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ABSTRACT 

Primary cancers, such as prostate cancer and multiple myeloma (MM), frequently metastasise 

to the skeleton, disrupting bone remodelling, reducing vertebral strength, and increasing 

fracture risk. As treatments extend survival, more patients are living with structurally 

compromised vertebrae. To assess the vertebral strength in cancer patients using clinical CT 

scans, a finite element (FE) pipeline was first developed. Its development highlighted the 

impact of image quality on segmentation reproducibility and showed comparable results 

between phantom and phantomless calibration methods. 

In Chapter 4, the effect of androgen deprivation therapy (ADT) on vertebral strength in 

prostate cancer patients was investigated using a combination of DXA-derived areal bone 

mineral density (aBMD), CT-derived volumetric BMD (vBMD), and mechanical properties from 

the FE pipeline. Significant reductions in densitometric and mechanical properties were found 

after 12 months of ADT. Furthermore, vBMD outperformed aBMD in predicting vertebral 

strength, suggesting that these clinically accessible measures may better assess fracture risk.  

Chapter 5 applied the FE pipeline to MM patients treated non-surgically. Changes in CT-

derived densitometric and FE-derived mechanical properties over time were quantified. In 

vertebrae with large lesions (>50% of the vertebral body), remineralisation around the lesion 

was observed, resulting in increased strength. To investigate the mechanisms behind this, a 

mechanobiological model was developed in Chapter 6. This multi-scale model combined 

organ-level FE simulations with a cell-level bone adaptation algorithm and was optimised for 

each patient. While the model accurately predicted mineral and strength changes in 

vertebrae with smaller lesions, it failed in vertebrae with extensive lesions, suggesting that 

standard bone remodelling principles are insufficient in myeloma-affected bone. Additionally, 

its reliance on longitudinal scans limited its prospective use. 

To enable prospective use, Chapter 7’s pilot study incorporated serum bone turnover markers 

at 1, 2, and 3 months into the mechanobiological model, allowing for successful prediction of 

12-month mechanical outcomes in 3 out of 5 patients from baseline imaging alone. This 

biomarker-informed model marks the first use of biomarkers to drive personalised vertebral 

strength prediction. Together, these innovations offer a foundation for improved treatment 

monitoring, early fracture risk prediction, and decision-making in metastatic bone disease. 
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1 INTRODUCTION 

Bone is a highly dynamic tissue that continuously remodels in response to mechanical 

stimulation and biochemical cues. This process is crucial for maintaining skeletal integrity, 

adapting to mechanical loads, and repairing microdamage (Cowin, 2001). However, in the 

presence of disease, particularly cancer, bone homeostasis can be severely disrupted 

(Bussard, Gay and Mastro, 2008). Metastatic cancers commonly affect the skeleton, leading 

to either osteolytic lesions, where more bone is resorbed than formed (Suva, Griffin and 

Makhoul, 2009), or osteoblastic lesions, where excessive, disorganised bone is formed 

(Macedo et al., 2017). These changes significantly weaken the structural integrity of bone, 

increasing the risk of fractures and other skeletal complications (Mercadante, 1997). 

Understanding how different cancers and their treatments influence bone remodelling is 

essential for improving patient management and therapeutic strategies. 

Prostate cancer (PCa) is the second most common cancer among men with approximately 

26.5% of the male population having been diagnosed with prostate cancer worldwide (Wong 

et al., 2019). Androgen deprivation therapy (ADT) is the most common treatment for 

advanced disease due to the role of the androgen receptor signalling pathway in prostate 

cancer development (El Badri, Salawu and Brown, 2019). When ADT is administered, the 

levels of testosterone and oestradiol fall rapidly and significantly, leading to dysregulated 

bone remodelling. This in turn causes a decrease in bone mineral density (BMD) and bone 

integrity whilst increasing fracture risk. The correlation of fractures with ADT in PCa patients 

was evaluated by three large retrospective studies that reported these patients having a 21-

37% higher risk of fracture compared to PCa patients who were not treated with ADT 

(Shahinian et al., 2005; Smith et al., 2005, 2006). Smith and colleagues, also reported that 

vertebral fractures were 18% more likely to occur following ADT, as well as an overall fracture 

risk increase of 13% (Smith et al., 2006). Despite studies investigating the effect of ADT on the 

peripheral strength of the distal radius using HR-pQCT (High resolution peripheral QCT) (Dalla 

Via et al., 2019), and femoral strength and fracture risk using biomechanical computed 

tomography (BCT) (Lin et al., 2023), vertebral strength is yet to be obtained using FE models 

based on QCT images of vertebra. Therefore, the first hypothesis of this thesis is “The 

vertebral strength of prostate cancer patients reduces when ADT is administered”. 
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Multiple Myeloma (MM) represents around 2% of new cancers every year in the UK and the 

number of cases and deaths has more than doubled worldwide in the last 30 years (Zhou et 

al., 2021). Patients with MM are most commonly affected by spinal involvement (80-90%) 

(Bird et al., 2011) with 34-36% of patients suffering from spinal fracture (Anselmetti, Manca 

and Montemurro, 2012). Anti-myeloma treatments have significantly improved over the last 

30 years, increasing the 5-year survival rate for patients with MM from 12 to 50% and 11 to 

44% in men and women respectively (Cancer Research UK, 2014; Bird and Boyd, 2019). 

Nevertheless, due to the destructive nature of MM, patients are left with unstable and weak 

spines and therefore, most patients are still in need of intervention to stabilise the spine and 

prevent vertebral collapse and spinal cord damage. Surgery is currently the most common 

intervention. However, due to the older age of most patients at diagnosis (>70 years), surgery 

is associated with increased morbidity due to the frailty of MM patients (Nucci and Anaissie, 

2009).  

In more recent years, orthopaedic bracing has been presented as an alternative to surgery. 

The brace is intended to encase the whole spine, providing structural stability, and preventing 

movement of the spine. Case reports have shown that under treatment with bracing, bone 

lost by the cancer has started to ‘heal’ or remineralise. Remineralisation was detected in 48% 

of bone lesions in a study that also concluded that there was a linear relationship between 

radiation dose and the likelihood of remineralisation (Matuschek et al., 2015). Mose et al., 

conducted a similar study and found remineralisation in 46.4% of patients (Mose et al., 2000). 

A slightly lower number of patients with remineralisation (24%) was reported by Balducci et 

al., who also estimated the time to achieve remineralisation was around 6 months (Balducci 

et al., 2011). This phenomenon has only been observed and reported anecdotally through 

clinical Computed Tomography (CT) scans, with no quantification conducted nor investigation 

of the effect of the remineralisation on the structural properties of the vertebra. Patient-

specific models have been utilised to evaluate the mechanical properties of vertebrae that 

have been affected by other metastatic cancers, but as yet, no study has researched the 

implications of remineralisation in patients with MM on vertebral mechanics and spinal 

stability. Therefore, the second research hypothesis of this thesis is “The remineralisation 

following bracing treatment for MM patients leads to an increase in vertebral strength”. 
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Key to the ability of bone to heal and remineralise is mechanobiology, the study of how 

mechanical forces influence cellular behaviour and tissue adaptation. In bone, mechanical 

loading plays a critical role in maintaining mass and structure, as described by Wolff’s Law 

(Wolff, 1892) and Frost’s Mechanostat Theory (Frost, 1987). Given the challenge of 

investigating this phenomenon experimentally, various computational models have been 

developed to predict bone adaptation in response to different mechanical environments, 

particularly in conditions such as osteoporosis (Lerebours et al., 2016; Martin et al., 2020). 

However, the application of mechanobiological principles to MM remains largely unexplored. 

Given that bracing alters the mechanical environment of the spine, it is possible that the 

observed increase in mineralisation in MM vertebrae results from mechanical stimulation. 

However, the bracing could also just be acting as a support to ensure there is no fracture, 

while biological responses influenced by the myeloma cells are what is driving the 

remineralisation. Understanding this response through a mechanobiological lens could 

provide valuable insights into how myeloma-affected bone adapts to external mechanical 

interventions and whether similar mechanisms to those observed in other bone pathologies 

apply to this condition. Therefore, the third research hypothesis of this thesis is “Normal 

mechanobiology principles cannot explain the bone changes in MM patients' vertebrae 

treated non-surgically”. 

Bone turnover markers (BTMs) play a crucial clinical role in assessing bone metabolism and 

predicting changes in fracture risk (Vasikaran et al., 2011). Markers of bone formation, such 

as procollagen type 1 N-terminal propeptide (P1NP), provide insight into osteoblastic activity, 

while markers of bone resorption, including Carboxy Terminal Collagen Crosslinks (CTX), 

reflect osteoclastic activity (Kuo and Chen, 2017). These biochemical indicators are widely 

used in conditions like osteoporosis to monitor treatment efficacy and disease progression 

(Kuo and Chen, 2017). In MM, where bone remodelling is profoundly dysregulated, 

incorporating such BTMs could help elucidate the mechanisms driving mineralisation 

changes. By combining biomarker analysis with mechanobiological models, it may be possible 

to improve predictions of bone adaptation in MM vertebrae, ultimately informing more 

effective treatment strategies. Therefore, the final hypothesis of this thesis is 

"Mechanobiological models incorporating bone turnover markers can predict bone changes 

in vertebrae of patients with multiple myeloma". 
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1.1 Objectives and Hypothesis 

The overall aim of this thesis was to understand the biomechanical changes in vertebra with 

metastatic and non-metastatic cancer. The first specific objective was to develop patient-

specific computational FE models to determine biomechanical stability of vertebrae in 

patients with cancer. The secondary specific objective was to apply the FE pipeline to a 

dataset of longitudinal CT scans of prostate cancer treated with ADT and of MM patients 

treated with orthopaedic bracing. The third specific objective was to develop adaptive FE 

model to predict spatio-temporal bone structure post-anti-cancer treatment of MM based on 

understanding of cancer cell regulation of mechanobiology. These objectives will address four 

hypotheses, each of which will aim to fill the identified gaps in the literature and underpin the 

research of Chapters 4-7 of this thesis. 

Hypothesis 1: “The vertebral strength of prostate cancer patients reduces when ADT is 

administered” 

Hypothesis 2: “The remineralisation following bracing treatment for MM patients leads to an 

increase in vertebral strength” 

Hypothesis 3: “Normal mechanobiology principles cannot explain the bone changes in MM 

patients' vertebrae treated non-surgically” 

Hypothesis 4: "Mechanobiological models incorporating bone turnover markers can predict 

bone changes in vertebrae of patients with multiple myeloma" 

1.2 Thesis Outline 

This thesis comprises the work completed for the duration of the candidate's PhD studies. 

First, a thorough review of the background and literature is presented in Chapter 2, outlining 

the hierarchal structure of bone and its mechanical properties, multiple myeloma and 

prostate cancer and their effect on bone, current treatment strategies for MM and their 

advantages and disadvantages, the FE method, the current state of the art in treatment and 

prediction of vertebral strength in metastatic patients, as well as predictive models of bone 

remodelling, highlighting the gap within the literature and motivation behind the studies in 

this thesis. Chapter 3 then uses the methodologies described in Chapter 2 to develop a finite 

element pipeline from clinical CT images of vertebrae. Chapter 4 reports the application of 
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the FE method (described in Chapter 3) to a dataset of PCa patients treated with ADT, testing 

Hypothesis 1. Chapter 5 then investigates Hypothesis 2 by applying the FE method in Chapter 

3 to a dataset of MM patients' vertebrae, treated non-surgically. The development of a 

mechanobiological model to predict bone changes in MM vertebra is then detailed in Chapter 

6 to evaluate Hypothesis 3. The incorporation of biomarkers into the mechanobiological 

model to improve the prediction of bone changes is then assessed in Chapter 7, evaluating 

Hypothesis 4. Finally, Chapter 8 summarises the key findings, putting them in the context of 

current assessment of vertebral biomechanics, cancer and mechanobiology, along with 

recommendations for future research in these fields. 
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2 BACKGROUND AND LITERATURE REVIEW 

2.1  Bone Anatomy 

The human skeleton provides structural support and protection of internal organs, permits 

movement and maintains a constant environment for haematopoiesis within the marrow 

(Taichman, 2005). Bone is composed of 50-70% inorganic mineral content, of which 

hydroxyapatite [Ca10(PO4)6(OH)2] is the most abundant, and 20-40% organic matrix which 

contains approximately 90% type-1 collagen and 5-10% water (Clarke, 2008). The adult 

human skeleton is composed of 80% cortical bone and 20% trabecular bone (Figure 2.1) (Ott, 

2018). Cortical and trabecular bone are usually formed in a lamellar pattern where the 

collagen fibres are stacked unidirectionally in alternating orientations (Keaveny, Morgan and 

Yeh, 2004). Cortical bone is the dense outer layer where the lamellae are tightly packed and 

formed into concentric rings measuring approximately 200µm in width (Dahl and Thompson, 

2011). In contrast, trabecular bone is a highly porous bone tissue in which the lamellae form 

a network of rod or plate shapes that are around 100µm to 300µm thick (Keaveny, Morgan 

and Yeh, 2004).  

Figure 2.1 - Structure of a femoral bone from the organ level to the tissue level. A zoom in of a portion of 

cortical and trabecular bone. (Bartl and Bartl, 2019) 
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2.1.1 The Human Vertebra 

The vertebral column has various functions: (i) providing structural support to the skull and 

trunk whilst allowing their movement; (ii) providing protection of the spinal cord; (iii) 

absorbing the stresses produced by walking and lifting and (iv) providing attachment for the 

limbs, ribs and muscles whilst facilitating coordinated movement (Saladin, Gan and Cushman, 

2017). The spine is divided anatomically into 5 sections, as shown in Figure 2.2: (a) the cervical 

(neck) section consists of 7 vertebrae (C1-C7) with a primary function of head support and 

allowing a wide range of motion of the head (Bogduk and Mercer, 2000), (b) the thoracic 

section consists of 12 vertebrae (T1-T12) and connects to the rib cage, protecting vital organs 

in the chest (Edmondston and Singer, 1997), (c) the lumbar section contains 5 vertebrae (L1-

L5) and bears the majority of the body weight whilst allowing for flexibility and movement in 

the lower back (Boszczyk, Boszczyk and Putz, 2001), (d) the sacrum which consists of five fused 

vertebra (S1-S5) which connects the trunk to the lower body (Agur, Dalley and Grant, 2013) 

and (e) the coccyx which consists of three to five fused vertebrae connected to the bottom of 

Figure 2.2 - The vertebral column (left) and the three types of vertebrae (right) (a) cervical, (b) thoracic 

and (c) lumbar modified with permission from (Hall and Stephens, 2018) 

a 

b 

c 

d 

e 

Cervical 

Thoracic 

Lumbar 
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the sacrum with its main function to support and stabilise the body whilst in a sitting position 

(Lirette et al., 2014). Each of these regions is composed of several vertebral bodies connected 

by intervertebral discs and facet joints (Figure 2.2). Vertebral bodies are comprised of a thin 

outer layer of cortical bone, which varies from 268µm to 329µm in thickness (Ritzel et al., 

1997), that encloses an inner area of trabecular bone (mean trabecular thickness: 100 µm to 

400 µm) (Bevill and Keaveny, 2009). The vertebral body is composed of about 25% cortical 

bone and 75% trabecular bone (Clarke, 2008). From the vertebral body, spinous and 

transverse processes along with various facets make up the rest of a vertebrae. Within the 

thoracic region, T1-10, the transverse facets at the end of the transverse processes provide a 

second point of attachment and articulation for the ribs. The arrangement of the superior and 

inferior processes in the lumbar vertebra also provides a high resistance to twisting (Saladin, 

Gan and Cushman, 2017).  

2.2 Bone Tissue 

There are two main types of bone tissue: cortical and trabecular. In long bones, cortical bone 

consists of concentric lamellae connected by canaliculi which surround a central (Haversian) 

canal (Saladin, Gan and Cushman, 2017). The main structural unit for cortical bone is an 

osteon which consists of the lamellae and central canal (Saladin, Gan and Cushman, 2017). 

Osteocytes reside in the small spaces between the individual lamellae (lacunae) and are 

arranged circumferentially around the central canal and connected by fine canaliculi to allow 

for osteocyte communication (Mellon and Tanner, 2012). The haversian canals accommodate 

a microvascular network, essential for blood supply to the osteocytes (Cowin, Moss-Salentijn 

Figure 2.3 - Organisation of cortical bone and an osteon in long bones (Betts et al., 2022)  



  Chapter 2 

9 

 

and Moss, 1991). Collagen fibres are arranged in a ‘corkscrew’ around each individual 

lamellae, alternating in direction around adjacent lamellae. This orientation enhances the 

strength of bone. Cortical bone provides a higher resistance to compression than tension 

(percentage strength-to-modulus ratio is around 1.12 for longitudinal compression and 0.78 

for tension) (Keaveny, Morgan and Yeh, 1981). Cortical bones’ Young’s Modulus varies 

between 7 and 25 GPa depending on orientation, age, disease and other contributing factors 

(Bonfield and Datta, 1974; Currey, 1979).  

Trabecular bone consists of rodlike structures arranged in a lattice, which is permeated by 

spaces filled with bone marrow (Saladin, Gan and Cushman, 2017). Osteocytes are arranged 

concentrically, residing between lamellae. Unlike cortical bone, trabecular bone does not 

need a central canal for the supply of blood as the osteocytes are close enough to the blood 

supply within the bone marrow (Mellon and Tanner, 2012). The structure of trabecular bone 

is not random and is formed along the lines of highest stress within the bone (Saladin, Gan 

and Cushman, 2017). Trabecular bone, being a more porous material, has a lower Young’s 

Modulus which varies from 0.6 to 2 GPa depending on the orientation of loading (Ashman 

and Jae Young Rho, 1988; Keaveny et al., 1993).  

Bone tissue contains four types of cells: osteoblasts, osteocytes, bone lining cells and 

osteoclasts. Osteocytes are derived from mature osteoblasts, osteoblasts develop from 

mesenchymal stromal cells (osteoprogenitor cells), while osteoclasts come from 

haemopoietic stem cells (Downey and Siegel, 2006). Osteoblasts constitute 4-6% of the total 

bone cells and are known for their bone forming function (Capulli, Paone and Rucci, 2014). 

Figure 2.4 - Where the bone cells reside within the bone (Betts et al., 2022)  
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They usually reside within the bone canals, endosteum and periosteum and may enter by 

migrating from surrounding tissue or from the blood (Mellon and Tanner, 2012). Osteocytes 

reside in the lacunae (spaces between the lamellae) and are formed during bone deposition 

by osteoblasts and make up 90% of the bone cells (Mellon and Tanner, 2012). Bone lining cells 

cover up to 95% of the bone surface and communicate with the osteocytes through the 

processes in the canalicular system (Mellon and Tanner, 2012). Osteoclasts’ main function is 

to remove (resorb) bone and are found on the surface of bone during resorption (Figure 2.4) 

(Saladin, Gan and Cushman, 2017).  

2.3 Bone Physiology 

2.3.1 Bone Remodelling 

While bone is first laid down using various bone modelling processes, in the adult skeleton, 

the primary physiological activity of bone is bone remodelling. Bone undergoes constant 

remodelling by osteoclasts and osteoblasts, whereby old bone tissue is removed and replaced 

by new bone tissue. The process of remodelling is crucial for maintaining the load bearing 

capacity of bone, the regulation of mineral homeostasis and haematopoiesis and to repair 

structural damage (Cowin, 2001). Remodelling sites mostly develop in a random manner but 

are also found to target areas that require repair (Burr, 2002). The duration of the remodelling 

process for cortical and trabecular bone is shown in Table 2.1 where the cycle for cortical 

bone is longer than that for trabecular bone. 

Table 2.1 - Comparison of cortical and trabecular bone structural units (Cowin, 2001). 

Parameter Cortical Cancellous 

Length (mm) 2.5 1.0 

Circumference (mm) 0.6 0.6 

Wall thickness (mm) 0.075 0.040 

Number/mm3 bone volume 15 40 

Total number in skeleton 21 X 106 14 X 10 6 

Duration of resorption (days) 24 21 

Duration of formation (days) 124 91 

Remodelling period (days) 148 112 

Bone turnover rate (%/year) 43 26 
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The remodelling process is controlled by three cells: osteocytes, osteoclasts, and osteoblasts 

(Figure 2.5). It involves a continuous cycle whereby osteocytes detect mechanical stimuli, 

including changes in strain magnitude or direction, activating the resorption and deposition 

of bone by osteoclasts and osteoblasts respectively (Cowin, 2001).  

Osteocytes regulate the receptor activator nuclear factor-kappa B (RANK), its ligand RANKL, 

and the osteoprotegerin (OPG) signalling pathway (Terpos, Christoulas and Gavriatopoulou, 

2018). Osteoclast development and differentiation is determined by RANK-RANKL signalling. 

OPG is a decoy receptor for RANKL which intercepts the RANK-RANKL pathway, therefore 

reduces osteoclastogenesis. The ratio between RANKL and OPG is crucial for maintaining the 

appropriate number of osteoclasts for normal remodelling. An abnormal RANKL/OPG ratio 

has been found in both benign and malignant bone diseases (Hofbauer et al., 2000). 

Osteocytes also regulate osteoblast activity through the secretion of cytokines: sclerostin and 

dickkopf-1 (DKK1). The Wnt pathway leads to the expression of osteoblastic target genes 

(Westendorf, Kahler and Schroeder, 2004). DKK1 binds to low density lipoprotein receptors 

on the surface of osteoblasts, blocking the Wnt pathway (Bonewald, 2011). Sclerostin also 

Figure 2.5 - Bone cells and the bone remodelling process (The Editors of Encyclopaedia 

Britannica, 2020) 
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inhibits the Wnt pathway. Both cytokines supress the Wnt-signalling and therefore reduce 

osteoblast function.  

2.3.2 Bone Turnover Markers 

Bone turnover markers (BTMs) are released into the blood or urine following bone 

remodelling. Procollagen 1 N-terminal Propeptide (P1NP) is a known BTM of bone formation. 

When osteoblasts form bone, they produce type 1 collagen which starts as a precursor 

molecule, procollagen (Hlaing and Compston, 2014). When procollagen is secreted into the 

extracellular matrix, enzymes cleave propeptides which are extra sequences at both ends of 

procollagen (Hlaing and Compston, 2014). This process releases P1NP from the N-terminal 

end and P1CP (Procollagen Type I C-terminal Propeptide) from the C-terminal end (Burtis, 

2015). P1NP is more extensively described in literature than P1CP and the use of P1NP as a 

reference marker for bone formation in studies evaluating fracture risk assessment and 

treatment response has been recommended by the International Federation of Clinical 

Chemistry and Laboratory Medicine (IFCC) and the International Osteoporosis Foundation 

(IOF) (Vasikaran et al., 2011). 

Figure 2.6 - A schematic representation of the bone remodelling process and some of the pathways that 

affect the resorption and deposition of bone. 
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Carboxy terminal collagen crosslinks (CTX) has been found to be a specific and sensitive 

biomarker of bone resorption (Kuo and Chen, 2017) and was also recommended by the IFCC 

and IOF as a reference marker for bone resorption (Vasikaran et al., 2011). CTX is released 

when the collagen matrix is degraded by enzymes such as MMP's (matrix Metalloproteinase) 

following bone resorption by osteoclasts (Burtis, 2015). 

Sclerostin is known to be another indicator of bone turnover. Sclerostin is secreted by 

osteocytes, and inhibits the differentiation and proliferation of osteoblasts (Winkler et al., 

2003) by blocking the Wnt pathway (Moester et al., 2010). While less commonly used to 

monitor bone turnover than CTX and P1NP, sclerostin levels have been shown clinically to 

reflect inhibition of bone formation (Anastasilakis et al., 2013). 

2.4 Bone Biomechanics 

The anatomy and physiology described thus far play a significant role in establishing the 

mechanical behaviour of bone as a material. Bone is a heterogeneous and anisotropic 

material, and undergoes elastic and plastic deformation, before and after yield respectively 

(Hart et al., 2017). The mechanical behaviour of bone can be classified into three stress-strain 

regions: (I) elastic region, (II) non-linear post-yield region and (III) fracture (Figure 2.7b). In 

region I, the bone deforms elastically and reversibly, following Hooke’s Law, whereby the 

change in length is proportional to the load applied. Bone stiffness can be calculated as the 

gradient of this region on the force-displacement curve (Figure 2.7a), while normalised 

stiffness (modulus of elasticity, E) can be calculated as the linear slope in the equivalent stress-

strain curve (Figure 2.7b). Reversibility remains until yield (σy), which is estimated by the 0.2% 

strain-offset method (Figure 2.7b, region II). Due to its ductile nature, bone plastically deforms 

after yield (Figure 2.7b, region II). Constitutive models, such as the Drucker-Prager and 

quadric yield criterion, have been used to describe the yield behaviour of bone (Schwiedrzik, 

2014). Beyond yield, stress is not uniformly distributed in bone and depends on the loading 

direction, therefore, there is asymmetry of strength in tension and compression (Currey, 

2001). Plasticity continues until it reaches its ultimate stress (σu), after which the process of 

fracture begins (Figure 2.7b, region III). 
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Bone density and microstructure in both cortical and trabecular bone vary due to factors such 

as age, gender, disease and anatomical site (Cowin, 2001). At organ scale, these differences 

affect the mechanical response of bone under loading (Pahr and Zysset, 2009). Bone mass, 

geometric tissue distribution and material properties are known to directly influence bone 

stiffness and strength (Cole and Van Der Meulen, 2011). Material properties of bone are not 

uniform across the population and therefore computational studies, such as those planned in 

this thesis, must account for these variations by applying patient specific properties. Material 

mapping is often conducted using a computational software that derives bone density from 

CT attenuation. The density can then be converted to elastic modulus using a set of equations 

(see more in Section 2.6). 

2.4.1 Vertebrae Biomechanics 

Spinal instability has been defined as ‘’the loss of the ability of the spine under physiologic 

loads to maintain its patterns of displacement’’ (White and Panjabi, 1978). The structural 

stability of the spine depends on vertebral architecture and bone mineral density, disc-

intervertebral joints, facet joints, ligaments and anatomical curvature (Izzo et al., 2013). The 

load-bearing ability of each vertebra depends on the size and shape, integrity of the 

trabecular system and bone density (Izzo et al., 2013). In compression, the role of the cortical 

shell is substantial, carrying around 45% of the compressive load (Eswaran et al., 2006). The 
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Figure 2.7 - (a) Typical load-displacement curve and (b) normalised stress-strain curve of bone highlighting 

the three domains of the mechanical behaviour of bones: (I) elastic, (II) post-yield, and (III) fracture 
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posterior elements are also involved in the stability of the spine as they control the direction 

and amplitude of movement and share the loads (Izzo et al., 2013). The posterior facets 

usually carry up to 33% of the compressive load but can rise to 70% due to high and prolonged 

weight loading and disc degeneration (Dunlop, Adams and Hutton, 1984).  

Axial compression and bending play the largest role in the loading of the spine. Studies have 

shown that, in the presence of muscles, the spine is subject to large axial compressive loads 

but an insignificant amount of bending due to muscle involvement (Goel et al., 1995). The 

compressive strength of the vertebral bodies increases with distance down the spine due to 

the increase in size of the endplates (Brinckmann, Biggemann and Hilweg, 1989).  

Figure 2.8 - At the top, example scans of a vertebra with multiple fractures with each 

fracture mode labelled with a diagram (a) wedge fracture, (b) biconcave fracture and (c) 

crush fracture (Alqahtani and Offiah, 2019). 
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Vertebral fractures occur when the applied load exceeds the strength of the vertebral body. 

Compression fractures account for 75% of all thoracolumbar fractures (Proudfoot, 2003). The 

failure pattern of compression fractures has been attributed to the variations in trabecular 

microstructure adjacent to the superior endplate (Hussein et al., 2018).  For axial compressive 

loading (Figure 2.8B,C), the fracture initiates more centrally on the superior endplate and 

progresses into a crushed or biconcave shape (Jackman et al., 2015). A combination of axial 

compression and anterior bending (Figure 2.8A,B) induces a large deflection towards the 

anterior of the superior endplates, either creating a wedge fracture (A) or a biconcave shape 

(B) (Jackman et al., 2015).  

2.5 Cancer and bone metastases 

Primary bone cancer, while devastating,  is a rare occurrence, comprising of only 0.2% of all 

cancers in Europe (Gatta et al., 2017). However, common primary cancers, such as breast, 

prostate (PCa) and multiple myeloma (MM) have a high incidence of bone metastases 

(Cecchini et al., 2005). Metastatic disease in the skeleton is a major cause of morbidity due to 

severe pain, vertebral fractures and spinal cord compression (Mercadante, 1997). 

Hypercalcemia, an increase in calcium in the blood which correlates to a loss of mineral and 

weakened bones, also occurs in 5-10% of all cancer patients with advanced disease, most 

commonly effecting breast cancer and MM patients (Clines and Guise, 2005).  

Bone metastases form when the cancer spreads from the primary site to another part of the 

body. Cancerous cells can travel through the bloodstream or lymphatic system to other sites, 

with bone being one of the most common. The spine is most affected by bone metastasis, as 

well as the long bones in the leg, the pelvis and the skull (Feller, Kramer and Lemmer, 2011). 

Prostate and breast cancer are responsible for the majority of cases, up to 70%, of the skeletal 

metastases (Cecchini et al., 2005). There is approximately 65-75% bone involvement in 

advanced breast and PCa (Macedo et al., 2017) in comparison to MM where bone 

involvement presents in 95-100% (Yee and Raje, 2018). Metastatic lytic bone lesions reduce 

bone strength leading to an increased risk of fracture (Confavreux et al., 2021). Complications 

arising from these lesions, such as vertebral compression fractures, are often the cause of 

pain and morbidity as opposed to the primary cancer (Mansoorinasab and Abdolhoseinpour, 

2018). 
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There are three types of bone metastases: osteolytic, osteoblastic and mixed which are 

classified according to the mechanism of interference with normal bone remodelling (Macedo 

et al., 2017). Osteolytic lesions are present in multiple myeloma, breast cancer, melanoma 

and thyroid cancer and are characterised by the destruction of normal bone (Mundy, 2002). 

The bone destruction is led by an increase in osteoclast activity leaving the bone with large 

spaces within the extracellular matrix (Tian et al., 2009). Tumour cells grow within this space, 

forming the lytic lesion. Osteoblastic lesions are formed due to an increase in osteoblast 

activity, increasing the amount of bone tissue deposited (Dai et al., 2005). Osteoblastic lesions 

are predominantly found in PCa patients (Zhang, Jiang and Wang, 2023). Both types of 

metastases show evidence of increased osteoclast activity, despite the sclerotic nature of 

osteoblastic lesions (Mundy, 2002). In some cases, both osteolytic and osteoblastic lesions 

are present in the same bone, which are known as mixed lesions. 

2.5.1 Prostate cancer and bone metastases 

PCa is the second most common cancer among men with approximately 26.5% of the male 

population having been diagnosed with PCa worldwide (Wong et al., 2019). The 10-year 

survival rate for PCa patients in the UK has tripled in the last 40 years, which can be attributed 

to the advances in treatment as well as early detection and screening (Cancer Research UK, 

2019). Long term effects of PCa and treatments on bone health are now of increasing concern 

due to patients living longer with prostate cancer (El Badri, Salawu and Brown, 2019). 

Androgen deprivation therapy (ADT) is the most common treatment for advanced disease 

due to the role of the androgen receptor signalling pathway in PCa development (El Badri, 

Salawu and Brown, 2019). Oestrogens, such as oestradiol, produced via aromatisation of 

androgens in males, influence the osteoclast activity through the regulation of the 

RANK/RANKL/OPG pathway (Almeida et al., 2017). Androgens, such as testosterone, play a 

key role in bone homeostasis. When ADT is administered, the levels of testosterone and 

oestradiol fall rapidly and significantly, leading to dysregulated bone remodelling. This in turn 

causes a decrease in bone mineral density (BMD) and bone integrity whilst increasing fracture 

risk. The reduction in BMD has shown to be most significant in the first 12 months of ADT 

(Greenspan et al., 2005), with the BMD progressively declining up to 10 years after 

commencing ADT (Kiratli et al., 2001). 
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2.5.2 Multiple Myeloma and bone metastases 

MM is a cancer of the plasma cells, a type of white blood cell that makes antibodies as part 

of the immune defence system. Abnormal plasma cells proliferate in the bone marrow, 

forming osteolytic bone lesions (Figure 2.9). In recent years, therapeutic treatments for this 

cancer have significantly improved leading to increased survival (Bird and Boyd, 2019). Bone 

fractures resulting from weakened vertebrae in the spine necessitate surgical intervention. 

However, surgery is associated with increased morbidity due to the frailty of MM patients, 

who have lower bone quality and a lower resistance to infection (Nucci and Anaissie, 2009).  

2.5.2.1 MM Metastatic Lesion Formation 

In MM patients, there is an imbalance in the remodelling cycle, whereby the osteoclast 

differentiation and resorption rate are increased while osteoblastogenesis is decreased 

(Figure 2.10). MM cells and bone marrow stromal cells (BMSCs) disrupt the bone marrow 

microenvironment. MM cells increase the differentiation and activation of osteoclasts by 

producing decoy receptor 3 (DcR3) and upregulating RANKL, IL-6, activin A and B-cell 

activating factor (BAFF) (Giuliani, Rizzoli and Roodman, 2006; Oranger et al., 2013). The 

overexpression of DcR3 increases the tumour growth as it belongs to the tumour necrosis 

factor (TNF) receptor family (Colucci et al., 2009). IL-6 increases the survival of myeloma cells 

by protecting them from apoptosis (Gupta et al., 2001) whilst upregulating IL-7 and increasing 

the expression of RANKL and osteoclastogenesis (Giuliani, Rizzoli and Roodman, 2006). Activin 

A, in addition to activating osteoclasts, also inhibits osteoblast differentiation (Luisi et al., 

2001). Osteoblast differentiation is stimulated by the Wnt signalling pathway (Hameed et al., 

Figure 2.9 - Zoom in of a CT scan of the spine showing three vertebra, one lytic (top) and two healthy 

(middle and bottom). 
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2014). In MM patients DKK1 is increased, which antagonises the Wnt pathway resulting in the 

inhibition of osteoblast maturation (Qiang et al., 2008). The upregulation of 

osteoclastogenesis and downregulation of osteoblastogenesis combined with an increase in 

tumour growth factors creates a vicious cycle of bone destruction and tumour expansion. In 

contrast to cancers such as prostate and breast where the osteoblast activity also increases, 

no new bone is formed with MM creating a more destructive disease (Roodman, 2009). 

2.5.2.2 Clinical Management of Multiple Myeloma 

As a result of MM, 70-80% of patients endure bone pain whilst 2-3% ultimately suffer from 

spinal cord compression (Hameed et al., 2014). The approach to treatment can be split into 

two areas: (1) effective treatment of myeloma and (2) use of ‘’bone-modifying’’ treatment to 

support bone recovery and prevent further bone loss and fractures.  

An example of the management process used with MM is shown in Figure 2.11. Patients 

usually present bone pain and neurological signs when first diagnosed. A whole spine MRI is 

performed to assess whether there is cord compression and soft tissue involvement (Terpos 

et al., 2021). If the patient presents spinal cord compression on diagnosis, it is classed as a 

medical emergency and decompression surgery is conducted immediately followed by local 

Figure 2.10 - Flow diagram showing how the remodelling cycle of bone is affected by MM. 



  Chapter 2 

20 

 

radiotherapy to target the soft tissue disease (Bird et al., 2011). If no cord compression is 

present, the first treatment process is controlling the disease. The soft tissue involvement is 

treated depending on the patients age and their suitability (Hameed et al., 2014). Stem cell 

transplant, chemotherapy and radiation therapy and high dose therapy, whereby a higher 

than standard dose of chemotherapy or radiotherapy is used as a more aggressive treatment, 

are among the treatments considered for controlling myeloma. Once the disease is 

controlled, bisphosphonate therapy is used to prevent further bone loss by inhibiting 

osteoclast formation and maturation and to enhance osteoclast apoptosis (Van Beek et al., 

1999).  

Spinal lesions are often treated using localised radiotherapy, but in the cases of collapsed 

vertebrae, vertebroplasty and kyphoplasty are also considered (Figure 2.12a) (Snowden et al., 

2011). Vertebroplasty, the injection of cement into fractured vertebra, and kyphoplasty, 

insertion of a balloon into the fractured bone to create space for the injection of cement, 

should be performed soon after the vertebral body collapses (Molloy et al., 2015). Surgical 

intervention should only be considered in the event of spinal instability or neurological deficit 

from cord compression in patients with vertebral osteolysis of more than 30% (Rao et al., 

2006; Flouzat-Lachaniette et al., 2013). However, the use of surgery must also be carefully 

considered as MM patients are often elderly and immunocompromised putting them at 

higher risk of complications (Cawley et al., 2019). The survival rate post-surgery has been 

evaluated in several studies, indicating a 5-year survival rate between 34%-50% (Quidet et al., 

2018; Galán-Olleros et al., 2021). However, two similar studies, evaluating multiple surgeries, 

showed a decrease in survival rate from 48% (2002) to 40% (2011), suggesting it is not surgical 

techniques that have improved the survival rate (Roland Dürr et al., 2002; Utzschneider et al., 

2011). The rate of complications following surgery have also been reported and range 

between 20% (Galán-Olleros et al., 2021) and 75% (Quidet et al., 2018). If necessary, surgery 

is conducted upon diagnosis meaning post-operative recovery could delay the start of anti-

myeloma treatments such as chemotherapy (Flouzat-Lachaniette et al., 2013). The risks 

associated with surgery for most patients outweigh the benefits and therefore alternatives 

must be identified (Fahed et al., 2015). 
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Figure 2.11 - Flow diagram representing the management of MM upon diagnosis. (Terpos et al., 2021) 
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Alternatively, the spine can be stabilised using external orthopaedic bracing (Figure 2.12b). 

Spinal orthoses stabilise the spine by holding it in an extended position, minimising the 

loading on the weakened vertebrae (Delank et al., 2011). Figure 2.13 indicates how 

chemotherapy treatment reduces the number of myeloma cells and how structural integrity 

is increased through bracing for patients with multiple myeloma. The brace is worn until the 

bone integrity has entered the ‘stable’ region with the hope that, when removed, the spine 

has been stabilised through bone remodelling and is no longer at risk of fracture.  

(a) 
(b) 

Figure 2.12 - (a) illustration of vertebroplasty and kyphoplasty (Gao et al., 2015) (b) illustration of an 

example of orthopaedic bracing (Copyright by AO Foundation, Switzerland, Source: AO Surgery 

Reference, www.aosurgery.org.)  

Figure 2.13 - Graphs describing the hypothesis behind the treatment of MM for the number of MM cells 

throughout treatment (top) and the integrity of bone throughout treatment (bottom). 

http://www.aosurgery.org/
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Most of the orthoses used in previous studies for MM have been rigid, which can lead to 

discomfort beyond 3 months. Therefore, they are currently only used for short-term control 

of pain (Molloy et al., 2015). More flexible collars are yet to be studied with MM but have 

been evaluated for the rehabilitation of osteoporotic patients. Meng Li et al. (2015), and 

Pfeifer et al. (2004), reported a significant reduction in pain and gain in functional mobility 

using a more flexible brace (Pfeifer, Begerow and Minne, 2004; Li et al., 2015). Custom made 

thoracolumbar sacral orthoses (TLSO) are used most when evaluating the efficacy of braces. 

Several studies have reported that using a TLSO (between 3 and 6 months) alongside 

radiotherapy, for a lesion classed as unstable and at significant risk of neurological damage, 

significantly reduced pain and restored neurological function (Aligizakis et al., 2002; Gokaraju 

et al., 2016; Malhotra, Lui, et al., 2016). Alongside a reduction in pain, osseous bone formation 

has been observed post-bracing, which conferred additional stability (Rao et al., 2006; 

Malhotra, Lui, et al., 2016; Gokaraju et al., 2019; Belo, Reis and Teixeira, 2021). Mineralisation 

was subsequently detected around the lesion, between lytic vertebra and along fracture lines. 

It has been concluded that the benefit of non-surgical treatment outweighed the risks 

associated with surgery (Gokaraju et al., 2016) if the bracing was implemented within six 

months of presenting (Malhotra, Butler, et al., 2016). 

Alongside the abovementioned research regarding remineralisation following bracing, other 

studies have reported similar results following radiotherapy alone (Mose et al., 2000; Balducci 

et al., 2011; Matuschek et al., 2015). The percentage of lesions that remineralised varied 

between studies, showing the variability of bone remodelling between cohorts. 

Remineralisation was detected in 48% of bone lesions in a study that also concluded that 

there was a linear relationship between radiation dose and the likelihood of remineralisation 

(Matuschek et al., 2015). Mose et al., conducted a similar study and found remineralisation 

in 46.4% of patients (Mose et al., 2000). A slightly lower number of patients with 

remineralisation (24%) was reported by Balducci et al., who also estimated the time to 

achieve remineralisation was around 6 months (Balducci et al., 2011). All the results in the 

studies mentioned were calculated from CT and/or MRI images of the patient’s bone, and no 

mechanical analysis was performed. 
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2.6 Spinal Imaging 

To assess the patient’s risk of vertebral fracture in clinics, two methods have been previously 

adopted: Dual Energy X-rays Absorptiometry (DXA) and Quantitative Computed Tomography 

(QCT). QCT provides images obtained from a CT machine where either an inline or offline 

(retrospective) calibration phantom could also be scanned. Calibration phantoms are used to 

convert the image’s Hounsfield units into apparent bone mineral density (BMD) and 

subsequently elastic modulus through a set of calibration and conversion functions. While 

both DXA and QCT are used in clinical practice to measure BMD, QCT has the advantage of 

providing volumetric measurements of BMD in both cortical and trabecular bone (Demirbağ 

Kabayel, 2016). DXA produces a 2D image which has known limitations in incorrectly 

classifying the risk of fracture, exemplified by a recent study in which 70% of osteoporotic 

fracture patients had normal DXA aBMD (Jiang et al., 2020). Despite this, DXA is still the gold 

standard in the clinic due to the low radiation exposure (5-20 µSv by DXA vs. 60-90 µSv by 

QCT) (Demirbağ Kabayel, 2016).  

For QCT, after each axial translation across the subject of the tube and detector, the tube-

detector assembly is rotated to a different angle, see Figure 2.14 (Goldman, 2007). The 3D 

images are reconstructed by combining the 2D images captured at each angle. Each slice 

taken is in the X-Y plane with the Z-direction representing the slice thickness. The 2D slices 

are used to reconstruct 3D models which are composed of a matrix of 3-dimensional 

hexahedral boxes, called voxels (Goldman, 2007).  

x 

y 

z 

Figure 2.14 - Representation of the system used in the current CT scanners which implies the continuous 

rotation of the X-ray source-detector around the patient while they translate through. Image reproduced 

from (Cierniak, 2011). 
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The brightness and intensity of the grey value (measured in Hounsfield units, HU) is 

proportional to the mineral content of the tissue and is calculated using Equation 2.1. 

𝐶𝑇 𝑛𝑢𝑚𝑏𝑒𝑟 (𝐻𝑜𝑢𝑛𝑑𝑠𝑓𝑖𝑒𝑙𝑑 𝑢𝑛𝑖𝑡𝑠, 𝐻𝑈) = [𝐾 × (𝑢𝑣𝑜𝑥𝑒𝑙 − 𝑢𝑤𝑎𝑡𝑒𝑟)]/𝑢𝑤𝑎𝑡𝑒𝑟 

Equation 2.1 

Where 𝐾 is a constant, 𝑢𝑣𝑜𝑥𝑒𝑙 is the linear attenuation coefficient of the material of interest 

and 𝑢𝑤𝑎𝑡𝑒𝑟 is the linear attenuation coefficient of water. The distribution HU is then converted 

into BMD using a densitometric calibration equation, which is derived from a calibration 

phantom. The phantom is usually placed within the scanner (i.e. inline phantom) and is 

composed of insertion rods of known densities (example in Figure 2.15). 

To obtain the BMD values of a CT scan, a linear regression analysis is performed between the 

known values of BMD of the rods and the actual values of HU within the CT scan to estimate 

parameters a and b in the equation: 

𝜌𝑄𝐶𝑇  =  a +  b𝐻𝑈 
Equation 2.2 

Where 𝜌𝑄𝐶𝑇 represents the QCT equivalent BMD, 𝐻𝑈 represents the Hounsfield unit values 

in the image and a and b are constants from the linear regression analysis performed. This 

equation can then be applied to estimate BMD of the bone. From this equation, the apparent 

density and the elastic modulus of the tissue are calculated using the following relationships. 

Calibration Rods 

Figure 2.15 - QCT image of a human vertebra scanned with a calibration phantom composed by 5 insertion 

rods with equivalent densities of 0, 50, 100, 150, and 200 mg/cm3 used to calibrate the image grey levels in 

equivalent BMD (Griffith and Genant, 2008). 
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The density determined by CT (𝜌𝑄𝐶𝑇)  and ashing density (𝜌𝑎𝑠ℎ) is highly correlated (Schileo 

et al., 2008), therefore it is assumed that 𝜌𝑄𝐶𝑇 = 𝜌𝑎𝑠ℎ. 

𝜌𝑎𝑠ℎ = 𝜌𝑎𝑝𝑝 × 0.6 [𝑔/𝑐𝑚3]; (Schileo et al., 2008) 
Equation 2.3 

Where 𝜌𝑄𝐶𝑇 is the QCT equivalent BMD and 𝜌𝑎𝑝𝑝 is the apparent density. 

 
𝐸 = 4730𝜌𝑎𝑝𝑝

1.56 [𝑀𝑃𝑎]; (Morgan, Bayraktar and Keaveny, 2003) 
Equation 2.4 

Where E defines the elastic modulus as a function of the apparent density, 𝜌𝑎𝑝𝑝. 

The role of CT technology has grown extensively due to its effectiveness in skeletal 

assessment for diagnosis and continuous monitoring of MM (Duvauferrier et al., 2013). This 

imaging technique provides essential information for assessing spinal stability by allowing for 

the identification of osteopenia, lytic lesions, soft-tissue involvement and fractures (Mahnken 

et al., 2002). The main concern with CT use is the exposure to significantly higher doses of 

radiation in comparison to standard X-ray graphs (Winterbottom and Shaw, 2009). Despite 

this, evidence suggests that low-dose whole body CT is effective in producing high resolution 

images that provide the information necessary for assessing spinal stability (Gleeson et al., 

2009). 

2.6.1 Phantomless calibration of CT 

The calibration of CT scans usually utilises an external phantom as described in the previous 

section; however, routine CT scans are often conducted without a calibration phantom as its 

usage increases the logistical burden of clinical imaging (Lee et al., 2017). To account for this, 

numerous methods for phantomless calibration have been developed (Michalski et al., 2020; 

Bartenschlager et al., 2021). Calibration is necessary as the attenuation values depend on the 

type of scanner and protocol (Pickhardt et al., 2013; Carpenter et al., 2014). One approach is 

to pre-calibrate the scanner using either DXA measurements or a calibration phantom and 

apply this general pre-calibration factor to prospective CT scans (Budoff et al., 2013; Pickhardt 

et al., 2015). Even though this is an improvement from no calibration, it does not consider the 

patient specific differences as well as scanner and protocol changes. 

The most widely used phantomless approach is to utilise internal tissues as the reference 

materials. The choice of tissues has been varied and depend on scan location, with some 
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authors choosing air, fat and blood (Lee et al., 2017; Schwaiger et al., 2017), while others have 

used fat and muscle (Weaver et al., 2015; Saffarzadeh et al., 2016) and shown similar results. 

Bartenschlager et al. compared different combinations of two internal tissues, reporting the 

lowest error for any combination with air (<5%), particularly air and blood and the highest 

errors arising when using muscle in the combination (Bartenschlager et al., 2021). These 

authors also concluded no significant difference when applying the combinations to different 

scanners. 

2.7 Finite Element (FE) Modelling theory and global equation  

The FE method is a numerical technique that has been used in the field of biomechanics to 

computationally study the mechanical properties of bone for over 40 years (Zysset et al., 

2013). This technique’s success is derived from the use of discretisation which splits larger, 

complex problems into many smaller problems, using finite elements, to approximate a 

solution to the overall problem (Heller, 2022). Each finite element is composed of a set 

number of nodes, depending on shape and element order (linear, quadratic etc), that are 

associated with degrees of freedom (DOF) (e.g. for a 3D body, three cartesian components 

for translations and three angles of rotations make up 6 DOFs). The element order can be 

linear, quadratic or a higher order polynomial and it defines the shape function used in 

numerical integration. The global stiffness matrix [Equation 2.12] represents the system of 

linear equations that approximate the solution to the problem and is the sum of the stiffness 

matrix from each finite element within the model [Equation 2.11]. Once the model has been 

fully defined by assigning material properties and boundary conditions (displacement or 

force), Equation 2.13 is solved to find the unknown displacement or force for each element.  

First, the displacements of the element are converted to the nodal displacement using a 

shape function: 

{𝑢(𝑒)} = [𝑁(𝑒)]{𝑈(𝑒)} 

    Equation 2.5 

Where {𝑢(𝑒)} represents the vector of displacements, [𝑁(𝑒)] is the shape function specific to 

the element type chosen and {𝑈(𝑒)} is the unknown nodal displacement vector. 

The deformation of a 3D body can be described by strains derived from the displacement. For 

the linear elastic theory, strains (and deformations) are assumed to be small (Younis, 2009). 
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Strains in a 3D structure are described by three normal strains and three shear strains in the 

global coordinate system: {𝜀} = [𝜀𝑥 𝜀𝑦 𝜀𝑧     𝜀𝑥𝑦 𝜀𝑦𝑧 𝜀𝑧𝑥]
𝑇

 (Cook et al., 2001). Principal 

strains can be described as the normal strains that act along the principal planes where their 

shear strain is zero. The three principal strains, denoted εₚ₁, εₚ₂, and εₚ₃, are defined as the 

normal strains acting on mutually orthogonal planes where shear strain is zero. They are 

conventionally ordered such that εₚ₁ ≥ εₚ₂ ≥ εₚ₃. While εₚ₁ is the largest and εₚ₃ the smallest, 

all three principal strains may be either tensile (positive) or compressive (negative), 

depending on the deformation state. The ordering indicates relative magnitude, not the 

nature of the strain. 

The strain-displacement relationship is calculated as the product of the matrix of differential 

operator and the derivative of the element shape function and the nodal displacement vector: 

{𝜀(𝑒)} =  [𝐵(𝑒)]{𝑈(𝑒)}  

Equation 2.6 

[𝐵(𝑒)] = [𝐿][𝑁(𝑒)]  

Equation 2.7 

By introducing the matrix of differential operator formulated as: 

[𝐿] =  

[
 
 
 
 
 
 
 
 
 
 
 
 
𝜕

𝜕𝑥
0 0

0
𝜕

𝜕𝑥
0

0 0
𝜕

𝜕𝑥

0 0
𝜕

𝜕𝑥
𝜕

𝜕𝑥
0

𝜕

𝜕𝑥
𝜕

𝜕𝑥

𝜕

𝜕𝑥
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Equation 2.8 

In the region of linear elasticity, Hooke’s law is used to calculate the element stresses based 

on the strains: 

{𝜎(𝑒)} = [𝐷𝑒]{𝜀(𝑒)} 

Equation 2.9 

Where [D] represents the elasticity of an isotropic material in which E is the elastic modulus 

and 𝑣 is the Poisson’s ratio: 
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[𝐷𝑒] =
𝐸

(1 + 𝑣)(1 − 2𝑣)

[
 
 
 
 
 
 
 
 
1 − 𝑣 𝑣 𝑣 0 0 0

𝑣 1 − 𝑣 𝑣 0 0 0
𝑣 𝑣 1 − 𝑣 0 0 0

0 0 0
1 − 2𝑣

2
0 0

0 0 0 0
1 − 2𝑣

2
0

0 0 0 0 0
1 − 2𝑣

2 ]
 
 
 
 
 
 
 
 

 

Equation 2.10 

The local stiffness matrix [𝐾(𝑒)] can then be derived from: 

[𝐾𝑒] = ∫[𝐵(𝑒)]
𝑇
[𝐷𝑒][𝐵(𝑒)]𝑑𝑉 

Equation 2.11 

The unknown displacement  {𝑈(𝑒)} for each element can then be solved by balancing the 

equilibrium equation for all elements against the vector of nodal forces for each element 

{𝐹(𝑒)}: 

∑([𝐾(𝑒)]{𝑈(𝑒)} −  {𝐹(𝑒)}) = 0

𝑒

𝑒=1

 

Equation 2.12 

To compute the deformation across the whole structure, each element's local stiffness matrix 

is assembled into a global system called the global stiffness matrix [K]: 

[𝐾]{𝑈} = {𝐹} 

Equation 2.13 

Where {U} and {F} represent the global vectors of unknown nodal displacements and nodal 

forces, respectively. 

2.8 Finite element solution procedure 

The mechanical behaviour of bone is non-linear, which must be accounted for within the FE 

analysis. For a non-linear analysis, the stiffness matrix will change for every iteration of the 

analysis due to material non-linearity, where the material properties are functions of the 

stress or strain, contact non-linearity, where gaps may open or close between components, 

or geometric non-linearity, where the deformation is large enough that the equilibrium 
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equations must be solved according to the deformed geometry (Cook et al., 2001). One of the 

most common methods for solving a non-linear problem is the Newton-Raphson method, see 

Figure 2.16. This method solves the non-linear load-displacement relationship iteratively at 

steps, n, that are generated by load increments ∆𝐹𝑛, which is defined as: 

{∆𝐹}𝑛 = {𝐹𝑒𝑥𝑡}𝑛+1 − {𝐹𝑖𝑛𝑡}
𝑛+1

𝑖−1
   

Equation 2.14 

Where {𝐹𝑒𝑥𝑡}𝑛+1 is the externally applied forces at each load step (n) and {𝐹𝑖𝑛𝑡}𝑛+1
𝑖−1  defines 

the element nodal forces at each iteration (i) and load step (n).  

It is assumed that at load step n=1, {𝐹} = {𝐹}𝑛,  {𝑈}𝑛 is known. For the applied load {𝐹}𝑛+1 =

{𝐹}𝑛 + {∆𝐹}𝑛, the solution for {𝑈}𝑛+1 must be computed. For each iteration,  {∆𝑈}𝑖 is 

calculated by the product of the new stiffness matrix and the load increment ∆𝐹𝑛, both at the 

𝑖th iteration of load step 𝑛 + 1,. 

{∆𝑈}𝑖 =  [𝐾𝑇]𝑛+1
𝑖−1 {∆𝐹}𝑛 

Equation 2.15 

The corresponding nodal displacements, {𝑈}𝑛+1
𝑖 ,  are then approximated as: 

{𝑈}𝑛+1
𝑖 = {𝑈}𝑛+1

𝑖−1 + {∆𝑈}𝑖 

Equation 2.16 

This process continues using Equation 2.16 and Equation 2.17 until the residual forces, 

{∆𝑅}𝑛+1
𝑖 , and nodal displacements {∆𝑈}𝑛+1

𝑖  are sufficiently small to accept the solution has 

converged. 

{∆𝑅}𝑛+1
𝑖 = {𝐹𝑒𝑥𝑡}𝑛+1 − {𝐹𝑖𝑛𝑡}

𝑛+1

𝑖−1
   

Equation 2.17 
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2.8.1 Vertebral FE models 

The use of FE models to analyse how lytic lesions affect the stability of the spine and 

mechanical properties of individual vertebrae were initially applied to idealised geometry 

with lesions (Mizrahi, Silva and Hayes, 1992; Whyne, Hu and Lotz, 2001, 2003; Tschirhart, 

Finkelstein and Whyne, 2007). Further development of these models utilised patient-specific 

data of vertebrae with simulated lesions (Matsuura et al., 2014; Galbusera et al., 2018) and 

real lesions (Campbell et al., 2017).  

Vertebral boundary conditions in FE models have been assigned to apply load through 

adjacent vertebral bodies or embedded endplates. Applying an axial compressive load over 

the endplate (simulating a vertebra embedded in resin) has been considered an acceptable 

method for most applications. Despite these methods proving to be equivalent when 

predicting the ultimate force and damage distribution (Maquer, Dall’Ara and Zysset, 2012), 

modelling a single vertebra does not represent the loading conditions of the whole spine, 

including the intervertebral discs (Jackman et al., 2015). However, Lu et al., concluded that 

the prediction of vertebral strength was not improved by the inclusion of intervertebral discs 

Figure 2.16 - Newton-Raphson method showing the iterative process of the applied load step n+1. 

(Adapted with permission: Classical and Computational Solid Mechanics, YC Fung, Pin Tong & Xiao 

Hong Chen, Copyright @2017 by World Scientific Publishing Co. Pte. Ltd.) 
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(Lu et al., 2014). For a clinical tool, modelling the whole spine would give the advantage of 

assessing the fracture risk of every vertebra, as in most cases, the vertebrae adjacent to a lytic 

vertebra are also at high risk of fracture due to the alteration of biomechanical properties 

resulting from the cancer (Anitha et al., 2017).  

The effect of lytic lesions on the mechanical properties of bone has been studied using several 

plasticity laws. Campbell et al., whose study focused on MM patients with and without 

fracture, reported high accuracy when using a simple elastic-perfectly plastic model to predict 

the stiffness, yield force and work-to-yield (Campbell et al., 2017). The inclusion of bilinear 

elastic-plastic constitutive laws provides a more accurate representation of the material 

properties, and has proven to be highly accurate when predicting the ultimate forces in 

compression for vertebra without lesions (Buckley, Loo and Motherway, 2007; Wang et al., 

2012). This plasticity model has also been used when validating the prediction of structural 

properties of human vertebra with lytic lesions (Matsuura et al., 2014), showing a high degree 

of accuracy as the FE models were highly correlated to the experimental values for fracture 

load (R2=0.78). Nevertheless, Groenen et al., reported the limited ability of predicting 

ultimate loads (0.22≤R2≤0.25) when using simple plasticity models despite good estimations 

of stiffness (0.64≤R2≤0.69) (Groenen et al., 2018).  

2.9 Mechanobiological Modelling 

The bone remodelling process in healthy bone, described above in Section 2.3.1, is a 

continuous process whereby new bone is formed to replace mature and damaged bone. 

Osteoclasts and osteoblasts remove and form bone respectively, working together to create 

a balance between bone formation and resorption. If this balance is disrupted, it will lead to 

the development of certain bone pathologies, such as osteoporosis (Feng and McDonald, 

2011). 

Bone remodelling differs between cortical and trabecular bone. Trabecular bone remodelling 

occurs on the surface of the trabeculae, where osteoclasts create a resorption lacuna 

followed by osteoblasts that fill this lacuna with new bone. This process lasts around 180 days 

(30-40 days for resorption and 150 days for formation) (Pant et al., 2021). In contrast, the 

cortical bone remodelling cycle is shorter (around 120 days) (Agerbæk et al., 1991) and works 

by a group of osteoclasts cutting through the bone, forming canals, followed by osteoblasts 
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that lay down osteoid (Pant et al., 2021). Bone changes can be categorised into remodelling, 

which is remodelling to repair damage and adapt to loading and modelling or shaping of the 

bone, which dictates the modification of the bone shape (Cowin and Van Buskirk, 1979).  

2.9.1 Mechano-regulation modelling 

Previous studies have explored mechano-adaptive remodelling extensively to mimic how 

bones react to local mechanical forces. Wolff's law, originally articulated by Julius Wolff in 

1892, posits that bones adapt their internal structure in response to the magnitude and 

direction of the loading (Wolff, 1892). Mathematical models were then developed to 

incorporate Wolff’s Theory along with Frost’s Mechanostat Theory (Frost, 1987; Beaupré, Orr 

and Carter, 1990; Weinans, Huiskes and Grootenboer, 1992). The Mechanostat theory 

describes how the mechanical stimulus influences bone density and is split into four regions 

(Figure 2.17: (1) low stimulus and resorption,  (2) moderate stimulus and quiescence, (3) high 

stimulus and apposition and (4) very high stimulus and failure (Frost, 1987). Additionally, 

implants that disrupt stress and strain fields can alter the internal mechanical environment, 

triggering remodelling even when physiological loading limits are not exceeded (Weinans et 

al., 2000). Consequently, mechano-regulation models require an understanding of both the 

physiological and pathophysiological reactions of bone to mechanical loading.  

Figure 2.17 - Frost's Mechanostat Theory of bone adaptation to mechanical stimuli. 
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Over the past four decades, numerous computational models using the FE method have 

emerged to simulate mechano-adaptive bone responses. Several forms of mechanical stimuli 

have been adopted in these models, including stress, strain, strain energy density (SED), the 

gradient of SED, damage and fluid flow. SED (Weinans, Huiskes and Grootenboer, 1992; 

Huiskes et al., 2000) as well as the gradient of SED (Webster et al., 2015) have frequently 

served as the primary stimulus for remodelling. An early remodelling algorithm using SED was 

developed by Huiskes et al. to investigate bone remodelling in an FE model of an idealised 

femur (Huiskes et al., 1987). Huiskes' model was then built upon by Carter et al. who applied 

the algorithm to a 2D cross section of a femur (Carter, Orr and Fyhrie, 1989). Within these 

models, the reference SED, which was compared to the SED per element, dictated if there 

was bone formation or resorption. The reference SED also determined the size of the lazy 

zone, which was defined as the range of remodelling stimulus where no remodelling takes 

place. Another author used the SED stimulus from an FE analysis to drive a function that 

described the velocity at which bone was added or resorbed from the bone surface (Schulte 

et al., 2013). 

SED has been employed to model both internal and external remodelling processes. For 

instance, Wang et al. developed a model predicting changes in tooth density (internal) and 

position (external) based on SED as the stimulus (Wang et al., 2014). The reference SED 

remodelling algorithm was used to mimic internal remodelling and changes in tooth density, 

whereas the velocity-based function was employed to describe the tooth movement and 

position over time. An earlier model by Beaupre et al. introduced a time-dependent approach 

that combined internal and external remodelling processes, assuming that the disparity 

between expected (reference) and actual mechanical stress drove the remodelling process 

(Beaupré, Orr and Carter, 1990).  

More recently, instead of using the SED per element as the stimulus for bone remodelling, 

studies have utilised the SED per unit mass to drive the bone remodelling process (Behrens et 

al., 2009). This approach has been adopted by a number of studies to investigate 

periprosthetic femurs and implant loading (Mellal et al., 2004; Behrens et al., 2009; Lin, Lin 

and Chang, 2010). However, it's important to note that bone cells cannot directly sense SED, 
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which is a combination of stress and strain; they can only detect stimuli in their mechanical 

environment. 

Studies have utilised other mechanical stimuli, as well as a combination of SED with other 

mechanical stimulus, such as damage, within bone remodelling algorithms. Wang et al. used 

the combination of damage and SED within a basic multicellular unit (BMU) to drive the 

remodelling algorithm (C. Wang et al., 2011). The damage was calculated according to the 

number of cycles to failure, which was dependant on the stress and other material properties 

from previous works (Carter, Hayes and Schurman, 1976; McNamara and Prendergast, 2007). 

In Wang et al.’s (2011) model, if the damage was below a certain threshold, remodelling 

occurred depending on the difference between the reference SED and calculated SED (C. 

Wang et al., 2011). However, if it was above a critical value, the decision if the element would 

undergo remodelling was dictated by a random number generator. Wang et al.’s (2011) 

model was only applied to a 2D cross section of a vertebral body, limiting its applicability (C. 

Wang et al., 2011).  

Mellal et al. evaluated the use of SED per unit mass, peak strain and stress individually as the 

mechanical stimulus for bone remodelling around an implant (Mellal et al., 2004). These 

authors concluded that the stimulus based on the peak strain and SED was consistent with in 

vivo data, however it produced lower compressive stresses than expected (Mellal et al., 

2004). Strain was also used as the stimulus by Dunlop to compare four remodelling rules, a 

step relationship where a strain threshold was used to dictate if there was formation, Frost’s 

Law (Frost, 1987) and two linear relationships between strain level and the probability of 

resorption and deposition to test the use of different treatments, exercise and anti-resorptive 

treatments on the bone volume (Dunlop et al., 2009). All four remodelling rules in Dunlop’s 

study predicted a higher frequency of smaller trabeculae than experimental data, however, 

the step wise rule showed the strongest agreement with experimental data when modelling 

the antiresorptive treatment (Dunlop et al., 2009). This suggests the response to a mechanical 

stimulus should be initiated at a certain threshold rather than a linear relationship with strain.  

2.9.2 Mechanobiological regulation modelling 

The introduction of biological regulation in FE modelling of mechano-adaptation first came 

from Lemaire et al. (Lemaire et al., 2004), who proposed a model employing a system of 
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differential equations to depict the temporal evolution of bone cells. This model also 

accounted for critical factors such as osteoblast-osteoclast coupling, the RANK-RANKL-OPG 

pathway, parathyroid hormone (PTH) administration, and TGF-β (transforming growth factor-

beta). Despite its simplicity and a lack of experimental validation, Lemaire's model laid a solid 

foundation for potential therapeutic interventions in bone-related conditions. Building upon 

this work, Pivonka further expanded the modelling framework by describing the behaviour of 

basic multicellular units (BMUs) based on bone-cell dynamics (Pivonka et al., 2008). 

Additionally, Pivonka's model considered changes in bone volume resulting from BMU 

behaviour and identified a limited set of parameter combinations that produced 

physiologically realistic bone remodelling simulations. Notably, these early models did not 

explicitly incorporate mechanical stimuli, but they paved the way for future developments 

that could integrate mechanical factors into the modelling process. 

Algorithms have been developed from the original work of Lemaire and Pivonka to couple the 

mechanical and biological response of bone. Scheiner et al. extended the work of Pivonka et 

al (Pivonka et al., 2008, 2010) to include a mechanoregulatory feedback response using micro-

mechanical strains to regulate pre-osteoblast evolution and known pathways, such as TGF- β, 

RANKL and OPG to regulate osteoclast evolution and bone cell concentrations. Bone cell 

populations and formation and resorption rates then dictated the bone volume fractions 

(Scheiner, Pivonka and Hellmich, 2013). Another example of a bone remodelling algorithm is 

described by Komarova et al. whereby a mathematical model was constructed to describe the 

temporal changes in osteoblast and osteoclast populations and therefore bone mass at a 

specific site (Komarova et al., 2003). Komarova (2003) established two modes of remodelling, 

where one is targeted, a single re-modelling cycle in response to an external stimulus, and 

one is random, a series of internally initiated cycles of bone remodelling (Komarova et al., 

2003). This suggests that, as well as mechanically induced remodelling, there is an additional 

algorithm that must be developed to explain further changes within the bone (Komarova et 

al., 2003). The algorithm resulted in non-linear behaviour of bone cells and subsequent bone 

mass, showing similar behaviour to what is observed in vivo. These models, however, are 

purely mathematical and not applied to real bone geometry.  
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To bridge the gap between mathematical modelling and FE models, authors have applied 

previously developed algorithms to 2D or 3D FE models. The mechano-regulatory model 

previously mentioned by Huiskes (Huiskes et al., 1987), was continuously updated to 

incorporate a separate description of osteoclastic resorption and osteoblastic formation, an 

osteocyte mechanosensory system, and the role of microdamage (Huiskes et al., 2000). This 

model was applied to a 2D, and later a 3D FE model to demonstrate the theory’s prediction 

of cancellous bone formation (Huiskes et al., 2000; Ruimerman et al., 2003). Komarova’s 

(2003) algorithm (Komarova et al., 2003) was also tested and developed in Hambli’s study 

using an idealised 3D FE model of a proximal femur (Hambli, 2014). Hambli (2014) used 

damage as the mechanical stimulus to influence the osteoclast and osteoblast formation, as 

well as rates of bone formation and resorption which updated the bone density accordingly. 

The algorithms prediction of the BMD distribution in the femur showed many architectural 

features that are observed clinically (Hambli, 2014). To improve the model, these authors 

suggested the use of imaging data (DXA/CT) to incorporate patient specific material 

properties as well as 3D geometry (Hambli, 2014). The purpose of Hambli’s (2014) study was 

to establish a framework to explore the development of new therapeutic treatments for 

pathological conditions and bone disorders such as osteoporosis (Hambli et al., 2016). As with 

most computational studies, there is no experimental work to validate Hambli’s study. 

However, in 2017 Dao et al. (Dao, 2017) combined the FE remodelling framework of Hambli 

with an agent based model to describe the cellular dynamics. Dao (2017) noted the 

qualitatively comparable bone cell evolution and population during a simulation to a follow-

up section obtained using the HR-pQCT technique  (Christen et al., 2014).  

While all the studies described in this section thus far depict normal bone remodelling, some 

authors have extended this to include disease progression and the effect of therapeutics. For 

example, the mechano-regulatory models developed by Pivonka and Scheiner  (Pivonka et al., 

2008, 2010; Scheiner, Pivonka and Hellmich, 2013) were extended by Lerebours et al. to 

simulate osteoporosis in a femur (Lerebours et al., 2016). The model incorporated both 

biological, hormonal regulation and biochemical coupling of bone cell populations, and 

mechanical adaption of the tissue. Their findings were in accordance with experiments, 

simulating endocortical bone loss and cortical wall thinning (Lerebours et al., 2016). Martin 

et al. then studied the efficacy of bone remodelling treatments for osteoporosis (Martin et 
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al., 2020). Their simulation results for bone mineral density at different time points post-

treatment agreed well with the data reported in the literature. In addition, Wang et al. 

simulated the interaction between multiple myeloma (MM) and the bone microenvironment 

(Y. Wang et al., 2011). Their algorithm was based on the model by Pivonka et al. (Pivonka et 

al., 2008) and developed to clarify the most important cell signalling pathways in MM disease 

progression, including TGF-β, IGF-β and RANKL/OPG (Y. Wang et al., 2011).  

FE has also been used to simulate the effect of pharmacological treatments on bone 

remodelling. Hambli (2016) developed a bone remodelling algorithm to simulate the effect of 

denosumab on the proximal femoral bone remodelling (Hambli et al., 2016). They combined 

a model to describe the denosumab absorption in blood serum (Scheiner et al., 2014) with 

their previously developed FE mechanobiological model (Hambli, 2014). They assumed the 

mechanical stress drove the behaviour of osteoclasts and osteoblasts, while the populations 

of osteoclasts and osteoblasts were predicted by the Komarova et al. (2003) model (Komarova 

et al., 2003). In another similar study, Bahia et al. (2020) used SED as the mechanical stimulus 

to assess the effect of antiresorptive drugs on bone remodelling on a proximal femur (Bahia 

et al., 2020). The drug concentration and the SED determined the bone cell populations and 

dynamics which updated the bone mineral density accordingly. The model was able to 

qualitatively capture realistic behaviour in response to mechanical and pharmacological 

stimulus.  

2.10 Gap in the Literature 

The literature review highlighted the extensive use of FE for evaluating mechanical properties 

of vertebra. However, this has yet to be applied to a dataset of prostate cancer patients 

treated with ADT. The literature also demonstrated several promising findings showing that 

remineralisation occurred following the use of bracing to treat instability, suggesting that this 

could be a successful alternative to surgery. However, these studies were purely clinical and 

observational, and do not relate the remineralisation to any change in structural mechanical 

properties or dynamic physiological processes of bone. Therefore, the first objective of the 

thesis was to develop an FE pipeline to pipeline to assess clinical CT images of vertebra with 

and without metastases. This pipeline was then used to evaluate the effect of ADT on the 

mechanical properties of vertebra in addition to assessing if there was an increase in mineral 
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content and subsequent increase in mechanical properties in MM patients treated non-

surgically following anti-cancer treatment. 

The mechanobiological models previously developed to assess bone changes have been 

applied to idealised geometry, the femur or are purely mathematical. Similarly, any 

mechanobiological models predicting bone changes applied to MM patients have been 

mathematical and to understand the development of lesions instead of the post anti-cancer 

treatment. Clinical case studies evaluating the use of radiotherapy and bracing as a non-

surgical treatment for MM vertebral metastatic lesions have shown promising results where 

remineralisation has occurred around and into the lesion, reducing the size of the lesion. 

However, how this remineralisation occurred and whether it was driven by normal 

mechanobiological principles or additional biological mechanisms influenced by the cancer is 

unknown. To bridge the gap between current knowledge of mechanobiological pathways and 

bone changes in MM patients treated non-surgically following anti-cancer treatment, a 

mechanobiological predictive model was developed.  
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3 DEVELOPMENT OF A PATIENT SPECIFIC FE PIPELINE TO ASSESS 

BIOMECHANICAL CHANGES IN VERTEBRA WITH METASTATIC 

CANCER 

3.1 Introduction 

This chapter outlines the datasets used within the thesis as well as the development of the 

finite element (FE) pipeline from a clinical computed tomography (CT) scan through to the 

prediction of mechanical properties of vertebrae from cancer patients. In addition, it details 

three stages of the pipeline that were further developed or optimised; segmentation, material 

property calibration from CT scans and the meshing stage of the FE set up.  

3.2 Datasets 

3.2.1 ANTELOPE trial 

The first dataset included in this study is a time series QCT dataset from the ANTELOPE trial 

(Handforth et al., 2024). Ethical approval was obtained from the South Yorkshire Research 

Ethics Committee in October 2016 (IRAS ID 206171). QCT scans of the T12 vertebra were 

taken at baseline and 12 months after baseline. This dataset included 31 patients in Group A, 

androgen deprivation therapy (ADT) treated group, of which 29 patients completed all study 

assessments and 26 had a matched control. One patient’s QCT scan was unable to be 

reconstructed due to overlapping vertebra so 25 patients make up the cohort within this 

thesis. An overview of the patient demographics data is shown in Table 3.1.  

The first cohort from 2017 was scanned using the GE LightSpeed VCT (GE Healthcare, 

Milwaukee, WI) in the radiology department at the Northern General Hospital, Sheffield, 

whilst the follow-up scans in 2018 along with all second cohort scans were scanned using the 

Toshiba Aquilion ONE (Toshiba Medical Systems, Tokyo, Japan) at the same hospital. Quality 

assurance was performed once per month using a Mindways phantom (Mindways Software, 

Inc., Austin, TX, USA) on both scanners. All scans were performed in the anteroposterior 

position, using the same noise index. The QCT protocol included a single scan from the 

superior edge of the T12 vertebra to the T12/L1 margin. For the GE scanner, the tube voltage 

was 120 kV and the mean tube current was set at 360 mA, with a voxel size of 
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0.937x0.937x0.625 mm3. For the Toshiba scanner, the tube voltage was also 120 kV, the mean 

tube current was set at 250 mA and a voxel size of 0.976x0.976x0.5 mm3. 

Table 3.1 - Patient demographics data for the ANTELOPE treated and control groups (25 subjects per group) 

including age, height, and BMI. 

Treated Age 
(years) 

Height 
(cm) 

BMI 
(kg/m2) 

Matched 
Control 

Age 
(years) 

Height 
(cm) 

BMI 
(kg/m2) 

A01 72 178.8 29 .0 C01 74 192.3 31.4 

A02 80 173.9 26.7 C15 80 175.2 26.3 

A03 67 165.9 21.9 C32 64 171.7 23.5 

A05 67 179.2 27.3 C25 71 182.0 24.9 

A06 70 180.6 31.0 C06 68 182.8 27.1 

A07 72 173.2 23.1 C26 71 173.0 20.4 

A10 71 191.1 32.7 C09 63 188.1 29.6 

A13 65 169.7 27.3 C16 82 169.0 29.7 

A16 82 169.8 32.7 C11 79 175.0 30.7 

A17 76 181.0 24.1 C20 73 178.0 24.2 

A19 79 180.3 24.1 C30 75 181.0 25.5 

A20 74 181.7 28.6 C03 77 180.1 30.1 

A21 71 167.7 25.8 C14 74 168.2 26.8 

A23 64 172.4 25.9 C08 53 184.4 26.9 

A24 78 174.2 25.8 C02 76 169.0 22.3 

A25 73 170.8 28.3 C04 73 173.3 26.2 

A27 80 167.6 25.8 C05 78 170.4 26.9 

A28 76 175.4 27.8 C12 78 179.0 32.1 

A30 76 176.9 30.1 C19 75 180.8 34.9 

A32 80 160.7 26.9 C21 78 159.8 22.7 

A33 76 163.4 34.4 C23 77 163.2 31.8 

A34 72 175.4 31.3 C31 71 171.0 27.6 

A35 73 182.2 24.3 C24 73 184.5 23.9 

A37 80 171.3 23.9 C17 78 169.0 24.9 

A38 67 165.4 23.9 C10 70 161.0 29.3 

Average 
(±SD) 

74  
±5 

174.3 
±6.8 

27.4 
±3.3 

Average 
(±SD) 

73  
±6 

175.9 
±8.0 

27.1 
±3.5 

3.2.2 Royal National Orthopaedic Hospital (RNOH) 

Clinical CT data was obtained from the RNOH which included ten patients each with a baseline 

and follow-up scan at varying months apart (16 ±15 months), seen in Table 3.2 Ethical 
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approval was obtained from the University Research Ethics Committee at the University of 

Sheffield (Reference Number: 044189) 

Three different scanners were used: Phillips ingenuity (Phillips, Amsterdam, Netherlands), 

Phillips brilliance 64 and GE Lightspeed VCT. All protocols had the tube voltage set to 120kV 

while the mean tube current varied from 101-305 mA, the voxel size varied from 

0.3417x0.3417x1 mm3 to 0.6875x0.6875x3 mm3 between protocols. The lytic vertebral level 

was selected by the vertebra with the largest lesion present within both baseline and follow-

up CT scans. 

Table 3.2 - Patient demographics data for the RNOH MM data including age, sex, time between baseline and 

follow-up, vertebral level used within the scan and the condition of the vertebra. 

Patient 
ID 

Age Sex 
Time between 

baseline and follow-
up (months) 

Vertebral 
Level 

Condition 

P1a 77 M 3 
T4 Control 
T3 Lytic 

P3 66 M 12 
T10 Control 
T11 Lytic 

P3a 63 M 12 
T10 Control 
T11 Lytic 

P5 74 M 8 
T4 Control 
T6 Lytic 

P5a 73 M 37 
T1 Control 
C7 Lytic 

P8 47 M 2 
T4 Control 
T3 Lytic 

P9 61 M 37 L3 Lytic 

P9a 49 M 9 
T10 Control 
T11 Lytic 

P11 77 M 38 
L3 Control 
L4 Lytic 

P12 34 M 4 
T3 Lytic 

T4 Lytic 

Average 
(±SD) 

62 ±15  16 ±15   

3.2.3 Sheffield Teaching Hospitals (STH) 

Clinical CT data at baseline and 12 months along with bone turnover marker (BTM) data (CTX, 

P1NP and sclerostin) at 1-, 2- and 3-months post baseline was obtained from Sheffield 
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Teaching Hospitals (Table 3.3, Table 3.4). The study was conducted according to the guidelines 

of the Declaration of Helsinki and approved by the Health Research Authority and Health and 

Care Research Wales (HCRW), and the Yorkshire & The Humber – Bradford Leeds Research 

Ethics Committee, United Kingdom (REC 18/YH/0275). Two CT scanners were used; Toshiba 

Aquillon ONE and Toshiba Aquillon PRIME SP both using a tube voltage of 120 kV and a voxel 

size of 1x1x1 mm3.  

Table 3.3 - Patient demographics data for the STH MM data including age, sex, vertebral level used within 

the scan, the condition of the vertebra and whether the patient had bone turnover marker (BTM) data. 

Patient ID Age Sex Level Condition BTM Data 

BRATS001 64 M T4 Lytic Yes 

BRATS002 66 M T2 Control No 

BRATS003 64 M T8 Control No 

BRATS005 68 M T12 Control Yes 

BRATS006 60 F T12 Lytic Yes 

BRATS009 64 M T12 Control Yes 

BRATS011 66 F T11 Lytic Yes 

 

Table 3.4 - Carboxy Terminal Collagen Crosslinks (CTX), Procollagen 1 N-terminal Propeptide (P1NP) and 

Sclerostin data for each patient at 1-, 2- and 3-months post Baseline. 

CTX (ng/mL)   

Patient ID Month 1 Month 2 Month 3 

BRATS001 0.062 0.033 0.062 

BRATS005 0.373 0.138 0.053 

BRATS006 1.386 0.116 0.07 

BRATS009 0.091 0.033 0.003 

BRATS011 0.233 0.033 0.033 
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P1NP (ng/mL)   

Patient ID Month 1 Month 2 Month 3 

BRATS001 44.13 36.71 41.41 

BRATS005 86.86 54 4.98 

BRATS006 230 21.46 25.02 

BRATS009 17.79 7.84 8.54 

BRATS011 78.98 67.94 13.43 

 

Sclerostin (pmol/L)   

Patient ID Month 1 Month 2 Month 3 

BRATS001 15.267 13.568 19.603 

BRATS005 35.979 31.153 31.108 

BRATS006 42.285 33.727 21.444 

BRATS009 24.44 21.911 18.291 

BRATS011 29.506 24.44 26.93 

3.3 Introduction to the FE Pipeline 

The finite element pipeline developed for this thesis involved taking CT images, converting 

them into 3D models through segmentation, applying material properties and constraining 

the body for simulation to assess the mechanical properties, Figure 3.1. The FE pipeline has 

been used extensively to evaluate the mechanical properties of vertebrae with (Campbell et 

al., 2017) and without lesions (Buckley, Loo and Motherway, 2007; Wang et al., 2012). Manual 

segmentation is currently still the gold standard method for segmenting CT images of 

vertebrae with lesions, however, this process has not been investigated for reproducibility or 

the effect of the image quality on the segmentation, inherently affecting the prediction of 

mechanical properties.  
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Separately, phantom calibration is currently the gold standard for calibrating CT scans; 

however, it restricts analyses to prospective studies or studies within radiological 

departments where phantoms are scanned routinely. Conversely, in oncology departments, 

it is not routine to scan with phantoms, therefore a phantomless procedure would enable the 

processing of several retrospective datasets. Thus, the use of a phantomless calibration 

method as opposed to a phantom calibration has not been compared in vertebrae to date, 

despite the obvious advantages for both resource-poor settings and investigating 

retrospective datasets. Finally, the meshing stage of the pipeline must be optimised for the 

dataset and pipeline to ensure there is no influence of the mesh on the prediction of the 

mechanical properties.  

Therefore, three stages of the pipeline were highlighted to fill a gap in the literature and 

optimise the current pipeline: (1) segmentation, (2) CT densitometric calibration and (3) 

meshing. The segmentation reproducibility was assessed through comparing repeated 

segmentations from the same user using the Dice similarity coefficient (DSC) and Hausdorff 

distance. The CT calibration methods, phantom and phantomless were evaluated and 

compared using the prediction of the volumetric Bone Mineral Density (BMD). Finally, the 

meshing stage was optimised by conducting a mesh refinement study.  

3.4 Intra-observer reproducibility of manual segmentation procedure 

Segmentation is the process whereby a medical image is used to separate the object of 

interest from the background. The use of manual segmentation has been evaluated for 

reproducibility (DeVries et al., 2008) and validated for FE studies of bone strength (Garavelli 

et al., 2022) but the impact of lesions on the reproducibility has not been assessed. Therefore, 

the objective of this subchapter was to assess the intra-observer variability of a single 

operator in segmenting vertebrae. Segmentations were performed on QCT scans of individual 

Segmentation Meshing and 
Mapping 

FE 
Simulation 

CT Image 

Figure 3.1 – Overview of a finite element pipeline commonly used in literature. 
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vertebra in 3D slicer. To evaluate the reproducibility of the segmentations, the Dice Similarity 

Score (DSC), a measure of the overlap between two segmentations, mean Hausdorff distance, 

the mean of the maximum surface-to-surface distances between two segmentations and 95% 

Hausdorff distance, which reduces sensitivity to outliers compared to the mean Hausdorff 

distance by taking the 95th percentile, were used. 

3.4.1 Introduction 

Segmentation of medical images has numerous applications including diagnosis and 

monitoring disease progression (Wehrli et al., 2006) and analysis of mechanical properties 

using finite element modelling (Saillard et al., 2024). MRI, CT and PET/CT have been used in 

the above applications for the segmentation of bone (Liu et al., 2021; Aldieri et al., 2024; 

Majcher et al., 2024; Saillard et al., 2024). For assessing the risk of fracture of bone with 

lesions, CT is the modality of choice due to the ability to visualise both trabecular and cortical 

bone with high resolution (Heindel et al., 2014). Despite CT being limited when analysing soft 

tissues compared to MRI, CT still allows for the detection and segmentation of metastatic 

lesions (Aldieri et al., 2024).   

Segmentation modalities have been compared to assess the reproducibility of each technique 

depending on the application. To detect and segment tumours, automatic segmentation 

methods have been applied previously, with U-Net being the most popular algorithm of 

choice (Cheng et al., 2021; Liang et al., 2024). Segmentation of lesions in soft tissue have 

shown low repeatability (DSC 0.6-0.73) (Nishio et al., 2021; von Schacky et al., 2021) and 

segmentation of lesions within bone have also shown similar results (DSC 0.67-0.72) (Xu et 

al., 2018). Recent studies have successfully applied an automated segmentation algorithm to 

a dataset of healthy vertebrae (DSC 0.93)  (Liang et al., 2024), vertebrae with lytic lesions (DSC 

0.93) (Faghani et al., 2023), and fractured vertebrae (DSC 0.93-0.94) (Park et al., 2022). 

However, these algorithms have not been validated for use in FE applications.  

Manual methods such as thresholding have also been applied and validated to laser surface 

scans resulting in minor mean differences (0.2 mm) (DeVries et al., 2008). The inter-operator 

variability in this study was also low, having high relative overlaps in all segmentations (0.89-

0.93). The high reliability was attributed to the high resolution of the CT and high contrast 
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between bony structures and surrounding tissue. Similarly, Rathnayaka et al. utilised intensity 

thresholding and found similar mean differences (0.18 mm) which they deemed an 

acceptable level due to the error being less than the resolution of the scan (Rathnayaka et al., 

2011). Thresholding with manual editing has been utilised in a validation study of finite 

element models of osteoporotic vertebrae and found excellent correlation with experimental 

results (R2=0.94-0.98) (Garavelli et al., 2022). Manual segmentation was also adopted in other 

FE studies to assess the mechanical properties of vertebrae with metastatic lesions (Costa et 

al., 2019).  

Evaluating intra-operator variability is important for accurate FE model creation. The 

geometry is highly influential in the accuracy of the FE simulations, so consistent 

segmentation results in more accurate representation of anatomical structures of interest 

(Wysocki and Doyle, 2022). Additionally, the segmentation has a direct influence on the 

material property assignment. For example, if the segmentation varies substantially, the 

cortical shell may include more or less high-density bone depending on where it is segmented. 

Another reason for consistent segmentation is to ensure the results of the FE are 

reproducible. This is important for validating and comparing results across different 

simulations. Therefore, the aim of this study was to evaluate the intra-operator variability 

when segmenting healthy vertebrae and vertebrae with lytic lesions. The image quality, a 

combination of pixel size, slice thickness and tube current, was also compared to the 

evaluation metrics for reproducibility to understand what has the greatest effect. 

3.4.2 Patient Data 

QCT scans of healthy control (n=5) vertebra from the ANTELOPE study (Handforth et al., 2024) 

(Table 3.1 for description of dataset) and of MM patients from clinical data (n=5) (Table 3.2 

for description of dataset). The vertebrae segmented in the MM group were selected based 

off the segment with the largest lesion including cortex infiltration.  

3.4.3 Methods 

Segmentation software 3D Slicer (3D-slicer 5.6.2, [https://www.slicer.org/] (Fedorov et al., 

2012))  was used to generate 3D models of each vertebra. Each vertebra was segmented three 

times by a skilled operator with the segmentations taking place more than 6 days apart to 
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reduce memory effects. Masks were created for each vertebrae which represented a number 

of voxels defining the shape of an anatomical component (Cook et al., 2012). Initially, 

thresholding was applied to define which voxels were included in the mask depending on 

their grey level. The threshold was adjusted by the operator until the mask was optimised for 

the maximum amount of bone and a well-defined cortex whilst minimising soft tissue. Once 

the thresholding was optimised, the mask was assessed for any bridging, areas between 

vertebrae where no bony tissue exists, and manually resolved to ensure only bone was 

included in the mask. The interior of the mask was then filled manually based on the mask 

boundaries in the sagittal plane. Manual detailing was necessary when the initial thresholding 

over or under selected the vertebrae. A final check was conducted to ensure all anatomical 

views of the vertebra were defined by the mask Figure 3.2. 

To evaluate the reproducibility of the segmentations, two evaluation metrics were selected: 

DSC and Hausforff distance (HD). DSC is a good overall measure of how well something 

matches by assessing the overlap where a higher value indicates better agreement. HD is 

useful for assessing differences when there is a complex boundary which is applicable in this 

case as vertebrae are irregular bones (Taha and Hanbury, 2015). HD is the maximum distance 

between the points on the boundary of one mask and the closest points on the boundary of 

the other where lower values indicate better agreement. 

Figure 3.2 - Example of segmentation comparison process in 3D slicer. Two segmentations (1) 

in yellow and (2) in green. 
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DSC:  

𝐷𝑆𝐶 = 
2|𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
 

Equation 3.1 

Where X and Y are the two masks being compared, |X ∩ Y| is the size of the overlap between 

X and Y and |X| and |Y| are the sizes of the masks X and Y respectively. 

Hausdorff Distance:  

𝐻(𝑋, 𝑌)  = max (ℎ(𝑋, 𝑌), ℎ(𝑌, 𝑋)) 

Equation 3.2 

Where X and Y are two sets of points on masks X and Y respectively and ℎ(𝑋, 𝑌) is the distance 

between points a and b. 

To assess how the image quality affects the reproducibility of the segmentation, the 

relationship between three parameters and the DSC and HD were evaluated: pixel size, tube 

current and slice thickness. Pixel size is defined by the distance between the centres of two 

adjacent pixels in the imaging plane. Smaller pixel size usually results in higher spatial 

resolution, meaning more detail can be captured in the image and lower partial volume 

effects. Slice thickness is the distance between the centres of adjacent slices. Smaller slice 

thickness provides a more continuous coverage of the scanned volume, which can improve 

the accuracy of volumetric measurements. Tube current is the flow of electric charge through 

the X-ray tube's filament, measured in milliamperes (mA). Higher tube current results in more 

X-rays being generated, which can improve the image quality by increasing the signal-to-noise 

ratio. However, Increasing the tube current increases the amount of radiation delivered to 

the patient so this needs to be balanced to get the highest image quality without needlessly 

damaging the patient.  

To assess the variability of using the DSC and HD the mean and standard deviation was 

calculated. To compare the reproducibility of the control and MM groups, a Mann-Whitney 

U-test was applied where significance was recognised at P < 0.05. To compare the variance in 

segmentation per patient between each group, Levene’s test was conducted where p < 0.05 

indicated significance. The metrics were also compared to pixel size, slice thickness and tube 
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current using a Spearman rank correlation. Due to the small sample size, an r ≤ 0.5 represents 

a weak correlation, 0.5 < r<0.9 is moderate correlation and 0.9 < r≤1 is a strong correlation, 

with p-values where significance was considered for p < 0.05. To evaluate the combined use 

of the image quality parameters, a multivariate linear regression analysis was performed with 

p-values where significance was considered for p<0.05.  

3.5 Results 

Table 3.5 shows the overall results for the DSC, average and 95% maximum Hausdorff 

distance, pixel sizing, slice thickness and tube current for both the control and MM groups. 

There was no significant difference between the control and MM group for both DSC (Control: 

0.97 ±0.02, MM: 0.95 ±0.03), mean Hausdorff Distance (Control: 0.27 ±0.22 mm, MM: 0.34 

±0.22 mm) and 95% Hausdorff distance (Control: 0.79 ±0.38 mm, MM: 1.00 ±0.31 mm). There 

was a trend towards higher reproducibility for the control group, but this would need testing 

with a larger dataset. 

Table 3.5 - Results overview of the DSC, average and 95% Hausdorff distance, pixel size, slice spacing and 

mean tube current for the control and MM dataset. 

 

DSC 

(avg 

±std) 

Average 

Hausdorff 

Distance 

(mm) (avg 

±std) 

95% 

Hausdorff 

Distance 

(mm) (avg 

±std) 

Pixel size 

(mm) (avg 

±std) 

Slice 

Thickness 

(mm)              

(avg ±std) 

Mean tube 

Current 

(mA)      

(avg ±std) 

Control 1 
0.98 

±0.009 

0.18 

±0.09 

0.73 

±0.37 
0.9375 0.3 360 

Control 2 
0.96 

±0.03 

0.33 

±0.27 

0.66 

±0.57 
0.9375 0.3 360 

Control 3 
0.95 

±0.03 

0.43 

±0.33 

0.97 

±0.58 
0.9375 0.3 360 

Control 4 
0.97 

±0.02 
0.30 ±0.3 

0.73 

±0.37 
0.9375 0.3 360 

Control 5 
0.99 

±0.004 

0.11 

±0.03 

0.88 

±0.11 
0.9375 0.3 360 

Lytic 1 
0.96 

±0.02 
0.28 ±0.1 0.8 ±0.2 0.39 0.5 305 
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Lytic 2 
0.95 ± 

0.02 

0.41 

±0.17 
1.38 ±0.2 0.67 1.5 298 

Lytic 3 
0.95 

±0.02 

0.30 

±0.13 

0.74 

±0.19 
0.39 0.5 186 

Lytic 4 
0.92 

±0.04 

0.60 

±0.34 

1.22 

±0.34 
0.69 1.25 101 

Lytic 5 
0.98 

±0.003 

0.14 

±0.013 
0.87 ±0 0.34 0.5 226 

Control avg 
0.97 

±0.02 

0.27 

±0.22 

0.79 

±0.38 
0.9375 ±0 0.3 ±0 360 ±0 

MM avg 
0.95 

±0.03 

0.34 

±0.22 

1.00 

±0.31 

0.4968 

±0.15 
0.85 ±0.45 216 ±70 

p - value 0.095 0.69 0.2 0.0079 0.0079 0.0079 

p - value 0.095 0.69 0.2 0.0079 0.0079 0.0079 

 

Figure 3.3 shows the grouped and individual data for both evaluation metrics for the control 

and MM groups. The data for the average Hausdorff distance was equally distributed in both 

the control and MM groups (Figure 3.3, B), as well as having a similar range. The range of DSCs 

and 95% Hausdorff distance was larger for the MM group compared to the control (Figure 

3.3, A & C). For the MM group, the patients whose DSC were the highest (Lytic 1 and Lytic 5) 

had more similar scan properties to that of the controls (Table 3.5, Figure 3.4 A) which allowed 

for more consistent segmentation compared to the rest of the cohort. In particular, the 

patient with the lowest DSC (Lytic 4) has a scan of lower quality, larger pixels and slice 

thickness and lower tube current (Table 3.5, Figure 3.4 B). 

A B C 

Figure 3.3 - Box plots showing the DSC (A), average Hausdorff distance (B) and 95% Hausdorff 

distance (C) for the control and MM datasets. 
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Due to the difference in segmentation consistency in the MM group, the relationship between 

the evaluation metrics and the current, pixel size and slice thickness were evaluated. Linear 

regressions were constructed, and the significance of the correlation was determined (Figure 

3.5). The current had a weak and insignificant correlation with the DSC (r = 0.5, p = 0.45) and 

the Hausdorff distance (r = -0.5, p = 0.45). However, the Pixel size had a strong but insignificant 

correlation with the DSC (-0.9, p = 0.08) and a moderate but insignificant correlation the 

Hausdorff distance (r = 0.8, p = 0.13). Similarly, the slice thickness had a moderate but 

insignificant correlation with both the DSC (r = -0.78 p = 0.2) and Hausdorff distance (r = 0.78, 

p = 0.2).  

(A) (B) 

 
Figure 3.4 - Representative segmentations of (A) Lytic 1 – CT scan with the best scan quality (B) and Lytic 4 – 

CT scan with the worst scan quality. 
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As the relationship between the evaluation metrics and pixel size and slice thickness was 

moderate to strong but not significant, a multivariate analysis was conducted to understand 

whether the combination of these two scan properties significantly influenced the 

segmentation reproducibility (Figure 3.6). The pixel size and slice thickness could significantly 

(p = 0.014) explain 98.6% of the variance in the DSC. There was a significant, strong, negative 

Figure 3.5 - Linear regression analysis between (A) Pixel size and DSC, (B) Pixel thickness and Hausdorff 

distance, (C) Tube current and DSC, (D) Tube current and Hausdorff distance (E) Slice thickness and DSC 

and (F) Slice thickness and Hausdorff distance. 

A B 

C D 

E F 
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relationship between pixel size and the DSC (p = 0.011) and a significant positive relationship 

between the slice thickness on the DSC. The pixel size and slice thickness could significantly 

(p = 0.006) explain 99.4% of the variance in the Hausdorff distance. In comparison to the DSC, 

pixel size had a significant, positive relationship on the Hausdorff distance (p = 0.007) while 

slice thickness had a significant, negative relationship with Hausdorff distance (p = 0.015). 

3.5.1 Discussion 

The evaluation of the segmentation accuracy revealed better consistency in the control group 

due to the slightly higher average DSC. However, both groups exhibited high DSC (>0.9), 

indicating good overall segmentation accuracy. In addition, the MM group had a slightly 

higher average Hausdorff distance, suggesting slightly worse spatial accuracy. 

The correlation between tube current and both evaluation metrics was weak and not 

statistically significant. This indicates that tube current has a limited impact on segmentation 

accuracy. The tube current increases image contrast, possibly aiding the thresholding stage 

of the segmentation. Nevertheless, an increase in tube current can also increase the noise 

A B 

Figure 3.6 - Multivariate analysis of the combined effects of Image quality parameters and the evaluation metrics. (A) 

predicted DSC from a combination of slice thickness and pixel size, (B) predicted Hausdorff distance from slice 

thickness and pixel size. 
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and degradation of the image, which could explain why higher tube currents are not highly 

correlated with a high DSC or low Hausdorff distance. The study found a strong but 

insignificant correlation between pixel size and both the DSC and average Hausdorff distance 

and a moderate but insignificant correlation between slice thickness and both the DSC and 

average Hausdorff distance.  

To further analyse the use of these parameters in predicting segmentation consistency, the 

multivariate analysis evaluated combinations of these parameters. The variance in the DSC 

could be explained by the combination of the pixel size and slice thickness. The pixel size and 

slice thickness both contribute significantly to the overall image quality, with pixel size 

primarily effecting the spatial resolution and noise level and slice thickness mainly dictating 

how much axial volumetric information is gathered. Therefore, as the DSC is a measure of 

overlap, a smaller pixel size would allow for more consistent selection of the correct pixels 

and a smaller slice thickness would reduce the differences in the axial direction. For the 

Hausdorff distance, the combination of both pixel size and slice thickness gave a significant 

explanation of up to 99% of the variance. The Hausdorff distance in the individual regression 

analysis was negatively influenced by both pixel size and slice thickness, suggesting that a 

larger pixel size and slice thickness increased the averaged difference at any two points 

between the two segmentations.  

3.5.2 Conclusion 

While the study did not find significant differences between the control and MM groups, it is 

essential to consider the limitations of the dataset. The sample size was relatively small, and 

the variability within the MM group may have been limited. Further studies with larger 

datasets and a wider range of scanning protocols and vertebral levels are needed to confirm 

the generalisability of these findings. 

This study demonstrates the significant impact of image quality on vertebral segmentation in 

QCT scans. Pixel size and slice thickness emerged as key predictors of segmentation accuracy, 

with smaller pixel sizes and thinner slices leading to improved results. These findings highlight 

the importance of optimising image acquisition parameters to enhance the reliability and 

accuracy of vertebral segmentation. By carefully considering factors such as pixel size and 
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slice thickness, researchers and clinicians can improve the quality of segmentation results for 

various applications, including clinical diagnosis, treatment planning, and research.  

While the image quality parameters varied in the lytic groups CT scans, influencing the 

reproducibility, the DSC and Hausdorff distances were considered acceptable for processing 

through the rest of the FE pipeline. For the following studies in this thesis, segmentations 

were performed once by the same trained operator to ensure the same consistency as 

reported in this section. 

3.6 Phantom and phantomless densitometric calibration 

The aim of this subchapter was to estimate the densitometric calibration laws, with a 

calibration phantom, which are used in the mapping of the heterogeneous material 

properties of the QCT-based FE models of vertebrae used in Chapter 4 to study the effect of 

ADT in prostate cancer patients. The ANTELOPE dataset was then used to validate the 

phantomless calibration method later used in Chapter 5 to assess the effect of 

remineralisation of lytic lesions in MM patients following treatment. 
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3.6.1 Patient Data 

The ANTELOPE dataset was utilised for this subchapter where all fifty QCT scans, both control 

and treated, were used. More information on this dataset can be found in Table 3.1 and 

Section 3.2.1. 

A 

B 

C 

Figure 3.7 - Density calibration methods for quantitative CT analysis. (A) Phantom-based calibration 

uses the phantom. Each calibration rod is sampled from the image to determine linear conversion 

between HUs and equivalent density. (B) In scan tissues of reference (adipose (SAT), air, blood (aorta), 

and skeletal muscle (ES)) are sampled adjacent to the bone of interest for internal calibration. (C) HUs 

and mass attenuation coefficients for each tissue (circle data points) are correlated by iterating at each 

effective energy (EE). Scan effective energy is determined by maximizing the coefficient of 

determination across all effective energies (black diamond). 
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3.6.2 Calibration with phantom 

The QCT scan protocol included a solid inline calibration phantom (Image Analysis, Inc., 

Columbia, KY, USA) containing rods of 0, 0.075, and 0.15 g/cm3 equivalent concentration of 

calcium hydroxyapatite. The densitometric calibration was computed using a standard 

approach, which assumes a linear relationship between the average Hounsfield units (HU) 

and the known equivalent mean values of equivalent BMD of each rod. To do so, one region 

of interest (ROI), Figure 3.7A, was defined manually within each insertion of the phantom 

(ImageJ) (Rasband, 1997; Schneider, Rasband and Eliceiri, 2012). The ROIs were defined as 

square regions centred within each calibration rod with length equal to half the edge length 

of the rod (12.5 mm). For each of the three rods, mean HU values over the same 10 slices 

were used to perform the linear regression analysis for calibration, Equation 3.3.  

𝜌𝑄𝐶𝑇  =  a +  b𝐻𝑈 

Equation 3.3 

Where 𝜌𝑄𝐶𝑇 represents the QCT equivalent BMD, 𝐻𝑈 represents the Hounsfield unit values 

of the densitometric calibration law and a and b are constants from the linear regression 

analysis performed. 

3.6.3 Phantomless Calibration 

To calculate the phantomless calibration equation, a combination of internal materials (IM) 

was used. From each scan, tissue ROIs for adipose (SAT), air, aortic blood, and skeletal muscle 

(ES) were manually sampled from the scan field-of-view, as depicted in Figure 3.7B. To reduce 

influence of variations in tissue HUs across the scan field-of-view, the ROIs were placed 

adjacent to the bones of interest (T12 vertebra) for each tissue, and the mean HUs were 

determined from the tissue sample aggregated histograms of ten 2D slices. Using mass 

absorption coefficients obtained from the National Institute of Standards and Technology 

(www.nist.gov National Institute of Standards and Technology, NISTIR 4999), the scan 

effective energy was estimated by iteratively correlating the ROI-specified HUs and 

corresponding mass absorption coefficient at each energy level and maximizing the 

coefficient of determination (Millner et al., 1978), as shown in Figure 3.7C. For compounds as 

HA (Ca10(PO4)6(OH)2, [24]) that are not tabulated in NIST, mass absorption coefficients can 

be calculated if the atomic mass fractions and the mass densities are known. Once the scan 

http://www.nist.gov/
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effective energy was determined for the scan, the mass absorption coefficients, equivalent 

density and measured HU values for each material were used in a two-component mass 

fraction model (Genant and Boyd, 1977) to calculate the associated calibration equation, 

Equation 3.4. 

𝜌𝑄𝐶𝑇 =  

(
𝜇
𝜌)

1
𝜌1

𝐻𝑈 − 𝐶𝑇2
𝐶𝑇1 − 𝐶𝑇2

+ (
𝜇
𝜌)

2
𝜌2

𝐻𝑈 − 𝐶𝑇1
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− (
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𝜌)

𝑤
𝜌𝑤

(
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𝜌)

𝐻𝐴
− (

𝜇
𝜌)

𝑤

𝜌𝑤

𝜌𝐻𝐴

 

Equation 3.4 

Where 𝜌𝑄𝐶𝑇 represents the QCT equivalent BMD, 𝐻𝑈 represents the Hounsfield unit values 

of the densitometric calibration law, 𝐶𝑇1 and 𝐶𝑇2 represent the averaged grey value of each 

internal material, 𝜌1 and 𝜌2 represent the density of each internal material, 𝜌𝑤 and 𝜌𝐻𝐴 

represent the density of water and hydroxyapatite respectively and (
𝜇

𝜌
)
1
and (

𝜇

𝜌
)
2
represent 

the mass absorption coefficient for the internal material, (
𝜇

𝜌
)
𝑤

and (
𝜇

𝜌
)
𝐻𝐴

 represent the mass 

absorption coefficients for water and hydroxyapatite respectively. 

Table 3.6 - Mass densities of internal calibration materials obtained from the National Institute of Standards 

and Technology (NIST) database. ES: erector spinae muscle, SAT: subcutaneous adipose tissue. 

Material Density (g/cm3) 

Blood 1.06 

Air 1.205 X10-3 

ES 1.04 

SAT 0.92 

In order to validate the theoretically calculated accuracy errors for each of the fifty datasets, 

measured trabecular CT values of the T12 vertebra were converted to BMD by the linear 

phantom and phantomless calibration equations. Then for each scan, the difference ΔBMDs 

between the phantomless calibration and the standard phantom based QCT procedure was 

determined. 
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3.6.4 Results  

Figure 3.8 shows the absolute BMD differences between phantomless and phantom based 

calibration. Highest mean ΔBMDs values were found for the combination of air and fat (SAT) 

(0.0197 g/cm3) and for the combination of adipose tissue and ES muscle (0.0156 g/cm3). For 

all other IM combinations, the mean difference was below 0.015 g/cm3, with the smallest 

ΔBMDs mean value for the combination of aorta and air (0.0045 g/cm3). 

Figure 3.9 details the linear regressions of between the phantom and phantomless estimated 

BMD values for all IM combinations. Spearman’s correlation was calculated, and all paired 

combinations had a strong and significant correlation between phantom and phantomless 

BMD, with the combination of air and aorta having the strongest correlation (r =0.98, p<0.01). 

Figure 3.8 - Absolute BMD differences between phantomless and phantom based calibration for five 

different IM combinations. Top and bottom horizontal borders of the blue box indicate the 25th and 75th 

percentiles with their distance representing the interquartile range (IR), the red line shows the median. Red 

points outside the dashed lines (Whisker) are outlies with values > 1.5 × IR. 
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Therefore, for future studies, in this thesis, using the phantomless calibration method, the 

combination of air and aorta will be used. 

3.7 Mesh Convergence Analysis 

3.7.1 Patient data  

Data relative to one patient was used in this preliminary analysis towards the definition of the 

FE modelling methodology. The chosen dataset (P1a) was representative of a critical lytic 

vertebra present within the RNOH multiple myeloma study’s cohort (see section 3.2.2). From 

this patient, three vertebrae were modelled: one with a lytic lesion (T4) and two adjacent 

controls without lesions (T3 and T5). 

3.7.2 Methods 

Each vertebra was reconstructed from clinical CT scans into a 3D model using 3D-Slicer 

(Fedorov et al., 2012). The vertebra models were then aligned to ensure the loading was 

applied perpendicular to the endplates of the vertebral body. This was conducted by creating 

Figure 3.9 - Linear regressions between the phantom and phantomless BMD for all internal material 

combinations. 
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best-fit planes on the superior and inferior endplates and aligning the vertebra to the average 

of these two planes. This process was completed in Ansys Spaceclaim (Ansys®, [Spaceclaim], 

2021R1, ANSYS, Inc). The endplates were also identified and labelled on the vertebral body, 

in Spaceclaim, to create a surface for ease of applying the boundary conditions (Figure 3.10). 

Each model was prepared using Spaceclaim to ensure sufficient meshing by removing 

anomalous sharp edges and floating elements. The models were meshed with quadratic (10 

node) tetrahedral elements in Ansys Mechanical (Ansys®, [Workbench Mechanical], 2021R1, 

ANSYS, Inc). 

The minimum edge size of the quadratic tetrahedral elements was set to 0.675mm which is 

equal to the lowest image resolution of the CT scans. The edge size was increased by a factor 

of 1.48 to create 3 coarser meshes (esize = 1.00, 1.48 and 2.19mm).  

Both bone and lytic tissue were modelled as heterogenous, isotropic, and elastic-plastic 

materials, following the assumption that lytic lesions only affect local bone density (Nazarian 

et al., 2008). Bonemat (BONEMAT®, 2013) was used to map the linear material properties for 

each vertebra model using the patient specific densitometry phantomless calibration 

equation (see Section 3.2) and phenomenological relationships (Equations 3.5 and 3.6). The 

plastic behaviour of bone was modelled as isotropic and symmetric, where the yield stress 

Figure 3.10 - Application of boundary conditions. (A) The displacement applied to the superior 

endplate. (B) The fixed support applied to the inferior endplate. 
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criterion is computed based on a density-strength relationship [Equation 3.7], and a 95% 

reduction in the post-yield elastic modulus [Equation 3.8] as shown in Figure 3.11. The density 

determined by CT (𝜌𝑄𝐶𝑇)  and ashing density (𝜌𝑎𝑠ℎ) is highly correlated (Schileo et al., 2008), 

therefore it is assumed that 𝜌𝑄𝐶𝑇 = 𝜌𝑎𝑠ℎ. 

𝜌𝑎𝑠ℎ = 𝜌𝑄𝐶𝑇 = 𝜌𝑎𝑝𝑝 × 0.6 [𝑔/𝑐𝑚3]; (Schileo et al., 2008)  

Equation 3.5 

Where 𝜌𝑄𝐶𝑇 is the QCT equivalent BMD and 𝜌𝑎𝑝𝑝 is the apparent density. 

 

𝐸 = 4730𝜌𝑎𝑝𝑝
1.56 [𝑀𝑃𝑎]; (Morgan, Bayraktar and Keaveny, 2003)  

Equation 3.6 

Where E defines the elastic modulus as a function of the apparent density, 𝜌𝑎𝑝𝑝. 

 

𝜎𝑦1 = 21.7𝜌𝑎𝑝𝑝
1.52 [𝑔/𝑐𝑚3]; (Morgan and Keaveny, 2001) 

Equation 3.7 

Where 𝜎𝑦1 represents the yield stress in tension as a function of the apparent density,  𝜌𝑎𝑝𝑝. 

 

𝐸𝑝𝑦 = 0.05 × 4730𝜌𝑎𝑝𝑝
1.56 [𝑀𝑃𝑎] ; (Niebur et al., 2000; Morgan, Bayraktar and Keaveny, 

2003)  

Equation 3.8 

Where 𝐸𝑝𝑦 symbolises the post-yield elastic modulus as a function of the apparent density,  

𝜌𝑎𝑝𝑝. 

𝝈𝒚𝟏 𝐸𝑝𝑦 = 0.05 × 𝐸 

𝝈𝒚𝟑 = −𝝈𝒚𝟏 

𝝈 

𝜺 

Figure 3.11- Representation of the bilinear, isotropic, and symmetric yield stress criterion used to model the 

elastic-plastic behaviour of each vertebral model. 
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The models were loaded in compression on the superior endplate with a displacement of 

1.9% of the minimum vertebral height (H) (Figure 3.12). The use of 1.9% apparent 

deformation has been experimentally proven to produce ultimate stress in vertebral bodies 

(Crawford, Cann and Keaveny, 2003; Wang et al., 2012; Keaveny et al., 2014). The elements 

on the inferior endplate were fixed in all directions Figure 3.10. 

For each vertebra level, the node containing the maximum compressive strain (EPEL3) in all 

models was reported. The failure load (FL) was calculated as the sum of the axial forces on 

the inferior endplate of each vertebral model and displacement was computed from the axial 

displacement of the central node on the superior endplate. The linear range of the force-

displacement curve was used to calculate the stiffness (K). The cross-sectional area (CSA) was 

calculated as the mean CSA of the vertebral body, excluding the endplates and posterior 

components. The apparent modulus (E) was calculated using Equation 3.9.  

𝐸 = 𝐾 × 
𝐻

𝐶𝑆𝐴
 

Equation 3.9 

Where E is defined by spring stiffness (K) multiplied by the ratio between the vertebral height 

and CSA of each vertebra. The ultimate strength (σU) is calculated using Equation 3.10. 

𝜎𝑈 = 
𝐹𝐿

𝐶𝑆𝐴
 

Equation 3.10 

Where σU is defined as the ratio between the resultant force at 1.9% strain (FL) and the CSA. 

H 50% H 

Figure 3.12 - Schematic representation of the region (grey) of the vertebral bodies considered for 

analysis along with the definition of vertebral height (H) and 50% vertebral height. 
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The mesh convergence was assessed based on the predicted EPEL3, the apparent modulus 

(E), and the ultimate strength (σU). To reduce the influence of the boundary conditions on the 

local properties, EPEL3 was evaluated in the central 50% of the vertebral body, excluding all 

posterior regions that were beyond the vertebral body (Figure 3.12).  

To evaluate whether convergence was achieved, the percentage difference (%diff) was 

calculated with respect to the values obtained from the most refined model (esize = 0.675 

mm). If the percentage difference was less than 10% for all results, the model was considered 

to be converged (Niebur et al., 1999). The distribution of the elastic modulus was also 

computed for each refined model and vertebra level to assess the uniformity between the 

most refined models. 

3.7.3 Results 

For the vertebrae with a lytic lesion (T4) and the controls (T3 and T5), Table 3.7 shows the 

percentage difference of compressive strains between the two most refined models (0.675 

mm and 1 mm) to be <10%. However, as the mesh becomes coarser to element size 1.48 mm, 

the percentage difference increased to 43% in T3 (control) and 50% in T4 (lytic) whilst the 

difference for T5 (control) remained small at 3.9%. A similar trend was observed within the 

predicted properties of ultimate strength and apparent modulus but with much smaller 

percentage differences. For both predicted values, the percentage difference was <2% 

between the two most refined models in all vertebrae. Changes in the elastic tissue modulus 

between the models with element size 0.675 mm and 1mm were minimal (Figure 3.13) and 

the decrease in element size resulted in a decrease in variability for all vertebrae. 

In general, the percentage difference decreased with increasing refinement. This was most 

likely due to the smoother reconstruction of the geometry. Although the percentage 

differences of EPEL3 are close to 10%, the smallest percentage differences are found in the 

predicted properties of ultimate strength and apparent modulus and as this study will focus 

on the analysis of the predicted mechanical properties, an element size of 1mm is acceptable. 

In addition, due to the large number of models being simulated for this study, a decrease in 

computation time of 75% is significant.  
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Table 3.7 - Report of the element size, computational cost (time) and percentage difference from the most 

refined model of local and normalised structural properties (EPEL3, 𝝈𝑼 and E). 

Level Condition 
Element 
size (mm) 

Time 
(mins) 

Max EPEL3 (ε) 
(%diff from 
0.675 mm) 

𝝈𝑼 (MPa) 
(%diff from 
0.675 mm) 

E (MPa) 
(%diff from 
0.675 mm) 

T3 Control 

2.19 2.58 
0.012 
(-60%) 

2.56 
(2.8%) 

763 
(3.4%) 

1.48 14.2 
0.017 
(-43%) 

2.54 
(2%) 

755 
(2.4%) 

1 38.87 
0.028 
(-6.7%) 

2.53 
(1.6%) 

740 
(<1%) 

0.675 148 0.030 2.49 738 

T4 Lytic 

2.19 4.33 
0.028 
(17%) 

3.46 
(-1.7%) 

891 
(<1%) 

1.48 11 .37 
0.012 
(-50%) 

3.51 
(<1%) 

889 
(<1%) 

1 45.8 
0.022 
(-8%) 

3.51 
(<1%) 

891 
(<1%) 

0.675 204 0.024 3.52 891 

T5 Control 

2.19 5.36 
0.012 
(-22%) 

2.94 
(3.5%) 

794 
(4.2%) 

1.48 11.2 
0.016 
(3.9%) 

2.79 
(-1.8%) 

769 
(<1%) 

1 41.36 
0.015 
(2.6%) 

2.88 
(1.4%) 

764 
(<1%) 

0.675 156 0.015 2.84 762 

 

The mesh chosen to use for the rest of this thesis was a maximum edge length of 1 mm. The 

element size was therefore larger than the CT voxel size and the thickness of the cortical shell 

(<0.5 mm). Hence, partial volume effects would have been observed on those elements close 

to the border of the cortical and trabecular bone, because their material properties are 

derived from the mean of the two bone tissues. One solution to this would be to introduce 

thin-shell elements when meshing the cortical region (Liebschner et al., 2003; Imai et al., 

2006). However, due to the limitations of the material mapping software, Bonemat, the use 

of smaller elements was not feasible in this study.  
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3.8 Conclusions 

This chapter forms the basis for the FE pipeline which will be applied in Chapter 4-Chapter 7 

of this thesis. It will be used to; investigate the effect of treatment on vertebral strength of 

prostate cancer patients (Chapter 4), investigate the effect of treatment on the vertebral 

strength of multiple myeloma patients (Chapter 5) and develop a mechanobiological model 

coupling the organ level FE with cell-level interactions (Chapter 6 and Chapter 7). 

 

Figure 3.13 - Distribution of the elastic tissue modulus in each of the mesh refinement models 

generated from the control vertebrae (T3 and T5) and from the vertebra with the lytic lesion (T4). 
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4 ALTERED VERTEBRAL BIOMECHANICAL PROPERTIES IN PROSTATE 

CANCER PATIENTS FOLLOWING ANDROGEN DEPRIVATION 

THERAPY. 

4.1 Introduction 

As described in Chapter 2, Prostate cancer (PCa) is the most common non-skin cancer among 

men (Jemal et al., 2010) and the median age at PCa diagnosis is around 66 years (Rawla, 2019). 

The effects of the disease itself, its treatment and the age of many PCa patients cumulatively 

give rise to substantial skeletal morbidity (Saylor et al., 2011; Anderson and O’Sullivan, 2022). 

Androgen deprivation therapy (ADT), which reduces the growth and development of 

androgen dependant PCa cells, by reducing testosterone levels, is the standard of care for 

many men diagnosed with PCa. Numerous studies have demonstrated the benefits of ADT in 

improving survival in patients, with both localised and metastatic PCa (Shore, 2020; Kishan et 

al., 2022). However, since bone health is also dependent upon androgens, ADT is associated 

with negative impacts on the skeleton, including a decrease in bone mineral density (BMD) 

(Abrahamsen et al., 2007) and an increase in fracture risk (Shahinian et al., 2005; Brown et 

al., 2020; Suarez-Almazor et al., 2022).  

Studies have shown that ADT disrupts the bone remodelling cycle. Testosterone and 

oestradiol levels, important factors in the maintenance of adult bone, are reduced following 

ADT (Khosla, Joseph Melton and Lawrence Riggs, 2002; Almeida et al., 2017). Greenspan et al 

described how a reduction in testosterone was significantly correlated with a reduction in 

areal BMD (aBMD) after 6-12 months of ADT (Greenspan et al., 2005). Other studies have 

shown a significant decrease in total hip, femoral neck, and lumbar spine areal BMD (aBMD) 

by 1.5-4.0% annually following commencement of ADT, which exceeds both normal annual 

bone loss for healthy ageing males and that of postmenopausal women (2.5%) (Higano, 2008; 

Seifert-Klauss et al., 2012). Despite this, prospective studies reporting bone loss with ADT in 

men with nonmetastatic PCa have often not evaluated the association of fractures with ADT. 

However, the correlation of fractures with ADT in PCa patients was evaluated by three large 

retrospective studies that reported these patients having a 21-37% higher risk of fracture 

compared to PCa patients who were not treated with ADT (Shahinian et al., 2005; Smith et 
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al., 2005, 2006). Smith and colleagues, also reported that vertebral fractures were 18% more 

likely to occur following ADT, as well as an overall fracture risk increase of 13% (Smith et al., 

2006).  

Dual energy X-ray absorptiometry (DXA) is the ‘gold standard’ clinical method for measuring 

areal BMD (aBMD, in g/cm2) and determining fracture risk as part of a comprehensive fracture 

risk assessment. However, fracture risk is also associated with bone strength, which in turn is 

dependent on bone quantity and quality. As a 2D projected measurement, DXA cannot 

provide information on the 3D shape and the large regional variation in vertebral geometries 

and the distribution of BMD throughout the bone volume. Moreover, DXA measurements of 

aBMD in the vertebral body are affected by either the presence of the posterior elements 

(anterior-posterior DXA) or by the ribs or pelvis (lateral DXA).  Therefore, to fully capture bone 

strength, a three-dimensional (3D) quantitative evaluation of the bone biomechanics is 

necessary. Quantitative computed tomography (QCT) has been used to quantify volumetric 

BMD (vBMD, in g/cm3) at various sites such as the spine, hip and femur (Engelke et al., 2008), 

as a measure that more accurately captures the 3D distribution of mineral in bone tissue. QCT 

has several advantages over DXA as it can perform sub-regional analysis whilst incorporating 

the 3D geometry of bone (Engelke et al., 2008).  

This more holistic approach has recently been employed in a longitudinal, observational 

clinical trial of PCa patients commencing ADT (the ANTELOPE trial) (Handforth et al., 2024). In 

this study, 31 men with non-metastatic PCa, scheduled to commence ADT, were recruited 

from urology/oncology clinics at the Royal Hallamshire Hospital, Sheffield, along with 

recruitment of 30 healthy male volunteers matched by age (± 5 years), height (± 5 cm) and 

body mass index (BMI) (± 5 kg/m2) to the patients in the ADT treatment group. This patient 

and volunteer number was chosen to reflect the need for powering the ANTELOPE primary 

endpoint, which was a change in 12-month vBMD at the distal radius. A range of assessments 

including aBMD at hip and lumbar spine by DXA scan, vBMD and other microarchitectural 

parameters at the non-dominant radius by high-resolution peripheral quantitative computed 

tomography (HR-pQCT), bone turnover markers and other measurements of muscle function 

and strength and body composition were carried out at baseline and again at 12 months. 

Overall, the ADT treated group had a significant decrease in lumbar spine aBMD (p<0.001), 

radius trabecular vBMD (p<0.001) and cortical vBMD (p<0.001), and ultimate failure load at 
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the radius (p=0.03). Full details of trial design and inclusion/exclusion criteria have been 

published (Handforth et al., 2024). 

Nevertheless, it remains that little is known about the effect of ADT on vertebral strength. 

QCT images can be used to create 3D biomechanical models, using finite element (FE) analysis 

of the vertebra to estimate the bone strength. Subject specific FE models have been used 

extensively to study the biomechanical response of bones to loading (Engelke, van Rietbergen 

and Zysset, 2016; Schileo and Taddei, 2021). This technique is being used increasingly in bones 

affected by diseases such as osteoporosis  (Matsumoto et al., 2009) and different types of 

cancer including breast, colorectal and renal cell carcinoma (Costa et al., 2019). It has also 

been used to study the effect of treatments and has been proven to predict vertebral strength 

more accurately than DXA in individuals without skeletal diseases (Crawford, Cann and 

Keaveny, 2003; Dall’Ara et al., 2012) and with osteoporosis (Imai, 2015).  

Despite studies investigating the effect of ADT on the peripheral strength of the distal radius 

using HR-pQCT (Dalla Via et al., 2019), and femoral strength and fracture risk using 

biomechanical computed tomography (BCT) (Lin et al., 2023), the vertebral strength is yet to 

be obtained using FE models based on QCT images of the vertebra. Therefore, this chapter 

aims to address the first hypothesis of this thesis “The vertebral strength of prostate cancer 

patients reduces when administered with ADT” by uniquely including a comparison of the 

effect of ADT on the aBMD, measured in the ANTELOPE design, with QCT based vBMD and FE 

estimated mechanical strength of vertebrae. 

4.2 Materials and Methods 

4.2.1 Study Design and Participants 

The overall study design of the ANTELOPE trial and demographics of the participants have 

been described elsewhere in Handforth et al. (2024) (Handforth et al., 2024). QCT images of 

the T12 vertebra for baseline and 12-months were obtained from the ANTELOPE trial, details 

of patients can be found in Chapter 3. All patients were received intravenous ADT and there 

was no presence of vertebral fracture in any of the patients T12 vertebra assessed in this 

study. 
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4.2.2 DXA and aBMD Measurements 

All study participants underwent a posterior-anterior DXA (Discovery A, Hologic, USA) of the 

lumbar spine, at baseline and 12 months, at the NIHR Clinical Research Facility, Northern 

General Hospital, Sheffield. Lumbar spine (L1-L4) aBMD (g/cm2) was also measured. 

4.2.3 QCT and vBMD Measurements 

The QCT protocol is detailed in Section 3.2.1. The Calibration protocol is detailed in Section 

3.6.2, where all scans were individually calibrated to remove any differences in scanning 

protocol, the type of scanner, and the effect of these on the current study. 

For the assessment of trabecular vBMD, from each QCT an ellipse shaped ROI was identified 

(ImageJ) in the anterior most region of the vertebral body, in the trabecular portion only. The 

ellipse was identified by creating a circular region of interest in the vertebral body, ensuring 

the cortical portion was included. The height and the width of the circular region were then 

reduced by 60% and 20%, respectively. After that, the ellipse was moved to ensure it was in 

the top half of the vertebral body and 10% away (in terms of width) from all edges. This ROI 

was extended to include the 10 central slices of the vertebral body. HU values within the ROI 

for all slices were converted into vBMD using the densitometric calibration identified as 

described above. For the integral vBMD, the FE software Ansys Workbench (2021R1) was used 

to select a ROI for all the elements in each vertebral body, excluding the posterior elements 

and processes, incorporating both the cortical and trabecular regions. The integral vBMD 

(g/cm3) was then calculated as the sum of the individual element’s bone mineral content 

(element BMD multiplied by element volume) divided by the total volume of the vertebral 

body ROI.  

4.2.4 FE Models and Mechanical Properties 

The models were constructed and simulated using the pipeline described in Chapter 3 and 

material properties were assigned from the CT image according to the phantom calibration 

process in Chapter 3. Briefly, CT scans at baseline and follow-up were segmented in 3D-Slicer 

(Fedorov et al., 2012) to produce 3D models of the vertebrae. They were aligned using the 

average of two best fit planes, one on the superior endplate and one on the inferior endplate. 

The models were meshed using a 1mm quadratic tetrahedral mesh following the mesh 
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refinement study (Chapter 3). A 1.9% strain was applied in axial compression to the superior 

endplate to simulate failure (Crawford, Cann and Keaveny, 2003; Wang et al., 2012; Keaveny 

et al., 2014), while the inferior endplate was fixed in all directions. The failure load (FL), 

stiffness (K), apparent modulus and ultimate strength were calculated as described in Section 

3.7.2 and shown in Figure 4.1.  

4.2.5 Statistical Analysis  

A Wilcoxon paired test was used to compare the densitometric and FE predicted mechanical 

properties between baseline and 12 months for both groups (significance was considered at 

p<0.05, *p<0.05, **p<0.01, ***p<0.0001). A Wilcoxon unpaired test (Mann-Whitney U-test) 

was used to test whether the percentage differences between baseline and 12 months within 

the treated group was significantly different from the control group. A Wilcoxon paired one 

tail test was used to evaluate if there was a significantly positive or negative trend in the 

densitometric, and FE predicted mechanical properties between baseline and 12 months. 

Linear regressions were calculated between the percentage difference between the two time 

points for the FE failure load, failure strength and densitometric variables for the pooled and 

treated and control groups. The Pearson's correlation coefficients with corresponding p-

values of the predictions were calculated for all linear regressions. Where an r≤0.3 represents 

a weak correlation, 0.3<r<0.7 is moderate correlation and 0.7<r≤1 is a strong correlation, with 

Figure 4.1 - Illustration of the outputs from the FE analysis at both time points. (A) Distribution of the BMD 

within the vertebral body taken from Bonemat, where blue is low BMD and yellow/red is high BMD. (B) Load-

displacement curve used to calculate the stiffness and failure load from the FE results. (C) An example of the 

3rd principal strain distribution within a model with the associated failure load. 
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p-values where significance was considered for p<0.05 and the significance levels were 

described by *p<0.05, **p<0.01, ***p<0.001. 

4.3 Results 

ADT reduced both densitometric and mechanical properties in men with PCa (Table 4.1). On 

average, between the baseline and 12-month visits, the patients receiving ADT displayed a 

significant reduction in aBMD (aBMD: -4%, p<0.01), whilst the aBMD in the control group 

increased (+2.3%, p<0.05). Trabecular vBMD at 12 months had a larger decrease than aBMD 

for the patients who received ADT (trabecular vBMD: -18%, p<0.01), whilst the control group 

showed no significant change (p=0.056). Integral vBMD also had a larger decrease than aBMD 

for patients receiving ADT (integral vBMD: -11%, p<0.01), whilst the control group showed no 

significant change at 12 months (p=0.75). The FE analysis resulted in an even larger decrease 

in mechanical properties for the patients receiving ADT than both aBMD and integral vBMD 

but similar to trabecular vBMD (stiffness: -14%, p < 0.01; failure load: -16%, p < 0.01; 

normalised stiffness: -14%, p < 0.01; failure strength: -16%, p < 0.01), compared to the control 

group. The change between baseline and 12 months in the treated group with respect to the 

change in the matched control was also significant for all densitometric and mechanical 

properties (Table 4.1, p < 0.05). 
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Table 4.1. Summarised data for densitometric (aBMD, trabecular vBMD, integral vBMD) and estimated mechanical properties (stiffness, failure load, apparent modulus, 

and ultimate strength). Average and standard deviation are reported for each group and time point. Percentage differences (% diff) computed between the time points 

and p-values were reported (1). P-values were also reported to test the significance of the difference between the treated group and the matched control group (2). 

. 
Control Treated 

p-value2 
Baseline 12 Months % diff P-value1 Baseline 12 Months % diff P-value1 

aBMD (g/cm2) 1.09 ±0.18 1.12 ±0.19 +2.3% 0.0006 1.14   ±0.17 1.09 ±0.17 -4.0% 0.0002 <0.0001 

Trab vBMD 
(g/cm3) 

0.11 ±0.036 0.11 ±0.029 -4.9% 0.037 0.13   ±0.06 0.10 ±0.05 -18% 0.0004 0.011 

Integral vBMD 
(g/cm3) 

0.21 ±0.046 0.20 ±0.035 +0.67% 0.56 0.23   ±0.06 0.20 ±0.05 -11% 0.0002 0.0002 

Stiffness 
(kN/mm) 

39.0 ±16.3 37.7 ±11.4 +6.9% 0.73 45.1   ±18.6 36.6 ±13.8 -14% <0.0001 0.0004 

Failure load (kN) 3.03 ±1.27 2.94 ±0.93 +2.4% 0.69 3.45 ±1.31 2.76 ±0.91 -16% <0.0001 <0.0001 

Apparent 
modulus (MPa) 

568 ±218 559 ±136 +7.8% 0.97 754 ±390 618 ±314 -14% 0.0003 0.0004 

Ultimate 
strength (MPa) 

1.79 ±0.61 1.75 ±0.40 +2.9% 0.94 2.25 ±1.10 1.81 ±0.88 -16% 0.0002 <0.0001 



  Chapter 4 

75 

 

Figure 4.2 shows a representative model from the FE analysis of a subject in the treated group 

(A19), where the mechanical properties have decreased by 17-20% over 12 months. The 

resulting decrease in mechanical properties has driven an increase in 3rd principal 

(compressive) strain within the vertebral body. This is highlighted by the increase in red 

regions within the vertebral body at follow-up (Figure 4.2A) as well as an increase in frequency 

of higher strains at follow-up shown in the histogram (Figure 4.2B). The shear strain 

distributions in Figure 4.3A show the higher shear strain in the 12-month vertebra compared 

to the baseline for the same patient. The shear strains observed at follow-up are around 10% 

smaller than the compressive strains, implying compression is the main failure mode.  Figure 

4.3B highlights the higher plastic strains in similar regions to the high compressive strains, 

suggesting there is a higher risk of fracture in these regions. 

 

 

Figure 4.2 - Representative result from the FE analysis showing the local increases (red) in 3rd principal strain 

distribution (A) in the vertebral body and a histogram of the 3rd principal strain in the vertebral body where 

time point 2 has a higher proportion of strains in the higher strain region (B). 
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Figure 4.4 details the aBMD, vBMD, integral vBMD and failure strength for all patients in the 

control and treated group at baseline and 12 months. The violin plots of the aBMD show a 

similar distribution in both the control and treated groups, with the line plots confirming the 

changes in both groups between baseline and 12 months, where the blue (control) lines had 

a tendency toward positive gradient (aBMD: p < 0.001), whereas the red (treated) lines 

trended towards a negative gradient (aBMD: p < 0.001). Whilst the trabecular vBMD, integral 

vBMD and failure strength had no trend in the control group, the negative trend in the treated 

group was significant (trabecular vBMD: p < 0.001, integral vBMD: p < 0.001, failure strength: 

p < 0.001). The vBMD, integral vBMD and failure strength all had a smaller range in the control 

group and the treated group. 

Figure 4.3 - Representative result from the FE analysis showing the local increases in maximum shear strain 

distribution (A) and equivalent plastic strain (B) in the vertebral body. 
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The correlation between the densitometric parameters (aBMD, vBMD and integral vBMD) 

and the normalised mechanical properties was evaluated for the pooled data as well as the 

respective treated and control groups at both time points (Figure 4.5). Trabecular vBMD and 

integral vBMD were both found to be a better predictor of bone strength than aBMD. A weak 

but significant correlation was found between the percentage change in aBMD and the 

percentage change in failure load and failure strength for the pooled data (r = 0.28-0.44, 

p<0.01). Whereas the correlations between the pooled data for percentage change in 

trabecular vBMD or integral vBMD and the percentage change in failure load and failure 

Figure 4.4 - vBMD and failure strength decrease more than aBMD over 12 months in the treated group. 

Violin plots of both cohorts and both time points and line plots showing the individual patients within each 

group for (A) aBMD, (B) trabecular vBMD, (C) integral vBMD, and (D) failure strength. *p<0.05, **p<0.01, 

***p<0.001 

Abbreviations: aBMD – areal BMD, vBMD – volumetric BMD, T1 – baseline, T2 – 12 months 
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strength were strong (r=0.78-0.92, p<0.001 for trabecular vBMD; r = 0.88-0.96, p<0.001 for 

integral vBMD) (Figure 4.5).  

4.4 Discussion 

This study is the first to evaluate the effect of ADT on the biomechanical properties of the 

vertebra in PCa patients. It demonstrates a more dramatic decrease in vertebral mechanical 

integrity than those predicted using standard DXA measurements of aBMD. By reconstructing 

QCT scans, FE models predicted a significant decrease in all densitometric and mechanical 

properties following 12 months of ADT. It was found that trabecular vBMD and integral vBMD 

measured via QCT correlated well with FE analyses outputs, indicating a significantly better 

prediction of mechanical properties at T12 than aBMD measured by DXA at L1-L4.  

Previous studies have shown a decrease in aBMD of 1.5-4% annually following 

commencement of ADT (Higano, 2008; Seifert-Klauss et al., 2012) and the ANTELOPE study 

also demonstrated a significant decrease in aBMD following ADT after 12 months, at 4% 

Figure 4.5 - vBMD has a stronger correlation than aBMD with failure load and failure strength. Linear 

regression analysis for percentage change failure load and percentage change failure strength vs (A) 

percentage change aBMD, (B) percentage change trabecular vBMD and (C) percentage change integral 

vBMD. **p<0.01, ***p<0.001. 

Abbreviations: aBMD – areal BMD, vBMD – volumetric BMD 
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(Handforth et al., 2024). Due to the high number of trabeculae within the vertebra, the highly 

vascular nature of trabecular bone, and the intravenous method used to administer ADT, the 

vertebra is at a higher risk of a reduction in BMD. In this study, similar, but amplified trends 

were observed in the treated group for trabecular vBMD and integral vBMD, reducing by 17% 

and 11% respectively over 12 months. QCT scans have been adopted in previous studies to 

assess the trabecular vBMD and found similar trends after 1 year of ADT (Smith et al., 2001; 

Sato et al., 2024). Similar amplified trends to this study were observed by Smith et al. (Smith 

et al., 2001) who reported a reduction of 3.3% in lumbar aBMD and a reduction of 8.5% in 

vBMD after 48 weeks of ADT. Sato et al. (Sato et al., 2024) reported also significant reduction 

in lumbar spine vBMD of 17.9% following 12 months of ADT.  

The ADT treated group experienced a notable decrease in mechanical properties, with a 14-

16% decrease in failure load, stiffness, failure strength, and normalised stiffness, compared 

to a 4% decrease observed in aBMD. FE analyses has been shown to amplify the changes seen 

in aBMD from DXA in osteoporotic patients (Keaveny et al., 2007; Imai et al., 2008). This could 

be explained by accounting for the 3D distribution of BMD, which has been shown to be 

indicative of strength gains (Keaveny et al., 2007), and cortical thickness, which has also 

proven to be important when predicting fracture risk (Melton et al., 2010). In addition, FE 

models are a better predictor of bone strength (failure load) than estimations from aBMD 

(Imai et al., 2008) and trabecular vBMD (Crawford, Cann and Keaveny, 2003) and are highly 

correlated with experimental results (Stadelmann et al., 2020).  

Areal BMD showed a low predictive ability for mechanical properties (r=0.28-0.46), whereas 

vBMD and integral vBMD exhibited a strong correlation with mechanical properties (r=0.78-

0.92 for trabecular vBMD and r=0.88-0.96 for integral vBMD). The weak correlation between 

aBMD and mechanical properties may be due to several factors, including overestimating 

aBMD by central DXA due to anatomical features such as irregular geometry, increased bone 

marrow fat, non-homogeneous fat distribution and the inclusion of posterior spinous 

processes (Grashuis, Bolotin and Sieva, 2003; Blake et al., 2009; Almeida et al., 2017). 

Moreover, DXA cannot provide information on 3D shape, large regional variation in vertebral 

geometries and the distribution of BMD throughout the bone. Previous studies have also 

shown that the use of vBMD as a predictor for failure load and failure strength at L3 is stronger 
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than aBMD (Tatoń et al., 2013). Additionally, DXA measured aBMD at L3 or L2-L4 for 

predicting mechanical properties of the thoracic vertebrae have been evaluated in a previous 

study, reporting a weaker correlation for the prediction of T10 (r = 0.62) compared to L3 (r = 

0.73) (Burklein et al., 2001). aBMD measured in the lumbar spine is not intended to predict 

mechanical properties, particularly at different levels of the spine such as T12 due to the 

differing mechanical and densitometric properties of the vertebra (Burklein et al., 2001). This 

was further confirmed in our study, which demonstrated that changes in mechanical 

properties at T12 are not reflected by the changes in spine aBMD (L1–L4). 

The highest correlation between densitometric and predicted mechanical properties was 

observed when using integral vBMD. This can be explained considering that the integral vBMD 

is calculated across the whole vertebral body and provides information from trabecular and 

cortical bone compartments, both of which contribute to the vertebral body compressive 

strength (Fields et al., 2009). The technique adopted here to calculate integral vBMD is not 

used in the clinical setting. Lower resolution images are acquired clinically and trabecular 

vBMD is assessed using software available from Mindways (Mindways Software Inc., Austin, 

TX, USA). However by using integral vBMD, we have demonstrated its improved predictive 

ability for bone strength compared to aBMD (Keaveny et al., 2007; Melton et al., 2007; Wang 

et al., 2012). Having shown the feasibility of using FE to predict the mechanical strength of 

vertebrae, this could underpin further work to see if improvement of fracture prediction is 

possible. 

The study in this chapter has some limitations. Firstly, the material properties of bone were 

modelled as isotropic. Understanding of the degree of anisotropy can improve the predictive 

capability of FE models regarding fracture risk in human vertebrae (Vivanco, Anderson and 

Smith, 2014). The inclusion of anisotropy within a FE study has been known to improve the 

prediction of bone strength in osteoporotic vertebrae (Fields et al., 2009) and therefore could 

also improve the biomechanical assessment of PCa patients without the need for higher-dose 

scans. Nonetheless, the intrinsic anisotropy of the trabecular bone due to the heterogeneous 

density distribution was modelled by using relatively small element size (below 1mm) and the 

assignment of heterogeneous material properties in function of the local BMD. Incorporating 

other loading conditions such as torsion and bending could improve the assessment of the 
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effect of the ADT on the mechanics of the vertebral body. However, it is well known that 

compression is the most significant loading condition for most fracture modes and therefore 

is most used within the field of FE vertebral mechanics (Crawford, Cann and Keaveny, 2003; 

Buckley, Loo and Motherway, 2007; Wang et al., 2012). Another limitation is introduced 

through the small cohort size within this study. This particularly plays a role in the linear 

regression analysis towards the larger percentage change in integral and trabecular vBMD 

where data is sparse. This could be influencing the overall trend and therefore results would 

need to be confirmed using a larger dataset. 

4.5 Conclusion 

In summary, this chapter has shown that ADT treatment for 12 months in a cohort of PCa 

patients reduces both the densitometric and mechanical properties of vertebrae, confirming 

the hypothesis for this chapter “The vertebral strength of prostate cancer patients reduces 

when administered with ADT”. Despite a similar trend, an amplified reduction was seen for 

trabecular vBMD, integral vBMD and bone strength compared to aBMD. In addition, the 

regression analysis confirmed a stronger correlation of both trabecular vBMD and integral 

vBMD with the mechanical properties than the aBMD suggesting that the determination of 

the vBMD might be of higher value when assessing patients bone strength at specific vertebral 

levels in clinical practice. As well as contributing to the development of a robust 

computational pipeline, the data from the ANTELOPE trial will be applied as a training dataset 

in the following chapters. 
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5 SUBJECT-SPECIFIC FINITE ELEMENT MODELS TO ASSESS THE 

BIOMECHANICAL CHANGES OF METASTATIC VERTEBRAE IN 

MULTIPLE MYELOMA PATIENTS TREATED NON-SURGICALLY 

5.1 Introduction  

Vertebral metastatic lesions are a common complication of multiple myeloma (MM), a cancer 

of the plasma cells, white blood cells that make antibodies as part of the immune defence 

system. Abnormal plasma cells proliferate in the bone marrow of vertebrae, forming 

osteolytic bone lesions. MM represents around 2% of new cancers in the UK and the number 

of cases and deaths has more than doubled worldwide in the last 30 years (Zhou et al., 2021). 

Patients with MM are most affected by spinal involvement (80-90%) (Bird et al., 2011) with 

34-36% of patients suffering from spinal fracture (Anselmetti, Manca and Montemurro, 

2012). Anti-myeloma treatments have significantly improved over the last 30 years, increasing 

the 5-year survival rate for patients with MM from 12-50% and 11-44% in men and women 

respectively (Cancer Research UK, 2014; Bird and Boyd, 2019). 

Now, this growing population of MM survivors require treatment to stabilise the spine. The 

current standard of care is invasive surgical intervention, preventing vertebral collapse and 

spinal cord damage. However, despite the obvious biomechanical component to this 

challenge, the spinal mechanics of MM patients has not been studied previously. 

Furthermore, due to the age of most patients at diagnosis (>70 years), the surgery is 

associated with increased morbidity and high infection risk (Nucci and Anaissie, 2009). It is 

proposed that by adopting a non-surgical strategy for appropriate MM patients, provided the 

spine is externally braced (Malhotra, Butler, et al., 2016; Malhotra, Lui, et al., 2016), then 

significant bone growth and remodelling will internally stabilise the spine. Bone growth has 

been observed both within the tumour bed and as thickened cortical shells around vertebrae. 

However, whether this increases the strength of the vertebrae is unknown. Therefore, the 

aim of this chapter was to assess the change in densitometric and mechanical properties of 

vertebrae from MM patients treated non-surgically with the aim of confirming or denying the 

second hypothesis of this thesis “The remineralisation following bracing treatment for MM 

patients leads to an increase in vertebral strength”. 
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5.2 Materials and Methods 

5.2.1 Patient Data 

For this chapter, eight of the patients from the RNOH dataset (Chapter 3, Section 3.2.2) were 

used (Table 5.1). For each patient, one vertebra with lytic lesions was selected along with a 

control that had no visible lesions. The vertebrae adjacent to the lytic vertebra were used as 

controls in all but P5, as the vertebra both above and below were also lytic, hence the T4 

vertebra was selected as control in P5 (Table 5.1). QCT protocols for the patients in this cohort 

are detailed in Section 3.2.2.  

Table 5.1 - Details of the cohort including patient’s ID, age, sex (M for male), the time between baseline and 

follow-up, vertebral levels modelled and their condition. 

Patient 
ID 

Age Sex 

Time between 
baseline and 

follow-up 
(months) 

Vertebral 
Level 

Condition 

P1a 77 M 3 
T4 Control 
T3 Lytic 

P3 66 M 12 
T10 Control 
T11 Lytic 

P3a 63 M 12 
T10 Control 
T11 Lytic 

P5 74 M 8 
T4 Control 
T6 Lytic 

P5a 73 M 37 
T1 Control 
C7 Lytic 

P8 47 M 2 
T4 Control 
T3 Lytic 

P9a 49 M 9 
T10 Control 
T11 Lytic 

P11 77 M 38 
L3 Control 
L4 Lytic 

5.2.2 Finite Element Modelling and Material Properties 

The models were constructed and simulated using the pipeline described in Chapter 3 and 

material properties were assigned from the CT image according to the phantomless 

calibration process in Chapter 3. Briefly, CT scans at baseline and follow-up were segmented 

in 3D-Slicer  (Fedorov et al., 2012) to produce 3D models of the vertebrae. They were aligned 
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using the average of two best fit planes, one on the superior endplate and one on the inferior 

endplate. The models were meshed using a 1mm quadratic tetrahedral mesh following the 

mesh refinement study (Chapter 3). A 1.9% strain was applied in axial compression to the 

superior endplate to simulate failure (Crawford, Cann and Keaveny, 2003; Wang et al., 2012; 

Keaveny et al., 2014), while the inferior endplate was fixed in all directions. Both bone and 

lytic tissue were modelled as heterogenous, isotropic, and elastic-plastic materials, following 

the assumption that lytic lesions only affect local bone density (Nazarian et al., 2008). The 

failure load (FL), stiffness (K), apparent modulus and ultimate strength were calculated as 

described in Section 3.7.2.  

For the assessment of trabecular vBMD (tvBMD), from each QCT an ellipse shaped ROI was 

identified (ImageJ) in the anterior most region of the vertebral body, in the trabecular portion 

only. The ellipse was identified by creating a circular region of interest in the vertebral body, 

ensuring the cortical portion was included, then reducing the height by 60% and the width by 

20%. The location of the ellipse was then moved to ensure it was in the top 50% of the 

vertebral body, 10% away from all edges. This ROI was extended to include the 10 central 

slices of the vertebral body. HU values within the ROI for all slices were converted into vBMD 

using the densitometric calibration identified as described in Chapter 3.  

5.2.3 Statistics 

A Wilcoxon paired test was used to compare the densitometric and FE predicted mechanical 

properties between baseline and follow-up for both control and lytic vertebrae (significance 

was considered at p<0.05). A Wilcoxon unpaired test (Mann-Whitney U-test) was used to test 

whether the percentage differences between baseline and 12 months within the lytic 

vertebrae was significantly different from the control vertebrae (significance was considered 

at p<0.05). Linear regressions were calculated between the percentage difference between 

the two time points for the FE predicted properties (failure load, stiffness, ultimate strength 

and apparent modulus) and vBMD variables for the pooled and treated and control groups. 

The Pearson's correlation coefficients with corresponding p-values of the predictions were 

calculated for all linear regressions. 
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5.3 Results 

Table 5.2 shows the pooled results for all 8 cases. In all variables (tvBMD, K, FL, E, σu), the 

percentage difference increased between the controls and lytic vertebrae between the two 

time points. Spring stiffness (K) ranged between 14.5 N/m and 52.4 N/m for the controls and 

13.1 N/m and 54.1 N/m for the lytic vertebra. Predicted failure load (FL) ranged from 1.0 kN 

to 5.6 kN for the control vertebra while predicted FL ranged from 1.09 kN to 5.0 kN for the 

lytic vertebra. Vertebral ultimate strength (σu) varied between 0.82 MPa and 4.9 MPa within 

the control vertebra and between 0.87 MPa and 5.6 MPa within the lytic vertebra.  

Table 5.2 - Differences in densitometric (trabecular vBMD) and estimated mechanical properties (K, FU, E, 

σU, Average ±Standard Deviation) computed for the vertebrae with or without lytic lesions. Percentage 

differences (%diff) computed with respect to the controls were also reported. 

 

The box plot of the vBMD (Figure 5.1) shows the larger range of values across in the control 

group (no visible lesions) compared to the lytic lesion group. The vBMD increased in three out 

of the eight lytic vertebra and two out of the eight controls. Whereas the stiffness and 

apparent modulus increased for four vertebrae in the lytic group and the failure load and 

ultimate strength increased for five patients in the lytic group. The lytic group was split into 

two groups at this point to highlight the effect of the size of lesion (Figure 5.1). The 

relationship between time between baseline and follow-up and change in mechanical and 

material properties was assessed, and no relationship was found. 

 

Baseline Follow-up Average % diff 
between 

baseline and 
follow-up in lytic 

normalised to 
control  

Controls 
(Avg±SD) 

Lytic 
(Avg±SD) 

Average 
% diff 

Lytic to 
control 

Controls 
(Avg±SD) 

Lytic 
(Avg±SD) 

Average 
% diff 

Lytic to 
control 

tvBMD 
(g/cm3) 

0.24 
±0.097 

0.20 
±0.078 

-17 % 
0.23 

±0.026 
0.21 

±0.03 
4 % 9 % 

K 
(kN/mm) 

19.8 
±4.5 

26.7 
±3.8 

28 % 
27.4 
±9.4 

31.4 
±13.5 

25 % -11 % 

Fu 
(kN) 

1.76 
±0.31 

1.98 
±0.28 

11 % 
2.21 

±1.41 
2.58 

±1.27 
18 % 6.2 % 

E 
(MPa) 

525 
± 238 

534 
±235 

1.9 % 
614 

±316 
625 

±285 
2.5 % 0.83 % 

σu 

(MPa) 
2.1 

±0.82 
2.09 

±0.87 
-1.7 % 

2.37 
±1.13 

2.51 
±1.09 

5.3 % 6.2 % 
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The linear regression analysis between the densitometric properties and mechanical 

properties are shown in Figure 5.2. There was a strong, significant relationship between all 

the mechanical properties and the vBMD for the pooled data (stiffness: r = 0.85 p < 0.001, 

failure load:  r = 0.89, p < 0.001, apparent modulus: r = 0.84, p < 0.001, ultimate strength: r = 

0.89, p < 0.001). In addition, the lytic group had a slightly stronger relationship between the 

vBMD, and stiffness and apparent modulus compared to the control data (stiffness control: r 

Figure 5.1 – Box plots of the (a) vBMD, (b) stiffness, (c) apparent modulus, (d) failure load and (e) ultimate strength. 

For each plot, non-lesion vertebrae are shown in green and lytic lesion vertebra are shown in yellow.  Vertebrae with 

large lytic lesions are indicated with a diamond marker. A horizontal line represents data for a single patient 

connecting baseline to follow-up. 

(a) 

(b) (c) 

(d) (e) 
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= 0.84 p < 0.01, stiffness lytic: r = 0.87 p < 0.001, apparent modulus control: r = 0.81, p < 0.05, 

apparent modulus lytic: r = 0.95, p < 0.001).  

Despite the linear regressions showing strong correlations between change in vBMD and the 

change in mechanical and material properties, some vertebra had a decrease in vBMD while 

the mechanical and material properties increased. In addition, the size of the lesion varies 

between patients, four lytic vertebrae had large lesions (>50% of the vertebral body) and four 

patients’ lytic vertebrae had small lesions (<50% of the vertebral body). The effect of the size 

of the lesion was evident where the four vertebrae with the large lesions increased notably 

in material and mechanical properties, while the four with small lesions were either stable or 

decreased in material and mechanical properties. To address these differences, an individual 

(b) 

Figure 5.2 - Linear regressions between (a) the change in vBMD and the change in structural mechanical 

stiffness and failure load and (b) the change in apparent modulus and ultimate strength. Regression equations 

are reported for pooled data (black), control vertebrae (green) and lytic vertebra (yellow). 

(a) 
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assessment of patients is necessary to understand the changes occurring in the vertebra. Two 

vertebrae with large lesions and one with a small lesion were chosen to represent the two 

groups. 

The results for P1a, the first large (>50%) lytic vertebra to be individually assessed is detailed 

in Figure 5.3. The vBMD in the lytic vertebra for P1a decreased over time, while the other 

properties (FL, K, E and σu) increased (Figure 5.3). The distribution of BMD can be seen in 

Figure 5.3a for the lytic vertebra in P1a at baseline and follow-up. The region surrounding the 

lesion has undergone the largest increase in mineral as well as other regions around the 

cortex (Figure 5.3a). When measuring the vBMD, an ellipse was created in the anterior portion 

of the vertebral body, not incorporating the cortical region, hence not including the increase 

in mineral in this region. In addition, the increase in vBMD around the lesion has led to a 

decrease in minimum principal strain in the same area of P1a’s lytic vertebra (Figure 5.3a). 

This then correlated with the increase in stiffness, failure load, apparent modulus and 

ultimate strength between baseline and follow-up (Figure 5.3b).  

To highlight another vertebra with a large lesion, an overview of P5 is illustrated in Figure 5.4. 

Unlike P1a, this patient had a notable increase in both vBMD and mechanical and material 

properties. There is a clear increase in vBMD from baseline to follow-up, particularly in the 

posterior region of the lesion and vertebral body. This increase in vBMD led to an increase in 

material and mechanical properties (Figure 5.4d). The minimum principal strain (Figure 5.4c) 

show a very similar distribution at baseline and follow-up. The strain around the lesion region 

has reduced slightly which could be attributed to the increase in mechanical and material 

properties.   

One patient, with small lytic lesions, whose vBMD, material and mechanical properties 

decreased between two timepoints was P8 (Figure 5.5). This example patient shows a new 

small lesion in the posterior region of the vertebral body (Figure 5.5 b) where the density is 

lower (lighter purple). This new lesion formation could have started healing after the follow-

up but as the time between baseline and follow-up for P8 was 2 months, this remineralisation 

would not be present at follow-up. The influence of the new lesion can be seen by the increase 

in minimum principal strain within this region (Figure 5.5c) and the decrease in material and 

mechanical properties (Figure 5.5d). 
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(a) 

(b) 

Figure 5.3 -  Case report for patient  1a (a) CT scan in the coronal and sagittal plane with lytic vertebra 

highlighted in red, (b) CT scans in the axial plane of the control and lytic vertebra alongside with the material 

distributions of density for each vertebra, (c) the minimum principal strain (EPEL3) distribution in the axial 

and coronal planes (where red is high strain and blue is low strain) and (d) table of the mechanical 

properties for all vertebra at both Time Points, reporting the percentage difference (%diff) between the 

control and lytic vertebrae. 

(c) 

(d) 
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(a) 

(b) 

Figure 5.4 -  Case report for patient  5 (a) CT scan in the coronal and sagittal plane with lytic vertebra 

highlighted in red, (b) CT scans in the axial plane of the control and lytic vertebra alongside with the material 

distributions of density for each vertebra, (c) the minimum principal strain (EPEL3) in the axial and coronal 

planes (where red is high strain and blue is low strain) and (d) table of the mechanical properties for all 

vertebra at both Time Points, reporting the percentage difference (%diff) between the control and lytic 

vertebrae. 

(c) 

(d) 
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(a) 

(b) 

(c) 

(d) 

Figure 5.5 -  Case report for patient  8 (a) CT scan in the coronal and sagittal plane with lytic vertebra highlighted in 

red, (b) CT scans in the axial plane of the control and lytic vertebra alongside with the material distributions of 

density for each vertebra, (c) minimum principal strain (EPEL3) distribution in the axial and coronal planes (where 

red is high strain and blue is low strain) and (d) table of the mechanical properties for all vertebra at both Time 

Points, reporting the percentage difference (%diff) between the control and lytic vertebrae. 
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5.4 Discussion 

The aim of this chapter was to evaluate the difference in mechanical properties at two time 

points of vertebrae with lytic lesions, in relation to adjacent vertebrae without lesions, of MM 

patients treated with orthopaedic bracing. None of the vertebrae assessed within this study 

had vBMD values that were classed as osteoporotic (BMD<0.08 g/cm3) or osteopenic (0.08 

g/cm3<BMD<0.12 g/cm3) (Zysset et al., 2015). These values were, however, estimations 

calculated from the QCT images and not from DXA which is the gold standard for classifying 

low bone density (Cummings, Bates and Black, 2002). 

The predicted mechanical properties from the FE models simulated in this study generally 

agree with previous results from studies of compressive loading on vertebrae. Fracture loads 

have been reported between 2 kN and 9 kN for the vertebral bodies in the thoracolumbar 

region (Liebschner et al., 2003; Imai et al., 2006; Fields et al., 2011). This study estimates the 

predicted fracture load between 1.0 kN and 5.6 kN which almost falls within this range. In 

addition, for spring stiffness, Dall’Ara et al.'s experimental study observed values ranging from 

17 to 54 kN/mm, in agreement with this thesis' study that predicted a range from 13.1 kN/mm  

to 52.4 kN/mm (Dall’Ara et al., 2012).  

Remineralisation and an increase in vBMD were identified in the four patients with large 

lesions (P1a, P3a, P5 and P9a) at time point 2, with patient 3a (time step of 12 months), P5 

(time step of 8 months) and P9a (time step of 9 months) showing the largest area of 

remineralised tissue. This correlated to the prediction by Balducci et al. of the time taken to 

remineralise of 6 months (Balducci et al., 2011), suggesting the other patient with a large 

lesion (P1a, time step of 3 months) was still in the process of remineralisation at the time the 

second CT scan was taken. The other patients’ lytic vertebrae with smaller lesions (P3, P5a, 

P8) decreased in tvBMD, meaning 38% of patients within this study had an increase in vBMD. 

Patient P11's lytic vertebra was collapsed. This vertebra saw an increase in vBMD but a 

decrease in material and mechanical properties. This is most likely due to the mineral 

increasing on the endplates to stabilise the adjacent vertebra rather than to increase the 

vBMD in the vertebral body. Additionally, P11's control vertebra experienced an increase in 

vBMD, material and mechanical properties, suggesting an attempt of the adjacent vertebra 

to stabilise the spine. Other studies have seen a similar percentage of patients with 
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remineralisation (24%, 48% and 46.4%) (Mose et al., 2000; Balducci et al., 2011; Matuschek 

et al., 2015). However, due to the small cohort in this study, it may not be representative of 

the population. 

The lytic vertebrae displayed bimodal changes, with four increasing and four decreasing in 

mechanical properties. The four lytic vertebrae that increased, all possessed a large lytic 

lesion (>50% of vertebral body). At baseline, the large lesions decreased the amount of bone 

in the vertebral body and increased the mechanical stresses on the remaining bone. Through 

cell signalling and bone remodelling, at time point 2, the regions surrounding the lesion 

increased in mineral density, regaining the strength of the vertebra. The mechanisms behind 

the significant mineral increase are currently unknown and should be investigated further. 

For the four vertebrae with smaller lesions, the lesions are unlikely to change the load bearing 

of the vertebrae and therefore do not induce the same rapid remodelling as the larger lytic 

vertebrae.  

The linear regression analysis of the densitometric and mechanical properties described a 

strong correlation between the change in vBMD and failure load and stiffness (0.88<r<0.96, 

p<0.05), and between the change in vBMD and apparent modulus and ultimate strength 

(0.81<r<0.95, p<0.05). These strong correlations suggested that the densitometric properties, 

that can be calculated easily in a clinical setting from QCT scans, could be a reliable estimation 

of the mechanical properties of vertebrae with and without lytic lesions. However, when 

looking at the individual patients, it was highlighted that P1a had a decrease in vBMD but an 

increase in all material and mechanical properties. This suggested that there was an increase 

in cortical BMD that was driving the increase in the FE predicted properties, which was not 

captured by the current method to evaluate vBMD in these models. It is well known that the 

cortical shell bears up to 54% of the loading under compression (Eswaran et al., 2006) and 

therefore an increase in bone density around the cortical shell could substantially increase 

the strength of the vertebrae. 

There are some limitations of this study, the first being the small cohort size of eight patients. 

However, it was clear from the results that analysis must be conducted on an individual basis 

despite the number of patients included and, therefore, trends may only be confirmed if the 

sample size was sufficiently large. The material properties of bone were modelled as 
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heterogeneous and isotropic. This introduced a further limitation as recent work has 

suggested that in patients with MM, the degree of anisotropy in trabecular bone is 

significantly increased (Takasu et al., 2011). The inclusion of this parameter within an FE study 

has been known to improve the prediction of bone strength in osteoporotic vertebrae (Fields 

et al., 2009) and, therefore, could also improve the assessment for MM patients without the 

need for higher-dose scans. However, the loading criterion used within this study was axial 

compression which would negate the need for modelling anisotropy. The 3D models were 

assigned material properties according to the CT grey values, which included the lytic tissue, 

meaning it was modelled as low-density bone tissue. Lytic bone tissue has been previously 

modelled as a poro-visco-elastic tissue which allows for the evaluation of solid and fluid 

phases (Whyne et al., 2000; Tschirhart, Nagpurkar and Whyne, 2004). However, due to the 

fact that the constitution of tumour tissue is not well understood, and the assumption used 

in this study has been supported by previous work  (Nazarian et al., 2008; Stadelmann et al., 

2020), this is not seen as a significant limitation.  

Compressive loading on a single vertebral body was the method chosen within this study. To 

improve the accuracy of loading, the model could incorporate physiological loading such as 

torsion, bending and multi-axial loading. However, it is well known that compression is the 

most significant loading condition for most fracture modes and therefore is most commonly 

used within the field of FE vertebral mechanics (Crawford, Cann and Keaveny, 2003; Buckley, 

Loo and Motherway, 2007; Wang et al., 2012). In addition, the exclusion of the intervertebral 

discs and articular contacts between facet-joints, which contribute to the transfer of loading 

between vertebral segments, could have had an effect on the estimation of the mechanical 

properties and stability (Groenen et al., 2018). For this study, the main focus was the effect 

of the remineralisation on an individual lytic vertebra in relation to the control vertebra, so 

this addition was not included. Nonetheless, when more complex problems are introduced 

that have multiple adjacent lytic vertebrae the loading may be redirected more onto the facet 

joints and affect the result when estimating the risk of fracture (Whyne, Hu and Lotz, 2003). 

5.5 Conclusion 

In conclusion, this chapter has shown that, by employing a robust finite element pipeline, 

significant changes in the mechanical properties of vertebrae with and without lytic lesions 
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following treatment with orthopaedic bracing occur.  From the results, it has been shown that 

vBMD could be a useful tool in predicting the mechanical properties of vertebrae with lytic 

lesions. However, for patients with mineralisation primarily in the cortical compartment, 

vBMD alone could not predict the mechanical properties and an FE analysis was required. 

Using this method, an estimation of the effect of remineralisation, following treatment, on 

the mechanical properties of lytic vertebra was made. The results suggested that over time, 

with remineralisation, the mechanical properties of the large lytic vertebrae improved, 

confirming the second hypothesis of this thesis “The remineralisation following bracing 

treatment for MM patients leads to an increase in vertebral strength”. In contrast, vertebrae 

with smaller lesions had either no change or a decrease in densitometric and mechanical 

properties. However, how and why this remineralisation occurs in certain regions, if it is 

purely mechanically driven or that there are additional biological mechanisms involved, is 

unknown. Hence, it is necessary for further investigations into the biological mechanisms 

behind the remineralisation, in order to build a more accurate picture of how material and 

mechanical properties change in MM patients following treatment.  
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6 MECHANOBIOLOGICAL MODEL OF METASTATIC LESIONS IN 

VERTEBRAE OF MULTIPLE MYELOMA PATIENTS SUGGESTS 

CANCER-INDUCED REMINERALISATION POST-TREATMENT. 

6.1 Introduction 

As discussed in Chapter 5, standard bone biomechanics alone does not appear to explain the 

rapid remineralisation observed in recovering multiple myeloma (MM) patients. In order to 

investigate the underlying mechanisms for the changes in strength seen in the clinic, we must 

parse out what part of the remineralisation is driven by response to mechanical stimuli and 

the degree to which additional biological mechanisms are at play. This chapter will develop a 

mechanobiological model, a form of study used to investigate how mechanical loads affect 

biological processes. In bone, mechanobiology is particularly important due to the 

hierarchical structure where a mechanical stimulus at organ level influences the biological 

response of bone cells and bone adaptation.  

A delicate balance of signalling exists between the three main bone cells involved in 

remodelling; osteoblasts that form bone, osteoclasts that resorb bone and osteocytes that 

sense and respond to mechanical stimulus. Depending on the magnitude of the stimulus, 

osteocytes send signals to increase or decrease osteoclast and osteoblast differentiation and 

activity. Mechanical loading can stimulate the Wnt signalling pathway which is responsible for 

the differentiation of preosteoblasts to mature osteoblasts (Baron and Kneissel, 2013). A high 

mechanical stimulus reduces sclerostin levels, produced by osteocytes to block the Wnt 

pathway, allowing the Wnt ligands to activate the β-catenin pathway to differentiate 

osteoblasts (Baron and Kneissel, 2013). Osteocytes can also control the activity of osteoclasts 

through the RANKL/OPG (Receptor Activator of Nuclear factor Kappa-Β Ligand/ 

Osteoprotegerin) system. A high mechanical stimulus reduces the expression of RANKL and 

increases OPG, reducing osteoclast differentiation and activity (Tobeiha et al., 2020).  There 

are also signals from the bone matrix when bone is under mechanical stress. TGF-β signalling, 

which is sequestered within the bone matrix and released during bone degradation, promotes 

osteoblast differentiation and impedes osteoclast differentiation (Crane, Xian and Cao, 2016). 



  

 Chapter 6 

97 

 

The combination of these pathways ensures normal bone remodelling and bone homeostasis, 

and these can be measured clinically via a series of bone turnover markers (BTMs) measured 

in a patient’s blood sample. The whole remodelling process lasts around 180 days  (30-40 days 

for resorption and 150 days for formation) (Pant et al., 2021).  

In MM, these pathways are disrupted leading to an imbalance in bone remodelling. The 

RANKL/OPG signal is upregulated whilst the Wnt signal is downregulated, increasing 

osteoclast activity and decreasing osteoblast activity respectively (Giuliani, Rizzoli and 

Roodman, 2006). The combination of bone destruction and no new bone formation leads to 

the development of lytic lesions within the bone (Qiang et al., 2008). Post anti-cancer 

treatments, most of the MM cells have been destroyed, allowing the bone to return to normal 

remodelling (Hinge et al., 2016). As the bone is now left with large areas of destruction, the 

bone is much weaker and therefore under much higher stress and strain. These conditions, in 

theory, should lead to higher bone formation due to higher mechanical stimulus. However, 

clinical and experimental observations have shown bone formation at faster rates than 

normal in recovering MM patients (Rao et al., 2006; Gokaraju et al., 2019), which gives rise to 

the question of whether this is driven solely by mechanobiological adaptation or if an 

additional biological mechanism is involved.  

The long history of mechanobiological models, dating back to Frost’s Mechanostat Theory is 

detailed in Chapter 2. However, many previous models have focussed on mathematically 

modelling bone, not applying the algorithms to 2D/3D geometries. To test these algorithms, 

Hambli incorporated Komarova’s model with an 3D finite element (FE) model of a proximal 

femur (Hambli, 2014). Hambli’s model considered fatigue damage effects to describe the 

mechanical behaviour of bone which influenced the osteoclast and osteoblast formation, as 

well as rates of bone resorption and formation which updated the bone density accordingly 

(Hambli, 2014). However, Hambli (2014) computational study was not validated. 

Nevertheless, in 2017, Dao et al. (Dao, 2017) combined the FE remodelling framework of 

Hambli with an agent based model to describe the cellular dynamics, and qualitatively 

validated their model through comparison with an experimental study of the human distal 

tibia (Christen et al., 2014). For MM specific remodelling, only one study has developed a 

mathematical algorithm to describe the changes to bone remodelling caused by MM cells (Y. 
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Wang et al., 2011). Wang et al.’s algorithm was based on the model by Pivonka et al. (Pivonka 

et al., 2008) and developed to clarify the most important cell signalling pathways in MM 

disease progression (Y. Wang et al., 2011). There is currently no mechanobiological model 

describing bone remodelling in MM patients post anti-cancer treatment. Therefore, the aim 

of this study was to develop a patient-specific mechanobiological model to predict the 

temporal changes in site specific bone density and global mechanical properties of vertebra 

in patients with multiple myeloma post anti-cancer treatment to confirm or deny the third 

hypothesis of this thesis "Normal mechanobiology principles cannot explain the bone changes 

in MM patients’ vertebrae treated non-surgically".  

6.2 Materials and Methods 

6.2.1 Patient data 

The study participants included 10 non-cancer control patients from the ANTELOPE trial 

(Handforth et al., 2024) and 10 MM patients from the RNOH dataset. For the controls, high 

resolution quantitative computed tomography (HR-QCT) scans of the T12 vertebra were 

acquired at two time points 12 months apart (for further details on the QCT scans see Chapter 

3). For the MM patients, two clinical CT scans were acquired at baseline and a follow-up (16 

±15 months) with varying protocols (see Chapter 3 for more information). Within each MM 

patient, two vertebrae were selected, one 'control' vertebra which had no visible lesions and 

one 'lytic' vertebra which had a visible lesion (Table 6.1, Figure 6.1). For P12, all vertebrae 

were classed as 'lytic' so two 'lytic' vertebrae were selected. For P9, there was only one 

Figure 6.1. Example of which vertebra was classed as 'control' and 'lytic'.  



  

 Chapter 6 

99 

 

vertebra in the CT scan so only one was selected. For the MM patients, a total of 19 vertebrae 

were selected.  

Table 6.1. Patient data for the MM group with patient ID, time between baseline and follow-up and the 

vertebra segmented for the 'control' with no visible lesions and the 'lytic' which had a large lytic lesion. 

6.2.2 Methods 

A mechanobiological model was developed to integrate mechanical stimuli, cellular signaling 

pathways, and bone remodeling processes to predict changes in bone density and mechanical 

properties, offering insights into bone adaptation and response to loading conditions (Figure 

6.2). 

Patient 
ID 

Controls 

Age Sex 
Patient 

ID 
MM 

Age Sex 

Time 
between 
baseline 

and 
follow-up 
(months) 

Vertebral 
Level 

Condition 

C01 
74 M P1a 77 M 3 

T4 Control 

 T3 Lytic 

C03 77 M 
P3 66 M 12 

T10 Control 

   T11 Lytic 

C04 73 M 
P3a 63 M 12 

T10 Control 

   T11 Lytic 

C05 78 M 
P5 74 M 8 

T4 Control 

   T6 Lytic 

C06 68 M 
P5a 73 M 37 

T1 Control 

   C7 Lytic 

C08 53 M 
P8 47 M 2 

T4 Control 

   T3 Lytic 

C10 70 M P9 61 M 37 L3 Lytic 

C11 79 M 
P9a 49 M 9 

T10 Control 

   T11 Lytic 

C12 78 M 
P11 77 M 38 

L3 Control 

   L4 Lytic 

C15 80 M 
P12 34 M 4 

T3 Lytic 

   T4 Lytic 

Average 
(±SD) 

73 
±8 

 
Average 

(±SD) 
62 

±15 
 16 ±15   
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6.2.2.1 FE setup  

Three-dimensional finite element (FE) models of vertebrae were generated from baseline and 

follow-up computed tomography (CT) scans for control T12 vertebra and selected vertebra 

for MM patients (Table 6.1).  Control CT images were densitometrically calibrated using the 

phantom calibration method and the MM CT images were calibrated with a phantomless 

approach (see Chapter 3). The phantom approach was used for the control patients in order 

to compare the prediction of the clinical MM dataset to a ‘gold standard’ dataset. The 3D 

reconstruction of CT scans, meshing, alignment and assignment of material properties are 

Figure 6.2. Overview of the mechanobiological method. Beginning with an external load applied to the Finite 

Element (FE) model which outputs the strain energy density (SED) per element. The SED is then imported 

into the remodelling algorithm which evaluates the interactions and behaviour of bone cells when 

influenced by a mechanical stimulus (SED). The output of the algorithm is the updated bone density and 

Young’s modulus of each element which is then fed back into the FE model to analyse the predicted 

mechanical properties. 
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detailed in Chapter 3. Static simulation up to 0.15% strain was applied uniaxially to the 

superior endplate, while the inferior endplate was fixed. The strain was calculated using an 

estimation of the daily compressive forces where combining walking and standing and stair 

walking is ~900N on L4/L5 (Schäfer et al., 2023), assuming the Youngs modulus is ~300 MPa 

as vertebra are mainly trabecular bone (Hou et al., 1998; Kopperdahl and Keaveny, 1998; 

Morgan et al., 2001; Kopperdahl, Morgan and Keaveny, 2002) and cross sectional area (CSA) 

is ~2000 mm2 (taken from the L4 vertebra in this study) results in a compressive strain of 

0.15% (Equation 7.1). The bracing treatment was not explicitly modelled in this study. 

𝜀 =
𝜎

𝐸
=

𝐹
𝐶𝑆𝐴⁄

𝐸
 

Equation 6.1 

Where 𝜀 is the strain, 𝜎 is the stress, 𝐸 is the Young’s Modulus, 𝐹 is the applied force and CSA 

is the cross-sectional area. 

From the FE 0.15% uniaxial compression model, the SED per element (Figure 6.3) was 

exported and used as an input in the mechanobiological algorithm. To evaluate the failure 

load (FL), separate non-linear models were run for baseline and follow-up scans as well as the 

predicted models. FL was calculated as the load that occurred at an applied apparent strain 

of 1.9% (Crawford, Cann and Keaveny, 2003; Wang et al., 2012; Keaveny et al., 2014). 

Figure 6.3 – Strain energy density distributions in an example control patient and example MM patient with 

a lytic lesion. 
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6.2.2.2 Mechanobiological algorithm 

The organ-level FE was coupled with an algorithm representing the cell-level behaviours and 

interactions of bone cells using differential equations, which adjusted material properties 

based on biological pathways described by differential equations. The mechanical stimulus 

was defined based on the difference between the SED/density (SED/ρ) from the FE model and 

reference stimulus from literature (Hambli, 2014). If the SED/ρ is above this reference value, 

the mechanical stimulus the element receives will be positive and if the SED/ρ is below this 

reference value, the mechanical stimulus the element receives will be negative. The value of 

the stimulus influences the interaction between bone cells and the ratio between formation 

and resorption. Osteocytes aren’t explicitly modelled but their effects are indirectly 

considered with the osteocyte density (𝑑𝑘), osteocyte network connectivity (𝑑0) and 

mechanosensitvity of the osteocytes (𝑢𝑘) (Schriefer et al., 2005; Hambli, 2014).  

𝑆(𝑡) = 𝑒(−𝑑𝑘 𝑑0⁄ )𝑢𝑘(𝑆𝑘 −  (𝑆𝑘𝑜 +  (𝑆𝑘 −  𝑆𝑘𝑜)(1 −  𝑒(−𝜆 𝑡))))  

Equation 6.2 

Where 𝑑𝑘= OCd/Nrem Osteocyte density/number of remodelling sites, 𝑑0= osteocyte network 

connectivity, 𝑆(𝑡) = mechanical stimulus, 𝑢𝑘= osteocyte mechanosensitivity, 𝑆𝑘 =SED/ρ per 

element, 𝑆𝑘𝑜= reference SED/ρ, 𝜆 =velocity of adaptation. 

The bone cell interactions are controlled by the mechanical stimulus which influences the 

number of active osteoblasts and osteoclasts. g12 represents the signal from osteoblasts to 

osteoclasts (e.g. TGF-β) and g21 represents the signal from osteoclasts to osteoblasts (e.g. 

RANKL/OPG). The method of grouping the signalling pathways into two autocrine and 

paracrine pathways was chosen due to the lack of data on the individual signalling pathways 

(e.g. RANKL/OPG) (Bonfoh, Novinyo and Lipinski, 2011). 

𝑔11 = 𝑔22 = 0

𝑔12 =  𝐴1 + 𝐵1𝑒
−𝛾1𝑆(𝑡)

𝑔21 =  𝐴2 + 𝐵2𝑒
−𝛾2|𝑆(𝑡)|

 

Equation 6.3 

Where g11 and g22 represent the autocrine factors that influence osteoclasts and osteoblasts 

respectively. A1 and A2, B1 and B2, 𝛾1 and 𝛾2  represent the parameters influencing the 

paracrine factors. 
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The change in osteoblasts and osteoclasts is controlled by the mechanical stimulus (above) 

and parameters that dictate how many of the cells are active over time (Komarova et al., 

2003). 

𝑑𝑥𝐶

𝑑𝑡
= 𝛼1𝑥𝐶

𝑔11
𝑥𝐵

𝑔21
− 𝛽1𝑥𝐶  

𝑑𝑥𝐵

𝑑𝑡
= 𝛼2𝑥𝐶

𝑔12
𝑥𝐵

𝑔22
− 𝛽2𝑥𝐵 

Equation 6.4 

Where 𝑥𝐶  is the osteoclast population and 𝑥𝐵 is the osteoblast population, 𝛼1 and 𝛼2 

represent the rate of formation of osteoclasts and osteoblasts respectively and 𝛽1 and 𝛽2 are 

the rates of apoptosis for osteoclasts and osteoblasts respectively. 

The number of active osteoblasts and osteoclasts is then calculated by taking the steady state 

populations away from the updated population for that timestep (affected by the mechanical 

stimulus) (Komarova et al., 2003). 

{
𝑋𝐶 = 𝑥𝐶 − 𝑥̅𝐶 𝑖𝑓𝑥𝐶 > 𝑥̅𝐶

𝑋𝐶 = 0 𝑖𝑓𝑥𝐶 ≤ 𝑥̅𝐶
} 

{
𝑋𝐵 = 𝑥𝐵 − 𝑥̅𝐵 𝑖𝑓𝑥𝐵 > 𝑥̅𝐵

𝑋𝐵 = 0 𝑖𝑓𝑥𝐵 ≤ 𝑥̅𝐵
} 

Equation 6.5 

Where 𝑋𝐶 and 𝑋𝐵 are the active populations of osteoclasts and osteoblasts, respectively. 

Steady state populations (𝑥̅𝐶  and 𝑥̅𝐵) are calculated by setting 
𝑑𝑥𝐶

𝑑𝑡
= 0 and 

𝑑𝑥𝐵

𝑑𝑡
= 0  

The change in density was then based on the number of active osteoblasts and osteoclasts 

and the rate of formation and resorption respectively (Komarova et al., 2003). 

𝑑𝜌

𝑑𝑡
= 𝑘2𝑋𝐵 − 𝑘1𝑋𝐶  

Equation 6.6 

The density was then updated using the forward Euler method and Young’s modulus based 

on the relationship described earlier (Niebur et al., 2000; Morgan, Bayraktar and Keaveny, 

2003). 

 

𝜌𝑡+∆𝑡 = 𝜌𝑡 + ∆𝜌  
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Equation 6.7 

𝐸 = 4730 (
𝜌

0.6
)
1.56

 

Equation 6.8 

Where 𝜌𝑡+∆𝑡 is the updated density, 𝜌𝑡 is the density at the current time step and ∆𝜌 is the 

change in density. E is the Young’s modulus and 𝜌 is the density at the end of time. 

 Table 6.2. Initial Parameters for the mechanobiological model (Komarova et al., 2003; Hambli, 2014)  

 

Parameter Description Initial Value 

𝑑0 Osteocyte network connectivity 0.1 

OCd (mm-3) Osteocyte density 10625 

Nrem Number of remodelling sites Number of elements 

𝑢𝑘  Osteocyte mechanosensitivity 0.5 

𝑆𝑘𝑜  (J/kg) Threshold mechanical stimulus 0.0025 

𝜆 (days-1) Velocity of adaption 0.002 

𝐴1 
Parameter to regulate production of 

paracrine factors in g12 
1.6 

𝐵1 
Parameter to regulate production of 

paracrine factors in g12 
-0.49 

𝛾1 
Parameter to regulate production of 

paracrine factors in g12 
33.37 

𝐴2 
Parameter to regulate production of 

paracrine factors in g21 
-1.6 

𝐵2 
Parameter to regulate production of 

paracrine factors in g21 
0.6 

𝛾2 
Parameter to regulate production of 

paracrine factors in g21 
16.67 

𝑘1 Osteoclast resorption rate 0.00305 

𝛼1 (osteoclasts/day) Osteoclast formation rate 3 

𝛽1 (osteoclasts/day) Osteoclast apoptosis rate 0.2 

Initial population of 

osteoclasts 
Initial population of osteoclasts 1 

𝑘2 Osteoblast formation rate 0.000016 

𝛼2 (osteoblasts/day) Osteoblast formation rate 5 

𝛽2 (osteoblasts/day) Osteoblast apoptosis rate 0.02 

Initial population of 

osteoblasts 
Initial population of osteoblasts 15 
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In order to visualise the change in mechanical stimulus, g12, g21, active osteoclasts and active 

osteoblasts and then density, Figure 6.4 shows the evolution of these parameters over time 

in two randomly sampled elements in one of the vertebral models. The number of active 

osteoclasts is highest within the first 20-30 days and then the osteoblasts take over until 

around 150 days where no more remodelling occurs (Figure 6.4). For the first random 

element, the initial mechanical stimulus is positive meaning there should be a net gain in bone 

during this remodelling cycle. This can also be seen from g12, signal from osteoclasts to 

osteoblasts, starting high and decreasing over time, showing the slow decrease in osteoblast 

differentiation due to a reduction in mechanical stimulus. Similarly, g21, signal from 

Figure 6.4. Example evolution of two random elements (A and B) for active osteoclasts and active 

osteoblasts, density, g12, g21 and mechanical stimulus. 

A 

B 
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osteoblasts to osteoclasts slowly increasing over time, meaning an increase in osteoclast 

differentiation as the mechanical stimulus reduces. The impact of this on the change in 

density is seen by an initial decrease due to osteoclastic activity and then regaining stability 

through osteoblastic activity, with the final density dictated by the balance between the two. 

For the second random element, the initial mechanical stimulus is negative meaning there 

should be a net loss in density. The positive change in g12 and g21 highlights the increase in 

signal from osteoclasts to osteoblasts and the signal from osteoblasts to osteoclasts. In this 

element, these signals are very balanced, with the osteoblastic activity influencing the overall 

change more than the negative mechanical stimulus. This balance is seen from the density 

where it stabilises around the same point as the initial density.  

6.2.3 Sensitivity and optimisation 

For the control patients, a sensitivity analysis was conducted on all parameters individually to 

see how sensitive the model was to change. Each parameter was increased and decreased by 

50% and the local change in density was evaluated then averaged across all elements.  

From the sensitivity, parameters were chosen to be optimised for each patient based on how 

sensitive they were. If they induced a change in density of 20-150%, they were included in the 

optimisation. To optimise the parameters, a MatLab script (MATLAB 24.1.0.2689473 (R2024a) 

Update 6) was developed which began by defining an objective function which ran the original 

mechanobiological algorithm, computing the simulated density and then calculating the 

standard error between the simulated density and the actual follow-up density. The 

parameters to be optimised were given initial guesses (Table 6.2) taken from literature 

(Hambli, 2014) and upper and lower bounds which are set to ±50% of the original value. To 

evaluate the results of each set of parameters, the function fmincon was used. An options 

structure for the fmincon function was created to specify how the optimisation algorithm 

should behave including the display level (iterative) and the algorithm to use sequential 

quadratic programming (SQP) which means each iteration of the optimisation was solved and 

stored and with each iteration, the SQP refines its approximation to get closer to the optimal 

solution). The fmincon function was then called together with the objective function, initial 

guesses, bounds, and options. This function performs the optimization to minimise the 

standard error by adjusting the parameters until convergence. Convergence was met when 
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either the optimality tolerance, the standard error was below 1 × 10−6, or the step tolerance 

was below 1 × 10−10, where further changes in the input parameters did not significantly 

reduce standard error. 

6.2.4 Statistics 

To compare the optimised parameters between the control, MM non-lesion and MM lesion 

groups, Mann-Whitney Unpaired test was used, where significance was defined as p < 0.05. 

To test for significance (p < 0.05) between the follow-up BMD and FL and the predicted BMD 

and FL, a Wilcoxon paired test was used. Linear regression analyses were performed between 

the follow-up and predicted BMD and FL to assess the variance. A significant result was found 

when p < 0.05. 

Figure 6.5. Flow-chart of the optimisation  
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6.3 Results 

6.3.1 Sensitivity of mechanobiological parameters 

Figure 6.6 shows the average percentage change in density in all elements when increasing 

and decreasing each parameter by 50%. It is clear that some parameters are less sensitive, 

with a change in density less than 10% despite a 50% increase or decrease of the input 

parameters (d0, dk, uk, λ, Sko, γ1 and γ2). Osteocyte network connectivity (d0) and osteocyte 

density (dk) are used in Equation 6.2. This exponential was always going to be between 0 and 

1, meaning any changes in d and dk do not alter the overall response. Osteocyte 

mechanosensitivity (uk) started off very low as it was introduced as a dimmer switch between 

0 and 1 and was set to 0.5. This value was too small for this parameter to increase or decrease 

the mechanical stimulus and density by more than 10%. The adaption velocity (λ) dictated 

how fast the system responds to the mechanical changes. This parameter should have a low 

sensitivity as bone remodelling occurs over a long period meaning the effect of λ is spread 

across the time. If bone remodelling was a shorter process (days instead of months), the effect 

Figure 6.6. Change in average density when increasing and decreasing each parameter by 50% to understand 

the sensitivity of each parameter 



  

 Chapter 6 

109 

 

of λ would be more apparent. The difference in mechanical signal from changes in Sko were 

not large enough to affect the osteoblast and osteoclast populations which drove the change 

in density, hence why Sko had a low sensitivity (<10%). γ1 and γ2 were exponential decay 

parameters that determined the influence of the mechanical stimulus S on the rates of 

osteoblast and osteoclast differentiation (g12 and g21). These parameters sat within Equation 

6.3 as 𝑒−𝛾1𝑆(𝑡) and 𝑒−𝛾2|𝑆(𝑡)| so doubling gamma still gave a very similar value to the initial 

estimate.  

It is also noticeable that A1 was very sensitive to a positive change (+50% in A1). A1 was the 

dominant factor in g12 as the exponential element was always close to 1. Equation 6.4 then 

used g12 as an exponential to the osteoclast population ( 𝑥𝐶
𝑔12

). As A1 was the dominant factor 

in g12, if A1 was doubled, 𝑥𝐶
𝑔12

 would increase by a factor of 76, also increasing the population 

of active osteoblasts by a factor of 76 for every iteration. This induced a ‘runaway’ effect 

where the density of each element was then significantly increased, hence the large variation 

in the positive change in A1. This did not happen for the decrease in A1 as the system was 

osteoblast dominant and therefore could recover from a decrease in osteoblast recruitment. 

A2 also did not have this effect, which was most likely due to the initial osteoclast number 

being 1 and therefore there was not the ‘runaway’ effect we observed with A1.  

Figure 6.7 shows a zoomed in version of the sensitivity results for k1, k2, 𝛼1, 𝛼2, 𝛽1 and 𝛽2. 

Most of these parameters had ~50% change in density, both when increasing and decreasing 

the parameter by 50%, as would be expected for a balanced model. The only parameter which 

seems to have little effect is 𝛼1. 𝛼1 influenced the number of osteoclasts produced per 

timestep but the dominant factor in this equation was most likely 𝑥𝐵
𝑔21

 as the number of initial 

osteoblasts at each timestep was much larger than the number of osteoclasts. Therefore, the 

effect of 𝛼1 was dampened. All six of these parameters have important links to biological 

processes that can be monitored in clinic via blood BTMs and could be altered depending on 

patient specific data. 𝛼1 and 𝛼2 control the osteoclast and osteoblast differentiation rate, 𝛽1 

and 𝛽2 control the osteoclast and osteoblast apoptosis rate and k1 and k2 control the rate of 

resorption and formation. For this reason, these six parameters were chosen for optimisation. 
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6.3.2 Optimisation of mechanobiological model parameters 

Both k1 and k2 decreased from controls to MM controls and again to the MM lesion group 

(Figure 6.8). Despite this difference being insignificant, this suggests that in MM vertebra with 

lesions, both bone formation and resorption rates were altered significantly, with k1 

decreasing more sharply than k2. The sharp decline in k1 suggested reduced bone resorption 

in the MM lesion group, contributing to the increased bone apposition post treatment. The 

decrease in k1 and k2 suggested the rate of turnover is slower in the MM patients but whether 

formation and resorption were balanced or not was unclear from this figure. Therefore, the 

ratio between k1 and k2 was calculated to understand if there was an imbalance in formation 

and resorption. Figure 6.9 shows the ratio of k1 to k2 in each group, with it decreasing slightly 

between controls to the MM control group and again to the MM lesion group. This difference 

was not significant, but it showed there was a trend towards more osteoblastic activity 

compared to osteoclastic activity in MM patients and particularly the vertebrae with lesions.  

 

 

Figure 6.7. Close up view of the average change in density of k1, k2, 𝜶𝟏, 𝜶𝟐, 𝜷𝟏 and 𝜷𝟐when increasing and 

decreasing each parameter by 50%. 
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For the differentiation rates, 𝛼1 showed a decrease from control to MM groups while 𝛼2 

showed a very similar median value for all three groups. For both 𝛼1 and 𝛼2, the control group 

had a much smaller range than the other two groups, suggesting these parameters could be 

fixed for the controls. When looking at the ratio between 𝛼1 and 𝛼2, the MM lesion group 

had a much lower ratio than the controls. This suggests that the number of osteoblasts 

differentiating was higher than osteoclasts in the MM lesion group, however this was not 

significant. For the apoptosis rates, 𝛽1 was relatively stable across the groups, with no 

significant differences, but showed a slight increase in MM Control and MM Lesion, indicating 

that osteoclasts were being removed quicker. 𝛽2 showed more variability but tended to 

decrease in the MM Lesion group, suggesting that osteoblasts were being removed at a 

slower rate. However, with reduced osteoblast production this could balance overall 

osteoblast activity. The ratio between 𝛽1 and 𝛽2 had a small increase from Control to MM 

Control and a large jump to the MM lesion subgroup. This suggested the rate of osteoclast 

apoptosis was faster than osteoblasts apoptosis meaning there were more active osteoblasts.  

Figure 6.8. Box plots of optimised parameters in the control, MM control and MM lesion groups for (A) k1 

and k2 (B) 𝜶𝟏 and 𝜶𝟐 and (C) 𝜷𝟏 and 𝜷𝟐. 

A B C 
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When assessing the differentiation to apoptosis ratio (Figure 6.10), osteoclasts had a lower 

ratio in the MM lesion group compared to the control and MM control, suggesting there was 

more osteoclast apoptosis than differentiation, suggesting less osteoclastic activity. On the 

Figure 6.9. Ratio of (A) resorption to formation (k1/k2) (B) formation of osteoclasts to formation 

of osteoblasts (𝜶𝟏/𝜶𝟐) and (C) apoptosis rate of osteoclasts to apoptosis rate of osteoblasts 

(𝜷𝟏/ 𝜷𝟐). 

A B C 

Figure 6.10. Ratio of (A) osteoclast formation to osteoclast apoptosis (𝜶𝟏/𝜷𝟏) (B) ratio of osteoblast 

formation to osteoblast apoptosis (𝜶𝟐/𝜷𝟐) 

A B 
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other hand, the 𝛼2/𝛽2 ratio increased through the groups, suggesting more differentiation 

compared to apoptosis of osteoblasts, and hence more bone apposition in the MM lesion 

group. 

6.3.3 Mechanobiological Predictions 

Figure 6.11 shows the minimum principal strain at baseline, follow-up and predicted follow-

up for a representative control patient (A), an MM patient with no lesion (B) and an MM 

patient with a large lesion (C). For the control patient, the model captures most changes from 

baseline to follow up as seen from the distribution of the maximum compressive strain (red 

regions) at predicted follow up, particularly in the axial plane. The model's ability to predict 

mechanical properties is also shown from the similar values for failure load and failure 

strength for follow up and predicted follow up.  

For the example MM vertebra with no lesions, similarly to the control, the model captures 

most changes from baseline to follow up capturing the change in compressive strain (Figure 

6.11). In the sagittal and coronal view, there are some slight discrepancies in magnitude of 

strain, where the high compressive strains at Follow-up are not seen in the Predicted. 

However, despite the local differences, the model is still able to predict the global changes as 

there is no significant difference in the failure load and failure strength between Follow-up 

and Predicted (Figure 6.12).  

For the example MM patients' vertebra with a large lesion, the predicted distribution does 

not accurately capture the observed changes in strain, with substantial differences between 

the compressive strain distribution for Follow-up and Predicted (Figure 6.11). This is 

particularly clear in the lesion region, characterised by a region low bone density (ρ < 0.1 

g/cm3), highlighted at Baseline, where the compressive strains are much lower in the 

Predicted model compared to the actual Follow-up. In comparison to the example  MM 

vertebra with no lesion, these discrepancies for the vertebra with a large lesion do follow 

through to the global properties as the prediction of failure load and failure strength (FS) is 

far from the actual Follow-up (Follow-up FL: 2233 N, Predicted FL: 2695 N, Follow-up FS: 3.11 

MPa, Predicted FS: 3.75 MPa). These findings suggest that the more complex bone 
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characteristics such as lesions, require further input to the model in order to predict the 

changes in these particular vertebrae. 

The results seen in the individual patients in Figure 6.11 are representative of the overall 

dataset. As seen from Figure 6.12, where, for both density and failure load, the lines 

representing each patient are almost all horizontal and there was no significant difference 

between Follow-up and Predicted (average percentage difference BMD: 2.13 ±2.36% NS, 

average percentage difference FL: 3.64 ±3.72% NS). This confirms the model predicted well 

for the control group.  

For the MM group, the density was predicted well, as seen by the individual patient lines 

being mainly horizontal with no significant difference between Follow-up and Predicted 

(average percentage difference BMD: 3.49 ±4.63% NS). Figure 6.13 shows that the majority 

of the variability in the control, MM non lesion and MM lesion groups can be explained by a 

linear regression analysis (control: R2 = 0.98, p < 0.001, MM non lesion: R2 = 0.93, p < 0.001, 

MM lesion: R2 = 0.91, p < 0.001). However, for failure load, the difference between Follow-up 

and Predicted is significant and it is clear from the patient lines there are large discrepancies 

(average percentage difference FL: 18.67 ±16.83% p = 0.01). Looking further into this data, if 

the group is split into two, where green is no visible lesions and yellow is lytic lesions, it is 

clear that the larger discrepancies between Follow-up and Predicted are in the lesion group.  

An upwards trend can also be seen, where for the lesion group, most of the patients’ 

predictions are greater than the Follow-up. These observations are consistent with the linear 

regression analysis of the failure load, shown in Figure 6.13, where the variability is higher in 

the MM lesion group compared to the MM non-lesion and the controls (control: R2 = 0.99, p 

< 0.001, MM non lesion: R2 = 0.94, p < 0.001, MM lesion: R2 = 0.85, p < 0.001). The prediction 

of strains in the vertebra with a large lesion (Figure 6.1 C) provides an explanation for this 

result, as lower strain is indicative of less compression which would correspond to a higher 

failure load, as seen in Figure 6.12.  
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A 

B 

C 

Figure 6.11 - Compressive strain distributions at baseline, follow-up and predicted follow-up in all three 

planes for an example control patient (A), MM patient with no lytic lesions (B) and an MM patient with a 

large lytic lesion (C). 
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Figure 6.12 - Box plot of the (A) average bone mineral density and (B) failure load at baseline, follow-up 

and predicted follow-up for the control group (blue) and the MM group (red). The MM group was split 

into two to represent patients with no visible lytic lesions (green) and lytic lesions (yellow). A horizontal 

line represents data for a single patient connecting follow-up to predicted follow-up. * indicates p < 

0.05 

A 

B 
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Figure 6.13 – Linear regression analysis between the follow-up and predicted (A) average bone mineral 

density (BMD) and (B) failure load (FL). Control data shown in blue, MM non-lesion group shown in green 

and MM lesion group shown in yellow. 
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To ensure the model was not affected by the vertebral level, the error in prediction was 

calculated for each vertebral level included in the model (Figure 6.14). The largest mean 

absolute error (MAE) occurs at L4 (MAE: 2100 N), followed by L3 (MAE: 1001 N) and T10 (MAE: 

864 N). As the model was developed using the T12 control vertebra and the loading 

assumptions were based at L4/L5, it is clear the model is not affected by the distance away 

from T12.  

6.4 Discussion 

The work in this chapter developed a mechanobiological model to predict the change in 

densitometric and mechanical properties of vertebra in patients with multiple myeloma 

following anti-cancer and bracing treatment. Overall, the model predicted the densitometric 

and mechanical properties well for the control patients and the MM patients' vertebrae with 

Figure 6.14 - Mean absolute error of the failure load at each vertebral level evaluated within this 

study 
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no lesions. However, the model tends to overestimate the mechanical properties of MM 

vertebrae with lesions compared to the Follow-up.  

The biological regulation algorithm controlled the interaction and activity of bone cells 

depending on mechanical stimulus (SED/density) from the finite element model. This 

algorithm performed well regarding timeline of activation and activity of osteoclasts and 

osteoblasts compared with literature (Cowin, 2001). With osteoclasts being differentiated 

first and resorbing bone for the first 20-30 days (Agerbzk et al., 1991) followed by osteoblast 

differentiation and bone formation up to around 180 days totalling around 200 days for the 

full remodelling cycle (Eriksen, 2010). The period between the end of osteoblast activity and 

end of time steps is classed as the period of remineralisation. In this period, the model does 

not carry out any further calculations but in reality, this period is where the bone mineralises 

(Boivin et al., 2009). For the control patients, this period is always ~165 days, however, for 

the myeloma patients, as the time between baseline and follow-up varies, this period is 

shortened or lengthened depending on when the follow-up was. This is a limitation of the 

current model as it does not account for more than one remodelling cycle, which would be 

the case if the time between scans is more than a year.  

SED/density was chosen as the mechanical stimulus input for the mechanobiological 

algorithm. In the control patients’ vertebra and MM patients’ vertebra with no lesions, the 

SED was highest in the cortical shell. However, for MM patient’s vertebra with lesions, the 

SED was also high around the lesion region, even if this fell within the trabecular portion of 

the vertebral body. If SED alone was used as the mechanical stimulus for the 

mechanobiological algorithm, the areas with high SED would increase in density and the areas 

with low SED would decrease in density. This would be an issue for the region where the 

lesion lies as no remodelling would occur here. However, from literature, bone apposition has 

been reported in the lesion region adjacent to mineralised tissue (Malhotra, Butler, et al., 

2016; Malhotra, Lui, et al., 2016; Mohan et al., 2021). The combination of SED/density allows 

for an increase in mineral in the lesion region where there is low density but also at the high 

stress zones, and therefore high SED, around the lesion.  

The model works well for the control and MM vertebrae with no lesions when predicting the 

strain distribution in the vertebral body. However, for the MM vertebrae with a large lesion, 
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the strain map fails to capture the change from baseline to follow-up. A limitation of the 

model is that, when applied to elements representing lesions, it incorrectly assumes a starting 

population of osteoblasts. Therefore, when there is a very low-density element, the ratio of 

SED/density is high, the number of osteoblasts differentiated is high leading to an increase in 

density. This element then has a higher density than it should, decreasing the strain within 

that region. In reality, bone will form adjacent to already formed bone, not in the centre of 

the lesion, reducing the size of the lesion over time. See Appendix 1 for the attempts at 

adjusting the model to mitigate this limitation. 

The parameters used within the biological regulation algorithm are mostly taken from the 

literature (Komarova et al., 2003; Hambli, 2014). The parameters that were optimised for 

each patient accounted for the patient specific variations in bone remodelling rates, 

improving the predictive ability of the model. However, the parameters that were left as the 

initial chosen values were not optimised for this model. Due to a slightly different set-up to 

the model it was based on, there was an imbalance between formation and resorption, with 

formation having a much more amplified response. As can be seen in the sensitivity study 

where, when the parameters related to osteoblast differentiation and activity are altered, the 

density changes were notably larger (>50%). The model requires further improvement for the 

vertebra with larger lesions and therefore, future work could include a perturbation study to 

ascertain the value at which the parameters induce a change, from the originally calculated 

density, of greater than 10%. This will ensure that the parameters that should be influencing 

the change in density are having the desired effect. 

When comparing the interactions and activity of the bone cells in the control versus MM 

patients, it can be seen that the MM lytic group had a higher osteoblast differentiation to 

apoptosis ratio and a lower osteoclast differentiation to apoptosis ratio than both the MM 

controls with no lesions and the healthy controls. This suggests that there is a higher number 

of active osteoblasts and a lower number of active osteoclasts in the MM lytic vertebrae. 

However, when looking at the ratio between resorption and formation, the ratios are very 

similar for all groups, suggesting a similar balance in formation and resorption in all groups. 

This means that the driving factor for more formation within the MM lytic group is the larger 

number of osteoblasts forming and less active osteoclasts resorbing.  
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The overall results showed no significant difference between the follow-up and predicted for 

the average bone mineral density for controls and MM patients. This strong prediction was 

supported by the linear regression analysis explaining 98% of the variance for the controls 

and 93% and 91% for the MM non-lesion group and MM lesion group, respectively. This is 

expected as the optimisation stage adjusted the parameters to fit the algorithm to the follow-

up density in each element. As the average minimum standard error is optimised, out of the 

~500,000 elements, there could be a small number of elements with a large error, but the 

rest of the elements have errors so small that the average standard error is below the 

threshold for convergence. This could be another reason for the discrepancies in the MM 

patients with large lesions as the lesion region could be the source of high errors which are 

cancelled out by the rest of the vertebra. The worst prediction of BMD was one of the MM 

non-lesion patients. Nevertheless, this error was not amplified when predicting the failure 

load suggesting the distribution of density is more important than the average. The prediction 

of failure load was not significantly different to the follow-up for the control and MM control 

patients, with some small discrepancies compared to the density prediction. The prediction 

for the MM large lesion group was significantly different to the follow-up, the majority of 

these patients’ failure loads were overestimated due to the high mechanical stimulus in the 

lesion region as mentioned earlier.  

There were some limitations to the current model. The boundary condition used for loading 

was a uniaxial compressive load using displacement control applied to the superior endplate. 

Uniaxial loading has been used in other validated FE studies to assess the mechanical 

properties of vertebra (Imai et al., 2006; Zeinali, Hashemi and Akhlaghpoor, 2010; Dall’Ara et 

al., 2012). In addition, the majority of the loading experienced by vertebrae is uniaxial from 

the vertebra above with some bending moment caused by the curvature of the spine. The 

loading conditions would have an effect on the magnitude of mechanical stimulus each 

remodelling site (element) receives and therefore, inducing bone apposition and resorption 

in the incorrect locations. Future work could include the comparison of different loading 

conditions, such as anterior bending, to assess the effect on the predictive power of the 

model. 

Another limitation comes from the assumption that there is no new mechanical stimulus over 

the biological regulation algorithm. The mechanical stimulus tends towards zero over time 
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and is not updated depending on changes in bone density, i.e. if resorption has occurred and 

the density decreases, it is likely that the SED will then increase changing the bone cell 

dynamics and activity within that element. However, as the parameters in the model are 

optimised for the CT based density at follow-up, there is no way to add additional points for 

the evaluation of SED based on the changes after so many months. This would make the 

optimisation void and more difficult to estimate these parameters for each patient. As 

remodelling cycles are typically 180-200 days (Eriksen, 2010), a simple relationship between 

SED and change in density could be acquired and applied after this period to estimate the 

change in SED and therefore mechanical stimulus after the first remodelling cycle. Changing 

the loading before this point would overcomplicate the bone cell dynamics and interactions, 

causing the remodelling cycle to not behave in the desired way. To further inform the model 

of changes in remodelling, serum BTMs such as P1NP (Pro-collagen 1 N-terminal propeptide), 

CTX (carboxy-terminal collagen crosslinks) and sclerostin could be used at interim points 

during baseline and follow-up. This would allow for more patient specific data on remodelling 

throughout the cycle without the need for more CT scans. 

6.5 Conclusion 

In summary, the newly developed model predicted well the bone mineral density and 

mechanical properties for the control and MM with no lesions while it needs improvement 

for the MM patients with large lesions. This confirmed the third hypothesis of this thesis that 

"Normal mechanobiology principles cannot explain the bone changes in MM patients’ 

vertebrae treated non-surgically". Additional investigations into the accuracy of the model 

including the alteration of the biological regulatory algorithm to ensure no remodelling can 

occur in the centre of the lesion was subsequently conducted and results of this can be seen 

in the Appendix 1 showing a promising improvement to the predictive accuracy. Furthermore, 

modifying the model to incorporate clinical BTM data could both increase the predictive 

ability and enhance the clinical utility. In the final chapter, we will evaluate the use of BTMs 

to inform the model of changes in remodelling at interim points between baseline and follow-

up.  
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7 CLINICAL BIOMARKERS FOR PHYSIOLOGICALLY INFORMED 

MECHANOBIOLOGICAL MODELS 

Chapter 6 details the mechanobiological model and its predictions on the multiple myeloma 

(MM) vertebra using patient specific optimisation of the bone remodelling parameters based 

on CT data at baseline and follow-up. Therefore, this model cannot be applied to prospective 

data to predict changes in the bone without a follow-up CT. As alluded to in chapter 6, the 

hypothesis behind this chapter is "Mechanobiological models incorporating bone turnover 

markers can predict bone changes in vertebrae of patients with multiple myeloma". 

Therefore, the aim of this chapter was to develop a preliminary study to evaluate the 

possibility of using Bone Turnover Markers (BTMs) at early time points (1,2 and 3 months 

after baseline) to predict key parameters in the mechanobiological algorithm and thus assess 

their ability to inform the model to predict the density and failure load after 12 months. This 

chapter uses a new unique clinical dataset composed of time-series CT scans and serum BTMs 

from the same patients acquired from Sheffield Teaching Hospitals. 

7.1 Introduction 

BTMs, particularly P1NP (Procollagen Type I N-terminal Propeptide) and CTX (Carboxy-

terminal collagen-crosslinks), have been used clinically to evaluate bone turnover and the 

effect on fracture risk for patients with osteoporosis (Kuo and Chen, 2017) and MM (Kowalska 

et al., 2010). A description of these biomarkers along with the current guidance for use in 

monitoring disease progression can be found in Section 2.3.2. 

The role of serum P1NP and CTX in fracture prediction has been investigated two meta-

analyses (Johansson et al., 2014; Tian et al., 2019). These studies both found a significant but 

modest association between BTMs and future fracture risk before (Johansson et al., 2014) 

and after (Tian et al., 2019) adjusting for BMD and clinical risk factors such as age and body 

weight. Most clinical trials have used bone turnover markers to monitor osteoporosis 

treatment but the use has not been widely adopted in routine clinical practice (Lorentzon et 

al., 2019). BTMs have also been used to monitor treatment effects, particularly 

antiresorptives such as bisphosphonates, which reduce bone resorption by inhibiting 

osteoclasts, and relating this to fracture risk (Cummings et al., 2009). The efficacy of using 
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biomarkers in monitoring bisphosphonates was assessed in the TRIO study. These authors 

recommended a 3-month measurement of P1NP and β-CTX, a β-isomerized form of CTX 

unique to bone, as this is where the change in CTX and P1NP due to treatment should be 

apparent (Diez-Perez et al., 2017).  

In MM, Kowalska et al. looked at the relationship between CTX, P1NP, and Osteocalcin (OC) 

and disease progression (metastatic stage) and found that P1NP and OC were correlated with 

disease progression, but CTX was not (Kowalska et al., 2010). Ting et al. also used CTX and 

P1NP to relate levels to disease progression, treatment, remission and relapse. (Ting et al., 

2016). These authors concluded that CTX has a role in routine treatment monitoring and 

predicting relapse of myeloma bone disease, even in patients on bisphosphonates. Elevated 

sclerostin was also found to correlate with advanced disease features and abnormal bone 

remodelling in myeloma (Terpos et al., 2012).  

As mentioned in chapter 2 and chapter 6, the mechanobiological models developed for MM 

in this thesis are mathematical models based on patient imaging data, but not on clinical 

biochemical data. In the literature and this thesis thus far, patient specific biological data has 

not been employed to predict changes in bone density of MM patients. As there is a known 

relationship between biomarkers and bone remodelling, the goal of this final study was to 

evaluate the ability of multiscale biomechanical models, that incorporate bone biomarkers, 

to predict spatio-temporal bone adaptation in the vertebra of MM patients. This would 

enable the model to predict changes in prospective data without the need for a follow-up CT.  

7.2 Patient Data 

Seven MM patients were included in the study with baseline and follow-up (12 months) CT 

scans. The patient data is detailed in Table 7.1, where the vertebrae were split into either ‘no 

lesion’, ‘small lesion’ where the lesion is <50% of the vertebral body and ‘large lesion’ where 

the lesion is >50% of the vertebral body. Two CT scanners were used; Toshiba Aquillon ONE 

and Toshiba Aquillon PRIME SP both using a voltage of 120 kV and a pixel size of 1 mm. The 

Toshiba Aquillon ONE scanner had a slice thickness of 2 mm, and the Toshiba Aquillon PRIME 

SP had a slice thickness of 2 mm. Biomarker data for P1NP, CTX and Sclerostin was obtained 

for 5 patients (Table 7.1) at 1, 2 and 3 months after baseline (for more information on this 

dataset see Chapter 2). 
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Table 7.1. Patient data including Patient ID, age, sex, vertebral level segmented, whether the vertebra has a 

lesion (no lesion, small lesion: <50% of vertebral body and large lesion: >50% of vertebral body) and 

whether the patient has bone turnover marker (BTM) data. 

Patient ID Age Sex Level Lesion? BTM data 

BRATS001 63 M T4 large 
1, 2 and 3 
months 

BRATS002 66 M T2 no N/A 

BRATS003 64 M T8 small N/A 

BRATS005 68 M T12 no 
1, 2 and 3 
months 

BRATS006 60 F T12 large 
1, 2 and 3 
months 

BRATS009 64 M T12 small 
1, 2 and 3 
months 

BRATS011 66 F T11 small 
1, 2 and 3 
months 

7.3 Methods 

Three-dimensional finite element (FE) models of vertebrae were generated from baseline and 

follow-up computed tomography (CT) scans for the selected vertebra for each patient (Table 

1).  CT images were calibrated with a phantomless approach (see chapter 2). The 3D 

reconstruction of CT scans, meshing, alignment and assignment of material properties are 

detailed in Chapter 2. Static simulation up to 0.15% strain was applied uniaxially to the 

superior endplate, while the inferior endplate was fixed. To evaluate the failure load (FL), 

separate non-linear models were ran at Baseline, Follow-up and the mechanobiological 

Predicted model with an applied strain of 1.9% and FL was defined as the load at 1.9% strain 

(Crawford, Cann and Keaveny, 2003; Wang et al., 2012; Keaveny et al., 2014).  

The mechanobiological model from Chapter 6 was applied to this dataset, optimising the six 

parameters (k1, k2, α1, α2, β1, β2) for each patient. Then, a multiple linear regression analysis 

using leave one out cross validation (LOOCV) (Bradshaw et al., 2023) was performed in 

MATLAB (R2024a). The multiple linear regression assessed the relationships between the 

three BTMs and each of the optimised parameters (k1, k2, α1, α2, β1, β2), as well as between 

the three BTMs and both BMD and failure load at 1, 2, and 3 months after baseline, 

separately. LOOCV was chosen due to the very small sample size, and despite its tendency to 

over predict outcomes (Adin et al., 2024), it is the best choice for this study as no other 
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methods are viable at this scale. LOOCV uses all but one patient to train the model and then 

tests on the final patient, increasing the training dataset for small cohort sizes (Bradshaw et 

al., 2023). It repeats this for all patients, increasing the robustness of the relationship 

compared to a simple linear regression. Following this analysis, parameters with a strong 

positive correlation between follow-up and predicted (r > 0.8) were then estimated using the 

linear regression equations utilising the BTMs (Equation 7.1). All other parameters that had a 

negative, moderate or weak correlation (-1 < r < 0.8) were averaged across the cohort. 

𝑃 =  𝜑0
𝑃 + 𝜑𝐶𝑇𝑋

𝑃 ⋅ 𝐶𝑇𝑋 + 𝜑𝑃1𝑁𝑃
𝑃 ⋅ 𝑃1𝑁𝑃 + 𝜑𝑆𝑐𝑙𝑒𝑟𝑜𝑠𝑡𝑖𝑛

𝑃 ⋅ 𝑆𝑐𝑙𝑒𝑟𝑜𝑠𝑡𝑖𝑛 

Equation 7.1 

Where, P is the parameter to be predicted (k1, k2, α1, α2, β1, β2) , 𝜑0
𝑃 is the intercept, 𝜑𝐶𝑇𝑋

𝑃  is 

the proportionality coefficient for CTX, 𝜑𝑃1𝑁𝑃
𝑃  is the proportionality coefficient for P1NP, 

𝜑𝑆𝑐𝑙𝑒𝑟𝑜𝑠𝑡𝑖𝑛
𝑃  is the proportionality coefficient for Sclerostin. 

7.3.1 Statistics 

To evaluate the significant differences between the predicted and follow-up for density and 

failure load (FL), Wilcoxon paired test was conducted with significance at p < 0.05. To assess 

the relationship between actual and predicted model parameters, a linear regression was 

performed. The Pearson's correlation coefficients with corresponding p-values of the 

predictions were calculated for all linear regressions. Where an r ≤ 0.5 represents a weak 

correlation, 0.5 < r < 0.8 is moderate correlation and 0.8 < r ≤ 1 is a strong correlation, 

significance was considered where p < 0.05. 

7.4 Results 

The original mechanobiological model was evaluated for this new dataset. Figure 7.2  shows 

the results for Baseline, Follow-up and Predicted for BMD and failure load. The prediction of 

density was good across the seven patients with no significant difference between Follow-up 

and Predicted (average percentage difference: 3.0 ±3.0% p > 0.05). Similarly, for the FL, the 

prediction was good with no significant difference between Follow-up and Predicted (average 

percentage difference: 11 ±10% p > 0.05). 
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The linear regression using LOOCV revealed the weak predictive ability of BTMs for BMD and 

FL at all months apart from month 2 for FL where r = 0.99 (p < 0.01) (see Appendix 2 Figure 

9.10). For the models optimised parameters, k1 and k2 were predicted well at month 1 using 

the linear regression equation from the LOOCV analysis (k1: r = 0.85, %RMSE = 0.199%, p = 

0.07, k2:  = 0.93, %RMSE = 0.214%, p = 0.02, Figure 7.1). For all other parameters, the 

relationship between the predicted vs actual was weak at all months (r ≤ 0.8, p > 0.05 

Appendix 2 Figure 9.11).  

Figure 7.2 - Box plot of the (left) average bone mineral density and (right) failure load at Baseline, Follow-

up and Predicted follow-up. The group was split into two to represent vertebrae with no/small visible 

lytic lesions (green) and large lytic lesions (yellow). A horizontal line represents data for a single patient 

connecting Follow-up to predicted Follow-up. 

No/small visible Lesion 
Large lytic Lesion 

No/small visible Lesion 

Large lytic Lesion 

Figure 7.1 – Results of the linear regression, predicting parameters k1, k2, α1, α2, β1, β2 at 1 month after 

baseline using the equation derived from the LOOCV multiple linear regression analysis. 'Actual' is the 

parameter calculated from the optimisation of the original model and 'Predicted' is the predicted parameter 

using the BTM data 
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The model was then evaluated with averaged parameters for 𝛼1, 𝛼2, 𝛽1 and 𝛽2and with 

estimated k1 and k2 from the averaged linear regression equations calculated from the 

previous step, see Figure 7.3. The BTM incorporated mechanobiological model predicted the 

BMD and FL well for three patients' vertebra, BRATS001, BRATS005, BRATS009 (average 

percentage difference BMD: 3.95 ±3.27%, FL: 7.1 ±8.5%). However, for the other two patients' 

vertebra, BRATS006 and BRATS011, the BTM model predictions were further from the actual 

Follow-up values (average percentage difference BMD: 15.3 ±0%, FL: 41.2 ±5.3%). The 

vertebra in BRATS006 had a large lytic lesion and was over predicted by 15% in BMD and 45% 

in FL. The vertebra in BRATS011 had lots of small lesions present at follow-up which were not 

as clear at baseline and was underpredicted by 15% in BMD and 38% in FL (Figure 7.3). This 

prediction could also have been affected by the image quality, as seen from Figure 7.4 where 

the resolution is lower at baseline (B) than follow-up (C). 

 

 

 

 

Figure 7.3 - Box plot of the (left) average bone mineral density and (right) failure load at follow-up, original 

models predicted follow-up and the new models predtiction incorporating the BTMs. The group was split 

into two to represent vertebrae with no/small visible lytic lesions (green) and large lytic lesions (yellow). A 

horizontal line represents data for a single patient connecting follow-up to predicted follow-up to new 

predicted follow-up. 

No/small visible Lesion 
Large lytic Lesion 

No/small visible Lesion 
Large lytic Lesion 
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7.5 Discussion 

The model developed in this chapter is the first to incorporate biomarkers for prediction of 

change in mechanical properties of vertebra with MM. Using biomarkers alone, the model 

successfully predicted three of the five patients’ change in density and mechanical properties 

as later measured using CT. While the model faced limitations in patients with large lytic 

lesions and or active new lesion formation, it nonetheless demonstrated the possibility of 

predicting patient disease trajectory using blood biomarkers added to mechanobiological 

models. 

A strong correlation was found between the biomarkers and parameters k1 and k2 after one 

month using the LOOCV method. LOOCV is a useful tool for small cohorts as it allows for 

maximisation of the limited data and improves confidence in the parameter relationships 

compared to a standard linear regression (Bradshaw et al., 2023). Since k1 and k2 relate 

directly to the formation and resorption processes, their strong predictive value aligns with 

the expected mechanobiological impact of bone turnover in multiple myeloma. The range of 

values of k1 and k2 was also larger and more evenly distributed than the 𝛼1 and 𝛼2, making it 

easier to form a relationship between biomarkers and parameter. For 𝛽1 and 𝛽2, there was a 

large range of values, but no relationship was found. The lack of predictive power in the 

A C B 

Figure 7.4. CT images of (A) BRATS006 baseline CT of selected vertebra highlighting the large lytic lesion (B) 

Baseline CT of BRATS011 showing no visible lesions (C) Follow-up CT of BRATS011 showing small lesions. 
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parameters associated with cellular production and removal rates implies that these 

processes were less sensitive to biomarker fluctuations in this patient cohort. These 

production and removal rates may vary more gradually and therefore changes were unable 

to be captured in biomarkers measured within 3 months. 

In contrast, k1 and k2 had the highest predictive power at one month which suggests they 

might be tied to an early mechanobiological response that carried the changes in bone up to 

12 months. As with most MM patients, this cohort was treated with anti-resorptives, which 

significantly reduce osteoclast activity, and therefore CTX, within the first month before 

settling out  (Orford et al., 2024). Therefore, to predict changes after 12 months, it is possible 

that only the first month is needed, as if any changes were to occur these would happen 

within this early time period. However, this would need to be tested on a larger cohort to 

generalise the findings. Similar to other studies in MM where CTX was found to be a significant 

predictor of bone turnover over P1NP (Ting et al., 2016), CTX had the largest coefficient in the 

two equations used to predict k1 and k2 (see Appendix) suggesting its effect is more significant 

in our model.  

The two patients that the model underperformed for had more complex bone characteristics 

than the other three patients. One of the patients’ vertebra had a large lesion.  As discussed 

in Chapter 6, the model often predicts the BMD and FL higher than the Follow-up in vertebrae 

with large lesions due to the assumption that lytic tissue is treated the same as bone. When 

high strains are present, more formation occurs, increasing the density and Young’s modulus, 

and thus decreasing the strain in that region and increasing the failure load. To test whether 

this is the issue within this cohort using the estimated and averaged parameters, rather than 

an anomaly, more patient imaging and biomarker data is needed. If this issue persists, the 

alteration developed in Chapter 6 (Appendix) could be applied to ameliorate this effect.  The 

vertebrae for BRATS011 had new lesion formation. At present, the model changes the density 

of each element based on the SED, and the resulting interaction of bone cells. This is based 

on normal bone remodelling and has no additional myeloma-related input to predict the 

formation of lytic lesions. The model could be developed to include a parameter or equations 

to predict lesion formation. However, at present no data is available on the number of MM 

cells in these patients and the likelihood, size and location of the lesions. 
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The main limitation of the current study is the small cohort size. With a larger cohort size, the 

significance of the relationship between actual and predicted k1 and k2 may change. As the 

other four parameters are currently averaged, a larger cohort size would allow for further 

exploration of these relationships, confirming if these parameters can be predicted. A larger 

cohort size would also incorporate a more diverse dataset with more vertebrae with large 

lesions and new lesion formation to confirm if the model struggles with these more complex 

bone characteristics or whether those two patients are indeed anomalies. Another limitation 

is the number of datapoints available for the BTMs. Currently, 1, 2 and 3 months are 

evaluated, with only 1 month having a significant predictive ability. With more patients, the 

predictive ability for the other two months may change. It would be interesting to see how 

early k1 and k2 could be predicted as studies suggest that changes in CTX occur as early as 7 

days (Orford et al., 2024). Having more datapoints would also mean the model could be 

updated more often based on the new data to give more accurate predictions for ongoing 

monitoring. However, if 12-month changes can be predicted with BTMs at 1 month, it would 

reduce the number of hospital visits the patient needs as well as cost and hospital resources. 

7.6 Conclusion 

Bone health in multiple myeloma is a major concern. As highlighted in chapter 2, the 

management of mechanical instability is not well standardised and most often down to the 

clinician’s opinion, alongside the SINS score of the vertebra, on what treatment plan is 

adopted. Most ‘large lesion’ vertebrae in this study would be classified as SINS >10 in the 

potentially unstable or unstable category, making it difficult to decide which treatment is best 

for improving spinal instability. Most clinicians would choose to perform surgery on the 

vertebra deemed as unstable or potentially unstable as well as the adjacent vertebra 

(Pennington et al., 2019). The bracing treatment, mentioned in Chapter 2, is not as commonly 

adopted due to the lack of scientific basis for patients regaining strength and stability. 

Predicting the change in bone density and strength is difficult as the mechanism driving the 

remineralisation is unknown and appears not to be governed by normal mechano-adaptation 

rules alone, in addition to patient variations in remodelling cycles. The ability to predict these 

changes in bone would enable more confident decision making when treating spinal 
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instability. By incorporating biomarkers, which inform us of changes in bone remodelling, we 

have begun to understand these mechanisms and predict these changes. 

The model developed sets the foundation for further study of this unique patient population 

by predicting bone changes effectively in most cases and offers valuable insights into how 

early mechanobiological responses affect mechanical properties after 12 months. This 

preliminary study suggests confirmation of Hypothesis 4 "Mechanobiological models 

incorporating bone turnover markers can predict bone changes in vertebrae of patients with 

multiple myeloma". However, more data is needed to objectively confirm this. This first 

attempt at creating a biomarker-informed mechanobiological model to predict patient-

specific bone changes represents a promising step towards understanding multiple myeloma 

disease progression and informing better clinical decision making and patient outcomes.  
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8 DISCUSSION AND CONCLUSIONS 

8.1 Introduction 

This chapter summarises the main findings of this thesis, drawing together the insights 

obtained from the assessment of the changes in vertebral mechanical properties in cancer 

patients following treatment. Recommendations for further work and future perspectives in 

the field are also discussed. 

8.2 Main Findings of the Thesis 

The research in this thesis focussed on developing subject specific finite element (FE) models 

to assess the change in mechanical properties in cancer patients following treatment and 

coupling these biomechanical models with mechanobiological principles to predict these 

changes. The key contributions of each chapter are summarised below: 

The first study of this thesis developed a finite element modelling pipeline to assess the 

mechanical properties of vertebrae with and without metastatic lesions. The pipeline was 

based on existing methods but modified and optimised for vertebral models from clinical CT 

scans with and without metastatic lesions. The segmentation reproducibility study concluded 

high reproducibility of the manual segmentation technique, with and without metastatic 

lesions, with the vertebrae without lesions having a slightly higher reproducibility. The 

importance of higher image quality and resolution for more reproducible segmentations was 

also concluded. Where a significant relationship between the combined effect of slice 

thickness and pixel size versus the DICE similarity score (DSC) and the Hausdorff distance was 

found. The comparison between phantomless and phantom calibration evaluated the use of 

different combinations of internal materials. The combination of aorta and air for calibrating 

the CT scan yielded the best result, producing the most similar volumetric bone mineral 

density to the phantom calibration method. Finally, the mesh refinement study concluded 

the use of a maximum of 1 mm element edge length was applicable to the FE pipeline used 

in this thesis. 

The second study utilised the FE pipeline from Chapter 3 to analyse the effect of androgen 

deprivation therapy (ADT) on the bone mineral density (BMD) and mechanical properties of 

non-metastatic prostate cancer patients. This study concluded a significant decrease in 
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densitometric (areal BMD: -4%, volumetric BMD: -17%, integral volumetric BMD: -11%) and 

mechanical properties (stiffness: -14%, p < 0.01; failure load: -16%, p < 0.01; normalised 

stiffness: -14%, p < 0.01; failure strength: -16%, p < 0.01) of vertebrae following 12-months of 

ADT. These findings proved our hypothesis that “The vertebral strength of prostate cancer 

patients reduces when administered with ADT”. Additionally, the regression analysis 

confirmed a stronger correlation of both trabecular vBMD (r = 0.78-0.92, p < 0.001) and 

integral vBMD (r = 0.88-0.96, p < 0.001) with the mechanical properties than the aBMD (r = 

0.28-0.44, p < 0.01) suggesting that the determination of the vBMD might be of higher value 

when assessing patient bone strength at specific vertebral levels in clinical practice.  

The third study also utilised the FE pipeline developed in Chapter 3 to estimate the mechanical 

properties of vertebrae with and without lytic lesions following treatment with orthopaedic 

bracing. This study concluded that the patients' vertebrae with large lytic lesions (size >50% 

of the vertebral body) had significant remineralisation and increase in mechanical properties 

evaluated at follow-up. For vertebrae without metastatic lesions or with small lesions (size 

<50% of the vertebral body) there was no significant increase in bone mineral density or 

mechanical properties evaluated at follow-up. This therefore confirmed the hypothesis “The 

remineralisation following bracing treatment for MM patients leads to an increase in 

vertebral strength”. Moreover, a patient-by-patient analysis was conducted to evaluate the 

prediction of the change in mechanical properties using QCT derived volumetric BMD, and it 

was found that this prediction was only possible when any changes in mineral was contained 

within the vertebral body and not towards the cortical shell. This was due to the fact that 

vBMD is measured in the trabecular portion of the vertebral body and does not take account 

of the cortical bone. The changes in BMD, particularly those with large lesions, is not well 

understood, whether these changes are driven through normal remodelling or whether there 

was an additional biological mechanism influenced by the myeloma cells was still unknown. 

The fourth study in this thesis attempted to predict the changes in densitometric and 

mechanical properties over time of MM vertebrae with and without metastatic lesions. The 

model was developed by coupling the organ level FE models of vertebrae with cell-level 

behaviours of bone cells influenced by the mechanical stimulus, which adjusted material 

properties based on biological pathways described by differential equations. The model's 

parameters were optimised based on the density at the follow-up CT. The model was able to 



  Chapter 8 

135 

 

predict the changes in BMD and mechanical properties in the non-cancer control patients 

(average percentage difference BMD: 2.13 ±2.36%, average percentage difference FL: 3.64 

±3.72%). The model also predicted the BMD well for all the MM vertebrae (average 

percentage difference BMD: 3.49 ±4.63%). However, for the failure load, the model struggled 

when predicting, particularly those vertebrae with metastatic lesions (average percentage 

difference FL: 18.67 ±16.83% p = 0.01). The current model needed improvements to better 

predict the changes in vertebrae with larger lytic lesions. This was due to the algorithm being 

able to alter bone in the central region of the lytic lesion, which does not happen during the 

remineralisation seen in other case studies. The data in Appendix 1 demonstrates how the 

model was modified to allow only elements with at least one adjacent element with the 

density of bone to remodel. This change ensured that bone formation occurred only from the 

edges of the lesion inward. This adjustment improved the prediction of the failure load, but 

further work was still necessary to ensure the location of the changes in mineral were more 

accurate. 

The fifth study utilised the mechanobiological model from Chapter 6 and incorporated bone 

turnover markers (BTMs) to allow for the prediction without the need for a follow-up CT. The 

model was able to predict the BMD and failure load well in three out of the five patients 

(average percentage difference BMD: 3.95 ±3.27%, FL: 7.1 ±8.5%). However, for the other two 

patients' vertebra (labelled BRATS006 and BRATS011) the model predictions were further 

from the actual Follow-up values (average percentage difference BMD: 15.3 ±0%, FL: 41.2 

±5.3%). The two vertebrae for BRATS006 and BRATS011 were identified in having more 

complex bone characteristics. BRATS006 had a large lytic lesion (>50% of the vertebral body). 

This limitation was addressed in Chapter 6 and for future assessments on new datasets, the 

updated version of the model, ensuring remodelling occurs from the edges of the lesion 

inward, to better predict vertebrae with large lesions would be employed. BRATS011 had new 

lesion formation as well as poorer quality scan at baseline. Both factors influenced the ability 

to predict the follow-up for this patient. Overall, the model developed sets a firm foundation 

in predicting bone changes effectively in most cases and offers valuable insights into how 

early mechanobiological responses affect mechanical properties after 12 months. This is the 

first attempt at creating a biomarker-informed mechanobiological model to predict patient-

specific bone changes in multiple myeloma. This is a promising step forward towards 
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understanding the downstream effects of current clinical treatments, and to predicting future 

densitometric and mechanical properties, which will aid in clinical decision-making. 

8.3 Future work 

8.3.1 Further development of the FE pipeline 

While this thesis has made significant strides in developing a robust finite element (FE) 

analysis pipeline, several areas require further investigation to enhance its applicability and 

accuracy. One key aspect is the variability inherent in clinical CT scan quality. Since clinical CTs 

are acquired using different scanning protocols and resolutions, the segmentation 

reproducibility of the images may be affected, as alluded to in Chapter 3. Initial evaluations 

have been conducted in this thesis, but a more extensive study involving a large cohort of 

scans with varying protocols is necessary. This would allow for a comprehensive analysis of 

how image quality impacts segmentation reproducibility, ultimately providing guidelines on 

the optimal resolution required for reliable segmentation of vertebrae. 

Another extension of this work involves assessing the effect of segmentation reproducibility 

on FE-predicted mechanical properties. Since FE analyses depend on the accuracy of 

segmented geometries, inconsistencies or errors in segmentation could propagate through 

the pipeline and influence mechanical property predictions. Ongoing studies in our group aim 

to quantify this impact and ensure that the FE pipeline remains robust despite segmentation 

variability. 

Furthermore, the calibration method used in CT-based FE analysis is a critical factor in 

predicting mechanical properties. This study is currently being extended to compare 

phantomless and phantom calibration techniques to determine how different calibration 

methods influence FE-predicted mechanical behaviour. By systematically evaluating these 

methods, this research aims to establish whether phantomless calibration could be used for 

CT calibration in FE studies, enabling the use of retrospective CT datasets that do not feature 

a phantom. 

Lastly, expanding the loading conditions tested within the FE framework is crucial for 

understanding vertebral stability under different mechanical scenarios. While current 

analyses focus on uniaxial compression as the standard mode of physiological loading, future 
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work will incorporate additional loading conditions, such as torsion, bending, and eccentric 

compression. These studies will provide a more comprehensive understanding of how lytic 

vertebrae respond to various mechanical stimuli, possibly aiding the prediction of mechanical 

properties using the mechanobiological models developed in Chapter 6. 

8.3.2 Improving the mechanobiological model to better predict changes in the vertebrae 

with large lesions 

Building upon the findings in Chapter 6 and the conclusions of this thesis, further 

improvements to the mechanobiological model are necessary to enhance its predictive 

capability, particularly for vertebrae with large lesions. The supplementary analyses in this 

thesis indicated that vertebrae with substantial lesions tend to exhibit increased 

mineralization around the lesion margins compared to the rest of the vertebral body. This 

trend has been observed in multiple cases and warrants further investigation to refine the 

model’s ability to capture these biomechanical adaptations. 

A potential avenue for improving the model involves tuning the formation parameters when 

a lesion exceeds a critical threshold (>50% of the vertebral body). In such cases, elements 

within the lesion that have low density but are adjacent to high-density regions would have 

increased formation parameters. By incorporating these refinements, the model could more 

accurately simulate the biological response to large lesions, leading to improved clinical 

predictions. 

8.3.3 Extension of the biomarker incorporated mechanobiological model 

The integration of biomarker data into the mechanobiological model represents a promising 

step toward personalised predictions of vertebral changes. Our clinical collaborators are 

currently working on acquiring additional patient data, including higher-quality CT scans and 

comprehensive biomarker profiles. This expanded dataset will facilitate more robust 

validation of the model and enable a deeper investigation into its predictive power. 

A key question to be addressed is whether the model can make reliable predictions based 

solely on baseline CT and biomarker data or if additional input parameters are necessary for 

accurate predictions. By analysing a larger cohort, this research will determine whether 

certain biomarkers serve as strong independent predictors or if their predictive power is 
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enhanced in conjunction with other clinical factors. Ultimately, this extension of the model 

could pave the way for improved patient-specific prognostics and treatment strategies. 

8.4 Conclusion 

In conclusion, this thesis presents the computational studies conducted throughout the 

author’s PhD studies in the field of vertebral biomechanics and mechanobiology of oncology 

patients. A comprehensive literature review was presented, followed by the rationale and 

motivation for the studies carried out. The methods and results of each study, along with a 

discussion of the implications for the fields of research were detailed in each chapter. 

The studies presented provide novel insight into how the treatment and disease progression 

of oncology patients affect the biomechanical properties of vertebrae. The first study 

developed a FE pipeline, enabling the assessment of vertebral strength in cancer patients 

through time-series CT scans. This provides a new approach for evaluating bone health in 

metastatic disease and offers potential for more personalised treatment planning. 

Additionally, by demonstrating the significant decrease in vertebral mechanical properties 

following androgen deprivation therapy (ADT) in prostate cancer patients, this research 

emphasised the importance of monitoring bone strength during cancer treatment, ultimately 

contributing to better-informed clinical practices and patient care strategies. The application 

of the FE pipeline to multiple myeloma patients revealed the varied effects of remineralisation 

on bone stability, highlighting the need for individualised treatment monitoring and further 

mechanistic investigation. The development of a mechanobiological model attempted to 

explore this remineralisation phenomenon by integrating FE analysis with bone adaptation 

mechanisms. To improve the clinical applicability of the model, bone turnover markers were 

incorporated into the mechanobiological model. This significantly enhanced its predictive 

capabilities, enabling patient-specific predictions from baseline CT scans and offering a 

transformative approach to clinical decision-making and treatment monitoring in MM. Thus, 

the findings of this thesis provide valuable insight into the mechanisms behind the mineral 

and mechanical changes in vertebra with lytic lesions, enabling further development of 

predictive tools to guide clinical treatments. 
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9 APPENDIX  

9.1 Appendix 1 

9.1.1 Data table for MM patients 

 Average BMD  Failure Load (N)  

MM 
Control/ 

Lytic 
(C/L) 

Level Baseline Follow-up Predicted 
% diff follow-

up/ 
predicted 

Baseline Follow-up Predicted 
% diff follow-

up/ 
predicted 

P1a 
C T4 0.3182 0.3204 0.3184 0.63 1622.6 1558.2 1711.6 9.38 

L T5 0.3099 0.3425 0.3618 5.48 1922.3 2233.2 2695.1 18.74 

P3 
 

C T10 0.1763 0.1558 0.1552 0.39 1497.4 1153.9 1173.6 1.69 

L T11 0.1907 0.1651 0.1693 2.51 2134.1 1466.9 1728.4 16.37 

P3a 
C T10 0.1815 0.2492 0.2117 16.27 1802.9 3004.5 2633.4 13.16 

L T11 0.1785 0.2666 0.2715 1.82 1959.1 4080.5 5087.5 21.97 

P5 
C T4 0.3368 0.3295 0.3248 1.44 1664.8 1649.4 1674 1.48 

L T6 0.3139 0.3196 0.2963 7.57 2451.5 3030.9 2731.1 10.41 

P5a 
C T1 0.3221 0.3193 0.3136 1.80 1355.7 988.97 1345.4 30.54 

L C7 0.3335 0.3091 0.3013 2.56 1545.1 1096.3 1265.2 14.30 

P8 
C T3 0.3292 0.2828 0.3076 8.40 2271.4 1606.9 1494.7 7.23 

C T4 0.3336 0.3071 0.305 0.69 2158.4 1670.3 1799.2 7.43 

P9 L L3 0.2848 0.3278 0.3275 0.092 1621 2136.8 3195.7 39.71 

P9a 
C T11 0.2083 0.3297 0.3251 1.41 2243.9 5618.8 5852. 4.07 

L T10 0.1617 0.3444 0.3456 0.35 1612 5005.1 7207.1 36.06 

P11 
C L3 0.2277 0.2625 0.2622 0.11 1640.9 2106.2 3050.9 36.64 

L L4 0.248 0.2785 0.2782 0.11 2026.3 2058.9 4159.5 67.56 

P12 
L T4 0.2679 0.3014 0.296 1.81 1507.9 1786.5 2042.9 13.39 

L T5 0.2802 0.3181 0.2794 12.95 1302.7 1486.1 1419.5 4.58 
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9.1.2 Model adjustments 

9.1.2.1 Adjustment 1: Linear Adjustment 

As is clear from the studies in Chapter 6, the MM group is less well predicted compared to 

the non-cancer controls from the ANTELOPE trial and the MM vertebrae with no lesions. 

Making changes to the remodelling algorithm requires rerunning all models through the 

entire mechanobiological model which is time consuming. Therefore, it was proposed to 

attempt a simple linear adjustment to the density of each element in the models of the MM 

vertebra with large lesions. This simple adjustment means that the models only require a 

final simulation in Ansys to calculate the mechanical properties. For this adjustment, a 

sample of 7 MM patients with lytic vertebrae were used. 

Method 

To calculate the linear adjustment applied to the density, a linear regression study was 

conducted. The MM group was split into two, as done previously in this chapter, to evaluate 

the patients with and without lytic lesions separately. Figure 9.1 shows the linear regression 

relationship for the MM controls (green) and MM patients with lytic lesions (yellow). From 

the regression analysis, it was clear that the lesion group had much more variation as well 

as a poorer correlation (higher RMSE). The linear regression equation used to adjust the 

density is shown below in Equation 6.9. 

Figure 9.1 - Linear regression between the follow-up and predicted density for the vertebrae with 

lesinos (yellow) and vertebrae without lesions (green) 
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𝑦 = 0.63𝑥 + 0.11 

Equation 6.9 

Where y is the new predicted density and x is the original predicted density. 

Using this equation for all patients, the predicted density for each element was adjusted. 

From this new predicted density, the Young’s modulus was calculated and the model with 

the new material properties was re-evaluated in Ansys to estimate the reaction force at 

0.15% strain (Figure 9.2). 

Results 

In the original model, the average density was predicted well (p < 0.5). This was due to the 

optimisation of the average bone mineral density; however, the individual elements standard 

error was not optimised. Therefore, when plotting the graphs in Figure 9.1, there is a large 

RMSE for both vertebra with large lesions (RMSE: 0.16) and vertebra with no or small lesions 

(RMSE: 0.11). It was clear from the linear regression that most patients’ average density 

would increase as the gradient of the line would increase through the adjustment (Figure 

9.1). This result can be seen in Figure 9.3 where the  average density of the new prediction 

for each vertebrae was now overestimated compared to the follow-up (Figure 9.1, p < 0.05). 

Despite one patients prediction improving by 1.36%, there was a similar result for the 

reaction force, where all other patients’ predictions worsened (average original percentage 

difference between Follow-up and Predicted Follow-up Reaction Force: 31.41%, average 

new percentage difference between Follow-up and Predicted Follow-up Reaction Force: 

48.1%) (Figure 9.3).  The patients’ vertebrae that improved in prediction was collapsed and 

had large regions of hypermineralisation. These regions with hypermineralisation would 

have high density and low strain and therefore there would have been little change in the 

density through the original mechanobiological model. With the linear adjustment, this 

increased the density of the elements with high density (Figure 9.1), increasing the 

prediction of the failure load. For all patients, the predicted BMD and FL is higher than the 

Figure 9.2 – Flow chart of the method for adjustment 1. 
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follow-up. This reinforces the conclusion from this chapter, that the model increased the 

density for the vertebra with lesions more than what the follow-up density was. The model, 

therefore, needs further improvement, focussing on local improvements in the vertebrae 

with large lesions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.3 - Box plot of the (A) average bone mineral density and (B) reaction force at 0.15% strain with the 

original prediction from earlier in the chapter on the left and the new prediction with the linear adjustment 

on the right. 

A 

B 
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9.1.2.2 Adjustment 2: Bone cell removal in lesion region 

As adjustment 1 has shown, a more patient-specific approach to improve the prediction of 

the vertebra with larger lesions is necessary. Metastatic lytic tissue is primarily composed of 

tumour cells, fibroblasts and immune cells (de Visser and Joyce, 2023). Therefore, it was 

assumed that, within this region, there were no osteoclasts or osteoblasts meaning no bone 

remodelling. This was implemented in the model to evaluate whether the removal of initial 

osteoblasts and osteoclasts improved the prediction of density and failure load for the 

vertebra with large lesions. 

Method 

For this adjustment, a sample subset of 7 MM patients from the RNOH dataset was included. 

To remove bone cells in the lesion region, a rule was enforced so that if the density of the 

element was <0.1 g/cm3, there were no osteoblasts or osteoclasts for the first time step. 

After this time step, the model would run as normal and bone cells could populate these 

elements depending on the local mechanical stimulus experienced by each element. The 

material properties were then remapped onto the 3D model and re-run in Ansys to evaluate 

the failure load at 1.9% strain. 

Results 

The prediction of average bone mineral density does not improve through this adjustment, 

but the difference between follow-up and predicted remains insignificant (Figure 9.5, p > 0.5). 

However, this was expected as the algorithm and parameters were optimised to match the 

predicted average density to the follow-up average density. The difference between follow-

up and predicted for the adjusted model is now not significant which suggests the model has 

Figure 9.4 – Flow chart of the pipeline for adjustment 2. 
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improved in prediction (Figure 9.5). However, the prediction only improves in one patient 

(P9a) while the prediction for the rest of the cohort gets worse (average original percentage 

difference between Follow-up and Predicted Follow-up: 24.73%, average new percentage 

difference between Follow-up and Predicted Follow-up: 27.98%). The most likely reason for 

the insignificant difference is the small sample size for this sub-study.  

Figure 9.5 – Box plot of the second adjustment for the average bone mineral density (top) and the failure load 

(bottom), comparing the original models prediction (left) and the new adjustments prediction (right).  
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Figure 9.6 shows the distribution of density and compressive strain at Follow-up, Original 

Predicted and Improvement 2 Predicted in two example patients vertebra with a large 

lesion. In the first example patient (A), the density distribution is very similar between 

Original Predicted and Improvement 2 Predicted, however the average density was slightly 

lower in the improvement than originally prredicted (Original model predicted density: 

0.3618 g/cm3, Adjustment 2 predicted density: 0.3289 g/cm3). The compressive strain 

distribution also looks very similar to the original prediction. Nevertheless, the failure load 

was predicted closer to the Follow-up with the adjustment compared to the original models 

Figure 9.6 – Two example patients A and B, detailing the failure load, average density, the density 

distribution and the compressive strain distribution at follow-up, the original models prediction and the new 

adjustment 2 prediction. 

A 

B 
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prediction (Follow-up FL: 2233 N, Original model predicted FL: 2695 N, Adjustment 2 

predicted FL: 2511 N). For the second example patient (Figure 8.6 B), the density 

distribution around the lesion has not been captured with the models original prediction or 

the adjustments prediction. In addition, within the lesion region, the density is higher with 

adjustment 2’s prediction compared to the follow-up scan which decreased the 

compressive strains within that region.  

9.1.2.3 Improvement 3: Preventing remodelling in lytic tissue 

As mentioned previously, within the lesion region there are thought to be no bone cells and 

therefore, no remodelling can occur. Adjustment 2 was not substantial enough to improve 

the prediction of the vertebra with lytic lesions. Therefore, adjustment 3 ensured that any 

lytic tissue could not remodel unless it was adjacent to bone tissue.  

Method 

For this adjustment, all vertebra with lytic lesions were modelled (n=11). To model the lesion 

separately from the bone, adjacent elements were exported from Ansys and imported into 

the MatLab code for the mechanobiological algorithm. The algorithm then analysed for each 

element whether it was surrounded by at least one other element with density >0.1g/cm3 

and if it was, that element could remodel. If the element could remodel, the rest of the 

mechanobiological algorithm was applied, otherwise it was left as the density at the baseline 

scan. The rest of the algorithm was run to predict the material properties, which were then 

imported into the 3D model where the failure load was predicted. 

Figure 9.7 – Flow chart of method for adjustment 3 
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Results 

The average bone mineral density prediction is now significantly different to the follow-up 

(Figure 9.8, p<0.05). However, the most important result was the failure load as this 

represents the mechanical integrity of the vertebra and gives insights into the fracture risk. 

For this improvement, the failure load prediction is still significantly different (p < 0.05), 

however, the average prediction improved compared to the original prediction (average 

Figure 9.8 – Box plot of the third adjustment for the average bone mineral density (top) and the failure load 

(bottom), comparing the original models prediction (left) and the new adjustments prediction (right). 
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original difference between follow-up and predicted: 24.31%, average new difference 

between follow-up and predicted: 13.32%), with only two patients' predictions minorly 

worsening (original percentage difference: 14.3%, new percentage difference: 16.53% and 

original percentage difference: 4.58%, new percentage difference: 5.81%).  

Figure 9.9 the density and compressive strain distributions in two example patients (A and B). 

For the first example patient, the density distribution is similar for both predictive models 

except the lesion region which is better predicted by the improvement. This can be seen as 

Figure 9.9 – Two example patients A and B, detailing the failure load, average density, the density 

distribution and the compressive strain distribution at follow-up, the original models prediction and the new 

adjustment 3 prediction. 

A 

B 
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the lesion region is a lower density (lighter purple). The distribution of compressive strain 

represents this lower density as there are higher strains within the lesion region in the 

improvement prediction. This compressive strain distribution also more closely follows the 

distribution at Follow-up. This improvement of compressive strain distribution follows 

through to the predicted mechanical properties where the prediction of FL is closer to Follow-

up (Follow-up FL: 2233 N, Original predicted FL: 2695 N, Improvement 3 predicted FL: 2437 

N). 

In conclusion, this section has explored several adjustments to the original mechanobiological 

model to improve the prediction of failure load. While initial linear scaling of predicted density 

and the removal of bone cells within the lesion proved ineffective, preventing any remodelling 

within the central region of the lesion demonstrated a positive impact on predictive accuracy. 

This adjustment suggested the assumption that bone remodelling does not occur in the 

central region of the lesion was correct, and that this absence of remodelling plays a crucial 

role in capturing the mechanical behaviour and ultimate failure of the bone. 

9.2 Appendix 2 

Table 9.1 - Multiple Linear Regression equation coefficients for k1 at one month after baseline for all five 

patients. Average coefficients used to calculate the final predictions of k1 for each patient based on the 

patient's CTX, P1NP and Sclerostin levels. 

Coefficient P1 out P2 out P3 out P4 out P5 out Average 

Intercept 0.0058 0.0053 0.0051 0.0052 0.005534 0.005387 

CTX 0.0008211 0.0008140 -0.0007509 -0.0001039 0.001317 0.0004194 

P1NP 0.0000194 0.0000177 0.0000203 0.0000254 0.0000153 0.0000196 

Sclerostin -0.0001612 -0.0001407 -0.0001283 -0.0001485 -0.0001491 -0.0001456 

 

Table 9.2 - Multiple Linear Regression equation coefficients for k1 at one month after baseline for all five 

patients. Average coefficients used to calculate the final predictions of k1 for each patient based on the 

patient's CTX, P1NP and Sclerostin levels. 

Coefficient P1 out P2 out P3 out P4 out P5 out Average 

Intercept 3.064E-05 3.322E-05 3.436E-05 3.411E-05 3.211E-05 3.289E-05 

CTX 8.444E-06 8.482E-06 1.708E-05 1.353E-05 5.719E-06 1.065E-05 

P1NP 7.009E-08 7.931E-08 6.500E-08 3.720E-08 9.230E-08 6.878E-08 



  Chapter 8 

179 

 

Sclerostin 8.859E-07 9.983E-07 1.067E-06 9.558E-07 -9.522E-07 9.717E-07 

 

Table 9.3 - Baseline, follow-up and Predicted BMD for all five patients with percentage differences between 

follow-up and the original prediction and the follow-up and the BTM incorporated prediction. 

 
Baseline 
(g/cm3) 

Follow-up 
(g/cm3) 

Predicted 
– Original 

model 
(g/cm3) 

Difference 
between 

follow-up and 
predicted 

original (%) 

Predicted - 
BTM 

incorporate 
(g/cm3) 

Difference 
between 

follow-up and 
predicted 

BTM 
incorporate 

(%) 

BRATS001 0.2251 0.2245 0.2318 3.19 0.2401 6.72 

BRATS005 0.2363 0.2051 0.1988 3.12 0.1955 4.79 

BRATS006 0.2999 0.3583 0.3613 0.83 0.4176 15.29 

BRATS009 0.2451 0.2441 0.2422 0.78 0.2449 0.33 

BRATS011 0.3336 0.3538 0.3451 2.49 0.3036 15.27 

 

Table 9.4 - Baseline, follow-up and Predicted BMD for all five patients with percentage differences between 

follow-up and the original prediction and the follow-up and the BTM incorporated prediction. 

 
Baseline 

(N) 
Follow-up 

(N) 

Predicted 
– Original 
model (N) 

Difference 
between 

follow-up and 
predicted 

original (%) 

Predicted – 
BTM 

incorporated 
(N) 

Difference 
between 

follow-up and 
predicted 

BTM 
incorporated 

(%) 

BRATS001 965.77 1153.5 1346.3 15.43 1367.1 16.95 

BRATS005 2617.6 1724.6 1773.7 2.81 1690.2 2.01 

BRATS006 2350.8 3856.6 4645.3 18.55 6092.6 44.95 

BRATS009 3884.6 4023.3 3984 0.98 4118.7 2.34 

BRATS011 2914 3601.9 3430.7 4.87 2464.2 37.51 
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Figure 9.10 - Results of the linear regression, predicting BMD and failure load at 1, 2 and 3 months after 

baseline using the equation derived from the LOOCV multiple linear regression analysis. 'Actual' is the 

parameter calculated from the optimisation of the original model and 'Predicted' is the predicted parameter 

using the BTM data. 
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Figure 9.11  – Results of the linear regression, predicting parameters k1, k2, α1, α2, β1, β2 at  2 and 3 months 

after baseline using the equation derived from the LOOCV multiple linear regression analysis. 'Actual' is the 

parameter calculated from the optimisation of the original model and 'Predicted' is the predicted parameter 

using the BTM data. 


