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Abstract

Generative models are commonly used in statistical patezagnition to describe the
probability distributions of patterns in a vector space.rdnent years, sustained by the
wide range of mathematical tools available in vector spatany algorithms for con-
structing generative models have been developed. Compatiedhe advanced devel-
opment of the generative model for vectors, the developrokatgenerative model for
graphs has had less progress. In this thesis, we aim to s@vaoblem of constructing
the generative model for graphs using information theory.

Given a set of sample graphs, the generative model for thEhgnae aim to construct
should be able to not only capture the structural variatidth@sample graphs, but to also
allow new graphs which share similar properties with thgioal graphs to be generated.
In this thesis, we pose the problem of constructing a geiveratodel for graphs as that
of constructing a supergraph structure for the graphs.

In Chapter 3, we describe a method of constructing a supgrgsased generative
model given a set of sample graphs. By adoptingatpesterioriprobability developed in
a graph matching problem, we obtain a probabilistic framé&wdhich measures the like-
lihood of the sample graphs, given the structure of the gipph and the correspondence
information between the nodes of the sample graphs and tifabe supergraph. The
supergraph we aim to obtain is one which maximizes the hield of the sample graphs.
The supergraph is represented here by its adjacency madxywe develop a variant of
the EM algorithm to locate the adjacency matrix that maxesithe likelihood of the
sample graphs. Experimental evaluations demonstratetihatonstructed supergraph
performs well on classifying graphs.

In Chapter 4, we aim to develop graph characterizationscdnate used to measure

the complexity of graphs. The first graph characterizatievetbped is the von Neumann



entropy of a graph associated with its normalized Laplaoatrix. This graph charac-

terization is defined by the eigenvalues of the normalizgld@an matrix, therefore itis

a member of the graph invariant characterization. By apglgome transformations, we
also develop a simplified form of the von Neumann entropy,ciitian be expressed in
terms of the node degree statistics of the graphs. Expetahesults reveal that effec-
tiveness of the two graph characterizations.

Our third contribution is presented in Chapter 5, where weethe graph characteriza-
tion developed in Chapter 4 to measure the supergraph caityded we develop a novel
framework for learning a supergraph using the minimum dpson length criterion. We
combine the Jensen-Shanon kernel with our supergraphraootish and this provides
us with a way of measuring graph similarity. Moreover, weoalevelop a method of
sampling new graphs from the supergraph. The supergraphresent in this chapter
Is a generative model which can fulfil the tasks of graph diaasion, graph clustering,
and of generating new graphs. We experiment with both thd.GOd “Toy” datasets to
illustrate the utility of our generative model.

Finally, in Chapter 6, we propose a method of selecting pyptgraphs of the most
appropriate size from candidate prototypes. The methoésMoy partitioning the sam-
ple graphs into two parts and approximating their hypothepace using the partition
functions. From the partition functions, the mutual infatmon between the two sets is

defined. The prototype which gives the highest mutual infdram is selected.
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Chapter 1

Introduction

In this chapter we provide an introduction for the researohnkwpresented in the thesis.
We commence by introducing the problems encountered inilegugraph data, followed
by a description of our research goals and, finally, we pm@wad outline of the thesis at

the end of this chapter.

1.1 The Problems

Relational graphs provide a convenient means of repreggstiuctural patterns. Exam-
ples include the arrangement of shape primitives or fegianets in images, molecules
and social networks. When abstracted in this way, compléa dan be compared or
matched using graph matching techniques. Although majcpimblems such as sub-
graph isomorphism or inexact graph matching are compuailyp expensive, there are
a number of effective algorithms based on probabilistid,[@ptimization [48] or graph-
spectral [93] techniques that can give reliable resultignmomial time.

However, despite considerable progress in the problenmepoésenting and matching
data using graph structures, dealing with graph data isi$tihg-standing problem. There

are two reasons why graphs are more difficult to manipulae gattern vectors. One is



that there is no canonical ordering for the nodes in a graplepsrespondence between
nodes must be established as a prerequisite [107]. Theisttiatt the variation in graphs
of a particular class may manifest itself as subtle changése structure, i.e. variations
in &) node or edge attributes, b) node or edge compositiortradge connectivity. For
instance, the number of nodes and edges in a graph may beediffeom other graphs
in the same class. Thus, even if the nodes or the edges ofgycapild be encoded in a
vectorial manner, the vectors would be of variable leng@v]1

The reasons above render the difficulty in the analysis gftgdata for the purpose
of characterizing graphs. Unlike pattern vectors, whenathaysis of graph data is at-
tempted, there is frequently no labeling or ordering of thdes of the structure to hand.
For the graph characterizations which require reliableencairespondences, they can
prove very time consuming and even fragile, since they ialéy require inexact graph
matching over the dataset. It is for this reason that the tiperonutation invariant graph
characterizations has proved to be an attractive one. Adthdhere are a number of
simple alternatives that can be used, such as node or edgesfrey, edge density, di-
ameter and perimeter, these have proved to be ineffectigenasans of characterizing
variations. Instead, it has proved necessary to resort t@ mmmplex representations.
One of the most successful of these has been to use grapiaspeethods [64][107].
Here the distribution of the eigenvalues and eigenvectanshe used to construct per-
mutation invariants that do not require node corresporeentinfortunately, the graph
spectral method can prove to be computationally burdensdimereason for this is that
the computation of the graph-spectrum is cubic with regarti¢ number of nodes.

Another resultant difficulty is the construction of a getimemodel for graphs that
captures structural variations present in the sample sehp@red with the advanced de-
velopment of graph matching algorithms, the issue of howajature variability in such
representations has received relatively little attentByicontrast, there is a wealth of lit-

erature on how to construct statistical generative modielisdan deal with quite complex



data for vectorial patterns, including those arising frow@ &nalysis of variability in shape
[29][76][57]. The lack of progress in graph generative mede due to the difficulty in
developing representations that capture variations iphgssructure. As previously men-
tioned, there are three types of graph structural variatiohthe three, the problem of
learning edge connectivity is probably the most challeggBroadly speaking, there are
two approaches to characterizing variations in edge stre¢or graphs. The first of these
is graph spectral, while the second is probabilistic. Indage of graph spectra, many of
the ideas developed in the generative modeling of shapg psincipal components anal-
ysis can be translated relatively directly to graphs usingpke vectorization procedures
based on the correspondences conveyed by the ordering tEdiaap eigenvectors [64].
Although these methods are simple and effective, they amiéeld by the lack of stability
of the Laplacian spectrum under perturbations in graplcstra. The probabilistic ap-
proach is potentially more robust, but requires accurateespondence information to be

inferred from the available graph structure.

1.2 Our Goals

The goals of this thesis are to explore efficient graph chi@raations and, with the help
of the derived characterizations, construct a generatweeifor graphs. In this thesis
we focus on the problem of capturing edge connectivity vans and aim to develop a
generative model that can be used to describe structuniatieaas of edge connectivity in
the sample graphs. Specifically,

a) We aim to explore more efficient graph characterizatiohs.this end, we turn
to information theory and use entropy to define measuresagfigcharacterizations. In
particular, we will investigate the von Neumann entropy @ahs, which relates to the
eigenvalues of the normalized Laplacian matrix as a grapacierization. Using the

von Neumann entropy, we will explore whether we can appratenthe entropy in terms



of node degree statistics and obtain a simplified form, theprdational complexity of
which is much lower.

b) We aim to take an information theoretic approach to cowes®@ generative model
for graphs. Once we have the entropy based graph charatteniz developed in the last
step, we will use them to measure the complexity of the gérermodel and construct
a generative model that trades off goodness-of-fit by adggtie minimum description
length criterion. Moreover, we seek a generative model wiscmulti-functional and
which can be used to classify graphs, measure graph sityitard also to generate new

sample graphs.

1.3 Thesis Outline

Having described the overall goals of the thesis, we proteedtline the structure of the
thesis. In Chapter 2, we reviews the literature relevanhéoresearch described in this
thesis.

In Chapter 3, we present a novel method of constructing argtgggh-based genera-
tive model for a set of graphs. We pose the problem of constigge generative model
for graphs as that of learning a supergraph structure wtaahcapture the edge connec-
tivity variations present in the sample graphs. We expenimeth a real world dataset
and investigate its performance in classifying graphs.

In Chapter 4, we illustrate how the von Neumann entropy candeel as a measure
of graph characterization and, moreover, we also devetoginiplified form. In the ex-
perimental part, we evaluate these two graph charactensaand compare them with
alternative graph characterizations .

In Chapter 5, we combine the methods previously develop€thapter 3 and Chapter
4 to construct a generative prototype for graphs by adojtmgnimum description length

approach. A variant of the expectation-maximization atyaon is developed to minimize



the overall description length criterion. We also develewvmmechanisms so that the
generative model is capable of measuring graph similanityad generating new samples.
Experimental investigations reveal the utility of our gextre model.

In Chapter 6, a prototype graph size selection method isgedv We extend the the-
ory of approximate set coding from the vector domain to tlaggrdomain and show how
the problem of prototype size selection can be solved byroping the mutual informa-
tion between two partitioned sets of sample graphs.

In the final chapter, we offer some conclusions, includingrmmary of the contribu-

tions we have made and directions for future research.



Chapter 2

Literature Review

In this chapter, we will review the literature relevant ta exork described in the thesis.
The two main aims of the thesis are to explore efficient methtoccharacterize graphs
and to use the derived graph characterization to constrgenarative model for graphs
that can capture graph structural variations. To complj wWiese aims, we partition the
content of the chapter into six parts. We commence in Se&idrby introducing the
graph representation. We then review the spectral grapmtheend its applications in
the area of image segmentation and graph matching in Se2iibnWe survey graph
characterizations in Section 2.3. We review generativeetsofdr graphs in Section 2.4,
followed by a review of deep learning in Section 2.5. FinallySection 2.6, we review
some measures from information theory that we will use tcettgvour methods in the

following chapters.

2.1 Graph Representation

The graph-based representations have been widely usedaviiiderable success in the
problems of shape representation [3], segmentation [48f¢ciing [73], and object recog-

nition [112] in computer vision since relational graphs bsteactions for pictorial infor-



mation were first demonstrated by Barrow and Burst [8], arsth¢hler and Elschlager
[43]. In the cases of the genomics and networks, we can nigtuepresent the data as
structural graphs. However, it is not that straightforwatten encountered with image or
scene data. Dealing with these data using graph-based dsatbguires converting them
to graph representation and this involves extracting fegboints on images and arrang-
ing the feature points to graphs. In the graph representafithese data, the extracted
features are represented as graph nodes and their arramga@eepresented by an edge
structure.

To represent the images in graphs, we need to arrange thé sgtracted feature
points in a way that can preserve their general layout. Aneigs be noted is that we
need to have a distance measure between feature pointe efoconstruct graph rep-
resentation for the feature points. The distance betwesnrie points can be defined in
many ways. It can be defined as the Euclidean distance bettveatescriptors of the
feature points or the Euclidean distance between the twtabf the feature points or one
combining both. After we have the pairwise distance of tleuee points, we proceed
to the graph construction step. There are many differenhoustto connect these fea-
ture points in graphs. A famous one among them is the Delatrrsmgulation invented
by Boris Delaunay [31] in 1934. The Delaunay triangulatidrtte feature points has
such representation that no feature point is inside thegioircle of any triangle of other
points. A property of the Delaunay triangulation is that @xmmizes the minimum angle
of all the angles of the triangles in the triangulation [94Qther graph representations
include the Gabriel graph [47] and tlié-nearest neighbour graphs [72]. In the Gabriel
graph, two points are connected by an edge when there ardhapmatints in the circle
whose diameter is the line segment jointing the two pointse fiearest neighbor graph
representation, as indicated by its name, connects ea@htoats K -nearest neighbour

nodes.



2.2 Spectral Graph Theory

Spectral graph theory [13] [84] [26] is a branch of mathensatvhich studies the struc-
tural properties of a graph by exploring the eigensysterh@fjraph. The eigensystem of
a graph consists of the eigenvalues and eigenvectors oaniated matrix of the graph,
such as its adjacency matrix or Laplacian matrix (the degragix minus the adjacency
matrix). The eigenvalues, ordered in terms of their magi@ficonstitute the spectrum
of the graph. An important property of the spectrum is that itivariant to the labelling
of the graph when the graph is non-attributed. The subjespettral graph theory has
acquired considerable topicality because spectral gitagbry is very useful for solving
problems of image segmentation and graph matching.

Alternative methods based on the eigensystem have beenaisetve the problems
of pairwise clustering and image segmentation. Some of dhleest work was done by
Scott and Longuet-Higgins in [88]. They build an proximityatrix to measure the dis-
similarities between image features and then use the eajggsand eigenvectors of the
proximity matrix to partition features into clusters. Thafter, Shi and Malik [92] treated
image segmentation as a graph partitioning problem anddoted the normalized cut
criterion to segment graphs. To optimize this criterioeytdevelop a generalized eigen-
value system in which they iterated using the eigenvecttr thie second smallest eigen-
value of the affinity matrix to bipartition the graph. Examphlso include those described
in [96] [103].

With regard to the problem of the graph matching, there aiedbexamples of the
application of spectral matching methods. In the pioneetkvad Umeyama [101], he
employed an analytic approach to the optimum matching probdf weighted graphs
and efficiently found a permutation matrix close to the optimone by taking the outer
product of the left eigenvector matrices for the two graphs.related work, Shapiro
and Brady [91] have proposed a method for recovering p@atdire correspondence by

using the eigenvectors of a proximity matrix that records@aussian weighted distance

8



between features within the shapes. However, both methedexact graph matching
algorithms and they can only deal with graphs of the same ($he=same number of
nodes).

Luo and Hancock [61] have described an efficient algorithmrfexact graph match-
ing that can accommodate graphs of different sizes. In theik, they develop a proba-
bilistic framework to measure graph similarity and posedtablem of graph matching as
maximum likelihood estimation using the apparatus of thedgbrithm. In the recovery
of the correspondence matching, they ingeniously castrittdgm in a matrix framework
which can be efficiently solved using singular value decaositjmm.

In addition, spectral graph theory also provides approatheneasuring graph dis-
tance. For instance, Wilson and Zhu [108] have used the @aaoh distance between
spectra of graphs to measure the distance of graphs infaaisin and clustering tasks.

Many concepts in spectral graph theory, such as the heatlk@emmute time and
random walks, play important roles in analyzing graphs.tiemels of graphs are widely
used as a means of characterizing graphs, clustering geegoghembedding graphs [111]
[6] [5]. Besides the utility for graph clustering and embedd[85][11], the commute
time and random walks also have applications for image setatien and multi-body

motion tracking [74][50].

2.3 Graph Characterizations

Graph characterizations are of vital importance in the yaslof graph data. Broadly
speaking, these characterizations falls into two groups.fifst are permutation invariant
characteristics extracted from the graph structure andters require having the node
correspondence to hand [41][42]. The second type of graplacterizations usually
involves applying graph matching algorithms to obtain thdencorrespondence and thus

their performance relies on the goodness of these matclgngthms. Therefore, the use



of permutation invariant graph characteristics has prawdz more attractive.

Examples of the invariant graphs characterizations ireliaplacian spectra and char-
acteristic polynomials of elements of the spectral maB& [107]. Luoet al. [62] have
used the ordered eigenvalues from the Laplacian matricgsaphs as graph features to
perform graph clusterings. Wilsast al. [107] have used the elements of the Laplacian
matrices of graphs to construct symmetric polynomials #ratpermutation invariants.
The coefficients of these polynomials can be encoded in avetanner and used as
graph features. Xiaet al. [111] have taken the study of spectral graph invariants tape s
further. In their studies, they perform an analysis of thatternel for graphs, and show
that the Riemann zeta function can be used to generate a nwipewerful invariants
from the normalized Laplacian spectrum.

Recently, graph characterizations that can quantify threagic complexity of graphs
and networks have attracted significant attention due fofthedamental practical impor-
tance, not only in network analysis [38] but also in otheaarsuch as pattern recognition
and control theory. Some of the existing quantificationseasly computable, i.e. they
have polynomial computational complexity [37] [9], but eth are not since they rely
on NP-hard problems and are computationally intractabiesé& existing approaches are
based on notions of either randomness complexity or statistomplexity.

Randomness complexity aims to quantify the degree of randssor disorganiza-
tion of a combinatorial structure. This approach aims taatigrize an observed graph
structure probabilistically and to compute its associ&ednnon entropy. Escolaebal.
[34] have constructed a graph complexity measure usingrtrepes associated to the
Birkhoff-von Neumann decomposition on the heat kernel ef gnaph. In their subse-
guent studies, they extended their work by defining the heatdbmplexity measure and
the corresponding heat flow based thermodynamic depth mesgs4].

Statistical complexity, on the other hand, aims to charastea combinatorial struc-

ture using statistical features such as node degree &sitistige density or the Laplacian
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spectrum. Early examples of the network irregularity iedidalling into this category
include the index proposed by Collatz and Sinogowitz [2'Hiok is defined as the differ-
ence between the principal (largest) eigenvalue of thecadgy matrix and the average
node degree, and the Bell's index, which is the variance desalegree [9]. Recently,
Estrada [37] has defined an index that accounts for the lgneity of networks. To
compose this index, he starts by defining a local index whaehfunction of the node de-
gree to measure the irregularity of a single link (edge) eatbtwork. The heterogeneity
index of a network proposed is obtained as the sum of the irelgularity for all links in
the network. By choosing a suitable function, this index lbarexpressed as a quadratic
form of the Laplacian matrix of the network. Passerini ande8iai [70] have shown how
to use the von Neumann entropy to measure network irregylari

Viewed historically, most early work in this area falls intee randomness class, while
recent work is statistically based. The main drawback ofloamess complexity is that
it does not properly capture the correlations betweenacesi39]. Statistical complexity
aims to overcome this problem by measuring regularitie®béyandomness, and does

not necessarily grow monotonically with randomness.

2.4 Generative Models of Graphs

In this section, we discuss the work of constructing gemnerahodels for graphs. There
are three types of graph structural variations, namelyatians in a) node or edge at-
tributes, b) node-composition and c¢) edge-connectivityictv provide a natural frame-
work for analyzing the state-of-the-art in the literaturiglost of the literature can be
viewed as modeling variations in node or edge attributedadhy most of the work on
Bayes nets in the graphical models literature falls ints tiategory [45] [22] [46]. The
Bayes nets used are a graph-based representation of aariati&joint probability distri-

bution that exploits the dependencies or independenciegeba variables. These Bayes
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nets can be used to do diagnosis, learning, explanationmamy other inference tasks
necessary. Thus they have wide applications in the arearndtigs, social science and
computer science. There are also some well documentecstundihe structural pattern
recognition literature that also fall into this categorngluding the work of Wonget al.
[109], Bagdanov and Worring [4]. Wonegt al. [109] have introduced a first order ran-
dom graphs for structural-based classification. In theidcen graph model, the vertices
and edges are associated with discrete random variableg teklues over the attribute
domain of the graphs. However, the use of the discrete desmsibmplicates the learn-
ing and classification process and hampers the practicdicappn. Later, Bagdanov
and Worring [4] extended the first order random graphs bygusontinuous Gaussian
distributions to model the densities of random variablegb@graphs. Their method over-
comes some of the computational difficulties and allows #&st ind efficient clustering
and classification.

The problems of modeling variations in node and edge cortipnsaire more chal-
lenging, since they focus on modeling the structure of tla@lgrather than its attributes.
For the restricted class of trees, Torsello and Hancockh@9¢ built a tree union to clus-
ter trees. In their clustering method, the correspondebetéseen nodes are unknown
and must be inferred as part of the learning process. Thew us@mimum description
length approach to fitting the tree union to graph data. Thiercmmposition is recov-
ered by minimizing the edit distance which is linked to thea#gtion length criterion.
Since trees are rooted, the learning procedure is faeititabd can be performed in poly-
nomial time. However, this greedy strategy does not tra@stactably to graphs where
the complexity becomes exponential. Torsello and Dowe [28f recently made some
progress in extending this method to graphs using impoetaampling techniques [97]
to overcome some of the computational bottlenecks.

The problem of learning edge-connectivity is probably thestithallenging of those

listed above. The literature on characterizing variatiaregige structure for graphs can be
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categorized into two types. The first of these are graph sgdegiproaches, while the sec-
ond are probabilistic approaches. The graph spectral appes are developed by using
the eigenvalues and eigenvectors of the associated graplesdrom graph spectral the-
ory. Xiao and Hancock [110] have explored how to use the &@ers and eigenvectors
from the heat kernel matrix to construct a generative maatefjfaphs. They first embed
the nodes of graphs into a vector space by performing the ¢¢/diouseholder decom-
position on the heat kernel matrix, and then describe thieilalision of the coordinates
of the nodes using a Gaussian distribution. Although théatians in graph structure
can be adequately captured by the covariance matrix of theéded node coordinates,
it is difficult to reconstruct graphs from these represeotst White and Wilson [104]
have proposed a different spectral generative model. Trepte separate distributions
for eigenvalues and eigenvectors, from which they can génera new matrix that is
close to a Laplacian matrix of a graph. Through setting astiwkel, the Laplacian matrix
can be recovered back to an adjacency matrix, which givesttineture of the graph.
Therefore, their method is an improvement in the sensehlatmodel can generate new
graph structures. Although the methods based on the spgcafgh theory are simple
and effective, they are limited by the stability of the eiggstems of the graphs under
perturbations in graph-structure.

The probabilistic approaches, on the other hand, are paligntnore robust. An
example of the approach has been developed byetab [63], where the authors directly
convert graphs into long vectors by stacking the elementhefadjacency matrices of
graphs, and exploit the structural variations of graphsdnstructing a linear deformable
model. Before stacking the elements of the adjacency neatricowever, they need to
align the graphs so that the nodes are in the same order. Bedhe algorithm in [61] to
obtain the node correspondence information. The drawbapkababilistic approaches
is that they require accurate correspondence informatitse inferred from the available

graph structure before constructing the statistical neddlo date, the most effective
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algorithm falling into this category exploits a part-basepresentation [105]. In the part-
based representation, graphs are represented by a aigstésubgraphs. The variations
in graphs are modelled by observing which subgraphs arempreseach graph and how
these subgraphs are connected. Because the model defirgsitaution based on the

presence of subgraphs and the way subgraphs are conneategraphs can be sampled

from the distributions.

2.5 Deep Learning

Recently, a new area of machine learning called deep legermrerged and has attracted
considerable interest. The research in this area advoeatiesng multiple levels of rep-
resentation in order to model complex relationships amatg.dHigh level features and
concepts are defined in terms of lower-level ones, and tleiaithical representation is
called deep architecture. Before 2006, attempts at trgideep architectures (mostly
neural networks) failed, with the exception of shallow ra¢uretworks with one or two
hidden layers. In 2006, Hinton’s revolutionary work on déeief networks [55] made
a breakthrough in learning deep architectures. The maiakbteough made by Hinton
et al. is that they develop a greedy, layer-by-layer unsupervisadhing algorithm that
allows efficient training of the deep belief networks [86]ith\the help of the algorithm,
the deep belief networks form probabilistic generative etedwhich consist of multiple
layers of variables. The top layer consists of the obsenag@bles and the remaining
layers consist of hidden variables. The variables in a |dewger control the variables in
the upper layers. The main building block of a deep beliefvoek is a Restricted Boltz-
mann Machine (RBM). The RBM is a stochastic neural networkictv consists of one
layer of visible variables (neurons) and one layer of hidemmables (neurons). Variables
in each layer have no connections between them and are dedrteall variables in the

other layer. Connections between variables are undireateidh means that information
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flows in both directions during the training and during theges of the network.

Since then, the deep generative model has been applied watless in many tasks.
In the work of [55], a deep belief network is used to learn aggative model of the joint
distribution of handwritten digit images and their labelBhis generative model gives
better digit classification than the best discriminatiaeng algorithms. Examples also
include the work reported in the area of natural languagegssing [28], where a deep
neural networks can facilitate multitask learning (i.evegi a sentence, outputting a host
of language processing predictions such as part-of-spgegshchunks and named entity
tags) and semi-supervised learning, both of which are ablaprove the generalization
of the shared tasks and result in state-of-the-art perfocea

Ranzatcet al. [76] have used a deep belief network to improve a gated MaRarv
dom Field (MRF) generative model on images. The gated MRE@¢re model is com-
posed of two hidden layers, one set of hidden variables @ tasereate an image-specific
model of the covariance structure of the pixels and the atéeof hidden variables is used
to model the intensities of the pixels. Their deep belieivoek uses the gated MFR as the
lowest level and adds several layers of Bernoulli hidderades to model the statistical
structure in the hidden activities of the gated MRF. Thepeasxnents have shown that
the deep belief network is better than the gated MRF moded@igting high-resolution
natural images, and that the features that it learns are @atidcriminating facial expres-
sions or scene images.

In most of the methods that adopt the deep learning to traibgiilistic distributions
of the observed data, such as images and sentences, vairathie hierarchical structure
have vector value. Therefore those methods closely refatket generative models of

graphs that model the distributions of node and edge atésbu
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2.6 Information Theory Related to Our Work

Most of our work presented in the thesis relates to inforamatheory. The related in-
formation theory includes the von Neumann entropy, the mimh description length

criterion and the mutual information. We review the threaaapts in this section.

2.6.1 Von Neumann Entropy

The von Neumann entropy was introduced by John von Neumame#&sure irreversibil-
ity processes in quantum statistical mechanics [102]. Hrisextension of the Gibbs
entropy and the Shannon entropy to the quantum realm. ThéNeoimann entropy is
defined as entropy of the density matrix of a quantum systanquéntum mechanics, a
quantum system is described by state veptor If a quantum system has only one single
state vector, it is then called pure state. In most geness;dhe quantum systems have
a mixed quantum state. A mixed quantum state correspondsdbd state vectors);)
with different probabilities);. The probabilities); satisfy the condition that < n; <1

andzj n; = 1. The density matrix of the quantum system is
p=> il (W, (2.1)
j

where |1);) is a column vector andy;| is the transpose dfy;). The density matrix
p defined above has the following properties. Its eigenvaaresnon-negative and its
trace sums up to one {lr) = 1. Given the density matrix, the von Neumann entropy is
[10][102]

H(p) = =Tr(plnp). (2.2)
To computeln p, we performp = ®(In A)®7. ® is a matrix whose columns are eigen-
vectors ofp andIn A is a diagonal matrix whose diagonal line has elements whieh a

logarithms of the eigenvalues pf The von Neumann entropy is equal to

H(p)=-> XNln);, (2.3)
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where); is the eigenvalue of the density matrix.

Since the entropy is defined for a quantum state, a mappimg gr@aphs into states
is required if we want to explore the von Neumann entropy @ased with graphs. In
the literature area, many methods have been proposed tonaaipsgnto quantum states.
Examples include the work in [19][26]. Recently, this rasbahas been taken further
by Passerini and Severini [70], who build a faithful mapploegween the Laplacians and
quantum states. They show that the density matrix of a graptbe obtained by scaling
the (normalized) Laplacian matrix of the graph and from wahfte von Neumann entropy
of graphs can be defined. In Chapter 4, we are going to exglergraph characterizations

from the von Neumann entropy of graphs.

2.6.2 Minimum Description Length Criterion

Model selection is one of the most important problems inigtaal inference. It deals
with the problem of selecting the best underlying statitnodels from a set of candi-
date models. The minimum description length criterion (MBbtroduced by Rissanen
[79], is proposed to provide a solution to this problem. Theimum description length
is a formalization of Occam’s Razor and its basic idea is tectghe model that can
compress data most [51]. The earliest implementation sfittea is the two-part code
version of the minimum description length criterion, whrelspectively encodes the data
and model complexity and selects the best model by minimgitie sum of their code-
length. The rationale of the two part version is that the cexify of the model is against
goodness of the fit, which will automatically avoid overfigiand will have a good pre-
dictive performance on new data. However, a problem of thaspart version is that it is
difficult to find a good code for the model. Later, Rissaner] Bdestepped this problem
by using a one-part version, which comes out to the refined MDL
Torsello and Hancock [99] have adopted a two-part MDL to trebfem of fitting a

tree-union model, where they encode the complexity of tr&en in terms of the param-
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eters in their model. Daviest al. [113] have described a method for building statistical
shape models from a set of boundaries using the minimumigésarlength approach.
In their method, they pose the problem of building the shapdehas one of finding the
parameterizations for the correspondence points on thesh@he parameterizations are
selected as those which minimize the description lengthhefttaining set. Examples
also include using minimum description length to evalulgguality of business process
models [24] and using the minimum description length ppheto segment multilingual

documents and identify the language of the segments [114].

2.6.3 Mutual Information

Since Shannon [90] introduced mutual information to measiie dependence between
variables, there have been substantial theoretical arafigabhdevelopments of the con-
cept. For instance, Touras$ al. [100] have used the mutual information criterion to
select the optimal subset of features in computer-aideghdisis, where the mutual infor-
mation between random variables (features) is estimatied tise histogram approach.
Examples also include using the maximum mutual informatetrain hidden Markov
models [49] and applying the mutual information in medicahge processing and image
registration task [71]. Recently, Buhmaganal. [20][21] have proposed an information
theoretic model selection theory called the approximates@ing where they develop a
communication scenario to measure the generalizatiorctgipe models. The general-
ization capacity of the models is defined using the mutuarmftion between the coars-
ened training data and the coarsened test data. Howevemibéel selection method is
proposed in clustering in the vector domain. In Chapter 6wileextend his theory to

graph domains.
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2.7 Conclusions

Based on the review of the related literature, we may drawers¢\conclusions. First,
although there is a substantial body of research on graptactesizations, developing
efficient graph characterizations that can quantify thensic complexity of graphs and
networks is still an urgent problem. These existing graratterization measures either
suffer from the curse of expensive computational compjexitare not effective. In the
thesis, we will explore the feasibility of extracting uskeduind efficient graph characteri-
zations from the von Neumann entropy as graph complexitysores.

The second point derived from the literature review is tihat method of learning
generative models for graphs using information theoryeurlle guide of the minimum
description length criterion, has not been proposed. Iff igatue to explore this area,
since the generative models developed in this way can abeightoblem of overfitting
and generalize well to new data. Developing such methodkl dmiachieved with the
help of a well-developed graph characterization measuhé;hwcan efficiently capture
graph complexity. Later, we will show how we use the graphratizrizations extracted
from the von Neumann entropy of graphs to measure the coitpleikthe generative
model and take an information theoretic approach to cocisrgenerative model using
the minimum description length criterion.

Thirdly, the review of the mutual information also suggestsiethod for selecting
graph models. The recently developed theory of approxireatecoding proposed a
method of selecting models by maximizing the mutual infaiorabetween two parti-
tioned datasets. Although this theory is proposed for ehirsg in the vector domain, it
provides scope for us to apply it to graphs. We will extendtti®ry to the graph domain

and use it for selecting the sizes of the prototype graphs.
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Chapter 3

A Supergraph-based Generative Model

3.1 Introduction

This chapter proposes a method of constructing generatadehfor a set of sample
graphs. We follow Torsello and Hancock [99] and pose the lpralof constructing the
generative model as that of learning a supergraph struethieh can describe the edge
structural variations present in the set. The supergraptgmmph-union that can capture
the structural variations of the graphs in the sample sefuifosh the required learning
framework, we use the probabilistic framework developed.by and Hancock [61] to
describe the distribution of the sample graphs. The stractsupergraph we aim to learn
is the one that maximizes the likelihood of the sample grapbdocate the structure of
this supergraph, we develop a variant of the expectatioxirmaation (EM) algorithm
where both the structure of the supergraph and the corrdspers between the nodes
of the sample graphs and those of the supergraph are treatesdsing data. This novel
technique is applied to a database of object views, and wdedin class prototypes that
can be used for the purposes of recognition.

The main contribution of this chapter is that by extendingwork of Luo and Han-

cock [61], we develop a novel generative model for a set gflggdased on a supergraph
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structure. The supergraph here is the one that maximizekkaigmood of the sample
graphs. The second contribution is that we develop a vaoBM algorithm to realize
the maximume-likelihood estimation. The outline of the cteaps as follows. In Section
3.2 we review the likelihood function developed by Luo andhetack [61]. This likeli-
hood function will later be used to formulate our probahitiframework. In Section 3.3,
we describe the methodology we use to learn the supergraptiise. The variant of the
EM algorithm is also provided here. In Section 3.4 we give s@xperimental analyses.

Finally, in Section 3.5 we draw our conclusions.

3.2 The Likelihood Function

Given a set of sample graphs, our aim is to learn a generatkehthat can be used to
describe the distribution of the sample graphs and charaetthe structural variations
present in the set. Here we pose the problem as that of lgpangupergraph. To com-
mence our development we require a probabilistic framevmmeasure the likelihood
of the sample graphs. We use tposterioriprobability developed by Luo and Hancock
[61] to describe the likelihood function of the sample gr&phhisa posterioriprobabil-
ity was initially developed to measure the similarity beémea data graph and a model
graph in a graph matching problem. In our problem we use it@asure the likelihood
of a sample graph being generated from a supergraph. Indtii®s we review how they
construct thea posterioriprobability. To make the content in this section consisvatt
the following sections, we explain the development ofdh@osterioriprobability in the
context of a sample graph and the supergraph.

To commence, we introduce some notations. We represenathpls graph by- =
(V, E) whereV = {a,b,...} represents the node-set in the graph &hepresents the
edge-set. The supergraph is denoted'by (Vr, Er) with node-sett = {«, 5,... } and

edge-settr. The structure (edge connectivity) of the two graphs aréecatdd by their
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adjacency matrices. The adjacency matrices are squareesadnd the dimension of an
adjacency matrix of a graph is equal to the number of the niodée graph. If two nodes
in a graph are connected by an edge, the corresponding el@mtée adjacency matrix
is one, otherwise it will equal zero. We denote the adjacenairix of the sample graph

G by A and the elements of the adjacency matrix are

1if (a,b) € E
Awp = (3.1)
0 otherwise.
Similarly, we represent the adjacency matrix of the sumgrigi’ by M and have its
elements
1if (a,0) e B
Mo = @ 0) € b (3.2)
0 otherwise.

In the graph matching problem, the node correspondencemiafion between the two
graphs is represented by an assignment m&hose dimension i§l/| x |Vr| where
|V| and|Vr-| are respectively the number of the nodes in the sample gnaghlth@se in
the supergraph. The assignment matrix indicates the nadespmndences between the

sample grapld: and the supergragh. It has elements

Su = { Lt fla)=a (3.3)

0 otherwise,

wheref(a) = « means that node € V' is matched to node € V.

According to Luo and Hancock [61], the idea underpinningrttieveloped likelihood
function is that the node correspondences between the apihgare hidden variables and
the nodes in the sample graphs arise through a noisy obmerymbcess. That is to say,
there is a possibility that any single node of the sampletlyrapy be matched to any
node in the supergraph. Therefore, to entertain this featbe authors define the prob-

ability of observing a node in the sample graph in the form stimmation over the set
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of all the possible correspondences. By assuming the nadbke sample graph are inde-
pendent, the likelihood function of the sample graph ineslfactorizing the observation

probability over all the nodes in the sample graph, and igevri

P@GI,8) =[] D Plala,8), (3.4)

a€eV aeVr
where P(a|c, S) is the probability that node in the sample graph is in correspondence
with node« in the supergraph under the assignment marix
They proceed to develop a model for the observation proipatil(a|a, S). Using

Bayes’ theorempP(a|«, S) is equal to

P(S|a,a)P(a, a)
P(S|a)P(«)

Assuming that the observation probability of the assigrninnesaitrix is factorizable over

P(a|a,S) = (3.5)

the set of the assignment variables, the above functiombeso

ULev [seve Plsisla, @)} Pla, )

P(ala,S) = (3.6)
1S = T ey Mo Plswal)}P(a)
Applying Bayes’ theorem, they have
P(ala, spg) P(alsyg) P(s
Ploplosc) = ZLle. 0 Pllou) Pl @
and
P(alsys) P(s
Pspsla) = £ |;[ZL)( ) (3.8)
then the function can be rewritten as
P(a|o,spg)P(csps) P(ss) Pla. o
Pla|a,S) = Hhev Hsew: Pla) JPle. o) (3.9)

als P s
{Thev Ty 22y P(a)

Canceling terms”(«s,3) and P(s,z) which appear both in the numerator and denomi-

nator and collecting together terms, they find the expressimplifies to
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P(alo, 8) = [ﬁ]'vx%l H H P(alo, spp). (3.10)
bEV BEVE

They further assume that nodes in the sample graph are morally dependent on the
supergraph graph nodes only in the presence of the assigmmagnx S, then P(a|«) =
P(a). Hence,

P(ale,S) = By [ [ T] Plale, sus), (3.11)
bGVﬁGVF
where
1
B, = [~ |VxIWl=1, 12

is a constant and its value depends only on the identity c$dneple graph node

To develop a model for the conditional probabil®(a|«, sus), the authors draw on
the work of Wilson and Hancock [106]. The idea behind the nh@alehat a nodex in
the supergraph can emit a symhotirawn from the nodes in the sample graph and the
probability that this correspondence is correct is P., while the probability that it is in
error isP,. The correctness of the correspondence is gauged by clgeckiether nodes
a andb in the sample graph are matched to a valid edge in the supérgr, M, ssi5
is used for the test of edge-consistency. It has a unity vahlg when node in the
sample graph is matched to nodén the supergraph and they also satigfyb) € £ and
(o, B) € Er. When the condition is not met, the quantity is zero. Usirig #witching
property and assuming the nodes in the sample graph areeddriym the supergraph

under a Bernoulli distribution, the condition probabilisy

P(ala, sys) = (1 — P,)AerMapsus pl=Aatassos, (3.13)

Substituting Equation (3.13) into Equation (3.11), theyeha
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P(ala,S) = B, [] T (1 — Po)eeMessn pl=Aertansen, (3.14)

beV BEVF

The above function can be expressed as a natural exponfentélbon

P(a|a, S) = K, exp[u Z Z A Mopsusl, (3.15)
beV ﬁGVF
where
1-P,
=1 < 3.16
p=h—p (3.16)
and
K, = PVXItig,. (3.17)

Finally, replacing Equation (3.15) into Equation (3.4) tikelihood function is

P(G|',S) H Z K, exp ,uz Z AaMopsig]. (3.18)

acV aeVp beV BeVT

3.3 Learning the Supergraph

Having thea posteriori probability in hand, we proceed to measure the likelihood of
the sample graphs. Let the graphs in the sample sét be{G,,...,G;,...,Gx} and

the supergraph bE. We use the set of assignment matrices- {S',..., S’ ... SV}

to represent the correspondences between the nodes ofesgraphs and those of the
supergraph. Under the assumption that the graplis ane independent samples from
the distribution, the likelihood of the sample graphs camhéen as follows using tha

posterioriprobabilities reviewed in Section 3.2

P(@GIL,S) H H Z K!exp MZ Z Al Massis). (3.19)

G;€G aeV; a€Vr beV; BeVr
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We aim to locate the supergraph that maximizes the liketifooction above which
is a mixture model over the set of possible corresponderod$é.1], Luo and Hancock
use this probabilistic model to cast the problem of graptcimag into that of seeking the
assignment matrix that maximizes thiposteriorprobability. To solve this problem, they
develop an EM algorithm in which the node correspondenceseafficiently recovered
using singular value decomposition. In our method we usstpiosteriorprobability as
the probability distribution of the sample graphs givenghpergraph and correspondence
information. However, to maximize the likelihood of the ga@lengraphs we need to esti-
mate not only the assignment matrices, but also the steictuthe supergraph. In order
to deal with the missing node assignment matrices and thetste of the supergraph, we

develop a different EM algorithm to locate the solution.

3.3.1 Expected Log-Likelihood Function

We proceed to compute the expected value of the log-liketifanction of the sample
graphs. The likelihood function for observing a sample gr@pi.e. for it to be generated
by the supergraph, is thea posteriorprobability in Equation (3.18), its log-likelihood

function is

= Z In{ Z K, exp|p Z Z AwMopsesl}- (3.20)

acV aeVr beV pBevr
According to [26] [78] [14] [61], Luo and Hancock show thaetexpectation of this

log-likelihood function is

ASTIISM) =3 N QI In Ky + 1 Y AaMagsiy™Y, (3.21)

a€eV aeVp beV BeVT

whereQ™ is a matrix with eIementQm) that are equal to tha posterioriprobability of

nodea in G being matched to nodein I" at iterationn of the EM algorithm.
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To develop the expected log-likelihood function for our sigraph model, since we
do not know the supergraph adjacency malix we work with its expectation valuB.

From the set of sample graphs with correspondence matepessented by we have

ASTISMY = 3NN QLI K+ > ALPE s} (3.22)
G;€G aeV; aeVp beV; peVr
whereP}) = B[ M,4] = P(M.s = 1|G,S™). Posed in this way, the estimation of the
expectation valuéjc(yg) involves exploring all the configurations of the supergrapidel,
which is only computationally tractable using Monte Cardonpling. The alternative is
to assume a simple distribution for the supergraph edgesn&iance, if we assume that
the sample graph edges arise as independent samples freenahihhe supergraph under

a Bernoulli distribution, then the likelihood becomes
st o8t gAY 1— > si,si Al
@Ir,8) =1 I Pee T
Gi€G a,peVr
This is a different distribution from the one prosed for nag but it is tractable. The
trial success probability for the Bernoulli distributidhs is equal to the expected number

of successes, and so

aﬁ |g| Z Z Saocsbﬁ ab7 (324)

G;€G a,beV;

where|G| is the number of graphs in the sample Get
To maximize the expected log-likelihood function in Eqoati(3.22), since the first

term under the curly braces contributes a constant amount

DY > QK=Y > K], (3.25)

G,€G a€V; a€Vp G;i€G acV;

we confine our attention to the second term under the curlgelsravhich determines the

update direction. The quantity of interest can be writtethassummation of the traces of
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products of matrices that is

[\(S(’n+1) |8(n)> _ Z Tr[(Ai)TQi’(n)P(n)(Si’(nJrl))T]. (3.26)
G;€G
As a result, we concentrate on the critical quantity in Eguna(3.26) and maximize its

value.

3.3.2 Maximization

The maximization step involves recovering the elementsarassignment matrices™ ")

that satisfy the condition

S*("+) = arg max Tr[(A)TQ>MP™ET]. (3.27)
s

To update those set of correspondence indicators, we usextteame principal re-
ported by Scott and Longuet-Higgins [89]. Scott and Longdigigins demonstrate that
the S*("+1) satisfying the above condition can be recovered by perfogrthie singular

value decomposition

(AHTQ»mPp™ = yxUT, (3.28)

whereY andU are orthogonal matrices arX is a rectangular diagonal matrix. From
the factorization, we construct the matex by making the diagonal elementsXhunity,
and compute matri¥ by settingZ = YAU?. The elements oZ can be used to update
the assignment indicators. However, the mafiis not a binary matrix in nature and the
elements ofZ are neither positive nor normalized. To overcome thoselpnod, Scott
and Longuet-Higggins suggest testing the elemen ahd transforming the matrix to
a matrix of binary correspondence indicators. We followirtimeethod and make the

following setting. If the element,,, is the maximum value in both its containing row and

28



column, then the corresponding assignment indicator i®3aatity; otherwise, it is set to

zero. In other words,

A 1 if Z,, = maxZ, = max 7,
Shn+l) — (3.29)
0 otherwise.
There are alternative methods to update the assignmenixn$atr+) in this step.
For instance, the graduated assignment method proposedloya@d Rangarajan [48]
could be adopted. Here we choose to use the idea of singuler d#acomposition for the

reasons of simplicity.

3.3.3 Expectation

In the expectation step of the EM algorithm, we compute thaim&>™+? whose el-
ements are tha posterioriprobability of the nodes in the supergraph being matched to
those of the sample graggh, under the current corresponderg&é™. In [61], thea pos-
teriori probability of a node in the supergraph grdplgiven a node in the sample graph

G and the correspondence at iteratiors

plala, S™)x

P(ala, STV = o)
ZGEVF p(a|a7 S(n))ﬂ-an

, (3.30)

where
) = ﬁ Z P(ala,S™). (3.31)

acV

Recall in Equation (3.15) we have

P(ala,S) = K, exp[uz Z Ay Mo pspg).
beV ﬁGVF

Replacing it into Equation (3.30), tleeposterioriprobability of the nodes in the super-
graph graph’ at iterationn + 1 is
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exp[ZbeV Zﬁevp AZbP(n SZE”)]W&’(")
DI "eVp eXP[Zbev Zﬁevp Aébpig Z’ﬁ(n)]ﬂg'(n)

Qz s(n+l) (332)

where

o™ — 3.33
O/ ‘V‘GEZVQaa . ( . )

To run the EM algorithm, we need to initialize both the stanetof the supergraph and
the node correspondences between the sample graphs angéngraph. Initializing the
supergraph with different structure, the supergraph weézhusing the EM algorithm
could be different. The initial supergraph should have twapprties. First, the initial
supergraph should be easily obtained, and second it shoetgmwe enough structural
variations of the graphs in the sample set. Later in the éxygertal part, we will show
how we construct a concatenated graph that satisfies the glooperties and use it as the

initial supergraph of the EM algorithm.

3.4 Experiments

In this section, we test our proposed method on a real-waddgs™ dataset and provide
some experimental evaluations of our generative model. detaset used consists of
images of 4 objects, with 20 different views of each objece &xtract feature points in
the images using the SIFT [60] detector and construct thekagnaphs using Delaunay
triangulation of the detected points. In Figure 3.1, wesiitate some example images of
the objects and the extracted SIFT feature points on theemagigure 3.2 shows the
associated Delaunay graphs constructed from the SIFTgoint

To initialize the structure of the supergraph, we constaucbncatenated graph. The
concatenated graph is constructed using the followinggaoes. we first match pairs
of neighbour graphs from the same object using the SIFT rfeatascriptors and then

merge the common structures for pairs of graphs. Finally recatenate the common
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Figure 3.1: Example images and the extracted SIFT featurgspon the images.
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Figure 3.2: Example images and their associated graphstfrei8IFT feature points.

structures over for the sample graphs to form the concadrgraph. The concatenated
graph constructed in this way well preserves the structaaations present in the set of
sample graphs.

The first part of our experimental investigation aims todale the supergraph learn-
ing method. We iterate the two steps of the EM algorithm 5@#8pand observe how the
structure of the supergraph changes and how the likelihooction changes with itera-
tion number. During the iterations of the EM algorithm, weaeer the structure of the
supergraph at iteratiomby setting

1 if P >0

MY = (3.34)
0 otherwise,

and measure the variation of the supergraph structure tisengon Neumann entropy

mentioned in Section 2.6.1. According to Passerini and 18@J&0], the von Neumann
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entropy of graphs is defined as

] ln — 3.35
Z IVr |VF ( )

whereﬁj are the eigenvalues of the normalized Laplacian matrix@kthpergraph that is
defined ad. = D~/2(D — M)D~%/2, whereD is the degree matrix of the supergraph
which is a diagonal matrix with node degree on the diagonal éndM is the adjacency
matrix. The von Neumann entropy can be used as an indicastrftural complexity
of the supergraph. A detailed description of this entropprisvided in the following
chapter. From Figure 3.3(a), it is clear that the von Neunemtropy of the supergraph
decreases as the iteration number increases and finallgi@Es/when the iteration num-
ber increases to 40. This indicates that the complexity@stipergraph decreases and its
structure becomes condensed and simplified as the numbteratfons increases. Figure
3.3(b) shows that the average of the logarithm of the prodtithe a posterioriprob-
abilities of the sample graphs, i.e. the average log-likeld, increases and gradually
converges as the number of iterations increases. In othelsyour algorithm behaves in
a stable manner both increasing the likelihood of samplplgr@and simplifying the su-
pergraph structure. Both the likelihood of sample graplisthe value of von Neumann
entropy of the supergraph converge when the iteration numbeeases to 40.

Secondly, we evaluate the effectiveness of our generatgeinearned using the
EM algorithm for classifying graphs. To do this, we learn aengraph for each object
class from a set of samples in the training set and use thedéaupergraphs to dis-
tinguish graphs from a separate test set. For each graple itesh set, we compute its
likelihood from a given supergraph using tag@osterioriprobability in Equation (3.18).
The class-label of the test graph is determined by the clab&supergraph which gives
the maximuma posterioriprobability. The classification rate is the fraction of cmtty

identified graphs in the test set computed using 10-foldscvaidation. For comparison,
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Table 3.1: Comparison of the classification results. Theasbre the average classifi-
cation rates from 10-fold cross validation, followed byittetandard error. The highest

classification rates are shown in bold.

Supergraph construction classification rate

initial supergraph 66.3% 0.038
set median graph 65.5% 0.025
learned supergraph 72.5% 4+ 0.022

we have also investigated the results obtained using tveonative constructions of the
supergraph. The first of these is the initial structure ctereed from the results of SIFT
descriptors. The second is the set median graph [56], eesébmedian graph is a sample
graph in the training set that has largest average valueedd fiosteriori probabilities
to the other sample graphs in the training set. Table 3.1 shbevclassification results
obtained with the three different supergraph construstioAmong the three construc-
tions, our learned supergraph achieves an average clasisificate of 72.5%, which is
higher than the initial supergraph’s classification rat2 360) and the set median graph’s
(65.5%).

Finally, we visualize the structure of the learned supegigrimr car object after the

EM iterations in Figure 3.4.

3.5 Conclusions

Our first contribution of this chapter is that we have proglbaemethod of learning a
generative model or supergraph for graphs. We began bydinting thea posteriori

probability defined in a graph matching problem [61]. In thsequent development,
we used this probability to measure the likelihood of a sagphph from the supergraph.
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Figure 3.4: Learned supergraph for car object after the Ejdrahm.
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The supergraph we aim to learn is one which maximizes thdiHiked of the sample
graphs. Our second contribution is that, to maximize thigaive function, we have
developed an EM algorithm to maximize the likelihood of tlaenple graph and locate
the structure of the optimal supergraph. In our experimemeshave demonstrated that
our supergraph learning method can locate the structuresapargraph that is optimal
or suboptimal and have shown that the supergraph learndfiddiee for classification.
Besides, we also have investigated the use of the von Neueraropy as the indicator

for measuring the complexity of the supergraph in the expenital part of this chapter.
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Chapter 4

Graph Characterizations From Von

Neumann Entropy

4.1 Introduction

In this chapter we explore how the von Neumann entropy cansbd as a measure of
graph characterization. We also develop a simplified forntHe von Neumann entropy
of a graph that can be computed in terms of node degree smtisfVe compare the
resulting characterizations with a number of differentpyraharacterizations including
Estrada’s heterogeneity index [37] and the derivative efRemann zeta function at the
origin [111]. In the case of Estrada’s heterogeneity indexreveal a new link between
Estrada’s index and the commute time on a graph. We then guaaiweshow how the
the von Neumann entropy can be used to compute thermodymigpil and illustrate its
applications to a set of protein-protein interaction neso

The main drawback of randomness complexity is that it do¢saature properly the
correlations between vertices [39]. Statistical compileaims to overcome this problem
by measuring irregularities beyond randomness, and ddeteessarily grow monoton-

ically with randomness. Here we take the view that a morerahtoute to computing
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graph complexity is to turn to information theory and to us&@py measures.

The novel contributions of this chapter are threefold. tF-wse develop new graph
characterizations from the von Neumann entropy. Secondewveal a new link between
Estradas index and the commute time on a graph. Third, we Slosnto use the von
Neumann entropy to construct the Bregman balls needed tpuienhe entropy based
thermodynamic depth complexity. The outline of the chapgeas follows. In Section
4.2 we introduce the definition of the von Neumann entropy stmalv how to simplify
and approximate its calculation. Section 4.3 describes#dterogeneity index and re-
veals its link to the commute time. Section 4.4 we review tegvative of the Riemann
zeta function at the origin as an alternative graph chanaeten for experimental com-
parison. Section 4.5 describes the thermodynamic deptiplesity measure for graphs,
and explains how our von Neumann entropy can lead to the vamiden entropy based
thermodynamic depth complexity. Section 4.6 provides arpental results. This study
is divided into three parts, namely a) an investigation efréslationship between the von
Neumann entropy and its approximate counterpart, b) thepeoson with alternative
graph characterizations and c) the application of the pgtbmsed thermodynamic depth

to protein-protein interaction networks. Section 4.7 iffeome conclusions.

4.2 Graph Representation and the Von Neumann Entropy

The von Neumann entropy was originally defined in quantumhaeics as the Shannon
entropy associated with the eigenvalues of the densityixa&ecently, Severirgt al. [2]
[70] have shown how to apply the von Neumann entropy to theadlowf graphs through
a mapping between discrete Laplacians and quantum stdgslfithe graph domain,
the von Neumann entropy is the entropy of the density matotaioed by scaling the
normalized discrete Laplacian matrix by the reciprocalha size of the graph. In the

following we show how we derive this entropy.
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To be consistent with the notations in Chapter 3, we denetddta graph under study
by G = (V, E'), whereV is the set of nodes anfd is the set of edges. Further, the structure
of the graph is represented by1a| x |V| adjacency matribA (|V| is the number of the
nodes in the graph) whose elements are

1 if(a,b) e E

Ay = (4.1)
0 otherwise.

The degree matrix of grapfi is a diagonal matriD, whose diagonal elements are given
by Do = do = >,y Ala, b). From the degree matrix and the adjacency matrix we can
construct the Laplacian matrix = D — A, i.e. the degree matrix minus the adjacency

matrix. The elements of the Laplacian matrix are

d, fa=0
Ly =19 -1 if (a,b) € E (4.2)

0 otherwise.

The normalized Laplacian matrix is given by= D~'/2LD~'/2 and has elements

1 if a =b andd, # 0
Lo=q —7= if(ab)eE (4.3)
0 otherwise.

The spectral decomposition of the normalized Laplaciarrimat L = ®A$7 where

A = diag\;, A, ..., \y) is a diagonal matrix with the ordered eigenvalues as elesnent
(0=X <X < ... <Apy)and® = (61|¢al...|op|) is @ matrix with the correspond-
ing ordered orthonormal eigenvectors as columns. The ria@@dalaplacian matrix is
positive semi-definite and so has all eigenvalues non-ivegdthe number of zero eigen-
values is the number of connected components in the graph.a Eonnected graph,

there is only one eigenvalue which is equal to zero. The nlizateon factor means that
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the largest eigenvalue is less than or equal to 2, with etyuatily whenG is bipartite.
Hence all the eigenvalues of the normalized Laplacian matg in the interval0, 2]. The
normalized Laplacian matrix is commonly used as a graplesgmtation and the eigen-
vectorg, associated with the smallest non-zero eigenvalgés often used in graph cuts
[83][92].

The trace of the normalized Laplacian matrix is equal to ike ef the graph, i.e.
the number of the nodes in the graph. Scaling the normalizgdacian matrix by the
reciprocal of its trace, we obtain a density mat’%f. The eigenvalues of the density
matrix is( G}‘ Gf' “VV“ ) and thus the von Neumann entropy of density matrix assatiate
with the normalized Laplacian matrix of the graph is definedi7@]

vios g

HG)=-> Ay A (4.4)

where0In0 = 0, by convention. The von Neumann entropy above relies on dhe c
putation of the normalized Laplacian spectrum, thereftse&omputational complexity
is cubic in the number of nodes. To render the computatiorerefficient, we explore
how to simplify and approximate the calculation of von Nemm&ntropy. The Taylor
expansion foin 22 M at point 1 is

A IPDY

(m—l)—é(m

1A 1A

—1)2+§(m—1)3—1(m—1)‘*+---. (4.5)

If we keep the first item of the expansion and discard the reimgithat contribute to a

small amount)n 2% G is approximated usmgM 1). Then the entropy- > . Ay 2L IV\

V\ J Vv

can be replaced by the quadratic entr@y T (1 — W) then we obtain

1 2
Z|V| Vi Z|V| ) |V|Z TE2 @O

Using the fact that TE*] = > ;\f [12], the quadratic entropy can be rewritten as
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. T[] Tr[L?

H(G) = v T Ve 4.7)

According to Equation (4.3), the normalized Laplacian imakr has unit diagonal ele-

ments, therefore for the trace of the normalized Laplaciatrimmwe have

Tr[L] = |V]. (4.8)

Similarly, for the trace of the square of the normalized laafdn, we have

=Vi+ Y v (4.9)

Substituting Equation (4.8) and Equation (4.9) into Equaii4.7), the entropy be-

comes
_ Tr[L] Tr[L? V| [|V| 1 1 1
aG) = D VL - L
C) =7 " =WV VE 2= Rk = VI 2= VR
(a,b)EE (ab)eE
(4.10)

As a result, we can approximate the von Neumann entropy wsingneasures of graph
structure. The first is the number of nodes of the graph, vih#éesecond is based on de-
gree statistics for pairs of nodes connected by edges. Tgrexdmation can be computed
without evaluating the spectrum of the normalized adjagematrix (which is cubic). The

expression of the approximate entropy is quadratic in theber of nodes in a graph.
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4.3 Graph Heterogeneity Index

To compare our derived graph characterization with itsriadtéves, we review the net-
work heterogeneity index recently developed by Estradd §8d reveal its link to the
commute time on a graph. To develop the heterogeneity indstxada commences by
defining a local index which measures the irregularity of dgeein the graplia, b) € F

as
5ab = [f(da) - f(db)]zv (411)

wheref(d,) is a function of the node degree. Selectii(@,) = d, '/, the heterogeneity

index proposed is defined to be the sum of the irregularityl@&dges in the graph,

T(G) = > (M —d, )2 (4.12)

a
(a,b)eE

The main advantage of defining the index as the sum of squifeeettices of a func-
tion of node degree is that the index can be expressed in wrenguadratic form of the
Laplacian matrix of the graph. That is, lét'/2 = (d; "% d, "/, ..., d /)T represent a

column vector wherd, is the degree of the node the index can be written as

. _ _ 1
J(G) = Y (@M —d ) =5

(a,b)eE

(d~2)TLd /2. (4.13)

The index above can also be stated in terms oRtedt index” ' R_, » ” [75] of the

graph,

T(G) = > (d' —d, ' = V| -2 > (dady) V=V =2'R_ypp. (4.14)

(a,b)eE (a,b)EE

Li and Shi [58] show that for connected graphs Rendt indexis bounded as follows
VIVI—1<'R_y) < %7 (4.15)
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where the lower bound is attained for star graphs and theruppend is attained for
regular graphs withl”| nodes. Thus the heterogeneity index is bounded as follows
0<J(G)=|V]=2'"R_yp <|V|=2y/|V|—1. (4.16)

Then Estrada defines the normalized heterogeneity index as

E (d 172 _ db 1/2)2
[/ — 2 1R7 a FE
Z(G) | | 1/2 (a,b)€

V=2 V-1 [V]-2{/[V[-1

1 1 2

_ 1 Z ( +
|V| — 2\/ |V| —1 (ab)eE da db dadb

The value of the normalized heterogeneity index is in thgeai 1], i.e.0 < J(G) < 1.

). (4.17)

It is zero for regular graphs and one for star graphs. Hetregus starlike graphs are
expected to have values {(G) close to one. On the other hand, more regular graphs are
expected to have values close to zero.

It is interesting to note that Maiest al. [65] have shown that/d, + 1/d, is pro-
portional to the commute timé'T},;, (or resistance distance) between nodesdb for

graphs of large degree. Therefore, in the limit of large nibelgree we have

J(G)~ Y {CTw —24a) (4.18)

(a,b)eE

1
dudy

when(a, b) € E and otherwise zero. The heterogeneity is largest when tiende time

whereA = D-/2AD~!/2is the normalized adjacency matrix with elemedts =

between nodes andb differs from2A,, due to a large number of alternative connecting
paths.
Recall that commute time is the average of the outward gitime and return hitting

time, over all paths connecting a pair of nodes [74]. It hgmwides a non-local index
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of connectivity between pairs of nodes, which is non-zemnetthere is no connecting
edge. Apart from the commute time term and constants retatéie size of the graph,
the simplified von Neumann entropy depends on

1
Vi) =— Y VEdd Z L, (4.19)

(a,b)€E (beE

whereas the normalized heterogeneity index depends on

Vioy == 2 dud

(a,b)eE

=2 > L (4.20)

b (a,b)eE

Hence, the heterogeneity contains measures of both gl@ballength distribution via
commute time, and local edge structure via the elementseohtiimalized Laplacian.

The entropy on the other hand is based only on the latter.

4.4 Riemann Zeta Function Derivative

In this section we review a unary representation based carthkysis of the Riemann zeta
function which will be used for comparisons in the experitaépart. The Riemann zeta

function associated with normalized Laplacian eigenals@efined to be [111]

=) A (4.21)

2j#0
which is the result of exponentiating and summing the redak of the non-zero normal-
ized Laplacian eigenvalues.

The derivative of the zeta function is given by

()= =A"InA;. (4.22)

2 #0

At the origin the derivative takes on the value
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¢0) =Y =i} = ([ Ai} (4.23)

;\j;ﬁo ;\j#o J
McKay [67] has shown that the derivative of the zeta functibthe origin is linked to the

number of spanning trees in a graph G through

HaEV da
Zae\/ da

As a result, the derivative of the Riemann zeta function atahgin is determined by the

7(G) = exp[—C'(0)]. (4.24)

number of spanning trees in the graph together with the deafrit,s nodes.

4.5 Thermodynamic Depth Complexity

Escolancet al. [36] [35] have recently explored how to measure the compftexigraphs
using thermodynamic depth. They consider the nodes in ehgrapmicroscopic states
and their expansion subgraphs as macroscopic states amd indy they define a node
history. Given a grapltz = (V, E), then the history of a node € V is h,(G) =
{e(a),e*(a), ...,el(a)} wheree(a) C G is the first order expansion subgraph givendby
and allb : (a,b) € E, €*(a) = e(e(a)) C G is the second-order expansion consisting of
c:(bc) € E,b € V), c ¢ Ve, and so on untif cannot be increased. df is connected
el(a) = G, otherwisee!(a) is the connected component to whichelongs.

Every node historyi,(G) specifies a different causal trajectory leadingiar its
connected components. If the causal trajectories are @hfinth narrow bounds, then
the graph (or its connected components) is easy to reach. In this haggdcess leading
to the graph and generating the trajectories is simple,l@thermodynamic depth of the
graph is shallow. Otherwise if a wide range of historicadalatives has been extracted,
then the process is complex and the graph has a deep theraritytepth.

In this section, we develop a novel variant of this idea anel th& von Neumann
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entropy of the expansion subgraph as a complexity charaaten. Specifically, our
characterization is developed based on the idea of Escelaalo [36] [35], where they
use the centres and radii of the minimum enclosing Bregmis (MEBB) [69] to char-
acterize the causal trajectory of each node of the graph Bfégman divergence [17] is
used in information theory to assess the similarity betw@enobjects. Given the von
Neumann entropies of two subgraphs &ndh,) and a strictly convex and differentiable

functiong on X', the Bregman divergence associated wifr pointsh; andh, is

B(hy || he) = g(h1) — g(h2) — (h1 — h2)Vg(ha). (4.25)

If we useg(h) = hln h — h, the distance becomes the Kullback-Leibler divergence

h
KL(hy|lhs) = hi1n h—1 — hy + ho. (4.26)

2
We characterize the causal trajectory of a node by the cantiehe radius of the small-
est enclosing Bregman ball that encloses the entropy valuak expansion subgraphs
for that node history. More specifically, givén (G), the von Neumann entropy, =
H(é'(a)) for the I-th expansion of: and Kullback-Leibler divergenc& L, the casual
trajectory leading td~ (or one of its connected components) frans characterized by
the centrer, € R and radius-, € R of the MEBBB“ " = {h, € X : KL(c,||l) <
r.}. Solving for the centre and radius implies finding that minimizer, subject to
KL(cq||h) <7q, VI 1 <1< ¢q. Nock and Nielson [69] proposed an efficient algorithm

to estimate the centkg by iterating

1
(n) -1 v (=) v A 4.27
Ca A g (n—'—l g(ca )+n+1 g( ))7 ( )
wheren is the iteration number and
A" =arg  max KL Y|H) . (4.28)

h'e{hi,h2,....hq}
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If h; (1 <1< q)ischosen at least once during iterations, its Lagrangeipfietts; > 0,

and the radius is simply chosen as

ro = max K L(cq||hy). (4.29)

a>0

After characterizing the causal trajectories of a grapbtiermodynamic depth com-
plexity of the graph is defined as follows. Givéh= (V, E), with node numbefV'| and
all the |V| pairs(c,, r,), the entropy-thermodynamic depth complexityofs character-
ized by the MEBBB® " = {¢, € X : KL(c*||c,) < r*} and®,,;, = min,cpe-.» KL(h*||h),
whereh> is the von Neumann entropy of the van der Waerden matrix. @healer Waer-
den matrix is V| x |V| matrix with all entries equal t(?‘lﬂ. Then the thermodynamic
depth of the graph is given B (G) = r* X ©,in.

We have shown how to use the von Neumann entropy as basic exitgpheasure to
construct the Bregman ball and derive the entropy-basethtitlynamic depth complex-
ity. In fact, the thermodynamic depth approach can be agpdi@ny structural complex-
ity measure. In our experiments, we will compare it with thedynamic depth based
on Estrada’s heterogeneity index and thermodynamic degstecdbon the derivative of the
zeta function at the origin. An advantage of the thermodyinatepth complexity mea-
sure is that it overcomes problems of cospectrality wherb#séc complexity measure is
associated with spectra of graphs. This is because the dladgmamic depth complexity
relies on all expansion subgraphs from each node, rathertki@asingle structure of the
whole graph alone. In addition, the thermodynamic depthpierity is independent of
the graph size, which means graphs with a large number ofsalaot necessarily have

a large complexity.

4.6 Experiments

The experimental evaluation of the different graph chargzations is divided into three

parts. We commence with a study on both the synthetic dataeaidvorld data which
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aims to evaluate how well the approximation of the von Neumamtropy holds. The
second part is concerned with a comparison of the use of #gghgrharacterizations as
a means of representing graph structure for the purposg@ectaiecognition on the real-
world data. In the third part we embed the von Neumann entirttpythe thermodynamic
depth approach and use the derived complexity measure taatbeze sets of protein-

protein interaction networks.

4.6.1 Approximation Evaluation

We first focus on analyzing how well the approximation of ttmg \WNeumann entropy
holds. Recall that in Section 4.2 we show that we approxirtteeralue of the von Neu-
mann entropy of a graph using the number of nodes in the gag#itier with the node
degree statistics. This approximation is realized by k@ptathe entropy- > |vﬂ In 2 M
by the quadratic entropEj \V\( \VI) To explore how well the approximation holds,
we experiment with both a synthetic graph dataset and Dalagraphs from a real-world
image dataset.

Synthetic dataset. The synthetic dataset contains two types of representgtaeh
models. The first are the classical Erdos-Rényi (ER) remdoaphs [33]. These are
generated by connecting pairs of nodes in the graphs witlgaal @robabilityp (0 <
p < 1). The second class of graphs are the Barabasi-Albert (BAlesfree graphs.
Their degree distribution follows the power-law distrilout shared by many real-world
networks. The number of the nodes of the ER graphs varies &0ro 70. For each
number of nodes we generated several ER graphs with diffesdues ofp. The BA
scale-free graphs here are generated with the preferetteadhment algorithm in [7].
The preferential attachment commences from a small seetl ofsizem, and iteratively
introduces one new node to the graph by connectingit {& < m < m) existing nodes
with a probability that is proportional to the degrees of éixesting nodes. We use a seed

graph of sizen, = 5 and differentm values to generate BA graphs whose number of
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(b) Synthetic BA graphs. Leftn = 1, middle:m = 2, right: m = 3.
Figure 4.1: Examples of synthetic graphs.

nodes ranges from 50 to 200. In Figure 4.1, we show some examnopithe ER graphs
and BA networks generated in this way.

Real-world dataset. The real-world image dataset used is the COIL dataset [68]
which consists of images of different views of 3D objectsthwi2 views of each object
from equally spaced directions over 360Me extract corner features using the corner
detector [54] from each image and use the detected featuméspas nodes to construct
sample graphs by Delaunay triangulation. Some exampleamagd their Delaunay
graphs can be seen in Figure 4.2.

To investigate the veracity of the entropy approximatioe, s@mpute the von Neu-
mann entropy of the three types of graphs together with tpeadratic approximation.

We also randomly select different sets of normalized eigkras from a uniform distri-
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Figure 4.2: Example images from the COIL dataset and theo@ated Delaunay graphs.

bution between 0 and 2. For each set of the eigenvalues, wiedhe eigenvalues by the
number of the eigenvalues in the set, to ensure that thetiregublues add up to one. We
show the relationship between the exact von Neumann ent@pyuted from the result-
ing values and their approximate quadratic entropy. Figuseshows scatter plots of the
von Neumann entropyyfaxis) versus the quadratic approximatianaxis) for the uni-

form sample of eigenvalues and the three different typesagftts. Figure 4.3(a) shows
the scatter plot for the uniform eigenvalue sample. Heregthiats disperse in a similar
shape of an ellipse. Compared with the uniform eigenvalogpta, the scatter plot for

the ER graphs in Figure 4.3(b) shows that the approximategnand the von Neumann
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Figure 4.3: Exact entropy versus approximate entropy feisimthetic dataset and COIL

dataset.

entropy have a same variation pattern. They increase oedgerat the same time. The
plot for the ER graphs has a small dispersion. For the BA grapRigure 4.3(c), there is
again a same variation pattern between the two entropiéfedsudispersion than the ER
graphs. The scatter plot for the Delaunay graphs in Figug@demonstrates a similar
result to that of the BA graphs. Note that the slope of thetscalots for BA, ER and
Delaunay graphs does not change dramatically, we may asthareeis a linear depen-
dence relationship between the approximate entropy anebth&leumann entropy when
the exact computation is not strictly required. The sam@tian patterns or even linear

regression trend for the three types of graphs indicateappeoximate entropy of these
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graphs is a good approximation. Recall that the computatioomplexity of obtaining
the von Neumann entropy is governed by the spectral decatigrosf the normalized
Laplacian matrix. This require9(|V|*) operations wher@/| is the number of nodes in
a graph. On the other hand, the computational complexith@gpproximate entropy is
O(|V']?). Therefore, using the approximate entropy as a substibutéané von Neumann

entropy offers an advantage of easy computation.

4.6.2 Comparison of Graph Characterizations

In this section, we turn our attention to comparing the tytiif the two entropy measures
with four alternative graph characterizations, i.e. theeregeneity index, the derivative
of the Riemann zeta function at the origin, average pathtteagd graph diameter. To
do this, we first select 5 objects from the COIL dataset antdfferent characterization
measures of their Delaunay graphs. From left-to-right apdto-bottom in Figure 4.4
we show the values of six characterizations for differenédis. In the plot, the-axis is
the object index and thg-axis is the value of the characterization. For each objeset
are 72 graphs extracted from images obtained with differemtpoints. The graphs from
images of a same object are indicated by a same color. Fromme~g4, we note that the
four of the characterizations, i.e. the von Neumann entribygyapproximate entropy and
the derivative of the zeta function at the origin and the agerpath length separate the
objects well. On the other hand the values of the heterogeimeiex and graph diameter
overlap significantly for the different objects and do nattisiguish the objects well.

To further quantitatively evaluate the use of the six meshod an object classifica-
tion task, we apply &’-nearest neighbour classifier to the six graph characteims
of the Delaunay graphs for the objects in the COIL dataset.oWerve how the clas-
sification rate changes as we increase the number of obgebts distinguished. Figure
4.5 shows the variation of the classification rates for tkegsaph characterizations. In

our experiments, we sét=7 and the classification rate is the average fraction ofltggap
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that are correctly identified, computed using 10-fold cresigdation. From the plot, it is
clear that the von Neuman entropy method (red line) and theoapnate entropy method
(blue line) give almost the same results and they alwayssgelthe highest classification
rate as the number of objects increases from 5 to 15. Theadies\vof the zeta function
at the origin (black line) follows the performance of therepy methods. The average
path length (cyan line) outperforms the graph diameterfgime) and the heterogeneity

index (magenta line) has lowest classification rates oralttassification tasks.
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Figure 4.5: Comparison of the classification rate for thensethods.

4.6.3 Von Neumann Entropy Based Thermodynamic Depth

Having compared the graph characterizations, we apply tv@@y-based thermody-
namic depth complexity measures to analyze a set of prpt@itein interaction networks

(PPIs) [36]. Our aim in this experiment is to investigate thee the von Neumann en-
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Figure 4.6: An example of the protein-protein interacti@tworks.

tropy based thermodynamic depth developed in Section 4.6ltaracterize the structural
complexity of the PPIs. The PPIs dataset consists of neswehich describe the inter-
action relationships between histidine kinase and oth&teprs. Histidine kinase is a key
protein in the development of signal transduction. If twotpms have direct (physical)
or indirect (functional) association, they are connecteditedge. Examples of the PPIs
are illustrated in Figure 4.6 and Figure 4.7. There are 2189 idRhis dataset and they are

collected from 5 different kinds of bacteria with the follmg evolution order (from older
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Figure 4.7: An example of the protein-protein interacti@tworks.

to more recentpquifexandthermotoga8 PPIs from Aquifex aelicusand Thermotoga
maritima, Gram-Positive52 PPIs fronStaphylococcus aurepu€yanobacteria73 PPIs
from Anabaena variabili@ndProteobacteria40 PPIs fromAcidovorax avenaeThere is

an additional classAcidobacteria46 PPIs) which is more controversial in terms of the
bacterial evolution since they were discovered. Althougdré are studies which relate
many of them to different sub-phyla of tiroteobacteriasome of them have recently

been placed very early in the phylogenic tree.
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Figure 4.8: Cumulatives for. von Neumann entropy (top}lefpproximate entropy (top-

right), heterogeneity index (bottom-left) and derivatbfehe zeta function at the origin (

bottom-right).

The question of whether the von Neumann entropy based tligmmamic depth is a
good measure of the structural complexity of the PPIs cambwered by studying the
cumulative distribution of the thermodynamic depth comije[35]. From an evolu-
tionary perspective, older (less evolved) bacteria havplar PPIs and thus lower ther-
modynamic depth values compared with bacteria that havieevonore recently. This
observation motivates the measurement of the area undeuthelative entropy distri-
bution (CED). The greater the CED the simpler the PPIs. Fopgre of comparison,
we have also explored using the alternative three charzatens, i.e. the approximate
entropy, the heterogeneity index and the derivative of #ta function at the origin, as

basic measures in the thermodynamic depth approach. Thdative distributions of the

58



four thermodynamic depth measures are shown in Figure 4l.&air corresponding area
under the cumulatives are shown in Table 4.1 where the iacbfinconsistent with evolu-
tion) values are shown in bold. The analysis of the area uh@ezumulatives in Table 4.1
gives the following results. The two entropy based thernmaalyic depth measures over-
estimate the complexity ohquifex-Thermotogavhereas the heterogeneity index based
thermodynamic depth overestimates the complexitg€ydnobacteria The derivative of
the zeta function at the origin overestimates the complefitAquifex-Thermotogand

underestimates that f@yanobacteriaFinally, for the controversiahcidobacteria

Table 4.1: Values of the area under the cumulatives of therfeasures.
According to the evolution order of bacteria which the PRE&sfeom, the
order of the PPIs from simple to more complex afgjuifex-thermotoga
Gram-Positive Cyanobacteriaand Proteobacteria with a controversial
classAcidovorax avenaeThe simpler the PPIs, the greater the area under
the cumulatives. The values that are not consistent witlugea order are

shown in bold.

Bacteria VNE AE2 Heterogeneity zeta function derivative
Aquifex-Thermotoga 95.406 95.23% 65.45% 49.7%%
Gram-possitive 96.24% 96.09% 65.36% 90.65%
Cyanobacteria 89.27% 88.89% 54.0%% 98.31%
Proteobacteria 88.82% 88.53% 56.45% 60.94%
Acidobacteria 98.22% 98.15% 65.84% 85.42%

1 von Neumann entropy

2 approximate entropy

the two entropy based thermodynamic depth measures anétir®beneity index based
thermodynamic depth place it oldest, whereas the derwatithe zeta function based

measure places its order later tHaram-possitiveWe note from those results that when
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combined with the thermodynamic depth, the two entropyattarizations provide com-
parable results with the heterogeneity index based measuralso outperform the zeta

function based measure.

4.7 Conclusions

In this chapter we have developed new graph charactenmafrom the von Neumann
entropy. We commence from the von Neumann entropy of a grapis is simply the
entropy of density matrix associated with the normalizeglaaan matrix. We explore
how to simplify and approximate the calculation of von Nemmantropy. Our first step
is to replace the entropy by its quadratic counterpart. Aalyams of the quadratic entropy
reveals that it can be computed from a number of permutatigeriant matrix trace ex-
pressions. This leads to a simple expression for the appeiei entropy in terms of the
elements of the degree matrix, and which can be computesutittvaluating the nor-
malized Laplacian matrix. Then we compare the new graphacitenizations with their
alternatives, i.e. Estrada’s heterogeneity index and RmemZeta Function derivative, and
we reveal a new link between Estradas index and the comnméedn a graph. Finally,
we introduce the entropy based thermodynamic depth as & goapplexity measure.
Experimental results on both synthetic dataset and redBvadataset reveal the ap-
proximate entropy is a good approximation of the von Neunentropy for the BA, ER
and Delaunay graphs. We have also compared the performaisoegraph characteri-
zations, i.e. the von Neumann entropy, the approximat@pwytthe heterogeneity index
and the derivative of the Riemann zeta function at the oritji@ average path length and
graph diameter, for distinguishing graphs. Here we obsirakthe two entropy methods
give a better classification rate than the alternativeshénfinal experiment, we investi-
gated how to use the von Neumann entropy based thermodywmi@mils to characterize

the complexity of networks. This gives good results in ortgithe PPIs of different
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species of bacteria according to their evolved state.
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Chapter 5

Generative Graph Prototypes from

Information Theory

In this chapter, we combine the probabilistic frameworkadticed in Chapter 3 and the
entropy-based graph characterization measures propo<guhbipter 4 and take an infor-
mation theoretic method to construct a generative modajfaphs by adopting a mini-
mum description length approach. Here again the genenaidel is posed in the form
of a prototype graph called supergraph. The complexity @fstipergraph is encoded us-
ing the simplified von Neumann entropy (refer back to Equet#h10) in Chapter 4). We
develop a variant of the EM algorithm to minimize the dedonip length. To generate
new graphs, rather than only control the edge occurrendaapilities (as shown in the
generative model developed in Chapter 3), we assume thatl®nodes and the edges
of graphs arise under independent Bernoulli distributenms$ sample new graphs accord-
ing to their node and edge occurrence probabilities. Ewgdigvaluations on real-world
database demonstrate the practical utility of the propasgarithm and show the effec-
tiveness of the generative model for the tasks of graphitizsson, graph clustering and

generating new sample graphs.
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5.1 Introduction

Given a set of sample graphs, we aim to learn a supergraphdbkaéxplains the graphs.
The best supergraph model should be able to summarize theveblsdata well, and more-
over, it should have good predictive capabilities. To ledle structure of this supergraph
model, we take an information theoretic approach using agar minimum description
length criterion [82] [79][80]. The two-part minimum degaion length (MDL) mea-
sures both the goodness-of-fit with the observed samplégnapder a supergraph model
and the complexity of the supergraph. By trading off the fitstintity against the second,
it avoids overfitting the supergraph model. Torsello andd¢déak [99] have shown how to
learn a tree-union for a set of trees using the minimum det$en length criterion. Since
the trees are rooted their learning process can be effegtgubiiorming tree merging
operations in polynomial time. However, this greedy strgt@oes not translate tractably
to graphs where the complexity becomes exponential, anctougre different strategies
for learning and sampling. Torsello and Hancock realizé lotijectives using edit opera-
tions. Here on the other hand we use a soft assignment methogtimization and then
generate new instances using a direct sampling method.

To furnish the required learning framework, we adopt théplulity distribution de-
scribed in Chapter 3. This probability distribution is usediescribe the likelihood of the
sample graphs. To adopt the two-part minimum descriptiogtlecriterion, we also need
a complexity measure of the supergraph. In traditionalstiedél models based on vec-
tor patterns, the complexity of the model is generally meadiby counting the number
of parameters in the model. However, this does not generalél for graphs because
information such as the number of edges or nodes of a grapbt isufficient to reflect
its true complexity. Here we use an alternative measure opbexity, encoded using the
von Neumann entropy proposed in Chapter 4 (i.e. the entrbggrsity matrix associated
with its normalized Laplacian). We develop a variant of tiv &gorithm to minimize the

total code-length criterion. Here the structure of the sgiagh and the correspondences
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between the nodes of the sample graphs and those of the sygeaye treated as miss-
ing data. In the maximization step, we update both the nodesipondence information
and the structure of the supergraph using soft assignm8ht Rfter several iterations
the variant EM algorithm will locate the structure of the stgraph that minimizes the
overall-code length.

Besides developing a method of learning the structure ostipergraph model, we
also investigate how to combine the Jensen-Shannon divezgeith our supergraph to
measure graph similarities. This investigation providea toute to embed graph data into
pattern space to perform graph clustering. Moreover, weddselop a novel and efficient
method which allows our supergraph model to sample new graphis is realized by
assuming the nodes and edges of sample graphs arise undeuliefistributions and we
sample new graphs according to their node and edge occarpeababilities. Therefore,
our supergraph model proposed here can fulfil the tasks qhgctassification, graph
clustering and generating new graphs.

The remainder of this chapter is laid out as follows. In SeTh.2, we recall the
probabilistic ingredients mentioned in Chapter 3, whickalde the distribution of the
graph data and are the prerequisites for our method. IndebtB, we explain how
we encode our model so as to formulate the problem in hand imenum description
length setting. In Section 5.4, we present a variant of the &gbrithm to minimize
the code-length criterion. Section 5.5 exploits how to meagraph similarities using
the Jensen-Shannon kernel and Section 5.6 shows how toesaplgraphs from the
generative model. Section 5.7 provides experiments to dstrete the utility of our
proposed algorithms. We first validate our variant EM aldpon by showing that the
overall code-length decreases during the iterations. \&e illustrate that our generative
model outperforms alternative supergraph constructiorgraph classification tasks. We
also investigate the performance of graph clustering viiéhJensen-Shannon kernel and

explore to what extent the graphs sampled by our methoddepecthe salient properties
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of the original graphs used to train the supergraph modehlly Section 5.8 offers some

conclusions.

5.2 Probabilistic Framework

To commence our development, we first recall the probalgilishmework we used to
construct the supergraph in Chapter 3. We represent thd saimple graphs using =
{G1,...,G,,...,Gy}, where the graph indexeds G; = (V;, E;), with V; as the node-
set andF; as the edge-set. Similarly, the supergraph which we aimaml&om this
data is denoted by = (Vr, Er), with node-sefl and edge-setr. Furthermore, the
structure of the sample graghy is represented using|&;| x |V;| adjacency matrixA‘
and the structure of the supergraph mddét represented using|&r| x |Vr| adjacency
matrix M. The elements of the adjacency matrix for the sample graghlasse for the
supergraph are respectively defined to be

Aib = (5.1)

aff —

0 otherwise, 0 otherwise.

{ Lit@bes { 1 if (o, 8) € Er
The correspondence information between the nodes of thelsgmaph and the nodes
of the supergraph is represented using;ax |Vr| assignment matri$’ which has ele-

ments

A 1 ifa— «
S = { (5.2)

0 otherwise,

wherea — « implies that node, € V; is matched to node € V.
With the above ingredients, tleeposterioriprobability of the sample grap®i; given
the structure of the supergraph and the node corresporglbatteeen each sample graph

and the supergraph is [61]
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PG, S) =[] D Kiexplud Y Al Magss), (5.3)

acV; aeVr beV; peVvr

where

1 =1n 1—{3@, Ki = PQW‘XWFlBé. (5.4)

In the above,P. is the error rate for node correspondence &jds the probability of
observing node in graphG;, the value of which depends only on the identity of the node

a, and|V;| and|Vr| are the number of the nodes in graghand supergraph.

5.3 Model Coding Using MDL

With the probabilistic framework in hand, we take an infotioa theoretic approach to
estimating the structure of the supergrdpthat best fits the set of sample gragh®y
using a minimum description length criterion. Underpirgiminimum description length
is the principle that learning, or finding a model that expgasome observed data and
makes predictions about data yet unseen, can be viewed aggfiachortest code for
the observed data [82] [79]. In its earliest realizatiomadticed by Rissanen [80], the
minimum description length principle states that the besti@hto explain a set of data is
the one which minimizes the description length of the moaigéther with the description
length of the data, when encoded subject to the model. Todlmethis idea, we encode
and transmit the data together along with the model. In ose tlaese are respectively the
sample graph§ and the supergraph structure This leads to a two-part message whose

total length is given by

£(G,T) = LL(G|T) + LL(T). (5.5)
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whereLL(G|T") is the code-length of the sample graphs given the superaragphl (I") is
the code-length of the supergraph. Then the optimal suggings the one that minimizes
this total code-length. By taking into account the total &dehgth in the model, MDL
allows us to select a supergraph representation that tfflgeodness-of-fit with the

observed sample graphs against the complexity of the model.

5.3.1 Encoding Sample Graphs

To apply the two-part MDL principle, we first compute the cddegth of the graph data.
A general choice for the code-length of the graph data isSin@nnon-Fano cod80]
which is equivalent to the negative logarithm of its likeldd function given the super-
graph. Instead of using th8hannon-Fano codéhere we measure the code-length of
the graph data using its average. Our reason is that if wetatlepformer measure,
then there is a bias to learning a complete supergraph tiiallysconnected. The rea-
son will become clear later-on when we outline the maxinnragalgorithm in Section
5.4, and we defer our justification until later. To compute tiikelihood of the graph
data, for the sample graph-sg¢t= {G,,...G,,... Gy} and the supergraph, we use

S = {S',...S!,...S"V} to represent the set of assignment matrices and these tiadica
the correspondences between the nodes of the sample graptieae of the supergraph.
Under the assumption that the graphgjiare independent samples from the distribution,
using thea posteriori probability from Section 5.2 the likelihood of the set of gaen

graphsis

P@IL,S) =[] P@,s) = [[ 11 Do Kiexplud | > AlyMassisl.  (5.6)

G;€G G;€G a€V; aeVp beV; pevr

Then the graph code-length is
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LL(GIT) = —@ In P(GIT, S) = —@ S (Y Kiexpln 30 ST AL Mashul),

G;€G acV; a€eVp beV; BeVr
(5.7)

which is the average over the set of sample graphs

5.3.2 Encoding the Supergraph Model

Next, we need to compute a code-length to measure the coityméhe supergraph. For
two-part codes the MDL principle does not give any guidelseto how to encode the
hypotheses. Hence every code for encoding the supergnapatuse is allowed, so long
as it does not change with the sample sizeGraph characterizations such as the number
of edges or nodes can express some properties of graphsydraley are not sufficient
to reflect the true complexity of the graphs. Thus we needdk && a more meaningful
measure of graph complexity. Here we use the von Neumanomnassociated with
the normalized Laplacian matrix we proposed in Chapter 4we g code-length for the
supergraph complexity. According to Equation (4.4) in Gkapl, the von Neumann

entropy of the supergraphis defined as

where|Vr| is the number of nodes in the supergraph é\yldire the eigenvalues of the
normalized Laplacian matrix of the supergraph. To incoapmthe supergraph complexity
with the code-length of the graph data, we need to expresgtih&eumann entropy in
terms of the simple statistics for the graph, as in the cedgth expression. Fortunately,
we have shown in Chapter 4 that replacing the Shannon enlypye quadratic entropy
and using some transformations, the von Neumann entroplgecapproximated in terms

of node degree statistics
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whereLr is the edge-set of the supergraph aiycandd; are the degree of nodesand
B of the supergraph. Finally, by adding together the two d¢buations to the code-length,

the overall code-length is

L£(G,I') = LL(G|I") + LL(T') = (5.9)
—@ZZlﬂ{ZKanP[MZZAabMabSbg]}Jrl—W— >, Ve dudy
Gi€G acV; aEVr beV; BeVr (a,8)€Er aBp

Unfortunately, due to the mixture structure, the directnestion of the supergraph
structureM from the above code-length criterion is not tractable irsetbform. For this

reason, we resort to using the EM algorithm.

5.4 The Expectation-Maximization Algorithm

Having developed our computational model which poses thblpm of learning the su-
pergraph as that of minimizing the code-length, in thisise¢twe provide a concrete
algorithm to locate the supergraph structure using our -bexigth criterion. The min-
imization of the code-length is equivalent to the maxim@atof its negative, and we
develop an EM algorithm to realize the maximization. We viee/node correspondence
information between the sample graphs and supergraph asngidata, and regard the
structure of the supergraph as the set of parameters to ineagst. The initialization
of the EM requires an initial supergraph structure and arairgorrespondence between
the sample graphs and the initial supergraph. In the twol@zeed steps of the EM al-
gorithm, the expectation step involves recomputingahmosterioriprobability of node

correspondence while the maximization step involves upgddtoth the structure of the
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supergraph and the node correspondence information. édigr maximization step, we
recompute the value of the code-length using the updatednation of the supergraph
structure and the node correspondences. When the diffetesetaveen the new value of
the code-length and the old value of the code-length areyalsmaller than a set thresh-
old value (normally a very small positive value), it means tlode-length converges.
Otherwise, we continue interleaving the two steps of the Ehdr&thms. In the exper-

imental part, we will initialize the supergraph using diffat structures and investigate

their convergence.

5.4.1 Weighted Code-length Function

To compute the weighted log-likelihood of the overall cdeegth, we make use of Luo
and Hancock’s log-likelihood function for correspondemncatching. According to Luo
and Hancock [61], treating the assignment matrix as misdatg, the weighted log-
likelihood function for observing a sample graph, i.e. for it to have been generated

by the supergraph is

A(n+D) (G |F gis( n+1 Z Z Qz ,(n) {ln Kz +MZ Z Az Mo(:é Zﬂn-ﬁ-l)} (5.10)

acV; aeVr beV; pevr

where the superscript indicates that the quantity is taken at iteratioof the EM al-
gorithm andQ>™ is a matrix with eIementS)’ ) that are set equal to treeposteriori
probability of nodea in GG; being matched to node in I" at iterationn of the EM algo-
rithm.

With the above likelihood function and the code-length digped in the previous
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section, the EM algorithm involves maximizing

(n+1 (g‘r Sn-i-l) |g‘ Z Z Z Qz ,(n) {anz +,UZ Z A arg ZﬁnJrl }

Gi€G acV; acVp beV; BeVr
1 1
—lt et Y (5.11)
dnd
The expression above can be simplified since the first terneruté curly braces con-

tributes a constant amount

D> QK =" Ik, (5.12)

G;€G acV; aeVr Gi;€G acV;

Based on this observation, the critical quantity in deteing the update direction is

(n 1,(n) At n)  uLn 1
Y |g|ZZZZZQ( Ay Myl sy = 1+—+ Z P dady

G;€G acV; acVr beV; BEVT | F|
(5.13)

5.4.2 Maximization

In order to optimize our weighted code-length criterion, uge graduated assignment
[48] to update both the assignment matriceand the structure of the supergraph, i.e.
the supergraph adjacency math&. The updating process is realized by computing the
derivatives ofA"™V)  and reformulating the underlying discrete assignmertlero as a
continuous one using soft assignment [18].

In the maximization step, we have two parallel iterative atpdequations. The first
update mode involves softening the assignment variablat the second aims to modify
the edge structure in the supergraph. Supergraph edgearthanmatchable become
disjoint by virtue of having weak connection weights andseeto play any significant
role in the update process. Experiments show that the ghgoappears to be numerically

stable and appears to converge uniformly.
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Updating Assignment Matrices: To update the assignment matrices, we commence
by computing the partial derivative of the weighted codegkd function in Equation

(5.13) with respect to the elements of the assignment neatnehich gives

QA1) i) i )
o MZZQ Al (5.14)

bB acV; aeVr
To ensure that the assignment variables remain constranke within the range

[0,1], we adopt the soft assingment update rule

[ a[\(n—I—l) ]
exple———
] i,(n+1)
gl OSan_ . (5.15)
Z [ HA (D) ]
eXPlE - T
a’eVp 88(15/

The value of in the update process has been controlled using a slow expalen-
nealing schedule of the form suggested by Gold and Ranggegd Initializing = with a
small positive value and allowing it to gradually increabe, assignment variabkg ™
corresponding to the maximu% approaches 1 while the remainder approach 0.

Updating Supergraph Structure: The partial derivative of the weighted code-length
function in Equation (5.13) with respect to the elementsh&f supergraph adjacency

matrix is equal to

OAC Y i 1 1
< |g| YD D QAT - —— Y == (5.16)

6Ma5 Gi€G acV; beV; |VF|2(da )? (o,))EED dﬁ’

The soft assignment update equation for the elements ofupergraph adjacency

matrix is
[ a[\(n—I—l)]
exple
(n)
(n+1) aMaﬁ
MUY : (5.17)
af [ aA(n-H)
E exple

(n)
(a/ /Bl)eE aMal !



In the case of the updating of the assignment matrix elemanesach row and each
column of the recovered assignment matrix no more than @maegit can take on unit
value. By contrast, in the case of the recovered supergrdjplcency matrix there may
exist multiple elements in each row or column with a unit ealtio deal with this prob-
lem, in practice we set a threshold, and then recover the@agy matrix by setting all
elements larger than the threshold to unity and by settiage¢maining elements to zero.
This is repeated each time we increase the valuethe annealing schedule.

From Equation (5.16), it is interesting to note that the dwives of A" with re-
spect to the elements of the supergraph adjacency matroegendent on the frequency
of sample-set edges that are in correspondence with the sgmeegraph edge. To illus-
trate this point, if we approximate the matiix usingS, then the first term in Equation
(5.16) becomes the expectation value of the permutatedextjg matrices for the sample
graphs. As aresult, the elements of the supergraph adjaoeaicix reflect the frequency
of corresponding edges in the sample-set. The threshgbdowgss selects frequent edges
and removes infrequent ones.

Recall that in Section 5.3.1 we discussed the encoding &aimgple graphs, and chose
to use the average of ti#hannon-Fano code-lengtiie can now elucidate that the reason
for this choice is that as the number of the sample graphgasess, for instance in the
limit as the size of the graph sample-geincreases, i.eN — oo, the sum of permuted
adjacency matrices of the sample graphs might dominate #dgnitude of the second
term in Equation (5.16). Thus the update algorithm mightioeda complete supergraph

that is fully connected. Hence, we choose to use its aveedgerrthan its sum.

5.4.3 Expectation

In the expectation step of the EM algorithm, we computeatipesterioriprobabilities of
the nodes in the supergraph being matched to the nodes ianh@es graphs. Applying

Bayes rule, the posterioriprobabilities of the nodes in the supergraph correspontding

73



the nodes in the sample graph at iterationn + 1 are given by

eolY 3 AL zg” il

QZ (TL+1 bev; ﬁGVF
T el Y A
% beV; pevr

where

bt = |ZQ

acV;

5.5 Information Theoretic Kernel

The information theoretic formulation presented in thiquter also provides a natural

route to the kernelized analysis of graph similarity, siteemeasure of the von Neumann

(5.18)

(5.19)

entropy can be used to construct an information theoreticgte The route we take here

is to form supergraphs from pairs of graphs, and then to ceenine so-called Jensen-
Shannon (JS) divergence [23] [59] between graphs as amatawn theoretic measure of
dissimilarity. The JS divergence is found by taking theatiince between the entropy of

the pairwise supergraph and the average of the separatpiestof the two graphs used

to construct it. The JS divergence is used to construct floenration theoretic and non-

extensive Jensen-Shannon kernel [66]. More specificakbynweasure the dissimilarity

between graphs using the JS divergence

H(G;) + H(Gj) .

JS(G:,G;) = H(G,; & G,) —

(5.20)

In the above equatiory; & G, represents the union for graphs and G, and H{(-)

denotes the entropy of the corresponding graph. From tteedeBhannon divergence we

construct a kernek'(G;, G;) = In2 — JS(G;, G;) and with the kernel matrix to hand we

embed the graphs into pattern space using kernel princgraponent analysis (kernel

PCA).
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The supergraph learning method proposed in this chaptéoiexp method for com-
puting the Jensen-Shannon divergence between pairs digrdj do this, we use our
supergraph learning method to construct a graph-uGiom G; for every pair of graphs
G, andG;. The graph-uniotdr; @ G is the supergraph d@f; andG; learned by using the
minimum description length criterion. Using the von Neumantropy as the entropy of
graphs, we measure the similarities of the graphs usingahseh-Shannon divergence

and then embed graphs into pattern space using kernel PCA.

5.6 Sampling From the Generative Model

In this section we explore whether our generative model camugded to sample new
graphs. Given tha posteriorprobability in Equation (5.3), the task of sampling graphs
from the generative model is only tractable using a MontddCachnique. However,
Monte Carlo sampling is computationally expensive sin@eedures such as edge inser-
tion or deletion on a sample graph may affect the assingmatrixrand may therefore
take excessive amount of time to cycle through all the edfdsessupergraph. Here we
provide a direct sampling method, based on the assumptairgthphs are drawn from
a simple distribution. We assume that the nodes and edgédw fample graphs arise
as independent samples from the supergraph under a Berdistilibution. Given the
learned structure of the supergraph mddehd the assignment matric§obtained from

our EM algorithm, then the likelihood of the sampled graghsecomes

- A Z 551(1 1- Z 551(1 Z §za§i AZ 1— E §2a§i A:',l
P(g‘F,S) - H PO‘[/ a€V; ( _PO‘[/) a€V; PO(E‘ﬁ a,beV; b8 b(l—PaE‘5> a,beV; bB b
Gi€G a,BeVy
(5.21)

whereP) is the probability that node of the generative modél is present in the set of

graphsy andeB is the conditional probability that edde, 5) occurs when nodes and
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3 are present if’. The trial success probability for the Bernoulli distrilauts P and

PZ; is equal to the expected number of successes, and so

PY = ﬁ DD & (5.22)

G,€G acV;

P = é S sssAL, . (5.23)
Gi€G a,beV;

To generate a new graph from the distribution, we first samplies from the gen-
erative model using the node occurrence probabilities ectetpin Equation (5.22). To
do this, for each node € V}, we use a random generator to return a scalar value drawn
from a uniform distribution on the interval [0,1] and com@dine occurrence probability
of the nodeP!” and the scalar value. If the occurrence probability of theenis larger
than the scalar value, the node is selected to be preserg sathple graph; otherwise,
the node is not present. After we have sampled the nodesrthptesent in the generated
graph, we decide whether there are edges between pairssefphesent nodes. It is real-
ized in a similar manner of the node sampling. That is, fohgaair of the present nodes
(o, B), we generate a random value drawn from the uniform inte@All[and compare
their edge occurrence probabili% computed from Equation (5.23) with the random
value. If their edge occurrence probability is greater ttienrandom value, there will be
an edge between this pair of nodes; otherwise, there wilbb@nnection between them.

Algorithm 1 gives the pseudo code for the sampling procedure
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Algorithm 1. Sampling Graphs From The Probabilistic Generative Model

Input: A generative moddl’ = (V;, E;) with probabilitiesP)” on each node
o € Vi andPf; on each corresponding edge, 3) € E;.

Output: Some sample graphs

1: Initialize a null sample graptis¢ = (Vsa, Esc)

2: For each node € V;

3 If PV > rand

4 Add nodex to Vsg

5 End

6: End

7: For each pair of noddsy, 5) € Vi

8 If P, > rand

9 Add edg€(a, ) to Esg

10: End

11: End

12: Delete the disconnected noded/ky;.

13: Repeat the above procedures until obtain some sampiagra

Note: therand command generates a random value between 0 and 1 from a

uniform distribution.
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5.7 Experiments

In this section, we report experimental results aimed ataratmating the utility of our
proposed generative model on real-world data. We use infegyestwo datasets for ex-
periments. The first dataset is the COIL [68] which consi$tsnages of four objects,
with 72 views of each object from equally spaced directiorey 860. We extract corner
features using the corner detector [54] from each image sathe detected feature points
as nodes to construct sample graphs by Delaunay triangildthe second “toys” dataset
consists of views of toys, and contains images of 4 objedts 24 different views of each
object. For this second dataset, the feature points useohtireict Delaunay graphs are
extracted using the SIFT [60] detector. Some example imafjése objects and their
associated Delaunay graphs from these two datasets areigit/ggure 5.1. The exper-
imental study with these datasets is divided into four paffe commence by exploring
the convergence properties of our supergraph learningitigg then we evaluate the
performance of the our learned model on graph classificatnahgraph clustering tasks.
Finally we explore to what extent the sample graphs from greegative model reproduce

the statistical properties of the original graphs usedamtrhe supergraph model.

5.7.1 Convergence

The first part of our experimental investigation aims to explthe convergence proper-
ties of our supergraph learning method. We test our propalggdithm on the COIL and

“toys” datasets. We initialize the supergraph structurthuie set median graph [54],
I.e. the sample graph with the largest average ofthesterioriprobabilities to the other

sample graphs. Then we match the sample graphs from the tasatis against their re-
spective initial supergraphs using graduated assignm8hahd initialize the assignment
matrices in our algorithm with the resulting assignmentrioes. Using these settings,

we iterate the two steps of the EM algorithm, and observe h@wcbmplexity of the
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Figure 5.1: Example images and their associated graphsvtpivs: COIL images and

their associated graphs. Down two rows: Toy images and ésswciated graphs.
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supergraph, the average log-likelihood of the sample grapldl the overall code-length
vary with iteration number. Figures 5.2 and Figure 5.3 retpely show the results for
the COIL and “toys” datasets illustrated in Figure 5.1.

Figure 5.2(a) and Figure 5.3(a) show the variations of thgkfied von Neumann en-
tropy for the two datasets, and from the figures it is cleartth@simplified von Neumann
entropy of the supergraph increases as the iteration nuimtrelases. This indicates that
the supergraph structure becomes more complex with anaisioigg number of iterations.
Figure 5.2(b) and Figure 5.3(b) show that the average ofapdikelihood of the sample
graphs increases with the iteration number, while Figup¢ch.and Figure 5.3(c) show
that the overall-code length decreases and gradually cgpes@s the number of iterations
increases.

In order to better analyze our method, we have also expetedenith initializing
the supergraph with different structures. This is effeatsithg SIFT feature descriptors
for the “toy” dataset. That is, we match pairs of the neighbgnaphs using the SIFT
feature descriptors and concatenate the common strucueeshe sample graphs from
the same object to form an initial supergraph. The initigdesgraph constructed in this
way preserves more of the structural variations presehesét of sample graphs. Figure
5.4 shows the results obtained when we initialize using ¢tbiscatenated supergraph.
The figure shows how the three quantities studied in Fig2eabd Figure 5.3 change
during the EM algorithm. Compared with the plots in Figur2(&) and Figure 5.3(a),
the von Neumann entropy in Figure 5.4(a) shows an oppositel tand decreases as the
number of iterations increases. The reason for this is tieairtitial supergraph, i.e. the
concatenated supergraph, accommodates too much stiuctiedgion from the sample
graphs. The reduction of the simplified von Neumann entragylies some trivial edges
are eliminated or relocated. As a result the supergraplttsel both condenses and
simplifies with increasing iteration number. Although tlemplexity of the supergraph

behaves differently, the average of the likelihood of thapius in Figure 5.4(b) exhibits
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a similar behaviour to those in Figure 5.2(b) and Figureld.3(and the overall-code
length in Figure 5.4(c) has a similar behaviour to those guFe 5.2(c) and Figure 5.3(c).
In other words, our algorithm behaves in a stable manner inctikeasing the likelihood
of sample graphs and decreasing the overall code-lengtlottndataset. We note that
the structures of the supergraphs we learned in Figure Si3mure 5.4 are different.
This is because the EM algorithm is sensitive to initialimas. Since we initialize the
supergraph using the set median graph in Figure 5.3 and tltatmated graph in Figure

5.4, the supergraphs we learned have different structures.

5.7.2 Classification

Our second experimental goal is to evaluate the effects®oé our learned generative
model for classifying out-of-sample graphs. From the CCéltaget, we aim 1) to distin-
guish images of cats from pigs on the basis of their grapresgmtations and 2) distin-
guish between images of different types of bottles. For tbgs” dataset, on the other
hand, we aim to distinguish between images of the four objéia perform these classi-
fication tasks, we learn a supergraph for each object class drset of samples and use
Equation (5.3) to compute thee posterioriprobabilities for each graph from a separate
(out-of-sample) test-set. The class-label of the testlgramletermined by the class of
the supergraph which gives the maximarposterioriprobability. The classification rate
is the fraction of correctly identified objects computedigsliO-fold cross validation. To
perform the 10-fold cross validation for the COIL dataset,imdex the 72 graphs from a
same object according to their image view direction fronbd360’, and in each instance
we select 7 or 8 graphs that are equally spaced over the angtdeval as test-set, and
the remainder are used as as sample-set for training. We sisglar procedure for the
“toys” dataset. For comparison, we have also investigdteaesults obtained using two
alternative constructions of the supergraph. The firstegé¢hs the set median graph used

to initialize our algorithm. The second is the supergrainied without taking its com-
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plexity into account. This supergraph is learned by maximgjzhe likelihood function of

the sample graphs given in Equation (5.6). Table 5.1 shoessl#ssification results ob-
tained with our supergraph construction using minimum dpson length and the other
two alternative supergraph constructions. From the thogetcuctions, it is the super-
graphs learned using the MDL principle that achieve the ésghlassification rates on all

three classification tasks.

Table 5.1: Comparison of the classification results. We sth@raverage classification rates

from 10-fold cross validation and their standard error. Tighest classification rates are

shown in bold.

Classification Rate cat & pig bottlel & bottle2 four objecisys)
learned supergraph (by MDL)83.2% + 0.041  76.6%-+ 0.027  75.2%+ 0.025
learned supergraph 80.7%+ 0.056 69.9%t 0.029 72.5%t 0.022
set median graph 66.9%+ 0.052 65.1%t 0.023 65.5%t 0.025

! the supergraph learned using method from Chapter 3

2 refer to [56]

5.7.3 Clustering

In this section we provide some analysis of the graph siitidgarprovided by the gen-
erative model and explore whether they can be used for th@opas of clustering. One
principled approach to this problem is to use the kernelggpad component analysis
explained in Section 5.5. In order to assess the quality @itlethod, we compare our
embedding result with that obtained by using edit distangeéasure graph dissimilarity.
In Figure 5.5, we illustrate the results of the Jensen-Sbtiakernel embedding and edit
distance embedding in the 2D space for two different objecttering tasks. The edit

distance used is the approximate edit distance computed tise matchings from the

85



o
[N

200¢ 0.15- .o .
S S el
S 5 01 R
o 1007 ~ o Py o ox "
= " 2 0.05 Lt e
09)_’ ol *, **;; X ) $ *:g@*» 87 o L+ 4;*** * x u&?;* I: N :
(] * " *fz‘%{** ?*ﬁ&;’f%* * (V) * Beowy ?ﬁ«»***;} * e
R L . e SIS w
'8 «ﬁi? g_0.057 *M*f woww "
3 -100 3 . R
-200} -0.15¢ ¥ *
L L L L L _O. L L L )
-200 -100 0 100 200 252 -0.1 0 0.1 0.2
First eigenvector First eigenvector
1507 0.2
1000 0.15f
S i
g . g o1 et
50r * o (0] g * *
() * %, R * ke Red e * % e * * *
> e L * * F Q *k K
ke) ok * e 2 (@] 0 e % Fox
o (3 R * ¥
o - P ;%* *
c - L * * *
Q -50r 5 0.05 oA .
(&) o * %
% o -0.1f *
-100¢ n
-0.15;
-15 L L L L L ) . L L L )
2050 —100 50 0 50 100 150 %55 -0.1 0 0.1 0.2
First eigenvector First eigenvector

Figure 5.5: Comparison of graph clusterings obtained frems@n-Shannon kernel and
edit distance. Row 1: cat (red) and pig (blue). Row 2: bot{lelack) and bottle 2 (green).

Column 1: edit distance and Column 2: Jensen-Shannon kernel

graduated assignment [48]. The top row shows the embeddinggaphs from images
of the cat (red) and the pig (blue) from the COIL dataset. Téwmord row shows the
embedding of the graphs from two types of bottle images Igib#s black scatter points
and bottle2 as green scatter points) from the COIL dataset|&ft hand column displays
the clustering results obtained by edit distance and the hignd column gives the result
obtained using the Jensen-Shannon kernel. To evaluateuiigyqpf the clustering re-
sults obtained using the two methods, we measure the chmtgractness and separation

using the Dunn index [32]. The Dunn index is defined as the fatween the minimal
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Table 5.2: The Dunn index for the clusterings obtained from tivo different embed-

dings. The best results are shown in bold.

Dunn index cat & pig two bottles
Jensen-Shannon embedding 0.7974 0.8309
edit distance embedding 0.5217 0.5937

inter-cluster distance and the maximal intra-clusteragise. The higher the value of the
index the better the separated clusters. We measure tiheingter distance between two
clusters as the distance between their centroids (meareaddta points inside a clus-
ter). The intra-cluster distance of a cluster is measureth@sverage distance of the
data points inside the cluster to its centroid. Table 5.2 ganm®s the Dunn index for the
clusterings obtained from the two different embedding®niiTable 5.2, it is clear that
the Jensen-Shannon embedding outperforms the edit deséemibedding for both object

clustering tasks.

5.7.4 Sampling New Graphs

Finally, we generate graphs using our method in Section déeaplore to what extent
the sample graphs from the generative model reproduce dlkist&tal properties of the
original graphs used to train the supergraph model. To do e experiment with both
a synthetic graph dataset and Delaunay graphs from thevaéd-COIL image dataset.
The synthetic dataset contains two types of representgtayeh models. The first are
the classical Erdos-Rényi (ER) random-graphs [33]. €las constructed by connecting
each pair of nodes in the graph with an equal probahiliy < p < 1), independently of
the other edges. The second class of graphs are Baraba&lkmart(BA) scale-free net-
works whose node degree follows the power-law distribusioared by many real-world

networks. The scale-free networks here are generatedhatpreferential attachment al-
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gorithm [7]. This preferential attachment algorithm conmoes from a small seed graph
of sizem, and iteratively introduces one new node to the graph at a tajmeonnecting
ittom (1 < m < my) existing nodes with a probability that is proportionalhe degrees
of the existing nodes. There are 40 ER graphs in the syntiiataset and these graphs are
constructed using a common valueps.1. The 40 BA scale-free graphs in the synthetic
dataset are constructed from a same seed graph ofrgz® and using a common value
of m=3. The number of the nodes in both types of graphs satisfiesiaggn distribution
N(110,+/70) and vary from 90 to 130. The Delaunay graphs used here aretfrem2
pig images in the COIL dataset.

We construct a generative model for each type of graph anglsagnaphs from the
resulting generative models using the procedure given gothm 1. We compare the
following statistical properties of both the training ghspthe ones used to construct the
supergraph) and the sample graphs from the generative magell) the node degree
distribution , 2) the graph diameter distribution, 3) thstdbution of relative frequency
for paths of a chosen lengthherel =5, 4) a scatter plot of the Ihara coefficients of the
graphs which count the number of the (prime cycles) triasygdquares and pentagons of
graphs as feature vector [77], 5) the eigenvalue distoinuior the normalized Laplacian
matrix of graphs and 6) the distribution of a graph spectnaracterization (the derivative
of the Riemann zeta function at the origin [111]).

It is worth pausing to consider the challenges posed by sitimg these different
characteristics. First our model assumes neither a nogedrey distribution nor a degree
distribution. This is learned from the data. Second, werassoo detailed model of edge
connectivity and this is again learned from the data. Heycgrhulating the node degree
distribution, we explore the ability of our method to leahistfrom data. Second, the
attributes 2) to 6) explore in a deep way the accuracy of dutmbde degree and edge
connectivity models learned from the data.

Figure 5.6 shows the plots of these statistics for the ERhgrapd the sample graphs
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Figure 5.9: The adjacency matrices of some sample graph®wleck and white squares
are used to indicate zero and unit elements of the adjaceatyces. Top row: from ER

supergraph. Middle row: from BA scale-free supergraph.t@otrow: from Delaunay

supergraph.
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from their corresponding generative model. We represeatréisults for the original
graphs using black and those for the sample graphs using Feain these plots, we
observe that the sample graphs reproduce the distributibgsaph statistics of the ER
graphs well. This is especially the case for the node degstgldition, the graph di-
ameter distribution and the normalized Laplacian eigerevdistribution where there are
only slight deviations. The original graphs and the sampdglgs have similar curves in
the path length distribution and the distribution of theivkive of zeta function. Their
Ihara coefficient scatter points are also overlapped. Ei§uf illustrates the distributions
obtained for the BA graphs and their corresponding samg@plg. When plotting node
degree distribution, although the curve for the samplelg@wmes not as peak in the same
way as its counterpart, it still exhibits a similar increasand decreasing pattern as the
BA graphs. For the remaining distributions, the samplelgsapve similar results to those
of the original graphs. Compared to the results in Figurealhd Figure 5.7, Figure 5.8
shows two significant deviations between the distributiohthe Delaunay graphs and
their sample graphs. One is in the Ihara coefficient scaltemghere the original graphs
and the sample graphs display two separated clusters. Tke istthat the normalized
Laplacian eigenvalue distribution of the sample graphsasenuniform than that for the
original graphs.

From the plots in the three figures above, we observe thatrtdpepies of the sample
graphs from the ER generative model resemble the origiaglgy most closely, and least
well for the Delaunay graphs. The reason for this residebenitay we sample graphs,
based on the assumption that the nodes and edges of graphsdependently. For the
three types of graphs studied, the ER graphs fit this model Gdése Delaunay graphs
which are constructed by triangulation violate the assusnphost strongly. Neverthe-
less, for all the three types of graphs, the graphs sampbed fine generative model by
our method exhibit comparable properties to those of thgrmal graphs to some extent.

In Figure 5.9, we visualize the adjacency matrices for soampde graphs for the
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three different types of varieties of graphs studied. Ingleés we use black and white
squares to respectively represent zero and unit elemenie @fdjacency matrices. We
note the sample graphs exhibit different edge densitiegattdrns of connectivity. The
generated sample graphs from the ER supergraph demorestnaiéorm distribution of
edges, whereas in the case of the BA supergraph there is resataen of edges around
a few nodes. The edge density of the graphs sampled from tlaisey supergraph is
most unbalanced.

The overall conclusions of this study are that our methodeam and then generate
distributions that reflect not only node degree statistics,characteristics which are an

artifact of detailed models of edge connectivity.

5.8 Conclusions

One big novelty of this chapter is that we have developed famrmation theoretic frame-
work for learning a generative model (in the form of a supmpt) for graphs which
captures the probabilistic distributions over nodes aret edges. We also have devel-
oped a novel practical algorithm for solving the problem.aflis, we have provided a
variant of the EM algorithm for estimating both the struetof the supergraph and node
correspondences between the supergraph and the samples.gfampirical results on
real-world datasets have shown the effectiveness of oyrgsexd method. We have also
illustrated how to embed graphs using supergraphs withedeStannon divergence and
investigated the performance of our generative model orpbaginew graphs. There
are a number of ways in which the work reported here can benégte First, since the
probabilistic framework we used here is based on the edgeectinity of graphs, our
work concentrates on unweighted graphs. There is scopeefarglizing the method to
weighted and attributed graphs. Second, the proceduresaofihg the structure of the

generative model (i.e. edge connectivity) and its node age @ccurrence probabilities
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are realized as discoupled computational procedureshggtdre clearly closely depen-

dent. A better procedure will be to realize the estimatiotheftwo parts jointly.
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Chapter 6

Information Theoretic Prototype

Selection for Graphs

In this chapter we present a prototype size selection mdihroa set of sample graphs.
Our method of prototype size selection is based on the thefoapproximate set cod-
ing. Approximate set coding was initially proposed for ¢&rsg validation in the vector
domain, here we extend the theory from the vector domainaplgdomain and apply
it to selecting prototype graph size. However, extendirgyttieory to graph domain is
by no means a trivial problem due the difficulty of manipulgtgraph structures. Our
main contributions here are that 1) we redefine the threeartoncepts and reformulate
the functions in approximate set coding so that the theaomybesadopted for graphs, and
2) we solve the problem of exploring all the possible coroesjence between the data
graphs and prototype graphs by sampling the correspondesig the importance sam-
pling approach. With the new definitions and the facility loé importance sampler in
hand, we pose the problem of prototype size selection aothaitimizing the mutual
information between two partitioned sets of sample graphthe experiments, we apply
our method to the graphs from the COIL image dataset andtigegs its performance on

prototype size selection tasks.
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6.1 Introduction

A problem we may encounter when dealing with graph data i®kecs the best proto-
type graph from several candidate prototype graphs in h@ihts problem falls into the
category of model selection, which is one of the fundameatgs in pattern analysis.
There are a wealth of principles in the literature for moaséstion [79][44][87]. Gen-
erally speaking, although these principles are motivateah fdifferent viewpoints, most
of them employ penalizing the parameters (or complexityhefmodel in order to gen-
eralize well on a new dataset. For instances, the two-parinmim description length
criterion we adopted to construct our supergraph model @ 5 involves penalizing
the complexity of the model using the von Neumann entroplie©¢éxamples also include
the Akaike’s information criterion (AIC) which penalizdsst model by twice the number
of free parameters of the model [1] [15], the Bayesian Infation Criterion (BIC) which
suggests a stronger penalty than AIC, i.e. number of modehpeters times logarithm of
the number of samples [87], and the universal coding in themum description length
criterion [52].

Recently, Buhmanet al. [20] [21] have proposed an information theoretic principle
called approximate set coding to estimate the generalizability of the models from
training to test data. The idea behind this can be explaisedjla communication proto-
col. The training data, after a transformation, generatede dor communication over a
noisy channel and the test data recover the transformaiti@nraceiving the code. Chan-
nel capacity measures how well the communication betweetwh sets and models are
ranked according to the channel capacity. The model thaimzas the channel capacity
is selected. Actually, the channel capacity is encodedasitiitual information between
the two sets. In their explanatory case of clustering moelelcsion, both datasets in the
scenario are characterized by a cost function and modedteeidas achieved by maxi-
mizing the channel capacity over a set of different cost tions.

Although these principles proposed for model selectiontroead above are widely
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exploited in statistical models in the vector domain, tlaaplications in the graph do-
main are very limited. This is due to the different repreagahs between vectors and
graphs. Vectors manifest themselves as ordered numeslads; while graphs are natu-
ral structures of edge and node (and also the attributeseomthTherefore, more effort is
needed in order to adopt them in the graph domain. For instaviten we adopt the two-
part minimum description length criterion to construct @exgraph for sample graphs
in Chapter 5, graph characterizations from the von Neumaitwogy are developed in
advance to measure the complexity of the supergraph.

In this chapter we present an approach to selecting the apfirototype graph size
for a set of sample graphs. Our method is an extension of dwyttof approximate set
coding to the graphs. The prototype of optimal size is thatiwimaximizes the mutual
information between the two partitioned sets of the samgplys. To measure the mutual
information, we need to compute the partition functionshef two partitioned sets and
their joint partition function. The computation of the paan function involves exploring
the hypothesis space and this is a NP hard problem for gr&gasocate an approximate
solution to this problem by using the importance samplingraach.

The remainder of the chapter is organized as follows. Ini@e&.2 we first briefly
introduce the idea of selecting prototype graphs usinghiery of approximate set cod-
ing. In Section 6.3 we explain in detail how we extend the tiq@m model selection to
the graph domain. This section includes four parts. Thetfirgte parts explain the new
definitions of the three concepts (i.e. hypothesis, costtfan, partition function) to cater
for graph data. The last part shows how we approximate thue\ailthe partition function
using the importance sampling approach. In Section 6.4 xperenent with graph data
to investigate our prototype size selection method. Rmalé conclude the work in this

chapter in the last Section 6.5.

98



6.2 Approximate Set Coding

In this section we briefly introduce the idea of selectingtpiype graphs using the the-
ory of approximate set coding. In this context, a hypoth&ses solution to our pattern
recognition problem. In this specific case, a hypothesssa mapping (matching) of all
of our sample graphs to a prototype graph. We also have awodidn R(c) which eval-
uates the quality of a particular matching. Naturatf:) depends on the prototype graph
proposed for the data samples.

Given a prototype graph drawn from a set of possible proegypsually of different
sizes or complexity), we can find the best matching and prp&tonfiguration by opti-
mizing R(c). We denote the best hypothesiscasthat satisfieg' = arg min R(C). As
usual, we cannot usk(c) to select the best prototype from the set, as the more complex
prototypes have lower costs (they fit the samples bettedonbt generalize well.

In [20], Buhmann explains how the approximate set codingke/éor the clustering
model selection problem by describing a communicationagemith a sender, a receiver
and a problem generator where the problem generator ses\&enaa@sy channel between
the sender and receiver. In his theory, the communicatitwdsn the sender and receiver

take place in the noisy channel in the following procedures.

1. The sender and the receiver obtain a dataset that inchases objects to be clus-

tered from the problem generator.

2. The sender and receiver calculate the number of hypdathleaeare within a cost

to the minimum cost of the clustering of the dataset.

3. The problem generator generates a new dataset and agpgiestransformations

to the new dataset.

4. The problem generator sends the transformed dataset tediver without reveal-

ing the transformations.
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5. The receiver calculates the hypotheses that are withaistay¢o the minimum cost

of the clustering of the transformed dataset.

6. The receiver estimates the applied transformations byymzing the overall num-

ber of hypotheses that are within a cogb the minimum cost of both datasets.

Approximate set coding uses the observation that there aet af transformations
which alter the sample data without essentially changiegptfototype in any way. For
example, if we consider the sample graphs in a differentrpaddf their nodes are per-
muted in some way, the structure of the recovered prototiypeld be the same (although
the prototype graph nodes may also be in a different ordeg)c& use this fact to mea-
sure how good our prototype is at recovering these transitooms when they are coded
using the prototype graph and sent through a noisy chanaealoThis, we split the sam-
ple data into two partitions. The first partition is used tdeohe transformation, and the
second provides a prototype graph to decode the transfomate then attempt to max-
imize the amount of information transmitted. The analysifil] shows that the mutual

information between sender and receiver is

I,=—lo ————h= , 6.1
TN & <|C’%1||C’%2\ (6.1)

where N is the number of graphs in the partitioned sets gndis the number of free
transformations of the graph$C., ;| is the number of hypotheses that are within a cost
~ of the best cost in set 1 (and likewise f@r, »|). The quantityAC,, 1,| is the number

of hypotheses on set 2 which are within a cosif the best cost in set 1. To calculate
this, we need a way of transferring hypotheses from set 2ttt.sk the following, we
will describe in detail how we extend this theory to applyatthe graph prototype size

selection.
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6.3 Prototype Selection for Graphs

We commence by introducing our problem and then give fornedihdions of the in-
gredients. Given a set of sample graphs, our aim is to sdlecoptimal size of the
prototype graph for the sample graphs. To ensure that thealgprototype graph gener-
alizes well on a new dataset, we adopt the two-sample sceaad partition the sam-
ple graphs into two sets of the same siZ& = {G\",....¢" ... GV}, g@ =
(GP,....G%, .. G}, Here the superscripts indicate different sample-setstiaad
subscripts indicate the graph indices. To partition thelgsafrom images of the same
object into two sets, we index the graphs according to theage viewpoints and allocate
neighbour graphs in the index to different sets. The besbpype graph is determined

according to its generalization capability on the two sets.

6.3.1 Hypothesis

The hypotheses originally proposed in the clustering mwob{where approximate set
coding was first used) are the assignments of data pointaustecs [20]. Here in our
problem the hypotheses consist of a set of mappings of eattfeafample graphs onto
its corresponding prototype graph. By direct analogy with ¢lustering problem, each
mapping is equivalent to an assignment of a point to a clusterprototype graph here
is equivalent to the cluster centroid. For each datgéet (¢ € {1,2}) a hypothesis
isc, = {S\?,...,89 8} whereS\? (i € {1,2,...,N}) is the assignment matrix
between grapli\? from setG@ and its corresponding prototype grapt. The set of

all possible hypotheses & , which consists of all the possible mappings between all

samples and the prototype graph.
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6.3.2 Cost Function

To proceed, we require a cost functiey(c,) to quantify the effectiveness of a particular
hypothesis:,. The cost function measures how consistent the given mgppaire with
the prototype graph. Here the cost function of a hypothaestika negative logarithm of
the likelihood of the sample graphs from the prototype gnaypdher the hypothesis, which

uses the probabilistic framework presented in Chapter 3

Rq(cq) = _1np(g(q)|r(q)ch)

=—>" >l Z Klexplp > Y AOMYSH . (6.2)
G acv? ey beV,? geyl®

In the above,qu) is the adjacency matrix for the sample gra@hfrom setq and M@
is the adjacency matrix for the prototype grap®. The matrixSZ(C’) is the assignment
matrix between the two graphs. If nodeandb of the sample graph?z(‘” are connected,
their corresponding element'”) in A has a unit value otherwise it is zero. This is
same for the adjacency matriX (9 of the prototype grapi@. The elements of the
assignment matrl)SZ(jL are unit if nodea in grathﬁ‘” Is matched to node in graph
'@, The cost function above is a natural choice in our problecabse it is also involved
in measuring the likelihood of the sample graphs from theqtype graph during the
learning procedure of the prototype graph.

In order to normalize the minimum cost of the hypotheses to,zere define the
relative cost of hypothesis. Suppose the optimal hypashesi. the hypothesis yielding
the lowest cost between the sample graphs and their pretafgph) |Scl the relative

cost of the hypothesis, is AR, (c,) = R,(c,) — Ry(c).

q
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6.3.3 Partition Function

The measurement of the mutual information of the two samgikerequires counting the
number of hypothesel’, ;| and |C, ,| that are within a certain cost of the optimal
solution. However, this is hard to do since it involves exjig all the hypotheses. For-
tunately, this value can be estimated using concepts fratistal physics. Considering
the hypotheses as microcanonical ensembles in statistagianics, their number can be

estimated by calculating the partition function [20]

Z,= Z exp[—eAR,(c,)], (6.3)

cq€Cq
wheree is a positive scaling parameter known as the inverse cortipngh temperature.
Essentiallys coarsens the precision of the partition function approxingathe number
of hypotheses that fit the sample set [21]. Whas zero, the partition function is equal
to the number of all the possible hypotheses. Whén very large, the partition func-
tion only counts the number of optimal hypotheses. Becausentrols the number of
hypotheses fitting the sample set, we will call thesgptimal hypotheses. In our case,
the hypothesis space is the set of all the possible mappietygekn the sample graphs
and their prototype graph. The hypothesis space is verg lang the computation of the
partition function will be expensive. Later we show how we tise importance sampling
approach to sample the mapping between the sample graphbteaingrototype graph
and approximate the value of the partition function.

To measure how well the hypotheses generalize for the twplgsesets, we count the
number ofs-optimal hypotheses in the first set which also exist in theosd set, when
transferred to the first set. We therefore need a way of teans§ hypotheses from the
second set to the first. We denote the cost of the hypothesistween the transferred
graphs and prototype gragh? as R,(c,). This is the cost of making hypothesisfor

the graphs;(® when evaluated against the dataGity. The following procedure may be
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sample set G
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Figure 6.1: A diagram illustrates the procedure of comptine three partition functions.
When we compute the partition functiafy,, we need to count how many of our hypothe-
ses arec-optimal when we use the prototype from set 2 and the datahgripm set 1.

We therefore need a way of transferring hypotheses fromebersl set to the first.
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used to find the transfer. For eaé?fnl) graph inG™, we find the most similar graph in
G® and the mapping; between the twor; o G\ is then the image of this graph in the
second set. From these images, we compute the cestlyf comparing the images to
the prototype grapli® under the mappings ie,. Finally, the joint partition function is

formulated as

29 = Z exp[—e(AR(c2) + ARy(c2))] - (6.4)

c2€Co
The quantityA R, (c») is the relative cost of hypothesis between the image graphs of
G in the second set and the prototype grdph. This is equivalent to the cost of
hypothesis:, between the image graphs aid minus their minimum cost. Figure 6.1
illustrates the procedure of computing partition functiahy, Z, and the joint partition
function Z15.

Prototype graphs with different sizes are ranked accorditigeir mutual information

between the two sets

I = %log (g‘j;) . (6.5)

In the above equatiorZ; and Z, are respectively the partition functions of two sample
sets, andZ,, is their joint partition function|(2| is the number of the free transformations
of the graphs. In ideal conditions, its valug$y = |Vr|!, which is equal to the factorial
of the size of the prototype graph. Since we are going to useéntiportance sampling
approach to sample the correspondences in the hypothesis sgther than enumerating
all the correspondences in the hypothesis space, and thisduice a bias on the value of
|2]. In practice we set its value to the one that keeps the valtleeahutual information
equal to zero whean is zero. The amount of the mutual information can be inté¢gare
as the generalization capacity of prototype graphs. Heacemblem is posed as that of

finding the prototype graph that maximizes this mutual infation.
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6.3.4 Approximating the Partition Function

As previously mentioned, the computation of the partitiandtion is expensive, since
it involves exploring the hypothesis space, which encorsgsall the mappings between
the graphs in the sample sets to the prototype graph. To digsthis problem, we use the
importance sampling approach proposed by Torsello [97atode the mappings from
the hypothesis space and to approximate the value of thiigaftnction.

Importance sampling [53] is a Monte Carlo sampling techejguhere the expectation
value of a particular distribution is approximated by a virggl average of random drawn
from another distribution [95]. This technique is partexly useful to reduce the variance
of the estimators. Suppose we aim to estimate the expettediae of a target function
g(x) inthe domaint, E[g(z)] = m [ 9(z)dz. The basic idea of importance sampling
is that instead of using random variables fragiix), we use random variables from a
different distributionf(x) to estimate the expectation. Let= (z4, ..., z;) bek random

samples from the distributiofi(x). Thus we estimat&|g(z)| as

1

Do glw) s (6.6)

| =

Elg(z)] ~

In our problem, we aim to approximate the value of the partifunctionsz, (¢ €
{1,2}) and Z,,. Since the approximation procedure is the same in all theetbases, we

simply review the equations fc£, (¢ € {1,2}). To commence, we have

Z,= Z exp[—eAR,(c,)] = E[exp[—eARq(cq)] ICyl, (6.7)

cq€Cq

where|C,| is the cardinality of the hypothesis spatg in other words, the number of the

mappings irC,. In this case, we haveY|| = |C,| andg(c,) = exp[—cAR,(¢c,)], and thus

1

E eXp[—&‘ARq(cq)]] ~ ﬁ Z exp[—eARq(cq)]gé) , (6.8)
9" cqel’y q
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where samples id;, are drawn from the distribution with a probability 6f(c,).

Substituting Equation (6.8) into Equation (6.2), results in

o L exp[—eAR,(cq)]
Z, ~ e > Ple) . (6.9)

cq€l’y

Recall thatAR,(c,) = Rq(cq) — Ry(ct) andRy(c,) = —In P(GW|T@ ¢,), where
G is the observed graph afnd? is the prototype graph. In order to estimag we

need to sample hypotheses € C! with probability close tochi (qg;f()'gﬁfi’ri‘{})’ . We
assume that the graphs in the sample §&sare independent and sample mappings for
individual graphs. The requisite for sampling a mappingveein a graph and the proto-
type graph is a node-correspondence matrix, which givegpithieabilities of the nodes
in the graph corresponding to nodes in the prototype gratis ode-correspondence
matrix can be obtained by performing a graph matching algariand by relaxing the
resulting assignment matrix. The relaxing process enghegghere is a possibility that
any node in the graph may be matched to any node in the pret@saph. The node-
correspondence matrix obtained is a doubly-stochastioxnathere the sum of each row
and column is one. Once we have the node-correspondence matand, a mapping
between the graph and the prototype graph can be locategl thsifiollowing procedure,
as reported by Torsello [97].

Suppose the node-correspondence matrix is represent8d=by(s,, ), which gives
the probability that node in the graph corresponds to nodein the prototype graph.
We first sample a correspondence for the node indexed 1 inrtetppe graph by
picking a nodea; in the graph, with probabilitys,,;. The next step is to condition
the node-correspondence matrix to the current match bydakito account the struc-
tural information between the sampled node and all thoseirgng, which yielding a
matrix S}Ll that gives the conditional node-correspondence prolaliétween the re-

maining nodes in the graph and those in the prototype gragnghe current node cor-
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respondence. We proceed to sample a correspondence foodleeimdexed 2 in the
prototype graph according to the mat§% and then compute a new conditional node-
correspondence matrix. lterating these steps until alintbees in the prototype graph
are matched to nodes in the graph. Finally, the probabifithe sampled mappin§ is
P(S) = (5)ara * (55 )asz2 -+ (Fair e apy el Sample a mapping(® for each

grathg‘” € G9W(i € {1,2,...,N}) and these mappings constitute a hypothegis
whose probability is(c,) = [T g S°-

6.4 Experiments

In this section, we report some experimental results of g@i@ation of our prototype
size selection method on real-world dataset. The dataedtisashe COIL [68] dataset.

We first investigate how the value of the mutual informatiowl ghe three partition
functions vary as the value efincreases. To do this, we randomly partition the graphs
from a given object, e.g. the catimages, into a trainingiseétetest set that are of the same
size. The bijective mapping of the graphs between the twoisdbcated by minimizing
the sum of the approximate edit distances between the mapppts. The approximate
edit distance is computed using the matchings from the gtaduassignment [48]. We
learn two prototype graphs of the same size for the two setg tise method in Chapter
3. Given this setting, we compute the value of the mutualrmftdion and the logarithms
of the three partition functionsg 2, log Z, andlog Z5.

Figure 6.2 shows how these quantities vary as we increaseatbe ofe from 0 to
50. From the plot in Figure 6.2(a), we observe that the munfarmation initially in-
creases and achieves the highest value aresBdand afterwards it begins to decrease.
To maintain the non negativity of the mutual information, se its value to zero when
it falls below zero. Figure 6.2(b) and Figure 6.2(c) respety show the value of the

logarithms of partition function®g Z; andlog Z,. From the plots it is clear that these
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Figure 6.2: How the mutual information and the logarithm aftgion functions change
ase increases from 0 to 50. (a) variation of the mutual inforimat(b) variation ofog Z;,

(c) variation oflog Z, and (d) variation ofog Z;,.

two gquantities converge to a horizontal asymptote. Theoreés this is that the relative
cost of the optimal hypothesis is zero and thus its confiebub the partition function is

a constant positive value. The exponential of the relatosgscgiven by the non-optimal
hypotheses converges to zeraascreases, thus yielding the observed horizontal asymp-
tote. On the other hand, the logarithm of the joint partitionction log 2,5 in Figure
6.2(d) continues to decreasesamicreases. This indicates that the optimal hypotheses of
the graphs in the test set do not necessarily generalizeetoptimal hypotheses of their

mapped graphs in the training set. For this reason thevelatists of all the hypotheses
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Figure 6.3: Variation of the mutual information of six protpe graphs of the four objects.

(a) Cat object, (b) bottle 1 object, (c) pig object and (d)}led? object.

in the joint partition function are positive values. As aukesheir exponentials converge
to zero ag increases. Consequently, the joint partition functiorveoges to zero and its
corresponding logarithm becomes both large and negative.

Our second experimental goal is to select the optimal sizéiseoprototype graphs
for several objects from the COIL dataset. Here the objeetsised are the cat, pig and
two bottles. To perform these tasks, for each object we lsacprototype graphs of
different sizes using the method in Chapter 3 and then coenjwét mutual information
of these prototype graphs. The optimal size of the prototypph is that which gives the

highest mutual information asvaries. Figure 6.3 shows plots of the mutual information
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Table 6.1: The sizes of the six prototype graphs. The sizéseqdrototype graphs selected

are shown in bold.

Prototype Graph cat bottlel pig bottle 2

prototype 1 78 52 73 49
prototype 2 71 54 79 45
prototype 3 69 55 72 47
prototype 4 73 57 77 48
prototype 5 75 58 71 51
prototype 6 79 53 78 46

of the six prototype graphs versus the value &dr the four objects. The sizes of the six
prototype graphs are shown on the legend and the size rahgesgraphs used to learn
the prototype graphs are given following the names of theaibj From the plots it is
clear that for each object there is a prototype size thatsgieimized performance. In
Table 6.1, we also list the sizes of the six prototype grapésthe number of the nodes
in the prototype graphs, of the four objects. The sizes ofgtype graphs selected by
our model selection method are shown in bold. Note that ankikat is expected using
other standard model complexity selection methods, whial ohoose the model with
the smallest size, our experiments observe that in threefdour objects the proposed

method favours the larger size.

6.5 Conclusions

In this chapter we have developed a method for selectingtimal size of a prototype
graph used to represent a set of sample graphs. Our methadtofype size selection

Is based on the theory of approximate set coding that waallgiproposed for cluster-
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ing validation in the vector domain. The main novelty of tbiepter is that we redefine
the three critical concepts in the theory of the approxinssiecoding and extend the
theory from vector domain to graph domain so that we can athy@ytheory to solving
model selection problems in graph domain. The second nowkthis chapter is that we
have solved the problem of exploring all the possible cpwasence between the sam-
ple graphs and prototype graphs by sampling the correspordgsing the importance
sampling approach. With the new definitions and the facdityhe importance sampler
in hand, we posed the problem of prototype size selectiohatsof optimizing the mu-
tual information between two partitioned sets of sampl@hsaIn the experimental part,
we have investigated its performance on prototype gragtseh in object recognition.
However, the method we presented in this chapter is a follpwvork after we have
learned the structure of the prototype graphs. Therefeaning the prototype graphs
and selecting the prototype size are realized as discoupleghutational procedures. In
the future work, we will adopt some more sophisticated stiats (e.g. simulated anneal-

ing) to realize the estimation of the two parts jointly.
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Chapter 7

Conclusions and Future Work

In this chapter we first provide a summary of the main contrdms of the thesis. This
includes the novel ideas on developing graph characteimtconstructing generative
models and selecting prototype graphs. Secondly, we walll gut some of the weak-

nesses and describe possible directions for future work.

7.1 Summary of Contributions

We have developed and evaluated new methods for charaatpgiaphs and constructing
generative models for graph data. Our generative modekls@@2d concentrate on cap-
turing the variations of edge connectivity present in the@a graphs. We now provide

a summary of our contributions for each chapter in the thesis

7.1.1 A Supergraph-based Generative Model

Our first contribution is that we developed a novel geneeatinodel for a set of graphs
based on a supergraph structure in Chapter 3. The supengraphlogous to the graph
union that aims to capture the structural variation pregemhe set. We began by in-

troducing thea posterioriprobability defined in a graph matching problem [61]. In the
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subsequent development, we used this probability to medbkarlikelihood of a sample
graph from the supergraph. The supergraph we aim to learndsaich maximizes

the likelihood of the sample graphs. To maximize this olpyectunction, the unknown

correspondence information between the nodes of the sagngpdhs and those of the
supergraph was treated as missing data and we developedat\afrthe expectation-
maximization (EM) algorithm to locate the supergraph gtitee This supergraph can
generate new graphs by modelling the edge occurrence plitibab Besides, we also
investigated the use of the von Neumann entropy as the itodifcd measuring the com-

plexity of the supergraph in the experimental part of thigpter.

7.1.2 Graph Characterizations from von Neumann Entropy

The second contribution of the thesis is that we developagtgcharacterizations from
the von Neumann entropy. We first explored how the von Neunestwopy of a graph
associated with the normalized Laplacian matrix can be asedmeasure of graph char-
acterization. Then we developed a simplified form for the i®umann entropy of a
graph that can be computed in terms of node degree statistiessimplified form of the
von Neumann entropy offers the advantage of lower compmrtakicomplexity which is
quadratic in the number of the nodes of graphs while the ceéatipn of von Neumann
entropy is cubic. Both of the two measures belong to the iamagraph characterizations.
We also compared the resulting characterizations with soeuiof alternative graph char-
acterizations including Estrada’s heterogeneity indéj gd the derivative of Riemann
zeta function at the origin [111]. In the case of Estradatetogeneity index we revealed
a new link between Estrada’s index and the commute time omjahgrin addition, we
also explored how the von Neumann entropy can be used inmmoign with the thermo-

dynamic depth and illustrated its applications to biolagizetworks.

114



7.1.3 An Information Theoretic Generative Graph Prototype

In this chapter, we combined the graph characterizatiam the von Neumann entropy
with the probabilistic framework described in Chapter 3cdostruct a generative proto-
type for a set of graphs by adopting a minimum descriptiogtlempproach. Again here
the generative graph prototype is represented by a supérgteucture. The complexity
of the supergraph is encoded using the simplified von Neuraatmopy. A variant of the
EM algorithm is developed to minimize the overall descaptlength in which both the
structure of the supergraph and the node correspondentvesdrethe sample graphs and
the supergraph are treated as missing data. We also exjddiernel method of analyzing
graph similarity. To do this, we measured graph similagitising the Jensen-Shannon di-
vergence and then embedded graphs into pattern space esime] grincipal component
analysis. The Jensen-Shannon divergence between a paapdiggs found by taking the
difference between the entropy of the pairwise supergragktlae average of the separate
entropies of the two graphs used to construct it. In additialso developed a method
of generating new graphs from the supergraph. This is exlizy assuming that both the
nodes and edges of graphs arise under independent Berdistiibutions and sampling
new graphs according to their node and edge occurrencelplitiba. Therefore, our su-
pergraph model proposed in this chapter can fulfil the taigsaph classification, graph

clustering and of generating new graphs.

7.1.4 Information Theoretic Prototype Selection for Graphs

In Chapter 6, we provided a prototype graph size selectiaimoade Our method of pro-
totype size selection is based on the theory of approxinetealing that was initially
proposed for clustering validation in the vector domain. &fended the theory from the
vector domain to graph domain so that it can be applied to thaemselection problem

for graphs. However, extending the theory to graph domamnois trivial problem. Our
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main contributions in this chapter are that 1) we redefinedlee critical concepts and
reformulated the functions in approximate set coding sbttieatheory can be adopted for
graphs, 2) we solved the problem of exploring all the posstiorrespondence between
the sample graphs and prototype graphs by sampling thespemdence using the im-
portance sampling approach. With the new definitions andattibty of the importance

sampler in hand, we posed the problem of prototype size tembeas that of optimiz-

ing the mutual information between two partitioned setsamhple graphs. Experimental

investigations demonstrated the practical utility of owathod.

7.2 \Weaknesses

There are a number of weaknesses of the work presented ihakis.t We discuss these
weaknesses and then propose some possible directionsuoe work.

In the methods for constructing generative models predent€hapter 3 and Chapter
5, we developed variants of the EM algorithm to optimize thgctive functions (which
were respectively the likelihood of the sample graphs ing@dra3 and the overall descrip-
tion length in Chapter 5) . The reason we use the EM algoritisntisat the correspon-
dence information between the nodes of the sample graphtharsipergraph is hidden
to us, and the EM algorithms are specialized to solve thelpnabwhere there is missing
data. Although we showed that our variants of the EM algarithork well to drive the
objective functions to converge, the supergraphs we obxdairom these algorithms are
not guaranteed to be the best solutions due to the fact tadNMhalgorithm can easily
get stuck in local optima. In addition, because the prostialframework we adopted
to learn the supergraphs (i.e. the likelihood function dbsd in Section 3.2, Chapter
3) is developed in the context of unweighted graphs, the rgéime model construction
methods we proposed in the thesis are restricted to unvesignaphs. Another weakness

of the generative models proposed in the thesis is that theyat generate graphs bigger
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than the supergraphs. This is because we only model thereocer probability of the
nodes and edges on the supergraphs and sample nodes andlesis existing in the
supergraphs to assemble new graphs.

In Chapter 4, we extracted two graph characterizations fiteervon Neumann en-
tropy. However, both of the two representations, i.e. theNeumann entropy of a graph
and the simplified von Neumann entropy, have shortcomingstie von Neumman en-
tropy of a graph, since it is defined using the eigenvalues©i@fmibrmalized Laplacian
matrix, it suffers from the problem of cospectrality of ghap Cospectral graphs have the
same eigenvalues with respect to the matrix representagorg used. Therefore, even
for two graphs with different structures, the value of th&n Neumann entropy may be
same. For the simplified form of the von Neumann entropy, diergeloped by using two
equivalent transformations, i.e. the trace of the nornedlizaplacian matrix of a graph is
equal to the number of the nodes in the graph (refer to Equdti®) and the trace of the
square of the normalized Laplacian is equal to a quantitypderdegree statistics (refer to
Equation 4.9). These equivalent transformations hold @rynweighted graphs. Thus,
the simplification of the von Neumann entropy of a graph dbsdrhere does not exhibit
itself with the capability of handling edge-weighted graph

Additionally, we showed a prototype size selection metmo@hapter 6. This method
only deals with the problem of selecting the best prototype fsom candidate prototypes
and it does not involve the learning procedure of the prg®tyraphs. That is to say, the
prototype selection method presented in the chapter isaateost-processing step that
takes place after the learning procedure of the prototypplgy. We need to carry out a
further investigation on how to integrate the learning phae and selecting procedure

together so as to reduce the overall complexity.
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7.3 Future Work

To address the weaknesses of this thesis, in this sectioruggest some possible ap-
proaches to overcoming some of them for further researchalso provide a number of
ways in which the work reported can be extended.

First, our work presented in the thesis solves the problemooftructing genera-
tive models for non-attributed graphs. There is scope foregdizing the methods to
attributed graphs. Since the probabilistic framework wedu® develop our generative
models is based on non-attributed graphs, our methods sfrtmting generative models
are restricted to non-attributed graphs. One possible Wapplying our work for at-
tributed graphs would be to adjust the current probalilismework. This may involve
adding extra parameters to the probabilistic framework tmleh the attribute of nodes
and edges. To accommodate the new probabilistic framewbek|earning procedure
will change accordingly. For instance, during the itenasiof the EM algorithm, we need
to re-estimate not only the structure of the supergraphlbatthe attribute parameters.

Second, the problem that our generative models cannot gtengraphs bigger than
the supergraphs might be solved by padding extra nodes aye$ éd the supergraphs.
We could use these extra nodes and edges to model the oamiofthe nodes and edges
apart from the ones in the supergraphs.

In Chapter 4, we described how we developed graph charzatiens using the von
Neumann entropy of graphs. These simple measures of grampgopen up a number
of interesting potential information theoretic avenuetede include their use as model
complexity measures in the learning of generative modetsyus minimum description
length approach, and their use in the construction of in&tiom theoretic kernels using
the Shannon-Jensen divergence (which are shown in Chgptétdseover, it would be
interesting to explore whether the von Neumann entropy eaexbended to more com-
plex matrix representations including those for edge-Weid graphs, attributed graphs

or hypergraphs.
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For the prototype size selection method proposed in Chéptearning the structure
of the prototype graphs and selecting the prototype sizeealezed as discoupled com-
putational procedures. A better way would be to adopt sonre saphisticated strategies

(e.g. simulated annealing) to realize the estimation ofwweparts jointly.
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