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Abstract

This thesis presents an algorithm to track objects, particularly designed to address
the challenge of “tracking objects in cluttered environments.” The key point is that
the robot can continuously track the target objects, even when they are heavily
occluded. This method can be used to retrieve an object from inside a fridge or
a crowded shelf, where the robot needs to know the 6D pose of each object in the
scene to decide how to move obstacles and then locate and pick up the target item.

Accurately performing the task requires knowing the 6D pose of each object,
which enables motion planning. However, obtaining such information in real-world
environments is extremely difficult. Traditional motion planning usually assumes
access to full 6D poses, often using tools like OptiTrack[1] with reflective markers
attached to objects. Unfortunately, placing markers on every object and setting up
an OptiTrack system is not feasible in practical situations.

Another option is to use RGB-based 6D pose estimation systems, but these
become failures when objects are heavily occluded—something very common in real-
world cluttered scenes.

This work addresses these challenges by proposing a tracking algorithm that
combines physics predictions with vision information based on the particle filtering
algorithm. The system uses the physics simulation and the robot’s joint states as
the motion model input and camera images as the observation model input. This
setup helps recover the object’s pose even when it becomes temporarily occluded.

Initially, the method used only RGB images to track a single object. Results
showed that the physics-based approach worked well, outperforming baseline meth-
ods in tracking accuracy. However, using only RGB input struggled with occlusions
and made it hard to handle multiple objects.

To overcome this, I proposed a new approach that uses depth images and a
visibility score indicator. This enhanced method performs better than baseline sys-
tems when tracking multiple objects and dealing with heavy occlusions, while still
maintaining good tracking accuracy.
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Chapter 1

Introduction

Robotic manipulation, a cornerstone of modern robotics, aims to endow machines
with the ability to physically interact with their environment to perform tasks.
From automating complex assembly lines in manufacturing to assisting in household
chores, the ambition is to create autonomous systems that can handle objects with
human-like dexterity and intelligence. In contrast, significant progress has been
made in structured environments like factories. A grand challenge remains: enabling
robots to operate reliably in unstructured, cluttered, and dynamic settings, such
as a crowded warehouse shelf or a messy kitchen refrigerator. In these real-world
scenarios, simple pick-and-place actions are often insufficient. Robots must instead
resort to more complex, non-prehensile manipulations—such as pushing, sliding, or
poking—to rearrange obstacles and access target objects.

This necessity, however, exposes a critical vulnerability in current robotic per-
ception systems. Consider the seemingly simple task of retrieving an egg from a full
refrigerator, as illustrated in Fig. 1.1. The robot might need to push aside a butter
dish and a banana to clear a path. During this process, the target egg, initially
visible, can become temporarily occluded by the robot arm or other objects.. At
this moment, most state-of-the-art, vision-based tracking systems fail because they
lose sight of the target. The robot’s “eyes” are blind to the object’s state, causing
the manipulation plan to halt and the task to fail. The issue of “tracking under
occlusion” is a fundamental bottleneck preventing robots from achieving robust au-
tonomy in complex manipulation tasks. How can a robot continue its task with
confidence when it cannot see the object it intends to manipulate?

This thesis posits that the key to overcoming this challenge lies in physics-based
perception. Humans intuitively understand that an occluded object does not simply
vanish; it abides by the laws of physics. By integrating a physics simulator into the
perception loop, a robot can reason about the hidden object’s state, predicting its
motion based on the robot’s actions and physical principles like contact, friction,
and gravity. This approach allows the system to maintain a probabilistic belief
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1.1 Thesis Scope and Terminology

Figure 1.1: The robot needs to retrieve an egg from the fridge, but the egg is blocked
by butter and a banana. To reach it, the robot must first push them aside.

of the object’s 6D pose (position and orientation) even during complete occlusion,
bridging the gap left by vision-only methods.

The central research question of this work is therefore: Can the integration of
physical simulators into a tracking framework significantly improve a robot’s abil-
ity to track multiple objects, especially those fully occluded, during non-prehensile
manipulation in cluttered environments? This thesis aims to answer this question
by developing and evaluating a series of novel tracking algorithms that leverage
physics-based prediction to achieve robust and real-time performance.

1.1 Thesis Scope and Terminology
Consider the example in Fig. 1.1: A robot autonomously navigates to the fridge,
opens the door, identifies the target object (an egg located deep inside the fridge)
and obstructing obstacles (butter and bananas in front). It then formulates a manip-
ulation plan to push aside the obstacles, safely grasp and retrieve the target object
(the egg), close the fridge door, and depart.

While executing such actions is trivial for humans—who perform similar or even
more complex tasks daily—it remains extraordinarily challenging for robots. The
process involves numerous interdependent challenges: navigation, grasping, percep-
tion, motion planning, and handling uncertainties. My doctoral research focuses
on one critical aspect of this process: tracking multiple objects subjected to non-
prehensile manipulation by the robot during operational tasks. In the example of
Fig. 1.1, my work specifically targets tracking the displaced butter and bananas, as
well as the potentially affected egg, when the robot reaches into the fridge.

To maintain a clear focus on this core problem, this thesis makes the following
simplifying assumptions, as these areas constitute independent and complex research
fields on their own:
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1.2 Main Themes and Challenges

1. Navigation: This thesis assumes the robot is fixed on a tabletop, thus ex-
cluding challenges related to mobile navigation.

2. Motion planning and control: This thesis assumes the robot’s actuators
are either manually controlled or governed by well-established control algo-
rithms, focusing on the perception aspect rather than the generation of motion
trajectories.

3. Grasping: This thesis assumes the robot gripper can reliably manipulate/push
target objects, enabling simplified force analysis while focusing on perception.

1.2 Main Themes and Challenges
The central theme of this thesis is the development of a physics-based perception
system to robustly track object poses during robotic manipulation, especially under
severe occlusion. Fig. 1.2 illustrates a real-world example of the task, where a
robot manipulates four target objects in a cluttered scene. As shown, the objects
frequently occlude one another or are occluded by the robot itself.

Addressing this problem requires tackling several significant challenges:

1. High-dimensional state space: The presence of multiple objects inherently
raises the state space dimensionality. Tracking requires simultaneous estima-
tion of both the robot’s joint state and the 6D poses of all target objects.

2. Indirect interaction: In some scenarios, the robot does not directly control
the target objects but influences them indirectly through contact with other
objects, creating complex kinematic and dynamic couplings.

3. Occlusion-related loss of visibility: This is the core challenge. When
a target object is occluded, it disappears entirely from the camera’s view,
causing all image-only based methods to fail.

4. Computational cost of physics-based perception: Physics-based per-
ception necessitates computationally expensive physical simulations to infer
object motions during robot pushing, limiting real-time applicability.

Figure 1.2: Robot is pushing 4 objects. The images are from the tracking camera,
showing frequent occlusions among objects and by the robot arm.
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5. Learning-based physics simulation: While neural network-based physics
models can estimate object poses efficiently, they need to be retrained for
different scenes or tasks, which limits their ability to generalise.

6. Physical uncertainties: Even state-of-the-art physics simulators cannot
perfectly model real-world interactions. Consequently, the poses of manip-
ulated objects inferred from simulators remain partially unreliable.

This thesis addresses these challenges by developing new physics-based tracking
algorithms designed to overcome them, forming the core of my research contribu-
tions.

1.3 Aim
This work aims to investigate how physics-based perception can be integrated into
tracking systems to effectively address the problem of “tracking occluded target ob-
jects during robotic manipulation” and tackle the challenges outlined in Sec. 1.2.
A central question driving this work is: Can the integration of physical simula-
tors significantly improve tracking accuracy for objects in cluttered environments?
The proposed methodology emphasizes leveraging physics-based simulators. Con-
sequently, I further explore how to scale the number of tracked objects while main-
taining accuracy and real-time performance.

Advancing research on “tracking fully occluded target objects during robotic ma-
nipulation” is critical for enabling trajectory planning algorithms to generate more
reliable motion plans. This problem holds significant short-term application poten-
tial in domains such as warehouse robotics (e.g., retrieving items from shelves) and
domestic service robots (e.g., fetching objects from refrigerators). However, existing
algorithms remain incapable of resolving the occluded target tracking” challenge in
real-world settings with both speed and robustness. To the best of my knowledge,
no prior work has systematically explored physics-based perception systems for this
specific problem context.

1.4 Contributions
The main contributions of this thesis are as follows:

1. Integration of physics-based prediction with RGB images for single-
object tracking (Chapter 3). This initial contribution establishes a foun-
dational framework that fuses particle filter-based tracking with a physics
engine. It serves as a proof-of-concept, demonstrating that even with a simple
sensor modality (RGB), physics-based prediction can successfully maintain
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the track of a single object during periods of full occlusion, validating the core
hypothesis of this thesis.

2. Extension to multi-object tracking by combining physics-based pre-
diction with RGB images and visibility scoring (Chapter 4). Building
upon the first contribution, this work scales the problem to multiple objects. It
introduces a novel visibility scoring mechanism that weights the contributions
of visual data and physics predictions. This allows the system to robustly
track multiple interacting objects.

3. Enhanced accuracy for multi-object tracking using rendered depth
and segmentation images, achieved through a CPU-GPU parallel
computing framework that maintains system efficiency (Chapter 5).
This final contribution significantly enhances the system’s accuracy and ro-
bustness by incorporating a depth sensor. To overcome the immense com-
putational cost of processing this data and running physics simulations for
multiple objects in real-time, a novel CPU-GPU parallel computing architec-
ture is developed. This ensures the system remains efficient and practical for
real-world robotic applications.

The results of this research demonstrate that physics-based perception signifi-
cantly improves a robot’s ability to track occluded objects.

1.5 Structure of the Thesis
This introductory chapter has explained the motivation behind this research, in-
troduced the core research themes, and summarized its main contributions. The
remainder of the thesis is organised as follows. Chapter 2 will provide detailed ex-
planations of key concepts and review related research in robotic perception and
physics-based modelling. The technical core of this work is presented in Chapters
3 to 5, where the proposed methods are progressively developed and analyzed. Fi-
nally, Chapter 6 concludes the thesis by summarising the findings and discussing
potential future research directions.

1.6 Publication Note
1. Chapter 3 content appears in:

(a) Published workshop paper: Embracing Contacts-Workshop at Interna-
tional Conference on Robotics and Automation (ICRA) 2023

(b) Source code: https://github.com/ZisongXu/trackObjectWithPF

(c) Demonstration video: https://youtu.be/srZZM_CKum4
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1.6 Publication Note

2. Chapter 4 content appears in:

(a) Published conference paper: International Symposium on Experimental
Robotics

(b) Source code: https://github.com/ZisongXu/trackObjectWithPF

(c) Demonstration video: https://youtu.be/B9-5iTwgFnk

3. Chapter 5 content appears in:

(a) Published journal paper: The IEEE Transactions on Robotics

(b) Source code: https://github.com/ZisongXu/PBPF

(c) Demonstration video: bhttps://youtu.be/7Y8KFVrvDhU
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Chapter 2

Literature Review

This chapter will explore the literature review and background research essential for
understanding and innovating in robotic non-prehensile manipulation and 6D pose
estimation and tracking. Specifically, this chapter will cover a range of foundational
and advanced knowledge that form the basis for the thesis:

• Section 2.1 will introduce the fundamentals of robotic manipulation, distin-
guishing between prehensile and non-prehensile manipulation techniques, and
discussing their applications and challenges.

• Section 2.2 focuses on the methods used for object 6D pose estimation and
tracking, a key element for precise object manipulation.

• Section 2.3 will discuss the probabilistic models and filtering methods to reduce
uncertainty in robotic systems, and the critical role of filtering algorithms in
enhancing the robustness of robot localization and pose estimation.

• Finally, Section 2.4 highlights the importance of tracking objects during non-
prehensile manipulation, identifying industrial relevance, technological ad-
vancements, and current research gaps.

This chapter introduces the scope of the current challenges and highlights the
methodologies and innovations that support my research efforts. It sets the theo-
retical foundation necessary for the subsequent exploration of new algorithms and
systems designed to enhance the capability and efficiency of tracking multi-objects
in clutter environments by robotic manipulation.

2.1 Fundamentals of Robotic Manipulation
The human hand has incredible abilities that have been essential for human evolu-
tion and progress [2]. While this dexterity was once critical for basic survival, its
modern form is demonstrated in the complex, everyday challenge of navigating a
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(a) (b)

Figure 2.1: An example of complex human manipulation in a cluttered domestic
environment. (a) A non-prehensile action is first required to push aside an obstacle
(the Chinese lettuce). (b) The target object (the egg carton) can then be accessed
and retrieved with a grasp.

cluttered space—for instance, by pushing aside an obstacle to retrieve a desired item
from a full refrigerator (Fig. 2.1). This amazing ability to handle objects, adapting
seamlessly between forceful interaction and delicate grasping, has inspired the field
of robotics, especially robotic manipulation, where researchers aim to copy the pre-
cision and adaptability of human hands. Robotic manipulation focuses on allowing
robots to handle and interact with objects in various and unpredictable environ-
ments, imitating the complex functions of the human hand. Using advanced control
systems, sensory feedback, and mechanical design, robotic manipulation aims to
close the gap between human hand skills and robotic automation, allowing robots
to take on tasks like industrial assembly, healthcare, and helping in homes.

Inspired by the incredible capabilities of the human hand, robotic manipula-
tion aims to address the key challenges of replicating its flexibility and precision.
Although significant progress has been made, achieving human-like adaptability in
robots is still a work in progress, especially in unpredictable and changing environ-
ments.

Robotic manipulation constitutes a core area of study within robotics [3], pri-
marily concerned with the methods and mechanisms of robotic systems interacting
with the physical world. This discipline is dedicated to equipping robots with the
capability to execute tasks that involve direct physical contact with objects in their
environment [4]. These tasks include actions such as moving, manipulating, and
sensing these objects as part of their operational functions. According to Siciliano
and Khatib [5], effective manipulation is crucial for the functionality and utility of
robots, impacting a wide range of applications ranging from industrial automation
to healthcare, and from service environments to exploration tasks.
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(a) (b)

Figure 2.2: (a) Human prehensile manipulation: the cracker box is grasped by the
human hand; (b) Human non-prehensile manipulation: the cracker box is placed on
the human hand.

The efficacy of robotic manipulation relies on integrating advanced sensors, pre-
cise control systems, and adaptive algorithms that enable robots to perceive and
interact with the environment in real time [3]. This integration facilitates the de-
velopment of robots capable of complex and adaptive behaviours, which are neces-
sary for operating in unstructured or dynamic environments [6]. For example, in
Amazon’s warehouses, robots equipped with these capabilities can assist in picking
operations, such as selecting items from shelves and placing them into containers, or
sorting items, thereby enhancing efficiency and safety. The Amazon Picking Chal-
lenge [7] was established to address these tasks, supporting advancements in robotic
capabilities for warehouse operations.

In robotics, manipulation techniques are broadly divided into prehensile (Fig.
2.2(a)) and non-prehensile (Fig. 2.2(b)) categories. The choice of technique largely
depends on the task requirements, the characteristics of the objects, and the sur-
rounding environment. Prehensile manipulation [8], which involves gripping and
holding, allows for exact control over an object’s movement. Conversely, non-
prehensile manipulation [9], such as pushing or sliding, is typically used when direct
grasping is either infeasible or hazardous.

In the following section, I first introduce prehensile manipulation, covering key
studies in this area. Subsequently, in Section 2.1.2, I focus on non-prehensile ma-
nipulation, providing an overview of related research.

2.1.1 Prehensile Manipulation

Prehensile manipulation refers to a robot’s ability to securely grasp and control
objects, mirroring the dexterity of the human hand (Fig. 2.2(a)). This method is
foundational for tasks requiring high fidelity, as it allows a robot to establish a firm
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hold, ensuring the object’s movement is directly coupled with the motion of the
robot’s end-effector. Its importance is well-established in industrial settings for pre-
cision tasks like component assembly [10]. Recent technological advancements have
significantly enhanced these capabilities. These range from adaptive grippers that
can dynamically modulate gripping force to suit different objects [11], to the advent
of soft robotics, which has introduced compliant grippers capable of conforming to
irregular object shapes, thereby increasing adaptability and safety [12].

This capability is the backbone of modern automated logistics and e-commerce
fulfilment, where robots must handle a vast and unpredictable array of items for sort-
ing, packing, and retrieving from shelves [7, 13]. However, executing a seemingly
simple pick-and-place action is a multi-faceted challenge contingent on a cascade of
successful steps. First, the system must perceive the scene to obtain an accurate
initial pose estimation of the target object, as any error can lead to a failed grasp
[14]. Following this, it requires sophisticated motion and grasp planning to deter-
mine a viable grasp configuration from countless possibilities, considering factors
like stability and task constraints [15]. Furthermore, the physical properties of the
object, such as its estimated weight, must be factored in to ensure the robot can
lift it [2], while the application of appropriate gripping force is critical to secure the
object without causing damage [16].

The complexity escalates dramatically in cluttered environments [17]. When
a target object is surrounded by obstacles, a robot must find a collision-free path
to perform the grasp [18]. The conventional prehensile-only solution—sequentially
picking and placing each obstacle to clear a path—is often inefficient and dramat-
ically increases overall task time. As discussed in the next section, attention has
shifted towards non-prehensile manipulation strategies, where obstacles are pushed
aside to more efficiently facilitate the subsequent handling of the target object.

2.1.2 Non-prehensile Manipulation

Non-prehensile manipulation involves controlling the motion of objects without
grasping them firmly, typically through methods like pushing, sliding, rolling or
tilting [19], as shown in Fig. 2.2(b). Non-prehensile manipulation requires com-
plicated control strategies to manage the dynamics of indirect object interactions,
where the robot must effectively influence object motion through limited contact
points [20]. This manipulation style is crucial in environments where objects are
impractical to grasp due to size, shape, or fragility constraints and where delicate
environmental interaction is required. For example, Dogar and Srinivasa [21] pro-
pose a robotic manipulation framework that enables the robot to push aside large
objects (do not conform to the hand’s grasp), to access and grasp the desired object,
as shown in Fig. 2.3.
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Figure 2.3: The robotic arm attempts to push the large box aside to grasp a red
can positioned behind it [21] (figures, from left to right, represent sequential frame
segments of the robot manipulation).

Non-prehensile manipulation relies heavily on understanding the dynamics and
mechanics of object movement. Mason [22] provided the initial theoretical founda-
tion by describing the mechanics of pushing objects, which includes analysis of the
friction and contact points that influence motion. Lynch and Mason [23] developed
a planner that explores paths for stably pushing large parts through the utilization
of multiple contact points. Zhou et al. [24] discussed integrating feedback mecha-
nisms and predictive modelling in non-prehensile manipulation, allowing for more
refined control over object movement. Further, Yu et al. [25] provide a high-fidelity
dataset of pushing interactions to understand better and model the physics of push-
ing, which is useful for developing and testing predictive models for non-prehensile
manipulation.

In prehensile manipulation, once the target object is grasped, it remains affixed
to the end-effector of the robot’s arm, moving in conjunction with it until placed
in a designated area. Thus, considerations regarding the object’s 6D pose are un-
necessary after grasping. In contrast, non-prehensile manipulation presents greater
challenges. For example, if the robot makes a single contact point with an object
to push it, the object might shift left or right unpredictably [26]. In such cases,
developing reliable predictive models becomes important to accurately forecast the
outcomes of interactions between the robot and the object. Completing subsequent
non-prehensile manipulation tasks is facilitated by tracking the object’s 6D pose.

2.2 6D Pose Estimation and Tracking of Objects
6D object pose estimation and tracking are fundamental to robotic manipulation,
providing the spatial information necessary for interaction [27, 28]. Many advanced
manipulation studies bypass this perception challenge by assuming known object
poses, often relying on external motion capture systems like OptiTrack which require
placing reflective markers on every object [29, 30, 31]. However, instrumenting every
object in a general work environment is impractical. This necessitates markerless
methods that can estimate and track object poses directly from sensor data.
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Historically, 6D pose estimation relied on matching hand-crafted geometric fea-
tures, such as point pairs or surface normals, between a 3D model and sensor data
[32, 33]. While foundational, these methods often struggle with cluttered scenes and
poor textures, and have now been largely superseded by more robust learning-based
techniques.

The advent of deep learning has revolutionized pose perception. Many methods
operate directly on RGB images, learning powerful features to overcome challenges
like variable lighting and textureless surfaces. For instance, PoseCNN [34] first seg-
ments the object to isolate it from the background and then regresses its pose by
analyzing features within the segmented region. Similarly, segmentation-based ap-
proaches like the one from Hu et al. [35] predict the pose of visible object parts and
then vote to form a consensus on the complete object’s pose, allowing for some ro-
bustness to partial occlusion. Other methods like DOPE [36] take a different, single-
shot detector approach, predicting the 2D projections of an object’s 3D bounding
box corners and solving for the pose.

To further improve robustness, many systems incorporate depth information
from RGB-D sensors, which provides direct geometric cues and helps resolve scale
ambiguities inherent in RGB-only methods. DenseFusion [37] stands out as a seminal
work in this area, introducing a novel architecture to fuse color and depth features
at a pixel-wise level for a unified representation. Other works, like MegaPose [38],
have explored using synthetic data and differentiable renderers to generalise to novel
objects not seen during training, though this can be computationally intensive.

Building on single-frame estimation, tracking methods further enhance perfor-
mance by leveraging temporal consistency. These approaches utilise information
from previous frames to predict and constrain the pose in the current frame, show-
ing greater resilience to partial occlusion and fast motion. One prominent line of
work involves optimising a “bundle” of recent frames. For example, BundleTrack
[39] and the recent state-of-the-art FoundationPose [40] track objects by matching
keypoints and refining poses over a sliding window of keyframes.

Particle filters are another powerful and widely-used framework for pose track-
ing, as they can naturally represent the uncertainty in an object’s state through a
distribution of weighted samples. Early works demonstrated real-time performance
by implementing the filtering process on a GPU [41]. More recent approaches, like
PoseRBPF [42], use a Rao-Blackwellized particle filter to efficiently decompose the
6D pose space. Others have focused on improving the core filtering mechanism itself,
for instance by introducing auxiliary particle sets to combat the common issue of
particle deprivation [43].

However, despite these significant advances across different methodologies, a
critical and shared limitation undermines all these vision-based approaches: they
fundamentally depend on the object being continuously or frequently visible to the
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Figure 2.4: The goal of the task shown in the image is to track the red box being
manipulated by the robot. The estimated pose of this red box is overlaid as a
wireframe onto the image, during a push by a robot. Images show the estimated
pose by a learning-based pose estimation system, DOPE [36] (figures, from left to
right, represent sequential frame segments of the robot manipulation).

Figure 2.5: The estimated pose of an object is overlaid as a wireframe onto the
image, during a push by a robot. Images show the tracking pose by a state-of-the-
art camera-only RGB-D pose tracking system, FoundationPose [40] (figures, from
left to right, represent sequential frame segments of the robot manipulation).

camera. As demonstrated in my experiments with state-of-the-art systems (Fig. 2.4
and Fig. 2.5), tracking fails catastrophically when an object is fully occluded during
manipulation—a common and unavoidable event in cluttered environments. Once
the track is lost, these systems often struggle to re-initialize correctly even after the
object reappears. This reliance on an uninterrupted stream of visual features creates
a major bottleneck for robust robotic manipulation in real-world scenarios.

Some research sidesteps this issue by using non-visual modalities. For example,
Zhong et al. [44] use contact-based feedback and a particle filter to track objects
without any visual aid. While effective in certain contexts, such methods may lack
the precision offered by vision when objects are visible.

This review reveals a clear research gap: a need for a system that can robustly
track objects even through periods of complete visual occlusion, yet still leverages
visual data when available. This challenge motivates the core idea of my thesis:
integrating physics-based prediction into the tracking loop to maintain a belief of
an object’s pose even when it is partially or entirely hidden from view.

2.3 Probabilistic State Estimation in Robotic Sys-
tems

My project aims to track objects manipulated by a robotic arm, using pose infor-
mation from previous frames to improve tracking accuracy. This concept is based
on previous research in robot navigation, particularly robot pose tracking. In this
section, I will explore the probabilistic techniques for state estimation that form the
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foundation of my approach, highlighting why they are crucial for achieving accurate
and reliable results in robotic systems.

2.3.1 The Bayesian Filtering Framework

The Bayes filter provides a general probabilistic framework for recursively estimating
the state of a dynamic system [45]. This approach is foundational in robotics for
handling the uncertainties inherent in sensor measurements and motion models. The
core of the filter consists of a two-step cycle to update the belief of the system’s state,
bel(xt), from the previous state bel(xt−1).

First, in the prediction (or control update) step, the system’s motion model is
used to predict the current state based on the previous state and any control inputs
ut. This generates a prior belief, b̄el(xt):

b̄el(xt) =

∫
p(xt|ut, xt−1)bel(xt−1)dxt−1 (2.1)

Second, in the measurement update step, the new sensor measurement zt is
incorporated to correct the prior belief, resulting in the posterior belief bel(xt):

bel(xt) = ηp(zt|xt)b̄el(xt) (2.2)

where η is a normalization constant. A well-known application of this framework
is Markov Localisation, which specifically applies the Bayes filter to the problem of
robot localization within a known map, assuming the current state only depends on
the immediate previous state and action [46]. While the Bayes filter provides the
theoretical basis, its direct implementation is often intractable. Therefore, various
algorithms have been developed that make different assumptions to achieve practical
solutions.

2.3.2 Gaussian Filters

For systems that linear models with Gaussian noise can describe, the Kalman Filter
(KF) offers a highly efficient, closed-form solution to the Bayesian filtering problem
[47]. The KF represents the belief of the state at all times as a Gaussian distribu-
tion, defined by a mean � and a covariance Σ. The prediction and update steps are
performed through simple matrix operations, making it computationally fast and
optimal for linear systems. The main drawback, however, is that most real-world
robotic systems, including their motion and sensor models, are inherently non-linear.

To address this, the Extended Kalman Filter (EKF) was developed [45]. The
EKF extends the KF to handle non-linear systems by performing a local linearization
at each time step. It uses a first-order Taylor series expansion (the Jacobian matrix)
to approximate the non-linear motion and measurement models with linear ones
around the current state estimate. While the EKF is a widely used and powerful
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Algorithm 1 Particle Filter Algorithm
Input: Xt−1: particle set at time t − 1; ut: robotic control at time t; zt: robotic

measurement at time t;
Output: Xt: particle set at time t;

1: function Algorithm Particle-Filter(Xt−1, ut, zt):
2: X̄t = Xt = ∅
3: for m = 1 to M do
4: sample x

[m]
t ∼ p(xt|ut, x

[m]
t−1)

5: w
[m]
t = p(zt|x[m]

t )

6: X̄t = X̄t+ < x
[m]
t , w

[m]
t >

7: for m = 1 to M do
8: draw i with probability ∝ w

[i]
T

9: add x
[t]
t to Xt

10: return Xt

tool, its reliance on linearization can lead to inaccuracies or even divergence if the
system is highly non-linear or if the initial state uncertainty is large. The assumption
that the belief remains Gaussian can also be violated in such cases.

2.3.3 Particle Filter

To overcome the limitations of Gaussian filters in highly non-linear and non-Gaussian
scenarios, the Particle Filter offers a flexible, non-parametric alternative. It is partic-
ularly well-suited for global localisation and tracking problems where the probability
distribution of the state might be multi-modal or of arbitrary shape [45].

In the particle filter, the samples of a posterior distribution are referred to as
particles. This distribution approach involves knowing the outcome first and then
estimating the probability distribution of the cause based on the outcome [48]. Here,
each particle represents a possible state of the system, providing a discrete approx-
imation of the probability distribution that describes the system’s state. Therefore,
I can have:

Xt := x
[1]
t , x

[2]
t , ..., x

[M ]
t (2.3)

Each particle x
[m]
t (1 ≤ m ≤ M) is a concrete instance of the state at time

t. A particle represents a possible hypothesis based on the real-world state at the
moment t. M is the number of particles in the particle set Xt. I use a series of
particles Xt, to approximate the confidence bel(xt). The particle filter algorithm is
stated in algorithm 1.

The particle x
[m]
t−1 generates a hypothetical state x

[m]
t at the moment t according

to the control ut (these control data are derived from the number of revolutions of
the robot’s wheels; I call it odometry model) (Line 4), and then calculate a weight
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w
[m]
t for each particle x

[m]
t based on the observation zt (these observation data are

derived from sensors such as cameras and laser sensors; I call it observation model)
at the moment t (Line 5). Each particle is resampled according to the weight w

[m]
t

and finally the set of particles at moment t is obtained (Lines 8 to 11).
In my project, I plan to use the particle filter algorithm to facilitate completing

my work, i.e. tracking objects during robotic non-prehensile manipulation. This
choice is driven by the particle filter’s ability to handle non-linear state-space mod-
els - the set of all possible states of the system [49], and its ability to accommodate
any noise distribution [50]. This flexibility makes particle filtering particularly well-
suited for my project, especially when obstacles or the robot arm significantly oc-
cludes target objects. The system leverages the algorithm to generate a probability
distribution over the possible states of the target objects, rather than providing a
single pose estimation.

2.4 Remarks
This chapter explores three main areas of this research: (1) types of robotic manipu-
lation, (2) estimation and tracking of object 6D poses, and (3) methods for managing
uncertainties in robotic systems. A detailed review of related work presents signifi-
cant studies in these fields and their differences from my research. I also highlight the
challenges in tracking objects under non-prehensile robotic manipulation, especially
when objects are largely occluded in cluttered environments.

So far, no research has effectively solved the problem of tracking objects under
non-prehensile robotic manipulations when they are largely or completely occluded.
Most current methods use neural network-trained algorithms to estimate and track
object poses. However, these methods fail when the objects are completely occluded,
i.e. they are not visible in the camera’s RGB or depth images. My research focuses
on this specific but common situation in cluttered environments, such as Amazon
warehouses’ pick-and-pack operations. The goal is to figure out how to use the
continuous motion of objects after a robot pushes them and the information provided
when objects are occluded, to develop reliable tracking methods even when the
camera can’t see them.

In Chapter 3, I propose to use the PyBullet physics engine to represent each
particle in the particle filter algorithm (representing possible environments of the
target objects in the real world), and to use the features of the physics engine
and particle filter to track objects. In Chapter 4, I extend the methods used in
the previous chapter to track objects under non-prehensile manipulations using the
information from occluded objects. Finally, in Chapter 5, I improve the tracking
system by adding depth images from the camera and refining the methods that use
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information from the occluded object situation. My research results are encouraging,
showing that my methods can effectively track occluded objects.

In the next sections, I will discuss using the PyBullet physics engine and RGB
camera images to track target objects.
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Chapter 3

Physics-Based Single Object 6D-Pose
Tracking during
Non-Prehensile Manipulation

Chapter Deliverables
Video: https://www.youtube.com/watch?v=7mNbwJCDdBc

Source Code: https://github.com/ZisongXu/trackObjectWithPF

This chapter provides an overview of the algorithm used to track a single object
during non-prehensile robotic manipulation. It explains the algorithms, theory, and
experimental results, preparing for further discussions on tracking multiple target
objects in the upcoming chapter. The chapter is structured as follows:

• Section 3.1 will introduce the foundation of the problem I am trying to solve.

• Section 3.2 focuses on this work’s assumptions, objectives and contributions.

• Section 3.3 provides a formal description of the problem to be addressed and
introduces the key notations used throughout the chapter.

• Section 3.4 presents the main algorithm, physics-based particle filtering, I use,
based on the particle filtering algorithm for tracking a single object.

• Section 3.5 will introduce two baseline methods: (i) Repetitive single-snapshot
pose estimation, and (ii) Constant-velocity particle filtering.

• Section 3.6 will review the experiments and assess the algorithm’s performance.

• Section 3.7 will conclude this single object tracking algorithm.

18

https://www.youtube.com/watch?v=7mNbwJCDdBc
https://github.com/ZisongXu/trackObjectWithPF


3.1 Introduction

Figure 3.1: Robot pushing an object (red box) among cluttering objects. The images
are from the tracking camera.

3.1 Introduction
In this chapter, I propose a framework for tracking a single target object based
on a physics engine. Within this framework, the motion of the target objects is
determined solely by the robot’s movements and physical factors.

Fig. 3.1 demonstrates an example problem. The goal is to track a target object
(shown as a red box) in real time during non-prehensile robotic manipulation. The
robot moves the object through a cluttered space that obstacles or the robot’s arm
might obscure. The robot follows a predefined path controlled via a joystick. To
achieve this, I start by initializing a particle set at the object’s initial pose using a
physics engine (each particle in the particle set represents the possible pose of the
target object in the real world). As the robot moves, this particle set is updated
with observation data from the camera’s RGB images, helping us to select particles
that most likely reflect the object’s actual pose. The chosen particle set indicates
the possible object’s pose in the real world. A critical focus of Fig. 3.1 is on tracking
the object when obstacles or the robot obscures it.

To clarify the terminology used throughout this thesis, a particle set is a data
structure—specifically, a set of discrete, weighted samples used to represent a proba-
bility distribution. In the context of this work, each particle is a complete hypothesis
of the object’s 6D pose (position and orientation). The entire set, comprising many
such particles, serves as a numerical approximation of my belief about the object’s
true pose at a single instant. Regions within the state space that have a higher
density of particles are considered more probable. The Particle Filter is a recursive
Bayesian algorithm that operates on the particle set. The Particle Filter is the com-
plete mechanism that takes the particle set from the previous time step (t − 1) as
input and produces an updated, more accurate particle set for the current time step
(t). It achieves this through its distinct prediction, measurement update (weight-
ing), and resampling steps. In essence, the particle set is the representation of the
system’s belief, while the Particle Filter is the algorithm that propagates and refines
that belief over time.

In the situation shown in Fig. 3.1, when the target object is not visible to the
camera, I do not use observation data (from RGB images taken by the camera)
for updating particles. Instead, I rely more on how the particles move within the
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physics engine. Once the target object is visible again in the camera’s view, I use
visual information again to help update the particles. This method helps us keep
tracking accurate, even when the object is not visible, by using the physics engine’s
predictions to fill in the gaps in observation data.

I compared the algorithm I developed for tracking target objects with learning-
based methods that utilize neural networks trained to estimate the 6D pose of objects
from single camera snapshots. To facilitate this comparison, experiments were con-
ducted on the real robot using the same environment setting and the same robot
movement trajectories. The results of these experiments demonstrated that the
physics engine-based algorithm maintained stable tracking even when the target
objects were occluded, whereas the learning-based methods failed under such condi-
tions. This highlights the robustness of physics engine-driven approaches in scenes
where observation data may be compromised.

3.2 Assumptions, Objectives and Contributions
This chapter outlines key assumptions, Objectives, and contributions to developing
this single-object tracking algorithm for robotic non-prehensile manipulation.

3.2.1 Assumptions

In this chapter, I make the following assumptions:

• The target object undergoes various movements during robot manipulation,
including translations and rotations in all directions, as well as tilting actions.
Consequently, the pose of the object (its 6D pose) is defined within the SE(3)

space.

• The robot can manipulate the target object with ease, meaning that the robot
is not hindered by excessive friction or the object’s weight during the manip-
ulation process.

• 3D CAD models of all objects are known (e.g., the table, static obstacles,
robot and target objects).

• There is a perception system that can detect the 6D pose of a single object
when it is clearly in the camera’s field of view.

• During the pushing of the target object by the robot, the target object is
obscured by the robot or other objects fixed on the table.
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3.2.2 Objectives

The primary goal of this chapter is to develop a tracking algorithm that integrates
a physics engine with a particle filter. This algorithm aims to effectively track the
6D pose of the single target object in cluttered environments during non-prehensile
manipulation, even when the object is occluded. Occlusions present a significant
challenge for current learning-based pose estimation algorithms, and the use of a
physics engine and particle filter is expected to improve tracking performance sig-
nificantly. This chapter seeks to introduce such a method, evaluate it, and compare
it against existing state-of-the-art approaches.

The primary goal of this chapter is to develop and validate a tracking algorithm
that produces a continuous 6D pose estimate for a single object undergoing non-
prehensile manipulation. To clarify, the 6D pose track is the direct output and
primary contribution of the algorithm developed here; the system does not assume
a known pose but rather estimates the full 6D pose distribution at each time step.

To achieve this, the chapter pursues the following specific objectives:

• To design and implement a novel tracking framework that synergistically com-
bines a physics-based motion model (for the prediction step) with visual obser-
vations from a camera (for the update step) within a particle filter structure.

• To demonstrate the framework’s core capability to maintain a robust and
continuous belief of the object’s 6D pose even during periods of complete
visual occlusion, a scenario where conventional vision-only pose estimation
and tracking algorithms are known to fail.

• To quantitatively evaluate the proposed algorithm’s tracking accuracy and
compare its performance against a state-of-the-art, vision-only pose estimation
baseline. This comparison serves to rigorously validate the tangible benefits
of integrating a physics engine for tracking in cluttered environments.

By addressing these objectives, this chapter aims to provide a foundational proof-
of-concept for the central hypothesis of this thesis: that physics-based prediction is
a key enabler for robust robotic manipulation in dynamic, real-world settings.

3.2.3 Contribution

The chapter’s contribution is a new algorithm for tracking a single object in clut-
tered environments during non-prehensile manipulations. This section formalises
the problem this algorithm aims to solve.
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3.3 Problem Formulation
I define the state of the object at time t by its full 6D pose, which I denote as
xt. This pose is an element of the Special Euclidean group, xt ∈ SE(3), and is
mathematically represented as a 4× 4 homogeneous transformation matrix. SE(3)

refers to the Special Euclidean group in three dimensions, which is the mathematical
set of all possible rigid body transformations. Each such transformation consists of
a rotation and a translation, and is commonly represented by a 4× 4 homogeneous
transformation matrix of the form T = [ R t

0 1 ]. Here, R is a 3×3 rotation matrix from
the Special Orthogonal group (SO(3)) that defines the object’s orientation, and t

is a 3× 1 translation vector in R3 that specifies its position. Although represented
by this matrix, a pose in SE(3) has only six degrees of freedom (6-DoF)—three for
translation and three for rotation.

My objective is to estimate the sequence of states {x0, x1, . . . , xt} during manip-
ulation, i.e. to track the object pose as it is being manipulated. At each time step
t, I have access to two inputs:

• The control input, ut. This represents the executed robot motion since the
last time-step. For an N -joint robot arm, this is a vector of joint commands,
ut ∈ RN .

• The observation, zt. This is an RGB image captured by a static camera looking
at the scene. An image is a high-dimensional data structure that serves as the
raw input to my perception system.

Therefore, my problem can be formalized as: At any time t, given the history of
control inputs {u0, u1, . . . , ut} and observations {z0, z1, . . . , zt}, predict an estimate
of the object’s pose matrix, x̃t.

I use x∗
t to represent the ground truth pose of the object. I define the positional

error as the Euclidean distance between the positional components of x̃t and x∗
t .

I define the rotational error as the angle of the relative rotation between x̃t and
x∗
t . Given q̃t and q∗t as the quaternion components of the estimated and ground

truth poses, respectively, the rotational error is given by the angle of the quaternion
q∗t ∗ q̃−1

t . My goal is to minimize both positional and rotational errors.
Below, I discuss three different methods (two baselines and my proposed method):

(i) Physics-based particle filtering (proposed method, in Sec. 3.4), (ii) Repetitive
single-snapshot pose estimation (baseline, in Sec. 3.5.1), and (iii) Constant-velocity
particle filtering (baseline, in Sec. 3.5.2).
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3.4 Physics-Based Particle Filtering (PBPF)
Instead of treating every time step as independent from the previous one, I propose
to use a Bayesian filtering approach [45]. In this approach, at each time step, I
estimate and update the probability distribution for xt given all the previous controls
and observations, p(xt | z0, z1, ..., zt, u0, u1, ..., ut), which is sometimes also called the
belief state.

In particle filtering [45], the belief state at time t is represented using a set of
particles sampled from this distribution:

Xt := x
[1]
t , x

[2]
t , ..., x

[M ]
t (3.1)

where each particle x
[m]
t (1 ≤ m ≤ M) is a concrete instance of the state at time t.

In my setting, each particle represents a possible pose of the manipulated object.
During particle filtering, at each time-step t, the previous set of particles Xt−1

are updated using the current controls, ut, and observation, zt, to generate a new
set of particles Xt. This happens in two stages: the motion update (presented in
Sec. 3.4.1), and the observation update (in Sec. 3.4.2).

3.4.1 Motion Update

During this first stage, for each particle x
[m]
t−1, I generate a new intermediate particle

(shown as x̄
[m]
t ), by sampling:

x̄
[m]
t ∼ p(xt | x[m]

t−1, ut) (3.2)

The probability distribution p(xt | x[m]
t−1, ut) is called the motion model, and ideally

it represents my uncertainty about the object’s resulting pose, if the object started
at pose x

[m]
t−1 and the robot moved with ut. While I do not have direct access to this

distribution, I estimate via a physics engine.
I assume access to a physics engine, represented as f :

xt = fθ(xt−1, ut) (3.3)

The physics engine includes a model of the robot, the environment, and the object,
and predicts the resulting pose of the object xt, given a previous state, xt−1, and
robot control, ut, by simulating the robot motion inside the engine and finding the
resulting motion of the object. Here, θ refers to physical parameters that affect
the result of the physics engine, e.g. friction coefficient at the contacts, restitution
of the contacts, the mass of the object etc. The physics engine is deterministic
(i.e. outputs the same resulting state, if given the same inputs and parameters),
and therefore cannot directly be used instead of the probabilistic motion model.
However, I note that my uncertainty about the object’s motion is due to two sources:
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(i) my uncertainty about the exact physical parameters of the object, θ; and (ii) the
discrepancy between the physics engine and real-world physics. Therefore, to address
(i), I approximate the sampling from the motion model x̄[m]

t ∼ p(xt | x[m]
t−1, ut), by

first sampling θ from a distribution representing my uncertainty about the physical
parameters of the object:

θ
[m]
t ∼ N(µθ, σ

2
θ) (3.4)

and then running the physics engine with the sampled parameter:

x̄
[m]
t = f

θ
[m]
t

(x
[m]
t−1, ut) + ϵ (3.5)

with the addition of Gaussian noise ϵ ∼ N(0, σ2
f ) to address (ii) above. (In Eqs. 3.5,

3.11 and 3.12, for notational simplicity, I use the addition/subtraction operators
over poses. In my actual implementation, I use quaternion algebra for the rotational
components.)

In practice, I instantiate one physics engine per particle and use them to perform
the motion update. Since each particle is independent of each other, these updates
are parallelizable, which I make use of in my implementation. As such, the set of
intermediate particles, x̄[m]

t (1 ≤ m ≤M), are computed.
In this work, I limit the physical parameters I sample, θ, to the coefficients of fric-

tion, the restitution parameters, and the mass1 of the object. However, uncertainty
about other parameters (e.g. object shape, inertial parameters, robot hand shape,
imperfections of the ground) can also be represented and integrated into this frame-
work. In the above, N(µ, σ2) represents a normal (Gaussian) distribution2. The
parameter µθ represents my best guess about the parameters θ, and σ2

θ represents
my uncertainty (variance). The parameter σ2

f represents my estimated discrepancy
between the physics engine and real-world physics.

3.4.2 Observation Update

During this second stage of particle filtering [45], for each intermediate particle x̄
[m]
t ,

I calculate a weight w[m]
t using the observation zt:

w
[m]
t = p(zt | x̄[m]

t ) (3.6)

After the weight for all the intermediate particles is computed, they are used to
re-sample the new set of particles Xt, completing the particle filter update. During
re-sampling, each intermediate particle x̄

[m]
t can be chosen (possibly multiple times)

to be added to the new particle set Xt, with a probability proportional to w
[m]
t .

1I assume the inertia tensor of an object to be diagonal and the object to have uniform density
within its given 3-D model.

2Later in Eq. 3.9, I will also use the notation N(x; µ, σ2), which corresponds to the probability
density at x, for mean µ and variance σ2.
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The expression p(zt | x̄[m]
t ) in Eq. 3.6 is called the observation model. In my

setting, it ideally represents the probability of making the current observation (i.e.
getting the current camera image) if the object was at pose x̄

[m]
t . Since I do not have

access to such a model directly, I again propose to use an approximation. Using the
Bayes Theorem, I first re-write the observation model:

p(zt|x̄[m]
t ) =

p(x̄
[m]
t |zt) p(zt)
p(x̄

[m]
t )

(3.7)

Here, I note that p(zt) is the same for every particle since the current observation
does not change between particles. Furthermore, I make a simplifying assumption
that p(x̄

[m]
t ) are also similar for different particles. This assumption enables us to

compute the weight using:

w
[m]
t ≈ p(x̄

[m]
t |zt) (3.8)

To compute p(x̄
[m]
t |zt), I propose to use a single-snapshot pose estimation system

to predict the pose of the object according to zt, and then to use the distance of
x̄
[m]
t to this predicted pose to compute a probability value. As the single-snapshot

pose estimation system, I use DOPE [36], but other pose estimation methods can
also be used. Using a notation similar to Eq. 3.10 where DOPE(zt) is the object
pose predicted by DOPE given the camera image zt, I compute the weight as:

p(x̄
[m]
t |zt) = N(x̄

[m]
t ; DOPE(zt), σ

2
DOPE) (3.9)

where the parameter σ2
DOPE represents the variance of DOPE errors for the object.

This can be estimated beforehand for an object by collecting DOPE estimates for
the object and comparing it to a ground truth pose.

For a given camera image zt, if the object is not visible in that image (perhaps
because it is obstructed), DOPE may not output a pose estimate. At such time
points, I skip the observation update.

3.4.3 Updating the Particle Filter

I update the particle filter at regular time intervals, ∆t. Since the physics-based
predictions, i.e. my motion update is the most computationally expensive part of
the filter, I determine ∆t as the smallest time duration within which I can perform
the physics simulations for all particles. Note, however, that ∆t also affects the
motion model: Since, at each step of the particle filter, I want the motion model
to move the simulated physical system to the current time, each of my physics
simulations is integrated the same amount of simulated time, ∆t.

25



3.4 Physics-Based Particle Filtering (PBPF)

3.4.4 Resampling

Multinomial resampling[51] is performed based on the weights of each particle to
generate a new set of particles.

3.4.5 Calculating x̃t

The particle filter keeps track of all particles Xt through the duration of manipula-
tion. However, if a single estimate x̃t is required at any time t, then a statistic from
the particles can be computed. In this work, I use the mean of all the particles in
Xt to compute x̃t. To find the mean of rotations of the particles, I use the method
in Markley et al. [52].

3.4.6 Computational Cost

A primary consideration for the practical application of my proposed method is
its computational cost. The use of a physics engine for the prediction step, while
providing a probable motion model, is computationally intensive. For each of the M

(M = 70 in my experiments) particles in the filter, the physics engine must perform
a full simulation step. This involves complex operations such as collision detection
between the object, the robot, and the environment, followed by solving for contact
dynamics (e.g., forces and friction) to predict the motion. This entire process must
be repeated for every particle at every time step, making the prediction phase the
main computational bottleneck of the filter.

This high computational demand places a hard limit on the filter’s update fre-
quency. In our implementation, the physics-based particle filter can achieve an
update rate of approximately 5 Hz. In contrast, a filter using a simple analytical
motion model, such as a constant velocity model, is computationally trivial and can
run at a much higher frequency at 50 Hz, often limited only by the camera’s frame
rate. A high-frequency filter with a simple model can react quickly to new sensor
data but may suffer from large prediction errors between steps, especially during
complex interactions. Conversely, our physics-based model provides a high-fidelity
prediction that is more accurate over longer time intervals but at a lower update
rate, meaning the system is “blind” for periods between sensor updates.

To empirically investigate this trade-off and justify the use of a computationally
expensive physics engine, we introduce our second baseline method in the next sec-
tion: a constant-velocity particle filter (Sec. 3.5.2). This baseline is deliberately de-
signed to be computationally lightweight, thereby maximising its update frequency.
By comparing the tracking performance of our high-fidelity, low-frequency physics-
based filter against this low-fidelity, high-frequency baseline, we can directly assess
whether the significant improvement in motion prediction accuracy is worth the
associated computational cost.
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3.5 Baseline Methods
In this section, I will introduce two baseline methods that will be used as comparisons
for the algorithm I have developed.

3.5.1 Repetitive Single-Snapshot Pose Estimation

One commonly used method in robotic manipulation is to use a system that can
estimate the pose of the object from a single-snapshot, i.e. using only the current
camera image zt. There are multiple systems developed to perform object pose
estimation given an image, as mentioned in Sec. 2.2. In this paper, I use DOPE [36]
as a state-of-the-art deep-learning-based pose estimation system. DOPE has been
trained on the YCB objects [53] that I also use, and is publicly available. Therefore,
the repetitive single-snapshot pose estimation method, in my case, corresponds to
running DOPE at every time-step t during manipulation:

x̃t = DOPE(zt) (3.10)

This method treats every new observation as independent from the previous
time steps, and therefore does not use temporal continuity. The performance par-
ticularly degrades when the object is partially or fully obstructed in the camera
view. Moreover, it does not use the control information.

3.5.2 Constant-Velocity Particle Filtering

My first baseline method was presented in Sec. 3.5. My second baseline method,
presented here, is a particle filter, similar to the one presented in Sec. 3.4, the only
difference being in the motion update stage. While the particle filter presented in
Sec. 3.4 uses a physics engine in its motion model, here, instead I use a computa-
tionally cheap motion model, which simply assumes that the object moves with a
constant velocity. In other words, during the motion update, I update a particle at
time step t using the estimated pose of the object from the previous updating time
steps t − 1 and t − 2. I first calculate the “difference” between the estimated pose
of the object at these previous time steps:

dx = x̃t−1 − x̃t−2 (3.11)

and then, I assume the object keeps moving with the same velocity, and use the
motion update rule:

x̄
[m]
t = x

[m]
t−1 + dx+ ϵ (3.12)

where ϵ is an extra noise term, similar to Eq. 3.5. (Eqs. 3.11 and 3.12 again make
an abuse of notation by using subtraction/addition over poses. In actual implemen-
tation, I use quaternion algebra to subtract/add rotational components.)
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3.6 Experiments and Results
Here, I compare the three different methods I have presented on different non-
prehensile manipulation scenes.

3.6.1 Scenes

I evaluated and compared the performance of these methods (PBPF, DOPE, and
CVPF) in four different non-prehensile manipulation scenes.

Scene 1: Shown in Fig. 3.2(a). The robot pushes an object among the clutter,
where the cluttering objects can obstruct the view of the camera.

Scene 2: Shown in Fig. 3.2(b). The robot pushes an object on a clear table,
however the hand can obstruct the camera view during pushing.

Scene 3: Shown in Fig. 3.2(c). The robot pushes an object on a clear table,
and the camera has a clear view of the object at all times.

Scene 4: Shown in Fig. 3.2(d). The robot tilts an object up and then brings it
down. This scene is added to show the method has no limitation to planar pushing.
The camera has a clear view at all times.

In the experiments, I used an object from the YCB dataset [53], particularly
the CheezIt box. I picked this object because DOPE had a consistent and good
estimation of its pose when the object was visible.

My experimental setup uses a static camera, positioned to maintain a compre-
hensive and unobstructed global view of the entire workspace. This fixed configura-
tion was deliberately chosen over a wrist-mounted alternative. I found that the field
of view of a wrist camera becomes severely restricted during close-contact manipu-
lation. In contrast, my fixed-camera setup ensures a stable and continuous stream
of visual data for the entire scene, which is essential for my framework to reliably
track the poses of multiple interacting objects.

3.6.2 Implementation Details

I have implemented the three methods as below1.
PBPF: The physics-based particle filtering method (Sec.3.4). (a) Motion model

parameters. µθ and σθ: Mean friction coefficient of 0.1 and standard deviation of 0.3,
with minimum capped at 0.001. Mean restitution of 0.9 and standard deviation of
0.2. The mean mass of 0.38 kg, and the standard deviation of 0.5, with a minimum
capped at 0.05 kg. σf : For position 0.005 m, for rotation 0.05 rad. As the physics
model, fθ, I used the PyBullet physics engine [54]. A PyBullet environment was
initialised for each particle. (b) Observation model parameters. σDOPE: For position

1Experiments were performed on CPU: 11th Gen Intel(R) Core(TM) i9-11900@2.50GHz; GPU:
NVIDIA GeForce RTX 3090; RAM: 128580 Mb
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(a) Scene 1

(b) Scene 2

(c) Scene 3

(d) Scene 4

Figure 3.2: Robot manipulating an object (red box) among cluttering objects.
Shown images are from the tracking camera. The estimated object pose of my
proposed method (PBPF) is shown as a green wireframe box. The estimated ob-
ject pose from a vision-only pose estimation system (DOPE) is shown as a yellow
wireframe box. Please note wireframe boxes are overlayed on the images as post-
processing. While the green box appears on top of the obstacle/robot hand in some
images, this is only an artefact of the way I overlay these wireframe boxes. The pose
estimates are in fact behind the obstacle/robot hand in these instances, close to the
actual object pose. The physics-based method (green wireframe) performs better
than others when the camera view is partially or completely obstructed, while it
performs similarly to other methods when the camera view is always clear.

0.02 m and rotation 0.09 rad. (c) Update frequency. ∆t = 0.16s. (d) Number of
particles. M = 70. I tested other numbers of particles. Fig. 3.3 shows that the
PBPF error decreases as the number of particles increases. Due to CPU/GPU
limitations, the maximum number of particles that can allow the PBPF algorithm
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Figure 3.3: Effect of the number of particles on performance.

to run in real-time is 70. (e) Initialization. I use a Gaussian distribution to initialise
70 particles at t = 0. The mean is pose estimated by DOPE at t = 0. The standard
dev. for particle initialisation for x, y, z axes and rotation are 0.07 m, 0.02 m, 0.01
m and 0.04 rad, respectively.

DOPE: The repetitive single-snapshot pose estimation method (Sec. 3.5.1). I
used official DOPE implementation1.

CVPF: The constant-velocity particle filtering method (Sec.3.5.2). All param-
eters were the same with PBPF, except the number of particles, M , and update
interval ∆t. Since CVPF is computationally much cheaper, for a fair comparison,
I used more particles M = 200 and updated it faster, ∆t = 0.02s, to allow it to
integrate more information.

Ground truth: I used a marker-based OptiTrack [1] motion capture system
to record “ground truth” poses of the object, x∗

t , as it is being manipulated, which
uses reflective markers placed on the objects for precise pose estimation, as shown
in Fig. 3.4.

3.6.3 Experimental Procedure

In each scene, I made 10 runs. During each run, I recorded the robot controls, ut,
and the camera images, zt. I then evaluated the three methods on the same data
recorded from the ten runs. I did this to be fair between the methods. Otherwise, all
methods, including PBPF, are fast enough to be run in real-time, as ∆t parameters
also indicate.

At each time step of each run, I computed (as described in Sec. 3.3) the positional
and rotational errors of PBPF, DOPE, and CVPF, using the ground truth data.
When generating the positional and rotational errors for the DOPE method, if
DOPE did not output any object pose at a certain time step (usually because the

1https://github.com/NVlabs/Deep_Object_Pose
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Figure 3.4: The OptiTrack system is used to determine the ground truth of the
target objects. As shown in the left image, multiple cameras are mounted on the
ceiling to track the reflective markers on the objects. The right image shows the
reflective markers attached to the target object.

object is heavily obstructed), I used the last pose reported by DOPE before that
time step.

3.6.4 Results

I present each method’s positional and rotational errors over time (i.e. throughout
the manipulation action) in Fig. 3.5. The plots show mean values together with
the 95% confidence intervals in shaded regions, computed over the 10 runs in each
scene.

In scenes with obstructions for the camera, the PBPF performs significantly
better than both DOPE and CVPF. In Scene 1, the object is tracked well by all
methods at the beginning, while the object is completely visible to the camera. As
the surrounding clutter obstructs the object, the errors for DOPE and CVPF become
quite high. While CVPF performs some smoothing, it cannot perform as well as
the physics-informed PBPF. Similarly, in Scene 2, as the robot hand obstructs the
camera view around t = 8, DOPE and CVPF perform significantly worse than
PBPF. These results can also be observed in Fig. 3.2, where I overlay the PBPF
estimation (as green wireframe box) and the DOPE estimation (as yellow wireframe
box). (CVPF is not shown for visual clarity, but performs worse than PBPF in
general.) I can see that while the green box is a good estimate of the actual object
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pose, the yellow box is not a good estimate when the camera view is not good. In
Fig. 3.2, please note that the wireframe boxes are overlayed on the images as post-
processing. For example, in Fig. 3.2(a) second and third images, and Fig. 3.2(b)
final image, while the green box appears on top of the obstacle/robot hand, this is
only an artefact of the way I overlay these boxes. The PBPF estimates are in fact
behind the obstacle/robot hand in these instances, close to the actual object pose.
In Scenes 3 and 4, where the object is always visible, DOPE performs very well, and
therefore all methods perform similarly.

Fig. 3.5, a notable event occurs in Scene 1 around the 12-second mark. The
plot shows a sharp, transient improvement in the accuracy of the DOPE baseline,
where its error momentarily drops to a level close to the ground truth. This corre-
sponds precisely to the moment when the target object, having been fully occluded,
becomes briefly visible to the camera again. This allows the image-only method to
re-acquire an accurate pose estimate. However, immediately after this point, the
object is once more occluded by the robot arm, and the error for DOPE rapidly de-
grades, confirming its fundamental dependency on continuous visibility. A similar,
more volatile pattern is observed in Scene 2 between the 8 and 12-second marks.
The fluctuations in DOPE’s error profile are attributable to intermittent occlusions,
where the object’s visibility flickers, causing instability in the purely vision-based
estimates.

In stark contrast, our proposed PBPF method maintains a consistently low-error
and stable track throughout these occlusion events in both Scenes 1 and 2. Because
the physics engine continues to provide a reliable state prediction even when visual

Figure 3.5: Comparison of different methods’ positional and rotational errors in four
scenes. Plots show mean values over 10 runs, with the shadows indicating the 95%
Confidence Interval. In all plots, the horizontal axes show time, and the vertical
axes show the positional/rotational error.
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Table 3.1: Mean and standard deviation of the positional and rotational errors of
different algorithms (“pos.err” means positional error and “rot.err” means rotational
error)

Scene 1 Scene 2 Scene 3 Scene 4

pos.err (m) rot.err (rad) pos.err (m) rot.err (rad) pos.err (m) rot.err (rad) pos.err (m) rot.err (rad)

µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ

DOPE 0.384 0.244 1.855 1.019 0.117 0.090 1.059 1.088 0.036 0.007 0.171 0.023 0.031 0.002 0.218 0.033

PBPF 0.091 0.031 0.300 0.223 0.056 0.020 0.284 0.210 0.030 0.009 0.182 0.047 0.022 0.008 0.194 0.032

CVPF 0.116 0.074 0.438 0.690 0.077 0.044 0.553 0.853 0.037 0.008 0.173 0.022 0.032 0.004 0.217 0.035

data is absent, the filter does not lose track of the object and gracefully handles the
transition between occluded and visible states.

Finally, the results for Scenes 3 and 4 serve as an important control case. In
these scenarios, the target object remains fully visible throughout the manipulation.
As expected, all methods perform robustly, yielding stable and low-error tracking.
This confirms that under ideal conditions, the baseline methods are effective. How-
ever, it is the performance during the occlusion challenges in Scenes 1 and 2 that
most effectively validates the central hypothesis of this chapter: the integration
of a physics-based model is crucial for achieving robust tracking in cluttered and
dynamic environments where objects are frequently occluded.

I also present the overall (averaged over all runs and all times-steps) positional
and rotational errors in Table. 3.1. Again, I can see that PBPF performs significantly
better in Scenes 1 and 2 because of the occlusion, and all methods perform similarly
in Scenes 3 and 4 because the object is fully visible to the camera.

3.7 Conclusions
In this chapter, I introduced an algorithm designed for tracking a single target object
under non-prehensile robotic manipulation. By incorporating a physics engine and
using a particle filter algorithm, my tracking method maintains stable tracking even
when the target object is completely occluded. Although using a physics engine
significantly increases computational demands, experimental validation has demon-
strated that these computational costs are justified given the improved tracking
reliability.
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Chapter 4

Physics-Based Multi-Objects 6D-Pose
Tracking during
Non-Prehensile Manipulation

Chapter Deliverables
Video: https://youtu.be/B9-5iTwgFnk

Source Code: https://github.com/ZisongXu/trackObjectWithPF

In this chapter, I extend the algorithm originally developed for tracking a single
object during non-prehensile robotic manipulation to now track multiple objects.
To improve accuracy, a visibility score has been introduced to better select particles
from the particle set, which helps enable more accurate tracking of the 6D poses
of multiple objects. This chapter explains the algorithm, theory, and experimental
results, preparing for the enhanced version of this tracking algorithm for tracking
and controlling multi-objects during non-prehensile manipulation. The layout of
this chapter is outlined below:

• Section 4.1 will introduce the foundation of the problem I am trying to solve.

• Section 4.2 focuses on this work’s assumptions, objectives and contributions.

• Section 4.3 formally describes the problem to be addressed and introduces the
key notations used throughout the chapter.

• Section 4.4 presents the main algorithm, physics-based particle filtering, I use,
based on the particle filtering algorithm for tracking multi-objects.

• Section 4.5 will mention the same two baseline methods described in tracking
a single object algorithm: (i) Repetitive single-snapshot pose estimation, and
(ii) Constant-velocity particle filtering.
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4.1 Introduction

• Section 4.6 will review the experiments and assess the algorithm’s performance.

• Section 4.7 will conclude this multi-objects tracking algorithm.

4.1 Introduction
In this chapter, as the tracking algorithm has been expanded to accommodate mul-
tiple target objects, I have also broadened the initial problem description. This
method retains its reliance on a physics engine and uses the particle filter algo-
rithm. However, the movement of target objects is now influenced not solely by the
robot’s actions and physical factors, but also by their interactions with other target
objects within the scene.

Fig. 4.1 depicts the movement of three target objects during a robot’s non-
prehensile manipulation. My objective is to track these objects in real-time. During
their movement, initially, all target objects are visible to the camera. As the robot
begins to push them, the Campbell Soup (a cylindrical can) is first obscured by the
CheezIt box (a red box). Subsequently, the Jell-O (a small rectangular object) is
also obscured by the CheezIt box, which in turn becomes partially obscured by the
robot arm. Similar to the algorithm for tracking a single object, the robot arm’s
movement path is predetermined. To track multiple objects, each particle in the
model represents the 6D pose of all objects in the scene. During particle resampling
and updates, the poses of all target objects are updated.

Throughout the tracking process, in addition to using the physics engine and
RGB images from the camera, I also compute a visibility score for each target
object within every particle, which guides the resampling of particles. The core idea
is that even when target objects are obscured, their obscured state is regarded as
valuable information.

Similar to the algorithm for tracking a single target object, I conducted exper-
iments applying both the multi-target tracking algorithm and learning-based algo-
rithms across various real scenes. The results of these experiments demonstrate that
incorporating a visibility score into the tracking algorithm enhances object tracking
accuracy.

Figure 4.1: The robot arm manipulates the CheezIt box (a red box), causing it to
move and subsequently push other target objects.
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4.2 Assumptions, Objectives and Contributions
This chapter outlines key assumptions, Objectives, and contributions to developing
this multi-objects tracking algorithm for robotic non-prehensile manipulation.

4.2.1 Assumptions

In this chapter, I make the following assumptions:

• Including all the assumptions from the previous methods.

• The robot can directly push multiple objects simultaneously or indirectly move
one object via another.

• A perception system is available that can estimate the 6D poses of multiple
target objects simultaneously when they are visible within the camera’s field
of view.

• During the manipulation process, the target objects may become obscured by
the robot, other target objects (the algorithm is tracking), or fixed obstacles
in the environment.

4.2.2 Objectives

The primary goal of this chapter is to develop a tracking algorithm that leverages a
physics engine and a particle filter to effectively manage the tracking of multi-objects
in non-prehensile manipulation within cluttered environments. This algorithm aims
to maintain accurate tracking of the 6D poses of multi-objects even when they are
obscured during manipulation.

4.2.3 Contributions

The contribution of this chapter is to propose an algorithm for tracking multi-objects
in cluttered environments during non-prehensile manipulations.

4.3 Problem Formulation
I assume access to the sequence of joint-state inputs, ut, and visual observations (zt)
from a camera, which is RGB images. I assume the camera’s pose is known.

The problem is defined as follows: at any given time-step t, leveraging all prior
control inputs u0, u1, . . . , ut and visual observations z0, z1, . . . , zt, estimate the ob-
jects’ current poses, denoted as {qit}i=1,...,n ∈ SE(3)n, where n is the number of
objects that the robot is interacting with/I want to track, and qit represents the
pose of object i at time step t. Since inferring the exact poses of the objects is
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impossible (especially when they are occluded), I estimate a probability distribu-
tion over the object poses, instead of a single pose. Specifically, the problem is to
estimate/track and continuously refine the probability distribution of the objects’
poses p({qit}i=1,...,n|z0, z1, ..., zt, u0, u1, ..., ut), even when objects are partially or fully
occluded. This conditional probability is commonly referred to as the belief state,
which effectively integrates all prior information to predict the current poses of the
objects. I describe a solution to the above tracking problem in Section 4.4.

4.4 Physics-Based Particle Filtering (PBPF)
This method adopts a Bayesian filtering approach, particularly particle filtering [45].
Fig. 4.2 shows the overall process of this algorithm.

Similar to the algorithm about tracking a single object, particle filtering repre-
sents the belief state at any given time t with a set of particles:

Xt := x
[1]
t , x

[2]
t , ..., x

[M ]
t (4.1)

where each particle x
[m]
t := {qit}

[m]
i=1,...,n (1 ≤ m ≤ M) is an instantiation of the pose

state at time t and includes all the poses of the objects being tracked, where M is
the number of particles. In the following sections, I also use the notation q

i,[m]
t to

Figure 4.2: This system for objects’ pose estimation during robotic non-prehensile
manipulation over two time steps, t and t + 1. At t, the RGB image describes the
scene, and particles represent possible objects’ poses. As the system advances to
t + 1, these particles are updated by robot control, ut, through physics simulation.
A new RGB image is obtained from the camera. The RGB image is used to estimate
objects’ poses DOPE(zt), and are compared with poses of particles x̄

[m]
t to get the

difference. Finally, particle resampling refines the objects poses estimations, and
then gets a new particle set.
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refer to the pose of a particular object i in particle [m] at time t. I emphasize that, in
this formulation, each particle contains all the tracked objects’ poses (not individual
separate objects), which enables the use of the physics-based interactions/constraints
between objects.

The process of particle filtering involves a dual-stage update at each time step t:
first, the motion update stage (discussed in Sec. 4.4.1), where particles are moved
based on the latest robot control inputs ut, followed by the observation update stage
(discussed in Sec.4.4.2), where the particles are updated by the observational data
zt.

4.4.1 Motion Update

In the first stage of the particle filtering process, the propagation of each particle
is addressed. Specifically, for a particle x

[m]
t−1 derived in the previous time step, an

intermediate pose state x̄
[m]
t := {q̄it}

[m]
i=1,...,n is formulated for the current time step,

by the following probabilistic motion model:

x̄
[m]
t ∼ p(xt | x[m]

t−1, ut) (4.2)

where p(xt | x[m]
t−1, ut) represents the conditional probability distribution. This dis-

tribution characterizes the evolution of the system state from x
[m]
t−1 to xt, influenced

by the robot control ut. Direct analytical derivation of this motion model is often
impractical. I use a physics engine to approximate this distribution. The physics
engine is modelled as f :

xt = fθ(xt−1, ut) (4.3)

which includes a model of the robot, the environment, and objects, and predicts the
resulting poses of the objects xt given their poses in the previous time step, xt−1, and
robot control, ut, by simulating the robot motion inside the engine and finding the
resulting motion of the objects. Here, θ represents physics parameters that impact
the motion in the physics engine. Examples of such parameters include the friction
coefficient at the contacts, contact restitutions, and the mass of the objects.

The physics engine is deterministic (i.e. outputs the same resulting state, if
given the same inputs and parameters). It therefore cannot directly be used instead
of the probabilistic motion model in Eq. 4.2. The uncertainty about the object’s
motion is due to (i) the uncertainty about the exact physics parameters, θ; and (ii)
the discrepancy between the physics engine and the real-world physics.

To address point (i), I model these parameters for every object in each particle
as random variables sampled from a known normal distribution. For example, for
the mass of object i in particle [m] at time t, I sample:

massi,[m]
t ∼ N(µmassi , σ

2
massi) (4.4)
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Similarly, I sample a value for each physics parameter of each object in the particle,
and θ

[m]
t represents the collection of these sampled physics parameter values of each

object in the particle m.
I then run the physics engine for that particle using the sampled parameters:

x̄
[m]
t = f

θ
[m]
t

(x
[m]
t−1, ut) + ϵ (4.5)

with the addition of Gaussian noise ϵ ∼ N(0, σ2
f ) to address (ii) above. I assume that

f
θ
[m]
t

(x
[m]
t−1, ut), i.e., the output of the physics engine, is always physically feasible,

given a physically feasible input. When I add noise ϵ, if it puts the state into
a physically impossible configuration (i.e., penetration between bodies), I simply
draw a new ϵ value. If I cannot draw an ϵ that does not result in penetration, then
I set ϵ to zero for that particular timestep and particle. The noise ϵ, is expanded
to a higher-dimensional vector comprising independent 6D perturbations for each
object. This perturbation is then applied to the predicted pose of each object within
each particle to ensure the belief distribution maintains diversity.

As defined in Sec. 3.4.1. at each time step, I adjust the variable values to allow
the physics engine to simulate the real-world environment as closely as possible.
Below are explanations of the symbols used in this process: the parameter µmassi

represents the best guess about the mass of object i, and σ2
massi represents the uncer-

tainty (variance). These mean and variance values for mass, friction, and restitution
can be estimated offline beforehand for each object type. The parameter σ2

f repre-
sents the estimated discrepancy between the physics engine and real-world physics.
In practice, σf needs to be estimated per physics model, f , for example by calibrat-
ing it using a dataset with ground truth object poses (such as the one I release),
and σf can then be fixed. The mass and friction mean and variance values need to
be provided per object. In this work, I use the best guess about these object values,
but other methods can also be used, such as using a vision-based neural network
to predict physics properties or extending the particle filter to also estimate these
values.

4.4.2 Observation Update

During this second stage of particle filtering, for each intermediate particle x̄
[m]
t , I

calculate a weight w
[m]
t using the observation, w[m]

t = p(zt | x̄[m]
t ). After the weights

for all the particles are computed, they are used to re-sample the new set of particles
Xt, completing the particle filter update. As I described in Sec. 3.4.2, since I do not
have access to such a model directly, I propose to use an approximation. Using the
Bayes Theorem, I can get:

p(zt|x̄[m]
t ) ≈ p(x̄

[m]
t |zt) (4.6)
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To compute p(x̄
[m]
t |zt), I propose to use the vision-only pose estimation system

(e.g., DOPE) to predict the pose of the object according to zt. However, as I
described above each particle contains the pose state of all the objects x̄

[m]
t :=

{q̄it}
[m]
i=1,...,n, and then I can assume that the pose of each object is independent of

each other, so I write:

p(x̄
[m]
t |zt) =

n∏
i=1

p(q̄
i,[m]
t |zt) (4.7)

use the distance of q̄i,[m]
t to the predicted object pose to compute a probability value:

p(q̄
i,[m]
t |zt) = N(q̄

i,[m]
t ; DOPE(zt), σ

2
DOPE) (4.8)

where DOPE(zt) is the pose predicted by DOPE, and the parameter σ2
DOPE repre-

sents the variance of DOPE errors for the object. This can be estimated beforehand
for an object by collecting DOPE estimates for the object and comparing it to a
ground truth pose.

4.4.3 Using Visibility Information

The observation model above assumes that a DOPE detection, DOPE(zt), is always
available. However, for a given camera image zt, DOPE may not output a pose
estimate. At such time points, one option is to skip the observation update. I did
this in the previous PBPF algorithm for tracking a single target object (3.4.2).

However, the lack of detection of the object is not a lack of information. The
object is probably partially or fully occluded. Therefore, I also implemented an
extension of this algorithm: PBPF with Visibility (PBPF-V).

For this method, I first compute a visibility score, vi,[m]
t , for object i in particle

m. To compute the visibility score, in the physics engine, I shoot R rays from the
camera towards R points uniformly sampled on each object in each particle. Some
of these rays hit the object, but others may hit other occluding objects or robot
links before hitting the object. I define the visibility of an object as the ratio of rays
hitting the object to the number of all rays:

v
i,[m]
t =

number of rays hitting the object i in particle m

R
(4.9)

A visibility score of 1 implies perfect visibility of the object by the camera,
whereas a score of 0 implies the object is completely occluded. Then, I can relate
the weight of a each object, p(q̄

i,[m]
t |zt), to its visibility v

i,[m]
t based on whether a

DOPE estimate is available or not at time t. The particular method to relate these
values depends on a model of DOPE behaviour under occlusion. Experiments with
DOPE did not suggest that DOPE gradually worsens with more occlusion. Instead,
after a certain amount of occlusion, DOPE loses the object completely. Therefore,
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instead of relating p(q̄
i,[m]
t |zt) and v

i,[m]
t (inversely) proportionally, I implemented a

threshold-based model: If DOPE is not able to detect the object i at time t, then I
assign a fixed high weight value (WH) to these objects that have low visibility scores
(i.e. vi,[m]

t < VH , where VH is a fixed visibility threshold), and a fixed low weight value
(WL) to these objects that have high visibility scores (i.e. v

i,[m]
t > VH). Conversely,

if a DOPE estimate is available at time t, I compute the weight values described in
Section 4.4.2. However, objects with low visibility (vi,[m]

t < VL, where VL is a fixed
low visibility threshold) are penalised by scaling their weight by αW ∈ [0, 1].

4.5 Baseline Methods
I continue to employ the same baseline methods (Repetitive Single-Snapshot Pose
Estimation in Sec. 3.5.1 and Constant-Velocity Particle Filtering in Sec. 3.5.2) for
comparison that were used in the single object tracking algorithm.

4.6 Experiments and Results
I evaluated and compared the performance of this methods in eight different non-
prehensile manipulation scenes. I used three objects from the YCB dataset [53],
the CheezIt box, the Gelatin Jell-o and the Campbell Soup, a cylinder. DOPE had
good performance of these objects when they were visible. All scenes can be seen in
the video: https://youtu.be/B9-5iTwgFnk.

4.6.1 Scenes

Cheezit Scene 1 (shown in Fig. 4.3-first row) and Soup Scene 1 (shown in
Fig. 4.3-fifth row): The robot pushes the object among the clutter, where the clut-
tering object obstructs the view of the camera. The pose of the obstructing object
is fixed and known.
Cheezit Scene 2 (shown in Fig. 4.3-second row) and Soup Scene 2 (shown in
Fig. 4.3-sixth row): The robot pushes the object on a clear table. The hand can
obstruct the camera view during pushing.
Cheezit Scene 3 (shown in Fig. 4.3-third row) and Soup Scene 3 (shown in
Fig. 4.3-seventh row): The robot pushes the object on a clear table, and the camera
has a clear view of the object.
Cheezit Scene 4 (shown in Fig. 4.3-fourth row): The robot tilts the object up
and then brings it down. The camera has a clear view. The pose of the supporting
object is fixed and known.
Scene 5 (shown in Fig. 4.3-eighth row): The robot pushes multiple objects. These
objects occlude each other during the push. I track all objects’ poses simultaneously.
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4.6 Experiments and Results

Figure 4.3: The estimated multi-objects poses of the method (PBPF-V) are shown
as a green wireframe box. The poses from a vision-only system (DOPE) are shown
as a yellow wireframe box.

In Scenes 1, 2, and 3, obstacles in the clutter do not physically interact with the
robot and the tracked object.

4.6.2 Implementation Details

I have implemented the methods as below1.
1Experiments were performed on CPU: 11th Gen Intel(R) Core(TM) i9-11900@2.50GHz; GPU:

NVIDIA GeForce RTX 3090; RAM: 128580 Mb
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PBPF: The physics-based particle filtering method (Sec.4.4). (a) Motion model
parameters. µθ and σθ: Mean friction coefficient of 0.1 and standard deviation of
0.3, with minimum capped at 0.001. Mean restitution of 0.9 and standard deviation
of 0.2. The mean mass of 0.38 kg and the standard deviation of 0.5 with a minimum
cap of 0.05 kg. σf : For position 0.005 m, for rotation 0.05 rad. As the physics model,
fθ, I used the Pybullet physics engine [54]. A Pybullet environment was initialized
for each particle. The Pybullet environments for particles were parallelized over
the 8 (16 virtual) CPU cores (11th Gen Intel(R) Core(TM) i9-11900@2.50GHz) of
the computer. (b) Observation model parameters. σDOPE: For position 0.02 m and
rotation 0.09 rad. (c) Update frequency. ∆t = 0.16s. (d) Number of particles.
M = 70. (e) Initialization. I use a Gaussian distribution to initialize 70 particles at
t = 0. DOPE estimates the mean pose at t = 0. The standard dev. for initialization
is 0.16 m and 0.43 rad.

PBPF-V: An extension of PBPF which also considers visibility (as described
in Sec. 4.4.3). All parameters are the same with PBPF except that the number of
particles M = 150 in Scene 5. Additional visibility parameters: For Cheezit and
Gelatin, WH = 0.75, WL = 0.25, VH = 0.95, VL = 0.5, αW = 0.33. For Soup,
WH = 0.6, WL = 0.45, VH = 0.8, VL = 0.9, αW = 0.33.

DOPE: The repetitive single-snapshot pose estimation method (Sec. 3.5.1). I
used official DOPE implementation1.

CVPF: The constant-velocity particle filtering method. All parameters were
the same with PBPF, except the number of particles, M . Since CVPF is computa-
tionally cheaper, it could handle more particles M = 150.

Ground truth: I used a marker-based OptiTrack system to record “ground
truth” poses, x∗

t , during manipulation.

4.6.3 Experimental Procedure

In Scenes 1-4, I repeated 10 robot runs, and in Scene 5, I repeated 1 robot run (i.e.
a total of 71 real robot executions). During each run, I recorded the robot controls,
ut, and the camera images, zt. Since particle filtering is a sampling-based method,
it can generate different results with the same input. For statistical accuracy, I
evaluated each method 10 times on the data from each of the 10 runs in Scenes 1-4,
giving 100 evaluations of each method for Scenes 1-4. In Scene 5, I evaluated each
method 20 times on the data from the 1 real robot execution.

At each time step of each evaluation, I computed the positional and rotational
errors of the mean estimate, against the ground truth. When computing errors for
DOPE, if DOPE did not output any pose at a certain time step (e.g., because of
occlusions), I used the latest pose reported before that time step.

1https://github.com/NVlabs/Deep_Object_Pose

43



4.6 Experiments and Results

Table 4.1: Mean and standard deviation of the errors of different methods

Scene 1 Scene 2 Scene 3 Scene 4

pos.err(m) rot.err(rad) pos.err(m) rot.err(rad) pos.err(m) rot.err(rad) pos.err(m) rot.err(rad)
µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ

Cheezit
PBPF 0.081 0.020 0.484 0.272 0.070 0.030 0.426 0.309 0.019 0.024 0.367 0.187 0.018 0.008 0.092 0.067
PBPF-V 0.063 0.020 0.396 0.295 0.058 0.021 0.294 0.204 - - - - - - - -
DOPE 0.289 0.218 1.345 1.168 0.293 0.248 1.046 1.027 0.052 0.033 0.375 0.447 0.017 0.002 0.201 0.013
CVPF 2.359 7.421 1.472 0.951 0.407 0.678 0.878 0.952 25.14 152.8 0.879 0.952 0.029 0.012 0.207 0.022

Soup
PBPF 0.043 0.023 1.133 0.364 0.049 0.032 0.851 0.249 0.026 0.021 0.405 0.455 - - - -
PBPF-V 0.045 0.027 1.077 0.395 0.046 0.028 0.724 0.262 - - - - - - - -
DOPE 0.215 0.117 1.174 0.372 0.206 0.112 0.776 0.222 0.071 0.140 0.438 0.482 - - - -
CVPF 0.298 0.153 1.884 0.794 0.240 0.126 1.702 0.845 6.528 52.09 1.174 0.982 - - - -

4.6.4 Results

I present the overall (averaged over all runs and all time-steps) positional and rota-
tional errors from Scene 1-4 in Table. 4.1, and from Scene 5 in Table. 4.2. Compared
to DOPE and CVPF, PBPF performs significantly better in Scenes 1, 2, and 3. In
Scene 4, where DOPE has a good view and overall good detection, PBPF and DOPE
perform similarly. CVPF performs worse out of all the methods. In Scene 5, I only
ran the PBPF-V algorithm used for comparison with DOPE. PBPF-V performs
significantly better than the baseline method.

When there is occlusion (Scenes 1 and 2), PBPF-V performs better than basic
PBPF for the Cheezit object. For the Soup object, the difference between PBPF
and PBPF-V is not significant. This is probably due to the Soup being a much
smaller object, for which DOPE’s behaviour under occlusion is much more difficult
to model accurately.

It is important to note that results for the PBPF-V are not presented for Scenes 3
and 4. These two scenarios were designed as control cases in which the target object
remains fully and continuously visible to the camera throughout the entire manip-
ulation task. The core mechanism of the PBPF-V algorithm is to use a visibility
score to intelligently weight the contribution of visual feedback, which is primarily

Table 4.2: Mean and standard deviation of the errors when tracking multi-object
(Scene 5)

Cheezit Gelatin Soup
pos.err(m) rot.err(rad) pos.err(m) rot.err(rad) pos.err(m) rot.err(rad)
µ σ µ σ µ σ µ σ µ σ µ σ

PBPF-V 0.031 0.011 0.126 0.087 0.031 0.023 0.056 0.030 0.027 0.013 0.346 0.139
DOPE 0.058 0.108 0.158 0.337 0.179 0.665 0.272 0.410 0.045 0.029 1.193 1.192
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Figure 4.4: Positional and rotational errors of different methods in four different
scenes with the Cheezit object and the fifth scene shows the tracking of three dif-
ferent target objects, each with its own positional and rotational errors in different
methods. Plots show mean values with the shadows indicating the 95% Confidence
Interval. In all plots, the horizontal axes show time, and the vertical axes show the
positional/rotational error. Similar plots for all scenes and all objects can be seen
in this repository.

advantageous under conditions of partial or total occlusion. In a scenario of con-
stant and perfect visibility, the visibility score is perpetually equal to 1. Under this
condition, the behavior of the PBPF-V algorithm becomes identical to that of the
standard PBPF method. Therefore, conducting separate experiments for PBPF-V
in these full-visibility scenes would yield redundant results and offer no additional
insight into its specific contribution. For this reason, they were omitted from the
comparison.

I also present the positional and rotational errors of each method throughout
manipulation in Scenes 1-4 for Cheezit in Fig. 4.4. (Results for Soup are similar,
and are in this repository.) I can see that PBPF and PBPF-V produce better and
more stable estimates of the object position. In Fig. 4.4, I also show the results for
each object in Scene 5. PBPF-V significantly outperforms DOPE.
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4.7 Conclusions

It is worth noting that even with a good field of view, DOPE can be noisy,
because it uses a single visual snapshot, which becomes unstable when the light,
angle, and other factors change. This can lead to physically unrealistic poses, e.g.
target object can be inside the robot arm, or two target objects can penetrate. In
contrast, the method (PBPF) outputs physically feasible poses, effectively avoiding
the unrealistic scenarios above.

4.7 Conclusions
In this chapter, I introduced an algorithm designed for tracking multi-objects under
non-prehensile robotic manipulation. To maintain the efficiency of the algorithm
and not reduce the number of particles, I had to slow down the robot’s motion to
give enough time for particle updates when performing multi-target object track-
ing. The computational demand significantly increases as I predict the 6D poses of
multi-objects using a physics engine, compared to tracking a single object. Addi-
tionally, by incorporating visibility information into the method, the algorithm still
outperforms the baseline approaches, though at the expense of efficiency. In the
next chapter, I introduce an improved method for tracking multiple objects. This
refinement enhances both the tracking accuracy and the computational efficiency of
the algorithm, addressing the challenges identified with the initial approach.
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Chapter 5

RGB-D Based Tracking and Con-
trol of Multiple Objects during Non-
Prehensile Manipulation in Clutter

Chapter Deliverables
Video: https://www.youtube.com/watch?v=HxqMidaboqE

Source Code: https://github.com/ZisongXu/trackObjectWithPF

In this chapter, I present an update to the multi-object tracking algorithm dis-
cussed in the previous chapter, aiming to enhance both the accuracy of tracking
multiple target objects and the computational efficiency of the algorithm. I employ
CPU parallelism to update particles within the physics engine and incorporate depth
images from the camera during the resampling process to refine particle selection.
Additionally, GPU parallelism is used for depth image comparisons. This chapter
explains the algorithm, underlying theories, and experimental outcomes, with the
structure of the chapter outlined as follows:

• Section 5.1 will introduce the foundation of the problem I am trying to solve.

• Section 5.2 focuses on this work’s assumptions, objectives and contributions.

• Section 5.3 formally describes the problem to be addressed and introduces the
key notations used throughout the chapter.

• Section 5.4 presents the main algorithm, physics-based particle filtering com-
bined with RGB-D images, I use, based on the particle filtering algorithm for
tracking multi-objects.

• Section 5.5 will mention using the tracking algorithm as feedback in model
predictive control (MPC).
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5.1 Introduction

• Section 5.6 will review the experiments and assess the algorithm’s performance.

• Section 5.7 will further examine the potential factors that may have influenced
the experimental results, as well as the limitations of my approach.

• Section 5.8 will conclude this multi-objects tracking algorithm.

5.1 Introduction
In this chapter, I describe methods to improve both the performance of tracking
multiple target objects’ 6D poses and the computational efficiency of the algorithm.
Previously, I applied a physics engine-based particle filter algorithm to track multiple
target objects, which significantly reduced the computational efficiency. Therefore,
this chapter focuses on enhancing the computational efficiency of the algorithm
while improving the accuracy of tracking the 6D poses of multiple target objects.
Additionally, I will discuss the application of this multi-object tracking algorithm in
robotic manipulation tasks, aiming to integrate it effectively into practical scenes.

Figure 5.1 illustrates the process of a robotic manipulation task, where the goal
is to push a target object (a yellow-green cylinder) into the goal area (red circle).
During the robotic manipulation task, the target object is initially fully visible but
becomes completely obscured by objects such as Milk and CheezIt as the robot
moves. As the robot continues to push, the target object reappears within the
camera’s field of view. A major challenge in executing robotic manipulation tasks
is the occlusion of the target object by other items. Traditional tasks often employ
specific methods, such as attaching AR markers or reflective markers to all objects,
to determine their poses for manipulation. However, it is impractical to apply
markers to every common object in real-world scenes. Therefore, I have applied a
particle filter-based multi-objects tracking algorithm to robotic manipulation tasks.
The objective is to provide accurate robotic trajectories for completing tasks, even
when the target object is obscured.

In multi-object tracking tasks, the robot’s movement trajectories are predeter-
mined, while in robotic manipulation tasks, these trajectories are generated by the
algorithm.

Building upon the tracking algorithm discussed in previous chapters, I have in-
corporated depth images as an additional criterion for particle resampling in the
multi-object tracking algorithm. Extensive testing has demonstrated that using
depth images greatly improves the performance of the multi-object tracking algo-
rithm.
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5.2 Objectives and Contributions

Figure 5.1: An experimental scene where a robot is pushing an object (the yellow-
green cylinder) to a goal area (red circle) among other cluttering objects. The top
row shows the camera image that is used for tracking the objects. Purple particles in
the bottom row show the possible poses of the objects as estimated by the method.
The blue particles show the estimated pose from a camera-only pose estimation
system, DOPE [36].

5.2 Objectives and Contributions
This chapter outlines key objectives and contributions to developing this multi-
objects tracking algorithm for robotic non-prehensile manipulation and using the
algorithm in real robotic manipulation tasks.

5.2.1 Objectives

This chapter aims to develop a tracking algorithm that leverages a physics engine
and particle filter to address the challenges of tracking multiple target objects’ 6D
poses under robotic non-prehensile manipulation, even when the objects are occluded
during operations. The final objective is to apply this algorithm in real-world robotic
systems, enabling the robotic manipulation algorithm to generate real-time motion
trajectories for the robot to complete manipulation tasks effectively.

5.2.2 Contributions

The contribution of this chapter is to propose an algorithm for tracking multi-objects
in cluttered environments during non-prehensile manipulations.

5.3 Problem Formulation
This chapter addresses the challenge of non-prehensile manipulation in cluttered
environments, where a robot manipulates multiple objects simultaneously. To enable
closed-loop control strategies for such tasks, my system requires a robust method
for tracking the 6D pose of all objects at all times. To formally define the tracking
problem, I first establish the key variables:
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5.4 Physics-Based Particle Filtering (PBPF)

• Control Input (ut): The control input, ut ∈ RN , is the vector of commands
sent to the robot’s N joints (e.g., in the experiments, the joint states of a
7-DoF manipulator), representing the motion executed from time t− 1 to t.

• Observation (zt): The observation at time t, zt, consists of synchronized
data from a static camera: zt = (RGBzt,

D zt). Here, RGBzt is an RGB image
and Dzt is a depth image. These images are high-dimensional data structures
that provide the visual evidence for my tracking process.

The problem is similarly defined as I mentioned in the section 4.3, but it is worth
noting that in the visual observations, the new algorithm uses both RGB images
and depth images.

With robust object tracking, I can use the object pose estimates as feedback for
closed-loop simultaneous control of multiple objects. Methods like Model Predictive
Control (MPC) depend on such continuous and reliable feedback. The tracking
solution I describe integrates well with an MPC framework. I present such an MPC
approach in Section 5.5.

5.4 Physics-Based Particle Filtering (PBPF)
The process of particle filtering involves a dual-stage update at each time step t:
first, the motion update stage (discussed in Sec. 5.4.1), where particles are moved
based on the latest robot control inputs ut, followed by the observation update stage
(discussed in Sec.5.4.2), where the particles are updated by the observational data
zt. Fig. 5.2 shows the overall process of this algorithm.

5.4.1 Motion Update

The motion update part of the new algorithm hasn’t changed much, using the same
setup as mentioned before in Section 4.4.1 for updating the motion model. However,
updating the motion model in a straightforward, step-by-step manner was slowing
down the code. To fix this, I reorganized the code without changing the basic
function of the motion update, moving the motion model calculations to a multi-
processing method. This adjustment greatly improved the speed of the code.

5.4.2 Observation Update

In the observation update part, for each intermediate particle x̄
[m]
t , I calculate an

weigth w
[m]
t using the observation zt:

w
[m]
t = p(zt | x̄[m]

t ) (5.1)

50



5.4 Physics-Based Particle Filtering (PBPF)

Figure 5.2: This system for objects’ pose estimation during robotic non-prehensile
manipulation over two time steps, t − 1 and t. At t − 1, RGB and depth images
describe the scene, and particles represent possible objects’ poses. As the system
advances to t, these particles are updated by robot control, ut, through physics
simulation. New RGB and depth images are obtained from the camera. The RGB
image is used to estimate objects’ poses PE(RGBzt), and are compared with poses of
particles x̄[m]

t to get the difference. The depth image is compared with the rendered
depth images (according to the poses of objects in each particle in the simulation).
Finally, particle resampling refines the objects poses estimations, and then gets a
new particle set.

Upon calculating the weights for all intermediate particles, these weights are
used to re-sample a new set of particles Xt, thus concluding the particle filter up-
date. During re-sampling, each intermediate particle x̄

[m]
t may be selected (poten-

tially multiple times) for inclusion in the new set Xt, with selection probabilities
proportional to w

[m]
t .

To calculate the weights in Eq. 5.1 I use the RGB and depth images as observa-
tions:

w
[m]
t = p(RGBzt,

Dzt | x̄[m]
t ) (5.2)

I make the simplifying assumption that the RGB and depth images captured
by the camera are conditionally independent, given the true state of the world
represented by the particle x̄

[m]
t . Firstly, the two sensing modalities operate on

different physical principles: the RGB sensor captures passive ambient light in the
visible spectrum [55], while the depth sensor typically uses its own active infrared
light source [56]. Consequently, their dominant sources of noise and error are largely
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decoupled. For instance, changes in ambient lighting drastically affect the RGB
image but have minimal impact on an active depth sensor, whereas certain surface
materials might disrupt depth readings without significantly altering their colour
appearance.

This assumption of conditional independence allows us to decompose the joint
probability distribution from Equation 5.2 into the product of two separate likeli-
hood models:

w
[m]
t = p(RGBzt | x̄[m]

t ) · p(Dzt | x̄[m]
t ) (5.3)

This decomposition is highly advantageous as it significantly simplifies the prob-
lem. It enables us to design and compute two independent likelihood functions: one
that evaluates the color-based similarity of the observation (p(RGBzt | x̄[m]

t )), and
another that evaluates the geometric or shape-based similarity (p(Dzt | x̄[m]

t )).

RGB Images

The expression p(RGBzt | x̄[m]
t ) in Eq. 5.3 ideally represents the probability of making

the current observation (i.e. getting the current camera RGB image) if objects were
at pose x̄

[m]
t . Since I do not have direct access to such a model, using the Bayes

Theorem, I first re-write the observation model:

p(RGBzt|x̄[m]
t ) =

p(x̄
[m]
t |RGBzt) p(

RGBzt)

p(x̄
[m]
t )

(5.4)

Here, I note that p(RGBzt) is the same for every particle since the current ob-
servation does not change between particles. Furthermore, I make a simplifying
assumption that p(x̄

[m]
t ) is also similar for different particles. This enables us to

compute the weight using:

p(RGBzt|x̄[m]
t ) ≈ p(x̄

[m]
t |RGBzt) (5.5)

Given that each particle contains the pose state of all the objects x̄[m]
t := {q̄it}

[m]
i=1,...,n,

and assuming that the pose of each object is independent of each other, I write:

p(x̄
[m]
t |RGBzt) =

n∏
i=1

p(q̄
i,[m]
t |RGBzt) (5.6)

Since my particles, x̄[m]
t , are feasible (e.g., non-penetrating) outputs of the motion

model, none of the simplifications above result in assigning probabilities to infeasible
states.

I compute p(q̄
i,[m]
t |RGBzt) for each object, based on the results of two computa-

tions: a Distance comparison and a Visibility score.
Distance Comparison: I first use an off-the-shelf RGB-based single-snapshot pose
estimation (PE) system to predict the pose of each object according to RGBzt and

52



5.4 Physics-Based Particle Filtering (PBPF)

then use the distance of q̄i,[m]
t to the predicted object pose to compute a probability

value. Using PEi(RGBzt) to represent the output of the pose estimation system for
object i, i.e., the predicted pose of the object i given the camera image RGBzt, I
compute a probability, pPE, for each object:

pPE(q̄
i,[m]
t |RGBzt) = N(q̄

i,[m]
t ; PEi(RGBzt), σ

2
PEi) (5.7)

where the parameter σ2
PEi represents the variance of PE system errors for the object.

The variance can be estimated beforehand by collecting pose estimates for each ob-
ject and comparing them to the ground truth pose. In practice, I use two normal
distributions to compute the probability in Eq. 5.7. One distribution accounts for
the positional Euclidean distance between q̄

i,[m]
t and PEi(RGBzt). The second distri-

bution represents the rotational distance between q̄
i,[m]
t and PEi(RGBzt), computed

as the minimum rotation around a single axis required to align the two orienta-
tions. The final probability in Eq. 5.7 is obtained by multiplying the probabilities
from these two normal distributions. I use Normal distribution as the most generic
model. Alternatively, given a particular PE system, the distribution for that sys-
tem can be empirically modelled (either as a different parametric distribution or as
a statistical/learned model) for a given object.

While pPE(q̄
i,[m]
t |RGBzt) can be used as the value of p(q̄i,[m]

t |RGBzt) in Eq. 5.6, this
requires that an output from the PE system for each object, PEi(RGBzt), is present.
However, situations exist where a PE system fails to detect an object, which means
PEi(RGBzt) does not exist. For example, this happens when the object is occluded.
To address these situations which occur when the object is occluded, I also evaluate
the visibility of an object in a particle.
Visibility Score: Note that, given an image RGBzt, the absence of object detection
is also useful information. It often indicates that the object is either partially or
completely occluded, which can provide significant information about its pose. To
leverage this information, I use rendered artificial images of each particle from the
perspective of the camera, which I call a “simulated camera” below. I then establish
the following four conditions:

1. If the object i at pose q̄
i,[m]
t in the particle x̄

[m]
t is visible to the simulated

camera (i.e. camera’s view to the object is not occluded by other objects in
x̄
[m]
t , the robot, or the environment), and the PE system detects it in the actual

image (i.e., PEi(RGBzt) exists) then p(q̄
i,[m]
t |RGBzt) is equal to the probability

estimated using the PE system, pPE(q̄
i,[m]
t |RGBzt).

2. If the object i at pose q̄
i,[m]
t in the particle x̄

[m]
t is visible to the simulated cam-

era, but the PE system does not detect it in the actual image (i.e., PEi(RGBzt)

does not exist) then p(q̄
i,[m]
t |RGBzt) is given a low probability value, αl ∈ [0, 1],

which is a predefined parameter. It represents the probability that the PE
system cannot detect a visible (non-occluded) object.
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3. If the object i at pose q̄
i,[m]
t in the particle x̄

[m]
t is not visible to the simulated

camera (i.e. camera’s view to the object is mostly occluded by other objects
in x̄

[m]
t , the robot, or the environment), but the PE system detects it in the

actual image (i.e., PEi(RGBzt) exists) then p(q̄
i,[m]
t |RGBzt) is given a low value,

pPE(q̄
i,[m]
t |RGBzt) · αw, where αw ranges between 0 and 1. In rare cases, even

mostly occluded objects can be detected by PE systems, and this probability
reflects that case.

4. If the object i at pose q̄
i,[m]
t in the particle x̄

[m]
t is not visible to the simulated

camera, and the PE system also does not detect it in the actual image (i.e.,
PEi(RGBzt) does not exist) then p(q̄

i,[m]
t |RGBzt) is given a high probability

value αh ∈ [0, 1]. This represents the probability that the PE system does not
detect an object when it is mostly occluded, which is high.

Based on the conditions outlined above, the value of each p(q̄
i,[m]
t |RGBzt) in Eq. 5.6

is determined.
The method I presented above requires deciding whether an object is visible or

occluded in a particle. I determine this by computing a visibility score for each
object in each particle V isiblei(x

[m]
t ), which represents the proportion of the part of

the object i in particle [m] that is not occluded.
To compute V isiblei(x

[m]
t ) the system uses the simulated camera to render one

segmented image with all objects in the particle, as well as individual segmented
images for each object separately. I show an example in Fig. 5.3 for a given particle.
The top-left image shows the rendered segmented image for all objects in the particle
(including the robot and the environment). I count the number of pixels belonging
to each object in this image, as shown top-right in Fig. 5.3. This count reflects the
portion/footprint of the object that is not occluded and thus visible to the camera.
The bottom three rows on the left show the individual segmented images rendered
for each object separately. I also count the number of pixels belonging to the objects
in these images, as shown in the bottom three rows in the middle. These counts
reflect the total possible footprint of each object at that pose. I define the visibility
score of each object as V isiblei(x

[m]
t ) as the ratio of the unoccluded footprint to the

total possible footprint, as shown in the bottom three rows on the right of Fig. 5.3.
A visibility score of 1 indicates perfect visibility, where the entire object is visible to
the camera. Conversely, a score of 0 indicates that the object is entirely occluded. To
simulate the camera, i.e., to render the segmented images above, and to determine
the pixel counts, I use GPU hardware queries. The details of GPU-based rendering
are explained in the paper that is submitted to the TRO journal[57], and this part
is developed by my co-authors Jaina Modisett and Markus Billeter.

I decide whether an object in a particle is visible to the camera, by comparing
V isiblei(x

[m]
t ) to a threshold, V , which is a predefined parameter of the system. If
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Figure 5.3: Visibility score calculation for three objects in an example particle. A
segmented/footprint image is rendered for each object jointly in the particle (top-
left) and individually (bottom-three-leftmost) at their corresponding poses in the
particle. The pixels belonging to each object are counted in each of these images
(top-right and bottom-three-middle). A visibility score for each object is calculated
as the ratio of the unoccluded footprint to the total possible footprint (bottom-
three-rightmost).

V isiblei(x
[m]
t ) is higher than a V , then I consider the object in the particle to be

visible, in the four conditions listed above. If it is lower, I consider it occluded in the
particle. I determine V for each object type beforehand, by increasingly occluding it
with an obstacle and identifying the degree of occlusion where the PE system starts
to fail.

Depth Images

To compute p(Dzt | x̄[m]
t ) in Eq. 5.3, this approach again involves using the simulated

camera to render a depth image for each particle at every time step. Specifically,
after updating each particle by motion model (Sec. 5.4.1), I render a depth image
based on the poses of objects inside the intermediate particle x̄[m]

t , and then compare
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the rendered depth image Dz̄
[m]
t with the real depth image Dzt captured by the

camera. Each particle needs to render only one depth image encapsulating the pose
state information of all objects. Again, I use GPU parallelization to render the
depth images, which markedly improves efficiency.

An error score for each particle is obtained by comparing the rendered depth
images with the real depth image. I use the error score, e[m]

t , using a visible surface
discrepancy error function similar to the one proposed by Lee et al. [58]. However,
Lee et al. use depth information on a per-object basis and therefore require seg-
mentation of the real depth image. Instead, my joint multi-object treatment of the
scene enables us to render the full scene directly, instead of relying on potentially
inaccurate segmentation of individual objects.

I define my error score as:

e
[m]
t = avg

p̄∈ D z̄
[m]
t

p∈ Dzt

{
0 if |Dz̄[m]

t (p̄)− Dzt(p)| < β

1 otherwise
(5.8)

where p̄ and p represent the pixels in Dz̄
[m]
t and Dzt respectively, β represents the

threshold value used to assess the degree of correspondence between pixel values. If
the absolute depth difference between corresponding pixels is less than the threshold
β, these pixels are assigned to 0. Otherwise, the pixels are assigned 1, as shown
in Fig. 5.4. This binary classification of pixel distances results in a new set of
pixel values. Subsequently, these values are averaged to calculate the e

[m]
t . Using

this method, I compute error scores, {e[m]
t }m=1,...,M , for all particles at time step t.

Upon calculating the {e[m]
t }m=1,...,M , a normalization operation is performed to get

p(Dzt | x̄[m]
t ):

p(Dzt | x̄[m]
t ) =

e
[m]
t −min(e[1]t , . . . , e

[M ]
t )

M∑
m=1

(
e
[m]
t −min(e[1]t , . . . , e

[M ]
t )

) (5.9)

The selection of the threshold β in Equation 5.8 is critical to the performance of
the likelihood model. This parameter acts as a tolerance margin, defining how much
discrepancy between the rendered and real depth values is considered negligible. The
choice of β involves a direct trade-off: a value that is too small would make the error
function overly sensitive to sensor noise and minor inaccuracies in the CAD models,
potentially penalising even near-perfect poses. Conversely, a value that is too large
would reduce the model’s discriminative power, making it too permissive and unable
to effectively distinguish between correct and incorrect poses. In my implementation,
I adopt the value for β directly from the work of Lee et al. [58], upon which my
error function is based. This approach aligns my methodology with a comparable
state-of-the-art method, providing a well-established and validated starting point
for this parameter. While more advanced techniques, such as using a trained neural
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Figure 5.4: I subtract the pixel values at corresponding locations between the two
depth images. The absolute differences are then compared against a predefined
threshold, β. For each pixel, if the absolute difference is less than β, the pixel in the
resulting image is assigned a value of 0. Conversely, if the difference exceeds β, the
pixel is assigned a value of 1.

network, could potentially determine an optimal or even adaptive β value, adopting
a proven value from prior work ensures a robust and reproducible baseline for my
experiments. The selected value was held constant across all experiments to ensure
a fair comparison.

The motivation behind my model is to quickly compute a probability value with-
out performing object-level segmentation or reasoning on the cluttered real-depth
images. If object-level segmentations/pose estimates are available on the real-depth
image, then more informative, and more symmetric, models can be built. However,
object-level segmentation/pose-estimation on depth images (e.g., ICP-like schemes)
are time-consuming, and given my particular focus on highly occluded scenes, are
not reliable.

Computational Cost

To ensure efficient performance, the particle filter is updated (i.e., motion and ob-
servation updates are performed) at fixed time intervals, denoted as ∆t. The most
computationally demanding part of this process is the motion update, which relies
on physics-based predictions. Consequently, ∆t is selected based on the minimum

57



5.5 Model Predictive Control (MPC)

time interval necessary to complete the physics simulations for all particles within
the system.

5.5 Model Predictive Control (MPC)
In the previous section, I described a method for tracking the 6-D pose of objects.
This section proposes a Model Predictive Control (MPC) framework that uses feed-
back from the particle filtering algorithm to push an object to a goal region. The
tracking system enables the MPC to control object poses even when they are oc-
cluded. Figure 5.1 shows example manipulation tasks, with varying numbers of
objects. The MPC approach was mainly developed by my co-author Rafael Papal-
las and I integrated it with my pose tracking system and evaluated the performance
of the integrated system.

5.5.1 MPC Framework

Alg. 2 presents a typical MPC framework. It starts by getting an initial state of the
system, such as the robot joints and the poses of objects, using a pose estimation
system (line 2). In line 3, it generates a straight line trajectory from the end-
effector’s position to the goal region. The MPC algorithm then repeatedly, until
successful or timeout (line 4), call the optimizer on line 5, passing in the current
state (xcurrent) and a trajectory (τ). The operational principles of this optimiser are
detailed in Section 5.5.2. If the optimization was unsuccessful, the MPC (lines 6
and 7) will be terminated. If optimization was successful, it executes nu controls
of the optimized trajectory in the real-world in line 8. In line 9, it updates the
trajectory by removing the executed controls. Finally, The MPC algorithm updates
the simulator with feedback from the real-world in line 10.

A particle is selected from the PBPF algorithm to update the simulation state
in line 10. Recall that a particle represents the poses of all the objects, and then

Algorithm 2 Model Predictive Control (MPC) Framework
1: procedure MPC
2: xcurrent ← initialise simulation state from real-world
3: τ ← initialise trajectory
4: while not successful and not timeout do
5: τ , optimizationSuccessful← optimize(xcurrent, τ)
6: if not optimizationSuccessful then
7: return
8: execute nu controls from τ in the real-world
9: τ ← remove the nu executed controls from τ

10: xcurrent ← update simulation state from real-world
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select x
[m∗]
t , the particle closest to the mean of the particle set, as follows:

x
[m∗]
t := arg min

m
d(x

[m]
t , x

[µ]
t ) (5.10)

where x[µ]
t is the mean of the particle set, and d(x

[m]
t , x

[µ]
t ) is the distance of a particle,

x
[m]
t , to the mean. Calculating the distance of a particle by summing up the distances

of all the object poses to their corresponding mean pose. The distance for an object
combines the Euclidean positional distance (δp) and the rotational distance (δθ;
minimum angle between two orientations): wδp · δp + wδθ · δθ. This MPC variant is
called, MPC-PBPF.

A simple MPC baseline can use feedback from a pose estimation system, like
DOPE, in line 10 instead. Such an MPC baseline is implemented and called, MPC-
DOPE. MPC-PBPF, MPC-DOPE, and an open-loop system without feedback are
compared in Section 5.6.

5.5.2 Stochastic Trajectory Optimizer

Algorithm 3 presents the stochastic optimizer [59, 60] that is used in Algorithm 2
and line 5. It starts by rolling out the trajectory, τ (controls in the joint-space),
using a physics simulator from the current state, xcurrent, to get a state sequence
S (line 2). The cost is computed over that state sequence using a weighted cost
function, C(S) : S → R, in line 3, as follows:

C =

|S|∑
i=1

w1 · dg + w2 · do + w3 · dz + w4 · q̇ee + w5 · cs (5.11)

where dg is the Euclidean distance from the object to the goal region, do is the
Euclidean distance from the end-effector to the object, dz is the deviation of the
end-effector along the z-axis from its initial state (keeping the robot gripper parallel
to the table), q̇ee is the end-effector’s linear velocity, and cs is an indicator function
for collision with static obstacles. If successful, the MPC algorithm just returns the

Algorithm 3 Stochastic Trajectory Optimization
1: function OPTIMIZE(xcurrent, τ)
2: S ← rollout τ from xcurrent

3: obtain the cost of rollout using C(S)

4: while not successful and not convergent do
5: sample k noisy trajectories from τ

6: rollout each noisy trajectory
7: obtain cost for each rollout using C

8: τ ← best trajectory among the k

9: return τ , optimizationSuccessful
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solution without any optimization (line 9). If not, it starts by sampling k trajectories
from τ by introducing Gaussian noise to the controls (i.e., adding noise to each of the
joints over the full trajectory horizon) (line 5). Then, the MPC algorithm rollouts
each of the k trajectories (line 6). It computes a cost for each rollout (line 7). Note
that the MPC algorithm parallelises lines 5-7. In line 8, it picks the trajectory with
the lowest cost. The MPC algorithm repeats until it finds a successful trajectory
or converges to a local minimum. If it hits a local minimum, the task is declared
as a failure and I return false for optimizationSuccessful. While susceptible to
local minima, local trajectory optimizers remain effective for generating contact-
based manipulation trajectories [60, 59], balancing computational efficiency with
the ability to escape some local minima by carefully tuning noise injection.

Please note that the input trajectory, τ , can be an initial rough trajectory (for
example, from line 3 of Algorithm 2) or a warm-start with a good trajectory from a
previous optimization process (as interleaving planning and execution in the MPC
framework).

5.6 Experiments and Results
I present two sets of experiments evaluating the performance of my methods.

First, I evaluate the tracking performance. In these experiments, the robot exe-
cutes a pre-determined motion (i.e., without MPC) interacting with the objects. I
evaluate how accurate the estimated poses of the objects are (as compared to ground
truth poses) during the robot motion. These experiments evaluating the tracking
performance are presented in Sec. 5.6.1 to Sec. 5.6.3.

Second, I evaluate the control performance, where an MPC controller (as dis-
cussed in Sec. 5.5) pushes an object to a goal region. In these experiments, I evaluate
how successfully the object is pushed into a goal region when the MPC controller uses
my physics-based pose tracking methods as opposed to other baseline pose estima-
tion methods. These experiments evaluating the control performance are presented
in Sec. 5.6.4 to Sec. 5.6.6.

5.6.1 Tracking Tasks and Metrics

To verify the performance of tracking methods, I create different non-prehensile
manipulation scenes. In these scenes, the robot performs an open-loop pre-defined
motion. Examples can be seen in Table 5.1. I create 50 similar scenes:

• One-object-push: An example scene is shown in the top two rows Table 5.1.
I create 20 similar scenes with different objects.

• Two-objects-push: An example scene is shown in the middle two rows Ta-
ble 5.1. I create 20 similar scenes with different objects.
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• Three-objects-push: An example scene is shown in the bottom two rows of
Table 5.1. I create 10 similar scenes with different objects.

The above experiments are configured such that, during the manipulation, the
objects can be partially or fully obscured by the robotic arm, obstacles, or other
objects. This creates significant challenges to the tracking accuracy and effectiveness
of manipulation tasks. I use a variety of objects from two datasets, YCB-dataset
[53] and HOPE-dataset [61], as shown in Table 5.2. These objects include symmetric
objects, and of varying sizes, demonstrating the applicability of the method to a wide
range of objects. In all scenes, tracked objects only interact with the robot and other
tracked objects. For the ground truth object poses, I used the OptiTrack system [1],
which uses reflective markers placed on the objects for precise pose estimation, as
shown in Fig. 3.4. I use an ar-marker on the robot to find the camera’s pose with
respect to the robot, i.e., for extrinsic camera calibration.

Each of runs contains an average of 8630 time-steps, i.e., data points at which
I have an RGB-D image, robot joint information, and object pose ground truth
information. Over 50 runs, I have a total of 431500 data points. The results I
present below are averaged over these data points.

To evaluate the accuracy of pose tracking, I employ two metrics: the Average
Distance of Discrepancy (ADD) [34] and the Symmetric Average Distance of Discrep-
ancy (ADD-S). ADD measures the mean Euclidean distance between corresponding

Table 5.1: Example Tasks for Single and Multi-Object 6D Pose Tracking Experi-
ments and Comparison of Performance of FOUN and PBPF-RGBD Methods
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5.6 Experiments and Results

Table 5.2: Objects Used in Tracking Experiments

YCB Objects [53] HOPE Objects [61]

Cracker Soup Ketchup Mayo Milk SaladDressing Parmesan Mustard

points on the tracked object model and the object model at the ground truth pose.
ADD-S extends this by considering the mean distance under the best permutation of
model points, making it robust to symmetrical objects where orientation discrepan-
cies might otherwise be misleading. I specifically report the area under curve (AUC)
[34] of ADD and ADD-S. This is the metric most commonly used to evaluate pose
estimation systems’ accuracy for varying accuracy thresholds [34, 14, 40, 36, 62].

I release this dataset of 50 experiments (431500 data points) including time-
stamped RGB-D observations, robot joint values, object pose ground truth values,
and object/robot/environment 3D models, for others in the community to be able
to use not only the RGB-D information (which is often provided in other simi-
lar datasets) but also physics-based inference (enabled by timestamped robot joint
values and 3D models).

5.6.2 Implementation of Tracking Methods

I evaluated four different methods for tracking objects1.
1) Diff-DOPE: Diff-DOPE [62] refines the object’s pose at every time step, using

prior estimates provided by DOPE [36], a single-snapshot object pose estimation
system. I used the official Diff-DOPE implementation2.

2) Diff-DOPE (Tracking): I modified Diff-DOPE such that it uses a different
prior estimate at each time step. Instead of using DOPE, I use the pose estimated by
Diff-DOPE in the previous time step as the prior estimate. This makes Diff-DOPE
capable of using information from previous time-steps, similar to the methods. For
the very first frame of a run, I still use DOPE as the prior.

3) FoundationPose: FoundationPose [40] uses a combination of deep learning
and geometric optimization to track an object. It is one of the leading methods
listed on the worldwide BOP leaderboard3 (at the time of writing). I used the
official FoundationPose implementation4.

4) PBPF: This Method as explained in Sec. 5.4. Particularly, I implemented
three versions of the method: PBPF-RGB, PBPF-D and PBPF-RGBD. The

1Experiments were performed on CPU: Intel(R) Xeon(R) W-2295 CPU@3.00GHz; GPU:
NVIDIA GeForce RTX 3080; RAM: 192906 Mb

2https://github.com/NVlabs/diff-dope
3https://bop.felk.cvut.cz/leaderboards
4https://github.com/NVlabs/FoundationPose
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distinction among the three versions lies solely in their observation model. Specif-
ically, PBPF-RGB uses only RGB images (Section 5.4.2), PBPF-D relies only on
depth images (Section 5.4.2)1, and PBPF-RGBD integrates both RGB and depth
images (Section 5.4.2 and 5.4.2) as its observation model. Implementation de-
tails: The implementation details and the parameter values I used in all PBPF
versions are: (a) Motion model parameters. I used the same coarse friction and resti-
tution parameters for all objects: µfriction = 0.1 and σfriction = 0.3, with the minimum
sampled value capped at 0.001. µrestitution = 0.9 and σrestitution = 0.2. I used different
mass estimates for objects: µmass of Cracker, Soup, Milk, Parmesan and Mustard
are 0.45 kg, 0.35 kg, 0.04 kg, 0.035 kg and 0.05 kg, respectively. µmass of Ketchup,
Mayo and SaladDressing are the same at 0.06 kg. The σmass for Cracker and Soup
is 0.5, and 0.1 for the remaining objects, with a minimum sampled value capped at
0.02 kg. σf : For position 0.005 m, for rotation 0.05 radians. I used the Pybullet
physics engine [54] as the physics model, fθ. I employ a multi-processing approach
to initialize and manage each particle within individual PyBullet environments, us-
ing all 18 (36 virtual) CPU cores available on the computer. (b) Observation model
parameters. As the PE system (used to estimate pPE as explained in Sec. 5.4.2),
I use DOPE since it is a single-pass neural network that was fastest among the
ones I have tested, with relatively accurate pose estimation for known objects. σPE:
For position 0.1 m and rotation 0.2 radians. Visibility parameters: the threshold
V used for comparing V isiblei(x

[m]
t ) to decide object visibility is set to 0.55 for all

other objects (except 0.45 for the large Cracker object) when the PE system detects
the object. If the PE system does not detect the object, the threshold V is set to
0.6 for all objects (0.5 for the Cracker); αw = 0.33, αh = 0.6, αl = 0.55 for all objects
(αh = 0.75, αl = 0.45 for Cracker). Depth parameters: β = 0.03 m. (c) Update
frequency. ∆t = 0.25s. (d) Number of particles. These tests with different numbers
of particles showed accuracy to plateau around 50 particles. On the other hand, due
to computational cost, the number of particles needs to be reduced as more objects
are tracked to allow the PBPF algorithm to run at the same update frequency. I
use the following particle counts: M = 70 for one object, M = 50 for two objects,
and M = 40 for three objects. (e) Initialization. I initialize particles at t = 0 by
sampling from a Gaussian distribution. I use the pose from the PE system at t = 0

as the mean pose, and the standard deviations for initialization are 0.03 m and 0.2
radians. During initialization, if objects are penetrating each other or the robot, I
move them in the direction of the contact normal until they are not penetrating.

5.6.3 Pose Tracking Results

Table 5.3 presents the overall average tracking performance of different methods.
(Please note lower values are better for ADD and ADD-S, whereas higher values are

1PBPF-D uses the RGB-based DOPE at t = 0 to initialize the objects’ poses.
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Table 5.3: Overall average tracking accuracy for different methods (↓ represents
lower is better, ↑ represents higher is better)

Method ADD ↓ AUC-ADD ↑ ADD-S ↓ AUC-ADDS ↑

Diff-DOPE 0.125 42.8 0.101 53.8
Diff-DOPE (Tracking) 0.187 30.9 0.153 39.9
FoundationPose 0.118 52.3 0.100 59.8
PBPF-D 0.065 58.8 0.049 70.0
PBPF-RGB 0.088 46.0 0.068 59.6
PBPF-RGBD 0.030 70.1 0.021 79.2

PBPF-RGBD (Best Particle) 0.016 83.7 0.012 87.6

Figure 5.5: Accuracy versus Error threshold plots for different methods, used to
compute Area Under the Curve (AUC). The horizontal axis represents the increasing
threshold of error allowed, ranging from 0.00 to 0.10 meters, and the vertical axis
shows the accuracy of the methods, ranging from 0 to 1, for that given threshold.
(BP means Best Particle and T means Tracking.)

better for AUC.) I evaluated each method 100 times1 in each of the 50 runs (giving
us 100 different estimates for each of the 431500 data points) to accommodate the
inherent randomness in some of these methods (e.g., the probabilistic nature of
particle filtering). If a method failed to output a pose estimation at a certain time-
point, I used its most recent output. PBPF outputs a set of particles, not a single

1All robot/camera/ground truth data were recorded in a ROS bag file during actual robot
manipulation. These bag files were then replayed, respecting timestamps, 100 times for each
different method.
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Table 5.4: Object-specific accuracy of tracking for different methods

Method Diff-DOPE Diff-DOPE (T) FoundationPose PBPF-RGB PBPF-D PBPF-RGBD

Metric ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S

Cracker 0.152 0.109 0.170 0.105 0.049 0.039 0.093 0.062 0.070 0.055 0.032 0.025
Soup 0.075 0.052 0.162 0.133 0.071 0.054 0.065 0.043 0.030 0.018 0.029 0.017
Ketchup 0.076 0.061 0.207 0.176 0.137 0.124 0.057 0.043 0.037 0.026 0.028 0.020
Mayo 0.155 0.137 0.191 0.167 0.080 0.065 0.071 0.054 0.070 0.051 0.028 0.020
Milk 0.118 0.092 0.150 0.117 0.223 0.208 0.084 0.066 0.037 0.025 0.027 0.019
Mustard 0.177 0.152 0.191 0.162 0.133 0.109 0.071 0.051 0.132 0.104 0.035 0.024
Parmesan 0.118 0.100 0.178 0.151 0.115 0.093 0.076 0.055 0.042 0.028 0.031 0.020
SaladDressing 0.093 0.075 0.299 0.268 0.148 0.121 0.240 0.230 0.122 0.107 0.032 0.021

Mean 0.125 0.101 0.187 0.153 0.118 0.100 0.088 0.068 0.065 0.049 0.030 0.021

pose estimate. To compute the accuracy values, I used the particle that is closest
to the mean of the particles. I also present the AUC curves in Fig. 5.5 (which show
accuracy vs error threshold and is used to compute the area under the curve)

The results presented in the table show that PBPF-RGBD performs significantly
better, compared to baselines. This is possible because this method uses the addi-
tional robot control, and the physics-rollout, information while estimating objects’
poses.

Among these results, I also show the accuracy of the “best particle” from the
particle set (the last row of Table 5.3). The “best particle” is the particle that is
closest to the ground truth pose. While it is impossible to know which particle is
the best particle when one does not have access to ground truth, I report this, since
it can be useful to put a bound on the expected error for conservative/worst-case
manipulation planning systems, i.e., systems that plan robust robot motion that
take into account all particles in the particle set.

Table 5.4 presents a more detailed view, showing ADD and ADD-S results for
different objects, including data from all my 50 scenes (i.e., including when these
objects may be in the scene together with multiple other objects). These results
show that the PBPF-RGBD algorithm performs better consistently over all objects
of various shapes and properties I have tested.

It is also clear from the results that using both RGB and depth information
is useful and necessary to achieve the best performance. Table 5.3 demonstrates
that PBPF-RGBD significantly outperforms PBPF-D (implying the value of RGB
information) and PBPF-RGB (implying the value of depth information). I also note
that PBPF-D outperforms PBPF-RGB. I think there are two reasons for this. First,
PBPF-D in fact uses RGB information, even if only at initialization (at t = 0), which
puts it at an advantage when compared to PBPF-RGB. Second, in my scenes, where
significant occlusions frequently occur, the accuracy of RGB-only pose estimation
systems, e.g., DOPE, suffers drastically.
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However, RGB is particularly useful when objects have similar shapes. For ex-
ample, the error results of the Mustard and SaladDressing objects in Table 5.4
reveal that PBPF-RGBD performs notably better than PBPF-D. This is due to the
algorithm’s difficulty distinguishing between the similarly sized Mustard and Salad-
Dressing objects when only depth images are used, leading to decreased accuracy.
This also applies to other target objects with similar size and shape.

I show some visual examples of tracking performance in Table 5.1. I use wire-
frames overlaid on the images to show the estimated poses of different methods
(orange for FoundationPose and green for my method). (For my method, I draw the
wireframe at the pose of the particle closest to the mean of the particles.) As can be
seen in the figures, when all objects are visible, both systems perform well in estimat-
ing object poses. However, when there are occlusions (either behind other objects or
behind the robot), FoundationPose estimates diverge significantly, whereas PBPF
can estimate physically plausible poses for objects.

An advantage of my method is that it provides consistent tracking of objects
even when there are heavy occlusions. To analyze this better, in Fig. 5.6, I evaluate
each method’s performance when the target object is at different levels of visibil-
ity to the camera. Here, the visibility values are computed similar to the process
shown in Fig. 5.3, but this time using the ground truth poses of the objects. In
Fig. 5.6, the solid lines show the mean ADD scores for all methods, computed over
all objects at all time-steps in all of my 50 scenes. PBPF-RGBD demonstrates im-
pressive accuracy across all visibility levels. Diff-DOPE’s performance improves as
visibility of the object improves, but stays well above PBPF-RGBD performance.
FoundationPose performs well when the object is fully visible (i.e., visibility is 1.0),
however suffers significantly, performing even worse than Diff-DOPE, at visibility
values around 0.6. This is because, when FoundationPose loses track of the object
behind occlusion, its accuracy suffers drastically, even after the object re-appears
in the scene and becomes visible. (This can also be observed in Table 5.1, and the
attached video.) To understand FoundationPose performance when I remove the
effects of such highly erroneous estimates on the mean, in Fig. 5.6, I also present the
median ADD performance with the dashed line. The median performance of Foun-
dationPose improves as visibility improves, as expected. PBPF-RGBD’s mean and
median performances are almost identical, showing robustness, due to the stabilizing
effect of the physics constraints.

5.6.4 Control Tasks and Metrics

In addition to the experiments I performed above, I also performed experiments to
show how the real-time tracking of objects can be used for goal-directed manipula-
tion in clutter. To evaluate the effectiveness of my method in manipulation tasks
using MPC (Sec.5.5), I designed four different tasks as shown in Fig. 5.7:
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Figure 5.6: Estimation error (ADD) vs. visibility of ground truth object poses.

Figure 5.7: Examples of four different manipulation tasks, where an MPC controller
aims to push a target object to a target area among other objects, either directly
(first three tasks on the left), or indirectly by pushing another object (rightmost
task).

• 1-Object: The robot pushes an object to a target area. Two different target
areas are used for different instances of this task.

• 2-Objects: The robot pushes an object to a target area, while there is a
second object in the way. Two different target areas are used for different
instances of this task.

• 3-Objects: The robot pushes an object to a target area, while there are two
other objects in the way. Two different target areas are used for different
instances of this task.

• Object-Object: The robot pushes an object to a target area, but indirectly,
by pushing another object.

I ran each method 3 times for the same task and the same target area; i.e., in
total, I ran each method 21 times (6 times on 1-Object tasks, 6 times on 2-Objects
tasks, 6 times on 3-Object tasks, and 3 times on Object-Object tasks).

In executing control tasks, the primary consideration is whether the target object
has reached the target area. The target area is defined as a circle with a radius of 5
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Table 5.5: Success rates of controllers on different manipulation tasks

OPENLOOP ↑ MPC-DOPE ↑ MPC-PBPF ↑

1-Object 6/6 6/6 6/6

2-Objects 2/6 1/6 6/6

3-Objects 1/6 0/6 6/6

Object-Object 0/3 0/3 3/3

Total 9/21 7/21 21/21

cm. Upon completion of a run, I assess success by measuring whether the object’s
centroid lies within this predefined target area. I run each control method for a
maximum of 1000 controls, and if the target area is not reached by then, the method
reports failure. The parameters for my MPC algorithm are: wδp = 0.7, wδθ = 0.3,
nu = 100. The parameters for the stochastic trajectory optimiser are: |τ | = 1000,
w1 = 60000, w2 = 20000, w3 = 45000, w4 = 3000, w5 = 10000, k = 40, I sample
noise for each of the 7-DOF from a Normal distribution with mean 0 and σ = 0.3.

5.6.5 Control Methods

I use three different methods to perform the manipulation tasks:

• OPENLOOP: This method operates without any feedback during the ma-
nipulation task except the initial time-step. At the initial time-step, the object
poses are estimated using DOPE, and Alg. 3 is used to optimize one trajectory
to the goal. This trajectory is then executed open-loop, without any feedback.

• MPC-DOPE: This method uses Alg. 2. As state feedback, it uses the pose
estimate of the objects provided by the DOPE algorithm at each time-step.

• MPC-PBPF: This method uses Alg. 2. As state feedback, it uses the pose
estimate of the objects provided by the PBPF-RGBD algorithm at each time-
step.

5.6.6 Results of Control Experiments

Table 5.5 shows the success rates of different methods in different tasks. In all 21
experiments, MPC-PBPF successfully moved the target object to the target area,
even when there were significant occlusions of the target and other objects. While
OPENLOOP and MPC-DOPE were also successful for the easier 1-Object task, they
had significantly lower success rates for tasks with more objects, where the lack of
accurate knowledge of object poses was detrimental.
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Figure 5.8: Example MPC-PBPF execution, where the task is to push the cylindrical
Parmesan object to the target area (shown as a red circle), while there is another
object in the way (Cheezit object). In the second row, the particles of PBPF-RGBD
are shown in purple at each timestep. The blue particles show the poses reported
by DOPE at those time-steps.

Fig. 5.8 shows MPC-PBPF performance in an instance of 2-Objects task. The
second row shows the particles in purple, while it also shows the DOPE detec-
tions of the objects in blue. The red circle shows the target region. Even when
the target object (Parmesan) is completely occluded, MPC-PBPF can still accu-
rately push the object to the target area. In contrast, when the DOPE method
is employed, occlusion of the object leads to incorrect predictions, resulting in ma-
nipulation task failures. Similarly, Fig. 5.1 shows MPC-PBPF performance in an
instance of 3-Objects task. Corresponding videos of these experiments can be seen
in the multimedia attachment.

5.7 Further Analysis & Limitations
In this section, I perform additional experiments and analysis to understand the
limitations of my approach.

5.7.1 Improvements through CPU and GPU parallelism

To achieve real-time performance, I used both CPU and GPU parallel computing.
CPU multi-threading was used to run physics predictions for multiple particles con-
currently, while the GPU handled the rendering computations.

CPU parallel computing

To accelerate the computational physics prediction step of my particle filter, I em-
ploy a parallel framework built upon Python’s multiprocessing library. The archi-
tecture use a process-per-particle model, establishing a persistent worker pool where
a dedicated operating system process manages each of the M particles. This design
is highly effective for the CPU-bound task of running independent physics simula-
tions, as it fully leverages multi-core processors by circumventing Python’s Global
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Interpreter Lock. Communication is handled asynchronously via a command pat-
tern: the main process dispatches tasks to each worker through a dedicated queue.
The resulting predicted poses from each simulation are then written to a synchro-
nised dictionary that is shared among all processes, allowing the main thread to
gather results efficiently. This persistent worker architecture minimises process cre-
ation overhead, significantly improving the computational efficiency of the filter’s
prediction stage. Fig 5.9(a) shows the workflow of CPU parallel computing.

GPU parallel computing

The GPU pipeline was developed and implemented by my co-authors Jaina Moddis-
ett and Markus Billeter. The GPU-based rendering pipeline, built using the Vulkan
API, is optimised to efficiently compute the per-particle visibility and error scores re-
quired by my tracking framework. The system leverages hardware occlusion queries
to count the visible pixels for each object, using a sophisticated multi-pass approach
with manipulated depth tests to avoid costly buffer clears and image readbacks.
For the final error calculation, a compute shader pipeline evaluates the pixel-wise
discrepancy between the rendered synthetic depth image and the real observation.
A highly efficient parallel reduction algorithm is then employed to sum these per-
pixel results directly on the GPU. This entire process is designed to minimise data
transfer across the PCIe bus; only the final scalar results—occlusion counts and
error scores—are returned to the CPU, enabling the high-throughput evaluation
necessary for real-time performance. Fig 5.9(b) shows the workflow of GPU parallel
computing [63].

As quantified in Table 5.6, using these parallelisation techniques provides a sig-
nificant performance enhancement. This reduction in latency is crucial for making
my tracking framework viable for real-time, closed-loop manipulation tasks.

(a) (b)

Figure 5.9: (a) CPU parallel computing workflow; (b) GPU parallel computing
workflow.
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Table 5.6: Ablation Study of Parallelism on Component-wise Processing Time (s)

1-obj 2-obj 3-obj

M=70 M=50 M=40

Before using parallelism

Physics Update 0.132 0.365 0.749

Depth Update 42.35 40.61 41.93

After using parallelism

Physics Update (CPU) 0.102 0.096 0.106

Depth Update (GPU) 0.101 0.073 0.073

5.7.2 Robustness to uncertainty in object friction and mass

My method requires mean and variance values for the mass (µmass and σ2
mass) and

friction (µfriction and σ2
friction) parameters of the objects. I performed experiments,

analyzing how sensitive my method’s performance is to the accuracy and uncertainty
of these physics parameters of objects. I present these results in Table 5.7, where
the top sub-table (the first three rows of the table) shows the results of experiments
where I varied only the µmass of objects and measured the performance of my method
PBPF-RGBD. As shown in the table, for these experiments, as µmass I used the
values 0.01, TM, 0.5, 1.00, and 5.00. (TM stands for the “true mass” of an object,
as reported in Sec. 5.6.2.) Since my complete dataset includes scenes with objects of
a wide range of true mass values (some ten times heavier than the others), to make
the effect of varying mass values clear, in these experiments I only used the subset
of the dataset that includes scenes with objects of similar true mass between 0.03 kg
and 0.06 kg, corresponding to Parmesan, Mustard, Ketchup, Mayo, SaladDressing.
(Hence, the TM results are slightly different than the results I report for my method
in Table 5.3 using the complete dataset). The results show that, while the method
with the true mass, TM, performs best, other µmass values did not result in drastic
drops in the performance. I hypothesize that there are two reasons for this. (1) My
method is capable of showing some robustness due to the intentional uncertainty
introduced into the system using the sampling variances. To test this, I ran my
method again with different µmass values, but this time with the three variance
parameters set to zero (σfriction, σmass, σf = 0), as shown in the second sub-table.
As expected, the overall performance significantly suffered, but also the difference
between the TM performance and other mass values was more significant, confirming
my intuition. (2) Mass of an object is less consequential in slower interaction tasks,
and my dataset heavily includes slower pushing tasks. This agrees with quasi-static
analysis of sliding/pushing [64], where it is shown that, when object accelerations are
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Table 5.7: Tracking accuracy for different parametrizations

µmass 0.01 TM 0.50 1.00 5.00

ADD ↓ 0.028 0.025 0.028 0.029 0.029
AUC-ADD ↑ 71.9 74.2 71.6 71.1 71.0

µmass(σfri, σmass, σf = 0) 0.01 TM 0.50 1.00 5.00

ADD ↓ 0.093 0.069 0.101 0.094 0.103
AUC-ADD ↑ 37.5 46.1 35.8 34.2 32.4

µmass(Poking) 0.01 TM 0.50 1.00 5.00

ADD ↓ 0.058 0.046 0.065 0.060 0.060
AUC-ADD ↑ 51.8 55.7 50.1 48.9 48.8

µfriction 0.01 0.10 0.25 0.75 1.00

ADD ↓ 0.043 0.028 0.031 0.041 0.052
AUC-ADD ↑ 63.4 72.2 69.8 65.7 63.2

µfriction(σfri, σmass, σf = 0) 0.01 0.10 0.25 0.75 1.00

ADD ↓ 0.087 0.067 0.069 0.088 0.119
AUC-ADD ↑ 41.3 56.2 50.0 41.5 32.5

σfriction/mass(σf = 0) 0.1× 1.0× 2.0× 5.0× 10×

ADD ↓ 0.138 0.053 0.057 0.056 0.069
AUC-ADD ↑ 31.7 54.2 52.6 51.2 48.6

σf pos: 0.000 0.005 0.010 0.020 0.050
σf rot: 0.00 0.05 0.10 0.20 0.50

ADD ↓ 0.063 0.028 0.080 0.170 0.693
AUC-ADD ↑ 53.8 72.2 50.0 34.6 9.70

negligible, (i.e., when the energy induced into the object through the robot finger
is small enough that it is immediately dissipated by the object-ground frictional
forces, and hence the pushed object does not lose contact with the finger during
pushing) the mass of the object can mostly be ignored in predicting its motion. To
test this, I performed new experiments with the robot, where I poked an object
with high impact, so that the object accelerates and keeps sliding after contact.
(I present more details about this experiment in Sec. 5.7.5.) The third sub-table
(µmass(Poking)) shows the results, where the effects of mass are more significant,
again confirming my insight.

Similarly, I performed experiments using different values for the µfriction parame-
ter of my method. While measuring the correct coefficient of friction is more difficult
than measuring mass, I estimate it to be between 0.1 and 0.25 for my objects, es-
timated using a protractor and sloped surface. The results in the sub-tables show
that the method performs best with correct friction values, and again that setting
(σfriction, σmass, σf = 0) makes this more pronounced.

I also measured the performance under varying variances of the physics parame-
ters, shown in sub-table “σfriction/mass(σf = 0)”. For these experiments, I set σf = 0,
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since it would interfere with assessing the impact of variance values for friction and
mass. In this sub-table, a value of 0.1× indicates scaling the original values reported
in Sec. 5.6.2 by 0.1, and similarly for other columns. As expected, setting the vari-
ance values too low or too high degraded performance, since too low values make
the filtering less robust to uncertainty, but too high variance values diminishes the
information provided by the physics model.

5.7.3 Effect of motion noise, σf
As shown in the bottom sub-table of Table 5.7, I varied the positional and rotational
motion noise, σf , to investigate the effect of this parameters on the performance
of my system. The results show that tuning this parameter is important, as the
performance of the system is significantly effected. Note, however, that the motion
model noise σf reflects the discrepancy between the physics model and the real-
world physics, and therefore should be estimated only once for the physics model
(e.g., physics engine) and can then be fixed. Therefore, given a dataset with a
ground truth (such as the dataset I are providing), if a new physics engine is used
with my method, σf should be calibrated to the best performing value, and can then
be fixed for later use of the method.

5.7.4 Effect of number of objects

An important limitation of my system is the computational cost of physics simu-
lations, which increase with the number of physically interacting objects. In my
original dataset, in Sec. 5.6.1), my experiments were limited to 3 simultaneously
interacting objects. Up to three objects, my system did not show a degradation
in performance (the first three sub-tables of Table 5.8). Performing experiments
involving four or more objects presented significant challenges, particularly in ac-
quiring accurate ground truth pose information. Furthermore, as more objects are
tracked, the update time increases, making it difficult to update my filter frequently.

However, I still wanted to evaluate the performance of my method when the
number of objects are increased. Therefore, I set up a scene with 4 objects and
another with 5 objects, and performed pushing on these objects, carefully making
sure that I still have ground truth readings (i.e., objects are visible to the OptiTrack
cameras). I show one of these scenes in Fig. 5.10-top-left and also in the attached
video. I show the performances of my method and baselines in the “4-Objects” and
“5-Objects” sub-tables of Table 5.8. For these two scenes, I used only 40 particles,
similar to my 3-object scenes. As expected, my method’s performance is significantly
degraded compared to its performance on my original dataset. Still, PBPF-RGBD
performs better compared to baselines, since occlusions (which happen frequently
in such crowded scenes) are much more of an issue for the baseline methods. In
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Figure 5.10: Other interesting scenes. 1. The top-left shows robot manipulating 4
objects simultaneously. 2. Top-right shows robot manipulating two identical objects
simultaneously. 3. The second row images show the robot poking/hitting an object
to slide it away. 4. The bottom row also shows the robot poking/hitting an object
to slide it away, but with occlusions to the camera. (Please also see attached video
for video versions.)

Table 5.9 I present the computational time each component of my method takes for
scenes with different number of objects, and when different number of particles, M ,
is used. These results are averaged over all runs with those number of objects in
them. (Standard deviations are not shown, but are negligible.) As shown, the main
bottleneck is clearly the physics update.

A realistic manipulation scenario is unlikely to involve tens of interacting objects
that needs to be tracked. Therefore, in realistic settings, my system can still be
beneficial.

5.7.5 High-impact interactions

Through my experiments, I also discovered that my system’s performance degrades
with the highly dynamic motion of the objects, for example when an object drops
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Table 5.8: Overall tracking accuracy for other scenes

1-Object Diff-DOPE FoundationPose PBPF-RGBD

ADD ↓ 0.132 0.126 0.029
AUC-ADD ↑ 43.4 52.1 71.1
2-Objects Diff-DOPE FoundationPose PBPF-RGBD

ADD ↓ 0.098 0.191 0.029
AUC-ADD ↑ 46.3 41.5 70.7
3-Objects Diff-DOPE FoundationPose PBPF-RGBD

ADD ↓ 0.147 0.043 0.031
AUC-ADD ↑ 38.9 63.0 69.0
4-Objects Diff-DOPE FoundationPose PBPF-RGBD

ADD ↓ 0.218 0.054 0.038
AUC-ADD ↑ 25.0 52.7 61.9
5-Objects Diff-DOPE FoundationPose PBPF-RGBD

ADD ↓ 0.195 0.055 0.049
AUC-ADD ↑ 23.2 49.2 59.7
Poking (object always visible) Diff-DOPE FoundationPose PBPF-RGBD

ADD ↓ 0.029 0.028 0.048
AUC-ADD ↑ 71.4 72.3 56.2

Poking (object with occlusion) Diff-DOPE FoundationPose PBPF-RGBD

ADD ↓ 0.090 0.191 0.049
AUC-ADD ↑ 40.9 22.4 52.9
Identical Objects Diff-DOPE FoundationPose PBPF-RGBD

ADD ↓ 0.137 0.037 0.026
AUC-ADD ↑ 25.4 63.1 72.9

down to the table, as shown in Fig. 5.11. In such cases where objects went through
high-impact contact interactions, the inaccuracy of the physics predictions and the
fast motion of the objects degraded the performance. While it proved difficult to
collect ground pose truth information in scenes such as Fig. 5.11, to explore this
issue further, I conducted experiments where the robot performed a fast planar hit

Table 5.9: Time (s) Consumed by Each Component

1-obj 2-obj 3-obj 4-obj 5-obj

M=70 M=50 M=40 M=40 M=40

Physics Update 0.102 0.096 0.106 0.141 0.167

Depth Update 0.101 0.073 0.073 0.089 0.092

RGB Update 0.031 0.029 0.040 0.051 0.055

Total Time 0.239 0.204 0.227 0.295 0.329
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Figure 5.11: An example with a high-impact drop of an object, where my system’s
tracking performance is degraded.

on the object to create an impact interaction, resulting in the object sliding away
from the hand, as shown in Fig. 5.10 bottom-two rows, and in the attached video.
I call this “Poking”. The performance of different methods for Poking is shown
in Table 5.8. When the poked object is completely visible, my method performs
significantly worse. Here, the inaccurate physics predictions hinder, rather than
help, tracking. Still, when I experimented with a scene where the poked object
was occluded for part of its slide on the table (bottom row of 5.10), PBPF-RGBD
performed better than the baselines, as shown in the table.

I point out that my system is not limited to planar motion. In Fig. 5.12, I show
an example tracking result of system, the robot lifts an object up and then down.
The results from the experiment, which involved vertical movements, demonstrated
that the system can effectively track such motions, as long as they are not highly
dynamic.

5.7.6 Tracking scenes with identical objects

I also tested whether PBPF-RGBD can track scenes with identical objects. A scene
with two identical objects can be seen in Fig. 5.10-top-right, and the attached
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video. The results are presented in the bottom rows of Table 5.8, which again shows
better performance for PBPF-RGBD. To work under this setting, given multiple PE
system estimates of the same type of object at the same time-point, PBPF-RGBD
needs to identify which particular object (of that type) in a particle these different
estimates belong to. To do this, I simply assign the nearest object of the correct
type in a particle to the first PE estimate. If an object has already been assigned
to a previous PE estimate, I assign the next nearest one.

5.8 Conclusions
This work addresses the critical challenge of tracking multi-objects during robotic
non-prehensile manipulation under occlusions — scenes where conventional vision-
based tracking methods often fail. By combining physics-based predictions within
a filtering framework, I perform relatively robust multi-object tracking even when
targets are significantly occluded by obstacles, robot arms, or other target objects.
My key contribution is integrating physical prediction (robot joint states) with vi-
sion and depth information to resolve problems caused by occlusions. Moreover,
I demonstrated the practical utility of my method by integrating it with a Model
Predictive Control (MPC) framework. This integration facilitates tasks such as
pushing objects to target areas; a key capability for applications where robots need
to retrieve items from cluttered environments like baskets or shelves. While my
experiments confirm the effectiveness of the proposed method, several limitations
remain. Notably, the current implementation requires an initial estimate of the ob-
jects’ 6D poses for particle initialization. The reliance on a physics engine introduces
considerable computational costs, which pose challenges in maintaining both high
tracking accuracy and speed when scaling to a large number of objects or dealing
with high-impact scenarios. Future work will focus on eliminating the dependency

Figure 5.12: Robot lifting and object up and then down. Top row: FoundationPose.
Bottom row: PBPF-RGBD.
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on precise initial pose estimates. I also investigate the use of faster physics en-
gines (e.g., [65, 66]) to improve real-time performance without decreasing tracking
precision.
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Chapter 6

Conclusions & Future Work

The final chapter summarizes the thesis, highlighting the contributions to knowledge
and suggesting areas for further research.

• Section 6.1 will introduce the summary of contributions.

• Section 6.2 will focus on limitations and directions for future research.

• Section 6.3 presents final remarks.

6.1 Conclusions
This thesis focuses on the 6D pose tracking of target objects in cluttered environ-
ments, specifically when manipulated by a robot through non-prehensile actions and
under physics-based perception. Such problems commonly arise in various scenar-
ios, as shown in Figure 6.1: for example, a humanoid robot retrieving an egg from a
fridge or picking items from a crowded shelf in a warehouse. In these cases, to reach
the target in a cluttered setting, the robot must continuously track the poses of
moved objects to avoid planning errors and accurately locate the target in real-time.

Figure 6.1: Which are some of the remaining challenges concerning this task?
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In this thesis, I explore how to combine physics-based perception and camera
vision information to address these challenges. The main focus is on these two
sources of information and their integration with the particle filtering algorithm.

In Chapter 3, I first introduce a method that integrates physics-based perception
with camera vision information into a particle filter algorithm. The physics engine
serves as the motion model of the particle filter, providing the 6D poses of particles
along with the robot’s joint states. The vision information from the camera is used
as input to the observation model, offering an estimate of the target object’s 6D
pose in the real environment. With these inputs, the system can infer physically
plausible object poses, avoiding unrealistic results such as the object floating in
the air or penetrating the robot or other obstacles. I compare this system with a
baseline that relies entirely on RGB image-based neural network models for 6D pose
estimation. Experimental results show that when the target object is occluded by
obstacles, the RGB-based baseline completely fails. In contrast, my physics-based
method maintains particles behind the obstacles, allowing it to continue estimating
the object’s 6D pose.

In Chapter 4, I extend the tracking from a single target object to multiple objects
and propose a new evaluation metric based on a visibility score to select better-
performing particles, thereby improving tracking accuracy. The visibility score helps
filter out particles that remain in visible regions when the target is occluded, allowing
the system to keep those hidden behind obstacles. Extending the algorithm to
multi-object tracking increases the system’s degrees of freedom, and the use of the
visibility score significantly raises the computational cost. As a result, the algorithm
runs more slowly. Chapter 5 presents my solution to these challenges.

Finally, the contribution of Chapter 5 is to move the entire physics-based per-
ception computation to parallel processing on the CPU, which greatly improves
efficiency. The visibility score calculation is also updated by using the GPU to
render segmentation images for each object in every particle, making it possible to
compute visibility scores more efficiently. Compared to calculating visibility scores
directly within the physics simulation, this method significantly reduces both com-
putation time and cost. Additionally, real-depth images from the camera are used.
By comparing these with the depth images rendered in parallel for each particle, the
system selects more accurate particles. Although this adds a step to the tracking
process, the use of GPU parallel rendering ensures that it does not introduce signif-
icant overhead. As a result, the tracking algorithm maintains both accuracy and a
fast update rate, even when tracking multiple target objects.

Despite the contributions, this study has several limitations:

• The method assumes all tracked objects are initially visible, as the particle
initialization depends on their starting poses.
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• It also assumes all objects in the scene are known and have 3D models; the
current approach cannot handle unknown objects.

• Motion planning is not addressed; the robot’s movements are controlled either
manually or by existing planning algorithms.

• The system assumes the robot is the only agent interacting with objects. For
instance, if a human moves objects in the scene, tracking may fail.

• While the method is designed to handle multiple objects, in practice, the
number is limited by the computational cost of physics simulation as object
count increases.

• In this work when objects go through high-impact contact interactions, the in-
accuracy of the physics predictions and the fast motion of the objects degraded
the performance.

In the next section, I will outline possible future research directions based on
these limitations.

6.2 Future Work
In this section, I discuss several future directions and ways to improve this work
within the context of non-prehensile manipulation in cluttered environments.

6.2.1 Partially Observable Initial Scenes

As discussed in earlier chapters, the robot interacts with different target objects in
each particle. A key step in this process is initializing the particles based on the
initial poses of the objects. In the main part of this thesis, I deliberately excluded
this challenge by assuming that all target objects are fully visible at the initial time
step (t = 0), allowing the focus to remain on the core tracking problem.

However, in real-world cases like the one shown in Figure 6.1, the egg may
not be visible to the camera at the beginning, meaning some objects start in an
unobservable state.

One possible solution is to initialize only the visible objects in each particle
using their observed 6D poses. For the objects that are not visible, their poses can
be initialized randomly. As the robot moves through the fridge or shelf during the
retrieval task, the range of possible poses for the initially occluded objects can be
gradually narrowed using the RGB-D images from the camera. Once a hidden object
becomes visible again, the particles representing that object will converge toward
its actual pose.

81



6.3 Final Remarks

6.2.2 Handling unknown objects

In this thesis, all tracked objects are assumed to be “known,” meaning their CAD
models are available. The method cannot handle “unknown” objects, and so far,
no effective solution has been found for tracking them. One possible direction is to
train a large neural network model that can include features from a wider range of
objects.

6.2.3 Handling deformable objects

In this thesis, the focus is on standard rigid bodies, such as cylinders and box-shaped
objects, which are assumed to be easily pushed by the robot. However, in real-
world settings—especially in everyday environments—many objects are deformable.
These deformable objects introduce additional challenges in computer vision, pose
tracking, and physics simulation. From a practical standpoint, exploring how to
track deformable objects during manipulation would be a very meaningful direction
for future research.

6.2.4 Handling more complex non-prehensile interactions
and tracking more target objects

As discussed in Section 5.7.5, my method tends to perform less effectively in scenarios
involving high-impact contact interactions. In real-world situations, many factors
can influence how an object moves after strong contact—such as friction between
objects, mass, inertia, and material properties. It is often difficult to accurately
obtain these parameters in practice, and without precise values, the simulation may
become unreliable. Tracking more target objects in parallel within the physics engine
greatly increases the computational cost, which slows down the system. This is also
the main reason why my method shows reduced accuracy in the poking task.

One possible solution is to adopt faster physics simulators, such as Isaac Sim
or Gym[65] or Genesis[66]. Alternatively, learning-based physics engines could be
explored to better model such interactions.

6.3 Final Remarks
In this chapter, I summarize the work and findings of this study. The results show
that incorporating physics-based perception provides clear advantages in tracking
objects manipulated by a robot, especially when those objects are occluded by ob-
stacles or the robot itself. This research introduces reasonable simplifications and
assumptions to focus on the problem of tracking non-prehensile manipulated objects
using physics-based perception. I also highlight the limitations of the current work
and suggest possible directions for future improvement.
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Appendix A

Preliminary Results of Partially Vis-
ible Scene

I designed the scene shown in Fig. A.1, where two objects are placed in a basket,
with the ketchup on top of the milk. The camera looks down into the basket from
above, which causes the milk to be occluded at the start. As a result, the system
cannot detect the milk, making accurate 6D pose estimation impossible.

This situation led me to think: what happens if, in the initial state, the system
can only detect one object and then run my algorithm (in this case, the ketchup)?
Following the standard algorithm, I would initialize particles only for the ketchup.

Figure A.1: Stacked objects in a basket scene. As shown in the figure, the ketchup
is placed on top of the milk, and the camera looks down into the basket from
above. The milk is occluded by the ketchup, making it impossible for the system to
determine the milk’s initial 6D pose.
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Figure A.2: Objects in the physics simulation. When there is no support beneath a
particle, it will fall to the bottom of the basket.

Figure A.3: A scene where only part of the target objects is visible at the initial
state. (a) shows ketchup particles initialized based on the observed pose, while milk
particles are randomly initialized. (b) shows that after running the algorithm, all
ketchup particles fall to the bottom of the basket. (c) shows that after reinitializing
and rerunning the algorithm, at least one ketchup particle remains in a stable state.
(d) shows the result after reinitializing all particles based on the stable ones.

Since my method relies on a physics engine, if only the ketchup particles are initial-
ized, they will fall to the bottom of the basket during execution, as shown in Fig.
A.2.

So, I reconsidered the system design based on this situation. The algorithm can
first initialize particles for the objects that are visible in the initial state using their
estimated 6D poses. For the occluded objects, particles can be randomly initialized
across the scene, as shown in Fig. A.3-a. Then, the system begins running. At this
point, the system may encounter a case like the one in Fig. A.3-b, where all ketchup
particles fall to the bottom of the basket. If this happens, the algorithm restarts the
initialization for all target object particles until a case like Fig. A.3-c is reached—
where at least one ketchup particle remains in a stable state, meaning its 6D pose is
close to the observed pose. Using these stable particles, the algorithm reinitializes
all target object particles in the scene, resulting in the final configuration as shown
in Fig. A.3-d. Then, the system proceeds with motion planning and tracking of the
target objects.
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