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Asker M., Swailem M., Täuber U. C., & Mobilia M.,

Fixation and extinction in time-fluctuating spatially structured metapopula-

tions,

arXiv :2504.08433 (2025). Under review.

All authors contributed to the writing of the manuscript. My specific contri-

butions were: conceptualisation (supporting), formal analysis, data curation,

investigation, methodology, software, validation, visualisation, writing - origi-

nal draft, writing - review & editing.

Contributor roles taxonomy by CRediT (Brand et al., 2015).

This copy has been supplied on the understanding that it is copyright mate-

rial and that no quotation from the thesis may be published without proper

acknowledgement.

© 2025 University of Leeds and Matthew William Asker.

The right of Matthew William Asker to be identified as Author of this work has

been asserted by Matthew William Asker in accordance with the Copyright,

Designs and Patents Act 1988.

iv



Acknowledgements

I would first and foremost like to thank my supervisor, Mauro Mobilia, for his

invaluable guidance, steadfast pragmatism, and for embodying a Doktorvater

in every sense of the word. I am grateful to Alastair Rucklidge and Uwe
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Abstract

Populations evolve subject to the conditions of their environment, which vary

in time. Changes in the environment directly impact the evolution of the popu-

lation, making an understanding of population evolution under environmental

variability crucial to uncovering the evolutionary dynamics of natural popu-

lations. This thesis investigates the effect of the coupling between ecological

dynamics, driven by varying environmental conditions, and population evolu-

tion. In particular, it considers the combined effect of demographic fluctuations

(randomness caused by stochastic births and deaths in a finite population)

and environmental variability on four models of competition in two-species

microbial populations. These models are inspired by real-world issues such

as antimicrobial resistance evolution and the establishment of unwanted mu-

tants in healthy populations. In a constant environment, the behaviour in

each model is understood and, in the motivating contexts considered, often

leads to undesirable evolutionary outcomes. However, these dynamics change

dramatically upon the introduction of environmental variability. The majority

of this thesis focuses on environmental variability modelled by a dichotomous

Markov noise controlling the carrying capacity of the population (the num-

ber of individuals it can typically support). This drives the population size

of the community and thus directly impacts the strength of demographic fluc-

tuations, providing a coupling between ecological and evolutionary dynamics.

The case where environmental variability impacts both the reproductive ca-

pabilities of species and the carrying capacity is also considered. Due to the

eco-evolutionary coupling, driven by environmental changes, interesting novel

phenomena arise at the evolutionary level. In particular, in each model a pre-

ferred evolutionary outcome is motivated, and it is shown how appropriate

conditions on environmental variability can promote those outcomes. These

behaviours are investigated through extensive stochastic simulations and the

development of analytical techniques.
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Chapter 1

Introduction

Natural selection is a key mechanism of evolution, where individuals with advantageous

traits are more likely to survive and reproduce. Within a population, natural selection

occurs according to the rules set by its environment. Over generations, advantageous

mutations accumulate and traits therefore evolve, allowing the population to become in-

creasingly well-adapted to its ecological landscape. Nature provides countless examples

of the end product of this process: the long neck of the giraffe allow it to access treetops

in the African savannah, the long, strong limbs of the spider monkey allow it to easily

navigate the dense rainforest trees, and the thick fur of the snow leopard provides it with

insulation in the snowy mountains. While perhaps a less evocative example, the same

goes for microscopic organisms such as bacteria, where they too adapt over time to best

survive and replicate in their environment. However, the same evolved traits in a different

environment may instead be disadvantageous and unlikely to survive – the snow leopard

suffers in the heat of the savannah, the spider monkey struggles in the freezing condi-

tions of the snowy mountains, and the giraffe stumbles in the dense canopy of the jungle.

Moreover, environmental factors such as temperature and resource availability often vary

in natural environments in both space and time. Therefore, a population well-adapted to

one environment may be plunged into a new environment to which it is maladapted. This

poses serious challenges in understanding the evolution of such natural systems.

Environmental variability (EV) refers to changes in the environmental conditions that

directly influence the ecological dynamics of a population. Moreover, EV can lead to

significant shifts in the evolutionary landscape of the population, and understanding the

subsequent evolution of the population is non-trivial. This scenario of population evo-

lution subject to EV increasingly aligns itself with modern-day issues of importance to

society; for example, the survival and adaptation of species under the effects of climate

change (Hoffmann & Sgrò, 2011), the emergence of novel pathogens in shifting ecological

landscapes (Engering et al., 2013), and the evolution of antimicrobial resistance (AMR)

(Lindsey et al., 2013; Coates et al., 2018; Mahrt et al., 2021). A developed understanding

of the evolution of populations in changing environments is therefore imperative should

we hope to address these key scientific and societal challenges. This thesis advances the
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1. INTRODUCTION

theoretical understanding of such systems by investigating models of AMR and the estab-

lishment of an evolutionarily advantageous but pathogenic mutant under EV.

Theoretical models of biological processes, largely developed over the last century, have

been crucial in providing insight into the dynamics of such systems. In particular, ideas

from evolutionary and population genetics alongside those from population ecology have

lead to significant steps forward in our understanding. Historically, these two fields devel-

oped largely independently. Population genetics was first given a firm theoretical basis in

the early 20th century by Fisher, Haldane, and Wright, who reconciled natural selection

and Mendelian genetics by introducing models for gene frequency change in finite popula-

tions (Haldane, 1927; Fisher, 1930; S. Wright, 1931). Later, Feller and Moran introduced

stochastic models of genetic drift using Markov chain approaches, which captured the ran-

domness of finite populations (Feller, 1939; Moran, 1958, 1962). Feller, Crow, and Kimura

extended these insights with diffusion theory, providing approximations of the genetic

evolution of a population that allowed for elegant analytical results (Feller, 1951; Crow

& Kimura, 1970). Following these developments, evolutionary game theory emerged from

the work of Maynard Smith and Price, who applied the strategic thinking of classical game

theory to biological interactions of populations (J. M. Smith & Price, 1973). This provided

a connection between evolutionary dynamics and game-theoretic reasoning, enabling the

study of behavioural strategies. Almost in parallel to the work of Fisher, Haldane, and

Wright, theoretical population ecology was aided significantly by progress due to Lotka

and Volterra (Lotka, 1925; Volterra, 1926), resulting in the well-known Lotka-Volterra

equations. Additionally, empirical evidence suggested that evolutionary timescales were

not necessarily much slower than ecological timescales (Tutt, 1896; Berry, 1964; John-

ston & Selander, 1964; Bradshaw, 1965; Pimentel, 1968; Kettlewell, 1973), as was often

assumed. This was made even clearer in studies of bacterial species, where evolutionary

dynamics are particularly fast (Luria & Delbrück, 1943; Lenski et al., 1991; Yoshida et al.,

2003). Furthermore, computational methods and computational power advanced signifi-

cantly during the 20th century. Monte Carlo methods were developed for the simulation

of complex stochastic systems with many possible trajectories by von Neumann and Ulam,

and the work later published by Metropolis and Ulam (Metropolis & Ulam, 1949) . These

methods permitted the exploration of complex evolutionary scenarios via computational

means, and were used to test theoretical predictions and investigate systems where ana-

lytical progress was unfeasible. Gillespie later developed methods for statistically correct

stochastic simulations, eliminating errors caused due to the specific simulation method

selected (Gillespie, 1976, 1977).

With these various developments and the efforts of some prominent figures of the time

(Levins, 1966, 1968; Lewontin, 1968), the importance of studying the interplay between

ecological and evolutionary dynamics was established. Termed eco-evolutionary dynamics,

this scenario where ecological changes can impact the evolutionary dynamics and evolu-

tionary changes can affect the ecological dynamics combines the theoretical works from

population genetics and population ecology to capture the full picture of population evolu-
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tion (Pelletier et al., 2009). In this thesis, I chiefly investigate the effect of environmental

changes where their direct impact on the ecology of a population affects how it goes on to

evolve, thus leading to eco-evolutionary dynamics.

More recently, studies have made significant headway in addressing the eco-evolutionary

dynamics of a population whose size is composition-dependent and therefore varies in

time (Parsons & Quince, 2007a, 2007b; Parsons et al., 2010; Houchmandzadeh & Vallade,

2012; Y. T. Lin et al., 2012; Chotibut & Nelson, 2015; Houchmandzadeh, 2015; Rogers

& McKane, 2015; Constable et al., 2016; Joshi & Guttal, 2018; DeLong & Cressler, 2023;

Wang et al., 2023; Bhat, 2025; Bhat & Guttal, 2025). These works represent signifi-

cant advances in our understanding, but consider only impacts to the population ecology

due to the evolution of the population itself, and not the case where it varies due to an

externally-driven environment. Thus, despite this progress, eco-evolutionary dynamics

remains poorly understood, with many empirical and theoretical studies continuing to

consider either ecological or evolutionary dynamics independently, ignoring the coupling

between them. This thesis aims to address this knowledge gap by focussing on the dis-

tinct scenario where environmental variations drive ecological dynamics that impact the

evolutionary behaviour. In some of the models considered here, the evolution of the pop-

ulation also impacts the ecology of the system (see Ch. 3), but the ecological dynamics

are generally not affected.

Traditionally, biological processes have been modelled as continuous and deterministic,

an approach where quantities such as the population size are approximated as smoothly

varying and random fluctuations due to noise are ignored (Hofbauer & Sigmund, 1998;

L. J. S. Allen, 2007). This approach often permits a great deal of analytical progress.

On the contrary, such processes are, by their very nature, discrete and stochastic. By

ignoring the inherent stochasticity and discreteness of biological systems, we are at risk of

missing key features of their dynamics (van Kampen, 1992; L. J. S. Allen, 2003), or even

finding unphysical results; see the “atto-fox problem” of Lotka-Volterra dynamics (Molli-

son, 1991). These discrete, stochastic changes are here modelled in terms of a birth-death

process where, at the simplest level, each birth and death occurs randomly and changes

the population by one. This leads to demographic fluctuations (DF) – randomness in a

population’s evolution caused by stochastic births and deaths. These fluctuations can

lead to the fixation of a trait in a population (Crow & Kimura, 1970; van Kampen, 1992;

L. J. S. Allen, 2003; Ewens, 2004; Gardiner, 2009), the process in which a population

becomes homogeneous and consists only of individuals carrying that specific trait (equiv-

alently all individuals with different traits go extinct). This does not occur in continuous,

deterministic modelling approaches, where fixation is only approached asymptotically in

time. In this thesis, I will consider individuals of two different competing types, represent-

ing distinct microbial strains with different traits. Central questions are thus the fixation

probability of a given trait, that is the likelihood that it takes over the entire population,

and the mean time for fixation to occur (referred to as the mean fixation time (MFT)).

These notions are closely related to the probability and mean time to extinction of the

3



1. INTRODUCTION

Figure 1.1: Cartoon of the Moran process. A population of mutant (red) and wild-type
(blue) cells occupy the same environment. The population is of constant size, equal to its
carrying capacity, labelled K. The state of the population is then captured entirely by
the number of mutant individuals, labelled nM . In the example state shown at the top,
K = 9 and nM = 4. The population evolves, at each step either increasing nM through
the replacement of a wild-type by a mutant (arrow to the right) or decreasing nM by
replacing a mutant by a wild-type (arrow to the left). Therefore, nM performs a random
walk on {0, ...,K} until it reaches one of the absorbing states: nM = 0 with all wild-types
or nM = K with all mutants. This process of reaching an absorbing state is called fixation.

other trait initially present.

Mathematically, this process of fixation is often captured using a Markov chain with

absorbing boundaries. Several different models are used to describe the behaviour of such

systems, but here I focus on the Moran process (Moran, 1958, 1962; Antal & Scheuring,

2006; Blythe & McKane, 2007; Traulsen & Haeurt, 2009); see Fig. 1.1 and Ch. 2.2.2. In its

classical formulation, the Moran process represents a paradigmatic model of evolution for

haploid organisms, where at its simplest there are two species in a population of constant

size. At each step of the process, one individual is chosen to replicate, with its offspring

replacing an individual of the other species, until fixation of one species occurs. Species

which have a higher fitness – a quantity directly related to a species’ reproductive rate

– are more likely to be chosen to replicate; see Ch. 2.2.1. A particularly nice feature of

the Moran process is that these rates can generally be density-dependent, i.e. they vary

depending on the population composition, behaviour which is also found in experimental

settings (Lewontin, 1955; Contois, 1959; Lorenzen & Enberg, 2002). While the Moran

process represents a particularly convenient formulation, alternatives such as the Wright-

Fisher process could also be used. The conceptual difference between these two approaches

is that the Moran model considers overlapping generations in its evolution, while in the

4



Wright-Fisher model generations are non-overlapping. Quantitatively, this corresponds to

a simple rescaling of the population size by a constant factor in results on fixation, so little

is lost in selecting one approach over the other.

More generally, the Moran process illustrates a key concept in evolutionary dynamics.

This is the impact of selection and diffusion: selection refers to the process in which a

fitter species tends to be favoured in a population, leading to an increase in its abundance;

diffusion refers to the randomness of a population’s evolution due to DF from the popu-

lation’s finite size, and therefore acts counter to selection. In larger populations, diffusion

is weaker, since the typical strength of DF is inversely proportional to the square root

of the population size, while the strength of selection is independent of population size

(van Kampen, 1992; Ewens, 2004; Gardiner, 2009). Therefore, a small population experi-

ences stronger diffusion in its evolution and requires a large selection strength to ensure

the fixation of the fitter species, whereas a large population requires only a small selection

strength for the same effect. I will refer throughout this thesis to the strength of selection

and diffusion in relation to the evolutionary dynamics of the populations considered. This

behaviour is in fact seen in in vitro systems, such as in experiments on bacteriophages

(Burch & Chao, 1999) and bacteria (Travisano, Mongold, et al., 1995; Travisano, Vasi,

& Lenski, 1995). In this context, the Moran process represents a key tool in developing

insight into these systems, and I will use it to investigate the evolution of the models

described in this thesis.

However, a key assumption of the Moran process is not generally adhered to by biological

populations – the constant population size. Ecological factors such as the size of a popu-

lation can vary dramatically following changes to a population’s environment. Thus, EV

that leads to changes in the population size also modulate the strength of DF, therefore

impacting the strength of diffusion relative to selection and demonstrating the coupling

between the ecological and evolutionary dynamics of a population. In fact, this coupling is

ubiquitous in real populations but often ignored in theoretical models that, in the absence

of suitable theoretical tools, often assume these dynamics are decoupled. An important

aspect of this thesis is the consideration of coupled ecological and evolutionary dynamics,

where I develop analytical and computational tools to tackle these challenging problems.

Without a detailed knowledge of the exact form of EV causing these changes, it is often

modelled by allowing the birth and death rates of each species to vary in time. This

approach has been used to study a variety of eco-evolutionary phenomena such as pheno-

typic switching (Balaban et al., 2004; Kussell & Leibler, 2005; Acar et al., 2008; Assaf,

Roberts, et al., 2013), cooperation (Assaf, Mobilia, & Roberts, 2013; Melbinger et al.,

2015; Wienand et al., 2017, 2018), species coexistence (Chesson & Warner, 1981; Chesson,

1994, 2000a, 2000b; Hidalgo et al., 2017; Ellner et al., 2019; Meyer et al., 2021), and

more general fixation and extinction (Ashcroft et al., 2014; Hufton et al., 2016; Danino &

Shnerb, 2018; Taitelbaum et al., 2020; Raatz & Traulsen, 2023; Taitelbaum et al., 2023).

In this thesis, I shall utilise the dichotomous Markov noise (DMN) process to capture the

effects of EV on microbial populations, which I will now introduce.

5



1. INTRODUCTION

250
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Figure 1.2: Cartoon demonstrating the effect of dichotomous Markov noise driving the
carrying capacity of a population. The environment switches stochastically between harsh
and mild environmental conditions, corresponding to small and large carrying capacities,
respectively. A change in the carrying capacity (red line) drives the evolution of the
population size (black line) towards the new carrying capacity. In the example realisation,
the carrying capacity switches between values of 100 and 200 with a rate 0.1.
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DMN is a two-state Markovian process whereby a random variable defined by a DMN pro-

cess switches between its two possible values with constant rates (Horsthemke & Lefever,

1984; Bena, 2006; Ridolfi et al., 2011). In the following chapters, I shall use DMN to vary

the death rates of the individuals in the population, switching between a high and low

value; see Ch. 2.3 and Wienand et al. (2017, 2018). This is done through a time-varying

carrying capacity, where the carrying capacity gives the number of individuals that can be

supported in a population. Biologically, this corresponds to the effect of varying resource

availability, where a high death rate/small carrying capacity means few resources (harsh

environment) and a low death rate/large carrying capacity means abundant resources

(mild environment); see Fig. 1.2. This is particularly relevant to microbial communities

where, due to their scale, sharp transitions in nutrient availability in the system can oc-

cur or the population can be rapidly and significantly diluted as in many experimental

studies (Wahl et al., 2002; Brockhurst, 2007; Patwa & Wahl, 2010; Shade et al., 2012).

In fact, due to the instantaneous switches that characterise DMN, its relevance is largely

restricted to such natural systems where the changes to the environmental state can be

approximated by sudden variations. However, these are systems of particular interest and

this approximation allows for significant analytical tractability, as we shall see. In such

systems, nutrient shocks, where the amount of available resource suddenly and drasti-

cally decreases, lead to population bottlenecks where the population size rapidly shrinks.

This produces the coupling between the ecological and evolutionary dynamics, discussed

previously. In fact, in most lab-controlled experiments, changing environments are im-

plemented by means of a binary time-varying environment (Acar et al., 2008; Sanchez &

Gore, 2013; G. Lambert & Kussell, 2014; Rodŕıguez-Verdugo et al., 2019; Abdul-Rahman

et al., 2021; Nguyen et al., 2021; Shibasaki et al., 2021) that can be well represented by

DMN. The models considered in this thesis are inspired by the chemostat set-up, which is

a bioreactor with a continuous inflow of fresh medium (typically nutrients) and outflow of

cells, and waste products (Novick & Szilard, 1950; James, 1961; Jakiela et al., 2013). This

set-up is commonly used in experimental studies to obtain a steady state population. A

change to the environment may be implemented in a chemostat through a change to the

inflowing medium, for example in the nutrient concentration or toxin level, leading to a

different steady state. This contrasts with batch cultures, another common experimental

setup, where a population is exposed to an initial fixed amount of resource and there is

no flow of medium. As the resources are consumed, growth halts and cell death ensues.

Aside from its physical relevance to microbial communities, DMN has many other positive

attributes: (i) it is simple enough that analytical results are possible to obtain for some

systems; (ii) it is bounded, i.e. the range of values it can take does not diverge in time;

(iii) it is easy to implement in simulations; (iv) it is a coloured noise, meaning it generally

has non-zero temporal autocorrelation. This final property is particularly attractive when

looking to model EV in biological systems, allowing for the capture of correlations in time

which occur in natural environments. In such cases where the evolutionary dynamics

occur on similar or faster timescales than the ecological dynamics, EV drives the system

and shapes the landscape in which it evolves. This is particularly relevant to microbial
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1. INTRODUCTION

communities, where evolutionary timescales are fast and therefore correlations of the EV

are important.

To fully appreciate the strengths of DMN, it is instructive to compare it to other forms

of noise used in modelling a changing nutrient level in biological systems. Here, I will

compare DMN with two common alternatives: the Ornstein-Uhlenbeck (OU) process and

periodic dichotomous noise (PDN). Although not explicitly considered in this thesis, these

forms of noise are common alternatives in related contexts, with OU processes appropriate

for modelling continuously varying environments correlated in time, and PDN suited to

environments that vary in a strictly periodic fashion. A system driven by an OU process

does not enjoy the attributes (i)-(iii): (i) in general, to obtain analytical results for a

system driven by an OU process, it is necessary to resort to limiting regimes where the

correlation time of the noise is either much shorter or longer than that of the evolutionary

dynamics (Horsthemke & Lefever, 1984); (ii) the Gaussian noise driving the OU process

has an unbounded range (i.e. can take any value in (−∞,∞)), therefore allowing the

carrying capacity to take unphysical negative values and being generally unbounded; (iii)

the value of the OU process driving the system varies continuously in time, therefore mak-

ing it impossible to exactly simulate the full system. Further issues arise in simulations

due to the carrying capacity including unphysical values in its range, requiring ad-hoc

corrections (Bena, 2006). In the case of a system driven by a PDN, we find that attributes

(i) and (iii) are not satisfied and DMN provides a good approximation for the dynamics

of a system driven by PDN, making it the more attractive modelling approach (Taitel-

baum et al., 2020). Throughout this thesis, a common theme is the finding of suitable

methods to combine analytical results of DMN (see Ch. 2.3) with the analytical results

of the Moran process (see Ch. 2.2.2) to capture the joint eco-evolutionary dynamics of

the system. In this thesis I combine these results to develop an understanding of fixation

and coexistence in populations with cooperative AMR under a time-varying volume (see

Ch. 3.4.2) (Hernández-Navarro, Asker, & Mobilia, 2024) and populations with resistant

species subject to twofold environmental variability (see Ch. 4.3) (Asker et al., 2023), as

well as to investigate fixation of an advantageous mutant species on spatially structured

populations (see Ch. 5.3) (Asker et al., 2025).

Spatial structure is another key aspect of realistic microbial populations that is often

beyond mathematical analysis and is dealt with almost exclusively by computational

means. In this thesis, spatial structure refers specifically to the spatial distribution of

cells, rather than environmental inhomogeneities across space which is neglected. Micro-

bial populations typically occupy complex spatial structures, across which the distribu-

tion of microbes fluctuates. For instance, many organisms live in densely packed aggre-

gates on surface-attached biofilms (Widder et al., 2016), numerous commensal bacteria

are distributed throughout the gastrointestinal tract (Engel & Moran, 2013; Garud et

al., 2019), and patients’ organs are spatial environments between which bacteria can mi-

grate (She et al., 2024). Following on from the population ecology developments of Lotka

and Volterra, several theoretical advancements were made in the consideration of spatially
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Figure 1.3: Cartoon of a metapopulation containing two species and an example migration
of an individual between two adjacent deme in a metapopulation. Individuals interact only
with those occupying the same subpopulation, but may also migrate along the arrows
connecting deme. An example of such a migration event is depicted, with the grey cell
migrating from the left subpopulation to the right one.

structured ecological communities, termed metapopulations (S. Wright, 1931; Kimura &

Weiss, 1964; MacArthur & Wilson, 1967; Levins, 1969; Maruyama, 1970; Slatkin, 1981).

These metapopulations consist of several demes (subpopulations) representing different

spatial niches in a population. Individuals interact within these demes, and may migrate

to neighbouring demes; see Fig. 1.3. While this simplifies the spatial structure of natural

systems by representing space as discrete, interacting demes, it nonetheless captures es-

sential features of microbial populations such as migration and competition. Furthermore,

models considering continuous space are often intractable and require numerical simula-

tions. Due to their relevance to natural systems and analytical tractability, the use of

metapopulation models in the study of spatially structured populations remains a com-

mon approach (Whitlock, 2003; Constable & McKane, 2014; Hauert et al., 2014; Szczesny

et al., 2014; Marrec et al., 2021; Yagoobi & Traulsen, 2021; Abbara & Bitbol, 2023; Mar-

rec, 2023; Abbara et al., 2024; Hernández-Navarro, Distefano, et al., 2024; Moawad et al.,

2024; Asker et al., 2025).

In microbial systems, mutations frequently arise through errors in DNA replication during

reproduction, and occasionally one of these may provide a reproductive advantage to the

mutant daughter cell over the resident population (Barrick et al., 2009; Tenaillon et al.,

2016; Good et al., 2017). As such, the population then consists of the individuals without

the mutation denoted the wild-type, and the individual with the advantageous mutation,

denoted the mutant. These mutations are often rare, and so this population will then

evolve and eventually consist of all mutants or all wild-types through fixation of either

strain. The dynamics of such a population is well understood in the absence of spatial

structure, as discussed. An interesting question to ask is then: how is the fixation of a

mutant strain impacted by spatial structure?

9
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Several theoretical studies have probed this question on metapopulations in constant en-

vironments where cell migration is symmetric (cells have no preference in where they

migrate). Maruyama (1970) notably showed that, under some additional simple and phys-

ically relevant conditions, the fixation probability of a mutant is independent of the spatial

structure and migration rate. Furthermore, many works have investigated how random

extinction (the process where all individuals within a subpopulation die) and recolonisa-

tion (the process whereby an extinct subpopulation has an individual migrate to it and

restore the population) of demes affect mutant fixation within metapopulations (Levins,

1969; Barton, 1993; Lande et al., 1998; Hanski, 1999). Recently, Marrec et al. (2021)

studied the the influence of slow migration on the fate of mutants, and demonstrated that

asymmetric migration can dramatically affect the fixation probability on certain spatial

structures. Chiefly, these theoretical studies into metapopulation dynamics have focussed

on the influence of spatial structure on evolution without EV, with experimental studies

following suit (Kryazhimskiy et al., 2012; Nahum et al., 2015; Chakraborty et al., 2023;

Kreger et al., 2023). Moreover, the natural environments of spatially structured popula-

tions are also generally not static. One example is the gut microbiome, which is exposed to

large fluctuations across several timescales, affecting the diversity of the microbiota (Smits

et al., 2017; Cignarella et al., 2018). Therefore, to achieve a full understanding of these

biological systems, we must consider their evolution taking into account the effects of EV

and spatial structure. This thesis thus also investigates the eco-evolutionary dynamics on

spatially structured metapopulations in the presence of EV to understand how a changing

environment coupled to DF interacts with spatial structure to shape evolutionary out-

comes; see Ch. 5. By doing so, it extends classical models to more realistic settings and

provides theoretical insights into evolutionary outcomes in natural, dynamic landscapes

such as the gut microbiome.

After having set the scene and motivated the research undertaken in this thesis, I now

provide a brief outline of the following chapters. In this thesis, I investigate four dis-

tinct models of microbial populations subject to EV: two focussed on cooperative AMR,

one on the coexistence of resistant and sensitive species, and one on spatially structured

populations. Specifically, I ask:

• What mechanisms enable eradication of AMR under EV?

• How does EV govern fixation versus long-lived species coexistence in competing

microbial species?

• How does EV affect the fixation probability of an advantageous mutant in a spatial

metapopulation?

In Ch. 2, I will develop the mathematical techniques and computational methods used

throughout the rest of this thesis. In Ch. 3, I address the first question, introducing two

models of cooperative AMR, where resistant cells pay a metabolic cost for resistance.

The resistance is shared among all cells if they exceed a certain threshold in resistant cell

abundance, and kept private if they do not (Hernández-Navarro et al., 2023; Hernández-
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Figure 1.4: Cartoon of cooperative AMR. When the resistant (blue) cells exceed their
threshold in abundance for shared resistance, the sensitive (red) cells are protected. The
resistant cells have paid a metabolic cost to produce the resistance enzyme, while the
sensitive cells have not. Therefore, the sensitive cells are better off and will increase in
abundance. When the resistant cells are below the threshold, the resistant cells maintain
resistance to the antimicrobial, while the sensitive cells suffer a metabolic cost larger than
that paid by the resistant cells for resistance. Therefore, the resistant cells are better off
and will increase in abundance. This leads to the population being driven towards the
threshold; see Ch. 3.

Navarro, Asker, & Mobilia, 2024); see Fig. 1.4. I investigate the fixation and coexistence

properties of both strains under constant antimicrobial concentration, determining under

which EV fixation or long-lived coexistence occurs. Moreover, I am able to identify and

fully characterise a novel EV-driven resistance-eradication mechanism; see Ch. 3.3.1. I

also show more generally that the picture of cooperative AMR evolution can be greatly

altered by the joint effect of EV and DF; see Chs. 3.3.1 and 3.4.2. In Ch. 4, I consider

the second question in a distinct model of AMR, where the resistance remains private to

the resistant cells (Asker et al., 2023). Here, the antimicrobial is not always supplied at

a concentration sufficient to impede sensitive cells. Its concentration is instead driven by

another independent DMN process, varying between a high toxin level and a low toxin

level, impacting the birth rate of the sensitive strain. The distinctive feature of this study is

therefore the twofold environmental variability accounting for variation of the toxin level

and the switches of the nutrient level, impacting both the birth rates and death rates,

respectively. I determine the environmental conditions under which long-lived coexistence

of the strains is possible or certain, and those in which one strain dominates the other. The

coexistence mechanism is induced by environmental changes that are sufficiently large and

frequent, and so is closely related to bet-hedging strategies and the storage effect (Chesson
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& Warner, 1981; Frank & Slatkin, 1990; Gaál et al., 2010; Xue & Leibler, 2017; Bhat &

Guttal, 2025). I also analyse the make-up of the population when the strains coexist,

and their average abundance. In Ch. 5, I cover the final proposed question. I study

a class of time-varying microbial metapopulation models consisting of demes in which

wild-type and mutant cells evolve in a time-varying environment represented by a time-

varying carrying capacity. I use coarse-grained descriptions of the dynamics to study

the joint influence of EV, DF, migration, and spatial structure on the evolution of the

metapopulation; see Figs. 1.2 and 1.3. I demonstrate that the coupling of EV and DF in

spatially structured populations leads to qualitatively distinct outcomes compared to the

case of a static environment, and notably determine how the probability of mutant fixation

depends explicitly on migration and EV. Viewing this through the lens of an unwanted

mutant arising and attempting to spread through an otherwise healthy system, I determine

optimal conditions to eradicate mutants without risking metapopulation extinction. I am

able to capture this behaviour through novel analytic approaches and extensive stochastic

simulations.

Collectively, the findings of this thesis demonstrate that EV impacting the ecology of a

population couple directly to its evolution and can unveil qualitatively distinct behaviour

that is not found when this interplay is neglected. Importantly, this unveils dynamical

scenarios that are relevant to modern-day societal issues, such as the evolution of AMR,

the emergence of novel pathogens, and the spread of cancer. In considering this interplay,

I find novel mechanisms for the eradication of AMR and unwanted mutants that have

implications for these issues. These findings suggest that the dynamics of microbial com-

munities cannot be fully understood without considering the joint eco-evolutionary effects

of coupled EV and DF. In this thesis, I develop a suite of mathematical tools, combined

with efficient computational methods, to analyse in detail several models of population

evolution in time-varying environments.
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Chapter 2

Mathematical preliminaries

In this chapter, I will introduce logistic growth dynamics for well-mixed populations con-

sisting of a single species. Starting with the microscopic dynamics underlying the birth-

death processes at the individual level, I will demonstrate how the mean-field (MF) ap-

proximation, where DF (and hence correlations) are neglected, can be obtained from the

full microscopic description in the large population size limit. Furthermore, I will show

how the dynamics change under considerations of finite population size, notably consid-

ering the mean time to extinction and the quasi-stationary population size distribution

(QPSD) when the extinction time is long; see later. Following this, I present the concept

of competition for shared resources between two species, first determining the microscopic

processes underlying such a model, and considering the MF approximation for the evolu-

tion of its composition. Subsequently, I present the Moran process, and demonstrate its

utility in modelling the evolution of a population under logistic growth, particularly in the

capturing of stochastic effects that the MF approximation neglects. I will then introduce

the concept of dichotomous Markov noise (DMN), and demonstrate some of the properties

it possesses that make it useful both for modelling EV and obtaining analytical results.

I continue by showing how I utilise DMN to vary the resources available to the popula-

tions considered in the following chapters, and discuss properties of this form of noise.

Furthermore, I will demonstrate that we can capture an analytic approximate expression

for the QPSD of the population under this noise, and demonstrate the practicality of this

expression using an illustrative example case in which I capture the fixation properties of

the population under environmental variability.

2.1 Logistic growth of a single-species population

We will start by considering the simple case of logistic growth in a population with a

single species. Here, and throughout the rest of this thesis, we neglect mutations on the

timescale of the population dynamics considered. Logistic growth is a prototypical example

of population growth under a finite resource restriction, and the models considered in this

thesis are assumed to follow such growth. Other models of population growth exist and are
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2. MATHEMATICAL PRELIMINARIES

active areas of interesting research, e.g. exponential phase, predator-prey interactions, the

Allee-effect, and range expansions (Allee & Bowen, 1932; Mollison, 1977; Chesson, 1978;

Sun, 2016; R. J. Allen & Waclaw, 2018; Diz-Pita & Otero-Espinar, 2021). Logistic growth

is arguably the simplest example of a model of growth dynamics with finite resources and,

given the analytical progress this simplicity allows when introducing DMN (as we shall

see later), it presents a key step towards understanding the impact of EV on evolutionary

dynamics. I note here that all models considered in this thesis are in continuous-time,

capturing the asynchronous births and deaths of individuals in microbial populations.

2.1.1 Master equation and the mean-field approximation

To begin, we consider the microscopic processes underlying the dynamics. The population

is comprised of n individuals, existing in a well-mixed environment, i.e. there is no spatial

structure to the population. We denote the probability of finding this system with n

individuals at time t as P (n, t). The rates at which the system transitions from P (n, t) →
P (n± 1, t) are given by T±(n), where P (n, t) → P (n+ 1, t) represents a birth event and

P (n, t) → P (n−1, t) represents a death event. From these microscopic rates, we can write

a master equation (ME) for P (n, t) describing its time evolution, given by

∂tP (n, t) = T+(n− 1)P (n− 1, t) + T−(n+ 1)P (n+ 1, t)︸ ︷︷ ︸
inflow to P (n, t)

− [T+(n) + T−(n)]P (n, t)︸ ︷︷ ︸
outflow from P (n, t)

,

(2.1)

where T±(n) = 0 for n ≤ 0 and P (n) = 0 for n < 0, such that the system population size

remains physical (i.e. n ≥ 0) and n = 0 is the only absorbing state. This equation wholly

determines the evolution of the system but is too complicated to solve directly if either of

the transitions rates T±(n) is non-linear in n, as is typical for many systems. Despite this

apparent pitfall, we can still derive much understanding from various approximations of

this equation. Here, we start by investigating the evolution of the mean population size,

⟨n⟩ =
∑

n nP (n, t). Multiplying Eq. (2.1) by n and summing over all n we have

d

dt
⟨n⟩ =

∑
n

n∂tP (n, t),

=
∑
n

n
[
T+(n− 1)P (n− 1, t) + T−(n+ 1)P (n+ 1, t)− [T+(n) + T−(n)]P (n, t)

]
.

Shifting the indices of summation and carrying out the averaging procedure yields

d

dt
⟨n⟩ =

〈
T+(n)

〉
−
〈
T−(n)

〉
.

So far, this equation is exact and independent of the form of T±(n). To proceed further,

we must now choose the forms of these rates. Here, we focus on the case of logistic growth.

Resources are limited, so the population does not grow indefinitely, and this is introduced

via a carrying capacity K > 0. Each individual gives birth with a per-capita rate b and

dies with a per-capita rate d nK , where both b, d > 0. Therefore, the rates of birth and
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2.1 Logistic growth of a single-species population

death for the total population are given by T+(n) = bn and T−(n) = dn
2

K , respectively.

This leaves us with (L. J. S. Allen, 2003; Gardiner, 2009)

d

dt
⟨n⟩ = b ⟨n⟩ − d

K

〈
n2
〉
.

This equation is not closed with respect to the moment hierarchy in n, i.e. the evolution

of ⟨n⟩ depends on the behaviour of a higher order moment,
〈
n2
〉
, and so we must make a

suitable approximation to proceed. Here, we adopt the simplest form of moment closure

approximation, assuming
〈
n2
〉
= ⟨n⟩2 in order to close the equations. This approximation

equates to the assumption that the variance of n is small and therefore fluctuations in n

are negligible compared to its mean. For increasing population sizes this approximation

improves as the ratio between the size of fluctuations and the population size scales like

n−
1
2 (van Kampen, 1992; Gardiner, 2009). This is known as the mean-field (MF) approx-

imation, and while here it is an uncontrolled approximation (we have made no guarantee

here that fluctuations will indeed be small), the same result is reached using approaches

that are controlled but typically more involved; see Ch. 2.2.1. Therefore, we now have

d

dt
⟨n⟩ = b ⟨n⟩ − d

K
⟨n⟩2 , (2.2)

which can be solved to give

⟨n⟩ = n0e
bt

1 + n0
K
d
b (e

bt − 1)
, (2.3)

where n0 is the number of individuals at time t = 0. We see that limt→∞ ⟨n⟩ = K b
d .

Alternatively, this can be easily seen from simple stability analysis of the fixed points of

Eq. (2.2). Therefore, under logistic growth, the MF approximation predicts that the pop-

ulation size will tend towards an equilibrium value at ⟨n⟩ = K b
d , and does so exponentially

quickly. For simplicity and without loss of generality, we herein consider that b = d = 1.

Therefore, the typical interpretation of the carrying capacity K is that it gives the number

of individuals the system can typically sustain. This behaviour is particularly useful when

considering more complex dynamics within the population, as it allows us to treat the

population size as approximately constant at n = K. We will use this later.

2.1.2 Stochasticity and the quasi-stationary population size distribution

While the MF approximation is useful, particularly in large populations, it gives no infor-

mation on the distribution of n except the mean. For smaller populations, the variance

of n increases and DF can be of comparable order to the mean. This can have dramatic

effects on the dynamics within the population, in extreme cases leading to extinction of the

population (as we shall see in Ch. 5). To gain a better understanding of the distribution

of n, we look to calculate its approximate QPSD. Concretely, a population undergoing lo-

gistic growth dynamics as described previously will inevitably reach population extinction

at the absorbing state n = 0 as t → ∞, since the population is driven to n = K and the

probability of reaching the state n = 0 from n = K is non-zero (L. J. S. Allen, 2003; Assaf
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& Meerson, 2010). However, the time for extinction can be exceedingly long – far longer

than the timescale of the dynamics that we are interested in. In such cases, it is useful

to consider the distribution of the population size neglecting extinction. The QPSD for n

can be approximated by assuming that T−(1) = 0, i.e. extinction does not occur due to

a reflecting boundary at n = 1. We denote this approximate QPSD by π(n). Assuming

stationarity as we are in equilibrium, we can then say that π(1)T+(1) = π(2)T−(2). Pro-

ceeding similarly, we can then say π(2)T+(2) = π(3)T−(3), and so on where this equates

the probability flow between adjacent states such that the approximate QPSD satisfies

detailed balance (Gardiner, 2009). Therefore, we can write (L. J. S. Allen, 2003)

π(n) = π(1)

n−1∏
i=1

T+(i)

T−(i+ 1)
.

Using the condition that
∑

j π(j) = 1 we determine π(1) as

π(1) =
1∑

j

∏j−1
i=1

T+(i)
T−(i+1)

,

and hence,

π(n) =

∏n−1
i=1

T+(i)
T−(i+1)∑

j

∏j−1
i=1

T+(i)
T−(i+1)

.

For the case of logistic growth, we have T+(i)/T−(i + 1) = Ki/(i + 1)2 and so, the

numerator is given by
n−1∏
i=1

Ki

(i+ 1)2
= Kn (n− 1)!

n! ·n!
=

Kn

n · n!
.

A similar calculation applies in the denominator and we thus have

π(n) =
Kn/(n · n! )∑
jK

j/(j · j! )
,

=
1

Ei(K)− ln(K)− γEM

Kn

n · n!
,

(2.4)

where Ei(x) = −
∫∞
−x

e−t

t dt is the exponential integral and γEM = 0.577... is the Euler-

Mascheroni constant. The latter representation is useful when implementing the QPSD

in computer code. We can then calculate the mean population size of the approximate

QPSD as ⟨n⟩ =
∑∞

n=1 nπ(n) giving

⟨n⟩ = exp(K)− 1

Ei(K)− ln(K)− γEM
.

This can be seen by noting that multiplying Eq. (2.4) by n and summing over all n gives

precisely the power series of the exponential function minus the n = 0 term. Taking

the limit of large population size, i.e. assuming that K ≫ 1, we expand the terms in

our expression. First, we have asymptotically that Ei(x) ∼ ex

x

∑∞
k=0

k!
xk

(O’Malley, 2014).

Truncating at the first term, this gives Ei(x) ≈ ex

x and this is dominant over the other terms
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2.1 Logistic growth of a single-species population

Figure 2.1: Mean extinction time of a population under logistic growth, τE , against car-
rying capacity K, initialised at n = K. Blue circles are simulation data, black line shows
the predictions of Eq. (2.6).

in the denominator. Furthermore, the exponential in the numerator dominates. Therefore,

this leaves us with ⟨n⟩ ≈ K, as in the MF approximation, showing that for large K the MF

approach provides a good approximation to the true dynamics. However, as mentioned

previously, due to DF extinction is inevitable since n = 0 is the sole absorbing state. This

extinction occurs after a time which scales with the population size. To understand when

we can reasonably ignore extinction or when we must consider it, I now will estimate that

time.

The mean extinction time (MET) for a population with carrying capacity K, initialised

with K individuals, denoted τE(K), is given by (L. J. S. Allen, 2003)

τE(K) =
K−1∑
n=0

(
n!

Kn

∞∑
i=n+1

1

i

Ki

i!

)
. (2.5)

The leading contribution to this expression arises from the term n = 0 term, and so

τE(K) ≈
∑∞

i=1K
i/(i · i! ). This expression, corresponding to the MET for a population

initialised with a single individual, is a good approximation of Eq. (2.5) which indicates

that the MET is independent of initial condition (to leading order in τE). We have

already seen this expression in the normalisation of π(n) in Eq. (2.4), and thus have

τE(K) ≈ Ei(K) − ln(K) − γEM. Using the asymptotic expression for Ei(x) to first order

again, we find

τE(K) ≈ eK

K
. (2.6)

The MET hence increases almost exponentially with K and is essentially independent

of the initial state. This approximation matches well to simulation results as seen in

Fig. 2.1. For larger populations as considered previously, this time can thus be very long,

far exceeding the timescale of the dynamics of interest. In this case, the population is

characterised by the approximate QPSD of Eq. (2.4), where extinction can be ignored. In

smaller populations however, this time is comparable to the timescale of the dynamics of
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interest and extinction must be explicitly considered. Chs. 3 and 4 will consider only cases

of large populations and so extinction is irrelevant, while Ch. 5 will explicitly consider the

possibility of extinction.

I shall now look at competition between species, where the logistic growth dynamics are

recovered in the population size.

2.2 Competition for shared resources

Typically, several species occupy a given environment. These species make use of the

resources available in the environment, such as glucose, to replicate (Fuhrer et al., 2005;

Nannipieri et al., 2017; Van den Bergh et al., 2018; Grilli, 2020). It is common for

different species to utilise the same resource for replication. This leads to a competition

between species, where they each compete for the same resource and those that can do

so more effectively are more likely to survive and replicate. This type of competition

involves no direct interactions between members of different species, such as is typical

in predatory reproduction under predator-prey interactions where individuals consume

members of other species to reproduce. Here, I shall consider solely the case of competition

for shared resources, ignoring any direct inter-species interactions. Specifically, I consider

competition between two species for a constant supply of resources held at a limited level.

Under these restrictions, analytical progress can be made. Furthermore, restricting our

attention to two species is less limiting than it might initially seem. In environments

where multiple species are present, if differences among them in replication rates and

resource usage are negligible, they may be treated as effectively equivalent for modelling

purposes. This simplification allows us to reduce a complex community to a two-species

system without significant loss of generality. In any case, the two-species case provides a

clear and analytically tractable example, which will serve as a useful tool in subsequent

analysis.

Here, I will start from the ME for competition between two species, where one is assumed

to be a mutant, denoted M , competing with the wild-type species, denoted W . This

arbitrary labelling will vary in the chapters following this to suit the context of the model

considered. I will show that in the MF limit, we retrieve an equation for the evolution

of the composition of the population, capturing the change in relative abundance of the

species in time. I will then consider the Moran process (Moran, 1958, 1962; Ewens, 2004),

demonstrating its utility in considering the evolution of a population under the logistic

growth dynamics considered in Ch. 2.1.

2.2.1 Master equation and the van Kampen expansion

Again, we begin by considering the underlying microscopic processes of the dynamics. The

population contains n = nM +nW individuals, where nM and nW denotes the mutant and

wild-type components of the population, respectively. We again consider no spatial struc-

ture, and so the system is well-mixed. The probability of finding the system with nM mu-
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tant individuals and nW wild-type individuals at a time t is denoted P (nM , nW , t). Birth

and death events are independent for each species. Therefore, the rates at which the system

transitions from P (nM , nW , t) → P (nM ±1, nW , t) and P (nM , nW , t) → P (nM , nW ±1, t),

are given by T±
M (nM , nW ) and T±

W (nM , nW ), respectively. The ME describing this system

is then given by

∂tP (nM , nW , t) =
∑

α={M,W}

[(
E−
α − 1

)
T+
α (nM , nW )P (nW , nM , t)

+
(
E+
α − 1

)
T−
α (nM , nW )P (nM , nW , t)

]
,

(2.7)

where the operators E±
α act on a general function f(nM , nW , t) to give E±

Mf(nM , nW , t) =

f(nM±1, nW , t) and E±
W f(nM , nW , t) = f(nM , nW±1, t). Furthermore, we set P (nM , nW , t) =

0 whenever nM < 0 or nW < 0 to avoid unphysical population sizes, a condition we shall

apply throughout this thesis. It is important to note that we generally consider T+
α = 0 for

nα = 0, meaning once a species has reached extinction it cannot return and the system has

entered an absorbing state. To proceed, we perform a van Kampen system size expansion

(van Kampen, 1992). We assume a large parameter K (here the carrying capacity), where

nM , nW ∼ K, and define the variables x = nM/K, y = nW /K, which become continuous

in the limit of K → ∞. We then also write P (x, y, t) ≡ P (nM = Kx, nW = Ky, t).

Furthermore, we assume that the rates T±
α can be written as T±

α = KΞ±
α (x, y), where Ξ±

α

remain finite as K → ∞.

The impact of the operators E±
α on a general function f(nM , nW , t) ≡ f(Kx,Ky, t) can

then be expanded in K, giving1

E±
Mf(Kx,Ky, t) ≈ f(Kx,Ky, t)± 1

K
∂xf(Kx,Ky, t),

E±
W f(Kx,Ky, t) ≈ f(Kx,Ky, t)± 1

K
∂yf(Kx,Ky, t).

Substituting the above into Eq. (2.7) yields

∂tP (x, y, t) = ∂x
[
(Ξ+

M (x, y)− Ξ−
M (x, y))P (x, y, t)

]
+ ∂y

[
(Ξ+

W (x, y)− Ξ−
W (x, y))P (x, y, t)

]
.

We note that this equation can be simply rearranged to give a continuity equation ∂tP (x, y)+

∇ · [v⃗(x, y)P (x, y, t)] = 0 with v⃗(x, y) = (Ξ−
M (x, y)− Ξ+

M (x, y),Ξ−
W (x, y)− Ξ+

W (x, y)), and

so demonstrates the conservation of probability where v⃗(x, y) describes the flow of proba-

bility at each point in phase space (x, y). Using the method of characteristics (Riley et al.,

2006), we obtain
d

dt
x = Ξ+

M (x, y)− Ξ−
M (x, y),

d

dt
y = Ξ+

W (x, y)− Ξ−
W (x, y).

(2.8)

1In cutting the expansion of E±
α at first-order, I have implicitly assumed that the size of the relative

fluctuations scales as K− 1
2 and therefore goes to zero as K → ∞. Therefore, we consider averaged

quantities from this point, i.e. ⟨x⟩ , ⟨y⟩, ⟨nM ⟩, and ⟨nW ⟩, though do not change the notation for clarity.
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2. MATHEMATICAL PRELIMINARIES

Finally, multiplying through by K yields,

d

dt
nM = T+

M (nM , nW )− T−
M (nM , nW ),

d

dt
nW = T+

W (nM , nW )− T−
W (nM , nW ).

(2.9)

Typically, Eqs. (2.9) can not be solved exactly for nM (t) and nW (t) since the rates are

commonly non-linear functions of nM and nW . Let us consider now the specific case of

interest to us. Here, the rates of increase and decrease of individuals of species α ∈ {M,W}
are given by (Melbinger et al., 2010; Cremer et al., 2011; Wienand et al., 2017, 2018)

T+
α =

fα

f
nα and T−

α =
n

K
nα, (2.10)

where fα denotes the fitness of species α, and f = nMfM+nW fW
nM+nW

denotes the average

fitness of the entire population. Fitness, as briefly mentioned in Ch. 1, is a value assigned

to a species denoting the reproductive capabilities of an individual of that species – a

species with a higher fitness will reproduce more often. This is seen in the form of the

birth rates of Eq. (2.10). The choice to rescale T+
α by the average fitness of the entire

population is common for a broad range of evolutionary processes, though alternatives

have been proposed (Traulsen et al., 2005). The convenience of this choice becomes clear

when considering the evolution of the total population size n under these rates. Summing

Eqs. (2.10) over α gives the overall rates for increase and decrease of the population size n.

We find that we retrieve the logistic growth rates of Ch. 2.1 and therefore this system also

undergoes logistic growth dynamics, seen directly by substituting these rates into the sum

of Eqs. (2.9). Therefore, Eq. (2.2) has been obtained under a controlled approximation,

unlike the method of Ch. 2.1.1. This is particularly useful, as it allows us to consider that

the population size of this system is approximately constant at n = K and independent

of its composition, which will allow us to use the Moran process later. This reduces the

dimensionality of the problem in the population composition evolution, as we need only

consider the evolution of nM = K − nW . Then, the evolution of the composition, now

given by x ≡ nM/n = nM/K alone (with y = 1 − x), follows the first of Eqs. (2.8) with

the rates of Eq. (2.10), giving

d

dt
x = x(

fM

f
− 1),

= x(1− x)
fM − fW

f
,

(2.11)

which is the adjusted replicator equation; see J. M. Smith (1982). Therefore, if fM > fW

then x → 1 (and thus y → 0), and if fM < fW then x → 0 (and thus y → 1). This

gives a clear qualitative understanding of the composition evolution at the MF level: if

one species is fitter than the other, then its relative abundance increases.

A further useful consideration is that of weak selection, where there is only a small selective

advantage to one of the species (Hofbauer & Sigmund, 1998; Wild & Traulsen, 2007). Let
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2.2 Competition for shared resources

us assume fW = 1 and fM = 1 + s with 0 < s≪ 1, therefore allowing the mutant species

a small selective advantage. Eq. (2.11) is then approximated by

d

dt
x ≈ sx(1− x). (2.12)

Therefore, at the MF level we expect an increase in the fraction of M in the population

on a timescale of order O(1/s). Since 0 < s ≪ 1, this is typically far slower than the

timescale on which the population size n evolves, where from Eq. (2.23) we expect this to

occur on a timescale of order O(1). There is then a timescale separation between n and x,

where n relaxes quickly while x relaxes slowly. We will make use of this relevant regime

later; see Chs. 3 and 5. We now continue, and consider where this MF approximation

breaks down.

2.2.2 Stochasticity and the impact of finite size

We again find that, while useful in large populations, the MF description fails to capture

some crucial aspects of the dynamics in finite populations. For example, Eq. (2.11) predicts

that the fitter species is certain to grow in abundance and get arbitrarily close to taking

over the population, but will never fixate, i.e. reach x = 0, 1. Fixation, as introduced in

Ch. 1, only occurs in finite populations as a stochastic effect due to DF. We now look to

capture this process of fixation.

In systems such as those described in Ch. 2.1, we can make use of the approximately

constant population size under logistic growth for K ≫ 1, through the Moran process

(Moran, 1958, 1962). Therefore, we approximate our system using a Moran process,

which we term the Moran approximation (MA) of the system. In the MA we couple

the processes of birth and death and define effective rates, such that the population size

remains constant at n = K, i.e. each M birth is accompanied by a W death, and each

W birth is accompanied by an M death. This allows the population to evolve in its

composition, while maintaining a constant population size where nM = K − nW . The

reactions

(nM , nW )
T+

MA−−−→ (nM + 1, nW − 1),

(nM , nW )
T−
MA−−−→ (nM − 1, nW + 1),

(2.13)

maintaining the constant population size but allowing the composition of the population

to evolve, occur at effective rates T±
MA. To obtain expressions for these rates we start

by noting that changes in x in the MA according to Eq. (2.13) are of size ∆x = 1/K.

Taking the MF approximation for the first two moments of the ME of Eq. (2.7), we find
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the evolution of x and the evolution of its variance σ2x are given by1

d

dt
x =

1− x

K
(T+
M − T−

M )− x

K
(T+
W − T−

W ),

d

dt
σ2x =

(
1− x

K

)2

(T+
M + T−

M ) +
( x
K

)2
(T+
W + T−

W ).

(2.14)

The effective rates T+
MA and T−

MA correspond to an increase or decrease in x by an amount

∆x, respectively. Therefore, separately (but obtained similarly), we have for the evolution

of x and σ2x in the MA that

d

dt
x = (T+

MA − T−
MA)∆x,

d

dt
σ2x = (T+

MA + T−
MA)(∆x)

2.

(2.15)

Thus, we can combine Eqs. (2.14) and (2.15) to find general expressions for the effec-

tive rates, T±
MA, leading to the same evolution of the mean and variance of x as the true

microscopic rates. Therefore, the population evolution given by Eq. (2.2.1) and the effec-

tive process are equivalent at the level of the Fokker-Planck approximation (van Kampen,

1992; Gardiner, 2009). These effective rates are given by

T±
MA =

1

2∆x

(
d
dtσ

2
x

∆x
± d

dt
x

)
. (2.16)

Substituting Eqs. (2.14) into Eq. (2.16), this simplifies to (Wienand et al., 2017, 2018)

T+
MA(nM ) =

T+
M (nM )T−

W (nM )

K
,

T−
MA(nM ) =

T+
W (nM )T−

M (nM )

K
.

Noting that the MA of the system also has absorbing boundaries at nM = 0,K, we

see that in this approximation we have obtained a one-dimensional random walk with

state-dependent rates and two absorbing boundaries. If the nM = K state is reached,

then the mutant has fixated the population, whereas if nM = 0 is reached, the wild-type

has fixated the population. In such a case, we can define first-step equations (difference

equations) for the fixation probability of the mutant, ϕMA(nM ), and the mean fixation time

(MFT), τMA(nM ), assuming initially nM mutant individuals (Gardiner, 2009; Ashcroft et

al., 2014). Note that in this thesis we always consider the unconditional MFT, i.e. the

1Alternatively, we could have carried out our van Kampen expansion of the ME to second order in the
previous section to obtain a Fokker-Planck equation. From this, the expressions for the evolution of the
mean and variance can be read off directly (van Kampen, 1992; Gardiner, 2009).
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2.2 Competition for shared resources

mean time to fixation regardless of which species fixates. These are given by[
T+
MA(nM ) + T−

MA(nM )
]
ϕMA(nM ) = T+

MA(nM )ϕMA(nM + 1)︸ ︷︷ ︸
fixation from nM + 1

+T−
MA(nM )ϕMA(nM − 1)︸ ︷︷ ︸

fixation from nM − 1

,

[
T+
MA(nM ) + T−

MA(nM )
]
τMA(nM ) = T+

MA(nM )τMA(nM + 1)︸ ︷︷ ︸
fixation from nM + 1

+T−
MA(nM )τMA(nM − 1)︸ ︷︷ ︸

fixation from nM − 1

+1,

(2.17)

where the motivation is to look one “step” into the future and consider the subsequent

evolution of the system, and the +1 on the right hand side of the first-step equation for

τMA is a time increment. These are classical results, and can be solved exactly to give

(Antal & Scheuring, 2006; Traulsen & Haeurt, 2009)

ϕMA (nM ) =
1 +

∑nM−1
k=1

∏k
i=1 γMA (i)

1 +
∑K−1

k=1

∏k
i=1 γMA (i)

,

τMA (nM ) = ϕMA(nM )

K−1∑
k=nM

k∑
i=1

∏k
m=i+1 γMA (m)

T+
MA (i)

− [1− ϕMA(nM )]

nM−1∑
k=1

k∑
i=1

∏k
m=i+1 γMA (m)

T+
MA (i)

,

(2.18)

(2.19)

where γMA (i) =
T−
MA

(i)

T+

MA
(i)
. For the specific rates given by Eq. (2.10), we find γMA (i) =

γMA = fW
fM

. This simplifies the expression for the fixation probability significantly, giving

ϕMA (nM ) =
1−

(
fW
fM

)nM

1−
(
fW
fM

)K , (2.20)

while the expression for τMA (nM ) remains unwieldy. Therefore, we are able to capture

the evolution of the population size and its composition in a constant environment.

Consider again the weak selection limit used to obtain Eq. (2.12), with fM = 1 + s and

fW = 1 where 0 < s≪ 1. In this limit, assuming K ≫ 1, we have

ϕMA (nM ) ≈ 1− exp(−nMs)
1− exp(−Ks)

,

which demonstrates the impact and interplay of selection through the selective advantage,

s, and diffusion through the population size, K. For Ks ≫ 1 selection is the dominating

factor and ϕMA(nM ) ≈ 1, while for Ks ≪ 1, diffusion drives fixation and ϕMA ≈ nM/K,

with a transition around Ks ∼ 1. These parameters define the environment of the popula-

tion. Should this environment change, which as discussed previously is ubiquitous across

natural systems, these parameters are liable to change. This will therefore directly affect
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the fixation probability of the mutant, and the MFT. Capturing the effect of EV on such

processes is typically non-trivial, but is crucial if we hope to understand the behaviour of

the real biological systems.

I now look to introduce environmental variability, showing how it is modelled here, and

concretely how we capture its effects through an illustrative example.

2.3 Dichotomous Markov noise

Dichotomous Markov noise (DMN), as discussed in Ch. 1, is a simple form of noise, where

two states are switched between with constant rates. Defining a time-varying random

variable ξ(t) that evolves according to DMN, we have ξ ∈ {ξ−, ξ+} and

ξ = ξ+
ν+−→ ξ− and ξ = ξ−

ν−−→ ξ+. (2.21)

where ν± are the switching rates of the DMN. It is useful to define the average switching

rate ν and the switching bias δ as

ν ≡ ν− + ν+
2

and δ ≡ ν− − ν+
2ν

,

such that ν± = ν(1∓ δ). This means that δ > 0 corresponds to a bias towards time spent

in the ξ(t) = ξ+ state, while δ < 0 indicates more time in the ξ(t) = ξ− state. Herein, I

initialise the DMN from its stationary distribution (i.e. the probability distribution of ξ

attained at long times), giving ξ(0) = ξ± with probabilities (1±δ)/2, and I choose ξ± = ±1

for simplicity and without loss of generality. Thus, for ξ(t) we find the average over its

stationary distribution ⟨ξ(t)⟩ = δ and autocovariance (autocorrelation up to a constant)

⟨ξ(t)ξ(t′)⟩ − ⟨ξ(t)⟩ ⟨ξ(t′)⟩ = (1− δ2) exp(−2ν|t− t′|), where ⟨.⟩ here denotes the ensemble

average. The correlation time of the DMN, 1/(2ν), is half of the inverse of the average

switching rate of ξ.

I will now show how DMN is implemented to model EV through a carrying capacity that

changes in time.

2.3.1 Stochastically switching carrying capacity

Using the DMN, I look to introduce EV through sudden changes in available resources,

such as in cycles of feast and famine (Hengge-Aronis, 1993; Srinivasan & Kjelleberg, 1998;

Merritt & Kuehn, 2018; Himeoka & Mitarai, 2020). This is implemented by allowing

the carrying capacity to fluctuate in time between two values, such that we have K(t) ∈
{K−,K+}, with K+ > K−, mimicking the effect of a varying nutrient availability. We

denote K+ the large carrying capacity, associated with mild environmental conditions

(high nutrient availability) and K− the small carrying capacity, associated with harsh

environmental conditions (low nutrient availability). As motivated in Ch. 1, this allows us

to simply model sudden extreme changes in the population size, particularly the formation

of population bottlenecks (Wahl et al., 2002; Brockhurst, 2007; Patwa & Wahl, 2010; G.
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2.3 Dichotomous Markov noise

Lambert & Kussell, 2014; Wienand et al., 2017, 2018; Mahrt et al., 2021; Shibasaki et al.,

2021), and make analytical progress in capturing their effects. To achieve this, K(t) is

driven by the DMN ξ(t) = {−1, 1} that randomly switches between −1 and 1 as given in

Eq. (2.21). Concretely, we then have (Wienand et al., 2017, 2018; Taitelbaum et al., 2020,

2023)

K(t) =
1

2
[K+ +K− + ξ(t)(K+ −K−)] , (2.22)

which, with K0 ≡ K++K−
2 and γ ≡ K+−K−

2K0
, can conveniently be written as

K(t) = K0[1 + γξ(t)].

Through analogy with the constant environment case, this suggests that, at the MF level,

the population size now denoted N evolves according to the stochastic differential equation

Ṅ = N

(
1− N

K(t)

)
=

N
(
1− N

K−

)
if ξ = −1,

N
(
1− N

K+

)
if ξ = +1,

(2.23)

where a dot denotes the time derivative here and throughout this thesis. This defines

a piecewise-deterministic Markov process (PDMP), consisting of deterministic evolution

interspersed with stochastic switches (Davis, 1984). Therefore, N will stochastically be

driven out of equilibrium and generally vary significantly. It is useful to consider the

QPSD of N under this PDMP description, where we consider only fluctuations due to

the environment as given by Eq. (2.23), i.e. ignoring DF, as we will be able to obtain

its analytical form and see that it approximates qualitatively well the true QPSD of the

system (Wienand et al., 2017, 2018).

To do so, following the derivations of Horsthemke and Lefever (1984) and Ridolfi et al.

(2011), we start by defining the pair process (N, ξ). In what follows we abuse notation

slightly by using ξ to denote both the DMN process and its instantaneous state in a given

realisation. Here, ξ fluctuates independently of N , according to Eq. (2.21) and N evolves

according to the stochastic differential equation defined in Eq. (2.23). Concretely, I define

that Ṅ = Fξ(N) where Fξ(N) = N
(
1− N

K0(1+γξ)

)
. The Chapman-Kolmogorov equation

for the pair process (N, ξ) is given by

p(n, ξ, t+ δt|n0, ξ0, 0) =
∑

α∈{ξ−,ξ+}

∫
dm p(n, ξ, t+ δt|m,α, t)p(m,α, t|n0, ξ0, 0),

where p(n, ξ, t|n′, ξ′, t′) denotes the probability of being in state (n, ξ) at time t given

the system was in state (n′, ξ′) at time t′, n0 and ξ0 denote the values of the respective

variables at t = 0, and δt is a small time increment. This simply states that, by the

Markov property, the probability to go from the state (n0, ξ0) at time 0 to the state (n, ξ)

at time t+δt can be captured by summing (and integrating) over all possible intermediate

states (m,α) occurring at a time t (van Kampen, 1992; Gardiner, 2009). For brevity we

will introduce p(n, ξ, t|0) ≡ p(n, ξ, t|n0, ξ0, 0) and show this derivation for the case only
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of ξ = ξ+ as the derivation for ξ = ξ− is almost identical. Furthermore, we will use ξ±

to denote the environmental states explicitly for clarity. Allow f(n) to be a sufficiently

smooth real-valued function with compact support. Then we have that∫
dn f(n)p(n, ξ+, t+ δt|0) =

∑
α

∫
dm p(m,α, t|0)

[∫
dn f(n)p(n, ξ+, t+ δt|m,α, t)

]
.

We can now subtract
∫
dn f(n)p(n, ξ+, t|0) from each side, divide by δt and take the limit

as δt→ 0 to obtain on the left-hand side

lim
δt→0

∫
dn f(n) [p(n, ξ+, t+ δt|0)− p(n, ξ+, t|0)]

δt
=

∫
dn f(n)∂tp(n, ξ+, t|0), (2.24)

where we can exchange the integral and the limit as ∂tp(n, ξ+, t|0) is assumed to exist

and be continuous. Now to evaluate the right-hand side we must find expressions for

p(n, ξ+, t + δt|m,α, t) for α ∈ {ξ−, ξ+} in the limit as δt → 0. To do this we start

by considering the transition rates for the possible transitions of ξ in a time δt. The

transition probability for no jump ξ+ → ξ+ is 1− ν+δt+ o(δt) and for one jump ξ− → ξ+

is ν−δt + o(δt). The probability for two or more jumps is of order o(δt) and thus in our

limit these need not be considered. If ξ does not jump then N = m at time t and we have

n = m+ Fξ+(m)δt+ o(δt) at time t+ δt. Thus we have that

p(n, ξ+, t+ δt|m, ξ+, t) = δ(n− [m+ Fξ+(m)δt])(1− ν+δt) + o(δt)

where δ(x) denotes the Dirac-delta function. If we now consider the case of a single jump

occurring in the interval [t, t+ δt), and denote the fraction of time passed prior to a jump

as τ whereby this fraction is uniformly distributed on [0, 1], then (starting at N = m at

time t) we find that N at a time t+ δt takes the value

n = m+ τFξ−(m)δt+ (1− τ)Fξ+(m)δt+ o(δt)

giving us

p(n, ξ+, t+ δt|m, ξ−, t) = δ(n− [m+ τFξ−(m)δt+ (1− τ)Fξ+(m)δt])ν−δt+ o(δt).

Substituting these expressions for p(n, ξ+, t+ δt|m, ξ+, t) and p(n, ξ+, t+ δt|m, ξ−, t) into
the right-hand side of Equation (2.24) and neglecting terms of order o(δt) we get∫

dn f(n)∂tp(n, ξ+, t|0) = lim
δt→0

1

δt

[∫
dn p(n, ξ+, t|0)f(n+ Fξ+(n)δt)(1− ν+δt)

+

∫
dn p(n, ξ−, t|0)f(n+ τFξ−(n)δt+ (1− τ)Fξ+(n)δt)ν−δt

−
∫

dn f(n)p(n, ξ+, t|0)
]
.

We can now take a Taylor expansion of f(n) to first order, neglect terms of order o(δt)
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and integrate by parts using the compact support of f(n) to obtain∫
dn f(n)∂tp(n, ξ+, t|0) =

∫
dn f(n){ − ∂n[Fξ+(n)p(n, ξ+, t|0)]

− ν+p(n, ξ+, t|0) + ν−p(n, ξ−, t|0)}.

Since f(n) was chosen as an arbitrary function, we have

∂tp(n, ξ+, t) = −∂n(Fξ+(n)p(n, ξ+, t))− ν−p(n, ξ+, t) + ν+p(n, ξ−, t),

and a similar result holds if we first consider ξ = ξ−. Denoting p(n, ξ, t) as pξ for conve-

nience, we therefore have

∂tpξ = −∂n(Fξ(n)pξ)− ν−ξpξ + νξp−ξ,

= −∂nJξ where Jξ = Fξpξ +
∫ n

dn′(ν−ξpξ − νξp−ξ).
(2.25)

If we now consider pξ and Jξ at stationarity, denoted p
∗
ξ and J∗

ξ , we have

∂tp
∗
ξ = −∂nJ∗

ξ = 0.

This implies that ∂n(J
∗
+ + J∗

−) = 0 and so, taking the natural boundary conditions, i.e.

there is no probability current at the boundaries (Gardiner, 2009), gives J∗
+ + J∗

− = 0.

We thus find that

p∗ξ = −
F−ξ
Fξ

p∗−ξ.

Using this in conjunction with Eq. (2.25) gives

∂n(Fξp∗ξ) +
(
ν+
Fξ−

+
ν−
Fξ+

)
Fξp∗ξ = 0,

which we can rewrite by dividing through by Fξp∗ξ , integrating, and exponentiating to give

Fξp∗ξ = ξZ exp

[
−
∫ (

ν+
Fξ−

+
ν−
Fξ+

)
dn

]
,

where Z is a normalisation constant ensuring
∫
pξ dn = 1. Therefore, the stationary

distributions conditioned on the environmental state are given by

p∗ξ(n) =


Z
n2

(
K+−n
n

)ν−−1 (
n−K−
n

)ν+
if ξ = ξ+ = +1,

Z
n2

(
K+−n
n

)ν− (n−K−
n

)ν+−1
if ξ = ξ− = −1,

(2.26)

where the p∗ξ(n) have support [K−,K+]. Furthermore, we can construct the joint station-

ary distribution p∗(n) = [(1 + δ)p∗+(n) + (1− δ)p∗−(n)]/2 giving

p∗(n) =
Z
n2

(
K+ − n

n

)ν−−1(n−K−
n

)ν+−1

, (2.27)

27



2. MATHEMATICAL PRELIMINARIES

where Z has been redefined to absorb a constant factor and the approximate QPSD has

support [K−,K+]. Herein, we shall refer to p∗(n) and p∗ξ(n) as simply p(n) and pξ(n) for

notational clarity. Intuitively, these distributions can be understood through the lens of

a histogram where population sizes are binned through time. The histogram for p+(n) is

binned while ξ = ξ+, for p−(n) while ξ = ξ−, and p(n) is always binned regardless of ξ.

This distribution has a particularly simple form and captures well many aspects of the

distribution, while neglecting the width of its peaks since we have ignored DF. It is possible

to capture the width of the peaks using the linear noise approximation, where it is seen

that the true distribution is captured more accurately. However, it is far more complex and

computationally expensive to use, and little is gained over using the analytically tractable

QPSD of the PDMP (Wienand et al., 2018).

2.3.2 Illustrative example

To illustrate the utility of the approximate QPSD of Eq. (2.27), I will demonstrate how it

can be used in a simple case, considered in Wienand et al. (2017). Consider a two-species

population governed by the birth and death rates defined in Eq. (2.10), where we again

denote the species as either mutant (M) or wild-type (W ). We also now allow K → K(t)

in the death rates to vary according to Eq. (2.22), driven between K = K+ and K = K−

by a DMN process labelled ξ. For simplicity, we will consider symmetric switching in the

environment, i.e. ν+ = ν− = ν and δ = 0. The ME for this system is thus given by

∂tP (nM , nW , ξ, t) =
∑

α∈{M,W}

[(
E−
α − 1

) fα
f
nα +

(
E+
α − 1

) n
K
nα

]
P (nM , nW , ξ, t)

+ ν [P (nM , nW ,−ξ, t)− P (nM , nW , ξ, t)] ,

with P (nM , nW , ξ, t) = 0 for nM < 0 or nW < 0, where the operators E±
α are defined as in

Eq. (2.7). The top row of the right-hand side gives the birth and death dynamics already

discussed in Ch. 2.2.1, while the bottom row makes explicit the switching environment

through the DMN variable ξ.

It is first useful to consider the population size distribution and how this depends on

the switching rate ν. Herein I simply write N for both the stochastic process N and its

instantaneous value n. We will consider how the approximate QPSD compares to the true

distribution, both through qualitative comparison of the distributions and quantitative

comparison of the average population size of the distributions, denoted ⟨N⟩. We see from

Fig. 2.2(a) that for slow switching rate, ν ≪ 1, the distribution is bimodal, sharply peaked

around each ofK±. Here, the population is initialised with a carrying capacityK(0) = K±,

each with a probability 1/2 due to symmetric switching, and does not switch for long

periods of time. In this limit, the QPSD given by Eq. (2.27) becomes approximately a

sum of delta functions, p(N) = 1
2δ(N −K+) +

1
2δ(N −K−), one for each of the possible

starting states. Therefore, the average population size is given by ⟨N⟩ = K+

2 + K−
2 = K0.

On the other hand, for fast switching rate, ν ≫ 1, the environment switches on a faster
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Figure 2.2: QPSD and fixation dynamics for the illustrative example. (a-d): the QPSD
for (a) ν = 0.05, (b) 0.5, (c) 5, and (d) 50. The red and blue lines correspond to pξ(n)
given by Eq. (2.26) for ξ = −1 and ξ = 1, respectively. The black line corresponds to p(n)
given by Eq. (2.27). The red and blue bars correspond to simulation data for the QPSD
conditioned on ξ = −1 and ξ = 1, respectively, with their overlapping regions appearing
purple. (e): average population size ⟨N⟩ against switching rate ν. Solid line is theory given
by Eq. (2.28) while simulation data are plotted as circles. Horizontal dashed grey lines
are from the slow and fast switching limits given by ⟨N⟩ = K0 and ⟨N⟩ = K, respectively.
(f): fixation probability of mutant in a switching environment ϕ against ν for s = 0.02
(blue) and s = 0.07 (orange). Solid lines calculated using Eq. (2.29) and simulation
data plotted as circles. Horizontal dashed lines for each s (with matching colour) are
the slow and fast switching limits given by ϕ(nM ) ≈ 1

2(ϕMA(nM ,K+) + ϕMA(nM ,K−))
and ϕ(nM ) ≈ ϕMA(nM ,K), respectively. The vertical dotted lines give the point ν = s,
indicating the transition point between slow and fast switching for each s (with matching
colour). In each case, K+ = 200, K− = 50, δ = 0, and initial composition x = 0.5.
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2. MATHEMATICAL PRELIMINARIES

timescale than that of the relaxation dynamics of the population size which relaxes on a

timescale ∼ O(1); see Eq. (2.23). Therefore, the population feels an ‘effective environ-

ment’, given by an effective carrying capacity which the distribution becomes unimodal

around. This is seen in Fig. 2.2(d), both in the analytic approximation of the QPSD

and the results from simulations; see Appendix D. The effective carrying capacity in this

limit, denoted K, is due to the self-averaging of the DMN. Its expression is obtained from

considering (Wienand et al., 2017, 2018)

Ṅ = Fξ = N

(
1− N

K0(1 + ξγ)

)
,

which can be rewritten, using ξ2 = 1, as

Fξ = N

(
1− N(1− ξγ)

K0(1− γ2)

)
,

and averaged over the stationary distribution of ξ, giving

⟨F⟩ = N

(
1− N(1− δγ)

K0(1− γ2)

)
,

= N

(
1− N

K

)
,

where ⟨ξ⟩ = δ and K = K0(1 − γ2)/(1 − δγ), simplifying to K = K0(1 − γ2) in the case

of symmetric switching. Hence, sufficiently fast environmental switching reproduces an

effectively constant environment, which is also captured by the approximate QPSD with

p(N) ≈ δ(N −K). The average population size ⟨N⟩ = K is then also adequately captured

in this limit; see Fig. 2.2(e).

When not in the limits of fast or slow switching, we consider intermediate switching where

ν ∼ 1. In fact, it is at ν = 1 where p(N) undergoes a noise-induced transition: increasing

ν from below to above 1, the approximate QPSD transitions from a bimodal to unimodal

distribution. Remarkably, we find that p(N) is still able to capture key features of the

true distribution; see Fig. 2.2(b,c). Furthermore, now defining

⟨N⟩ =
∫ K+

K−

Np(N) dN, (2.28)

we see in Fig. 2.2(e) that across all ν, using our approximate expression for the QPSD

excellently captures ⟨N⟩ from simulations. Due to the population size following logistic

growth dynamics as in Eq. (2.23), N takes longer to grow than it does to decay following

an environmental switch. This is because, assuming K+ ≫ K−, immediately following a

switch from K− to K+ we have Ṅ ≈ K−

(
1− K−

K+

)
≈ K−, while following a switch from

K+ to K− we have Ṅ ≈ K+

(
1− K+

K−

)
≈ −K2

+/K−, where K
2
+/K− ≫ K−. This means

that for ν < 1, the peak at N = K− is larger than the peak at N = K+. The peaks

are most similar for ν → 0, with the peak around N = K+ decreasing as ν increases and

approaches 1. For larger ν, the population becomes unimodal around K. This explains
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2.3 Dichotomous Markov noise

the behaviour of ⟨N⟩ with ν, where we see it smoothly decreases as ν increases. Having

determined that p(N) adequately captures the ecological dynamics of the population, we

now look to how we may utilise p(N) in capturing its impact on fixation.

Concretely, we will consider the case of a small selective advantage to the mutant, such

that fW = 1 and fM = 1 + s where 0 < s ≪ 1, and assume that the population is

initially composed of mutants and wild-types in equal measure, i.e. nM = K(0)/2 and

nW = K(0)/2. As seen in Eq. (B.1), we then have a timescale separation between the

composition evolution x, given by Eq. (2.12), evolving on a timescale of order O(1/s),

while the evolution of the population size N , given by Eq. (2.23), evolves on a timescale

of order O(1). Therefore, while N relaxes rapidly, x does so slowly. Therefore, during the

evolution of x towards fixation, we expect N to explore the entire QPSD. This suggests

a way to proceed, where p(N) captures the variation in N due to EV, and ϕMA given by

Eq. (2.20) captures the probability of fixation for each N in the QPSD. We therefore seek

to combine these results in such a way that their combination captures fixation under an

EV-driven population size. To do so, we must ensure that the timescales on which ϕMA

and p(N) evolve are matched. Hence, we rescale the switching rate ν in p(N), such that

ν → ν/s, where the average number of environmental switches prior to fixation scales as

ν/s, so that the timescale of environmental switching is mapped onto that of fixation. We

denote this rescaled p(N) as pν/s(N) for clarity. We can then combine these quantities

for the fixation probability in a switching environment, ϕ, to give (Wienand et al., 2017,

2018; Taitelbaum et al., 2020, 2023)

ϕ(nM ) =

∫ K+

K−

ϕMA(nM , N) pν/s(N) dN, (2.29)

where we have explicitly included the dependence on population size N of ϕMA. Similarly,

the mean fixation time in a switching environment, τ , can be captured through

τ(nM ) =

∫ K+

K−

τMA(nM , N) pν/s(N) dN,

though we focus on the fixation probability in this example for simplicity. We see from

Fig. 2.2(f) that, similar to the analysis of ⟨N⟩, in the slow (ν ≪ s) and fast (ν ≫ s) switch-

ing limits, we have ϕ(nM ) ≈ 1
2(ϕMA(nM ,K+)+ϕMA(nM ,K−)) and ϕ(nM ) ≈ ϕMA(nM ,K),

respectively. This can be understood as follows: should the switching be far slower than

the timescale of fixation, the population is initialised with a given carrying capacity and

will fixate in that carrying capacity prior to a switch; should the switching be much faster,

the carrying capacity rapidly switches between its two values, and fixation occurs with

an effective population size of N ≈ K. Remarkably, the predictions of Eq. (2.29) also

quantitatively capture the behaviour in the intermediate switching regime. Furthermore,

we see that increasing the switching rate of the environment can act to either increase or

decrease the probability of mutant fixation, depending on s. This example demonstrates

the power of using Eq. (2.27) in incorporating the environment-driven ecological dynamics

into the analysis of population evolution and fixation, and the impact that EV can have
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on the evolution of a population. In the following chapters, we shall similarly utilise our

approximation for the QPSD on more complex systems of interest.
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Chapter 3

Cooperative antimicrobial

resistance

The rise of AMR is a pressing global issue (Eliopoulos et al., 2003; Gothwal & Shashidhar,

2015; O’Neill, 2016; Dadgostar, 2019; Murray et al., 2022). O’Neill (2016) estimated that

700,000 deaths each year are directly attributable to AMR, with this projected to rise to

10 million by 2050 without intervention. Not only is this an enormous human cost, but

this is economically crippling, with costs estimated at 100 trillion USD over the same time

frame in terms of losses in global production. It is therefore of the utmost importance to

develop our understanding of how AMR evolves (Bottery et al., 2021), with the hope that

we uncover mechanisms for preventing and eradicating it.

One common mechanism for AMR involves the production by resistant cells of an enzyme

which can inactivate antimicrobial drugs (Davies, 1994; Brook, 2004; G. D. Wright, 2005;

Brook, 2009; Shahid et al., 2009; Yurtsev et al., 2013). This enzyme production process

has some associated metabolic cost to the resistant cell, i.e. the resistant cells divert some

of their energy away from replication and towards enzyme production. This provides the

resistant cells with protection in the presence of an antimicrobial drug. Also present are

sensitive cells, which pay no metabolic cost but are impeded heavily by antimicrobial if

it is present. The enzyme produced by the resistant cells may be either intracellular or

extracellular. An intracellular enzyme only breaks down the antimicrobial within the cell,

making resistance private to the resistant cells. In this case, the problem considered here

reduces to that of Ch. 2.3.2 and Wienand et al. (2017, 2018) and the resistance is not

cooperative. If the enzyme is extracellular, it breaks down antimicrobial in the medium

itself around the resistant cell. Therefore, when the abundance of resistant cells exceeds

some threshold, the enzyme is sufficiently abundant in the medium to also break down the

antimicrobial present there. This provides resistance to the sensitive cells which have paid

no metabolic cost. Below this threshold, there is insufficient enzyme in the medium and

sensitive cells suffer the effects of the antimicrobial. The concentration of antimicrobial

above which it inhibits the sensitive cells is known as theminimum inhibitory concentration

(MIC). This behaviour may then be viewed as the antimicrobial concentration being raised
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3. COOPERATIVE ANTIMICROBIAL RESISTANCE

above or brought below its MIC, depending on the abundance of resistant cells which acts

as a proxy for the abundance of resistance enzyme.

In this case, AMR can be viewed as a thresholded cooperative behaviour where inactiva-

tion of the antimicrobial throughout the medium is considered a public good. Therefore,

below the threshold the resistant cells are better off, increasing in abundance, while when

above this threshold the sensitive cells are better off, meaning resistant cells decrease in

abundance as was illustrated previously in Fig. 1.4 (see also Figs. 3.3(a) and 3.6(a)). In

static environments where the population is large, the population is then driven towards

the threshold, which leads to a long-lived coexistence of sensitive and resistant strains

during antimicrobial treatment, where neither species is eradicated (Yurtsev et al., 2013;

Vega & Gore, 2014; Meredith et al., 2015; Bottery et al., 2016). How this picture changes

when the environment varies in time is not well understood, and thus is the focus of this

chapter.

In this chapter, I will investigate two models of cooperative AMR, where a cooperator

resistant strain, R, competes with a defector sensitive strain, S, to fixate the population.

Here, I assume that the cooperative resistance mechanism is mediated by the cooperator

strain, which pays some metabolic cost to produce an extracellular enzyme. This enzyme

hydrolises antimicrobial in the medium. Furthermore, I assume that the medium (com-

posed of antimicrobial and nutrients) is being continuously replenished. This mimics the

chemostat setup of experimental investigations, described in Ch. 1, where environmental

factors can be held constant, allowing the ecological dynamics to reach a steady state

(Novick & Szilard, 1950; James, 1961). Cooperators are always resistant to the antimicro-

bial, since the enzyme they produce is able to break it down. Defectors are not generally

protected against the antimicrobial by the enzyme. However, if the cooperators exceed

some threshold in either absolute or relative abundance (each choice requiring its own

investigation; see later), there is sufficient enzyme in the medium for the antimicrobial to

be brought below its MIC and defectors are also protected from the antimicrobial without

having paid the metabolic cost to produce the enzyme, as described previously.

The two choices for the cooperation threshold (in absolute or relative abundance) are

entirely equivalent when the environment stays constant and N(0) = K(0), but under

a time-varying environment implemented as in Ch. 2.3.1 a threshold in absolute abun-

dance corresponds to a time-varying resource concentration in a fixed volume, whereas a

threshold in relative abundance corresponds to a time-varying volume of resource at fixed

concentration; see Fig. 3.1.

Contents of this chapter appear in Hernández-Navarro et al. (2023) and Hernández-

Navarro, Asker, and Mobilia (2024).

3.1 Model description

In the model, I consider a population of size N , comprised of NR resistant cells and

NS = N − NR sensitive cells. The composition of the population x = NR/N gives the
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3.1 Model description

Figure 3.1: Cartoon depicting the difference between the two choices of threshold in the
thresholded shared resistance mechanism. Resistant cells (blue) compete with sensitive
cells (red). A green background indicates mild environmental conditions, while an or-
ange background indicates harsh environmental conditions which are switched between
with rates ν± as shown. Top: threshold in the absolute abundance of resistant cells.
Regardless of the nutrient concentration, which allows for a larger total population, the
volume remains constant and therefore the same number of resistant cells produce suffi-
cient resistance enzyme to provide resistance across the whole volume. In this example,
the threshold is Nth = 3. Bottom: threshold in the relative abundance of resistant cells.
While the nutrient concentration does not vary, the volume increases providing more nu-
trient overall to the population, and therefore allowing for a larger population size. To
produce enough resistance enzyme to cover the larger volume requires more resistant cells.
In this example, the threshold is xth = 0.6

relative abundance of resistant cells. Here, R cells have a constant fitness fR = 1 − s,

where 0 < s < 1 denotes the metabolic cost to R to produce the resistance enzyme.

The fitness of S however depends on if there is sufficient enzyme in the population. If

there is, S pays no cost and feels no effect of the antimicrobial, and has fitness fS = 1.

If there is not, S pays a significant cost due to the effects of the antimicrobial on its

replication, and has fitness fS = 1 − a with s < a < 1. Note that here we focus on the

effect of a biostatic antimicrobial which only acts to slow the growth of bacteria (Pankey

& Sabath, 2004; Bernatová et al., 2013; Nemeth et al., 2015). The effect of a biocidal

antimicrobial, increasing the death rates of bacteria, is an interesting problem not studied

here, though typically the effect of a drug can be either biostatic or biocidal depending

on its concentration (Pankey & Sabath, 2004; Bernatová et al., 2013; Nemeth et al.,

2015). In the case of a threshold in the absolute abundance of R cells for shared resistance

with S (varying nutrient concentration, fixed volume), we denote this threshold number

Nth. For a threshold in the relative abundance of R cells (fixed nutrient concentration,

varying volume), we denote the threshold composition xth. For convenience, we define
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3. COOPERATIVE ANTIMICROBIAL RESISTANCE

HN = H [Nth −NR] and Hx = H [xth − x], where H[z] is the Heaviside step function,

defined as H[z] = 1 if z > 0 and H[z] = 0 otherwise. Therefore, we have that the fitness

of fS is given by

fS =

 1− aHN for a fixed volume,

1− aHx for a fixed concentration.

Herein, I will use H to denote both HN and Hx for simplicity, and only differentiate

between the two choices where it becomes important in the time-varying environment.

Thus, we use fS = 1 − aH, where H = 0 when resistance is shared, and H = 1 when it

is not. The average population fitness is then given by f = fRNR/N + fSNS/N . The

population evolves according to the birth-death process defined by the reactions

NR/S

T+
R/S−−−→ NR/S + 1,

NR/S

T−
R/S−−−→ NR/S − 1,

with transition rates

T+
R =

fR
f̄
NR =

(1− s)x

1− aH + (aH − s)x
N, T−

R =
N

K
NR,

T+
S =

fS
f̄
NS =

(1− aH)(1− x)

1− aH + (aH − s)x
N, T−

S =
N

K
NS ,

(3.1)

where K denotes the carrying capacity, assumed to be time-varying as in Ch. 2.3.1. The

ME giving the time evolution of the probability P (NR, NS , ξ, t) for the population to

consist of NR and NS cells in the environmental state ξ at time t is (Gardiner, 2009)

∂tP (NR, NS , ξ, t) =
∑

α∈{R,S}

[(
E−
α − 1

)
T+
α +

(
E+
α − 1

)
T−
α

]
P (NR, NS , ξ, t)

+ ν−ξ P (NR, NS ,−ξ, t)− νξ P (NR, NS , ξ, t),

(3.2)

where E±
R/S are shift operators such that E±

Rf(NR, NS , t) = f(NR±1, NS , t) and E±
S f(NR, NS , t) =

f(NR, NS ± 1, t). Furthermore, we assume the system is always initialised at stationarity

with N(0) = K(0) and NR(0) = Nth or NR(0) = N(0)xth, depending on the modelling

choice for the abundance threshold. The last line on the right-hand-side of Eq. (3.2) ac-

counts for the random environmental switching as defined in Ch. 2.3. To recover the ME

in the case of a constant environment, we set ν+ = ν− = 0, K = constant, and remove

the ξ dependence in Eq. (3.2).

3.2 Constant environment

To develop an understanding of this system, it is instructive to consider and analyse

the case of a constant environment, with K(t) = K = constant. As mentioned before,

the dynamics under a constant environment do not depend on the choice of cooperation

threshold assuming we start at stationarity. However, the threshold must still be specified
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in the analytical expressions. We make the arbitrary choice to use Nth here, which can be

equivalently expressed as Nth = Nxth to find the expressions in terms of xth.

Mean-field analysis leads to long-lived coexistence

It is useful to start with the case of a very large population with carrying capacity K ≫ 1.

The rates of Eq. (3.1) are identical in form to Eqs. (2.10). Therefore, in the MF limit the

population’s dynamics is aptly described by Eqs. (2.2) and (2.11) upon substituting in the

rates of Eq. (3.1), giving (Hernández-Navarro et al., 2023; Hernández-Navarro, Asker, &

Mobilia, 2024)

Ṅ = N

(
1− N

K

)
, (3.3)

and

ẋ =
(aH − s)x(1− x)

(1− aH) + (aH − s)x
. (3.4)

Eqs. (3.3) and (3.4) show that the dynamics of N and x are coupled for H = HN or

decoupled for H = Hx at the MF level. However, given we start at stationarity and the

environment is constant, N remains at N = K for all time, and only x changes. Hence,

the dynamics are entirely equivalent. Furthermore, we see that N evolves on a timescale of

order O(1), where N → K, while x has a stable equilibrium at x = Nth/N that it reaches

on a timescale of order O(1/s) when x > Nth/N and O(1/(a − s)) when x ≤ Nth/N .

Moreover, when s < a ≪ 1 there is a timescale separation between N and x. N relaxes

to K on a fast timescale, while x relaxes on a slower timescale to Nth/N . Due to the fast

relaxation of N → K, should N be initialised out of equilibrium, it would rapidly attain

N = K causing a short transient in x in the H = HN case, and x would subsequently

evolve while effectively experiencing N = K = constant at the MF level.

This behaviour implies that, at the MF level, the two species will experience coexistence:

excluding the boundaries at x = 0, 1, we have ẋ > 0 for x ≤ Nth/N and ẋ < 0 for

x > Nth/N , and thus x → Nth/N . As we have seen before, in finite populations fixation

will always eventually occur. However, when the coexistence state is stable this can take

a very long time, far longer than the timescale of the dynamics of interest in the system,

similar to the case of population extinction seen in Ch. 2.1.2. In such cases, we say that the

two species experience a long-lived coexistence, which I will define concretely later. The

key here is that we must consider three qualitatively distinct behaviours of the system:

fixation of R, fixation of S, and long-lived coexistence of R and S.

Large populations in static environments: fixation or long-lived coexistence

To continue we consider a population that is large but now finite in a constant environ-

ment. As in Ch. 2.2.2, in this setting the dynamics are characterised by eventual fixation

of one of the strains, though now this may be preceded by a long-lived coexistence in which

case fixation is not seen over the timescales we are interested in. Similarly to Ch. 2.3.2, the

population undergoes logistic growth dynamics and so we may define a suitable Moran

process giving a MA of the system; see Ch. 2.2.2. Thus, despite the coexistence state
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expected from Eq. (3.4), when the population size is finite, DF are present and can there-

fore prevent the long-lived coexistence of both species by leading to fixation. Here, we

are interested in characterising these scenarios of dominance by one strain or long-lived

coexistence. As in Ch. 2.2.2 we define the reactions in the MA

NR +NS
T̃+
R−−→ (NR + 1) + (NS − 1),

NR +NS
T̃−
R−−→ (NR − 1) + (NS + 1),

with effective transition rates

T̃+
R =

(1− s)x(1− x)

1− aH + (aH − s)x
K,

T̃−
R =

(1− aH)x(1− x)

1− aH + (aH − s)x
K,

which define the MA of the dynamics in a constant environment. I will now show results for

the fixation probability and MFT, obtained from approximations of the exact expressions

for the fixation probability and MFT given in Ch. 2.2.2 adapted to this specific system,

as well as the long-lived coexistence probability of this system.

Fixation probability. Here, the fixation probability of the strain R when the population

initially consists of N0
R resistant individuals (and N0

S = N −N0
R sensitive cells) is denoted

by ϕN
(
N0
R

)
, where the subscript signifies that the expression is for a population of constant

size N .

From Eqs. (3.3) and (3.4), we can predict that the make-up of a large population in a

static environment reaches its coexistence equilibrium, i.e. NR → Nth, for any initial

condition N0
R well separated from the absorbing boundaries at NR = 0 and NR = N ,

such that DF are not too strong and the MF description is a reasonable approximation.

However, since the population is finite, we infer that NR will linger around Nth until

fixation occurs driven by DF. When N0
R is not too close to 0 or N , we can thus assume

ϕN (N
0
R) ≈ ϕN

(
N0
R = Nth

)
≡ ϕN , yielding

ϕN ≈ 1

1 + (1− a)Nth−N∗ , (3.5)

with N∗ ≈ N ln(1−s)
ln(1−a) . This approximate expression is derived from the full expression

Eq. (A.2) in Appendix A.1.1. Here, N∗ is defined as the critical value of the cooperation

threshold for which both strains have probability 1/2 of fixation, i.e. ϕN = 1/2. This is an

important quantity, as it defines the critical value where for Nth > N∗ the resistant species

is more likely to fixate. Equivalently, substituting xth = Nth/N gives the analogous result

for a threshold in the relative abundance, where we have x∗ ≡ N∗/N ≈ ln(1−s)/ln(1−a).
For biologically plausible values, e.g. 0 < s < a ≲ 10−1 and N > 25, Eq. (3.5) is a good

approximation for the fixation probability and matches up well with the exact solution

and simulation data; see Fig. 3.2(a).
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Therefore, when a large amount of R is required to inactivate the drug (Nth ≫ N∗) we

find ϕN → 1, while when only a small amount of R can inactivate the drug (Nth ≪ N∗)

we find ϕN → 0, as confirmed by simulations in Fig. 3.2(a). Interestingly, this shows that

the less efficient R cells are at producing the enzyme at fixed metabolic cost s, i.e. the

higher Nth is, the more likely they are to fixate, the opposite being true for more efficient

R cells.

Mean fixation time. The MFT given the population initially consists of N0
R resistant

individuals is denoted τN (N
0
R), with the subscript again denoting a constant population

size N . This is the mean of a distribution from which the random variable ζ, representing

the fixation time of a given realisation, is drawn from. As before, since fixation generally

arises from excursions from the coexistence equilibrium NR ≈ Nth driven by DF, then

τN
(
N0
R

)
≈ τN

(
N0
R = Nth

)
≡ τN when N0

R is not too close to 0 or N , and we obtain

τN ≈ ϕN
a(1− s)

s2(a− s)

N

Nth

(
1

1−s

)N−Nth

− 1

N −Nth
, (3.6)

see Appendix A.1.2 for the full derivation. This simple expression matches well the simu-

lation results of Fig. 3.2(b) and the exact expression given by Eq. (2.19) where the MFT

is sufficiently large, around τN > 50. Note that τN is much larger for Nth ≈ N∗, exponen-

tially decreasing for Nth either side of N∗. Thus, for a given s, a, and N , resistant strains

that are either very efficient or very inefficient in producing resistance enzyme (Nth very

small or large) lead to a rapid dominance of one strain, whereas resistant strains with an

intermediate efficiency promote a long-lived coexistence of the two species.

Long-lived coexistence probability. As we have mentioned several times now, though

in a finite population DF will unavoidably cause the fixation of one strain (hence the

extinction of the other), this fixation may only occur after a long-lived coexistence of the

two species. In this case, the coexistence state is effectively metastable, and the population

is at quasi-stationarity. Here, the MFT generally scales super-linearly with the population

size N , and the fixation time of a given realisation of the system, denoted ζ, is generally

exponentially distributed with a cumulative distribution given by 1−exp(−ζ/τN ); see e.g.
Assaf and Mobilia (2010), Mobilia and Assaf (2010), Assaf and Mobilia (2011), and Assaf

and Meerson (2017). In the case of species dominance the scaling with N is generally sub-

linear (Antal & Scheuring, 2006; Reichenbach et al., 2007; Cremer et al., 2009; Assaf &

Mobilia, 2010, 2011; He et al., 2011; Asker et al., 2023). These two regimes are separated by

an intermediate regime where the MFT scales linearly with N , often found under neutral

dynamics (Reichenbach et al., 2007; Cremer et al., 2009). With these considerations, we

then determine that a coexistence is long-lived when ζ exceeds 2N , where the factor of 2

is chosen for convenience. It should be noted that quantitative details change upon the

use of a different factor, but this is not relevant for the discussion here. We may then

concretely define our probability of coexistence in a population of size N as

ηN ≡ Prob. (ζ > 2N) = exp(−2N/τN ). (3.7)
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3. COOPERATIVE ANTIMICROBIAL RESISTANCE

Under the assumption that the fixation probability of a strain and the probability of a

long-lived coexistence state are independent, we may use Eqs. (3.5), (3.6), and (3.7) to

estimate the probability of fast fixation (i.e. in time less than 2N) by either R or S in a

population of constant size N . These quantities are given by

ϕN (1− ηN ) and (1− ϕN )(1− ηN ), (3.8)

respectively, where we remind ourselves that ϕN is the fixation probability of the resistant

strain regardless of long-lived coexistence, ηN is the probability of long-lived coexistence,

and τN is the mean time for fixation to occur, each for a population of constant size N .

The three quantities defined by Eqs. (3.7) and (3.8) then fully determine the long-time

behaviour of this system in static environments. Looking again to Fig. 3.2, we therefore see

that for Nth sufficiently close to the boundaries at 0 and N , i.e. min(Nth, N−Nth) ≲
√
N ,

DF are sufficiently large to cause a fast fixation (fixation prior to long-lived coexistence,

i.e. in a time less than 2N) and the type of fixation is fully determined by the value of

Nth relative to N∗. For Nth < N∗, the sensitive defectors are more likely to fixate, while

for Nth > N∗, the resistant cooperators are more likely to fixate. For Nth far from the

boundaries, i.e. min(Nth, N−Nth) ≫
√
N , DF are weak and a long-lived coexistence state

is reached. Interestingly, we see from Fig. 3.2 that increasing the constant population size

for a given Nth increases the MFT exponentially, and the fixation probability approaches

a step function, transitioning at Nth = N∗. Considering how the resistant species may

be eradicated, we see that this requires Nth < N∗. While increasing the population size

for Nth < N∗ will increase the likelihood of S fixation, i.e. R eradication, the time for

this to occur becomes much longer for larger populations and there is instead a long-lived

coexistence, except for Nth very close to zero. Therefore, it is difficult to see how one may

eradicate the resistant species in a reasonable time more generally in a static environment.

This leads us to the conclusion that in a static environment AMR either dominates or

survives in a long-lived coexistence state, so long as Nth is not close to zero. We shall

now investigate how EV changes this picture, first in the case where the concentration of

resources change in time in a fixed volume, and then in the case of a constant resource

concentration and time-varying volume.

40



3.2 Constant environment

Figure 3.2: R fixation probability and mean fixation time (MFT) in static environments.
(a) R fixation probability ϕN against the scaled cooperation thresholdNth/N ≡ xth for s =
0.1, a = 0.25, and for five examples of total population size, from N = 25 (yellow green) to
200 (dark green); the starting microbial composition is set at the coexistence equilibrium
N0
R = Nth; dotted and dashed lines show the exact and approximated Moran predictions

of Eq. (3.5), respectively, which are only distinguishable for the smallest population size;
noisy solid lines are from simulation data (103 realisations for each data point) and match
with dotted lines. The vertical black dashed line shows the value of N∗/N for which each
strain has a probability 1/2 to fixate when N ≫ 1. (b) Mean fixation time τN against
Nth/N in log-linear scale; the simplified formula of Eq. (3.6) (dashed lines), approximates
well (for τN > 50) the exact MFT (2.19) (dotted lines) and simulation results for the MFT
(solid lines); legend and line styles as in panel (a).
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3. COOPERATIVE ANTIMICROBIAL RESISTANCE

3.3 Time-varying resource concentration

In the case of a time-varying environment, implemented through a time-varying capacity

as introduced in Ch. 2.3.1, the choice of the cooperation threshold, H, being in the abso-

lute or relative abundance of R, i.e. H = HN or H = Hx, no longer leads to equivalent

dynamics. In this section, we look to model a fixed volume with time-varying resource

concentration and so use the former choice, reinstating H = HN . This can be understood

by assuming that the fixed-volume population is well-mixed with R cells homogeneously

distributed throughout the population; see Fig. 3.1. For a constant antimicrobial concen-

tration supplied to the medium, Nth resistant cells are required to bring the concentration

below the MIC, regardless of the total number of cells. In the chemostat setup mentioned

previously, where a constant inflow of fresh medium into a population at constant concen-

tration (nutrients, antimicrobial, etc.) allows the ecological dynamics of the population to

reach a stationary state, instead here the nutrient concentration flowing into the chemostat

is stochastically switched between two values.

3.3.1 Fixation and coexistence: a novel resistance-eradication mecha-

nism

In this section we analyse how the coupling of EV and DF shape the evolution of coop-

erative AMR (Coates et al., 2018; Bottery et al., 2021). The main goal is to determine

under which conditions does this coupling lead to the eradication of resistance (fixation of

sensitive cells such that no resistant cells remain), and reduce the size of the population

which we assume to be pathogenic.

Coupled environmental variability and demographic fluctuations induce regimes

of coexistence and dominance

As in Ch. 3.2, the long-time behaviour of the population is captured by the probability

of fast fixation of either strain and the probability of long-lived coexistence. In the case

of a switching carrying capacity, and denoting the MFT in the switching environment τ ,

long-lived coexistence requires ζ > 2 ⟨N⟩, where ζ is again the fixation time of a given

realisation and ⟨N⟩ is the average population size as in Eq. (2.28). Continuing, under time-

varying environments we denote the fixation probability of R as ϕ, and the probability of

long-lived coexistence η, where we have now dropped the subscript to indicate that the

population size fluctuates. Therefore, the three quantities defined in Eqs. (3.7) and (3.8)

have their analogue in the time-varying environment given by

η ≡ Prob. (ζ > 2 ⟨N⟩) = exp(−2 ⟨N⟩ /τ),

and

ϕ(1− η) and (1− ϕ)(1− η).

We compute ϕ and η using statistically correct stochastic simulations (see Appendix D.1),

when the external conditions fluctuate between harsh (K− = 120, scarce resources) and
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3.3 Time-varying resource concentration

Figure 3.3: Microbial community model. (a) Top: When the abundance of R (blue
microbes) is below the cooperation threshold Nth, antimicrobial drug hinders the growth
rate of S (red microbes) and R cells have a growth advantage. Bottom: AMR becomes
cooperative when the number of R exceeds Nth and these generate enough resistance
enzyme (public good in green shade) to hydrolyse the antimicrobial drug below the MIC
for the whole medium, so that protection against the drug is shared with S (with green
shields). (b) Dynamics of the microbial community for example parameters s = 0.2,
a = 0.5, K− = 50, K+ = 250, ν = 0.2, and δ = 0.6; thick black line shows the sample
path of the time-switching carrying capacity K(t), with a cooperation threshold Nth = 30
(dashed blue line); thick solid lines depict the N → ∞ PDMP defined by Eqs. (2.23) and
(3.4) for the total microbial population (N , green), number of R (NR = Nx, blue), and
number of S (NS = N(1− x), red); noisy lines show an example stochastic realisation of
the full model under the joint effect of DF and EV. In the absence of DF, R can experience
bumps and dips (thick blue line), and tdip indicates the mean time to reach the bottom
of a dip from its inception; see Ch. 3.3.1. In the presence of DF, fluctuations about the
dip can lead to the extinction of R (blue arrow). (c) R fraction x = NR/N for the same
sample path of varying environment as in (b); line styles as in panel (b); the dashed black
line shows the stable R fraction in each environment as K(t), driven by ξ(t), switches in
time.
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3. COOPERATIVE ANTIMICROBIAL RESISTANCE

mild (K+ = 1000, abundant resources). In our simulations, we consider a wide range of

switching rates ν and environmental biases δ, while also varying the cooperation threshold,

though maintaining Nth ∼ 102 < K−. Furthermore, we use s ∈ [0.1, 0.2] and a ∈ [0.25, 0.5]

as plausible values for the metabolic cost of producing resistance enzyme and the impact

of the drug on S, respectively (van der Horst et al., 2011; Melnyk et al., 2015). Our

choice of K± ensures that the dynamics is not dominated mainly by DF or EV, but by the

interplay of DF and EV, and the choice of Nth < K− guarantees that long periods of time

in K− are not purely characterised by R dominance. Note that here we simulate systems

which are small compared to most microbial communities for computational tractability.

However, as discussed in Ch. 3.3.2, the behaviour reported here is also expected to be

observed in large populations of more realistic size, i.e. N > 106.

The behaviour in ν-δ space is shown in Fig. 3.4(a-c), obtained from simulations. We

see across cooperation thresholds Nth, fixation of either strain or long-lived coexistence

can occur. In particular, for Nth ≲ 10K+/K− (Nth ≲ 83 for our parameter choices) we

find that S fixates quickly with a high probability (red region) where switching occurs at

intermediate rate and the bias is not too extreme, meaning the eradication of resistant

cells. Furthermore, for slow and fast switching where the bias is not too close to −1, we

find black regions where long-lived coexistence of the strains is likely. As Nth increases,

we find the parameter regime where R is likely to fixate (blue region) grows, particularly

where the environmental bias is towards the harsh state; see Fig. 3.4(c). This occurs due

to the advantage of R in the harsh state: Nth approaches K−, leaving K− −Nth sensitive

cells vulnerable to DF since K− −Nth < Nth in our example.

We now analyse the various regimes of Fig. 3.4(a-c), with a focus on the red area, where

resistant cells are eradicated. This allows us to determine the optimal environmental

conditions for the eradication of resistant cells and the reduction of the overall size of the

population, two issues of great biological and practical relevance.

Weak demographic fluctuations promote coexistence

For an intuitive understanding of the eco-evolutionary dynamics under environmental

switching, here we discuss the sample paths of Figs. 3.3(b,c) and 3.4(d-f) in terms of N

and x.

When the population is large enough for DF to be negligible (1/
√
N → 0) we may use

the PDMP description as defined in Ch. 2.3.1 to capture the evolution of the population

size. Hence, N follows the evolution of Eq. (2.23) and x is coupled to this evolution

through H = HN in Eq. (3.4). Sample paths of the PDMP are shown as solid lines in

Figs. 3.3(b,c). The realisations of Fig. 3.3(b,c) illustrate the coupling of x to N , where

N tracks the switching carrying capacity K independently of x, while x evolves towards

the coexistence equilibrium at the cooperation threshold xth = Nth/N , which changes in

time as N varies. Hence, x increases when NR ≤ Nth, and it decreases when NR > Nth.

For extremely slow or fast environmental switching rate (i.e. ν → 0 or ν → ∞ as in

Fig. 3.4(d,f)), since the dynamics of N under the rates given by Eq. (3.1) are identical
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Figure 3.4: Eco-evolutionary dynamics in the phase diagram of the joint fixation and
coexistence probability. (a-c) Fixation and coexistence joint probability from simulations
at a given environmental bias δ and mean switching frequency ν for s = 0.1, a = 0.25,
K− = 120, and K+ = 1000 at resistant cooperation thresholds Nth = 60, 80, and 100; see
the discussion in Ch. 3.3.2 for the behaviour at much larger populations and thresholds.
Stronger blue (red) depicts a higher fixation probability of R (S). Darker colour indicates
higher coexistence probability, defined as the probability to not reach any fixation by
t = 2⟨N⟩, where we take the average total population in its stationary state. The area
enclosed within the green solid line indicates the optimal regime for the eradication of R;
see Eq. (3.12) in Ch. 3.3.1. The white asterisks in (b) depict the environmental statistics
for each of the bottom panels. (d-f) Sample paths for the carrying capacity (K, black),
number of R (NR, blue), number of S (NS , red), and fixed cooperation threshold Nth = 80
(dashed blue) for the environmental parameters (ν, δ) depicted by the corresponding white
asterisk in (b). The high environmental switching frequency in (f) results in an effectively
constant carrying capacity (K = K, dotted line); see Ch. 3.3.1.
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3. COOPERATIVE ANTIMICROBIAL RESISTANCE

in form to that considered in Ch. 2.3.2, we see the same behaviour of N . Therefore,

under slow switching the system has two behaviours: it is initialised at N = K+ and

remains there for long times with NR = Nth and NS = K+ −Nth, leading to a long-lived

coexistence provided min(Nth,K+ −Nth) is not too small or it is initialised at N = K−,

leading to NR = Nth and NS = K− − Nth, where fixation is expected provided that

min(Nth,K− −Nth) is small, and the most likely type of fixation is given by which of NR

and NS is largest at equilibrium. Under fast switching, we again see that the effective

carrying capacity attains N = K. Hence, provided that δ is not too close to −1 (i.e. K
not too small), long-lived coexistence of both strains is likely (with abundances NR ≈ Nth

and NS ≈ K −Nth), as shown in Fig. 3.4(f).

Demographic fluctuations can eradicate antimicrobial resistance in time-varying

environments

Under slow and fast environmental switching rates, the population takes effectively con-

stant size at K± and K, respectively. Under slow switching, η and ϕ are given by

η = (1 + δ)ηK+/2 + (1 − δ)ηK−/2 and ϕ = (1 + δ)ϕK+/2 + (1 − δ)ϕK−/2, and under

fast switching we find η = ηK and ϕ = ϕK, similar to the results discussed in Ch. 2.3.2. At

intermediate switching rates where several switches occur prior to fixation, the dynamical

behaviour is far richer, as seen by the red regions in Fig. 3.4(a-c) for ν ∈ [10−2, 100]. In

this regime, we cannot simply express ϕ and η in terms of their effectively static coun-

terparts ϕN and ηN . Here, environmental switches lead to transient “dips” and “bumps”

in NR following the carrying capacity switches K+ → K− and K− → K+, respectively

as in Fig. 3.3(b) and 3.4(e). Of prime importance here are the transient dips in NR, and

so that is where we direct our focus. For sufficiently strong transient dips, NR becomes

small enough that DF, which are amplified in the harsh environment due to the smaller

population size, can lead to the eradication of R (fixation of S), giving rise to the red

regions of Fig. 3.4(a-c). Each dip has some non-negligible probability of R eradication and

so drastically reduces the MFT compared to the static case. To have this fast R eradi-

cation then requires three things: intermediate switching, such that the population size

N is given sufficient time to track K(t) following environmental changes; timescale sepa-

ration between the population composition x and size N , where the composition evolves

more slowly, allowing for the transient behaviour following an environmental switch; and a

small number of resistant cells at the bottom of the transient dip, allowing DF to eradicate

them. Concretely, we require NR ∼ O(1) for R to be prone to extinction by DF during

the transient dip; see later.

Here, we are interested in characterising the transient dips in NR, since it forms the

backbone of the EV-driven resistance-eradication mechanism we uncover here. To inves-

tigate their behaviour further, we consider the PDMP description of NR, assuming large
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3.3 Time-varying resource concentration

populations, giving

ṄR = T+
R − T−

R =
(a− s)NR(αR − NR

K )

(1− a) + (a− s)NR/N
,

with αR ≡ (1− s)K − (1− a)N

(a− s)K
,

(3.9)

where we have assumed NR ≤ Nth since the equivalent description for NR > Nth gives

ṄR < 0 leading to NR ≤ Nth. Following a bottleneck of the population size, in the absence

of DF, resistant cells will inevitably survive and recover to their equilibrium number at

NR = Nth. However, in finite populations where K− ≪ K+, the minimum of the transient

dip of NR predicted by the PDMP description may reach values small enough that DF

from the finite size of the population causes R eradication. The strength of DF in this

transient increases as the minimum of the dip decreases.

In order to adequately characterise the behaviour in the red region of the ν-δ phase dia-

gram, we seek to estimate the value NR reaches at its minimum in this transient dip and

the time it takes to reach this minimum. We have that NR evolves according to Eq. (3.9)

and so setting ṄR = 0 allows us to determine its equilibrium; see Fig. 3.3(b). To find

tdip from Eq. (3.9) we require ṄR(tdip) = 0 which requires αR = NR/K−. Assuming

s < a ≪ 1, yields N(tdip) ≈ K−(1 − s)/(1 − a). From the solution of Eq. (3.3) with the

initial condition N(t = 0) ≈ K+ (see Eq. (2.3) of Ch. 2.1.1), we find

tdip ≈ ln

[
1− s

a− s

(
1− K−

K+

)]
,

≈ ln

(
1

a− s

)
,

where in the approximation of the second line we assume K+ ≫ K− and s ≪ 1. To

determine the value of NR at the dip, denoted Ndip
R , we use the timescale separation in

the evolution of x and N since s < a ≪ 1. In the low relative abundance limit of R, i.e.

x→ 0, Eq. (3.4) simplifies, giving

ẋ ≈ (a− s)x. (3.10)

Thus, x evolves on a timescale of order O(1/(a− s)) which is a slow timescale relative to

the evolution of N . Therefore, assuming x(t = 0) =
Nth
K+

, where t = 0 is the time at the

K+ → K− environmental switch, we obtain that at short times

x(t) ≈ x(0) =
Nth

K+
.

For s < a ≪ 1, we have that tdip ∼ O(ln( 1
a−s)) whereas the timescale of x relaxation

is ∼ O( 1
a−s), meaning the predicted dip can occur on these short, transient timescales.

The total population follows the logistic dynamics of Eq. (3.3) in the harsh environment

after the switch, and so rapidly attains N = K− in a time of order O(1). Therefore,

47



3. COOPERATIVE ANTIMICROBIAL RESISTANCE

multiplying both expressions provides the final estimate of the number of R at the bottom

of the transient dip, Ndip
R , giving

Ndip
R = x (tdip)N (tdip) ≈

NthK−
K+

, (3.11)

occurring at time t ≈ tdip, where we assumed that R started from NR(t = 0) = Nth. DF

at the bottom of a dip are of the order
√
Ndip
R . For DF to possibly drive R to extinction,

and the EV-driven eradication scenario to hold, it is necessary that
√
Ndip
R ∼ Ndip

R , which

requires small Ndip
R , i.e. Ndip

R ≲ 10. This condition is certainly satisfied when K− and

Nth are of comparable size (with K− > Nth), and each of order
√
K+, which can also

hold for realistically large populations of N > 106; see Ch. 3.3.2 for further discussion of

large population sizes. Furthermore, we note that while we have assumed s < a≪ 1, the

timescale separation for the eradication mechanism only requires a−s≪ 1 (see Eq. (3.10)),

allowing for the eradication to work at larger values of a and s, so long as their difference

is small. However, a− s≪ 1 is naturally satisfied for s < a≪ 1 and so we continue under

this assumption.

Having characterised the eradication mechanism, we then note that each bottleneck is thus

seen as an attempt to eradicate resistant cells. Therefore, after finitely many bottlenecks

arising at a frequency ∼ ν we expect R eradication, allowing fixation to occur prior to

t = 2 ⟨N⟩. With these requirements, the parameter regime to effectively and quickly

eradicate R in large, populations under EV can be estimated. Firstly, R must be allowed

to evolve to its equilibrium position NR = Nth following a switch to K+, requiring ν+ ≲ s,

where 1/s is the evolutionary timescale. Secondly, following a bottleneck of the population,

R should be allowed sufficient time to reach the bottom of the transient dip and experience

the enhanced DF there, giving ν− ≲ t−1
dip. Thirdly, should R not be eradicated in a transient

dip, the environment should recover to the mild state as soon as possible to eliminate the

possibility of R fixation in this state. Therefore, we require ν− ≳ (a − s)/(2 ln (K+

K−
)),

where the expression on the right hand side is the inverse of twice the expected time to

reach equilibrium in the harsh state following a switch, obtained from Eq. (3.10). Finally,

we also require that these repeated bottlenecks are as frequent as possible while satisfying

all previous conditions (i.e. that we do not wait for too long after x relaxation in the

mild state), giving ν+ ≳ s/(2 ln (K+

K−
)), where similarly the expression on the right hand

side here is the inverse of twice the expected time to reach equilibrium in the mild state

following a switch. We therefore find that

s

2 ln K+

K−

≲ νopt (1− δopt) ≲ s,

a− s

2 ln K+

K−

≲ νopt (1 + δopt) ≲ t−1
dip,

(3.12)

where νopt and δopt denote the optimal values for the environmental parameters ν and

δ, respectively. To summarise, the top line of Eq. (3.12) allows sufficient time for NR
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relaxation following a switch to the mild state, but not too long, while the bottom line

allows for sufficient time for transient dips following a switch to the harsh state, but not

too long. The green contour lines in Fig. 3.4(a-c) enclose the predicted optimal region for

the fast eradication of R under s = 0.1, a = 0.25, K− = 120 and K− = 1000, and fall

in the red areas observed in simulations. The green lines with positive slope correspond

to the top line of Eq. (3.12) while those with negative slope correspond to the bottom

line. The true borders of these regions from the simulation data depend on Nth. This

stems from the dependence of ϕ and the MFT on Nth (see Fig. 3.2) and the criterion for

long-lived coexistence (ζ > 2⟨N⟩). The prediction of Eq. (3.12) ignores any dependence

on Nth and thus fail to capture this effect.

In summary, DF can eradicate AMR in time-varying environments when the population

composition x evolves on a much slower timescale than the population size N , satisfied

for s < a ≪ 1. Moreover, the magnitude of the bottleneck K+/K− is required to be of

the order of the cooperation threshold Nth or larger, the threshold has to fall below the

lowest value of the carrying capacity, i.e. Nth < K−, and the switching rate ν should be

of order s and hence comparable to the rate of relaxation of the population composition.

Impact of environmental variability on the strains fraction and abundance

Having characterised the long-term population composition under environmental switches

in our region of interest, we additionally look to understand the non-trivial impact of EV

on the size and composition of the population outside of this regime, particularly where

coexistence is likely.

As seen in Ch. 2.3.1, the average size of the population ⟨N⟩ is a decreasing function of the

switching rate ν for fixed δ. Furthermore, for fixed ν, ⟨N⟩ is an increasing function of δ,

where in particular we see ⟨N⟩ → K± as δ → ±1. As a consequence of this behaviour, the

surviving pathogenic population can be reduced generally by increasing the environmental

switching rate ν and/or the time spent in the harsh environmental state, δ → −1. More-

over, since the R fraction x is directly coupled to N through the cooperation threshold Nth

(see Eq. (3.4)) EV non-trivially shapes the R fraction in the coexistence regime (coloured

areas in Fig. 3.5(f)).

Under slow environmental switching rate relative to the evolutionary dynamics of the

system (i.e. ν ≪ s), the population is likely to not switch prior to t = 2 ⟨N⟩. Therefore,

if the environment is initially mild, the R cells will relax to NR = Nth, with the S cells

at NS = K+ − Nth, and a long-lived coexistence will remain. However, if the initial

environment is harsh, (and Nth ∼ K−), DF will rapidly eradicate S, and hence not

allow coexistence of the species. Therefore, the distributions of NR, NS , and N are each

approximately bimodal as we average over the behaviours in each starting environment. In

the mild environment, we have NR = Nth, NS = K+−Nth, and N = K+, and in the harsh

environment, we have NR = K−, NS = 0, and N = K−; see Fig. 3.5(a). As ν is increased

to ν ≲ s, and we approach the regime detailed in the previous section, fixation again

dominates the dynamics, and the distributions of NR and NS become trimodal, with NR/S
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Figure 3.5: Total population, strain abundance, and coexistence composition in time-
varying environments. (a-c) Probability distributions of the total population (N , green),
number of R (NR, blue), and number of S (NS , red), from simulations with parameters
s = 0.1, a = 0.25, K− = 120, K+ = 1000, and Nth = 80, under no environmental bias
(δ = 0) and for mean switching rates in (a) slow ν = 10−4, (b) intermediate ν = 10−1, and
(c) fast ν = 102 conditions. Histograms are smoothed by a Gaussian filter of width σ = 10
in cell number. (d) Average overall population (number of individuals on the vertical
axis) and strain abundances under no bias, i.e., δ = 0, as a function of switching rate ν;
colours as in (a-c). Lines are smoothed by a log-scale Gaussian filter of width σ = 10, i.e.,
one frequency decade. (e) Average overall population size in dynamic environments. (f)
Coexistence composition and fixation probability (of any strain) in dynamic environments.
Stronger blue (red) depicts a higher coexistence fraction of R (S). Lighter colour indicates
lower coexistence probability, defined as the probability for no fixation event to occur by
t = 2⟨N⟩. The white and black asterisks in (e,f) depict the environmental statistics for
each of the top panels. All panels are computed at quasi-stationarity reached after a time
t > 2⟨N⟩, ensuring that N reaches its (quasi-)stationary state.
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3.3 Time-varying resource concentration

peaks at 0, K−, and K+; see Fig. 3.5(b). The relative weights of the peaks at NR/S = 0

compared to those at NR/S = K± is set by the fixation probabilities of the species. The

total population size N remains bimodal around K±. As ν is increased further, such that

ν ≫ 1, we enter the coexistence regime where K → K, and the distributions become

unimodal around the coexistence equilibrium NR = Nth, NS = K −Nth, and N = K; see

Fig. 3.5(c).

As a consequence, if R is eradicated, imposing fast environmental switching (ν ≫ 1)

and harsh conditions δ → −1 would considerably reduce the abundance of the surviving

community of pathogenic S cells; see Fig. 3.5(d) (green solid line) and Fig. 3.5(e). However,

if R survives, imposing ν ≫ 1 and δ < 0 would not only decrease the abundance of both

strains but it would also increase the R fraction, and risk further AMR spreading; see

Fig. 3.5(f) (magenta area). In the case that the environment is externally controlled,

following R eradication the best course of action is to remain in K− forever (δ = −1),

reducing the size of the remaining pathogenic population of S.

3.3.2 Review of the modelling assumptions

In studying an idealised model of a microbial system, we make several assumptions that

it is important to review and contrast with realistic experimental conditions achievable

in a laboratory. The first assumption we shall address here is that of the cooperation

threshold, based on a number of experimental observations of microbial cooperation; see

Davies (1994), G. D. Wright (2005), Sanchez and Gore (2013), and Yurtsev et al. (2013).

As explained before, here setting this threshold in the number of resistant microbes, Nth,

allows us to assume that the nutrient concentration changes at constant volume with

environmental changes (Sanchez & Gore, 2013). It is this choice that leads to the transient

bumps and dips in NR, which lead to the EV-induced eradication mechanism detailed

previously. In the next section, we shall consider the complementary scenario, where

the cooperation threshold is set by a fixed R fraction xth, relevant to a different set of

microbial systems. Furthermore, in some cases the resistant species are able to regulate

the production of the resistance enzyme through quorum sensing (Pai et al., 2012), but

its impact on cooperative AMR remains an open problem. We also note that certain

resistance mechanisms exhibit an anti-cooperative behaviour, such as efflux pumps, which

may result in enhanced metabolic costs to the sensitive cells (Poole, 2007; Soto, 2013).

Here, we have assumed that the enzyme breaking down the antimicrobial is public and

shared throughout the population. In the case that this resistance is private, i.e. only

available to the resistant cells that produce the enzyme, the model reduces to that of

Ch. 2.3.2, and those studied in Wienand et al. (2017, 2018). Further analytical results

where resistance is not shared are discussed in Uecker and Hermisson (2011) in a variable

environment, and in A. Lambert (2006), Parsons and Quince (2007a), and Patwa and

Wahl (2008) in the case of a static environment.

The second assumption we review here is that of the system size considered in our simu-

lations, with K− ≳ Nth ∼ 102 and K+ ∼ 103. These parameters are chosen for computa-
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3. COOPERATIVE ANTIMICROBIAL RESISTANCE

tional efficiency, but correspond to small populations biologically. Therefore, it is right to

consider if the interesting behaviour, particularly the EV-driven eradication mechanism, is

also present in systems of more biologically realistic size. Typical microbiology laboratory

experiments study total microbial populations of size N ∼ 106 or larger (Sanchez & Gore,

2013). These studies model real-life microbial communities that are usually a few orders

of magnitude larger still, such as in case studies of mature or chronic clinical infections

with N ≳ 108 (Canetti, 1956; M. R. Smith & Wood Jr, 1956; Feldman, 1976; Palaci et al.,

2007; Coates et al., 2018).

Communities of microbes of realistic size in the presence of antimicrobials could consist of

populations of N = K+ ∼ 1012 cells under mild, nutrient abundant conditions. Further-

more, as used throughout our analysis, biologically reasonable values for the metabolic

cost of producing the resistance enzyme, s, and the metabolic cost of replicating without

resistance in the antimicrobial, a, are plausibly around 10% and 25%, respectively, i.e.

s = 0.1, a = 0.25 (van der Horst et al., 2011; Melnyk et al., 2015). Moreover, a fixed vol-

ume may require Nth = 2× 106 resistant cells for the sensitive cells to be protected from

the antimicrobial. A sudden and drastic bottleneck to the population via a nutrient shock

(or addition of an additional toxin) may cause the population to be reduced greatly, to

say N = K− ∼ 5× 106 cells, i.e. five in every million cells survives. Under these plausible

parameters, the conditions detailed in Eq. (3.12) can be satisfied. Furthermore, Eq. (3.11)

then predicts that Ndip
R ≈ 10, meaning DF may still lead to eradication of R, even in

these larger, realistic system sizes. A recent study considering a spatial extension of this

model considers larger population sizes, though spatially structured, and determines that

the resistance-eradication mechanism uncovered here remains and can be enhanced under

slow migration (Hernández-Navarro, Distefano, et al., 2024).

Finally we note that, as shown previously, the relative magnitude of the population bottle-

neck K+/K− is critical to enhance the eradication of R during transient dips. An increase

in this leads to a smaller expected number of R cells at the minimum of the transient

dip, and thus stronger DF possibly leading to the eradication of resistance. Introduc-

ing an intermediate environmental step between harsh and mild regimes would reduce

the population bottleneck at each stage and may promote coexistence (Sanchez & Gore,

2013).

A specific choice of this model is the focus on biostatic antimicrobials, i.e. those decreasing

birth rates and not increasing death rates (Pankey & Sabath, 2004; Bernatová et al., 2013;

Nemeth et al., 2015). Most antimicrobials, however, act biostatically at low concentrations,

becoming biocidal at higher concentrations (Andersson et al., 2007; Hughes & Andersson,

2012; San Millan & Maclean, 2017). Therefore, our approach captures the case of a

constant low concentration of antimicrobial. Through this choice and the normalisation of

the strain birth rates by the average fitness of the population (see Eq. (3.1) (Ewens, 2004;

Blythe & McKane, 2007)) the population size N does not depend on the composition x. A

simpler model has been investigated in the scenario where this decoupling is not present,

and N depends on x (Wienand et al., 2017, 2018).
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3.4 Time-varying volume

Finally, we note that the mechanisms by which resistance can be eradicated, along with

the other interesting behaviours due to the eco-evolutionary dynamics of the model, all

present themselves at biologically reasonable and clinically relevant environmental switch-

ing rates. Though we do not explicitly set a timescale in our model, a crude approximation

assuming replication of a single cell takes ∼ 1 hour sets the timescale, and we see that

for environmental switches occurring at ν ∼ s leading to the resistance-eradication mech-

anism mean periods of ∼ 10 hours in each environmental state. This timescale is feasible

for laboratory experiments, where typically bottlenecks occur periodically on the order of

hours.

3.4 Time-varying volume

We now look to the case of the threshold for shared resistance in the relative abundance

of R. This corresponds to a system with a time-varying volume at fixed nutrient concen-

tration, now with H = Hx; see Figs. 3.1 and 3.6(a). This can again be understood by

assuming that the fixed nutrient concentration population is always well-mixed with R

cells homogeneously distributed throughout the population, including immediately follow-

ing an environmental switch. In a larger volume, where the concentration of antimicrobial

is also maintained, more R cells will be required as there is, in total, more antimicrobial

present. Therefore, xth is now constant while Nth depends on N ; see Fig. 3.6(b,c).

3.4.1 Insight into fixation and coexistence via sample paths

It is useful to first consider the trajectories of Figs. 3.6(b,c) to gain some insight into

the dynamics. Clearly, the long-time dynamics leading to a long-lived coexistence or

fixation (and the type of fixation) are chiefly controlled by xth. Since H = Hx, x is

now decoupled from N and the transients of Ch. 3.3 do not occur. For fixation to occur

in a time less than 2 ⟨N⟩, our condition for long-time coexistence, we require that xth

is sufficiently close to the boundaries at 0 and 1, allowing DF to drive the system to

fixation. Similarly to the constant environment case, the most likely type of strain fixation

is determined by whether xth > x∗ ≈ ln
(

1−s
1−a

)
or xth < x∗; see Figs. 3.2(a) and 3.7.

Furthermore, fixation occurs prior to the condition for long-lived coexistence when x is

close to the absorbing boundaries; see Figs. 3.2(b) and 3.7. In Fig. 3.7(a,e,i), we have

xth = 0.1 < x∗ ≈ 0.37, therefore leading to a fast fixation of S, whereas in Fig. 3.7(d,h,l),

we see a fast R fixation since xth = 0.9 > x∗. In these same two sets of panels we see the

impact of slow and fast environmental switching rate ν. In Figs. 3.7(a,e,i), the switching

rate is particularly slow, and so the population remains in its initial harsh environmental

state at K(t) = K(0) = K− until fixation. In Figs. 3.7(d,h,l), the switching rate is very

fast, and the carrying capacity attains its effective value K. In the remaining panels of

Figs. 3.7(b,f,j) and Figs. 3.7(c,g,k) we see that in the case in which xth is close to x∗, with

xth far from the boundaries at 0 and 1, we find a long-lived coexistence. Environmental

switches, and in particular time in the harsh environmental state, lead to periods where

DF are enhanced due to the smaller population size. This is seen in Fig. 3.7(b,c), where
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3. COOPERATIVE ANTIMICROBIAL RESISTANCE

Figure 3.6: Model cartoon and example realisations. (a) Top: when the fraction of R
(blue microbes) is below the concentration cooperation threshold xth, antimicrobial drug
hinders the growth rate of S (red microbes) and R has a growth advantage. Bottom: in
a cooperative scenario arising above the concentration cooperation threshold, resistance
becomes shared (green shields) as the fraction of R exceeds xth and these generate enough
resistance enzyme (public good, green shade) to break down the drug and bring its con-
centration below the MIC for the whole community. (b) Eco-evolutionary dynamics of the
microbial community for parameters xth = 0.37, s = 0.1, a = 0.25, K− = 100, K+ = 1000,
ν = 0.1, δ = 0.5, and for initial conditions K(t = 0) = K+, NR(t = 0) = xthK+, and
NS(t = 0) = (1− xth)K+; thick black line shows the sample path of the time-switching
carrying capacity K(t), thick solid coloured lines correspond to a realisation of the PDMP
that ignores DF and is defined by Eqs. (2.23) and (3.4) (see Ch. 3.4.1), for the total pop-
ulation (N , green), number of R (NR = xN , blue), and number of S (NS = (1 − x)N ,
red); noisy lines are the corresponding stochastic realisation of the full model under the
joint effect of DF and EV; dashed lines show the piecewise (meta-)stable equilibrium
NR = xthK(t) (blue) and NR = (1 − xth)K(t) (red). (c) R fraction x = NR/N for the
same sample path of varying environment as in (b); line styles as in panel (b).
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3.4 Time-varying volume

Figure 3.7: Eco-evolutionary dynamics sample paths. (a-d) Examples of R fraction
sample paths from simulations (blue lines) for four concentration cooperation thresh-
olds xth (dashed black lines), three average switching rates ν, and two environmental
biases δ, for s = 0.1, a = 0.25, K− = 100, and K+ = 1000, with initial conditions
NR(t = 0) = xthK(t = 0) and NS(t = 0) = (1− xth)K(t = 0). Shaded and white areas in
panels (b-c) encode periods of abundance (K(t) = K+) and scarcity (K−), respectively.
Note the larger amplitude of DF for the latter since N → K− ≪ K+. (e-h) Same example
paths as in the corresponding panels (a-d) for the population size N (green lines); black
lines show example path for the carrying capacity K. The very high environmental switch-
ing rate ν in panel (h) provides the effectively constant carrying capacity K (black dashed
line). (i-l) Same example paths as in the previous panels for the number of R (blue lines)
and S (red lines). Dashed lines show the corresponding (meta-)stable coexistence equilib-
rium NR = xthK (blue) and NS = (1− xth)K (red). The DF and low value of xth = 0.1
in panels (a,e,i) lead to fast extinction of R, whereas the high threshold xth = 0.9 and DF
in panels (d,h,l) lead to an early fixation of R and extinction of S.
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3. COOPERATIVE ANTIMICROBIAL RESISTANCE

xth = 0.37 and xth = 0.63 with ν = 10−1 and the bottlenecks where N ≈ K− are given by

periods with white background. We see that following an environmental switch, in this

intermediate switching range the switches are slow enough that N can relax to K(t). The

distribution of N is similarly well captured by Eq. (2.27) as the dynamics of N remain

the same.

These features are essentially in line with the discussion of Ch. 3.2, and hence similar to

the behaviour found in static environments. In the next section, we will see that, in a

dynamic environment, fixation of either strain is also possible when xth ≈ x∗ and that

there can be long-lived coexistence also when xth ≈ 0, 1. These are distinctive effects of

EV that are analysed in detail in what follows.

3.4.2 Theory for the fixation-coexistence diagrams

In this section we develop the analytical methods for time-varying environments allowing

us to predict when one of the strains will fixate, and when both strains will coexist for

long-periods. The theory that we have devised and discuss here is used to analytically

reproduce the fixation-coexistence diagrams; see Fig. 3.8(e-h), of Fig. 3.8(a-d) obtained

from simulations.

We identify and distinguish between two environmental switching regimes in which the

dynamics of fixation and long-lived coexistence are captured by distinct approaches. These

regimes are denoted the quenched (Q) and annealed (A) regimes. These regimes are distin-

guished by whether or not an environmental switch is expected before the coexistence time

2 ⟨N⟩, respectively. In the Q regime, this therefore requires the environmental switching

be so slow, ν ≪ 1, and/or so biased δ ≈ ±1, that no switch occurs before 2 ⟨N⟩ regardless
of the initial condition. Conversely, in the A regime we require at least one environmental

switch prior to 2 ⟨N⟩. In each case, the analogy is made with quenched and annealed

disorder from statistical physics, where for a given realisation the random variable (here

the carrying capacity) is either constant or time-varying, respectively (Goldenfeld, 1992;

Nishimori & Ortiz, 2010). Similar Q and A environmental regimes have been identified

elsewhere (Meyer et al., 2023; Mobilia, 2023). It is worth noting that the annealed regime

in similar settings corresponds to the limit of ν → ∞, where the EV self-averages as seen

in Ch. 2.3.2 (Wienand et al., 2017, 2018; Taitelbaum et al., 2020; Meyer et al., 2023;

Mobilia, 2023; Taitelbaum et al., 2023). While the A regime is typically used to capture

behaviour in this limit, here we also use it to capture the case of intermediate switching

where we expect only a finite number of switches prior to fixation or the long-lived coex-

istence condition. In fact, we find qualitative similarities between these two regimes. The

border between Q and A regimes is determined by

max (1/ν±) ≡ 1/(ν(1− |δ|)) = 2⟨N⟩,

splitting the fixation-coexistence ν-δ diagrams of Fig. 3.8 into two distinct regions sepa-

rated by green/yellow lines where areas to the left of these lines are the Q regime and
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areas to the right are the A regime.

Quenched environmental regime. In Q, environmental switches are particularly slow.

The environment is initialised in the state K(0) = K+ with probability (1 + δ)/2 or

K(0) = K− with probability (1 − δ)/2, and the carrying capacity remains at this initial

value, K(t) = K(0), at least until time 2⟨N⟩. Therefore, the joint probability for a

realisation to undergo R fixation and to do so in a time ζ ≤ 2⟨N⟩ (i.e. fast fixation) in

the regime Q, denoted by ΦQ, is

ΦQ ≡ Prob.(R fixation, ζ ≤ 2⟨N⟩ | regime Q)

=
1 + δ

2
ϕK+

(
1− ηQK+

)
+

1− δ

2
ϕK−

(
1− ηQK−

)
,

where ϕN is the R fixation probability in a population of fixed size N , given by Eq. (3.5),

and

ηQN ≡ Prob. (ζ > 2N) = exp

(
−2N

τN

)
is the probability of long-lived coexistence in the Q regime, at a constant total population

N , with MFT τN , as in Eq. (3.7).

Annealed environmental regime. In A, environmental switches are fast enough that at

least one switch occurs prior to time 2⟨N⟩ regardless of the initial condition. This allows N
to experience the full range of values from its quasi-stationary distribution, approximated

by p(N) of Eq. (2.27), prior to fixation or long-lived coexistence. Similarly to Wienand

et al. (2017, 2018), we assume that fixation occurs in such a system occurs at a population

size N where the probability density of N is given by p(N). Following Assaf and Mobilia

(2010) and Mobilia and Assaf (2010), we know the MFT τN in a population of constant

size N where fixation occurs due to deviations from a coexistence state are given by the

inverse of the flux towards the absorbing boundaries, and thus the fixation probability ϕN

is given by the relative flux into the state NR = N compared to the total flux into the

absorbing states. Therefore, ϕN/τN gives the “rate of R fixation” in a population of size

N . Similarly, the “rate of S fixation” is given by (1−ϕN )/τN . In analogy to the constant

N case, we define the rates to each fixation in the varying environment by averaging these

quantities over p(N) to account for the varying population size. This gives effective rates

of fixation for each type in the A regime, given by

TR =

∫ K+

K−

ϕN
τN

p(N) dN and TS =

∫ K+

K−

1− ϕN
τN

p(N) dN.

Since τK+ ≫ τK− , the main contributions to TR/S , and hence to fixation, arise where N is

smallest. For ν ≪ 1 this occurs chiefly around N ≈ K−, whereas for ν ≫ 1 we find that

p(N) is unimodal around N ≈ K and each environment contributes similarly. With TR/S ,
we obtain the R fixation probability and MFT, ϕA and τA, respectively, in formal analogy
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with the static environment case (Assaf & Mobilia, 2010; Mobilia & Assaf, 2010), giving

ϕA =
TR

TR + TS
and τA =

1

TR + TS
. (3.13)

Furthermore, the long-lived coexistence probability in regime A is given by

ηA = exp

(
−2⟨N⟩

τA

)
. (3.14)

Eqs. (3.13) and (3.14) allow us to find the joint probability of R fixation and fast fixation

in a time ζ ≤ 2⟨N⟩ in the regime A, denoted by ΦA, as

ΦA ≡ Prob.(R fixation, ζ ≤ 2⟨N⟩ | regime A) = ϕA(1− ηA),

where we have again assumed that strain fixation type and long-lived coexistence are

completely uncorrelated.

Crossover regime and general results. Having obtained the fixation and coexistence

probabilities in regimes Q and A, we can superpose their expressions to obtain predictions

applicable in the crossover regime (about the green/yellow line in Fig. (3.8)), as well as in

regimes Q and A. This provides us with general results, that are valid for the entire range

of environmental parameters {ν, δ}. Since the probability that no switches occur by time

2⟨N⟩ is
Π ≡ exp [−2⟨N⟩ν (1− |δ|)] ,

and the probability that at least one switch has occurred by 2⟨N⟩ is 1 − Π, the overall

joint probability of R fixation and fast fixation is

Φ = ΠΦQ + (1−Π)ΦA. (3.15)

The overall probability of long-lived coexistence is obtained by a similar superposition of

ηQ and ηA, yielding

η = ΠηQ + (1−Π)ηA. (3.16)

Equations (3.15) and (3.16) used in the theoretical predictions of Figs. 3.8 and 3.9.

3.4.3 Comparison of theory and simulations

Here, we compare the results of computer simulations and theoretical predictions of

Ch. 3.4.2, fully characterising the long-time eco-evolutionary dynamics of the population

in a time-varying environment.

The fixation-coexistence diagrams in Fig. 3.8(a-d) show simulation results for the prob-

ability of fast R fixation (blue), fast S fixation (red), or long-lived coexistence (black),

for different values of the concentration cooperation threshold xth. The main features of

these diagrams can be understood in terms of the analysis carried out in Ch. 3.2 and

the critical cooperation threshold value x∗ ≈ ln(1−s)
ln(1−a) , which to this level of approximation
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Figure 3.8: Characterisation of the long-time eco-evolutionary dynamics by the fixation-
coexistence diagrams. (a-d) Fixation type and fast fixation joint probability from simu-
lations for EV parameters ν (average environmental switching rate) and δ (environmen-
tal switching bias), s = 0.1, a = 0.25, K− = 100, K+ = 1000, and the concentration
cooperation thresholds xth = 0.1, 0.37, 0.63, and 0.9. Here, x∗ ≈ 0.366, and the to-
tal population is initialised at quasi-stationarity, with NR(t = 0) = xthK(t = 0) and
NS(0) = (1− xth)K(0). Stronger blue (red) corresponds to a higher fixation probability
of R (S). Darker colour indicates a higher long-coexistence probability, defined as the
probability to have no fixation event by time 2⟨N⟩, where we take twice the average total
population in its stationary state (average across 103 realisations). The green/yellow lines
separate the environmental regimes Q and A (respectively on the left and right of the
lines); see Ch. 3.4.2. The white asterisks in (a-d) refer to the values of ν and δ used for
each of the panel columns in Fig. 3.7. (e-h) Theoretical fixation-coexistence diagrams:
same as in panels (a-d) for the theoretical predictions of the fixation-coexistence joint
probability given by Eqs. (3.15) and (3.16), where 2⟨N⟩ is computed as twice the average
over the distribution of Eq. (2.27). Analytical results reproduce remarkably the features
of those from simulations.
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Figure 3.9: Eco-evolutionary probabilities of long-coexistence and fast R fixation. (a)
Long coexistence probability at quasi-stationarity P (ζ > 2⟨N⟩), defined as no fixation
occurring by 2⟨N⟩, as a function of the average environmental switching rate ν for a con-
centration cooperation threshold of xth = 0.1 and different values of the environmental
bias δ. By t = 2⟨N⟩, we assume that N has already reached its quasi-stationary distri-
bution, which we approximate as Eq. (2.27) in the theoretical predictions. Dotted lines
(downward triangles), solid lines (circles), and dashed lines (upward triangles) show re-
sults for δ = −0.5, 0, and 0.5, respectively. Lines are theoretical predictions from η in
Eq. (3.16), and markers are simulation data. Other parameters are: s = 0.1, a = 0.25,
K− = 100 and K+ = 1000, as in Fig. 3.8. Inset: R fixation probability conditioned on fast
fixation P (R|ζ ≤ 2⟨N⟩) as function of ν; lines are theoretical predictions from Φ/(1− η)
(see Eqs. (3.15) and (3.16)); all three theoretical lines for each δ are indistinguishable. Er-
ror bars show the binomial standard error of the mean. (b-d) Same as in (a) for xth = 0.37,
0.63, and 0.9. Note that simulation data presents larger error bars for ν > 10−1 in the
inset of panel (c) due to the limited proportion of fast fixations in this regime.
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is independent of N . When xth < x∗ (and xth ≲ 1/
√

⟨N⟩), the most likely outcome

is the fast fixation of S, while fast fixation of R is the most probable outcome when

xth > x∗ (and 1 − xth ≲ 1/
√
⟨N⟩). Long-lived coexistence of R and S is expected when

min(xth, 1− xth) ≫ 1/
√
⟨N⟩), with the composition determined by xth. For the parame-

ters of Fig. 3.8, x∗ ≈ 0.37, and we indeed notice that most of Fig. 3.8(a) appears in red,

Fig. 3.8(c,d) are mostly coded in blue, and most of Fig. 3.8(b) appears in black.

We notice however that each panel of Fig. 3.8 is coded in two colours, indicating either

fast fixation or long-lived coexistence. In fact, due to EV, long-lived coexistence is possible

even when fast fixation of S and R is most likely. In Fig. 3.8(a,d) this leads to the red and

blue dominated diagrams to also contain a dark/black area for δ close to 1 (bias of K(t)

towardsK+). This can be qualitatively explained by noting that, asK(t) is biased towards

K+, the population size is essentially constant and large, N ≈ K+, and does not admit

fast fixation of either strain. Similarly, EV can allow for fast fixation even when long-lived

coexistence is expected, as found in Fig. 3.8(b), where the black-dominated diagram (due

to xth ≈ x∗) contains a dark coloured “cloud”. Here, fast fixation events occur for low

values of ν and δ ≤ 0, when N ≈ K− for long periods, and the small population size

(K− = 100) facilitates early extinction of either R or S; see Fig. 3.9.

In general, the colour-coding of the fixation-coexistence ν-δ diagrams of Fig. 3.8 can be

qualitatively understood by noting on the one hand that, as δ is increased from −1 to 1

(at fixed ν), the EV bias moves from K− (small population) to K+ (large population),

and hence favours long-lived coexistence. On the other hand, increasing the environmen-

tal switching rate from slow (ν ≪ 1) to intermediate (ν ∼ 1) hinders strain coexistence

since, under intermediate switching, irrespective of the starting environment, the micro-

bial community experiences long population bottlenecks (N ≈ K−) that enhance DF and

thus favour fast fixation. However, further increasing the rate to fast switching (ν ≫ 1)

increases the probability of long-lasting coexistence: the duration of population bottle-

necks is reduced, and the community effectively experiences the effective carrying capacity

K > K−, with lower DF and enhanced coexistence. Note that, for extreme values of xth,

which are closer to extinction/fixation of one strain (x = 0, 1), the latter does not hold,

as weak DF suffice to prevent coexistence.

With the aim of understanding the evolution of AMR, we are particularly interested in

finding the conditions favouring the early extinction of R, and hence the fast fixation of S,

since this corresponds to the most favourable environmental conditions for the eradication

of AMR, as in Ch. 3.3. Here, the best conditions for AMR eradication appear as red

areas in the diagrams of Fig. 3.8: these are low values of xth and δ not too close to 1;

see Fig. 3.8(a). Moreover, as a signature of the influence of EV, discussed previously, we

find that AMR eradication is also possible for intermediate values of xth ≳ x∗; see dark

red/purple area in Fig. 3.8(b) for ν < 10−1 and inset of Fig. 3.9(b).

In summary, a high positive EV bias δ (at fixed ν) and a moderate cooperation threshold

(xth ≈ x∗) favours long-lived coexistence; while intermediate EV switching rates ν (at
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fixed δ), and more extreme cooperation thresholds, favour fast fixation of either R (for

xth ≫ x∗) or S (for xth ≪ x∗). This qualitatively explains the boundaries between the

coloured and black regions in the fixation-coexistence diagrams of Fig. 3.8; and, notably,

it captures the long-lived coexistence in the top/right-half and fast R fixation in the

bottom/left-half of Fig. 3.8(c). Critically, the location of the boundaries between the

phases of long-lived coexistence and fast fixation are accurately predicted by the theory

presented in Ch. 3.4.2, as shown in Fig. 3.8(e-h) where the fixation-coexistence diagrams

are reproduced remarkably well by the predictions of Eqs. (3.15) and (3.16). However,

we do not find environmental conditions in which we can generally eradicate AMR. This

suggests that, in trying to eradicate AMR through bottlenecks, introducing them through

restricting nutrient concentration and maintaining a constant volume (as in Ch. 3.3) is

the more effective approach.

Fig. 3.9 provides a more quantitative comparison between the fixation-coexistence dia-

grams obtained from simulations in Fig. 3.8 (top row) and from the theory of Ch. 3.4.2

(bottom row), for three different values of environmental bias (high/low δ and δ = 0). In

each panel we find that the ν-dependence of the long-lived coexistence probability, that is,

the probability that ζ > 2⟨N⟩ for a realisation, is well captured by the theoretical predic-

tion of η given by Eq. (3.16). The agreement between simulations and η is quantitatively

remarkable at low and high values of ν. For intermediate values of ν, the predictions of η

are able to reproduce the main qualitative features of the simulation data, including the

non-monotonic behaviour arising in Fig. 3.9(a,c). The values of ν for which the probability

of long-lived coexistence is low correspond to regions coloured in red/blue in Fig. 3.8. The

main deviations between theory and simulations arise in the regime of intermediate ν and

high δ. We attribute these deviations to the assumptions made in the annealed regime

(approximation of the actual fixation rates), leading to an underestimate of the long-lived

coexistence probability. The inset of each panel of Fig. 3.9 illustrates the R fixation prob-

ability, conditioned on fast fixation, which determines the relative red-to-blue colour levels

in Fig. 3.8. Consistently with the fixation-coexistence diagrams of Fig. 3.8, fast R fixation

is found to be essentially independent of switching rate ν and bias δ, a feature that is well

reproduced by the theoretical predictions (lines in Fig. 3.9), obtained from Eqs. (3.15) and

(3.16) as

Φ/(1− η) ≡ P (R | ζ ≤ 2⟨N⟩) .

The inset of Fig. 3.9(b) indicates that the probability of fast S fixation is more likely than

fast R fixation (whose probability is less than 1/2), which explains the dark red/purple

“cloud” in Fig. 3.8(b).
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Chapter 4

Twofold environmental variability

So far, in this thesis we have considered only EV impacting the death rates of the species,

where the death rates switch between larger and smaller values, corresponding in our

motivating example to lower or higher nutrient availability; see Ch. 2.3.2. However, the

(per capita) birth rates remain unaffected. Naturally, one may then ask the following

question: what happens if the stochastic switching is not limited to the death rates, but

also impacts the birth rates of the species? Such a setup where both the birth and death

rates vary stochastically in time captures the dynamics of various microbial communities

of interest. Considering an extension on the simple example of Ch. 2.3.2, an additional

EV impacting birth rates could be seen as a variation in toxin level (i.e. an antimicrobial

above or below MIC) where one species is resistant to the toxin and the other is sensitive.

Alternatively, one may envisage a population undergoing stochastic nutrient variations,

with competition for shared resources between a wild-type species with constant birth

rate and a mutant bet-hedging species (Gaál et al., 2010; Xue & Leibler, 2017; Barabás

et al., 2018), which stochastically switches between periods of high and low birth rate.

In any case, we consider that this additional stochastic switching changes the direction

of selection, i.e. which species is fittest and therefore predicted to increase in relative

abundance at the MF level. Under these dynamics, the population experiences EV that

drives the population size impacting both species in an identical manner, and EV that

changes the direction of selection such that each environmental switch benefits only one

of the species.

In this chapter, motivated by evidence showing that microbial communities generally

evolve in volatile environments (Thattai & Van Oudenaarden, 2004; Fux et al., 2005;

Hooper et al., 2005; Caporaso et al., 2011; Rescan et al., 2020; Murugan et al., 2021),

I shall consider a toxin level in the environment that switches stochastically impacting

species birth rates in addition to the previously introduced stochastically varying nutrient

level affecting species death rates, reflecting additional EV in the system, i.e. twofold

environmental variability. I will characterise the behaviour of the population first under

only toxin-level switches, demonstrating that a long-lived coexistence between species is

possible under sufficiently strong and frequent toxin EV. I will then investigate how this
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picture changes under additional EV in the nutrient level. We will see that stronger toxin-

level EV promotes coexistence, while stronger nutrient-level EV jeopardises it, therefore

demonstrating the non-trivial impact of EV on the coexistence of species - a topic of par-

ticular interest in biology and ecology (Chesson & Warner, 1981; Chesson, 1994, 2000a,

2000b; Barabás et al., 2018; Ellner et al., 2019; Abdul-Rahman et al., 2021) with ap-

plications to problems of great societal concern such as the maintenance of biodiversity

(Kalyuzhny et al., 2015; Ghoul & Mitri, 2016; Leibold et al., 2019; M. L. Pinsky, 2019;

Grilli, 2020; Meyer & Shnerb, 2020; Meyer et al., 2021; Hu et al., 2022; R. West & Shnerb,

2022) and the evolution of AMR (Balaban et al., 2004; Yurtsev et al., 2013; W.-H. Lin &

Kussell, 2016; Raymond et al., 2016; Lopatkin et al., 2017; Coates et al., 2018).

Contents of this chapter appear in Asker et al. (2023).

4.1 Model description

I consider a well-mixed population consisting of N(t) = NR(t) +NS(t) individuals which,

at time t, consists of NR resistant cells labelled R and NS sensitive cells labelled S, which

compete for the same resources. Though named the same as the previous chapter, these

species differ to those defined there. The resistant R species has paid a metabolic cost for

resistance to a toxin that is private to the resistant species, while the sensitive strain pays

no metabolic cost and is sensitive to the toxin; see Fig. 4.1. For concreteness, we again

assume a biostatic toxin as in Ch. 3 (Hernández-Navarro et al., 2023; Hernández-Navarro,

Asker, & Mobilia, 2024). In this setting, resistant R bacteria have a constant fitness fR,

whereas the sensitive S bacteria have an environment-dependent fitness fS(ξT ), where

ξT (t) ∈ {−1, 1} is a DMN variable encoding the toxin level: ξT = 1 for the low toxin level

and ξT = −1 for the high toxin level. DMN again adequately captures sudden and drastic

variations in the environment of the population; see Ch. 2.3. We here consider

fR = 1 and fS = exp(sξT ),

where s > 0 denotes the selection bias favouring the strain S when ξT = 1, and strain R

when ξT = −1. The parameter s therefore encodes both selection and the strength of the

EV associated with the changes in toxin level (T -EV); see Appendix B.1. An exponential

is chosen for fS to allow for a greater range of s and an equivalent multiplicative effect

on the fitness in each state compared to R. The average fitness of the population, f , is

therefore given by

f = NR/N +NS exp(ξT s)/N,

and thus also depends on the T -EV. The environmental effect on the level of nutrients

(K-EV), varying between scarcity and abundance, is modelled as before with the carrying

capacity, K(t), evolving according to Eq. (2.22), where we now denote the DMN driving

the carrying capacity ξK ∈ {−1, 1}. This again captures the sharp and sudden variations

in the environment which occur, particularly in microbial populations; see Ch. 2.3.
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4.1 Model description

Figure 4.1: Cartoon of the model characterised by twofold EV. A microbial community
consisting of two strains, denoted by R (resistant, blue , fitness fR) and S (sensitive,
red, fitness fS), evolves in a time-varying environment, as illustrated by the arrows: the
level of toxin, ξT , stochastically switches with rates ν±T (vertical arrows) between low
(ξT = +1) and high (ξT = −1), and the amount of available resources, modelled by the
carrying capacity K(t), stochastically switches with rates ν±K (horizontal arrows) between
scarce and abundant. The strain R fares better than S under high toxin level (fR > fS),
while S grows faster under low toxin level (fR < fS). The carrying capacity K(t) = K+

when there are abundant resources, while K(t) = K− < K+ when available nutrients are
scarce. The four environmental states characterising the twofold EV are indicated by their
background: striped / solid refers to scarce / abundant resources, while green / red shows
low / high toxin level.

The population therefore evolves under twofold EV encoded in the environmental states

ξT , ξK (see Fig. 4.1) by the reactions

ξα = +1
ν+α−→ −1, and ξα = −1

ν−α−→ +1,

where ν±α are the switching rates of the α-DMN, with α ∈ {T,K} indicating the relevant

EV. We similarly define the average switching rate να and switching bias δα for each

α-DMN as

να ≡ ν−α + ν+α
2

and δα ≡ ν−α − ν+α
2να

,

such that ν±α ≡ να(1 ∓ δα). Hence, δT > 0 corresponds to a bias towards low toxin level

(mild T state, ξT = +1) favouring the S strain, whereas δT < 0 indicates a bias towards
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high toxin level (harsh T state, ξT = −1) where the growth of S is hampered and the R is

better off; see Fig. 4.1. Similarly, δK > 0 corresponds to bias towards the environmental

state rich in nutrients (where K = K+), while δK < 0 is associated with a bias towards an

environment where nutrients are scarce (K = K−), identically to that considered in the

previous chapters. We also similarly defineK0 = (K++K−)/2 and γ = (K+−K−)/(2K0).

We make the plausible assumption that ξK and ξT are totally uncorrelated here. Consid-

ering the motivating example, this assumption implies that the toxin and nutrient levels

vary independently. The case where ξT and ξK are fully correlated or fully anti-correlated,

with ξT = ξK = ξ or ξT = −ξK = ξ, where ξ is a single DMN process, is briefly discussed

in Appendix B.4.

A chemostat setup, as discussed in Ch. 3, closely resembles the model considered here,

whereby toxin and nutrient levels can be maintained at constant levels and switched via a

modification of the concentration of incoming medium into the system (Abdul-Rahman

et al., 2021; Shibasaki et al., 2021). The switch ξT → −ξT with ξT = −1 can be seen as

switching the concentration of an antibiotic drug in the incoming medium from above the

MIC, where R is better off since it is resistant, to a concentration below the MIC where

the S strain is better off as it pays no metabolic cost (Yurtsev et al., 2013; W.-H. Lin &

Kussell, 2016; Marrec & Bitbol, 2020). Similarly to the before, the switch ξK → −ξK can

be seen as a change in the nutrient concentration in the incoming medium.

At time t, the fraction of R-types in the system is x ≡ NR
N , giving the population compo-

sition. As before (see Eqs. (2.10) and (3.1)), the population size and composition evolve

according to the birth-death process (van Kampen, 1992; Gardiner, 2009)

NR/S

T+
R/S−−−→ NR/S + 1 and NR/S

T−
R/S−−−→ NR/S − 1, (4.1)

where the birth and death transition rates are

T+
R/S =

fR/S

f
NR/S and T−

R/S =
N

K
NR/S . (4.2)

The differences of the model here compared to the previous chapters appear via the fit-

nesses through the factor fR/S/f . The per-capita birth rates fR/S/f thus vary with the

toxin level and population composition, while the logistic per-capita death rate N/K varies

with nutrient level and population size. With N ≡ (NR, NS), the ME giving the proba-

bility P (N, ξT , ξK , t) for the population to consist of NR and NS bacteria of type R and

S, respectively, in the environmental state (ξT , ξK) at time t is

∂P (N, ξT , ξK , t)

∂t
=

∑
α∈{R,S}

{(
E−
α − 1

) [
T+
α P (N, ξT , ξK , t)

]
+
(
E+
α − 1

) [
T−
α P (N, ξT , ξK , t)

]}
+ ν−ξTT P (N,−ξT , ξK , t)− νξTT P (N, ξT , ξK , t)

+ ν−ξKK P (N, ξT ,−ξK , t)− νξKK P (N, ξT , ξK , t),

(4.3)
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where E±
R/S are shift operators such that E±

Rf(NR, NS , ξT , ξK , t) = f(NR±1, NS , ξT , ξK , t)

and E±
S f(NR, NS , ξT , ξK , t) = f(NR, NS ± 1, ξT , ξK , t), and we have νξαα ≡ ν±α when

ξα = ±1. We note that the last two lines on the right-hand-side of Eq. (4.3) account

for the random environmental switching of the toxin level (ξT → −ξT ) and the nutrient

level (ξK → −ξK). The stochastic simulation method set out in Appendix D.1 gener-

ates statistically correct trajectories and thus exactly reproduces the dynamics encoded

in Eq. (4.3). As we have already discussed, fixation of one strain and extinction of the

other is expected when strains compete for the same resources, and always occurs in a

finite population (Wienand et al., 2017, 2018; Taitelbaum et al., 2020). In stark con-

trast, here we show that T -EV can lead to the long-lived coexistence of competing species

where the dynamics under a static environment does not allow coexistence, unlike in

Ch. 3 (Hernández-Navarro et al., 2023; Hernández-Navarro, Asker, & Mobilia, 2024). Fur-

thermore, we find that K-EV jeopardises this long-lived coexistence. I characterise this

behaviour and develop the necessary theoretical tools which accurately capture the long-

time population evolution under twofold EV. Moreover, I demonstrate how the abundance

of each species can be captured under twofold EV, showing that there exists an intermedi-

ate region of switching rates in the T -EV where a species abundance reaches its maximum

or minimum. The understanding of coexistence in biology and ecology is a topic of much

interest (Chesson & Warner, 1981; Chesson, 1994, 2000a, 2000b; Barabás et al., 2018;

Abdul-Rahman et al., 2021), and thus demonstrating the contrasting effects of different

forms of EV on coexistence is of particular relevance.

4.2 Time-varying fitness and constant carrying capacity

Given that ξT and ξK are independent random variables, it is useful to initially consider

only the EV due to the varying toxin level, impacting the birth rates of Eq. (4.2), and

maintain a constant carrying capacity. Therefore, in this section, we assume that the

carrying capacity is constant and large, with K(t) = K ≫ 1.

4.2.1 Mean-field analysis

In this section, we consider the case where N = K → ∞, and thus ignore DF as these

fluctuations become negligible with increasing population size; see Ch. 2.2.1. In this case,

the population composition evolves according to the MF equation (Gardiner, 2009)

ẋ =
T+
R − T−

R

N
= x(1− x)

(
1− esξT

x+ (1− x)esξT

)
. (4.4)

Due to ξT , Eq. (4.4) is a MF stochastic differential equation that defines a PDMP, similarly

to the PDMP considered in Ch. 2.3.1 for the population size N . Therefore, the evolution of

x following the PDMP consists of periods of deterministic evolution according to Eq. (4.4)

with a fixed value of ξT , interspersed with random switches in ξT which changes the

deterministic evolution followed by x.
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We consider Eq. (4.4) in the regimes of (i) low, (ii) high, and (iii) intermediate switching

rate νT :

(i) Under low switching rate, νT → 0, the population reaches its final state without

experiencing any T -switches and therefore maintains its initial toxin level ξT (0), i.e.

ξT (0) = ξT (∞) = ±1 with probability (1± δT )/2. In this regime, Eq. (4.4) boils down to

ẋ =

−x(1−x)(es−1)
x+(1−x)es with probability 1+δT

2 ,

x(1−x)(1−e−s)
x+(1−x)e−s with probability 1−δT

2 .

Since s > 0, with a probability (1 + δT )/2 we have ξT (0) = ξT (∞) = +1 and x → 0 (S

fixates), while with a probability (1− δT )/2 we have ξT (0) = ξT (∞) = −1 and x → 1 (R

fixates). Though under MF dynamics, x only reaches 0 or 1 as t → ∞ and thus S or R

fixation never occurs, the scenarios are still characterised by the dominance of either one

of the strains in a sufficiently large population. Therefore, in the absence of DF, the MF

dynamics predict that R and S cannot coexist for long periods under a low switching rate

in the toxin level.

(ii) Under high switching rate, νT ≫ 1, the population experiences a large number of T -

switches before relaxing into its final state; see later. In this case the T -EV self-averages,

similar to the case of K-EV seen in Ch. 2.3.1. We are left with a process defined by

the effective rates T±
R →

〈
T±
R

〉
obtained by averaging ξT over its stationary distribution,

yielding 〈
T+
R

〉
=
Nx

2

(
1 + δT

x+ (1− x)es
+

1− δT
x+ (1− x)e−s

)
,〈

T−
R

〉
= Nx.

(4.5)

When N → ∞, the MF equation associated with the effective process reads (van Kampen,

1992; Blythe & McKane, 2007; Gardiner, 2009)

ẋ =

〈
T+
R

〉
−
〈
T−
R

〉
N

,

=
x(1− x)

2

[
(1 + δT )(1− es)

x+ (1− x)es
+

(1− δT )(1− e−s)

x+ (1− x)e−s

]
,

(4.6)

where the right-hand-side can be interpreted as the right-hand side of Eq. (4.4) averaged

over the stationary distribution of ξT . In addition to the trivial fixed points x = 0 and

x = 1, Eq. (4.6) admits a coexistence equilibrium

x∗ =
1

2
− δT

2
coth

s

2
, (4.7)

when − tanh s
2 < δT < tanh s

2 . This equilibrium emerges from the T -DMN and thus is an

EV-induced coexistence point. In the case of large s, we have that coth s
2 → 1 and x∗ exists

(0 < x∗ < 1) for all values of δT . Since d
dx ẋ
∣∣
x∗

= − 4
1−δ2T

tanh2
(
s
2

)
(1− x∗) < 0, linear

stability analysis reveals that x∗ is the sole asymptotically stable equilibrium of Eq. (4.6)

when it exists (x = 0, 1 are thus unstable). When s ≪ 1, coth s
2 → 2

s , and x
∗ exists only
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for − s
2 < δT <

s
2 . This means that for s≪ 1, coexistence is essentially possible only under

symmetric switching (δT = 0); see Appendix B.1. In what follows, we focus on the less

restrictive case s = O(1), for which coexistence is possible for a broad range of parameters

(νT , δT ).

(iii) In the regime of intermediate switching rate, where νT ∼ 1, the population experiences

a finite number of T -switches prior to settling in its final state. Depending on the number

of switches, as well as the selection strength s and the population size, the dynamics may

be closer to either the slow or fast switching νT regimes, with dominance or coexistence

possible but, in general, not certain; see Fig. 4.3 later.

4.2.2 Stochastic effects: fixation and long-lived coexistence

From the MF analysis, we have found that when N → ∞ species coexistence is possible

under fast T -EV switching, whereas only R or S dominance occurs under slow switching.

We now study how these results change when the population size is fixed but finite.

Carrying out the MA to capture the evolution according to Eqs. (4.1) and (4.2) (as seen

in Ch. 2.2.2 and 3.2) we find the effective reactions

(NR, NS)
T̃+
R−−→ (NR + 1, NS − 1),

(NR, NS)
T̃−
R−−→ (NR − 1, NS + 1),

corresponding, respectively, to the simultaneous birth of an R and death of an S with rate

T̃+
R , and death of an R and birth of an S with rate T̃−

R , where

T̃+
R ≡

T+
R T

−
S

N
= Nx(1− x)

fR

f(t)
,

T̃−
R ≡

T−
R T

+
S

N
= Nx(1− x)

fS(t)

f(t)
,

(4.8)

The impact of the time-varying toxin level can be seen in the time-dependence of fS and

f through ξT , which is specific to the model considered here.

The model dynamics is therefore captured by a suitable MA and its final state unavoidably

corresponds to the fixation of one strain, i.e. the population eventually ends up in either

the state (NR, NS) = (N, 0) or (NR, NS) = (0, N) (Ewens, 2004; Antal & Scheuring, 2006;

Blythe & McKane, 2007; M. A. Pinsky & Karlin, 2011). This means that, strictly, the

finite population does not admit stable coexistence: when it exists, x∗ is metastable, i.e.

the MFT of the population scales exponentially with the population size (Assaf & Mobilia,

2010; Mobilia & Assaf, 2010; Assaf & Meerson, 2017), as seen in Ch. 3.2. Therefore, we

again see that while fixation is guaranteed, this may take a very long time following a

long-lived coexistence, as suggested by the MF analysis of the regime with νT ≫ 1. It

is thus relevant to study under which circumstances there is long-lived coexistence of the

strains.
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Figure 4.2: R fixation probability ϕT and MFT τT under constant carrying capacity and
T -EV. Symbols are from stochastic simulations (103 realisations) with carrying capacityK
(and non-constant N), and full black lines are for the Moran approximation with N = K,
based on Eq. (4.12) (a) and Eq. (4.13) (b,c). (a) ϕT against νT , for δT = −0.9 (×), −0.5
(⃝), 0 (▽), 0.5 (△), 0.9 (♢), from top to bottom, with s = 0.3 and K = 50. Red dashed
lines are predictions of Eq. (4.9) and Eq. (4.11). (b) τT against νT , for δT = 0 (▽), 0.3
(□), 0.5 (△) from top to bottom, with s = 0.1 and K = 500. Any bias δT ̸= 0, reduces
τT . Error bars are overlaid for the case δT = 0 and are almost indistinguishable from the
symbols. Red dashed lines are analytical predictions in the limiting regimes νT → 0,∞.
(c) τT against K under fast T -EV in the coexistence regime for δT = 0, s = 0.1 ( △ )
and s = 0.3 (

△

). Here, there is long-lived coexistence of the strains at the (meta-)stable
equilibrium x∗ = x0 = 0.5 prior to fixation. The MFT grows exponentially whenKs2 ≫ 1;
see Appendix B.1. Red dashed lines show the analytical predictions for the MFT when
νT → ∞, compared with the predictions of Eq. (4.13) (black lines) and simulation results
(markers) for νT = 100.
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The evolutionary dynamics under T -EV is characterised by the fixation probability of the

strain R, denoted by ϕT , and the MFT, here denoted by τT . To this end, we therefore study

how ϕT and τT are impacted by varying νT for different choices of K, δT , and s. We inves-

tigate where there is long-lived coexistence, defined similarly to Ch. 3 (Hernández-Navarro

et al., 2023; Hernández-Navarro, Asker, & Mobilia, 2024), and characterise the fixation

dynamics when they occur prior to long-lived coexistence. As in the previous chapter, we

assume the population is always initialised at x0 = 0.5, such that the population initially

consists of resistant and sensitive cells in equal number.

In the limits νT → 0,∞, we can use the results of the Moran process to obtain ϕT (νT )

and τT (νT ) from their MA counterparts ϕMA and τMA as in Eqs. (2.18) and (2.19). The

fixation probability in the slow-switching regime, ϕT (νT → 0) is obtained by averaging

ϕMA|ξT , denoting the R fixation probability of the MA of the system in static environment

ξT , over the stationary distribution of ξT (Wienand et al., 2017, 2018; Taitelbaum et al.,

2020, 2023), giving

ϕT (νT → 0) =

(
1 + δT

2

)
ϕMA|ξT=+1

+

(
1− δT

2

)
ϕMA|ξT=−1. (4.9)

When N ≫ 1 and ξT = +1 (under sufficient s) the strain S is always favoured and

ϕMA|ξT=+1 ≈ 0, whereas R is favoured when ξT = −1 and in this case ϕMA|ξT=−1 ≈ 1.

Since ξT (0) = −1 with probability (1−δT )/2, this coincides with the R fixation probability,

given by ϕ(νT → 0) ≈ (1 − δT )/2. The probability that S fixates when νT → 0 is thus

1− ϕ(νT → 0) ≈ (1 + δT )/2.

In the fast-switching regime the fixation probability is that of the Moran process defined

by the effective rates

〈
T̃+
R

〉
=
Nx(1− x)

2

(
1 + δT

x+ (1− x)es
+

1− δT
x+ (1− x)e−s

)
,〈

T̃−
R

〉
=
Nx(1− x)

2

(
(1 + δT )e

s

x+ (1− x)es
+

(1− δT )e
−s

x+ (1− x)e−s

)
.

(4.10)

Using Eq. (4.10) with x = n/N and substituting into Eq. (2.18), we thus find (Ewens,

2004; Antal & Scheuring, 2006; Traulsen & Haeurt, 2009)

ϕT (νT → ∞) =
1 +

∑Nx0−1
k=1

∏k
n=1

⟨T̃−
R ⟩(n/N)

⟨T̃+
R ⟩(n/N)

1 +
∑N−1

k=1

∏k
n=1

⟨T̃−
R ⟩(n/N)

⟨T̃+
R ⟩(n/N)

. (4.11)

A similar analysis can also be carried out for τT . The result of this approach, shown

as red dashed lines in Fig. 4.2, accurately capture the behaviour in the limiting regimes

for ϕT and τT where νT → 0,∞. Fig. 4.2(b) in particular demonstrates the presence

of a long-lived coexistence state as νT → ∞, with a much larger MFT under high νT

than under low νT (at fixed δT ). In Fig. 4.2(b), the MFT when νT ≫ 1 for δT = 0 is
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significantly larger than under δT ̸= 0. This is because x∗ = 1/2 is the stable fixed point

of Eq. (4.6) when δT = 0, whereas as |δT |→ 1 the equilibrium point moves closer to the

boundaries, making it more prone to DF causing fixation. Fig. 4.2(a,b) also illustrate the

excellent agreement between the predictions of the MA with N = K and those obtained

from stochastic simulations with K = constant and N ≈ K.

Therefore, the MF analysis and results of Fig. 4.2 suggest that under sufficiently high

switching rate νT there is long-lived coexistence of the strains. Hence, similarly to Ch. 3,

we consider a long-lived coexistence of the R and S strains to exist when the MFT exceeds

2⟨N⟩, i.e. τT > 2 ⟨N⟩, approximately capturing the region where τT scales superlinearly

with population size. Note that this differs slightly from Ch. 3, as we now do not assume

that the fixation time of realisations, ζ, is exponentially distributed with MFT τT . Instead,

we elect to use a simple binary outcome, where there is coexistence for τT > 2 ⟨N⟩ and no

coexistence otherwise. This simplification allows us to more easily capture the coexistence

probability under K-EV later, though neglects smooth transitions between regimes of

coexistence and fixation; see Ch. 4.3.1. When, as in this section, N fluctuates about the

constant carrying capacity K (N ≈ K), we simply have ⟨N⟩ = K.

Our analysis of the MF equations, seen in Eqs. (4.5)-(4.7), allow us to estimate under which

conditions the long-lived coexistence state occurs. We expect coexistence when ξT self-

averages, which requires a switching rate νT that is sufficiently high, seen from averaging

the rates giving Eq. (4.5) and leading to Eq. (4.6). To self-average, the toxin level switches

have to occur at least on the order of the demographic processes of the cells, i.e. births

and deaths. These events take place for each individual on a timescale ∼ O(1). Therefore,

νT > 1 indicates fast T -switching. To ensure long-lived coexistence, we see from Eq. (4.7)

that the necessary condition νT > 1 is supplemented by the requirement that s ∼ 1 to

allow a broad range of δT to lead to coexistence. This condition therefore ensures that T -

EV is also sufficiently strong and a regime of coexistence where the MFT generally scales

exponentially with population size when s = O(1) (Crow & Kimura, 1970; Ewens, 2004;

Antal & Scheuring, 2006; Cremer et al., 2009; Assaf & Mobilia, 2010; Mobilia & Assaf,

2010; Assaf & Mobilia, 2011) guaranteeing long-lived coexistence. Hence, the expected

conditions for long-lived coexistence are νT > 1 (fast T -switching) and s ≳ O(1) (enough

EV), which are satisfied in the examples considered here when νT > 1 and s = 1, 10.

We have studied the influence of T -EV on the fixation and coexistence properties of the

model with constant carrying capacity K = constant and selection strength s by running

a large number of computer simulations until t > 2K across the νT -δT parameter space.

If after t = 2K both species are present, we label a given run for (νT , δT , s) as being

characterised by long-lived coexistence which is RGB coded (0, 1, 0). There is no long-

lived coexistence for the run (νT , δT ) if one of the species fixates by t ≤ 2K: either the

strain R, which is RGB coded (1, 0, 0), or the strain S, which is coded by (0, 0, 1), fixates

the population. This procedure is repeated for 103 realisations for different (νT , δT ) and,

after sample averaging, yields the RGB-diagram of Fig. 4.3(a-c).
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4.2 Time-varying fitness and constant carrying capacity

Figure 4.3: Fixation/coexistence diagrams under T -EV in the (νT , δT ) parameter space
for a small system of constant carrying capacity K = 50, with selection bias s = 0.1 (a,d),
s = 1 (b,e), and s = 10 (c,f), after a time t = 2K. (a)-(c): phase diagrams obtained
from stochastic simulations of the model with a constant K (N fluctuates about K) over
103 realisations and coded according to the RGB colourmap of panel (g): red / blue
corresponds to the likely fixation of S/R (red: S dominance; blue: R dominance), regions
indicated as “S/R fixation” in panel (a); magenta indicates where fixation of R or S is
likely, area between “S/R fixation” regions in panel (a); green indicates where long-lived
coexistence is most likely, area highlighted as “S+R coex.” in panel (c). (d)-(f): same as
in (a)-(c) but from numerical solutions obtained from solving Eq. (4.14) computationally
for the corresponding Moran process with a constant population size N = K.
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It is also useful to study the effect of the T -EV and obtain the fixation-coexistence diagrams

in the realm of the MA using numerical results. For this, we set up first-step equations

for the fixation probability and MFT with the transition rates Eq. (4.8), for a constant

population size, N = K. Denoting the R fixation probability from the state with n cells of

type R in environmental state ξT as ϕξTn , we have (Gardiner, 2009; Ashcroft et al., 2014)

(T̃+
R (n) + T̃−

R (n) + νξTT )ϕξTn = T̃+
R (n)ϕξTn+1 + T̃−

R ϕ
ξT
n−1 + νξTT ϕ−ξTn , (4.12)

subject to the boundary conditions ϕξT0 = 0 and ϕξTN = 1. Similarly, the mean fixation

time in the environmental state ξT , τ
ξT
n , satisfies

(T̃+
R (n) + T̃−

R (n) + νξTT )τ ξTn = 1 + T̃+
R (n)τ ξTn+1 + T̃−

R (n)τ ξTn−1 + νξTT τ−ξTn , (4.13)

with boundary conditions τ ξT0 = τ ξTN = 0. These resemble the first-step equations of

Ch. 2.2.2, where there are now additional terms for the T -switching making a closed-form

solution unfeasible. Eqs. (4.12) and (4.13) are thus linear difference equations that can be

solved numerically. The fixation probability and MFT are obtained after averaging over

the stationary distribution of ξT , yielding

ϕn =

(
1 + δT

2

)
ϕ+n +

(
1− δT

2

)
ϕ−n ,

τn =

(
1 + δT

2

)
τ+n +

(
1− δT

2

)
τ−n .

(4.14)

Since we always consider x0 = 1/2, we henceforth write ϕT ≡ ϕN/2 for the R-fixation

probability and τT ≡ τN/2 for the MFT in the realm of the MA under T -EV. For each

triple (νT , δT , s), we numerically solve Eqs. (4.13) and (4.14) computationally. In the

region of the parameter space where τT > 2K, there is long-lived coexistence, which is

coded by (0, 1, 0) in the RGB-diagram of Fig. 4.3(d-f). When τT ≤ 2K, there is dominance

of one of the species, characterised by the fixation probabilities ϕT and 1 − ϕT of R and

S, respectively, obtained from Eq. (4.12) and coded by (ϕT , 0, 1− ϕT ) in Fig. 4.3(d-f).

Numerical results obtained from solving Eq. (4.14) computationally for the MA with

N = K in Fig. 4.3(d-f) are in excellent agreement with those of simulations obtained

for N ≈ K = constant in Fig. 4.3(a-c). As expected from the MF analysis, the long-

lived coexistence, occurs for T -EV of sufficiently large magnitude, i.e. s ≳ 1, and under

high enough switching rate, i.e. νT ≳ 1, shown as green areas in Fig. 4.3. The region

of coexistence separates regimes dominated by either species, especially at high νT when

ϕT ≈ 0 when δT > 0 while ϕT ≈ 1 when δT < 0. In Fig. 4.3, the boundaries between

the regimes of R/S dominance, coded in blue / red, and coexistence, areas in green,

are interspersed by crossover regimes where both species are likely to fixate (magenta in

Fig. 4.3), or coexist with probability between 0 and 1 (faint green in Fig. 4.3), as coded in

Fig. 4.3(g). In Fig. 4.3(d-f), we have used that coexistence is achieved where τT > 2 ⟨N⟩.
The use of the binary choice for coexistence leads to the sharp transition between fixation
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4.3 Time-varying fitness and carrying capacity

and coexistence which is not seen in the simulation results of Fig. 4.3(d-f) which instead

assigns each realisation to be either coexistence or fixation, giving the smoother transition.

4.3 Time-varying fitness and carrying capacity

Having characterised the behaviour under T -EV only, we have seen that long-lived coex-

istence of the R and S can occur if s and νT are order 1 or higher, i.e. the magnitude

and frequency of T -EV is sufficiently large. We now look to understand how this picture

changes when the time-varying carrying capacity representing changes in the nutrient

availability the population, defined as in Eq. (2.22), is reintroduced and drives the fluctu-

ating population size N . EV is thus twofold, and the population evolves under the joint

effect of T -EV and K-EV. As previously discussed, microbial communities often evolve in

varying environments in which several aspects of the environment change in time. The

introduction of twofold EV therefore captures a more realistic view of microbial population

evolution, and is typically non-trivial to capture due to the distinct impacts of the EVs.

At the MF level the population evolves according to Eqs. (2.23) and (4.4) where the

population size, N , is independent of s and affected only by K-EV via ξK in K(t) (see

Eq. (2.22)), while the evolution of x is impacted by ξK , ξT , and s via x = NR/N , fS =

exp(sξT ), and f(t) = x + (1 − x) exp(sξT ). We therefore have a pair of coupled PDMPs

which capture the evolution of N and x, where the population composition is coupled to

the evolution of the population size, leading to eco-evolutionary dynamics.

4.3.1 Theory for fixation and coexistence

Following the simple case of Ch. 2.3.2, we notice that the population undergoes identical

dynamics in N , and therefore the approximate QPSD defined by Eq. (2.27) captures the

variations in population due to the K-EV here and approximates the true population size

distribution. We therefore will utilise this useful tool to explore the fixation properties of

the population. As in the simple example of Ch. 2.3.2, fixation typically occurs after N

has been allowed sufficient time to explore its full QPSD. Hence, where the timescales of

the N evolution and fixation are separated, the R fixation probability (with x0 = 1/2)

under T -EV and K-EV, denoted ϕ, can be suitably approximated by averaging ϕT (N)

over the approximate QPSD given by p(N) as (Wienand et al., 2017, 2018)

ϕ ≈
∫ K+

K−

ϕT (N)p(N) dN. (4.15)

We can use p(N), given by Eq. (2.27), and the results for the MFT τT (N), obtained

from solving Eq. (4.13), to determine the probability of coexistence under the N -PDMP

approximation. For this, we first numerically solve Eq. (4.13) for τT (N
∗) = 2⟨N⟩ to

obtain N∗, where ⟨N⟩ is given by Eq. (2.28). Since τT is an increasing function of N (see

Fig. 4.2(c)) we have τT (N) > 2⟨N⟩ for all N > N∗, which is the long-lived coexistence

condition. Within the N -PDMP approximation, the lowest possible value of N∗ is K−
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4. TWOFOLD ENVIRONMENTAL VARIABILITY

Figure 4.4: Fixation/coexistence diagrams under T -EV and K-EV in the (νT , δT ) parame-
ter space showing the influence of the K-switching rate νK on the fixation and coexistence
probabilities, for νK = 5 × 10−6 (a,d), νK = 5 × 10−3 (b,e), and νK = 5 (c,f). Other pa-
rameters are K0 = 1200, s = 0.5, γ = 2/3, δK = 0. (a)-(c): phase diagrams obtained from
stochastic simulations data collected immediately following t = 2⟨N⟩ over 103 realisations.
(d)-(f): same as in (a)-(c) but from the theoretical predictions based on Eqs. (4.15) and
(4.16). All diagrams are colour-coded as in Fig. 4.3.

since N ∈ [K−,K+]. We then determine the probability η that this condition is satisfied

by integrating p(N) over [N∗,K+], giving

η ≡ Prob. {τT (N) > 2 ⟨N⟩} =

∫ K+

N∗
p(N) dN, (4.16)

where N∗ depends on both T -EV and K-EV, while the integrand depends only on K-EV.

We thus have that η → 1 when N∗ → K−. We therefore see that long-lived coexistence

is almost certain when N∗ ≈ K−, i.e. whenever the MFT of a population of fixed size

N = K− exceeds 2 ⟨N⟩. Furthermore, the results of Ch. 4.2.2 indicate that η will increase

with νT and s. For sufficiently large νT and s (and |δT | small enough to keep the stable

coexistence point far from the boundaries), we expect N∗ → K− and η → 1.

4.3.2 Fixation-coexistence diagrams

The fixation-coexistence diagrams under joint effect of T -EV and K-EV are obtained as

in Ch. 4.2.2, with the difference being that long-lived coexistence arises when t > 2 ⟨N⟩, a
condition that depends on (νK , δK). This is exactly the condition for long-lived coexistence

considered in Ch. 3 under a time-varying carrying capacity (Hernández-Navarro et al.,
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2023; Hernández-Navarro, Asker, & Mobilia, 2024). In our simulations, we considered

different values of νK (assuming symmetric switching, i.e. δK = 0, for simplicity), and ran

simulations until t > 2 ⟨N⟩. Each run in which both species still coexist after t = 2 ⟨N⟩ are
RGB coded (0, 1, 0), whereas those in which R or S fixates by t ≤ 2 ⟨N⟩ are respectively

RGB coded (1, 0, 0) or (0, 0, 1). The RGB fixation-coexistence diagrams of Fig. 4.4(a-c)

are obtained after sample-averaging the outcome of this procedure, repeated 103 times for

each pair (νT , δT ) and different values of νK .

Theoretical RGB diagrams are obtained from the N -PDMP based approximation using

Eqs. (4.15) and (4.16): for a given νK , we allocate the RGB value ((1−η)(1−ϕ), η, (1−η)ϕ)
obtained for each pair (νT , δT ) of the diagram; see Fig. 4.4(d-f). This triple corresponds

to the probability of having either no long-lived coexistence (with probability 1− η) and

fixation of R or S (with respective probabilities ϕ and 1 − ϕ), or long-lived coexistence

(with probability η).

Comparison of the top and bottom rows of Fig. 4.4 show that the N -PDMP based approxi-

mation quantitatively reproduces the fixation and coexistence dynamics of the statistically

correct stochastic simulations. We again see that the theoretical predictions have sharper

boundaries between the fixation and coexistence regions than simulation results. This

is due to the use of the MFT in the analytic calculations of the coexistence probability

compared to the sample averaged case of simulations, as discussed in Ch. 4.2.2. The re-

gions of Fig. 4.4 where |δT |→ 1 are characterised by dominance of one of the strains, and

essentially reduces to the model studied in Ch. 2.3.2, as well as in Wienand et al. (2017,

2018). We now focus on characterising the novel coexistence phase, emerging due to T -EV

and inhibited by K-EV, and investigate how it is impacted by each of these EVs.

When K0 is large, under sufficient EV as in Fig. 4.4, the joint effect of T -EV and K-EV

on the phase of long-lived coexistence in the RGB diagrams of Fig. 4.4 can be summarised

as follows: (i) when νK → 0, a (bright green) region where η ≈ 1 and coexistence is

almost certain is surrounded by a faint green “outer shell” where coexistence is possible

but not certain (0 < η < 1) (see Fig. 4.4(a,d)); (ii) at low, but non-vanishingly small,

values of νK , the outer-shell where 0 < η < 1 disappears, and the remaining coexistence

region has η ≈ 1 (see Fig. 4.4(b,e)); (iii) when νK ≫ 1, the coexistence region similarly

consists only of points where η ≈ 1 (bright green), but it is broader than under low νK

(see Fig. 4.4(c,f)). In all scenarios (i)-(iii), η increases with νT ≳ 1 (for not too large δT )

and hence all the green coexistence phases in Fig. 4.4) become brighter as νT is raised and

η → 1.

These different scenarios can be explained by the dependence of the QPSD on νK , well

captured by Eq. (2.27). In regime (i) where νK ≪ 1/K0, the QPSD and p(N) are bimodal.

Therefore, N ≈ K± with probability (1± δK)/2, and any K-switches by t = 2 ⟨N⟩ ∼ K0

are unlikely, yielding the faint green outer shell of Fig. 4.4(a,d) corresponding to long-lived

coexistence arising only when N ≈ K+, with a probability η ≈ (1 + δK)/2. In regime (ii),

where 1/K0 ≪ νK ≪ 1, the QPSD and p(N) are still bimodal but some K-switches occur
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by t ∼ K0, resulting in long-lived coexistence arising only when νT is high enough to ensure

η ≈ 1 when N ≈ K−. In regime (iii), where νK ≫ 1 the QPSD and p(N) are unimodal

with average ⟨N⟩ ≈ K ≥ K−, which results in a long-lived coexistence region where η ≈ 1

that is broader than in (i) and (ii); see Fig. 4.4(c,f). The size of the coexistence region

in regime (iii) depends non-trivially on νK , as revealed by the modal value of Eq. (2.27)

when νK(1− |δK |) > 1, which reads

N̂ =
K0

2
[1 + νK(1− γδK)]

− K0

2

√
(1 + νK(1− γδK))2 − 4νK(1− γ2),

(4.17)

with limνK→∞ N̂ = ⟨N⟩ = K. This expression captures well the modal value of the

QPSD from simulations; see Fig. B.3 in Appendix B.3. The MFT depends strongly on

the population size, particularly near/in the coexistence regime and so capturing the

size the population truly takes is important. Under fast switching, the QPSD typically

has broad asymmetric tails (as seen in Fig. 2.2 of Ch. 2.3.2), and so ⟨N⟩ may differ

significantly from N̂ . The modal value thus allows for the capturing of this most likely

size and therefore provides an improved measure for determining coexistence or fixation

for a given population. We notice that N̂ is an increasing function of νK when γ > δK ,

and it decreases if γ < δK (remaining constant when γ = δK). As a consequence, the

long-lived coexistence region under high K switching rate grows with νK when γ > δK ,

as in Fig. 4.4(c,f), and, when γ < δK , shrinks as νK is increased; see Appendix B.3.

4.3.3 Impact of the amplitude of carrying capacity variations on coex-

istence

We have seen that increasing the selection bias, s, increases the amplitude of the T -EV

and gives rise to a broader regime of long-lived coexistence. Here, by keeping K0 constant,

we investigate the influence of the parameter γ, which controls the amplitude of K-EV,

on the fixation-coexistence diagrams. When γ → 1 and K0 ≫ 1, the amplitude of K-

EV is larger and the population is subject to harsher bottlenecks (K− → 0), where DF

are amplified. Therefore, the K-EV works directly counter to the T -EV: the amplified

DF introduced during population bottlenecks due to the smaller population size increase

the likelihood of fixation from the coexistence state, while the T -EV acts to restore the

system to the coexistence equilibrium following a deviation due to DF and thus maintain

the coexistence. Fig. 4.5 illustrates the influence of γ under low and high K-switching

rate (δK = 0):

- Under low νK , the probability of long-lived coexistence η decreases with K− =

K0(1 − γ) when γ is increased. The bright green region in Fig. 4.5(a) where long-

lived coexistence is almost certain (η ≈ 1) therefore shrinks with γ and is gradually

replaced by a faint green area where coexistence occurs with a lower probability

(η = (1 + δK)/2 < 1); see Fig. 4.5(b,c).

- Under high νK , we have N ≈ K = K0(1− γ2)/(1− γδK) which shows the impact of
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Figure 4.5: Fixation/coexistence diagrams under T -EV and K-EV in the (νT , δT ) param-
eter space showing the effect of the amplitude of K-EV γ on the fixation and coexistence
probabilities when K0 = 500 is kept fixed, for γ = 0.65 (K− = 175, K+ = 825) (a,d),
γ = 0.8 (K− = 100, K+ = 900) (b,e), and γ = 0.95 (K− = 25, K+ = 975) (c,f). Other
parameters are s = 1.0, δK = 0, νK = 10−3 in (a)-(c) and νK = 10 in (d)-(f). Phase
diagrams obtained from stochastic simulations data collected just after t = 2⟨N⟩ over 103
realisations. All diagrams are colour-coded as in Fig. 4.3.

γ on the coexistence region. When δK ≤ 0, K and η decrease with γ, and as a result

the bright green region in Fig. 4.5(d) shrinks; see Fig. 4.5(e,f). When δK > 0, there

is a bias towards K = K+ and K increases with γ until γ = γ̄ ≡ (1−
√
1− δ2K)/δK

and then decreases, with K < K0, when γ > δK . This results in a non-monotonic

dependence of the coexistence region where η ≈ 1: under νK ≫ 1 and δK > 0, the

long-lived (bright-green) coexistence region grows with γ up to γ̄ and shrinks when

γ > γ̄.

It is interesting to note that, while under low νK the overall coexistence region, i.e. the

region where η > 1, is larger than under high νK , but the bright coexistence region where

η ≈ 1 is smaller than when under high νK . This is due to the fact that under slow switching

for η ≈ 1, we require coexistence under long periods in both K+ and K−, whereas under

fast switching we require coexistence under long periods in K. Since K ≥ K−, DF are

weaker under K and the bright coexistence regime is larger. Under symmetric K-switching

case, we have thatK− = K0(1−γ) and K = K0(1−γ2), where γ < 1, clearly demonstration

this effect.

We have thus found that the two forms of EV have opposite effects on the species coex-

istence: increasing the amplitude of T -EV (by raising s) prolongs the coexistence of the

strains and expands the coexistence region, but raising the amplitude of K-EV (by raising
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Figure 4.6: Composition of the coexistence state: fraction of the resistant strain R in the
coexistence phase as a function of νT and δT ; from simulation results (a) and predictions
of Eqs. (4.7) and (4.16) in (b), respectively for x∗ and η. The colourbar (brightness bar)
gives the characteristic fraction of the R strain in the region of the νT -δT parameter space
where η > 0.01. Simulation results have been obtained just after t = 2⟨N⟩ and averaged
over 104 realisations. Parameters are K0 = 500, γ = 0.5, νK = 100, and s = 1.

γ) can significantly reduce the probability of long-lived coexistence for all values of νK .

4.4 Composition of the coexistence phase and strain average

abundance

Having characterised in detail the conditions under which long-lived coexistence and fixa-

tion occur, we now study the composition of the coexistence phase and then use this result

to determine the stationary average abundance of each strain.

4.4.1 Coexistence phase composition

In the coexistence region, we are interested in characterising the fraction of resistant

strain composing the population, denoted x∗. This is the fraction of R expected, given

that we have coexistence just after t = 2 ⟨N⟩. According to the MF theory, the fraction

of the strain R in the coexistence phase is given by Eq. (4.7). Despite the approximations

made to obtain the MF results, deep into the coexistence region where η ≈ 1 and νT is

sufficiently high, there is good agreement between theory and simulations; see Fig. 4.6(a,b).

In addition, even when η < 1, the MF prediction for x∗ remains remarkably close to the

value of fraction of R measured in the coexistence state obtained in simulations, with small

deviations arising as η approaches 0. We notice that the characteristic fraction of R, for

given δT , is almost independent of νT . This can be understood by noting that the T -EV

must self-average through fast switching to allow for coexistence. Once νT reaches a value

sufficient to prevent chance fixation events for long times, any increase in νT serves little

purpose as the T -EV is already switching quickly enough to self-average.
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Figure 4.7: Long-time average R abundance ⟨NR⟩ as a function of the average switching
rate of the T/K-EV. Solid lines are theoretical predictions of Eq. (4.19) with x∗, ⟨N⟩, ϕ
and η given by Eqs. (4.7), (2.28), (4.15), and (4.16); symbols are from simulation data.
(a) ⟨NR⟩ versus νK for δK = 0.5 (×), δK = 0 (⃝) and δK = −0.5 (▽). Limiting values
are plotted for νK → 0,∞ as dotted lines. Other parameters are: K0 = 500, γ = 0.5,
s = 1.0, νT = 10, and δT = 0.0. (b) ⟨NR⟩ versus νT for (δT , νK) = (−0.2, 0.01) (△),
(δT , νK) = (−0.2, 10) ( △ ), (δT , νK) = (0.2, 0.01) (

△

), (δT , νK) = (0.2, 10) (♢). Limiting
value are plotted for νT → 0,∞ as dotted lines. Other parameters are: K0 = 500, γ = 0.5,
s = 1.0, and δK = 0.0. Simulations data have been collected and sample-averaged after
t = 2⟨K⟩ over 102 realisations.

Having characterised the behaviour under fixation and coexistence, we can then predict

the fraction of R regardless of coexistence or fixation, here denoted by ⟨x⟩. The quantity

⟨x⟩ thus characterises the fraction of R in the coexistence, fixation, and crossover regime

where both coexistence and fixation are possible, with respective probabilities η and ϕ,

but neither is certain. Making use of Eqs. (4.7), (4.15), and (4.16) we thus define ⟨x⟩ as

⟨x⟩ = ηx∗ + (1− η)ϕ. (4.18)

The dependence of ⟨x⟩ on νT is captured accurately by this expression. We see that it

reduces to the fraction of R in the coexistence phase, ⟨x⟩ = x∗, when η ≈ 1 and long-

lived coexistence is almost certain. Similarly, as fixation becomes more likely, coexistence

becomes less likely and so η → 0, leading to ⟨x⟩ → ϕ, as expected – x = 1 with probability

ϕ or x = 0 with probability 1 − ϕ. As shown in Appendix B.2, a closed-form alternative

to ⟨x⟩ is provided by the modal value of the QPSD of the x-PDMP defined by Eq. (4.4),

which, while less accurate than ⟨x⟩ in general, captures the qualitative behaviour as η

approaches zero more accurately.

4.4.2 Strain average abundance

In this section, we study the νT and νK dependence of the (quasi-)stationary average

abundance of the strains R and S, respectively denoted by ⟨NR⟩ and ⟨NS⟩. Since ⟨NS⟩ =
⟨N⟩−⟨NR⟩, and ⟨N⟩ is well described by Eq. (2.28) (see Fig. 2.2(e)) we only need to focus
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on studying ⟨NR⟩.

In fact, while the evolution ofN is governed byK-EV and is well-captured by the stochastic

logistic equation Eq. (2.23) and the corresponding N -PDMP, the dynamics of the abun-

dance of the R strain depends on both T -EV and K-EV. In the MF limit, where DF are

neglected, we have (Gardiner, 2009)

d

dt
⟨NR⟩ = T+

R − T−
R =

(
1

f(t)
− ⟨N⟩
K(t)

)
⟨NR⟩

=

(
1

x+ (1− x)esξT
− ⟨N⟩
K0(1 + γξK)

)
⟨NR⟩ ,

which is a stochastic differential equation depending on both ξK and ξT , and coupled to

the N - and x-PDMPs defined respectively by Eqs. (2.23) and (4.4). In the dominance

regimes, ⟨NR⟩ ≈ 0 (S dominance) or ⟨NR⟩ ≈ ⟨N⟩ (R dominance), which can be obtained

from Eq. (2.28). Similarly, finding ⟨NR⟩ in the coexistence phase is straightforward, where

⟨NR⟩ ≈ ⟨N⟩x∗. However, generally capturing the behaviour is a non-trivial task. Progress

can be made by remembering that ξK and ξT are independent, and so we can approximate

⟨NR⟩ by

⟨NR⟩ ≈ ⟨N⟩ ⟨x⟩ ≡ ⟨N⟩ (ηx∗ + (1− η)ϕ), (4.19)

where ⟨N⟩ ηx∗ is the contribution to ⟨NR⟩ when there is coexistence (with probability η),

and ⟨N⟩ (1 − η)ϕ is the contribution arising when there is fixation of the strain R (with

probability (1 − η)ϕ). In our theoretical analysis ⟨N⟩, x∗, ϕ, and η are obtained from

Eqs. (2.27), (4.7), (4.15), and (4.16), respectively. Eq. (4.19) thus captures the behaviour

of ⟨NR⟩ in each regime: the dominance regime where η ≈ 0 and we have ⟨NR⟩ ≈ ⟨N⟩ϕ,
deep in the coexistence phase where we have η ≈ 1 and ⟨NR⟩ ≈ ⟨N⟩x∗, and where

0 < η < 1 and coexistence is possible but not certain where we have ⟨NR⟩ ≈ ⟨N⟩ ⟨x⟩.

In Fig. 4.7, we see that Eq. (4.19) captures well the results found from simulations over

a broad range of νK and νT , and for different values of δK and δT . The dependence of

⟨NR⟩ on νK reflects that of ⟨N⟩ shown in Fig. 2.2(e): ⟨NR⟩ decreases with νK at fixed

δK (see Fig. 4.7(a)) and we have ⟨N⟩ ≈ K when νK → ∞ yielding ⟨NR⟩ ≈ Kx∗ deep in

the coexistence phase where νT ≫ 1, and similarly ⟨N⟩ ≈ K0(1 + γδK) when νK → 0

yields ⟨NR⟩ ≈ K0(1 + γδK)x∗. Not shown in Fig. 4.7(a) is the case of νT ≪ 1, where only

dominance occurs such that ⟨NR⟩ ≈ ⟨N⟩ (1−δT )/2. Fig. 4.7(b) shows that the dependence
of ⟨NR⟩ on νT can be non-monotonic and exhibit an extreme dip (δT > 0) or peak (δT < 0)

at intermediate T -switching rate, νT ∼ 1. This behaviour can be understood by referring

to the diagrams of Fig. 4.5: as νT is raised from νT = 0 with δT < 0 kept fixed, the

R fixation probability first slowly increases in the magenta region where there is a small

bias towards R fixation and coexistence does not occur (η ≈ 0), giving ⟨NR⟩ ≈ ⟨N⟩ϕ.
Increasing νT further, R becomes the dominant species (blue phases in Fig. 4.5), with

ϕ ≈ 1 and ⟨NR⟩ ≈ ⟨N⟩ reaching its maximum; as νT continues to increase, coexistence

becomes possible (0 < η < 1, faint green in Fig. 4.5) and then almost certain (η ≈ 1,

bright green in Fig. 4.5) when νT is increased further, which results in a reduction of the

82



4.4 Composition of the coexistence phase and strain average abundance

R abundance to ⟨NR⟩ ≈ ⟨N⟩x∗ < ⟨N⟩. A similar reasoning holds for the S strain when

δT > 0 and results in a maximal value ⟨NS⟩ ≈ ⟨N⟩ and therefore a dip of the R abundance,

with a minimal value ⟨NR⟩ ≈ 0, when νT ∼ 1.

The results of this section hence show that the twofold EV has non-trivial effects on the

composition of the coexistence phase, and on the average number of cells of each strain,

as shown by Fig. 4.6 and the non-monotonic dependence of ⟨NR⟩ on νT in Fig. 4.7.

In this chapter, we have found that long-lived coexistence can be sustained in populations

under sufficient variation of the toxin level. We have then seen that resource variability

can inhibit this coexistence when strong K-EV leads to population bottlenecks, amplify-

ing DF and leading to fixation. More generally, our analysis has allowed us to assess the

influence of the population size distribution, whose shape changes greatly with the rate

of K-EV, on the fixation-coexistence phase diagram. We have also determined how the

composition of the coexistence phase and average abundance of each strain depend on the

rates of environmental change. These findings therefore demonstrate the influence of EV

on biodiversity in microbial communities and provide insight into a number of potential

applications. One such application is that discussed previously of the evolution of AMR in

a chemostat setup. In this context, the model is able to predict the environmental condi-

tions under which the number of resistant cells can be minimised, and the composition of

the population under coexistence. Another potential application is that of adaptive ther-

apy used in cancer treatment, where drug levels are varied in order to prevent resistance

of the cancerous cells to the drug (J. West et al., 2023).
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Chapter 5

Fixation and extinction in

metapopulations

Spatial structure is ubiquitous in natural microbial communities and its impact on evo-

lutionary dynamics is a topic of great interest. In Ch. 1, I gave an overview of the

existing literature and motivation relating to the evolution of spatially structured popu-

lations which I will briefly summarise here. Experimental studies have made progress in

elucidating the effects of spatial structure on population evolution (Habets et al., 2006;

Kryazhimskiy et al., 2012; Engel & Moran, 2013; Nahum et al., 2015; Widder et al., 2016;

Garud et al., 2019; Chakraborty et al., 2023; Kreger et al., 2023; She et al., 2024), but it

generally remains poorly understood. More recently, with improvements to micro-fluidic

techniques, it has become possible to experimentally probe such systems with a far greater

level of precision and control (Keymer et al., 2006; Hsu et al., 2019; Totlani et al., 2020).

To improve our understanding of the impact of spatial structure on biological systems, it is

therefore important to also develop the theoretical tools required to capture the evolution

of these populations. However, this is typically a non-trivial task due to the formation

of correlations across the spatially structured population over time from the migration

of individuals; see Figs. 1.3 and 5.2. To understand realistic microbial communities, rel-

evant tools must therefore be developed to capture the dynamics of models considering

the spatial structure of such populations. Furthermore, I have motivated throughout this

thesis the importance of EV and its impact on stochastic population evolution. Indeed, on

spatially structured microbial communities the same applies, where EV can cause sharp

and sudden population bottlenecks, though most theoretical developments thus far have

considered a constant environment (Hauert et al., 2014; Marrec et al., 2021; Yagoobi &

Traulsen, 2021). Therefore, here we are interested in incorporating both spatial structure

and EV to a simple model of population evolution (a spatially extended version of the

model considered in Ch. 2.3.2) to understand their joint effect on the system dynamics.

In this chapter, motivated by the relevance of spatial structure and EV to microbial com-

munities, I study a class of metapopulation models. These metapopulations, representing

spatially structured biological populations (see Figs. 1.3 and 5.5(a)), consist of many demes
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(subpopulations) in which wild-type and mutant cells evolve in a time-varying environ-

ment represented by a time-switching carrying capacity as introduced in Ch. 2.3.1. Each of

the demes thus resembles the population considered in Ch. 2.3.2. I consider the behaviour

of these metapopulations under slow migration, whereby the intra-deme dynamics (birth

and death events) occur much faster than the inter-deme dynamics (migrations between

demes), which is both biologically relevant and permits analytical progress (S. Wright,

1943, 1949; Keymer et al., 2006; Marrec et al., 2021; Moawad et al., 2024). I will first con-

sider the behaviour of the metapopulations under a static environment, demonstrating that

the dynamics is either dominated by competition between wild-type and mutant cells or

extinction of demes (and eventually the metapopulation) depending on the environmental

conditions and migration of cells (with a small intermediate regime). I will therefore show

that, under a static environment, a mutant with a selective advantage either goes extinct

with the entire population under extinction-dominated dynamics, or is likely to fixate the

population under competition-dominated dynamics. In either case, the resident wild-type

population is likely to reach extinction. I will then investigate how the metapopulation

evolution changes under population bottlenecks, implemented via the time-varying carry-

ing capacity as before, varying simultaneously on each deme across the metapopulation.

We will see that, when bottlenecks are weak such that deme extinction is not expected in

the harsh environmental state, there is an optimal switching rate of the environment that

maximises the likelihood of mutant fixation. Moreover, the probability of mutant fixation

depends on the migration rate of cells in the metapopulation, which is in stark contrast

with the case of static environments (Marrec et al., 2021). When bottlenecks are strong

such that deme extinction is likely in the harsh environmental state, I will characterise the

behaviour of the metapopulation, and uncover a mechanism for the removal of an initially

rare mutant which does not risk metapopulation extinction, behaviour not found under

static environments.

Contents of this chapter appear in Asker et al. (2025).

5.1 Model description

The spatially explicit metapopulation models which we consider here consist of Ω demes

labelled by x ∈ {1, ...,Ω}. Each of these demes is independently identical to the model

considered in Ch. 2.3.2. Therefore, at time t, each deme x consists of a well-mixed sub-

population of n(x) = nM (x) + nW (x) cells composed of nM (x) mutant cells and nW (x)

wild-type cells. The number of W/M individuals across the metapopulation is therefore

NM/W ≡
∑

x nM/W (x) and N ≡ NW +NM is the total number of individuals in the whole

graph. Again, the wild-type cells have a fitness fW = 1, while the mutant cells have a

slight selective advantage with fitness fM = 1 + s and 0 < s≪ 1.

The metapopulation may then be envisioned as a graph with nodes x ∈ {1, . . . ,Ω} where

each node is a deme containing a well-mixed subpopulation. Here, we focus on fully-

connected graphs (as in the island model (S. Wright, 1931; Kimura & Weiss, 1964)) called

cliques, and periodic one- and two-dimensional lattices called cycles and grids, respectively;
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…
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Figure 5.1: Examples of metapopulations and single-deme dynamics. (a) Examples of
metapopulation graphs: a clique, cycle, and grid (from left to right). Neighbouring demes
are connected by migration (double arrows). Initially, there is one mutant deme (red/light)
and Ω− 1 wild-type demes (blue / dark), and all demes have the same constant carrying
capacity K. (b) Dynamics in a single deme. Left: Wild-type W cells (blue / dark)
compete with mutants of type M (red / light). When K is small, the deme is prone to
extinction. When K is large, both types coexist prior to W or M fixation. Top right:
Realisations of the rescaled deme size n/K against time t for K = 5 (orange/light) and
K = 100 (green/dark) illustrating how n fluctuates about K. Bottom right: Fraction of
M cells against t in a deme with K = 100. Deme extinction is not observed. Transient
coexistence of W and M is followed by the fixation of W (blue traces) or M (red traces).
Here s = 0.01.

87



5. FIXATION AND EXTINCTION IN METAPOPULATIONS

see Fig. 5.1(a). These are regular graphs, generally denoted by G = {clique, cycle, grid},
of Ω demes connected by edges to their qG nearest neighbours via cell migration at per

capita rate m (independently from birth and death) (S. Wright, 1931; Kimura & Weiss,

1964; Maruyama, 1970; Marrec et al., 2021; Fruet et al., 2024; Moawad et al., 2024); see

Figs. 5.1 and 5.2(a). Furthermore, the graphs considered here are all circulations: there is

the same incoming and outgoing migration flow at each deme. I define this more concretely

later; see Eq. (5.3). This property is crucial for some important known results which we

will discuss later (Maruyama, 1970; Lieberman et al., 2005; Marrec et al., 2021). We

study the eco-evolutionary dynamics of the metapopulation in the biologically relevant

regime of slow migration (whereby intra-deme dynamics occur much faster than inter-

deme dynamics; see Ch. 5.2) (S. Wright, 1943, 1949; Keymer et al., 2006; Marrec et al.,

2021; Moawad et al., 2024) and consider that initially one deme is occupied entirely by

mutants (M deme), while the other Ω− 1 demes (W demes) are all populated by W cells;

see Ch. 5.4. This therefore represents the scenario of an advantageous mutant arising, and

attempting to take over the population. All demes are assumed to have the same carrying

capacityK, which again encodes the EV. In Ch. 5.2, we assume thatK is constant in order

to understand the impact of spatial structure and migration on metapopulation evolution,

similarly to previous works (Barton, 1993; Lande et al., 1998; Lieberman et al., 2005;

Marrec et al., 2021), and in Ch. 5.3 we let the carrying capacity switch as in Ch. 2.3.1 to

ascertain how EV affects this evolution.

The intra-deme dynamics in a deme x, consisting of competition between mutant and wild-

type cells on deme x for the local resources, is thus represented by the simple example

birth-death process considered in Ch. 2.3.2 (as in Wienand et al. (2017, 2018)), with

reactions

nα
T+
α−→ nα + 1 and nα

T−
α−→ nα − 1, (5.1)

and the rates T±
α defined as in Eq. (2.10). The inter-deme dynamics arise due to migration

of cells of type α ∈ {W,M} from the deme x to one of its qG neighbouring demes denoted

by y at a per-capita migration rate m. Here, for the sake of simplicity, we assume that

the migration rate is the same in all directions and for both species, denoted symmetric

migration; see Ch. 5.4 for a discussion of these assumptions. The inter-deme dynamics

for all cells at deme x with its neighbouring demes labelled y is therefore implemented

according to the reaction

[nα(x), nα(y)]
Tm,G
α−→ [nα(x)− 1, nα(y) + 1],

occurring at the migration transition rate

Tm,Gα (x) =
mnα
qG

. (5.2)
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Figure 5.2: Metapopulation dynamics in a static environment. (a) Invasion of W deme
by an M cell: Any M cell migrates to a neighbouring W deme with migration rate m
after a mean time ∆t ∼ 1/(mK), and then either quickly fixates, producing a new M
deme (right), or does not fixate leaving the pair ofM andW demes unchanged (left). The
same picture holds for the invasion of an M deme by a W cell; see text. (b) Intermediate
regime (here for the clique): The dynamics is characterised by deme extinction and W/M
competition (see text). Deme extinction occurs after a mean time τE , and empty demes are
then recolonised by an invader from a neighbouring surviving deme after ∆t ∼ 1/(mK).
A recolonised deme is rapidly taken over (in ∆t ∼ O(1)). (c) Coarse-grained description
of the metapopulation dynamics: Each deme is always either fully W (blue / dark) or
M (red / light) or empty (white). In this description, different scenarios arise, shown for
the clique. Competition-dominated regime: all demes are occupied and there is always
fixation of W or M . Intermediate regime: eventually W or M take over all occupied
demes, resulting in a dynamic equilibrium of empty demes and W or M demes; see text.
Extinction-dominated regime: there are frequent deme extinctions and the metapopulation
quickly goes extinct.
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With this, the condition for a metapopulation to be a circulation is given by

∑
y n.n. x

∑
α

Tm,Gα (x) =
∑

y n.n. x

∑
α

Tm,Gα (y) for all x, (5.3)

where y n.n. x denotes the sum over the qG neighbours y of the deme x. In our case, this

simplifies considerably to give n(x) =
∑

y n.n. x n(y)/qG for all x. Intuitively, this means

that for our setup, if each deme has the same population size, then the metapopulation is

a circulation. This will indeed be the case under sufficiently large carrying capacity (such

that DF are not so large as to cause deme extinction) due to the logistic growth dynamics

on each deme; see Ch. 2.1.

EV is again concretely implemented via the time-varying carrying capacity, K(t), defined

by Eq. (2.22). Similarly to Ch. 2.3.2, we also consider symmetric DMN here for simplic-

ity, though the results are easily generalised to asymmetric switching; see Ch. 5.4 and

Appendix C.5.

The full individual-based model is therefore a continuous-time multivariate Markov process

defined by the reactions of Eqs. (5.1) and (5.2) with transition rates given by Eqs. (2.10)

and (5.2) that satisfies the ME given by Eq. (C.1) discussed in Appendix C.1.1. The

microscopic intra- and inter-deme dynamics encoded in the ME has been simulated using

the Monte Carlo method described in Appendix D.2. While the eco-evolutionary dynam-

ics of a single deme has already been discussed in Ch. 2.3.2, we additionally consider the

impact on the dynamics due to migration in Appendix C.1.2. Concretely, each of n, nW ,

and nM fluctuate in time and depend on the deme x, and environmental state defined

by ξ in a time-varying environment. However, for notational simplicity, we often drop

the explicit dependence of n, nW , and nM on some or all of the variables x, t, and ξ. In

what follows, I combine coarse-grained analytical approximations viable under slow migra-

tion and individual-based stochastic simulations to study the impact of spatial structure,

migration, and DF on the fixation and extinction properties of the metapopulation.

5.2 Static environments

It is again initially useful to start by considering the case of a static environment where

EV is not present and the carrying capacity K of each deme is constant. This will help to

build the tools and understanding required to study the population under EV in Ch. 5.3.

The dynamics on each deme follow logistic growth defined as in Eq. (2.2), and therefore

the size n of each deme rapidly reaches and fluctuates about K, with n ≈ K when K ≫ 1;

see Fig. 5.1(b, top right). I will thus refer to K as “small” where the intra-deme dynamics

of fixation occur slower than those of deme extinction. Similarly, K is referred to as large

(alternatively, K ≫ 1) where intra-deme fixation occurs faster than deme extinction.

The expected number of migrants per unit time and deme is thus mK. The number of

migration events, alongside the strength of selection relative to diffusion in each deme,

increases with K. Cell migration and selection are however limited when K is small:
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Figure 5.3: Metapopulation occupancy: Ωocc against t for cliques (yellow), cycles (red),
and grids (blue), with Ω = 100 and K = 8. Simulation results averaged on 100 realisations
for the stationary number Ωocc of occupied demes for ψ = 100 (solid lines), ψ = 5 (dashed
lines), ψ = 2.5 (dotted lines), and ψ < 1 (dash-dotted lines). Eq. (5.6) predicts Ωocc =
100, 80, 60, 0 for ψ = 100, 5, 2.5 and ψ < 1, respectively.

regardless of their type, demes of small size are prone to extinction in a mean time τE ;

see Ch. 2.1.2 and Figs. 2.1, 5.1(b), and 5.2(b). In our analysis, we distinguish between

different dynamical scenarios through the quantity

ψ(m,K) ≡ mKτE , (5.4)

giving the average number of migration events during the typical deme extinction time.

With the approximate expression for τE given by Eq. (2.6), we have ψ(m,K) ≈ meK

when K ≫ 1. In the regime where ψ ≫ 1, many migration events occur prior to deme

extinction, making deme extinction exceedingly unlikely. The dynamics in this regime

is therefore dominated by M/W competition. When ψ(m,K) < 1, migration does not

occur sufficiently often to prevent deme extinction, and all demes quickly go extinct. An

intermediate regime where some demes are empty and others occupied by W or M arises

when ψ(m,K) ≳ 1. To rationalise this picture, it is useful to track the number of occupied

demes j = 0, 1, . . . ,Ω (by eitherW orM cells) as in the coarse-grained description of Lande

et al. (1998). Here we consider the clique metapopulation and thus, in this description,

residents (of eitherW orM type) of the j occupied demes can (instantaneously) recolonise

a neighbouring empty deme at a rate B(j) or go extinct at a rate D(j) (see Fig. 5.2(b)),

given by

B(j) = mKj(1− j/Ω),

D(j) = j/τE .
(5.5)

These rates are obtained by considering that, for recolonisation, the mKj expected mi-

grants per unit time each have a probability 1 − j/Ω to migrate to an empty deme and

recolonise it, while for deme extinction, each of the j demes go extinct in a time assumed

91



5. FIXATION AND EXTINCTION IN METAPOPULATIONS

to be exponentially distributed with mean given by τE . With this we can estimate the

number of occupied demes Ωocc in the metapopulation when the environment is static

(constant carrying capacity K). At the MF level, we can write the following balance

equation (Levins, 1969)

d

dt
Ωocc = B(Ωocc)−D(Ωocc),

= mKΩocc

(
1− 1

ψ
− Ωocc

Ω

)
.

The equilibria of this equation are Ωocc = 0 and Ωocc = Ωψ−1
ψ when ψ > 1. The equilibrium

Ωocc = 0 is asymptotically stable when ψ < 1 and unstable otherwise. This means that

all demes go extinct, and there is extinction of the entire metapopulation when ψ < 1.

When ψ > 1, the equilibrium Ωocc = Ωψ−1
ψ is asymptotically stable. This corresponds to

a fraction 1 − 1/ψ of the demes being entirely occupied, and there is a fraction 1/ψ of

empty demes. In the limit where ψ ≫ 1, we have Ωocc → Ω and all demes and hence the

metapopulation are fully occupied. Putting everything together, we obtain

j

Ω
→ Ωocc(m,K)

Ω
≈


1 if ψ ≫ 1,

ψ−1
ψ if ψ ≳ 1,

0 if ψ < 1.

(5.6)

This MF derivation of Ωocc is accurate for large clique metapopulations but, as it ignores

spatial correlations, it is a crude approximation for cycles and grids; see Fig. 5.3. In

particular, Ωocc overestimates the number of occupied demes in cycles when ψ is not much

larger than 1. However, ψ allows us to efficiently distinguish between different the regimes

dominated by M/W competition, deme extinction, and the intermediate regime.

Henceforth, we refer to “invasion” when a cell of type M/W migrates to and fixates in

a W/M deme, and to “recolonisation” when a cell of either type migrates into an empty

deme and repopulates it; see Fig. 5.2(a,b). Accordingly, the competition-dominated and

intermediate regimes are respectively characterised by invasions and recolonisations; see

Fig. 5.2(a,b).

Extinction-dominated dynamics

In the extinction-dominated regime we have ψ < 1 with m ≪ 1 (for slow migration; see

below), and we do not expect any deme invasions in a time τE , enabling us to adopt a

suitable coarse-grained description. Deme invasions being negligible under slow migration,

the timescale of extinction dynamics is much shorter than that of M/W competition,

and deme extinction dominates over deme invasion; see Fig. 5.2(c). Continuing with the

coarse-grained description of Lande et al. (1998), we have that demes may be regarded

as being either occupied (by either W or M cells) or empty with rates of recolonisation

and extinction given by Eq. (5.5). Spatial structure may only influence the dynamics
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Figure 5.4: θE against metapopulation size Ω for K = 3 (red), K = 5 (blue), K = 7
(yellow), and m = 10−4. Markers are simulation results and lines are predictions of
Eq. (5.9) for cliques (solid lines / crosses), cycles (dashed lines / circles), and grids (dotted
lines / triangles). Markers of the same colour are almost indistinguishable. Deviations
occur due to the approximation of τE(K) in Eq. (2.6). Selection plays no role in this
regime, so results have been obtained with s = 0.

via migrations (which occur rarely compared to extinctions here), and thus the coarse-

grained dynamics is largely independent of the spatial structure, and can be represented

by a birth-death process for the number of occupied demes. Again, we describe the

metapopulation dynamics in terms of the number j = 0, 1, . . . ,Ω of entirely occupied

demes. This coarse-grained description of the metapopulation dynamics is therefore a

birth-death process with an absorbing state j = 0 corresponding to the eventual extinction

of the metapopulation, and a reflecting boundary at j = Ω (all demes are occupied). In

this picture, the metapopulation MET, denoted θE , i.e. the mean time it takes for every

deme on the metapopulation to be empty given they are all initially occupied (at n = K),

reads (L. J. S. Allen, 2003)

θE(K,Ω) =
Ω−1∑
n=1

(n−1∏
m=1

B(m)

D(m)

)
Ω∑
j=n

∏j
l=1

B(l)
D(l)

D(j)

 . (5.7)

With ψ = mKτE , and using
∏j−1
l=n(1−

l
Ω) =

1
Ωj−n

(Ω−n)!
(Ω−j)! , Eq. (5.7) can be rewritten as

θE(K,Ω) = τE(K)
Ω∑
n=1

Ω∑
j=n

1

j

(
ψ

Ω

)j−n (Ω− n)!

(Ω− j)!
. (5.8)

In the extinction-dominated regime ψ ≪ 1, the main contribution to the inner sum stems
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5. FIXATION AND EXTINCTION IN METAPOPULATIONS

from j = n, and the leading contribution to the metapopulation MET is therefore

θE(K,Ω) ≈ τE(K)

Ω∑
n=1

1

n
= τE(K)HΩ,

whereHΩ is the Ω-th harmonic number. We haveHΩ = ln(Ω)+γEM+O(Ω−1) where γEM ≈
0.577... is the Euler-Mascheroni constant. This expression is independent of selection and,

to leading order, generally does not depend on the initial state of the metapopulation.

In the limit of a large metapopulation, Ω ≫ 1, the metapopulation MET in the regime

ψ(m,K) ≪ 1, is asymptotically given by the simple expression

θE(K,Ω) ≈ τE(ln(Ω) + γEM). (5.9)

Therefore, for ψ < 1 and Ω ≫ 1, as ψ increases with K the metapopulation MET grows

almost exponentially with K and logarithmically with Ω, and we find θE ≈ eK ln (Ω)/K;

see Figs. 2.1 and 5.4. For ψ > 1, Eq. (5.8) predicts a rapid growth of the metapopulation

MET, as seen in the simulation results of Fig. 5.5(e), which it captures qualitatively.

Furthermore, while θE(K,Ω) has been explicitly derived for cliques (island model), we see

that spatial structure has little impact due to the dominance of extinctions, and thus it

also provides insight into the extinction dynamics for cycles and grids.

Competition-dominated dynamics

When ψ ≫ 1 and m ≪ 1 (meaning slow migration and permitting a coarse-grained

description), the carrying capacity is large enough for many migrations to occur on the

timescale of deme extinction, τE . Since every deme expects many incoming cells in time

τE , deme extinction is unlikely and can be neglected. In this regime, the dynamics is

dominated by local M/W competition: W and M cells compete in each deme to fixate

the local subpopulation; see Figs. 5.1(b) and 5.2(a,c).

As in Marrec et al. (2021), Marrec (2023), and Moawad et al. (2024), we adopt a coarse-

grained description of the metapopulation dynamics. Here, each deme is treated as a

single entity of type W or M . For this description to accurately capture the dynamics

on the metapopulation, we require that migration is slow such that the mean time for

an M or W invader to fixate in a deme is negligible compared to 1/(mK), the expected

time between migrations; see Eq. (5.12) for full definition. In this regime, each sequential

migration of an individual into a deme of opposite type is an invasion attempt, with a cell

from an M/W deme trying to invade a neighbouring W/M deme; see Fig. 5.2(a). Here,

an M/W invasion is the fixation of a single M/W mutant in a deme consisting of K − 1

cells of type W/M .

Within the coarse-grained description, the state of the metapopulation is denoted by i,

where i = 0, 1, . . . ,Ω is the number of demes of type M leaving Ω − i demes of type W .

The probability ρM/W of invasion by anM/W migrant is here given by the classical result

for the probability that a single M/W cell takes over a population of constant size K in a
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5.2 Static environments

Figure 5.5: (a-d): Competition-dominated dynamics, ψ ≫ 1. (a) M fixation probability ϕ
against constant carrying capacity K; (b) unconditional mean fixation time θ against K;
(c) ϕ against per capita migration rate m; (d) θ against m. Markers are simulation results
and lines are predictions of Eq. (5.14) for s = 0.1 (blue) and s = 0.01 (red) on a clique
(solid lines / crosses), cycle (dashed lines / circles), and grid (dotted lines / triangles).
In (a,b), m = 10−4,Ω = 16, and in (c,d), K = 50,Ω = 16. In (a,c), markers for the
same s are almost indistinguishable indicating independence of the spatial structure. (e):
Extinction-dominated dynamics, ψ < 1. Metapopulation MET θE against K for Ω = 16
and m = 10−2 (blue) and 10−4 (red). Markers are simulation results and thick lines are
predictions of Eq. (5.8) for cliques (solid lines / crosses), cycles (dashed lines / circles), and
grids (dotted lines / triangles). Thin dashed vertical lines are guides to the eye showing
ψ = 1 for m = 10−2 (blue) and 10−4 (red). Selection plays no role in this regime, so
panel (e) has been obtained with s = 0. In panels (a,c,e), dashed lines overlap with solid
lines and so are not visible. In all panels, there is initially one M deme and Ω− 1 demes
occupied by W .
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5. FIXATION AND EXTINCTION IN METAPOPULATIONS

Moran process as in Ch. 2.2.2 (Moran, 1958, 1962; Antal & Scheuring, 2006; Traulsen &

Haeurt, 2009), and thus reads

ρM ≡ ϕMA(1) =
s

1 + s

[
1

1− (1 + s)−K

]
,

ρW ≡ 1− ϕMA(K − 1) =
s

(1 + s)K

[
1

1− (1 + s)−K

]
,

(5.10)

where ϕMA(nM ) is given by Eq. (2.20). In each time unit, a deme receives from and sends

to its neighbours an average of mK cells. Importantly, only edges connecting M and W

demes can lead to invasions; see Fig. 5.2(a). These are “active edges” and their number in

state i on graph G is denoted by EG(i), where here we consider G ∈ {clique, cycle, grid}.
Migration is equally likely from a deme to any one of its qG neighbours, where qclique = Ω−
1, qcycle = 2, qgrid = 4, and qd−dim = 2d for a d-dimensional regular lattice. It is generally

difficult to determine the number of active edges, which varies with the metapopulation

state and spatial structure. However, analytical progress is possible in certain spatial

structures. In the clique, the i demes of type M are connected to the Ω− i demes of type

W , yielding Eclique(i) = i(Ω − i). The M demes form a single unbreakable cluster since

all demes are connected. For a cycle, if the initial state is i = 1 under slow migration,

the initial M deme is exactly connected to two W demes. This property is conserved by

the coarse-grained dynamics, with an unbreakable cluster of M demes always connected

to a cluster of W demes by two active edges until W or M fixates the metapopulation,

yielding Ecycle(i) = 2 for i ̸= 0,Ω; see Figs. 5.1(a) and 5.2(a). The unbreakable nature of

the M cluster in these two cases alongside the symmetric nature of the specific graphs,

means there is only one possible metapopulations state for a given size of M cluster.

This is what permits explicit expressions for EG(i), The number of active edges in the

grid metapopulation is difficult to obtain because the cluster is not unbreakable and the

metapopulation has many possible states for a given number of M demes, but may be

approximated. In the case of a large (Ω ≫ 1) metapopulation structured as a grid with

unit spacing between neighbours, we assume that the mutant spreads outwards from the

initial M deme approximately forming an M -cluster with a circular front. If this circular

M -cluster has a radius r, it has an area πr2 containing a number i of M demes. The

boundary of the circular M -cluster is of length 2πr. Assuming that this length is equal

to the number of M demes on the boundary, we find that r =
√
i/π and there are 2

√
iπ

boundary demes given i demes of typeM . We therefore estimate that the average number

active edges for a grid is Egrid(i) ≈ 2
√
πi for i ̸= 0,Ω. When i = 0,Ω, one strain fixates

the entire metapopulation, where all demes are M if i = Ω and all demes are W when

i = 0, and hence EG(0) = EG(Ω) = 0 for all G.

In the coarse-grained description of the competition-dominated dynamics, starting from a

single M deme (i = 1), there are mKEG(i)/qG expected attempts per unit time to grow

the number of M demes by invading neighbouring W demes. Each of these attempts is an

invasion with probability ρM , given by Eq. (5.10), and therefore the number of M demes

grows at a rate mKEG(i)ρM/qG. The number of W demes attempts to grow by sending
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5.2 Static environments

migrants into neighbouring M demes, which invade with probability ρW . The number of

M demes is therefore reduced at a rate mKEG(i)ρW /qG. In this representation, M and

W invasions therefore act at the interface of M and W demes by increasing or decreasing

the number of M demes, i, at respective rates (Marrec et al., 2021; Fruet et al., 2024;

Moawad et al., 2024),

T+
i (m,G,K) = mK

EG(i)

qG
ρM ,

T−
i (m,G,K) = mK

EG(i)

qG
ρW .

(5.11)

With this, we can concretely define slow migration in this setting, which we have so far

assumed without explicit consideration. In the competition-dominated regime, 1/s sets

the timescale of deme dynamics, representing the timescale for fixation of a single isolated

deme; see Eq. (2.12) of Ch. 2.2.1. The growth of the number of mutant demes, i, in time

1/s is T+
i (m,G,K)/s = mKEG(i)ρM/(qGs).

1 In the adopted coarse-grained description,

slow migration is the regime where the invasion can be regarded as being instantaneous,

with fixation of a successful M invader occurring before the next invasion. This requires

that the average number of successfulM invaders in the time for the intra-deme dynamics

be less than one, i.e. T+
i (m,G,K)/s < 1. Therefore, slow migration is satisfied for

m <
sqG

KρMEG(i)
≤ s

KρM
, (5.12)

where we have used qG/EG(i) ≤ 1. When s ≪ 1 and Ks ≫ 1, we have ρM ∼ s and

therefore simply m < 1/K. For typical values used in this chapter, e.g. Ω = 16,K = 100

and s = 0.1, we can estimate that there is slow migration ifm ≲ 10−2, which is in line with

the values of m ∈ [10−5, 10−2] used in our examples, and matches where we see deviations

in Fig. 5.5(d).

We have therefore obtained a birth-death process for the number of M demes, i, with

absorbing boundaries at i = Ω (M fixation) and i = 0 (W fixation) which is valid under

slow migration and competition-dominated dynamics (i.e. ψ ≫ 1). This very closely

resembles the Moran process discussed in Ch. 2.2.2, and this system is in fact amenable

to the same techniques introduced in that section. In this representation, the M fixation

probability in a metapopulation of size Ω, spatially structured as a graph G, consisting

initially of i mutant demes is denoted ϕGi , and the MFT denoted θGi . These quantities

therefore satisfy the first-step equations (L. J. S. Allen, 2003; Ewens, 2004; Antal &

Scheuring, 2006; Traulsen & Haeurt, 2009)

(T+
i + T−

i )ϕGi = T+
i ϕ

G
i+1 + T−

i ϕ
G
i−1,

(T+
i + T−

i )θGi = 1 + T+
i θ

G
i+1 + T−

i θ
G
i−1,

(5.13)

for i = 1, . . . ,Ω− 1, with boundary conditions ϕG0 = 1− ϕGΩ = 0 and θG0 = θGΩ = 0. These

are identical in form to Eqs. (2.17) and therefore Eqs. (5.13) can be solved exactly (Antal &

1We use the growth of the number of M demes to define slow migration as the mutant has a fitness
advantage. Therefore, ρM > ρW and T+

i (m,G,K) > T−
i (m,G,K) in general.
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5. FIXATION AND EXTINCTION IN METAPOPULATIONS

Scheuring, 2006; Traulsen & Haeurt, 2009). Here, we are chiefly interested in the fixation

of a single initial M deme, i = 1, and simply write ϕG ≡ ϕG1 and θG ≡ θG1 , finding

ϕG(K) = ϕ(K) =
1− γ

1− γΩ
,

θG(m,G,K) =
1− γ

1− γΩ

Ω−1∑
k=1

k∑
n=1

γk−n

T+
n (m,G,K)

,

(5.14)

where γ ≡ T−
i /T

+
i = ρW /ρM ≈ exp(−Ks) is a quantity independent of m and G. As

noted in Marrec et al. (2021), Abbara and Bitbol (2023), and Moawad et al. (2024) the

fixation probability ϕG = ϕ is therefore independent of the migration rate and spatial

structure. This non-trivial result is due to the graphs considered being circulations; see

Eq. (5.3). In static environments, a generalised circulation theorem shows that the fixation

probability is independent of m and G for circulations (Lieberman et al., 2005; Marrec

et al., 2021; Moawad et al., 2024), a feature displayed in Fig. 5.5(a,c). We find that the

ϕ increases almost exponentially and ϕ ≈ 1 when Ks ≫ 1; see Fig. 5.5(a,c). This stems

from the invasion of W demes becoming increasingly likely and the invasion of M demes

exponentially less likely due to the increase in the strength of selection over diffusion as K

increases. When Ks≪ 1, the competition is effectively neutral as diffusion dominates over

selection for deme fixation. In this case, ϕ ≈ 1/Ω since the metapopulation is initialised

with one mutant deme, giving an identical result to that obtained from neutral competition

(Ewens, 2004). Eqs. (5.14) also predict that the MFT decreases with the migration rate

θG ∼ 1/m. This is seen in the simulation results of Fig. 5.5(b,d). Furthermore, we see that

for given parameters, the MFT is shortest on cliques, while it is larger on cycles than on

grids. Intuitively, for higher m and more connected graphs, migrants spread faster leading

to quicker invasion and fixation.

Intermediate dynamics

In the intermediate regime ψ ≳ 1 andm≪ 1 (again ensuring slow migration and a suitable

coarse-grained description), there is a crossover between the extinction and competition-

dominated dynamics. At fixed migration rate m, this intermediate regime occurs in the

range ln (1/m) ≲ K ≲ ln (ΩK/m); see Appendix C.2. Furthermore, the metapopulation

is partially occupied for ln (1/m) ≲ K ≲ ln (Ω/m) corresponding to 1 < ψ < Ω−1. These

bounds are illustrated by the vertical lines in Fig. C.2.

When ψ ≳ 1, migration and deme extinction occur on the timescale τE . In the long run,

deme recolonisations and extinctions balance each other, yielding a dynamical equilib-

rium consisting of Ωocc = Ω(1 − 1/ψ) occupied demes and Ω − Ωocc empty demes; see

Fig. 5.3. In this regime, we therefore have a three-state coarse-grained description of the

dynamical equilibrium consisting of a random mixture of empty demes, and occupied W

and M demes; see Fig. 5.2(b). The metapopulation may, in fact, be fully occupied at

its equilibrium in the intermediate regime, with occasional deme extinctions which are

quickly recolonised, differentiating it from the competition-dominated regime. After a
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mean time θGint the metapopulation reaches the dynamical equilibrium consisting of a frac-

tion 1 − Ωocc/Ω = 1/ψ of empty demes, and the remaining demes are all of either type

M or W with probability ϕGint and 1 − ϕGint, respectively. The dynamical equilibrium is

thus defined by the quantities ψ, given by Eq. (5.4), and ϕGint which is the probability that

mutants M take over the Ωocc = Ω(1 − 1/ψ) occupied demes, where the unconditional

mean fixation time is given by θGint. These quantities are derived and discussed in Ap-

pendix C.2 for a metapopulation on an arbitrary regular lattice consisting initially of a

single M deme; see Eq. (C.2) and Fig. C.2

5.3 Time-varying environments

We now investigate the impact of EV implemented through a time-varying carrying ca-

pacity, K(t) as in Eq. (2.22) driven by the DMN ξ(t) ∈ {−1, 1}; see Fig. 5.6. Moreover,

we are particularly concerned with population bottlenecks, arising when the deme size is

drastically reduced, as discussed in Ch. 2.3.2. When ν ≲ 1, the deme size n tracks K(t)

and experiences a bottleneck whenever the carrying capacity switches from K+ to K−, as

seen throughout previous chapters and in Fig. 5.6(a,right) (Wienand et al., 2017, 2018).

Therefore, this setup captures the joint effect of EV, DF, and migration on the metapop-

ulation dynamics, where we have justified that each of these elements is typically present

in natural biological populations in Ch. 1. We assume that K+ ≫ 1 such that, in the mild

environment the deme size is large and therefore subject to weak DF. In what follows,

we distinguish between weak bottlenecks, where ψ(m,K−) ≫ 1 and deme extinction is

negligible, and strong bottlenecks, where ψ(m,K−) < 1 and deme extinctions dominate.

Weak bottlenecks: ψ(m,K−) ≫ 1

In the case of ψ(m,K−) ≫ 1, each deme on the metapopulation is subjected to a weak

bottleneck at an average frequency ν/2 when ν ≲ 1; see Fig. 5.6(a,top). The condition

ψ(m,K−) ≈ meK− ≫ 1 ensures that deme extinction can be neglected, with metapopula-

tion dynamics dominated by M/W competition. The metapopulation fate can therefore

be captured by a two-state coarse-grained description similar to that of Ch. 5.2. Now with

a time-varying environment, the deme size, and hence number of migrating cells, varies

with K(t). It is therefore useful to introduce environmental state dependent counterparts

to ⟨N⟩ defined in Eq. (2.28) which capture the long-term average deme size dependent on

the environmental state ξ = ±1 and switching rate ν, denoted Nξ(ν) ≡ N±(ν).

We first discuss the metapopulation fate in the limit of slow and fast environmental switch-

ing, which strongly resembles the same limiting regimes considered in the simple example

of Ch. 2.3.2, and then return to the above case of weak bottlenecks with ν ≲ 1.

When the environment varies very slowly, ν ≪ 1, the carrying capacity remains at its

initial value, i.e. K(t) = K+ or K(t) = K− each with a probability 1/2, until inva-

sions lead to the fixation of W or M , and thus N±(ν) = K±. In other words, the

time between switches is longer than the fixation time in each environment such that
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5. FIXATION AND EXTINCTION IN METAPOPULATIONS

Figure 5.6: (a) Left: single deme in time-switching environment. The carrying capacity
K(t) encodes environmental variability by switching between K = K+ (mild environment,
green / light) and K(t) = K− < K+ (harsh environment, orange / dark) at symmetric
rate ν (see also Appendix C.5). Communities are larger in the mild environment. When
K(t) switches at an intermediate rate, each deme experiences bottlenecks at an average
frequency ν/2. Right: n and K against time in the intermediate switching regime where
the size n of a deme undergoes bottlenecks. Parameters are: K+ = 200, ν = 0.05 and
K− = 100 (top) and K− = 5 (bottom). The bottlenecks are weak when ψ(m,K−) ≫ 1
(top, right) where deme extinction is unlikely. When ψ(m,K−) < 1, there are strong
bottlenecks and each deme can go extinct in the harsh environment (bottom, right). (b)
Clique metapopulation with Ω = 6 connected demes (double arrows). All demes have the
same time-switching carrying capacity K(t) encoding environmental variability across the
metapopulation, with each deme in the same environmental state. (c) Example evolution
across two nearest-neighbour demes in a switching environment subject to strong bottle-
necks in the intermediate switching regime; see text. Starting in the mild environment
where K = K+, the carrying capacity switches to K− (harsh environment) after t ∼ 1/ν.
Following the K+ → K− switch, each deme size decreases and each subpopulation is sub-
ject to strong demographic fluctuations and hence prone to extinction. In the absence
of recolonisation of empty demes, effective only in the mild state, all demes go extinct.
If there is a switch back to the mild environment K− → K+ prior to total extinction,
empty demes can be rescued by migration and recolonised by incomingW orM cells from
neighbouring demes. In the sketch, an empty deme is recolonised by a mutant in the mild
environment and becomes an M deme. The cycle continues until the entire metapopula-
tion consists of only W or M demes, or metapopulation extinction.
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5.3 Time-varying environments

νmax(θG(m,K+), θ
G(m,K−)) < 1, where θG(m,K) is given by Eq. (5.14). In the slow

switching regime, the M fixation probability and MFT on a metapopulation spatially ar-

ranged as a regular graph G are respectively denoted by ΦG
0 and ΘG

0 . The quantities are

obtained by averaging their static counterparts defined in Eq. (5.14) over the stationary

distribution of K, yielding

ΦG
0 (m,K±) = Φ0(K±) =

1

2
[ϕ(K+) + ϕ(K−)] ,

ΘG
0 (m,K±) =

1

2

[
θG(m,K+) + θG(m,K−)

]
.

(5.15)

When the environment varies very quickly, ν ≫ 1, the DMN self averages before fixation

from invasions can occur, and the carrying capacity of each deme rapidly reaches the

effective value K with N±(∞) → K (Wienand et al., 2017, 2018; Taitelbaum et al., 2020);

see Ch. 2.3.2. In this fast switching regime, the M fixation probability and MFT on a

metapopulation spatially arranged as a regular graph G, respectively denoted by ΦG
∞ and

ΘG
∞, are obtained by replacing K with K in Eq. (5.14), yielding

ΦG
∞(m,K) = Φ∞(K) = ϕ(K),

ΘG
∞(m,K±) = θG(m,K).

(5.16)

From these expressions and Eq. (5.14), we notice the fixation probability in the regime

of slow and fast switching is independent of the migration rate and spatial structure:

ΦG
0 = Φ0 and ΦG

∞ = Φ∞. However, the metapopulation MFT depends explicitly on the

migration rate m and G, with ΘG
0 ∼ 1/m and ΘG

∞ ∼ 1/m. Outside of these limiting

regimes, the metapopulation dynamics are far richer. Under intermediate switching rate,

when ν ≲ 1, the coupling of DF and EV plays a key role. Cell migration depends on the

deme size that varies with the environmental state, and so the metapopulation dynamics

cannot be mapped onto those of a suitable static counterpart as in the limiting regimes.

The M/W competition characterising the intermediate switching regime dynamics can be

described by the coarse-grained representation of Ch. 5.2 generalised to a time-varying

environment following Ch. 4.2.2 and Wienand et al. (2017, 2018). Here, we analyse the

influence of ν and m on the M fixation probability, ΦG
i (ν,m), and MFT, ΘG

i (ν,m), in

a metapopulation consisting of i mutants demes and Ω − i W -demes spatially arranged

as a regular graph G. To this end, we consider a birth-death process for the number

i = 0, . . . ,Ω of M demes. As in Ch. 5.2, we assume that there is initially a single M deme

(i = 1). The effective rates for increase or decrease in the number ofM demes, T ±
i,ξ, depend

on the expected number of migrating cells, which in turn depends on the deme size that

is now a time-varying quantity driven by Eq. (2.22). In a time-varying environment, the

expected number of migrants from a deme, mn, is approximated by mNξ(ν), where the

the deme size in each environmental state can be approximated by using the conditional

PDMP distributions defined by Eq. (2.26) to obtain

Nξ(ν) =

∫ K+

K−

npξ,ν/s(n) dn.
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5. FIXATION AND EXTINCTION IN METAPOPULATIONS

Figure 5.7: Fixation probability ΦG and mean fixation time ΘG against switching rate ν
for various parameters. Each panel shows ΦG against ν (left) and ΘG against ν (right).
Markers show simulation results and lines are predictions of Eq. (5.22). (a,b) Φclique(ν)
and Θclique(ν) for a clique metapopulation and different values of m in (a) and s in (b).
(a) m = 10−5 (red), m = 10−4 (blue), m = 10−3 (yellow), and s = 0.01. (b) s = 10−3

(red), s = 10−2 (blue), s = 10−1 (yellow), and m = 10−4. Dashed black lines are guides
to the eye showing Φ0,∞ in (a,left) and Θ0,∞ in (a,right); see text. Other parameters are
Ω = 16, K+ = 200, and K− = 20. (c) ΦG(ν) and ΘG(ν) for clique (red, crosses), cycle
(blue, circles), and grid (yellow, triangles). Other parameters are Ω = 16, K+ = 200,
K− = 20, s = 0.01, m = 10−4. (d) Φclique(ν) and Θclique(ν) for a clique metapopulation
with K+ = 200 (red), K+ = 500 (blue), and K+ = 1000 (yellow). Deviations occur
for Θ with K+ = 1000 since the slow-migration condition is not satisfied in the mild
environment. Other parameters are Ω = 16, K− = 20, and s = 0.01, m = 10−4. In all
examples, there is initially a single M deme and Ω− 1 others of type W ; see text.
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Additionally, and as in Ch. 2.3.2 and Wienand et al. (2017, 2018), the switching rate has

been rescaled, ν → ν/s, by the timescale of the deme fixation dynamics where there are

an average of O(ν/s) switches on the deme fixation timescale. As in static environments

(see Eq. (5.11)) the transition rates T ±
i,ξ depend on the spatial structure, via EG(i)/qG,

and on the probability ρM/W,ξ(ν) that an M/W migrant invades a W/M deme in the

environment ξ. Putting everything together, this yields the effective transition rates

T +
i,ξ(ν,m,G) = mNξ(ν)

EG(i)

qG
ρM,ξ(ν),

T −
i,ξ(ν,m,G) = mNξ(ν)

EG(i)

qG
ρW,ξ(ν),

(5.17)

where, by analogy with Eq. (5.10), we have introduced

ρM,ξ(ν) ≡
s

1 + s

1

1− (1 + s)−Nξ(ν)
,

ρW,ξ(ν) ≡
s

(1 + s)Nξ(ν)

1

1− (1 + s)−Nξ(ν)
.

(5.18)

With Eq. (5.17), by dropping all explicit dependence of the transition rates except on i

and ξ, we obtain theM fixation probability starting from the environmental state ξ with i

mutant demes on a graph G, denoted by ΦG
i,ξ(ν,m,K±), as the solution of the ν-dependent

first-step analysis equation (Gardiner, 2009; Ashcroft et al., 2014)

[
T +
i,ξ + T −

i,ξ + ν
]
ΦG
i,ξ = T +

i,ξΦ
G
i+1,ξ + T −

i,ξΦ
G
i−1,ξ + νΦG

i,−ξ, (5.19)

subject to the boundary conditions ΦG
0,ξ = 0 and ΦG

Ω,ξ = 1. The metapopulation MFT in

the environmental state ξ, denoted by ΘG
i,ξ, similarly satisfies

[
T +
i,ξ + T −

i,ξ + ν
]
ΘG
i,ξ = 1 + T +

i,ξΘ
G
i+1,ξ + T −

i,ξΘ
G
i−1,ξ + νΘG

i,−ξ, (5.20)

with boundary conditions ΘG
0,ξ = ΘG

Ω,ξ = 0. Eqs. (5.19) and (5.20) generalise Eqs. (5.13) to

a time-switching environment, with the last terms on the right-hand side accounting for en-

vironmental switching, and coupling ΦG
i,ξ to ΦG

i,−ξ and ΘG
i,ξ to ΘG

i,−ξ. Eqs. (5.19) and (5.20)

can be solved numerically using standard methods similarly to Eqs. (4.12) and (4.13) of

Ch. 4 since they are entirely equivalent in form. In Ch. 4, we knew exactly the state of the

system following an environmental switch through an instantaneous change to the toxin

level, unlike the system here where the population size does not change instantaneously

after an environmental switch. The analysis here allows us to appropriately capture the

average population size reached following an environmental switch n ≈ Nξ(ν) under weak

selection (s≪ 1) and slow migration (m≪ 1). Therefore, the continuously varying popu-

lation size on a deme is approximated by assuming the population size switches back and

forth between N±, making it amenable to the same numerical methods as used to tackle

Eqs. (4.12) and (4.13). The M fixation probability ΦG
i (ν) and MFT ΘG

i (ν) regardless of
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ξ are obtained by averaging over the stationary distribution of ξ, yielding

ΦG
i (ν,m) =

1

2

∑
ξ

ΦG
i,ξ(ξ, ν,m),

ΘG
i (ν,m) =

1

2

∑
ξ

ΘG
i,ξ(ξ, ν,m),

(5.21)

where we have reinstated the explicit dependence on ν and m. As we specifically consider

the initial condition of a single M deme, we set i = 1 in Eq. (5.21) and simplify the

notation by writing

ΦG(ν,m) ≡ ΦG
1 (ν,m) and ΘG(ν,m) ≡ ΘG

1 (ν,m), (5.22)

Therefore, Eq. (5.22) gives the M fixation probability and MFT in the combined coarse-

grained and PDMP description. In Fig. 5.7, the comparison of the predictions of Eq. (5.22)

with the simulation results of the full model on the regular graphs G ∈ {clique, cycle, grid}
shows that Eq. (5.22) captures well the dependence of ΦG and ΘG on ν, m, s and K+.

In particular, Eq. (5.22) reproduces on all G the non-monotonic ν-dependence of ΦG and

ΘG (when this feature is present), as well as their behaviour when ν → 0,∞ given by

Eqs. (5.15) and (5.16).

In stark contrast with the case of static environments, we see that ΦG and ΘG depend on

spatial migration. Fig. 5.7(a,left) demonstrates clear differences for Φclique(ν,m) across m

values in the range ν ∈ [10−4, 10−1]. These deviations, of up to 20%, exceed the error bars

and are captured well by Eq. (5.22). In Fig. 5.7(c,left), we notice that both simulation

results and predictions of Eq. (5.22) for ΦG(ν,m) differ slightly for ν < 10−3 (though

are almost indistinguishable) for each graph G, whereas Fig. 5.7(c,right) shows that ΘG

depends on the spatial structure. The explicit dependence of the fixation probability

on migration and spatial structure deviates from the case of static environments seen in

Fig. 5.5, and is therefore a signature of eco-evolutionary dynamics of the metapopulation in

time-varying environments. As shown in Appendix C.3, the correspondence demonstrated

in Marrec et al. (2021) between ΦG and the fixation probability of a random walk for the

number i = 0, 1, . . . ,Ω of mutant demes with hopping probabilities independent of m and

G, and absorbing states 0,Ω, breaks down in time-varying environments. This leads to

the dependence of ΦG and ΘG on m and G in time-switching environments.

Another distinctive feature of ΦG and ΘG is their non-monotonic ν-dependence when the

other parameters (s, m, K±, Ω) are kept fixed. In particular, Fig. 5.7 shows that ΦG may

exhibit a sharp peak in the regime of intermediate switching rate, ν ∈ [10−4, 10−1], that is

well captured by Eq. (5.22). This contrasts directly with the results in a single well-mixed

population, as in Ch. 2.3.2 and Wienand et al. (2017, 2018), where the fixation probability

varies monotonically with ν; see Fig. 2.2(f). The non-monotonic ν-dependence of ΦG and

ΘG is therefore an inherent effect of spatial migration. Intuitively, this behaviour can be

understood by first considering the limit of very slow switching, i.e. ν → 0, and how
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5.3 Time-varying environments

the dynamics change as ν is increased. Under very slow switching, the metapopulation is

initialised and fixates prior to any environmental switches. Thus, the fixation properties

are given by Eq. (5.15). Crucially, the MFT for a system initialised in the K− state is

much larger than that of a system initialised in the K+ state, since invasions are far less

frequent due to the smaller population size. Furthermore, the M fixation probability in

the K− state is lower than that of the K+ state since, under the smaller population size,

DF are amplified and therefore diffusion has a stronger effect than selection. As ν is

gradually increased, a point is reached whereby an environmental switch is expected prior

to fixation for systems initialised in the harsh state but not for those initialised in the mild

state due to the larger MFT in K−. This switch prior to fixation for systems initialised

in the harsh state into the mild state therefore allows for the subsequent fixation of that

system to occur faster and with a higher likelihood of M fixation than it would have done

continuing in the K− state. As ν increases further, environmental switches occur prior to

fixation in either environmental state, and so this effect is partially lost. Furthermore, the

average deme size is a decreasing function of ν (see Fig. 2.2(e) of Ch. 2.3.2 and Wienand

et al. (2017, 2018)) meaning that as ν increases further, M fixation becomes less probable

and takes longer due to the smaller average deme size. Hence, the best conditions for the

fixation of M under weak bottlenecks are for a range of ν in the intermediate regime.

Strong bottlenecks: ψ(m,K−) < 1

In the case of ψ(m,K−) < 1, each deme on the metapopulation is subjected to strong

bottlenecks; see Fig. 5.6(a). In the harsh environment ξ = −1 (K = K−), the entire

metapopulation experiences extinction, in a time θE(K−,Ω), denoted θE here for concise-

ness, which is short compared to the fixation timescale. However, in the mild state ξ = 1

(K = K+), deme extinction can be neglected and each deme can be regarded as being

occupied by either W orM cells. Therefore, the dynamics in the harsh state is dominated

by deme extinction, while in the mild environment there is M/W recolonisation and com-

petition. In the realm of strong bottlenecks, EV therefore subjects the metapopulation to

periods dominated in turn by deme extinction and M/W recolonisation and competition,

yielding complex dynamical scenarios whose analysis is difficult. However, we can gain

valuable insight by considering first the limits of ν ≪ 1 and ν ≫ 1, and then the case of

intermediate switching where ν ≲ 1.

As in the weak bottleneck case, when the environment varies very slowly, ν ≪ 1, the

environment remains at its initial value for long periods, that is K = K± if ξ(0) = ±1

each with a probability 1/2. On the one hand, if initially ξ = −1 (harsh environment)

then K = K− and each deme is prone to extinction after a mean time τE(K−), which

eventually leads to the collapse of the metapopulation after a time θE ≈ eK− ln (Ω)/K−

when Ω ≫ 1 and K− ≫ 1; see Eq. (2.6) and Fig. 5.8(a). On the other hand, if the

environment is initialised with ξ = 1 (mild conditions), n ≈ K+ and there is M/W

competition characterised by the fixation of M with a probability ϕ(K+) approaching 1

when K+s ≫ 1; see Eq. (5.14) and Fig. 5.8(b). As a result, when ν ≪ 1 and K+s ≫ 1,

there are two equally likely outcomes illustrated in Fig. 5.8(a,b): either the extinction of
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5. FIXATION AND EXTINCTION IN METAPOPULATIONS

Figure 5.8: Typical single realisations of N/Ω (black), NM/Ω (red), NW /Ω (blue), and
K(t) (grey) against time for different values of K− and ν. (a,b): Here, ν = 10−4 and
K− = 8. In (a), K = K− at t = 0 and M and then W quickly go extinct. In (b), K = K+

at t = 0 and M fixates the population while W goes extinct. (c,d): Here, ν = 10−2 and
K− = 8. In (c), mutants survive the first few bottlenecks but their abundance is low
leading to the fixation of W and removal of M after four bottlenecks (t ≳ 1000). In (d),
mutants survive the first bottlenecks and spread in the mild state where they recolonise
and invade demes. They are eventually able to fixate the population. (e,f): Here, ν = 10,
and K− = 4 in (e) and K− = 10 in (f). K(t) switches very frequently and is not shown
for clarity. In (e), the deme size is n ≈ 2K− = 8 and the dynamics is dominated by deme
extinction leading to the rapid extinction of the metapopulation. In (e), the deme size is
n ≈ 2K− = 20 and there is M/W competition that leads to fixation of M and extinction
of W after a typical time t ∼ θclique(2K−) ≳ 104 (not shown). Similar results are obtained
on other regular graphs G; see text. Other parameters are Ω = 10, s = 0.1, m = 10−4,
and K+ = 200. In all panels, initially there is a single M deme and Ω− 1 demes occupied
by W .
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5.3 Time-varying environments

the metapopulation in a mean time θE as in Fig. 5.8(a), or the fixation of M after a mean

time θG(K+) as in Fig. 5.8(b).

Under fast environmental switching, when ν ≫ 1, the carrying capacity self-averages (see

Ch. 2.3.2) and takes the effective value K, with n ≈ K after t ∼ 1 for K ≫ 1 (Wienand

et al., 2017, 2018). Since K ≈ 2K− when K+ ≫ K−, if ψ(m, 2K−) < 1 the dynamics is

characterised by the extinction of individual demes after a mean time τE(2K−), followed

by extinction of the entire metapopulation after a mean time θE(Ω, 2K−); see Fig. 5.8(e).

However, if ψ(m, 2K−) ≫ 1, the dynamics is characterised by M/W competition and

fixation after a mean time θG(2K−), as illustrated by Fig. 5.8(f). For 2K−s≫ 1, selection

dominates and M is likely to fixate, while for 2K−s ≪ 1, selection is weak and DF are

strong allowing diffusion to dominate and lead to likely W fixation.

In slowly and rapidly changing environments under sufficient selective advantage s, regard-

less of the spatial structure, the metapopulation subject to strong bottlenecks is therefore

always at risk of either complete extinction or of being taken over by mutants.

In the intermediate switching regime, ν ≲ 1 with ψ(m,K−) < 1, the metapopulation expe-

riences strong bottlenecks (since the population size evolves on a timescale ∼ O(1)), inter-

spersed by periods of recovery which can prevent metapopulation extinction for extended

periods of time. In the harsh environmental state (K = K−), the dynamics is dominated

by deme extinction, while in the mild state (K = K+ ≫ K−), there is recolonisation of

empty demes that rapidly become either W or M demes occupied at n ≈ K+, followed

by invasions and M/W competition. In order to prevent metapopulation extinction, the

mean time spent in the harsh environmental state must be shorter than the metapopula-

tion MET in the harsh environment, i.e. 1/ν < θE . Hence, when ν ≲ 1 and νθE > 1, the

metapopulation is unlikely to go extinct and transiently consists of a mixture of empty

demes and M/W demes before either M or W fixates the remaining occupied demes. In

this regime, mutants are likely to be removed from the metapopulation when there is an

initially small fraction of them; see Fig. 5.8(c). This is because the extinction of demes

is indiscriminate on deme type (i.e. M or W ), and therefore it is more likely for a small

number of M demes to reach extinction prior to the extinction of the large number of W

demes making up the remainder of the metapopulation. At each strong bottleneck, there

is then a finite probability of causing all M demes to reach extinction before switching to

the mild environment, where surviving mutants can invadeW demes and recolonise empty

demes. In a scenario illustrated by Fig. 5.8(c), there are periods of duration ∼ 1/ν during

which the number of mutants remains low and prone to extinction when K = K−, followed

by periods in K+ where the number of M demes increases (due to M/W competition).

Each bottleneck can therefore be seen as an attempt to remove M demes, whereas the

switches from K− → K+ allows the metapopulation to be recolonised and the mutants

to recover somewhat. This cycle repeats itself until M demes are entirely removed after

sufficiently many bottlenecks. Following this process, the metapopulation consists of a

fluctuating number of W demes and empty demes. This scenario is the most likely to

occur when the initial fraction ofM demes is small. Another possible outcome, illustrated
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Figure 5.9: Near-optimal condition for the idealised treatment strategy. (ν,K−) heatmaps
of Φ, Θ, ΘE and (1 − Φ)(1 − Θ/ΘE) for a clique metapopulation. The migration rate is
m = 10−3 in (a-d) and m = 10−4 in (e-h). White space in panels (c) and (g) indicate
where at least one realisation for those parameters did not reach extinction by t = 105, i.e.
ΘE ∼ 105 or larger. Grey lines in panels (d) and (h) show the near-optimal conditions for
the idealised treatment strategy: ψ(m,K−) < 1 below the top horizontal line, mK+θE > 1
above the bottom horizontal line, and νθE > 1 above the curved line, while the vertical
line indicates where ν < 1 and θE from Eq. (5.9). The near-optimal treatment conditions
is the yellowish cloud at the centre of the area enclosed by these lines. Similar results are
obtained on other regular graphs G; see text and Fig. C.3. Other parameters Ω = 16,
s = 0.1, and K+ = 200. In all panels, initially there is a single M deme and Ω− 1 demes
occupied by W .

by Fig. 5.8(d), occurs when mutants surviving the harsh conditions invade and are success-

ful in recolonising many demes in the mild environment. Mutants can thus significantly

increase the number of M demes, exceeding that of W demes. In this case, bottlenecks

can be seen as attempt to remove W demes, and the most likely outcome is the removal

of W demes. The metapopulation eventually consists of a fluctuating number of empty

demes and mutant demes, as illustrated by Fig. 5.8(d). The results of Fig. 5.8 have been

obtained for cliques, but the same qualitative behaviour is expected for any regular graphs

G, with the spatial structure affecting the the long-term fraction of occupied demes and

therefore the probability of removal of mutants at each bottleneck. However, phenomena

operated by extinction are mostly independent of G and m, as illustrated in Fig. C.3 of

Appendix C.4.

A hypothetical idealised treatment strategy. In this intermediate switching regime, the

metapopulation is likely to avoid extinction in the harsh environment if νθE ≳ 1. More-

over, when mK+θE ≳ 1 then deme recolonisations occur sufficiently quickly in the mild

environment to prevent the accumulation of extinct demes and eventual metapopulation
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extinction. Hence, the metapopulation is likely to avoid extinction when νθE > 1 and

mK+θE > 1 and either W or M can be entirely removed, with respective probabilities Φ

and 1 − Φ, after a mean time Θ, whereas the metapopulation MET in the time-varying

environment, ΘE , occurs on a much longer timescale (ΘE ≫ Θ). As an application, we

consider a hypothetical idealised treatment strategy to efficiently remove unwanted mu-

tants from an otherwise healthy system by controlling the environmental conditions via

the parameters K− and ν. By the nature of how mutants arise in microbial populations,

they are initially rare. In this context, M cells are interpreted as the unwanted mutants

that have a selective advantage over W cells composing an organism, here represented by

the metapopulation consisting initially of Ω−1 demes of type W and a singleM deme. In

a healthy host, cells replicate in a controlled, self-regulating manner. Mutations may lead

to the loss of this self-regulation of cell replication, and such mutant cells replicate rapidly.

These cells are cancerous and, due to the nature of mutations, are initially rare. Thus

these initial conditions are relevant, even for smaller systems. If allowed to proliferate,

cancer cells will outcompete the slower-growing healthy cells, leading to a growing tumour.

Therefore, in this motivating context, we should like to remove these more aggressive cells

to leave healthy cells behind while not eliminating healthy cells. The idealised treatment

strategy consists of finding the optimal environmental conditions to remove M cells and

minimise the risk of extinction of the entire metapopulation. This corresponds to deter-

mining the range of K− and ν for which Φ and Θ/ΘE are minimal. According to the

above discussion, the near-optimal conditions for this idealised treatment strategy on a

regular graph G are

ψ(m,K−) < 1, ν ≲ 1, νθE ≳ 1, mK+θE ≳ 1. (5.23)

Under these conditions, illustrated in Fig. 5.9, which depend on m but not on the spatial

structure G, EV generates successive strong bottlenecks at a frequency ensuring that the

mutant type is the most likely to go extinct in a mean time that is much shorter than the

metapopulation MET. While determining analytically Φ and Θ/ΘE satisfying Eq. (5.23)

is challenging, this can be done efficiently numerically as illustrated by the heatmaps of

Fig. 5.9, and be summarised by maximising the composite quantity (1−Φ) (1−Θ/ΘE), as

shown in Fig. 5.9(d,h). In the examples of Fig. 5.9, we find that the near-optimal treatment

conditions are 10−2 ≲ ν ≲ 1 and for K− that changes with m: K− ∈ [1, 7] for m = 10−3

and K− ∈ [4, 9] for m = 10−4. The idealised treatment strategy therefore consists of

letting the metapopulation evolve under the near optimal conditions Eq. (5.23), under

which it undergoes a series of strong bottlenecks whose expected outcome is the removal of

mutants. Once all mutants are removed, as in Fig. 5.8(c), the final course of the treatment

consists of keeping the metapopulation in the mild environment (with K = K+), whereW

cells would spread and finally take over all the demes. In the example of Fig. 5.8(c), this

would be achieved by setting K = K+ after t ≳ 1000. This idealised treatment strategy,

illustrated for clique metapopulations in Fig. 5.9, qualitatively holds on regular graphs G,

with small influence of the spatial structure on the shape of the heatmap when m is kept

fixed, as seen by comparing Figs. 5.9(e-h) and C.3. We note that the yellow regions that
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appears for ν > 1 in Fig. 5.9(d,h) are not due to bottlenecks. Instead , these appear as

the EV self-averages and the effective carrying capacity reproduces the dynamics found in

the intermediate regime discussed briefly in Ch. 5.2 and elaborated on in Appendix C.2.

5.4 Discussion, generalisations, and robustness

Here, I discuss the main results by critically reviewing the assumptions made and outline

possible generalisations. I have studied the eco-evolutionary dynamics of a metapopulation

consisting of Ω identical demes with the same carrying capacity K, containing wild-type

W and mutant M cells, that are connected by slow migration and arranged as regular

circulation graphs. While the approach holds for any regular graph, I have specifically

considered the examples of cliques (island model), cycles, and square grids (with periodic

boundaries). This has allowed us to consider the impact of various graph structures on

the metapopulation dynamics. I have analysed the metapopulation dynamics in a static

environment where K is constant, and in a time-varying environment where K switches

endlessly between K− and K+ > K− at a rate ν; see Eq. (2.22). In static environments,

the deme size fluctuates about K and the metapopulation dynamics is characterised by

either M/W competition (when ψ ≫ 1), or by deme extinction (when ψ < 1). We

have used suitable coarse-grained descriptions to analytically characterise the fate of the

population in those regimes; see Fig. 5.5. When, as here, the metapopulation is spatially

arranged on circulation graphs, the circulation theorem (Lieberman et al., 2005; Marrec

et al., 2021) guarantees that the fixation probability in the competition-dominated regime

is independent of the migration rate and the spatial structure. I have also devised a coarse-

grained three-state description of the dynamical equilibrium in the intermediate regime

(where ψ ≳ 1) where in the long run there is a mixture of occupied demes of type W or

M and empty demes; see Appendix C.2.

In time-varying environments, when K switches neither too quickly nor too slowly, each

deme is subject to bottlenecks that can be weak when K− is large enough to ensure

ψ(m,K−) ≫ 1. Deme extinction can be neglected in the weak bottleneck regime, and I

have combined a coarse-grained description with a PDMP approximation to characterise

the M/W competition in time-varying environments in the absence of deme extinction.

This has allowed me to show that weak bottlenecks lead to a non-monotonic dependence

of the mutant fixation probability ΦG and mean fixation time ΘG on the switching rate ν,

with an explicit dependence on the migration rate, whereas the spatial structure has an

unnoticeable effect on ΦG, regardless of spatial correlations, but influences ΘG. This is in

direct contrast with the behaviour of a well-mixed population; see Ch. 2.3.2 and Wienand

et al. (2017, 2018). When demes are subject to strong bottlenecks, metapopulation ex-

tinction is possible, and sometimes a likely outcome under slow and fast switching (ν ≪ 1

and ν ≫ 1), whereas the overall extinction can be avoided for long periods under inter-

mediate switching, when M/W competition and deme extinction dynamics are coupled.

As a hypothetical application, I have considered an idealised treatment strategy for the

rapid removal of the mutant conditioned on minimising the risk of overall extinction.
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The coarse-grained descriptions adopted in the static and dynamic environments track the

dynamics of the number of M demes, which, in the case of the clique and cycle, is a single

unbreakable cluster of M demes. This requires starting from such a cluster, where here

we assumed the natural initial condition of a single M deme. Under these considerations,

the number of active edges connecting W and M demes in cliques and cycles is known

exactly, making these graphs particularly amenable to detailed analysis. It is also possible

to capture the number of active edges exactly for other starting configurations of these

graphs (e.g. two or more neighbouringM demes) provided that the unbreakable structure

of the cluster of M demes is preserved at all times t ≥ 0. For the sake of concreteness and

simplicity, we have focused on a class of regular circulation graphs. In two dimensions,

spatial correlations between demes are more complex, and the coarse-grained description

of the M/W competition dynamics on a grid has required approximations of the number

of active edges; see Appendix C.4. A similar approximation is expected to hold on hyper-

cubic lattices (with periodic boundaries). These considerations on the role of the initial

condition and spatial structure do not matter when the metapopulation dynamics is dom-

inated by the extinction of demes since these occur randomly across the metapopulation.

As a consequence, the “idealised treatment strategy” based on the dynamic coupling of

competition and deme extinction to remove a targeted and initially rare strain is expected

to hold on more complex structures, including generic connected graphs.

In this work, I have focussed on the biologically relevant regime of slow migration, which

is well known to increase the population fragmentation and hence influences its evolution

and diversity (S. Wright, 1943; Slatkin, 1981). Here, the assumption of slow migration is

crucial for the coarse-grained description of the metapopulation dynamics, and the values

considered in our examples, m ∈ [10−5, 10−2], are comparable with those used in microflu-

idic experimental setups (Keymer et al., 2006). For m ≫ 1, the behaviour of a single

well-mixed population is recovered; see Ch. 2.3.2 and Wienand et al. (2017). For inter-

mediate m, the dynamics is characterised by coarsening, i.e. the slow growth of domain

sizes over time (Krapivsky et al., 2010; Täuber, 2014). For the sake of simplicity and

without loss of generality, we have assumed that migration occurs without any directional

preference and with the same rate for M and W . These assumptions can be relaxed and

the coarse-grained description be readily generalised to the case of directional and type-

specific migration (Marrec, 2023), yielding the same qualitative behaviour discussed here

for circulation graphs. We note however that asymmetric directional migration signifi-

cantly affects the evolutionary dynamics on non-circulation graphs, like the star, where

the asymmetry can lead to either an amplification or suppression of the mutant fixation

probability (Lieberman et al., 2005; Marrec et al., 2021; Abbara & Bitbol, 2023; Abbara

et al., 2024; Moawad et al., 2024). It would be interesting to study the evolution on these

non-circulation graphs in time-varying environments in the case of symmetric and direc-

tional migration. For computational tractability, I have chiefly considered metapopulations

consisting of 16 demes of size ranging between 1 and 200, which are much smaller systems

than most realistic microbial communities. However, we note that with microfluidic de-

vices and single-cell techniques, it is possible to perform spatially structured experiments
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with 10 to 100 cells per microhabitat patch, which are conditions close to those used in

our model (Keymer et al., 2006; Hsu et al., 2019; Totlani et al., 2020). Moreover, in-vivo

host-associated metapopulations are often fragmented into a limited number of relatively

small demes, e.g. Ω ≈ 25 and K ≈ 1000 in mouse lymph nodes (Ganchua et al., 2020;

Van den Broeck et al., 2020; van Tatenhove-Pel et al., 2021; Fruet et al., 2024).

The analysis of this chapter therefore furthers the understanding of the impact of spatial

structure, migration, and DF on the spread of a mutant strain subject to EV. Under

this EV, I have identified and characterised various dynamical scenarios which display

non-trivial dependencies on the environmental switching rate and migration rate of the

cells. Crucially, this behaviour does not occur in the cases of a static environment or a

well-mixed population, and thus directly stems from the interplay between EV and spatial

structure. I have also demonstrated how EV coupled to DF on a spatially structured

population can be utilised in novel ways to achieve desired evolutionary outcomes, here

being the efficient removal of an unwanted mutant.
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Chapter 6

Conclusions

This thesis contributes to the growing body of literature investigating the impact of en-

vironmental variability on the evolution of biological systems, particularly in the case of

microbial communities. Here, I have focussed in particular on competition between two

species, competing for a common pool of resources which is tacitly assumed to be contin-

uously replenished. In considering the full stochastic birth and death dynamics of these

systems, I have investigated the likelihood that one of the species takes over the popula-

tion, with the other going extinct, unable to return. Throughout, one key common aspect

of the models developed is the use of a time-varying carrying capacity to introduce environ-

mental variability to the population. The carrying capacity changes with instantaneous

switches between two values, one large and one small, mimicking the sharp transitions

that can occur in microbial environments (Wahl et al., 2002; Brockhurst, 2007; Patwa &

Wahl, 2010; Shade et al., 2012; Stegen et al., 2012; Coates et al., 2018). Furthermore, it

is common to introduce environmental variability in this way in laboratory experiments

(Acar et al., 2008; Sanchez & Gore, 2013; G. Lambert & Kussell, 2014; Rodŕıguez-Verdugo

et al., 2019; Abdul-Rahman et al., 2021; Nguyen et al., 2021; Shibasaki et al., 2021). This

variability leads to changes in the population size which, in turn, controls the strength of

demographic fluctuations in the population, impacting its subsequent evolution. Therefore

environmental variability and demographic fluctuations are coupled via the time-varying

population size that modulates the amplitude of the demographic fluctuations. In this

way, I have coupled environmental variability to the evolutionary dynamics of the sys-

tems considered, which is a key feature of the work of this thesis. Across these models, I

have found that environmental variability generally impacts the likelihood of species fix-

ation, long-lived species coexistence, the time required for species fixation, as well as the

composition of the population under long-lived coexistence. Furthermore, I have investi-

gated the dynamics through both extensive stochastic simulations and the development

of novel analytical tools, thus allowing for a comprehensive understanding of the systems

considered.

In Ch. 3, I considered two distinct models of cooperative AMR with competing resistant

and sensitive species, motivated by the growing problem of AMR evolution in clinical in-
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fections (O’Neill, 2016). If allowed to evolve under no environmental variability, we saw

that resistant cells are likely to remain in the population for long times, which is undesired

in the context of our motivating example. I then considered the case of a fixed volume

population in which the nutrient concentration varied in time. Under this scenario, I un-

covered a resistance-eradication mechanism that comes about due to the environmental

variability and the transients it induces, occurring when the rate of environmental change

is comparable to that of the relaxation of the evolutionary dynamics (ν ∼ s). By com-

putational means, I showed that this mechanism allows for a fast eradication of resistant

cells, and argued that it holds also for large microbial communities, comparable to those

used in laboratory experiments (N > 106). This makes apparent the importance of consid-

ering environmental variability in such systems of interest: though the model considered

is quite abstracted from reality, the eradication of resistant cells is an issue of key im-

portance to society today, and this only arises under the consideration of environmental

variability. Furthermore, I characterise the behaviour more generally across the param-

eter space considered, determining environmental conditions whereby species coexist for

long times without fixation and those where the resistant species fixate the population.

Since this work has been undertaken, Hernández-Navarro, Distefano, et al. (2024) have

developed a more realistic extension of the model to a metapopulation structure, where

a similar resistance-eradication mechanism remains but is enhanced compared to a single

well-mixed population, particularly under slow cell migration.

Following this case of a constant volume and varying nutrient concentration, I also consid-

ered the scenario whereby the volume of the population varies in time, with the nutrient

concentration of the population held constant. Under this form of EV, the long-time

eco-evolutionary dynamics were similarly difficult to predict compared to the case of a

constant environment: in the presence of EV, long-lived coexistence of the strains is pos-

sible even when fast fixation is likely, and there can be early fixation of a strain even when

long-lived coexistence is expected. By computing the fixation-coexistence diagrams of the

system through simulations, I determined the environmental conditions separating areas

of the diagrams where fixation of one strain is most likely from areas where long-lived

coexistence of both species is most likely. These findings were then rationalised by devis-

ing an analytical approach, built on the combination of suitable quenched and annealed

averaging procedures in different regimes of environmental variability, thus reproducing

qualitatively and quantitatively the diagrams and fixation-coexistence properties obtained

from simulations. Furthermore, this accurately captured the behaviour of the probability

of long-lived coexistence and of fixation conditioned on fast fixation with varying switch-

ing rate and cooperation threshold. Importantly in the context of modelling the evolution

of AMR, the findings allowed for the identification of the most favourable environmental

conditions for the early eradication of AMR. However, unlike in the previous model, there

does not exist a general resistance-eradication mechanism which can remove resistant cells

regardless of cooperation threshold.

The results of Ch. 4 demonstrated the impact of twofold environmental variability. In this
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model, resistant and sensitive species competed subject to a time-varying carrying capac-

ity, as before, and a time-varying toxin level. Under harsh conditions, the level of toxin

is high and resources are scarce, while environmental conditions are mild when the level

of toxin is low and resources are abundant. The toxin-level being in its high or low level

state determined if the resistant or sensitive species was selected for, respectively. When

the environment is static, there is no long-lived coexistence since one species dominates

and rapidly fixates the population. However, I showed that under sufficiently fast and

strong variability in the toxin level, the long-lived coexistence of resistant and sensitive

cells emerged where it crucially was not possible under a static environment. I computa-

tionally and analytically obtained the fixation-coexistence phase diagrams of this system,

allowing for the precise identification of the environmental conditions under which species

coexistence is almost certain for extended periods, and the phases where one species dom-

inates, as well as the crossover regimes where both coexistence and fixation are possible,

but not guaranteed. I found that, while variability in the toxin level can promote coex-

istence, resource variability can strongly inhibit it. This carrying capacity switching lead

to population bottlenecks responsible for large demographic fluctuations which promoted

fast fixation, with the effect being amplified for stronger bottlenecks. More generally, the

influence of the population size distribution on the fixation-coexistence phase diagram was

characterised completely. Finally, I determined how the make-up of the coexistence phase

and average abundance of each strain depended on the rates of environmental change. In

summary, in this chapter I determined the circumstances in which environmental variabil-

ity, together with demographic fluctuations, favours or hinders the long-lived coexistence

of competing species, and how it affects the fraction and abundance of each strain in the

community. This work hence contributes to further elucidate the role of environmental

variability and demographic fluctuations on the maintenance of biodiversity in complex

ecosystems, demonstrating that the details of how an environmental attribute (e.g. nutri-

ent or toxin level) impacts species can determine whether or not coexistence is promoted

or hindered by variability in this attribute.

The problem of how microbial communities evolve subject to environmental variability is

vital when considering the issue of AMR, so that the effectiveness of treatments can be

maximised, while minimising their harmful effects. In considering the models of Chs. 3

and 4, I have shown that EV can have qualitative effects on the population evolution,

either promoting or jeopardising lasting species coexistence. Furthermore, I have shown

that specific choices of the EV can promote a given desired evolutionary outcome in a

population; for example the intermediate bottlenecks in the first model of Ch. 3 leading to

the resistance-eradication mechanism. This work paves the way for several possible appli-

cations, for instance, in microbial experiments with controlled environmental conditions

(Wahl et al., 2002; Brockhurst, 2007; Acar et al., 2008; Patwa & Wahl, 2010; Shade et al.,

2012; Stegen et al., 2012; Sanchez & Gore, 2013; G. Lambert & Kussell, 2014; Coates

et al., 2018; Rodŕıguez-Verdugo et al., 2019; Abdul-Rahman et al., 2021; Nguyen et al.,

2021; Shibasaki et al., 2021), which might shed light on new possible treatments against

AMR in real-world clinical infections.
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In Ch. 5, I considered how a time-varying capacity impacts the ability of a mutant with

a selective advantage to take over a spatially structured metapopulation of wild-type

individuals, where migration between demes on the metapopulation is slow. Using coarse-

grained approaches, I first demonstrated that under no environmental variability there

are two key regimes of behaviour, with a crossover regime between them. I characterised

analytically and using stochastic simulations a regime dominated by deme extinction, one

dominated by the competition between the mutants and wild-type cells, and the crossover

regime combining local competition and extinction.

In time-varying environments, various qualitatively different dynamical scenarios arise and

environmental variability can significantly influence the evolution of the metapopulation.

When the rate of switching is neither too slow nor too fast, demes experience bottle-

necks and the population is prone to fluctuations or extinction. When the time-varying

carrying capacity remains large and bottlenecks are weak, deme extinction is negligible.

The dynamics is thus dominated by the competition between wild-type cells and mutants

to invade and take over demes, and eventually the population, which I characterised by

adapting the coarse-grained description used in the competition-dominated regime of the

constant environment. In this approach, I accurately determined the fixation probabil-

ity and mean fixation time of metapopulations under weak bottlenecks and showed that

these quantities can vary non-monotonically with the environmental switching rate, an

effect caused by the spatial structure of the population which is not present in well-mixed

populations (Wienand et al., 2017, 2018). I found that in the regime of weak bottlenecks,

the mutant fixation probability on regular circulation graphs depends on the migration

rate, which is in stark contrast with what happens in static environments (Lieberman

et al., 2005; Marrec et al., 2021), while the spatial structure has a small but essentially

unnoticeable effect. These elements combined therefore demonstrated the importance of

realistic models for microbial evolution: if one were to presume that the robust results of

Wienand et al. (2017, 2018) and Lieberman et al. (2005) and Marrec et al. (2021) hold

jointly, the novel behaviour uncovered here is missed. Furthermore, when the carrying

capacity is small under harsh conditions, bottlenecks are strong and there is a dynamical

coupling of strain competition in the mild environmental state and deme extinction in

the harsh environment. In this case, various scenarios arose, among which I identified a

mechanism, expected to hold on any regular graph, driven by environmental variability

and fluctuations to efficiently eradicate one strain.

As a hypothetical application, I thus proposed an idealised treatment to remove the mu-

tant, assumed to be unwanted and favoured by selection. I showed that when each deme is

subject to strong bottlenecks at intermediate switching rates the mutant can be efficiently

removed by demographic fluctuations arising in the harsh environment without exposing

the entire population to a risk of rapid extinction. I thus determined the near-optimal

conditions on the switching rate and bottleneck strength for this idealised treatment and

found that these are qualitatively the same on other graphs. In summary, this analysis

sheds further light on the influence of the spatial structure, migration, and fluctuations on
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the spread of a mutant strain in time-varying environments. I have identified and charac-

terised various dynamical regimes, displaying a complex dependence on the switching and

migration rates and shown that environmental variability and fluctuations can be utilised

to achieve desired evolutionary outcomes like the efficient removal of an unwanted mutant.

While having made several simplifying assumptions, allowing for analytical progress, many

of these can be relaxed without affecting the results or the methodology. The approach

holds for arbitrary regular graphs and can be generalised to more complex spatial set-

tings. The model studied therefore has numerous potential applications. For instance, it

mirrors the in vitro evolution of a mutant across an array of micro-fluidic devices, where

cells migrate between “microhabitat patches” either via microchannels or pipette, with

bottlenecks implemented via a strict control of the nutrient level in each device (Keymer

et al., 2006; Hsu et al., 2019; Totlani et al., 2020).

In summary, this thesis demonstrates the generally non-trivial and often significant im-

pact of environmental variability through a coupling with population-level dynamics on

several models of biological interest. We have motivated the importance of EV by its

ubiquity in natural populations, and shown that its inclusion in the models considered

can significantly alter the evolutionary dynamics of the population. Furthermore, in each

of the models I have envisaged a particular evolutionary outcome which is preferred: the

removal of resistant cells or unwanted mutants. I have obtained specific conditions on the

environmental variability where these evolutionary outcomes are promoted. This research

therefore suggests the importance of considering EV in order to capture the dynamics of

natural populations, allowing for the uncovering of novel dynamical population behaviours

which do not appear if EV is neglected, some of which may be of clinical relevance.

Furthermore, this research naturally leads to several other potentially fruitful avenues of

research. Firstly, the behaviour of multi-species (> 2) communities with complex interac-

tion networks subject to EV is of great interest, particularly with reference to biodiversity

and coexistence. While their study would require the development of new tools, as much

of the work here is focussed on two-species populations, this work paves the way for a

complete understanding of such systems and may serve as a baseline for comparison. Ad-

ditionally, the effect of the EV considered here has primarily been in the carrying capacity

of the population. This has allowed for a large amount of analytical progress through

the use of tools already developed, but we need not restrict ourselves to this case. This

was seen in Ch. 4 where EV impacts the birth rates of species in addition to the effect

on carrying capacity. Therefore, modelling EV as a DMN for analytical convenience, but

considering various different ways in which this may directly impact the species, would

allow for a far broader understanding of the impact of EV on population evolution. This

could be applied, for example, to the models of Ch. 3, where we note that a constant re-

plenishment of antimicrobial at constant concentration regardless of environmental state

is assumed. An interesting approach for future work therefore may include investigating

how these populations evolve when no drug is administered in the mild environmental

state, and therefore the harsh environment displays the combined effect of a nutrient

117



6. CONCLUSIONS

shock and antimicrobial. Furthermore, in all models considered in this thesis we have ne-

glected mutations and further adaptation on the timescale of the dynamics investigated.

Developments investigating the effect of EV on adaptive populations, both theoretical and

experimental, have been made (Mateu et al., 2021; Raatz & Traulsen, 2023; Izutsu et al.,

2024), but generally their dynamics remain poorly understood. This is a particularly rele-

vant problem as it relates to the evolution of antimicrobial tolerance, a key pathway to the

evolution of AMR (Levin-Reisman et al., 2017; Lewis & Shan, 2017). Finally, the work

of Ch. 5 can be extended to consider asymmetric migration and various non-circulation

graphs. While analytically convenient, circulation graphs may not represent the most

biologically plausible model of a microbial community, for example in the digestive tract

where migration is particularly asymmetric (Labavić et al., 2022). It would be interesting

to investigate how asymmetries in migration both in species and direction, together with

EV, on general graph structures, can affect the evolutionary dynamics of the population.

Moreover, I have proposed these future developments with the relatively simple case of a

mutant and wild-type species competing for shared resources in mind. Models with more

complex interactions between species may be developed on spatial structures subject to

EV, leading to novel behaviours as in Hernández-Navarro, Distefano, et al. (2024). These

future frontiers will help to elucidate further the impact of EV on natural populations, with

potentially major implications for clinical settings and our understanding of evolutionary

dynamics as a whole.
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Appendix A

Additional material for Chapter 3

A.1 Derivations for the Moran process

Here, we derive the exact results for the fixation probability and mean fixation time

in a constant environment in a Moran process and detail how their approximations are

obtained.

A.1.1 Fixation probability

The effective Moran transition rates are T̃+
R = T+

R T
−
S /N and T̃−

R = T−
R T

+
S /N (see

Ch. 2.2.2), which read

T̃+
R (NR, N) =

(1− s) ·NR(N −NR)/K

1− aθ [Nth −NR] + (aθ [Nth −NR]− s)NR/N
,

T̃−
R (NR, N) =

(1− aθ [Nth −NR]) · (N −NR)NR/K

1− aθ [Nth −NR] + (aθ [Nth −NR]− s)NR/N
.

(A.1)

In the above transition rates, the constant carrying capacity K and total population size

coincide, as is required in the Moran process, and we therefore set N = K in the transition

rates (A.1). The expression for γ (NR, N) under these dynamics is then given by

γ (NR) =
1− aH

1− s
,

which depends on the abundance (relative or absolute here are equivalent as this environ-

ment is constant) of R relative to the cooperation threshold. Substituting γ in the general

exact solution of Eq. (2.20) we get

ϕ(N0
R, N) =



0 if N0
R = 0,

1+
∑N0

R−1

k=1 ( 1−a
1−s )

k

1+
∑Nth−1

k=1 ( 1−a
1−s )

k
+( 1−a

1−s )
Nth−1 ∑N−Nth

k=1 ( 1
1−s)

k if 1 ≤ N0
R ≤ Nth,

1+
∑Nth−1

k=1 ( 1−a
1−s )

k
+( 1−a

1−s )
Nth−1 ∑N0

R−Nth
k=1 ( 1

1−s)
k

1+
∑Nth−1

k=1 ( 1−a
1−s )

k
+( 1−a

1−s )
Nth−1 ∑N−Nth

k=1 ( 1
1−s)

k if Nth < N0
R ≤ N.
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Making use of the formula for the sum of a finite geometric progression, this becomes

ϕ(N0
R, N) =



1−( 1−a
1−s )

N0
R

1−( 1−a
1−s )

Nth+ a−s
s(1−a)(

1−a
1−s )

Nth
[
( 1
1−s)

N−Nth−1
] 0 ≤ N0

R ≤ Nth

1−( 1−a
1−s )

Nth+ a−s
s(1−a)(

1−a
1−s )

Nth

[
( 1
1−s)

N0
R−Nth−1

]
1−( 1−a

1−s )
Nth+ a−s

s(1−a)(
1−a
1−s )

Nth
[
( 1
1−s)

N−Nth−1
] Nth < N0

R ≤ 1.

Finally, the fixation probability of R can be written as

ϕ
(
N0
R, N,Nth, s, a

)
=

1−
(
1−a
1−s

)(N0
R+Nth)−|N0

R−Nth|
2

+ a−s
s(1−a)

(
1−a
1−s

)Nth

( 1
1−s

)(N0
R−Nth)+|N0

R−Nth|
2 − 1


1−

(
1−a
1−s

)Nth

+ a−s
s(1−a)

(
1−a
1−s

)Nth
[(

1
1−s

)N−Nth

− 1

] .

(A.2)

By setting N0
R = Nth, N = K, and assuming (1− a)Nth ≪ (1− s)Nth and (1− s)K ≪

(1− s)Nth in the above equation, we retrieve our approximate result.

A.1.2 Mean fixation time

The exact expression for the mean fixation time given the above Moran rates is in-

credibly complex and we do not consider it explicitly here. Instead, we make use of

the fact that for the MFT at fixed total population N , we have τN
(
N0
R|Nth, s, a,N

)
≈

τN
(
N0
R = Nth|Nth, s, a,N

)
as in Ch. 3.2, and so we focus on the case N0

R = Nth ≡ Nxth

to simplify Eq. (2.19). Note that, in this case, the last double summation has powers of

γ = (1− a)/(1− s) < 1, while the first double summation also has additional summands

with high powers of γ = 1/(1 − s) > 1. Hence, the last double summation is negligible

with respect to the first one. Furthermore, if we split the inner summation of the first

double summation at n = Nth we obtain

τN
(
N0
R

)
≈ τN (Nth) ≈ ϕN (Nth)

N−1∑
k=Nth

(
Nth−1∑
n=1

∏k
m=n+1 γ (m/N)

T̃+
R (n/N)

+
k∑

n=Nth

∏k
m=n+1 γ (m/N)

T̃+
R (n/N)

 .
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According to the definition of the rates in Ch. 3.2, each summand reads

∏k
m=n+1 γ (m/N)

T̃+
R (n/N)

=
(1− a)

[
(Nth−1+k)−|Nth−1−k|

2
−(

Nth−1+n)−|Nth−1−n|
2

]

(1− s)k−n

×

 1−s
N−n +

1−a·θ(Nth−n)
n

1− s

 ,

and thus,

τN (Nth) ≈
ϕN (Nth)

1− s

N−1∑
k=Nth

[(
1

1− s

)k(
(1− a)Nth−1

Nth−1∑
n=1

(
1− s

1− a

)n

×
(

1− s

N − n
+

1− a

n

)
+

k∑
n=Nth

(1− s)n
(

1− s

N − n
+

1

n

))]

We observe that the first summation over n in the previous equation is independent of k,

and therefore we can take it out as a common factor. Regarding the second summation

over n, note that only those sums with the highest upper index k are significant because

they are weighted by the prefactor (1− s)−k ≫ 1; furthermore, note that the summands’

magnitude rapidly decreases with n. By combining these two features, we note that we can

substitute the upper index of the summation k by N − 1 without incurring a significant

error, making the summation independent of k, and taking it out as a common factor

as well. Hence, we can now compute the remaining summation over k as a geometric

progression. The above considerations yield

τN (Nth) ≈ ϕN (Nth)

(
1

1−s

)N−Nth

− 1

s(1− s)Nth

(
(1− a)Nth−1

Nth−1∑
n=1

(
1− s

1− a

)n
×
[
1− s

N − n
+

1− a

n

]
+

N−1∑
n=Nth

(1− s)n
[
1− s

N − n
+

1

n

])

In the first summation over n, each summand is weighted by an exponentially increasing

factor
(

1−s
1−a

)n
≫ 1. Hence, only the last terms with the highest n are significant. For

these summands, we have n ≲ Nth, and the fractions 1−s
N−n and 1−a

n evolve very slowly

with n compared to the exponential factor. Therefore, we can approximate n in the

previous fractions byNth, and take them as a common factor out of the summation without

introducing significant error. As for the second summation, we can also substitute n byNth

in the fractions and take them out as a common factor. In this case, the rationale is that

the summands with the lowest n (which corresponds to n ≳ Nth) are the only significant

terms due to the factor (1−s)n ≪ 1. Finally, we can compute the two remaining geometric

series over n, and simplify the expression to that of Eq. (3.6).
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Appendix B

Additional material for Chapter 4

B.1 Fitness-switching coexistence: amplitude of variations

and timescale

The selection strength s does not only shape the dynamics of the composition (see Eq. (4.4))

but it also determines the amplitude of the T -EV fluctuations, i.e. its variance, which is

linked to stronger coexistence in the fast-switching regime; see Ch. 4.2. To show this, we

first consider the normalised fitness of the resistant subpopulation

fR

f
=

1

x+ (1− x) exp(ξT s)
.

Since we here focus on how s may shape coexistence through the toxin level fluctuation

size, and coexistence dominates in the fast toxin-switching regime, we assume νT ≫ 1. As

discussed in Ch. 4.2.1, in the fast-switching regime, the per capita growth rate (normalised

fitness) of strain R averaged over the stationary distribution of ξT reads〈
fR

f

〉
=

1− δT
2

1

x+ (1− x) exp(−s)
+

1 + δT
2

1

x+ (1− x) exp(s)
.

To derive its variance, we also have to compute the average of its square as〈(
fR

f

)2
〉

=
1− δT

2

1

(x+ (1− x) exp(−s))2
+

1 + δT
2

1

(x+ (1− x) exp(s))2
.

Combining both, we obtain the variance of the normalised resistant fitness due to the

environmental fluctuations in the toxin level

Var

(
fR

f

)
=

〈(
fR

f

)2
〉

−
〈
fR

f

〉2

=
(1− δ2T )

4

(
(exp(2s)− 1)(1− x)

(x+ (1− x) exp(s))(1 + x(exp(s)− 1))

)2

.
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A similar analysis for the sensitive strain, which has a normalised fitness exp(ξT s) times

that of the resistant strain, provides

Var

(
fS

f

)
=

(1− δ2T )

4

(
(exp(2s)− 1)x

(x+ (1− x) exp(s))(1 + x(exp(s)− 1))

)2

.

In both cases, we conclude that the variance (arising from the T -EV) indeed increases

with the selection strength s. Therefore, s does shape the strength of coexistence.

Note that the amplitude of the fluctuations of the carrying capacity K-EV (at no bias

δK = 0, for simplicity) increases with γ. In conclusion, and as discussed in Ch. 4.3.2 and

Fig. 4.5, the EV can either promote coexistence (T -EV) or jeopardise it (K-EV), and both

parameters s and γ determine long-lived coexistence.

To discuss the coexistence timescale, we consider the small s regime by expanding the

numerator and denominator of the right-hand-side of Eq. (4.6) to order O(s2), which

yields

ẋ ≈ x(1− x)

2

[
(1 + δT )(1− (1 + s+ s2/2))

x+ (1− x)(1 + s+ s2/2)
+

(1− δT )(1− (1− s+ s2/2))

x+ (1− x)(1− s+ s2/2)

]
≈ −s2x(1− x)

[
x−

(
1

2
− δT

s

)]
= −s2x(1− x) [x− x∗] ,

(B.1)

where x∗ = 1
2 − δT

s is the coexistence equilibrium under s ≪ 1. The equilibrium x∗ is

physical (and stable) only when − s
2 < δT < s

2 ; i.e. only in the special case of almost

symmetric switching (δT = O(s) or smaller). From Eq. (B.1), the coexistence equilibrium

is approached slowly, with a relaxation time on the order of ∼ 1/s2; thus, taking into

account demographic noise, the expected fixation time is τ ∼ e⟨N⟩s2 when ⟨N⟩ s2 ≫ 1

(Assaf & Mobilia, 2010; Mobilia & Assaf, 2010; Assaf & Meerson, 2017).

B.2 Quasi-stationary probability density of composition un-

der coexistence

The joint stationary probability density function of the x-PDMP is labelled by ρ±(x) ≡
ρ(x, ξT = ±), and satisfies (Horsthemke & Lefever, 1984; Bena, 2006; Ridolfi et al., 2011)

∂tρ± = −∂x(ẋ±ρ±)− ν±ρ± + ν∓ρ∓, (B.2)

where ẋ± ≡ x(1 − x)(1 − e±s)/[x + (1 − x)e±s], and the marginal stationary probability

density function of the x-PDMP defined by Eq. (4.4) is ρ(x) ≡ ρ+(x) + ρ−(x).

Following Horsthemke and Lefever (1984) and Ridolfi et al. (2011), from Eq. (B.2), we can

define J± = ẋ±ρ±+
∫ x
0 (ν±ρ± − ν∓ρ∓) dx

′ as the probability flux of the system, and then

rewrite Eq. (B.2) as ∂tρ± = −∂xJ±. Note that by definition the x-PDMP ignores DF,

hence x = 0, 1 states cannot be reached. We thus set probability flux at the boundaries

to zero as natural boundary conditions (BCs) (Gardiner, 2009). Since we want to derive
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the stationary joint probability density function ρ (t→ ∞) under zero-current BCs, we

use ρ = ρ+ + ρ− and take ∂tρ = −∂x(J+ + J−) = 0. In this case, we obtain J+ + J− = 0,

where the flux boundary conditions set the integration constant to 0. From this relation

we can find that ρ± = −ẋ∓ρ∓
ẋ±

. It is useful to introduce the auxiliary variable q ≡ ρ+− ρ−,

and write J+ + J− = 0 as ẋ+
ρ+q
2 + ẋ−

ρ−q
2 = 0. After rearranging for q we can substitute

this into our expression for ρ± to find ρ± = ρ±q
2 = ±ẋ∓

ẋ−−ẋ+ ρ. The equation for the PDMP

density of the resistant fraction x at quasi-stationary coexistence then reads

∂x

(
ẋ−ẋ+
ẋ− − ẋ+

ρ

)
+

ẋ−ẋ+
ẋ− − ẋ+

ρ

(
ν+
ẋ+

+
ν−
ẋ−

)
= 0.

Multiplying by −1, rearranging, and integrating, leads to

ln

(
ρ

1
−ẋ+ + 1

ẋ−

)
− ln (C) =

∫ x( ν+
−ẋ+

− ν−
ẋ−

)
dx′, (B.3)

where C is an integration constant, and

1

−ẋ+
=

es

x + 1
1−x

es − 1
and

1

ẋ−
=

1
x + es

1−x
es − 1

,

see Eq. (4.4) with ξT = ±1. Eq. (B.3) yields

ln

(
ρ

C es+1
es−1

1
x(1−x)

)
=
ν+ (es ln (x)− ln (1− x))− ν− (ln (x)− es ln (1− x))

es − 1
,

and the normalised x-PDMP stationary probability density function then becomes

ρ =
Γ (λ+ µ)

Γ (λ) Γ (µ)
xλ−1(1− x)µ−1, (B.4)

which corresponds to the well-known beta distribution with

λ ≡ ν+e
s − ν−

es − 1
and µ ≡ ν−e

s − ν+
es − 1

.

Under the change of variables ν± = νT (1∓ δT ), and after some algebra, the exponents

read

λ = νT

(
1− δT coth

(s
2

))
and µ = νT

(
1 + δT coth

(s
2

))
,

giving the probability density Eq. (B.4) in terms of the environmental parameters and the

selection bias. Fig. B.1 shows the predictions of Eq. (B.4) and its excellent match with

simulation data.

As mentioned in Ch. 4.4.1, a complementary characterisation of the coexistence phase is

provided by the modal value, denoted by x̂, of the probability density function of the

x-PDMP, derived in Eq. (B.4). As the x-PDMP density is a beta distribution, its modal

value is

x̂ =
λ− 1

λ+ µ− 2
=

1

2

(
1− νT

νT − 1
δT coth

(s
2

))
. (B.5)
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Figure B.1: Predictions of x-PDMP stationary density ρ(x) against x for δT ∈
{−0.5, 0.0, 0.5} from left to right. Theoretical predictions (solid lines) from Eq. (B.4)
are in excellent agreement with simulation results (×). Blue vertical line shows predicted
mean x∗ from Eq. (4.7) and green vertical line shows predicted mode x̂ from Eq. (B.5).
Parameters used are s = 10, νT = 5, and fixed K0 = 100. Simulation results have been
averaged over 103 realisations.

Note that the x-PDMP distribution is unimodal only for λ, µ > 1, i.e. νT (1 − |δT |) > 1.

However, we use x̂ only as an analytical proxy for the expected value of x in the coexistence

and fixation-coexistence crossover regions (coexistence probability 0 < η ≤ 1), which

coincide with the unimodal regime. For pure coexistence η → 1, observed at νT → ∞ and

δT ̸= ±1, the modal x̂ value reduces to the mean field expression x∗ of Eq. (4.7). As shown

in Fig. B.2, the modal value x̂ approximates the unconditional expected R fraction ⟨x⟩ (red
crosses) in the regime νT > 1/(1− |δT |), where there is a non-zero coexistence probability

(0 < η < 1). This therefore captures more accurately the value of x actually observed

when coexistence occurs for 0 < η < 1, where the distribution becomes increasingly biased

towards x = 0 or x = 1 for δT ̸= 0 as νT decreases, as can be seen by consideration of

Eq. (B.4). This is ignored in the mean of the coexistence state x∗, which is independent

of νT .

In the fixation regime where νT < 1/(1−|δT |), we find a higher (lower) fixation probability

for the resistant strain than for the sensitive one when δT is negative (positive), with the

fraction of R (hence ϕ) approaching one (Fig. B.2, left) or zero (Fig. B.2, right) when

νT ≈ 1. The rationale is that, for very small νT , the strain that fixates is set by the initial

toxin state, as we expect no toxin switches before fixation has occurred; the probability to

start at ξT = ±1 is (1± δT )/2. When νT is increased further the system experiences both

environmental states, and the the toxin bias δT sets which strain is more likely to fixate.

For larger νT > 1/(1 − |δT |), coexistence takes over as the result of the self-averaging of

the transition rates over the stationary ξT distribution.
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Figure B.2: Average R fraction unconditional on coexistence against νT for δT ∈
{−0.2, 0.2} from left to right. Black line ⟨x⟩ from Eq. (4.18), blue line from x̂ of Eq. (B.5),
and simulation results (×). Simulation results obtained from a “horizontal cut” at fixed
δT of Fig. 4.6, where we now count the overall fraction of R (no longer conditioned to
coexistence). There is a non-trivial dependence on νT , matching that which is seen in
Fig. 4.7(b) where we find peaks of fixation / extinction. Other parameters are: K0 = 500,
γ = 0.5, νK = 10, δK = 0.0, and s = 2.

B.3 Coexistence under time-varying carrying capacity and

final fixation

In Fig. 4.4(a-c) we find that the region of coexistence grows when νK is increased. This

behaviour is expected for an effective population size that would increase with νK , as

suggested by the MFT that increase with the population size (Fig. 4.2(c)). However,

this seems at odds the average population size ⟨N⟩ decreasing with νK as shown by

Fig. 2.2(e). A more suitable characterisation of the influence of νK on coexistence phase is

thus provided by the modal value N̂ of the N -PDMP QPSD, given by Eq. (4.17). Indeed,

Fig. B.3 illustrates that N̂ , unlike ⟨N⟩, increases with νK for δK < γ in line with the

results reported in Fig. 4.4(a-c).

For a complete characterisation of the coexistence regime we now briefly discuss the final

state that is attained after after a long transient ensuring that a large fluctuation drives

the system from the long-lived metastable coexistence to one of the two absorbing states

where a single strain takes over the entire population (Assaf & Mobilia, 2010; Mobilia

& Assaf, 2010). Fig. B.4 illustrates the full fixation outcome diagram (under no K-EV

for simplicity), even in the phase of long-lived coexistence. Fixation in this regime is

determined by the sign of δT , with a sharp transition at δT = 0. This is because fixation

occurs most likely in the absorbing state closest to the coexistence equilibrium x∗ given by

Eq. (4.7): here, the toxin bias eventually imposes the fixation of S (δT > 0) or R (δT < 0).
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Figure B.3: Modal value N̂ of the probability density function Eq. (2.27) against νK
using Eq. (4.17) (solid line) and points from simulations averaged over 102 realisations
(×) obtained by tracking the modal value of the QPSD. Parameters used are K0 = 1000,
γ = 0.5, δK = 0.0, νT = 10.0, δT = 0.0. As discussed in Ch. 4.3.2, we find that for δK < γ
there is an increase of N̂ with νK up to K = 750 (fast-switching limit), thus allowing for
a greater range of δT values that give coexistence.

Figure B.4: Fixation in coexistence region. The system fixates within the coexistence
region at time t ≈ 400 = 8 ⟨N⟩ in the most extreme case. The corresponding fixation-
coexistence diagram is given by Fig. 4.3(b). Parameters used: K0 = 50, γ = 0.0 (no
K-EV), and s = 1.0. Colour coding is the same as in Fig. 4.3.
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B.4 Fully correlated and anti-correlated environmental vari-

ability

In the case of fully correlated/anti-correlated T -EV and K-EV, environmental variability

is no longer twofold since we have ξ ≡ ξT and ξK = ξ (fully correlated EV) or ξK = −ξ
(fully anti-correlated EV). The switching carrying capacity can thus be written as

K(t) = K0[1 + γ̃ξ(t)],

where γ̃ = γ in the fully correlated case, and γ̃ = −γ when T -EV and K-EV are fully anti-

correlated. For instance, this implies that, in the correlated case, the environmental state

ξ = +1 corresponds to fs = es > 1 and K = K+ (low toxin level, abundant resources),

while ξ = −1 is associated with fS = e−s < 1 and K = K− (high toxin level, scarce

resources). As said, under fully correlated/anti-correlated T/K-EV, environmental vari-

ability is no longer twofold: ξ simultaneously drives the level of toxin and the abundance

of resources. Hence, we can characterise the effect of fully correlated/anti-correlated EV

in terms of ν ≡ νT and δ ≡ δT , and the fully anti-correlated case is related to completely

correlated EV via γ̃ → −γ̃. An example of fully-anticorrelated EV modelled in terms of a

dichotomous process driving the level of toxins and resources in the context of competitive

exclusion is considered in Shibasaki et al. (2021).

Fig. B.5 shows the comparison between the uncorrelated T -EV and K-EV studied in

the main text (top row), and the fully correlated (middle row) and fully anti-correlated

(bottom row) cases reported here, all under K0 = 1000 and γ = 0.9, and for different

selection strengths s ∈ {0.2, 2, 20} (left to right columns). For the uncorrelated case, the

parameters of K-EV are independent from those of T -EV parameters, and are here chosen

to be (νK , δK) = (10−4, 0), i.e. unbiased slow-switching K-EV (similar to the example of

Fig. 4.4(a)).

Since the fully correlated and anti-correlated cases (middle and bottom rows) are mirror

images through the horizontal axis (symmetric with respect to δT = 0) and under a red-

blue colour change, we focus on the correlated case only (middle row). For this case,

γ̃ = γ = 0.9, with ξK = ξT ≡ ξ, νK = νT , and δK = δT . In the fully correlated case, we

observe that both the blue (resistant fixation) and the bright green (coexistence) regions

shift upwards (to higher toxin level biases δT ) as the selection strength increases (from

left to right column). We can understand this phenomenon in light of the T -correlated

K-EV fluctuations. This is, since δK = δT , a lower value of δT in the diagrams implies

longer cumulative periods in the harsh toxin level, but also in the low carrying capacity

environment. Therefore, lower δT provides the selective advantage to resistant strain at the

same time that it shrinks the total population. DF being stronger in smaller populations,

correlated T -EV and K-EV thus provide higher R fixation probability (blue region shifted

up), as well as lower coexistence probability (green region shifted up). Moreover, since

total population increases with the bias towards positive carrying (here δK = δT ) (see

Ch. 4.3.1) the MFT thus increases with δT (see Fig. 4.2(c)), and the coexistence probability
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Figure B.5: Top to bottom: uncorrelated, fully correlated and fully anticorrelated case
heatmap plots from 103 realisations with γ = 0.9 (correlated: γ̃ = 0.9, anticorrelated:
γ̃ = −0.9). Left to right we have s ∈ {0.2, 2, 20} and use K0 = 1000. In the uncorrelated
case we have νK = 0.0001 and δK = 0.0. Considering the correlated case, in the coexistence
region, for δ → +1 and fast-switching ν ≳ 1 the effective carrying capacity increases.
Therefore, we see the coexistence region extended further towards δ = 1. For δ → −1 and
ν ≳ 1 we find the converse where the effective carrying capacity decreases and thus the
coexistence region shrinks away from δ = −1. A similar logic applies to the anticorrelated
case; see text. Colour coding is the same as in Fig. 4.3.
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thus shifts upwards. The magnitude of the upwards shift in the correlated case, is small but

increases with selection strength s that increases the amplitude of the T -EV fluctuations.

In summary, we obtain the same qualitative results for fully correlated/anti-correlated

T/K-EV as when ξT/K are independent (uncorrelated environmental noise, twofold EV),

with some minor quantitative differences, as shown in Fig. B.5 and discussed above. We

conclude that the similar behaviour observed for uncorrelated and (anti-)correlated T/K-

EV indicates that our findings are robust against the detailed model specifications: the

results are expected to be valid for the general case of twofold environmental variability

where T/K-EV are neither completely independent nor fully correlated/anti-correlated.
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Appendix C

Additional material for Chapter 5

C.1 Further details on the model

In this section, we provide further details on the model by discussing the master equation

encoding its individual-based dynamics, and give further details of the size distribution of

a single deme under the effect of migration.

C.1.1 Master equation

As discussed in Ch. 5.1, the individual-based model is a continuous-time multivariate

Markov process defined by the reaction and transition rates Eq. (5.1) and (5.2). The intra

and inter-deme dynamics is encoded in a master equation for the probability P ({nW , nM}, ξ, t)
that at time t the metapopulation is in the environmental state ξ and configuration

{nW , nM} ≡ (. . . , nW (x), nM (x), . . . ), where nW/M (x) denotes the number of cells of type

W/M in deme x = 1, . . . ,Ω. The master equation (ME) for the metapopulation dynamics

subject to environmental switching on a regular graph G of degree (or number of nearest

neighbours) qG reads (van Kampen, 1992; Gardiner, 2009)

∂P ({nW , nM}, ξ, t)
∂t

=
Ω∑
x=1

∑
α

{(
E−
α (x)− 1

)
T−
α (x)P ({nW , nM}, ξ, t)

+
(
E+
α (x)− 1

)
T+
α (x)P ({nW , nM}, ξ, t)

+
1

2

∑
y n.n. x

[ (
E+
α (y)E−

α (x)− 1
)
Tm,Gα (x)P ({nW , nM}, ξ, t)

+
(
E+
α (x)E−

α (y)− 1
)
Tm,Gα (y)P ({nW , nM}, ξ, t)

]}
+ ν [P ({nW , nM},−ξ, t)− P ({nW , nM}, ξ, t)] ,

(C.1)

where y n.n. x denotes the sum over the qG neighbours y of the deme x and P (. . . ) = 0

for any of nM (x) < 0 and nW (x) < 0. The shift operators E±
α (x) act on a general func-

tion f(. . . , nW (x)± 1, nM (x) . . . , ξ, t) by raising or decreasing by one the number of cells

of type α in deme x. For example, E±
W (x)f(. . . , nW (x), nM (x) . . . , ξ, t) = f(. . . , nW (x)±
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1, nM (x) . . . , ξ, t) and E±
M (x)f(. . . , nW (x), nM (x) . . . , ξ, t) = f(. . . , nW (x), nM (x)±1 . . . , ξ, t).

The first and second lines on the right-hand-side of Eq. (C.1) encodes the intra-deme birth-

death dynamics, the third and fourth lines represent the inter-deme dynamics via inward

and outward migration, and the last line accounts for symmetric random environmental

switching. Here, the ME has specifically been formulated in the presence of environ-

mental switching, but its static-environment counterpart is readily obtained from C.1 by

setting ν = 0 and replacing K(t) by a constant carrying capacity K. This yields the ME

for P ({nW , nM}, t) that is the probability to find the metapopulation in a given state

{nW , nM} at time t (with no environmental dependence). Moreover, by setting Ω = 1 and

m = 0 in Eq. (C.1), the second and third lines on the right-hand side cancel, we obtain

the ME encoding the intra-deme dynamics of a single isolated deme (Wienand et al., 2017,

2018).

While the ME of Eq. (C.1) holds for any regular graphs G, in our examples we consider

specifically the regular circulation graphs G = {clique, cycle, grid}. The space-dependent

individual-based dynamics encoded in the ME has been simulated using the Monte Carlo

method described in Ch. D.2. It is worth noting that demographic fluctuations eventually

lead to the extinction of the entire metapopulation, in all regimes. However, this phe-

nomenon occurs after a time growing dramatically with the system size as seen in Ch. 5.2,

and it can generally not be observed in sufficiently large metapopulations for ψ ≫ 1, see

Fig. 5.5(e) (Lande et al., 1998).

C.1.2 Eco-evolutionary dynamics of a single deme with migration

In Ch. 2.3.2, we saw that pξ(ν, n) and p(ν, n) give a PDMP description of the quasi-

stationary distribution of the size of an isolated deme (m = 0) and capture the behaviour

qualitatively well. However, we have not yet asserted whether or not this remains the case

for a single deme under migration. In fact, the n-PDMP stationary densities given by

Eqs. (2.26) and (2.27) are still a valid approximations of the long-time size distribution

of n in the presence of migration as considered here. As shown in Fig. C.1, the influence

of migration on the distribution of the deme size is essentially unnoticeable, and its main

features are therefore still well captured by Eq. (2.26) and Eq. (2.27).

Intuitively, this can be understood by noticing that the spatial structures considered here

are circulation graphs, yielding the same inward and outward migration flow at each deme,

and each deme has the same carrying capacity. As a consequence, the average number of

cells per deme is expected to be independent of migration. The latter remains well captured

by p±(ν, n) and p(ν, n) on all spatial structures considered here, as seen in Fig. C.1.
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Figure C.1: Quasi-stationary population size distribution of a deme (n-QPSD) distribution
for various parameters and its n-PDMP approximation by Eqs. (2.26) and (2.27). Red
and blue bars show data for the n-QPSD conditioned on K(t) = K− and K(t) = K+,
respectively. Red, blue, and black solid lines are the n-PDMP stationary densities p−(ν, n),
p+(ν, n), and p(ν, n), respectively, given by Eqs. (2.26) and (2.27). (a-c) are for clique,
(d-f) for cycle, and (g-i) for grid metapopulations. We have ν = 10−3 in (a,d,g), ν = 10−1

in (b,e,h), and ν = 102 in (c,f,i). Other parameters are Ω = 16, m = 10−3, K+ = 200, and
K− = 20. All represent a single realisation tracked until t = 105.
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C.2 Further details on the intermediate dynamics in static

environments

In this section, we provide further details about the analysis of the intermediate dynam-

ics in static environments; see Ch. 5.2. In the intermediate regime, a metapopulation

experiences some deme extinctions, but does not quickly reach total metapopulation ex-

tinction, instead surviving for long times. The wild-type and mutant cells compete on the

metapopulation which may be only partially occupied, consisting of M , W , and empty

demes. Here, we consider intermediate metapopulation dynamics on a regular graph G,

obtaining the explicit results ϕGint and θ
G
int for G ∈ {clique, cycle, grid} reported in Fig. C.2

when the metapopulation initially consists of a single M deme and Ω− 1 demes occupied

by W . This region is concretely defined for values of ψ such that 1 < ψ < KΩ for Ω ≫ 1,

where the lower bound is obtained from ensuring that Ωocc = 1 from Eq. (5.6) and the

upper bound is obtained by considering the point where every individual is expected to

migrate on the timescale of deme extinction. Using that ψ ≈ meK for K ≫ 1, we obtain

the condition ln(1/m) ≲ K ≲ ln(ΩK/m).

The intermediate regime is characterised by M/W competition and deme extinction.

Therefore, in addition to invasions, a W deme may become an M deme through extinc-

tion followed by a recolonisation, i.e. W → ∅ → M , where ∅ indicates an extinct deme.

Similarly, an M -deme can be changed into a W -deme via M → ∅ →W . We assume that

there is initially a single M deme in the metapopulation (and Ω − 1 demes of type W ).

With a probability psurv (see below), the initial M deme survives the short transient as

the metapopulation reaches the dynamical equilibrium and the number of number of M

demes i = 0, 1, . . . ,Ωocc grows and shrinks through invasions and extinction-recolonisation

events. We assume that immediately ΩE = Ω/ψ demes go extinct, so that the metapop-

ulation quickly reaches its equilibrium occupancy Ωocc = Ω(1− 1/ψ). In this dynamical

equilibrium, a W deme can become an M deme via W → ∅ (W deme extinction) at rate

rext,W followed by ∅ → M (recolonisation by M) at rate rGrec,M . The overall extinction-

recolonisation reaction W → ∅ → M thus occurs at rate 1/(1/rext,W + 1/rGrec,M ). Here,

the rate of W deme extinction is rext,W = (Ωocc − i)/τE and τE is given by Eq. (2.6). We

proceed similarly for the extinction of an M deme and its recolonisation into a W deme

according to M → ∅ → W . Taking also into account the rate of invasion, see Eq. (5.11),

the size i of the M -cluster on a regular graph G varies according to the transition rates

T̃+
i (m,G,K) = mK

ẼG(i)

qG

[
ρM +

1

ψ − 1

qG
Ω

i(Ωocc − i)

ẼG(i)

]
,

T̃−
i (m,G,K) = mK

ẼG(i)

qG

[
ρW +

1

ψ − 1

qG
Ω

i(Ωocc − i)

ẼG(i)

]
.

It is important to note that the ẼG(i) in these expressions explicitly represent the number

of active edges between M and W on the metapopulation given i mutant demes, taking

into account the presence of extinct demes. Therefore, their expressions for a given graph
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Figure C.2: ϕint vs. K for s = 0.1 (blue) and s = 0.01 (red) on clique (solid lines / crosses),
cycle (dashed lines / circles), and a grid (dotted lines / triangles). The different symbols
and lines are almost indistinguishable. θint vs. K for the same parameters for a clique
metapopulation. The vertical solid and dashed line indicate the boundaries of the region
where the number of occupied demes Ωocc ∈ [1,Ω− 1], see text. The dotted line indicates
where ψ = ΩK, i.e. every individual migrates in the time required for an independent
deme extinction. Markers show simulation results, solid lines are predictions of Eq. (C.2),
and dash-dot lines are predictions of Eq. (5.14). Other parameters are m = 10−4 and
Ω = 16.

structure G generally differ from those considered in Ch. 5.2 denoted EG(i). With these

rates, we find the first-step analysis equations for the probability ϕGint,i that the dynamical

equilibrium comprising an initial M -cluster of size i consists only of occupied M demes

after a mean time θGint,i given by

(T̃+
i + T̃−

i )ϕGint,i = T̃+
i ϕ

G
int,i+1 + T̃−

i ϕ
G
int,i−1,

(T̃+
i + T̃−

i )θGint,i = 1 + T̃+
i θ

G
int,i+1 + T̃−

i θ
G
int,i−1.

These equations are subject to the boundary conditions ϕGint,0 = 0, ϕGint,Ωocc
= 1 and θGint,0 =

θGint,Ωocc
= 0. We can solve these as they exactly resemble the first-step equations of the

Moran process (see Ch. 2.2.2) and thus have ϕGint ≡ psurvϕ
G
int,1 and θGint ≡ psurvθ

G
int,1 + (1−

psurv)τE . The factor psurv = Ωocc
Ω = 1 − 1/ψ is the probability that the initial M deme

reaches the dynamical equilibrium, while the contribution (1 − psurv)τE to θGint accounts

for the probability that the initial M deme goes extinct in a mean time τE (given by

Eq. (2.6)) before reaching the equilibrium. The final expressions of ϕGint and θ
G
int thus read

ϕGint = psurv
1

1 +
∑Ωocc−1

k=1

∏k
m=1 γ̃(m)

,

θGint = ϕGint

Ωocc−1∑
k=1

k∑
n=1

∏k
m=n+1 γ̃(m)

T̃+
n

+ (1− psurv)τE ,

(C.2)

where

γ̃G(i) ≡
ρW + 1

ψ−1
qG
Ω
i(Ωocc−i)
ẼG(i)

ρM + 1
ψ−1

qG
Ω
i(Ωocc−i)
ẼG(i)

, (C.3)
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and the upper limit of the first sum in ϕGint and θGint is rounded to the nearest integer.

We find that ϕGint depends on the migration rate m, carrying capacity K, and the spatial

structure G via γ̃G and Ωocc. In the case of the clique, ẼG(i) ≈ i(Ωocc − i), and therefore

for Ω ≫ 1 the expression of Eq. (C.3) simplifies to

γ̃clique(i) ≡ γ̃clique =
ρW + 1

ψ−1

ρM + 1
ψ−1

.

We notice that for all graphs G, the expressions of Eq. (C.2) coincide with those of

Eq. (5.14) of the competition-dominated regime, with γ̃G(i)
ψ≫1−→ γ = ρW /ρM . In Fig. C.2,

we find that the predictions of Eq. (C.2) are in good agreement with simulation results

for all spatial structures G. Moreover, we notice that the spatial dependence of ϕGint and

θGint is barely noticeably.

C.3 Breakdown of the circulation theorem under weak bot-

tlenecks

In this section, we discuss in further detail the dependence of the fixation probability

ΦG(ν,m) on the migration rate m and spatial structure G of the metapopulation in time-

switching environments under weak bottlenecks.

In static environments, where K is constant, a generalisation of the circulation theorem

guarantees that the fixation probability is independent on the migration rate and spatial

structure of the metapopulation arranged on a circulation graph, see Eq. (5.14). This

results from a correspondence between the fixation probability and the number of M

demes performing a biased random walk on {0, . . . ,Ω} with a bias that is independent of

m and G (Marrec et al., 2021).

In time-switching environments under weak bottlenecks (deme extinction is negligible) the

correspondence is between the fixation ΦG(ν,m) and the random walk (with absorbing

boundaries) on {0, . . . ,Ω} × {−1, 1} for the number of fully mutant demes in the envi-

ronmental state ξ = ±1. As a consequence, ΦG(ν,m) is the probability of absorption

in the state Ω. In this setting, defining the state of the random walk by (i, ξ), where

i = 0, 1, . . . ,Ω, the random walk moves to the right (i → i+ 1) with a probability r(i, ξ),

to the left (i → i − 1) with a probability ℓ(i, ξ), or switches environment (ξ → −ξ) with

probability ϵ(i, ξ), where

r(i, ξ) =
mNξ(ν)

EG(i)
qG

ρM,ξ(ν)

mNξ(ν)
EG(i)
qG

ρM,ξ(ν) +mNξ(ν)
EG(i)
qG

ρW,ξ(ν) + ν
,

ℓ(i, ξ) =
mNξ(ν)

EG(i)
qG

ρW,ξ(ν)

mNξ(ν)
EG(i)
qG

ρM,ξ(ν) +mNξ(ν)
EG(i)
qG

ρW,ξ(ν) + ν
,

ϵ(i, ξ) =
ν

mNξ(ν)
EG(i)
qG

ρM,ξ(ν) +mNξ(ν)
EG(i)
qG

ρW,ξ(ν) + ν
.

(C.4)
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ΦG(ν,m) thus coincides with the probability that the random walk defined by Eq. (C.4)

gets absorbed in the state i = Ω. Unlike the case of the competition-dominated regime

under the static environment, the fixation probability here typically depends on all pa-

rameters, including the migration rate. For the fixation probability to remain unchanged

under parameter changes requires strict conditions. This can be seen by assuming that for

a parameter set S1 the probabilities r1(i, ξ), ℓ1(i, ξ), and ϵ1(i, ξ) define the random walk

corresponding to the fixation probability ΦG
i,ξ. We therefore have

ΦG
i,ξ = r1(i, ξ)Φ

G
i+1,ξ + ℓ1(i, ξ)Φ

G
i−1,ξ + ϵ1(i, ξ)Φ

G
i,−ξ.

We can also assume that under another set of parameters, say S2, Φ
G
i,ξ remains unchanged

for all i and ξ with a corresponding random walk defined by the probabilities r2(i, ξ),

ℓ2(i, ξ), and ϵ2(i, ξ), such that

ΦG
i,ξ = r2(i, ξ)Φ

G
i+1,ξ + ℓ2(i, ξ)Φ

G
i−1,ξ + ϵ2(i, ξ)Φ

G
i,−ξ.

Subtracting the second equation from the first, and using conservation of probability, we

find that

(r1(i, ξ)− r2(i, ξ))(Φ
G
i+1,ξ − ΦG

i,−ξ) + (ℓ1(i, ξ)− ℓ2(i, ξ))(Φ
G
i−1,ξ − ΦG

i,−ξ) = 0. (C.5)

The cases of ΦG
i+1,ξ −ΦG

i,−ξ = 0 and ΦG
i−1,ξ −ΦG

i,−ξ = 0 imply that the fixation probability

of all transient states is identical, and therefore we neglect this unphysical case. Defining

∆r(i, ξ) = r1(i, ξ)− r2(i, ξ) and ∆ℓ(i, ξ) = ℓ1(i, ξ)− ℓ2(i, ξ), Eq. (C.5) yields

∆r(i, ξ) =
ΦG
i+1,ξ − ΦG

i,−ξ

ΦG
i,−ξ − ΦG

i−1,ξ

∆ℓ(i, ξ). (C.6)

For each of the 2(Ω−2) transient states we therefore have a constraint given by Eq. (C.6).

However, ∆r(i, ξ) and ∆ℓ(i, ξ) are controlled by |S1|= |S2|= p degrees of freedom (system

parameters) where p≪ 2(Ω− 2). Therefore, the system is overdetermined and Eq. (C.6)

is only generally satisfied across all (i, ξ) for the trivial solution ∆r(i, ξ) = ∆ℓ(i, ξ) = 0,

i.e. S1 = S2. This implies that in time-fluctuating environments the fixation probability

ΦG(ν,m) is expected to depend on m and G.

Interestingly however, Fig. 5.7(c) illustrates the almost unnoticeable dependence of ΦG(ν,m)

on the specific spatial structure. This is due to the overall similar impact of the factor

EG(i)/qG for the various graphs. While differences arise when m varies at fixed ν due to

large variations in the timescales of the competition dynamics (significantly more invasions

when K = K+ than when K = K−), varying spatial structure produces small changes in

these timescales, and as such leads to almost unnoticeable changes in Φ.
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Figure C.3: Near-optimal condition for the idealised treatment strategy on a cycle and
grid metapopulation. (ν,K−) heatmaps of Φ, Θ, ΘE and (1−Φ)(1−Θ/ΘE) for the cycle
(a-d) and grid (e-h) metapopulations, see Appendix C.4. White space in panels (c) and
(g) indicate the region of the parameter where at least one realisation for those parameters
did not reach extinction by t = 105. Grey lines in panels (d) and (h) show the near-optimal
conditions for the idealised treatment strategy: ψ(m,K−) < 1 below the top horizontal
line, mK+θE > 1 above the bottom horizontal line, and νθE > 1 above the curved line,
while the vertical line indicates where ν < 1 and θE from Eq. (5.9). The near-optimal
treatment conditions is the yellowish cloud at the centre of the area enclosed by these
lines. Other parameters are Ω = 16, m = 10−4, s = 0.1, and K+ = 200. In all panels,
initially there is a single M deme and Ω− 1 demes occupied by W .
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C.4 The influence of spatial structure under strong bottle-

necks

In Figs. 5.5(a,c) and 5.7(c), we have found that the spatial structure has a barely noticeable

influence on the fixation probability and mean fixation time when the carrying capacity

is constant and in time-varying environments in the regime of weak bottlenecks. Fig. C.3

shows the heatmaps on a cycle and a grid metapopulation for the “idealised treatment

strategy” proposed in Ch. 5.3, which are almost identical. This is in accord with Eqs. (5.23)

predicting that the same migration rate yields the same near optimal conditions for the

heatmaps of metapopulation on any regular graph, here a cycle and a grid. Simulation

results confirm spatial structure is only responsible for minor quantitative changes in the

region of the heatmaps corresponding to the near-optimal “treatment conditions”. This

stems from the removal scenario characterising the idealised treatment strategy being due

to deme extinction which is mostly independent of G and m.

C.5 Asymmetric environmental switching

For the sake of simplicity and clarity, we have focused on symmetric environmental switch-

ing. In this section, we relax this assumption and outline how the results of the paper

can be generalised to the case when there is an environmental bias, i.e. when there is a

different average time spent in the states ξ = ±1, as introduced in Ch. 2.3.1.

In the realm of the coarse-grained description, the regime of weak bottlenecks dom-

inated by the W/M competition can be characterised by the M fixation probability

ΦG(ν, δ,m) and unconditional mean fixation time ΘG(ν, δ,m) by Eq. (5.22) obtained by

solving the first-step analysis equations Eq. (5.19) and Eq. (5.20) with the transition

rates Eq. (5.17) and Eq. (5.18) obtained using Nξ(ν, δ) averaged over Eq. (2.26), i.e.

Nξ(ν, δ) =
∫
npξ(ν, δ, n)dn. The results of Fig. C.4 for a cycle metapopulation show that

the predictions coarse-grained description based on the PDMP approximation Eq. (2.26)

Figure C.4: Fixation probability ΦG and mean fixation time ΘG against switching rate ν
for different values of δ. Red, blue, and yellow represent δ = −0.5, δ = 0.0, and δ = 0.5,
respectively. Markers show simulation results and lines are predictions of Eq. (5.22). Other
parameters are Ω = 16, s = 0.01, m = 10−4, K+ = 200, and K− = 20.
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are in good agreement with simulation results. ΦG(ν, δ,m) and ΘG(ν, δ,m) are again found

to exhibit a non-monotonic dependence on ν, with extrema in the range of intermediate

ν. The main effect of δ is to increase the M fixation probability and reduce the mean

fixation time when δ > 0, which is intuitive since this corresponds to a bias towards the

mild state favouring the fixation of M .

The regime of strong bottlenecks is dominated by the interplay betweenM/W competition

in the mild state (K = K+) and deme extinction in the harsh environmental state (K =

K−), occurring in time θE ≡ θE(K−,Ω). In this regime, the near-optimal conditions for

the removal of the mutant strain can be obtained as under symmetric switching (given by

Eq. (5.23)) and read

ψ(m,K−) < 1, ν(1± δ) ≲ 1,

ν(1 + δ)θE ≳ 1, mK+θE
1 + δ

1− δ
≳ 1,

(C.7)

which, as Eq. (5.23), are conditions depending on m but not on the spatial structure G.

The main differences from Eq. (5.23) are in the conditions θEν− = θEν(1 + δ) ≳ 1 and

mK+θE
ν−
ν+

= mK+θE
1+δ
1−δ ≳ 1. The first of these changes ensures that a switch occurs

before the metapopulation MET in the harsh environment, θE . The second ensures there

are enough recolonisations in the mild environment to maintain the metapopulation given

the minimum switching rate required to prevent extinction in the harsh environment, i.e.

rearranging θEν− ≳ 1 gives ν ≳ 1/(θE(1+ δ)) and for sufficient recolonisations we require

mK+/ν+ ≡ mK+/(ν(1 − δ)) ≳ 1, where we substitute our expression for ν. Since θE is

independent of δ, we expect that the conditions Eq. (C.7) define a region in the parameter

space that is similar to that obtained under symmetric switching, shifted towards higher

(lower) values of ν and K− when δ < 0 (δ > 0). This picture is confirmed by the heatmaps

of Fig. C.5.
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Figure C.5: Near-optimal condition for the idealised treatment strategy on the clique
metapopulation. (ν,K−) heatmaps of Φ, Θ, ΘE and (1−Φ)(1−Θ/ΘE) for the δ = 0.5 (a-
d) and δ = −0.5 (e-h) metapopulations, see Appendix C.5. White space in panels (c) and
(g) indicate the region of the parameter where at least one realisation for those parameters
did not reach extinction by t = 105. Grey lines in panels (d) and (h) show the near-
optimal conditions for the idealised treatment strategy in the asymmetric environment:
ψ(m,K−) < 1 below the top horizontal line, mK+θE

1+δ
1−δ > 1 above the bottom horizontal

line, and ν(1+δ)θE > 1 above the curved line, while the vertical line indicates where ν < 1
and θE from Eq. (5.9). The near-optimal treatment conditions is the yellowish cloud at
the centre of the area enclosed by these lines. Other parameters are Ω = 16, m = 10−4,
s = 0.1, and K+ = 200. In all panels, initially there is a single M deme and Ω− 1 demes
occupied by W .
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Appendix D

Computational methods

To complement the theoretical work developed in this thesis, I additionally carry out

computational simulations of the models investigated. This allows for a confirmation of

the accuracy of any analytical results found, a test of the limits of the approximations

made to see where they no longer hold, and for investigation of the behaviour of the

systems beyond the limits of the analytical tools developed here. Here, I will explain the

simulation methods used in this thesis, while the algorithms applied to each specific model

can be found in the corresponding paper. Error bars on data points from simulations are

calculated using the standard error on the mean from the many stochastic realisations

for the point. Note, however, that across the entire thesis typical error bars are found

to be small and almost coincide with the markers. Therefore, for the sake of readability,

error bars are only displayed where they are clearly visible and are otherwise omitted from

figures.

D.1 Next reaction method

In Chs. 2, 3, and 4, I utilise the next reaction method, introduced in Gibson and Bruck

(2000). This is an efficient method used to simulate stochastic realisations of a systems

in a way that correctly reproduces the statistical properties of that system. It works as

follows (adapted from a description laid out in Anderson (2007)):

1. Initialise the system, setting the number of individuals of each species, the environ-

mental state, and the time t = 0.

2. Calculate the rates for each of the M possible events, a = {a1, ..., aM}.

3. DrawM independent random numbers from a uniform distribution on (0, 1), labelled

r = {r1, ..., rM}.

4. For each event k ∈ {1, ...,M}, set Tk = 1
ak

ln
(

1
rk

)
giving T = {T1, ..., TM}.

5. Set t = min(T). Label the event with minimum Tk out of the M possible events as

µ and its time Tµ.
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6. Carry out the changes corresponding to event µ, updating the number of individuals

of each species or changing the environmental state.

7. Recalculate the rates for all of the possible events following these changes and label

these new rates a = {a1, ..., aM}.

8. For each event k ̸= µ, set Tk =
ak
ak
(Tk − t) + t.

9. For event k = µ, draw r from a uniform distribution on (0, 1), and set Tµ =
1
aµ

ln
(
1
r

)
+ t.

10. Set a = a.

11. Loop back to step 5 or quit.

This algorithm is beneficial to use over other stochastic algorithms as, after the initial

computationally expensive step to draw M independent random numbers, each following

loop of the algorithm only requires one new random number to be generated. For simula-

tions with many individuals that run for long periods, this provides a considerable boost to

computational efficiency over other popular algorithms which require two random numbers

to be generated at every loop, the Gillespie algorithm being a prime example (Gillespie,

1976, 1977).

D.2 Discrete-time Monte Carlo method

In Ch. 5, I utilise the discrete-time Monte Carlo method to simulate evolution on a

metapopulation. To recap from their brief introduction in Ch. 1, a metapopulation is

a spatially structured community, consisting of several subpopulations where individuals

interact, see Fig. 1.3. Furthermore, the individuals may migrate between neighbouring

subpopulations. Here I use a discrete-time Monte Carlo method, an approximate method,

where here I set the discrete time interval ∆t = 1. It works as follows:

1. Initialise the system, setting the number of individuals of each species on each sub-

population, the environmental state, and the time t = 0.

2. Calculate the rates for each of the M possible event, a = {a1, ..., aM}.

3. Calculate the total rate for any event to occur in the system, denoted A =
∑M

k=1 ak.

4. Set the total number of reactions to occur in the next discrete time interval ∆t to

be N = round (A∆t), such that the timescale of the simulation is consistent with

the theoretical model considered, i.e. we expect A∆t reactions from a system with

reaction rate A in a time ∆t.

5. DrawN random numbers from a uniform distribution on (0, 1), labelled r = {r1, ..., rN}.

6. Sequentially for each random number rk ∈ r, calculate Ark, find n such that∑n
i=1 ai > Ark, perform the reaction n, update each event rate in a, and update the

total rate sum A =
∑M

k=1 ak.
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D.2 Discrete-time Monte Carlo method

7. Increment t by ∆t.

8. Loop back to step 4 or quit.

It should be noted that, unlike in a typical discrete-time Monte Carlo method, the rates

are updated after every event and not after each time interval. This is necessary in the

systems considered to prevent negative population sizes as subpopulations may contain

few individuals. This means that, in terms of computational efficiency, there is little im-

provement here over the next reaction method. However, the discrete-time Monte Carlo

method is conceptually simpler and therefore easier to implement in computer code, par-

ticularly when working with complex systems involving spatial structure and a changing

environment.
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