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Summary

A characteristic feature of AGN is their variable luminosity, which is observed at all
wavelengths. Their lightcurves typically vary by a few tenths of a magnitude or more
over periods lasting from weeks to years. This variability is caused by the turbulent
processes occurring within the accretion disk, meaning that the study of AGN variability
is an effective means of studying the accretion process. Recently, a growing number of
AGN have been observed to show extreme variability, whereby their lightcurves exhibit
luminosity changes that represent a significant departure from their baseline variability.
These rare events are known as AGN flares. Since their discovery, AGN flares have
quickly become an active area of research with the intention of better understanding
accretion physics. Looking ahead to high-cadence surveys such as the Legacy Survey
of Space and Time (LSST), which promises millions of transient detections per night in
the coming decade, there is a need for the fast and efficient detection and classification
of AGN flares. The problem with the systematic detection of AGN flares, however, is
the requirement to detect them against a stochastically variable baseline; the ability to
define a signal as a significant departure from the ever-present variability is a considerable
statistical challenge. In this thesis, I investigate the use of a statistical tool called
Gaussian Processes (GPs) to systematically detect AGN flares in optical lightcurves,
and I demonstrate that GPs are a viable means of transient detection in the coming era

of time domain astronomy.
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Chapter 1

Introduction

1.1 Active Galactic Nuclei

1.1.1 Background

The term Active Galactic Nuclei (AGN) refers to the accreting supermassive black holes
at the centres of galaxies. AGN are some of the most powerful sources of energy in the
Universe, often outshining their entire host galaxy (Peterson & Burbidge, 1998). It was
Fath in 1909 who made the first discovery of AGN when he characterised the spectra of
what was then termed “spiral nebulae” to determine if these objects were collections of
unresolved stars or if they showed similarities to nearby gaseous nebulae (Fath, 1909). In
that work, he had unknowingly made the first detection of an AGN in the galaxy NGC
1068, observing that its spectrum was composite, showing both bright emission and ab-
sorption lines (Fath, 1909). Despite this discovery, and despite the advent of systematic
studies of galaxies such as that published by Seyfert in 1943, the study of AGN as we
know now was not pioneered until some of the first radio surveys of the sky in the 1950s
(e.g., Ryle et al., 1950; Hanbury Brown et al., 1952; Baade & Minkowski, 1954). By that

time, the angular resolution of radio observations was sufficient to identify the strongest

1
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radio sources in the sky (and associate them with optical sources: Peterson & Burbidge,
1998). This led to the discovery of quasars by Schmidt in 1963 (extremely luminous
AGN: Schmidt, 1963), which were initially believed to be a separate phenomenon from
the Seyfert-type objects discovered previously and were then known as “quasi-stellar ob-
jects” (Greenstein & Schmidt, 1964). Later, however, it was realised that both quasars
and Seyfert galaxies are sub-types of AGN that differ in the amount of radiation emitted
by the central source (with quasars being typically 100 times more luminous: Kristian,
1973; Shields, 1999). The overarching question during these early AGN detections was
the nature of the central object emitting this massive amount of energy; explaining this
extreme energy release from such a compact region was not straightforward (e.g., Sal-
peter, 1964). As a result, it was suggested that the central object must be a massive
black hole (since stellar fusion would not produce enough energy: see Salpeter, 1964).
In this case, the spiral infall of material forms an accretion disk and the energy release
comes from angular momentum transfer outwards from the centre of the disk (Zel’dovich
& Novikov, 1964; Salpeter, 1964; Lynden-Bell, 1978). This is now the widely accepted
AGN paradigm (Rees, 1984; Antonucci, 1993; Urry & Padovani, 1995; Peterson & Bur-
bidge, 1998). Today, AGN are a focus of observational effort in every frequency band
across the entire electromagnetic spectrum from radio to gamma rays (Shields, 1999;
Padovani et al., 2017). The research field is more active than ever before, spanning a
wide range of areas including accretion disk physics (e.g., King, 2008; Fausnaugh et al.,
2017; Guo et al., 2022), the relationship between the black hole and its host galaxy
(e.g., Peterson, 2008; Bessiere et al., 2024), jets and outflows (e.g., Di Matteo et al.,
2005; Blandford et al., 2019) and their impact on galaxy evolution (e.g., Fabian, 2012;
Kormendy & Ho, 2013; Harrison, 2017), and the evolution and growth of supermassive
black holes (e.g., Alexander & Hickox, 2012; Ricci et al., 2025).

AGN have been observed to exhibit the following properties (Padovani et al., 2017,
Peterson & Burbidge, 1998):
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1. High luminosities, with bolometric (i.e., integrated over all wavelengths) lumin-

osities up to ~ 10%® ergs™! (Baade & Minkowski, 1954; Padovani et al., 2017).

2. Broad emission lines, where broad widths of emission lines (e.g., H,, Hg, Ly,)
are seen in their optical and UV spectra, ranging from 2000 to 10000 kms™* (Sey-
fert, 1943; Ho & Kormendy, 2000; Peterson, 2006).

3. Time-variable continuum flux, where AGN lightcurves exhibit stochastic vari-
ability in all wavelength bands (Sandage, 1964; Ulrich et al., 1997; MacLeod et al.,

2010; Kovacevic et al., 2025).

For the purpose of this introduction, I will be focussing on the third item in the above
list: the time-variable continuum flux of AGN, which is the cornerstone of the work
undertaken in the following thesis chapters. The study of AGN variability provides
insight into the processes that power supermassive black holes (e.g., Peterson, 2001)
and this is the main motivation behind my research. Variability was one of the first
properties of AGN identified via optical photometry (e.g Matthews & Sandage, 1963,;
Smith & Hoffleit, 1963). It is thought that this variability is a result of the turbulent
and unstable nature of accretion (Ulrich et al., 1997). This is the reason why the study
of AGN variability is now regarded as an indirect means to investigate the accretion
process when the accretion disk cannot be directly spatially resolved (Peterson, 2001). I
continue this discussion of AGN variability in more detail in §1.1.3.

In the following sections, I will describe the internal structure of AGN (§1.1.2) and
provide deeper insight into AGN variability (§1.1.3). Then in §1.2 I will describe and
explain the phenomena termed AGN flares (extreme variability of AGN). In §1.3 I intro-
duce and describe a key statistical technique used throughout the thesis to systematically
detect AGN flares (Gaussian Processes). Then finally I describe how the work under-
taken in this thesis is aptly timed for the Legacy Survey of Space and Time (LSST) in

§1.4 and I outline the key open questions and intentions for the thesis in §1.5.
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1.1.2 Structure of an AGN

In this section, I outline the structure of an AGN. Understanding AGN structure is key to
understanding their observational characteristics, including their variability. The various
structural components each contribute to the observed properties of AGN including their
continuum variability (Osterbrock, 1993; Netzer, 2015; Padovani et al., 2017). AGN can
now be classified into many different types with varying characteristics, but the Unified
Model (see e.g., Antonucci, 1993; Netzer, 2015) can constrain the general properties of
the wide range of AGN types. In this model (see Fig. 1.1), AGN are characterised by
a central supermassive black hole surrounded by a gaseous accretion disk, an optically-
thick dusty torus, broad and narrow line regions, and (in approximately ten percent
of them) the presence of radio jets. The Unified Model gives rise to the two main
AGN classifications known as Type 1 and Type 2, where Type 1 exhibit both narrow
(forbidden) and broad (permitted) emission lines, and Type 2 only exhibit the former
due to obscuration from the dusty torus (Netzer, 2015; Liu et al., 2018; MacLeod et al.,
2019). It is widely accepted that these two subtypes differ because of the angle at
which we observe them: in the case of Type 1 AGN the central engine is observed at
low inclination angles (i.e., almost face on) whereas Type 2 AGN are observed at high
inclination angles — though this paradigm has come into question in recent years in the
advent of what have become known as changing-look AGN, where an AGN is observed
to seemingly “change type” from Type 1 to Type 2 or vice versa as their spectra exhibit
the rapid disappearance or appearance of broad lines (e.g., LaMassa et al., 2015; Gezari
et al., 2017; Yang et al., 2023, or see review by Ricci & Trakhtenbrot 2023).

Below is a breakdown of the properties of the various components that make up an
AGN, based on the Unified Model (Antonucci, 1993), listed in order of moving outwards

from the central black hole:

e The central supermassive black hole. The “central engine” upon which accretion of
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Narrow Line
/ Region
rd

/’f Broad Line

Region

Accretion
Disk

o
f.r-"
Obscuring
Torus

Figure 1.1: Schematic diagram of the current paradigm for AGN from Urry & Padovani
(1995). The central black hole, dusty torus, accretion disk, broad and narrow line regions
and jets are labelled. Type 1 AGN are observed at an approximate angle of 45° from
the axis of the dusty torus, and Type 2 AGN are observed along the line of sight of the
torus.
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material takes place, with mass typically > 10° My, (Netzer, 2015).

o The accretion disk. The gravitational infall of material into the black hole results
in the generation of significant energy in the form of a hot accretion disk (Peterson
& Burbidge, 1998). The accretion disk is a turbulent structure, the physics of
which is not well understood and is likely governed by magnetohydrodynamics
(MHD: e.g., Kawaguchi et al., 2000; Begelman & Silk, 2017; Dexter & Begelman,
2019; Hossein Nouri, Fatemeh & Janiuk, Agnieszka, 2024). The general principles
of the accretion disk have been understood since the 1970s, whereby the infall
of material into the black hole results in the formation of an accretion disk, and
there is an outward transfer of angular momentum, which facilitates this accretion
(Shakura & Sunyaev, 1973; Peterson & Burbidge, 1998). This happens because the
disk is differentially rotating and so different layers move over each other causing
friction, which allows for this loss of angular momentum and infall into the black
hole (Shakura & Sunyaev, 1973; Lawrence, 2018). This popular accretion model is
commonly known as an “optically thick, geometrically thin disk model”, “viscous
thin disk model” or the Shakura-Sunyaev model named after their seminal paper in
1973. This notion of “viscosity” is needed for outwards angular momentum transfer,
and though it is not well understood, it is agreed that this viscosity is likely a result
of turbulence or magnetic fields (Lawrence, 2018). Later, in the 1990s, the idea
of X-ray reprocessing was introduced to justify short-timescale variability in the
UV and optical — since the viscous model would not allow for such short-term
variability (McHardy et al., 2016). Now, it is generally accepted that there is
an X-ray corona as part of the accretion disk, which shines on it and heats it
up, resulting in short-timescale variability in UV and optical wavelengths. The
accretion disk is estimated to be only a small fraction of a parsec across (Hawkins,

2007), of the order of light-days.
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e The dusty torus. Aforementioned, a small (0.1 - 10 parsecs across: Netzer 2015),
clumpy toroidal mass of dust and gas that obscures the nucleus from some lines
of sight while collimating the radiation that escapes (Mason, 2015). The torus is
responsible for the strong infrared emission observed from many AGN (Urry &

Padovani, 1995; Antonucci, 1993).

e The broad line region (BLR). An emitting region of high-density gas clouds close
to the accretion disk (between 0.01 and 1 parsec from the black hole), thought to

be optically thick and photoionised (Peterson, 2006; Netzer, 2015).

e The narrow line region. The furthest emitting region of gas from the central source
(Peterson & Burbidge, 1998). The gas is of a lower density than the BLR, but still
ionised, extending from the torus to hundreds or thousands of parsecs away (Netzer,

2015).

Each of the above components is responsible for key observational properties of AGN,
not least the form of observed spectral energy distribution (SED) itself (Padovani et al.,
2017). A wuseful schematic of the SED of a typical AGN is shown in Fig. 1.2, which
demonstrates the effect of the different contributions of some of the components described
above. At mid-infrared wavelengths the AGN spectrum is dominated by the emission
from the dusty torus. As wavelength is decreased to optical and UV, the accretion disk
emission dominates as a result of reprocessing of X rays from the corona. The X-ray

corona itself contributes from wavelengths ranging from optical to X-ray.

1.1.3 AGN variability

A trademark feature of AGN is the variability in their lightcurves across all wavelengths
(Peterson & Burbidge, 1998). Despite the fact that the exact physical mechanisms for

this variability are unknown, their varying luminosities can be well-modelled (Koztowski,
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Figure 1.2: Figure 1 from Padovani et al. (2017): A schematic representation of an
AGN spectral energy distribution (SED). The black curve is the total emission and the
coloured curves show the contribution in overall emission from the individual components
of the AGN. The jet SED is also shown for a high synchrotron peaked blazar (HSP) and
a low synchrotron peaked blazar (LSP). Image credit: C. M. Harrison (Harrison, 2016)
adapted by Padovani et al. (2017).
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2017). AGN exhibit a stochastic variability in their luminosities, which is well-described
statistically by a damped random walk (e.g., MacLeod et al., 2010). This observed optical
variability is typically a few tenths of a magnitude in amplitude with a characteristic
timescale (the average time period over which variability occurs) of several months,
though this is correlated with black hole mass and anti-correlated with luminosity and
Eddington ratio (i.e., how close the AGN’s accretion rate is to its maximum value whilst
radiation pressure is still balanced; Graham et al., 2017; Sesar et al., 2007). A key
agreement in the literature is that more luminous AGN vary with smaller amplitudes
(Hawkins, 2007), and the variations in brightness have amplitude of the order of 20
percent of their baseline luminosity on timescales of months to years (MacLeod et al.,
2010). The random variability of a typical AGN lightcurve in comparison to the constant

host galaxy flux is emphasised in Fig. 1.3.

The most common functional form for the analysis of AGN variability is known as

the structure function. The structure function, S(At) is usually defined as:

S(Al) = \/@ ;j[m(tj) ~m(t)]2. (1.1)
where At is equal to t; — ¢;, m(t;) is the magnitude measure at a given time epoch t;
(where ¢; is a subsequent time epoch), and the sum runs over the total number of N
epochs/observations (Hawkins, 2007). Kozlowski (2016) approximate the distribution of
characteristic timescales at a median of 7 = 0.98 years and the amplitudes of variations
o, = 0.41 mag (Kozlowski, 2016). As mentioned above, this timescale is correlated

with the black hole mass (a higher black hole mass results in an increased variability

timescale) and it is anti-correlated with luminosity (Kozlowski, 2016).

Despite their prevalence in AGN physics, the relationship between AGN type and
variability timescale, or the physical causes of their stochastic variability, are not well

understood (Creque-Sarbinowski et al., 2021). Although the exact mechanism is still
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Figure 1.3: Lightcurve of NGC 5548 showing the stochastic variability of the AGN
compared to the constant host galaxy flux. Figure from Peterson et al. (1999).
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unknown, it is thought that continuum variations are caused by magnetohydrodynamic
instabilities in the accretion disk (Peterson et al., 1999; Kawaguchi et al., 2000). Fur-
thermore, a number of other models have been suggested to describe AGN variability,
including supernova bursts, microlensing, and accretion disk instabilities (i.e., an ex-
treme example of typical AGN variability, MacLeod et al. 2010; Hawkins 2007). It has
been proposed that the variability timescale of AGN is related to the thermal timescale
of accretion disks (Kelly et al., 2009; Collier & Peterson, 2001), which would explain why
AGN become bluer as they brighten (MacLeod et al., 2010).

Understanding and characterizing the origins of AGN variability is paramount to
further constraining the physics of black hole accretion, especially at spatial scales that
are beyond the resolving power of most current and future AGN observing facilities
(Sartori et al., 2019). Furthermore, detection of AGN using their variability has proved
highly effective — especially in lower mass, lower luminosity cases, which has helped
provide a more representative AGN catalogue (MacLeod et al., 2010). This is particularly
important to note when considering the fact that upcoming time-domain surveys (such
as the Legacy Survey of Space and Time: Ivezi¢ et al., 2019) will provide unprecedented
high-cadence observations of AGN and related transients (see §1.4), which will facilitate
the detection of highly variable AGN in real-time, across shorter timescales than ever

before.

1.2 AGN flares

In addition to showing stochastic variability, there is growing evidence that AGN can
exhibit extreme variability that differs significantly from the variable baseline (e.g., Meu-
singer et al., 2010; Lawrence et al., 2016; Graham et al., 2017; Wiseman et al., 2025).
These events are known as AGN flares. Current flare detections indicate that they occur

over timescales of several hundreds of days (e.g., Graham et al., 2017), but their rarity



Chapter 1: Introduction 12

brings up questions about how representative our existing samples are. It is thought
that AGN flares are a separate phenomenon from AGN variability, though the exact
cause is unknown (Lawrence et al., 2016; Zabludoff et al., 2021), with different studies
suggesting that they could be caused by extreme instabilities in the accretion disk (e.g.,
Hawley & Krolik, 2001), microlensing (e.g., Lawrence et al., 2016; Bruce et al., 2017),
tidal disruption events (TDEs: Chan et al. 2019; Frederick et al. 2021), superluminous
supernovae (e.g., Drake et al., 2011), mergers of stellar mass black holes (e.g., Graham
et al., 2017), or changes in accretion state (e.g., Lawrence et al., 2016; MacLeod et al.,
2019). Furthermore, (MHD) simulations suggest that AGN flares may be caused by en-
ergy dissipation following magnetic reconnection in the accretion disk (Nathanail et al.,
2020). In the past decade, there have been attempts to organise the various AGN-related
transient events into separate classes although it is acknowledged that, due to a lack of
understanding of the underlying physics, there is overlap between these classes. Various
types of AGN-related transients recently observed include Ambiguous Nuclear Transi-
ents (ANTs: e.g., Graham et al., 2017, Wiseman et al., 2025; Kankare et al., 2017),
Bowen fluorescence flares (e.g., Trakhtenbrot et al., 2019; Frederick et al., 2021) and
Changing-look AGN (e.g., Gezari et al., 2017; Yang et al., 2023; Ricci & Trakhtenbrot,
2023).

An example of what AGN flares look like in optical lightcurves is shown in Fig. 1.4.
This is a figure taken from Frederick et al. (2021), showing the optical r and g band
lightcurves of five transients associated with Type 1 AGN that were originally classified
as supernovae by the Zwicky Transient Facility (ZTF: Bellm et al., 2019). The underlying
stochastic variability characteristic of a “normal” AGN is present alongside a smooth,
large-amplitude, and rapidly rising flare.

The detection of AGN flaring events provides a window into studying the accretion
physics of the disk. The timescales and magnitude changes of AGN flares put constraints

on MHD simulations of the accretion disk and act as important probes for AGN accretion
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Figure 1.4: Figure 1 from Frederick et al. (2021): Comparison of the g and r band dif-
ference imaging lightcurve shapes and absolute magnitudes of flare candidates identified
from ZTF. Spectroscopic epochs are labelled for each lightcurve with an “S”.
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rates over short timescales (Lodato & Rossi, 2010; Blagorodnova et al., 2016; Graham
et al., 2017). In addition, if follow-up spectra are acquired, reverberation mapping can
enable a calculation of the size of the flaring region within the disk (Payne et al., 2022;
Zhang et al., 2013; Somalwar et al., 2022). Moreover, it is important to note that one of
the reasons why the field of AGN flares has exploded in recent years is due to the fact that
the extreme brightness changes in the optical across such short timescales (observations
that have been enabled by high-cadence surveys such as ZTF; see Bellm et al. 2019)
pose problems for current accretion disk models (§1.1.2). The viscous accretion disk
model in which the accretion disk reprocesses X-rays is not able to explain such extreme
short-timescale changes above the underlying variability, which has resulted in significant

interest in the underlying physics behind these phenomena (Wiseman et al., 2025).

Given their importance in probing the accretion physics of AGN, it is somewhat
frustrating that detecting and identifying AGN flares has proven to be such a challenge.
In the past, they have been difficult to detect and characterise against an intrinsic-
ally variable AGN lightcurve (Zabludoff et al., 2021), but improvements in imaging and
machine-learning techniques are now starting to enable their detection in significant
numbers (Mattila et al., 2019). Distinguishing a valid flare detection from the back-
ground variability presents a statistical and observational challenge (Zabludoff et al.,
2021; Gezari, 2021). Even once a detection is identified, then without extensive follow-
up observations, it is difficult to categorise these events with certainty (see review by
Zabludoff et al., 2021 regarding how to distinguish between types of transient). The
ability to identify and distinguish between these events in real-time will be crucial to
further understand not only the origins of these phenomena, but also better constrain
the physics of supermassive black holes and their accretion disks, and the relationship

between them.

In the coming years, it is hoped that future high-cadence surveys will facilitate the

detection and monitoring of flaring AGN in real-time (Creque-Sarbinowski et al., 2021).
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The Zwicky Transient Facility (ZTF; Bellm et al. 2019) and the The Vera C. Rubin Ob-
servatory’s Legacy Survey of Space and Time (LSST: see §1.4 and Ivezi¢ et al., 2019) are
examples of facilities that will undertake surveys to help mobilise this area of research
in the coming decade with regular, high-cadence time-domain observations (Graham
et al., 2019). These facilities will not only expand the current catalogue of AGN but
will also provide insights into key unanswered questions in this field, facilitating a bet-
ter understanding of AGN variability (Creque-Sarbinowski et al., 2021), the rates of
different nuclear transient events, and what distinguishes them from each other. Real-
time processing of nuclear transients detected by such surveys is critical to identifying

shorter-lived, rare events and allocating follow-up resources efficiently (Soraisam et al.,

2020).

1.3 Detecting AGN flares in lightcurves

Since AGN variability is stochastic, it is not straightforward to detect a transient signal
amongst it. For this reason, there is a requirement to develop a robust means of detecting
AGN flares in already variable lightcurves, one that perhaps accounts for the stochastic
variability in a statistical manner. As the reader will see in Chapter 2, I attempt to
detect AGN flares using a brute-force approach that replicated the technique used by
Graham et al. (2017), however it quickly became apparent that this method is unsuitable
in this context. This was due to an inability to distinguish between typical variability
and extreme variability, which resulted in a significant number of spurious detections.
A technique that showed promise in solving this issue (and its use is explored in detail
in Chapter 3) is called a Gaussian Process (GP), which is sometimes considered a form
of machine learning and often used in the context of regression (Seeger, 2004). In the

following section, I describe the theory behind GPs and their uses within astronomy.
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1.3.1 Gaussian Processes

A GP is often defined as a prior over functions, which generates a probability distribution
over all possible functions that fit a data-set (Rasmussen & Williams, 2006). In simpler
terms, a GP takes a user-defined covariance function (known as a kernel, a function
that quantifies the changing relationship between two variables) and, given the data,
it generates the full set of functions that are both: (a) possible fits to the data, and
(b) feasibly produced by the chosen covariance function. From this set of functions
that describe the data, the GP uses the likelihood of each function to then calculate
the mean function (i.e., the most likely or best-fit function) along with the uncertainty
about this mean (Aigrain et al., 2012). With the user’s choice of covariance function,
the GP asks the question: “bound by the behaviour of this chosen covariance function,
what is the most likely function generated, given the available data?” Formally, a GP
is a collection of random variables, any finite number of which have joint Gaussian
distributions. The GP is fully specified by its mean function and covariance function,
which is a generalization of the Gaussian distribution. Rasmussen & Williams (2006),
which is the superlative text for a comprehensive description of GPs, use the following

mathematical formality for defining a GP:

f(z) ~ GP(m(z), k(x,2")) (1.2)

where m(z) is the mean function, x and x’ are two different observations. k(x,2’) is the
covariance function of a real process f(z), and hence the GP is fully described by its

mean and covariance functions.

Gaussian Processes are an effective non-parametric, non-linear form of regression that
is powerful at handling heteroskedastic (non-uniform) uncertainties. They are regularly
used in the context of astronomy for a number of tasks such as regression, modelling

and classification in a variety of contexts including quasi-periodic oscillations, transi-
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ent classification, AGN variability and exoplanet transits (Aigrain & Foreman-Mackey,
2022). For example, GPs have been used to de-trend variable exoplanet lightcurves from
transit surveys (Crossfield et al., 2016) and also to model quasi-periodic stellar activity
(Aigrain et al., 2012; Angus et al., 2017; Nicholson & Aigrain, 2022). With regards to
AGN variability, GPs are commonly used to model lightcurves with a damped random
walk kernel (Koztowski et al., 2010; MacLeod et al., 2010), and indeed one of the first
uses of GPs in astronomy was by Press & Rybicki (1998) to model the variability of
gravitationally-lensed quasar 0957-+561.

GPs are a means of parameterising the covariance of a dataset, hence quantifying
the similarity between data points. The covariance function in the context of GPs is
called a kernel, and it encodes the assumptions (priors) about the underlying predictive
function: for example, whether it is periodic or highly variable (Rasmussen & Williams,
2006). While the Gaussian Process optimises the coefficients of the kernel, it is important
to choose a kernel with a functional form that is appropriate for the data in hand. In the
context of GPs, the kernel function is referred to as the prior as in Bayesian statistics, as
the kernel encodes the assumptions about the function that we wish to learn. Commonly
used kernels or covariance functions, especially in astronomy, include (Rasmussen &

Williams, 2006):

e The squared exponential covariance function. A stochastic variability kernel. The
most widely used kernel in astronomy and beyond (Aigrain & Foreman-Mackey,

2022), defined as:

7“2

K) = exp(— )

(1.3)

where r is defined as the difference between z-values (z-z'), and [ is the (temporal)
length scale. In other words, increasing the parameter [ increases the duration of

variations in the function.

e The Matérn Class of Covariance Functions (Matérn, 1966). A more generalised
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case of the squared exponential kernel, but is less smooth:

B 21=v \/2ur 2ur

k(r) = o (T)VKV( l ) (1.4)

where v and [ are chosen positive parameters and K, is a modified Bessel function.

e The periodic covariance function (Gortler et al., 2019). A periodic kernel that

replicates repeating functions defined as:

k(r) = azeXp(—l%sin2(7r£)) (1.5)

where o2 is the amplitude and p is the period of the oscillations.

I recommend reading Gortler et al. (2019) for a visual exploration of these different
kernels listed above and how they work in practise. In this work, I use the Matérn-3,/2
kernel, which depends on the variability amplitude o, the variabiity timescale p!, and
the difference between all pairs of points r (in this case time, i.e., r = |t — t’|, where
I use bold lettering to represent a vector containing all values of time, thus ensuring
that 7, and hence k(r) is a square matrix). In this kernel, the covariance k is defined as

(Rasmussen & Williams, 2006; Foreman-Mackey et al., 2017):

k(r) =o? (1 + g) exp (—\/§r> (1.6)

p
Fig. 1.5 shows three different function realisations that have been sampled from a GP

with a Matérn 3/2 kernel, and Fig. 1.6 shows a GP fit to an AGN lightcurve with this

! As a cautionary note, it is important to realise that the variability amplitude and timescale, o and
p, do not necessarily directly correspond to the physical characteristics of the lightcurve. Whilst they
are an indication of the scale of a lightcurve’s overall variability, direct comparisons between the values
of these hyperparameters and the quantitative behaviour of a lightcurve should be avoided. Throughout
this thesis, the hyperparameter distributions are used solely as a summary statistic for which to compare
different lightcurves, rather than to ascertain physical properties from the variability.
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Figure 1.5: Three different function realisations that have been sampled from a Gaus-
sian Process with a Matérn 3/2 kernel, using values of 1 for both ¢ and p in Eq. 3.1.
Because Gaussian Processes are probabilistic in nature, the same kernel can produce
different functions. Similarly, different functions (in this case lightcurves) can have the
same, or very similar, kernel coefficients. Figure from McLaughlin et al. (2024), gener-
ated using Roelants (2019).

same kernel. Note that the reasoning behind this choice of kernel is discussed in Chapter

3.

GPs are widely used in the context of transient classification, but primarily used as
an interpolation tool for priming sparse or noisy time series data for machine learning
algorithms (e.g., Villar et al., 2020). Within the field of astronomy research, GPs have
typically been used as a pre-processing step in machine learning methods and, to my
knowledge, have not been used for flare detection directly (Aigrain & Foreman-Mackey,

2022). I do, however, note that Graham et al. (2023) used GPs to confirm that suspected
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Figure 1.6: A Gaussian Process fit to a ZTF Type 1 AGN lightcurve. The red line
shows the posterior mean of the Gaussian Process, given the observed data and kernel
parameters. The red shaded region shows the 1-sigma uncertainty around this mean.
Note how the uncertainties change depending on the density of data points in a certain
region. The Gaussian Process effectively “learns” how variable the data is, which allows
it to make reasonable predictions for regions of sparse data.
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flares detected via other means do, indeed, represent significant departures from the
underlying AGN variability. For flare classification directly, since the covariance function
describes how all of the data points in a lightcurve are related to each other, it can be
used as a summary statistic of the variability. This includes whether the lightcurve is
periodic or a one-off outlier event. This therefore motivates an exploration into whether
GPs can be used as a tool to classify transient astronomical events — and specifically

AGN flares — directly. This forms the basis of Chapter 3.

1.4 Detecting AGN flares in the advent of large high-

cadence surveys

In Section 1.2, I outlined that effective detection and characterisation of AGN flares is
crucial in advent of upcoming high-cadence surveys where we will potentially be able
to observe these fast-changing events as they happen. Throughout this thesis, I use a
sample of 9035 Type 1 AGN lightcurves (ALPAKA: Mullaney et al., 2013) from the
Zwicky Transient Facility (ZTF: Bellm et al., 2019), and further details of this sample
are outlined in Chapter 2. In the coming years, however, astronomers will have access
to groundbreaking amounts of data provided by upcoming high-cadence surveys. One
such survey is the Legacy Survey of Space and Time (LSST) at the Vera C. Rubin
Observatory equipped with an 8.4 meter primary mirror and the largest digital camera
ever built (Ivezi¢ et al., 2019). The telescope, with first-light scheduled for late 2025,
will take repeated detailed images of the southern hemisphere sky for 10 years, covering
the entire sky every few nights. This exceptional cadence is ideal for trying to detect
AGN flares in real-time and also for characterising AGN variability in general. LSST
will allow us to probe unprecedented regions of AGN luminosity and redshift parameter

space, which is important when trying to characterise “normal” AGN variability, and
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hence be able to determine when an AGN is deviating from this behaviour. AGN flares
are extremely rare (§1.2) and so in order to cultivate statistically meaningful samples of

these events, we need the large amount of data that LSST will provide.

The work undertaken in this thesis is aptly timed to coincide with LSST first light
and the findings published in McLaughlin et al. (2024) and in Chapters 4 and 5 will
be useful and informative for the wider transient detection community looking ahead to

high-cadence surveys such as LSST.

Since LSST is not projected to release data for many months at the time of writing,
the samples of AGN studied throughout this thesis were acquired from another high-
cadence, wide-field survey, the Zwicky Transient Facility (ZTF: Bellm et al., 2019). ZTF
is an ideal survey to use in the meantime for the purpose of developing transient detection
techniques; it is described by Graham et al. (2019) as a “stepping stone for LSST for
transient object astronomy”. In the following subsection, I provide a technical overview
of the survey in order to contextualise the data and findings presented in the following

chapters.

1.4.1 The Zwicky Transient Facility

The Zwicky Transient Facility (ZTF) is a time-domain, optical survey located at the
Palomar Observatory in California (Bellm et al., 2019; Graham et al., 2019). The
Samuel Oschin Schmidt telescope at the observatory has a 48-inch aperture and a 47-
square-degree, 600 megapixel science camera (Dekany et al., 2020). The survey images
the entire observable northern sky every three nights (Bellm & Kulkarni, 2017; Gra-
ham et al., 2019), with the intention of characterising the transient sky, focussing on
fast-changing astrophysical phenomena such as supernovae, variable stars, AGN, tidal

disruption events, and multi-messenger (gravitational-wave) astronomy (Graham et al.,

2019).
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ZTF has a complement of three filters, ¢ (ranging from ~ 400-550 nm), r (ranging
from ~ 550-700 nm), and ¢ (ranging from ~ 700-850 nm) with 50 limiting magnitudes
of 20.8, 20.6, and 19.9 respectively for typical exposure times of 30 seconds (Bellm et al.,
2019).

Images are created by difference imaging using the ZOGY algorithm (Zackay et al.,
2016), where a science image is compared to a template image by subtracting the latter
from the former, resulting in an image depicting moving or changing sources (transients).
In addition to a transient alert stream? (Smith et al., 2019), ZTF also offers a forced
photometry service (Masci et al., 2023), which was used to acquire the large samples of
AGN lightcurves analysed in this thesis. Forced photometry is a method of measuring
flux at a given set of coordinates, regardless of whether the source is detected above the
threshold noise. This is achieved through using point spread function (PSF) models to fit
the flux at a fixed location. Forced photometry is beneficial for lightcurve completeness
in the context of transient follow-up as it can prevent cases of non-detection in surveys
where there is low signal-to-noise. Therefore, meaningful upper limits can be obtained
for objects that may not have been detected in a given survey (Makrygianni et al., 2021).
In addition, forced photometry prevents cases of source confusion in crowded regions and
complex backgrounds (Masci et al., 2023).

Despite such benefits, the use of forced photometry is not without its drawbacks,
which the reader may wish to refer back to throughout this thesis. The main caveats of

using forced photometry are:

e In crowded fields, source confusion is still possible using an aperture at a fixed

position (Portillo et al., 2020; Masci et al., 2023).

e There is a reliance on assumptions about the source’s PSF, which can cause flux

estimates to be biased (Portillo et al., 2020; Makrygianni et al., 2021).

2https://lasair-ztf.Isst.ac.uk.
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e When the source is faint or undetected, flux values can be dominated by noise

(Masci et al., 2023).

The final point listed is the most important limitation of forced photometry to con-
sider when interpreting the findings of the preceding thesis chapters; when observations
are close to the magnitude limit of the wavelength band in question (i.e., low signal-to-

noise), the data can be unreliable and noise-dominated.

1.5 Open questions and intentions for the thesis

Over the past three and a half years I have been developing and refining a robust tech-
nique for the systematic detection of AGN flares in optical lightcurves, with the aim to
produce a pipeline that can be used to sift transients from the large amounts of data that
astronomers will be facing in the advent of high-cadence, time-domain surveys such as
the LSST. The thesis seeks to present Gaussian Processes as a feasible means of achiev-
ing this whilst attempting to answer some open questions in the field currently, outlined

below:

e Can systematic detection techniques distinguish between an AGN flare and typical

AGN variability in optical lightcurves?

e At what point can AGN flares be detected in lightcurves outside of the underlying

variability?

e Can we determine exactly when a flare actually occurs, i.e., its location within a

lightcurve?
e How early into a flare are we able to detect it?

To answer the above questions and demonstrate the process of developing such a

statistical flare-detection technique, the outline of this thesis is as follows:
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e In Chapter 2, I outline my initial approach to systematic flare detection in AGN
lightcurves using first principles. After an investigation into what a flare might
look like in the time-series of an optical AGN lightcurve, I decided to use a brute-
force approach whereby a statistically robust median was subtracted from each
lightcurve and any contiguous sets of residuals were flagged as potential flares. 1
discuss the methodology behind this straight-forward approach and present the
results of applying such approach to the ALPAKA catalogue of Type 1 optical
AGN lightcurves (Mullaney et al., 2013).

e In Chapter 3, I move from the brute-force approach for systematic flare detection in
Chapter 2 to the statistically robust, non-parametric regression that is a Gaussian
Process. Informed by the limitations of the first-principles approach in Chapter
2, I embark on a feasibility study to determine the efficacy of using a Gaussian
Process for automated, systematic flare detection in AGN lightcurves. I present
the results of this feasibility study on simulated AGN lightcurves with injected
simulated flares, before applying the technique to the real AGN lightcurves of the
ALPAKA catalogue and I present lightcurves that contain flare candidates. The

work in this chapter is based on my publication, McLaughlin et al. (2024).

e Since Chapter 3 results in the ability to determine whether a given AGN lightcurve
contains a flare but not its position within the lightcurve (i.e., the exact point
at which the flare occurs), in Chapter 4 I discuss how I alter the GP-based flare
detection technique of Chapter 3 to enable for real-time flare detection, which I refer
to as flare localisation. I demonstrate that this localisation technique is successful
in simulated AGN lightcurves and then I present the results of systematic flare

localisation analysis on the ALPAKA catalogue.

e In Chapter 5, I expand my sample from the 9035 Type 1 AGN lightcurves of the

ALPAKA catalogue to the Million Quasar Catalogue containing 907 144 Type 1
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quasars and AGN (MILLIQUAS: Flesch, 2023). T apply the Gaussian Process flare
detection technique from Chapter 3 to this sample and I compare the results to

those from the ALPAKA catalogue.

e In Chapter 6, I outline my conclusions of the thesis and the implications of my
findings for the broader community. I also discuss potential future work that would
be valuable to further the progress made in the thesis for the purpose of real-time

transient detection in the era of high-cadence surveys.



Chapter 2

A “brute force” approach to systematic

flare detection

2.1 Introduction

Extreme variability of AGN, showing large luminosity changes that are statistically sig-
nificant from the baseline variability, are known as AGN flares (e.g., Graham et al.,
2017; Lawrence et al., 2016; Frederick et al., 2021). Since the study of AGN variability,
and indeed the study of the extreme variability of AGN flares, is an indirect probe of
the accretion physics of the disk when it cannot be resolved directly (Peterson, 2001),
there is a need to be able to systematically detect AGN flares amongst large amounts
of data. The detection of AGN flares presents two key problems: 1. they are thought
to be rare (Lawrence et al., 2016; Graham et al., 2017) and 2. disentangling a flare
from the stochastic baseline variability is not straightforward. This “needle in a hay-
stack” problem has gained a lot of traction in recent years, with the intention to seek a
better understanding of supermassive black hole (SMBH) accretion physics, to identify
the physical phenomena at the heart of these flaring events, and to put constraints on

accretion models (Wiseman et al., 2025). In the coming era of time-domain astronomy,
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with surveys such as the LSST and others promising unprecedented amounts of data
(Ivezic¢ et al., 2019), it will be possible to detect AGN flares in significant numbers and
collate a statistically representative sample of these events to study. To achieve this,
however, it is imperative that an effective detection technique is developed that is able
to successfully sift AGN flares from typical AGN variability. This challenge is at the
crux of this thesis.

To commence investigation into this needle in a haystack problem, in this chapter
I present a “first principles” approach to systematically detect AGN flares and extreme
variability in optical lightcurves. The motivation behind this approach is straightforward
and asks the question: what is it, mathematically, about the time series of a flaring
lightcurve that sets it apart from a typical AGN lightcurve? I undertake this systematic
search for AGN flares in 20000 optical AGN lightcurves from the ALPAKA catalogue
(Mullaney et al., 2013) by calculating a statistically robust median across pre-determined
sections of lightcurves of various sizes. After subtracting this median from the lightcurve,
I identify sections where there are multiple contiguous data points below this median
magnitude value(s) and define these sections as potential flares.

This chapter is organised as follows: in §2.2, I describe the data used in this chapter
and the methodology of this technique. In §2.3, I present the results of this systematic
search for AGN flares. I discuss the implications and limitations of these results in §2.4

and finally I present concluding remarks in §2.5.

2.2 Methodology

Systematic searches for AGN flares in the literature are limited, with most of the literat-
ure focussing on individual events. Notably, Graham et al. (2017) undertook a systematic
search for AGN flares in the Catalina Real-Time Transient Survey (CRTS: Drake et al.,

2009). They identified 51 events from over 900000 known quasars and high-probability
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quasar candidates, typically lasting 900 days with a median peak amplitude of 1.25 mag-
nitudes above the median variability. I expanded on this method and developed my own
algorithm to systematically search for short-duration AGN flares in ZTF lightcurves. I
define “short-duration” as a timescale of < 1000 days, but since Graham et al. (2017)
ignore flares shorter than 300 days in their investigation, I focused on the prospect of

identifying flares with shorter timescales than this (< 300 days).

Using ZTF lightcurves of over 20 000 known AGN (acquired using forced photometry)
from the ALPAKA catalogue developed by Mullaney et al. (2013) — see §2.2.1 for more
detail — I wrote a Python algorithm using the ASTROPY'! Python package (Astropy
Collaboration et al., 2013, 2018) to identify AGN flares from the data. My algorithm
works in three steps: first, it splits the lightcurve into sections of user-determined window
size (in this case, 100, 300, 500, 800, and 1000 days). The second step invokes the use
of the Theil-Sen estimator, which is a robust form of regression, first proposed by Theil
(1950) and later expanded by Sen (1968). It is essentially the median slope between all
pairs of points; the Theil-Sen estimator of a set of two-dimensional points (z;,y;) is given
by the median of the slopes (y; — v;)/(z; — ;) determined by all pairs of points in the
set. The algorithm calculates the Theil-Sen median slope across each lightcurve section,
along with the intercept using sC1Py? (Virtanen et al., 2020). From these parameters,
the Theil-Sen median magnitude can be calculated, which is then subtracted from the
original lightcurve. Finally, the algorithm identifies sections of lightcurve where there
are multiple (10) contiguous data points brighter than the Theil-Sen median. For each
flare that is detected, the algorithm calculates the number of points in the flare, the flare
duration, and the median, minimum and maximum amplitude of the flare. I chose to
ignore flare candidates with fewer than 10 data points in the flaring region, and flare

candidates lasting less than 10 days. This was due to a large number of false-positives

Thttps: / /www.astropy.org
2https://docs.scipy.org/doc/scipy/index.html
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caused by noise in the ZTF lightcurves, which is likely the result of observational effects
and the limitations of forced-photometry.

Graham et al. (2017) used the Theil-Sen estimator to calculate the median slope
of each entire lightcurve, but my algorithm splits each lightcurve into sections across
which the Theil-Sen median is calculated. By using window sizes of 100, 300, 500, 800
and 1000 days, I investigated how the distribution of flare duration vs flare magnitude
change is related to which window size is chosen. By using the median of the entire
lightcurve, it risks ignoring more local, shorter term variability and hence risks the loss
of shorter-duration flare candidates. By splitting up a lightcurve into smaller sections,
flare candidates with shorter timescales are identified as the algorithm is focused more

on local magnitude changes rather than long-term trends of the lightcurve.

2.2.1 Data

The ALPAKA catalogue was developed by Mullaney et al. (2013) and comprises 24 264
optically selected AGN from the Sloan Digital Sky Survey (SDSS) Data Release 7 data-
base. These AGN were selected spectroscopically using a multicomponent fitting routine
and were classified into Type 1 or Type 2 depending on the presence of broad lines in
their spectra; see Mullaney et al. (2013) for a detailed description of the SDSS query,
selection criteria and contaminant removal. Optical, r-band lightcurves of the ALPAKA
catalogue were obtained from the Zwicky Transient Facility (ZTF) Data Release 6 (see

Chapter 3, §3.3 for more detail).

2.3 Results

In this section I present the results found from a systematic search for AGN flares
obtained using the method described above. First, I present typical distributions of flare

duration vs flare amplitude for different window sizes and then I present lightcurves of
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potential flare candidates.

2.3.1 Typical flare duration and magnitude distributions

Using the “brute force” flare detection algorithm (see §2.2), I produced plots showing
distributions of flare duration vs apparent magnitude change for Type 1 and Type 2
AGN; these are shown in Fig. 2.1 and Fig. 2.2. The algorithm output a list of AGN
flare candidates and the location of the flare within its lightcurve, the flare duration,
the number of data points within the flare, and the peak, median and minimum flare
magnitude. I produced these distributions using the output of my own algorithm, which
makes use of a window-based approach in order to identify shorter term flares. Flare
duration vs magnitude distributions for both Type 1 and Type 2 AGN are presented in

the following sections.

Type 1 flare candidates

Distributions of typical flare duration vs flare amplitude for Type 1 AGN are shown in
Fig. 2.1, and median flare duration and flare amplitude for each window size are outlined
in Table 2.1. The shorter the window size used, the shorter the duration and smaller the
amplitude is of the flares. It can be seen from the high density in the bottom-left corner
of each plot in Fig. 2.1 that the majority of AGN flares are extremely short duration
and small amplitude, with magnitude changes of less than 0.2 on timescales of tens of
days. These flare candidates are ruled out and are considered to be part of the intrinsic
AGN variability. It is clear that the majority of “flares” detected with this technique
are simply examples of standard AGN variability. Indeed, the median flare amplitudes

identified in Table 2.1 are typical of AGN variability (e.g., MacLeod et al., 2010).
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Figure 2.1: Distributions of flare duration vs flare magnitude change for Type 1 AGN
across timescales of 100, 300, 500, 800 and 1000 days.
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Table 2.1: Median flare duration and median flare amplitude for Type 1 AGN flare
candidates.

Window size (days) Median flare duration (days) Median flare amplitude (mag)

100 20 0.067
300 49 0.083
500 53 0.090
800 99 0.097
1000 63 0.10

Table 2.2: Median flare duration and median flare amplitude for Type 2 AGN flare
candidates.

Window size (days) Median flare duration (days) Median flare amplitude (mag)

100 19 0.18
300 30 0.14
500 28 0.14
800 32 0.16
1000 29 0.15

Type 2 flare candidates

Distributions of typical flare duration vs flare amplitude for Type 2 AGN are shown
in Fig. 2.2, and median flare duration and flare amplitude for each window size are
outlined in Table 2.2. It is important to note that the median flare amplitude values of
the Type 2 AGN are greater than those found in the Type 1 AGN. At first glance, this
seemingly contradicts the paradigm of the Unified Model of AGN (see Antonucci, 1993)
where, because the accretion disk is obscured by the dusty torus, suppressed variability
is observed in Type 2 AGN (e.g., Yip et al., 2009; Kovacevic et al., 2025). In spite of
that, I consider these findings to be the result of a selection effect whereby — due to the
very fact that the accretion disks of the Type 2 AGN are obscured by the torus — they
are dimmer than their Type 1 counterparts. As a result, their lightcurves are subject to
increased noise levels, causing both greater flare amplitudes to be measured, and shorter

flare durations.
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Chapter 2: A “brute force” approach to systematic flare detection 35

2.3.2 Lightcurves of flare candidates

In this section I present ZTF r- and g-band lightcurves of the AGN flare candidates

found by my flare-finder algorithm.

Type 1 flare candidates

The flare-finder algorithm output contained all instances of contiguous sets of data points
below the windowed Theil-Sen median, although as explained in §2.3.1, the majority of
these are part of the background AGN variability. Flare candidates were selected to
have at least 10 data points in the flare, to be greater than 10 days in duration, and to
have a flare magnitude change of at least 0.5. These thresholds were chosen to ensure
that there were enough data points in the flaring region to justify a detection, and to
mitigate the impact of false-positives caused by noise in the ZTF lightcurves, which is
likely the result of observational effects and the limitations of forced-photometry (see
§1.4.1). The minimum magnitude change of 0.5 was chosen to be a lower threshold than
the requirements set in previous studies such as the 1.5 magnitude threshold used by
Graham et al. (2017), to account for the fact that I am probing for the shortest duration

flares (which will correspond to lower amplitudes).

Figs. 2.3 and 2.4 show the optical r-band lightcurves of the identified Type 1 AGN
flare candidates. Where available, g-band data is also shown, though in many cases the g-
band lightcurve is sparse in comparison to the r-band lightcurve. For the objects without
g-band data available, or in the cases where the g-band does not exhibit variability in
the same region as the r-band “flare”, I consider that there is insufficient evidence to
make a flare detection. Follow-up aperture photometry could be obtained to confirm
these flare candidates due to the risk of anomalous data in ZTF lightcurves (see §1.4.1
for a warning regarding forced photometry), along with cross-matching against other

transient databases to rule out supernovae or blazars. It is also important to note that
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the majority of these flare candidates exhibit much lower amplitudes than recorded in
the literature (e.g., Graham et al., 2017; Lawrence et al., 2016) and it is possible that
they are simply the tail-end of the distribution of typical AGN variability (e.g., MacLeod
et al., 2010). It is apparent that this “brute force” technique is mistaking the underlying

AGN variability with flare activity.

Type 2 flare candidates

Fig. 2.5 shows the r-band lightcurves of the Type 2 AGN flare candidates identified.
Where available, corresponding g-band data is also provided. In these cases, whilst
these multi-band lightcurves show a potential flare in the r-band, they do not exhibit

the same behaviour in the g-band.
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Figure 2.3: Lightcurves of Type 1 flare candidates. The r- and g-bands are shown
in red and blue respectively. Lightcurves with only r-band data are plotted in red. As
a reminder, the limiting magnitudes of ZTF in the r- and g- bands are 20.6 and 20.8
respectively.



Chapter 2: A “brute force” approach to systematic flare detection 38

15.4
17\M
v 15.6 o
O o
2 2
c c
§158 §18—
= =
g o
216.0 2
S 5191
16.2
58400 58500 58600 58700 58800 58900 58400 58500 53600 58700 58800 53900
Modified Julian date Modified Julian date
17.50 1
16.5 1
17.751 \\/‘M/\‘\WM
= ° 17.01
2 18.00 3
o E17.5
+ +
9 18.50 5180
a S
Q. (o X
<1875 | 2185
19.00 | 19.0
58400 58500 58600 58700 53800 58400 58500 58600 58700 58800
Modified Julian date Modified Julian date
18.0 1
o 18.5
o
3
s
f
819.0
£
g
$19.5
o
o
<C
20.0 1

58700 58750 58800 58SKE0 58900
Modified Julian date

Figure 2.4: Lightcurves of Type 1 flare candidates (cont.) The r- and g-bands are
shown in red and blue respectively. Lightcurves with only r-band data are plotted in
red. As a reminder, the limiting magnitudes of ZTF in the r- and g-bands are 20.6 and
20.8 respectively.



Chapter 2: A “brute force” approach to systematic flare detection 39

18.5
170-¥4gx,ﬁ,/////%ﬁh\ﬁﬁ“JEWE#QQﬁﬁéqgﬁ
5 17.51 L19.0
E E
e oy
®18.0 &
E E195
E185 G
5 4 7
210 2200
19.5
: : : 20.54 : . :
58700 58300 58900 59000 58700 58800 58900 59000
Modified Julian date Modified Julian date
17.01 17.00
() [H]
2175 21725,
£ £
218.0 £ 17.50
g 5
518.5 & 17.751
o o
< <
19.0 18.001
19.51 ‘ ‘ ‘ 18.251 ‘ ‘ .
58800 58900 59000 59100 59200 58800 58900 59000 59100 59200
Modified Julian date Modified Julian date
16.50 1
< 16.75 1
3
B
oy
51700—
g
§17.25
a
<€
17.501
17.751

50000 59100 59200 59300 59400
Modified Julian date

Figure 2.5: Lightcurves of Type 2 flare candidates. The r- and g-bands are shown
in red and blue respectively. Lightcurves with only r-band data are plotted in red. As
a reminder, the limiting magnitudes of ZTF in the r- and g-bands are 20.6 and 20.8
respectively.
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2.4 Discussion

I have presented histograms of flare duration vs flare magnitude change for Type 1 and
Type 2 AGN (Figs. 2.1 and 2.2), generated using the flare-finder algorithm described in
§2.2 with window sizes of 100, 300, 500, 800 and 1000 days. These distributions can serve
as a means to compare new observations of AGN flares against the broader population,
which will enable for follow-up of sources that are outliers. It is apparent from these
distributions that it is typical for AGN to vary with amplitudes of 0.5 magnitudes or

less on these timescales.

The flare finder algorithm identified a total of 16 potential flare candidates shown in
Figs. 2.3, 2.4 and 2.5. 11 of these are Type 1 and 5 are Type 2 AGN. From lightcurve
selection, objects with g-band data that do not show a flare corresponding to the -
band flare can be ruled out. After removing these sources, there are a total of 11 flare
candidates. On inspection, even the most robust flare candidates with corresponding
flares in both r- and g-bands show little evidence of flaring activity on inspection of their
photometric images (i.e., due to poor seeing and difficulty distinguishing the source from
the background). This could be a result of calibration issues with ZTF images, weather

effects, or the fact that shorter-duration flares are typically in dimmer AGN.

From these results it is apparent that this brute-force technique results in a signific-
ant number of false positives and is sensitive to the underlying variability of an AGN
lightcurve, erroneously identifying typical AGN variability as flaring. At this stage, there
are two key limitations of this approach: (a) the significant numbers of false positives as
a result of the algorithm being unable to distinguish between flares and the underlying
AGN variability and (b) the fact that, to identify flares in this way, one must place ar-
bitrary thresholds on the flare properties (e.g., its amplitude must exceed 1 magnitude).
Any arbitrary limits placed on the flare amplitude or timescale are not statistically mo-

tivated and by definition do not take into account the stochastic nature of the underlying
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variability.

2.5 Conclusions

In this chapter I have demonstrated that this “brute force” or “first principles” approach
to flare detection is not sufficient for systematic flare detection as it results in a signific-
ant number of spurious detections. Furthermore, the technique is not able to take into
account the underlying variability of a lightcurve in a statistical manner. Like systematic
studies that have come before (e.g., Lawrence et al., 2016; Graham et al., 2017), one has
to make arbitrary cuts on either the duration or amplitude (or both) of the flare one
intends to detect, which ignores the stochastic nature of variability (see §2.3.2). The
findings of this chapter, whilst they have been enlightening in terms of characterising
typical AGN variability across a given timescale, motivate the requirement for a stat-
istical means of systematically detecting AGN flares, where no assumptions are made
about the nature of the flares and the underlying variability is taken into account. This

forms the basis of the following Chapter 3.
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Chapter 3

Using Gaussian Processes to detect

AGN flares

3.1 Introduction

In Chapter 2, I presented a “first-principles” approach to detecting AGN flares in optical
lightcurves, by subtracting the median from each lightcurve and identifying contiguous
sets of points below this median. I showed that whilst this technique is valid, it results
in a significant number of false positives. The technique is not statistically robust as it
cannot determine in a statistical manner what constitutes a significant departure from
the baseline variability. Furthermore, as with studies undertaken previously (Lawrence
et al., 2016; Graham et al., 2017), the technique makes assumptions about the duration
and amplitude of the flares one intends to detect, which can introduce selection effects
and false positives. For the remainder of this thesis, I investigate the use of Gaussian
Processes (GPs) to systematically detect AGN flares as a statistically robust alternative;
by employing a GP to parameterise the covariance of a lightcurve, there is no need to a
priori assume anything about the properties of the flare.

With the above in mind, the aim of this chapter is to assess the viability of using

43
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GPs to identify AGN flares. To do so, I first simulate the lightcurves of a population of
variable AGN, including flaring events, then apply GP analysis to assess how successfully
it identifies the latter. Next, I apply this analysis to real AGN lightcurves as a systematic
search for flaring events. This data was obtained from the ZTF Public Data Release 6
and the sample comprises optical, r-band lightcurves of Type 1 AGN (Masci et al., 2018;
Bellm et al., 2019).

The outline of this chapter is as follows: I describe the theory behind GPs (§3.2),
the data used to investigate the efficacy of GPs (§3.3), the GP kernel hyperparameter
distributions (§3.4) and the methodology behind using GPs for the classification of AGN
flares (§3.5) before presenting the retrieval rates of the GP analysis when dealing with
different types of simulated lightcurves, and, finally, the lightcurves of real AGN (§3.6).
I discuss my findings and future directions of studies in §3.7, and provide some brief

concluding remarks in §3.8.

3.2 (Gaussian Processes

A detailed explanation of the theory behind GPs is provided in Chapter 1.3, but I will
provide a brief reminder of the technique and explain the reasoning behind the decision to
employ them in the context of flare detection. GPs are an interpolation technique that is
able to predict the underlying function given a set of data (Rasmussen & Williams, 2006).
To reiterate the description in Chapter 1, a GP is a prior over functions that takes a user-
defined covariance function and, given the data, it generates the full set of functions that
are both: (a) possible fits to the data, and (b) feasibly produced by the chosen covariance
function. In addition to its function as an interpolation tool, it is able to provide the
parameters of the covariance function (kernel) that produces the most likely description

of the data. In this capacity, GPs are a means of encapsulating the variability of a
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lightcurve, and these optimum kernel parameters (known as hyperparameters') can be
used as a summary statistic of the variability of a given dataset. It is for this reason that
GPs were chosen as a potential technique for AGN flare detection: since they can be used
to provide a description of how a given lightcurve is varying, it is reasonable to expect
that they can be used to differentiate between lightcurves that contain flares and those
that do not. This therefore motivates an exploration into whether GPs can be used as
a tool to classify transient astronomical events — and specifically AGN flares — directly,
which is the premise of this chapter. The choice, then, is to decide the most suitable
covariance function that represents typical AGN variability, and there are a number of
candidates that are suitable, such as the squared exponential kernel and the Matérn
class of kernel, which both represent stochastic variability, and their main difference
being that the squared exponential kernel results in smoother function realisations. In
this work, based on the findings of Griffiths et al. (2021) that the Matérn-3/2 kernel is
more effective at reproducing AGN lightcurves, I choose the same kernel in which the

covariance k is defined as follows:

k(r) =o® (1 + @) exp (—\[{57‘) (3.1)

where 7 is equal to the difference between all pairs of values of the independent ordinate
(in this case time, i.e., 7 = [t —t'|), o is the variability amplitude and p is the variability
timescale (Rasmussen & Williams, 2006; Foreman-Mackey et al., 2017). Visualisations
of the types of function generated by this kernel and an example of a GP with this kernel

fit to an AGN lightcurve are shown in Chapter 1 §1.3.

IThe parameters of the GP, i.e., the quantities that are allowed to vary given the data, are the
functions produced by the kernel. Therefore, the coefficients of the kernel are defined as hyperparameters
as they describe the parameters of the model.
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3.3 Data

Prior to using GPs to classify real AGN lightcurves, I wanted to determine whether they
are even a feasible means to detect flaring events. The problem with using real data
for such a feasibility study is that, with AGN flares being so rare, I would need to use
a large sample of AGN lightcurves (i.e., numbering tens to hundreds of thousands) to
ensure it contains even a small handful of true flaring events. For such a large sample,
however, it is unfeasible for us to know which real lightcurves contain true flaring events,
so I cannot evaluate success rates. To overcome this, I turned to simulating lightcurves,
which allows us to inject flares. Since I know which of the simulated lightcurves contain
injected flares, I can determine true and false positive and negative rates. Once I have
assessed the feasibility of using GPs to detect AGN flares in simulated data, I then apply
it to real AGN lightcurves to determine whether it can, indeed, detect real AGN flaring
events. I note, however, that this final step is simply an exploratory exercise; I cannot
easily assess success rates on large samples of real data for the reasons outlined above. It
is also important to note that while I use the simulated datasets to assess the feasibility
of using GPs to identify flares, I do not use the simulated datasets to inform my priors for
analysing the real ZTF lightcurves; instead I use the GP analysis to determine the range
of typical variability parameters of each sample independently. In doing so, I ensure that
any deviations from that range — which potentially highlight the presence of a flare — are
specific to that sample. In this section I outline how I produced my sample of simulated
AGN lightcurves, describe how I employed GPs to analyse these simulated data, and
then explain how I applied Bayesian hypothesis testing to the output of the GP analysis

to calculate the probability of a lightcurve containing a flare.
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3.3.1 Simulated lightcurves

It has been known for over a decade that non-flaring AGN lightcurves are well-described
by a one-dimensional damped random walk (e.g., Kelly et al., 2009; MacLeod et al.,
2010). This involves adding a correctional term (i.e., a damping term) to a random walk
to encourage extreme deviations back to the mean value. Kelly et al. (2009) first showed
that a damped random walk can statistically explain the observed lightcurves of AGN;
they analysed 100 quasar lightcurves and, using a Bayesian approach, showed that this
stochastic process is capable of modelling AGN lightcurves at an accuracy level of 0.01

- 0.02 magnitudes.

MacLeod et al. (2010) modelled the time variability of 9000 quasars in SDSS Stripe
82 as a damped random walk and confirmed previous results (e.g., Kelly et al., 2009;
Koztowski et al., 2010) that this model describes quasar lightcurves well. Therefore, I
used this damped random walk model to simulate my own AGN lightcurves. I drew
values of the variability parameters (SF> and 7, which are defined as the difference in
magnitude across the longest time steps and the damping timescale respectively — see Eq.
3.2) from the distributions of best-fit variability parameters presented in MacLeod et al.
(2010). To achieve this, I randomly drew values of log(SF*°) from a normal distribution
with a mean of -0.8 mag and standard deviation of 0.2 mag. Then, I calculated the
values of log(7) based on the best-fit power law in MacLeod et al. (2010). By selecting
the full range of these parameters, I intrinsically include the variability of the entire
quasar population. It should also be noted that since I am assuming that AGN flares are
extremely rare, I assume that the MacLeod et al. (2010) sample represents “normal” AGN
variability. In their work, MacLeod et al. (2010) make use of the structure function, S(7),
to express the long-term variability of an AGN lightcurve. In the context of a damped

random walk, the structure function is defined as follows:
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Figure 3.1: Top: a simulated AGN lightcurve using a 1D damped random walk. Bot-
tom: the same simulated lightcurve with an injected 1 magnitude Gaussian flare at 800
days with a width of 200 days. The dotted red line shows this underlying Gaussian
function. Figure from McLaughlin et al. (2024).
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SF(At) = SF.. (1 - expﬂ) - (3.2)
T

Here I introduce two variability parameters: SEF* and 7. The former is the difference
in magnitude calculated across the longest time steps, while 7 can be thought of as
the damping timescale in days, upon which the value of the lightcurve returns to its
mean. The structure function is computed by collecting the differences in magnitude for
all points in the lightcurve separated by a given time lag, At. In addition, the function
asymptotes at very large time steps (tending to SF°), which corresponds to a power-law

fit (MacLeod et al., 2010).

A lightcurve is generated by selecting values for SF*°, 7 and the mean value of the
lightcurve, p (in my case, the values from the full distributions presented in MacLeod
et al. 2010). The magnitude X () at a given time step 0t from a previous value X (¢ — 6t)
is drawn from a normal distribution with a mean and variance given by (Kelly et al.,

2009; MacLeod et al., 2010):

E(X ()| X (t — At)) = exp (-%) X(t—At) +p (1 — exp (-%)) (3.3)

and

Var(X (8)| X (t — At)) = 0.5(SF>)? <1 —exp (_27At» . (3.4)

Using this approach, I simulated 10000 AGN lightcurves with a cadence of 10 days
and uniform uncertainties of 0.1 magnitudes. These represent my “perfect” simulated
AGN lightcurves since they are regularly sampled and do not contain any anomalies?
(nor flares). An example of one such lightcurve is shown in Fig. 3.1. In the following

subsections I discuss the steps undertaken to modify and filter these perfect simulated

2Hereafter, I refrain from placing quotation marks around “perfect”.
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lightcurves to include flares and to make them more representative of real, irregularly-

sampled AGN lightcurves. To summarise, these are:

1. injected flares and simulated with a constant 10-day cadence;

2. injected flares and sub-sampled to match the cadence of real ZTF lightcurves;
3. as 2, but with added outliers;

4. real ZTF with injected flares;

5. real ZTF lightcurves.

The objective was to investigate the ability of GPs to classify flares and non-flares in each

of these cases, with each step becoming progressively more representative of observed

AGN lightcurves.

3.3.2 Lightcurves with injected flares

To determine how GPs would handle perfect, uniformly-sampled data without outliers,
I simulated 10000 AGN lightcurves with a cadence of ten days, and a baseline of 1500
data points. This would act as a control sample. A copy of this sample was created, and
a simulated flare was injected into each lightcurve in the copied sample. This resulted
in a control sample and a flare sample of uniformly-sampled AGN lightcurves, totalling
10000 lightcurves per sample.

The flares were simulated in two ways: (1) as Gaussian functions and (2) as gamma
functions, to investigate the effect of the shape of the flare on the GP fit (resulting in a
total sample of 30000 lightcurves including the control, Gaussian and gamma samples).
Gaussian flares are symmetrical and gamma flares have a short rise-time and a longer
decay. These flares were simulated with amplitudes ranging from 1-2.5 magnitudes and

durations of between 100 and 1000 days. To achieve this, flare amplitudes were randomly
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drawn from a uniform grid ranging between 1-2.5 magnitudes with a spacing of 0.1, and
the durations were randomly chosen from an array containing durations of 100, 200, 300,
500 and 800 days. The term “duration” in this context refers to the full width at half
maximum of the flare function. These flares were injected at random locations (drawn
from a uniform grid with spacing of 100 days) into each simulated lightcurve such that
their peak lies after the first 300 days but before the last 300 days. This is to ensure
that in all cases the rise and fall of the flare was included. These injected flare properties
were decided in consideration of the findings from previous systematic searches for AGN

flares (e.g. Lawrence et al., 2016; Graham et al., 2017).

3.3.3 Sub-sampled lightcurves

In reality, AGN lightcurves are not uniformly sampled. One way to achieve non-uniformity
is by randomly sub-sampling each lightcurve, however this would not faithfully repres-
ent real, observed lightcurves due to weather effects, differences between filters and large
gaps in the data. For this reason, I instead interpolated the simulated lightcurves onto
the time axis of real ZTF lightcurves to sub-sample them. This enabled us to investigate
how GPs would handle sparsely sampled data and ensured the simulated lightcurves

have realistic cadences. These ZTF lightcurves are described in §3.3.5.

3.3.4 Lightcurves with added outliers

In real AGN lightcurves, it is not uncommon to see systematic outliers in the data due
to uncorrected atmospheric effects, bad pixels, etc. The GP must be robust against
these effects if they are to be used as a classifying tool. Therefore, to further construct
simulated lightcurves that were as representative of real data as possible, I added sys-
tematic outliers. To achieve this, once the lightcurves had been sub-sampled, I added to

each lightcurve a contiguous pair of outliers that were five standard deviations above the
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variability of the individual lightcurve; visual inspection shows that this level of outlier

is typical of ZTF lightcurves.

3.3.5 ZTF lightcurves

As well as using simulated data, I also used real ZTF lightcurves in the r-band; these
data were downloaded in August 2021 from Public Data Release 6, which was the most
current data release at the time® (ZTF: Masci et al., 2018; Bellm et al., 2019). These
ZTF lightcurves were acquired from spectroscopically-selected AGN from SDSS DRY7,
forming the ALPAKA catalogue (Mullaney et al., 2013). Of this sample, 9035 AGN are
Type 1, and it is these AGN whose lightcurves I utilised in this work. Note that this
is the same dataset that was used and described in more detail in Chapter 2.* For the
sake of a proof of concept demonstration, only the r-band was considered, though it
would be possible to use Gaussian Processes to perform a multi-band analysis (see §3.7).
First, I made a copy of each AGN’s ZTF lightcurve, and a Gaussian flare was injected
into each copy. This was repeated for the injection of gamma flares. These flares were
simulated as in §3.3.2. This created a control sample and two “flare” samples (Gaussian
and gamma) of real ZTF lightcurves. This represents as close a sample to real AGN

flaring lightcurves as possible, without being true flaring events.

Finally, the original sample of 9035 ZTF lightcurves were processed using the method
outlined in the following section to determine if any of these AGN lightcurves would be

classified as containing flares.

3Later, in January 2024 I re-downloaded the same sample from the more recent data release DR 20.
I present brief results using this more up-to-date sample in Appendix A.

4T excluded Type 2 AGN from my analysis as, under the unified AGN model (e.g., Antonucci 1993),
I do not have a direct view of the nuclear region, meaning they are less variable and I should not — in
theory — observe flaring events in such cases.
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3.4 GP kernel parameter distributions

With my various simulated and real lightcurves in-hand, I next analysed them with a
GP in order to calculate the optimised kernel coefficients (hereafter, hyperparameters) of
a Matérn-3/2 kernel. For this, I made use of the open-source Python library CELERITE®
(Foreman-Mackey et al., 2017), which enables fast and scalable Gaussian Process model-
ling. Since CELERITE provides a pair of optimised hyperparameters (o,p) given the data
in each of my lightcurves, I can plot distributions of these hyperparameters. This en-
ables us to assess whether the distributions for flaring and non-flaring lightcurves reside
in different regions of parameter space. If they do, then this opens up the prospect of
using GP analysis to classify a lightcurve. In what follows, I consider the hyperparameter
distributions for each of my five different classes of lightcurves (i.e., those described in

§3.3).

3.4.1 Perfect lightcurves

The distribution of the optimised hyperparameters for my sample of perfect lightcurves
are shown in Fig. 3.2 (for Gaussian flares) and Fig. 3.3 (for gamma flares). In these and
all following plots in this section, the variability amplitude ¢ increases as the variability
of the lightcurve increases, while the timescale p increases with the timescale across which
the variability is occurring. The figures show that the hyperparameters for flares and
non-flares exist in different but partially overlapping regions of parameter space. This
is the case for both Gaussian and gamma flares. The covariances of these well-sampled,
flaring and non-flaring lightcurves are statistically different. To further illustrate this,
Fig. 3.2 shows the locations of the simulated lightcurves from Fig. 3.1 in hyperparameter
space, demonstrating that simply the injection of a flare into a simulated lightcurve

moves its hyperparameters from the non-flare distribution to the flare distribution.

Shttps://celerite.readthedocs.io/en /stable/
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Figure 3.2: Distributions of flare and non-flare hyperparameters for perfect simulated
lightcurves with injected Gaussian flares. It is clear that the kernel hyperparameters of
lightcurves containing flares and lightcurves without flares exist in distinct but partially
overlapping regions of parameter space. This demonstrates that the GP analysis finds
that the covariances of these lightcurves are statistically different. The contours are
representative of the density of the data points. The locations of the simulated lightcurves
from Fig. 3.1 are shown, demonstrating that simply the injection of a flare can move a
lightcurve’s hyperparameters from the non-flare distribution (blue points and contours)
to the flare distribution (orange points and contours). The contours are representative
of the density of the data points.
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Figure 3.3: Distributions of flare and non-flare hyperparameters for perfect simulated
lightcurves with injected gamma flares. Again, it is clear that the kernel hyperparamet-
ers of lightcurves containing flares and lightcurves without flares exist in distinct but
partially overlapping regions of parameter space. The contours are representative of the
density of the data points. Figure from McLaughlin et al. (2024).
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3.4.2 Sub-sampled lightcurves

For sub-sampled lightcurves, the distributions of hyperparameters (see Figs. 3.4 and 3.5
for Gaussian and gamma flares, respectively) overlap more than those of the perfect
lightcurves. It should be noted, however, that this is partly due to some flares being
removed by the sub-sampling, and also due to the GP analysis finding it more difficult to
fit lightcurves with irregular cadence and gaps in the data; this is a result of the sparsity
of data causing the maximum likelihood estimate of the hyperparameters to show more
scatter around the true values. In cases where the flare is largely removed by the sub-
sampling, it is incorrect to regard them as false negatives, since almost all evidence of
a flare has been removed from the lightcurve and it is important to consider it a non-
flare. To determine the number of lightcurves in which this is the case, I summed the
magnitude values of the flare points that remained post sub-sampling and ignored those
lightcurves in which this sum was less than one. Though this choice of one is arbitrary,
I investigated changing this cutoff to 0.5 and 1.5 and the results were not materially
different. The use of this magnitude threshold is to ensure that lightcurves containing
flares of which a significant proportion of the flare has been removed by the sub-sampling

are treated as effectively non-flaring lightcurves.

3.4.3 Lightcurves with added outliers

The hyperparameter distributions for the simulated, sub-sampled lightcurves with added
outliers are shown in Figs. 3.6 and 3.7 for the Gaussian and gamma flares respectively.
There is still significant overlap between the flare and non-flare distributions, and it
is clear that the flaring lightcurves tend to show higher values of o than non-flaring
lightcurves. In both the non-flaring and flaring cases, there is a greater variance across
the y-axis tending towards smaller values of p compared to the previously discussed

classes of lightcurve. This larger spread is a result of the addition of the outliers reducing
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S O ® Non flares

® Gamma flares

Figure 3.4: Distributions of flare and non-flare hyperparameters for simulated light-
curves with ZTF-like cadence with Gaussian flares. Compared to the hyperparameters
of the well-sampled lightcurves, the distributions of lightcurves containing flares and
lightcurves without flares are significantly overlapping. The contours are representative

of the density of the data points. Figure adapted from McLaughlin et al. (2024).
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the timescale of variability. In addition, compared to the previously-discussed classes of
lightcurves, the lightcurves with added outliers tend towards greater values of o. Again,
this is a result of the injected outliers increasing the amplitude of variability. Finally,

there are no notable differences between the Gaussian and gamma flare distributions.

3.4.4 ZTF lightcurves with injected flares

The hyperparameter distributions for the ZTF lightcurves, including those with injected
Gaussian and gamma flares, are shown in Figs. 3.8 and 3.9, respectively. In this case, 1
have assumed that the prevalence of real flares within the ZTF sample is low enough that
it is reasonable to label them all as non-flaring for this part of the study. As we shall
see in §3.6.2, it is likely that some ZTF lightcurves are flaring, but that their numbers
are so low that (i.e., < 1 per cent) that they do not affect how I use these distributions
to identify potential flares (see §3.5).

The distributions of (injected) flaring and (assumed) non-flaring ZTF lightcurves
most closely resemble those of the lightcurves with added outliers, displaying a larger
spread across the y-axis compared to the “perfect” and sub-sampled lightcurves. How-
ever, while some overlap between hyperparameters for flaring and non-flaring lightcurves
is clearly present, it is somewhat less than that seen in the case of the lightcurves with
added outliers. It is difficult to know for certain why this is the case; it may be due to
the fact that I have created my simulated lightcurves in a way that makes them more
variable than the ZTF (the median ¢ value of my simulated lightcurves is a factor of 3
greater than that of the ZTF lightcurves, because the structure function values — SF*>
and 7 — used to simulate my lightcurves were taken from MacLeod et al. 2010 who mod-
elled a sample of quasars rather than AGN). This means that — all else being equal —
the injection of a flare into a simulated lightcurve has a smaller impact on its overall

variability than the injection of the same flare into a ZTF lightcurve.
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Figure 3.6: Distributions of flare and non-flare hyperparameters for simulated light-
These distri-
butions are significantly overlapping as in Fig. 3.4, and also the values of p have been
reduced. This is likely due to the injection of outliers reducing the timescale of variability
calculated by the GP. The contours are representative of the density of the data points.
Note that the y-axis scaling is different to the previous figures to include all of the data

curves with ZTF-like cadence with added outliers and Gaussian flares.

points. Figure from McLaughlin et al. (2024).
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Figure 3.7: Distributions of flare and non-flare hyperparameters for simulated light-
curves with ZTF-like cadence with added outliers and gamma flares. Again, these dis-
tributions are significantly overlapping as in Fig. 3.7, and also the values of p have been
reduced. This is likely due to the injection of outliers reducing the timescale of variability
calculated by the GP. The contours are representative of the density of the data points.

Figure from McLaughlin et al. (2024).
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Figure 3.8: Distributions of hyperparameters for ZTF lightcurves with injected Gaus-
sian flares. The contours are representative of the density of the data points. Compared
with Figs. 3.2, 3.4 and 3.6, there is a much greater spread of p values although there
is still significant overlap between the distributions of lightcurves containing flares and

lightcurves without flares. Figure from McLaughlin et al. (2024).
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Figure 3.9: Distributions of hyperparameters for ZTF lightcurves with injected gamma
flares. The contours are representative of the density of the data points. Compared with
Figs. 3.3, 3.5 and 3.7, there is a much greater spread of p values although there is
still significant overlap between the distributions of lightcurves containing flares and
lightcurves without flares. Figure from McLaughlin et al. (2024).
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3.5 Using GPs to identify flaring lightcurves

I have demonstrated that the kernel hyperparameters of flaring and non-flaring light-
curves reside in different regions of parameter space, which overlap to a greater or lesser
extent, depending on the class of lightcurve (i.e., perfect, sub-sampled, etc.). This there-
fore opens up the prospect of using GP analysis to identify flaring lightcurves. Given
that the hyperparameter distributions overlap, however, the best one can do is to assign
a probability that a lightcurve contains a flare (i.e., 8 = 1) or not (i.e., § = 0), where 6
acts as a binarized representation of whether a lightcurve is flaring. To achieve this, once
the kernel hyperparameters had been optimized for each lightcurve, I used Bayesian hy-
pothesis testing to determine the probability of a new lightcurve belonging to either the
flare (§ = 1) or non-flare (6 = 0) populations. In this method, the posterior probability
of a lightcurve containing a flare or not can be described (according to Bayes’ theorem)

as:

P(a,p,0ly) < P(ylo, p)P(o, p|0) P(0), (3.5)

where o and p are the kernel hyperparameters, y is the data, and P(f) is defined as
a “hyper prior”. In principle, P(# = 1) could be regarded as representing my a priori
belief of a given lightcurve containing a flare, and we are thus free to choose a value we
see fit. For example, P(6 = 1) = 0.5 would imply a prior belief that a given lightcurve
has a 50:50 chance of containing a flare. In practice, however, I used the results of the
analysis of my simulated lightcurves to inform us of what value of P(# = 1) gives the
best compromise between numbers of false and true positives. I found, for example, that
adopting P(f = 1) = 0.001 (which may be considered to be a reasonable estimate of the
frequency of flares in AGN lightcurves, for example, see: MacLeod et al. 2012; Lawrence
et al. 2016) led to a large number of simulated flares to be missed. I also investigated

using P(# = 1) = 0.5, 0.1, 0.01, and found P(# = 1) = 0.5 resulted in a large false
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positive rate, while P(§ = 1) = 0.01 suffered from a low true positive rate. Based on
these results, I chose a value of P(6 =1) =0.1.

I used Markov chain Monte Carlo sampling methods to sample the posterior probab-
ility distribution. I first perform an initial GP analysis of the lightcurve I wish to classify.
This gives us the optimised values for o. and p,. for this lightcurve (where the subscript
¢ is used to denote the lightcurve I wish to classify). Next, I assign a value of 1 to 6, if
P(0. = 1|o., p.) > P(6. = 0|o., p.) based on the distributions of o and p obtained from

my GP analysis, and 0 otherwise. Next, I calculate the posterior probability using:
e the appropriate value for P(6,) (i.e., 0.1 or 0.9, depending on the value of 6,);

e the value of P(o., p.|0.) based on a 2D-Gaussian approximation of the hyperpara-
meter distributions obtained from the Gaussian Process analysis of the corres-
ponding non-flaring lightcurve class.® It is important to note that I do not use the
hyperparameter distributions obtained for simulated flaring AGN as a prior for
that class. Instead, I use a 2D Gaussian that encompasses a much larger region of
parameter space than both the flaring and non-flaring lightcurves (i.e., it is a non-
informative prior). This is done to ensure that I am making minimal assumptions
regarding the properties of the flares since I do not know whether my simulated

flares do, indeed, fully represent the true diversity of real flares”; and

e the likelihood P(y|o.,p.), which I obtain from the Gaussian Process fit of the

lightcurve I am classifying.

For the next step in the MCMC I randomly propose (with equal chance of choosing

0 or 1) a new value of 6, (= 0.), and recalculate the posterior using 6. I accept this

5By “corresponding”, I mean that if I am attempting to classify a ZTF lightcurve then I used the
hyperparameter distribution I obtained by analysing my sample of ZTF lightcurves (which I assume to
be dominated by non-flaring lightcurves), approximated using multiple 2D Gaussians.

"In this regard, my analysis is agnostic to how I simulate the flares (see §3.3.2) since the analysis is
only ascertaining whether the GP parameters of a given lightcurve deviate significantly from those of
the non-flaring population and therefore likely to contain a flare, irrespective of its properties.



Chapter 3: Using Gaussian Processes to detect AGN flares 66

value of 0 with probability:

. P(Uc,pcﬁ’ly)>
min | 1, ————=== 3.6
( P(o¢, pe,bc|y) (3.6)

(i.e., T always accept if the proposed posterior probability is greater than the current
posterior probability, but accept with a probability equal to the ratio of the two pos-
terior probabilities if P(og, pe, 0'ly) < P(oe, pe,0ly)). Next, I simultaneously propose
new values of p. and o, (i.e., pl, 0.) and recalculate the posterior probability using these
new parameters, which includes calculating P(y|o”, pl.) using a GP. Again, I accept these

values of ¢/, and p/, with probability:

. P(a’,p’,ec\y)>
min | 1, — =22 ) 3.7
( P(Umpmecw) ( )

Using Markov chain Monte Carlo (MCMC), I repeat the process of proposing (and,
when appropriate, accepting) new 6 and (o, p.) values in order to sample the posterior
parameter space. I chose 12000 steps with a burn-in of 2000 as this was sufficient for
the trace to converge.

Each time I propose a new value of 6., I add the accepted value (whether the newly-
proposed value, or the old one) into a 1D array; this results in a vector of length 10000
(excluding the burn-in) of zeroes and ones corresponding to the accepted 6. value. The
relative numbers of zeros and ones give the relative probabilities of the lightcurve being
labelled as a flare or non-flare. As such, the final probability of the lightcurve containing
a flare, Ppare, is thus given by the sum of this vector, divided by its length (i.e., the
mean). Guided by the results from analysing my simulated data, I find that using a
cutoff probability of 0.1 to define a flare gave the best compromise between true and
false positives. While this may seem low, I find that most non-flaring lightcurves have

extremely low flare probabilities.
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3.6 Results

In this section I first present the retrieval rates for classifying flares and non-flares in the
case of each of my classes of simulated lightcurves (§3.6.1). For each class of lightcurve,
true positive rates were calculated as the fraction of known flares with Pppe > 0.1.
Similarly, the true negative rate is the fraction of control lightcurves with Ppp,.e < 0.1.
Afterwards, I analyse all of my unadulterated (i.e., without injected flares) ZTF light-
curves to see which, if any, are flagged as containing flares; the results of this “blind”

analysis are presented in §3.6.2.

3.6.1 Retrieval rates for simulated lightcurves

The confusion matrices for my perfect simulated lightcurves with injected Gaussian and
gamma flares are shown in Fig. 3.10. The true positive rates are similar for both types
of flare (91 and 92 per cent respectively), but the false positive rate is slightly higher
for gamma flares (11 per cent compared to 7 per cent). Though the simulated flare
parameters must be selected arbitrarily due to the rarity of AGN flares, I investigated
the change in retrieval rates of simulated flares with specific properties. I found that
the retrieval rates of the GP analysis decrease as the duration of the flare increases, and
the amplitude of the flare decreases. For example, 95 per cent of flares with magnitude
greater than 1.5 and 99 per cent of flares with duration less than 500 days are successfully
detected by the GP analysis. Fig. 3.11 demonstrates the retrieval rate as a function of
simulated flare amplitude, showing that the lowest amplitude flares are most difficult to
detect by the GP analysis. The GP analysis is clearly struggling to distinguish simulated
flares with an amplitude of one magnitude or less from the underlying variability.

As shown in Fig. 3.12, the retrieval rate reduces significantly when the lightcurves
were sub-sampled to match ZTF cadence. There is little difference between the true

positive and false positive rates of Gaussian and gamma flares, with the Gaussian flares
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Figure 3.10: Confusion matrices for simulated lightcurves with a sampling of 10 days,
in the case of injected Gaussian flares (left) and injected gamma flares (right). Note
that zero and one refer to “non-flare” and “flare” respectively. The true positive rate is
similar, shown in the bottom right panel (91 and 92 per cent respectively), but the false
positive rate shown in the top right panel is slightly higher for gamma flares (11 per cent
compared to 7 per cent). Figure from McLaughlin et al. (2024).
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Figure 3.11: Retrieval rate (i.e., true positive rate) of the GP analysis as a function
of simulated flare amplitude for the perfect, simulated lightcurves. It is clear that the
retrieval rate of the GP analysis decreases as the simulated flare amplitude decreases,
since the hyperparameters of these lightcurves are more likely to reside in the overlapping
region between flares and non-flares. Figure from McLaughlin et al. (2024).
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Figure 3.12: Confusion matrices for sub-sampled simulated lightcurves, in the case of
injected Gaussian flares (left) and injected gamma flares (right). Note that zero and
one refer to “non-flare” and “flare” respectively. The bottom right panel shows the true
positive rate, which is 42 and 46 per cent for Gaussian and gamma flares respectively.
The top right panel shows the false positive rate, which is 2.8 per cent for Gaussian flares
and 2.9 per cent for gamma flares. Figure from McLaughlin et al. (2024).
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Figure 3.13: Confusion matrices for simulated and sub-sampled lightcurves with added
outliers, in the case of injected Gaussian flares (left) and injected gamma flares (right).
Note that zero and one refer to “non-flare” and “flare” respectively. The bottom right
panel shows the true positive rate, which is 42 and 39 per cent for Gaussian and gamma
flares respectively. The top right panel shows the false positive rate, which is 5.8 per
cent for Gaussian flares and 13 per cent for gamma flares. Figure from McLaughlin et al.
(2024).

having a true positive rate of 42 per cent and a false positive rate of 2.8 per cent. The
gamma flares have a true positive rate of 46 per cent and a false positive rate of 2.9 per
cent. As such, while the purity of the retrieved sample is relatively high (i.e., low false

positives), the completeness is low (i.e., less than 50 per cent).

Fig. 3.13 shows the confusion matrices for simulated lightcurves with added outliers
in the case of both Gaussian and gamma flares. This shows similar results as those
found for sub-sampled lightcurves without outliers. In the case of Gaussian flares, the

GP analysis is able to classify 94 per cent of non-flaring lightcurves correctly (a 6 per cent
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Figure 3.14: Confusion matrices for ZTF lightcurves with injected flares, in the case
of injected Gaussian flares (left) and injected gamma flares (right). Note that zero and
one refer to “non-flare” and “flare” respectively. The bottom right panel shows the true
positive rate, which is 80 and 94 per cent for Gaussian and gamma flares respectively.
The top right panel shows the false positive rate, which is 6.5 per cent for Gaussian flares
and 6.7 per cent for gamma flares. Figure from McLaughlin et al. (2024).

false positive rate), but only 42 per cent of flaring lightcurves were classified correctly.
The true positive rate of the gamma flares is slightly lower at 39 per cent with a higher

false positive rate of 13 per cent.

Despite the GP analysis struggling to identify flares in sub-sampled lightcurves with
or without systematic outliers, better results are achieved with the ZTF lightcurves with
injected flares. For these lightcurves, the GP analysis was more effective at classifying
flares and non-flares than with the simulated sub-sampled lightcurves; remarkably, this is

in spite of using the ZTF cadence to sub-sample the simulated lightcurves. The confusion
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matrices for ZTF lightcurves with both Gaussian and gamma injected flares are shown
in Fig. 3.14. In the case of injected Gaussian flares, the GP analysis has an 80 per cent
true positive rate and a 6.5 per cent false positive rate, compared with injected gamma

flares with true and false positive rates of 94 per cent and 7 per cent respectively.

3.6.2 ZTF flares

The final step I took in testing the efficacy of GPs in detecting AGN flares was to perform
the analysis on unadulterated AGN lightcurves. For this, 9035 ZTF lightcurves (§3.3.5)
were analysed using a GP to determine if any would be flagged as containing flares or
extreme variability.

I initially invoked a probabilistic cut-off of 0.1 for a lightcurve to be classified as a
flare by the Gaussian Process. This cutoff resulted in a total of 257 flare candidates. On
inspection, I found that a considerable number of these candidates were poorly sampled
or had large gaps in their lightcurves. For example, 117 lightcurves contained fewer than
30 data points and 154 had gaps in their lightcurves lasting over 150 days. It is therefore
feasible that some of these lightcurves may, indeed, contain (unsampled) flares, but I do
not select them for visualisation purposes.®. It should also be noted that there were a
number of lightcurves (117) that were assigned a high probability of containing a flare
but were located in the far-left-hand side of the hyperparameter distribution and these
were removed from selection due to having low values of ¢ and hence low amplitude
values. Applying the above selections simultaneously and ignoring lightcurves with poor
GP fits by visual inspection resulted in a sample of 27 flare candidates, which are shown
as orange points in Fig. 3.15 and whose lightcurves are shown in Figs. 3.16 and 3.18-3.23.

The lightcurves of four examples chosen from the 27 identified flare candidates are
shown in Fig. 3.16. In each of these four plots, I also include the lightcurves of 100

randomly-selected AGN that were not flagged as containing flares by the analysis. These

8These, together with all my labelled lightcurves, are available upon request.
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non-flare lightcurves were normalized by calculating the “relative” magnitude by sub-
tracting the first magnitude value from each magnitude value in each lightcurve (mean-
ing that the first magnitude value of every non-flare lightcurve is zero and therefore each
consecutive data point represents the relative deviation from this zero). Then I added
this relative magnitude to the mean magnitude value of the flare lightcurve. This results
in a visualisation of the extent to which the non-flare lightcurves deviate from that of
the flare candidate. Normalisation of the lightcurves was performed for the purpose of
comparison against a common baseline and for ease of visualisation. By comparing the
flare candidates to these non-flaring lightcurves, it is clear that the former show extreme
variability. Most notably, they display longer-term, more systematic departures from
their starting point relative to the comparison (non-flaring) lightcurves. The full sample
of flare candidates is shown in §3.9. Note that my analysis is only able to detect extreme
variability, and hence classifies “flares” as objects that are becoming either brighter or
fainter, rather than just brighter. This is not necessarily a drawback, since if the mech-
anism behind AGN flares is caused by changes in accretion state, then GPs may be able
to detect changing-look AGN, which can both rapidly brighten or dim as their broad
emission lines appear or disappear (e.g., LaMassa et al., 2015; Gezari et al., 2017; Yang

et al., 2023).
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Figure 3.15: Distributions of hyperparameters for real ZTF lightcurves of Type 1
AGN. Lightcurves with a posterior probability greater than 0.1, the number of data
points greater than 30, the maximum spacing between consecutive data points less than
150 days, and a sigma value of greater than -2 are shown in orange. This is the resulting
flare candidate sample, before visual inspection to remove spurious GP fits. Figure from
McLaughlin et al. (2024).
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Figure 3.16: Four examples of ZTF lightcurves of flare candidates identified by the GP
analysis. The red line shows the lightcurve of the flare candidate and the grey curves
are a randomly-sampled selection of 100 lightcurves that were not flagged as flares by
the GP analysis, demonstrating that they show extreme variability compared to the rest
of the population. These lightcurves have been normalized for ease of visualization (see

§3.6.2). The full sample of lightcurves is shown in the appendix. Figure adapted from
McLaughlin et al. (2024).
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3.7 Discussion

In §3.1 I described a specific problem associated with searching for flares in AGN light-
curves: namely, how does one detect the presence of a transient signal in data that is
already intrinsically and stochastically variable? To solve this, it is necessary to quantify
what constitutes a significant departure from this baseline variability in a statistical way.
In this chapter, I have undertaken a feasibility study to determine whether Gaussian Pro-

cesses (GPs) are an effective means to achieve this.

I find that GPs have the potential to correctly classify flaring and non-flaring simu-
lated lightcurves with a high success rate, with regularly-sampled flare lightcurves being
classified with a true positive rate of around 90 per cent for both Gaussian and gamma
flares (see §3.6.1). However, in the case of simulated lightcurves that have been sub-
sampled to mirror the cadence of real ZTF AGN lightcurves, this rate drops to around
40 to 45, depending on whether the injected flare is modelled as a Gaussian or gamma
function (see §3.6.1). Similarly, the lightcurves with added outliers resulted in compar-
ably low true positive rates (around 40 per cent; see §3.6.1). Despite this, when real ZTF
lightcurves were injected with flares, the GP analysis successfully classified between 80-
94 per cent per cent of the flaring lightcurves with false positive rates as low as 6.5 per
cent (see §3.6.2). This false-positive rate is extremely promising, as when dealing with
large amounts of data it is arguably far more important to have a low false-positive rate
than a high true-positive rate, to ensure a high purity of the sample. To put this into
context, I will demonstrate the expected purity of a sample of flare candidates selected
using this method. Using the retrieval rate of the ZTF lightcurves with injected Gaus-
sian flares (Fig. 3.14), the true positive rate is 80 per cent. This means that in a sample
of 100000 AGN lightcurves, where the true incidence of flares is 1 in 10000 (e.g., van
Velzen, 2018), this technique will detect 8 of the total 10 real flares. The false positive

rate in this case is 6.5 per cent, meaning that out of the total 100000 lightcurves, 6500
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will be false positives. With this in mind, it can be seen that although this GP analysis
produces a contaminated sample of flare candidates, the considerably lower false positive
rate means that it will be manageable to sift the real flare candidates using additional
classification techniques; these techniques may include human inspection, citizen science,
or the integrated use of human and machine classification (e.g., Mantha et al., 2024).

This is discussed further in Chapter 6.

It would be insightful to be able to place the above retrieval and contamination rates
in the context of other methods of finding nuclear flaring events. However, with most
studies focusing — quite reasonably — on the identification of new flares, rather than how
many they may have missed, such success rates are difficult to quantify.” My results
show that while GPs are not broadly robust against major outliers, they are still able to
perform well when handling real data. It also suggests that my simulated outliers were
“pessimistic”, in that they gave the GP analysis a more difficult job than the real ZTF
data. Furthermore, the retrieval rates for gamma and Gaussian flares are comparable,

suggesting that the GP analysis is largely unaffected by the shape of the flare.

When I applied my GP analysis to 9035 real ZTF lightcurves of type 1 AGN, 27
flare candidates were identified (see §3.6.2 and Appendix 3.9). These lightcurves exhibit
extreme variability when compared to 100 randomly sampled lightcurves that had not

been flagged by the GP as flaring.

It is tempting to take the false-negative rates of the sub-sampled flares and the ZTF
injected flares to estimate the number of real flares that I could be missing. However,
since those false negative rates are based on simulated data, I cannot know what the

actual false negative rates are for real flares.

I have shown that GPs are an effective way to detect extreme variability in simulated

and real AGN lightcurves, especially in high-cadence data sets. In this chapter, whilst

9The systematic comparison of different methods of finding flares is beyond the scope of this thesis,
though I discuss the possibilities of future work in this area in Chapter 6.
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I have demonstrated this in the r-band only, it would be possible to modify the GP
analysis to account for multiple bands. The use of GP analysis in lightcurve classification
is not without caveats, however, as there are a number of limitations. As I have shown,
a GP is not robust against extreme outliers. In addition, GPs optimise the kernel
hyperparameters across the whole lightcurve, which favours the detection of longer-
duration, larger-amplitude flares (and especially those that span a significant fraction of
the lightcurve). To investigate the impact of these “average” hyperparameters, I sliced the
sub-sampled, simulated flare lightcurves so that they contained only the flaring region of
the lightcurve and repeated my analysis. The results are shown in Fig. 3.17. This shows
that if a GP is somehow able to simultaneously “focus” on subsections of a lightcurve it
would have a much higher success rate in terms of distinguishing between flares and non-
flares. This demonstrates that GPs could be even more effective at flare classification if

it were able to calculate a lightcurve’s hyperparameters in a more localised way.

Furthermore, whilst they can quantify the probability of a lightcurve containing a
flare, the GP analysis performed here cannot specify the location of the flare within
the lightcurve. This is not necessarily a pitfall when searching for flares or extreme
variability in archival data, but in the era of time-domain astronomy where surveys such
as the LSST will detect potentially millions of transient sources per night, it warrants the
ability to detect an AGN flare in real-time, ideally before it peaks. Such a requirement
clearly demands an alteration of this method to enable the detection of flares as they

happen.

These limitations highlighted above motivate the need to build on my techniques
with the intention of localising flares within lightcurves. Two possible ways of achieving
this are: tracking the posterior flare probability, P(o, p,0|y) as a function of time whilst
feeding the GP new data, or calculating the posterior probability P(Ynew|Ydata) to de-
termine whether new points in a lightcurve can be described by the current GP regime

and flag them as a flare otherwise. However, these methods are potentially computa-
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tionally intensive and so it is important to be able to devise a means of flare localisation
in an efficient way. This may require more sophisticated techniques such as deep Gaus-
sian Processes (Damianou & Lawrence, 2013) where the choice of kernel function will
depend on training data. Other possibilities include change-point detection (Graham

et al., 2023) or regime-switching models (Hamilton, 2010).
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Figure 3.17: Distributions of hyperparameters for sub-sampled simulated lightcurves
that have been reduced so that the flare lightcurve contains only the flaring region. The
separation between distributions is much greater than in Fig. 3.2, highlighting that if one
is able to localise sections of lightcurve it becomes more straightforward to distinguish
between flares and non-flares. Figure from McLaughlin et al. (2024).
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3.8 Conclusions

I have undertaken a feasibility study to investigate whether Gaussian Processes (GPs) are
an effective means of identifying and classifying AGN flares in optical lightcurves. Using
a combination of simulated and real AGN lightcurves, I used GP analysis to investigate
how the distributions of kernel hyperparameters change after the injection of a simulated
AGN flare into a lightcurve (§3.4). I then used these distributions as a basis to classify
lightcurves in terms of whether they contain a flare or not, and calculate corresponding
flare retrieval rates (§3.5). Throughout, I exploited five different classes of lightcurve,

each more representative of real lightcurves than the last:

1. injected flares and simulated with a constant 10-day cadence;

2. injected flares and sub-sampled to match the cadence of real ZTF lightcurves;

3. as 2, but with added outliers;

4. real ZTF with injected flares;

5. real ZTF lightcurves.

In the case of 1, I find that the kernel hyperparameter distributions for flares and
non-flares exist in different but partially overlapping regions of parameter space (§3.4).
This means that the distributions can never be separated completely; however, since
GPs are statistically robust, they can be used to distinguish between the distributions in
a probabilistic way. In the cases of lightcurve classes 2-5, however, the hyperparameter
distributions for flares and non-flares overlap significantly more than in the case of 1.
Despite this, I have been able to demonstrate that GPs can be used as a classification
tool for AGN flares, with varying degrees of success. The results can be summarised as

follows:
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e For simulated flares with a ten-day cadence and with injected flares, I find a true
positive rate of 91-92 per cent and a false positive rate of 7-11 per cent for Gaussian

and gamma flares respectively.

e When the lightcurves in 1 are sub-sampled to match the cadence of my sample of
ZTF lightcurves (§3.3.5), the true positive rates reduce significantly to 42-46 per
cent for Gaussian and gamma flares respectively, though the false positive rate is

found to be approximately 3 per cent in each case.

e When outliers are added to these simulated lightcurves, the true positive rates
remain similar to those found in 2, although the false positive rates increase to 6

and 13 per cent for Gaussian and gamma flares, respectively.

e When my sample of real AGN lightcurves are injected with simulated Gaussian
and gamma flares, the results are more promising than in the cases of 2-5. 1
obtain true positive rates of 80 and 94 per cent for Gaussian and gamma flares,
respectively, while the false positive rates remain similar as to that found for class

3 at approximately 7 per cent.

e Finally, I applied my GP analysis to the unadulterated sample of ZTF lightcurves
to determine whether any real AGN lightcurves would be flagged as containing
flares by my GP analysis. As shown in §3.6.2, the GP analysis classified 27 out of
9035 AGN lightcurves as containing flares or extreme variability. When compared
with a randomly-selected sample of 100 lightcurves that were not flagged as flares,
they indeed show greater levels of variability, particularly in the form of longer-

term, systemic departures from their starting point.

Overall, I have demonstrated that GP analysis can be used to calculate the probability
that an incoming AGN lightcurve contains a flare. I find that this is a promising method

to detect flares in otherwise variable optical lightcurves, although it can be negatively
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affected by extreme outliers and poorly sampled data. In order to keep up with the large
amounts of data involved in future surveys such as the LSST (Ivezi¢ et al., 2019), there
is a growing requirement to be able to detect AGN flares and transients alike before they
peak to enable for rapid follow-up. Therefore, since my GP analysis in this work is able
to calculate the probability of an incoming lightcurve containing a flare but not the exact
location of the flare within the lightcurve, there is a need to build on this GP technique
to be able to localise a flare as it happens. As mentioned in §3.7, these techniques may
be computationally intensive and so further feasibility studies are required to determine
the most efficient way to achieve flare localisation within a lightcurve.

Finally, it is important to note that there have been more recent ZTF data releases
since the download of the ALPAKA lightcurves from ZTF DR 6, which was acquired
in 2021. To keep up to date with the most recent available data, I re-downloaded the
most recent data release as of January 2024 (DR 20) and repeated the analysis described
in this chapter. The results found using this updated data release are shown in the

appendix (Appendix A).

3.9 ZTF lightcurves showing extreme variability

In this section I present the ZTF lightcurves of AGN that were classified as flares by
the GP. Note that some objects are actually decreasing in brightness as the GP detects

extreme variability in both directions.
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Figure 3.18: ZTF r-band lightcurves of the 5th-8th flare candidates out of the total
27 identified by the GP. The red line shows the lightcurve of the flare candidate and the
grey curves are a randomly-sampled selection of 100 lightcurves that were not flagged
as flares by the GP, demonstrating that they show extreme variability compared to the
rest of the population. These lightcurves have been normalized for ease of visualization
(see §3.6.2). Figure adapted from McLaughlin et al. (2024).
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Figure 3.19: ZTF r-band lightcurves of the 9th-12th flare candidates out of the total
27 identified by the GP. The red line shows the lightcurve of the flare candidate and the
grey curves are a randomly-sampled selection of 100 lightcurves that were not flagged
as flares by the GP, demonstrating that they show extreme variability compared to the
rest of the population. These lightcurves have been normalized for ease of visualization
(see §3.6.2). Figure adapted from McLaughlin et al. (2024).
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Figure 3.20: ZTF r-band lightcurves of the 13th-16th flare candidates out of the total
27 identified by the GP. The red line shows the lightcurve of the flare candidate and the
grey curves are a randomly-sampled selection of 100 lightcurves that were not flagged
as flares by the GP, demonstrating that they show extreme variability compared to the

rest of the population. These lightcurves have been normalized for ease of visualization
(see §3.6.2). Figure adapted from McLaughlin et al. (2024).
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Figure 3.21: ZTF r-band lightcurves of the 17th-20th flare candidates out of the total
27 identified by the GP. The red line shows the lightcurve of the flare candidate and the
grey curves are a randomly-sampled selection of 100 lightcurves that were not flagged
as flares by the GP, demonstrating that they show extreme variability compared to the
rest of the population. These lightcurves have been normalized for ease of visualization
(see §3.6.2). Figure adapted from McLaughlin et al. (2024).
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Figure 3.22: ZTF r-band lightcurves of the 21st-24th flare candidates out of the total
27 identified by the GP. The red line shows the lightcurve of the flare candidate and the
grey curves are a randomly-sampled selection of 100 lightcurves that were not flagged
as flares by the GP, demonstrating that they show extreme variability compared to the
rest of the population. These lightcurves have been normalized for ease of visualization
(see §3.6.2). Figure adapted from McLaughlin et al. (2024).
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Figure 3.23: ZTF r-band lightcurves of the 25th-27th flare candidates out of the total
27 identified by the GP. The red line shows the lightcurve of the flare candidate and the
grey curves are a randomly-sampled selection of 100 lightcurves that were not flagged
as flares by the GP, demonstrating that they show extreme variability compared to the
rest of the population. These lightcurves have been normalized for ease of visualization
(see §3.6.2). Figure adapted from McLaughlin et al. (2024).



Chapter 4

Flare localisation within a lightcurve

4.1 Introduction

Up until this point in the thesis, my flare detection technique using Gaussian Processes
(GPs: see Chapter 3) has looked at AGN lightcurves in their entirety and as such
sought to determine whether a given entire AGN lightcurve differs statistically from
the rest of the AGN population. This was achieved by fitting a GP to each AGN
lightcurve individually and therefore obtaining the optimised hyperparameters for the
entire lightcurve. These hyperparameters, which represent the overall variability of the
lightcurve, have therefore been used as a summary statistic with which to compare a given
AGN lightcurve against the rest of the population to determine whether the variability
deviates significantly from the norm. In Chapter 3, I show that this technique is a viable
means to distinguish lightcurves potentially containing AGN flares from the rest of the
population. It is important to note here that this analysis provides the ability to predict
that a given AGN lightcurve likely contains a flare, but not the ability to determine
exactly which feature within that lightcurve has been identified as a potential flare (or

indeed, the location of the flare within the lightcurve).

At face-value, flare detection in this way using a summary statistic of the entire

91
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lightcurve is perfectly reasonable. If one’s goal is simply to flag an object for follow-up
after a GP fit to its lightcurve suggests that it is extremely variable compared to the rest
of the AGN population, then this technique need not necessarily be developed further.
However, there is justification for the community to aspire to detect AGN flares as they
happen, to enable rapid follow-up observations for the purpose of understanding the
extreme physics of the central black hole feeding. With this in mind, with the intention of
developing a flare detection technique that is suitable for “real-time” AGN flare detection
in advent of upcoming high-cadence surveys such as the Rubin Observatory Legacy
Survey of Space and Time (LSST: Ivezi¢ et al., 2019), there are still two key questions

that one might like to address, for example:

1. Can we determine exactly when a flare actually occurs, i.e., its location within a

lightcurve?
2. How early into a flare are we able to detect it?

Since one of the main science drivers of the LSST is “Exploring the Transient Optical
Sky” and the survey expects an average of 10 million transient alerts per night (Ivezi¢
et al., 2019), there is a need for rapid classification and follow-up by the community.
With this in mind, I felt it important to alter my GP-based flare detection system to
analyse AGN lightcurves in a more localised fashion in order to investigate the above
questions. My research up to this point in the thesis has been able to determine if a given
lightcurve is likely to contain a flare, but this chapter concerns itself with the ability to
determine at exactly what point within that lightcurve does the flare occur and hereafter
I refer to this as flare localisation.

To investigate flare localisation and prepare for upcoming surveys such as the LSST,
in this chapter I outline how I have altered the GP flare detection from Chapter 3 to
analyse both simulated and real AGN lightcurves in an ongoing fashion as more data is

progressively added. The outline of this chapter is as follows: I describe the methodology
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behind flare localisation in §4.2 before presenting the results of the analysis in §4.3. 1

discuss the findings in §4.4 and conclude the chapter in §4.5.

4.2 Flare localisation

In this section I discuss how I utilised a GP to parameterise the variability of an AGN
lightcurve in an ongoing fashion, simulating the effect of receiving new observations from
a survey in real-time. In this way, I step along the lightcurve and I re-evaluate the GP
fit each time a new data point is added. I performed this technique on both simulated
AGN lightcurves and the lightcurves of AGN from the ALPAKA catalogue (ALPAKA:
Mullaney et al., 2013). In the latter case, the lightcurve data were obtained from the
Zwicky Transient Facility Public Data Release 6 (ZTF: Masci et al., 2018; Bellm et al.,
2019). Note that this dataset is the same as that used in Chapter 3 and the reader can
refer to that chapter for the description of the AGN selection and data retrieval. First,
I will provide a reminder for the reader about how GP regression works across an entire
lightcurve and then I will describe how I alter this technique to achieve flare localisation

in both simulated and real AGN lightcurves.

4.2.1 Rolling GP regression

In Chapter 3, a GP was used to produce a summary statistic of the variability of a
given AGN lightcurve. As such, the GP was calculated across the entire lightcurve as
shown in Fig. 4.1. The GP summarises the variability properties for the lightcurve
(hyperparameters: see Chapter 3), which quantify how the AGN is varying over time.
However, in the era of time-domain astronomy, and especially with the advent of high-
cadence surveys such as the LSST, we are going to have the opportunity to detect
transient events such as AGN flares in real-time. As a result, I sought to modify my GP

analysis to simulate the effect of receiving data on an ongoing basis and also to determine
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Figure 4.1: A Gaussian Process (GP) fit to a simulated AGN lightcurve. The red line
shows the predicted mean distribution and the red shaded areas show the uncertainty in
this mean.

whether it is possible to isolate the point at which a flare “goes off”, i.e., the moment at
which the lightcurve deviates significantly from its normal behaviour.

One could imagine “stepping” through a lightcurve and fitting a GP each time a new
data point is added, which in effect looks back through the lightcurve and re-evaluates
the GP variability hyperparameters each time new data is received; this is shown in
Fig. 4.2. This would allow for the possibility of identifying the point at which the
GP hyperparameters deviate significantly from the region of parameter space where
“normal” AGN lie and therefore signal that a flare may be occurring. In a similar vein to
the analysis described in Chapter 3, for each iteration of the rolling GP, the optimised
hyperparameters (when compared with the hyperparameters of the entire AGN sample
in question) can be used to calculate the flare probability on an ongoing basis.

I used this rolling technique to investigate whether GPs can be used for flare loc-
alisation. As in Chapter 3, I first attempt to apply this approach to simulated AGN

lightcurves to investigate the feasibility and then I test the approach on the real ZTF
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Figure 4.2: A rolling Gaussian Process fit to the first seven points in a simulated AGN
lightcurve in succession. The red line shows the predicted mean distribution and the red

shaded areas show the uncertainty in this mean.
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lightcurves from the ALPAKA AGN catalogue (Mullaney et al. 2013, see Chapter 3).
In Chapter 3 I used Bayesian hypothesis testing to determine the probability of a new
lightcurve belonging to either the flare ( = 1) or non-flare (§ = 0) populations. In that
approach, the posterior probability of a lightcurve containing a flare or not is described

(according to Bayes’ theorem) as:

P(a,p,0y) < P(ylo, p)P(o, p|0) P(0), (4.1)

where o and p are the kernel hyperparameters, y is the data, and P(0) is defined as a

“hyper prior” (McLaughlin et al., 2024).

This is a statistically robust means of quantifying the probability that a given light-
curve contains a flare, but since this method utilises Markov Chain Monte Carlo (MCMC)
sampling to sample the posterior probability distribution it is too computationally ex-
pensive to apply in a rolling fashion every time a new data point is added to a lightcurve.
To circumvent this issue, the calculation of the flare probability can be simplified without
loss of statistical rigour (provided the “probability” is viewed simply as a means to flag
extreme variability rather than a true probability, see later). Under this name, the flare

probability can be calculated as follows:

P(a, pl0;)P(0y)
(0,p05)P(05) + P(0, pl0) P(0)’

P(sly) = (42)

where 0 and 0 refer to the flare and non-flare regions of hyperparameter space respect-
ively. This equation is simply a normalised ratio of the prior probability distributions of
the non-flaring lightcurves and the flaring lightcurves. I refer to this ratio as a “probab-
ility” despite it not being a true probability; it is not statistically meaningful on its own
as it is not “fully” Bayesian (i.e., the full Bayes’ Theorem in Eq. 3.5), but as long as one
understands this nuance, it is reasonable to use this value as an alert or as a measure

of the likelihood that a lightcurve is flaring. This is because it is a direct measure of
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the discrepancy between the likelihood that the lightcurve belongs to the “normal” AGN
population and the likelihood that it belongs elsewhere (i.e., to the flaring region).!
Using this technique, I applied the rolling GP to both the sample of 10 000 simulated
AGN lightcurves with and without injected flares and the 9035 real ZTF lightcurves
from the ALPAKA catalogue (see Chapter 3 for details of these samples and their cor-
responding hyperparameter distributions). I realised that during early times where few
data points in the lightcurve had elapsed, the GP was returning unphysical hyperpara-
meters and on closer inspection the GP fit to the data was spurious. As a result, a
minimum length for the rolling GP was chosen to be 30 data points to ensure that the
resulting hyperparameters were reliable (i.e., to minimise disruption due to irregular
cadence and outliers and to provide enough data points to allow the GP fit to “settle”
into a stable covariance). After the window of 30 data points is elapsed, the GP is re-
evaluated after each new data point is fed into the lightcurve and the hyperparameters
updated. Using Eq. 4.2, the flare probability is calculated after each new data point is
added and therefore the flare probability can be tracked against time to determine when
a flare may be occurring. In Section 4.3 I discuss the results of this technique in the case

of both simulated and real AGN lightcurves.

4.3 Results

In this section I outline the results of the GP-based flare localisation technique described
above. First, I show that it is possible to trace flare probability against time in the case
of regularly-sampled simulated AGN lightcurves and that this technique can be used to

isolate the point at which a flare occurs (§4.3.1). Secondly I show that despite the effects

'For further clarity, the “flare probability” P(6¢|y) is referred to as a probability because it has been
normalised to always lie between zero and one, which is essentially a means of finding the dominant
probability (between that of the “normal” AGN region and the flaring region and the simulated lightcurve
hyperparameters can be used to calibrate this). The use of the flare probability is suitable therefore as
an alert but cannot be used in any further statistics and therefore the reader may wish to refer to it as
a metric rather than a probability.
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of irregular cadence and outliers that come with moving from simulated data to real
data, this technique is still effective in real ZTF AGN lightcurves from the ALPAKA
catalogue (§4.3.2) with and without injected simulated Gaussian flares. Finally I show
how the rolling flare probability varies with time in the case of the 27 potential flares

that were identified in Chapter 3.

4.3.1 Simulated lightcurves

Before presenting broader results from analysing the full sample of simulated lightcurves,
I first present a singular example of the results of flare localisation to clarify the method-
ology described in §4.2.1. Fig. 4.3 shows how flare localisation allows for the tracking of
flare probability against time. In this plot, a simulated AGN lightcurve with a sampling
of 10 days and an injected flare at day 1100 is shown, with the rolling flare probability
calculated using Eq. 4.2 also shown. It is clear that as more of the flare elapses, the
flare probability increases. This is further illustrated in Fig. 4.4, which shows the path
that the same lightcurve’s hyperparameters take with respect to the hyperparameter
distributions of simulated flares and non-flares from Chapter 3. This shows that as more
data points in this lightcurve are included in the analysis, the hyperparameters move

further into the flaring (orange) region.

Now that it has been established that flare localisation using this rolling GP technique
is a viable means of tracking flare probability as new data points are received in real-
time, it is important to ascertain some statistics about the full sample. This is especially
important since Fig. 4.3 demonstrates that this approach works in an ideal case (i.e., a
simulated lightcurve with regular cadence) but is not necessarily representative of normal
behaviour; key questions remain, such as how the full sample is distributed. Fig. 4.5
shows the distribution of the magnitude deviation from zero at which the flare probability

exceeds 0.99. In other words, this demonstrates at what level of deviation does the flare
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Figure 4.3: A simulated AGN lightcurve with an injected Gaussian flare at 1100 days
in blue with its rolling flare probability shown alongside in red.
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Figure 4.4: Distributions of flare and non-flare hyperparameters for well-sampled sim-
ulated lightcurves with injected Gaussian flares (see Chapter 3). The black line shows
the path that the rolling hyperparameters of the simulated AGN lightcurve from Fig.
4.3 take in this parameter space and the arrow is indicating its direction, showing that
as more data points in this lightcurve are elapsed, the hyperparameters move further
into the flaring (orange) region.
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Figure 4.5: Distribution of the magnitude deviation from zero of each lightcurve where
the flare probability exceeds 0.99. Lightcurves where the point at which P,pe > 0.99
does not coincide with the injected flare location (£ 300 days) are considered false
positives and are shown in orange.

localisation technique predict a very high likelihood of flare activity. The distribution
has a median value of 1.4, demonstrating that most simulated flares are successfully
detected by the time their amplitude reaches this value. Note that there are lightcurves
at very small magnitude deviations (< 0.5), which are false-positives in this case. Out
of the 10000 simulated lightcurves, the lightcurves with magnitude deviations below 0.5
represent 910 or 9.1 per cent.

Since I know the locations within the simulated lightcurves at which I injected Gaus-
sian flares into, I investigated whether the flare localisation technique is effective at
retrieving the locations of the flares. Figure 4.6 shows the distribution of the differences
between the actual injected flare peak and the point in the lightcurve at which the flare

probability exceeds 0.99. The majority of the differences are less than 1 day (8490),
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Figure 4.6: Distribution of the difference between the actual injected flare location
and the point in the lightcurve at which the flare probability exceeds 0.99. Note that
negative values indicate the number of days before the peak of the flare and therefore
positive values indicate that the flare has been detected after its peak.

which corresponds to 85 per cent of the lightcurves being detected within one day of

their peak.

4.3.2 ZTF lightcurves

My investigation into flare localisation has so far has been concerned with simulated AGN
lightcurves with a 10-day cadence. Of course, in reality, the data from future surveys will
be subject to observational effects such as irregular cadence and outliers (see Chapter
3). Therefore it is important for this technique to be tested on real data. This section
outlines the results of the flare localisation technique on real ZTF lightcurves from the

ALPAKA catalogue with injected Gaussian flares, and then I present the lightcurves and
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Figure 4.7: Cumulative histogram showing the injected flare amplitude at the point at
which the flare probability exceeds 0.9.

corresponding rolling flare probabilities of the 27 flare candidates that were identified in
Chapter 3.

Fig. 4.7 shows the cumulative distribution of the injected flare amplitude when the
flare probability exceeds 0.9. Note that the threshold probability has been reduced from
0.99 in §4.3.1 to 0.9 to account for the fact that the GP is now being applied to real
lightcurves with “flaws” (irregular cadence and outliers). When the threshold of 0.99 was
used, many injected flares were not retrieved. Fig. 4.8 shows the same plot expressed
as a fraction of injected flare height. More than half (64 per cent) of lightcurves with
injected flares never achieved a flare probability of 0.9 and were therefore not detected
using this threshold. Of the remaining 36 per cent of lightcurves with injected flares that

were detected, 48 per cent were detected before the flare amplitude exceeded 1 magnitude
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Figure 4.8: Cumulative histogram showing the fraction of injected flare amplitude at
the point at which the flare probability exceeds 0.9.

and 88 per cent were detected before the flare amplitude exceeded 2 magnitudes. Since
the injected flares were randomly assigned amplitudes between 1 and 2.5 magnitudes,
Figure 4.8 expresses Figure 4.7 as a fraction of injected flare height. This shows that
of the 36 per cent of injected flares that were detected, all of these flares were detected
before their peak and 44 per cent of the flares were detected before the flare amplitude
had reached half of its peak.

Finally, I present some flare localisation results from comparing the 27 flare candid-
ates from Chapter 3 to a sample of randomly-selected ZTF lightcurves from the same
parent sample that were not flagged as flares by the Chapter 3 analysis. Fig. 4.9 shows
the distribution of the maximum flare probability achieved at any point within the light-

curve for both the 27 ZTF flare candidates from Chapter 3 and a randomly-selected
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sample of 500 ZTF lightcurves that were not flagged as flares by the same analysis. The
distribution shows that a significant proportion of AGN lightcurves never achieve a prob-
ability greater than 0.2, which can be used as a “cutoft” probability below which one can
be confident that flare activity is not occurring in those lightcurves. Importantly, there
is also a significant number of non-flaring ZTF lightcurves that achieve a maximum flare
probability close to 1, representing false positives in the sample. To further investigate
these false positives, Fig. 4.10 shows the distributions of the number of data points
elapsed before the chosen cutoff probability 0.2. In this plot, it is clear that the vast
majority of false positives result in a high flare probability very early in the lightcurve
and therefore the GP fit at this stage can be spurious due to low numbers of data points.
These spurious detections can be weeded out by placing a threshold on the number of
data points in the lightcurve required to constitute a flare detection.

To finalise my flare localisation results, in Figs. 4.11, 4.12, 4.13 and 4.14 I present the
lightcurves of the 27 ZTF flare candidates from Chapter 3 along with their corresponding

rolling flare probabilities from the localisation analysis.
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Figure 4.9: Distribution of the maximum flare probability achieved at any point in the
lightcurve. The orange bars are members of the ZTF flare sample identified in Chapter
3 and the blue bars are a sample of 500 randomly-selected ZTF lightcurves that were
not flagged as flares by previous GP analysis.
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Figure 4.10: Of the lightcurves from Fig. 4.9 that achieve a flare probability exceeding
0.2, this is a plot of the distributions of the number of data points elapsed before the
flare probability exceeds 0.2. The orange bars are members of the ZTF flare sample
identified in Chapter 3 and the blue bars are a sample of 500 randomly-selected ZTF
lightcurves that were not flagged as flares by previous GP analysis.



Chapter 4: Flare localisation within a lightcurve 108

—1.5 —1.5
—-1.0 1.0 ~10 1.0
v v
2-05 23 05 £
s 5 g 3
[0 © o0 13
© Q2 o 2
€ 0.0 0.5 g- € 0.0 0.5 g
2 o 2 o
& 05 s % 05 5
5} L3 o
o o )
10 0.0 L0 T s s 0.0
15 58200 58400 58600 58800 59000 59200 1'058200 58400 58600 58800 59000 59200
Modified Julian Date Modified Julian Date
—-1.5 —1.5
~1.0 10 -10 1.0
L [
205 23 05 )
c Q2 f= e
& 8% ¥ 2
g 00 0592 € 00 W 059
v ] ¥ o
3 o 2 | g <
o 0.5 g = 0.5 [ =
o o M . ,,.»f
L0 0.0 L0 0.0
14 5
15 58200 58400 58600 58800 59000 59200 15 58200 58400 58600 58800 59000 59200
Modified Julian Date Modified Julian Date
—1.5 —1.5
-1.0 Y -1.0 Y
ﬂ) L
205 2 3 05 z
e oL 5 g 3
o0 kX X © o0 ©
© XX & P Q2 © 2
€ 0.0 X W 0.5 % g€ 0.0 " 0.5 g
2 M\K o 2 R T Al ‘ °
5 05 MJ}NL._J . & & 05 =
E; / . il * L VI B
1.0 0.0 1.0 M 0.0
15 58200 58400 58600 58800 59000 59200 1'J58200 58400 58600 58800 59000 59200
Modified Julian Date Modified Julian Date
—-1.5 —-1.5
~1.0 1.0 ~1.0 1.0
4 N . >
205 . £ 2-05 2
= Q c 2
& 8% 2
£ 00 059 € 00 059
v ] o
$ { v 2 v
E: 0.5 7}\&%4* 5 = E: 0.5 N =
1.0 ] 00 1.0 w 00
14 5
1‘\)58200 58400 58600 58800 59000 59200 15 58200 58400 58600 58800 59000 59200
Modified Julian Date Modified Julian Date

Figure 4.11: Optical r-band lightcurves of the first eight out of the total 27 flare
candidates identified in Chapter 3. The lightcurve is shown by the blue points and the
orange points show the corresponding rolling flare probability calculated by the flare
localisation analysis.
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Figure 4.12: Optical r-band lightcurves of the 9th—16th out of the total 27 flare candid-
ates identified in Chapter 3. The lightcurve is shown by the blue points and the orange
points show the corresponding rolling flare probability calculated by the flare localisation
analysis.
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Figure 4.13: Optical r-band lightcurves of the 17th—24th out of the total 27 flare
candidates identified in Chapter 3. The lightcurve is shown by the blue points and the
orange points show the corresponding rolling flare probability calculated by the flare
localisation analysis.
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Figure 4.14: Optical r-band lightcurves of the 25th—27th out of the total 27 flare
candidates identified in Chapter 3. The lightcurve is shown by the blue points and the
orange points show the corresponding rolling flare probability calculated by the flare
localisation analysis.

4.4 Discussion

In this chapter I have shown that flare localisation using GPs is a viable means of
detecting flares in real-time in both simulated and real AGN lightcurves, which is crucial

in the coming era of time-domain astronomy.

I have shown that in well-sampled simulated AGN lightcurves with injected flares,
the flares can be retrieved by tracking the ongoing flare probability against time (Fig.
4.3). This is supported by the fact that an injected flare can cause the lightcurve’s
hyperparameters to move through parameter space from the “normal” population to the
flare region (Fig. 4.4).

From analysing the results of the localisation technique on the full sample of simulated
lightcurves with injected flares, it is clear that this method is still subject to a number

of false positives (between 5-10 per cent), though this is due to the fact that at early
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times with few data points the GP fit can be unreliable. Despite this, the majority of
injected flares (55 per cent) were detected by the time the flare amplitude had exceeded
1.5 magnitudes (Fig. 4.5) and the vast majority of injected flares (85 per cent) were
detected before their peak (Fig. 4.6). This suggests that flare detection in real-time as
data comes in is indeed viable using this technique, provided that enough data points
have elapsed prior to the flaring event to result in a trustworthy GP fit?.

Figs. 4.7 and 4.8, although they display the results of real ZTF lightcurves with in-
jected flares rather than simulated lightcurves, show that, as one would expect, greater
amplitude flares are easier to detect and 44 per cent of injected flares (that have been
successfully detected) are detected after the flare amplitude has reached half of its max-
imum height. However, more than half of the injected flares (64 per cent) were not
detected using a probability threshold of 0.9. This suggests that a probability of 0.9
(already reduced from 0.99 to take into account the effects of cadence and outliers) is
still too stringent for achieving a high flare retrieval rate. Of those flares that were detec-
ted, however, 100 per cent were detected before their peak (Fig. 4.8), which is promising
if one considers the importance of rapid flare detection for the purpose of follow-up.

The key findings of this chapter are shown in Figs. 4.9 and 4.10. These results are
important because they demonstrate two crucial points to consider when using this flare
localisation technique: above what flare probability do you consider to be a detection,
and what constitutes a reliable detection? Fig. 4.9 shows the distribution of maximum
flare probability achieved in a sample of known flares® compared with a randomly-selected
sample of non-flares. From this plot it is clear that a significant proportion of non-flares
never exceed a probability of 0.2 and therefore this value can be considered a cut-off

point above which is considered to be a flare detection to be flagged for follow-up. This

2Quantifying what constitutes a “good” or “bad” GP fit in order to systematically remove poor
fits from ones analysis is not straightforward, even when it is obvious in individual cases by human
inspection. This is a problem I consider worth investigation and I discuss ways in which this could be
explored further in Chapter 6.

34.e., flare candidates identified from the GP analysis in Chapter 3.
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probability cut-off can obviously be altered depending on whether one is more interested
in the completeness or purity of one’s sample. Fig. 4.9, however, shows a significant
number of false positives (non-flare lightcurves that achieve a maximum flare probability
close to one) and these are investigated in Fig. 4.10. From this plot it is clear that if one
relies solely on flare probability to make a detection, this will result in a large number
of spurious detections and therefore the second important factor to consider here is the
reliability of the detection (in this case, the number of data points elapsed). With this
in mind, Fig. 4.10 shows that any flare detections made in a lightcurve in which fewer

than 80 data points have elapsed may be false-positives as a result of a bad GP fit.

In Figs. 4.11, 4.12, 4.13 and 4.14 I present the lightcurves of the 27 ZTF flare
candidates from Chapter 3 along with their corresponding rolling flare probabilities from
the localisation analysis. In many cases, it can be seen how the rolling GP is unstable at
early times, resulting in an artificially high flare probability. This reinforces the findings
shown in Figs. 4.9 and 4.10, which highlights the importance of taking into account the
number of data points elapsed before one can “trust” a flare detection by the localisation
analysis. After an unstable period in the beginning of the lightcurve, the flare probability
stabilises once the GP has enough data points to generate a reliable fit to the data. Many
of the lightcurves do exhibit an increase in flare probability as the lightcurve evolves,
but at much lower values than the threshold of 0.9 placed in the case of Figs. 4.7 and
4.8, which confirms my suspicions that this threshold is too stringent in the presence of
observational effects such as cadence and outliers. Thirteen of the 27 lightcurves achieve
the aforementioned flare probability of 0.2, which was decided to be a suitable cutoff

after considering Fig. 4.9.
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4.5 Conclusions

The aim of this chapter has been to investigate the feasibility of adapting my GP-based
flare detection technique from Chapter 3 — where my analysis resulted in the ability
to determine whether or not a given AGN lightcurve contains a flare — to allow for
the possibility of flare localisation whereby a flare can be detected in real-time and its
location within the lightcurve identified.

In §4.2 T described how I applied the GP to individual lightcurves in a rolling fashion,
constantly updating as new data points were added. By performing a straightforward
calculation (Eq. 4.2) of the ratio between the likelihoods of the resultant hyperpara-
meters belonging to either the “normal” AGN population or elsewhere, I was able to
track the flare probability against time. I used this technique for well-sampled simulated
lightcurves with injected flares (§4.3.1), real ZTF lightcurves with injected flares and real
unadulterated ZTF lightcurves including the 27 flare candidates identified in Chapter §3

(§4.3.2). I summarise the main results as follows:

1. Flare localisation is highly effective at flare detection in well-sampled, simulated
lightcurves and this is supported by the fact that one can witness the lightcurve’s
hyperparameters move through parameter space in real-time away from the “nor-

mal” AGN population (Fig. 4.4 in §4.3.1).

2. In real ZTF lightcurves with injected Gaussian flares, flare localisation is effective

at detecting flares before their peak (§4.3.2).

3. Regarding the unadulterated set of ZTF lightcurves, Figs. 4.9 and 4.10 show that
a cut-off probability of 0.2 is sufficient to successfully detect AGN flares in this
sample but an important caveat is to consider the number of data points elapsed

by that point to prevent spurious detections.

4. T present the lightcurves of the 27 ZTF flare candidates from Chapter 3 along
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with their corresponding rolling flare probabilities and show that the flare local-
isation technique is successful at detecting “abnormal” behaviour in many of these

lightcurves.

With these key findings in mind, in §4.1 I posed the following questions that I will

now address:

1. How can we determine when a flare event actually takes place, i.e., its location

within a lightcurve?

2. How early into a flare are we able to detect it?

To answer question 1, after analysing the rolling probabilities of both non-flaring ZTF
lightcurves and flare candidate ZTF lightcurves (Fig. 4.9), one must choose a probability
cut-off above which a detection will be defined. This cut-off is subjective to the needs of
the intended science case, i.e., whether completeness or purity is preferred, and in this
chapter I defined this to be 0.2 based on my sample.

Question 2 can be addressed by considering Figs. 4.7 and 4.10. In Fig. 4.7 it is clear
that higher-amplitude flares are easier to detect but a significant number of flares can
be retrieved before their peak. This is heavily caveated, however, by Fig. 4.10, which
demonstrates the importance of taking into account the number of data points elapsed
before detection and therefore the reliability of the GP fit, which I have determined from
my sample to be after 80 data points.

As such, I have shown that GP analysis in a rolling fashion to achieve flare localisation
is effective at detecting flares in real-time and is a viable option for transient detection

in the advent of high-cadence surveys such as the LSST.
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Chapter 5

Expanding the sample with the Million

Quasars Catalogue

5.1 Introduction

Up to this point in the thesis, the data that has been used for the flare detection tech-
niques in Chapters 2, 3 and 4 has been the ALPAKA catalogue (see Chapter 2); a sample
of 9035 spectroscopically-selected Type 1 AGN from SDSS (ALPAKA: Mullaney et al.,
2013). This sample has been large enough to investigate the feasibility of using Gaus-
sian Processes for flare detection and to unveil potential flare candidates (see Chapter
3). Taking stock of the work preceding this current chapter, I have demonstrated that
the following is true for a sample of AGN lightcurves of order the size of the ALPAKA

catalogue.

e To disentangle the typical stochastic variability of AGN from a transient signal

(i.e. flare), a statistically robust detection technique is required (Chapter 2).

e Gaussian Processes are a feasible means of determining if a given lightcurve con-

tains a flare (Chapter 3).
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e Gaussian Process analysis is also capable of identifying exactly when a flare occurs

within its lightcurve (Chapter 4).

The ALPAKA sample is not, however, comparable to the sheer amount of data that
will be made available by LSST in the coming years, with estimates predicting over 10
million transient alerts per night, and certainly millions of observable AGN (Ivezi¢ et al.,
2019, see Chapter 1). If one considers these unprecedented amounts of data, combined
with the fact that flares are generally estimated to be extremely rare (for example, van
Velzen 2018 place an estimate of the flare rate to be approximately 1074 —10"°gal 'yr~1),
it is clear that my GP analysis would benefit from a much larger sample size of the
order one million. This larger sample size would (a) allow for an investigation as to
whether GP analysis (as in Chapter 3) can handle this volume of data without being
too computationally expensive, (b) provide a much larger sample of objects to increase
the chances of identifying potential flares and (c) provide the added benefit, depending
on the properties of the sample, of probing different regions of parameter space and
hence AGN properties. For this purpose, I chose to perform the GP analysis outlined in
Chapter 3 on the Million Quasars Catalogue (MILLIQUAS: Flesch, 2023), a sample of
907 144 Type 1 quasars and AGN which I describe in more detail in §5.1.1.

The outline of this chapter is as follows: in §5.2 I describe the methodology used to
analyse MILLIQUAS with my GP flare detection technique, before describing the results
in §5.3. Then I discuss my findings in §5.4 and compare the results with those found

analysing the ALPAKA catlogue in Chapter 3 and present concluding remarks in §5.5.

5.1.1 The Million Quasars Catalogue

The Million Quasars Catalogue developed by Flesch (2023) is a compendium of 907 144

Type 1 quasars and AGN which is available online'. 66026 QSO candidates are also

thttps:/ /heasarc.gsfc.nasa.gov/W3Browse /all /milliquas.html
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included by radio or X-ray association. Blazars and Type 2 objects are also included,
bringing the total count to 1021800 objects. The sample is heterogeneous (i.e., an
accumulation of most AGN detections in the literature up to June 2023) and is made
up of optical, spectroscopically selected objects, mostly selected based on broad lines. A

significant proportion of these AGN are from SDSS.

5.2 Methodology

To analyse the MILLIQUAS catalogue, their optical r-band lightcurves were downloaded
from ZTF Data Release 23 which was made available in October 2024 (ZTF: Bellm
et al., 2019; Graham et al., 2019). A total of 964 280 lightcurves of the above 1021800
were available and downloaded. Following this, Gaussian Process regression was used
to determine the optimum variability parameters (hyperparameters) of each individual
lightcurve. This technique is identical to that used in §3.4 in Chapter 3 but to remind
the reader, I will briefly reiterate the method. The prior used in this case is a covariance
matrix called a kernel; specifically, I use a Matérn-3/2 kernel which describes stochastic
variability and is representative of the random nature of AGN variability (Griffiths et al.,
2021). The covariance of this kernel is outlined in Equation 3.1

Exactly as described in §3.4 of Chapter 3, a GP with the above kernel is fit to
each individual lightcurve in MILLIQUAS. The GP does this by calculating all of the
possible functions that can both (a) describe the data while taking its error bars into
account, and (b) be feasibly produced by the underlying kernel function (i.e., functions
that are representative of stochastic variability). From these calculations, a “best fit”
mean function can be generated, which is determined to be the most likely fit given
the data; the current hyperparameters of the kernel (o and p from Eq. 3.1) that have
generated that best fit function are returned. Each individual lightcurve therefore has

its own unique set of hyperparameters that describe how the lightcurve is varying and
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these hyperparameters can be thought of as a summary statistic of the data. For each
of the 964 280 MILLIQUAS lightcurves downloaded, I used the GP with this Matérn-
3/2 kernel to produce the optimised hyperparameters in each case and in the following

section I describe the resulting hyperparameter distributions found.

5.3 Results

In this section I present the optimised hyperparameters returned by the GP for the
MILLIQUAS catalogue and I compare them with the distributions of the ALPAKA
catalogue. Figure 5.1 shows the optimised hyperparameters o and p from Eq. 3.1 of
the MILLIQUAS catalogue. There is significant variation across both axes, with the
characteristic timescale log(p/day) varying from 8 to -8. The figure is dominated by
objects with log(c/mag) between -5 and 0. There is also a significant proportion of
objects residing within the left hand side of the plot, indicating that these lightcurves
show very low amplitudes of variability where log(c/mag) < -6. Objects in the far right
hand side of the plot beyond values of log(c/mag) > 1 indicate extreme variability.
Fig. 5.2 shows the hyperparameters of the MILLIQUAS catalogue with the hyper-
parameters of the ALPAKA catalogue for comparison. The distributions exist in similar
regions of parameter space, the major differences being that the ALPAKA distribution
sits slightly further left in the plot compared to the central MILLIQUAS distribution, in-
dicating smaller amplitude variations and the MILLIQUAS distribution peaks at slightly
longer timescales log(p/day). Considering the MILLIQUAS sample contains quasars,
which are known to be a more luminous subtype of AGN (Peterson & Burbidge, 1998),
of the order 100 times brighter than typical AGN and with lower amplitudes of vari-
ability (Ulrich et al., 1997), this initially seems surprising, but it is important to note
that MILLIQUAS does not comprise of only quasars and it also contains Type 1 AGN;

the comparison is not necessarily valid. Also, it is possible that the sheer size of the
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Figure 5.1: Distribution of the optimised hyperparameters ¢ and p for the Million

Quasars Catalogue, excluding any objects with less than 30 data points. The contours
are representative of the density of the data points.
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MILLQUAS sample means that it covers the full range of possible parameter space, and
that the ALPAKA sample merely subsamples that same parameter space. To investigate
whether this is the case, I randomly downsampled MILLIQUAS to the size of ALPAKA
to make for a fairer comparison and this is shown in Fig. 5.3. The difference in mean
variability amplitude is still evident post-downsampling and is not simply a symptom
of the large difference in sample sizes skewing the mean. The other notable difference
in the two distributions is the presence of a number of MILLIQUAS objects in the far
left side of the plot with log(c/mag) < -6, which is indicative of very low variability
amplitudes. This demonstrates that this population of objects is a feature of the MIL-
LIQUAS distribution that is not present in the ALPAKA sample. On closer inspection
this is a result of bad GP fits, often as a result of chaotic or extremely poor cadence
(e.g., lightcurves with very few data points). This indicates that the GP analysis is still
very much susceptible to unreliable or sporadic cadence and this needs to be taken into
account before trusting the resulting hyperparameter values, or corrected for as a data
preprocessing step.

In Chapter 3, flare candidates were identified by combining the requirements that: (a)
the lightcurve had a probability of containing a flare of above 0.1 as a result of Bayesian
hypothesis testing (see §2.5 of Chapter 3) and (b) that the value of log(c/mag) was
greater than -2 (to ensure that the flare candidate is indeed in the region of parameter
space where amplitudes are greater). Since in this current chapter I have not applied
Bayesian hypothesis testing? to the MILLIQUAS dataset and instead obtained only the
optimised hyperparameters of the lightcurves, a probabilistic cutoff for flare candidate
selection is not possible. The initial flare selection criterion of log(c/mag) was to be set
the same as that in Chapter 3 as greater than -2, but this resulted in too many flare can-

didates to investigate (291 249 out of 514 333, corresponding to 57 per cent of the sample).

2The Bayesian hypothesis testing undertaken in Chapter 3 utilises Markov-Chain Monte Carlo and
is therefore slow and computationally expensive. Later, in Chapter 4, I show that the technique is not
needed and a more straightforward, faster calculation can be made as a proxy for flare probability.
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Figure 5.2: Distributions of the hyperparameters ¢ and p for the Million Quasars

Catalogue (blue) and the ALPAKA catalogue (orange). The contours are representative
of the density of the data points.
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Instead, the criterion on log(c/mag) was set to a value that resulted in a comparable
fraction of flare candidates than that achieved using a cutoff of log(o/mag) > —2 for
ALPAKA (which is 11 per cent). The resulting choice for log(c/mag) leading to 11 per
cent of the MILLIQUAS sample to be defined as flare candidates is log(c/mag) > —1.3.
With this criterion, 58 100 potential flare candidates were identified. The lightcurves of
a randomly-selected sample of 30 of 58 100 these objects is shown in Figs. 5.4, 5.5, 5.6,
5.7 and 5.8. This sample of 30 flare candidates is comparable in sample size to the 27
flare candidates identified by the analysis in Chapter 3. On inspection it is clear that
whilst some of these lightcurves are indeed highly variable, there is a significant number
of lightcurves that are not significantly variable by AGN standards (i.e., a few tenths of
a magnitude: Sesar et al., 2007) and a number of lightcurves contain potential outliers,
which are likely due to observational effects rather than a flare, since they only affect

one or two data points.
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Figure 5.4: ZTF r-band lightcurves of the first six out of the total 30 flare candidates
identified from the Million Quasars Catalogue using a cutoff of log(c) > —1.3.
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Figure 5.5: ZTF r-band lightcurves of the 7th-12th out of the total 30 flare candidates
identified from the Million Quasars Catalogue using a cutoff of log(o) > —1.3.
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Figure 5.6: ZTF r-band lightcurves of the 13th-18th out of the total 30 flare candidates
identified from the Million Quasars Catalogue using a cutoff of log(c) > —1.3.
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Figure 5.7: ZTF r-band lightcurves of the 19th-24th out of the total 30 flare candidates
identified from the Million Quasars Catalogue using a cutoff of log(c) > —1.3.
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Figure 5.8: ZTF r-band lightcurves of the 25th-30th out of the total 30 flare candidates
identified from the Million Quasars Catalogue using a cutoff of log(c) > —1.3.
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5.4 Discussion

The hyperparameter disribution of the MILLIQUAS catalogue exists in a similar region
of parameter space as the ALPAKA catalogue (Fig. 5.2). The key differences are that
the mean of the central MILLIQUAS distribution is further to the right of that of the
ALPAKA distribution, indicating that the amplitudes of variability are greater on av-
erage. Since MILLIQUAS is made up of both quasars and Type 1 AGN, conclusions
can not necessarily be drawn about how this corresponds to the fact that quasars are
generally less variable than other types of AGN (Ulrich et al., 1997). As shown in Fig.
5.3, this difference is not resolved by downsampling MILLIQUAS to the same size as
ALPAKA to account for the stark difference in sample size, and this difference in mean is
a product of the data. The second difference is the presence of a number of MILLIQUAS
objects in the far left region of the hyperparameter distributions where logo/mag < -6
indicating very low levels of variability. This was investigated and found to be a result of
irregular or sparse cadence, leading to poor GP fits. This indicates that the GP analysis
is still very much susceptible to unreliable or sporadic cadence and this needs to be taken
into account before trusting the resulting hyperparameter values. It is curious that the
mean amplitude of the MILLIQUAS distribution is greater than that of ALPAKA, given
the understanding that quasars are less variable than standard AGN (e.g., Kelly et al.,
2009); this analysis could be enriched by removing the AGN from MILLIQUAS, and
comparing a sample of pure MILLIQUAS quasars to ALPAKA to see if this is still the

case and the implications.

The lightcurves of the 30 flare candidates (Figs. 5.4-5.8) overall do not show par-
ticularly compelling evidence of flare activity. There are a few examples of potential
extreme variability, but the majority are typical of AGN variability and contain ob-
servational outliers, which have been flagged by the GP as extreme. Furthermore, the

majority of these lightcurves are approaching the ZTF r-band magnitude limit (20.8:
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see Bellm et al., 2019) and are potentially unreliable — this may explain why they have
been erroneously flagged as flares by the GP analysis (see §1.4.1 for caveats of forced
photometry). To put these findings into perspective, using the retrieval rates calculated
in Chapter 3 where a false positive rate of 6.5 per cent was found (see Fig. 3.14), it is
not surprising at this stage that a sample of 30 flare candidates out of 58 100 lightcurves
did not contain any viable flares. This is reinforced by the estimated incidence of real
flares (e.g., 107* — 10~°gal 'yr~': van Velzen, 2018). What these findings do suggest,
however, is that more stringent quality control is required to ascertain a purer sample of
flares. To investigate this, I placed a requirement on log(c/mag) to be between + 0.5,
in an attempt to remove lightcurves with extreme hyperparameters as a result of bad
GP fits. This resulted in a total of 844 candidates. Again, however, a significant pro-
portion of these lightcurves were false positives due to outliers, cadence effects and bad
GP fits. Through human inspection, I identified that 38 out of the total 844 lightcurves
contained potential flare activity. I present the lightcurves of eight examples out of the
total 38 that show potential extreme variability or flare activity in Figs. 5.9 and 5.10.
This shows that there are identifiable flare candidates using this technique, but they
are overshadowed by the sheer number of false positives if quality control is not applied
a priori. This quality control should include the rejection of: spurious GP fits, poorly
sampled lightcurves, and lightcurves close to the ZTF r-band magnitude limit of 20.8.
The identification of 38 flare candidates out of a sample of 844 lightcurves corresponds
to a purity of 4.5 per cent, which is a significant improvement from the rough estimate

of the purity rate before quality control measures (< 30/58 100 ~ 0.05%).

It is clear, as above, that this technique is subject to the following limitations: poorly-
sampled lightcurves (with few data points), sporadically-sampled lightcurves (with large
gaps in the data), observational outliers, and unreliable data as a result of forced pho-
tometry upper limits. Each of these issues potentially result in poor GP fits and hence

spurious hyperparameters. However, upon applying quality control measures, the purity
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Figure 5.9: The first four examples of the ZTF r-band lightcurves of the flare candidates

identified from the Million Quasars Catalogue setting a requirement on log(c/mag) to

lie between +0.5.
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Figure 5.10: A second sample of four examples of the ZTF r-band lightcurves of the

flare candidates identified from the Million Quasars Catalogue setting a requirement on

log(o/mag) to lie between +0.5.
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of the final sample of flare candidates can be significantly improved. The visual inspec-
tion of the 844 lightcurves was feasible for one person to undertake in two hours, which
means that human inspection is a viable tool for further flare classification. Indeed, this
process could be scaled accordingly for proportionately larger sample sizes by utilising
e.g., citizen science. The true positive rate achieved (4.5 per cent) could be further
improved by more stringent quality control measures as mentioned above, such as re-
jecting spurious GP fits, poorly sampled lightcurves, and lightcurves close to the ZTF
r-band magnitude limit. In terms of improving the GP analysis to be resistant against
outliers, this is less straightforward. Data smoothing or interpolation techniques have
the potential to reduce the impact of individual outliers on the overall GP fit, but these
techniques must be carefully applied to take into account the stochastic nature of AGN
variability itself. Further suggestions on improving GP fits and finding ways to filter out

poor fits, and other quality control measures are discussed in more detail in Chapter 6.

5.5 Conclusions

In this chapter I utilised the GP analysis from Chapter 3 on a much larger sample
than previous (964 280 AGN lightcurves compared to 9035). I used the Million Quasars
Catalogue (Flesch 2023: referred to as MILLIQUAS throughout this Chapter) to achieve
this, whereby I fit a GP with a kernel function describing AGN variability (Matérn-3/2:
see Eq. 1.4) to each individual lightcurve in the catalogue and analysed the resulting
optimised hyperparemeters that summarise the lightcurve’s variability.

I confirmed the findings of Chapter 3 in that I have shown that GP analysis in this
capacity is a suitable means of encapsulating the variability of an AGN lightcurve in a
statistically robust manner; to this end I found that the sample of Type 1 AGN from
ALPAKA exist in a similar region of parameter space as the MILLIQUAS sample.

Upon identifying flare candidates, since in this chapter I did not utilise the Bayesian
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hypothesis testing technique from Chapter 3 to assign a probability to each lightcurve,
I placed a selection upon log(c) to identify a similar proportion of flare candidates as
was found in Chapter 3. This resulted in 58100 potential flare candidates and it is
therefore not feasible to inspect all of these; instead, I randomly selected a sample of
30 flare candidates from this sample to compare with those found in Chapter 3. This
sample was found to be infiltrated by a large number of false-positives (the majority of
the lightcurves not exhibiting flare activity or extreme variability), many as a result of
outliers due to observational effects. GP analysis in this capacity is still susceptible to

outliers and unpredictable cadence.



Chapter 6

Conclusions and future work

6.1 Thesis conclusions

In this thesis, I have demonstrated the importance of using a statistically robust tech-
nique for systematically detecting AGN flares in their already stochastically varying
lightcurves. The thesis has described the development of a statistical means of flare de-
tection that utilises Gaussian Processes to distinguish between flare activity and “normal”
variability using a summary statistic of how each lightcurve is varying over time. This
technique has been developed with the aim to be a viable means of sifting AGN flares
from the large amounts of data that the community will face in the era of time-domain
astronomy and upcoming surveys such as the LSST (Ivezi¢ et al., 2019). In Chapter 2, I
took a “first principles” approach to systematically detect AGN flares in their lightcurves
by subtracting the Theil-Sen median and then identifying candidates with contiguous
sets of points below this median. In Chapter 3, I made the case for changing approach
to a statistically robust technique called a Gaussian Process and I embarked on a feas-
ibility study to determine the viability of this method by using simulated lightcurves.
Subsequently, I tested this technique on real AGN lightcurves from ZTF. In Chapter 4,

I expanded on the technique from Chapter 3 by using GPs to analyse lightcurves in a
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rolling fashion in order to identify the location within the lightcurve at which the flare
is occurring. Finally, in Chapter 5 I used the original GP technique from Chapter 3 to
analyse a much larger sample of AGN known as the Million Quasars Catalogue for the
purpose of determining whether the technique is suitable for handling such volumes of
data as will be required for surveys such as LSST.

In the following sections §6.1.1-6.1.4, I will provide a summary of the major findings in
each chapter of the thesis. Then, in §6.1.5 I will comment on the progress made towards
answering the open questions discussed in Chapter 1. Finally, in §6.2 I suggest possible
avenues of future work that would be a valuable continuation of the work presented in

the thesis.

6.1.1 A “brute force” approach to systematic flare detection

In Chapter 2, I used a brute-force approach building on the technique by Graham et al.
(2017) to detect potential flares in AGN lightcurves from the ALPAKA catalogue. I
took a straightforward approach, which involved calculating the Theil-Sen median of
each lightcurve in sections along each lightcurve and subtracting this median from the
overall flux. I then searched for sets of contiguous points above this median, which
potentially indicate the presence of a flare or extreme variability. This first principles
flare-finder algorithm identified a total of 16 flare candidates, 11 Type 1 AGN and 5
Type 2 AGN. Despite this, the technique was found to result in a significant number of
false positives and is not statistically robust; in order to disentangle a flare from routine

AGN variability a statistical approach is required.

6.1.2 Using Gaussian Processes to detect AGN flares

In Chapter 3 I undertook a feasibility study to determine whether the use of Gaussian

Processes is viable for the detection of AGN flares in optical lightcurves. I used both
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simulated and real AGN lightcurves fitted with a GP as a means to investigate how
the distributions of resulting hyperparameters change as a result of each lightcurve’s
underlying variability (e.g., upon injection of a simulated flare). I found from the analysis
of simulated lightcurves with and without injected flares that their hyperparameters exist
in different but partially overlapping regions of parameter space, indicating that whilst
there will always be overlap between these distributions it is possible to differentiate
between flares and non flares in this way. After discovering this, I was able to use
the hyperparameters returned by the GP to distinguish between these distributions by
assigning each lightcurve a probability of containing a flare based on its location in
parameter space. I found that whilst observational effects are a hindrance to GP analysis
in this capacity, i.e., irregular cadences and outliers, the GP analysis was effective at
distinguishing between real AGN lightcurves and the same lightcurves with injected
flares with a true positive rate of 80 per cent and a false positive rate of only seven per
cent. Using the same probability analysis, this technique resulted in 27 out of 9035 AGN
lightcurves being flagged as potentially containing a flare. On balance, I found that the
use of GPs is a suitable means of flare detection in AGN lightcurves, notwithstanding
the fact that observational outliers and irregular cadence can reduce the ability for GPs

to distinguish between typical and extreme variability.

6.1.3 Flare localisation within a lightcurve

Since the analysis involved in Chapter 3 enabled the determination of whether a given
lightcurve contains a flare, it was not at that point able to calculate the location within
the lightcurve at which the flare occurs. With this in mind, Chapter 4 sought to improve
on this technique to achieve real-time flare detection, which I termed flare localisation.
Instead of fitting a GP to each lightcurve in its entirety, I fitted a GP to each lightcurve in

a rolling fashion, continuously adding data points one by one and updating the resultant
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hyperparameters accordingly. This then enabled for the calculation of a proxy of the
flare probability and I was able to trace the flare probability against time, identifying the
point at which the lightcurve’s GP hyperparameters transition from representing typical
to extreme variability and thus the epoch of a flare. I found that this technique was highly
effective at flare localisation within simulated lightcurves and is able to detect injected
flares before they peak in real AGN lightcurves. I analysed the 27 flare candidates
identified in Chapter 3 and found that flare localisation in this way was effective at

identifying the point at which abnormal or extreme variability occurs.

6.1.4 Expanding the sample with the Million Quasars Catalogue

The real data involved in the preceding chapters of this thesis has been the ALPAKA
catalogue, which is a sample of 9035 Type 1 AGN lightcurves. In the coming era of
time domain astronomy especially with high-cadence surveys such as LSST planned to
see first light in 2025, astronomers will have access to unprecedented volumes of data of
order millions of objects per night (LSST: Ivezi¢ et al., 2019). In Chapter 5 therefore, I
applied the GP analysis from Chapter 3 to a much larger sample — the Million Quasars
Catalogue (Flesch, 2023), which is a compendium of 907 144 Type 1 quasars and AGN
to determine whether the analysis can handle such a sample size. 1 found that the
analysis can certainly handle a sample size of order one million, without being too
computationally expensive or time consuming. As in Chapter 3 I found that GPs are
a viable means of encapsulating AGN variability as a summary statistic. Out of 58
100 potential flare candidates identified in MILLIQUAS, a sample of 30 was presented
and it was found to be infiltrated by a large number of false-positives and lightcurves
containing outliers. This demonstrated that the analysis is still susceptible (as was found
in Chapter 3) to observational outliers and irregular cadence, which may be an issue when

attempting to detect flares in large amounts of data.
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6.1.5 The bigger picture

In Chapter 1, I posed the following questions, which I intended to address throughout

the duration of the thesis:

1. Can systematic detection techniques distinguish between an AGN flare and typical

AGN variability in optical lightcurves?

2. At what point can AGN flares be detected in lightcurves outside of the underlying

variability?

3. Can we determine exactly when a flare actually occurs, i.e., its location within a

lightcurve?

4. How early into a flare are we able to detect it?

I will now comment and conclude on the progress made in each of these areas.

To address point one, I found that Gaussian Process analysis can distinguish between
flare activity and typical AGN variability in optical lightcurves with a high success rate
(see Chapter 3) however irregular cadences and observational outliers can reduce the
efficacy of this technique.

Regarding point two, the point at which AGN flares can be detected outside of the
underlying variability is not straightforward and requires a statistically robust technique.
Chapter 3 concerns itself with investigating this question; I found that the ability to
retrieve an injected flare from a simulated lightcurve is subject to the amplitude and
duration of the flare. In general, flares with amplitudes lower than ~ 1 magnitude become
difficult to distinguish from the underlying variability though again this depends on the
duration of such a flare. Indeed, in Chapter 2 I found that “normal” AGN variability
with amplitudes between 0.5 and 1 mag is uncommon on timescales ~ hundreds of days,

but is still possible.
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To address the third point, I showed in Chapter 4 that it is indeed possible to de-
termine the point at which a flare occurs within a lightcurve. Using rolling GP analysis,
I was able to track flare probability against time for a given lightcurve. From there, one
must choose a probability cut-off above which a detection will be defined. This cut-off is
subjective to the needs of the intended science case, i.e., whether completeness or purity

is preferred, and I defined this to be 0.2 based on my sample.

Finally, regarding point four, working out how early into a flare it can be detected
is not straightforward. Since variability itself is stochastic, any selection based on mag-
nitude change is biased. In Chapter 4, I showed that it is more meaningful to calculate
a flare probability based on statistically robust GP hyperparameters. I subsequently
found that a cut-off probability of 0.2 is sufficient to successfully detect AGN flares in
the sample in question, but an important caveat is to consider the number of data points
elapsed by that point to prevent spurious detections; I found that the minimum number
of data points required to mitigate this was 80, which shows that detections made too

early can be unreliable.

Overall, the work undertaken for this thesis has made significant progress in the field
of AGN flare detection; this is particularly crucial in the era of high-cadence surveys such
as the LSST. The study of AGN variability provides a window into the accretion processes
occurring close to the supermassive black hole; processes that are poorly understood
(Lawrence, 2018). Indeed, extreme variability such as AGN flare activity is both a
potential problem for current accretion theory (e.g., Lawrence, 2018; Wiseman et al.,
2025) and also a means of studying the extreme behaviour of the supermassive black hole
accretion disk (e.g., Kelly et al., 2009). A much larger sample of AGN flare candidates is
required, along with multi-wavelength follow-up observations to further understand the

mechanisms behind these events and thus better constrain the physics of accretion.
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6.2 Future work

The work undertaken and described in this thesis opens up a variety of important avenues

to investigate and I summarise these below:

e Making GP analysis resistant to outliers and irregular cadence. Whilst [
have shown that GP analysis can be successful at distinguishing AGN flares from
typical AGN variability, observational outliers and irregular cadence in lightcurves
can create false-positive detections. In this coming era of time domain astronomy
whereby astronomers will have access to unprecedented amounts of data especially
due to upcoming surveys such as LSST, it is important to reduce the false-positive
rate of any transient detection algorithm as much as possible, to minimise the
reliance on human inspection. It will be extremely beneficial if the GP analysis
technique used in this thesis can be expanded upon or improved to render it res-
istant to such observational effects and reduce the number of false-positives. 1
suggest that the following is worth investigating to improve bad GP fits as a result

of observational effects:

— Data preprocessing: lightcurve smoothing or interpolation could be incorpor-
ated to minimise the effect of outliers and sparse cadence. However, it is
important to note that any smoothing or outlier removal techniques must
take into account the underlying AGN variability. Another potential option
worth exploring is artificially increasing the error bars of the lightcurves to
give the GP fit more flexibility. Alternatively, a more instrumentally real-
istic option would be to make an estimate of the added uncertainties due to
the use of forced photometry (see §1.4.1), which would accomplish the same

flexibility.

— Adjusting the GP itself: switching to different kernels, potentially kernels that
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result in smoother function realisations that are less susceptible to “spiky”

variations like outliers.

e Gaussian Process kernels. The kernel (covariance function that encapsulates
the variability of the lightcurve it is fitted to) that has been used in this research is
the Matérn-3/2 kernel, but there are other choices of kernel that could reasonably
describe the stochastic nature of variability. It would be valuable to investigate
whether there are any differences in the ability to distinguish between AGN flares
and typical AGN variability when different kernel functions are used. As well as
the commonly used kernels such as the squared exponential kernel and the Matérn
class of kernel (see Chapter 1 for explanations of kernels), there are also more
sophisticated choices of kernel that invoke the use of neural networks, which may
or may not improve the efficacy of flare detection and this is worth investigating.
Furthermore, it will be useful to undertake an investigation into the range of kernel
hyperparameters that circumscribe typical AGN variability. Indeed, this knowledge
of the statistical parameters that encapsulate “normal” AGN variability can be
utilised in more complex flare detection tools. On top of this, it would be interesting
and highly informative to investigate if kernel hyperparameters change with AGN

luminosity, host galaxy and black hole mass and redshift.

e Comparison with other detection techniques. Other flare and transient
detection techniques are widely used, such as Machine Learning techniques (e.g.,
Faisst et al., 2019; Wright et al., 2015; Sanchez-Séez et al., 2021). It will be
enlightening to compare the efficacy of these other techniques to the GP techniques

discussed in this thesis.

e Preparing for LSST. Looking forward to first light of the Rubin Telescope
planned for 2025, it will be beneficial to use the results found in this thesis to

estimate the number of AGN flares one might expect to detect from LSST. Fur-
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thermore, when regular data from LSST becomes available it will enable for an
in-depth study of parameterising AGN variability, and this unprecedented sample
size will provide detectable flare candidates. It will be highly valuable to under-
take multiwavelength follow-up observations of flare candidates as they are found,
and this will be integral for the study of the accretion processes occurring around
supermassive black holes. It will then be possible to place estimates of the rate of

AGN flaring events in context of the general population.

e An end-to-end system to identify flare candidates in LSST. Once LSST
Data Release 1 becomes available (expected by January 2027), it will be possible
to use the flare detection technique investigated in this thesis to systematically sift
AGN flares from their optical lightcurves. To achieve this, I propose the following

end-to-end system:

1. Acquire a sample of the order ~10-100000 optical, r-band lightcurves from
LSST Data Release 1. Limit the sample to contain no objects dimmer than
26.8 magnitudes (one magnitude brighter than the stacked r-band magnitude
limit, see caveats of forced photometry in §1.4.1). Ensure that all lightcurves
contain more than 80 epochs, which I found to be the minimum number of

data points required for a trustworthy detection in §5.4.

2. Use the GP analysis outlined in Chapter 3 to map the hyperparameter values

of each lightcurve and assign each with a flare probability.

3. Apply a threshold probability value of 0.2 (as determined in Chapter 4) to

identify flare candidates.

4. Flag the most promising flare candidates for follow-up observations by hu-
man inspection, which can be expedited using citizen science platforms (e.g.,

Zooniverse: Fortson et al., 2018; Masters & Galaxy Zoo Team, 2020).
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5. Request follow-up observations for the confirmation and classification of the
detected flare candidates, to better understand the physical drivers of these
events. Ideally, this would entail optical spectroscopy, which is a promising
means of distinguishing between types of transient event including AGN flares
(e.g., Wiseman et al., 2025; Zabludoff et al., 2021). A good candidate for
this purpose is the 4-metre Multi-Object Spectroscopic Telescope (4MOST:
De Jong et al., 2019), which is a wide field spectroscopic survey instrument at
the Visible and Infrared Survey Telescope for Astronomy (VISTA: Emerson

et al., 2006; Dalton et al., 2006) telescope at Paranal, Chile.
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Appendix A

Appendix

A.1 GP analysis of the latest ZTF data release

The data used throughout this thesis has been the ALPAKA catalogue (see Chapter 2
for more details). These 9035 Type 1 AGN lightcurves were downloaded in August 2021
from the Zwicky Transient Facility Public Data Release 6, which was the most current
data release at the time (ZTF: Masci et al., 2018; Bellm et al., 2019). Since then,
more recent ZTF Data Releases have become available. In the interest of characterising
AGN variability and indeed detecting rare AGN flares, longer baselines of lightcurves
are imperative. With this in mind, I downloaded the updated ZTF lightcurves of the
ALPAKA catalogue from ZTF Data Release 20 (made available in January 2024) to
investigate whether the GP analysis from Chapter 3 yielded differing results, e.g., (a) how
the hyperparameter distributions have changed, if at all, (b) whether any lightcurves have
changed position in hyperparameter space and (c) whether I can ascertain a preliminary
estimate for the rate of flare activity or extreme variability in the population. I will
briefly present the results of applying the same technique as used in Chapter 3 on the

updated ZTF lightcurves and discuss the implications.

Figure A.1 shows the distributions of hyperparameters for the original sample used
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Figure A.1: Comparison of the distributions of hyperparameters for the original ZTF
lightcurves of the ALPAKA sample and the updated ZTF lightcurves.
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in Chapters 3 and 4 and the updated sample from the more recent data release. The
distributions are virtually identical, which shows that although more data has been ac-
quired for each lightcurve, statistically speaking, the underlying variability of the sample
has largely remained the same.

To investigate whether any new flare candidates could be identified in the more recent
data release, I applied the same selections on the data that were employed in Chapter

3. As a reminder, these were:

e A probabilistic cut-off of 0.1 for the flare probability as a result of the Bayesian

hypothesis testing in Chapter 3.
e Lightcurves must contain greater than 30 data points.

e Lightcurves must not contain gaps in the data exceeding 150 days.

As a result, 21 new flare candidates were found that were not identified in the pre-
vious data release. A total of 16 of the 27 flare candidates identified in Chapter 3 were
also retrieved. The remaining 11 lightcurves did not meet the above requirements for
detection because the flare probability had decreased in the presence of new data. Light-
curves of the 21 new flare candidates are shown in Figures A.2-A.6. It is clear that these

lightcurves exhibit extreme variability and those of particular interest are shown in red.
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Figure A.2: ZTF r-band lightcurves of the first four out of the total 21 flare candidates

identified from the updated ZTF data release.
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Figure A.3: ZTF r-band lightcurves of the 5th-8th out of the total 21 flare candidates
identified from the updated ZTF data release. Lightcurves of particular interest for their
extreme variability are indicated in red.
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Figure A.4: ZTF r-band lightcurves of the 9th—12th out of the total 21 flare candidates
identified from the updated ZTF data release. Lightcurves of particular interest for their
extreme variability are indicated in red.
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Figure A.5: ZTF r-band lightcurves of the 13th-16th out of the total 21 flare candidates
identified from the updated ZTF data release. Lightcurves of particular interest for their
extreme variability are indicated in red.
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Figure A.6: ZTF r-band lightcurves of the 17th—21st out of the total 21 flare candidates
identified from the updated ZTF data release. Lightcurves of particular interest for their
extreme variability are indicated in red.
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