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Abstract

Quantum thermalisation is the process by which generic interacting many-body systems

evolve such that local observables relax to their thermal equilibrium values, regardless

of the system’s initial state. While progress has been made through the Eigenstate

Thermalisation Hypothesis – a powerful conjecture describing thermalisation in closed

quantum systems – practical methods to control or exploit this process remain elusive.

This is a crucial challenge if we aim to use interacting many-body systems as a foundation

for quantum technologies. After providing introduction to quantum thermalisation and

many-body chaos in Chapters 1-2, the core of this thesis explores theoretical frameworks

for controlling quantum thermalisation using tunable quantum systems, with a strong em-

phasis on experimental realisability. In Chapter 3, we introduce a chiral spin-chain model

and demonstrate that, when tuned to the appropriate coupling regime, it exhibits maxim-

ally thermalising behaviour, similar to the well-known Sachdev-Ye-Kitaev model. Lever-

aging this property, we implement the Hayden–Preskill teleportation protocol, showing

that maximal scrambling can improve the protocol’s timescales. In Chapter 4, we step

back and introduce quantum many-body scarring as a mechanism for evading therm-

alisation. We showcase how the PXP model – a limit of the experimentally realised

Rydberg atom platform – allows for tunable quantum many-body scars by means of

varying the detuning or chemical potential. This approach unveils a continuous family

of scarred initial states that extends beyond low-entangled product states. Finally, in

Chapter 5, we investigate a distinct information-scrambling process – “Gaussification”.

In this process, which bears some resemblance to thermalisation, the states which are

initially interacting, i.e., possess non-Gaussian correlations and violate Wick’s theorem,

progressively evolve into Gaussian ones. We demonstrate that Rydberg atom arrays can

retain non-Gaussian correlations after a quantum quench in a way that is robust against

experimental errors. Our conclusions are presented in Chapter 6 where we argue that

the results presented in this thesis challenge the notion that thermalisation is an inev-

itable destructive force by offering several strategies to both resist it and harness it for

applications in quantum-information processing.
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Chapter 1

Introduction

1.1 Motivation

Thermalisation is a fundamental area of research, with chaos often regarded as a driving

force of the universe. However, the continuous growth of entropy and ultimate loss of

information in a generic system still presents several open questions. One particularly

compelling question is: to what extent do closed quantum many-body systems thermal-

ise? From a classical perspective, the idea of memory loss in quantum systems appears

paradoxical, given the unitary nature of quantum dynamics.

An effort to address this question was first presented by Deutsch and Srednicki

through the Eigenstate Thermalisation Hypothesis (ETH) [1,2]. ETH proposes thermal-

isation in quantum mechanical systems is defined with respect to the eigenstates. While

rigorous analytical proof remains elusive and current evidence is largely empirical, it has

proven to be a powerful conjecture used to accurately underpin the nature of chaos in

a wide variety of interacting many-body quantum systems [1–5]. ETH surmises that for

generic interacting quantum many-body systems, measurable observables tend towards

their thermal value predicted by a Gibbs ensemble (while still conserving energy) and re-

main near those values over time, irrelevant of initial state. In this way, a quantum system

effectively loses memory of its initial wavefunction over time, mirroring its classical ana-

logue. For quantum technologies, particularly quantum computing, preserving coherence

over time is essential. Thus, the inevitable onset of thermalisation in interacting systems

poses a significant challenge, motivating the search to understand thermalisation in a

quantum setting and methods to control it. Beyond practical implications, the process

of quantum thermalisation is also of fundamental interest in the context of understanding

quantum gravity and quantum black holes. In particular, black holes are expected to act

as maximally thermalising systems, as shown by the black hole information paradox [6,7].

To that end, several questions arise. First, to what extent can a quantum system be
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1.1. Motivation

thermal? If thermalisation is indeed inevitable, can the inherent thermality of a quantum

system be utilised in a practical setting? Second, is it possible to evade thermalisation?

Extremal solutions to the latter problem exist, such as integrable systems or many-body

localisation; however, these are either fine-tuned or limited to systems in one spatial

dimension. This thesis explores the following challenge: how does one control quantum

thermalisation in generic, interacting many-body systems that lack special symmetry

structure, such as integrability? In particular, we investigate how thermalisation can be

both maximised and evaded in the setting of interacting spin systems, with a particular

emphasis on experimental realisability.

A well-established method of quantifying ‘thermality’ in a quantum system is through

out-of-time-order correlators, which serve as a powerful tool to unify concepts of quantum

ergodicity and information scrambling [8–10]. The extent to which these correlators

spread over time quantifies thermality in the system by extracting a Lyapunov exponent

– an approach reminiscent of classical chaos. An upper bound on the Lyapunov exponent

has been rigorously established for quantum many-body systems [11], thereby defining

what it means for a system to be “maximally thermal”. An important question is what

types of physical systems saturate this bound. Classically, black holes are believed to be

the ultimate scramblers of information. Thus, any quantum system claiming to emulate

a black hole should exhibit maximally thermal behaviour and saturate the bound on

chaos.

In this work, we explore a realisation of maximal chaos in Chapter 3 by taking the

recently proposed chiral spin-chain model [12,13], which takes the form

HChiral =
1

2

N∑
i=1

[
−u
(
Sx
i S

x
i+1 + Sy

i S
y
i+1

)
+
v

2
Si · Si+1 × Si+2

]
, (1.1)

where u and v are real numbers and Si = (σxi /2, σ
y
i /2, σ

z
i /2) with σ

α
i (α = x, y, z) is the

α-Pauli matrix of the ith spin. The second term in Eq. (1.1) will be denoted as the chiral

term:

χi = Si · Si+1 × Si+2. (1.2)

In the chiral phase, when v > 2u, the system effectively describes Dirac fermions in a

black hole background geometry. As a result, we expect the model to exhibit maximal

information scrambling in the quantum sense. We find that as the model parameters are

tuned from the non-chiral to the chiral phase, the Lyapunov exponent behaviour trans-

itions from free to one that saturates the bound on chaos. This behaviour demonstrates

that our chiral model provides a tunable and experimentally accessible platform for ac-

cessing a maximally thermal quantum system. Also, unlike other maximally scrambling
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Chapter 1. Introduction

models – such as the SYK model – the model is both local and is not based on disordered

couplings, enhancing its experimental feasibility.

In fact, the property of maximal thermalisation also makes the model (Eq. (1.1)) an

ideal candidate for implementing the Hayden-Preskill teleportation protocol [14]. Al-

though maximal thermalisation might initially appear detrimental to quantum informa-

tion protocols, scrambling is, in this case, used to improve the fidelity of the teleportation.

A striking consequence emerges from implementing the teleportation protocol due to the

chiral models underlying black hole geometry. Remarkably, the required choice of coup-

lings allows the protocol to be interpreted as a qubit teleporting between a binary black

hole system. This, alongside key features of the chiral model such as Hawking radiation

and optimal scrambling, offers a compelling motive for experimentally studying the pro-

tocol. Ultimately, these findings provide a controllable and practical means of accessing

and leveraging maximal thermalisation in quantum systems.

In generic chaotic systems, robust state transfer that resists thermalisation is expected

to be exceptionally rare, if not impossible. Nevertheless, as recent experiments on ar-

rays of Rydberg atoms have shown [15–17], a potential solution to evading thermalisation

may lie in systems that display “quantum many-body scarring”. Here, a select few initial

states were found to evade thermalisation and retain memory of their initial wavefunc-

tion over time, despite the presence of interactions in an otherwise thermalising system.

The driving force behind this phenomena is a small subset of non-thermal eigenstates

embedded in the energy spectrum [18–22]. These special eigenstates were shown to ap-

proximately form an emergent su(2) algebra [23,24], leading to near-equal energy spacing

between them. As a result, quantum states with predominant overlap on this subspace

exhibit atypical, non-thermalising dynamics. This is the core of quantum many-body

scarring, a many-body analogue of the single-particle scarring phenomenon observed in

chaotic billiard systems [25]. Despite several experimental studies [16, 17, 26–28], it re-

mains natural to question whether scarring is a finely-tuned, fragile phenomenon and

how accessible these select initial states truly are.

Here, we consider a limiting case of the experimentally accessible Rydberg model:

the detuned PXP model in Chapter 4, where we demonstrate the ubiquity of many-body

scarring. The PXP model is defined by the Hamiltonian

HPXP(µ) = Ω

N−1∑
j=0

Pj−1σ
x
j Pj+1 + µ

N−1∑
j=0

nj , (1.3)

where Ω is the Rabi frequency and µ is the chemical potential. The projector onto the

Rydberg ground state is defined as Pj = (1−σzj )/2, while nj = 1−Pj = (1+σzj )/2 projects

onto the Rydberg excited state. Notably, due the chemical potential term, the detuned
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1.1. Motivation

PXP model hosts a quantum phase transition which leads one to question the interplay

between quantum criticality and quantum many-body scarring. Quantum criticality is

typically associated with ground-state physics while many-body scarring involves atypical

dynamics stemming from mid-spectrum eigenstates. At first glance, these two phenomena

may seem unrelated. However, recent investigations into the PXP model suggest that

scarring may break down in the critical regime of PXP [29], highlighting the need for

further study.

We address the previous questions by constructing a “scarring phase diagram”, identi-

fying families of experimentally accessible ground states that lead to scarring under

continuous deformation of the model’s parameter, µ/Ω. This provides a concrete and

robust protocol for exploring tunable scarring regimes in the lab. Our findings further

reveal that scarring is accessible from a wide variety of initial conditions – not just low-

entangled product states, as considered in previous work. In particular, we uncover

scarring from a highly-entangled critical ground state, thereby establishing a connection

between quantum criticality and many-body scarring. This demonstrates the robustness

of scarring and serves as a new method for evading thermalisation in Rydberg atom

platforms.

Intriguingly, a cousin process to thermalisation, known as Gaussification, has also

been numerically observed in fermionic systems, including the critical Ising chain [30]

and – as we will showcase – Rydberg atom arrays [31]. Gaussification is a form of

quantum information scrambling in which closed systems – often governed by non-

interacting Hamiltonians – rapidly relax to Gaussian states, irrespective of their initial

conditions [30,32]. A Gaussian state in this context refers to a non-interacting, uncorrel-

ated state whose parent Hamiltonian is quadratic [33]. Therefore – much like thermalisa-

tion – in systems with a Gaussian ground state, non-Gaussian states tend to lose memory

of their initial wavefunction and correlations over time. Given the rich phase structure

of the Rydberg model, several regimes support a Gaussian ground state, making Gaussi-

fication equally prevalent. This proves detrimental as non-Gaussian states are crucial for

universal quantum computing, enhancing a range of key quantum information protocols

such as quantum teleportation, sensing, metrology, and communication [33–45]. As such,

the decoherence of these states due to Gaussification poses a significant challenge.

We demonstrate in Chapter 5 that Rydberg platforms not only offer a means to evade

thermalisation, but also Gaussification. To this end, we employ the so-called UV model

– another limit of the Rydberg model closely related to detuned PXP by

HUV = HPXP + V
N∑
j=0

nini+2. (1.4)

15
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In contrast to PXP, we now allow for next-nearest neighbour interactions governed by

V . This induces a much richer phase diagram into the model which is closer to that

of the full Rydberg Hamiltonian. By quenching across specific regimes of the phase

diagram, we observe persistent non-Gaussian correlations that resist both thermal and

Gaussian equilibration. These correlations are found to be robust against experimental

imperfections, making the protocol feasible in modern Rydberg platforms [15,16,46,47].

These findings aim to highlight the versatility of Rydberg arrays as a powerful platform

to evade scrambling processes.

In summary, the work in this thesis is guided by three primary motivations:

1. Can a local quantum system exhibit tunable maximal information scrambling? If

so, can this scrambling be harnessed for practical quantum protocols?

2. How practical are quantum many-body scars as a mechanism to evade thermalisa-

tion? Can we demonstrate that scarring is more prevalent than previously assumed

in models like PXP, and identify experimentally accessible regimes to robustly study

it?

3. Can the strategies used to control thermalisation also be applied to experimentally

access other information scrambling mechanisms, such as Gaussification?

1.2 Thesis outline

To address these motivations, we begin by introducing the broader background of quantum

thermalisation. We then separate into three independent chapters, each dedicated to

tackling one of the aforementioned general questions by including the related research

and relevant background. The thesis is thus organised as follows.

Chapter 2

We begin in this chapter by outlining what it means to be thermal in a quantum system

by introducing the Eigenstate Thermalisation Hypothesis. We also discuss how therm-

alisation can be diagnosed using a system’s mean level statistics. Then, we explore the

connection between thermalisation and black holes: specifically, how quantum models of

black holes are expected to exhibit maximal scrambling of quantum information, motiv-

ated by the black hole information paradox. This leads to the need for a more precise

measure of thermality in quantum systems – the Lyapunov exponent – which has a

well-known upper bound, thereby quantifying what it means to be maximally thermal.

We present the Sachdev-Ye-Kitaev (SYK) model, which saturates the bound on chaos

and has a relation to black holes due to the notion of holographic duality. We finish this
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chapter by introducing quantum many-body scarring – a mechanism that weakly violates

ETH – as a means of evading thermalisation.

Chapter 3

In this chapter, the success of the SYK model serves as inspiration for investigating

scrambling in the recently proposed chiral spin-chain model, which, like the SYK model,

exhibits features reminiscent of black hole physics. We demonstrate that, by tuning the

model parameters to the chiral phase (where the system mimics black hole physics),

the system saturates the bound on chaos, therefore achieving maximal thermalisation.

Having quantified the scrambling behaviour, we highlight how it can be harnessed to

implement the Hayden-Preskill quantum teleportation protocol. The fast scrambling

properties of the model allow us to optimise the protocol’s performance while at the

same time we can determine key quantities such as the butterfly velocity and the Page

time. Finally, by comparing the chiral spin-chain model to other commonly chaotic

local models – like the transverse field Ising model or the XY ladder – we illustrate its

superiority in executing the protocol with greater efficiency and reduced timescales.

Chapter 4

Recently, the detuned PXP model – a limit of the Rydberg model – has been shown to

host rich quantum many-body scarring. This provides a viable mechanism for evading

thermalisation and introduces a new paradigm known as “weak” ergodicity breaking.

In this chapter, we first begin by reviewing the phenomenology of quantum many-body

scarring (QMBS) in the Rydberg model. Taking the strong Rydberg blockade limit, we

investigate the extent of scarring in the PXP model and its connection with quantum

criticality. In particular, we construct the dynamical phase diagram of the detuned PXP

model under a quenched chemical potential and identify a continuous family of initial

states that give rise to QMBS. We further demonstrate that this family can undergo

a smooth evolution across the system’s equilibrium phase transition, revealing scarring

from the critical ground state of the PXP model. These results aim to address our second

motivation by showing the ubiquity of scarring in the PXP model and highlighting its

intriguing interplay with quantum criticality.

Chapter 5

In this chapter, we continue our investigation using the Rydberg model, focusing on a

different limit known as the UV model – an extension of the PXP model that includes

next-nearest-neighbour interactions. After introducing the concept of Gaussification, we
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Chapter 1. Introduction

construct a “Gaussianity phase diagram” of the UV model similar to the previous scarring

diagram, identifying regions characterised by Gaussian and non-Gaussian ground states.

We then demonstrate that quenching from a non-Gaussian regime into a Gaussian one

yields persistent non-Gaussian correlations. This behaviour is due to the evolution of the

eigenspace overlap with the change in parameters following the global quench. While this

analysis was conducted with the UV Hamiltonian, we find that these results hold even

in the full Rydberg model, persisting with the addition of spatial disorder and single-site

imperfections. These results directly support our third motivation, demonstrating that

Rydberg platforms not only allow for the evasion of thermalisation, but also provide the

necessary tools to evade other information-scrambling mechanisms like Gaussification.

Chapter 6

In this chapter, we briefly summarise our main findings and discuss future outlooks.
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Chapter 2

Quantum thermalisation and

maximising quantum chaos

In this chapter, we define what it means for a closed quantum system to be thermal

and, in particular, for it to be maximally thermal – akin to the behaviour of a black

hole. As a background for the remainder of the thesis, we first formulate the Eigenstate

Thermalisation Hypothesis and introduce a common diagnostic of thermality in quantum

systems: the energy level statistics and its similarity with a random matrix ensemble.

Importantly, while level statistics are a useful tool for diagnosing thermalisation, they

only offer a crude measure and do not quantify the degree of chaos present. To address

this limitation, we utilise a concept from classical chaos theory: the Lyapunov exponent.

To illustrate this, we review the non-local Sachdev-Ye-Kitaev (SYK) model [48–53] –

a paradigmatic model known to exhibit maximal quantum chaos. We conclude this

chapter by introducing a particular mechanism of weakly violating the ETH known as

quantum many-body scarring [20–22,54]. The latter is responsible for a weak breakdown

of thermalisation in Rydberg atom arrays, one of the central experimental platforms

studied in this thesis.

2.1 Quantum thermalisation

Thermalisation is a fundamental physical process where systems naturally tend towards

a state of thermal equilibrium through interactions. The continual growth of entropy

and resulting loss of information due to thermalisation are fundamental phenomena, es-

pecially in the widely studied context of the black hole information paradox. However,

a rigorous and universally accepted definition of thermalisation in quantum systems re-

mains elusive. This lack of clarity poses a significant challenge for any quantum system

aiming to emulate the behaviour of black holes. A valiant effort has been made through
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Chapter 2. Quantum thermalisation and maximising quantum chaos

Figure 2.1: A sketch of the different trajectories possible in a classical phase space with a
defined position and momenta coordinate. (a) A sketch of a (typically unstable) periodic
trajectory found in non-ergodic systems. In such a system, the particle will remain
in its orbit and consequently fail to explore the entirety of the phase space over time.
(b) In contrast, an ergodic trajectory explores the whole phase space if given enough
time, uniformly covering the space. As a result, values obtained by averaging over the
trajectory over time can be equivalently obtained by averaging over the entire phase
space.

the eigenstate thermalisation hypothesis which attempts to define what it is to be a

thermalising quantum system.

2.1.1 Eigenstate thermalisation hypothesis (ETH) and Ergodicity

Before diving into what it means to be thermal quantum mechanically, it is useful to first

consider its classical counterpart and, in particular, the notion of ergodicity as therm-

alisation and ergodicity are often used interchangeably. First, consider a Hamiltonian

system with many degrees of freedom where points in phase space are characterised by

x = (q,p). Here, q and p are the generalised position and momentum respectively. The

ergodic hypothesis states that, for an initial system at q0 with corresponding energy

E0, the system will explore all possible configurations with the same energy over a long

period of time [55] – as sketched in Fig. 2.1. These will all be explored uniformly due to

to Liouville’s theorem [56]. As a consequence, for any local observable O, the long-time

average is equal to the microcanonical average on all states with the same energy E0.

This is known as the ergodic principle and is more formally written as

lim
T→∞

1

T

∫ T

0
O(t)dt =

∫
x∈MC O(x)dx∫

x∈MC dx
= OMC . (2.1)

MC is the microcanonical ensemble, where one assigns an equal probability to every

microstate with equal energy, and T is the total time. Crucially, the average of the
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2.1. Quantum thermalisation

microcanonical ensemble is irrelevant of any other details of the initial configuration and

depends only on the energy, E0.

With that, we can now begin thinking about the analogous statement in quantum

systems. Consider a quantum system with a Hamiltonian H and N degrees of freedom

whose eigenstates are |Ek⟩ with corresponding energies Ek. A typical state of the system

is denoted via the wavefunction |ψ⟩ which has a corresponding energy E0 = ⟨ψ|H |ψ⟩.
The state will naturally evolve in time as |ψ(t)⟩ = e−iHt |H⟩ and any local operator Ô

will have an expectation value of O(t) = ⟨ψ| Ô |ψ⟩. Any state can be decomposed as a

sum of the eigenstates of the system such that

|ψ⟩ =
∑
k

ck |Ek⟩ (2.2)

where ck = ⟨ψ|Ek⟩. With this, we can expand the expectation value O(t) as

O(t) =
∑
j

|cj |2Ojj +
∑
j ̸=k

c∗jckOjke
i(Ej − Ek)t, (2.3)

where Ojk = ⟨Ej | Ô |Ek⟩. If we assume that the eigenspectrum has no symmetries and

therefore no special structure such as the clustering of states around certain energies or

exact degeneracies, then at late times the phases of ei(Ej − Ek)t will cancel, leaving

lim
T→∞

1

T

∫ T

0
O(t)dt =

∑
j

|cj |2Ojj . (2.4)

The diagonal term on the right hand side is typically known as the diagonal ensemble [57].

It is important to note that, for this to hold, we assume that |ψ⟩ is generic in the sense

that is does not have high overlap with only a small number of eigenstates which is

typically the case for low entanglement states such as product states. The standard

deviation of the energy of these states with respect to H will scale as
√
N in contrast

to the energy range of the full system scales as N . Therefore, for such generic states,

there will be strong overlap with eigenstates within a small energy window relative to

the full spectrum. The states in this energy window [E0 − δ, E0 + δ] where δ ≈
√
N is

the microcanonical ensemble.

By taking the result from Eq. (2.4) and using the ergodic hypothesis in Eq. (2.1), we

can see that ∑
j

|cj |2Ojj = OMC =
1

M

∑
j∈MC

Ojj , (2.5)

where the number of states in the microcanonical ensemble is denoted by M . This

equation implies, much like the classical analogue, that the late-time value of any physical
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Chapter 2. Quantum thermalisation and maximising quantum chaos

observable only depends on the original energy of the state.

How to relate this quantum notion of ergodicity to quantum thermalisation, however,

is a non-trivial question. In a closed quantum system – such as those we consider in this

thesis – the classical notion of thermalisation becomes inadequate. Since the dynamics

are unitary and the system lacks an external thermal bath, one might naively conclude

that thermalisation is impossible. This necessitates a redefinition of what it means for

an isolated quantum system to thermalise [1,2,21]. For such a system, thermalisation is

defined with respect to the eigenstates of the Hamiltonian which are themselves classified

as “thermal” or “non-thermal”. In that sense, for Hamiltonians with thermal eigenstates,

a subsystem of the initial state can effectively act as a thermal bath for the rest of the

system. The ETH encapsulates this observation by asserting that individual eigenstates

of the Hamiltonian encode thermal properties.

More specifically, it requires that the distribution of |cj |2 for all Ej in the energy

window of the microcanonical ensemble must not matter. For this to be the case, Ojj in

Eq. (2.5) must be equal to OMC for all states within the energy window and this must

hold for any different initial state as the energy window will move. As a result, both OMC

and OMC must be smooth as a function of energy. This is ultimately the foundation of

ETH – the equivalence between diagonal and microcanonical ensembles and the smooth

variation of local observables of the eigenstates as one varies the energy.

A thermal system that obeys the ETH is expected to exhibit several properties [3–5]:

1. For a thermal system, the expectation values of local observables in mid-spectrum

eigenstates are expected to be thermal, i.e., they are identical to the value calculated

using the microcanonical ensemble. In other words, the excited eigenstates can be

viewed as random vectors in the many-body Hilbert space, whose expectation values

of physical observables are a smooth function of energy.

2. Regardless of the initial state (assumed to be sufficiently far from an eigenstate),

when the system is left to evolve under the Hamiltonian dynamics, the observables

are expected to approach their equilibrium value at late times. Moreover, they

should remain stationary, with fluctuations suppressed exponentially in the ther-

modynamic entropy. The entropy is defined as the von Neumann entanglement

entropy,

S = −Tr (ρA ln ρA) , (2.6)

of the reduced density matrix, ρA = TrB|ψ⟩⟨ψ|, obtained by tracing out degrees of

freedom belonging to one half of the chain (denoted B).

3. For a given eigenstate |ψ⟩, the reduced density matrix, ρA, obtained by tracing

out a large finite subsystem, is equal to the thermodynamic density matrix, ρth =
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2.1. Quantum thermalisation

e−HA/T /Tr(e−HA/T ), with an effective temperature, T , set by the energy of the

state and HA denoting the Hamiltonian restricted to the subsystem.

Notably, the fact that the eigenstates behave like random vectors (1), and the reduced

density matrices are thermal (3), implies that the entanglement entropy, S (or SE), of

highly-excited eigenstates will scale with the volume of the system. Specifically, S ∝ Ld

where L is the size of the subsystem and d is the spatial dimension of the system. This

supports the intuition the eigenstates in a thermal Hamiltonian are highly-entangled,

and that information becomes effectively irretrievable over time. For systems obeying

the ETH, we generally expect all eigenstates – except the unique cases at the edge of

the spectrum – to act thermal.

Consequently, any generic initial state can be viewed as a superposition of such

thermal eigenstates and entropy is expected to grow rapidly under quench dynamics.

As the system approaches equilibrium, in line with the postulate (2), any sense of its ini-

tial wavefunction will be lost at late times. This mirrors classical thermalisation, where

systems evolve toward memoryless equilibrium states, and is what it means to be strongly

ergodic in a quantum sense. It was long believed that only maximal violations of the

ETH could occur, through systems that are integrable or many-body localised [58, 59].

However, recent developments have introduced a new paradigm: the discovery of systems

that weakly violate ETH through a mechanism known as quantum many-body scarring,

as we discuss further at the end of this Chapter.

2.1.2 Measures of ergodicity and ergodic quantum systems

Having defined the properties exhibited by thermal Hamiltonians, a natural question

arises: how can one practically determine whether a given Hamiltonian is thermal? For

this purpose, one can borrow tools from random matrix theory [60]. The notions of

chaos are closely related to that of ergodicity and thermalisation, stemming from the

fact that the eigenstates of thermal Hamiltonians can be thought of as random vectors.

In thermalising systems, one expects level repulsion between adjacent energy levels [61],

a hallmark of quantum chaos that can be systematically diagnosed. The chaotic nature

of a Hamiltonian can thus be quantified by comparing its eigenspectrum to that of known

random matrix ensembles in the same symmetry class [60].

For our purposes, there are three commonly used random matrix ensembles which

were introduced by Wigner [62]. First, there is the Gaussian Orthogonal Ensemble

(GOE) for rotationally-symmetric systems that are invariant under time-reversal. Such

Hamiltonians can be represented by real symmetric matrices Hi,j = Hj,i. Secondly, the

Gaussian Unitary Ensemble (GUE) is used for Hamiltonians that violate time-reversal

invariance. In such cases, the Hamiltonians are Hermitian where Hi,j = H†
j,i. Finally

23



Chapter 2. Quantum thermalisation and maximising quantum chaos

there is the Gaussian Symplectic Ensemble (GSE) for half-integer spin systems that are

time-reversal invariant but break rotational symmetry.

For convenience, the GOE, GUE, and GSE ensembles can be classified by the Dyson

index β = 1, β = 2, and β = 4 respectively [63]. Taking energy spacing between two

consecutive eigenstates as si = (Ei+1 − Ei), it can be shown for the random matrix

ensembles that the probability distribution of the energy spacing is given by

P (s) = saβe
−s2bβ , (2.7)

with a1 = π/2, a2 = 32/π2, a4 = 218/(36π3), b1 = π/4, b2 = 4/π and b4 = 64/(9π).

Such a probability distribution is colloquially known as the Wigner-Dyson distribution

or Wigner surmise.

Therefore, to decide whether a Hamiltonian is indeed thermal (or chaotic), one can

take the distribution of the spacings of the energy eigenvalues and compare it to the expec-

ted Wigner-Dyson distribution depending on the system’s symmetries. If a Hamiltonian

is found to match this well, it can be labelled as thermal. In practice, however, it can

often be tedious to use s as a diagnostic due to a need to “unfold” the spectrum. This

is necessary to allow for a homogeneous density of states across the whole spectrum. An

alternative quantity that we will more often employ instead of s is the level spacing ratio

defined as

ri =
min {si+1, si}
max {si+1, si}

, (2.8)

such that 0 ≤ ri ≤ 1, irrelevant of the system studied [64, 65]. Similarly, one can also

compute the Wigner-Dyson distribution in terms of r,

P (r) =
2

cβ

(r + r2)β

(1 + r + r2)1+rβ/2
, (2.9)

where c1 = 8/27, c2 = 4π/81
√
3 and c4 = 4π/729

√
3. In fact, with the use of r, one can

take it a step further and compute the expected average level spacing ratio ⟨r⟩ for a given

ensemble. Doing so, one finds approximately that ⟨r⟩β=1 = 0.5307, ⟨r⟩β=2 = 0.5996, and

⟨r⟩β=4 = 0.6744 [65]. Thus, for a given Hamiltonian, we typically numerically compute

P (r) and ⟨r⟩ and compare these to the expected values for a random ensemble in order

to see if the model indeed behaves like a random matrix. Meanwhile, for a non-chaotic

system, one expects to find the Poisson distribution of level spacings and ratio, where

P (s) = e−s P (r) = e−r and ⟨r⟩ = 0.3863.

It is important to note another caveat when computing P (r) in practice. One must be

cautious of the effect of symmetries on the Hamiltonian. It is expected that for a chaotic

Hamiltonian, the number of symmetries should remain small and finite, independent of
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the system size, however, there may still exist a select few such as translational symmetry

or some discrete spatial symmetries. In this case, one must reduce down to the symmetry

sectors of a Hamiltonian with a fixed value for the conserved quantum numbers. Only

then can we expect to truly see a Wigner-Dyson distribution due to the level repulsion

existing within a given symmetry sector, and not between them.

2.2 From thermalisation to scrambling

2.2.1 Quantum mechanics and black holes

When one considers a thermal system, an immediate example that often comes to thought

is that of a black hole. Black holes pose direct challenges to our understanding of fun-

damental laws of nature. Central to these open questions is the black hole information

paradox, first articulated by Stephen Hawking in the 1970s [6, 7]. According to general

relativity, the gravitational pull of black holes is so intense that it creates a region known

as the event horizon, beyond which information appears to be irretrievably lost. However,

the unitarity of quantum mechanics suggests information cannot be destroyed, leading

to the question of what happens to the information of an object that falls into a black

hole. This apparent contradiction between quantum physics and general relativity has

given rise to intense theoretical investigations and remains unresolved to this day.

This destructive disposition of information posed a great challenge for the idea of

a quantum system that could emulate a black hole. Within the ETH framework, we

understand how information can be irrevocably lost in a quantum system akin to the

behaviour expected from the black hole information paradox. There is a caveat, however.

In essence, black holes are the ultimate thermalising system. Thus far, we have discussed

thermalisation in a quantum system as a binary property: a system either is or is not

chaotic. In the thermodynamic limit (where system size N → ∞), it is expected that

all non-integrable models display Wigner-Dyson statistics. This begs the question: if a

quantum mechanical system is chaotic, how chaotic is it? What is a maximally chaotic

system? Only such a system could truly be representative of a quantum mechanical black

hole [6, 7].

2.2.2 A bound on chaos

To more precisely categorise how chaotic a system is, we make use of the close relation

between thermalisation and chaos. It is intuitive to consider a chaotic system of only two

particles separated by distance δ(0) at time t = 0. As the system is chaotic, one expects
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the distance between the particles to diverge exponentially over time such that

δ(t) = eλtδ(0). (2.10)

This is known as the butterfly effect. The degree of chaos in the system can there-

fore be quantified by the parameter λ, dubbed the Lyapunov exponent after Aleksandr

Lyapunov, which quantifies how quickly the system diverges from its initial state [66,67].

This idea can be extended to a quantum mechanical framework where λ is calculated

through the decay of the out-of-time order correlators (OTOCs) [8–10] defined as

On,m(t) =
〈
[Wn(t), Vm]† [Wn(t), Vm]

〉
= Tr

(
ρ [Wn(t), Vm]† [Wn(t), Vm]

)
. (2.11)

Here, Wn(t) = e−iHtWne
iHt, where Wn and Vn are local operators acting on sites n and

m of a 1D chain governed by the Hamiltonian H. While ρ is typically taken as the

density matrix, ρ = e−βH/Tr(e−βH) with temperature T = 1/β, it can be an arbitrary

initial state as well.

In the case when operatorsW and V are Hermitian, the OTOC simplifies toOn,m(t) =

1 − Tr (ρWn(t)VmWn(t)Vm), where the constant term is often neglected. Similar to the

classical case, this function in essence measures the spread of an operator over time when

perturbed by another operator at a different position at a given temperature [11, 68].

Alternatively, from a thermalisation stand point, one could view it as the degree to

which local operators become hidden over time, equivalent to that of a loss of memory

of the initial conditions [9, 50, 69]. The leading order behaviour of the OTOCs is then

given by an exponentially diverging function eλt, where one again quantifies the spread

of correlations via the Lyapunov exponent, λ [11,70–72]. Therefore, typically, the larger

the value of λ, the more chaotic a system is.

A quantum system that emulates a black whole is then expected to maximise λ. This

saturation value is well known for low temperatures and was first proposed by Maldacena,

Shenker, and Stanford in [11], where it was found to be

λmax = J2πT, (2.12)

with J being the overall energy scale of the system. This result is often referred to

as the bound on chaos. Therefore, to identify whether a system maximally scrambles

information, one can extract λ(T ) at low temperatures, fit λ vs T to a linear function

and compare the gradient against 2πJ .
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2.2.3 Maximal scrambling in the SYK model

Next, we present a quantum model that saturates the bound on chaos, thereby maxim-

ally scrambling information and serving as a quantum analogue of a black hole. This

paradigmatic model at the intersection of quantum many-body and black hole physics is

known as the Sachdev-Ye-Kitaev (SYK) model. The model is defined in terms of Major-

ana fermions, χi, which obey the canonical commutation relation {χi, χj} = δij . For N

Majorana fermions, the SYK Hamiltonian is given by

H =
6

N3

N∑
i<j<k<l

Jijklχiχjχkχl, (2.13)

where Jijkl are random real coefficients, drawn from a Gaussian distribution with stand-

ard deviation σ = J [49, 50, 73]. In the spin language, the SYK model can be mapped

onto N/2 Pauli spin−1/2 operators given by

χi →


(∏

j<k σ
z
j

)
σxk , i even(∏

j<k σ
z
j

)
σyk , i odd

(2.14)

through a Jordan-Wigner transformation where k = floor(i/2).

The connection between the SYK model and black holes lies is rooted in the model’s

holographic duality via the AdS/CFT correspondence [74]. Specifically, a correspondence

has been established between the low-temperature dynamics of the SYK model and a

universal theory of near-extremal black holes, described by Jackiw–Teitelboim gravity [51,

74–76]. It has been directly shown that the bound on chaos is saturated in theories

of quantum gravity and their holographic duals in [68]. As such, the SYK model is

expected to be a prime example of a quantum model that exhibits optimal scrambling

and maximally thermalising behaviour.

This saturation of the bound on chaos was demonstrated in [73]. Using the same

methodology outlined in section. 2.2.2, one first computes the regularised OTOC for the

SYK model of the form

F̃ (t) =
〈
χi(t)ρ

1
4χj(0)ρ

1
4χi(t)ρ

1
4χj(0)ρ

1
4

〉
, (2.15)

where i ̸= j and ρ = e−βH . Due to the random nature of the couplings, this quantity

is also averaged of many realisations of the couplings. Eq. (2.15) is a simplification of

Eq. (2.11) that arises when the operators are Hermitian with the addition that the density

matrix is now evenly smeared across the four operators. The benefit of the regularised

version is faster convergence in much smaller system sizes compared to the unregularised
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version. In the large-N limit, however, both expressions are expected to yield equivalent

results.

Figure 2.2: Computation of the regularised OTOCs in the SYK model and extraction
of the Lyapunov exponent. (a) The early time behaviour of the regularised OTOC
(Eq. (2.15)) over time (scaled by J) for different system sizes N . All system sizes are
approximately related via a scaling relation, proportional to log(N). (b) By fitting an
exponential-like function to F̃ (t), one can extract the Lyapunov exponent as a function
of temperature 1/β (green dots). This is compared to the bound on chaos, Eq. (2.12), for
low temperatures (blue line). Dashed black line indicates the solutions predicted from
the Schwinger-Dyson equations, derived from the Green’s functions in the large N → ∞
limit. Figure reprinted from Ref. [73] with permission under the terms of the Creative
Commons Attribution 4.0 International license.

For Eq.2.15, one expects a period of exponential decay over time analogous to the

classical butterfly effect [71, 72] until the function eventually saturates due to a finite

system size. The early-time behaviour of the OTOC is shown in Figure 2.2(a), where we

see this expected behaviour and convergence with system size is clearly observed. From

there, the Lyapunov exponent can be extracted by fitting an exponential-like function

∝ eλt/N to F̃ (t) for different temperatures. The results are shown in Figure. 2.2(b)

alongside the bound on chaos (blue). As expected, the SYKmodel is found to saturate the

bound on chaos, confirming its status as a maximally scrambling system – a hallmark of

quantum black holes. This makes SYK a perfect candidate for a quantum representation

of a black hole. The SYK model is not without its limitations, however. Being a non-local

model, it poses significant challenges for experimental realisation in cold-atom platforms

or quantum circuits [77]. For practical implementations and circuit-based descriptions,

a local model with a black hole description, whose properties converge at smaller system

sizes, would be most ideal. In the next chapter, we will present a local chiral spin-chain

model that successfully captures a wide range of black hole properties, the most pertinent

being the optimal scrambling behaviour.
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2.3. Evading thermalisation through quantum scarring

2.3 Evading thermalisation through quantum scarring

Thus far, we have discussed quantum thermalisation in interacting many-body systems

and what it means to maximally thermalise. However, our second goal is to explore

tunable methods for evading thermalisation in such systems. Based on our previous

discussion, this may seem unlikely due to the strong criteria imposed by the Eigenstate

Thermalisation Hypothesis. In particular, ETH — through property (2) in Section 2.1.1

— suggests that all initial states are expected to undergo thermalisation. Nevertheless,

since the 2017 experiments on Rydberg atom quantum simulators [16], it has become

apparent that weak violations of the ETH are possible, such the system only violates

the ETH with a small fraction of its states, while overall it still remains chaotic and its

behaviour consistent with the ETH predictions.

Figure 2.3: Quantum scarring of a single particle inside the Bunimovich stadium. The
Hamiltonian is composed purely of the free-particle kinetic energy. Due to the geometry
of the stadium, the particle generically exhibits chaotic behaviour. However, a select
few eigenfunctions exist that have high support around unstable periodic trajectories
that exist in the corresponding classical system (in this case, the diamond shown in
the solid line). This is an example of a scarred eigenfunction which is indicated by the
contours clustered around the periodic orbit. This figure is reprinted with permission
from Ref. [25], American Physical Society.

An example of weak violation of thermalisation in single-particle systems was first

identified by Heller in 1984 and dubbed quantum scarring [25]. Consider a billiard ball

bouncing inside the Bunimovich stadium in Fig. 2.3. Due to the stadium geometry, most

classical trajectories of such a ball are chaotic, lacking periodicity. Nevertheless, the

classical system exhibits a few unstable periodic orbits [78], see the black line in Fig. 2.3.

A similar effect occurs in the quantum analogue of a free particle, described by the

Schrödinger equation with the boundary conditions that match the stadium geometry.

While most eigenstates in this system are ergodic – exhibiting probability distributions
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Chapter 2. Quantum thermalisation and maximising quantum chaos

that are uniformly spread across the billiard – a special subset of the wavefunctions

show pronounced concentration around the unstable periodic orbits of the corresponding

classical system. In this sense, the classical trajectories leave a ‘scar’ on quantum eigen-

states, as illustrated in Fig. 2.3. This phenomenon has a profound effect on select initial

states that have high overlap with the scarred eigenstates. Unlike generic initial states,

which are expected to delocalise and uniformly spread over time, these special scarred

initial states remain concentrated near the classical trajectory for an extended duration,

seemingly resisting thermalisation.

2.3.1 Quantum many-body scarring

Quantum many-body scarring (QMBS) is a form of weak ergodicity breaking found in

some chaotic many-body systems, reminiscent of the quantised billiards discussed above.

In QMBS systems, a small number of atypical states retain memory of their initial

conditions, defying the generic expectation of thermalisation (see recent reviews [20–22,

54]). As in the single-particle case, this behaviour originates from the state’s significant

overlap with a special subset of eigenstates embedded within the system’s eigenspectrum.

These are typically highly excited states that violate the ETH and are generally known

as quantum many-body scars.

The number of scarred eigenstates typically scales polynomially with system size N ,

thus they form a vanishing fraction of the entire Hilbert space that grows exponentially

with N . Because of this, systems exhibiting QMBS still display many hallmarks of

quantum chaos, such as level repulsion and information scrambling. Nevertheless, scarred

eigenstates are often approximately equally spaced in energy and have enhanced overlap

on certain product states. Hence, when the system is initialised in such a product state,

one can observe nearly-perfect revivals in the quench dynamics. Furthermore, the QMBS

eigenstates also exhibit suppressed entanglement (subvolume law scaling), in contrast to

the volume-law scaling typical of thermal bulk eigenstates.

The Hamiltonian of a large class of QMBS models can be expressed in the form

H = HThermal ⊕HScar + V, (2.16)

where HScar denotes the Hamiltonian of the scarred subspace that violates the ETH,

HThermal is the Hamiltonian of the (much larger) thermal subspace, and V denotes weak

coupling between the two subspaces. This effective decoupling of the Hilbert space (for

the special case V = 0) is illustrated in Fig. 2.4(a). The decoupling in Eq. (2.16) is

clearly not a feature of all chaotic models, therefore one may wonder about the possible

underlying origins of such a decoupling.
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2.3. Evading thermalisation through quantum scarring

Figure 2.4: (a) Illustration of the Hamiltonian, H, in Eq. (2.16) where the Hilbert space
is split into a thermal subspace (red) and scar subspace (blue). (b)-(d) show the density
of states (DOS) of H where the scarred eigenstates (blue dots) are highlighted within
the continuum of thermal eigenstates. In particular, the plots schematically show the
difference between three possible mechanisms of QMBS. (b) The DOS due to a spectrum
generating algebra which embeds eigenstates in the spectrum with equidistant energy
separation ω. (c) A disconnected subspace due to an exact Krylov subspace – represented
with a tridiagonal matrix. (d) The DOS as a result of general projector embedding where
the special eigenstates are sporadically placed throughout the eigenspectrum. Figure
reprinted with permission from Ref. [20], Springer Nature Ltd.

In the single-particle case, the origin of scarred eigenstates can be traced back to un-

stable periodic orbits in the corresponding classical system. However, in the many-body

context, no clear classical analogue exists to account for the emergence of such non-

thermal eigenstates. Several mechanisms have been proposed to explain their presence:

these include spectrum-generating algebras [23, 24, 79–82], Krylov-restricted thermalisa-

tion [83], and projector embedding [84]. Each of these mechanisms results in a special

subset of non-thermal eigenstates embedded within an otherwise thermal spectrum, as

schematically illustrated in Fig. 2.4(b)–(d).

For the spectrum generating algebra, one can define a local ladder operator, Q†,

satisfying the relation ([H,Q†] − ωQ†)W = 0. Here ω is some energy scale and W

is a subspace of the full Hilbert space that remains invariant under the action of Q†.

Starting from a state |ψ0⟩ – for example, the ground state of H – one can construct a

tower of states |ψn⟩ = (Q†)n |ψ0⟩ which are eigenstates of H with equally spaced energies

E0+nω (for integer n). The eigenstates |ψn⟩ are candidates for many-body scars due to

their potentially non-thermal properties, despite being eigenstates of a globally chaotic

Hamiltonian. Because of their equal spacing, any state formed as a superposition of these

eigenstates will exhibit perfect revivals when evolved under H. This constitutes one way

to effectively decouple a scarred subspace from the thermal bulk, as shown in Fig. 2.4(b).

Krylov restricted thermalisation is another method of disconnecting the subspace.

Unlike the spectrum generating algebra, this method does not require prior knowledge

of a ladder operator like Q†. Consider a general Hamiltonian H and an initial state |ψ0⟩.
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By repeatedly acting H on |ψ0⟩, one generates the Krylov subspace

K = span
{
|ψ0⟩ , H |ψ0⟩ , H2 |ψ0⟩ , ...

}
. (2.17)

In the special case where K is finite – i.e., there exists some n such that Hn |ψ0⟩ = 0 –

a dynamical fracture occurs in the Hilbert space. Any state |v⟩ ∈ K will then remain

confined to this subspace under time evolution: e−iHt |v⟩ ∈ K. Through performing a

Gram-Schmidt orthogonalisation, K can be transformed into a tridiagonal matrix, fully

decoupled from the rest of the spectrum of H, see Fig. 2.4(c). This subspace can exhibit

non-thermal behaviour. However, unlike the spectrum-generating algebra, the special

eigenstates are not necessarily equally spaced in energy, so the dynamical revivals are

not guaranteed.

Finally, a more systematic method for constructing a thermalising Hamiltonian with

an embedded non-thermal subspace is projector embedding. This approach begins with

an arbitrary set of non-thermal states |ψi⟩ defining the scarred subspace as HScar =

span {|ψi⟩}. The goal is to then embed HScar into a thermalising Hamiltonian of the form

shown in Eq. (2.16). Shiraishi and Mori [84] proposed such a means through projector

embedding. This method assumes that each |ψi⟩ are annihilated by local projectors Pi

such that Pi |ψi⟩ = 0, where i indexes lattice sites. The Hamiltonian is then constructed

as H =
∑

i PihiPi+H
′
, where hi is an arbitrary local operator and H

′
a general Hamilto-

nian. Assuming that
[
H

′
, Pi

]
= 0, it follows that PiH |ψi⟩ = PiH

′ |ψi⟩ = H
′
Pi |ψi⟩ = 0,

so [H,Pi] = 0, and the Hamiltonian becomes block diagonal. With a suitable choice of

H
′
, the scarred states |ψi⟩ can be embedded at arbitrary energies in the spectrum. As

with the Krylov method, this construction produces a decoupled, non-thermal subspace –

but again, it does not inherently lead to revivals, unlike the spectrum-generating algebra.

Numerous models exhibiting these scarring mechanisms have been identified, with

several examples shown in Fig. 2.5. The catalogue of systems hosting QMBS states

continues to grow rapidly [18,79,85–98], and includes experimental realisations in several

cold atom platforms [16,17,26–28]. It is important to note that for non-thermal behaviour

to persist, the embedded scarred subspace does not need to be perfectly decoupled from

the rest of the Hilbert space, i.e., V can be non-zero in Eq. (2.16). A canonical example

of this is the PXP model, which will be studied in detail in Chapter 4. Additionally,

while these three frameworks offer an avenue for understanding the origin of scarred

eigenstates, they are not exhaustive. The underlying origin of memory-retaining initial

states ultimately remains the subject of on-going work. Moreover, the connection between

quantum many-body scarring and its single-particle analogue, whose origin is better

understood, is still not fully resolved. One promising approach to bridging this gap is

through the time-dependent variational principle (TDVP), which will be discussed in
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Figure 2.5: Three methods of generating a scarred subspace in a Hamiltonian and ex-
amples of models which exhibit each mechanism. Figure reprinted with permission from
Ref. [20], Springer Nature Ltd.

Section. 4.2.3 in the context of the PXP model.

2.4 Chapter conclusions

In this chapter, we have explored what it is to be (maximally) thermal in a quantum

setting and how this motivates condensed matter toy models of black holes. We began

by defining thermalisation in quantum many-body systems and explaining how it can

be diagnosed through the distribution of level statistics. We then introduced a more

precise metric of thermality through the Lyapunov exponent, which is used to measure

the degree of thermality in a system. Following this, we presented the SYK Hamiltonian

as a paradigmatic example of a chaotic system, demonstrating how it saturates the upper

bound on the Lyapunov exponent. In this sense, black holes are the ultimate scramblers

of information, and so this saturation is an essential feature for any quantum system

aiming to emulate black hole dynamics. We also reviewed a form of weak ergodicity

breaking through quantum many-body scars – a mechanism for weakly violating the

ETH and evading thermalisation using select initial states.

This background sets the foundation for the remainder of the thesis. In particular,

in Chapter 3, we explore the idea of maximal thermalisation further by presenting a

maximally scrambling chiral spin-chain model. Like the SYK model, the chiral spin-

chain exhibits black hole phenomena due to an emergent effective black hole geometry

in the continuum limit [12]. As a result, it is expected to manifest maximal scrambling

behaviour. By analysing the saturation of the Lyapunov exponent, using the methodology

established with the SYK model, we can assess whether this system exhibits maximal

thermalisation. In contrast to the SYK model, this would provide a more experimentally
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accessible route to maximal thermalisation due to being a disorder-free, local model.

Similarly, the definition of the ETH will enable us to investigate mechanisms for

evading thermalisation (and similar information scrambling processes) in Chapter 4 and

Chapter 5. Specifically, diagnosing thermality through level statistics has recently proven

insufficient due to the discovery of “weak” violations of ETH via quantum many-body

scarring [18], a phenomenon in which select initial states exhibit robust memory retention

in an otherwise chaotic system. This will allow us to demonstrate an experimentally

viable method for evading the loss of information in an interacting many-body system.
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Chapter 3

Maximising thermalisation in a

local quantum model of a black

hole

3.1 Chapter introduction

In Chapter 2, we defined what it meant to be thermal in the setting of an isolated

quantum system, and we introduced the SYK model as an example of a maximally

thermalising model. Recently, the paradigmatic SYK model, whose holographic dual

acts as a black hole, is found to saturate the bound on chaos and therefore maximally

scramble information [51, 74–76]. This primes SYK to act as a perfect candidate for a

quantum representation of a black hole.

This model, however, is related to a (1 + 1)D black hole only indirectly, through the

AdS1+1/CFT0+1 correspondence [74]. Thus, it is useful to explore alternative models that

may have a more direct connection to black holes. Here we study a recently introduced

chiral spin-chain model [12,13]. The mean-field theory limit of this model describes Dirac

fermions in a black hole background geometry, which is similar to the semiclassical limit

of quantum gravity [99]. However, within the region of the chain representing the black

hole’s interior, the mean field theory description breaks down due to the dominance of

strong correlations. One question that arises is if this strongly correlated region gives

rise to optimal scrambling behaviour, as one would hope for a black hole model.

After introducing the background of the chiral spin model, we begin our work by

demonstrating through new data that the model thermalises and also has maximal

scrambling capacity. To probe the scrambling behaviour of the chiral spin-chain, we

numerically investigate its Out-of-Time-Order correlators. OTOCs are a special class of
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quantum correlation functions that determine the Lyapunov exponent, capable of dia-

gnosing early-time chaotic behaviour [9, 69].

This naturally motivates the question if there is a use for this maximally-scrambling

system, besides its conceptual connection to black holes. Remarkably, a use arises for

this through quantum teleportation – a central concept of quantum information that

highlights the stark contrast between classical and quantum physics [100–102]. In partic-

ular, many-body teleportation through the Hayden-Preskil protocol acts as a remarkable

avenue wherein the chaotic nature of interacting quantum systems is utilised for greater

success, making it amenable to realistic simulators of quantum systems [14, 103–107].

This protocol is an extension of the well-known single particle teleportation scheme. In

this case, however, part of the wavefunction is now scrambled in order to increase the

success fidelity of the protocol.

Our novel results arise from investigating the Hayden-Preskill protocol with the chiral-

spin chain thereby utilising a maximally-thermalising system to perform a many-body

quantum state teleportation. Using the chiral model, we demonstrate how the Hawking

radiation and optimal scrambling behaviour can be used to model two of the physical

process related to the black hole teleportation: the Page curve that gives the time after

which the teleportation can take place to the butterfly velocity used to prepare inform-

ation before optimal scrambling can take place. Our numerical simulations allow us to

quantify the key timescales governing the teleportation process, including the Page time,

radiation time, scrambling time, and butterfly velocity, showing their universal depend-

ence on the chiral coupling strength. Comparing these timescales against other chaotic

local models, demonstrates the supremacy of the chiral spin-chain as it successfully out-

performs other systems which are commonly studied in the context of black hole quantum

teleportation.

3.2 An optimally scrambling chiral model with effective

black hole geometry

3.2.1 The chiral spin-chain model

The chiral spin-chain model, first introduced in Refs. [12, 13], is shown in Fig. 3.1. It

describes an interacting chain of spin-1/2 particles with the Hamiltonian

H =
1

2

N∑
i=1

[
−u
(
Sx
i S

x
i+1 + Sy

i S
y
i+1

)
+
v

2
Si · Si+1 × Si+2

]
, (3.1)
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where u and v are in general position dependent real numbers and Si = (σxi /2, σ
y
i /2, σ

z
i /2)

where σαi (α = x, y, z) is the α-Pauli matrix of the ith spin. Notably, this is the XY model

with an additional three-spin chirality term

χi = Si · Si+1 × Si+2, (3.2)

that introduces interactions [12, 13, 108, 109]. The enumeration of the sites in the chiral

interaction term causes the chirality to alternate along the chain, as shown in Fig. 3.1.

Unless otherwise stated we adopt open boundary conditions.

As v is increased, the model undergoes a quantum phase transition from a gapless

XY-phase to a gapless chirally-ordered phase, where the total chirality ⟨χ⟩ =
∑

i⟨χi⟩
acts as an order parameter. The critical point is located at v

2 ≈ 1.12u [12, 13]. For
v
2 ≤ 1.12u, the ground state is in a free XY phase with ⟨χ⟩ = 0. Using standard

bosonisation techniques [110–112] we found that the interactions were irrelevant and the

low energy physics is described by free fermions with renormalised Fermi velocities. On

the other hand, for v
2 ≥ 1.12u the chiral interaction dominates the XY term and the

model transitions to a chiral phase with ⟨χ⟩ ̸= 0. In this phase bosonisation is more

complicated due to the system possessing two Fermi points. We find that in this phase,

the model does not remain at the free fermion point, revealing the dominance of the

interactions [13].

Figure 3.1: The chiral spin-chain (3.1) with position dependent chiral coupling v, while
u is constant. Here, the chiral interaction, χi, acts on three successive spins and has
alternating orientation. The fermionic sites a and b represent the unit cell of the mean
field theory (MFT), where the spin of the Dirac field is encoded. The MFT gives the
black hole (BH) geometry with v small on the left of the chain (v2 < u, outside BH) or
large on the right (v2 > u, inside BH), with the horizon positioned at v

2 = u – for more
details see Appendix A.1.

3.2.2 Black hole geometry

Intriguingly, the chiral model has a geometric interpretation in terms of black hole phys-

ics [12]. We first apply the Jordan-Wigner transformation that maps the spins into
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Figure 3.2: (a) The dispersion relation E(p) obtained from the MFT description of ho-
mogeneous periodic chains. In the low energy limit it faithfully reproduces the behaviour
of Dirac fermions in black hole geometry given by (3.4). (b) The lightcones, reciprocal to
the dispersion relation that describe the effective metric (3.5) of the system for various
values of v. From left to right, we take v = 1, v = 2 and v = 10 for the three panels
respectively in btoh (a) and (b). u = 1 for all panels.

fermions. While the system is a 1D chain, one can equivalently view the system as a

triangular ladder by sketching out the sites which exhibit XY and Chiral interactions.

The system then has a unit cell of two fermion sites, a and b, sitting at opposite ranks

of a triangular ladder, shown in Fig. 3.1 (see Appendix. A.1 for further information).

By employing self-consistent mean field theory (MFT), one can map the interacting spin

model to a model of free fermions on a lattice. In this limit the fermionic Hamiltonian

becomes

HMFT =

N∑
n=1

(
uc†ncn+1 +

iv

4
c†ncn+2 + h.c.

)
. (3.3)

When |v| ≲ 2|u| the model is in a non-chiral phase with ⟨∑n χn⟩ = 0. The low-energy

behaviour of the model is essentially equivalent to the XY model, since the interactions

are irrelevant in a renormalisation group sense [12]. Therefore the non-interacting MFT

accurately captures its physics. When |v| > 2|u|, the system undergoes a quantum phase

transition to a chiral phase where ⟨χ⟩ ≠ 0. In this coupling regime the MFT breaks down

since the low-energy physics becomes strongly interacting, therefore the model must be

described using the chiral spin-chain Hamiltonian (3.1) [13].

We can investigate the behaviour of the model by taking homogeneous coupling v

and adopting periodic boundary conditions to extract the dispersion relation. This de-

scription faithfully captures the phase diagram of the model, albeit with critical point at
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v
2 = u. The dispersion relation of the model, shown in Fig. 3.2(a), at low energies, i.e., in

the continuum limit, can be faithfully reproduced by the Dirac action on a fixed curved

spacetime background

SMFT =

∫
d1+1x|e|ψ̄(x)

(
ie µ

a γ
a
↔
∂µ

)
ψ(x), (3.4)

where a = 0, 1 are local inertial frame indices, µ = t, x are coordinate indices; the spinor

field is given in terms of the unit cell fermions as ψ(x) = (a(x), b(x))T /
√

|e| as shown in

Fig. 3.1; A
↔
∂µB = 1

2 (A∂µB − (∂µA)B); γa = (σz,−iσx); and |e| = det(eaµ). The zweibein

e µ
a are related to the spacetime metric by gµν = eaµe

b
νηab, where ηab = diag(1,−1) is

the Minkowski metric and gµν is given by [12]

ds2 =

(
1− v2

4u2

)
dt2 − 4v

u2
dtdx− 16

u2
dx2. (3.5)

This is the Schwarzschild metric of a black hole expressed in Gullstrand-Painlevé co-

ordinates [113–116] (see Appendix A.1 for more background details), which has also

been observed in other synthetic black hole systems [117–120].

We now take the coupling v to be a function of position, v(x), varying monotonically

from small to large values. If it is slowly-varying compared to the lattice spacing, then

the continuum description in terms of the Dirac equation remains valid. In this case the

event horizon is located at v
2 = u, where v

2 < u corresponds to the outside of the black

hole and v
2 > u corresponds to the inside, as shown in Fig. 3.2(b). In Gullstrand-Painlevé

coordinates the light cone tilts when approaching the black hole, having eventually both

light directions pointing towards its centre inside the black hole, as shown in Fig. 3.2(b)

(Right). We see that the event horizon aligns well with the boundary between the two

phases of the spin-chain, where the chiral phase is inside the black hole and the XY phase

outside. Using the mean field description it was shown in Ref. [12] that a free particle that

passes through the phase boundary of our model emerges as a thermal radiation with the

Hawking temperature, similar to other models [121–134]. We expect the thermalisation

to Hawking temperature to be valid in the fully interacting model as the MFT is still

valid around the horizon, only breaking down deep inside the black hole where the chiral

interactions are dominant.

Apart from reproducing the semiclassical behaviour of a black hole, our model also

exhibits a chaotic behaviour, as we shall see in the subsequent sections. This can be

quantified by the Lyapunov exponent where for small v we obtain a Lyapunov exponent

λ ∝ T 2, as expected from perturbative interactions [135]. For large v, i.e. inside the

black hole, the numerically obtained Lyapunov exponent exhibits linear behaviour λ ∝
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T [11], with a slope which is in excellent agreement with the predicted optimal scrambling

behaviour.

3.2.3 Quantum chaos inside the black hole

A natural question to ask is if this black hole geometric analogy of Eq. (3.1) extends

to the thermalising dynamics expected at the interior of a black hole. In particular, we

investigate whether the spin model is chaotic for v
2 > u (with homogeneous v along the

chain) and, more importantly, whether it exhibits maximal information scrambling as

expected of a black hole.

As we discussed in Section 2.1.2, one of the most effective methods for diagnosing the

chaotic behaviour of a many-body quantum system is to study its energy level statistics,

provided all relevant symmetries have been resolved. We consider the chain with periodic

boundary conditions which has translational symmetry, U(1) symmetry and global spin

flip symmetry X =
∏

i σ
x
i . We restrict to the symmetry sector with quantum numbers

k = 0, z = 0, x = +1 of these symmetries, respectively, and determine the eigenvalues,

{En} of (3.1). We then take the set {sn}, where sn = En − En−1, and evaluate [64]

rn =
min{sn, sn−1}
max{sn, sn−1}

. (3.6)

The probability distribution over all rn and average of this value, ⟨r⟩, are shown in

Fig. 3.3. For v ̸= 0, we find Wigner-Dyson statistics indicating that this model is chaotic,

a characteristic that becomes more prominent with system size. Notably, we find ⟨r⟩ ≈
0.53 [65], which corresponds to the GOE ensemble. This is perhaps unexpected since

H possesses complex matrix elements. Despite this, the model retains time-reversal

symmetry due to satisfying the relation PHTP = H where P is the parity operator,

reminiscent of Ref. [136].

3.2.4 Extracting optimal scrambling via the Lyapunov exponent

The average level spacing ⟨r⟩ is a crude measure of the chaotic behaviour of a quantum

system, in the thermodynamic limit we expect Wigner-Dyson statistics for all models

except fine-tuned integrable systems. Therefore, we need a more precise measure of the

chaotic behaviour of the system inside the black hole to determine whether the scrambling

of quantum information is optimal, as it is the case for the SYK model [73].

As a diagnostic tool we will employ the Lyapunov exponent that we first introduced

in Section 2.2.2, λ, that quantifies the rate of thermalisation of a chaotic system [137]. In

the quantum mechanical framework, λ is calculated using the decay in out-of-time-order

correlators (OTOCs) with respect to some local operator Oi on site i, as a function of
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Figure 3.3: (a) The probability distribution of all r-values in the reduced symmetry sector
at N = 20, v = 4, u = 1. In both cases we see the model matches the Gaussian orthogonal
ensemble (GOE) indicating a non-integrable model [65]. (b) The average r-value (3.6) of
the eigenspectrum of Hamiltonian (3.1) for different values of v and N (u = 1). Results
were computed in the k = 0, z = 0, x = +1 symmetry sector.

time, t. We primarily focus on the regularised OTOC

C(t) = ⟨Oi(t)ρ
1/4Oj(0)ρ

1/4Oi(t)ρ
1/4Oj(0)ρ

1/4⟩, (3.7)

where ρ = exp(−βH)/Z, with the partition function Z = Tr exp(−βH) and β = 1/T is

the inverse temperature. We also scale such that C(0) = 1.

The regularised version of OTOCs is suitable for investigating small temperature be-

haviours and exhibits fast convergence even for small system sizes [73]. This should be

contrasted to the unregularised correlator which is subject to stronger finite-size correc-

tions at low temperatures [138]. Using the regularised version, C(t), we are restricted to

exact diagonalisation techniques. Further restrictions are placed on system size N ≤ 13

due to the need of time evolution. Fortunately, due to the fast convergence of our model

with system size, we find this to be sufficient for our study. Unless otherwise stated,

we take Oi = Sx
N/2 and Oj = Sx

N/2−2 for N even and Oi = Sx
(N+1)/2, Oj = Sx

(N−3)/2,

for N odd. While the choice of O = Sx restricts the use of system’s symmetries, it is

reminiscent of the Majorana fermionic operators in the SYK model and successfully un-

earths the desired optimality behaviour. We show below that the regularised correlators

we choose, allow us to faithfully extract the chaotic behaviour of the model even with

moderate system sizes.

With maximally quantum information scrambling models, one expects an exponential

decay in the OTOCs defined in Eq. (3.7) with an associated Lyapunov exponent, λ,

indicating the rate of decay. The numerical recipe we employ here is identical to that
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Figure 3.4: Out-of-time-ordered correlators, C(t), and Lyapunov exponent, λ, of the
chiral spin-chain for various coupling regimes. (a) Coloured dots show the numerically
evaluated C(t) given in Eq. (3.7) for various values of v (shown in the colour bar), and
T = ∞. Lines show the fit of Eq. (3.8) with λ = 0.78v, which improves for v deep
in the chiral phase. (b) Using the same process and parameters as in (a), we compute
the OTOCs, while varying both T and v and extract λ via fitting (3.8). Large values
of λ are observed for large v (chiral regime) and large temperatures T that probe the
full spectrum of the Hamiltonian. Black dashed line indicates the phase transition at
v/2 ≈ u, where a clear change in behaviour at low temperatures is witnessed. Both plots
are computed with N = 10, u = 1.

presented in Ref. [73] in the context of SYK. We find that the same method is effective

at identifying the scrambling behaviour of our model. Mirroring this study of the SYK

model, we fit the numerical data of Eq. (3.7) to the semiclassical function of the OTOC

at low temperatures

C(t) = U
(1
2
, 1, Ne−λt

)√
Ne−λt/2, (3.8)

where U is the Kummer’s confluent hypergeometric function and λ is the fitted Lyapunov

exponent. This function is justified at low temperatures and provides a phenomenolo-

gical model for capturing the higher-order effects that occur after the initial period of

exponential growth and is demonstrated in [76]. In general, we expect λ to depend on the

coupling v and the temperature T of the model, while we keep u = 1. Fig. 3.4 (a) shows

the behaviour of OTOCs for various values of coupling v when u = 1 and the system

size is N = 10. We verify that the OTOCs exponentially decrease in time as seen by the

fit (solid lines) in Fig. 3.4 (a) with λ = 0.78v. This exponential scrambling behaviour

is present for large v, that take the spin-chain in the chiral regime, i.e. inside the black

hole. These results remain largely unchanged as we vary the system size demonstrating

the fast convergence in the properties of the chiral spin-chain.

With the confirmed presence of exponential decrease in the OTOCs with time, we
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have already substantiated the argument for the presence of exponential scrambling char-

acterised by the Lyapunov exponent. We now investigate the change in the Lyapunov

exponent with temperature where temperature defines the average energy of the dens-

ity matrix. Zero temperature corresponds to the ground state while infinite temperature

corresponds to a uniform superposition of all eigenstates. Due to expected thermal beha-

viour of mid spectrum eigenstates in chaotic models, one expects the Lyapunov exponent,

λ, to increase with T to some maximal bound. The behaviour of λ as a function of the

coupling v and the temperature T is given in Fig. 3.4 (b), where the increase in λ is

observed with v and T , as expected. We also note a sudden change in the behaviour of

λ/v as v crosses the phase transition point v
2 ≈ u at small temperatures, revealing the

corresponding dramatic change in the scrambling behaviour of the model.

It is predicted that the Lyapunov exponent, describing the scrambling behaviour in

quantum systems, satisfies the universal bound λ/J ≤ 2πT , where J is a characteristic

coupling of the system [11]. The quantum gravity description of black holes and their

holographic duals, such as the SYK model, are known to saturate this bound [68], when

λ is normalised by appropriately chosen coupling J . This optimal scrambling behaviour

is analytically and numerically identified in the SYK model for low temperatures [11],

and has been investigated in an experimentally realisable context [139]. We will now

investigate whether the chiral spin-chain is optimally scrambling or not. To achieve that

we will quantitatively determine the functional dependence of the Lyapunov exponent on

temperature, T , for various regimes of v that correspond to the inside and outside of the

black hole. Again, we employ the same method seen in [73] when fitting with Eq. (3.8).

In the low temperature limit we expect that in the weakly-interacting regime, de-

scribed by v
2 < u, the Lyapunov exponent will grow quadratically with temperature.

This is due to the T 2 dependence on the resistivity typically expected in Fermi liquids in

the absence of interactions [135, 140, 141]. In Fig. 3.5(a) we observe that the Lyapunov

exponent obtains the quadratic behaviours as T goes to zero, when v is small, i.e. outside

the black hole. Note that odd system sizes have a zero offset, i.e. λ→ 0 as T → 0, while

for even N there is a non-zero offset. This offset is a finite system size effect that tends

to zero as N increases.

If the strongly interacting regime, v
2 > u, exhibits black hole phenomena, then op-

timal scrambling is expected, witnessed by a linear growth of the Lyapunov exponent,

λ/J = 2πT . In Fig. 3.5(b) we observe that, similar to the SYK model [73], the numer-

ically obtained Lyapunov exponent has a liner dependence on temperature. Hence, we

anticipate that the chiral spin-chain exhibits optimal scrambling at the coupling regime

that describes the inside of a black hole. To quantify how accurately the quadratic and

linear behaviours are manifested in our system we module a fit in the data of the form
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Figure 3.5: The Lyapunov exponent of the chiral spin-chain simulating the black hole.
(a) Outside the black hole (v = 1 and u = 1) the Lyapunov exponent exhibits at low
temperatures a quadratic behaviour. The observed even/odd system size dependence
is decreased when N increases. (b) Inside the black hole (v = 8 and u = 1) a linear
behaviour in the Lyapunov exponent is observed, indicating optimal scrambling. (c) The
functional dependence of the linear regime of λ on the coupling v. When scaling both
λ and T by v we find that with increasing v, the scaled Lyapunov exponent eventually
flattens out (N = 8). (Inset) Upon scaling both λ and T axis by v, the linear plots collapse
on top of each other (N = 12). (d) In the linear regime we fit λ = a(T − c) as shown in
(b) and extract the slope a (top) and the offset c (bottom). We plot a scaled by v/2 and
by 2π against 1/N . As N increases the fitting parameters approach a→ 2π v

2 and c→ 0,
thus recovering the optimal scrambling behaviour in the thermodynamic limit. Black
dashed lines are for guiding the eye. Results are computed using exact diagonalisation
(ED) for smaller system sizes, and a Krylov subspace method (see Appendix B.2 for
details) to reach larger system sizes. We see excellent agreement for the two when ED is
possible. ED results are from N = 6 to N = 13, while Krylov results are up to N = 20.
Inset shows the average standard error in λ from the Krylov subspace method vs N which
is larger for smaller system sizes. These results are for v = 8.0. v = 7.5 and v = 8.5 show
similar behaviour.
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λ = a(T b − c) and study b with system size. We find that b takes values 1 and 2 in

the corresponding regimes to a very good accuracy (see Appendix A.2 for more details).

Furthermore, Fig. 3.5(c) shows that for large enough v, the Lyapunov exponent remains

more or less constant taking the value λ/v ≈ 0.20. This should be contrasted to other

sub-optimal models with a rate of chaos that is parametrically slower than the SYK

model [142,143].

We next investigate the slope of the linear behaviour exhibited by the Lyapunov

exponent when v is large. In Fig. 3.5(b) we identify the linear behaviour λ = a(T −c) for
a range of temperatures between Tmin and Tmax. Here, Tmin depends on the discreteness

of the finite system and tends to zero as N increases, while Tmax depends on the rest of

the dynamics of the chiral model. The saturation of the scrambling bound is achieved

for a linear gradient 2π normalised by the coupling of interactions, given in Hamiltonian

(3.1) by v/2. In Fig. 3.5(d) (Top) we see that the slope of λ/(v/2) as a function of

temperature, 2a/v, tends to 2π with increasing system size as expected from the optimal

scrambling behaviour. Moreover, we observe that the constant offset, c, tends to zero

with increasing system size, N , where the dashed line in Fig. 3.5(d) (Bottom) is a linear

fit to the data. Note that both a and c show a strong oscillatory behaviour as a function

of N , indicating the significance of the boundary effects.

To address this, we use both ED and a Krylov subspace method (see Appendix B.2).

We find the two methods agree in the system sizes available through ED, therefore

verifying the integrity of the Krylov algorithms results. The Krylov subspace method

then allows us to reach much larger system sizes than ED, where we see a rapid trend to

the expected values with oscillations decreasing with system size. Hence, in the strong

chiral regime of our simulator, i.e. inside the black hole, we expect to have λ
v/2 = 2πT in

the thermodynamic limit. Although, resolving the ambiguity associated with choosing

the appropriate energy scale of the model, J = v/2, needs a theoretical investigation

that goes beyond the scope of this work, we postulate that this expression corresponds

to optimal scrambling.

Our numerical investigation shows that as the coupling v varies from small to large

values the spin-chain (3.1) undergoes a quantum phase transition. This transition does

not only changes its ground state properties from non-chiral to chiral [12, 13], but its

thermalisation properties change from weakly scrambling to optimal scrambling at v
2 ≈ u,

much in the same way as in [144]. Notably, our system does not have random all-to-

all interactions as it is the case for the SYK model [73]. This locality and uniformity

facilitates the fast convergence of our numerical simulations with system size to the

expected behaviour. This is manifestly seen in Fig. 3.5, where system size effects become

less pronounced with increasing N .
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3.3 Exploiting maximal scrambling through quantum tele-

portation

Having established the existence of an maximally thermalising local model through the

chiral spin-chain, we next present an application. Being local, the chiral model is nat-

urally primed towards experimental feasibility in both cold atom systems and quantum

circuits compared to the SYK model. One may reasonably believe however that therm-

alisation in a quantum system may serve as a detriment on quantum hardware due

to the desire to retain information. This turns out to not always be the case. The

Hayden-Preskill protocol is a teleportation scheme which counter-intuitively makes use

of quantum thermalisation in order to maximise the success of state transfer.

Quantum teleportation is a fundamental protocol in quantum information theory, en-

abling the transfer of an unknown qubit state |ψ⟩ from Alice to Bob, provided they share

a maximally entangled Bell pair state, |epr⟩. In the standard protocol, Alice performs a

joint measurement on |ψ⟩ and her share of |epr⟩, then transmits the measurement out-

come to Bob via a classical communication channel. Upon receiving this information,

Bob applies a corrective unitary to recover |ψ⟩ with unit fidelity and probability, with

fidelity being defined as

F(t) = | ⟨ψ(0)|ψ(t)⟩ |2. (3.9)

Despite its simplicity, quantum teleportation has become a cornerstone of modern quantum

communication, with experimental demonstrations extending up to 1400 km [145–149].

Hayden and Preskill presented a black hole adaptation of teleportation, where Alice’s

quantum state is thrown into a black hole, and Bob attempts to recover it from outgoing

Hawking radiation [14, 103–107]. Unlike standard teleportation, this process bypasses

classical communication, instead relying on two key quantum phenomena: Hawking ra-

diation, which establishes entanglement between the black hole and its exterior, and

optimal scrambling, which rapidly disperses quantum information within the black hole

interior [70]. When the black hole has passed the Page time—the moment when its

interior and exterior are maximally entangled—Hawking radiation can be distilled to

reconstruct entangled pairs, allowing Bob to probabilistically recover Alice’s state.

The Hayden-Preskill teleportation protocol is one of the most striking predictions of

quantum black hole physics, demonstrating that black holes can act as near-instantaneous

mirrors of quantum information. This challenges the classical notion that information

falling into a black hole is lost, reinforcing the idea that black holes may function as highly

efficient quantum processors. While this phenomenon depends upon the rapid scrambling

expected in quantum gravity, a complete theoretical description remains elusive. The

Hayden-Preskill protocol is also a fundamentally many-body extension of the traditional
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Figure 3.6: (a) Schematic of the chiral spin-chain with the encoded state |ψ⟩A and
the initially prepared EPR states, |epr⟩. The scrambling inside the black hole is caused
by Hamiltonian H, while bipartite Hamiltonian H ⊕ (−H) with left and right halves
corresponding geometrically to mirrored black holes. (b) The coupling profile for u and v
along the spin-chain for the Hamiltonian in Eq. (3.1). We highlight the difference in the v
coupling between the (smooth) geometric interpretation where a large free system can be
numerically considered and the teleportation protocol fit in a small strongly interacting
system. The two-site u term flips after the site (N − 1)/2, while the 3-site v term is 0 on
site (N − 1)/2 but becomes ±v on either side.

few-qubit quantum teleportation. Consequently, various quantum information models

and condensed matter analogues have been developed to explore its dynamics [9, 150].

In what follows, we will implement the Hayden-Preskill protocol using the established

optimally scrambling chiral spin-chain simulator, and demonstrate the power of quantum

thermalisation in efficiently teleporting qubits with high-fidelity success rates.

3.4 Encoding a teleportation protocol with the chiral spin-

chain

3.4.1 Black hole teleportation

Hayden and Preskill proposed a scheme for teleporting the quantum information stored

in a black hole. Alice, who resides inside the black hole, seeks to teleport the quantum

state |ψ⟩A = α |0⟩ + β |1⟩ to Bob who is positioned outside the black hole. As classical

communication is forbidden due to the event horizon, the teleportation protocol instead

relies on quantum correlations established through L = (N − 3)/2 EPR pairs |EPR⟩ =
|epr⟩⊗L, where |epr⟩ = 1√

2
(|01⟩AB − |10⟩AB), arranged in a nested fashion, as shown

in Fig. 3.6, and an optimally scrambling evolution U within the black hole [11, 50, 70].

Alice’s system A now consists of a state |ψ⟩A on site n = 1 and one qubit from each of
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the L Bell pairs on sites n = 2 to n = (N − 1)/2. Bob’s system is the remaining qubits

from the L Bell pairs on sites n = (N + 1)/2 to n = N − 2, and a final |epr⟩ between

sites n = N − 1 and N . This state can be rewritten as

|ψ⟩A ⊗ |EPR⟩ ⊗ |epr⟩N−1,N =
1

2
|epr⟩A,N−1 ⊗ |EPR⟩ ⊗ |ψ⟩B

+
1

2

∑
a=x,y,z

σaA |epr⟩A,N−1 ⊗ |EPR⟩ ⊗ σaB |ψ⟩B . (3.10)

Crucially, the first part of Eq. (3.10) is left invariant by Alice applying U on sites n = 1 to

n = (N − 1)/2 provided Bob applies a corresponding unitary U∗ (the complex conjugate

of U) to sites n = (N + 1)/2 to N − 1 at their end. Despite this, such a unitary will

in general scramble the remaining part of the state, including the central L EPR pairs.

Therefore, if Bob performs E many EPR measurement and post-selects the outcomes to

be |epr⟩, with high probability the state will originates from the first part of (3.10), and

Bob will have successfully teleported the state. Rapid scrambling of the state is vital to

achieve this result, so that the EPR measurements have a low probability of reproducing

|epr⟩ for the second part of the state. Assuming full thermalisation of the state the

probability PE = 1
4 + 3

4E+1 and fidelity FE = 1 − 2
(4E+3)

tend to 1
4 and 1, respectively,

exponentially fast as E increases [150]. The faster the system thermalises, the faster this

result is obtained.

3.4.2 Chiral spin-chain encoding

To employ the chiral spin-chain simulator, Alice introduces her state |ψ⟩ inside the black
hole, where it evolves under the Hamiltonian H given in (3.1) for time t, producing

the scrambling unitary U = e−iHt. The nested structure of the |epr⟩ states allows Bob

to apply the counter evolution MU∗M = eiHt outside the black hole. M is a unitary

operator which spatially inverts the order of the spins, leaving the |EPR⟩ state invariant,
as well as the Hamiltonian since MH∗M = H. As a result, the total evolution for the

system is given by e−iHt ⊗ eiHt ⊗ IN , where IN is the identify acting on the Nth spin.

In the chiral model, this evolution is realised by introducing a coupling configuration

H ⊕ (−H) that corresponds to a binary black hole system. We emphasise that neither

H acts upon the final spin of the chain, as shown in Fig. 3.6. A step function profile

for u(x), where u changes sign at the centre of the chain, and a tanh profile for v(x), as

previously studied in Ref. [12], are given by

u(x) = −sgn(x− x0), v(x) = α tanh[β(x− x0)] + 1, (3.11)

where x0 = aN/2 is the central site of the spin chain and a is the lattice spacing. The
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Figure 3.7: (a) Fidelity of teleportation over time, t, scaled by v after quenching the
initial state, |ψ⟩A⊗|EPR⟩, with Hamiltonian (3.1). Success is determined by the overlap
between the final state |ψ⟩B of the last site with the initially prepared state |ψ⟩A. Colour
indicates the value of v during the quench where we see a notable change in teleportation
success across the phase transition at v/u ≈ 2. Four EPR pairs, |epr⟩, are measured in
this case. As we enter the maximally scrambling regime, we find the teleportation scheme
is executed more quickly. (b) Similarly but unscaled in time and at a fixed v = 8. Colour
corresponds to a different number of EPR pairs measured, E, where we see teleportation
success increases with E as expected. Here we take N = 17 and u = 1 using ED. (c)
Taking a slice at t = 30 in (b) for different system sizes, we see how the scaling of fidelity
with E changes for system size N when compared to the theoretical upper bound of
FE . We see with increasing system size our results tend towards the optimal theoretical
prediction.

gradient of v(x), and hence the Hawking temperature, is controlled by tuning α and β.

This configuration creates Hamiltonian H in one half of the system and −H in the other.

From the metric in (3.5) we see that the black hole horizons appear at |v|/2 = |u|, while
the interiors reside at the chain’s edges, with a small shared exterior region at the centre.

An additional XY-Hamiltonian at the exterior of the black holes leaves the total |EPR⟩
state unchanged. Throughout this work we couple the two chains with a u(N/2) = +1

allowing non-trivial hopping between the two halves of the system, as shown in Fig. 3.6

although the results are not sensitive to this choice. Information is first encoded in the

left black hole by Alice. Then, the system is evolved for time t before E many EPR

measurements are applied and the fidelity of the teleportation, F , is monitored.
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The time evolution of the fidelity is shown in Fig. 3.7(a). We observe that for small

chiral couplings, v/2 < u, the fidelity oscillates without the ability to produce successful

teleportation for a sustained period of time. On the other hand, when v/2 > u the fidelity

increases and remains high and stable. This stability is seen to increase with system size.

Further results discussing the relevance of system size and number of measurements

for the teleportation protocol can be found in Appendix B.1.1. The contrast between

oscillatory and constant behaviour is due to the absence or presence of interactions that

cause scrambling in the initial σa |EPR⟩ state. For example, for the non-interacting mean

field theory defined in Eq. (3.3), oscillatory behaviour is observed for all values of v. When

the system is in the strong chiral phase, we observe an increase in the fidelity when the

number of measurements is increased. This is shown in Fig. 3.7(b) where the fidelity

is plotted against time. In fact, the increase of the teleportation fidelity is exponential

with the number E of EPR measurements, as shown in Fig. 3.7(c), guaranteeing a fast

convergence to unit fidelity. As a result, the chiral spin-chain can successfully reproduce

the Hayden-Preskill teleportation protocol.

3.5 Physical processes in black hole teleportation

We now discuss the different physical effects that are involved in the black hole tele-

portation process. The aim is to determine the overall duration our quantum simulator

takes to perform the Hayden-Preskill protocol. This includes utilising key features such

as the geometry encoding and optimal scrambling behaviour which allows us to identify

the relevant timescales.

3.5.1 Hawking radiation and Page time

An essential mechanism in black hole teleportation is Hawking radiation that builds

quantum correlations between the inside and the outside of the black hole. This effect

can be analysed with the semiclassical limit of the black hole, which corresponds to the

mean field theory of the chiral spin-chain model. We demonstrate that Hawking radiation

can generate the quantum correlations necessary for teleportation within a binary black

hole system. Furthermore, we show that the coupling configuration (3.11), adopted for

black hole teleportation, preserves the geometric properties of the metric (3.5) at the

horizon, as encoded in the temperature of the Hawking radiation.

Here, we utilise the mean-field theory (MFT) description of the chiral spin chain

given in (3.3). We begin by determining the Page curve, which tracks the entanglement

entropy of the black hole across the horizon during Hawking radiation, considering a

single-particle population inside the black hole, with the exterior initially empty. We
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Figure 3.8: Page curve, Page time, and Hawking temperature of the mean-field (MF)
chiral Hamiltonian (3.3). (a) The entanglement entropy, SE (blue line), of the black
hole across the horizon as a function of time, t, during the Hawking radiation of a single
particle. This curve, known as the Page curve, reaches its maximum at the Page time,
tPage, when the population inside the horizon (red line) is halved. To accelerate black hole
evaporation, we consider a single-particle population inside the black hole and place the
horizon at nh = 2, while the entropy is evaluated for a bipartition at n = 22 to account
for the entropy of particles that are completely free from the black hole attraction. The
inset sketches illustrate the evolution of an EPR pair as it crosses the event horizon
(dashed line): at early times, the EPR pair is entirely inside the black hole (SE = 0); at
tPage, half of the pair escapes, yielding maximal entanglement (S = ln 2); at late times,
the second half is also emitted, leading to S → 0. (b) The Hawking temperature TH as a
function of α in the MF model (blue line) compared to its analytical value TH = αβ/2π
(red line). Here, N = 500 and the horizon is at nh = 250. (c) Page time tPage as a
function of TH in the MF model (black dots), alongside the fitted curve A/TH (blue line)
with A = 0.278, obtained numerically by varying α and β.

also assume a small horizon radius, nh = 2 where nh is the site where the coupling

profile changes sign, ensuring that complete tunnelling of the particle across the horizon

occurs within a reasonable timescale. Initially, the system is in a tensor product state

across the horizon, corresponding to an entanglement entropy of SE = 0. As the particle

tunnels outward, the fermionic mode inside the black hole becomes entangled with modes

outside, leading to an increase in entanglement. When the population inside the black

hole is halved, the entropy reaches its maximum, SE = ln 2. Subsequently, as the black

hole population asymptotically approaches zero, the entanglement entropy decays to

SE → 0. This simple model reproduces the Page curve shown in Fig. 3.8(a), with

the time at which entropy is maximised defining the Page time, tPage. A more precise
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simulation of black hole evaporation would require more particles inside the black hole

and a simultaneous reduction in the horizon radius reflecting the loss of mass due to

Hawking radiation [6, 151–159]. Nevertheless, our process convincingly demonstrates

how the simulated black hole becomes entangled with its exterior, a key requirement for

executing the Hayden-Preskill protocol. Full details of this calculation can be found in

Ref [160].

Next, we examine the Hawking radiation temperature, TH , using the same configur-

ation. In particularly, a single particle is placed inside the black hole and the coupling

pattern given in (3.11) is chosen, defining a binary black hole system. To accurately

reproduce the Hawking temperature, we use a large system, N = 500, with the horizon

positioned in the middle, nh = N/2. The particle inside the black hole is initialised

at n = 230 and evolves under the MFT Hamiltonian (3.3). By varying the curvature

at the horizon, e.g., by tuning α, the temperature of the outgoing radiation follows the

theoretical prediction

TH =
1

2π

∣∣∣∣dv(vh)dx

∣∣∣∣ = αβ

2π
. (3.12)

Previously, it was demonstrated that an analogous system with uniform u(x) yields a

consistent TH across a range of temperatures and initial states [12]. Although the sign

change in u, introduced in (3.11) for the implementation of the teleportation protocol,

leaves the metric (3.5) unaffected, the derivation of this metric assumes uniform coup-

lings. This raises the question of whether the dynamical properties of the chain, such as

Hawking radiation, remain unchanged. To verify this numerically, we extract the Hawk-

ing temperature from radiation emitted through the horizon after a dynamical quench

inside the black hole following the same method as in [12]. Fig. 3.8(b) shows the Hawking

temperature as a function of α, demonstrating excellent agreement with theoretical pre-

dictions across a wide range of couplings. This confirms that the coupling configuration

(3.11) accurately reproduces the black hole geometry, yielding Hawking radiation with

temperature TH = αβ
2π .

Modelling the black hole with a chiral spin chain allows us to identify the character-

istic timescales governing the Hayden-Preskill teleportation protocol. The teleportation

process can only proceed after the Page time, since this ensures that quantum matter

inside the black hole is maximally entangled with the exterior. Only beyond this point

can Hawking radiation reliably transmit EPR pairs across the horizon, facilitating the

Hayden-Preskill protocol. The Page time, tPage, marks the moment when the entangle-

ment entropy of the emitted Hawking radiation reaches its peak, given by tPage =
SE

2πTH
,

where S is the black hole entropy [161, 162]. Subsequent Hawking radiation, which
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provides additional EPR pairs to Bob, follows the emission timescale

trad =
∆SE
2πTH

, (3.13)

where ∆SE represents the corresponding entropy change. Fig. 3.8(c) confirms that the

Page time, obtained by varying α and β, is inversely proportional to TH . Since TH ∝
α ∝ v, the radiation emission time trad scales inversely with the chiral coupling v.

3.5.2 Optimal scrambling

One of the most important characteristics of black holes in a quantum context is that

they are optimal scramblers [70]. Moreover, this property is vital to the success of the

Hayden-Preskill protocol [103].

In principle, almost every many-body quantum Hamiltonian H is chaotic, and should

therefore scramble the system. In this sense almost every Hamiltonian is an equally

valid choice to realise the Hayden-Preskill teleportation protocol [163]. Nevertheless,

the chiral spin-chain model is a uniquely appropriate for two reasons. Firstly, the MFT

description discussed above means the results can be understood in the large system limit

as describing Dirac fermions in a curved spacetime. Secondly, the behaviour of OTOCs

for the interacting system demonstrates that the system is optimally scrambling, as we

previously demonstrated before. We now demonstrate the advantageous nature of the

optimal scrambling found in the chiral-spin model for the teleportation procedure. In

practicality, one would ideally complete the teleportation between Alice and Bob in the

quickest time possible to minimise both experimental error, and to easily repeat the

procedure. The shortest time possible comes from the time taken to maximally scramble

the second term in Eq. (3.10), which is determined by the scrambling time of the system.

As the chiral spin-chain saturates the optimal bound for scrambling, demonstrated by

the behaviour of the Lyapunov exponent shown in Fig. 3.5, the teleportation protocol

will become maximally efficient.

We compared the teleportation protocol of the chiral-spin model to two other chaotic

models, demonstrating that the chiral model exhibits more rapid teleportation. These

models are the mixed-field Ising model [164–166], a commonly studied chaotic model,

and the 2D ladder XY model where the same teleportation protocol was studied in

Ref. [150]. For the former, we use the model parameters identified in Ref. [164] where

these were found to correspond to a maximum entanglement distribution, corresponding

to its maximally chaotic point. We scale the chiral model parameters such that the

energy scales of the three models are comparable and compare for different values of v/u.

We see in Fig. 3.9 that the chiral model outperforms both models for v larger than the
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Figure 3.9: Comparison of teleportation fidelity over time after quenching the initial state
with the chiral-spin model (solid lines), the XY ladder (dashed line), and the mixed field
(MF) Ising model (solid dotted line). In the case of the mixed field Ising, the optimal
ratio of values for chaos is used, as suggested in Ref. [164].(a) shows E = 1, while (b)
shows E = 4 EPR measurements. Colour indicates the value of v during the quench
in the chiral-spin chain. Using comparable Hamiltonian parameters between the three
models, we find the chiral-spin chain outperforms both the XY and mixed field Ising
model, as evidenced by an earlier saturation in the teleportation success. The results
are for N = 13 using ED for all systems. For couplings, in the chiral model we take
u = −8 such that the XY term has overall prefactor 1. For the XY ladder, we take the
Hamiltonian from Ref. [150] with couplings Jx=0.91, Jy = 1 while for MF Ising, we take
the Hamiltonian from [164] with J = 1, hx = 1.1 and hz=0.3.

phase transition, demonstrating the optimal scrambling in effect and the advantage of

this model.

Finally, we estimate the scrambling time tscr, which quantifies how quickly the black

hole interior thoroughly mixes quantum information. It is believed tscr to be inversely

proportional to the Lyapunov exponent λ as tscr ∝ 1
λ . While for small temperatures,

the chiral spin-chain model saturates the bound on chaos λ/(v/2) = 2πT , during the

teleportation protocol the system is effectively infinite temperature due to its maximal

entanglement with the outside. These numerical results (see Appendix B.1.2) indicate

that at that regime the Lyapunov exponent is approximately λ ≈ 0.78v. Thus, the

scrambling time follows tscr ∝ 1/v, which is consistent with the teleportation results in

Fig. 3.7.

3.5.3 Butterfly Velocity and the propagation of information

The speed of the teleportation protocol also depends upon the order the EPR meas-

urements are performed. This arises from the finite time necessary for information to

propagate along the chain between the initial teleportation qubit and the position of

the first EPR measurement. The black hole Hamiltonian, H, will immediately begin
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Figure 3.10: Butterfly velocity and black hole teleportation time. (a) is the regularised
Out-of-time order correlators (colour scale) over time measured on site i. A linear fit is
then applied to estimate the butterfly velocity which is found to be VB ≈ v/2. Results are
computed using a Krylov algorithm for N = 17, v = 8, On = σZn at infinite temperature
in Eq. (3.7). (b) We estimate the speed of propagation of quantum information by
comparing the fidelity when measuring the outer EPR pair first versus the inner EPR
pair first during the projection in the teleportation protocol shown in Fig. 3.6. We find
the time difference, ∆t, for when these two fidelities match (see Inset), indicating the time
spent for information to propagate between these two EPR pairs positioned at distance
∆l. We use this to estimate the butterfly velocity, VB = ∆l/∆t, which remarkably
saturates to VB = v/2 with increasing system size.

scrambling the EPR state on the site where the σaA rotation is acting (cf. Eq. (3.10)).

This is the only site where the state is different from the |EPR⟩ state, which is an ei-

genstate of the full scrambling Hamiltonian H. Therefore, for EPR pairs far from this

state to become scrambled, the effect needs to propagate there with speed set by the

butterfly velocity, VB. For example, measuring the inner EPR pair in contrast to the

outer (see Fig. 3.10(a)), will cause a delay in the teleportation success due to the need

for information to first propagate across their respective locations before scrambling can

take place [167].

We calculated the delay created due to the measurement order in the following man-

ner. Firstly, we measured the gradient of the regularised OTOCs, as in Eq. (3.7), along

the chain - a typical method used to estimate the butterfly velocity. The results are shown

in Fig. 3.10(a) where the gradient of the red line is found to be VB ≈ v/2. We note the

difference in the left and right propagation due to the chirality of the model breaking

inversion symmetry. Secondly, we compared the fidelity when projectively measuring

on different sites, and calculate the time required for the teleportation fidelity to reach

matching values, ∆t. Dividing the difference in lattice sites of the two measurements,
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∆l, by the time lapse ∆t, we independently obtain the value of the butterfly velocity. In

practice we compared the fidelity when projectively measuring the EPR pair on the first

site to the (N − 1)/2th site such that ∆l = (N − 1)/2 − 1. Scanning this for different

v in Fig. 3.10(b) we similarly find VB saturates to approximately v/2 deep in to the

chiral phase. Therefore, the measurement order of EPR pairs affects the speed of the

teleportation protocol due to scrambling propagating through the system with butterfly

velocity. This propagation time is given by tB = ∆l/VB ∝ 1/v. This differs from an

effective model of a black hole such as the SYK model, which is defined by randomised

all-to-all coupling, and therefore lacks a well defined notion of distance.

3.6 Chapter conclusions

In this chapter, we presented a local chiral model that maximises thermality. We accom-

plished this through the use of out-of-time-order correlators which allowed us to extract

the associated Lyapunov exponent of the model. Analysing how this exponent varies

with temperature, we quantified how thermal our model is. Crucially, by simply varying

the couplings through the phase transition of the model, we see a regime switch where

we transition from a generically scrambling model to that of a maximally scrambling

model. This presented a degree of control over the level of thermality in the quantum

system. Through numerical analysis of out-of-time-order correlators, we have provided

compelling evidence that at the coupling regime representing the interior of the black

hole, information encoded in the chain scrambles at an optimal rate.

With this, we also demonstrated how maximal scrambling and information loss is not

the bane it may initially appear to be. We presented a realisation of the Hayden-Preskill

quantum teleportation protocol within a binary black hole system simulated by a chiral

spin-chain. This model successfully demonstrates the key ingredients of the protocol:

the generation of entanglement through Hawking radiation and the implementation of

optimal scrambling dynamics within the black holes. The optimal scrambling facilitates

rapid information dispersal, reducing the overall time required for teleportation. By

using these properties of the chiral spin-chain, we have shown that it is possible to

achieve high-fidelity quantum teleportation even with relatively small system sizes.

We further quantified the propagation speed of quantum information using the but-

terfly velocity, finding that it aligns well with theoretical expectations and saturates to

v/2 in the strongly interacting regime. The scrambling time and the butterfly velocity

of the chiral spin-chain underscore the efficiency of the black hole teleportation protocol.

All the characteristic timescales involved in black hole teleportation scale inversely with

v, the coupling strength of the chiral spin-chain model. Comparative analyses with other
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chaotic models – such as the mixed-field Ising model and the XY ladder – revealed that

the chiral spin-chain outperforms them in terms of scrambling speed. This advantage is

attributed to the chiral spin-chain’s inherent ability to achieve optimal scrambling, thus

minimising the time required for information recovery. Our findings establish the chiral

spin-chain as a powerful platform for simulating quantum gravitational phenomena, par-

ticularly in the context of black hole information dynamics.

These findings pave the way for further exploration in several directions. Firstly, a

theoretical analysis to determine the Lyapunov exponent of our chiral spin chain would

complement our numerical findings. This would offer a deeper understanding of its

chaotic behaviour. It would also be interesting to further examine this model in the

context of extreme black holes, which correspond to zero temperature, T = 0. While

the simulation techniques used can approach this limit, we cannot impose it exactly due

to numerical instabilities. Nevertheless, the behaviour of our black hole simulator near

T → 0 can be faithfully reproduced. Additionally, investigating the quantum phase

transition at v
2 ≈ u, where both the ground state and scrambling behaviour undergo

significant changes, presents an intriguing topic for future research. This is particularly

interesting due to the profound effect it has on the thermality of the system.

While one could argue that SYK has the capability to replicate the same results, the

chiral spin-chain presents several key advantages. Firstly, it is non-local and disorder free

in contrast to SYK, increasing its experimental simplicity and ability to be practically

realised. Previous studies have shown the feasibility of realising chiral interactions in

optical lattice systems [108,109]. This suggests the potential for experimental verification

of the optimal scrambling behaviour and teleportation protocol in laboratory settings.

Secondly, the chiral spin-chain black hole phenomena naturally arises from the continuum

limit of the model. Meanwhile, the SYK model relies on the AdS/CFT correspondence

for its emergent black hole behaviour. Finally, the chiral spin-model couplings allows one

to naturally tune between a maximally thermalising regime and a free regime compared

to the SYK model. This demonstrates a greater versatility and degree of control in the

chiral spin-chain. Overall, the plausible experimental accessibility of our model opens

new possibilities for studying thermalisation in a system that allows for fine control over

the degree of thermality present.
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Chapter 4

Evading and controlling

thermalisation via

quantum many-body scars

4.1 Chapter introduction

Previously, we introduced the concept of quantum thermalisation, its consequences, and

the extreme limit of maximal information scrambling. While maximal scrambling can be

advantageous in specific protocols like quantum teleportation, it often poses a challenge

in practical quantum computing. In this chapter, we take a step back to explore mech-

anisms for avoiding thermalisation. Although integrable models offer one route to avoid

thermalisation, they are notoriously fragile: real-world systems inevitably interact with

environments, typically destroying integrability. Quantum many-body scarring [16, 18],

introduced in Chapter 2, is an intermediate type of behaviour between full chaos and

integrability.

Quantum many-body scars (QMBS) are a form of weak ergodicity breaking where

select states in the Hilbert space are found to avoid thermalisation in an otherwise chaotic

system. This undoubtedly changed the playing field by introducing a method to evade

chaos without entering the integrable limit. This can be observed in the dynamics through

quantum revivals – a phenomenon where the wave function |ψ(T )⟩ at some time t = T

returns to its value at initial time t = 0 [168, 169], i.e., |⟨ψ(0)|ψ(T )⟩|2 ∼ O(1), has

played an important role in understanding coherence properties of few-body or weakly-

interacting quantum systems [170–181].The ability to engineer recurrent behaviour in

more complex quantum systems is an important task as it allows one to study their

long-term coherent evolution beyond the initial relaxation, while on the other hand, it
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also provides insight into the emergence of statistical ensembles in closed systems that

evolve according to the Schrödinger unitary dynamics.

Signatures of QMBSs were initially observed in experiments on Rydberg atom ar-

rays [16], where energy cost due to the presence van der Waals interactions forbids two

neighbouring atoms from both occupying excited states – a kinetic constraint known as

the Rydberg blockade [15]. A famous limit of the Rydberg model which accounts for

this blockade is colloquially known as the PXP model. For most initial states that are

product states of spins in the computational basis, the PXP model exhibits fast equi-

libration without revivals. However, for special initial states, such as the Néel or “Z2”

state, |Z2⟩ ≡ |101010 . . .⟩, the PXP model undergoes a significant state transfer to the

translated Néel state, |010101 . . .⟩. These states feature a robust quantum revival with

return probability on the order ∼ 70% in relatively large systems of N=32 spins [19].

While the existence of quantum revivals in the PXP model has been been accoun-

ted for by an emergent su(2) spectrum-generating algebra [23], the origin of the effect

remains unclear. Furthermore, what states ultimately exhibit such revivals also remains

unanswered. For example, beyond the Z2 state, it was recently demonstrated that in the

presence of a chemical potential, new scarring states begin to emerge in PXP [27,182].

In this chapter, we provide a brief introduction to quantum many-body scarring

and illustrate it using the paradigmatic PXP model [183, 184]. By then considering the

PXP model in the presence of the chemical potential, our new results demonstrate the

ubiquity of scarring by the construction of a dynamical phase diagram. We make use of

the time-dependent variational principle (TDVP) to obtain a semiclassical interpretation

of the quantum dynamics and the associated dynamical phase diagram. This diagram

highlights the rich scarring behaviour of the PXP model and its curious interplay with

quantum criticality, an otherwise unrelated phenomenon.

In our findings, we also show that even a highly entangled critical ground state retains

the ability to avoid information scrambling. While we present only theory in this chapter,

it is worth noting that this diagram has also successfully been reproduced experimentally

using QuEra’s Rydberg quantum simulator. This approach provides a method to evade

and control thermalisation by the ability to continuously tune parameters of the system,

such that certain states remain robustly non-thermal.

4.2 Quantum scars in the PXP model

4.2.1 The PXP model of Rydberg atoms

Quantum many-body scarring (QMBS) – a phenomenon introduced in Section 2.3 – was

first observed in experiments with Rydberg atom arrays [16]. This system can be well

59



Chapter 4. Evading and controlling thermalisation via
quantum many-body scars

approximated by a chain of N coupled two-level atoms where, locally, the atoms can

either be in the ground state |0⟩, or an excited “Rydberg” state |1⟩. Experimentally, this

system is driven by lasers with a Rabi frequency Ω and on-site detuning ∆. Crucially,

when atoms are in their excited states, they also interact via a van der Waals interaction,

V , which decays with interatomic distance as 1/d6, where we work in units of lattice

spacing a = 1 – see Fig. 4.1. With this, the lattice Hamiltonian takes the form

HRyd = Ω

N∑
i

σxi −∆

N∑
i

ni +

N∑
i<j

V|i−j|ninj , (4.1)

where σx = |1⟩ ⟨0|+ |0⟩ ⟨1|, n = |1⟩ ⟨1|, and V|i−j| =
V

|i−j|6 .

Figure 4.1: Schematic description of the 1D Rydberg model with Rydberg atoms trapped
in optical tweezers. The local basis of each Rydberg atom is highlighted along with the
effect of the van der Waals interactions and on-sight chemical potential. When the van
der Waals interaction is tuned such that V1 ≫ Ω,∆ ≫ V2, it becomes energetically
unfavourable for two neighbouring Rydberg excitations to exist.

While there are many parameter regimes in the Rydberg Hamiltonian, one of par-

ticular interest is when V1 ≫ Ω,∆ ≫ V2. Although this may initially appear to be a

fine-tuned regime, it has been the focus of several experimental studies [16,46], due to the

steep spatial decay of the van der Waals interaction. In this regime, energy cost due to

van der Waals interactions strongly disfavours two neighbouring atoms occupying excited

states – a form of kinetic constraint called the Rydberg blockade [15]. When the Ry-

dberg blockade is strong, the atoms are described by an effective “PXP” model [183,184].

This is a one-dimensional chain of spin-1/2 degrees of freedom, where the spin-up state

corresponds to a Rydberg atom occupying an excited state (and, similarly, for the spin-

down state which denotes an atom in the ground state). Thus, the number of up spins

translates into the number of Rydberg excitations, and we will use such nomenclature

interchangeably. The PXP Hamiltonian for N atoms takes the form

HPXP(µ) = Ω

N−1∑
j=0

Pj−1σ
x
j Pj+1 + µ

N−1∑
j=0

nj . (4.2)

In this chapter we set the Rabi frequency to Ω = 1. The projector P = |0⟩ ⟨0| implements
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the constraint by preventing the Rabi flip from generating any neighbouring excitations.

The complementary projector, n = 1− P , again counts the number of excitations in the

system and thus defines the chemical potential term, µ = −∆. We will consider two types

of boundary conditions for the Hamiltonian in Eq. (4.2). For analytical considerations

and exact diagonalisation simulations, we will use periodic boundary conditions (PBCs)

by identifying site j +N ≡ j. For matrix product state simulations in large systems, we

will instead use open boundary conditions (OBCs), where the first and the last flip term

are taken to be X0P1 and PN−2XN−1, respectively.

Due to the kinetic constraint inherent in the PXP model, states containing two con-

tiguous excitations (|11⟩) are dynamically frozen, resulting in a highly disconnected Hil-

bert space. For the purpose of this study, we restrict to the largest connected sector

consisting of states with no neighbouring excitations. As a result, the Hilbert space di-

mension of PXP scales as ϕN where ϕ = (1 +
√
5)/2 is the Golden Ratio [18, 185]. This

immediately presents a numerical advantage in comparison to the full Rydberg model

whose dimension scales as 2N .

Further reduction in computational complexity can be achieved by exploiting the

model’s discrete symmetries: namely, translation and reflection. It is straightforward to

verify that the PXP Hamiltonian commutes with both the translation operator T and

the reflection operator P , i.e., [HPXP, T ] = [HPXP, P ] = 0. The translation operator T

shifts all atoms by a single site, j → j + 1, and we label its eigenstates using quantum

number k = 0, 1, 2, . . . N − 1. The reflection operator P flips the sites around the centre

of the chain according to j → N − j, and we label its eigenstates with quantum number

p = ±1. In this work, we typically focus on the symmetry sector with k = 0, p = +1. It

is important to note we can only resolve both symmetries for this choice of k and p as P

only commutes with T when k = 0, since P maps +k → −k (for details, see [186,187]).

Having resolved the symmetries, one can analyse the level statistics as described in

Sec. 2.1.2. It is shown in Ref. [18] that the level statistics of the PXP model approach

Wigner-Dyson distributions with increasing system size, indicating that the model is

thermal in the conventional sense (both with and without the chemical potential term).

As such, it is expected to obey the ETH for any generic initial state with eigenstates

expected to exhibit thermal properties.

Nevertheless, in the absence of chemical potential (µ = 0), the PXP model dis-

plays non-thermalising dynamics when initialised in the Néel state, |ψ(0)⟩ = |Z2⟩ ≡
|1010...10⟩ [16]. Evolving this state with respect to the Hamiltonian in Eq. (4.2), one

observes that the return probability periodically reaches values close to unity [18]. By

contrast, other initial states exhibit fast equilibration, as expected in a chaotic system.

This is evidenced in Fig. 4.2(a) where we compare a random product state to the Néel
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Figure 4.2: (a) The return probability when initialising with the Néel state (blue) and a
random product state (red) and evolving over time with respect to the PXP Hamiltonian.
We see the random product rapidly thermalises while the Néel state has persistent reviv-
als, evading thermalisation. (b) The overlap between the Néel state and the eigenstates
of HPXP with µ = 0. Anomalously high overlap is found with special eigenstates (circled
in red) which are equidistant in energy. This energy separation is inversely proportional
to the period of revivals found in (a). Results are obtained using ED with N = 26 in the
k = 0, p = +1 symmetry sectors.

state. This atypical dynamics is also reflected in ergodicity breaking among a subset of ei-

genstates of the PXP model [19,188,189], even in the presence of perturbations [190,191]

or in energy transport at infinite temperature [192]. It is precisely these select eigenstates

that break the ETH by displaying non-thermal behaviour such as subvolume-law entropy

scaling and non-thermal expectation values of local observables. They can be immedi-

ately observed by looking at the eigenstate overlap of |Z2⟩, as shown in Fig. 4.2(b), which

reveals anomalously high overlap with N +1 eigenstates distributed evenly amongst the

energy spectrum. The atypical revivals in the dynamics arise due to the presence of these

special eigenstates which are approximately equidistant in energy.

Many attempts have been made to understand the atypical eigenstates in the PXP

model. For example, it was shown that they can arise from an approximate representa-

tion of a weakly “broken” su(2) Lie algebra in PXP [23,24]. This is one of the underlying

possible mechanisms discussed in Section. 2.3.1, a spectrum generating algebra, but in

this instance, the embedded subspace is weakly coupled to the thermal bulk. The con-

sequence of this algebra is an approximately decoupled su(2) subspace in which revivals

primarily take place, while the wavefunction amplitude slowly leaks into the thermal bulk.

However, the exact origin of the scarring behaviour and how this can be reproduced in

other models remains an open question.
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4.2.2 The role of chemical potential and equilibrium phase transition

(EPT)

While our prior discussion primarily focused on pure PXP model, the chemical potential

term µ has a significant impact on the physics, both in and out of equilibrium. As first

noted in Ref. [193], when the chemical potential is tuned to µc ≈ −1.31, the ground state

of the PXP model undergoes an Ising phase transition associated with a spontaneous

breaking of Z2 symmetry [193–197], whose signatures have also been observed in the

programmable Rydberg atom quantum simulators [46]. This equilibrium phase transition

(EPT) is in the same universality class as the one induced by varying the quark mass in

the Schwinger model of quantum electrodynamics in (1+1)-dimension [198]. The lattice

formulation of the latter, known as the U(1) quantum link model, exactly maps to the

PXP model in Eq. (4.2) for the case of spin-1/2 degrees of freedom [199].

Furthermore, a recent study [27] has found that new QMBS regimes can emerge in the

PXP model when µ ̸= 0. One prominent example is the polarised state, |0⟩ = |000....0⟩.
While in the absence of chemical potential the |0⟩ state is believed to thermalise [16],

at non-zero chemical potential, it starts to revive, much like the |Z2⟩ state. Moreover,

periodic modulation of µ can enhance scarring behaviour and has been studied extens-

ively [182, 200–205]. On the other hand, Ref. [19] studied the effect of perturbations

(including the chemical potential) on the revivals of |Z2⟩ state and tuning to µ ̸= 0 was

found to hinder the non-ergodic behaviour. Thus, the impact of µ on QMBS is subtle

and appears to be strongly state-dependent. Moreover, a natural question arises: is there

any link between EPT and QMBS phenomena?

The EPT has a profound effect on the low-energy physics of the PXP model, but

it is not obvious that it should directly impact QMBS, which manifest in the quench

dynamics at infinite temperature. Nevertheless, Ref. [29] recently argued that there is a

link between this EPT and QMBS. Namely, when tracing the eigenstates responsible for

the quantum revival of the |Z2⟩ state, Ref. [29] found that these states merge with the

thermal bulk of the energy spectrum as the EPT is approached. Conversely, upon moving

away from the EPT towards µ→ −∞, the degenerate ground states acquire high overlap

with the |Z2⟩ state and its partner translated by one site,
∣∣Z̄2

〉
≡ |0101 . . .⟩. Thus, the |Z2⟩

state can only thermalise as one approaches the EPT, suggesting a connection between

QMBS and criticality. This was also demonstrated experimentally in the Bose-Hubbard

quantum simulator [206]. Moreover, for the PXP model realised at a special resonance

condition in the quantum Ising model, Ref. [207] argued that QMBS from the |Z2⟩ state
is smoothly connected to integrability by continuously turning off the constraint, induced

by the longitudinal field.

In summary, the effect of µ on QMBS and the interplay with EPT has remained poorly
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understood. For example, what if we initialise the system in the critical ground state at

µ = µc and then perform a quench by changing the value of µ – could this lead to QMBS

dynamics? In the remainder of this chapter, we explore in depth the interplay of QMBS

and EPT driven by varying the chemical potential. We will show that there is a close

connection between the two effects, which can be used to create QMBS dynamics from

a continuous family of initial conditions, including the critical ground state at EPT. To

develop a deeper understanding of this connection, we will utilise a semiclassical approach

based on time-dependent variational principle, introduced next.

4.2.3 Time-dependent variational principle and periodic orbits

Semiclassical methods have played an important role in the understanding of quantum

scars in single-particle systems [208]. For example, in billiard systems, it was found

that wavepackets are anomalously long-lived when prepared along the periodic orbits of

the classical billiard, while they quickly disperse otherwise [25, 209]. In this chapter, we

introduce a many-body generalisation of such an approach based on the Time-Dependent

Variational Principle (TDVP) [210–212]. TDVP will allow us to establish a parallel

between many-body dynamics in the PXP model [213–215] and the analogous dynamical

phenomena of a single particle in a stadium billiard discussed in Chapter 2. Furthermore,

the TDVP framework will provide a natural semiclassical language for investigating and

interpreting the scarring behaviour in PXP from states other than |Z2⟩ or |0⟩, which
become relevant in the presence of chemical potential.

The starting point of TDVP is to specify a variational manifold of states M, paramet-

rised by some continuous variable, and then project the Schrödinger dynamics into that

manifold in a way that manifestly conserves the energy. The nature of states belonging

to M determines to what extent we can interpret the dynamics as “semiclassical”. For

example, it would be simplest to consider a manifold spanned by tensor products of spin-

coherent states. This would yield a “mean-field” description for the dynamics, where

each atom precesses independently. However, the Rydberg blockade intrinsically builds

in local correlations into the system, due to the fact that any neighbouring excitations,

|. . . 11 . . .⟩, are projected out of the Hilbert space. Ordinary spin-coherent states clearly

violate this blockade condition.

Another way of defining a manifold, which naturally accommodates the Rydberg

blockade constraint, is to take the span over MPS states with bond dimension χ con-

trolling the amount of correlations necessary to capture the projected dynamics [212].

To simplify matters as much as possible, we will consider the dynamics to be spatially

periodic with a (infinitely repeated) unit cell of size K (below we will be primarily in-

terested in small unit cells with K = 1, 2). For a 1D chain of size N , the resulting MPS
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ansatz is given by

|ψMPS({x})⟩=
∑
{σ}

Tr
(N/K−1∏
m=0

Aσ1+Km(x1)A
σ2+Km(x2)A

σK+Km(xK)
)
|σ1σ2σ3 · · ·σN ⟩ . (4.3)

Here Aσ(xi) are (χ × χ)-dimensional matrices that depend on variational parameters

xi = (θi, ϕi), where the angles θi, ϕi are akin to the Bloch sphere angles of each spin in

the unit cell. The physical degree of freedom σi = 0, 1 labels the basis states of a single

spin. Following Refs. [213, 216], in order to make things analytically tractable, we will

restrict to χ = 2 and choose

A1(θi, ϕi) =

0 e−iϕi

0 0

 , A0(θi, ϕi) =

cos θi 0

sin θi 0

 . (4.4)

Due to A1A1 = 0, this ansatz ensures that configurations with neighbouring spin-up are

forbidden, thus our manifold M = span{|ψMPS(x)⟩ |∀x} respects the Rydberg blockade.

With the choice of ansatz in Eqs. (4.3)-(4.4) and setting K = 1, we are left with

only two variational degrees of freedom, (θ, ϕ). Choosing (0, 0) recovers the state |0⟩ ≡
|000 . . .⟩, while (π/2, π/2) corresponds to the equal-weight superposition of the two Néel

states related by single-site translation,

∣∣Z+
〉
≡ 1√

2

(
|Z2⟩+

∣∣Z̄2

〉)
. (4.5)

Note that, with K = 1 unit cell periodicity, the states |Z2⟩,
∣∣Z̄2

〉
do not individually

belong to the manifold. Instead, if we extend the ansatz toK = 2, then (θ1, θ2) = (0, π/2)

recovers the |Z2⟩ state. Thus, our manifold with bond dimension χ = 2 captures the

initial product states that we expect to play an important role for QMBS dynamics in

the PXP model.

After defining the manifold, the next step is to minimise the difference between exact

Hamiltonian dynamics and its projection to the manifold [211],

min
{x}

∥∥∥∥iℏ ∂∂t |ψMPS({x})⟩ −H |ψMPS({x})⟩
∥∥∥∥ . (4.6)

This results in the Euler-Lagrange equations of motion for the classical variables x [212].

In the case of the PXP model, this step can be performed analytically in the limit of

N → ∞ to obtain the equations of motions for the θ and ϕ angles, see Appendix C.2 for

K = 1 and Refs. [213,216] for some K = 2 and K = 3 examples. Integrating this system

of differential equations yields the trajectory in M taken by |ψMPS({θ,ϕ})⟩ during the
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course of quantum evolution. Fig. 4.3 shows a pictorial representation of the K = 2

manifold and the projection of exact dynamics into it, for the cases of interest in the

bare PXP model without any chemical potential.

Figure 4.3: Sketch of the TDVP manifold M for the PXP model in the absence of
chemical potential (µ → 0). Red regions represent areas of high leakage where the
TDVP approximation breaks down, as quantified by Eq. (4.7). The Néel state is denoted
by |Z2⟩ ≡ |1010 . . .⟩ and its translated partner – the anti-Néel state is

∣∣Z̄2

〉
≡ |0101 . . .⟩,

while |Z+⟩ = (|Z2⟩+
∣∣Z̄2

〉
)/
√
2. The polarised state is |0⟩ ≡ |0000 . . .⟩. For a two-site unit

cell K = 2 and µ = 0, the |Z2⟩ state lies on a periodic trajectory identified in Ref. [213].
We also illustrate the trajectory of the |0⟩ state, which is predicted by TDVP to evolve to
|Z+⟩; however, this point lies within a region of high leakage where the TDVP dynamics
does not accurately describe the quantum evolution. This is consistent with the |0⟩ state
thermalising at µ = 0.

Importantly, beyond equations of motion, it is possible to estimate “quantum leak-

age”: the difference between exact quantum evolution and its projection into the mani-

fold [213]. Quantum leakage, γ, is defined as the instantaneous rate at which the exact

wave function leaves M:

γ2 = lim
N→∞

1

N

∥∥∥∥iH |ψMPS(x)⟩+
∑
j

ẋj∂xj |ψMPS(x)⟩
∥∥∥∥2. (4.7)

Red regions in Fig. 4.3 indicate areas of large γ2. In these high-leakage regions, the

instantaneous TDVP dynamics is expected to poorly capture the exact dynamics. Con-

sequently, trajectories passing through such regions will generally be of limited accuracy.

On the other hand, as first noted in Ref. [213], the special property of the PXP phase

space is that it has regions of remarkably low leakage, such as the region traversed by

the semiclassical orbit associated with the |Z2⟩ state. This is depicted in Fig. 4.3 where

the orbit is sketched, lying within a region of low leakage. Note that, in general, there

can exist multiple periodic orbits within the same manifold [214]. Having established

this framework, we will use it below to analyse the scarring behaviour in the presence of

chemical potential.
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4.3 Dynamical phase diagram of the PXP model

By ‘dynamical phase diagram’ of the PXP model we refer to the global quench of the

chemical potential from some initial value, µi, to an arbitrary final value, µf. Specifically,

we prepare the ground state of the PXP Hamiltonian in Eq. (4.2) at µi and then evolve

that state with the Hamiltonian corresponding to µf:

|ψ(0)⟩ ≡ |GS(µi)⟩ → |ψ(t)⟩ = e−
i
ℏ tHPXP(µf) |ψ(0)⟩ . (4.8)

This setup provides a means of probing out-of-equilibrium dynamics from more complex

initial states beyond |Z2⟩ or |0⟩, which had been accessed in previous experiments by

taking the limits µi → ±∞.

As indicated in Eq. (4.8), we assume a closed system evolving under unitary Schrödinger

dynamics. Since the energy level spacings in the PXP model are expected to obey the

Wigner-Dyson distribution for all values of µ [18, 183], the nonequilibrium dynamics

induced by quenching µ should be chaotic [60]. In particular, quenching the chemical po-

tential by a large amount∼O(1) should initialise the system in a generic high-temperature

state, which is expected to lead to rapid thermalisation according to the Eigenstate therm-

alisation Hypothesis (ETH) [1,2,217]. This means that the expectation value of any local

observable should converge towards the value predicted by the canonical ensemble within

any symmetry-resolved sector of the many-body Hilbert space. Deviation from this pre-

diction, i.e., ergodicity breaking, can be detected through a number of dynamical probes,

two of which we utilise.

One probe of ergodicity breaking, convenient in the context of QMBS, is quantum fi-

delity or return probability of the wavefunction to its initial value, as defined in Eq. (3.9).

For a thermalising initial state, F(t) rapidly drops to a value close to zero and remains

exponentially small in system size at late times. Therefore, if the average fidelity over

a time interval ≫ Ω−1 is much larger than ∼ O(exp(−N)), we expect non-ergodic be-

haviour. However, one should exclude trivial cases such as µi ≈ µf when the ground

state of HPXP(µi) is approximately an eigenstate of HPXP(µf), as this would lead to the

system getting “stuck” in an eigenstate, with fidelity F(t) ≈ 1 and potentially never

decaying. To avoid such cases, we compute the difference δF between minimal fidelity

and maximal fidelity over a time window t ∈ [t0, t1], with t0=1 and t1=20. This window

is large enough to exceed the initial relaxation on the scale ≳ Ω−1 (thus excluding the

high fidelity near t = 0), yet small enough (t1 ≲ N/Ω) to be free of the boundary effects.

The obtained δF in the µi − µf plane is shown in Fig. 4.4(a). The fidelity has

been evaluated in a system of N = 51 atoms using matrix product state (MPS) [219]

simulations based on the algorithm in Ref. [218], and we have checked that the results
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Figure 4.4: Dynamical phase diagram for global quenches starting in the ground state of
HPXP(µi) and evolving with HPXP(µf). (a) The difference between maximal and minimal
revival fidelity δF over time interval 1 ≤ t ≤ 20 following the quench. Regions with
strong fidelity revivals have been enumerated (see the text for details). (b) Same as (a)
but the colour bar showing the deviation of the excitation density from the thermal value,
Eq. (4.9). Data is obtained using MPS simulations [218] for a chain of N = 51 atoms with
OBCs, maximum bond dimension χ = 128 and time step δt = 0.025. Dashed lines mark
the EPT at µc ≈ −1.31. In both plots, the cross marks the point (µi = −0.76, µf = 1.60)
that will be analysed in Sec. 4.4. The diamond marks the optimal reviving point in the
µi = µc plane, which will be discussed in Sec. 4.5.

agree closely with exact diagonalisation for systems with N < 30 atoms. We note that

t0 = 1 in Fig. 4.4(a) was chosen to be just slightly longer than the initial relaxation

period, as modulating µ alters the period of the fidelity revivals. Setting t0 > 1 results

in a qualitatively similar phase diagram, but with a reduced overall scale for δF , as the

window with larger t0 may miss the first (and typically the largest) revival peak.

Before we comment on the interesting regimes of the phase diagram, we note that we

have also computed the deviation of an observable expectation value from the thermal

ensemble prediction, shown in Fig. 4.4(b). This provides a complementary probe of

ergodicity breaking that is more amenable to experimental measurements. For the ob-

servable, we chose the density of excitations in the system, n = (1/N)
∑N

j=1 nj , which is

readily available in existing experimental setups [16,27]. After quenching the system, we

compute the integrated mean-square deviation of the excitation density from the thermal

value over the time window between t0 = 10 and t1 = 20,

MSD(n) =
1

t1 − t0

∫ t1

t0

|⟨ψ(t)|n|ψ(t)⟩ − nth|2 dt. (4.9)
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The thermal value is defined as

nth = Tr(ρthn), ρth = exp(−βH)/Z Z = Tr exp(−βH), (4.10)

where the inverse temperature β is determined from the condition

⟨ψ(0)|HPXP(µf)|ψ(0)⟩ = Tr(ρthHPXP). (4.11)

The plot of MSD(n) is shown in Fig. 4.4(b), where the bright non-ergodic regions

match those of high fidelity in Fig. 4.4(a). The colour contrast is stronger in the fidelity

plot due to the exponential sensitivity of that quantity. A few distinct regimes where

fidelity displays large-amplitude oscillations have been marked by (1)-(7) in Fig. 4.4(a).

These regions will be analysed in detail in the subsequent sections. There, we will argue

that regions (1), (2) and (3) can be identified as QMBS regimes. Regions (1) and (3)

fall under the “universality class” of |Z2⟩ and |0⟩ QMBS behaviour, as we explain in

Sec. 4.2.3. On the other hand, while the dynamics in region (2) has some similarities

with regions (1) and (3), in Sec. 4.4 we will highlight the distinctions of this QMBS

regime. As it turns out, regions (4), (5), (6) and (7) have a simple origin, which will be

explained briefly in Appendix C.1.

A few comments are in order. The QMBS fidelity appears to vary smoothly between

regions (1) and (2) in Fig. 4.4(a), while they are separated by the EPT (indicated by

the dashed line). In fact, we find the most robust revivals correspond to the ground

state precisely at the EPT point (highlighted by the diamond in Fig. 4.4). That is to say,

although δF may be smaller than other regions, the revivals decay more slowly over time,

and this behaviour persists with increasing N . This intriguing case will be addressed in

detail in Sec. 4.5. Here we note that we have confirmed the existence of QMBS across

the critical point in much larger systems (N ≤ 400 spins) using MPS numerics. This is

in contrast to the µf = µc case, where we see no ergodicity breaking in Fig. 4.4(a), as

also expected from Refs. [29, 206].

In summary, our dynamical phase diagram confirms that the previously known scar-

ring regimes, associated with |Z2⟩ and |0⟩ states (as discussed in Section. 4.2.2), indeed

break down when approaching the EPT, either via µi → µc or µf → µc, in agreement

with Refs. [29, 206]. However, we also find a new QMBS regime corresponding to the

initial state being the ground state near the EPT. Using the time-dependent variational

principle (TDVP) framework for QMBS, developed in Ref. [213], we can identify a semi-

classical picture behind QMBS dynamics. Across much of the phase diagram away from

the EPT point, the QMBS dynamics can be understood in terms of a periodic trajectory

that passes through the |0⟩ state, with the radius of the trajectory controlled by the
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chemical potential. Allowing for a continuous family of initial states – the ground states

of HPXP(µi) – we find surprisingly robust QMBS signatures at intermediate times that

smoothly bridge across the EPT. In the subsequent Sections 4.4 and 4.5, we discuss in

detail the most interesting parts of the phase diagram, i.e., regions (1), (2), (3) and the

EPT, while the other parts are relegated to Appendix C.1.

4.4 Scarring in gapped regimes in the phase diagram

In this section we focus on regions (1), (2), and (3) of the phase diagram in Fig. 4.4,

in particular for the values of the chemical potential away from the EPT. Based on the

discussion of TDVP in Sec. 4.2.3, the origin of regions (1) and (3) can be understood by

examining the form of the PXP ground state in the presence of chemical potential. When

µi → −∞, excitations are favoured and the ground state is (for PBCs) a superposition

of the two Néel states, |Z+⟩ in Eq. (4.5). By contrast, µi → ∞ penalises excitations,

therefore the ground state is the polarised state |0⟩. The superposition state |Z+⟩ is

known to display revivals when quenched to µf = 0 [19], while the polarised state revives

when quenched with µf ̸= 0 as shown more recently in Refs. [27,182]. By continuity, these

limiting cases explain the mechanism behind revivals in regions (1) and (3) of Fig. 4.4.

4.4.1 TDVP interpretation of the dynamical phase diagram

We can utilise TDVP to understand much of the PXP dynamical phase diagram in

Fig. 4.4 by considering the trajectory of the polarised state in the manifold introduced

in Section 4.2.3. Fig. 4.5 sketches this trajectory for K = 1 unit cell and three different

values of the chemical potential µ.

Figure 4.5: Sketch of the TDVP manifold M for the PXP model with K = 1 unit cell
and chemical potential µ. The notations are the same as in Fig. 4.3. For µ = 0, the
|0⟩ trajectory is periodic but passes through a region of high leakage. When µ ̸= 0, the
trajectory shrinks, whilst gradually exiting the high leakage area, and QMBS dynamics
starts to emerge in the full system. In this regime, the QMBS dynamics can be seen as
an oscillation between |0⟩ and a new state, |0̄(µ)⟩, defined in Eq. (4.12). Finally, in the
extreme µ→ ±∞ limit, the orbit shrinks to a point and the dynamics is frozen.
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Within TDVP, a periodic orbit exists even for µ = 0. However, the orbit passes

through the superposition of the two Néel states, |Z+⟩ – a point which is located in the

high-leakage region. The TDVP dynamics is therefore not a good approximation in this

case, which accounts for the absence of revivals observed in the full quantum dynamics.

The addition of a finite chemical potential µ, as shown in the middle panel of Fig. 4.5,

contracts the trajectory and pushes it into a low-leakage region and effectively allowing

the revivals from the polarised state to emerge. As we will explain in Sec. 4.4.3, in

this intermediate range of µ, the ground state of HPXP(µ
′) (where µ ̸= µ′) occupies an

antipodal position on the orbit, corresponding to a chemical-potential dependent state

we label |0̄(µ)⟩, given by Eq. (4.4) for unit cell size K = 1:

|0̄(µ)⟩ = |ψMPS(θmax, ϕmax)⟩ , (4.12)

with angles (θmax, ϕmax) denoting the antipodal point in the TDVP orbit of the initial

polarised state, see Fig. 4.5. As µ has the effect of deforming the trajectory, the antipodal

angles also depend on µ, in a way that will be specified in Eq. (4.17) below. Note that

the sign of µ has no effect on the deformation of the particular orbit discussed here [220].

Finally, in the extreme limit µ → ±∞, the trajectory is restricted to the vicinity of

the initial state and the dynamics is effectively frozen, as shown in the right panel of

Fig. 4.5. In the following subsection, we focus on the more interesting region (2) where

the pre-quench initial state is an entangled state with low overlap on both |0⟩ and |Z2⟩
states. Nevertheless, this same TDVP analysis will prove useful due to the connection

between the initial state and |0⟩.

4.4.2 Scarring in region (2) of the phase diagram

We focus on region (2) of the phase diagram in Fig. 4.4 and pick (µ∗i , µ
∗
f ) = (−0.76, 1.60)

as an illustrative point in this region, marked by the cross in Figs. 4.4(a)-(b). QMBS

dynamics at this point was first noted in Ref. [27] and here we will characterise it in detail

and explain its origin. The evolution of fidelity and overlap with the polarised and Néel

state are shown in Fig. 4.6(a), where persistent fidelity revivals can be observed while

the overlap with |Z2⟩ remains negligible throughout the evolution. Curiously, while the

initial state at µ∗i has low overlap with |0⟩, the evolved state does develop a relatively

high overlap with |0⟩ state, approximately half way between the main revival peaks – see

the green line in Fig. 4.6(a). This is reminiscent of the |Z2⟩ state, which in the pure PXP

model undergoes state transfer to
∣∣Z̄2

〉
at half the revival period [213]. This implies that

the ground state of HPXP(µ
∗
i ) is related to the polarised state.

Another tell-tale signature of QMBS is a slower growth of entanglement entropy

71



Chapter 4. Evading and controlling thermalisation via
quantum many-body scars

0.0

0.5

1.0
| (t)| 2 |

| (t)|0 |

| (t)| (0) |

0 2 4 6 8 10 12 14
t

1
2
3

S
(t
)

| random(t)

| +

| (t)

Figure 4.6: Dynamics of quantum fidelity and entanglement entropy, following a global
quench of the chemical potential, µ∗i = −0.76 → µ∗f = 1.6, corresponding to the point
marked by the cross in Fig. 4.4(a). Quantum fidelity for the initial state |ψ(0)⟩ defined
as the ground state of the PXP model with µ∗i . Also shown is the projection of the
time-evolved state on the |Z2⟩ and |0⟩ states. While the overlap with the |Z2⟩ state is
low throughout the evolution, the overlap with |0⟩ reaches relatively high values between
the main revival peaks. (b) Growth of entanglement entropy, SE(t), for the same initial
state |ψ(0)⟩ as in (a), as well as for a random state |σRandom⟩ and |Z+⟩ state. The initial
state |ψ(0)⟩ has strongly suppressed entanglement growth compared to the other cases.
Data is for system size N = 28 obtained using exact diagonalisation with PBCs.

SE(t), as defined in Eq. (2.6), for special initial states. We plot the dynamics of SE(t) in

Fig. 4.6(b). Compared to both |Z+⟩ and a random state in the constrained Hilbert space,

|σRandom⟩, the entropy growth from the ground state of HPXP(µ
∗
i ) is strongly suppressed.

For the latter state, we observe clear oscillations in the time series of SE(t), reminiscent

of entropy dynamics in the PXP model in the absence of chemical potential [18].

We emphasise that the special point (µ∗i , µ
∗
f ) is representative of the entire region (2)

in the phase diagram, where similar QMBS phenomenology is numerically observed. In

the following subsection, we use TDVP to garner a further understanding of this QMBS

regime from a semiclassical point of view.

4.4.3 TDVP analysis of scarring in region (2)

Before we apply TDVP to describe the dynamics in Fig. 4.6, we need to make sure that

the PXP ground state in the presence of chemical potential is indeed represented within

the manifold spanned by states in Eq. (4.3). We discuss this further in Appendix C.3,

where we find that, for a unit cell size K = 1 at system size N = 20, most states

belonging to the TDVP manifold (> 90% of them) can be approximated with better

than 98% accuracy by a ground state of Eq. (4.2) with the addition of a phase pulse.
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With suitable modifications, numerical evidence suggests that TDVP states with K ≥ 2

can also be successfully prepared.

Having established that our pre-quench ground state at arbitrary µi can be approx-

imately mapped to an MPS state in the K = 1 TDVP manifold for some variational

parameters (θ, ϕ), we now proceed to describe the dynamics from this initial state using

the classical dynamical system defined by (θ(t), ϕ(t)). From Eq. (4.6), one can derive

the TDVP equations of motion for K = 1 and arbitrary chemical potential µ (see Ap-

pendix C.2 for details):

θ̇ = − cos θ cosϕ
(
1 + sin2 θ

)
, (4.13)

ϕ̇ = µ+
sinϕ

sin θ

(
1− 4 sin2 θ − sin4 θ

)
. (4.14)

Unlike the special case µ = 0, where ϕ variables can be set to zero in the flow-invariant

subspace [213], for general values of µ one must consider both θ and ϕ simultaneously [214].

Integrating Eqs. (4.13)-(4.14), we plot the phase space θ, ϕ portrait for the chemical

potential value µf = 1.6 in Fig. 4.7(a). The greyscale background indicates the quantum

leakage at any given point in the manifold,

γ2 =
sin6θ

1 + sin2θ
, (4.15)

which only depends on θ variable (see Appendix C.2). By integrating the equations

of motion for µf = 1.6, starting from the polarised state |ψMPS(0, 0)⟩, we obtain the

trajectory plotted in red colour in Fig. 4.7(a). Generally, for any |µf| ≠ 0, the polarised

state has a periodic orbit within TDVP. When µf is large, the orbit is pinned around

θ = 0. Decreasing |µf| stretches the orbit until the maximal point in the trajectory

eventually tends towards the |Z+⟩ superposition state, (θ, ϕ) ≡ (π/2, π/2). Due to the

quantum leakage gradient, the |Z+⟩ point is not reached for any finite time. This is

consistent with the lack of revivals from the polarised state in the full quantum dynamics

for sufficiently small values of µf. Thus, we conclude that the orbit corresponding to

the cross in Fig. 4.4(a) is a compromise between two competing effects: the orbit is

sufficiently stretched so that it has non-trivial dynamics, while at the same time, by

being not stretched too much, it can avoid the large leakage in the vicinity of |Z+⟩ state.

To verify this picture across the entire region (2), we study the projection of the

PXP ground state at µi, |GS(µi)⟩, to the TDVP manifold. We numerically maximise

the overlap |⟨ψMPS(θ, ϕ)|GS(µi)⟩|2, with the MPS state given in Eq. (4.3). We plot

the resulting (θ, ϕ) phase space coordinates for a variety of µi in Fig. 4.7(a), where the

coloured dots correspond to the ground states from our phase diagram in Fig. 4.4(a).
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Figure 4.7: (a) Phase space portrait of quantum dynamics within the K = 1 TDVP
manifold for the PXP model with µf=1.6 where the arrows demonstate the trajectories
present in the manifold. Grey shading indicates quantum leakage (darker regions rep-
resent larger leakage). Coloured symbols indicate the location of the PXP ground states
corresponding to various µi indicated on the colour bar while the trajectory of the |0⟩
state for the given value of µf is highlighted in red. We see that the ground states with
µi≈−0.76 lie close to the point which is antipodal to the |0⟩ state in its trajectory. With
changing µf, this trajectory either expands or compresses, meaning all ground states will
lie on this antipodal point for some µf. (b) In region (2) of the phase diagram, for a
given µf , |0̄(µf)⟩ state is well-approximated by a detuned PXP ground state with some
µi. colour bar shows the highest overlap between the |0̄(µf)⟩ state, given by Eq. (4.17)
for a range of fixed µf ∈ [−5, 5], and the family of ground states of HPXP(µi). Dashed
lines denote the EPT. For negative chemical potentials, especially relevant for region (1)
of the phase diagram, the mapping requires an additional phase pulse, as described in
Appendix C.3. (c) Matching the detuned PXP ground state with a |0̄⟩ state becomes
progressively more difficult at the critical point (dashed line) as system size N is in-
creased. In contrast to panel (b), here we fix the PXP ground state at µi and vary µf
to find the optimal |0̄(µf)⟩ state with the highest overlap. All plots are obtained using
exact diagonalisation with PBCs and system size N = 20 in panels (a)-(b).

As expected, some of the ground states are “distant” from |Z+⟩ or |0⟩ but tend towards

either in their respective limits. All successfully optimised ground states lie on the same

ϕ plane in Fig. 4.7(a). Consequently, the deformation of the trajectory means they will

correspond to some maximum point µf on the polarised state trajectory, denoted by the

state |0̄⟩. By analogy with the Néel state, whose translation partner – the anti-Néel state

– displays identical scarring behaviour [97], here we have a similar relation between |0⟩
and |0̄(µf)⟩ states. The main difference with the anti-Néel state is that |0̄⟩ state depends

on the value of µf.

To substantiate this further, we analytically derive the phase-space coordinates cor-

responding to |0̄(µf)⟩. Using Eq. (4.13), we see that the turning point in the gradient

of θ along the trajectory is governed by cosϕ. A sign flip therefore must occur when

ϕ = ±π/2. Because energy is exactly conserved along a TDVP trajectory, |0̄(µf)⟩ must

have the same energy as the polarised state. For states belonging to K = 1 TDVP
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manifold, the energy density is given by

E(θ, ϕ)/N =
sin θ

1 + sin2 θ

(
µf sin θ + 2 cos2 θ sinϕ

)
. (4.16)

For the polarised state, E(0, 0) = 0 and, setting ϕmax = π/2, allows us to determine the

θmax coordinate of the |0̄(µf)⟩ turning point:

sin θmax =

(
|µf| −

√
µ2f + 16

)
/4. (4.17)

In Fig. 4.7(b) we test the overlap of the state |0̄(µf)⟩, with the MPS angles given by

Eq. (4.17), against the family of ground states of HPXP(µi). We scan through a set of

values µf ∈ [−5, 5] and, for each µf , plot the maximum overlap obtained by maximising

over µi. Doing so, we confirm that the ground states within region (2) of the phase

diagram have high overlap with the antipodal state in the polarised state trajectory in

the TDVP manifold. Although µf < 0 is not particularly relevant for region (2), we note

that the optimisation fails there. This, however, can be fixed by including an additional

phase pulse, as explained in Appendix C.3. Comparing Fig. 4.7(b) to Fig. 4.4(a), we see

a striking correspondence between the successful optimisation and region (2) in the phase

diagram. This confirms that the QMBS phenomena in region (2) are indeed associated

with |0̄(µf)⟩ state.
Finally, in Fig. 4.7(c) we study the system size scaling of the mapping between the

PXP ground state with chemical potential and states in the TDVP manifold. We scan for

the maximal overlap of the ground state at some µi with the set of all |0̄(µf)⟩ states in the

interval µf ∈ [−20, 20]. Remarkably, for the vast majority of region (2) when µi > 0, we

see a near perfect overlap between the ground state and |0̄(µf)⟩, independent of system
size. This suggests that the TDVP state captures well the PXP ground state in region

(2). Nevertheless, in Fig. 4.7(c) we also observe a breakdown of the mapping at the EPT

point µi = µc. This is expected since the ground state at the critical point develops

a diverging entanglement entropy and the χ = 2 MPS approximation must deteriorate

as system size is increased, since an area-law state cannot capture the critical ground

state in the thermodynamic limit. This naturally leads to the question: is the observed

scarring in the critical ground state an artefact of finite size and what is its origin?

4.5 Interplay between scarring and criticality

Finally, we focus on the nature of QMBS regime when quenching from the critical ground

state at µi = µc. Despite the complexity of this state, we find robust signatures of

ergodicity breaking. Long-time memory retention from states in energy close to an EPT
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has previously been observed in the LMG model [221, 222]. We find similar behaviour

between regions (1) and (2) in Fig. 4.4(a). For example, by fixing µi = µc and scanning

µf to determine the largest δF , we find the most robust revivals occur at µf = 0.633 – a

point marked by the diamond in Fig. 4.4. This turns out to be one of the best reviving

points in all of regions (1), (2) and (3), including the |Z2⟩ and |0⟩ initial states. As

discussed above, the TDVP semiclassical formalism is not well-suited for describing this

case as it cannot capture the diverging entanglement entropy of the initial state. This

immediately raises the question if the observed QMBS behaviour is a finite size effect

and whether one should rather expect a sharp boundary between regions (1) and (2) in

Fig. 4.4 in the thermodynamic limit.

0.0

0.2

0.4

0.6

0.8

1.0 N =21
N =31

N =41
N =51

N =101
N =151

N =201
N =251

N=301
N=401

0 2 4 6 8 10
t

0.6

0.8

1.0

1.2

1.4

0 10
0.1

0.5

0 0.08

0.01

0.02

/

Figure 4.8: Fidelity and entanglement entropy dynamics for the quench from the critical
ground state with µi = −1.31 to µf = 0.6. (a) Fidelity revivals persist up to the largest
system size N = 401. While the fidelity decays with N , the fidelity density of the first
revival peak, − log(F1)/N , plotted against inverse system size, 1/N , extrapolates to a
value close to 0 (inset), indicating non-ergodic behaviour in the thermodynamic limit at
a finite time. (b) Dynamics of the half-chain entanglement entropy SE(t) for the same
quench. We scale the entropy by the critical value given by the Cardy-Calabrese formula
with central charge c = 1/2 [223], which collapses the data to 1 at t = 0 (inset shows
the unscaled entropy). The growth of entropy is seen to be linear, with pronounced
oscillations. Data is obtained by MPS simulations with OBCs, bond dimension χ = 300,
and time step δt = 0.025.

To probe the robustness of QMBS revivals in the thermodynamic limit, we simulated

the quench µi = −1.31 → µf = 0.6 in large systems up to N = 401 using MPS in Fig. 4.8.
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The fidelity, plotted in Fig. 4.8(a), demonstrates that revivals exist in all accessible system

sizes. The fidelity is not an intensive quantity, therefore it is generically expected to decay

in the N → ∞ limit due to the exponential growth of the Hilbert space with system size,

as observed in Fig. 4.8(a). Thus, to compare different system sizes, we take the fidelity

at the first revival peak F1 and plot its density, − log(F1)/N against 1/N , in inset of

Fig. 4.8(a). This serves as an indicator of ergodicity breaking at a finite time that can

be properly scaled to the thermodynamic limit as it remains constant with system size.

For a random state in the constrained Hilbert space of the PXP model, whose dimension

grows asymptotically as ∼ ϕN , where ϕ = (1 +
√
5)/2 is the Golden Ratio [184], the

fidelity density at late times asymptotically approaches the value log ϕ ≈ 0.48, with

O(1/N2) corrections. Contrary to this expectation, the fidelity density in Fig. 4.8(a)

continues to decrease as N → ∞ and extrapolates to a value smaller than 0.01, signaling

non-ergodicity in the thermodynamic limit at a finite time scale t ∼ 5/Ω, which is well

beyond the initial relaxation.

In Fig. 4.8(b) we observe a slow growth of entanglement entropy following the same

quench. In contrast to previous QMBS cases in the literature, where the system was

initialised in a product state with zero entropy, here we start from a critical ground

state whose entropy is expected to diverge logarithmically with system size according

to the Cardy-Calabrese formula, Scrit = (c/6) log(N/π) [223]. The universal prefactor is

determined by the central charge c of the conformal field theory, which is c = 1/2 for

our critical point in the Ising universality class. Scaling the data by Scrit indeed yields

a good collapse at time t = 0. At later times, the entropy grows linearly with time.

On top of linear growth, we observe prominent oscillations that are typically found in

QMBS systems, e.g., the |Z2⟩ initial state in the PXP model [18]. The amplitude of

these oscillations is roughly independent of system size, as can be seen in the inset of

Fig. 4.8(b). At much later times, which are inaccessible to MPS methods, we expect the

entropy to saturate to a value proportional to the volume of the subsystem.

Apart from the diverging entropy of the initial state, the overall picture from Fig. 4.8

is broadly similar to previous studies of QMBS dynamics [20]. What remains to be

explained is why the critical ground state is poised towards QMBS-like dynamics.

To identify the microscopic origin of this robust ergodicity breaking in the vicinity of

µf = 0.633, we plot the overlap of the initial critical ground state with the eigenstates of

the post-quench Hamiltonian in Fig. 4.9. The overlap exhibits clear towers of eigenstates

which are emblematic of QMBS. While these features are present throughout the spec-

trum, the dominant contributions to the initial state come from low-energy eigenstates.

In order to approximate their characteristics, we can treat them as magnons with a given

momentum k on top of the ground state. For µf = 0, this has been shown to give a good
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Figure 4.9: Overlap between the ground state at the critical point µi = µc = −1.31 and
the eigenstates of the PXP model with µf = 0.633. The colour indicates the density of
datapoints. The red dashed lines indicate multiples of the energy of a k = π excitation on
top of the ground state. This matches well with the scarred towers in the relevant part of
the spectrum. The inset shows the first set of excited states, with the grey dashed lines
indicating the expected energy for non-interacting pairs of excitations with momenta k
and −k. Due to the flatness of the band near k = π and k = 0, the lines are denser near
the scarred states, leading to sharper towers and better revivals (see further analysis of
the magnon dispersion in Fig. 4.10 below). Data is obtained by exact diagonalisation for
system size N = 28 with PBCs.

approximation of scarred states even at relatively high energies when using magnons with

momentum k = π [224]. Magnon, in this sense, refers to a quasiparticle excitation with

a given momentum built on top of the ground state |GS⟩. More formally, an magnon |k⟩
with momenta k is defined as

|k⟩ = NkZk |GS⟩ , (4.18)

where Nk is a normalisation factor given by

Nk = ⟨GS|Z−kZk|GS⟩−1/2 (4.19)

and

Zk =

N−1∑
j=0

eijkZj (4.20)

where Zj is the Pauli-Z operator (for more information, see Ref [224]). Similarly, we find

this to be true in our case near µf = 0.6, where much of the low-energy spectrum can

be approximately reconstructed from pairs of non-interacting magnons with momenta k

and −k, see the dashed lines in Fig. 4.9 and inset. Note that the PXP model is gapped
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4.5. Interplay between scarring and criticality

for µf = 0.633. Hence, the ground state and the first tower in Fig. 4.9 are separated by

a finite energy that is independent of N in sufficiently large systems.
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Figure 4.10: (a) Dispersion relation of the low-lying excitations of the PXP model for
several values of the chemical potential µf, shown in different colours. When µf ≈ 0.6,
the dispersion becomes visibly flat near both k = 0 and k = π momenta. Inset shows
the difference between the actual energies of the first excited states in the spectrum and
their approximation by a pair of two non-interacting excitations. For all momenta k, the
best agreement between the approximation and exact energy is attained at µf ≈ 0.6. (b)
Low energy spectrum of the PXP model with µf = 0.6 – the value with the best revivals
when quenching from the critical ground state. The ground state and first excited states
are indicated, along with energies corresponding to a non-interacting pair of excitations
with momenta k and −k. In this instance, we see the approximate excitations and exact
energy levels lie close to each other. Data is obtained by exact diagonalisation for system
size N = 24 with PBCs.

A detailed analysis of the magnon dispersion as a function of chemical potential

is presented in Fig. 4.10. The dispersion relation for several values of µf is shown in

Fig. 4.10(a). For µf < 0.6, the single-magnon band merges with the two-magnon con-

tinuum, causing the downward slope near k = 0. Near µf = 0.6, the band becomes

remarkably flat for small k, coinciding with the one-magnon and two-magnon bands

barely touching. At that point, the energies of the first excited states at k = 0 are well

approximated by twice the energies of the single-magnon states. This indicates that they

correspond to a pair of two non-interacting magnons with momenta k and −k. This is il-
lustrated in Fig. 4.10(b) and the inset of panel (a). This simple picture of non-interacting

excitations allows us to predict the energies of the low-energy excited states based solely
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on the dispersion relation of the single-magnon states. In particular, the flatness of the

band near k = 0 and k = π means that the eigenstates near the scarred ones have ap-

proximately the same energy. This implies that towers of states will be sharper, and that

the effective energy spacing, which determines the dynamics at intermediate times, is the

spacing between the towers. In turn, the fact that magnons are very weakly interacting

means that the spacing between these towers will be approximately equal.

In summary, we showed that QMBS in the critical initial state can persist due to (i)

the post-quench Hamiltonian HPXP(µf) having a gapped spectrum with a sufficiently flat

band of the low-lying magnon excitations; (ii) the magnons are weakly interacting and

their multiplets give rise to regularly spaced QMBS-like towers in the spectrum. While

this scenario is reminiscent of Ref. [225], where quantum revivals in some non-integrable

models were related to the low-lying quasiparticle states, in our case the chemical poten-

tial needs to be finely tuned to a value µf ≈ 0.6 to meet the conditions (i)-(ii). Indeed, as

seen in Fig. 4.4, varying µf around this value leads to a sharp decay of QMBS revivals. In

contrast to the PXP model with µi = 0 and the |Z2⟩ initial state, the QMBS eigenstates

in the µi = µc case are clearly skewed towards the low-energy part of the spectrum,

however this allows the QMBS revivals to persist in large systems, despite the highly

entangled initial state.

4.6 Chapter conclusions

In this chapter, we have presented a mechanism of weak ETH violation via quantum

many-body scarring. In contrast to Chapter 2 – which focused on a model that maximises

thermalisation – here we demonstrated the PXP model’s ability to evade thermalisation

and ETH expectations for a few select initial states. While the presence of QMBS in

the PXP model had been well established, it was previously considered a finely-tuned

phenomenon occurring in a small number initial states that are difficult to identify.

Throughout this chapter, we showed how the simple addition of an excitation-counting

term to the PXP Hamiltonian reveals the ubiquity of scarring, introducing a greater level

of control over thermalisation and the capability to evade it.

We mapped out the dynamical phase diagram of the detuned PXP model based on

ergodicity breaking in the dynamics following a global quench of the chemical potential.

This demonstrated the existence of extended regions which harbour QMBS phenomena,

either associated with the previously studied initial conditions, such as |Z2⟩ and |0⟩, or
with new entangled states such as |0̄(µ)⟩. The mechanisms giving rise to these QMBS

phenomena, in particular the underlying periodic trajectories, were identified within the

TDVP framework. Analysing in detail the robustness of QMBS when the system is tuned
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to the EPT, we argued that the latter does not provide an obstacle for QMBS. This holds

provided that the post-quench Hamiltonian is tuned in such a way that the low-lying

quasiparticle excitations are weakly interacting and possess a flat energy-momentum

dispersion. This enables different QMBS regions in the dynamical phase diagram to

connect smoothly, bridging across the critical point.

In view of experimental realisations, we outline an adiabatic ramping protocol in

Appendix C.5 that allows one to map out the same phase diagram in Rydberg atoms

and ultracold bosons in tilted optical lattices, both of which have recently implemented

the PXP model in the presence of a tunable chemical potential. In experiment, the

evolution is naturally restricted to finite times, as assumed above. However, in Ref [220]

we also discuss the corresponding phase diagram at late times, t → ∞. In summary,

the existence of a continuous family of QMBS states, tunable by the chemical potential,

demonstrates the capability in the PXP model to evade thermalisation in ways that were

previously thought inpossible.

One motivation for the work presented in this chapter was to address the open problem

of identifying all initial conditions associated with QMBS for a given model. For the

pure PXP model, it had originally appeared that only the |Z2⟩ and |Z3⟩ = |100100...100⟩
states are special in this regard [16]. However, more recent explorations of the chemical

potential [27] have revealed that the latter can also stabilise QMBS from a different

initial state, |0⟩. In this chapter, we have highlighted that these two product states share

a semiclassical description and belong to a larger family, including some other weakly-

entangled states such as |0̄(µ)⟩ state. In fact, our results for the initial state at the

critical point suggest that QMBS dynamics is not necessarily associated with preparing

the system in a product state or even an area-law entangled state, but in principle

allows for highly-entangled initial states. In this case, QMBS dynamics is more strongly

temperature-dependent. This is evident from the strong overlap of the initial state with

the relatively low-lying energy eigenstates of the post-quench Hamiltonian. The key

ingredient for making this work was to suppress the interaction between quasiparticles

and flatten their energy dispersion.

The existence of a many-body scarring phase diagram directly challenges the notion

that scars are “rare” phenomena. The tunability of initial scarring states in PXP through

a simple control parameter serves as a practical knob for controlling the effect of thermal-

isation with potential applications in quantum technologies. For example, the existence

of a continuous family of QMBS states would be of interest in quantum-enhanced met-

rology, for which QMBS states were shown to be advantageous [226–228]. On the other

hand, several fundamental questions also remain open. For example, it is unclear how

to explain the entirety of the dynamical phase diagram in the framework of a spectrum-

81



Chapter 4. Evading and controlling thermalisation via
quantum many-body scars

generating su(2) algebra, which had previously provided an elegant description of revivals

from the |Z2⟩ state in the pure PXP model [23]. Furthermore, when it comes to scarring

from the critical ground state, it would be interesting to explore if such mechanisms

apply to other models and whether they can be used to realise similar dynamics from

highly-entangled initial states.
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Chapter 5

In the absence of chaos:

avoiding Gaussification in

Rydberg atom arrays

5.1 Chapter introduction

Having demonstrated the menagerie of methods one may use to explore quantum therm-

alisation, from maximising it in Chapter 3 to evading it in Chapter 4, we now consider

processes similar to thermalisation. Specifically, do any mechanisms similar to therm-

alisation exist, wherein initially-encoded information eventually gets scrambled – and

if so, can it be also avoided and utilised? One such mechanism is Gaussification –

a process wherein initially non-Gaussian quantum states inevitably evolve towards a

non-interacting Gaussian state. This process can occur in both interacting as well as

non-interacting systems [30].

In this thesis, we quantify a states Gaussianity via the violation of the Wick’s de-

composition [229]. This will be explained later in the chapter but, in a sense, the Wick’s

decomposition is the decomposition of n-point correlations in a quantum state into smal-

ler correlations. If a state is interacting (and therefore highly correlated), it will be

impossible to break the correlations down and there will therefore be a violation of the

Wick’s identity. The extend of this violation quantifies how non-Gaussian a state is.

Following from this, the process of Gaussification can defined by the emerging ability to

decompose correlations via the Wick’s decomposition over time.

Recent works [30,230] have investigated the behaviour where generic closed systems,

governed by quadratic Hamiltonians, swiftly relax to Gaussian states, regardless of their

initial conditions, thereby undergoing Gaussification. Significant work has gone into
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understanding the process of Gaussification, particularly in quadratic non-interacting

fermionic systems where it is found to arise due to two properties: clustering of correl-

ations in the initial state and a Hamiltonian that exhibits delocalising transport [30].

Examples of such Hamiltonians include quadratic hopping Hamiltonians with a constant

on-site potential as well as the critical Ising model. The emergence of Gaussian cor-

relations has also been demonstrated in recent experiments on coupled one-dimensional

superfluids [231]. This process can often prove detrimental due to the need for interacting

(non-Gaussian) quantum states in quantum information protocols.

This chapter explores the process of Gaussification in Rydberg atom arrays, wherein

certain initial states are expected to evolve into Gaussian states when the Hamiltonian is

quenched between different ordered phases. To systematically understand these dynam-

ics, our new findings involves the construct a Gaussification phase diagram and investigate

its structure through global quenches between different regions, quantifying Gaussianity

using both local Wick decomposition and a variational approach based on reduced dens-

ity matrices. Our findings reveal that, surprisingly, in certain cases Gaussification can

be circumvented.

Specifically, in this work we explore regimes where the ground state of the Rydberg

Hamiltonian is either a non-Gaussian Z3 like state or a Gaussian Z2 like state. In this

instance, it is typically expected that if one takes the Z3 state and quenches in the regime

where Z2 is the ground state, that Gaussification will take place where the Z3 state is

ultimately scrambled to a Gaussian state. As we will demonstrate, however, one can

instead similarly evade Gaussification through experimentally accessible techniques and

novel measuring methods.Our analysis not only uncovers the underlying mechanisms

that govern the onset or evasion of Gaussification but also confirms the robustness of

these behaviours against realistic experimental imperfections. These results demonstrate

that, much like thermalisation, Gaussification is not an inevitable outcome but a nuanced

process shaped by controllable physical parameters.

5.2 From thermalisation to Gaussification

We start by noting that free field theories describe the dynamics of fields with no interac-

tions. These are known as Gaussian as their path integral description contains some form

of Gaussian function [229, 232]. In the presence of interactions, however, the system’s

ground state often develops strong non-Gaussian correlations. While Gaussian states are

highly structured and can be understood using a variety of theoretical techniques, it is

the non-Gaussian states (strongly correlated interacting states) that often play a key role

as resources for universal quantum computation and enhancing the efficiency of a range of
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quantum information protocols. These include quantum teleportation, communication,

sensing, metrology and quantum error correction [33–45].

Recent works [30,230] have investigated the behaviour of quantum states under non-

equilibrium dynamics, sparked by the intriguing question: What happens to an interact-

ing state when interactions suddenly vanish, e.g., after a global quench of the system? It

has been shown that generic closed systems, governed by quadratic Hamiltonians, swiftly

relax to Gaussian states, regardless of their initial condition in contrast to recent results

established in fine tuned open quantum system [30,32]. This can be viewed as an example

of a “quantum central limit” theorem [233,234].

To explain the emergence of Gaussianity, several mechanisms have been proposed,

such as spatial scrambling and canonical transmutation, the latter suggesting that Gaus-

sian components of the initial system act as a Gaussian bath, therefore suppressing

non-Gaussianity [30, 230]. These mechanisms have been used to describe the decay of

non-Gaussianity in recent experiments on 87Rb superfluids trapped in a double well po-

tential [179, 231]. While these studies have provided crucial insights into the process

of relaxation in quantum many-body systems [4], they are restricted to systems with

effectively non-interacting degrees of freedom, which do not exhibit “full” thermalisa-

tion but only relax towards a Generalised Gibbs Ensemble [235]. It is thus important

to understand the role of Gaussianity in interacting systems, which can exhibit chaotic

dynamics and thermalisation. In particular, it is important to understand if and how

non-Gaussianity could be protected in such many-body systems when they are taken out

of their equilibrium state.

We will show that Rydberg atom arrays [236] provide a versatile experimental plat-

form for realising and manipulating non-Gaussian correlations far from equilibrium. We

show that quenching the atoms between different ordered phases allows to explore two

very different regimes of correlations. On the one hand, our setup allows to observe how

non-Gaussian correlations build up as the system undergoes thermalising dynamics from

an initial, nearly free-fermion state. On the other hand, it is possible to “lock” the system

in a strongly non-Gaussian state, which evades both Gaussification and thermalisation

at late times. This intriguing non-Gaussian regime is found to be remarkably robust,

e.g., even to quenching the system across a quantum phase transition. Our proposal can

be readily implemented in Rydberg atom experiments [15,16,46,47], which have recently

realised the required types of ordered states and protocols for probing correlations in

out-of-equilibrium dynamics.

85



Chapter 5. In the absence of chaos:
avoiding Gaussification in Rydberg atom arrays

Figure 5.1: (a) Schematic description of a 1D UV model, Eq. (5.1). (b) Sketch of the
phase diagram in the U -V plane. We focus on the Z2 and Z3 ordered phases and quenches
between them: blue arrow UZ2→3 indicates a quench from Z2 ordered phase into the Z3

phase, while the red arrow represents the reverse quench UZ3→2 . (c) The two types of
quenches lead to strikingly different dynamical behaviours. During the UZ2→3 quench, the
system is initially free and Gaussianity grows until it reaches typical values in a random
state. By contrast, during the UZ3→2 quench, the state remains strongly interacting and it
is pinned to a highly non-Gaussian manifold. We will quantify this picture in Secs. 5.4.1
and 5.4.2 using precise Gaussianity measures.

5.3 The UV model of Rydberg atoms

We consider again a one-dimensional (1D) periodic chain containing N Rydberg atoms

where each atom is modelled as a two-level system, where |0⟩ represents an atom in the

ground state and |1⟩ is an excited Rydberg state. The atomic array is governed by the

Hamiltonian [183]:

H =
N∑
i=1

−ΩPi−1σ
x
i Pi+1 + Uni + V nini+2, (5.1)

where the flipping between the ground and excited states is described by the Rabi fre-

quency Ω, U is the chemical potential (detuning), and V is the next-nearest neighbour

interaction between atoms excited to Rydberg states, see Fig. 5.1(a). Unless specified

otherwise, due to the periodic boundary conditions, we will restrict our calculations to

the zero momentum sector in the largest sector of the Hilbert space containing no neigh-

bouring excitations.

The model in Eq. (5.1) is again applicable to the strong Rydberg blockade regime,
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where the nearest-neighbour van der Waals interaction is much larger than all other

energy scales [236]. The strong Rydberg blockade imposes the kinetic constraint nini+1 =

0, which forbids Rydberg excitations on adjacent sites. This constraint is enforced in

the Hamiltonian by dressing the σxi with projectors on the neighbouring atoms. This

prevents the Rabi flip term from generating nearest-neighbour excitations, such that

states · · · 11 · · · with neighbouring atoms simultaneously excited are projected out of the

Hilbert space. As we can see, this is just a simple extension of the previously studied

PXP model in Chapter 4 with next-nearest neighbour interaction and we have also recast

µ as U to align with the literature.

The interplay of U and V terms gives rise to a rich phase diagram sketched in

Fig. 5.1(b). The phase diagram was mapped out with high precision in the numerical

simulations in Refs. [237–239] and explored in experiments [16,46]. Large negative values

of the chemical potential U favour excitations on every other site (due to the Rydberg

blockade, this is largest density of excitations allowed). On the other hand, positive V

value assigns a repulsive potential on the next-nearest neighbours and it favours excita-

tions on every third site. Conversely, large negative V favours excitations on every other

site. Thus, the model in Eq. (5.1) hosts two ordered phases represented by states

|Z2⟩ =
1√
2
(|10101 . . .⟩+ |01010 . . .⟩), (5.2)

|Z3⟩ =
1√
3
(|100100 . . .⟩+ |010010 . . .⟩+ |001001 . . .⟩), (5.3)

in which Rydberg excitations occupy every second or third site, respectively. Both of

these phases are destroyed by sufficiently large positive U , which drives the system into

a disordered (|0⟩) phase, see Fig. 5.1(b) [183,240,241].

For the subsequent calculations, unless specified otherwise, we set Ω = 1 and concen-

trate on the Gaussianity and entanglement properties of the initial state as we quench the

Hamiltonian between Z2, Z3 ordered phases, Fig. 5.1(b). We will show that the choice of

the initial state and realisation of the quench can have dramatically different influence on

the Gaussianity, as illustrated in Fig. 5.1(c). For the quench initialised in the Z2 phase,

indicated by UZ2→3 in Fig. 5.1(b), the Gaussianity, as precisely defined in Sec. 5.4.1 be-

low, is initially low because the pre-quench state can be approximately expressed as a

free-fermion state. After the quench, the state becomes progressively more correlated,

with its Gaussianity approaching that of a random vector in the same Hilbert space at

late times. This behaviour is consistent with thermalisation dynamics. In contrast, the

ground state in the Z3 phase cannot be expressed as a free-fermion state and hence it has

high non-Gaussianity. Moreover, following the quench, the state remains strongly inter-

acting, which occurs due to a lack of thermalisation in this case. It is important to note
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that in both cases, the quench Hamiltonian, regardless of the nature of the ground state,

is an interacting, non-integrable Hamiltonian – further contrasting the two regimes. In

the following sections, we introduce several metrics of non-Gaussianity and quantitatively

support the phase diagram and dynamical behaviour sketched in Fig. 5.1.

5.4 Detecting and evading Gaussification

5.4.1 Gaussianity Phase diagram

Let us begin with how one measures Gaussianity. A conventional approach for quantifying

the Gaussianity of quantum states relies on Wick’s theorem [229]. This theorem allows

to reduce the evaluation of n-point correlation functions in terms of “contractions” (i.e.,

vacuum expectation values) of pairs of creation and annihilation operators. For any

free-fermion system, the Wick’s identity for four-point correlators takes the form

⟨ÂB̂ĈD̂⟩ = ⟨ÂB̂⟩⟨ĈD̂⟩ − ⟨ÂĈ⟩⟨B̂D̂⟩+ ⟨ÂD̂⟩⟨B̂Ĉ⟩, (5.4)

where we take the expectation value with respect to the ground state (“vacuum”) –

though this can be similarly used with any state. One possible definition of Gaussianity

W is the extent to which Eq. (5.4) is violated, i.e., the absolute value of the difference

between its left-hand and right-hand side. For Gaussian states, we have W = 0. The

operators Â, . . ., D̂ are understood to be single-site fermionic creation and annihilation

operators f̂i, f̂
†
j , which obey the anti-commutation relation {f̂i, f̂ †j } = δij . As our model

in Eq. (5.1) is expressed in terms of spin variables, it will be convenient to work with spin

operators rather than fermionic ones, which can be accomplished by applying the Jordan-

Wigner transformation (using the same procedure as illustrated in Appendix A.1).

In order to distinguish the Gaussianity between Z2 and Z3 ordered phases, we choose

Â = f̂ †1 , B̂ = f̂1, Ĉ = f̂ †2 , D̂ = f̂3, resulting in the following measure of the Wick’s

decomposition violation:

W(ρ) =
∣∣⟨n1σ+2 σ−3 ⟩ − ⟨n1⟩⟨σ+2 σ−3 ⟩

− ⟨σ+1 σ+2 ⟩⟨σ−1 σz2σ−3 ⟩+ ⟨σ−1 σ+2 ⟩⟨σ+1 σz2σ−3 ⟩
∣∣, (5.5)

where σ±j ≡ (σxj ∓ iσyj )/2 are the standard spin raising and lowering operators at site j,

and ρ denotes the ground state of the system (which could be either a pure state or a

density matrix). This particular choice of operators Â, . . ., D̂, justified in Appendix D.1,

will reveal the difference between the Z2 phase, where W ≈ 0 across the entire phase, and

the Z3 phase where the deviation from Wick’s decomposition is of order unity, W ∼ O(1).

The ambiguity in the choice of operators in the Wick decomposition can be elimin-
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Figure 5.2: Gaussianity phase diagram for the ground state of the model in Eq. (5.1) as
a function of U and V . The colour scale represents the value of interaction distance DF
in (a), the Wick’s decomposition violation W in (b), and the entanglement entropy S
in (c). All data was obtained by exact diagonalisation for N=18 atoms on a ring with
periodic boundary conditions.

ated by employing variational optimisation techniques to measure the minimum distance

between the reduced density matrix of a given state and the set of all density matrices

associated with free-fermion models [242–245]. This quantity, dubbed the “interaction

distance” DF [242], allows for a more general characterisation of the state’s Gaussianity.

It does so by quantifying its deviation from the closest free-fermion model defined in an

arbitrary basis (for more detailed information, see Appendix D.2 and Refs. [242,246,247]).

Interaction distance is a property of the reduced density matrix ρ describing the sub-

system A of a bipartite system A ∪ B. For the total system in a pure state |ψ⟩, the
density matrix ρ = TrB |ψ⟩⟨ψ| is obtained by tracing out the subsystem B. The eigen-

values ρk of ρ define the so-called “entanglement spectrum”, Ek=− ln ρk [248]. Using the

entanglement spectrum, the interaction distance is defined as

DF (ρ) = min
{ϵ}

1

2

∑
k

∣∣∣e−Ek − e−Ef
k (ϵ)
∣∣∣ , (5.6)

where Ef
k (ϵ) =

∑
l n

(k)
l ϵl is the entanglement spectrum of a free-fermion system, given in

terms of single-fermion modes ϵl and their occupations n
(k)
l ∈ {0, 1} [249]. The sum runs

over the many-body entanglement spectrum. The minimisation is over the single-particle

energies {ϵ} by scanning over all nl and ϵl, whose number typically scales linearly with

the number of atoms N .

It is worth noting that the entanglement spectrum is naturally dependent on the

choice of bipartition. Unless otherwise specified, we consider a bipartition of the system
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into two equal parts. Our results, however, are not sensitive to the particular choice of

partition, as long as both subsystems are of comparable sizes. If one subsystem is much

smaller than the other, the number of Schmidt coefficients will be significantly reduced

and we expect non-universal behaviour of DF . Interestingly, the interaction distance

can also be probed with respect to the eigenspectrum of the system – thus probing the

thermal properties of a given Hamiltonian. This analysis can be done and reveals that

in both ordered regimes, the Hamiltonian is interacting. Generally, however, this is more

cumbersome to perform with increasing system size due to the exponential scaling of the

spectrum. Furthermore, it does not reveal the distinct differences in the ground state

between the two regimes.

Intuitively, DF represents the minimum distance between the reduced density matrix

of a given quantum state ρ and the density matrix of the closest free-fermion model

defined on the subsystem A (see Appendix D.2 for details). Crucially, the free-fermion

model is defined up to an arbitrary unitary transformation on A, which makes DF basis

independent. This allows to quantify the Gaussianity of a quantum state without the

need to search for suitable operators in W as done in Eq. (5.5). However, W has the

advantage over DF in that it is expressed in terms of local correlations that are amenable

to experimental measurements. Thus, Eq. (5.5) provides a more practical way of detecting

non-Gaussianity in the lab.

The Gaussianity phase diagram for the ground state of the Hamiltonian in Eq. (5.1)

is presented in Fig. 5.2 for a range of U and V values. The phase diagram was obtained

using both the interaction distance DF and the Wick’s theorem violation W, shown in

panels (a)-(b). In panel (c) we also show the von Neumann entanglement entropy as

defined in Eq. (2.6). All the quantities were computed for the reduced density matrix

corresponding to the subsystem A being one half of the chain. Fig. 5.2 reveals excel-

lent qualitative agreement between all three metrics, in particular between interaction

distance and Wick’s decomposition. The phase boundaries are in good agreement with

Refs. [237, 239], suggesting weak finite-size effects. For large and negative chemical po-

tential U , there are two competing ordered phases, Z2 and Z3. In particular, for large

and positive values of V , the ground state is the Z3 ordered state. The quantum phase

transition from Z3 to Z2 ordered state occurs at around |V | ∼ −U/3. In between these

two ordered phases, we expect a narrow intermediate commensurate phase [46,183,237].

This phase is difficult to resolve in small systems used in Fig. 5.2, but it will be irrelevant

for our discussion.

Figures 5.2(a)-(b) reveal a stark contrast between the two ordered phases in terms

of the Gaussian nature of their ground-state correlations. While the Z2 ground state

is approximately a non-interacting Gaussian state with both DF and W close to zero,
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the Z3 ground state is nearly maximally interacting, non-Gaussian state. The notion

of “maximally interacting” can be made precise by noting that DF , as a trace distance

between density matrices, has an upper bound, which has been conjectured to be Dmax
F =

3 − 2
√
2 [247]. In the Z3 phase in Fig. 5.2, DF attains values very close to this upper

bound. This strongly suggests that it is not possible to express the Z3 ground state as a

Gaussian state of free-fermionic modes. Finally, we note that the entanglement entropy

in Fig. 5.2(c) also captures some features of the phase diagram, but it does not sharply

distinguish between the Z2 and Z3 phases. Thus, the interaction distance and local Wick

decomposition are essential to gain a complete understanding of non-Gaussianity, both

in equilibrium as well as out-of-equilibrium, as we show next.

5.4.2 Persistent non-Gaussian correlations under quench

Previously, we have seen that the two competing ordered phases, Z2 and Z3, are the

extreme points on the Gaussianity spectrum: while the Z2 ground state represents a

nearly-free fermion state, the Z3 state is maximally interacting. It is natural to inquire

about the temporal evolution of Gaussianity following a sudden quench between these

phases. According to the standard scenario of thermalisation in a closed system [250],

under quench dynamics, particularly across a quantum phase transition, the system

should lose memory of its initial state and equilibrate towards a maximally entangled

state. To test this expectation, we study the spreading of entanglement and non-Gaussian

correlations when the system is prepared in the ground state of the Hamiltonian (5.1)

for some value V ≡ Vi. We then quench the Hamiltonian to some different value of

V ≡ Vf ̸= Vi. By varying Vi and Vf we can access different ordered states and post-

quench Hamiltonians. For simplicity, we keep U the same in the initial and post-quench

Hamiltonian and postpone the discussion of its role to Sec. 5.5.

Figure 5.3(a) contrasts the growth of entanglement entropy for the UZ2→3 quench

vs. UZ3→2 quench. In the first case, the system exhibits thermalisation, as confirmed

by the fast growth of entropy towards its saturation value when it reaches the thermal

state. A key indication of thermalisation is the volume-law scaling behaviour of the

saturation value of entanglement entropy, S∞ ∝ N , consistent with Fig. 5.3(a). In

contrast, quenches from the Z3 state lead to non-thermalising dynamics, as seen in the

strongly suppressed growth of entropy in Fig. 5.3(a).

In Fig. 5.3(b) we illustrate how Gaussianity changes in time when we prepare the

system in an approximately Gaussian Z2 state at t = 0. In particular, when the post-

quench Hamiltonian is in the Z3 phase (e.g., Vf = 8), the deviation from Gaussianity

sharply increases from zero and quickly reaches the saturation value of D∞
F ≈ 0.03.

This value coincides with the interaction distance of a random vector [247]. This is
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Figure 5.3: Temporal behaviour of entanglement and Gaussianity for quenches UZ2→3

and UZ3→2 , previously indicated in Fig. 5.1(b). The chemical potential is held fixed at
U=−15. (a) Growth of entanglement entropy for different system sizes. The top three
lines represent UZ2→3 (specifically, Vi=−5 → Vf=8), while the bottom three (overlapping)
lines are for the reverse UZ3→2 quench. For the UZ2→3 quench, the saturation entropy obeys
the volume law scaling with system size, indicating thermalisation. By contrast, UZ3→2

quench leads to strongly non-thermalising dynamics, as evidenced by a complete lack
of entropy growth. (b)-(c) Temporal behaviour of Gaussianity measured by interaction
distance. In (b), we quench from the Z2 ground state (Vi=−5) to a range of Vf values
spanning both Z3 and Z2 phases. The top plateau value corresponds to the interaction
distance of a random state, Drandom

F ≈ 0.03 [247], consistent with thermalisation observed
for UZ2→3 in (a). (c) Similar to (b) but for Z3 initial state (Vi=8). The persistent large
value of DF is consistent with an absence of entanglement spreading for UZ3→2 quench
in (a). Data in panels (b)-(c) is for system size N=18.
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consistent with thermalising dynamics at infinite temperature in Fig. 5.3(a), where the

state at late times becomes similar to a random vector. Note that this scenario is very

different from Ref. [231], where the initial state was chosen to be non-Gaussian, but the

Hamiltonian itself is quadratic and induces the development of Gaussian correlations over

time. Conversely, for the non-Gaussian Z3 initial state in Fig. 5.3(c), we see that the

previous scenario does not hold. In this case, there is persistent non-Gaussianity after

the quench, with no sign of decay of the correlations due to interactions. Consequently,

the time-evolved state remains highly interacting over the course of quantum dynamics.

We note that these results hold for larger system sizes via finite-size scaling and with

open boundary conditions – see Ref [31].
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Figure 5.4: The nature of the non-Gaussian quench UZ3→2 . (a) Overlap between the
initial Z3 state (as defined in Eq. (5.2)) and energy eigenstates |E⟩ of the Hamiltonian in
Eq. (5.1), plotted as a function of energy. Data is for system size N=18 and U=−15, for
three V values given in the legend. In all the cases, the Z3 state has high support (overlap
≈ 1) on a single eigenstate at roughly the same energy. (b) Energy expectation value,
E = ⟨ψ|H|ψ⟩, for product states |ψ⟩ = |Z3⟩ and |ψ⟩ = |Z2⟩, plotted as a function of V
with fixed U=− 15. We see that |Z3⟩ remains at constant energy for any V , while |Z2⟩
scales linearly. (c) The power spectrum of the correlation function ⟨σzi σzi+1⟩ evaluated
in the time evolved state (raw data shown in the inset). The vertical lines in the plot
represent the energy gaps ωij between the states with largest overlap in (a). The gaps
align precisely with the peaks in the power spectrum.

We now analyse the UZ3→2 quench in more depth. In terms of spectral properties,

we find that there is a single energy eigenstate |E1⟩ of the Hamiltonian that has very

high overlap with the Z3 state, | ⟨E1|Z3⟩ |2 ≈ 1, see Fig. 5.4(a). The energy of this ei-
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genstate also exactly matches that of the ground state energy of the initial Hamiltonian

pre-quench. In fact, the energy of the state is independent of deforming V in the quench

Hamiltonian as shown in Fig. 5.4(b). This implies that the Z3 state is effectively close

to being an eigenstate of the Hamiltonian. This behaviour is somewhat reminiscent of

quantum many-body scarring [20, 22, 54], with the exception that here the high overlap

exists only for a single eigenstate. Furthermore, numerically we find that the special ei-

genstate |E1⟩ has lower entanglement entropy than the majority of the spectrum, whereas

its interaction distance attains a nearly maximum value. By also plotting the overlap

between the Z3 state and the eigenstates of Hamiltonians with V = 8 and V = 1, we see

the single eigenstate remains dominant at constant energy, regardless of the value of V .

The state simply transitions from being an initial ground state to a mid-spectrum state.

Previously, in Fig. 5.3(c), we saw that non-Gaussianity remains robust for the quench

UZ3→2 . In order to experimentally access this behaviour, one can study temporal beha-

viour of local correlation functions, as frequently done in modern ultracold atom exper-

iments [251]. For example, the correlation function ⟨σzi σzi+1⟩, computed in Fig 5.4(c),

reveals persistent oscillations. The characteristic frequencies of these oscillations cor-

respond to the energy differences of the eigenstates with dominant overlap with the

initial state of the system. This can be characterised more precisely by the power

spectrum [252, 253], computed in Fig. 5.4(c). The dominant frequencies are given by

ω1j = |E1 −Ej | (and their differences), where |Ej⟩, j = 2, 3, . . ., denote eigenstates with

subleading overlaps with the Z3 state. Similar oscillations and frequencies can be ob-

served in the quantity W defined in Eq. (5.5), other two-point local correlations, and

even in the entanglement entropy.

A simple heuristic argument that gives an approximate value of the oscillation fre-

quency in the limit U, V ≫ Ω can be stated as follows. For the Hamiltonian with

U=−15 and V=−5, the ground state is approximately Z2 product state with energy

EZ2
GS ≈ (U +V )N/2. The energy of the Z3 state is approximately EZ3 ≈ UN/3. For gen-

eral values of U and V there are no other states with the same energy as Z3. For special

ratios of U/V , a resonance may occur and other states could have the same energy as

Z3; we can prevent this by assuming U and V to be irrational numbers. The oscillations

seen in Fig. 5.4(c) are between |Z3⟩ and states where one of the excitations is moved by

a single unit, i.e., the states |101000100100 . . .⟩, |100101000100 . . .⟩ etc., which all have a

single 101 pattern. The energy of these states is UN/3 + V , so they are lower in energy

by approximately −|V | compared to Z3. This predicts that the oscillation frequency

is set by V , i.e., the energy difference between Z3 states and these states containing

|. . . 101 . . .⟩ in the chain. Thus the energy differences between second and first energy

levels are determined by |V |, i.e., ω12 = |E1 − E2| ≈ |V |, as can be seen in the power
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spectrum in Fig. 5.4(c).

5.4.3 Origin of persistent non-Gaussian correlations

The origin of robust non-Gaussianity associated with the Z3 state can be more readily

understood by considering the evolution in eigenspace overlap for different V presented

in Fig. 5.4(a). We consider the difference between the initial Hamiltonian, Hi, and post-

quench Hamiltonian,Hf . Recalling Fig. 5.1(b), we restricted to the case where the quench

only changes the value of V . Therefore Hf = Hi+∆VHnn where Hnn =
∑

i nini+2. Now

consider a quench from the Z3 state in its respective regime such that Hi |Z3⟩ = E0 |Z3⟩
with ground state energy E0. Then, quenching yields Hf |Z3⟩ = Hi |Z3⟩+∆VHnn |Z3⟩.
Note that in the case of |Z3⟩, there is only occupancy of every third site, therefore

Hnn |Z3⟩ = 0, irrespective of ∆V . Thus,

Hf |Z3⟩ = Hi |Z3⟩+∆VHnn |Z3⟩ = Hi |Z3⟩ = E0 |Z3⟩ . (5.7)

Hence, upon deforming ∆V , |Z3⟩ remains an eigenstate of Hf with the same energy. This

may not necessarily still be the ground state and instead may be shifted up in the energy

spectrum for sufficiently large ∆V . This means that upon quenching, the initial state

remains the same over long periods of time due to its proximity to an eigenstate. As

interaction distance is defined only with respect to a given state ρ, it is clear why it does

not significantly change over time, despite quenching the system across criticality. This

interpretation is supported by the high overlap with a single eigenstate of the quench

Hamiltonian in Fig. 5.4(a).

A similar argument can be made for why the quench from the initial Z2 state with

Hf in the Z3 phase leads to scrambling and thermalisation dynamics. As Z2 has an

occupancy on every 2 lattice sites, it “feels” the deformation of ∆V : Hnn |Z2⟩ = N
2 |Z2⟩.

Considering the form of Hi such that the initial state is |Z2⟩, the terms that result in this

being approximately the ground state are
∑N

i=1−|U |ni − |V |nini+2 with U, V ≫ Ω. By

then suitably tuning a positive ∆V , quenching with Hf in the Z3 regime means that |Z2⟩
is no longer an eigenstate due to the competing factors of U, V and ∆V . More concretely,

the final Hamiltonian when acting on |Z2⟩ has a term proportional to −((|U |+ |V |)+∆V .

These competing negative and positive terms mean that, overall, −((|U |+ |V |)+∆V may

not be much greater than Ω and thus |Z2⟩ may no longer be approximately an eigenstate

like before. This results in the possible scrambling of the initial state thus becoming a

non-Gaussian state over time.

The further substantiate the previous argument, the underlying mechanism for per-

sistent non-Gaussian correlations can be inferred by considering an effective quench
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Hamiltonian with five-body interactions. As we are interested in the quench dynam-

ics going from Z3 into the Z2 ordered phase, we define the effective Hamiltonian in a

regime where U is negative and large, favouring particle creation on all sites. Simil-

arly, we require V to be large and negative as well. Under these conditions, the quench

Hamiltonian is given by

Hq = −
[

N∑
i=1

Pi−1σ
x
i Pi+1 + |U |ni + |V |nini+2

]
(5.8)

with |U |≫1, |V |≫1 and we still have nini+1=0. Following a similar procedure as in

Ref. [254], we move the quench Hamiltonian into an interaction picture with respect to

the next-nearest neighbour term by applying the transformation W †HqW , where W =

exp[−it|V |∑i nini+2]. Ignoring the rapidly oscillating phases for |V | ≫ 1, we reach an

effective Hamiltonian

Heff
q = −

[
N∑
i=1

Pi−2Pi−1σ
x
i Pi+1Pi+2 + |U |ni

]
. (5.9)

In the largest fully connected sector, the presence of Rydberg excitations on the nearest

and next-nearest neighbouring sites is prohibited. The effective Hamiltonian corresponds

to the PPXPP model with a chemical potential. The Z2 state still exists as the overall

ground state but instead within a small disconnected sector due to the new blockade

condition. Meanwhile, due to a large negative U in the effective Hamiltonian, the ground

state of the largest sector where the blockade remains respected is Z3. Thus, the quench

Hamiltonian does not induce delocalising dynamics when the system is initialised in the

Z3 state and such states are protected against both Gaussification and thermalisation.

We can therefore conclude that the persistent non-Gaussianity of the Z3 initial state

equivalently arises from the effective blockade mechanism up to the next-nearest neigh-

bour excitations in the interaction picture. Agreement in dynamics was also tested and

found numerically between the exact Hamiltonian and effective Hamiltonian. This fur-

ther supports the notion that the initial state remains approximately an eigenstate of

the quench Hamiltonian.

5.5 Experimental realisability in Rydberg atom arrays

With the possible quantum information applications, it is important to test the ro-

bustness of the non-Gaussification against external perturbations. This is particularly

important because our results rely on the quantum superpositions of states with de-

generate energies in the Z3 and Z2 phases. External perturbations may result in the
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superposition collapsing into an energetically favourable product state, thus removing

any non-Gaussian correlations. Here we focus on three types of effects that are relevant

for experimental implementations: (i) the stability against a single site magnetic field or

impurity εni with magnitude ε; (ii) the effect of changing the chemical potential U during

the quench; (iii) the effect of long-range van der Waals interactions that are present in

real systems but were neglected in Eq. (5.1).
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Figure 5.5: Resilience of non-Gaussianity against a local impurity, εn4, added to Eq. (5.1).
(a) The phase diagram obtained using local Wick’s decomposition, W(ρ), with impurity
strength ε = 10−4 at system size N = 12. The cross marks the point (U, V )=(−4, 10.5)
studied in (b)-(d). (b) The time evolution of the interaction distance DF , when quench-
ing the initial ground state at (U, V )=(−4, 10.5) in the Z3 phase with the Hamiltonian
parameters (U, V )=(−4,−6) in the Z2 phase. Both the initial and quench Hamilto-
nian contain impurity ε. Data is for system size N = 12 with the impurity potentials
shown in the legend. Black dashed line is with no error (ε = 0) but instead taking
the initial ground state at (U, V )=(−15, 8) and quenching at (U ′, V ′)=(−10,−5), which
demonstrates persistent non-Gaussianity even with a change in U . (c)-(d) Wick’s decom-
position and interaction distance, respectively, of the ground state at (U, V )=(−4, 10.5),
as a function of impurity strength for several system sizes. Results were computed using
exact diagonalisation without resolving translation symmetry.

Fig. 5.5 shows the results when adding the impurity term εni to the Hamiltonian in

Eq. (5.1) on site i = 4. We choose this site along the chain as it is found to have the

most substantial effect on the results providing a qualitative lower-bound in robustness.

Despite the presence of an impurity, we see that qualitative features of the phase diagram

remain preserved with an impurity strength ε=10−4, see Fig. 5.5(a). This is a magnitude
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of error much larger than the detuning resolution of current quantum technology [255].

Furthermore, perturbations are generally characterised by their proportionality to the

ground state gap. We find this order of magnitude to be comparable to the energy

gap of the system (which decreases with N). This demonstrates that the non-Gaussian

characteristics are protected nearly up to the same order as the energy gap in the system.

It is natural that any larger magnitude of error would disrupt this as one would no longer

be probing ground-state physics. Taking a single point in this diagram, marked by the

cross, we find the ground state still possesses high overlap with the superposition state

Z3. Consequently, the non-Gaussian correlations persist when quenching in the Z2 phase

(with error still present in the quench Hamiltonian), as seen in Fig. 5.5(b). For this point,

the non-Gaussianity remains robust for impurity strengths up to ε∼10−3. Furthermore,

in Figs. 5.5(c)-(d) we test the robustness of DF and W for this point with varying

impurity strength and system size. The non-Gaussianity is seen to be more pronounced

in smaller system sizes.

While our presented analysis assumed that only V is changed during the quench,

we have numerically verified that the non-Gaussian correlations also remain robust upon

simultaneous changes in U . This can be understood via the following argument. Consider

modulating both V and U , then Hf |Z3⟩ = Hi |Z3⟩ + ∆UHn |Z3⟩ where Hn =
∑

i ni.

Unlike Hnn, Hn |Z3⟩ ̸= 0. This is instead equivalent to quenching horizontally in the

phase diagram in Fig. 5.2; therefore, if ∆U is such that one remains in the regime where

|Z3⟩ is approximately the ground state, the state remains an eigenstate and the non-

Gaussianity remains robust. This is illustrated by the black dashed line in Fig. 5.5 where

in changing V during the quench, we also take ∆U = 5. On the other hand, if ∆U is large

enough to transition from the Z3 regime, thermalisation occurs. This stability against

small changes in U makes the non-Gaussianity effect robust against possible experimental

imperfections.

Finally, our idealised model in Eq. (5.1) neglects the long-range van der Waals forces

that are invariably present in real systems of Rydberg atoms [16, 46, 47]. Thus, it is

important to verify our conclusions still hold in the full model describing the Rydberg

atom experiments [238]:

H = −Ω

2

N∑
i

σxi − U
N∑
i

ni + V
∑
i<j

ninj
|i− j|6 . (5.10)

Note that, in contrast to Eq. (5.1), here we keep the factor 1/2 in the Rabi term and set

V=1 in order to facilitate comparison with the literature. In Fig. 5.6(a), we first recom-

pute the Gaussianity phase diagram of the long-range model with relevant parameters

taken from the experimental papers [46,47]. Similar to the truncated model in Eq. (5.1),
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the full model also realises both Z3 and Z2 phases. The phase diagram in Fig. 5.6(a) is

in good agreement with that given in Ref. [238]. We then prepare the state in one phase

(indicated by a red cross) and perform a quench into the other phase. As illustrated

in Figs. 5.6(b)-(c), the results are consistent with those of the UV model, where the Z3

state preserves its non-Gaussian correlations. For the Z2 initial state, the thermalisation

time scale is longer than in Fig. 5.3 due to the smallness of the energy gap in the chosen

units for the Hamiltonian (5.10).

Taking this a step further, we introduce experimental error into our calculation.

Ref. [255] states that there are approximate errors of ≈ 0.1µm in the spatial position of

sites along the Rydberg chain. We can factor this into our simulations by recalling to

numerical values and modulating i, j → i + δi, j + δj in Eq. (5.10) (so, numerically, δ is

randomly sampled from a normal distribution between ±0.02). We find that the results

still hold well when taking the initial ground state from a disordered Hamiltonian with

only a slight decrease in DF as shown by the orange line in Fig. 5.6(b). More-so, if one

assumes the perfect Z3 state can still be prepared, we find the perfect results still hold

irrelevant of the disordered quench Hamiltonian – adding a degree of robustness as it

demonstrates the error only factors into the initial state preparation. Overall, the main

features of our results are present in the full Rydberg model, suggesting that persistent

non-Gaussianity could be observed with the existing experimental technology [46,47].

5.6 Chapter conclusions

Throughout this chapter, we have examined how quantum states can exhibit a Gaussian

or non-Gaussian nature, depending on the degree of interaction between the system’s

constituent parts. We have investigated the phenomenon of Gaussification, wherein non-

Gaussian states undergo transformation into Gaussian states during quench dynamics

in quantum many-body systems. This process differs from thermalisation yet it still

maintains a degree of information scrambling and loss of memory of the initial state. We

have demonstrated that Rydberg atom arrays provide a versatile platform where this

behaviour can be probed with available experimental techniques.

More intriguing, perhaps, is the illustration that the Rydberg blockade gives rise to

states with remarkably robust non-Gaussian correlations. These correlations are found

to persist far from equilibrium, e.g., as the system is quenched across a quantum phase

transition. We have elucidated the origin of this behaviour by analysing quenches between

Z2- and Z3-ordered phases, which exhibit either scrambling dynamics or suppression of

thermalisation due to the effective Rydberg blockade mechanism. Moreover, we for-

mulated a criterion based on Wick’s decomposition that provides a test for observing
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Chapter 5. In the absence of chaos:
avoiding Gaussification in Rydberg atom arrays
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Figure 5.6: (a) Gaussianity phase diagram of the long-range Rydberg model in Eq. (5.10)
for system size N=12 and fixed V=1. (b)-(c) Temporal behaviour of DF when quenching
from the point indicated by the red cross in the Z3 (Z2) phase to the other phase. The
different behaviour of non-Gaussianity for the two types of quenches, seen in Fig. 5.3,
is reproduced. Blue lines indicates using the pure Rydberg Hamiltonian Eq. (5.10).
Meanwhile the orange line introduces further experimental error by using a Hamiltonian
with spatial disorder such that i, j → i+ δi, j + δj where δ is a site dependent and taken
randomly in the range [−0.02, 0.02]. The results are averaged over 100 realisations. Both
the pure and disordered Rydberg Hamiltonian show persistent non-Gaussianity.

(non-)Gaussianity in experiment. This finding was further corroborated via variational

optimisation and computing the minimal distance between the reduced density matrix

of the ground states belonging to different ordered phases and the set of all free-fermion

density matrices defined on the same subsystem. It is important to note that, while both

being present, the processes of thermalisation and Gaussification are distinct in this sys-

tem. The former arises specifically due to the interactions of the system while the latter

is expected in any Hamiltonian that exhibits delocalising transport [30].

These results highlight the richness of quantum state complexity in systems evolving

under constrained dynamics, providing three contributions to the broader quantum in-

formation framework. Firstly, our findings reveal the existence of robust non-Gaussian

states in Rydberg systems, which are well-known resources for quantum information pro-

cessing. Recent studies have shown that non-Gaussian states act as magic states [44],

facilitating the construction of a universal gate set. Our findings propose a route towards

accessing and utilising these robust states in the commonly explored Rydberg systems,
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5.6. Chapter conclusions

moving closer to the realisation of universal quantum devices – even in the presence of

long-range interactions and local impurity potentials. Secondly, we demonstrate how Ry-

dberg systems allow to naturally generate and manipulate Z3 and Z2 states by varying

the detuning and interaction range. These two states exhibit stark contrast in terms of

their Gaussianity. In particular, we find that the Z3 state is maximally non-Gaussian

while simultaneously robust against thermalisation, allowing it to serve as a qutrit basis

for quantum memories [256, 257]. Lastly, our results provide a counterexample to the

typical Gaussification scenario of Refs. [4,233]. This ultimately illustrates the possibility

of richer types of dynamical behaviour facilitated by the Rydberg blockade.

Though seemingly distinct from thermalisation, Gaussification is equally pervasive

in quantum systems. Developing methods to evade it is crucial for advancing control

over broad classes of quantum models. This chapter shows that even in the absence of

interactions, where information scrambling persists, these mechanisms can not only be

circumvented but also harnessed for practical use in quantum information processing.
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Chapter 6

Conclusions and outlook

Understanding and ultimately conquering quantum thermalisation remains a tremendous

aspiration in the fields of quantum mechanics and quantum gravity. A valiant effort to

achieve this was put forth through the framework of the ETH which associates the

thermality of a quantum system with the special properties of its eigenstates. The ETH

has enabled great leaps in understanding the properties of quantum many-body systems;

however, in spite of its success since the early 1990s, a rigorous analytic formalism is

still lacking. As a result, properly understanding quantum thermalisation and how to

effectively utilise it remains challenging.

A complementary direction to understanding the ETH is motivated by the question

how one can violate it in physically-relevant models. A recent discovery of quantum

many-body scarring (QMBS) constitutes a ”weak” form of ETH breaking and allows

some limited means of evading thermalisation in interacting quantum systems. However,

if there is any hope of mastering thermalisation for experimental realisation and access

– particularly in quantum technology – there is still significant progress to be made.

Such progress is also need for a unified description of quantum gravity, where quantum

thermalisation plays a pivotal role in understanding quantum black holes.

This thesis contributes to the efforts mentioned above by showcasing several methods

for controlling thermalisation and inducing new types of dynamical behaviours. Below,

we first summarise the key findings from each chapter and then discuss possible fu-

ture extensions on the fronts of experimental realisability, analytical approaches, higher-

dimensional extensions, and broader practical applications.

We began in Chapter 3, where we presented an optimally-scrambling quantum spin

model. The optimal behaviour was identified through the expectation that a quantum

model with a black hole description should exhibit maximal thermalisation – much like

the SYK model. Our chiral spin model presents several advantages over the SYK model,

for example its natural tunability between a free phase and a maximally scrambling phase
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through changing the chiral coupling parameter. This also highlights the experimental

realisability of our model: due to locality of the interactions and a lack of disorder, our

model is better suited to experimental platforms and a quantum-circuit description. We

demonstrated the controllability of thermalisation in the chiral spin model by success-

fully executing the Hayden-Preskill teleportation protocol, which was able to outperform

standard chaotic models by a judicious tuning of the couplings. In other words, our

model was able to execute the protocol in a shorter amount of time, making it better

suited to realistic quantum hardware which is prone to decoherence over long timescales.

These advantages position the chiral spin-chain as a more practical and experimentally

viable alternative to the well-known SYK model. Consequently, this also opens new pos-

sibilities for studying quantum gravity-inspired phenomena in controlled environments

and utilising their properties to achieve quantum advantage.

In Chapter 4, we instead studied how to engineer nearly-perfect state transfer, pro-

tected against thermalisation, in Rydberg atom quantum simulators. Through the PXP

model – the Rydberg blockade limit of the Rydberg Hamiltonian – we demonstrated the

accessibility of QMBS dynamics by constructing the scarring phase diagram. This high-

lighted the existence of continuous families of experimentally-accessible QMBS states in

the PXP model. This was achieved in-part through the time-dependent variational prin-

ciple (TDVP), an analytical framework that bridges the gap between the single-particle

and many-body scarring mechanisms. We emphasise that TDVP can serve as a power-

ful tool in identifying periodic quantum trajectories in interacting many-body systems,

potentially beyond QMBS physics discussed in this thesis [258, 259]. Contrary to the

expectation that QMBS dynamics is associated with low-entanglement initial states, our

results in Chapter 4 point to the possibility of QMBS dynamics when initialising the

system in a ground state at a quantum-critical point. This implies there is an intriguing

interplay of QMBS physics with quantum criticality, highlighting the need for further

study. The fact that this is achieved by simply tuning the chemical potential demon-

strates the flexible control of which states are protected from thermalisation. Moreover,

it highlights the need for a generalisation of the ETH to account for such phenomena.

Some recent attempts have been made to address this problem by making use of eigen-

operators [260] instead of eigenstates.

Finally, the richness of the Rydberg atom platform presents opportunities not only

for evading thermalisation but also for exploring similar processes like Gaussification. In

Chapter 5, we discussed persistent non-Gaussian correlations when quenching between

the |Z3⟩ state into the Z2-ordered phase of Rydberg atoms, in sharp contrast with the

observed Gaussification for a reverse quench starting in the |Z2⟩ state. We identified the

origin of non-Gaussianity with the kinetic constraint due to van der Waals interactions.
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Chapter 6. Conclusions and outlook

To characterise non-Gaussianity in a basis-independent manner, we employed interaction

distance measure – a variational estimate of the minimal distance between the reduced

density matrix of a given state and the set of all free-fermion density matrices defined

within the same Hilbert space. Interaction distance can be viewed as a generalisation of

the more traditional and experimentally applicable approach – the Wick decomposition.

The key advantage of the interaction distance is the ability to detect correlations without

the need of systematically scanning through all different n-point correlation functions.

Thus, after using the interaction distance to identify the source of potential non-Gaussian

correlations, one can employ Wick’s decomposition for further experimental studies. This

would allow to detect similar phenomena in other models where Wick’s decomposition

in the computational basis may have proven insufficient as an initial method. While

our study was originally conducted on the UV model, we demonstrated that the same

conclusions hold for the full Rydberg model and even in the presence of single qubit

imperfections and spatial disorder. These results collectively indicate the experimental

robustness of our findings. This is an immediate advantage due to applications of non-

Gaussian states as magic states [44]; therefore, any ability to evade their decoherence in

an experimental setting is essential.

The work presented in this thesis opens up several directions for further research.

First and foremost, it would be beneficial to experimentally verify much of the work

throughout this thesis. Fortunately, the existing Rydberg atom platforms are already at

a stage where they can probe our results on QMBS and Gaussification. While not dis-

cussed here, we have initiated such a study on QuEra’s Rydberg atom quantum simulator

following up on the work presented in this thesis. On the other hand, an experimental

counterpart of the chiral model is still lacking, making it a clear next step for future

study. While chiral interactions can be experimentally realised in optical lattice sys-

tems [108,109], we are currently in the process of “reshaping” the chiral spin model into

a quantum circuit, similar to [167]. This would enable the realisation of the chiral spin

model and maximal scrambling on a quantum processor.

It would also be useful to supplement our findings with more analytic results. Much

of our work throughout this thesis was numerical. For example, in Chapter 3, we nu-

merically computed the OTOCs for the purpose of extracting the Lyapunov exponent.

There are alternative analytical methods in the large N limit to calculate OTOCs exactly

through a diagrammatic method by summing Greens functions [49, 50]. This, alongside

a CFT description of the model, are still lacking, highlighting further avenues for ex-

ploration. Analytics proved useful in our study of QMBS, where we utilised the TDVP

framework in order to study the quantum trajectories. In this case, however, our in-

vestigation focused on the dynamics with periodicity K = 1, yet it would be interesting
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to extend it to K ≥ 2. For example, it is known that |Z3⟩ = |100100100 . . . 100⟩ state

also exhibits revivals in the pure PXP model [19]. This state necessitates a TDVP de-

scription with K = 3 unit cell, which already gives rise to an intricate phase space at

the semiclassical level [214]. It would be intriguing to understand the dynamical phase

diagram associated with such states that have larger unit cells, either in the PXP model

or analogous models for larger Rydberg blockade radii.

Another important question is whether the results in this thesis hold in higher dimen-

sions. Due to the simplicity and computational advantages, we restricted our work to 1D

models. In the case of the chiral model, our initial investigation lends itself to generalisa-

tions to (2 + 1) or (3 + 1) dimensional black holes following the methodology presented

in [261], which would be desirable from a quantum gravity perspective. The teleportation

protocol can also be easily extended to higher dimensions (as was done in [150]) by simply

entangling Bell states along each row individually. ETH is expected to hold regardless of

the dimensionality of the system, so we would expect to still observe maximal thermal-

isation in the chiral model – particularly with the increased connectivity that arises from

the geometry of higher dimensions. For the PXP model, our study numerically identified

QMBS states in the 1D Hamiltonian. Studying 2D PXP, and interacting 2D models in

general, is well-known to be a computationally difficult task. Meanwhile, the extension to

2D experimentally is straightforward due to the geometry of the platform [255]. There-

fore, the phase diagram construction could be used experimentally to study the effect of

scarring in 2D PXP where numerics make this task difficult. Contrasting the chiral spin

model, it would be useful to investigate how many-body scarring survives the change in

geometry in higher dimensions as a means to evade thermalisation.

Finally, it would be beneficial to explore more practical implementations of our find-

ings within quantum technologies. We demonstrated one practical application of therm-

alisation through the Hayden-Preskill protocol to teleport a single qubit. This could

be extended to multiple qubits through traversable wormhole protocol [262–264] which

would be more useful in quantum hardware. Finding further protocols that employ

thermalisation in an interacting system would be powerful, due to its inevitable presence

in interacting systems. Quantum many-body scars have already been realised in super-

conducting processors [28], yet methods to actually utilise them in quantum hardware –

particularly as a form of quantum memory – remains unexplored. Similarly, this is the

case for non-Gaussian states like |Z3⟩, presented in Chapter 5. These states could serve

either as magic states [44] or as a stable qutrit basis [256, 257], due to their ability to

avoid scrambling mechanisms.

In conclusion, our findings shed light on the ability of quantum models to control

scrambling processes and underscore their practical applications. Yet, much remains

105



Chapter 6. Conclusions and outlook

to be understood about the nature of quantum thermalisation. Mastery over classical

thermal processes led to transformative technologies like heating and refrigeration – tools

we often take for granted. While the impact of quantum thermalisation may not yet

rival that of its classical counterpart, there are undoubtedly profound and as-yet-unseen

benefits in comprehending this deeply fundamental process. Though ETH brings us close,

a rigorous and universally accepted definition of quantum thermalisation remains elusive

even today. By furthering our understanding of how to harness and control quantum

thermalisation, we move closer to new and exciting discoveries in quantum physics.
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Appendix A

Black hole geometry background

in the chiral-spin model and

Lyapunov fitting details

A.1 Lattice representation of Dirac field in black hole back-

ground

A.1.1 Mean field approximation

The system we investigate in Chapter 3 is the one-dimensional spin-12 chain with the

Hamiltonian

H =
1

2

∑
n

[
−u
(
Sx
nS

x
n+1 + Sy

nS
y
n+1

)
+
v

2
χn

]
, (A.1)

where the spin chirality operator is given by

χn = Sn · (Sn+1 × Sn+2) , (A.2)

where Sn = 1
2(σ

x
n, σ

y
n, σzn) is the spin vector, where σan is the a-Pauli matrix acting on

the nth lattice site for a ∈ {x, y, z}, and the u, v ∈ R are couplings with dimensions of

energy. In this Appendix, we assume we are working in the thermodynamic limit.

First we transform from spin operators to Pauli operators. In terms of the Pauli

operators, the Hamiltonian is given by

H =
∑
n

[
− u

8

(
σxnσ

x
n+1 + σynσ

y
n+1

)
+

v

32
ϵabcσ

a
nσ

b
n+1σ

c
n+2

] (A.3)

107



Appendix A. Black hole geometry background in the chiral-spin model and
Lyapunov fitting details

where the repeated Latin indices a, b, c are summed over in the chirality term. We now

introduce the ladder operators σ±n = (σxn± iσyn)/2 and the Jordan-Wigner transformation

defined by [265]

σ+n = exp

(
−iπ

∑
m<n

c†mcm

)
c†n (A.4)

σ−n = exp

(
iπ
∑
m<n

c†mcm

)
cn (A.5)

σzn = 2c†ncn − 1 (A.6)

where cn are a set of fermionic modes obeying the anti-commutation relations {cn, cm} =

{c†m, c†n} = 0 and {cn, c†m} = δmn. After expressing the Hamiltonian in terms of σ±n and

σzn and then applying the Jordan-Wigner transformation, we arrive at

H =
1

4

∑
n

[
− uc†ncn+1 −

iv

4
c†ncn+2

+
iv

4

(
c†ncn+1σ

z
n+2 + c†n+1cn+2σ

z
n

)]
+H.c.,

(A.7)

where for convenience we have left σzn alone under the assumption that it represents

the Jordan-Wigner transformation of Eq. (A.6). We see that the model is intrinsically

interacting as the fermionic Hamiltonian contains quartic terms which arise from terms

like c†ncn+1σ
z
n+2 after explicitly substituting in Eq. (A.6).

To analyse the behaviour of the interacting model, we apply mean field theory (MFT)

to transform the Hamiltonian into an effective quadratic Hamiltonian which can be ana-

lytically diagonalised. MFT defines the fluctuation of an operator A as δA = A − ⟨A⟩,
where ⟨A⟩ is the expectation value of the operator A with respect to the mean field

ground state |Ω⟩. For a product of two operators we have

AB = ⟨A⟩B +A⟨B⟩ − ⟨A⟩⟨B⟩+ δAδB, (A.8)

where the second order in fluctuations can be ignored. Applying this to the interacting

terms of Eq. (A.7) where we always consider σzn as one of the operators in the product

of Eq. (A.7), so replace σzn → ⟨σzn⟩ ≡ Z and c†ncn+1 → ⟨c†ncn+1⟩ ≡ α, where we have

assumed translational invariance. These expectation values are done with respect to the
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A.1. Lattice representation of Dirac field in black hole background

ground state of the mean field Hamiltonian. The Hamiltonian becomes

HMF(α,Z) =
1

4

∑
n

[
−
(
u− iv

2
Z

)
c†ncn+1

− iv

4
c†ncn+2 + 4µc†ncn

]
+ E0 +H.c.,

(A.9)

where µ = vIm(α)/4 is an effective chemical potential controlling the number of particles

in the ground state, E0 = v(Z − 1)Im(α)/8 is a constant energy shift.

Let |Ω(α,Z)⟩ be the ground state of the Hamiltonian of Eq. (A.9). Self consistency

requires

⟨Ω(α,Z)|σzn|Ω(α,Z)⟩ = Z (A.10)

⟨Ω(α,Z)|c†ncn+1|Ω(α,Z)⟩ = α (A.11)

for all n. While these two equations have many solutions, we can single one out on

physical grounds: the fully interacting Hamiltonian of Eq. (A.7) has particle-hole sym-

metry, [H,U ] = 0, where U is the particle-hole transformation with UcnU
† = (−1)nc†n

and Uc†nU † = (−1)ncn. This symmetry implies that ⟨c†ncn⟩ = 1/2 and ⟨c†ncn+1⟩ ∈ R in

the ground state. If we require the MFT to retain the particle-hole symmetry, then these

conditions imply that Z = Im(α) = 0, and the MFT Hamiltonian becomes

HMF =
1

4

∑
n

(
−uc†ncn+1 −

iv

4
c†ncn+2

)
+H.c.. (A.12)

It was shown in Ref. [12] that this mean field limit faithfully describes the second order

phase transition exhibited by the full spin model.

A.1.2 The Dirac equation on curved spacetime

We now briefly introduce the Dirac field on a curved spacetime which we shall use in the

next section. Suppose we have an N + 1-dimensional spacetime with metric gµν and a

set of veilbein {e µ
a } and their inverses {e µ

a } which are related to the metric via

gµν = eaµe
b
νηab, gµν = e µ

a e
ν
b η

ab, (A.13)

where ηab = diag(1,−1,−1, . . . ,−1) is the Minkowski metric. The veilbein and their

inverses also obey

e µ
a e

b
µ = δab , e µ

a e
a
ν = δµν . (A.14)
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The veilbein {e µ
a } are a set of vector fields that form an orthonormal basis at every point

in some patch of M . The Latin indices a, b = 0, 1, . . . refer to the orthonormal frame

indices, whilst the Greek indices µ, ν = t, x, . . . refer to the coordinate indices.

Using this, we can introduce spinor fields on a curved spacetime as a field onM which

transforms as a spinor under local Lorentz transformations (transformations that act on

Latin indices) and as a scalar under coordinate transformations (transformations that

act on the Greek indices). The locally Lorentz invariant and coordinate invariant action

for spinor field ψ of mass m on an N + 1 dimensional spacetime M with metric gµν is

given by [266]

S =
i

2

∫
M

dN+1x|e|
(
ψ̄γµDµψ −Dµψγ

µψ + 2imψ̄ψ
)

≡
∫
M

dN+1xL,
(A.15)

where the gamma matrices {γµ ≡ eµaγa} are the curved space gamma matrices which

obey the Clifford algebra {γµ, γν} = 2gµν and are related to the local flat Minkowski

space gamma matrices {γa} which obey the flat space Clifford algebra {γa, γb} = 2ηab.

The Dirac adjoint is defined as ψ̄ = γ†γ0 where γ0 is the flat space gamma matrix. We

also have |e| = det eaµ =
√−g. The covariant derivative of spinors Dµ is defined via

Dµψ = ∂µψ +Ωµψ (A.16)

where Ωµ is the spin connection related to the connection of M via

Ωµ =
i

2
ΩabµΣ

ab, Σab =
i

4
[γa, γb] (A.17)

and Ωabµ are the components of the connection. For more details, see Ref. [266].

In this study we are interested in the (1 + 1)D spacetimes, in which case the spin

connection vanishes from the symmetrised action. To see this, we can substitute in the

covariant derivative explicitly

L =
i

2
|e|
(
ψ̄γµDµψ −Dµψγ

µψ
)

=
i

2
|e|
(
ψ̄γµ∂µψ − ∂µψ̄γ

µψ + ψ̄{γµ,Ωµ}ψ
) (A.18)

However, in (1 + 1)D, we have Ωµ ∝ [γ0, γ1] ∝ γ3, where γ3 is the (1 + 1)D analogue

of γ5. As {γµ, γ3} = 0 for all µ, then the spin connection vanishes and we arrive at the

Lagrangian [266]

L = |e|ψ̄γµ
↔
∂µψ, (A.19)
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Figure A.1: To reveal the relativistic behaviour, we introduce a two-site unit cell by
bicolouring the lattice.

where A
↔
∂µB = 1

2 (A∂µB − (∂µA)B).

Throughout this we assume that we are working with time-independent metrics, so

that the vector ξ = ∂t is a time-like Killing vector which obeys Lξg = 0. In order to

perform canonical quantisation of this theory, we introduce the canonical momentum

πa(x) of the field and apply the canonical commutation relations. We have

π =
∂L
∂ψ̇

=
i

2
|e|ψ̄γt (A.20)

The equal time canonical Poisson bracket reads

{ψα(t, x), πβ(t, y)} = iδ(x− y)δαβ (A.21)

where the indices α, β here refer to the spinor indices. This implies that the spinor field

obeys the commutation relation

{ψα(t, x), ψ
†
β(t, y)} =

(γ0γt)−1
αβδ(x− y)

|e| . (A.22)

Note that the factor of 1/2 is missing despite it being present in the canonical momentum

π. This is because the canonical momentum defines a constraint on phase space, as π

is linearly related to ψ†, which means we must employ the machinery of Dirac brackets

instead of Poisson brackets to quantise this theory. It is the Dirac bracket that we

upgrade to an anti-commutator using canonical quantisation. More information can be

found in Ref. [267–270]. When taking this into account, the factor of 1/2 vanishes.
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A.1.3 Relativistic limit

To make the link with relativity, the lattice sites are now labelled as alternating between

sub-lattices A and B by introducing a two-site unit cell, as shown in Fig. A.1. The mean

field Hamiltonian of Eq. (A.12) can be re-parametrised as

HMF =
1

4

∑
n

[
− ua†n(bn + bn−1)−

iv

4
(a†nan+1 + b†nbn+1)

]
+H.c., (A.23)

where the fermionic modes an and bn belong to sublattice A and B, respectively, where

now n labels the unit cells. These modes obey the commutation relations {an, a†m} =

{bn, b†m} = δnm, while all mixed anti-commutators vanish. The index n now labels the

unit cells. We Fourier transform the fermionic modes as

an =
1√
N

∑
p∈B.Z.

eipanap, (A.24)

and similarly for bn, where N is the number of unit cells in the system, a is the unit

cell spacing, and B.Z. = [0, 2π/a) is the Brillouin zone and p = 2mπ/L for L = Na and

integer m. The Fourier transformed Hamiltonian becomes

HMF =
∑

p∈B.Z.

χ†
ph(p)χp, h(p) =

 g(p) f(p)

f∗(p) g(p)

 , (A.25)

where the two-component spinor is defined as χp = (ap, bp)
T and the functions are given

by

f(p) = −u
4
(1 + e−iap), g(p) =

v

8
sin(ap). (A.26)

The dispersion relation is given by the eigenvalues of the single-particle Hamiltonian h(p)

which yields

E(p) = g(p)± |f(p)| = v

8
sin(ap)± u

4

√
2 + 2 cos(ap). (A.27)

In Fig. 3.2, it is seen that the parameter v has the effect of tilting the cones as it increases

and one band becomes flat at the Fermi point when |v|/2 = |u|.

The Fermi points {pi}, defined as the points for which E(pi) = 0, are found at

p0 =
π

a
, p± = ±1

a
arccos

(
1− 8u2

v2

)
. (A.28)

The roots p± only exist if the argument of arccos is in the range [−1, 1] which implies
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|v|/2 ≥ |u| for these to appear in the dispersion. Therefore, if |v|/2 ≤ |u|, the only

Fermi point is located at p0 = π/a which is where the Dirac cone is located, as shown in

Fig. 3.2. When the cone over-tilts, so when |v|/2 ≥ |u|, then the additional zero-energy

crossings at p± appear which is due to the Nielsen-Ninomiya theorem which states that

the number of left- and right-movers must be equal [271,272].

The continuum limit of a lattice model is an effective theory obtained by letting the

lattice spacing a→ 0 in such a way that the Fermi velocity remains fixed. In this process,

only the linear portion of the dispersion relation, near the Fermi points, is relevant as

the non-linear portion of the dispersion goes off to infinite momentum. Therefore, the

continuum limit is equivalent to restricting ourselves to a small neighbourhood of the

Fermi points in momentum space. We outline this below. See Ref. [273] for more detail.

First we Taylor expand the single-particle Hamiltonian h(p) about the Fermi point

p0 to first order in momentum which yields

h(p0 + p) =
1

4

(
uσyp− v

2
Ip
)
≡ e i

a α
api, (A.29)

The coefficients in the second equality are defined as e x
0 = −v/8, e x

1 = u/4, where we

have absorbed a factor of a into the couplings as au → u and av → v, and the Dirac

matrices are α0 = I, α1 = σy. We then project the Hamiltonian of Eq. (A.23) into a

small region of momentum space centred on p0 by truncating the summation with a

cutoff Λ = O(1/a) as

H ≈
∑
|q|<Λ

χ†
p0+qh(p0 + q)χp0+q

=
∑
|q|<Λ

χ†(q)e i
a α

apiχ(q)
(A.30)

where we have defined the new momentum space fields χ(q) ≡ χp0+q, where q measures

the distance from the Fermi point p0.

We also truncate the discrete Fourier transform for the lattice fermions from Eq. (A.24)

as

an ≈ 1√
N

∑
|q|<Λ

ei(p0+q)anap0+q

= eip0an
1√
N

∑
|q|<Λ

eiqana(q)

≡ eip0ana(n),

(A.31)

which defines a slowly-varying field a(n), and similarly for bn which is related to b(n) ana-

logously. We see that on the subspace near the ground state, the fermionic operators an

and bn consist of a slowly-varying field a(n) and b(n) respectively, with a high-frequency
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oscillation eip0an on top [273].

We then take the limit that a → 0 in such a way that the rescaled couplings u and

v remain finite (equivalently the Fermi velocity remains fixed) and Na = L remains

constant. We also define na → x which we must remember is the unit cell coordinate.

The cutoff Λ → ∞ additionally, so the summation is from ±∞. Performing this limit,

real space becomes a continuum and the envelope functions a(n) become

a(x) = lim
a→0

a(n)√
a

=
1√
L

∑
q∈B.Z.

eiqxa(q) (A.32)

and similarly for b(x), where now the Brillouin zone has extended to infinity as B.Z. =

[−∞,∞] with p = 2mπ/L for m ∈ Z, where the re-scaling by 1/
√
a ensures that the

limits exist and the commutation relations become continuum commutation relations. If

we define the two-component spinor field χ(x) = (a(x), b(x))T , we see that this is related

to the momentum space fields derived in Eq. (A.29) by a Fourier transform as

χ(q) =
1√
L

∫ L

0
dxe−iqxχ(x). (A.33)

With this result in hand, we are now able to transform the truncated Hamiltonian of

Eq. (A.30) back into real space, arriving at the Hamiltonian

H =

∫
R
dxχ†(x)

(
−ie i

a α
a
↔
∂i

)
χ(x)

≡
∫
R
dxH,

(A.34)

with A
↔
∂µB = 1

2 (A∂µB − (∂µA)B) and the Dirac αa = (I, σy) and β = σz. We have

ignored the overall factor of 1/4 here.

This is a Hamiltonian for the slowly-varying envelope function χ(x). The correspond-

ing action of this theory is given by

S =

∫
d1+1x

(
iχ†↔∂tχ−H

)
=

∫
d1+1xiχ̄e µ

a γ
aχ

(A.35)

where we have defined χ̄ = χ†γ0 and the gammas are related to the alpha and beta

matrices via γ0 = β and γi = βαi, where γ0 = σz and γ1 = −iσx which obey the

anti-commutation relations {γa, γb} = 2ηab, with ηab = diag(1,−1). The coefficients are
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A.1. Lattice representation of Dirac field in black hole background

given by

e µ
a =

1 −v/8

0 u/4

 , eaµ =

1 v/(2u)

0 4/u

 (A.36)

If we assume that the couplings are upgraded to slowly-varying functions as u → u(x)

and v → v(x), then the continuum limit is still a good approximation.

This action looks very similar to the action of a Dirac field on a (1 + 1)-dimensional

curved spacetime, except two subtle differences. The first is that the integration measure

is missing the factor of |e|, so it is the flat space volume element. The second is that the

fields obey flat space commutation relations

{χα(x), χβ(y)} = δαβδ(x− y) (A.37)

which can be obtained using Eqs. (A.32) and (A.33) and the fact that the component

momentum space modes obey {a(p), a†(q)} = δpq, and similarly for b(p). Therefore, the

theory in its current form describes a generalised Dirac action on a flat (1+1)-dimensional

space with space-dependent coefficients.

In order to interpret this theory as a curved space theory, we introduce a new field

ψ =
χ√
|e|

(A.38)

then the fields obey the curved space commutation relations

{ψα(x), ψβ(y)} =
δαβδ(x− y)

|e| (A.39)

agreeing precisely with the general commutation relations of Eq. (A.22) using the veilbein

of Eq. (A.36). The action of Eq. (A.15) re-expressed in terms of the field ψ is precisely

the Dirac action for a spinor on a spacetime with veilbein given in Eq. (A.36). This

veilbein corresponds to the metric

ds2 =

(
1− v2

4u2

)
dt2 − 4v

u2
dtdx− 16

u2
dx2. (A.40)

If the variables u and v are upgraded to slowly-varying functions of space, then the

preceding calculation is still valid and the event horizon is located at the point xh, where

|v(xh)|/2 = |u(xh)|. In the small region in which v is a slowly-varying functions of x,

the coupling of different momentum modes will be small and can be ignored to a good

approximation, leaving the diagonal terms a†pap only. This is quite standard to do in

lattice model where the continuum is described by a Dirac equation [123, 273, 274]. For
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coordinate dependent coefficients, this is the Gullstrand-Painlevé metric [113] also know

as the acoustic metric which is the Schwarzschild metric of a (1+1)D black hole expressed

in Gullstrand-Painlevé coordinates. This metric is referred to here as an internal metric

of the model as it depends upon the internal couplings of the Hamiltonian and not the

physical geometry of the lattice. In addition, this is a fixed classical background metric

and the quantum fields have no back-reaction on the metric. Quite remarkably, the phase

boundary between the regions for |v|/2 < u and |v|/2 > u can be interpreted as the inner

and outer regions of the black hole, where the phase boundary |u| = |v|/2 aligns with

the event horizon.

In order to transform the metric of Eq. (A.40) into the Schwarzschild metric, a co-

ordinate transformation defined as (t, x) 7→ (τ, x) is used, where

τ(t, x) = t−
∫ x

x0

dz
V (z)

U2 − V 2(z)
, (A.41)

where we have absorbed some factors into the coupling as u/4 → U and v/8 → V . This

maps the metric to

ds2 =

(
1− V 2(x)

U2(x)

)
dτ2 − 1

U2(x)
(
1− V 2(x)

U2(x)

)dx2, (A.42)

which takes the general form of the Schwarzschild metric, where the horizon is at the

location where the metric becomes singular at U = V which is equivalent to u = v/2.

A.2 Fitting the exponent of the Lyapunov vs temperature

In Fig. 3.5, we present the Lyapunov exponent vs temperature in two regimes: in the

XY phase (v = 1) where the growth is quadratic, and deep in the chiral phase (v = 8)

where the growth is shown to be linear. In this section, we explicitly show that these

fitting forms are suitable in the two limits by additionally parametrising the fit of λ vs

T to a(T b − c) and plotting b against N . The results are shown in Fig. A.2 where we see

in XY phase, b ≈ 2, while in the chiral phase b ≈ 1, as one would hope. It is important

to note that the results of the fit fluctuate dependent on the choice of Tmin and Tmax

in the fitting window. To achieve this, different values have been taken for different N

and v, so one must be cautious during the fitting procedure. These results, nonetheless,

demonstrate that with a suitable choice of fitting window, a quadratic and linear fit are

reasonable to make.
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Figure A.2: For different values of v, we fit λ = (a(T b − c) and extract the exponent b,
plotting this against 1/N . We see in XY phase (v = 1), this value tends towards 2 (red
dashed line) while in the chiral phase, v > 7.5, this value tends towards 1 (black dashed
line).
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Appendix B

Extensions to the quantum

teleportation results

B.1 Numerical scaling

In Appendix B.1 we present relevant numerics data on the dependence of the teleportation

scheme on system size, and the high temperature behaviour of the Lyapunov exponent

for the chiral spin-chain model.

B.1.1 System size scaling

In this section we present results with varying system size to demonstrate the robustness

of the protocol with N , expanding upon the results of Fig. 3.7 in Chapter 3. In Fig. B.1,

we see that as we increase system size, the fidelity does not drop, but instead increasingly

plateaus at a constant value while the scrambling speed remains constant. This indicates

a level of robustness with system size, and suggests this will fidelity plateau will persist

in the large N limit.

B.1.2 Lyapunov exponent in the infinite temperature limit

In Section. 3.5.2, we stated that in the infinite temperature limit, the Lyapunov exponent

saturates to a value λ = 0.78v in the Chiral model. Here we supplement that with

numerical verification. Fig. B.2 demonstrates this where we see a rapid saturation to

0.78v with increasing T irrelevant of system size.
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B.2. Krylov subspace method

Figure B.1: A comparison of the Fidelity of teleportation with system size N using ED
for u = 1, v = 8. Three panels show the 1, 2 and 3 simultaneous epr measurements
respectively. We see with increasing system size, scrambling speed remains the same
while the fidelity plateau becomes increasingly evident.

10−2 100 102 104

T

0.0
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Figure B.2: The scaled Lyapunov exponent, λ/v, versus temperature, T , where colour
indicates system size N . We see in the large T limit, λ/v rapidly saturates to the value
λ = 0.78v with little change with system size. Results are computed using ED.

B.2 Krylov subspace method

In this work we have employed several numerical techniques, the most notable one being

a matrix-free Kyrlov subspace method used to achieve higher system sizes than would be

possible with the standard exact diagonalisation method. More specifically, we do not

calculate Eq. (3.7) exactly, but instead compute the following quantity

C̃|Φ⟩(t) = ⟨Φ| e−βH/8+itHOle
−βH/4−itHOk

e−βH/4+itHOle
−βH/4−itHOke

−βH/8 |Φ⟩ (B.1)
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where |Φ⟩ is a (normalised) Haar-random state whose components are generated from a

Gaussian distribution with zero mean and unit variance. The true value of the OTOC

C(t) is then approximated by averaging C̃|Φ⟩(t) over several thousands of different samples

of |Φ⟩. With a matrix-free representation of the Hamiltonian H, which we explain in

detail below, this method allows us to eliminate the memory overhead of storing the

full matrix form of the Hamiltonian, achieving a dramatic reduction of the memory

requirement to that of a small number of Hilbert space vectors. The computation is

based on an open-source library [275] that implements this Krylov subspace method

efficiently on the GPU, and the source code is publicly available at [276].

To understand this reduction of the memory requirement, one notes that since in

general the Hamiltonian is written as a sum of the product of Pauli operators

H =
∑

i1,...,iN

λi0...iN σi0 · · ·σiN

where λi0···iN are complex numbers and each σi is one of {I, σx, σy, σz} defined on site i,

it is unnecessary to store the full 2N by 2N dimensional matrix form of the Hamiltonian

in memory. Instead, storing the coefficients λi0...iN is sufficient to compute the action of

the Hamiltonian on a state, since the actions of each Pauli operators on the state can

be trivially realised with (a combination of) swapping and scalar multiplications on the

coefficients of the state vector. Starting with a state vector |v⟩, using this this matrix-free

action of the Hamiltonian one can build a sequence of vectors

|v⟩, H|v⟩, H2|v⟩, · · · , Hn|v⟩

which spans a linear subspace, known as a Krylov subspace of the full Hilbert space.

Diagonalising within the Krylov subspace and iterating this process then allow one to

compute the action of the exponential of the Hamiltonian on the state vector to an

arbitrary degree of precision. The GPU-computing library [275] that we have employed in

this project implements the restarted Krylov subspace method as described in Ref. [277].

We choose the dimension of the Krylov subspace n = 5 which we have found to strike

a balance between computational speed and memory usage, and set the tolerance of the

calculation (given by the L2-norm of the difference of the result vectors between two

iterations) to the machine precision.

Contrasting with the standard exact diagonalisation method commonly used in com-

puting the matrix exponential, we have found that the Krylov subspace method leads to

considerably faster computational time and much reduced memory requirement, while

offering the same accuracy, as is shown in Fig. 3.5 where we have compared the results of

either methods in the regime where both can be applied. The reduction of the storage of
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a 2N by 2N matrix to a few 2N -dimensional vectors allows the Krylov subspace method

to reach twice the system size than is feasible with the exact diagonalisation method,

given the same amount of computational resources. In general, the convergence of the

Krylov subspace method depends on the norm of the operator being exponentiated, and

we have found that the method takes longer time to converge as one increases N , β, and

t. It is expected that the method eventually breaks down for sufficiently large system

size, and our code will throw errors in this case so the user will be informed that the

calculation is no longer to be trusted.

121



Appendix C

Further details on the many-body

scarring phase diagram

C.1 Other regions of the phase diagram

Several regions of the phase diagram in Fig. 4.4 exhibit fidelity revivals that have a simple

origin that can be understood without invoking QMBS. Here we explain in more detail

these regions labelled (4), (5), (6) and (7). It is useful to consider the Inverse Participation

Ratio (IPR), one of the traditional measures of ergodicity of the eigenfunctions introduced

in the context of Anderson localisation [278]. The IPR is defined as

IPR =
1∑

E

| ⟨E|ψ⟩ |4 , (C.1)

and it intuitively tells us about how many basis states |E⟩ the state |ψ⟩ has support on.
For example, if |ψ⟩ is a basis state, its IPR will be 1, while if |ψ⟩ is homogeneously spread

over the entire Hilbert space, the IPR will be equal to the Hilbert space dimension. Note

that IPR is a basis-dependent quantity and, in our case, we have a natural choice of

eigenstates |E⟩ of HPXP(µf) as the basis states.

The log of IPR for µi ground states with respect to µf eigenstates is plotted in Fig. C.1.

This allows us to further distinguish between different regions. For conventional |Z2⟩
scarring we expect the IPR to be on the order of system size N , since the |Z2⟩ state has

high overlap with a band of N + 1 scarred eigenstates of HPXP(0) but low overlap with

the rest. This is evidenced in region (1) of Fig. C.1. On the other hand, the band of

scarred eigenstates associated with |0⟩ state in the detuned PXP model is “tilted” to one

edge of the spectrum, so we expect the IPR to be smaller. In general, the regions with

high IPR are expected to be ergodic, while the least interesting regimes are characterised
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Figure C.1: Logarithm (base 10) of the IPR of the ground state ofHPXP(µi) with respect
to the eigenstates of HPXP(µf). All the labels have the same meaning as in Fig. 4.4. Data
is obtained using exact diagonalisation in the sector with k = 0 momentum and p = +1
inversion symmetry for size N = 26 with PBCs.

by very low IPR, such as around the µi = µf diagonal and in regions (5) and (6). The

IPR is not as low in parts of regions (4) and (7) visible in this figure, but it decreases

with increasing |µi| and |µf| as the ground state of HPXP(µi) approaches an eigenstate of

HPXP(µf).

Large |µf| leads to fragmentation of the Hilbert space, which can effectively trap the

initial state in a simple oscillating superposition [279]. For example, region (4) [i.e.,

µi > 0, −µf ≫ 1] roughly corresponds to the polarised state in the strongly detuned

regime, since the initial ground state has significant overlap with |0⟩ for µi > 0. In the

µi → ∞ limit, it is expected to become the exact mirror image of region (3), given that

the polarised state has the same dynamics for ±µf (see Ref. [220]). Similarly, region (7)

[µi < 0, µf ≫ 1] has a simple explanation in terms of |Z+⟩ state in the strongly detuned

regime.

The origin of revivals in region (5) [µf < µi < −1.3] is perhaps not immediately

obvious, since the initial state in that case does not have high overlap with one of the

previously studied states such as |0⟩ or |Z+⟩. We now briefly investigate this region. The

fidelity and the average number of excitations after quenching from µi = −2.5 to µf = −6

can be seen in Figs. C.2(a) and (b). The quenched state maintains high overlap with

the |Z+⟩ state, with peaks in the middle between the fidelity revivals, see Fig. C.2(a).

This situation is reminiscent of the |0̄⟩ state in region (2), which periodically evolves
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to |0⟩ and back. Although it oscillates, the overlap with |Z+⟩ never drops to zero. In

contrast, the overlap with |0⟩ is constantly zero. In Fig. C.2(b) we also see that the

average occupation is remarkably stable, fluctuating only slightly around ≈ 0.47. As

explained above for regions (4) and (7), such behaviour arises due to the fact that in

the large-µ limit the Hilbert space becomes fragmented and the initial state has support

on a small number of eigenstates that are disconnected from the rest. This can be seen

in Fig. C.2(c), which shows the overlap of the initial state and the eigenstates. The

fragmentation and high overlap with the ground state are apparent. Further evidence

comes from the inverse participation ratio (IPR), which we find to be very low in this

region, indicating overlap with only a small number of eigenstates, as will be shown

below. Finally, region (6) [µi < µf < −1.3] has a similar phenomenology to its mirroring

region (5).

Figure C.2: Dynamics and eigenstate properties of the PXP model quenched from
µi = −2.5 to µf = −6, corresponding to region (5) of the phase diagram in Fig. 4.4. (a)
Fidelity of the initial state |ψ(0)⟩, i.e., the ground state of HPXP(−2.5), as well as the
overlap with both the polarised state |0⟩, and superposition state |Z+⟩. (b) The average
number of excitations remains nearly constant in time. (c) The overlap of the initial state
with eigenstates of HPXP(−6) reveals fragmentation and large projection on the ground
state. Data obtained by exact diagonalisation for N = 28 with PBCs.

In summary, we have argued that regions (4), (7) and part of (5) correspond to

regimes where µf has a large absolute value, leading to a simple oscillatory dynamics

due to Hilbert space fragmentation, while in regions (5) and (6), µf ≈ µi causes the
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initial state to be close to an eigenstate of the post-quench Hamiltonian. be close to an

eigenstate of the post-quench Hamiltonian.

C.2 Derivation of TDVP equations of motion and quantum

leakage

In this section we first derive the TDVP equations of motion and then compute the

instantaneous leakage rate. These derivations follow Appendices A and C of Ref. [214].

C.2.1 Equations of motion

The TDVP equations of motion can be derived as the saddle point equations for the

following Lagrangian [210,212]:

L =
i

2

(
⟨ψMPS|ψ̇MPS⟩ − ⟨ψ̇MPS|ψMPS⟩

)
− ⟨ψMPS |H|ψMPS⟩,

(C.2)

where it will be convenient to split our Hamiltonian into two terms, H = HPXP +

Hµ. Unlike Ref. [214], we restrict to K = 1 which greatly simplifies the calculation.

Throughout this section we will consider mixed MPS transfer matrices, denoted by

TB
C =

∑
σ

B̄σ ⊗ Cσ, (C.3)

where B and C are arbitrary MPS tensors. The MPS transfer matrix for the PXP ansatz

chosen in the Chapter 4 takes the form

TA
A = T =



cos2 θ 0 0 1

cos θ sin θ 0 0 0

cos θ sin θ 0 0 0

sin2 θ 0 0 0


. (C.4)
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The dominant left and right eigenvalues of the transfer matrix are equal to 1, and the

corresponding eigenvectors are

|R) =



1

cos θ sin θ

cos θ sin θ

sin2 θ


, (L| =

(
1 0 0 1

)
, (C.5)

which obey (L|R) = 1 + sin2 θ. We also introduce the following shorthand for a 3-site

local Hamiltonian term contracted with MPS tensors on every site:

H = HA,A,A
A,A,A =

∑
σi

Āσ1Āσ2Āσ3hσ1,σ2,σ3
σ4,σ5,σ6

Aσ4Aσ5Aσ6 . (C.6)

Using the mixed transfer matrix expression, it is straightforward to compute

f = −iN

(
L
∣∣∣T ∂ϕA

A

∣∣∣R)
(L|R) = N

2 sin2 θ

cos 2θ − 3
, (C.7)

with T ∂ϕA
A =



0 0 0 −i

0 0 0 0

0 0 0 0

0 0 0 0


. (C.8)

Next we compute the expectation value of the Hamiltonian. We find the two terms are:

⟨ψ |HPXP|ψ⟩ = N
(L |HPXP|R)

(L|R) = N
2 cos2 θ sin θ sinϕ

1 + sin2 θ
, (C.9)

and

⟨ψ |Hµ|ψ⟩ = N
(L |Hµ|R)
(L|R) = Nµ

sin2 θ

1 + sin2 θ
. (C.10)

The total expectation value is given by ⟨ψ|H|ψ⟩ = ⟨ψ |HPXP|ψ⟩+⟨ψ |Hµ|ψ⟩, which yields

the energy density, Eq. (4.16) in Chapter 4.

To get the equations of motion for θ and ϕ, we need to compute

η = ∂θf = −4N
sin 2θ

(cos2 θ − 3)2
(C.11)
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From there the equations of motion are given by

θ̇ =
1

η
∂ϕ⟨ψ|H|ψ⟩, ϕ̇ = −1

η
∂θ⟨ψ|H|ψ⟩, (C.12)

which lead to Eqs. (4.13)-(4.14) in Chapter 4.

C.2.2 Instantaneous leakage

The instantaneous leakage is given by

Λ2(θ) = ∥|ψ̇⟩ − iH|ψ⟩∥2

=
〈
ψ
∣∣H2

∣∣ψ〉
c
− 2θ̇ Im (⟨∂θψ | Hψ⟩c)

+ (θ̇)2Re (⟨∂θψ | ∂θψ⟩c)− 2ϕ̇ Im
(
⟨∂ϕψ | Hψ⟩c

)
+ (ϕ̇)2Re

(
⟨∂ϕψ | ∂ϕψ⟩c

)
+ 2ϕ̇θ̇Re

(
⟨∂ϕψ | ∂θψ⟩c

)
(C.13)

Due to the gauge choice, the leakage depends on connected correlators defined as

⟨∂θψ|∂θψ⟩c = ⟨∂θψ|∂θψ⟩ − ⟨∂θψ|ψ⟩⟨ψ|∂θψ⟩.

In order to evaluate these connected correlators, we introduce the projector on the dom-

inant subspace, P = |R)(L|/(L|R), and its complement Q = 1 − P. We also introduce

T , which is obtained by re-summing the contribution of the non-dominant subspace of

T in
∑∞

q=0 T
q and is defined from T −1 = Q(1−QTQ)−1Q.

Let us now evaluate the various terms involved in the instantaneous leakage. Taking

each term one by one, we find that:

⟨∂θψ | ∂θψ⟩c =

=
N

(L | R)
(
L | T ∂θA

∂θA
+ TA

∂θA
T −1T ∂θA

A

+ T ∂θA
A T −1TA

∂θA
− TA

∂θA
PT ∂θA

A | R
)
, (C.14)

which after a straightforward calculation evaluates to

⟨∂θψ|∂θψ⟩c =
N

1 + sin2 θ
. (C.15)

Turning our attention to the term ⟨∂θψ|H|ψ⟩c, we find that this evaluates to

N

(L | R)
(
L
∣∣H∂θA +HT −1TA

∂θA
+ TA

∂θA
T −1H− 3HPTA

∂θA

∣∣R) (C.16)
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This yields

⟨∂θψ|H|ψ⟩c = −iN cos θ cosϕ+N
cos θ sin θ(
1 + sin2 θ

)2 ϕ̇. (C.17)

As we are only interested in the imaginary part, we can discard the second term and are

left with

Im (⟨∂θψ|H|ψ⟩c) = −N cos θ cosϕ =
N

1 + sin2 θ
θ̇. (C.18)

The expressions containing the derivatives with respect to ϕ can be calculated similarly.

Starting with ⟨∂ϕψ|∂ϕψ⟩c which we compute as

N

(L | R)
(
L
∣∣T ∂ϕA

∂ϕA
+ TA

∂ϕA
T −1T

∂ϕA
A

+ T
∂ϕA
A T −1TA

∂ϕA
− TA

∂ϕA
PT ∂ϕA

A

∣∣R) (C.19)

Evaluating this term, we find

⟨∂ϕψ|∂ϕψ⟩c = N
cos2 θ sin2 θ(
1 + sin2 θ

)3 . (C.20)

The next term to compute is the cross-term

⟨∂ϕψ|∂θψ⟩c =
N

(L | R)
(
L
∣∣T ∂ϕA

∂θA
+ TA

∂θA
T −1T

∂ϕA
A

+ T ∂ϕAT −1T∂θA − T∂θAPT ∂ϕA
∣∣R). (C.21)

The result after evaluating Eq. (C.21) is

⟨∂ϕψ|∂θψ⟩c = −iN cos θ sin θ(
1 + sin2 θ

)2 , (C.22)

however, because its real part is identically zero, we get no contribution from this term.

We now compute ⟨∂ϕψ|H|ψ⟩c as

⟨∂ϕψ|H|ψ⟩c =
N

(L | R)
(
L
∣∣H∂ϕA +HT −1TA

A∂ϕA

+ TA
∂ϕA

T −1H− 3HPT∂ϕA
∣∣R). (C.23)

128



C.3. Preparation of states in the TDVP manifold

We find this can be expressed as:

⟨∂ϕψ|H|ψ⟩c = N cos θ cosϕ+ iN
cos2 θ sin2 θ(
1 + sin2 θ

)3 ϕ̇ (C.24)

We now move onto the terms involving the square of the Hamiltonian, H2. The connected

correlator in this case is

〈
ψ
∣∣H2

∣∣ψ〉
c
= N

(
L
∣∣H(2) + 2HT −1H− 5HPH

∣∣R)
(L | R) . (C.25)

where H(2) is H evaluated for a two-local Hamiltonian terms that overlap on one, two or

three sites. Evaluating this expression, we obtain

〈
ψ
∣∣H2

∣∣ψ〉
c
=

N sin6 θ

1 + sin2 θ
+
N cos2 θ sin2 θ(ϕ̇)2(

1 + sin2 θ
)3 +

N(θ̇)2

1 + sin2 θ
.

Substituting each of these into the equation for the leakage, we finally arrive at:

Λ2 = N
sin6 θ

1 + sin2 θ

Rescaling this by the system size yields the intensive expression for the leakage γ2,

Eq. (4.15), quoted in Chapter4.

C.3 Preparation of states in the TDVP manifold

Here we demonstrate that states belonging to the TDVP manifold, ψMPS, can be mapped

ground states of the PXP model with a suitably generalised chemical potential term

and unit-cell modulated phase pulse. In a recent work [258], a method of “optimal

steering” has been devised to smoothly prepare a class of PXP ground states based on

the minimisation of quantum leakage along the trajectory.

We follow a simpler approach and numerically optimise the overlap

|⟨ψMPS({x})|Ψ(w)⟩|2 , (C.26)

where |Ψ(w)⟩ is the ground state of the PXP model with a K-site periodic density

modulation,

H(w) =

N−1∑
j=0

Pj−1XjPj+1 +

N−1∑
j=0

wjnj , (C.27)
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Figure C.3: Preparing the states along a particular K = 2 TDVP trajectory (defined in
the text) using the ansatz in Eqs. (C.27)-(C.28). A set of states on the trajectory up to
time t = 6 are variationally approximated in system sizes N = 6−18, finding the optimal
parameters w, γ. The optimised parameters are then extrapolated to size N = 22 and
the resulting overlap with the TDVP states is plotted, illustrating the success of the
optimisation (overlap is > 97% along the entire trajectory). Inset shows the scaling of
the overlap for the most poorly approximated point on the trajectory as a function of
system size N . The overlap decays slowly and its extrapolation yields high overlap for
this point even in large systems (e.g., overlap ∼ 90% at size N ∼ 50).

where w = (w1, w2, . . . , wj , . . . , wK) is a generalisation of the chemical potential term

that is periodic (with period K) but takes different values for different atoms within

the unit cell. The Hamiltonian H(w) reduces to the PXP Hamiltonian with uniform

chemical potential in Eq. (4.2) for K = 1.

Crucially, in order to prepare the states in larger TDVP manifolds with unit cells

K ≥ 2, we found it necessary to act on the ground state of Eq. (C.27) with a unit-cell

modulated phase pulse:

Θ(γ) =

N/K−1∏
j=0

e−iγKZKj+(K−1) · · · e−iγ2ZKj+1e−iγ1ZKj , (C.28)

where Zi denotes the usual Pauli-Z matrix on site i and γ1, . . . , γK are variational para-

meters in addition to w. Extensive numerical sampling in system sizes N ≤ 20 confirms

that the ansatz in Eqs. (C.27)-(C.28) allows for an accurate approximation of states in

the TDVP manifold after optimising for (w,γ) for both the K = 1 and K = 2 TDVP

manifold.
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As a test case, we choose a particularly interesting TDVP trajectory which starts

at (θ1, θ2, ϕ1, ϕ2)=(1.25π,2.985,0.166,0.188). This trajectory was derived in Ref. [214]

within a K = 2 TDVP ansatz and it belongs to a regular region of the manifold, giving

rise to oscillations in the fidelity. We choose this trajectory to show that the ansatz can

capture trajectories of interest in larger manifolds as it is already proven to be sufficient

in Fig 4.7(b) for the simpler K = 1 manifold with accuracy > 90%.

We optimise for 30 states evenly spaced along this TDVP trajectory between time

t = 0 and t = 6 in system sizes ranging from N = 6 to N = 18. The optimisation yields

an overlap close to 1 for all the points on the trajectory and a set of optimal (w1, w2)

and (γ1, γ2) for different N . Over the range of N , we found γ changes little so we do not

re-optimise this in larger N but simply take the average from smaller sizes. On the other

hand, we find w for different values of N fits well the empirical formula wj = aebN+c+d,

where a, b, c and d are fitting parameters depending on w1 and w2. With this information,

we can calculate (w1, w2), (γ1, γ2) for larger system sizes via extrapolation.

The resulting overlap in system size N = 22 is shown in Fig. C.3. We see that the

ansatz successfully captures the entire trajectory (up to 97% overlap in this system size).

In the inset of Fig. C.3 the minimum overlap found along the trajectory is plotted as

a function of system size, showing that it decays very slowly and allows to prepare the

TDVP states on the trajectory with accuracy of 90% or better in large systems N ∼ 50.

C.4 Single mode approximation

In Sec. 4.5 we have discussed the revivals from the critical ground state based on the

structure of the low energy spectrum at µf = 0.633. In this section we provide more details

of this analysis, in particular on the range of µ that it can be applied to. Ref. [224] showed

that for µf = 0, the scarred states throughout the spectrum could be well approximated

as a collection of magnons with momentum π. Here, we show that this analysis also

holds for µf ≈ 0.6, especially in the low-energy part of the spectrum. In turn, the ground

state at µi = µc = −1.31 can be understood as mainly being a superposition of these

multi-magnon states.

In Fig. C.4 one can see the low-energy spectrum resolved by momentum for three

different values of µf. The data for the overlap of the same eigenstates with the ground

state at µf = µc = −1.31 is also plotted in Fig. C.5. Note that, as this ground state has

k = 0, only the eigenstates with the same momentum value will have a non-zero overlap.

For too small values of µ, the one-magnon states merge into the two-magnon continuum

near k = 0, causing the band to bend downwards. As a consequence, the non-interacting

magnon pairs approximation is less accurate for k ̸= π, and the critical ground state has
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Figure C.4: Low-energy spectrum of the PXP model for three values of µ. The red
crosses correspond to the energies of a non-interacting pair of excitations with momenta
k and −k. For µ = 0.1, the first band merges with the two-magnon continuum. For
µ = 1.2, the first excited state with k = 0 has an energy that differs from that of two
non-interacting magnons. Data is for system size N = 24 with PBCs.

increased overlap with them. On top of this, the band being far from flat at the edges

means that the towers of states are not sharp, i.e., states near the top of the towers have

a non-negligible energy difference. As their energy separation from the ground state is

roughly twice that of a single-magnon with momentum k, the flatter the band the more

similar in energy the states will be.

For µf ≈ 0.6, the single-magnon band barely touches the two-magnon continuum.

The magnon-pair approximation now holds well for all values of k. Consequently, one

can see that the overlap of the critical ground state with two-magnon states built out of

magnons with momentum k ̸= π is very low. Among these, the states with the highest

overlap are the ones made from magnons with momentum close to 0 or π. As the band

is flat near these points, they have approximately the same energy as the scarred states

and so do not lead to dephasing until late times.

Finally, when µf becomes too large, the nature of the excitations changes and the π
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Figure C.5: Overlap between the ground sate at µi = µc = −1.31 and the low-energy
eigenstates of the PXP model with various values of µ for N = 24 and PBCs. The states
are the same as in Fig. C.4 with k = 0, and panels correspond to µf = 0.1, 0.6 and
1.2 respectively (from left to right). The red lines correspond to the expected energy
of two and four magnons with momentum π on top of the ground state. The grey line
correspond to the expected energy of two magnons with momentum k and −k on top
of the ground state. Due to the flatness of the band and the weak interactions between
magnons, the towers of states are sharper around µ = 0.633.

magnons no longer describe the elementary excitations in the system. Indeed, for µf ≫ 1,

the ground state is simply the polarised state and the excitations are just a single flip 1

on top of the background of 0. So the first excited state with k = 0 is simply a symmetric

superposition of the the state |100 · · · 0⟩ and its translations. As any kind of excitation

with k = π will need at least one 1 site, adding two of them that are non-interacting will

never lead to the correct excited state at k = 0. This can already be seen for µf = 1.2

in the bottom panel of Fig. C.4, as the lowest red cross – corresponding to the expected

energy of two non-interacting magnons – is far above the actual first excited state with

k = 0. This again impacts the sharpness of the towers of states, especially the spacing

between the first and second excited state, which grows with µf.

C.5 Experimental protocol for a scarring phase diagram

We believe it important to address the experimental observation of the phase diagram in

Fig. 4.4. The key step is the preparation of the PXP ground state in Eq. (4.2), as typ-

ically quenches and observable measurements are already available on current quantum

hardware. The protocol below is directly applicable to Rydberg atom arrays [17], however

it can also be adapted to ultracold bosons in a tilted optical lattice, where the chemical

potential µ maps to the energy mismatch between the Hubbard interaction and electric

field which induces a tilt potential [27].
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Figure C.6: The norm of the scaled difference of the number of excitations between the
diagonal and canonical ensembles when quenching the initial ground state of HPXP(µi)
to HPXP(µf). All the labels are the same as in Fig. 4.4. Data is obtained using exact
diagonalisation in the momentum k = 0 and p = +1 inversion symmetry sector for system
size N = 28 with PBCs.

Ground state preparation is accomplished via a “ramping” procedure utilised in re-

lated experiments [16,46,196,280,281]. This assumes fine control of the chemical potential

that is varied in time, µ = µ(t). Taking the chemical potential very large, µ→ ±∞, one

can prepare |0⟩ and |Z2⟩ states. Starting in one of these states, one can then ramp to

a desired ground state in the interior of our phase diagram in Fig. 4.4 by evolving with

a time-dependent PXP Hamiltonian, HPXP(µ(t)), where µ(t) is appropriately paramet-

rised for an adiabatic evolution, as specified below. The adiabaticity implies that the

ramping will not be able to prepare the critical ground state after a finite time in the

thermodynamic limit. Therefore, with finite resources, we can only hope to approach

the critical point from different gapped regions of the phase diagram. We start the ramp

either in |Z2⟩ or |0⟩, depending on whether we are in a ordered (µ < µc) or disordered

(µ > µc) phase, respectively.

Specifically, we make use of the following ramp

µ(t) =
A

(t−B)2
− A

(t− C)2
+ µc, (C.29)

where A, B, and C are tunable parameters. One particularly successful choice was found

to be A = ∓40, when ramping from |0⟩ or |Z2⟩, respectively, B = 30, and C = −0.1.

An example of this ramping curve is plotted in the inset of Fig. C.8(b). We include

µc due to the need for a much slower ramp as the gap between the ground state and
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Figure C.7: Scaled difference of the expectation values between the diagonal and canon-
ical ensembles. (a) For µi = µc = −1.31, there is a large difference around µf = 0.5
that does not vary much with system size. Notably, we also see that to the left of that
point the difference between the ensembles increases with system size. (b) Cross cuts
through the phase diagram with a fixed value of µi indicated on the colour bar. The
middle peak corresponds to region (1), while the two negative peaks on the bottom right
correspond to regions (2) and (3), from left to right respectively. Data is obtained by
exact diagonalisation for system size N = 26 with PBCs.

first excited state closes in the vicinity of the EPT point. After specifying the ramp

and the initial state, we evolve by the PXP Hamiltonian in the presence of chemical

potential, Eq. (C.29), until some time t. The evolution time is determined by numerically

minimising 1 − |⟨ψ(t)|GS(µtarget)⟩|2, where |GS(µtarget)⟩ is the state we are trying to

prepare.

Fig. C.8(a) illustrates the success of the ramping procedure. For system sizes ranging

from N = 6 to N = 14, we have ramped to prepare the ground states from µ = ±6,

in increments δµ = 0.5, towards the critical point, µc = −1.31. Fig. C.8(b) shows the

time that the ramp took for each ground state. We see the ramp time is insensitive to

system size in gapped regions of the phase diagram, while it sharply increases near µc

and exhibits strong fluctuations with N . For fixed ramp parameters, we expect it will

take an infinite amount of time to prepare the critical ground state in the N → ∞ limit.
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Figure C.8: (a) The success of preparing the PXP ground state at chemical potential
µ by ramping the chemical potential according to Eq. (C.29). The total ramp time is
varied for each point to maximise the overlap, which is plotted on the y-axis. For µ > µc,
the initial state is |0⟩ (square symbols), while for µ < µc we start the ramp in the |Z2⟩
state (triangles). Separate optimisations were performed for different system sizes N ,
shown in the same plot. Black dashed line (in all the panels) denotes the critical point
µc. Inset: using the optimal parameters and average ramping time determined in smaller
sizes in the main panel, we prepare the ground states for the same values of µ in much
larger system sizes N = 51, 75, 101. The preparation in this case was done using the
MPS method with time step δt = 0.025 and maximum bond dimension χ = 128. While
in the gapped phases the preparation remains successful, there is a visible drop near the
critical point. (b) Total ramp time tramp returned by the optimisations in the main panel
(a). Inset shows the ramping curve µ(t) in Eq. (C.29). We observe an increase of the
ramp time and strong finite-size fluctuations at the critical point. The data in the main
panels (a) and (b) was computed using exact diagonalisation in k=0 momentum and
p=+1 inversion symmetry sector with PBCs.

Finally, to verify our preparation scheme in large systems, we repeated the preparation

of the detuned PXP ground states for system sizes of N = 51, 75 and 101 using MPS

simulations with bond dimension χ = 128 and the the ramping protocol in Eq. (C.29),

with the same A, B, C parameters. The inset of Fig. C.8(a) demonstrates that the

ramping continues to successfully reproduce the desired ground state with high fidelity,

with the exception of the critical point where we see a clear drop in overlap with the target

state. This suggests the ramping procedure is a viable method for generating desired

ground states even in large systems. With this in hand, along with the already existing

capabilities to quench with a detuned PXP Hamiltonian and conduct measurements

of local observables [16, 17], all the tools are, in principle, available to reconstruct the

dynamical phase diagram in Fig. 4.4. In particular, local fidelity measurements [27] can
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be used to approximate the numerically computed global fidelity in Fig. 4.4(a). This

would allow to experimentally verify the persistence of QMBS across the phase diagram

and its robustness near the critical point.
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Further details on Gaussification

in the Rydberg model

D.1 Motivating the choice of operators in the Wick decom-

position

We motivate the choice of Â, B̂, Ĉ, D̂ in Eq. (5.4), which yielded results qualitatively

similar to the interaction distance across the three phases of the diagram. These operat-

ors must be single-site fermionic to provide a valid four-point Wick’s decomposition. In

order to express these operators in terms of Pauli matrices, we employ the Jordan-Wigner

transformation. This allows us to reinterpret the fermionic creation and annihilation op-

erators at site j as spin-raising and lowering operators, multiplied by the string
∏

k<j σ
z
k.

This ensures the fermionic commutation relationship still holds.

We conducted an exhaustive search to verify Wick’s decomposition in the UV model

in Eq. (5.1), specifically where the Wick value in the Z3 state exceeds that in Z2 state.

Interestingly, no two-point Pauli correlations that can indicate Gaussianity in the model

were found. This unique feature arises from the Rydberg blockade mechanism, setting it

apart from other models, such as the Z2 phases in the transverse field Ising model.

However, several Wick’s decompositions involving 3-point local Pauli decompositions

successfully quantify Gaussianity. We discuss a specific choice here: Â = f †1 , B̂ = f1,

Ĉ = f †2 , D̂ = f3. The left-hand side of Eq. (5.4), ⟨n1σ+2 σ−3 ⟩, invariably vanishes for

the model due to the Rydberg blockade in the case of Z2 and due to the action of σ−3
on the spin-down state in the Z3 regime. Thus the difference in Gaussianity originates

from the right-hand side. To further exemplify and understand this, take both the

GHZ state, |GHZ⟩ = (|000⟩ + |111⟩)/
√
2, (which is a macroscopic superposition like

|Z2⟩) and the W state, |W⟩ = (|100⟩ + |010⟩ + |001⟩)/
√
3 (similar to |Z3⟩) for N = 3.
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Figure D.1: An illustration of the definition of the interaction distance, DF (ρ) of a
density matrix ρ. The full Hilbert space, H, is coloured in red while the subset of free
density matrices, F , is coloured in green. The interaction distance locates the closest
free density matrix σ to quantify the interactions of ρ. Reproduced from Ref. [246].

For both states, due to the definition of the spin ladder operators and the form of the

superpositions, ⟨n1σ+2 σ−3 ⟩ and ⟨σ+1 σ+2 ⟩⟨σ−1 σz2σ−3 ⟩ are zero. This leaves the ⟨n1⟩⟨σ+2 σ−3 ⟩
and ⟨σ−1 σ+2 ⟩⟨σ+1 σz2σ−3 ⟩ components which consist of simple particle hopping terms (with

no n1 constraint unlike in ⟨n1σ+2 σ−3 ⟩). Both of these terms are still found to be 0 in the

case of GHZ but non-zero in the W-state due to the fact that we can change from one

translated pair to another by simply flipping two spins – something not possible in the

GHZ state due to the macroscopic superposition. This natural distinction between the

GHZ and W-state due to simple particle hopping motivates this choice of Â-D̂ for these

states. Recomputing the diagram using purely these two distinguishing hopping terms

yields a result that qualitatively matches the interaction distance diagram in Fig. 5.2.

D.2 Further background on the interaction distance

In Section. 5.4.1, we made use of the interaction distance to provide a complementary

measure of Gaussianity. In this section, we supplement this by providing a more detailed

background of the interaction distance as a novel measurement. The interaction distance,

DF (ρ) in Eq. (5.6), is a tool that allows one to quantify the “freedom” of a quantum

many-body state by simply analysing its entanglement structure. By doing so, it has

found success in several models like the Ising chain or String-Net models [242, 246, 247].

This is done by comparing the entanglement spectrum with the nearest free entanglement

spectrum in the Hilbert space through a variational algorithm.

The interaction distance of a density matrix, ρ, is more rigorously is defined as

DF (ρ) = min
σ∈F

D (ρ, σ) = min
σ∈F

1

2
tr

√
(ρ− σ)2 (D.1)

139



Appendix D. Further details on Gaussification in the Rydberg model

where F denotes the manifold of free density matrices. This equation is diagrammatically

illustrated in Fig. D.1. That is to say, the interaction distance is the shortest distance of

ρ from F .

This eventually breaks down to that of Eq. (5.6) as the manifold F can be quantified in

terms of the entanglement of the reduced density matrices. It was shown in Ref. [248] that

the spectrum of eigenvalues of the reduced density matrix encapsulates more complete

information about the system and its interactions than the von Neumann entropy. This

spectrum is defined as ϵk = − ln ρk where ρk are the eigenvalues (or Schmidt values) of

ρ. Within this entanglement Hilbert space defined by the entanglement spectrum, there

is then a manifold containing the density matrices that arise from taking the subsystem

of a free-fermion system. For a more detailed overview, and for access to the variational

software used, see Ref. [246].

The interaction distance exhibits several useful properties, one of which is that 0 <

DF < 3− 2
√
2 [247]. The saturation of this bound allows one to quantify a “maximally

interacting” state in contrast to a free state (when DF = 0). Interestingly, it also

obeys finite size scaling around critical points much like local observables are expected

to around second-order phase transitions [242]. The interaction distance also captures

non-perturbative effects in the system as it allows one to define the effective description

of a system in terms of non-linear functions of original modes.
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and Jad C. Halimeh. Weak ergodicity breaking in the Schwinger model. Phys. Rev.

B, 107:L201105, May 2023.

[97] Jean-Yves Desaules, Kieran Bull, Aiden Daniel, and Zlatko Papić. Hypergrid sub-
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[109] Dimitris I. Tsomokos, Juan José Garćıa-Ripoll, Nigel R. Cooper, and Jiannis K.

Pachos. Chiral entanglement in triangular lattice models. Physical Review A, 77(1),

January 2008.

[110] T. Giamarchi. Quantum Physics in One Dimension. Oxford University Press, 2003.

[111] E. Miranda. Introduction to Bosonization. Brazilian Journal of Physics, 33(1),

March 2002.

[112] Sreemayee Aditya and Diptiman Sen. Bosonization study of a generalized statistics

model with four fermi points. Phys. Rev. B, 103:235162, Jun 2021.

[113] Grigory E. Volovik. The Universe in a Helium Droplet. Oxford University Press,

02 2009.

[114] G.E. Volovik and K. Zhang. Lifshitz Transitions, Type-II Dirac and Weyl Fermions,

Event Horizon and All That. J. Low Temp. Phys., 189:276–299, Oct 2017.

[115] G.E. Volovik and P. Huhtala. Fermionic microstates within the Painlevé-Gullstrand
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Lühmann, and Immanuel Bloch. Time-resolved observation of coherent multi-body

interactions in quantum phase revivals. Nature, 465(7295):197–201, 2010.

155



Bibliography

[179] Thomas Schweigler, Valentin Kasper, Sebastian Erne, Igor Mazets, Bernhard

Rauer, Federica Cataldini, Tim Langen, Thomas Gasenzer, Jürgen Berges, and

Jörg Schmiedmayer. Experimental characterization of a quantum many-body sys-

tem via higher-order correlations. Nature, 545(7654):323–326, 2017.

[180] Marc Dubois, Gautier Lefebvre, and Patrick Sebbah. Quantum revival for elastic

waves in thin plate. The European Physical Journal Special Topics, 226(7):1593–

1601, 2017.

[181] Bernhard Rauer, Sebastian Erne, Thomas Schweigler, Federica Cataldini, Mo-

hammadamin Tajik, and Jörg Schmiedmayer. Recurrences in an isolated quantum

many-body system. Science, 360(6386):307–310, 2018.

[182] Ana Hudomal, Jean-Yves Desaules, Bhaskar Mukherjee, Guo-Xian Su, Jad C.
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