to dynamically determine which module holds the most
potential for performance gains and to allocate the search budget accordingly.

A key distinction between Citroen and previous BO approaches in compiler optim-
isation [61, 140, 141, 143] lies in the way the cost model is constructed. In prior works,
the standard BO process is employed, using raw tuning parameters as inputs to fit the
cost model. These parameters, such as the number of OpenMP threads [141], enabling
or disabling a compiler flag [61], loop tile sizes [140], and loop unroll factors [143], have
a direct and often predictable impact on performance. However, in the compiler phase-
ordering problem, interactions between passes introduce a significantly higher level of
complexity, making it much more challenging to anticipate performance gains based
on the sequence of passes. Citroen mitigates the issue using compilation statistics
as a proxy to capture the compiler pass interactions. Moreover, the search spaces in
prior BO studies on compiler optimisation are significantly smaller than that of phase
ordering, removing the necessity to design specialised high-dimensional BO approaches.
Instead, Citroen extends the high-dimensional BO method proposed in Chapter 4 to
a discrete version to handle the high-dimensional challenge.

We evaluate Citroen by applying it to optimise the phase ordering of the LLVM
compiler. To ensure the correctness of the program after phase ordering, we apply
differential testing, a technique that compares the outputs of the original and optim-
ised programs on the same inputs to detect semantic deviations. We test the resulting
compilation system on the cBench [162] and SPEC CPU 2017 [16] benchmark suites

82

5.2 Motivation

1 result += w[0]*d[0];
2 result += w[1]*d[1];
3 result += w[2]*d[2];
4 ...
5 result += w[7]*d[7];

(a) Original code

1 v1 = w [0:3]* d [0:3]+ w [4:7]* d [4:7];
2 v2 = v1 [0:1] + v1 [2:3];
3 result += v2 [0] + v2 [1];

(b) Pseudocode of successful vectorization after apply-
ing the ‘mem2reg,slp-vectorizer’ sequence to the original
code.

1 w0=w[0]; d0=d[0];
2 - sext i16 w0 d0 to i32; // sign extension from i16 to i32
3 + sext i16 w0 d0 to i64; // sign extension from i16 to i64
4 tmp = w0 * d0;
5 - sext i32 tmp to i64; // sign extension from i32 to i64
6 result += tmp;
7 ...

(c) The difference by applying instcombine after mem2reg.

Figure 5.1: An example from telecom gsm in cBench showing how the phase order
matters. Applying the ‘mem2reg,slp-vectorizer’ pass sequence leads to successful vec-
torization, whereas ‘mem2reg,instcombine,slp-vectorizer’ fails.

on an ARM multi-core CPU and a multi-core AMD x86 CPU. We compare Citroen
against state-of-the-art evolutionary algorithms and BO methods designed for program
autotuning. Experimental results show that Citroen outperforms these competit-
ive baselines, achieving comparable tuning results with just one-third of their search
budget. Citroen proves especially effective with a constrained search budget - with a
budget of 100 runtime measurements, it delivers up to a 17% improvement over random
search and up to 10% over the strongest baseline.

5.2 Motivation

As a motivation example, consider applying phase ordering to LLVM v17.0 to op-
timise telecom gsm from the cBench benchmark suite [162] on an ARM Cortex-A57
CPU on a Jetson TX2 platform. For this benchmark, the long term module (i.e.,
long term.c) contributes to more than 50% of the overall program execution time and
is the target for optimisation here.

Figure 5.1a shows a hot code snippet that computes the dot product of two vectors,
which would benefit from superword-level parallelism (SLP) vectorisation. Sequentially

83

5.2 Motivation

Table 5.1: Applying different pass sequences to the long term module in the
telecom gsm benchmark. By examining the relationship between pass-related com-
pilation statistics and speedup (over -O3) from the first three samples, we can predict
the fifth sample is more likely to be more profitable than the fourth sample.

No. Pass Sequence
Pass-related Compilation Statistics

Speedup
SLP.NVI mem2reg.NPI mem2reg.NP instcombine.NC

1 mem2reg slp-vectorizer 14 21 43 0 1.13×
2 slp-vectorizer mem2reg 0 21 43 0 0.85×
3 inst-combine mem2reg slp-vectorizer 0 18 41 271 0.85×
4 mem2reg inst-combine slp-vectorizer 0 21 43 244 0.86×
5 mem2reg slp-vectorizer instcombine 14 21 43 164 1.14×

applying the mem2reg and slp-vectorizer passes results in successful vectorisation, as
shown in Figure 5.1b. However, when the instcombine pass is applied between mem2reg
and slp-vectorizer (i.e., in the order of ‘mem2reg, instcombine, slp-vectorizer’), vector-
isation fails due to the profitability analysis. This is because instcombine optimises
greedily without considering the later vectorisation opportunity. Specifically, as can be
seen from Figure 5.1c, instcombine reduces sign extension operations by converting an
i16 to the i64 sign extension, but the resulting i64 instructions and data types are con-
sidered to be not profitable for applying vectorised horizontal reduction. Consequently,
the LLVM vectoriser skips vectorisation on this code, leading to a performance slow-
down compared to “-O3”. If we can capture the interactions and the impact between
compiler passes, we can then speed up phase ordering by avoiding profiling compiler
sequences that are likely to offer no performance gain. Based on our preliminary ex-
periments, we observe that pass-related compilation statistics can help us capture the
relationship between pass sequences and performance.

Table 5.1 lists LLVM compilation statistics for five different pass sequences, along
with their runtime performance, using the -O3 optimisation level as a baseline, where
SLP.NVI, mem2reg.NPI, mem2reg.NP, and instcombine.NC stand for SLP.NumVector-
Instructions, mem2reg.NumPHIInsert, mem2reg.NumPromoted, and instcombine.Num-
Combined, respectively. These statistics can be gathered using the ‘-stats -stats-json’
flags of LLVM ‘opt’ tool. Assume that we are exploring compiler pass sequences, and
the first three sequences have already been profiled to obtain their execution times.
The search algorithm must now assess whether the 4th and 5th pass sequences will

84

5.3 Our Approach

likely be profitable and warrant further profiling. By effectively modelling compil-
ation statistics, we may be able to identify performance improvements. In this ex-
ample, the SLP.NumVectorInstructions metric is positively correlated with perform-
ance gains. Since the compilation statistics for the 5th pass sequence show a similar
SLP.NumVectorInstructions value to that of the first sequence, which achieved a 1.13×
speedup; this suggests that the 5th sequence is also likely to improve performance.

This example shows that pass-related compilation statistics can provide valuable
insights, avoiding unnecessary profiling measurements to save search time. This motiv-
ates the design of a new search algorithm to leverage compilation statistics for phase
ordering. By parallelising the compilation process to collect statistics, we can identify
the most promising binaries for isolated runtime measurements, thereby reducing pro-
filing overhead - a major bottleneck in compiler autotuning.

But how do we correlate compilation statistics with performance to model the in-
teractions of compiler passes? A natural approach is to develop a model that maps
compilation statistics to performance, which can serve as a utility function to guide the
search. Since the correlation between compilation statistics and performance highly
depends on the input program, we aim to train this model iteratively during the auto-
tuning process, refining it as more profiling data is collected. For programs consisting
of multiple source files (modules), it is also important to allocate the overall search
budget across modules effectively to maximise the overall performance. Citroen is
designed to address these challenges using BO as a search technique, as described in
the next subsection.

5.3 Our Approach

5.3.1 Overview

Figure 5.2 depicts the workflow of Citroen. At the core of Citroen is a BO search
component based on compilation statistics (Sec. 5.3.2), which will interact with a user-
defined task function (Sec. 5.3.6) that defines how to compile and measure the generated
binary. Citroen focuses on tuning “hot” modules whose accumulated execution time
contributes to at least 90% of the overall program execution time. As a one-off profiling
stage, Citroen identifies hot modules by using the Linux perf tool to profile the
program compiled with the standard “-O3” optimisation flag. Specifically, we use

85

5.3 Our Approach

Bayesian	
Optimization

Task	Definition

Optimized
Config.

Task	Function

Measurement

Compilation

Hot Modules

Input

Build Command

Program

Run Command

Figure 5.2: Overview of the Citroen framework.

Training
set

Surrogate
model

Bayesian Optimization

Update

Recom
m
end

Train Acquisition
function

Candidate
Generator

A set of
Candidate

Configurations

The query
configuration

Task	
Function

Figure 5.3: Citroen’s Bayesian optimisation workflow.

perf to measure the runtime of individual functions, excluding external calls, and then
aggregate the execution times of functions within each source file to determine the
hot modules. These identified hot modules are iteratively compiled with different pass
sequences, while the remaining modules are compiled using -O3.

5.3.2 Bayesian Optimisation for Compiler Phase Ordering

Figure 5.3 outlines the workflow of Citroen’s BO component. We enhance stand-
ard BO with an online-trained cost model based on pass-related compilation statistics
(Sec. 5.3.3), an acquisition function for navigating the non-uniform, sparse feature space
(Sec. 5.3.4), and a heuristic pass sequence generator (Sec. 5.3.5). Instead of running
separate BO processes for each source file, Citroen fits a global cost model to estimate

86

5.3 Our Approach

Search	
module	A

Best‐found	config

module A: seq a

module B: seq b

Search	
module	B

Candidate	Configs

A: seq a1	

B: seq b

A: seq a2	

B: seq b

A: seq a

B: seq b1	

A: seq a

B: seq b2	

Figure 5.4: Citroen’s candidate configuration generator.

the impact of replacing the pass sequence of an individual module on overall program
performance, dynamically determining which module to optimise while keeping others
fixed.

In each iteration, Citroen first learns a cost model that maps the compilation
statistics of all hot modules to performance metrics (e.g., speedup over -O3). It then
constructs an acquisition function to balance exploitation (prediction) and exploration
(uncertainty). It also employs a candidate generator to produce pass sequences, which
are then compiled in parallel to collect their statistics. As shown in Figure 5.4, Citroen
explores variations around the current best configuration. For each module, it proposes
q new pass sequences while keeping the other modules fixed, resulting in m×q candidate
configurations per iteration. Finally, the acquisition function selects the highest-value
configuration to profile to obtain the execution time, which is then used to update both
the cost model and the candidate generator.

For a single hot module, the acquisition function evaluates pass sequences within
that module. For multiple hot modules, it decides which module to optimise next,
allowing dynamic switching to maximise performance gains.

In particular, Citroen’s workflow differs from the standard BO workflow (Fig-

87

5.3 Our Approach

ure 2.1 in Section 2.1) in that it avoids the iterative search process typically used to
maximise the acquisition function. Instead, it uses heuristics to generate candidate
configurations without further search. This is because evaluating the acquisition func-
tion requires compilation, and directly generating candidate points allows for parallel
compilation, thereby reducing the algorithm’s overhead. This implementation is equi-
valent to the AIBO-none method described in Chapter 4, which also shows promising
results in high-dimensional problems.

5.3.3 Cost Model for Performance Estimation

BO constructs a cost model (or surrogate model) to be used as a utility function to
approximate the objective function. Prior work in BO-based compiler tuning [61, 143]
uses the raw tuning parameters (e.g., compiler passes) as the cost model’s input to
predict the speedup or execution time. We take a different approach by using pass-
related compilation statistics as the cost model’s input.

We train and use the cost model following the standard 3-step of supervised learning:
(1) feature extraction, (2) training and (3) inference, described as follows.

Feature extraction

Our cost model uses a feature vector of numerical values extracted from compilation
statistics. The compilation statistics are gathered by adding the ‘-stats -stats-json’
flags when using LLVM’s opt tool to customise the pass sequence for a given module.
After excluding statistics unrelated to performance optimisation (e.g., statistics of ana-
lysis pass), we are left with up to 255 statistics (usually fewer than 30), depending on
the pass sequence and input program. We normalise the integer value of each stat-
istic category to a range between 0 and 1 by dividing by its maximum observed value,
forming a 255-dimensional feature vector (with most values being 0, as inactive passes
generate no statistics). For programs with multiple hot modules, we form a single fea-
ture vector by concatenating the per-module feature vectors in a fixed module order to
represent the entire program.

Training

Citroen adopts the Gaussian process using the Matérn-5/2 kernel to build the cost
model because it is proven to be effective in prior BO applications [10, 143]. The kernel

88

5.3 Our Approach

function (which describes the similarity between two inputs) of this model is defined
by

k(x, x′) =
(
1 +
√

5d + 5d2
)

e−
√

5d (5.1)

d =

√√√√ D∑
i=1

(xi − x′
i)2

l2i
(5.2)

where d denotes the weighted Euclidean distance between two input feature vectors
x and x′. Here lengthscales li are hyperparameters that reflect the impact of each
feature dimension on performance, which will be learned by minimising the negative
log marginal likelihood loss function [22]. Initially, Citroen randomly generates n

pass sequences, collecting their compilation statistics and evaluating the corresponding
speedup over -O3 to construct the initial training set. In each subsequent iteration,
Citroen will add the new evaluated sample to the training set to update the model.

Inference

Given a pass configuration c, we obtain its feature vector x = φ(c) by applying c to the
input program, collecting compilation statistics, and normalising them into numerical
feature values. Using the feature vector as input, the GP produces the prediction mean
µ(x) and the prediction variance σ2(x), given by

µ(x) = K(X, x)T K(X, X)−1y (5.3)

σ2(x) = k(x, x)−K(X, x)T K(X, X)−1K(X, x) (5.4)

where X denotes a set of training inputs, and y denotes the corresponding training
labels (speedup over -O3). K(X, X) denotes the matrix containing all pairs of kernel
entries, i.e. K(X, X)i,j = k(xi, xj). K(X, x) denotes kernel values between training
points and a test point, e.g., K(X, x)i = k(xi, x). The mean and variance will then be
used to construct an acquisition function to determine which compilation configuration
to profile next.

5.3.4 Acquisition Function Design

Coverage issue. Citroen fits the cost model in a non-uniform, sparse feature space
where many statistical categories contain zero values for a given pass sequence. This

89

5.3 Our Approach

Table 5.2: Applying 2,000 random pass sequences to different programs in cBench to
observe whether randomly selected initial training sets can cover the feature space.

Initial training set size 20 50 100

Unexplored feature count (range) 2 ∼ 35 1 ∼ 22 1 ∼ 19

creates a coverage issue in the initial training set. Unlike standard BO, where a uniform
input space ensures effective coverage of each parameter dimension, Citroen cannot
directly sample in the feature space. As a result, generated candidate samples may
include non-zero statistic categories not seen in the training set. To illustrate this point,
we applied 2,000 random pass sequences to cBench programs and selected 20, 50, and
100 sequences per module for the initial training set. As shown in Table 5.2, the training
set fails to cover all statistical categories, limiting the cost model’s ability to predict
configurations with unexplored features. This coverage issue should be addressed by
designing the acquisition function to prioritise configurations with unexplored features.

An acquisition function is used to determine the next compilation configuration
to be profiled by considering the trade-off between sampling from areas with better-
predicted values µ(x) and exploring regions of high model uncertainty σ(x). Standard
BO usually uses expected improvement (EI) [19] as the acquisition function, defined by

EI(x) = E
[
max(f∗ − y, 0) | y ∼ N(µ(x), σ2(x))

]
where f∗ is the best function value observed so far.

However, because of the coverage issue, directly using acquisition functions designed
for standard BO for Citroen can lead to inadequate exploration. Although the EI
function encourages the exploration of configurations with high model uncertainty,
the model uncertainty itself is inaccurate for configurations with unexplored features
because it does not consider the effect of unexplored features. As we will show in
Sec. 5.5.2, using standard EI for Citroen could lead to suboptimal performance.

To tackle the issue, we develop a customised acquisition function α(x) for the com-
piler phase-ordering problem based on EI, defined by

α(x) =

 EI(x) + λ̃, OOD

EI(x), not OOD
(5.5)

where OOD means out of distribution, i.e., the test candidate point x owns a specific
non-zero feature (compilation statistic) which is not included in the training set. To

90

5.3 Our Approach

encourage the exploration of configurations with such unseen features, we add a large
constant λ̃ to the EI value of OOD candidates so that they receive higher acquisition
function values and are prioritised during selection. In our experiments, we set λ̃ = 108,
which is sufficiently large to dominate the typical EI values; the exact value is not critical
as long as it is large enough to ensure prioritisation.

5.3.5 Pass Sequence Generator

Due to the large number of possible pass sequences, it is impossible to evaluate the
acquisition function values of all sequences. Based on the heuristic acquisition function
initialisation scheme for high-dimensional BO proposed in Chapter 4, Citroen employs
two heuristic sampling strategies to generate candidate samples that are more likely to
have better performance. While Chapter 4 employs GA and CMA-ES for continuous
optimisation problems, Citroen uses GA and Discrete 1+1 Evolution Strategy (DES)
for generating sequences consisting of categorical variables (passes).

GA-based Sampling

Specifically, Citroen maintains 20 top-performing pass sequences for each module as
the GA population and applies selection, crossover and mutation operations to this
population to generate candidate offspring sequences.

Selection. Citroen adopts the same tournament selection strategy described in Sec-
tion 4.3.2 of Chapter 4.

Crossover. Citroen combines two parent pass sequences to implement a one-point
crossover, i.e., selecting a single crossover point on each parent sequence and swap-
ping the segments from that point onward to generate new sequences. The crossover
probability is set to 0.9.

Mutation. Citroen uses random mutation to change a small part of the passes in a
parent pass sequence. The mutation probability is set to 1/D, where D is the dimension
of the problem, i.e., the length of the pass sequence.

DES-based Sampling

Unlike GA-based sampling, the DES-based sampling strategy only maintains the best-
performing pass sequence. At each iteration, this kind of sampling involves randomly

91

5.4 Experimental Setup

replacing a certain percentage of passes in the best-found pass sequence to generate can-
didate sequences. Specifically, it applies random replacements to 10%, 20%, 50%, and
100% of the passes in the sequence, with each proportion having an equal probability.

5.3.6 Autotuning Task Definition

To implement phase order autotuning, users must define a task function that compiles
a program with a specific configuration and measures the performance of the result-
ing binary. Compilers like LLVM do not allow direct phase order specification per
module, so previous frameworks [62, 67, 143] require users to manually re-implement
the compilation process for different pass sequences, which requires engineering efforts,
especially for programs with multiple source files and complex compilation processes.
Citroen simplifies this by automating the task function definition without manual
re-implementation. As shown in Figure 5.5, Citroen leverages the program’s existing
build script (e.g., makefile) and uses clangopt (line 10) as the compiler. Unlike LLVM’s
clang, clangopt reads the compilation configuration from a JSON file before invoking
LLVM to handle the customised compilation. Running the build script with clangopt
automates the execution of multiple compilation commands, each using the specified
configurations. Additionally, Citroen includes features like automatic hot module de-
tection (line 19) and remote execution support (line 16), reducing the engineering effort
required for phase order tuning.

5.4 Experimental Setup

5.4.1 Implementation

We implemented Citroen in around 5K lines of Python code. We use the GPyT-
orch [22] GP library to implement the GP regression process as the cost model of
BO.

5.4.2 Evaluation Platforms

Hardware platforms. We execute the search algorithm of Citroen on a multi-core
server powered by two 20-core Intel Xeon Gold 5218R CPUs. Citroen then cross-
compiles binaries on the host machine and sends the compiled binaries for execution

92

5.4 Experimental Setup

1 import citroen
2 from citroen . function_wrap import Function_wrap
3 from citroen . utils import gen_hotfiles
4 from citroen .BO.BO import BO
5 from fabric import Connection
6

7 # Define the task function
8 fun = Function_wrap (
9 # Explicitly declare the compiler as clangopt

10 build_cmd ='make CC= clangopt ',
11 build_dir ='Example ',
12 # User - defined run and evaluation command
13 run_and_eval_cmd ='./ run_eval .sh ',
14 binary_name ='a.out ',
15 remote_run_dir ='home/usr/ RemoteExample ',
16 ssh_connection = Connection (host="xxx.xxx.xxx")
17)
18

19 # Automatically recognise hotfiles
20 hotfiles = gen_hotfiles (fun)
21 fun. hotfiles = hotfiles
22

23 # Autotuning the phase order of the program
24 optimizer = BO(fun=fun , budget =1000)
25 best_cfg , best_cost = optimizer . minimize ()

Figure 5.5: An example of using Citroen for phase ordering.

Table 5.3: LLVM optimisation passes considered in evaluation

adce, aggressive-instcombine, alignment-from-assumptions, annotation2metadata, argpromotion,
bdce, called-value-propagation, callsite-splitting, cg-profile, chr, constmerge, constraint-elimination,
coro-cleanup, coro-early, coro-elide, coro-split, correlated-propagation, deadargelim, div-rem-pairs,
dse, early-cse, elim-avail-extern, float2int, forceattrs, function-attrs, globaldce, globalopt, gvn,
indvars, inferattrs, inject-tli-mappings, inline, instcombine, instsimplify, ipsccp, jump-threading,
libcalls-shrinkwrap, licm, loop-deletion, loop-distribute, loop-idiom, loop-instsimplify, loop-load-elim,
loop-rotate, loop-simplifycfg, loop-sink, loop-unroll, loop-unroll-full, loop-vectorise, lower-constant-
intrinsics, lower-expect, mem2reg, memcpyopt, mldst-motion, move-auto-init, openmp-opt, openmp-
opt-cgscc, reassociate, rel-lookup-table-converter, rpo-function-attrs, sccp, loop-unswitch, simpli-
fycfg, slp-vectorizer, speculative-execution, sroa, tailcallelim, vector-combine, break-crit-edges, loop-
data-prefetch, loop-fusion, loop-interchange, loop-unroll-and-jam, lowerinvoke, sink, ee-instrument

93

5.4 Experimental Setup

and performance measurement on two platforms: an ARM-based NVIDIA Jetson TX2
board with a 64-bit quad-core ARM Cortex A57 running at 2.0 GHz and a multi-
core server with a 64-core AMD Ryzen Threadripper PRO 5995WX CPU clocked at
2.25 GHz. The benchmarks are run as single-threaded programs on the CPU. The
SPEC CPU 2017 benchmarks are evaluated solely on the x86 platform due to their
long execution time on the Jetson TX2 board.

Compiler. We apply Citroen to LLVM version 17.0.6. Our evaluation considers 76
LLVM passes listed in Table 5.3 and a maximum compiler sequence of 120 passes.

5.4.3 Benchmarks

Table 5.4 lists the benchmarks used in the experiments, including 26 programs from
cBench [162] and 16 programs from SPEC CPU 2017 [16]. We only consider C/C++
programs that can be successfully compiled by LLVM v17.

5.4.4 Competing Baselines

We compare Citroen against five autotuning methods and alternative feature extrac-
tion methods:

Random. While simple, random search is reported to be effective in previous work
[52, 71, 72].

OpenTuner. This compiler auto-tuning framework [62] implements an ensemble of
multiple evolutionary algorithms and can dynamically adjust its use of different al-
gorithms.

Nevergrad. This search library [95] supports multiple evolutionary algorithms. It
could adaptively select the most suitable algorithm according to the search problem
setting. This method has been reported to achieve the best performance in the Com-
pilerGym [67] phase-ordering environment.

BOCA. This closely related work uses BO for compiler flag selection [61]. It uses the
random forest as its cost (surrogate) model. When applying it to phase ordering, we
adapt it to use one-hot encoding as the input to the random forest model.

BaCO. This is a BO framework for compilation optimization [143]. It can handle
different parameter types and thus can be directly used for the compiler phase-ordering
problem.

94

5.4 Experimental Setup

Table 5.4: Benchmarks used in evaluation.

Suite ID Benchmark #hot modules

cBench [162]
(budget: 100/300/1000,
platform: ARM and x86)

C1 automotive bitcount 4
C2 automotive qsort1 2
C3 automotive susan c 1
C4 automotive susan e 1
C5 automotive susan s 1
C6 bzip2d 2
C7 bzip2e 3
C8 consumer jpeg c 6
C9 consumer jpeg d 4
C10 consumer lame 8
C11 consumer tiff2bw 3
C12 consumer tiff2rgba 3
C13 consumer tiffdither 3
C14 consumer tiffmedian 1
C15 network dijkstra 1
C16 network patricia 1
C17 office stringsearch1 1
C18 security blowfish d 2
C19 security blowfish e 2
C20 security rijndael d 1
C21 security rijndael e 1
C22 security sha 1
C23 telecom CRC32 1
C24 telecom adpcm c 1
C25 telecom adpcm d 1
C26 telecom gsm 5

SPEC CPU 2017 [16]
(budget: 100/300,
platform: x86)

S1 500.perlbench r 6
S2 502.gcc r 7
S3 505.mcf r 3
S4 508.namd r 2
S5 510.parest r 6
S6 511.povray r 9
S7 519.lbm r 1
S8 520.omnetpp r 9
S9 523.xalancbmk r 9
S10 525.x264 r 6
S11 526.blender r 3
S12 531.deepsjeng r 9
S13 538.imagick r 1
S14 541.leela r 4
S15 544.nab r 2
S16 557.xz r 5

95

5.4 Experimental Setup

Feature extraction methods. Citroen uses compilation statistics as features to be
given to the BO cost model to predict potential speedup and uncertainty. In Sec. 5.5.3,
we compare Citroen against three feature extraction methods: IR2vec [149], Auto-
phase [146], and Programl [150].

5.4.5 Evaluation Methodology

Hyper-parameters of Citroen. Based on our preliminary experiments, in our ex-
periments, we set the initial training samples for the cost model (n init) to 20 and the
candidate pass sequences per iteration (q) to 500. All candidate sequences are initially
generated using the heuristic sampling strategy described in Sec. 5.3.5. After 1/4 of the
total search iterations, Citroen generates 50 new sequences per module, with the re-
maining q−50 selected randomly from previously generated but unevaluated sequences,
keeping compilation overhead negligible compared to execution overhead.

Compiling multiple modules. To apply the competing baselines (Sec. 5.4.4) to
optimise module-specific phase ordering of programs with multiple source files, we use
a one-by-one strategy to sequentially auto-tune each module in descending order of
their execution times. We tune each module until there is no noticeable performance
improvement (more than 1% speedup) for τ consecutive search iterations before moving
to the next one. Here, τ is set to N budget/N modules/3. We will repeat the process
until the search budget is used up. When re-tuning a module, we initialise the search
algorithm using the best-found sample from the search history. In this way, these
baselines will not waste too much time on source files and will have little room for
performance improvement.

Performance report. Following [66, 75], we set search budgets of 100, 300, and
1000 iterations for cBench and 100 and 300 iterations for SPEC CPU 2017, with the
latter capped at 300 due to long execution times. In each iteration, we execute the
compiled binary multiple times until the relative standard error of the mean execution
time falls below 1% (typically requiring 3-20 runs for cBench and 3 for SPEC). The
mean execution time is then used as feedback for the search algorithm. When reporting
the final performance, we re-execute the best-found binary until the relative standard
error falls below 0.3% for greater accuracy. For each method, we report the average
performance by repeating the tuning process five times per benchmark.

96

5.5 Experimental Results

5.5 Experimental Results

Our evaluation tries to answer the following questions:

RQ1: How does Citroen compare with prior autotuning approaches (Sec. 5.5.1)?

RQ2: How do individual components of Citroen contribute to its overall performance
(Sec. 5.5.2)?

RQ3: How do Citroen’s pass-related compilation statistics compare with existing
feature extraction methods (Sec. 5.5.3)?

5.5.1 Comparison with Baselines

Figure 5.6 shows the average performance of Citroen and the baselines with three
different budgets on cBench and SPEC CPU 2017. Citroen clearly outperforms the
baselines by both achieving the same performance faster and achieving better perform-
ance on a small budget (e.g., 100 iterations). For cBench, with a small budget of 100
iterations, Citroen achieves 1.096× speedup over -O3 compared to other methods’
1.067 − 1.083× speedup. With a moderate budget of 300 iterations, Citroen attains
a 1.11× speedup, which other methods require 1000 iterations to match.

To see how Citroen generalises across different benchmarks, we show in Figure 5.7
the comparison of Citroen and the baselines on individual benchmarks. The results
show that Citroen significantly improved performance on several benchmarks, like
C1, C22 and C26. The common characteristic of these benchmarks is that their per-
formance can benefit from some transformations, but the compilation sequences that
can activate these transformations are sparse in the search space. For example, for C1
(automotive bitcount), to achieve more than 1.1× speedup, one of its hot modules
bitcnts should be optimised by three loop transformations including loop-unswitch,
loop-unroll and licm. However, all the baselines struggle to suggest a good compilation
pass sequence that activates all three transformations within a budget of 100 profiling
measurements. Furthermore, for C22, we discovered that the combination of early-cse,
instcombine, loop-rotate, and loop-fusion passes successfully unlocks loop-level optim-
isation. For S10, the key is to apply loop-unroll before and after the instcombine pass to
enhance instruction-level parallelism. For S11, we improve vectorisation by identifying
a sub-sequence that applies slp-vectorizer after sroa and simplifycfg.

97

5.5 Experimental Results

Random
BOCA

BaCO
OpenTuner

Nevergrad
Citroen (ours)

100 300 1000
Autotuning Budget (Number of measurements)

1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14

Sp
ee

d
up

 o
ve

r -
O3

cBench on ARM

100 300 1000
1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14

Sp
ee

d
up

 o
ve

r -
O3 cBench on x86

100 300
Autotuning Budget (Number of measurements)

1.00
1.02
1.04
1.06
1.08

Sp
ee

d
up

 o
ve

r -
O3 SPEC on x86

Figure 5.6: Average (geometric) performance on cBench and SPEC CPU 2017 with
different search iteration budgets.

98

5.5 Experimental Results

Random BOCA BaCO OpenTuner Nevergrad Citroen (ours)

2.2

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10C11C12C13C14C15C16C17C18C19C20C21C22C23C24C25C26
1.0

1.2

Sp
ee

d
up

 o
ve

r -
O3 Evaluation on cBench on ARM after 100 iterations

2.2

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10C11C12C13C14C15C16C17C18C19C20C21C22C23C24C25C26
1.0

1.2

Sp
ee

d
up

 o
ve

r -
O3 Evaluation on cBench on ARM after 300 iterations

2.2

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10C11C12C13C14C15C16C17C18C19C20C21C22C23C24C25C26
1.0

1.2

Sp
ee

d
up

 o
ve

r -
O3 Evaluation on cBench on ARM after 1000 iterations

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16
1.0

1.1

1.2

Sp
ee

d
up

 o
ve

r -
O3 Evaluation on SPEC on x86 after 100 iterations

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16
1.0

1.1

1.2

Sp
ee

d
up

 o
ve

r -
O3 Evaluation on SPEC on x86 after 300 iterations

Figure 5.7: Evaluation on cBench and SPEC with different search iteration budgets.

99

5.5 Experimental Results

w/o compilation statistics
w/o heuristic generator

w/o AF customization
w/o task scheduler

w/o module specific optimization
Citroen (ours)

100 300 500 700 900
Number of iterations

1.0
1.1
1.2

automotive_bitcount (C1)

100 300 500 700 900
Number of iterations

1.0

1.1

security_sha (C22)

100 300 500 700 900
Number of iterations

1.1
1.2
1.3

telecom_gsm (C26)

Figure 5.8: Ablation study on different benchmarks. The y-axis is the speedup relative
to -O3. security sha only owns one hot module, thus “task scheduler” and “module
specific optimisation” are not applicable to such single-module cases.

Another observation is that many benchmarks allow all the methods to achieve
similar performance. These benchmarks share the common characteristic that their
performance under a small search budget (100) is close to that achieved with a large
budget (1000). This is because their performance is dominated by easily activated
optimisations (like mem2reg). This observation is also consistent with previous studies
[52, 71, 72], where random search is reported to be effective enough in many cases.

100

5.5 Experimental Results

5.5.2 Ablation Study

To assess how each component of Citroen impacts performance, we evaluate its vari-
ants on the ARM platform on several cBench benchmarks. The “Citroen (ours)”
variant uses all proposed techniques. “W/o compilation statistics” uses original pass
sequences instead of compilation statistics for the cost model. “W/o heuristic gener-
ator” utilises random sampling rather than heuristic algorithms to generate candidate
pass sequences. “W/o AF customisation” employs standard EI as the acquisition func-
tion, ignoring the coverage issue. “W/o task scheduler” sequentially autotunes each
module instead of using a global task scheduler. “W/o module-specific optimisation”
applies a single pass sequence for all modules.

As can be seen in Figure 5.8, “W/o compilation statistics” performs much worse
than Citroen in terms of both the final achieved performance and search efficiency,
indicating that pass-related compilation statistics are a key component of Citroen.
”W/o heuristic generator” outperforms ”W/o compilation statistics” but remains less
effective than Citroen. This is because it lacks an efficient initialisation strategy for
the acquisition function maximisation process, which Chapter 4 highlights as crucial
for high-dimensional problems. “W/o AF customisation” uses 1000 search iterations to
achieve only 1.04× speedup in security sha (C22) while Citroen uses 100 iterations
to achieve 1.16× speedup, showing that the coverage issue could significantly harm
performance in some cases. For programs with multiple hot modules, “W/o module
specific optimisation” performs the worst in terms of the final achieved performance,
revealing the effectiveness of module-specific optimisation. As depicted in “W/o task
scheduler”, one-by-one autotuning could achieve module-specific optimisation to im-
prove the final performance, but it requires more search iterations. This demonstrates
how a global model could effectively act as a task scheduler to adaptively allocate search
budgets when autotuning programs with multiple hot modules.

5.5.3 Alternative Feature Extraction Methods

Prior works in machine learning-based compiler optimisation developed a range of
methods to extract features from intermediate representations (IRs) to train offline
supervised or reinforcement learning models for predicting optimal compilation config-
urations.

IR2vec [149], Autophase [146], and Programl [150] provides three representative

101

5.5 Experimental Results

IR2vec feature Autophase feature Programl feature Compilation statistics (ours)

100 300 1000
Number of iterations

1.00
1.04
1.08
1.12

Average performance on cBench

100 300 1000
Number of iterations

1.4

1.6

automotive_bitcount (C1)

100 300 1000
Number of iterations

1.0

1.1

1.2 security_sha (C22)

100 300 1000
Number of iterations

1.5

2.0

telecom_gsm (C26)

Figure 5.9: Impact of replacing compilation statistics with alternative feature extraction
methods in Citroen (using LLVM 10 as the compiler). The y-axis shows the speedup
relative to -O3.

Autophase Citroen (ours)

100 300 1000
Number of iterations

1.00
1.04
1.08
1.12

Average performance on cBench

100 300 1000
Number of iterations

1.4

1.6

automotive_bitcount (C1)

100 300 1000
Number of iterations

1.0

1.1

1.2 security_sha (C22)

100 300 1000
Number of iterations

1.5

2.0

telecom_gsm (C26)

Figure 5.10: Comparison of Citroen and Autophase using LLVM 10 as the compiler.
The y-axis is the speedup relative to -O3.

102

5.5 Experimental Results

feature extraction techniques. IR2vec combines representation learning with control
flow information to embed IRs in a continuous space. Autophase extracts static fea-
tures via analysis passes on IRs. Programl represents programs as graphs to capture
their semantics and employs inst2vec [148] for continuous embeddings. Although these
methods are not tailored for search-based autotuning, their feature extraction tech-
niques could be integrated into our approach to construct an online cost model and
thus warrant comparison.

Figure 5.9 shows how our compilation statistics perform on the arm platform com-
pared to alternative feature extraction methods, including IR2vec [149], Autophase
[146], and Programl [150]. As both Autophase and Programl only support LLVM 10,
here we use LLVM 10 to compare all feature extraction methods fairly. Using pass-
related compilation statistics as features, Citroen clearly outperforms other feature
extraction methods. This is because alternative feature extraction methods struggle to
distinguish the changes brought by various passes. For example, the function-attrs pass
could significantly affect the performance of some programs like automotive bitcount,
but its transformation on the program can not be recognised by IR2vec, Autophase
and Programl, as function-attrs only changes the function attributes which are not
considered in those feature extraction methods.

Furthermore, while IR2vec and Programl do not generate or suggest compiler pass
sequences and must be integrated with a separate phase ordering method, Autophase
provides both a feature extraction mechanism and an end-to-end reinforcement learning
(RL)-based phase ordering solution. Thus, we also compare Citroen directly with
Autophase as a complete solution. We explored both offline and online approaches
in Autophase. First, we trained a proximal policy optimisation (PPO) model on 100
randomly generated programs from Csmith [170], following the approach in Autophase.
Then, we used this model as the initial policy for further RL-based search. Figure 5.10
reports the results, where Citroen still consistently outperforms Autophase.

5.5.4 Hyperparameter Sensitivity Analysis

Citroen has two key hyperparameters: the initial training samples for the cost model
(n init) and the candidate pass sequences per iteration (q). Figure 5.11 reports how
different hyperparameter values affect Citroen’s average performance across cBench
benchmarks on the ARM platform. Citroen demonstrates overall robustness to dif-

103

5.5 Experimental Results

100 300 1000
Number of iterations

1.00
1.04
1.08
1.12

Impact of n_init (cBench)
n_init = 10 n_init = 20 n_init = 50

100 300 1000
Number of iterations

1.00
1.04
1.08
1.12

Impact of q on (cBench)
q = 100 q = 500 q = 1000

Figure 5.11: Hyperparameter Sensitivity Analysis of Citroen. The y-axis is the spee-
dup relative to -O3.

ferent hyperparameter values, except that too small q may lead to marginally degraded
performance. Furthermore, increasing q beyond 500 does not result in any substan-
tial improvement in performance. Additionally, when the proportion of n init relative
to the total number of search iterations is large, it can cause a slight degradation in
performance. This is because a higher proportion of the search budget is allocated to
random sampling, which may be less efficient.

5.5.5 Compilation Statistics Analysis

Table 5.5 presents an experiment designed to explore the relationship between vari-
ous compilation statistics and the resulting performance speedup. For each program,
we focus on the module with the longest runtime, running Citroen for 1000 itera-
tions to derive both the optimal pass sequence and the final cost model. Using the
cost model’s lengthscales li (as defined in equation 5.1), we identify impactful features
(compilation statistics), where a smaller lengthscale indicates a greater influence on
performance. To assess the significance of each feature, we measure the change in per-
formance after removing the passes associated with that feature from the final pass
sequence. For instance, if loop-unroll.NumUnrolled is identified as impactful by the
cost model, we remove loop-unroll from the pass sequence to measure its effect on

104

5.5 Experimental Results

Table 5.5: Top 5 impactful compilation statistics recognised by the Citroen cost
model on different benchmarks. Performance changes are measured after removing the
relevant passes from the final pass sequence.

Benchmark Compilation Statistics
Performance Change if

Disabling Related Passes

automotive bitcount

loop-unroll.NumUnrolled -49%
inline.NumInlined -43%
licm.NumHoisted -54%
mem2reg.NumPHIInsert -52%
loop-unswitch.NumBranches -22%

security sha

instcombine.NumCombined -27%
mem2reg.NumPHIInsert -21%
loop-rotate.NumRotated -26%
early-cse.NumCSE -16%
loop-unroll.NumUnrolled -5%

telecom gsm

mem2reg.NumPHIInsert -31%
SLP.NumVectorInstructions -19%
instcombine.NumCombined -5%
loop-vectorize.LoopsVectorized -7%
simplifycfg.NumSimpl -5%

performance. The results reveal that the set of impactful compilation statistics varies
across programs, indicating that different programs are influenced by distinct compila-
tion factors. However, some statistics consistently emerge as impactful across multiple
programs, highlighting their broader relevance in program optimisation.

Furthermore, to understand the correlation between statistics and pass sequences,
we try to reduce the pass sequence to find the most important pass combination that
will affect statistics. We found that some passes are naturally correlated and often
appear together in sequences to make the occurrence of certain statistics possible.
For example, loop-vectorise.LoopsVectorized usually at least requires the sequential ap-
plication of both the loop-rotate and loop-vectorise passes. Similarly, applying sroa
before slp-vectorizer often leads to larger SLP.NumVectorInstructions. Additionally,
we found that in most cases, replacing mem2reg with sroa typically yields comparable
mem2reg.NumPHIInsert values and similar runtime performance.

105

5.6 Summary

Algorithmic time Measurement time

0 50 100
Percentage (%)

Random
BOCA
BaCO

Opentuner
Nevergrad

Ours
cBench

0 50 100
Percentage (%)

Random
BOCA
BaCO

Opentuner
Nevergrad

Ours
SPEC

Figure 5.12: Average proportion of algorithmic runtime.

5.5.6 Algorithmic Runtime

In Figure 5.12, we report the average proportion of algorithmic runtime (excluding the
time spent on objective function evaluation) across different methods for 1000 search
iterations in cBench and 300 iterations in SPEC CPU 2017. For Citroen, as it requires
extra parallel compilation (only on hot modules) and model training and inference, it
uses more algorithmic runtime than other methods. However, its algorithmic runtime
remains negligible compared to the performance measurement time (including program
compilation and execution time), especially when optimising larger programs like SPEC
CPU 2017.

5.6 Summary

This chapter has presented Citroen, a BO-based search framework for compiler phase
ordering. While the last chapter addresses the high-dimensional search space chal-
lenge (Section 1.2.1), this chapter focuses on addressing the compiler pass interaction
challenge (Section 1.2.2) and the practicality challenge (Section 1.2.3).

Citroen leverages pass-related compilation statistics to capture the complex inter-
actions between compiler passes, providing features that are more closely aligned with
performance. This enables the construction of a more effective online probabilistic cost
model, which helps avoid profiling pass sequences that yield no performance improve-
ment. In this way, Citroen addresses the challenge of compiler pass interaction.

To address the practicality challenge, Citroen automates the task function defin-
ition without manual re-implementation, simplifying the autotuning process. It also

106

5.6 Summary

implements a dynamic budget allocation across source files to support module-specific
phase ordering, improving search efficiency. Our evaluation shows that Citroen out-
performs existing approaches by achieving comparable tuning results using one-third
of their search budget.

107

Chapter 6

Conclusions

This chapter summarises the main contributions of this thesis in Section 6.1, presents
a critical analysis of this work in Section 6.2 and discusses possible directions for future
research in Section 6.3.

6.1 Contributions

This thesis presents new techniques for applying Bayesian optimisation (BO) to com-
piler autotuning. It especially focuses on one of the most challenging compiler auto-
tuning problems, i.e., phase ordering. As a departure from previous BO techniques
in software/compiler autotuning [141–143], it customises BO to address the challenges
outlined in Section 1.2, including the high-dimensional optimisation space, the complex
compiler pass interactions, and the practicality barrier.

6.1.1 A Simple and Effective High-Dimensional BO Method

Chapter 4 addresses the challenge of applying BO to high-dimensional optimisation
problems (Section 1.2.1), which is a crucial step towards applying BO to the high-
dimensional compiler phase ordering problem. It is the first work to investigate a
largely ignored yet significant problem in high-dimensional BO concerning the impact
of the initialisation of the acquisition function (AF) maximiser on the realisation of
the AF capability. It empirically shows that the commonly used random initialisation
strategy leads to poor-quality candidate points that limit AFs’ power, leading to over-
exploration and poor high-dimensional BO performance. Based on this understanding,
it proposes a simple yet effective initialisation method by employing multiple heuristic

108

6.1 Contributions

optimisers to leverage the historical data of black-box optimisation to generate initial
points for the AF maximiser.

The proposed method is simpler and more efficient than previous high-dimensional
BO methods. The simplicity of the method makes it easy to implement and apply to
various high-dimensional optimisation problems, including the compiler phase order-
ing problem. The method is also more efficient, requiring fewer evaluations to find
better solutions. Especially while testing in a high-dimensional compiler flag selection
problem, the proposed method outperforms the standard BO method by delivering a
7% runtime improvement after 1000 search iterations. It also outperforms other high-
dimensional BO methods by delivering 2-6% improvement.

6.1.2 Customisation for Compiler Phase Ordering

Chapter 5 addresses the challenge of complex compiler pass interactions (Section 1.2.2),
which complicates the task of predicting the performance impact of a given pass se-
quence. It leverages pass-related compilation statistics as a proxy to capture the com-
piler pass interactions. As pass-related compilation statistics directly reflect the changes
made by each pass, they provide a more direct representation of the pass interactions
than the pass sequence itself, avoiding the need to model the sequence. Compared to
the standard BO, the proposed technique inserts a new layer of abstraction (compila-
tion statistics) between the pass sequence and the performance, making the modelling
process more straightforward and effective, but introducing a non-uniform, sparse stat-
istics feature space. To better navigate the non-uniform, sparse statistics feature space,
the proposed technique customises the acquisition function design by incorporating a
coverage-based term. The coverage-based term encourages the model to explore the fea-
ture space more uniformly, leading to better performance. Besides, it also extends the
heuristic initialisation strategy proposed in Chapter 4 to a discrete version to generate
high-quality candidate pass sequences to be selected by the acquisition function.

Compared to previous BO techniques in performance autotuning [141–143], the
proposed technique can achieve better tuning results with just one-third of their search
budget. It proves especially effective with a constrained search budget - with a budget
of 100 runtime measurements, it delivers up to a 17% improvement over other BO
techniques.

109

6.2 Critical Analysis

6.1.3 Practical Multi-Module Autotuning

Chapter 5 also addresses the practicality barrier challenge (Section 1.2.3) by developing
a dynamic budget allocation strategy and a user-friendly framework for multi-module
compiler phase ordering.

The dynamic budget allocation strategy allocates the search budget across multiple
source files within a single program based on the real-time autotuning results of each
file. This strategy ensures that the next search iteration is allocated to the file with the
highest expected improvement. This is achieved by implementing a global cost model
that considers multiple modules’ effects rather than a single-module cost model during
the BO search process. Compared to the one-by-one autotuning process, the proposed
dynamic budget allocation strategy can achieve up to a 2.5× faster convergence time.

The user-friendly framework provides a simple and efficient way to perform multi-
module compiler phase ordering for real-life large applications. It allows users to dir-
ectly use the program’s existing build script (e.g., makefile) without rewriting the com-
pilation process to accept a specific compilation configuration, thus reducing the user
barrier.

6.2 Critical Analysis

6.2.1 Pass-Related Compilation Statistics

The pass-related compilation statistics used in this thesis are aggregated results, risking
neglecting lower-level details. For instance, while the statistics can indicate the number
of loops vectorised, they do not specify which loops were vectorised, their locations, or
their significance in the overall performance. This limitation introduces inaccuracies
in the modelling process, as the model cannot differentiate between more and less
critical optimisations. Although our online modelling approach accounts for model
uncertainty, the granularity of the statistics remains a challenge. Developing a more
detailed feature extraction method might enhance the accuracy of the online predictive
model and improve the overall effectiveness of the compiler autotuning process.

110

6.2 Critical Analysis

6.2.2 Program-Specific Autotuning

Our proposed BO approach searches from scratch for each targeting program, ensuring
flexibility and adaptability to different scenarios. However, this method may overlook
potential opportunities, such as the existence of general program-independent pass
correlations. These correlations, if identified and leveraged, could enhance the efficiency
of the optimisation process. By not utilising these potential correlations, our approach
might miss out on optimisations that could be applied across different programs.

6.2.3 Additional Compilation and Modelling Cost

Our approach uses post-compilation features to predict performance online, inherently
introducing additional compilation and modelling overhead. To mitigate this over-
head, we employ parallel compilation techniques and restrict the compilation process
to hotspot files, which are the files most likely to impact performance. This strategy
significantly reduces the overall compilation cost. Additionally, we utilise the highly
efficient GPyTorch library to leverage GPU resources for model training and inference.
In practice, the additional overhead incurred is minimal when compared to the time
required for runtime performance measurement. However, this approach requires the
algorithm and compilation to be executed on high-performance multi-core servers to
ensure efficiency.

6.2.4 Optimisation Objective

This thesis primarily targets execution time optimisation in compiler autotuning and
does not explicitly address other objectives such as code size or energy consumption.
Code size optimisation is mostly static and less challenging, while energy consumption
is often correlated with execution time and would require more detailed hardware-level
modelling. Focusing on runtime performance aligns with the main industrial interest,
but limits the scope of the work to a single objective setting.

111

6.3 Future Work

6.3 Future Work

6.3.1 Coverage-Based Code Characterization

This thesis uses pass-related compilation statistics to model the relationship between
compiler pass sequences and runtime performance. These statistics reveal whether and
how a specific pass changes the code. However, they do not provide detailed information
about what code snippets are changed and their significance in the overall performance.

One approach to addressing the limitations of compilation statistics is to incorpor-
ate profiling-based code coverage, which only needs to be performed once. Profiling-
based coverage provides detailed insights into the execution frequency of instructions
within each basic block of the intermediate representation (IR). By extracting coverage-
based features from IR, we can differentiate between critical and non-critical code seg-
ments. Since different pass sequences lead to different transformations, identifying
which changes have a greater impact can improve predictive modelling.

Future work could focus on leveraging coverage-based features to refine the mod-
elling process, enhancing the accuracy of performance predictions and enabling more
effective compiler autotuning.

6.3.2 Exploiting Program-Independent Pass Correlations

Some passes are naturally correlated and often appear together in sequences. Consid-
ering these program-independent relationships might help reduce the search space and
streamline the optimisation process. Future work could involve developing methods
to identify and exploit these program-independent pass correlations. By incorporat-
ing these correlations into the optimisation process, we could potentially reduce the
number of evaluations required to find optimal pass sequences, thereby improving the
efficiency of compiler autotuning.

6.3.3 Integrating Coarse Offline and Fine-Grained Online Learning

While developing an accurate offline model for compiler autotuning is challenging, a
coarse offline model is feasible. For instance, loop vectorisation generally improves
performance in most cases. By combining dynamic features obtained from profiling
the program at a specific optimisation level (e.g., -O3), such as performance counters,

112

6.3 Future Work

we can develop an initial offline model. This offline model can provide a preliminary
exploration, while the online model can perform more fine-grained searches.

Future work could focus on integrating these coarse offline models with fine-grained
online learning approaches. The offline model can guide the initial search space, re-
ducing the number of evaluations needed for the fine-grained online autotuning. This
hybrid approach could enhance the efficiency and effectiveness of the compiler autot-
uning process by leveraging the strengths of both offline and online models.

Deep reinforcement learning (DRL) could serve as a promising approach to realise
this integration, as it is well-suited for sequential decision-making and can naturally
combine coarse guidance from an offline model with adaptive fine-grained exploration
in the online phase. Similarly, code similarity based initialisation could be incorporated
to provide the online search with a better starting point, effectively bridging the offline
knowledge and online optimisation process.

113

References

[1] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In International symposium on code gener-
ation and optimization, 2004. CGO 2004., pages 75–86. IEEE, 2004.

[2] Richard M Stallman et al. Using the GNU compiler collection. Free Software
Foundation, 4(02), 2003.

[3] Amir H Ashouri, William Killian, John Cavazos, Gianluca Palermo, and Cristina
Silvano. A survey on compiler autotuning using machine learning. ACM Com-
puting Surveys (CSUR), 51(5):1–42, 2018.

[4] Zheng Wang and Michael O’Boyle. Machine learning in compiler optimization.
Proceedings of the IEEE, 106(11):1879–1901, 2018.

[5] Mircea Trofin, Yundi Qian, Eugene Brevdo, Zinan Lin, Krzysztof Choromanski,
and David Li. Mlgo: a machine learning guided compiler optimizations frame-
work. arXiv preprint arXiv:2101.04808, 2021.

[6] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on bayesian optim-
ization of expensive cost functions, with application to active user modeling and
hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599, 2010.

[7] David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias
Poloczek. Scalable global optimization via local bayesian optimization. Advances
in Neural Information Processing Systems, 32, 2019.

[8] Xingchen Wan, Vu Nguyen, Huong Ha, Binxin Ru, Cong Lu, and Michael A Os-
borne. Think global and act local: Bayesian optimisation over high-dimensional
categorical and mixed search spaces. In International Conference on Machine
Learning, pages 10663–10674. PMLR, 2021.

114

REFERENCES

[9] Natalie Maus, Haydn Jones, Juston Moore, Matt J Kusner, John Bradshaw, and
Jacob Gardner. Local latent space bayesian optimization over structured inputs.
Advances in neural information processing systems, 35:34505–34518, 2022.

[10] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for
machine learning, volume 2. MIT press Cambridge, MA, 2006.

[11] S Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997.

[12] A Vaswani. Attention is all you need. Advances in Neural Information Processing
Systems, 2017.

[13] Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, Wray Buntine, and Mo-
hammed Bennamoun. Hands-on bayesian neural networks-a tutorial for deep
learning users. IEEE Computational Intelligence Magazine, 17(2):29–48, 2022.

[14] Lelac Almagor, Keith D Cooper, Alexander Grosul, Timothy J Harvey, Steven W
Reeves, Devika Subramanian, Linda Torczon, and Todd Waterman. Finding
effective compilation sequences. ACM SIGPLAN Notices, 39(7):231–239, 2004.

[15] Stefano Cereda, Gianluca Palermo, Paolo Cremonesi, and Stefano Doni. A col-
laborative filtering approach for the automatic tuning of compiler optimisations.
In The 21st ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems, pages 15–25, 2020.

[16] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. Spec cpu2017: Next-
generation compute benchmark. In Companion of the 2018 ACM/SPEC Inter-
national Conference on Performance Engineering, pages 41–42, 2018.

[17] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando
De Freitas. Taking the human out of the loop: A review of bayesian optim-
ization. Proceedings of the IEEE, 104(1):148–175, 2015.

[18] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based
optimization for general algorithm configuration. In International conference on
learning and intelligent optimization, pages 507–523. Springer, 2011.

115

REFERENCES

[19] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimiz-
ation of machine learning algorithms. Advances in neural information processing
systems, 25, 2012.

[20] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Naray-
anan Sundaram, Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable
bayesian optimization using deep neural networks. In International conference
on machine learning, pages 2171–2180. PMLR, 2015.

[21] Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and Frank Hutter.
Bayesian optimization with robust bayesian neural networks. Advances in neural
information processing systems, 29, 2016.

[22] Jacob Gardner, Geoff Pleiss, Kilian Q Weinberger, David Bindel, and Andrew G
Wilson. Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu
acceleration. Advances in neural information processing systems, 31, 2018.

[23] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine
learning, volume 4. Springer, 2006.

[24] Matthias Seeger. Gaussian processes for machine learning. International journal
of neural systems, 14(02):69–106, 2004.

[25] Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham,
Andrew G Wilson, and Eytan Bakshy. Botorch: A framework for efficient monte-
carlo bayesian optimization. Advances in neural information processing systems,
33:21524–21538, 2020.

[26] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaus-
sian process optimization in the bandit setting: No regret and experimental
design. arXiv preprint arXiv:0912.3995, 2009.

[27] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optim-
ization of expensive black-box functions. Journal of Global optimization, 13:455–
492, 1998.

[28] James Wilson, Frank Hutter, and Marc Deisenroth. Maximizing acquisition func-
tions for bayesian optimization. Advances in neural information processing sys-
tems, 31, 2018.

116

REFERENCES

[29] James T Wilson, Riccardo Moriconi, Frank Hutter, and Marc Peter Deisen-
roth. The reparameterization trick for acquisition functions. arXiv preprint
arXiv:1712.00424, 2017.

[30] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic back-
propagation and variational inference in deep latent gaussian models. In Inter-
national conference on machine learning, volume 2, page 2, 2014.

[31] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., Inc., USA, 1st edition, 1989.

[32] Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

[33] Nikolaus Hansen, Sibylle D Müller, and Petros Koumoutsakos. Reducing the
time complexity of the derandomized evolution strategy with covariance matrix
adaptation (cma-es). Evolutionary computation, 11(1):1–18, 2003.

[34] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-
adaptation in evolution strategies. Evolutionary computation, 9(2):159–195, 2001.

[35] H-G Beyer and Dirk V Arnold. Theory of evolution strategies: A tutorial. The-
oretical aspects of evolutionary computing, pages 109–133, 2001.

[36] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the (1+ 1)
evolutionary algorithm. Theoretical Computer Science, 276(1-2):51–81, 2002.

[37] Benjamin Doerr and Carola Doerr. Optimal parameter choices through self-
adjustment: Applying the 1/5-th rule in discrete settings. In Proceedings of the
2015 Annual Conference on Genetic and Evolutionary Computation, pages 1335–
1342, 2015.

[38] Benjamin Doerr and Frank Neumann. Theory of evolutionary computation: Re-
cent developments in discrete optimization. Springer Nature, 2019.

[39] Keith D Cooper, Philip J Schielke, and Devika Subramanian. Optimizing for re-
duced code space using genetic algorithms. In Proceedings of the ACM SIGPLAN
1999 workshop on Languages, compilers, and tools for embedded systems, pages
1–9, 1999.

117

REFERENCES

[40] Toru Kisuki, Peter MW Knijnenburg, and Michael FP O’Boyle. Combined selec-
tion of tile sizes and unroll factors using iterative compilation. In Proceedings 2000
International Conference on Parallel Architectures and Compilation Techniques
(Cat. No. PR00622), pages 237–246. IEEE, 2000.

[41] Keith D Cooper, Devika Subramanian, and Linda Torczon. Adaptive optimizing
compilers for the 21st century. The Journal of Supercomputing, 23:7–22, 2002.

[42] Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, and David I
August. Compiler optimization-space exploration. In International Symposium
on Code Generation and Optimization, 2003. CGO 2003., pages 204–215. IEEE,
2003.

[43] Prasad Kulkarni, Wankang Zhao, Hwashin Moon, Kyunghwan Cho, David Whal-
ley, Jack Davidson, Mark Bailey, Yunheung Paek, and Kyle Gallivan. Finding
effective optimization phase sequences. ACM SIGPLAN Notices, 38(7):12–23,
2003.

[44] Prasad Kulkarni, Stephen Hines, Jason Hiser, David Whalley, Jack Davidson, and
Douglas Jones. Fast searches for effective optimization phase sequences. ACM
SIGPLAN Notices, 39(6):171–182, 2004.

[45] Keith D Cooper, Alexander Grosul, Timothy J Harvey, Steven Reeves, Devika
Subramanian, Linda Torczon, and Todd Waterman. Acme: adaptive compilation
made efficient. ACM SIGPLAN Notices, 40(7):69–77, 2005.

[46] Prasad A Kulkarni, David B Whalley, Gary S Tyson, and Jack W Davidson. Ex-
haustive optimization phase order space exploration. In International Symposium
on Code Generation and Optimization (CGO’06), pages 13–pp. IEEE, 2006.

[47] Jack W. Davidson, Gary S. Tyson, David B. Whalley, and Prasad A. Kulkarni.
Evaluating heuristic optimization phase order search algorithms. In International
Symposium on Code Generation and Optimization (CGO’07), pages 157–169,
2007.

[48] Kenneth Hoste and Lieven Eeckhout. Cole: compiler optimization level explora-
tion. In Proceedings of the 6th annual IEEE/ACM international symposium on
Code generation and optimization, pages 165–174, 2008.

118

REFERENCES

[49] Prasad A Kulkarni, David B Whalley, Gary S Tyson, and Jack W Davidson.
Practical exhaustive optimization phase order exploration and evaluation. ACM
Transactions on Architecture and Code Optimization (TACO), 6(1):1–36, 2009.

[50] Thayalan Sandran, Nordin Zakaria, and Anindya Jyoti Pal. An optimized tuning
of genetic algorithm parameters in compiler flag selection based on compilation
and execution duration. In Proceedings of the International Conference on Soft
Computing for Problem Solving (SocProS 2011) December 20-22, 2011: Volume
2, pages 599–610. Springer, 2012.

[51] Herbert Jordan, Peter Thoman, Juan J Durillo, Simone Pellegrini, Philipp
Gschwandtner, Thomas Fahringer, and Hans Moritsch. A multi-objective auto-
tuning framework for parallel codes. In SC’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis,
pages 1–12. IEEE, 2012.

[52] Yang Chen, Shuangde Fang, Yuanjie Huang, Lieven Eeckhout, Grigori Fursin,
Olivier Temam, and Chengyong Wu. Deconstructing iterative optimization. ACM
Transactions on Architecture and Code Optimization (TACO), 9(3):1–30, 2012.

[53] Michael R Jantz and Prasad A Kulkarni. Exploiting phase inter-dependencies
for faster iterative compiler optimization phase order searches. In 2013 Interna-
tional Conference on Compilers, Architecture and Synthesis for Embedded Sys-
tems (CASES), pages 1–10. IEEE, 2013.

[54] Suresh Purini and Lakshya Jain. Finding good optimization sequences cover-
ing program space. ACM Transactions on Architecture and Code Optimization
(TACO), 9(4):1–23, 2013.

[55] Cedric Nugteren and Valeriu Codreanu. Cltune: A generic auto-tuner for
opencl kernels. In 2015 IEEE 9th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip, pages 195–202. IEEE, 2015.

[56] Luiz GA Martins, Ricardo Nobre, Joao MP Cardoso, Alexandre CB Delbem, and
Eduardo Marques. Clustering-based selection for the exploration of compiler op-
timization sequences. ACM Transactions on Architecture and Code Optimization
(TACO), 13(1):1–28, 2016.

119

REFERENCES

[57] Unai Garciarena and Roberto Santana. Evolutionary optimization of compiler
flag selection by learning and exploiting flags interactions. In Proceedings of the
2016 on Genetic and Evolutionary Computation Conference Companion, pages
1159–1166, 2016.

[58] Ricardo Nobre, Luiz GA Martins, and João MP Cardoso. A graph-based iterative
compiler pass selection and phase ordering approach. ACM SIGPLAN Notices,
51(5):21–30, 2016.

[59] Tao Wang, Nikhil Jain, David Beckingsale, David Boehme, Frank Mueller, and
Todd Gamblin. Funcytuner: Auto-tuning scientific applications with per-loop
compilation. In Proceedings of the 48th International Conference on Parallel
Processing, ICPP ’19, New York, NY, USA, 2019.

[60] Michael Kruse, Hal Finkel, and Xingfu Wu. Autotuning Search Space for Loop
Transformations . In 2020 IEEE/ACM 6th Workshop on the LLVM Compiler
Infrastructure in HPC (LLVM-HPC) and Workshop on Hierarchical Parallelism
for Exascale Computing (HiPar), Los Alamitos, CA, USA, November 2020.

[61] Junjie Chen, Ningxin Xu, Peiqi Chen, and Hongyu Zhang. Efficient compiler
autotuning via bayesian optimization. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), pages 1198–1209. IEEE, 2021.

[62] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley,
Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe. Opentuner: An
extensible framework for program autotuning. In Proceedings of the 23rd in-
ternational conference on Parallel architectures and compilation, pages 303–316,
2014.

[63] Ari Rasch, Richard Schulze, Michel Steuwer, and Sergei Gorlatch. Efficient auto-
tuning of parallel programs with interdependent tuning parameters via auto-
tuning framework (atf). ACM Transactions on Architecture and Code Optimiza-
tion (TACO), 18(1):1–26, 2021.

[64] Jaehoon Koo, Prasanna Balaprakash, Michael Kruse, Xingfu Wu, Paul Hovland,
and Mary Hall. Customized monte carlo tree search for llvm/polly’s composable

120

REFERENCES

loop optimization transformations. In 2021 International Workshop on Perform-
ance Modeling, Benchmarking and Simulation of High Performance Computer
Systems (PMBS), pages 82–93. IEEE, 2021.

[65] Huanting Wang, Zhanyong Tang, Cheng Zhang, Jiaqi Zhao, Chris Cummins,
Hugh Leather, and Zheng Wang. Automating reinforcement learning architec-
ture design for code optimization. In Proceedings of the 31st ACM SIGPLAN
International Conference on Compiler Construction, pages 129–143, 2022.

[66] Sunghyun Park, Salar Latifi, Yongjun Park, Armand Behroozi, Byungsoo Jeon,
and Scott Mahlke. Srtuner: Effective compiler optimization customization by
exposing synergistic relations. In 2022 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), pages 118–130. IEEE, 2022.

[67] Chris Cummins, Bram Wasti, Jiadong Guo, Brandon Cui, Jason Ansel, Sahir
Gomez, Somya Jain, Jia Liu, Olivier Teytaud, Benoit Steiner, et al. Compiler-
gym: Robust, performant compiler optimization environments for ai research. In
2022 IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO), pages 92–105. IEEE, 2022.

[68] Mingxuan Zhu and Dan Hao. Compiler auto-tuning via critical flag selection. In
2023 38th IEEE/ACM International Conference on Automated Software Engin-
eering (ASE), pages 1000–1011. IEEE, 2023.

[69] Mingxuan Zhu, Dan Hao, and Junjie Chen. Compiler autotuning through
multiple-phase learning. ACM Transactions on Software Engineering and Meth-
odology, 33(4):1–38, 2024.

[70] Mark Stephenson and Saman Amarasinghe. Predicting unroll factors using su-
pervised classification. In International symposium on code generation and op-
timization, pages 123–134. IEEE, 2005.

[71] Felix Agakov, Edwin Bonilla, John Cavazos, Björn Franke, Grigori Fursin, Mi-
chael FP O’Boyle, John Thomson, Marc Toussaint, and Christopher KI Williams.
Using machine learning to focus iterative optimization. In International Sym-
posium on Code Generation and Optimization (CGO’06), pages 11–pp. IEEE,
2006.

121

REFERENCES

[72] John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael FP O’Boyle,
and Olivier Temam. Rapidly selecting good compiler optimizations using perform-
ance counters. In International Symposium on Code Generation and Optimization
(CGO’07), pages 185–197. IEEE, 2007.

[73] Kapil Vaswani, Matthew J Thazhuthaveetil, YN Srikant, and PJ Joseph. Microar-
chitecture sensitive empirical models for compiler optimizations. In International
Symposium on Code Generation and Optimization (CGO’07), pages 131–143.
IEEE, 2007.

[74] Tomofumi Yuki, Lakshminarayanan Renganarayanan, Sanjay Rajopadhye,
Charles Anderson, Alexandre E Eichenberger, and Kevin O’Brien. Automatic cre-
ation of tile size selection models. In Proceedings of the 8th annual IEEE/ACM
international symposium on Code generation and optimization, pages 190–199,
2010.

[75] Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew Chamski,
Olivier Temam, Mircea Namolaru, Elad Yom-Tov, Bilha Mendelson, Ayal Zaks,
Eric Courtois, et al. Milepost gcc: Machine learning enabled self-tuning compiler.
International journal of parallel programming, 39:296–327, 2011.

[76] Sameer Kulkarni and John Cavazos. Mitigating the compiler optimization phase-
ordering problem using machine learning. In Proceedings of the ACM interna-
tional conference on Object oriented programming systems languages and applic-
ations, pages 147–162, 2012.

[77] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edel-
man, and Saman Amarasinghe. Petabricks: A language and compiler for al-
gorithmic choice. ACM Sigplan Notices, 44(6):38–49, 2009.

[78] Yufei Ding, Jason Ansel, Kalyan Veeramachaneni, Xipeng Shen, Una-May
O’Reilly, and Saman Amarasinghe. Autotuning algorithmic choice for input sens-
itivity. ACM SIGPLAN Notices, 50(6):379–390, 2015.

[79] Amir Hossein Ashouri, Giovanni Mariani, Gianluca Palermo, Eunjung Park, John
Cavazos, and Cristina Silvano. Cobayn: Compiler autotuning framework using
bayesian networks. ACM Transactions on Architecture and Code Optimization
(TACO), 13(2):1–25, 2016.

122

REFERENCES

[80] Chris Cummins, Pavlos Petoumenos, Michel Steuwer, and Hugh Leather. Autot-
uning opencl workgroup size for stencil patterns. In 6th International Workshop
on Adaptive Self-tuning Computing Systems 2016, 2016.

[81] Amir H Ashouri, Andrea Bignoli, Gianluca Palermo, Cristina Silvano, Sameer
Kulkarni, and John Cavazos. Micomp: Mitigating the compiler phase-ordering
problem using optimization sub-sequences and machine learning. ACM Transac-
tions on Architecture and Code Optimization (TACO), 14(3):1–28, 2017.

[82] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. End-to-
end deep learning of optimization heuristics. In 2017 26th International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT), pages 219–
232. IEEE, 2017.

[83] Rahim Mammadli, Ali Jannesari, and Felix Wolf. Static neural compiler optimiz-
ation via deep reinforcement learning. In 2020 IEEE/ACM 6th Workshop on the
LLVM Compiler Infrastructure in HPC (LLVM-HPC) and Workshop on Hier-
archical Parallelism for Exascale Computing (HiPar), pages 1–11. IEEE, 2020.

[84] Ameer Haj-Ali, Nesreen Ahmed, Ted Willke, Sophia Shao, Krste Asanovic, and
Ion Stoica. Neurovectorizer: End-to-end vectorization with deep reinforcement
learning. In Proceedings of the 2020 International Symposium on Code Generation
and Optimization, CGO 2020. ACM, 2020.

[85] Anderson Faustino Da Silva, Bruno Conde Kind, José Wesley
de Souza Magalhães, Jerônimo Nunes Rocha, Breno Campos Ferreira Guimaraes,
and Fernando Magno Quinão Pereira. Anghabench: A suite with one million
compilable c benchmarks for code-size reduction. In 2021 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO), pages 378–390.
IEEE, 2021.

[86] Anderson Faustino da Silva, Bernardo NB De Lima, and Fernando
Magno Quintão Pereira. Exploring the space of optimization sequences for code-
size reduction: insights and tools. In Proceedings of the 30th ACM SIGPLAN
International Conference on Compiler Construction, pages 47–58, 2021.

123

REFERENCES

[87] Hongzhi Liu, Jie Luo, Ying Li, and Zhonghai Wu. Iterative compilation optimiz-
ation based on metric learning and collaborative filtering. ACM Transactions on
Architecture and Code Optimization (TACO), 19(1):1–25, 2021.

[88] Raphael Mosaner, David Leopoldseder, Lukas Stadler, and Hanspeter
Mössenböck. Using machine learning to predict the code size impact of duplica-
tion heuristics in a dynamic compiler. In Proceedings of the 18th ACM SIGPLAN
International Conference on Managed Programming Languages and Runtimes,
pages 127–135, 2021.

[89] Shalini Jain, Yashas Andaluri, S VenkataKeerthy, and Ramakrishna Upadrasta.
Poset-rl: Phase ordering for optimizing size and execution time using reinforce-
ment learning. In 2022 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), pages 121–131. IEEE, 2022.

[90] Youwei Liang, Kevin Stone, Ali Shameli, Chris Cummins, Mostafa Elhoushi,
Jiadong Guo, Benoit Steiner, Xiaomeng Yang, Pengtao Xie, Hugh James Leather,
et al. Learning compiler pass orders using coreset and normalized value prediction.
In International Conference on Machine Learning, pages 20746–20762. PMLR,
2023.

[91] Tamim Burgstaller, Damian Garber, Viet-Man Le, and Alexander Felfernig. Op-
timization space learning: A lightweight, noniterative technique for compiler
autotuning. In Proceedings of the 28th ACM International Systems and Soft-
ware Product Line Conference, pages 36–46, 2024.

[92] Haolin Pan, Yuanyu Wei, Mingjie Xing, Yanjun Wu, and Chen Zhao. Towards
efficient compiler auto-tuning: Leveraging synergistic search spaces. In Proceed-
ings of the 23rd ACM/IEEE International Symposium on Code Generation and
Optimization, pages 614–627, 2025.

[93] Chris Cummins, Volker Seeker, Dejan Grubisic, Mostafa Elhoushi, Youwei Liang,
Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Kim Hazelwood, Gabriel Syn-
naeve, et al. Large language models for compiler optimization. arXiv preprint
arXiv:2309.07062, 2023.

[94] Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by
simulated annealing. science, 220(4598):671–680, 1983.

124

REFERENCES

[95] Pauline Bennet, Carola Doerr, Antoine Moreau, Jeremy Rapin, Fabien Teytaud,
and Olivier Teytaud. Nevergrad: black-box optimization platform. ACM SIGE-
VOlution, 14(1):8–15, 2021.

[96] Ziyu Wang, Masrour Zoghi, Frank Hutter, David Matheson, Nando De Freitas,
et al. Bayesian optimization in high dimensions via random embeddings. In
IJCAI, pages 1778–1784. Citeseer, 2013.

[97] Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando De Feitas.
Bayesian optimization in a billion dimensions via random embeddings. Journal
of Artificial Intelligence Research, 55:361–387, 2016.

[98] Hong Qian, Yi-Qi Hu, and Yang Yu. Derivative-free optimization of high-
dimensional non-convex functions by sequential random embeddings. In IJCAI,
pages 1946–1952, 2016.

[99] Xiaoyu Lu, Javier Gonzalez, Zhenwen Dai, and Neil D Lawrence. Structured
variationally auto-encoded optimization. In International conference on machine
learning, pages 3267–3275. PMLR, 2018.

[100] Amin Nayebi, Alexander Munteanu, and Matthias Poloczek. A framework for
bayesian optimization in embedded subspaces. In International Conference on
Machine Learning, pages 4752–4761. PMLR, 2019.

[101] Mickaël Binois, David Ginsbourger, and Olivier Roustant. On the choice of the
low-dimensional domain for global optimization via random embeddings. Journal
of global optimization, 76(1):69–90, 2020.

[102] Ben Letham, Roberto Calandra, Akshara Rai, and Eytan Bakshy. Re-examining
linear embeddings for high-dimensional bayesian optimization. Advances in neural
information processing systems, 33:1546–1558, 2020.

[103] Kirthevasan Kandasamy, Jeff Schneider, and Barnabás Póczos. High dimensional
bayesian optimisation and bandits via additive models. In International confer-
ence on machine learning, pages 295–304. PMLR, 2015.

[104] Zi Wang, Chengtao Li, Stefanie Jegelka, and Pushmeet Kohli. Batched high-
dimensional bayesian optimization via structural kernel learning. In International
Conference on Machine Learning, pages 3656–3664. PMLR, 2017.

125

REFERENCES

[105] Jacob Gardner, Chuan Guo, Kilian Weinberger, Roman Garnett, and Roger
Grosse. Discovering and exploiting additive structure for bayesian optimization.
In Artificial Intelligence and Statistics, pages 1311–1319. PMLR, 2017.

[106] Paul Rolland, Jonathan Scarlett, Ilija Bogunovic, and Volkan Cevher. High-
dimensional bayesian optimization via additive models with overlapping groups.
In International conference on artificial intelligence and statistics, pages 298–307.
PMLR, 2018.

[107] Mojmir Mutny and Andreas Krause. Efficient high dimensional bayesian op-
timization with additivity and quadrature fourier features. Advances in Neural
Information Processing Systems, 31, 2018.

[108] Zi Wang, Clement Gehring, Pushmeet Kohli, and Stefanie Jegelka. Batched
large-scale bayesian optimization in high-dimensional spaces. In International
Conference on Artificial Intelligence and Statistics, pages 745–754. PMLR, 2018.

[109] Cheng Li, Sunil Gupta, Santu Rana, Vu Nguyen, Svetha Venkatesh, and Alistair
Shilton. High dimensional bayesian optimization using dropout. arXiv preprint
arXiv:1802.05400, 2018.

[110] Johannes Kirschner, Mojmir Mutny, Nicole Hiller, Rasmus Ischebeck, and An-
dreas Krause. Adaptive and safe bayesian optimization in high dimensions via
one-dimensional subspaces. In International Conference on Machine Learning,
pages 3429–3438. PMLR, 2019.

[111] Riccardo Moriconi, KS Sesh Kumar, and Marc Peter Deisenroth. High-
dimensional bayesian optimization with projections using quantile gaussian pro-
cesses. Optimization Letters, 14:51–64, 2020.

[112] Jian Tan, Niv Nayman, and Mengchang Wang. Cobbo: Coordinate backoff
bayesian optimization with two-stage kernels. arXiv preprint arXiv:2101.05147,
2021.

[113] Santu Rana, Cheng Li, Sunil Gupta, Vu Nguyen, and Svetha Venkatesh. High
dimensional bayesian optimization with elastic gaussian process. In International
conference on machine learning, pages 2883–2891. PMLR, 2017.

126

REFERENCES

[114] ChangYong Oh, Efstratios Gavves, and Max Welling. Bock: Bayesian optimiza-
tion with cylindrical kernels. In International Conference on Machine Learning,
pages 3868–3877. PMLR, 2018.

[115] David Eriksson and Martin Jankowiak. High-dimensional bayesian optimization
with sparse axis-aligned subspaces. In Uncertainty in Artificial Intelligence, pages
493–503. PMLR, 2021.

[116] Linnan Wang, Rodrigo Fonseca, and Yuandong Tian. Learning search space
partition for black-box optimization using monte carlo tree search. Advances in
Neural Information Processing Systems, 33:19511–19522, 2020.

[117] John P Cunningham, Krishna V Shenoy, and Maneesh Sahani. Fast gaussian
process methods for point process intensity estimation. In Proceedings of the
25th international conference on Machine learning, pages 192–199, 2008.

[118] Michalis Titsias. Variational learning of inducing variables in sparse gaussian
processes. In Artificial intelligence and statistics, pages 567–574. PMLR, 2009.

[119] James Hensman, Nicolo Fusi, and Neil D Lawrence. Gaussian processes for big
data. arXiv preprint arXiv:1309.6835, 2013.

[120] Andrew Wilson and Hannes Nickisch. Kernel interpolation for scalable structured
gaussian processes (kiss-gp). In International conference on machine learning,
pages 1775–1784. PMLR, 2015.

[121] James Hensman, Alexander Matthews, and Zoubin Ghahramani. Scalable vari-
ational gaussian process classification. In Artificial Intelligence and Statistics,
pages 351–360. PMLR, 2015.

[122] Andrew G Wilson, Zhiting Hu, Russ R Salakhutdinov, and Eric P Xing.
Stochastic variational deep kernel learning. Advances in neural information pro-
cessing systems, 29, 2016.

[123] Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

127

REFERENCES

[124] Paul Tseng. Convergence of a block coordinate descent method for nondifferenti-
able minimization. Journal of optimization theory and applications, 109:475–494,
2001.

[125] Thomas Bartz-Beielstein, Christian WG Lasarczyk, and Mike Preuß. Sequential
parameter optimization. In 2005 IEEE congress on evolutionary computation,
volume 1, pages 773–780. IEEE, 2005.

[126] Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Kevin P Murphy. An
experimental investigation of model-based parameter optimisation: Spo and bey-
ond. In Proceedings of the 11th Annual conference on Genetic and evolutionary
computation, pages 271–278, 2009.

[127] Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Kevin Murphy. Time-
bounded sequential parameter optimization. In International Conference on
Learning and Intelligent Optimization, pages 281–298. Springer, 2010.

[128] Tim Head, Manoj Kumar, Holger Nahrstaedt, Gilles Louppe, and Iaroslav Shcher-
batyi. scikit-optimize/scikit-optimize, October 2021. https://doi.org/10.5281/

zenodo.5565057.

[129] Ruben Martinez-Cantin. Bayesopt: A bayesian optimization library for nonlinear
optimization, experimental design and bandits. Journal of Machine Learning
Research, 15(115):3915–3919, 2014.

[130] Kirthevasan Kandasamy, Karun Raju Vysyaraju, Willie Neiswanger, Biswajit
Paria, Christopher R Collins, Jeff Schneider, Barnabas Poczos, and Eric P Xing.
Tuning hyperparameters without grad students: Scalable and robust bayesian
optimisation with dragonfly. Journal of Machine Learning Research, 21(81):1–
27, 2020.

[131] Alexander I Cowen-Rivers, Wenlong Lyu, Zhi Wang, Rasul Tutunov, Hao Ji-
anye, Jun Wang, and Haitham Bou Ammar. Hebo: Heteroscedastic evolutionary
bayesian optimisation. arXiv e-prints, pages arXiv–2012, 2020.

[132] Victor Picheny, Joel Berkeley, Henry B Moss, Hrvoje Stojic, Uri Granta, Se-
bastian W Ober, Artem Artemev, Khurram Ghani, Alexander Goodall, Andrei

128

https://doi.org/10.5281/zenodo.5565057
https://doi.org/10.5281/zenodo.5565057

REFERENCES

Paleyes, et al. Trieste: Efficiently exploring the depths of black-box functions
with tensorflow. arXiv preprint arXiv:2302.08436, 2023.

[133] Nicolas Knudde, Joachim van der Herten, Tom Dhaene, and Ivo Couckuyt.
Gpflowopt: A bayesian optimization library using tensorflow. arXiv preprint
arXiv:1711.03845, 2017.

[134] Artur Souza, Luigi Nardi, Leonardo B Oliveira, Kunle Olukotun, Marius
Lindauer, and Frank Hutter. Bayesian optimization with a prior for the op-
timum. In Machine Learning and Knowledge Discovery in Databases. Research
Track: European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–
17, 2021, Proceedings, Part III 21, pages 265–296. Springer, 2021.

[135] Natalie Maus, Haydn T Jones, Juston S Moore, Matt J Kusner, John Bradshaw,
and Jacob R Gardner. Local latent space bayesian optimization over structured
inputs. arXiv preprint arXiv:2201.11872, 2022.

[136] Natalie Maus, Kaiwen Wu, David Eriksson, and Jacob Gardner. Discovering
many diverse solutions with bayesian optimization. In International Conference
on Artificial Intelligence and Statistics, pages 1779–1798. PMLR, 2023.

[137] Sebastian Ament, Samuel Daulton, David Eriksson, Maximilian Balandat, and
Eytan Bakshy. Unexpected improvements to expected improvement for bayesian
optimization. Advances in Neural Information Processing Systems, 36:20577–
20612, 2023.

[138] Seunghun Lee, Jaewon Chu, Sihyeon Kim, Juyeon Ko, and Hyunwoo J Kim.
Advancing bayesian optimization via learning correlated latent space. Advances
in Neural Information Processing Systems, 36, 2024.

[139] The GPyOpt authors. GPyOpt: A bayesian optimization framework in python.
http://github.com/SheffieldML/GPyOpt, 2016.

[140] Xingfu Wu, Michael Kruse, Prasanna Balaprakash, Hal Finkel, Paul Hovland,
Valerie Taylor, and Mary Hall. Autotuning polybench benchmarks with llvm
clang/polly loop optimization pragmas using bayesian optimization. Concurrency
and Computation: Practice and Experience, 34(20):e6683, 2022.

129

http://github.com/SheffieldML/GPyOpt

REFERENCES

[141] Rohan Basu Roy, Tirthak Patel, Vijay Gadepally, and Devesh Tiwari. Bliss:
auto-tuning complex applications using a pool of diverse lightweight learning
models. In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, pages 1280–1295, 2021.

[142] Vivek Nair, Zhe Yu, Tim Menzies, Norbert Siegmund, and Sven Apel. Finding
faster configurations using flash. IEEE Transactions on Software Engineering,
46(7):794–811, 2018.

[143] Erik Orm Hellsten, Artur Souza, Johannes Lenfers, Rubens Lacouture, Olivia
Hsu, Adel Ejjeh, Fredrik Kjolstad, Michel Steuwer, Kunle Olukotun, and Luigi
Nardi. Baco: A fast and portable bayesian compiler optimization framework.
In Proceedings of the 28th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, Volume 4, pages 19–42,
2023.

[144] Jiayu Zhao, Chunwei Xia, , and Zheng Wang. Leveraging compilation statist-
ics for compiler phase ordering. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2025.

[145] Francesco Barchi, Gianvito Urgese, Enrico Macii, and Andrea Acquaviva. Code
mapping in heterogeneous platforms using deep learning and llvm-ir. In Proceed-
ings of the 56th Annual Design Automation Conference 2019, pages 1–6, 2019.

[146] Ameer Haj-Ali, Qijing Jenny Huang, John Xiang, William Moses, Krste Asanovic,
John Wawrzynek, and Ion Stoica. Autophase: Juggling hls phase orderings in
random forests with deep reinforcement learning. Proceedings of Machine Learn-
ing and Systems, 2:70–81, 2020.

[147] Alexander Brauckmann, Andrés Goens, Sebastian Ertel, and Jeronimo Castrillon.
Compiler-based graph representations for deep learning models of code. In Pro-
ceedings of the 29th International Conference on Compiler Construction, pages
201–211, 2020.

[148] Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. Neural code com-
prehension: A learnable representation of code semantics. Advances in neural
information processing systems, 31, 2018.

130

REFERENCES

[149] S VenkataKeerthy, Rohit Aggarwal, Shalini Jain, Maunendra Sankar Desarkar,
Ramakrishna Upadrasta, and YN Srikant. IR2vec: LLVM IR based scalable
program embeddings. ACM Transactions on Architecture and Code Optimization
(TACO), 17(4):1–27, 2020.

[150] Chris Cummins, Zacharias V Fisches, Tal Ben-Nun, Torsten Hoefler, Michael FP
O’Boyle, and Hugh Leather. Programl: A graph-based program representation
for data flow analysis and compiler optimizations. In International Conference
on Machine Learning, pages 2244–2253. PMLR, 2021.

[151] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms
for hyper-parameter optimization. Advances in neural information processing
systems, 24, 2011.

[152] José Miguel Hernández-Lobato, James Requeima, Edward O Pyzer-Knapp, and
Alán Aspuru-Guzik. Parallel and distributed thompson sampling for large-scale
accelerated exploration of chemical space. In International conference on machine
learning, pages 1470–1479. PMLR, 2017.

[153] Daniel J Lizotte, Tao Wang, Michael H Bowling, Dale Schuurmans, et al. Auto-
matic gait optimization with gaussian process regression. In IJCAI, volume 7,
pages 944–949, 2007.

[154] Ruben Martinez-Cantin, Nando De Freitas, Eric Brochu, José Castellanos, and
Arnaud Doucet. A bayesian exploration-exploitation approach for optimal online
sensing and planning with a visually guided mobile robot. Autonomous Robots,
27(2):93–103, 2009.

[155] Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint
arXiv:1807.02811, 2018.

[156] Jian Wu and Peter Frazier. The parallel knowledge gradient method for batch
bayesian optimization. Advances in neural information processing systems, 29,
2016.

[157] Zi Wang and Stefanie Jegelka. Max-value entropy search for efficient bayesian
optimization. In International Conference on Machine Learning, pages 3627–
3635. PMLR, 2017.

131

REFERENCES

[158] Henry B Moss, David S Leslie, Javier Gonzalez, and Paul Rayson. Gibbon:
General-purpose information-based bayesian optimisation. Journal of Machine
Learning Research, 22(235):1–49, 2021.

[159] Jasper Snoek, Kevin Swersky, Rich Zemel, and Ryan Adams. Input warping for
bayesian optimization of non-stationary functions. In International Conference
on Machine Learning, pages 1674–1682. PMLR, 2014.

[160] Tanweer Alam, Shamimul Qamar, Amit Dixit, and Mohamed Benaida. Genetic
algorithm: Reviews, implementations, and applications. International Journal of
Engineering Pedagogy, 2020.

[161] Marcin Molga and Czes law Smutnicki. Test functions for optimization needs.
Test functions for optimization needs, 101:48, 2005.

[162] Grigori Fursin and Olivier Temam. Collective optimization: A practical collab-
orative approach. ACM Transactions on Architecture and Code Optimization
(TACO), 7(4):1–29, 2010.

[163] Nikolaus Hansen, yoshihikoueno, ARF1, Kento Nozawa, Luca Rolshoven, Mat-
thew Chan, Youhei Akimoto, brieglhostis, and Dimo Brockhoff. pycma: r3.2.2,
March 2022. https://doi.org/10.5281/zenodo.6370326.

[164] J. Blank and K. Deb. pymoo: Multi-objective optimization in python. IEEE
Access, 8:89497–89509, 2020.

[165] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ international conference on intelligent
robots and systems, pages 5026–5033. IEEE, 2012.

[166] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and
Frank Hutter. Nas-bench-101: Towards reproducible neural architecture search.
In International conference on machine learning, pages 7105–7114. PMLR, 2019.

[167] Kenan Šehić, Alexandre Gramfort, Joseph Salmon, and Luigi Nardi. Las-
sobench: A high-dimensional hyperparameter optimization benchmark suite for
lasso. arXiv preprint arXiv:2111.02790, 2021.

132

https://doi.org/10.5281/zenodo.6370326

REFERENCES

[168] Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search
provides a competitive approach to reinforcement learning. arXiv preprint
arXiv:1803.07055, 2018.

[169] Ricardo Nobre, Luiz GA Martins, and Joao MP Cardoso. Use of previously
acquired positioning of optimizations for phase ordering exploration. In Proceed-
ings of the 18th international workshop on software and compilers for embedded
systems, pages 58–67, 2015.

[170] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understand-
ing bugs in c compilers. In Proceedings of the 32nd ACM SIGPLAN conference
on Programming language design and implementation, pages 283–294, 2011.

133

	1 Introduction
	1.1 Problem Scope
	1.2 Research Challenges
	1.2.1 High-Dimensional Optimisation Space
	1.2.2 Complex Interactions between Compiler Passes
	1.2.3 Practicality Barriers

	1.3 Contributions
	1.4 Thesis Outline

	2 Background
	2.1 Bayesian Optimisation
	2.1.1 Gaussian Process
	2.1.2 Acquisition Function

	2.2 Heuristic Optimisation
	2.2.1 Genetic Algorithm
	2.2.2 Covariance Matrix Adaptation Evolution Strategy
	2.2.3 Discrete 1+ Evolution Strategy

	2.3 Summary

	3 Related Work
	3.1 Compiler Autotuning
	3.1.1 Search-based Compiler Autotuning
	3.1.2 Predictive Modelling

	3.2 Bayesian Optimisation
	3.2.1 High-Dimensional Bayesian Optimisation
	3.2.2 Acquisition Function Maximization

	3.3 Bayesian Optimisation in Code Optimisation
	3.4 Code Characterization
	3.5 Summary

	4 Understanding Challenges of High-Dimensional Bayesian Optimisation
	4.1 Introduction
	4.2 Motivation
	4.2.1 A Synthetic Function as Motivation
	4.2.2 Compiler Autotuning

	4.3 Methodology
	4.3.1 Heuristic Acquisition Function Maximizer Initialisation
	4.3.2 Implementation Details

	4.4 Experimental Setup
	4.4.1 Benchmarks
	4.4.2 Evaluation Methodology

	4.5 Experimental Results
	4.5.1 Comparison with Baselines
	4.5.2 Evaluation under Different AFs
	4.5.3 Over-Exploration of Random Initialisation
	4.5.4 The Case of Over-Exploitation
	4.5.5 Ablation Study
	4.5.6 Comparison with Other Initialisation Strategies
	4.5.7 Evaluation under Different Hyper-Parameters
	4.5.8 Impact of AF Settings on GA Population Diversity
	4.5.9 Algorithmic Runtime

	4.6 Summary

	5 Leveraging Compilation Statistics for Compiler Phase Ordering via Bayesian Optimisation
	5.1 Introduction
	5.2 Motivation
	5.3 Our Approach
	5.3.1 Overview
	5.3.2 Bayesian Optimisation for Compiler Phase Ordering
	5.3.3 Cost Model for Performance Estimation
	5.3.4 Acquisition Function Design
	5.3.5 Pass Sequence Generator
	5.3.6 Autotuning Task Definition

	5.4 Experimental Setup
	5.4.1 Implementation
	5.4.2 Evaluation Platforms
	5.4.3 Benchmarks
	5.4.4 Competing Baselines
	5.4.5 Evaluation Methodology

	5.5 Experimental Results
	5.5.1 Comparison with Baselines
	5.5.2 Ablation Study
	5.5.3 Alternative Feature Extraction Methods
	5.5.4 Hyperparameter Sensitivity Analysis
	5.5.5 Compilation Statistics Analysis
	5.5.6 Algorithmic Runtime

	5.6 Summary

	6 Conclusions
	6.1 Contributions
	6.1.1 A Simple and Effective High-Dimensional BO Method
	6.1.2 Customisation for Compiler Phase Ordering
	6.1.3 Practical Multi-Module Autotuning

	6.2 Critical Analysis
	6.2.1 Pass-Related Compilation Statistics
	6.2.2 Program-Specific Autotuning
	6.2.3 Additional Compilation and Modelling Cost
	6.2.4 Optimisation Objective

	6.3 Future Work
	6.3.1 Coverage-Based Code Characterization
	6.3.2 Exploiting Program-Independent Pass Correlations
	6.3.3 Integrating Coarse Offline and Fine-Grained Online Learning

	References

