
  

   1 

Deficits of semantic cognition in stroke 

aphasia: Underlying causes and 

ameliorating factors 

 

 

 

 

A thesis submitted to the University of York for the degree of 

Doctor of Philosophy 

 

 

December 2012 

 

 

Hannah Elizabeth Thompson 

Department of Psychology 

 



  

   2 

  



  

   3 

Table of Contents 

List of tables .................................................................................................................................................. 6 

List of figures ................................................................................................................................................. 8 

Abstract ....................................................................................................................................................... 11 

Declaration .................................................................................................................................................. 12 

Acknowledgements ..................................................................................................................................... 13 

The Author .................................................................................................................................................. 13 

1. Chapter One .................................................................................................................................... 15 

Overview of thesis....................................................................................................................................... 15 

Thesis aims and research questions ........................................................................................................... 15 

Bilateral multimodal semantic store ................................................................................................... 17 

‘Access’ versus ‘storage’ ..................................................................................................................... 21 

‘Access’ patients .................................................................................................................................. 22 

SA patients’ behavioural characteristics ..................................................................................................... 26 

SA patients’ brain lesions .................................................................................................................... 32 

Anterior vs. posterior lesions .............................................................................................................. 34 

The semantic control network .................................................................................................................... 35 

Left inferior frontal gyrus (LIFG).......................................................................................................... 35 

Right inferior frontal gyrus (RIFG) ....................................................................................................... 38 

Posterior middle temporal gyrus (pMTG) ........................................................................................... 40 

Dorsal angular gyrus (dAG)/IPS boundary .......................................................................................... 44 

Research themes ......................................................................................................................................... 45 

Theme 1: The multimodal nature of semantic aphasia ...................................................................... 45 

Theme 2: An input processing deficit leading to reduced semantic control in a single modality ...... 46 

Theme 3: Multimodal control deficits in patients with anterior or posterior lesions ........................ 47 

Theme 4: The semantic control network involving right hemisphere regions: a multimodal control 

deficit .................................................................................................................................................. 49 

Processing differences ........................................................................................................................ 49 

Representational differences .............................................................................................................. 50 

Thesis structure ........................................................................................................................................... 55 

2. Chapter Two .................................................................................................................................... 57 



  

   4 

The differential contributions of prefrontal and temporoparietal cortices to multimodal semantic 

control: Exploring refractory effects in semantic aphasia .......................................................................... 57 

Abstract ............................................................................................................................................... 58 

Introduction ........................................................................................................................................ 59 

Subjects and Methods ........................................................................................................................ 63 

Results ................................................................................................................................................. 75 

Discussion ............................................................................................................................................ 84 

3. Chapter Three ................................................................................................................................. 89 

Semantic aphasia and modality: An input processing deficit leading to reduced semantic control in a 

single modality ............................................................................................................................................ 89 

Abstract ............................................................................................................................................... 90 

Introduction ........................................................................................................................................ 91 

Case report .......................................................................................................................................... 94 

1. Go-no go task involving auditory and written words for semantic and phonological judgements 98 

2. Semantic processing across picture, written, spoken word and environmental sounds tasks .... 100 

3. Effect of semantic variables on comprehension. .......................................................................... 103 

4. Semantic control manipulations across modalities ...................................................................... 105 

5. Cyclical matching across modalities .............................................................................................. 111 

Discussion .......................................................................................................................................... 122 

4. Chapter Four ................................................................................................................................. 131 

Does posterior temporoparietal cortex support semantic control? A direct comparison of semantic 

deficits following temporoparietal, prefrontal and bilateral anterior temporal lobe lesions. ................. 131 

Abstract ............................................................................................................................................. 132 

Introduction ...................................................................................................................................... 133 

Methods ............................................................................................................................................ 139 

1.Non-semantic executive control .................................................................................................... 144 

2.Item consistency ............................................................................................................................ 150 

3.Naming ........................................................................................................................................... 160 

4.Frequency/imageability effects ..................................................................................................... 165 

5.Semantic control tasks ................................................................................................................... 169 

Discussion .......................................................................................................................................... 184 

5. Chapter Five .................................................................................................................................. 193 



  

   5 

Abstract ..................................................................................................................................................... 194 

Introduction .............................................................................................................................................. 195 

Semantic processing in the left and right hemispheres .................................................................... 195 

Methods .................................................................................................................................................... 203 

1.Background neuropsychology ........................................................................................................ 206 

2.Cyclical matching task: face emotions ........................................................................................... 216 

3.Face emotion picture naming ........................................................................................................ 220 

4.Social synonym matching ............................................................................................................... 226 

5.Metaphor task ................................................................................................................................ 230 

6.Summation task ............................................................................................................................. 235 

Discussion.................................................................................................................................................. 245 

6. Chapter Six .................................................................................................................................... 251 

Discussion chapter ............................................................................................................................ 251 

Introduction .............................................................................................................................................. 252 

Theme 1: The effect of lesion location on semantic control ............................................................ 253 

Theme 2: Modality and domain effects ............................................................................................ 262 

Concluding remarks .......................................................................................................................... 269 

References ................................................................................................................................................ 270 

 

 

Number of words: 98108 

  



  

   6 

List of tables 

Table 2.1: Aphasia profiles and demographic information .......................................................... 65 

Table 2.2: Details of patients’ lesions ........................................................................................... 66 

Table 2.3: Semantic and executive performance for each patient ................................................ 69 

Table 2.4: Mean reaction time for patients and controls across all experiments .......................... 75 

Table 2.5: Logistic regression analysis showing the significant influence of each variable on the 

model............................................................................................................................................. 81 

Table 2.6: Four logistic regression analyses showing the effect of subgroup at each cycle ......... 81 

Table 2.7: McNemar tests showing refractory effects between different cycles for each patient 83 

Table 3.1: Background neuropsychological test scores ................................................................ 96 

Table 3.2: DNe’s reaction time in the go-no go task .................................................................. 100 

Table 3.3: DNe’s performance on semantic tasks across modalities .......................................... 102 

Table 3.4: DNe’s scores on the synonym judgement task .......................................................... 104 

Table 3.5: DNe’s performance on semantic control tasks across modalities ............................. 107 

Table 3.6: Predictor variables for multiple logistic regression ................................................... 116 

Table 3.7: Nearest neighbour task for healthy participants in white noise and no noise conditions, 

with close and distant targets ...................................................................................................... 119 

Table 4.1: Semantic aphasia patient demographic information .................................................. 140 

Table 4.2: Lesion analysis for stroke patients ............................................................................. 142 

Table 4.3: Background neuropsychological data for all patients ................................................ 145 

Table 4.4: Statistical comparison of SD and PF+ patients ......................................................... 146 

Table 4.5: Statistical comparison of SD and TP-only patients ................................................... 147 

Table 4.6: Statistical comparison of PF+ and TP-only patients ................................................. 148 

Table 4.7: Logistic regression across all patients ....................................................................... 152 

Table 4.8: Performance on four semantic tasks with differing control demands ....................... 152 

Table 4.9: Logistic regression for PF+ patients .......................................................................... 153 

Table 4.10: Logistic regression for TP-only patients.................................................................. 153 

Table 4.11: Logistic regression for SD patients.......................................................................... 154 

Table 4.12: Type of picture naming errors across PF+, TP-only and SD patients ..................... 161 

Table 4.13: BNT scores for each individual patient ................................................................... 163 

Table 4.14: Synonym judgment scores ....................................................................................... 166 



  

   7 

Table 4.15: Effects of semantic control manipulations in individual patients ............................ 171 

Table 4.16: Individual differences between semantic feature selection tasks ............................ 177 

Table 4.17: Individual differences in switching task .................................................................. 181 

Table 4.18: Overview of similarities and differences between patient groups ........................... 186 

Table 5.1: Lesion analysis for stroke patients ............................................................................. 205 

Table 5.2: Background neurology of RH patients ...................................................................... 208 

Table 5.3: Effects of cueing on performance .............................................................................. 222 

Table 5.4: Proportion of errors made in RH patients in face emotion picture naming ............... 223 

Table 5.5: Accuracy across different distractor types and word pairs ........................................ 231 

Table 5.6: Individual effects of condition ................................................................................... 233 

Table 5.7: Distractors in the summation task.............................................................................. 236 

Table 5.8: Example stimuli from the summation task ................................................................ 237 

Table 5.9: Data from the summation task ................................................................................... 239 

Table 5.10: McNemar tests of each patient’s performance on the summation task ................... 241 

Table 5.11: Logistic regression showing the predictive value of performance on each task ..... 242 

 

  



  

   8 

List of figures 

Figure 1.1: Two theoretical positions regarding the neuroanatomical distribution of the cortical 

network, reproduced from Patterson et al. (2007). ....................................................................... 19 

Figure 2.1: Neuroimaging for the SA patients ............................................................................. 67 

Figure 2.2: Examples of trials used in Experiment 1 (category identity matching) ..................... 72 

Figure 2.3: Examples of trials used in Experiment 2 (category identity matching) ..................... 73 

Figure 2.4: Examples of trials used in Experiment 3 (association matching) .............................. 74 

Figure 2.5: Mean response accuracy across cycles in Experiment 1. .......................................... 76 

Figure 2.6: Mean response accuracy across cycles in Experiment 2. .......................................... 78 

Figure 2.7: Mean response accuracy across cycles in Experiment 3. .......................................... 79 

Figure 2.8: Overall accuracy of PF+ and TP-only patients across cycles .................................... 80 

Figure 3.1: MRI images of DNe’s lesion ..................................................................................... 95 

Figure 3.2: DNe’s written description of the Cookie Theft picture (Goodglass & Kaplan, 1983).

....................................................................................................................................................... 98 

Figure 3.3: Example of the Picture Semantic Association test .................................................. 109 

Figure 3.4: The effect of association strength on accuracy in spoken word and picture tasks. . 110 

Figure 3.5: DNe’s semantic matching performance on the same items over four cycles across 

modalities. ................................................................................................................................... 113 

Figure 3.6: DNe’s cyclical semantic matching performance comparing related and unrelated 

distractors for spoken word-picture matching compared with non-spoken modalities .............. 114 

Figure 3.7: DNe’s refractory performance in phonological and semantic tasks ........................ 115 

Figure 3.8: DNe’s refractory performance with regards relatedness ......................................... 115 

Figure 3.9: Reaction time of controls in the Nearest Neighbour Task (Noonan et al., 2010). ... 118 

Figure 3.10: Reaction time of controls in the refractory tasks. Error bars show standard error of 

mean. ........................................................................................................................................... 120 

Figure 3.11: Data from healthy participants performing a spoken word refractory task with 

words presented in white noise and no noise conditions ............................................................ 121 

Figure 3.12: Data from healthy participants in a sound refractory task with sounds presented in 

white noise and no noise conditions ........................................................................................... 122 

Figure 3.13: Conceptualisation of the Jefferies and Lambon Ralph (2006) model incorporating 

input modality. ............................................................................................................................ 124 



  

   9 

Figure 4.1: Category effects across four semantic comprehension tasks ................................... 155 

Figure 4.2: Correct items on category fluency, according to category ...................................... 156 

Figure 4.3: Impact of ease of determining semantic relationship between probe and target on 

performance in PF+, TP-only and SD patients. .......................................................................... 158 

Figure 4.4: Impact of co-occurence of the probe and target on accuracy in PF+, TP-only and SD 

patients. ....................................................................................................................................... 158 

Figure 4.5: Effect of ease of rejecting distractors on accuracy in PF+, TP-only and SD patients.

..................................................................................................................................................... 159 

Figure 4.6: Type of semantic errors produced in picture naming across PF+, TP-only and SD 

patients. Error bars show standard error of mean. ...................................................................... 162 

Figure 4.7: Naming, category and letter fluency accuracy in PF+, TP-only and SD patients ... 165 

Figure 4.8: SD imageability x frequency scores. From the synonym judgement task (Jefferies et 

al., 2009). .................................................................................................................................... 167 

Figure 4.9: PF+ imageability x frequency performance. From the synonym judgement task 

(Jefferies et al., 2009).................................................................................................................. 168 

Figure 4.10: TP-only imageability x frequency performance. From the synonym judgement task 

(Jefferies et al., 2009).................................................................................................................. 168 

Figure 4.11: Semantic distance effects in the nearest neighbour task (Noonan et al., 2010). .... 170 

Figure 4.12: Ambiguity task results (task from Noonan et al., 2010). ....................................... 173 

Figure 4.13: Figure feature selection task - example trial. ......................................................... 174 

Figure 4.14: Example instruction screens for the figure selection task showing which items to 

match on the features ‘colour’ and ‘shape’. ................................................................................ 175 

Figure 4.15: Strong versus weak global semantic associations (Feature selection task; Whitney et 

al., 2011). .................................................................................................................................... 176 

Figure 4.16: Semantic feature selection with and without a prepotent distractor (Feature selection 

task; Whitney et al., 2011). ......................................................................................................... 176 

Figure 4.17: Performance on ‘switch’ trials (trial 5), and ‘no switch’ trials (trial 4) ................. 180 

Figure 4.18: A comparison of key brain regions implicated in semantic control between the four 

SA patient groups. ....................................................................................................................... 182 

Figure 4.19: pMTG+ vs. frontoparietal patients on semantic feature selection with and without a 

prepotent distractor ..................................................................................................................... 183 



  

   10 

Figure 4.20: pMTG+ vs. frontoparietal patients on semantic (with prepotent distractor) and 

figure feature selection tasks ....................................................................................................... 184 

Figure 5.1: Scores on the picture and word versions of metaphor subtasks from the Right 

Hemisphere Language Battery (Bryan, 1995). ........................................................................... 211 

Figure 5.2: Sentence completion accuracy with sensible or unconnected words from the Hayling 

Test (Burgess & Shallice, 1997). ................................................................................................ 214 

Figure 5.3: Number of connected (Type A) and somewhat connected (Type B) errors ............ 215 

Figure 5.4: Accuracy across cycles for the refractory emotion matching task in controls and 

patients ........................................................................................................................................ 217 

Figure 5.5: The effect of cycle on accuracy for SA patients and RH patients ........................... 218 

Figure 5.6: Accuracy across cycles for controls, RH patients and a single SA case .................. 219 

Figure 5.7: Effect of cueing condition on emotion picture naming performance ...................... 221 

Figure 5.8: A comparison between SA and RH patients on picture naming tasks with and without 

a phonemic cue. .......................................................................................................................... 224 

Figure 5.9: Picture naming errors in SA and RH patients (error bars show standard error). ..... 225 

Figure 5.10: performance on social synonym tasks across different semantic control conditions.

..................................................................................................................................................... 227 

Figure 5.11: Comparison of SA and RH patients in performance on a task with and without 

strong antonym distractors .......................................................................................................... 228 

Figure 5.12: Comparison of SA and RH patients on tasks which manipulate the strength of 

association between the probe and the target .............................................................................. 229 

Figure 5.13: The effect of distractor type on performance of SA and RH patients ................... 234 

Figure 5.14: Effect of cue condition in the summation task on the two groups ......................... 238 

Figure 5.15: The effect of probe-target strength on performance comparing SA with RH 

performance. ............................................................................................................................... 243 

 

  



  

   11 

Abstract 

Research suggests that semantic memory deficits can occur in at least three ways. 

Patients can (1) show amodal degradation of concepts within the semantic store itself, such as in 

semantic dementia (SD), (2) have an impairment of semantic control, leading to difficulty 

accessing appropriate knowledge in line with current goals or context, as in semantic aphasia 

(SA), and (3) experience a semantic deficit in only one modality following degraded input from 

sensory cortex. Patients with SA show damage to prefrontal cortex which extends posteriorly 

(PF+), or damage restricted to temporoparietal regions (TP-only), and have deficits of semantic 

control and ‘access’ across word and picture tasks, consistent with the view that their problems 

arise from impaired multimodal control processes. This thesis aims to explore the nature of these 

deficits, in four themes. (1) “Refractory effects” in SA patients are explored across modalities – 

i.e., these patients are shown to experience declining accuracy in cyclical matching tasks when 

semantically-related sets are presented rapidly and repeatedly. (2) We studied one case study 

with ‘verbal-only’ refractory effects, to investigate an apparent anomaly in the literature – the 

existence of patients who have ‘access’ deficits which are restricted to a single modality. These 

patients challenge the notion that semantic control processes are modality-general. We assessed 

the hypothesis that multimodal semantic control/ access impairments can follow a modality-

specific pattern if paired with an input deficit of a single modality. (3) We explore the effect of 

lesion location on behavioural performance of semantic aphasia (SA) patients, who have PF+ or 

TP-only lesions by bringing together data published previously in different papers, together with 

some new SA cases. Past research suggests SA patients with these two lesions may show similar 

deficits of semantic control, yet the functional neuroimaging literature proposes a unique role for 

the prefrontal cortex. PF+ patients were less fluent, showed more associative picture naming 

errors, and overall somewhat stronger SA characteristics (e.g., they were more inconsistent, and 

less affected by frequency). (4) Semantic control recruits a wide cortical network, in both the left 

hemisphere (LH) and right hemisphere (RH). Semantic representations in the RH are partially 

distinct from the LH, including specialised knowledge of faces and metaphors. Our aim was to 

test whether damage to RH control regions would negatively affect performance on semantic 

control tasks which use items stored in the RH, in a similar way to our SA patients in the LH. 

Overall, the results suggest that semantic control operates in an amodal fashion, with deficits 

found across modalities. There was evidence to suggest a wide network involved in semantic 
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control beyond the prefrontal cortex – including left posterior cortex and right hemisphere 

regions. However, these regions are subtly distinct in their role in semantic control.  
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1. CHAPTER ONE 
 

Overview of thesis  

This thesis is presented so that each chapter is prepared as a self-contained paper, in the 

style of a journal article. Within each chapter, the motivation behind each study is outlined along 

with a summary of the most relevant aspects of the literature. This introductory chapter will: (1) 

identify the key aims of the thesis and its corresponding research questions; (2) place the work in 

a broader context by discussing a wider background literature; and (3) outline the structure of the 

thesis. 

Thesis aims and research questions 

Semantic cognition involves retrieval of generic and specific knowledge which puts 

meaning to our world and helps guide our interactions with it (Binney, Embleton, Jefferies, 

Parker, & Lambon Ralph, 2010; Jefferies & Lambon Ralph, 2006; Whitney, Kirk, O'Sullivan, 

Lambon Ralph, & Jefferies, 2012). Although retrieval occurs in a normal brain almost instantly, 

it involves at least three aspects: (i) conversion and combination of sensory properties into 

meaning (e.g., Andrews, Vigliocco, & Vinson, 2009), (ii) a storage system linking items together 

according to meaning, across modalities and perceptually different objects (e.g., Binney, 

Embleton, Jefferies, Parker, & Lambon Ralph, 2010; Mion et al., 2010; Patterson, Nestor, & 

Rogers, 2007), and (iii) control mechanisms which allow flexibility and specificity of retrieval 

from the store in a context appropriate way (e.g., Jefferies & Lambon Ralph, 2006; Rogers & 

McClelland, 2004). Neuropsychological data shows that patients can be impaired at each stage of 

semantic retrieval. (i) Damage to connections between the sensory input and semantic store 

cause modality specific recognition impairments, such as visual agnosia (Catani & Ffytche, 

2005). (ii) The progressive degradation of grey matter in the anterior temporal lobes correlates 

with progressive loss of amodal semantic knowledge, seen in semantic dementia (SD; Hodges, 
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Patterson, Oxbury, & Funnell, 1992b; Warrington, 1975). (iii) Some patients with stroke aphasia 

show control impairments on tasks in which semantic processing must be directed according to 

the demands and context of the task. These patients have semantic aphasia (SA; Jefferies & 

Lambon Ralph, 2006).  

This thesis will focus on both the nature of the deficits in SA, what these can tell us about 

the cognitive and neural organisation of semantic control; and how these deficits related to 

semantic impairments in other patients – including those with right hemisphere (RH) lesions and 

deficits more restricted to a particular modality. (1) Previous work suggests multimodal deficits 

arising from domain-general executive deficits (Corbett, Jefferies, Ehsan, & Lambon Ralph, 

2009; Corbett, Jefferies, & Lambon Ralph, 2009, 2011; Jefferies & Lambon Ralph, 2006). We 

tested this idea using parallel word, picture and environmental sound tasks, to see if these deficits 

existed across modalities. (2) An individual case study will be presented, exploring the 

underlying deficits in a patient who showed a discrepancy between executive control of verbal 

and non-verbal items. Such a case appears to present problems for the account of SA, in which 

modality-free control mechanisms interact with amodal semantic representations (Jefferies & 

Lambon Ralph, 2006). Our findings suggest this pattern can be explained in terms of a dual 

deficit, to both multimodal semantic control and auditory input processing. (3) The neural basis 

of semantic control will be explored, following  evidence from the first study (Chapter 2) that 

suggests SA cases with prefrontal damage and those with damage only to temporoparietal 

regions behave in different ways on a control-demanding semantic task. We examine different 

aspects of semantic control, and compare SA subgroups (with different lesions) across a range of 

tasks. (4) While many studies have considered the role of left hemisphere regions in semantic 

control (Fridriksson, Bonilha, Baker, Moser, & Rorden, 2010), the contribution of the RH 

remains largely unstudied. We explore semantic control tasks designed to be parallel to those in 

which we have found impairment in SA patients with LH lesions, but this time focussing on 

domains of knowledge linked to the RH, to explore the RH’s contribution to the semantic control 

network. 

This opening chapter will first describe the amodal semantic store, and semantic 

dementia patients with deficits of this store. It will then describe ‘access’ patients, who have 

difficulties retrieving semantic knowledge, although their semantic store remains intact. Then SA 

patients will be described in detail, both in terms of lesion sites and behavioural characteristics. 
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These patients have ‘access’ deficits, but have additional difficulties which correlate with 

executive control demands. Areas implicated in semantic control will then be reviewed, using 

neuroimaging data to complement this patient work. Finally, the four research themes will be 

outlined in detail: (1) multimodal refractory effects, (2) ‘verbal-only’ refractory effects, (3) 

anterior compared with posterior patients, and (4) the role of the RH in semantic control.  

 

Bilateral multimodal semantic store 

There is a consensus emerging that the representation of amodal semantic knowledge is 

in the ventral anterior region of the temporal lobes (ATL), with a focal point in the basal 

fusiform gyrus (Binney, et al., 2010; Binney, Parker, & Lambon Ralph, 2012; Lambon Ralph, 

Sage, Jones, & Mayberry, 2010; Mion et al., 2010; Visser, Jefferies, Embleton, & Lambon 

Ralph, 2012; Visser & Lambon Ralph, 2011). Binney et al. have found that a model of white-

matter connectivity of this region is limited to other temporal regions, and suggests that this 

reduced connectivity would remove it from the influence of control or context-coding systems; 

allowing it to extract modality and context invariant semantic representations (Binney, et al., 

2012). Anatomically, there is evidence for a caudal-to-rostral convergence of information in the 

temporal lobe, where regions which are near modality-specific areas show specialisation (e.g., 

the posterior superior temporal gyrus for auditory processing), and regions which are more 

distant to modality-specific areas are impartial to modality (e.g., ATL), and processing becomes 

amodal (Damasio, 1989b; Plaut, 2002; Visser, Embleton, & Lambon Ralph, 2012).  

Severe semantic impairment to semantic representations is invariably associated with 

bilateral damage in SD and herpes simplex encephalitis patients (Mion, et al., 2010; Nestor, 

Fryer, & Hodges, 2006). Patients with greater damage to the RH over the left show the same 

pattern of comprehension impairments, whilst lacking the severe anomia associated with a left 

hemisphere lesion (Lambon Ralph, McClelland, Patterson, Galton, & Hodges, 2001). As noted 

above, bilateral ATL activation has been found in semantic processing, albeit with the RH 

showing slightly reduced peak activations than the LH across studies of semantic comprehension 

(Visser, Embleton, Jefferies, Parker, & Lambon Ralph, 2010; Visser, Jefferies, & Lambon Ralph, 

2010). Most conclusively, rTMS studies have found that stimulation to either hemisphere 

disrupts semantic processing. For example, a significantly increased reaction time for a synonym 
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judgement is found after rTMS of either left or right temporal pole (Lambon Ralph, Pobric, & 

Jefferies, 2009a). Patients with unilateral lesions – through temporal lobectomies or temporal 

lobe epilepsy – show subtle and much less dramatic semantic impairments (Lambon Ralph, 

Cipolotti, Manes, & Patterson, 2010; Lambon Ralph, Ehsan, Baker, & Rogers, 2012), with 

deficits in comprehension only on the most demanding tasks (Lambon Ralph & Patterson, 2008). 

In these patients, normal interaction with the contralateral hub can occur, and compensate for the 

damage. If the damage is bilateral or the connectivity is lost, this cannot occur.  

Damage to posterior ITG results in visual agnosia (James, Culham, Humphrey, Milner, & 

Goodale, 2003; Karnath, Ruter, Mandler, & Himmelbach, 2009), and damage to posterior STG 

causes auditory agnosia (Griffiths, 2002). However, semantic dementia (SD) patients with 

degeneration of the ATL show parallel progressive deterioration of semantic knowledge across 

the modalities (Bozeat et al., 2003; Bozeat, Lambon Ralph, Patterson, Garrard, & Hodges, 2000; 

Bozeat, Lambon Ralph, Patterson, & Hodges, 2002; Coccia, Bartolini, Luzzi, Provinciali, & 

Lambon Ralph, 2004; Garrard & Carroll, 2006; Lambon Ralph, Graham, Patterson, & Hodges, 

1999; Lambon Ralph & Patterson, 2008; McClelland & Rogers, 2003; Patterson, Nestor, & 

Rogers, 2007). This multimodal semantic ‘hub’ is thought to be necessary to form semantic 

relationships for items which may share few sensory properties, as well as connecting 

multimodal properties of each item to allow matching of objects with words, sounds, smells etc.  

(Nestor, et al., 2006; Patterson, et al., 2007; Williams, Nestor, & Hodges, 2005).  

Until recently, the notion of a semantic ‘hub’ in the ATL was highly controversial. 

Instead, the ‘distributed-only’ theory suggests that the conjoined action of modality-specific 

association cortices, without a hub, is sufficient for multimodal semantic representations to exist 

(Martin, 2007). These two theoretical frameworks are displayed in Figure 1.1.  
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Figure 1.1: Two theoretical positions regarding the neuroanatomical distribution of the cortical 

network, reproduced from Patterson et al. (2007). 

 

Nonetheless, proponents of the ‘distributed-plus-hub’, or ‘hub-and-spokes’ model argue 

that both modality-specific cortices and the ATL are crucial for semantic representation. The 

existence of patients with modality or category specific deficits in semantic representation is 

predicted by both theories, after damage to a ‘spoke’ (Caramazza & Mahon, 2003; Gainotti, 

2000). Pobric et al. (2010b) found that rTMS to the ‘hub’ (left ATL) disrupted response across 

domains, and stimulation of a ‘spoke’ (the left IPL) slowed responses only to a single domain 

(nonliving items). TMS studies like this have shown the importance of the ATL over a range of 

verbal and non-verbal semantic tasks (Binney, et al., 2010; Lambon Ralph, et al., 2009a; Pobric, 

Jefferies, & Lambon Ralph, 2007; Pobric, et al., 2010b).  



  

   20 

It is also possible that category effects emerge from nonselective damage to a unitary 

semantic system (in ATL). Concepts can be represented as patterns of activation distributed over 

multiple units, which correspond to different features (Tyler, Moss, Durrant-Peatfield, & Levy, 

2000). Therefore, similar representations have similar patterns of activation, to allow 

generalisations to be made about new items. Patients with ‘modality-specific’ deficits usually 

show varying degrees of impairment, rather than an all-or-nothing deficit (Devlin, Gonnerman, 

Andersen, & Seidenberg, 1998). It seems unlikely to have category-specific deficits, as category 

membership is often unclear (e.g., is a tomato a fruit or vegetable), multiple (e.g., a horse is a 

vehicle and animal) or unnatural (e.g., which category do railway platforms or traffic lights 

belong to). Garrard and colleagues (2001) suggest that categories may emerge from similarity in 

features amongst a group of concepts – without the need for a separate coding mechanism. If this 

were the case, a semantic control mechanism as envisaged by Jefferies and Lambon Ralph 

(2006) would impact different categories equally.  

Martin and colleagues doubt the evidence for the role of the ATL for two reasons. Firstly, 

Simmons and Martin (2009) argue that rTMS studies may not be evidence to support the role of 

ATL, as rTMS disrupts activity in regions remote from the stimulation site, so that rTMS to ATL 

also affects activity more posteriorly (Rounis et al., 2006; Simmons & Martin, 2009; Whitney, 

Hymers, Gouws, & Jefferies, submitted). SD patients are also not good evidence for a ‘hub’, as 

they often show damage not restricted to the ATL along the temporal lobe (Bambati et al., 2009; 

Gorno-Tempini et al., 2004; Noppeney et al., 2007; Williams, et al., 2005). fMRI evidence is 

sparse, as it is insensitive to signal in ATL due to their proximity to air-filled sinuses.  

Nonetheless, this ATL region is has been shown to be core to semantic representations 

not only through SD patients (Desgranges et al., 2007; Galton, Patterson, Graham, & Lambon 

Ralph, 2001), but distortion corrected fMRI (Vandenberghe, Price, Wise, Josephs, & 

Frackowiak, 1996; Visser, Embleton, et al., 2010; Visser, Embleton, et al., 2012; Visser, 

Jefferies, et al., 2012; Visser, Jefferies, et al., 2010; Visser & Lambon Ralph, 2011), adding to 

evidence from PET (Bright, Moss, & Tyler, 2004; Noppeney & Price, 2002; Price, Devlin, 

Moore, Morton, & Laird, 2005; Rogers et al., 2006; Sharp, Scott, & Wise, 2004; Spitsyna, 

Warren, Scott, Turkheimer, & Wise, 2006; Vandenberghe, et al., 1996) and MEG and EEG 

(Halgren et al., 2006; Marinkovic et al., 2003). This evidence has led to increased popularity for 



  

   21 

the idea of ATL involvement in semantic representation across categories and modalities, and 

has added support to the ‘hub-and-spoke’ model.  

 

‘Access’ versus ‘storage’ 

There is clearly a distinction between regions of the brain implicated in SA and SD, and 

it is now commonly accepted that there is a behavioural distinction between permanent loss of 

semantic knowledge and an inability to retrieve the appropriate semantic information at certain 

times (Warrington & Cipolotti, 1996; Jefferies & Lambon Ralph, 2006). Rapp and Caramazza 

(1993) argued that patients who were assumed to have a ‘storage’ deficit were not tested on the 

characteristics of ‘access’ patients, and vice versa. This point has been addressed by Warrington 

and colleagues (Warrington & Cipolotti, 1996), and later Jefferies and colleagues (Jefferies & 

Lambon Ralph, 2006). Rapp and Caramazza also argued that patients exist who do not show all 

the characteristics of an ‘access’ or ‘storage’ patient. This has been accounted for in a model by 

Gotts and Plaut, who suggest that storage deficits come from damage to neurons that encode 

semantic information, and access deficits result from damage to neuromodulatory mechanisms 

which enhance neural signals that are otherwise attenuated by synaptic depression (Gotts & 

Plaut, 2002). It is therefore possible that some patients will show elements of both deficits (see 

also Crutch & Warrington, 2011a; Warrington, 1981). It is also addressed by Jefferies and 

Lambon Ralph (2006), who suggest that different areas of the brain are involved in 

representation and control, and so it is possible to have damage to both a ‘spoke’ and also a 

semantic control region.  

In the section below, we consider contrasting theoretical accounts of semantic ‘access’ 

deficits. According to one view, there are separable verbal and visual semantic processes, and a 

semantic access impairment arises when the processing of verbal or visual semantics enters an 

abnormal refractory state, making the participant less able to process new verbal or visual input 

(Warrington & Crutch, 2004). By an alternative account, executive dysfunction can give rise to 

semantic ‘access’ deficits, including refractory effects (Jefferies, Baker, Doran, & Lambon 

Ralph, 2007). If a domain-general executive control mechanism interacts with amodal semantic 

representations, as anticipated by Jefferies and Lambon Ralph (2006), ‘access’/refractory effects 

should not be specific to a particular sensory modality. 
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‘Access’ patients 

In contrast to Jefferies and colleagues, who envisage that an amodal store of knowledge 

interacts with modality-free control mechanisms, a parallel area of research focused on a small 

number of single cases, suggests that deficits in semantic access (as opposed to storage) can 

selectively affect verbal comprehension. Warrington and colleagues have described several 

stroke cases with a large left hemisphere lesion who show four key behavioural characteristics 

(Warrington & Cipolotti, 1996). (1) Firstly, and most importantly, performance on one trial does 

not correlate with performance on another trial with the same item (Crutch & Warrington, 

2005b). This suggests that the item is not “degraded”, as in SD patients, but items are 

inaccessible at certain times. This is particularly noticeable in a subset of patients with a 

‘refractory’ access disorder, where inconsistent performance is related to temporal factors and 

multiple presentations of the target and distractors (Crutch, Ridha, & Warrington, 2006; 

Warrington & Crutch, 2004), with the semantic distance of the target and distractors being of 

particular importance (Crutch & Warrington, 2003a, 2004, 2007, 2010b). Not all ‘access’ 

patients, however, show refractory effects (Warrington & Leff, 2000; Warrington & Shallice, 

1979). (2) Secondly, these patients are not influenced by item frequency (Crutch & Warrington, 

2010a; Warrington & Cipolotti, 1996), while SD patients are worse at low frequency items. For 

example, Crutch and Warrington (2005b) found ‘access’ patient AZ showed worse performance 

on a refractory task using close compared to distant items, across all frequencies. However, in 

SD patients, frequency had a much stronger effect than cycle or distance. With these patients, 

only ‘middle’ frequency items showed an effect of semantic distance (with patients showing 

higher performance for distant relations in this condition), which the authors suggest reflects 

preserved high frequency items, impaired low frequency items, and utilisation of superordinate 

information for ‘middle’ frequency items – which is only useful in distant arrays. (3) Thirdly, 

‘access’ patients can match subordinate and superordinate items equally well, where SD patients 

show reduced accuracy for subordinate categorization (Warrington, 1975). If anything, ‘access’ 

patients can show an increased performance with basic level descriptors, rather that 

superordinate category names (Crutch & Warrington, 2008a; Humphreys & Forde, 2005). This 

may reflect higher control requirements for superordinate items which have more associated 
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items, and so require executive processing to match the word to the appropriate picture. Tyler et 

al. (2004) reported fMRI data that showed that superordinate naming activated the anterior 

temporal cortex (paired with posterior temporal regions), while basic naming activated prefrontal 

regions (again, with posterior temporal regions). Raposo et al. (2012) suggest that superordinate 

concepts have less shared features among category members, and therefore might require control 

to coordinate information. In their study, a true-false decision was made about sentences that 

were either on a basic or superordinate level. These either shared many features with other 

members of that concept (e.g., the car has a steering wheel, or the plant needs water – both these 

statements are true for all exemplars of the concepts ‘car’ and ‘plant’), or had less shared features 

with other members of the concept (e.g., the piano is an antique, or the clothes are made from 

wool). They found LIFG activation for sentences with less shared concepts – to the same extent 

in superordinate and basic level items. There was also higher activation in LIFG and pMTG for 

superordinate concepts with more shared features in relation to basic level concepts. (4) Finally, 

‘access’ cases show strong priming or cueing effects, which are not predicted in those with 

permanent damage to semantic representations (Warrington & Shallice, 1979; Warrington & 

Weiskrantz, 1982). There is evidence of priming in a number of aphasic patients (Blumstein, 

Milberg, & Shrier, 1982; Hagoort, 1997). Semantic cueing effects have been shown to help 

picture naming. For example, Wambaugh (2003) studied two 6-week picture naming treatments, 

either semantic (e.g., giving a feature of the item, such as ‘a farm animal that gives milk’ for a 

cow, or a sentence, such as ‘the farmer fed the...’), or a phonological cue (e.g., for pig, giving the 

initial letter, /p/, or a rhyming non-word “chig”). Both cues led to dramatic improvements in 

aphasic patients, but this was particularly noticeable with semantic cues.  

Elizabeth Warrington and colleagues, who described semantic ‘access’ deficits also 

emphasised that access impairments were specific to a particular sensory modality. This led to 

the theory of ‘multiple’ semantic systems (Warrington, 1975), with “partially independent 

meaning systems” for different modalities (Warrington & Shallice, 1979). However, ‘access’ 

patients who do show a difference between modalities may not be at ceiling on visual tasks 

(Warrington & McCarthy, 1987; Warrington & Shallice, 1984). Indeed, the initial case study 

VER showed performance of just 68% on one visual object matching task (Warrington & 

McCarthy, 1983). This suggests that there is little evidence for distinct modality systems.  
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Single-modality deficits have been well documented – but there is divergent opinion 

about whether single-modality deficits reflect an ‘access’ deficit, or a simple input deficit. For 

example, Warrington and McCarthy (1994) describe DRS, who had visual agnosia. His 

performance on non-semantic visual tasks was unimpaired, or ‘credible’, but he showed visual 

semantic impairments. His ability to pantomime actions or name objects was impaired when 

using visual, but not spoken probes. This is thought to reflect disconnection between sensory 

processing and semantic meaning (Geschwind, 1965). Warrington further argues that semantic 

representations of words and pictures are separate, given their different time course in 

development, and ‘synonymy and equivalence relationships are different for language and 

vision’ (Warrington & McCarthy, 1994). However, factors which signify ‘access’ deficits, such 

as consistency, presentation rate and the semantic distance of distractors and the target, have 

been either not tested at all, or rarely tested in the same way across modalities (Riddoch & 

Humphreys, 1987a, 1987b; Riddoch, Humphreys, Coltheart, & Funnell, 1988; Shallice, 1988, 

1993; Warrington, 1975; Warrington & McCarthy, 1983; Warrington & Shallice, 1984).  

The theory of ‘multiple semantics’ also suggests categories are stored and accessed 

separately. Capitani et al. (2003) note that modality and category independent systems are not 

independent – and that identifying living things largely depends on the visual system (as living 

things are visually similar), whereas manipulable objects require the knowledge of how to use 

them (Borgo & Shallice, 2001; Humphreys & Forde, 2001; Humphreys & Riddoch, 2003; 

Humphreys, Riddoch, & Quinlan, 1988; Martin, Ungerleider, & Haxby, 2000; McCarthy & 

Warrington, 1985; Saffran & Schwartz, 1994). These distinctions have largely been tested in 

patients with comprehension impairments, rather than access impairments (Caramazza & 

Shelton, 1998; Crutch & Warrington, 2003b; de Renzi & Lucchelli, 1994; Farah, McMullen, & 

Meyer, 1991; Hart & Gordon, 1992; Hillis & Caramazza, 1991; Moss, Tyler, & Jennings, 1997; 

Sacchett & Humphreys, 1992; Saffran & Schwartz, 1994; Satori & Job, 1988; Warrington & 

McCarthy, 1983, 1987; Warrington & Shallice, 1984), with the majority of representational 

impairments found in the domain of living things. This can be accounted for in the ‘hub-and-

spoke’ model of semantic representations, explained above.  
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Refractory effects 

One way in which the independent semantic systems hypothesis has been explored in the 

same way across modalities is the ‘refractory’ task. Refractory effects occur when an item has 

been activated, it becomes temporarily unavailable for a period of time (Warrington & 

McCarthy, 1983). Cyclical tasks are used to probe this, which typically use picture-matching, 

where the target and semantically related distractors are repeatedly presented over multiple 

cycles (Forde & Humphreys, 1995). While access patients initial performance is only marginally 

impaired, their error rates increase over cycles as a consequence of the task (Warrington & 

Cipolotti, 1996). This task typically uses a spoken word probe to be matched with a visual target 

(Crutch & Warrington, 2003c, 2004, 2005a, 2005b, 2007, 2008a, 2010b, 2011b; Forde & 

Humphreys, 1995; Hamilton & Coslett, 2008; Jefferies, et al., 2007; McNeil, Cipolotti, & 

Warrington, 1994; Warrington & McCarthy, 1983, 1987). However, efforts have been made to 

compare performance on visual and verbal versions of the task in access patients. The existence 

of individual cases who show refractory effects on verbal but not visual tasks might suggest a 

cognitive and neural dissociation between verbal and visual semantic systems (Crutch & 

Warrington, 2008b; Warrington & Crutch, 2004). For example, Crutch and Warrington (2011a) 

describe two patients with a ‘verbal-only’ deficit, showing increased error rates across cycles in 

spoken-word to picture and written-word to picture matching tasks (although this was only 

significant in the spoken domain). Of particular importance, in a picture or spoken-word to 

written-word task presented in 8 semantically related arrays, their patient showed a large increase 

in error rate for spoken-word to written-word, but not picture to written-word.  

Forde and Humphreys (1997) carried out several tasks comparing visual and verbal 

refractory effects on single stroke aphasia case JM. They found that when using unusual views 

item-matching, there was a decrease in performance only for the word-picture matching, and not 

picture-picture matching (possibly due to presemantic perceptual access). They then assessed 

associative matching performance, with a task involving matching an item (e.g., EGG) with 

another item (e.g., HEN). Here, JM did show refractory effects in both picture and verbal tasks. A 

similar 5-item task was run, matching category associates (e.g., a training shoe with a walking 

shoe), when presented among related distractors (e.g., WATCH, UMBRELLA, TIE, SHOE). This again 

found refractory effects across modalities. Cross-modal refractory effects were tested with 
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auditory-written word matching or auditory-picture matching, including switching the 

modalities. They found words presented for the first time on the forth trial, following repetition 

of the same items as pictures, were significantly impaired. Similarly a colour test involved 

matching either an auditory word to a written word or auditory word to a colour patch. Finally, 

they tested colour association via written-word to written-word (e.g., FIRE ENGINE to RED), or 

colour patches to line drawings. There was a significant decline in performance, whether in the 

word or picture modality, or interleaved modalities.  

However, Warrington and Crutch found a different pattern (Crutch & Warrington, 2008b; 

Warrington & Crutch, 2004). They compared a visual-visual with verbal-visual matching. The 

visual-visual matching task used two visually dissimilar examples of the same item (e.g., two 

types of kettle). When assessing different semantic categories (e.g., animate and inanimate), they 

found case study AZ showed no serial effects in the visual domain, but there was an increased 

number of errors across cycles in the verbal domain. In their later paper, they presented two 

patients, AZ and BBB, who both showed refractory effects in the verbal but not visual domain. 

Both patients also showed evidence of refractory effects with environmental sounds stimuli. 

They suggest this reflects a close relationship between nonverbal sounds and language (Saygin, 

Dick, Wilson, Dronkers, & Bates, 2003), and suggest refractoriness is not lexical, but rather an 

auditory-semantic process which reflects neuromodulatory processes (Gotts & Plaut, 2002).                                                                                                                                                    

SA patients’ behavioural characteristics 

Although there is evidence that ‘access’ patients are influenced by modality, the 

relationship between executive impairment and access deficits has not been considered (e.g., 

Warrington & Crutch, 2004), although in some cases, it seems there may be some association 

between digit span length and refractory effects (Crutch & Warrington, 2011a).  The SA patients 

which Jefferies and Lambon Ralph (2006) have tested show two distinct patterns of semantic 

performance which differ from those originally reported by Crutch and Warrington. Firstly, SA 

patients are not influenced by modality, and show deficits across visual and verbal domains to 

the same extent (Corbett, Jefferies, Ehsan, et al., 2009; Corbett, Jefferies, & Lambon Ralph, 

2009; Corbett, et al., 2011; Jefferies & Lambon Ralph, 2006). Secondly, SA patients are affected 

by executive control demands of the task, showing reduced accuracy on tasks which have high 

control demands in relation to tasks with low control demands (Jefferies, in press; Jefferies, et 
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al., 2007; Jefferies & Lambon Ralph, 2006; Noonan, Jefferies, Corbett, & Lambon Ralph, 2010). 

Given the refractory impairment and effects on cyclical tasks might be explicable in terms of 

executive deficits, Jefferies and colleagues investigated the performance of SA patients, who are 

defined in terms of multimodal semantic impairment, in relation to access impairments and other 

impairments which are distinct from ‘access’ patients.  

Correlations across semantic tasks 

SA patients have strong correlations across the same task in different modalities (e.g., 

picture and word version of the Camel and Cactus task, and sound-picture and word-picture 

matching tasks; Jefferies & Lambon Ralph, 2006). They suggested that tasks which are similar in 

nature (requiring a certain level of semantic control), are highly correlated, whilst tasks which 

have different control demands (e.g., the picture version of the Camel and Cactus task, and word-

picture matching), have no significant correlation, even though the same 64 items are used in 

both tasks. In comparison to SA patients, correlations and item-by-item consistency for high and 

low demand tasks (e.g., matching and association tasks) remained strong for SD patients.  

Manipulations of semantic control within task 

 SA patients have been shown to vary their response to the same item when semantic 

control manipulations are varied within a task. Noonan et al. (2010) used several experiments to 

explore this. (1) First, they tested patients’ ability to match items which had the same category, 

whether they were close or distant in semantic space (e.g., a close relation such as HAT and CAP, 

and a distant relation such as HAT and STOCKING). Although the probe and distractors were the 

same, the distance of the target from the probe was varied. Control participants were not affected 

by semantic distance, whereas patients were more impaired when matching semantically distant 

items. This is because when probes and targets are closely related, they share a large amount of 

semantic structure/features, but when they are more distant, they require additional semantic 

control to work out the relevant semantic link (Noonan, et al., 2010). (2) In a second task, 

participants were required to match items with varying distractor strength. In a synonym task, 

they either matched synonyms with weakly associated antonym distractors (e.g., NEAT with TIDY, 

MESSY or LUCKY), or a strongly associated antonym distractor (e.g., HAPPY with CHEERFUL, SAD 

or CONSCIOUS). SA patients were less accurate at making synonym judgements with a strong 

distractor. When two concepts are strongly related, their relationship becomes hard to ignore 
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even when this is irrelevant to the task (Samson, Connolly, & Humphreys, 2007). (3) Finally, the 

authors assessed patients’ ability to process dominant and non-dominant meanings of homonyms 

in a semantic judgement task (e.g., in the dominant condition, PEN with PENCIL, or the 

subordinate condition, PEN with PIG). Competition between alternative meanings of an item is 

determined (in part) by frequency, and so less frequent meanings have a processing disadvantage 

(Noonan, et al., 2010). They found SA patients had significantly more difficulty retrieving non-

dominant meanings than dominant meanings of the same word.   

Cued picture naming 

Jefferies and Lambon Ralph (2006) found that, like ‘access’ patients, SA performance 

was greatly affected phonemic cues in picture naming paradigms (Conroy, Sage, & Lambon 

Ralph, 2009; Howard & Gatehouse, 2006; Jefferies, Patterson, & Lambon Ralph, 2008; Lambon 

Ralph, Sage, & Roberts, 2000; Noonan, et al., 2010; Soni et al., 2009; Soni, Lambon Ralph, & 

Woollams, 2011). The positive effect of cueing correlates significantly with overall accuracy and 

performance on measures of executive functioning (Soni et al., 2009). It is hypothesised that 

cues boost activation of the target word relative to semantically related competitors, to narrow 

the field of competing responses dramatically. Dell and colleagues (Dell & O'Seaghdha, 1992; 

Dell, Schwartz, Martin, Saffran, & Gagnon, 1997; Schwartz, Dell, Martin, Gahl, & Sobel, 2006) 

argue that there is strong connectivity between semantics and lexical and phonological nodes, 

such that phonemic cues will boost semantic activation for the target, and dampen down 

semantic competitors. Jefferies and colleagues (2008) tested picture naming in SA and SD 

patients using cumulative phonemic cues, starting with the first phoneme. SA patients showed a 

larger cueing effect than SD patients, with large improvements after phonemic cues in 

comparison to spontaneous naming. The partial benefit of SD patients to cues is thought to 

reflect the graded nature of deterioration. There was also a difference in the type of errors 

produced – with SA patients producing more associative errors (e.g., SQUIRREL – NUT) and SD 

patients producing more superordinate errors (e.g., SQUIRREL – ANIMAL; Jefferies et al., 2008). 

This suggests SA patients activate semantically relevant items and are unable to correctly select 

the appropriate name. Soni et al. (2011) also suggested that associative relationships are integral 

to semantic representations of concrete items, reflected in the high level of associative naming 

errors in SA patients (Jefferies and Lambon Ralph, 2006). However, SD patients have degraded 
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concepts of individual features of a category, although they still retain the knowledge of the 

correct superordinate category.  

Soni et al. (2009) argued that if semantic activation of a group of category nodes was 

activated, then cueing a semantically related competitor (e.g., providing /l/ for TIGER) should 

boost activation of the competitor lion and reduce the patients’ ability to produce the correct 

label. They found that miscueing SA patients led to lower accuracy and more semantic errors 

(see also Noonan, et al., 2010; Soni, et al., 2011). This suggests that these patients have intact 

semantic representations which are not utilised in a task appropriate way. They found a 

significantly higher performance with a cue in relation to an associative miscue (e.g., /w/ for 

BATH), with correlations between the effect of miscue and executive control. Cueing also aids 

performance on non-verbal semantic tasks. For example, Corbett et al. (2011) found that SA 

patients were better able to mime an action for an object when shown a picture cue of the 

recipient of the action, e.g. NAIL for HAMMER.  

Correlations of executive control and semantic memory 

SA patients have been shown to exhibit deficits beyond the semantic domain – in 

executive control functioning (Baldo et al., 2005; Jefferies & Lambon Ralph, 2006; Stuss & 

Alexander, 2000; Weiner, Connor, & Obler, 2004). Frontal lesions are often associated with 

impaired problem solving or executive control (Badre, Hoffman, Cooney, & D'Esposito, 2009; 

Roca et al., 2010; Stuss, 2007; Stuss et al., 2000; Turken et al., 2008). Baldo et al. (2005) tested 

the correlation between language and problem solving (see also Dronkers, Ludy, & Redfern, 

1998; Hamsher, 1991; Hermer-Vazquez, Spelke, & Katsnelson, 1999; Nelson, Reuter-Lorenz, 

Persson, Sylvester, & Jonides, 2009; Weiner, et al., 2004). Baldo et al. found that performance 

on the Wisconsin Card Sorting Task correlated with comprehension and picture naming. They 

suggested that covert language may be required for complex problem solving. They also found 

that perservation errors correlated with language abilities, and suggested that in particular, 

flexibility and cognitive switching may depend on language. Baldo et al. (2010) found aphasic 

patients to be disproportionately impaired on relational reasoning, in relation to pattern matching, 

and that performance on Raven’s Progressive Matrices correlated with language scores. Jefferies 

and Lambon Ralph (2006) found strong correlations between executive control measures and 

semantic performance, including non-verbal tasks such as picture association matching (r > .61). 
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This correlation was not found for SD patients (r < .29). However, despite a significant 

correlation, this does not prove causality, so it may be that either semantic deficits impair 

reasoning, or that executive deficits underpin semantic deficits.  

Frequency/familiarity 

Jefferies and Lambon Ralph (2006) found that over several tasks, such as synonym 

matching or semantic association tasks, SD patients showed strong effects of frequency/ 

familiarity (see also Bird, Lambon Ralph, Patterson, & Hodges, 2000; Bozeat, et al., 2000; 

Corbett, Jefferies, Ehsan, et al., 2009; Funnell, 1995; Jefferies, Patterson, Jones, & Lambon 

Ralph, 2009; Lambon Ralph, Graham, Ellis, & Hodges, 1998; Noonan, et al., 2010). Items that 

are used frequently develop more robust semantic representations (Hoffman, Rogers, & Lambon 

Ralph, 2011), and so lower performance on low frequency items is associated with degradation 

of conceptual knowledge itself. In SA patients, there was no advantage for high frequency items 

– which is also true of ‘access’ patients (see also Almaghyuli, Thompson, Lambon Ralph, & 

Jefferies, 2012; Crutch & Warrington, 2005a; Hoffman, Jefferies, & Lambon Ralph, 2011; 

Marshall, Pring, Chiat, & Robson, 2001; Nickels & Howard, 1995; Warrington & Cipolotti, 

1996; Warrington & Shallice, 1979). Hoffman and colleagues (2011) argue that high frequency 

words have a natural advantage, being more often encountered and therefore benefitting from 

higher resting levels. Nonetheless, high frequency items also have higher semantic control 

demands, because of automatic activation of a high number of lexical associates, contexts and 

meanings. For example, a high frequency word such as ‘dog’ can be used to mean a number of 

different things, such as ‘he’s really gone to the dogs’, and ‘the detective will dog your 

footsteps’, and so on. This range of uses for a high-frequency word has been described as 

‘semantic diversity’ (see Hoffman, Rogers and Lambon Ralph, 2011), as the word appears in a 

large number of linguistic contexts (Adelman, Brown, & Quesada, 2006).  

Imageability  

SA patients are often cited to show strong imageability effects (Almaghyuli, et al., 2012; 

Forde & Humphreys, 1995; Jefferies, Hoffman, Jones, & Lambon Ralph, 2008), which match 

those found in ‘access’ patients (Crutch, et al., 2006). Hoffman et al. (2011) show a strong 

negative correlation between imageability and semantic diversity – with abstract words occurring 

in more semantic contexts. However, the positive effect of imageability in SA patients was 
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robust beyond semantic diversity (Degroot, 1989; Katz & Goodglass, 1990). High imageability 

words have lower control demands because these representations are better constrained by their 

sensory features. Low imageability concepts are not pinned down in the same way, and so might 

require more internally-generated constraints on semantic processing (Plaut & Shallice, 1993). 

Refractory effects  

 SA patients’, like ‘access’ patients, show refractory effects, or a decline in accuracy over 

cycles. Jefferies et al. (2007) studied three variables with regards the refractory pattern: speed of 

presentation, item repetition (cycles) and semantic blocking (relatedness of distractors). They 

found that when targets were presented with other semantically related distractors, performance 

was significantly worse than when items were presented with unrelated distractors. There was 

also an effect found for speed of presentation (with SA patients showing worse performance with 

an RSI of 0 compared to 5 seconds), and cycle (with performance lower on cycle 4 in relation to 

cycle 1). Deficits of semantic control should produce stronger refractory effects in more 

demanding conditions (e.g., with related distractors and quicker presentation time), because 

semantic activation spreads between items and does not decay fully between trials. This 

increased activation leads to stronger competition between the target and distractors. This effect 

occurs across modalities (see Chapter 2).  

Multimodal control deficits 

Several studies have found that SA patients show semantic control deficits in non-verbal 

tasks (Corbett, Jefferies, Ehsan, et al., 2009; Corbett, Jefferies, & Lambon Ralph, 2008, 2009; 

Corbett, et al., 2011; Jefferies & Lambon Ralph, 2006). In all modalities that have been tested, 

patients have most difficultly on trials which require a flexible application of knowledge, such 

that items must be matched even when they do not share a strong association. Corbett et al. 

(2011) used a picture task of tools to be matched target objects (e.g., HAMMER-NAIL), and found a 

significant difference in SA performance between tools which were canonical and non-canonical 

alternatives (e.g., an item not usually used to perform an everyday action, but nonetheless a 

plausible alternative). For example, a ‘fly-swat’ is most commonly used to kill a fly, but if this 

option is not available, controls but not SA patients readily select a ‘magazine’ as a plausible 

alternative. As with word tasks involving non-dominant semantic associations, the patient has to 

inhibit the most familiar meaning of the item (Noonan, et al., 2010). 
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There are also equivalent verbal and non-verbal cueing effects in production tasks 

(Corbett et al., 2011). This suggests SA patients have difficulty controlling their own 

semantically-driven behaviour, and thus benefit from external constraints. Under these 

circumstances, SA patients reveal that they retain knowledge that they previously failed to 

demonstrate.  

As with verbal tasks, Corbett et al. (2009) found evidence for a lack of consistency across 

a variety of non-verbal (action and tool) tasks for SA but not SD patients. They found that in 

some less demanding tasks (e.g., word-picture matching), SA patients were better than SD 

patients. In other tasks (e.g., picture-picture semantic attribution matching, involving matching 

an item with its recipient, which was another tool with the same function or action) led to similar 

performance in SA and SD patients. Finally, SA patients were poorer at solving mechanical 

puzzles than SD patients, which was the task which required the most semantic control.  

Corbett, Jefferies and Lambon Ralph (2009) tested non-verbal semantic control within a 

single task. They found that performance on a naturalistic object use task varied according to the 

task demands. When performing actions which have multiple substages, which involve dual-task 

situations, or which have a semantically related distracting object present, patients’ performance 

was reduced.  

Deficits have been found to the same extent with the same semantic items using either 

verbal or visual stimuli, such as a refractory word- and picture-picture matching task (Chapter 2, 

Gardner et al., 2012), and the camel and cactus semantic association task in picture and word 

modalities (Jefferies & Lambon Ralph, 2006). There is also evidence from action and tool tasks 

described above which suggest SA patients have similar semantic control deficits across 

modalities. This data fits with Jefferies and Lambon Ralph’s (2006) theory that SA patients have 

damage to an amodal semantic control network. 

 

SA patients’ brain lesions 

As the ATL has been causally implicated in the representation of semantic knowledge 

within a long-term store, it is important to note that, in comparison to SD patients, SA patients 

almost always have no damage to the fusiform region of the ATLs which is thought to be the 
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crucial amodal ‘hub’ for semantic representations (Jefferies, in press; Jefferies & Lambon Ralph, 

2006; Noonan, Jefferies, Visser, & Lambon Ralph, submitted). This suggests that SA patients’ 

deficits may arise from a different underlying impairment. SA occurs after stroke, and the 

inferior ATLs are well protected from blood clots, which is the main cause of stroke. Firstly, 

they have a blood supply from two arteries: (i) the anterior temporal cortical artery, which 

branches off the middle cerebral artery, and (ii) the anterior temporal branch of the distal 

posterior cerebral artery. It is unusual for both of these blood supplies to be affected by stroke 

simultaneously (Conn, 2003). Although the superior ATL is more vulnerable to stroke, basal 

areas within ATL which are associated with representation of knowledge are watershed regions. 

Secondly, the artery branch supplying the anterior temporal lobe subdivides below the main 

trifurcation of the artery: this might make it less vulnerable to emboli, which can pass beyond 

this point (Borden, 2006). Thirdly, the ATL stores semantic knowledge bilaterally, and it is 

unusual to have a bilateral stroke (Visser, Jefferies, et al., 2010). This accords well with previous 

findings suggesting SA patients’ semantic store is intact, but the retrieval mechanisms are faulty 

(Jefferies & Lambon Ralph, 2006; Warrington & Cipolotti, 1996). The regions implicated in 

semantic control in SA patients include the prefrontal and temporoparietal regions. Damage can 

occur at any site within this network, with apparently similar consequences – degraded semantic 

control (see Chapter 4).  

Deficits across semantic tasks have been reported in stroke aphasia patients. In particular, 

evidence has focused on verbal impairments, as these are perhaps the most obvious form of 

impairment in stroke aphasia patients. For example, sentence-to-picture matching performance is 

associated with the middle temporal gyrus (MTG), angular gyrus (BA39), and prefrontal regions, 

particularly BA 47 and 46 (Dronkers, Wilkins, Van Valin, Redfern, & Jaeger, 2004). Berthier 

(2001) also found both anterior and posterior regions to be implicated in picture naming, digit 

span and sentence completion. Schwartz et al. (2009) tested naming and comprehension in stroke 

patients (using both pictures and word associations). They found semantic errors during picture 

naming were associated with lesions to pMTG and the prefrontal cortex (BA 45 and 46; see also 

Mirman, 2011). Picture naming abilities were significantly correlated with other tests of verbal 

and non-verbal comprehension. Cacciari et al. (2006) found that stroke patients who performed 

poorest on an figurative meaning task had damage to lateral prefrontal and/or temporoparietal 

regions, producing semantic association errors (see also Schwartz et al., 2011). Those with focal 
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damage to medial prefrontal, temporal or motor regions did not show deficits on this task.  While 

this work has focussed on verbal impairments, which are perhaps the most obvious difficulties in 

stroke aphasia, evidence suggests that there may be parallel comprehension deficits for both 

verbal and non-verbal items in these patients. For example, Chertkow et al. (1997) studied a 

group of patients with posterior damage after a left hemisphere middle cerebral artery infarction. 

They found all patients with posterior temporal lobe damage showed impairment on a non-

verbal, picture-picture association task (e.g., matching a LEMON with either a TEA CUP or COFFEE 

CUP), which was also reflected in low performance on a non-verbal, non-semantic task (Raven’s 

Coloured Progressive Matrices, RCPM; Raven, 1962). Those who did not show impairment on 

these tasks had damage which was more focal and posterior to the semantic control network, 

centring at the parietal-occipital sulcus. Saygin et al. (2003) found deficits in a word-picture or 

sound-picture matching task with a strongly related distractor (in comparison to an unrelated 

distractor). Deficits were found to correlate across the word and sound modalities. Low 

performance was associated with damage to posterior temporal regions – particularly posterior 

superior gyrus (pSTG) and posterior middle gyrus (pMTG).  

Anterior vs. posterior lesions 

SA patients have damage to left hemisphere prefrontal and/or temporoparietal areas. 

Damage to either brain region appears to produce similar neuropsychological profiles, although 

many studies have put these two subgroups together in statistical analyses, and lesion 

comparisons have included relatively few patients to date (Corbett, Jefferies, Ehsan, et al., 2009; 

Corbett, et al., 2011; Jefferies & Lambon Ralph, 2006; Jefferies, Patterson, et al., 2008; Noonan, 

et al., 2010). Chapters 2 and 4 add to this evidence. Other groups, however, have found that 

patients with transcortical sensory aphasia (like some of our SA cases) can have anterior or 

posterior lesions, and again reported similar comprehension impairments in these two groups 

(Berthier, 2001).  

Although central to this theme is the role of individual semantic control regions and 

distinctions between stroke patients, there is ongoing debate about whether the pMTG is 

involved in control at all. This is because semantic knowledge is thought to be stored throughout 

the cortex, in a distributed architecture of knowledge (Martin, 2007). This is discussed later, in 

the section on pMTG. Nonetheless, it is currently unclear whether posterior patients show effects 
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of semantic storage variables which are comparable to that seen in SD patients, particularly of a 

certain category e.g., tools and actions; as well as impairments on semantic control tasks (see 

Chapter 4). Therefore, the role of the pMTG in semantic cognition remains controversial. 

The semantic control network 

Although SA patients often have large lesions, neuroimaging studies have isolated 

specific regions of this frontoparietal network which are implicated in semantic control, rather 

than language or semantic tasks per se, adding support to the idea that SA patients have disrupted 

retrieval/ selection mechanisms which are predictably related to control demands. One left 

prefrontal region, the inferior frontal gyrus (LIFG) and two left posterior regions, the posterior 

middle temporal gyrus (pMTG) and dorsal angular gyrus (dAG) overlapping with IPS, are 

particularly associated with controlled retrieval in fMRI studies, which maps directly onto areas 

of damage in SA patients (Noonan, et al., submitted). There are also other regions implicated in 

semantic control in Noonan et al.’s meta-analysis, including RIFG, more medial prefrontal 

regions (pre-SMA/anterior cingulate) and mid angular gyrus (mid-AG). Several of these sites are 

implicated in domain-general control (medial PFC, posterior LIFG, and IPS), and other appear 

specific to semantic control (pMTG, anterior LIFG and mid-AG). 

Left inferior frontal gyrus (LIFG) 

The more demanding a semantic task, the more activation in the BA 44, 45, and 47 of 

LIFG (Desai, Conant, Waldron, & Binder, 2006; Roskies, Fiez, Balota, Raichle, & Petersen, 

2001; Sabsevitz, Medler, Seidenberg, & Binder, 2005; Ullsperger & von Cramon, 2001). Less 

demanding semantic tasks (e.g., verifying word associations) show little or no LIFG activation 

(Martin, Wiggs, Ungerleider, & Haxby, 1996; Wise et al., 1991). Task demands can be increased 

in two fundamental ways: (1) by increasing the retrieval demands, for example, recovering 

weakly associated relationships, and (2) by increasing the selection demands, through 

manipulating the element of semantic knowledge which is required to be used in a particular 

task, for example, matching the colour of previously activated items, such as BEETROOT with 

BLOOD. Badre et al. (2005) describe a two-step model of semantic control: (i) initial controlled 

retrieval, and (ii) post-retrieval selection. They suggest that anterior prefrontal cortex (BA 47) 

and posterior middle temporal gyrus (BA 21) are critical for initial retrieval, whilst the posterior 
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prefrontal cortex alone (BA 44/45) is involved in post-retrieval selection. Several studies have 

aimed to distinguish selection from retrieval, in order to discover the precise role of the LIFG.  

LIFG is widely believed to play a role in selection between competing alternatives 

(Badre, et al., 2005; Bedny, Hulbert, & Thompson-Schill, 2007; Nagel, Schumacher, Goebel, & 

D'Esposito, 2008; Robinson, Shallice, Bozzali, & Cipolotti, 2010; Robinson, Shallice, & 

Cipolotti, 2010; Wagner, Maril, Bjork, & Schacter, 2001). For example, Thompson-Schill et al. 

(1997; 1999) showed that the BOLD response increased with higher selection demands, when 

retrieval demands were purportedly held constant or reduced (but see Snyder et al., 2010). This 

was found in a feature selection task, where selection of task-relevant information is required. 

Participants were required to select an associated item by matching its colour (e.g., BEETROOT 

with BLOOD), which involves initial retrieval of the meaning of the probe, target and distractors, 

before selecting the feature ‘colour’ (Thompson-Schill, D'Esposito, Aguirre, & Farah, 1997). In 

contrast, when comparing items on their global properties (e.g., RAISIN and PRUNE), no post-

retrieval selection is necessary. In the same experiment, when shown a word (e.g., APPLE), 

participants were asked to generate an associated colour or action in response to that word. They 

were then presented with the same item again and asked to select a different feature (reducing 

retrieval demands but increasing selection demands). LIFG activated increased even though the 

concept had already been retrieved, which supports the evidence for a selection role of LIFG.  

Repetition without the selection component increases the dominance of the target response over 

distractors, and also decreases LIFG activation (Demb et al., 1995; Raichle et al., 1994). Moss et 

al. (2005) used what they considered to be an automatic retrieval task (picture naming), and 

found that competitor priming - which should increase selection demands - also increased IFG 

activation. However, LIFG also shows activation on tasks which have low selection demands, 

such as generating a verb from a concrete noun (Martin & Cheng, 2006), suggesting the LIFG 

has a role to play in both aspects of semantic control (Raichle, et al., 1994; Wise, et al., 1991). 

SA patients show deficits on both semantic and executive tasks that are correlated, 

suggesting that there are shared properties of semantic and executive control tasks. Difficult 

semantic tasks will recruit domain-general control regions, including posterior/dorsal parts of 

LIFG. Indeed, fMRI studies have shown overlap between regions of the LIFG involved in 

semantic and non-semantic tasks (Dosenbach, Fair, Cohen, Schlagger, & Petersen, 2008; 

Duncan, 2006, 2010; Duncan & Owen, 2000; Nagel, et al., 2008; Wager, 2004; Wagner, Paré-
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Blagoev, Clark, & Poldrack, 2001). For example, Devlin et al. (2003) found common areas of 

activation in a task involving a semantic decision (e.g., ‘is it manmade?’) and a phonological 

decision (e.g., ‘are there two syllables?’). The LIFG is associated with language production, 

particularly in demanding contexts with lexical or semantic competitors (Schnur, Lee, Coslett, 

Schwartz, & Thompson-Schill, 2005); but it is involved beyond language production (Hagoort, 

2005; Thompson-Schill, 2003), in particular during semantic memory retrieval (Badre, et al., 

2005; Thompson-Schill, et al., 1997). Broca’s area also shows activation during visual target 

search (Fink et al., 2006), action recognition (Hamzei et al., 2003) and face recognition tasks 

(Rajah, Ames, & D'Esposito, 2008).  

Nonetheless, there are thought to be regions of the LIFG, particularly the anterior region, 

which are specialized for semantics. Gold and Buckner (2002) used both a non-semantic task, 

involving deciding whether words/pseudowords were short or long vowel items, and a semantic 

task, which required decisions about whether a word was abstract or concrete. Findings suggest 

similar regions of activation for phonological and semantic decisions, with stronger activation 

during controlled semantic decisions. Additionally, certain regions are dissociable, with anterior 

portions activating during semantic decisions, and posterior LIFG specialised for phonological 

control (see also Poldrack et al., 1999).  

 Research has found converging evidence for a role of the LIFG in control from both 

patient and neuroscientific experiments. Hoffman et al. (2010) showed impaired comprehension 

of abstract words without a contextual cue, in both SA patients and those with rTMS to LIFG 

(see also Robinson, Shallice, Bozzali, et al., 2010). Campanella et al. (2012) studied a single 

patient following the resection of a left frontal glioma, and showed more errors with distantly 

related items (compared to closely related items), inconsistency of concept retrieval, but no 

effect of frequency. This difficulty extends to homonyms which are words with multiple 

meanings according to context (Bedny, et al., 2007). Thompson-Schill et al. (1998) have shown 

that focal inferior prefrontal damage can affect the ability to generate verbs for nouns, but only in 

‘high selection’ conditions. They found patients with LIFG damage were impaired at word 

generation tasks which are executively demanding, generating a verb for the noun CAT (high 

demand) compared to the noun SCISSORS (low demand; but see Martin & Cheng, 2006). 

Generating sentences when the stimulus has multiple conceptual propositions that compete for 

selection are impaired in frontal patients (Robinson, Shallice, & Cipolotti, 2005). Martin and 
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others have argued that impairment on high “selection” tasks may in fact reflect weak association 

strength between cues and targets (Martin & Cheng, 2006; Wagner, Paré-Blagoev, et al., 2001). 

Martin and Cheng (2006) manipulated both selection and retrieval, by having a ratio of first to 

second verb frequency greater than 4 (low selection), or less than 2 (high selection); and having 

and association strength of < .2 (high selection, low association), and association strength of > 

.28 (high selection, high association). They found no difference between the two selection 

conditions, but a strong effect of association strength. They suggest that strategic retrieval is 

required for low association conditions, but automatic for high association conditions (Badre & 

Wagner, 2002; Martin & Byrne, 2006; Snyder & Munakata, 2008). Although patients often have 

a lesion encompassing much of the inferior prefrontal region making subtle distinctions within 

this region challenging, it seems clear from this data that the LIFG plays a crucial role in 

controlled retrieval and/or selection (potentially in combination with dorsolateral and medial 

PFC). 

Right inferior frontal gyrus (RIFG) 

 As well as the LIFG, the right IFG has shown to be consistently activated by semantic 

tasks (Noonan, et al., submitted; Vigneau et al., 2011), including many neuroimaging studies 

employing contrasts tapping semantic control (Badre, et al., 2005; Snyder, Banich, & Munakata, 

2011; Thompson-Schill, et al., 1997; Wagner, Paré-Blagoev, et al., 2001). However, little 

research has explored the role of the right hemisphere in semantic control (see Chapter 5). 

Nonetheless, in terms of domain-general executive control, the right prefrontal cortex plays a key 

role. A bilateral domain general control network has been described in detail, highlighting the 

bilateral fronto-parietal loop as crucial for a number of executively demanding tasks 

(Dumontheil, Thompson, & Duncan, 2011; Duncan, 2006, 2010; Duncan & Owen, 2000; 

Woolgar, Hampshire, Thompson, & Duncan, 2011).  

The RIFG has also been linked to a particular aspect of executive control – inhibition 

(Aron, Robbins, & Poldrack, 2004; Chikazoe, Konishi, Asari, Jimura, & Miyashita, 2007; 

Lenartowicz, Verbruggen, Logan, & Poldrack, 2011). Inhibition is required for task eligible but 

incorrect items. Milham et al. (2001) devised a Stroop task which involved the traditional 

conflict of ink colour and written colour, with participants having to name the ink colour and 

ignore the written colour word. Additionally, they studied the effect of adding written colours 
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which were never ink colours (“ineligible”). This condition did not activate RH regions of the 

prefrontal cortex, although homologue LH regions showed similar activation for both “eligible” 

and “ineligible” conditions. This suggests that the RH is recruited in response to “higher-level” 

or relevant conflicts, when an automatic behaviour in the context needs to be overridden. 

Similarly in a “go no-go” task, where participants have to press a button when presented with 

one stimulus, but withhold this behaviour after presentation of another stimulus, the RIFG is 

crucial in the “no-go” inhibition trials. Recruitment of this area is seen in more complex versions 

of the task, such as when the subject has to remember a sequence presentation of the stimulus 

(e.g. “X-Y-X-Y”), and inhibit responding to previously relevant items (e.g. “X-Y-Y-X”) which 

requires a high degree of inhibitory control (Garavan, Ross, & Stein, 1999). Importantly, the 

regions of the RH associated with the go no-go task (the inferior frontal gyrus, middle frontal 

gyrus, insula and inferior parietal lobe), are also activated for other “inhibitory” tasks, such as the 

Wisconsin Card Sorting Test, WCST(Stuss, et al., 2000), which requires sorting cards according 

to one criteria (e.g. colour of the card), and shifting this sorting according to another criteria (e.g. 

number of items on the card) without being explicitly told the sorting rule (Konishi et al., 1999).  

An alternative view to either the bilateral control network, or the role of the RH in 

inhibition, is that the RIFG is recruited when LIFG is insufficient. According to this view, there 

is no strong functional division - at least for manipulations of semantic control demands - since 

selection and inhibition are two sides of the same coin (Simmonds & Mostofsky, 2008), and 

inhibition requires selecting the appropriate item, and correct selection requires inhibiting 

inappropriate items. Indeed, the role of RIFG has been further investigated to clarify whether this 

region is involved in motor response inhibition per se, or whether it is involved in responding to 

cues, which requires some aspects of inhibition/ selection (Hampshire, Chamberlain, Monti, 

Duncan, & Owen, 2010; Hampshire, Thompson, Duncan, & Owen, 2009). Hampshire et al. 

(2010) presented multiple arrows, most of which were left or right. Occasionally, an up arrow 

appeared, which formed a cue for an additional behaviour. During the COUNT condition, 

participants counted the total number of up arrows; the RESPOND condition required responding 

with the preceding arrow (either left or right); in the INHIBIT condition, participants were required 

to respond to all left and right arrows, but withhold responding whenever an up arrow occurred. 

The researchers found activation in the bilateral frontoparietal network to all conditions. 

Additionally, it was the right parietal cortex which showed the greatest activation to the INHIBIT 
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condition; while the RIFG, like the LIFG, was recruited most during the RESPOND condition, but 

also showed activation to the INHIBIT condition, and some activation to the COUNT condition.  

Authors suggest that inhibition tasks are confounded with the detection of the cue to stop 

responding (target detection). It may be target detection in general, rather than inhibition, which 

is related to activity within RIFG (which is why it activated during the RESPOND condition). 

However, it is involved in switching attention between objects which are more dissimilar 

(Hampshire, Thompson, Duncan, & Owen, 2008), and these results could be interpreted as 

requiring ‘inhibition’, as the RESPOND condition required inhibiting the current arrow direction 

(up) and reporting the previous arrow direction, like an n-back task.  

If the RH is involved in task switching, be that through oriented attention or inhibition of 

a previous response (which may be related), one would expect patients with damage to this brain 

region to show impairments of both semantic and non-semantic executive tasks that involve task 

switching. Evidence from patient data has supported the fMRI claims that the right hemisphere is 

related to tasks involving inhibition and switching. Aron et al. (2003) studied reaction times in 

go no-go tasks, in particular how long it took a participant to stop after a signal. They found that 

volume of lesion damage to the right inferior frontal cortex directly correlated with time taken to 

stop after a signal (r = .83). Additionally, “switching” tasks such as the WCST also showed 

correlation with RIFC damage (Aron, et al., 2004). Therefore, the RIFG does appear to have a 

different role to LIFG in executive control.  

Posterior middle temporal gyrus (pMTG) 

Semantic control studies showing the LIFG involvement in semantic control have 

commonly found a second peak of activation in the pMTG (Badre & Wagner, 2007; Noonan, et 

al., submitted; Thompson-Schill, et al., 1997). This activation follows the same pattern as the 

LIFG, and is influenced by association strength and number of targets (Badre, et al., 2005; 

Thompson-Schill, et al., 1997; Wagner, Maril, et al., 2001), plus ambiguity (Bedny, McGill, & 

Thompson-Schill, 2008; Gennari, MacDonald, Postle, & Seidenberg, 2007; Rodd, Davis, & 

Johnsrude, 2005; Snijders et al., 2009; Whitney, Grossman, & Kircher, 2009). Both pMTG and 

LIFG show a smaller response when the dominant meaning of a homonym is probed, compared 

with a less frequent alternative (Copland, de Zubicaray, McMahon, & Eastburn, 2007; Copland 

et al., 2003; Grindrod, Bilenko, Myers, & Blumstein, 2008; Zempleni, Renken, Hoeks, 
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Hoogduin, & Stowe, 2007). pMTG is also influenced by depth of meaning processing – 

activating more with meaning processing of words in relation to syllable judgements (Price, 

Moore, Humphreys, & Wise, 1997). A TMS study (Whitney, et al., 2012) found that selective 

TMS to the pMTG had a negative effect on reaction time to a semantic task involving weak 

semantic association pairing. This effect was indistinguishable from TMS over LIFG, and did 

not have any effect on decisions which were not executively demanding (pairing words which 

had a strong association).  

Although much of LIFG is domain general, the anterior LIFG (BA 47; aLIFG) has been 

shown to activate during semantic tasks (Devlin, et al., 2003; Gold & Buckner, 2002). The 

pMTG shows the same pattern as aLIFG. These regions do not activate during non-semantic 

tasks, suggesting a circumscribed role in semantic processing and semantic control (Noonan, et 

al., submitted). Whitney et al. (2011) used rTMS to pMTG and aLIFG, and found disruption only 

for semantic control tasks. A non-semantic control task involved matching a local letter 

(embedded within a different global letter shape) with a probe letter (the Navon task). This was 

not impaired after rTMS to pMTG. The pMTG seems to play a role in semantic control which 

does not translate to other domains (Dosenbach, et al., 2008; Duncan, 2006, 2010; Nagel, et al., 

2008).  

As mentioned previously, Badre et al.’s (2005) two-step model of semantic control 

involves (i) initial controlled retrieval, and (ii) post-retrieval selection. These authors suggest the 

pMTG is only involved in retrieval, rather than selection. In agreement with Badre et al.’s model, 

the temporoparietal (TP) region is sensitive to repetition of stimuli, suggesting a role in initial 

retrieval of previously learnt items which is reduced after retrieval has already occurred. Jiang 

and colleagues (2000) examined the effect of repetition in a neuroimaging study, for both targets 

and distractors. Participants were given a target face to remember, and then viewed many 

different faces rapidly and in succession. Their task was to press a button when they saw the 

target. Both the target and distractors repeated. They found that RIFG and insular regions were 

activated with the presentation of a target face, regardless of how many times it had been 

presented. In contrast, extrastriate regions extending to temporoparietal cortex were associated 

with stimulus repetition, with activation decreasing over repetitions regardless of whether the 

stimulus was a target or distractor.  
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It would be expected that areas associated with initial retrieval activate more for 

ambiguous words, because both/all meanings of the word are retrieved. Whitney et al. (2011) 

used relatedness judgement task on the last word of a triplet, participants were asked whether the 

last word related to any of the preceding items. This was either related to a single meaning of the 

item (e.g., LION-STRIPE-TIGER), or in an ambiguous condition, related to two different concepts of 

a homonym (e.g., GAME-DANCE-BALL). There were either two primes, or a single prime (being 

the dominant or subordinate meaning of the homonym) presented with an unrelated word. When 

two meanings of a homonym were activated (e.g., GAME-BALL-DANCE) in comparison to a single 

prime (e.g., BREAD-DANCE-BALL), only left mid-ITG (BA 20) showed activation. This was also 

true in the non-ambiguous double prime condition (e.g., LION-STRIPE-TIGER). A subordinate, in 

relation to dominant meaning of a single prime increased activation in prefrontal (BA 44, 45, 47) 

and pMTG regions. This suggests that pMTG activation is related to the semantic control 

demands of the task, rather than retrieval demands per se.  

As well as literature on semantic control, both advocates of the ‘hub and spoke’ theory, 

and the ‘distributed only’ view suggest the pMTG is involved in semantic representations of 

tools and actions, as a ‘spoke’ (Patterson, et al., 2007). For example, distortion-corrected fMRI 

has shown paired pMTG and ATL activation during amodal semantic processing, suggesting 

they are strongly connected, and may reflect shared representational processing (de Zubicaray, 

Rose, & McMahon, 2011; Visser, Embleton, et al., 2012). Although the motor representations 

for tools actions are thought to be stored in a more dorsal region, largely centering on the parietal 

cortex (Johnson-Frey, 2004), ‘action semantics’ is thought to focus on the pMTG (Chao, Haxby, 

& Martin, 1999; Kellenbach, Brett, & Patterson, 2003; Martin, Haxby, Lalonde, Wiggs, & 

Ungerleider, 1995; Martin, et al., 1996). For example, using voxel-based lesion-symptom 

mapping of 43 stroke patients, damage to pMTG and not LIFG was predictive of performance on 

a recognition task, matching a written word (e.g., HAMMERING), to a video corresponding to that 

word (Kalenine, Buxbaum, & Coslett, 2010). However, this study, and many others, did not use 

a non-tool control task, so activation may simply reflect semantic retrieval which may also be 

evident for demanding non-tool items.  

fMRI activity has been found pMTG activation to be greater for pictures of actions (a 

person sawing) compared to the object alone (SAW), as well as being more active for noun-verb 

homonyms like HAMMER and COMB compared to pure object words (Chao, et al., 1999; Gennari, 
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et al., 2007; Kable, Kan, Wilson, Thompson-Schill, & Chatterjee, 2005; Tranel, Martin, 

Damasio, Grabowski, & Hichwa, 2005). However, although the area is dwarfed by studies of 

retrieval of tools, animal retrieval has also been found to activate the pMTG (Martin & Chao, 

2001). Additionally, it is not always the temporal lobe which appears necessary to functional 

knowledge (Goldberg & Spatt, 2009; Pelgrims, Olivier, & Andres, 2011), and a wide range of 

cortical regions have been implicated in tool knowledge, particularly inferior frontal regions and 

superior parietal lobe (Lewis, 2006). Thus, it remains unclear whether activation of the pMTG is 

associated with representation of tools, or whether it is simply because ‘tool’ tasks tend to be 

more semantically demanding – e.g., involving videos or pantomiming gestures.  

A number of studies have detected semantic comprehension deficits resulting from 

posterior cortical damage. Hart & Gordon (1990) found comprehension problems were 

connected with damage to specific temporal and parietal areas (see also Bates et al., 2003; 

Binder, Desai, Graves, & Conant, 2009; Chertkow, et al., 1997; Dronkers, et al., 2004; Hickok & 

Poeppel, 2004, 2007). However, this pMTG region which has been labelled a ‘spoke’ appears to 

be similar to that suggested to be involved in semantic control (Hoffman, Pobric, Drakesmith, & 

Lambon Ralph, 2011; Whitney, Kirk, O'Sullivan, Lambon Ralph, & Jefferies, 2011).  

However, other authors have suggested a different role for this region in semantic 

processing. Some authors (Hickok & Poeppel, 2004, 2007; Indefrey & Levelt, 2004; Turken & 

Dronkers, 2011) suggest that the pMTG provides a lexical interface between words and 

meanings, mapping between phonological forms of words which are processed in Wernicke’s 

area, and semantic knowledge which is distributed in the temporal lobe. However, it is important 

to note that pMTG involvement has been found for entirely non-verbal picture tasks (Hoffman, 

Pobric, et al., 2011; Kable, Lease-Spellmeyer, & Chatterjee, 2002; Kellenbach, et al., 2003), and 

many (e.g., Saygin, et al., 2003) have found overlapping areas involved in verbal and non-verbal 

comprehension in temporal and parietal regions (see also Lewis et al., 2004; Martin, 2007). 

pMTG is involved in semantic judgements for non-verbal items, such as actions relating to 

pictured objects (Kellenbach, et al., 2003), and in word and picture semantic association tasks 

(Hoffman, Pobric, et al., 2011; Visser, Jefferies, et al., 2012). 

Turken and Dronkers (2011) suggest that the pMTG’s interaction with LIFG allows 

sustained short-term memory representations, to integrate contextual meaning (see also Lerner, 
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Honey, Silbert, & Hasson, 2011). This may be why the pMTG region is vital for both tool 

representations and semantic control, given tool use is context dependent and requires an online 

interaction between the tool, the subject, and motor responses  (Jefferies, in press). Evidence 

suggests this region has rich connections with other temporal, frontal, parietal and occipital 

regions (Turken & Dronkers, 2011). BA 47 is engaged only when successful performance 

depends on the ability to keep track of several pieces of information and to resolve between the 

alternative interpretations of sentence components. This could be achieved by reciprocal 

interactions between BA 47 and the MTG, so that the appropriate lexical-semantic 

representations can be selected, sustained in short-term memory throughout sentence processing, 

and integrated into the overall context.   

 

Dorsal angular gyrus (dAG)/IPS boundary 

Another small site of activation found during semantic control tasks is the dorsal angular 

gyrus (dAG), bordering and potentially extending into the IPS (Binder, et al., 2009; Devlin, et 

al., 2003; Mummery, Patterson, Hodges, & Price, 1998; Seghier, Fagan, & Price, 2010). This 

activation encompasses many elements of semantic processing, including plausibility processing 

(Mashal, Faust, Hendler, & Jung-Beeman, 2009), sentence processing (Obleser & Kotz, 2009), 

and word triad tasks (Simmons, Miller, Feinstein, Goldberg, & Paulus, 2005). Additionally, 

areas of the parietal lobe, including the dAG, also show activation on a broad range of executive 

control tasks, such as go/no-go response inhibition (Menon, Adleman, White, Glover, & Reiss, 

2001), Stroop tasks (Marek et al., 2010) and flanker tasks (Hazeltine, Bunge, Scanlon, & 

Gabrieli, 2003; see also Seghier, et al., 2010; Whitney, et al., 2012; Woolgar, et al., 2011). This 

is unlike other areas of the semantic control network, which show specificity to semantics. This 

has led to the conclusion that a network encompassing the fronto-parietal regions are involved in 

executive control (Collette, Hogge, Salmon, & Van der Linden, 2006; Duncan, 2010; Gold & 

Buckner, 2002). Evidence comes from rTMS, which shows disruption to IPS leads to a different 

pattern of behaviour to disruption to pMTG or aLIFG – rTMS reduces performance on a non-

semantic Navon task, as well as semantic control of a specific task which requires orienting to a 

semantic feature (Whitney, et al., 2012). Evidence suggests that this brain region is critical for 

tasks involving feature selection (e.g., colour – matching BLOOD with BEETROOT), and not 
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necessary for global semantic associations (Whitney, et al., 2012), which may not require 

orientation of attention to a specific semantic feature to the same degree. Both of these tasks 

have a common feature - that of orienting attention to the task appropriate aspect of an item. 

Indeed, orienting attention to a semantic category activates the same region which is involved in 

attention to particular semantic features or spatial locations (Cristescu, Devlin, & Nobre, 2006; 

Cristescu & Nobre, 2008; Woolgar, et al., 2011). This suggests the dAG is involved in allocating 

attention to internal and external representations beyond the semantic domain.  

 

Research themes 

Theme 1: The multimodal nature of semantic aphasia 

 ‘Access’ and SA patients seem to show similar patterns of behaviour on a number of 

semantic tasks, but because they have been studied by different groups of researchers, it is useful 

to consider to what extent ‘access’ and SA patients overlap. This is because it may be the case 

that one theory can describe both patients’ behavioural characteristics. A defining feature of 

‘access’ patients is that they show refractory effects in the verbal modality. Jefferies et al. (2007) 

showed that SA patients show refractory effects in verbal tasks (like ‘access’ patients, 

Warrington & McCarthy, 1983). However, ‘access’ patients do not show multimodal deficits – a 

defining feature of SA. According to the amodal hub theory, an amodal semantic store is 

interacting with an amodal executive control network (Jefferies & Lambon Ralph, 2006), with 

there being no reason why one modality would be more affected than another with regards 

semantic control.  

The hypothesis tested in this thesis is that SA patients have an intact semantic store, but 

impaired semantic control processes and mechanisms associated with task-specific retrieval and 

selection. The cyclical matching task was tested across spoken-verbal, visual and non-verbal 

auditory domains to see if SA cases would show parallel refractory effects across these different 

input modalities.   
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Theme 2: An input processing deficit leading to reduced semantic control in a 

single modality 

‘Access’ patients show refractory deficits only for verbal materials (Crutch & 

Warrington, 2008b; Warrington & Crutch, 2004), and this appears to pose a problem for Jefferies 

and Lambon Ralph’s (2006) theory of a multimodal control network, and in particular, the way 

this theory was extended to explain refractory effects in SA. If refractory effects are linked to 

domain-general executive dysfunction (and/or disruption of amodal semantic control processes), 

as in SA, these effects would not be expected to be specific to verbal information.  

How might we account for refractory effects restricted to the spoken word domain, as in 

the classic ‘access’ pattern? The possibility described in Chapter 3 is one of an amodal semantic 

control deficit which is paired with an input processing deficit. If this was the case, we would 

expect deficits in all modalities when the task is demanding enough. Additionally, performance 

on all auditory tasks (semantic and non-semantic) would be severely impaired in relation to other 

modalities. ‘Noisy’ auditory input could lead to error-prone activation of amodal concepts in 

ATL, not associated with executive control deficits, but restricted to the auditory domain. It is 

not disputed that it is possible to have damage limited to the input of speech (e.g., pure word 

deafness), with isolated impairment of speech discrimination despite good hearing ability and 

preserved functioning in other domains of language, usually occurring from bilateral superior 

temporal lobe damage (Badecker, 2005; Slevc, Martin, Hamilton, & Joanisse, 2011; Stefanatos, 

Gershkoff, & Madigan, 2005). This is supported by neuroimaging studies, which have shown 

activation in superior temporal cortex when subjects are presented with speech sounds in contrast 

to no sounds (Binder et al., 1994; Howard et al., 1992; Price et al., 1996; Wise, et al., 1991). 

Additionally, STS regions activate for non-word conditions - such as pseudo-words, syllables or 

reversed speech (Benson et al., 2001; Binder et al., 1999; Binder et al., 2000; Demonet et al., 

1992; Demonet, Price, Wise, & Frackowiak, 1994; Hirano et al., 1997; Wise, et al., 1991). It may 

be that poor input to STS can usually be compensated for by executive control, so the effects of 

mild damage to both (input and control) would be multiplicative. This would lead to deficits in 

semantic control across domains, with an accentuated semantic control deficit in the verbal 

domain. The distributed semantic control network is thought to include the LIFG, pMTG and 

dAG. The pMTG is adjacent to the auditory association cortex, and so if patients have a lesion 
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involving pMTG, it is likely that this will have also affected auditory cortex, leading to deficits 

which are more pronounced in the auditory domain (Howard, et al., 1992; Knight, Scabini, 

Woods, & Clayworth, 1989; Scott, Blank, Rosen, & Wise, 2000). 

We analysed an individual patient, DNe, who showed refractory effects in the spoken-

verbal but not in non-verbal domains – either picture-picture matching, sound-picture matching 

or written words-picture matching (Experiment 2). He showed the same pattern as ‘access’ 

patient AZ (Warrington & Crutch, 2004). Therefore, we were interested in testing whether he 

showed any impairment on executive control tasks, or difficulties in ‘high’ in relation to ‘low’ 

control demanding tasks. We tested the hypothesis that DNe had a mild semantic control 

impairment across modalities, paired with an input processing deficit for the auditory domain by 

assessing his semantic control performance on a range of tasks across modalities.  

Theme 3: Multimodal control deficits in patients with anterior or posterior lesions 

SA patients can have damage to prefrontal regions which often also extend posteriorly 

(PF+) or temporoparietal regions (TP-only). However, patients with these two lesion types have 

for the large part been studied in a group together, for two reasons. Firstly, neuronal damage 

after stroke is often broad and affects both prefrontal and temporoparietal regions, as these 

regions are both supplied by the middle cerebral artery, and either a clot or haemorrhage which 

alters normal blood flow in the temporoparietal region often also affects flow to prefrontal 

regions. Secondly, when patients are recruited on the basis of detailed neuropsychological 

testing, sample sizes are typically low (voxel-based lesion-symptom mapping studies can 

account for a single behaviour/ group of behaviours with large samples sizes, such as in Baldo, 

Schwartz, Wilkins, & Dronkers, 2006; Robinson, Shallice, Bozzali, et al., 2010; Schwartz, et al., 

2009). Stroke patients with PF+ or TP-only lesions show no notable differences on a range of 

semantic tasks (Berthier, 2001). For example, there is equal impairment on semantic tasks such 

as the Pyramids and Palms test (PPT), item naming or word-picture matching, Camel and Cactus 

tasks (CCT) in word and picture modalities, and category fluency (see background assessments 

in Jefferies, et al., 2007; Jefferies & Lambon Ralph, 2006; Jefferies, Patterson, et al., 2008). 

Tasks which manipulate semantic control, for example by using distantly related words, also 

show similar control deficits for PF+ and TP-only patients (Corbett, Jefferies, & Lambon Ralph, 

2009; Noonan, et al., 2010). Additionally, both lesion locations also show equal improvement to 
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external constraints, such as cues (Jefferies, Patterson, et al., 2008).  

However, despite many similarities, some differences have emerged. Prefrontal patients 

are nearly always less fluent than TP-only patients (Berthier, 2001). Additionally, several 

different authors (Campanella, Mondani, Skrap, & Shallice, 2009; Gardner et al., 2012; Jefferies, 

et al., 2007; Schnur et al., 2009) have found refractory effects correlating with lesion of the 

LIFG, but reduced or non-existent refractory effects in TP-only patients. That is to say, although 

TP-only patients showed reduced accuracy to the same degree as PF+ patients on the first cycle, 

they are unaffected by the repetition of stimuli, and do not worsen over time. This suggests that 

the temporoparietal region is less involved in the re-selection of targets, following their 

inhibition as distractors, as required for this required for this refractory task.  

Chapter 4 will describe the similarities and differences between patients, and pull apart 

three main hypotheses which explain the differences in patient performance. (1) Firstly, the 

temporoparietal region may be involved to a lesser extent in all aspects of semantic control – 

with an equivalent function.  This is a plausible hypothesis given fMRI data, which shows higher 

peaks and broader spread of activation in the LIFG compared to the temporoparietal region, 

across studies which publish whole brain analyses (see Noonan, et al., submitted). It is possible, 

however, that this may be caused by a reporting bias, with many researchers focusing on 

prefrontal regions in relation to control – for example, through the use of region of interest 

analyses that target LIFG but not pMTG (Badre & D'Esposito, 2007; Thompson-Schill, et al., 

1997). (2) A second hypothesis is that the temporoparietal region is specifically important for 

certain types of semantic items. In particular, research focusing on “tools” has suggested the 

pMTG as a region involved in action semantics, mediating between primary visual motion 

regions and temporal semantic stores (see above). Often, categories are grouped together in 

reported patient performance, so it is impossible to tell TP-only patients have particular problems 

with certain items. However, while there are category effects within posterior temporal cortex in 

neuroimaging studies (Martin, et al., 2000; Martin, et al., 1996; Phillips, Humphreys, Noppeney, 

& Price, 2002; Wagner, Paré-Blagoev, et al., 2001), this theory does not anticipate sensitivity to 

semantic control demands in both prefrontal and TP-only cases. (3) The final theory, with the 

most evidence to support it, suggests that the semantic network regions each play a different role 

in semantic control. This would agree with Badre et al.’s (2005) two-step model of semantic 

control: initial retrieval of previously learnt items, with more retrieval demands on items with 
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multiple meanings, followed by selection among activated and competing items is required to 

make task and context dependent decisions (see also Thompson-Schill, et al., 1997; Wagner, 

Maril, et al., 2001). The temporoparietal region is not thought crucial for “selection”.  

We will test these hypotheses by comparing TP-only, PF+ and SD patients’ performance 

on range of semantic tasks, assessing item consistency, effects of increased semantic control 

demands, cross modal task performance, and picture naming errors. This will add to the 

comparison in Chapter 2 of refractory effects in PF+ and TP-only patients.  

 

Theme 4: The semantic control network involving right hemisphere regions: a 

multimodal control deficit  

Both domain-general executive control (Duncan, 2010) and semantic representations 

(Lambon Ralph & Patterson, 2008) occur bilaterally and amodally. However, semantic 

representations are thought to be more prominently stored in left ATL (Lambon Ralph, et al., 

2001; Mummery et al., 2000; Visser, Jefferies, et al., 2010), and neuroimaging data on semantic 

control has found much greater activation in left compared to right control regions (Noonan, et 

al., submitted; Thompson-Schill, et al., 1997; Thompson-Schill, D'Esposito, & Kan, 1999; 

Wagner, Paré-Blagoev, et al., 2001). There are certain specialisations between the hemispheres 

(Snowden, Thompson, & Neary, 2004). Both hemispheres seem to show some degree of 

specialisation in both the nature of the semantic representations and what is being processed, and 

also the nature of the control processes (as mentioned above; Aron et al., 2004). Because of this, 

it is unclear whether: (1) a semantic control deficit like that seen in SA would occur with RH 

stroke to the same extent, (2) or whether a control deficit would occur with only certain stimuli 

which is stored in the right ATL, (3) or if no semantic control deficit would be found at all, given 

the LH is intact.  

Processing differences 

Despite the bilateral nature of semantic cognition, there are functional specialisations at 

all levels of processing. In terms of initial interpretation of sensory input, there is evidence that 

the RH is specialised for configural processing, that individual aspects of an item are not 

explicitly represented and are coded only to contribute to the overall picture (Farah, Wilson, 
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Drain, & Tanaka, 1998; Murray, Yong, & Rhodes, 2000; Rossion & Gauthier, 2002; Wilkinson 

et al., 2009). Conversely, but to much less of an extent (Martinez et al., 1997), the LH is thought 

to be more analytical (Levy-Agresti & Sperry, 1968), with serial (Sergent, 1982) and local 

processing (Hubner & Studer, 2009; Robertson & Lamb, 1991; Schlosser, Hubner, & Studer, 

2009; Van Kleeck, 1989). The visual-word form area (VWFA) is located in the left mid-fusiform 

(Cohen & Dehaene, 2004), and the fusiform face area (FFA) is in a virtually identical region in 

the RH – although this is marginally anterior to the VWFA (Gauthier, Skudlarski, Gore, & 

Anderson, 2000). Because of this processing specialisation, each hemisphere dominates 

processing of different stimuli (language or vision), though there is debate about whether these 

regions are specialised solely for words (Cohen & Dehaene, 2004; Price & Devlin, 2003) and 

faces (Bukach, Gauthier, & Tarr, 2006; Gauthier & Palmeri, 2002; Palmeri & Gauthier, 2004; 

Tarr & Gauthier, 2000), or instead relate to the type of processing required (Dien, 2009). 

 Prefrontal and temporoparietal regions are vulnerable to stroke in the RH as well as the 

left. This evidence suggests that there will be differences between LH and RH stroke cases in 

presemantic processing deficits. There may also be semantic control impairments which emerge 

differently between LH and RH stroke patients due to access impairments of semantic 

representations in the left and right ATL respectively.  

Representational differences 

Following from these processing specialisations, there is evidence for representational 

specialisations too, for: (1) pictures, and most notably, emotions (Haxby, Hoffman, & Gobbini, 

2000; Kanwisher, McDermott, & Chun, 1997; Pitcher, Walsh, Yovel, & Duchaine, 2007); and 

(2) higher-level language processing, such as metaphors (Bottini et al., 1994; Jung-Beeman, 

2005). Certain semantic tasks, such as the Camel and Cactus task in picture form (CCTp), are 

correlated with damage to the RH basal fusiform region within the ATL (Mion, et al., 2010). 

Snowden, Thompson and Neary (Snowden, et al., 2004) found that SD patients with greater RH 

atrophy were more impaired at recognising faces than names (see also Kriegeskorte, Formisano, 

Sorger, & Goebel, 2007; Lambon Ralph, et al., 2001). Different inputs to ATL might result in 

graded specialisation for the LH and RH (Damasio, 1989a).  

Besides from literature on faces, a line of research explores the role of the RH in 

language. There is evidence that there is bilateral prefrontal activation for normal language 
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processing (Vigneau, et al., 2011), with areas of the RIFG involved in semantic control (Noonan, 

et al., submitted) The RH clearly has capacity for language processing, as it has been shown to 

aid language recovery after LH damage (Cambier, Elghozi, Signoret, & Henin, 1983; Finger, 

Buckner, & Buckingham, 2003; Heiss, Kessler, Karbe, Fink, & Pawlik, 1993), and rTMS to both 

LIFG and RIFG disrupted verb-generation in LH tumour patients, but rTMS only affected 

controls on LIFG (Thiel et al., 2005; Winhuisen et al., 2005). This suggests that reorganisation of 

the language function is possible in slowly progressing conditions. Indeed, increased RH 

activation in the chronic phase of stroke suggests its involvement in functional reorganisation of 

language functions (Thulborn, Carpenter, & Just, 1999; van Oers et al., 2010; Weiller et al., 

1995), with early activation thought to correspond to reduction of normal LH transcallosal 

inhibition (Price & Crinion, 2005), which may explain the limited role of the RH in healthy 

subjects. However, the phase of stroke recovery affects how successful the RH is in 

reorganisation. Saur et al. (2006) repeated fMRI language tasks with stroke patients, and found 

that in the acute phase (2 days post stroke), there was little activation of the normal language 

regions (or RH), while the sub-acute phase (12 days post stroke) showed swathes of activation in 

both LH and right Broca-homologue. There was also a strong correlation between improved 

language function and increased RH activation. In the chronic phase (a year post stroke), 

normalized activation occurred, with a shift back to LH regions, also correlated with language 

improvement. This change in function of the RH may reflect inconsistencies in the literature of 

the usefulness of this region post stroke (Naeser et al., 2005; Perani et al., 2003; Rosen et al., 

2000). This also suggests that the RH is not well-optimised for language processing.  

Indeed, in split-brain patients, the RH shows little functions of syntax and phonology 

(Bogen, 1997; Gazzaniga, 1983, 2000; Gazzaniga, Smylie, & Baynes, 1984; Sperry, 1982). fMRI 

shows the RH plays little role in simple access from words to meaning (Vigneau, et al., 2011), 

but bilateral activation is common for more demanding tasks, such as making semantic 

associations (Booth et al., 2002; Vingerhoets et al., 2003), categorization (Bright, et al., 2004), 

word generation (Kircher, Brammer, Tous, Williams, & McGuire, 2001) or selection (Wagner, 

Paré-Blagoev, et al., 2001), and sentence comprehension (Crinion, Lambon Ralph, Warburton, 

Howard, & Wise, 2003; Meyer, Steinhauer, Alter, Friederici, & Von Cramon, 2004). Peaks of 

activation in the RH are much weak are less frequently reported than in the LH (Vigneau, et al., 
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2011). This has led to a strong body of evidence which claims that the LH plays a more 

prominent role in language processing.  

However, RH patients’ problems can be thought of in two ways: (1) RH patients have a 

loss of knowledge about more distant semantic representations, and so have an impaired ability 

to comprehend metaphors, or (2) metaphors are distant, less literal, and more abstract – and 

metaphorical interpretations require more control. It is hard to separate these possibilities 

experimentally, but since, as noted above, neuroimaging studies have found bilateral activation 

(e.g., in IFG) for contrasts focussing on semantic control, RH cases could conceivably have 

damage to executive semantic processing, similar to that seen in SA cases with LH stroke. SA 

patients are highly sensitive to the degree to which conceptual processing is constrained by the 

task: they can access semantic information in circumstances that minimise the executive 

requirements, but not in more open-ended tasks. Therefore, in Chapter 5, we tested the 

hypothesis that RH patients might show a similar pattern: i.e., can understand metaphors when 

the executive demands of processing metaphorical interpretations are reduced. Indeed, patients 

with RH lesions have been shown to be inconsistent and highly sensitive to task demands: they 

performed more poorly than LH aphasics on a picture metaphor task, giving more literal 

responses (Winner & Gardner, 1977), but they were within the normal range for metaphor 

sentence comprehension, leading to the suggestion that patients are unable to identify the 

appropriate situation in which a specific expression is suitable (Brownell, Simpson, Bihrle, 

Potter, & Gardner, 1990; Foldi, Cicone, & Gardner, 1983; Myers, 1983; Rehak, Kaplan, & 

Gardner, 1992; Rinaldi, Marangolo, & Baldassarri, 2004; Zaidel, Kasher, Soroker, & Batori, 

2002). Of course, it may be the case that there are different control demands for pictures and 

sentences with regards metaphors, as picture distractors are highly attractive as a very concrete 

way to capture some of the metaphoric expression, not found in word versions of the task. 

The idea that the RH is involved in higher-order language comprehension is well 

documented (Beeman, 1998; Fersti, Neumann, Bogler, & Yves von Cramon, 2008; Tompkins, 

Fassbinder, Scharp, & Meigh, 2008; Vanhalle et al., 2000). Many studies, for example, have 

found presenting metaphors for comprehension in the right visual field (RVF, ‘left hemisphere’) 

compared with the left visual field (LVF, ‘right hemisphere’), leads to an increased reaction time 

in comprehension (Anaki, Faust, & Kravetz, 1998; Faust & Mashal, 2007; Faust & Weisper, 

2000; Schmidt, DeBuse, & Seger, 2007). RH involvement has also has been found in lexical 
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ambiguity tasks, including comprehension of homonyms (Klepousniotou, 2002; Klepousniotou 

& Baum, 2005a, 2005b). Jung-Beeman (2005) proposed a ‘coarse-coding’ model of the RH, 

which suggests that all stages of semantic cognition (which he describes as activation, integration 

and selection) involve both hemispheres, but that “the hemispheres compute information 

differently, such that the RH performs relatively coarser semantic coding...The two hemispheres 

probably store similar representations, but differ in the way they dynamically access 

information.” (p.513). The premise of the model is that the RH stores weak but diffuse 

representations of all semantic items, so that it is unnecessary for many tasks, but important for 

more unusual connections, for example, in metaphors. If it is the case that the RH stores these 

representations, then damage to RH ‘control’ mechanisms could produce deficits in language 

tasks (or non-verbal tasks) which require comprehension of distant or weakly related items, but 

only in high demand conditions.  

Coarse coding occurs early (Gernsbacher, 1990; Kintsch, 1998), with irrelevant 

activation dampened down in a later phase of comprehension. For example, those with RH 

lesions and controls show the same degree of priming for close features e.g., APPLE with 

CRUNCHY, but not subordinate features e.g., APPLE with ROTTEN (Tompkins, et al., 2008). This 

has also been explained by a similar theory, the graded salience hypothesis (Giora, 1999, 2009), 

which suggests that the LH has privileged access to meanings stored in the lexicon of highly 

salient items. Salience is determined by “conventionality, frequency, familiarity, and 

prototypicality” rather than literality or context (Giora, Zaidel, Soroker, Batori, & Kasher, 2000). 

The RH is thought, therefore, to be involved in non-salient (or novel) meaning retrieval (Giora, 

2007). Both the ‘coarse coding’ and ‘graded salience’ hypothesis suggest it is not necessarily the 

type of language process (such as metaphor comprehension), but the salience, or coarseness, of a 

meaning relating to a word or phrase.  

fMRI evidence for the RH involvement in metaphors is a little less convincing than 

patient work. For example, Stringaris et al. demonstrated that metaphoric sentences (in 

comparison to literal sentences) show more LIFG activation – not RIFG (Stringaris et al., 2006), 

and often studies which find involvement of the RH in metaphor comprehension find either 

equivalent activation in both hemispheres (Lee & Dapretto, 2006; Rapp, Leube, Erb, Grodd, & 

Kircher, 2004), or the majority of activation in the LH for language tasks – even for non-literal 

language processing (Rapp, Erb, Grodd, Bartels, & Markert, 2011; Rapp, Leube, Erb, Grodd, & 
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Kircher, 2007; Rapp, Mutschler, & Erb, 2012). Few, however, find no activation located in the 

RH (Chen, Widick, & Chatterjee, 2008; Mashal & Faust, 2010).  Many maintain that the RH is 

primarily an ‘overflow’ hemisphere, used only on particularly demanding tasks (Rapp, et al., 

2004; Yang, Edens, Simpson, & Krawczyk, 2009). For example, a recent meta-analysis found 

only 3 of 16 clusters to be in the RH for comparisons of literal and non-literal stimuli (Rapp, et 

al., 2012), and novel metaphors compared to literal sentences revealed 9 clusters, 1 of which was 

RH. Both this, and a meta-analysis of semantic processing, revealed overall that around 1/3 of 

semantic activation is RH (Binder, et al., 2009).  

Given the mixed evidence, it seems the RH may not be involved in conventional 

metaphors per se, but instead making new or unusual connections between words, such as in 

novel metaphors (Gold & Faust, 2010; Mashal & Faust, 2008; Pobric, Mashal, Faust, & Lavidor, 

2008; Schmidt, et al., 2007), unexpected punch lines (Marinkovic et al., 2011) or making remote 

associations more generally (Gold, Faust, & Ben-Artzi, 2011). This may be due to familiar 

metaphors being stored in a similar way to familiar literal phrases, in the LH. We attempt to test 

the hypothesis that RH patients have deficits to semantic control mechanisms which interact with 

the RH store by adapting semantic control paradigms from SA patients.  

In summary, there seems to be some evidence that the RH is involved in storing some 

aspects of higher-level language processing, particularly for non-salient items. Additionally, it 

has strong links to face and emotion processing and representation. Fronto-parietal networks 

within the RH, along with those in the LH, play a part in executive control. Therefore, it is 

plausible that RH damage will generate similar patterns of semantic control seen after LH 

damage. Damage to semantic ‘control’ regions in the RH will not damage the stored knowledge 

of faces or metaphors, but disrupt access to it in demanding conditions. In Chapter 5, we test the 

hypothesis that RH patients have a deficit of semantic control for items which are processed and 

stored in the RH. This means that face or metaphor tasks which are highly demanding (e.g., 

presenting target items with a prepotent distractors) are more difficult to retrieve and select, and 

so will result in lower performance than targets presented in a way which is less demanding (e.g., 

with unrelated distractors).  
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Thesis structure 

Chapter 2 explores semantic aphasia (SA) patients on a task sensitive to poor semantic 

control, as opposed to a loss of semantic knowledge per se. SA patients show “refractory effects” 

– i.e., declining accuracy in cyclical word-picture matching tasks when semantically-related sets 

are presented rapidly and repeatedly. This is argued to follow from a build up of competition 

between targets and distractors. However, the link between poor semantic control and refractory 

effects is still controversial for two reasons. (1) Some theories propose that refractory effects are 

specific to verbal or auditory tasks, yet SA patients show poor control over semantic processing 

in both word and picture semantic tasks. (2) SA can result from lesions to either left prefrontal or 

temporoparietal cortex, yet previous work suggests that refractory effects are specifically linked 

to left inferior frontal cortex. Verbal, visual and non-verbal auditory refractory effects were 

explored in nine SA patients who had prefrontal (PF+) or temporoparietal (TP-only) lesions. We 

hypothesised that patients would have reduced control over multimodal semantic retrieval, 

leading to similar refractory effects in all modalities. Additionally, we hypothesised that those 

with prefrontal damage may have greater refractory effects, suggesting a functional 

specialisation within the posterior vs. prefrontal elements of the semantic control network.  

Chapter 3 explores reports in the literature of patients with semantic ‘access’ problems 

restricted to verbal materials. These challenge the notion that semantic control processes are 

modality-general and suggest instead a separation of ‘access’ to verbal and non-verbal semantic 

systems. We had the rare opportunity to study a single case who showed refractory effects 

restricted to the verbal domain. We examined the effect of manipulations of control demands in 

verbal semantic, non-verbal semantic and non-semantic tasks, allowing us to assess the 

hypothesis that deficit semantic control/ ‘access’ impairment can follow a modality-specific 

pattern. We hypothesised that our patient had a mild domain general semantic impairment, 

paired with disrupted connectivity from auditory input, giving rise to ‘access’ semantic deficits 

seemingly affecting only the auditory domain.  

Chapter 4 explores the neural underpinnings of executive control. SA patients have 

damage to prefrontal and/or temporoparietal regions. Contemporary accounts of semantic 

cognition frequently acknowledge a division in labour between semantic representations and 

higher level semantic control processes. However, many believe semantic representations are 
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stored in the posterior areas, while semantic control is underpinned by prefrontal regions. 

Evidence from SA patients contradicts this claim, by suggesting that both prefrontal and 

temporoparietal regions make contributions to semantic control. Nonetheless, there is recent 

evidence to suggest the contributions these regions make to semantic control are different. Our 

aim was to compare for the first time SA patients with prefrontal damage (PF+) and those with 

temporoparietal damage (TP-only), in relation to semantic dementia (SD) patients. We 

hypothesised that PF+ and TP-only patients (in relation to SD patients) would show semantic 

control deficits in the following ways: (1) reduced item consistency when the task demands 

changed; (2) influence of task selective semantic retrieval and inhibitory processing; (3) 

attenuated effects of lexical frequency; and (4) evidence of poor semantic regulation in verbal 

output. We expected, however, that PF+ patients would show a greater effect of semantic 

control, given evidence that the prefrontal cortex is involved in more aspects of control than 

posterior regions (Badre et al., 2005). 

Chapter 5 investigates the relationship between semantic control and the RH. The 

semantic control network involves three main regions of the LH (LIFG, pMTG, IPS/dAG), but a 

recent meta-analysis revealed strong activation in the RIFG in a number of semantic control 

studies. Research suggests a subtle specialisation between the hemispheres, with the RH showing 

more involvement in (i) higher-order language processing, particularly of non-salient or distant 

meanings; and (ii) face processing, particularly of emotions. We will explore the possibility that 

SA (LH cases) and RH cases have similar deficits of internal constraint. If this is found, this 

would be evidence that RH semantic control processes are impaired and the knowledge that these 

processes operate on is largely intact.  

Chapter 6 will discuss the findings of this thesis.  
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2. CHAPTER TWO 
 

 

 

 

 

 

 

 

 

 

The differential contributions of prefrontal and temporoparietal cortices to 

multimodal semantic control: Exploring refractory effects in semantic aphasia 
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Abstract 

Aphasic patients with multimodal semantic impairment following prefrontal or 

temporoparietal damage (semantic aphasia – SA) have deficits characterized by poor control of 

semantic activation/retrieval, as opposed to loss of semantic knowledge per se. In line with this, 

SA patients show “refractory effects” – i.e., declining accuracy in cyclical word-picture 

matching tasks when semantically-related sets are presented rapidly and repeatedly. This is 

argued to follow a build up of competition between targets and distractors. However, some 

theories propose that refractory effects are specific to verbal or auditory tasks, yet SA patients 

show poor control over semantic processing in both word and picture semantic tasks. Secondly, 

SA can result from lesions to either left prefrontal or temporoparietal cortex, yet previous work 

suggests that refractory effects are specifically linked to left inferior frontal cortex. For the first 

time, verbal, visual and non-verbal auditory refractory effects were explored in nine SA patients 

who had prefrontal (PF+) or temporoparietal (TP-only) lesions. In all modalities, patient 

accuracy declined significantly over repetitions. This refractory effect at the group level was 

driven by the PF+ patients and was not shown by individuals with TP-only lesions. These 

findings support the theory that SA patients have reduced control over multimodal semantic 

retrieval and, additionally, suggest there may be functional specialisation within the posterior vs. 

prefrontal elements of the semantic control network.  
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Introduction 

Semantic cognition involves the retrieval of information about the meanings of words, 

pictures, sounds and objects, and the application of this knowledge to a specific task or context. 

Evidence from patients suggests that semantic cognition can be impaired in at least three ways. 

First, patients may have degeneration of information within the semantic store itself, as in 

semantic dementia (SD; Hodges, et al., 1992b; Warrington, 1975). Secondly, patients may be 

unable to recognise an object in a specific modality (as in visual agnosia), due to damaged 

connectivity between the sensory input and the semantic store (Catani & Ffytche, 2005). Finally, 

patients may be unable to control activation within the semantic system such that it becomes 

harder for task-relevant aspects to be brought to the fore, as in semantic aphasia (SA; Jefferies & 

Lambon Ralph, 2006).  

Both SD patients (Binney, et al., 2010; Bozeat, et al., 2000; Coccia, et al., 2004), and SA 

patients (Corbett, Jefferies, Ehsan, et al., 2009; Corbett, Jefferies, & Lambon Ralph, 2009; 

Jefferies & Lambon Ralph, 2006), show deficits across modalities, but in qualitatively different 

ways. SA patients do not appear to have damage to core semantic representations, unlike those 

with SD. In particular, this has been shown in a ‘refractory’ effect – their accuracy in word-

picture matching declines when a small set of semantically-related items is presented repeatedly 

and rapidly over a number of cycles (Jefferies, et al., 2007). Refractory tasks are likely to 

produce a build-up of competition across cycles because the items in the set are both targets and 

distractors on different trials, and so the participant has to choose the target among highly 

activated and related distractors (see also Schnur, Schwartz, Brecher, & Hodgson, 2006). 

Research by several other groups has suggested that the semantic storage deficit in SD 

can be contrasted with a ‘semantic access’ disorder observed in some stroke/tumour cases (Forde 

& Humphreys, 1995; Warrington & Cipolotti, 1996; Warrington & McCarthy, 1983; Warrington 

& Shallice, 1979). Unlike SD cases (but similar to SA patients), ‘access’ patients show 

inconsistent performance when semantic tests are repeated and they exhibit refractory effects. 

This refractory pattern is typically accompanied by strong cueing effects and insensitivity to item 

frequency – symptoms which again differentiate access patients from SD. Jefferies et al. (2007) 

examined the possibility that ‘semantic access’ disorder overlaps with the semantic control 

deficit in patients with SA. SA patients were found to display all the classic symptoms of access 
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disorder, including effects of item repetition and speed of presentation, and this refractory pattern 

was linked to poor executive control over semantic activation. However, SA patients with left 

temporoparietal lesions were less sensitive to refractory variables than those with prefrontal 

damage in this study. This is in clear contrast to other manipulations of semantic control, which 

affected both lesion subgroups equally (e.g., Noonan, et al., 2010). 

Several questions remain from this research. First, refractory effects have largely been 

explored in the verbal domain, both in the study conducted by Jefferies and colleagues (2007) 

and in other research (Schnur, et al., 2006; Warrington & Cipolotti, 1996; Warrington & 

McCarthy, 1983). However, the semantic control impairment in SA affects all modalities equally 

(Corbett, Jefferies, Ehsan, et al., 2009; Corbett, Jefferies, & Lambon Ralph, 2009; Jefferies & 

Lambon Ralph, 2006). Therefore, we would expect multimodal refractory effects in these 

patients. In contrast, as noted below, several theories of ‘access’ semantic disorder predict this 

impairment will be restricted to verbal/auditory tasks. Secondly, it is important to confirm 

whether patients with left prefrontal and temporoparietal lesions differ in terms of the influence 

of refractory variables – and to consider how such a difference could be reconciled with the 

semantic control deficits which appear to characterise both subgroups of SA patients. 

 

Verbal-only vs. multimodal refractory effects: There are at least two distinct theories of 

“access” semantic disorders which predict different refractory effects according to modality. The 

first, proposed by Warrington and Crutch (2004), is one of “multiple semantics”. This idea is 

again motivated by the comparison of patients with SD vs. ‘refractory access’ impairment, who 

typically have stroke aphasia. In contrast to patients with SD, assessment of the refractory 

patients has most commonly focussed on comprehension within the verbal modality (McNeil, et 

al., 1994; Warrington & Cipolotti, 1996; Warrington & McCarthy, 1983, 1987). Moreover, the 

existence of individual cases who show refractory effects on verbal but not visual tasks has been 

taken as evidence for a cognitive and neural dissociation between verbal and visual semantic 

systems (Crutch & Warrington, 2008b; Warrington & Crutch, 2004). However, testing for visual 

refractory effects is relatively rare, and where it has been done, there is some debate as to 

whether tasks in different modalities are equally difficult and whether they control for the 

intrinsic differences in the nature of mapping from words or pictures to a concept (see Forde & 

Humphreys, 1997; Lambon Ralph & Patterson, 2003; Shallice, 1987). Therefore, it is still very 
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much open to question whether SA patients have a purely verbal, or a multimodal, refractory 

deficit. 

Another modality-specific theory suggests that refractory deficits result from impairment 

of verbal selection, with increases in lexical competition across cycles (Belke, Meyer, & 

Damian, 2005; Damian, Vigliocco, & Levelt, 2001; Schnur, et al., 2006). According to this 

theory, activation of word nodes spreads to semantic associates, generating competition at the 

stage of lexical production in picture naming. When sets of semantically-related items are 

presented repeatedly for naming, competition becomes stronger. Therefore, the framework 

predicts refractory effects in verbal but not non-verbal tasks, and much stronger refractory effects 

in picture naming compared to word-picture matching tasks. Jefferies et al. (2007) directly 

compared naming and matching tasks, and found SA patients showed refractory impairments in 

both tasks.  

In contrast with these two proposals, several theories predict multimodal refractory 

effects in SA. As discussed above, we have suggested that SA patients have semantic control 

deficits which produce multimodal impairment (Corbett, Jefferies, Ehsan, et al., 2009; Jefferies 

& Lambon Ralph, 2006).  The control network is required to activate the specific subset of 

information within the semantic store, in order to generate time- and task-appropriate behaviour.  

This is particularly demanding when there is strong competition or in more open-ended 

situations, and has been associated with regions in both left prefrontal and temporoparietal cortex 

(Badre, et al., 2005; Thompson-Schill, et al., 1997; Wagner, Paré-Blagoev, et al., 2001; Whitney, 

et al., 2009; Whitney, Jefferies, et al., 2011; Whitney, Kirk, et al., 2011). This kind of controlled 

processing is necessary in both verbal and nonverbal activities (Corbett, Jefferies, Ehsan, et al., 

2009; Jefferies & Lambon Ralph, 2006) and so this theory would predict that the SA patients 

should exhibit refractory effects in all domains, given the correct assessment materials (see 

below).  

Finally, using an implemented model of semantic processing, Gotts and Plaut (2002) 

demonstrated that refractory effects can result from neuromodulatory deficits which generate 

increased synaptic depression, thus reducing the efficiency with which new stimuli can override 

current processing during the refractory period. Although this theory does not explicitly consider 

the issue of modality, if extended to an amodal semantic system, it would predict refractory 
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effects for both verbal and non-verbal tasks, with the effect for both arising from the same 

general neuromodulatory deficit.  

 

Cortical regions associated with refractory semantic deficits: Brain regions damaged in 

SA patients include left prefrontal and/or left temporoparietal cortex (Jefferies & Lambon Ralph, 

2006; Noonan, et al., submitted). Neuropsychological, rTMS and neuroimaging evidence 

suggests these two regions work together to underpin semantic control. Lesions of left prefrontal 

and temporoparietal cortex produce highly similar patterns of semantic impairment (Berthier, 

2001; Jefferies & Lambon Ralph, 2006; Noonan, et al., 2010) plus common deficits in attention 

(Peers et al., 2005). For example, Noonan and colleagues (2010) found no significant differences 

between left prefrontal and temporoparietal cases on a range of tasks that manipulated semantic 

control by varying (i) semantic distance between probes and targets in category matching, (ii) 

associative strength between probes and distractors in synonym judgement, (iii) the presence of 

semantic cues and miscues on picture naming and (iv) semantic ambiguity of the target word. 

Equally, a recent TMS study (Whitney, Kirk, et al., 2011) found that selective TMS to the pMTG 

specifically increased response times on a task requiring greater control over semantic retrieval 

that required participants to retrieve weak associations between probe and target words (e.g., 

SALT with either RADIO, GRAIN or ADULT). This effect was indistinguishable from TMS over IFG, 

and did not have any effect on a task involving more automatic semantic retrieval of strong 

associations (e.g., SALT with PEPPER, MACHINE or LAND). Moreover, functional neuroimaging 

studies of healthy participants reveal that both regions show activation modulated by the 

executive demands of semantic tasks (Noonan, et al., submitted; Whitney, Jefferies, et al., 2011). 

The same findings have been obtained across a wide range of semantic control manipulations, 

tapping selection between competing responses (Thompson-Schill, et al., 1997), controlled 

semantic retrieval (Badre, et al., 2005) and semantic judgements to ambiguous words (Rodd, et 

al., 2005; Wagner, Paré-Blagoev, et al., 2001; Whitney, et al., 2009).  

Despite these similarities, previous studies have suggested that in refractory tasks, 

patients with left prefrontal lesions show stronger effects of stimulus set repetition than those 

with temporoparietal damage, implying a subtle specialisation within this control network.  In a 

cyclical picture naming, Schnur et al. (2006) found increased error rates in Broca’s aphasics, but 

not non-Broca patients. Refractory effects were associated with the degree of damage to left 
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inferior frontal cortex – but not with damage to either posterior temporal or inferior parietal 

regions (Schnur, et al., 2009). Researchers argue that spreading activation causes lexical 

competition within Broca’s area (Schnur, et al., 2006), By this view, refractory effects should 

only occur in verbal production tasks, and in patients with left inferior frontal lesions. Similarly, 

Campanella et al. (2009) studied 20 tumour patients with posterior damage and found that effects 

of word-picture matching set repetition and speed of presentation were very weak. They suggest 

that posterior damage causes pre-semantic lexical “noise”. Finally, Jefferies et al. (2007) found 

only weak refractory effects (i.e., in response times and not accuracy) in naming and word-

picture matching in SA patients with temporoparietal damage, compared with patients whose 

lesions included left prefrontal cortex. Differential performance of these subgroups of SA 

patients   are at odds with the hypothesis that both left prefrontal and temporoparietal regions 

contribute to domain-general semantic control (Jefferies & Lambon Ralph, 2006; Noonan et al., 

2010) and that refractory deficits can be understood in terms of semantic selection/competition 

demands that increase over time (e.g., Jefferies et al., 2007). 

In summary, previous work on this topic highlights two controversial issues which are the 

focus of the current study: (1) comparison of refractory effects across different modalities, and 

(2) lesion location. The current study subdivides SA patients according to the location of their 

brain injury and directly compares them using refractory tasks that probe the same items in 

different modalities across three experiments. In Experiment 1, we contrast word-picture 

matching (WPM) and picture-picture matching (PPM; requiring participants to match visually-

dissimilar exemplars of the same object, e.g., vintage-style dial telephone with modern cordless 

button telephone). In Experiment 2, we compare spoken WPM with environmental sound-picture 

matching (SPM; requiring the sound of ‘barking’ to be matched with a picture of a dog). In 

Experiment 3, we compare word and picture matching tasks that tap associative relationships 

(e.g., the word “train” or a picture of this item, matched to train tracks).  

 

Subjects and Methods 

Patients: Nine aphasic stroke patients (seven male, two female) were recruited from stroke 

clubs and speech and language therapy services in Manchester and York, UK. Following 

previous studies on SA, patients were selected who showed semantic comprehension deficits 
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affecting both words and pictures. They were not chosen to show refractory effects. All patients 

had chronic impairment after a CVA at least one year prior to testing. Three patients had 

transcortical sensory aphasia, with fluent speech but poor comprehension. The remaining six 

patients had less fluent speech and/or poor repetition. Patients were aged between 36 and 83, 

with a mean age of 66 years, as shown in Table 2.1. 

Patient lesion analysis: CT/MRI scans were available for eight patients (see Figure 2.1). Five 

cases (NY, BB, DB, KA and LS) had damage to both left prefrontal and temporoparietal areas 

(PF+) and three (HN, SC and ME) displayed infarcts confined to left temporoparietal cortex (TP-

only). A scan was not available for PG due to contraindications for MRI; however, a radiological 

report indicated a left frontal lesion, so in subsequent analyses he is included in the PF+ group. 

Further details of the patients’ lesions are shown in Table 2.2. The TP-only subgroup all show 

some damage extending anterior along the temporal cortex, but crucially these patients do not 

have damage to regions in the anterior temporal lobe which have been found to store semantic 

representations (Binney, et al., 2010; Mion, et al., 2010). Additionally, the damage is more dorsal 

than studies which show involvement to category specific items, namely the inferior parietal lobe 

(Pobric, et al., 2010b).  
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Table 2.1: Aphasia profiles and demographic information 

Case Age Sex Full-time 

education 

(leaving 

age) 

Aphasia 

classification 

BDAE 

comprehension 

percentile 

BDAE 

fluency 

percentile 

BDAE repetition 

percentile 

Nonword 

repetition 

(% correct) 

Word 

repetition (% 

correct) 

HN 80 M 15 Anomic/TSA NA NA NA 56 86 

SC 76 M 16 Anomic/TSA 37* 90 60 87 98 

ME 36 F 16 TSA 33* 100 100 93 100 

PG 59 M 18 TSA 20** 40* 80 73 91 

NY 63 M 15 

Mixed 

transcortical 47* 37* 40* 40 81 

BB 55 F 16 

Mixed 

transcortical 10** 17** 55* 83 96 

DB 83 M 16 

TSA/ 

Wernicke’s 13** 90 30* 70 85 

KA 74 M 14 Global 0** 23** 0** 0 0 

LS 71 M 15 TSA 13** 90 90 90 96 

NA = information not available. BDAE = Boston Diagnostic Aphasia Examination (Goodglass & Kaplan, 1983). Comprehension percentile is derived from three subtests (word 

discrimination, commands, complex ideational material). Fluency percentile is derived from phrase length, melodic line and grammatical form ratings. Repetition percentile is an 

average of word and sentence repetition subtests. Percentile scores from 0 to 30 were considered “severely impaired” (** denotes severely impaired performance), 31 to 59 as 

“intermediate” (* denotes intermediate performance), and 60 to 100 as good. Word/nonword repetition = Tests 8 and 9 from Psycholinguistic Assessments of Language Processing 

in Aphasia: PALPA (Kay, Lesser, & Coltheart, 1992). Aphasia classifications were based on the BDAE and word/non-word repetition scores. TSA (transcortical sensory aphasia) 

was defined as good or intermediate fluency/repetition and poorer comprehension.  
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Table 2.2: Details of patients’ lesions 

Patient 

Lesion size 

(% of 

template 

damaged)
a
 

Aetiology of 

CVA 

Years 

since 

CVA 

Left 

prefro

ntal 

lesion 

Left 

temporal

-parietal 

lesion 

D
L

P
F

C
 

o
rb

IF
C

 

tr
IF

G
 

o
p

IF
G

 

S
T

G
 

M
T

G
 

IT
G

 

F
G

 

P
O

T
 

A
G

 

S
M

G
 

 

T
P

 

BA9 
BA 

46 

BA 

47 

BA 

45 

BA 

44 

BA 

22 

BA 

21 

BA 

20 

BA 

36 

BA 

37 

BA 

39 

BA 

40 
 

BA 

38 

HN 6 Ischemia 2 ×  - - - - - - 2 1 - 2 w -  - 

SC 8 Haemorrhage 5.5 ×  - - - - - - - 2 - 2 2 w  - 

ME 5 
Subarachnoid 

haemorrhage 
6.5 ×  - - - - - - 2 2 2 2 w w  - 

PG
c
 NA 

Subarachnoid 

haemorrhage 
5  NA NA NA NA NA NA NA NA NA NA NA NA NA  NA 

NY 14 Not known 4.5   1 1 2 2 2 1 - - - - - 2  2 

BB
 b
 3 

Subarachnoid 

haemorrhage 
2.5   - - 2 2 2 2 - - - - - -  - 

DB 12 Haemorrhage 24   1 1 1 2 2 2 1 - - - - 1  - 

KA 6 

Thomoboembolic/ 

partial 

haemorrhage 

1   - - - - - - 2 2 2 2 w w  - 

LS 17 Not known 3   2 1 1 2 2 - 2 2 - 2 2 1  - 

% Patients with grey matter damage 33 33 50 50 67 50 50 50 17 67 50 50  0 

% Patients with grey or white matter damage 33 33 50 50 67 50 50 50 17 67 67 83  0 

Quantification of lesion: 2 = complete destruction/serious damage to cortical grey matter; 1 = partial destruction/mild damage to cortical grey matter; w = damage confined to 

white matter immediately underlying cortex. Anatomical abbreviations: DLPFC = dorsolateral prefrontal cortex; orbIFG = pars orbitalis in inferior frontal gyrus; trIFG,= pars 

triangularis in inferior frontal gyrus; opIFG = pars opercularis in inferior frontal gyrus; TP = temporal pole; STG = superior temporal gyrus; MTG = middle temporal gyrus; ITG = 

inferior temporal gyrus; FG = fusiform gyrus; POT = posterior occipitotemporal area; SMG = supramarginal gyrus; AG = angular gyrus. a Lesion size was estimated by overlaying 

a standardised grid of squares onto each patient’s template and working out the percentage of squares damaged relative to the complete undamaged template. b BB showed 

additional signs of ventricular enlargement in the left hemisphere. A scan for PG was unavailable, a radiographer’s report identified frontal damage.  
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MR images are shown for HN, ME, SC, NY, DB and LS. CT scans are shown for BB and KA. PG’s scan was unavailable.  

Figure 2.1: Neuroimaging for the SA patients 

 

Table 2.2 breaks down patient damage to regions of interest described by previous 

researchers (see Noonan, et al., 2010). Lesion size did not significantly correlate with 

background semantic scores (r = -.65, p > .05) or refractory effects in the current task (r = -.14 – 

-.69, p > .05).  

Neuropsychological and semantic assessment: The patients were examined on a range of 

general neuropsychological tests to assess cognitive ability. These were: forward and backward 

digit span (Wechsler, 1987), Visual Object and Space Perception battery, VOSP (Warrington & 

James, 1991), Elevator Counting with and without distraction from the Test of Everyday 

Attention, TEA (Robertson, Ward, Ridgeway, & Nimmo-Smith, 1994), Brixton Spatial Rule 



  

   68 

Attainment task (BSRA, Burgess & Shallice, 1997), and the Ravens Coloured Progressive 

Matrices test of non-verbal reasoning (RCPM, Raven, 1962). Factor analysis was used to 

compute a composite executive/attentional score from tasks for which data was available for 

each patient (digit span, TEA, RCPM and BSRA).  

Semantic assessments included three components of the 64-item semantic test battery 

(Bozeat, et al., 2000): word-picture matching (WPM) with ten semantically-related distractors 

and picture and word versions the Camel and Cactus Test (CCT). This test of semantic 

association involves deciding which of four semantically-related items has an association to a 

probe (e.g., does CAMEL go with CACTUS, TREE, SUNFLOWER, or ROSE?). Additionally, there was a 

96-item synonym judgment task, which involves matching a probe to a target word with the 

same meaning, presented with two unrelated distractors (Jefferies, et al., 2009). Factor analysis 

of these four semantic tests was used to compute a composite semantic score, with larger values 

representing better performance. Table 2.3 provides this background assessment, plus the 

semantic and executive composite scores.  
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Table 2.3: Semantic and executive performance for each patient 

   

Max score 

 

Cut-off 

TP-only  PF+ 

HN SC ME  PG NY BB DB KA LS 

WPM 64 62 50* 59* 50*  58* 60* 54* 46* 26* 37* 

CCT pictures 64 51 54* 46* 13*  44* 36* 38* 39* 46* 16* 

CCT words 64 56 54* 56 34*  40* 39* 30* 33* 36* 16* 

Synonym Judgement 96 89 89  71* 80*  69* 69* 63* 54* 60* 47* 

Composite Semantic score     1.47 1.1 -0.24  0.48 0.33 -0.2 -0.5 -0.56 -1.9 

             

Digit Span Forward   - 5  4* 6   6   6 3*  5 4*  0*  4* 

Digit Span Backward - 2 3 2 3  2 2 0* 1* 0* 1* 

VOSP screening 20 15 NT 20 19  20 19 20 NT 20 18 

TEA elevator counting (no distraction) 7 6 7 7 7  3* 3* 4* 3* 5* 3* 

TEA elevator counting (with distraction) 10 3 9 1* 9  0* 2* 0* 1* 5 2* 

RCPM  36 36 20 22 13  23 26 24 31 12 16 

BSRA 55 28 28 25* 11*  26* 34 23* 24* 6* 14* 

Composite Executive score   0.94 .01 1.69  -0.78 -0.88 -082 -1.12 0.97 -0.00 

*impaired performance. NT = not tested. WPM = word-picture matching. CCT = Camel and Cactus Task (both from Bozeat, et al., 2000). RCPM = Raven’s Coloured Progressive 

Matrices (Raven, 1962). BSRA = Brixton Spatial Rule Attainment Task (Burgess & Shallice, 1997). TP-only = patients with temporoparietal lesions. PF+ = patients with frontal 

lesions (often also encompassing posterior regions). NT = not tested, TA = test abandoned. Composite scores in factor analysis derived from task scores. Semantic composite 

includes WPM, CCT words and pictures, and synonym judgement. Executive score includes digit span, TEA, RCPM and BSRA.
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Controls: Twelve age-matched control participants (six male, six female) were selected 

from a participant database at the University of York. Participants had no prior history of brain 

injury, and showed unimpaired cognitive functioning on the Mini-Mental State Examination 

(Folstein, Folstein, & McHugh, 1975). Participants were aged between 35 and 90, with a mean 

age of 69 years. Independent t-tests showed that the age of the controls did not differ from the 

patients: t(19) < 1.  

Design: This study consisted of three experiments, each involving a within-subjects 

manipulation of modality: (1) identity matching of spoken words and pictures to pictures, (2) 

identity matching of spoken words to pictures and environmental sounds to pictures, and (3) 

matching a probe item to its associated location, using spoken word to picture and picture to 

picture matching.  

Procedure: The experiments were run using E-prime 1.1. An array of four semantically-

related pictures was displayed. Following all past studies of refractory effects, items were 

presented repeatedly such that the target on one trial became the distractor on another, until all 

items within a semantic category had been the target. This completed one cycle. There were a 

total of four cycles for each set of items, which probed the items in the semantic array in a 

pseudorandom order
1
. After each set of four cycles, participants have a short break.  

The probe item was presented together with the four-item array, either through speakers 

or as a picture at the top of the screen. SA patients indicated their response by pointing to one of 

the pictures and the experimenter pressed a key which advanced the task onto the next trial (this 

method was used as aphasic participants had difficulty using a stylus with a touch-sensitive 

screen in a pilot study). The experimenter recorded accuracy (our primary dependent variable) 

while response time (RT) was recorded by the computer. As soon as a response was given, the 

next trial was presented. Each participant had ten seconds to respond, and if they did not respond 

within this time, the next trial was presented and an error was recorded. There were four practice 

items before the start of each block. Each experiment was carried out in four blocks using an 

ABBA design to control for order effects across the verbal and non-verbal tasks.  

 

                                                 

1 Presenting items in according to set, each running from cycle one to four ensures no overall fatigue of the task, as cycle four of 

block one is presented before cycle one of block two.  
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Experiment 1: Categorical matching in the verbal and visual modality 

This experiment combined Experiments 5 and 6 from Warrington and Crutch (2004). 

There were two presentation conditions: visual (picture-picture matching: PPM) and verbal 

(word-picture matching: WPM). The stimuli consisted of forty inanimate objects. These were 

grouped into ten semantic sets (TOOLS, ELECTRICAL ITEMS, DRINK CONTAINERS, CLOTHES, 

HOUSEHOLD APPLIANCES, KITCHEN TOOLS × 2, FURNITURE × 2 and VEHICLES). WPM and PPM 

from this experiment are show in Figure 2.2. In WPM, a spoken voice recording of the object 

name was used as the probe.  In PPM, two dissimilar pictures of the same item were selected to 

be the probe and target, in an attempt to prevent simple visual matching.  

 

Experiment 2: Categorical matching in the verbal and non-verbal auditory modality 

 This experiment had two presentation conditions: verbal (WPM) and non-verbal auditory 

(sound-picture matching: SPM). The stimuli in this experiment consisted of 32 inanimate and 

animate objects. These were grouped into eight sets (FARM ANIMALS, OTHER ANIMALS, BIRDS, 

TOOLS, VEHICLES, HOUSEHOLD OBJECTS, HUMANS and MUSICAL INSTRUMENTS). The WPM and 

SPM from this experiment are shown in Figure 2.3. In the SPM task, a recording of an 

environmental sound produced by the object was presented as the probe, while in WPM a spoken 

voice recording of the object name was used.  

 

Experiment 3: Associative matching in the verbal and visual modality 

 This experiment had two presentation conditions: visual (PPM) and verbal (WPM). The 

stimuli in this experiment consisted of forty inanimate and animate objects and forty associated 

locations. These were grouped into ten sets (FARM ANIMALS, PETS, EXOTIC ANIMALS, CLOTHES, 

PLANTS, LARGE HOUSEHOLD OBJECTS, SMALL HOUSEHOLD OBJECTS, PEOPLE, VEHICLES and FOOD). 

On every trial, participants selected the typical location of the probe object from an array of four 

locations within the set. The WPM and PPM from this experiment are shown in Figure 2.4.  
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“Hammer” 

 

 

 

 

 

 

 

 

Verbal condition (WPM) 

                                                                                   

      

       

 

 

 

 

 

 

 

 

 

Visual condition (PPM)    

Figure 2.2: Examples of trials used in Experiment 1 (category identity matching) 
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“Piano”      

 

 

 

 

 

 

 

 

 

Verbal condition (WPM)        

“Moo” 

 

 

 

 

 

 

 

 

Non-verbal auditory condition (SPM) 

Figure 2.3: Examples of trials used in Experiment 2 (category identity matching)  
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“Doctor” 
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Figure 2.4: Examples of trials used in Experiment 3 (association matching) 
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Results 

Across all experiments, control participants’ accuracy was close to ceiling levels (the 

control mean ranged from 92% to 100%, and there were no refractory effects). Repeated 

measures ANOVAs of control RT indicated facilitation from repetition; in contrast there were no 

significant effects in RT for the patients across cycles (see Table 2.4 for RT data and analysis). 

The following analysis, therefore, focuses on response accuracy.  

 

Table 2.4: Mean reaction time for patients and controls across all experiments 

  Experiment 1 Experiment 2 Experiment 3 

  PPM WPM SPM WPM PPM WPM 

Patients           

Cycle 1 4627 (753) 2882 (526) 3289 (402) 3034 (520) 4950 (770) 4092 (591) 

Cycle 2 4498 (657) 2928 (314) 3263 (481) 3205 (599) 4684 (641) 3957 (524) 

Cycle 3 4221 (707) 2833 (250) 3120 (438) 3020 (436) 4573 (762) 3521 (363) 

Cycle 4 4237 (886) 3082 (308) 3180 (365) 3130 (556) 4336 (659) 3423 (388) 

F value 1.48 6.92 2.10 1.81 3.70 3.00 

p  .348 .073 .219 .262 .156 .196 

Controls            

Cycle 1 1696 (405) 1607 (331) 2050 (468) 1373 (211) 2249 (515) 1834 (295) 

Cycle 2 1505 (322) 1503 (354) 1880 (414) 1300 (183) 1819 (396) 1613 (254) 

 Cycle 3 1453 (262) 1402 (306) 1780 (321) 1265 (172) 1694 (348) 1487 (222) 

Cycle 4 1468 (259) 1426 (310) 1807 (379) 1281 (193) 1676 (370) 1525 (228) 

F value 5.02 9.22 5.74 6.56 10.06 38.41 

p  .026 .004 .018 .012 .003 <.001 

Mean RT in milliseconds (standard deviation). Patient data includes cases who scored 65% or higher in accuracy (HN, SC, ME, 

PG, NY, BB). Tasks were picture-picture matching (PPM), word-picture matching (WPM) and sound-picture matching (SPM).  

 

 Category (living or manmade) was mixed in Experiments 2 and 3. A paired t-test for each 

experiment was used to confirm that patients show no difference in accuracy according to 

category: t(8) < 1. Additionally, an ANOVA assessing the interaction between the effect of 
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category and subgroup (TP-only compared with PF+ patients) revealed no significant interaction: 

F(7) < 1. 

 

Experiment 1: Categorical matching in the verbal and visual modality 

The accuracy data were analysed using a three-way mixed factor ANOVA, including 

group (patients vs. controls), and two within-subjects factors – cycle (repetition 1-4) and 

modality (words vs. pictures). There was a significant main effect of group: F(1, 19) = 20.77, p < 

.001. There was also an interaction between cycle and group: F(3,54) = 3.65, p = .034, indicating 

that the patients showed greater refractory effects than controls. This is shown in Figure 2.5. No 

significant effect of modality was found: F(1,19) < 1, and there was no group by modality 

interaction: F(1,19) < 1, or cycle by modality interaction: F(3,24) = 2.40, n.s., indicating that 

refractory effects were equivalent for both tasks. Similarly, the three-way task-by-cycle-by-group 

interaction was not significant: F(3,54) = 2.67, n.s. 

 

 

PPM = picture-picture matching. WPM = word-picture matching. Error bars show standard error of the mean. 

Figure 2.5: Mean response accuracy across cycles in Experiment 1. 
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The effects of cycle and modality were examined further in the patient group using a two-

way, within-subjects ANOVA. The main effect of cycle was significant: F(3,24) = 8.18, p = 

.011, but there was no influence of modality: F(1,8) < .1. Again, the interaction between cycle 

and modality was not significant: F(3,24) = 1.94, n.s., confirming equal refractory effects for 

WPM and PPM. 

 

Experiment 2: Categorical matching in the verbal and non-verbal auditory modality 

A three-way mixed-factor ANOVA revealed a main effect of group: F(1,19) = 15.85, p = 

.001, and an interaction between cycle and group: F(3,54) = 7.18, p = .003, indicating that 

refractory effects were stronger in patients than controls. In this experiment, however, the effect 

of modality was significant: F(1,19) = 17.58, p < .001. Accuracy was higher in WPM than SPM, 

as shown in Figure 2.6. There was no modality-by-group interaction: F(1,19) = 1.93, n.s., or 

modality-by-cycle interaction: F(1,19) = 1.53, n.s., but the three-way interaction between task, 

group and cycle was significant: F(3,54) = 7.06, p = .003.  

These findings were explored further in the patient group using a two-way, within-

subjects ANOVA. The main effect of cycle was significant: F(3,24) = 8.75, p < .001, and the 

influence of modality approached significance: F(1,8) = 4.83, p = .06. However, the interaction 

between modality and cycle was not significant: F(3,24)=1.66, n.s., indicating that the patients 

showed equal refractory effects for WPM and SPM. The three-way interaction reported above is 

therefore likely to reflect the fact that, in contrast to patients, the control participants showed 

some improvement in SPM but not WPM over cycles. In may also reflect that the data in the 

SPM is particularly noisy, as seen in Figure 2.6.  
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SPM = sound-picture matching. WPM = word-picture matching. Error bars show standard error of the mean. 

Figure 2.6: Mean response accuracy across cycles in Experiment 2. 

 

Experiment 3: Associative matching in the verbal and visual modality 

A three-way mixed factor ANOVA revealed a main effect of group, with controls 

performing at a higher level than patients: F(1,19) = 29.31, p < .001. There were no significant 

effects of modality: F(1,19) < 1, or cycle: F(3,54) = 2.60, n.s. There was also no significant 

interaction between cycle and group: F(3,54) = 1.98, n.s., or between modality and group: 

F(1,19) = 2.33, n.s. However, there was a significant interaction between modality and cycle: 

F(3,54) = 5.35, p = .009, and the three-way interaction was significant: F(3,54) = 4.89, p = .012. 

These data are shown in Figure 2.7.  

The possibility that refractory effects were found in only one task was explored using 

separate two-way mixed factor ANOVAs for each modality. In WPM, there was a significant 

main effect of cycle: F(3,54) = 4.79, p = .013, and group: F(1,19) = 23.30, p < .001. 

Additionally, there was an interaction between cycle and group: F(3,54) = 3.24, p = .048, as the 

patients showed stronger refractory effects than controls. In the PPM task, there was a main 

effect of group: F(1,19) = 25.27, p < .001, but no effect of cycle: F <1, and no interaction 

between cycle and group: F(3,54) = 1.13, n.s. Bonferroni-corrected paired-samples t-tests were 



  

   79 

used to compare the patients’ performance on WPM and PPM at each cycle. There was a 

difference between the two modalities only on the fourth cycle: t(8) = 5.13, p = .004, with no 

differences between modalities on cycles one, two, or three: t(8) < 1. 

 

 

PPM = picture-picture matching. WPM = word-picture matching. Error bars show standard error of the mean. 

Figure 2.7: Mean response accuracy across cycles in Experiment 3. 

Anterior/posterior patient differences 

It was predicted that for TP-only patients, accuracy would not decline over cycles: 

therefore, significant refractory effects would be shown in the PF+ group but not the TP-only 

group. Logistic regression was used to establish whether  the effect of cycle interacted with 

lesion location. Overall, lesion subgroup alone explained 14.6% of the variance in the data. 

Accuracy was higher in the TP-only than PF+ group, as shown in Figure 2.8. A model which 

included experiment, distinguishing all six tasks (Wald = 3.24), cycle (Wald = 40.28), individual 

patient identifiers (Wald = 305.69) and lesion subgroup (Wald = 10.66) found a significant 

predictive value for each variable (p ≤ .001), except experiment.  
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Accuracy across all three experiments, grouped according to modality: non-verbal (picture-picture matching, PPM; or 

sound-picture matching, SPM) and verbal (word-picture matching, WPM), and lesion location: PF+ (frontal and temporoparietal 

lesion) and TP-only (temporoparietal lesion). Error bars show standard error of the mean. 

Figure 2.8: Overall accuracy of PF+ and TP-only patients across cycles 

 

A model adding two interactive terms found a significant effect of cycle-by-subgroup, 

but not experiment-by-subgroup (inclusion of this interaction also led to the main effects of 

subgroup and cycle becoming non-significant; see Table 2.5). PF+ patients showed significantly 

greater effects of cycle than TP-only patients but there were no significant differences across the 

subgroups in the effects of experiment. The cycle-by-subgroup interaction remained significant 

(p = .007) with the addition of cycle-by-patient ID in the equation.  
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Table 2.5: Logistic regression analysis showing the significant influence of each variable on the 

model 

Predictor B Wald2
 p Exp(B) 

Cycle .125 1.330 .249 1.133 

Patient ID -.229 306.084 <.001 .796 

Subgroup .095 .174 .677 1.1 

Experiment -.148 .799 .371 .862 

Cycle by subgroup -.160 7.246 .007 .852 

Experiment by subgroup .049 .239 .625 1.046 

Variables entered: subgroup, experiment, cycle, patient ID, cycle x subgroup, experiment x subgroup 

 

Separate logistic regression analysis of each cycle, using the predictor variables modality, 

subgroup and patient ID, revealed that there was no difference in accuracy between subgroups at 

cycle 1, but this difference became increasingly significant as the number of cycles increased. 

These four analyses are shown in Table 2.6. 

 

Table 2.6: Four logistic regression analyses showing the effect of subgroup at each cycle 

Subgroup at each level of cycle B Wald2
 p Exp(B) 

Subgroup at Cycle 1 .121 .595 .441 1.128 

Subgroup at Cycle 2 -.284 3.414 .065 .752 

Subgroup at Cycle 3 -.347 5.290 .021 .707 

Subgroup at Cycle 4 -.413 152.453 <.001 .661 

Variables entered: experiment, patient ID and subgroup. Data comes from four separate analyses examining each cycle. 

 

Further logistic regression separating modality compared (1) picture and verbal 

modalities from Experiment 1 and 3, and (2) sound and verbal modalities from Experiment 2. 

The model included modality, cycle, patient identifier, subgroup and cycle by subgroup. The first 

model found a significant predictive value of patient identifier (Wald = 286.16, p <.001), 

subgroup (Wald = 5.99, p = .014) and cycle by subgroup (Wald = 10.30, p = .001). There was no 

significant predictive value of modality (Wald = .375, p = .54) or cycle (Wald = 2.87, p = .09).  

In the second comparison, including sound and word picture matching scores from Task 

2, the model found a predictive value of modality (Wald = 35.90, p <.001), patient identifier 
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(Wald = 32.37, p = <.001) and subgroup (Wald = 4.84, p = .028), but not cycle (Wald = .48, p = 

.49), or cycle by subgroup (Wald = .05, p = .83). The significant predictive value of modality is 

driven by a higher performance in the WPM on this task, as shown in Figure 2.6.  

To explore this further, a model was applied separately to the verbal and sound tasks of 

Experiment 2, using cycle, subgroup and patient identifier as the variables. The verbal modality 

found no significant effect of cycle (Wald = 1.40, p = .236), or subgroup (Wald = 1.57, p = .210), 

and only a significant main effect of patient identifier (Wald = 49.49, p = <.001). Conversely, the 

sound modality found an effect of cycle (Wald = 4.40, p = .036), and subgroup (Wald = 25.43, p 

<.001). The patient identifier was not significant (Wald = 1.98, p = .160).  

 

Individual patients  

McNemar tests were carried out on the data from each patient to determine which 

individuals showed significant refractory effects. The results are provided in Table 2.7. All of the 

PF+ patients showed some degree of refractory impairment, while none of the TP-only patients 

did. There were also substantial individual differences in the refractory effects shown by PF+ 

patients. Some patients showed refractory effects at the beginning of the task, between the first 

two cycles (e.g., KA). In contrast, some showed refractory effects between the last two cycles 

(e.g., LS), while others showed subtle but consistent refractory effects, which became significant 

across the whole task (e.g., DB).
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Table 2.7: McNemar tests showing refractory effects between different cycles for each patient 

Patient Lesion  Cycles 1-2 Cycles 2-3 Cycles 3-4 Cycles 1-3 Cycles 2-4 Cycles 1-4 

HN TP only n.s. n.s. n.s. n.s. n.s. n.s. 

SC TP only n.s. n.s. n.s. n.s. n.s. n.s. 

ME TP only n.s. n.s. n.s. n.s. n.s. n.s. 

PG PF+ n.s. n.s. WPM3: p = .021 n.s. WPM3: p = .001 WPM3: p = .002 

NY PF+ n.s. n.s. n.s. WPM3: p = .039 n.s. WPM3: p = .021 

BB PF+ n.s. n.s. n.s. n.s. PPM3: p = .031 n.s. 

DB PF+ WPM1: p = .031 n.s. n.s. WPM1: p = .002 WPM3: p = .031 PPM1: p = .021; 

WPM1: p <.001; 

WPM3: p = .019 

KA PF+ PPM3 = p = .035 PPM1: p = .008; 

WPM3: p = .041 

n.s. PPM1: p = .022; 

WPM1: p = .027 

WPM3: p = .031 WPM1: p = .021 

LS PF+ n.s. n.s. SPM2: p = .016 n.s. WPM1: p = .025 WPM1: p = .007 

Word-picture matching task in Experiment 1 (WPM1), picture-picture matching task in Experiment 1 (PPM1), sound-picture matching task in Experiment 2 (SPM2), WPM in 

Experiment 3 (WPM3), PPM in Experiment 3 (PPM3). Only significant statistics at p<.05 are shown.  
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Discussion 

This study assessed the multimodal nature of refractory effects in semantic 

aphasia (SA) using, for the first time, a case-series approach as opposed to analysis of 

individual cases. Additionally, it explored the effect of lesion location on refractory 

semantic access. Refractory deficits were found in all modalities - in word, picture 

and sound-matching tasks. Secondly, patients with left prefrontal lesions always 

showed deterioration in performance across cycles, whereas none of the 

temporoparietal patients did.  

Our finding of equivalent refractory effects in verbal and non-verbal 

modalities is compatible with the view that, in SA, the store of semantic 

representations remains intact (shown by good performance on the first cycle), while 

executive control over semantic activation is impaired (shown in the reduction of 

accuracy over cycles). This pattern of impairment might be expected from the brain 

injury in SA: the anterior temporal lobes – which are thought to form a key hub for 

semantic knowledge (Lambon Ralph, Sage, et al., 2010; Patterson, et al., 2007; 

Pobric, et al., 2010b) – are intact, while there is significant damage to left prefrontal 

and temporoparietal regions. These brain areas are associated with semantic control 

functions in neuropsychological research (Jefferies & Lambon Ralph, 2006; Noonan, 

et al., 2010), functional neuroimaging studies of healthy volunteers (for a review, see 

Noonan et al., submitted) and TMS work (Whitney, Kirk, et al., 2011). In refractory 

tasks, the same set of semantically-related items is presented repeatedly such that 

targets become distractors and vice versa. This should produce significant competition 

between targets and distractors in later cycles irrespective of input modality – and 

consequently SA patients with semantic control impairment show refractory effects 

across words, pictures and environmental sounds. 

Our findings pose significant challenges to theoretical frameworks that only 

predict refractory effects in verbal tasks. For example, Warrington and Crutch (2004) 

argue that there are separate semantic systems, with their patient only showing 

refractory effects in the verbal modality. Given later evidence that this same patient 

showed non-verbal refractory effects for environmental sounds, this proposal was 

modified to suggest that the visual system is qualitatively distinct from the auditory 

system (Crutch & Warrington, 2008b). The current study confirms that refractory 

effects can emerge in parallel in verbal, picture and sound tasks. Moreover, some of 
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our patients (e.g., LS, DB) resembled Warrington and Crutch’s patient AZ in 

Experiment 1 (which used Warrington & Crutch’s materials) in that they showed 

refractory effects in the verbal modality that did not extend to the visual task. 

However, in further experiments, these patients showed the opposite pattern (e.g., 

stronger refractory effects in non-verbal than verbal judgements). Therefore, it is 

helpful to consider performance across different tasks that may vary in their 

sensitivity to refractory effects. In picture-picture identity matching tasks (used in 

Experiment 1 and by Crutch & Warrington), it is difficult to avoid probe and targets 

looking somewhat alike (given they are examples of the same object) and even partial 

visual similarity may be enough to weaken the refractory effect. In contrast, there is 

no surface similarity issue to consider when matching sounds or words to target 

pictures.   

Our findings are also at odds with another theoretical perspective that accounts 

for refractory effects in picture naming in terms of lexical competition (Belke, et al., 

2005; Damian, et al., 2001; Schnur, et al., 2006). In this theory, co-activation of a 

word (e.g., ‘dog’) and its category node (e.g., ‘animal’) results in activation spreading 

back to semantically-related word nodes (e.g., 'cat', Levelt, 2001) and this gives rise to 

strong competition within the lexical network when sets of semantically-related items 

are presented. This framework only predicts refractory effects in picture naming tasks 

- nevertheless, if similar competition is envisaged in the semantic system, effects of 

cycle might be expected in semantic judgement tasks (i.e., decisions not requiring 

spoken output) and across verbal and non-verbal input modalities. 

The current study also confirms that lesion location affects the likelihood of 

refractory deficits, with PF+ patients showing deterioration in accuracy, whilst TP-

only patients maintain performance across cycles. A difference between these patient 

groups has been predicted by previous research (Campanella, et al., 2009; Schnur, et 

al., 2009), although the explanation given for refractoriness is not compatible with the 

current findings of multimodal refractory effects in PF+ patients. Indeed, the 

difference between PF+ and TP-only patients is perhaps surprising as several lines of 

research indicate that both left prefrontal and posterior temporal/inferior parietal 

regions make a critical contribution to multimodal semantic control. First, in several 

investigations of verbal and non-verbal semantic control, SA patients with lesions in 

these two locations have shown highly similar deficits, characterised by strong 

sensitivity to manipulations of semantic control demands (Corbett, Jefferies, Ehsan, et 
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al., 2009; Corbett, Jefferies, & Lambon Ralph, 2009; Jefferies & Lambon Ralph, 

2006; Noonan, et al., 2010). Secondly, neuroimaging studies frequently reveal 

activation of both left prefrontal and posterior temporal/inferior parietal regions in 

tasks that load semantic control (Badre, et al., 2005; Noonan, et al., submitted; 

Whitney, Jefferies, et al., 2011). Thirdly, a recent TMS study found that a ‘virtual 

lesion’ in either LIFG or pMTG disrupted executively-demanding semantic 

judgements to an equal degree (Whitney, Kirk, et al., 2011). Consequently, if 

refractory effects in SA occur simply because the patients have poor control over 

activation within the semantic system, then we would expect both lesion sub-groups 

to show parallel deficits. 

One possible explanation for this difference between the lesion subgroups is 

that TP-only patients have a milder deficit of semantic control. A recent meta-analysis 

of neuroimaging studies revealed the left prefrontal cortex is strongly and consistently 

activated in executive-semantic tasks, while the TP-region shows a somewhat smaller 

peak of activation which is only significant in some studies/tasks (Noonan, et al., 

submitted). However, in the current study, while two of the TP-only patients had 

relatively mild semantic impairment, another (patient ME) showed much more 

substantial deficits. 

A second possibility is that both left prefrontal and temporoparietal regions 

contribute to semantic control, but their exact roles vary. If so, the temporoparietal 

region may be necessary for aspects of semantic control that do not interact with cycle 

in refractory tasks. For example, left inferior frontal gyrus (LIFG) may be crucially 

involved in inhibition, especially when activation of previously-relevant semantic 

information must be dampened down (leading to more perseverative errors as well as 

strong refractory effects in patients with left prefrontal lesions; see (Corbett, et al., 

2008). In contrast, temporoparietal areas, alongside LIFG, may help to retrieve non-

dominant semantic associations and/or bring task-relevant information to the fore in a 

flexible way. Based on findings from fMRI, Badre and colleagues (2005) proposed a 

two-step semantic retrieval model involving ‘controlled retrieval’ and ‘post-retrieval 

selection’. They found that activation in posterior temporal cortex was sensitive to 

controlled retrieval demands, as measured by the associative strength between a cue 

and a target or the number of response alternatives, but not manipulations of post-

retrieval selection demands, such as whether the judgement related to global semantic 

similarity or a specific attribute. In contrast, regions within LIFG responded to both of 
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these elements of semantic control (although Badre et al. focussed on divisions within 

LIFG that were not testable in our patient sample).  

This distinction between controlled retrieval and post-retrieval selection could 

prove to be crucial in understanding refractory performance. The first block in 

cyclical tasks always demands controlled retrieval, but with stimulus repetition, the 

items have already been retrieved and post-retrieval selection is required. If the 

temporoparietal region plays a key role in controlled retrieval, patients with 

temporoparietal lesions but intact prefrontal selection processes would not find the 

last trial any more difficult than the first. In line with this theory, damage to the LIFG 

has been linked to heightened difficulty in processing words with multiple 

propositions which tax semantic selection (often, counterintuitively, high frequency 

words, Hoffman, Jefferies, et al., 2011; Hoffman, Rogers, et al., 2011). For example, a 

recent study of 72 brain-injured patients found focal damage to LIFG caused impaired 

performance on a sentence generation task when the probe word referred to multiple 

conceptual propositions (Robinson, Shallice, Bozzali, et al., 2010). These findings 

suggest that LIFG may be specifically involved in selection between competing items 

which have been retrieved (see also Robinson, Blair, & Cipolotti, 1998; Robinson, et 

al., 2005).  

While the current data are consistent with the view that anterior and posterior sites 

within the semantic control network have varying roles, further research is required to 

fully specify the control processes that they underpin. Given the differences between 

Badre et al.’s (2005) semantic selection task and the refractory paradigm, it is not 

currently known whether IFG makes a greater contribution to all forms of semantic 

selection, or only when previously-relevant information must be inhibited. The 

current data advance knowledge in two ways: (1) they show that refractory 

impairments resulting from poor semantic control generalise from verbal to non-

verbal modalities, and (2) they provide evidence that lesion location is important in 

determining deficits in the refractory paradigm. This lends further support to the 

theory that deregulated semantic control results in an amodal “access” impairment 

(Jefferies & Lambon Ralph, 2006). Additionally, it sparks new interest into the 

function of the temporoparietal and prefrontal cortex in semantic cognition and 

executive control.
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3. CHAPTER THREE 
 

 

 

 

 

 

 

 

 

Semantic aphasia and modality: An input processing deficit leading to 

reduced semantic control in a single modality  
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Abstract  

Research suggests that semantic memory deficits can occur in at least three 

ways. Patients can (1) show amodal degradation of concepts within the semantic store 

itself, such as in semantic dementia (SD), (2) have difficulty in controlling activation 

within the semantic system, and accessing appropriate knowledge in line with current 

goals or context as in semantic aphasia (SA), and (3) experience a semantic deficit in 

only one modality following degraded input from sensory cortex. Patients with SA 

show deficits of semantic control and access across word and picture tasks, consistent 

with the view that their problems arise from impaired domain-general control 

processes. However, there are a few reports in the literature of patients with semantic 

access problems restricted to verbal materials, who show decreasing ability to retrieve 

concepts from words when they are presented repeatedly with closely related 

distractors.  These patients challenge the notion that semantic control processes are 

modality-general and suggest instead a separation of ‘access’ to verbal and non-verbal 

semantic systems. We had the rare opportunity to study such a case in detail. Our 

aims were to examine the effect of manipulations of control demands in verbal 

semantic, non-verbal semantic and non-semantic tasks, allowing us to assess the 

hypothesis that semantic control/ access impairments can follow a modality-specific 

pattern. Our findings revealed: (1) deficits on executive tasks, unrelated to semantic 

demands, which was more evident in the auditory domain than the visual domain; (2) 

deficits in executively-demanding semantic tasks which were accentuated in the 

verbal domain compared with the visual domain, but still present on non-verbal tasks, 

and (3) a coupling between comprehension and executive control requirements, in that 

mild impairment on single word comprehension was greatly increased on more 

demanding, associative judgements across modalities.  This pattern of results suggests 

that mild executive/ semantic impairment, paired with disrupted connectivity from 

auditory input, may give rise to semantic ‘access’ deficits seemingly affecting only 

the auditory domain.  
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Introduction 

Chapter 2 found evidence for multimodal refractory effects in Semantic 

Aphasia (SA) patients. However, patients have been described who do not show this 

pattern (Crutch & Warrington, 2008b; Warrington & Crutch, 2004). Under the ‘hub-

and-spoke’ model, it is entirely possible to have a deficit circumscribed to the 

auditory domain, but this deficit does not interact with task demands. Semantic 

knowledge is thought to be stored across a wide range of cortical regions relating to 

motor and perceptual features (Barsalou, 1999; Goldberg, Perfetti, & Schneider, 2006; 

Martin, 2007; Pulvermuller, 2005). For example, those with pure word deafness have 

bilateral damage to STG leading to deficits understanding spoken words – in both 

simple tasks, such as word-picture matching, and more complex control-demanding 

contexts, such as forming verbal associations in the presence of strong distractors 

(Tanaka, Yamadori, & Mori, 1987). fMRI evidence suggests this region is largely 

insensitive to the difficulty of the task, and plays a major role in spectro-temporal 

analysis of speech sounds (Scott & Johnsrude, 2003; Wise et al., 2001). For example, 

Blumstein et al. (2005) assessed fMRI signal for both phonetic categorization and 

tone categorization tasks. Although reaction times were longer for the phonetic 

categorization task, signal change in STG did not correlate with these changes in task 

demands.  

In addition, semantic cognition also requires controlled activation of 

knowledge, such that task-relevant meanings can be brought to the fore. Patients with 

SA have multimodal semantic control deficits which reflect difficulty in retrieving 

task-relevant meanings. SA patients with semantic control deficits will have deficits 

on executively demanding semantic tasks irrespective of whether they are presented 

verbally, through pictures, sounds or actions. Indeed, SA patients show parallel 

deficits in verbal and non-verbal action tasks (Corbett, Jefferies, Ehsan, et al., 2009; 

Corbett, et al., 2008; Corbett, Jefferies, & Lambon Ralph, 2009; Jefferies & Lambon 

Ralph, 2006). (1) In all modalities that have been tested, patients have most difficultly 

on trials which require a flexible application of knowledge, such that items must be 

matched even when they do not share a strong association. For example, in a picture 

task representing tools and target objects, a significant difference was found between 

tools which were canonical and non-canonical alternatives (e.g., an item not usually 

used to perform an everyday action, but nonetheless a plausible alternative). A ‘fly-



  

 92 

swat’ is most commonly used to kill a fly, but if this option is not available, controls, 

but not SA patients, can readily select a ‘magazine’ as a plausible alternative (Corbett, 

et al., 2011). As with word tasks involving non-dominant semantic associations, 

successful performance requires inhibition of the most familiar use of the item 

(Noonan, et al., 2010). (2) There are also equivalent verbal and non-verbal cueing 

effects in production tasks. Performance on picture naming improves dramatically 

when patients are given a phonetic cue (Jefferies, Patterson, et al., 2008). Similarly, 

when asked to mime an action for an object, SA patients perform poorly. Their 

abilities improve significantly, however, when shown a picture cue of the recipient of 

the action, e.g., ‘nail’ for ‘hammer’ (Corbett, et al., 2011).  The effects of cueing on 

both picture naming and object use suggest SA patients have difficulty constraining 

their semantically-driven behaviour and thus benefit from external constraints. Under 

these circumstances, SA patients reveal that they retain knowledge that they 

previously failed to demonstrate.  

Although a distinction between a permanent loss of semantic knowledge and a 

temporary inability to retrieve appropriate semantic information is not disputed 

(Jefferies & Lambon Ralph, 2006; Warrington & Cipolotti, 1996), the nature of this 

distinction is. In contrast to Jefferies and colleagues, who envisage that an amodal 

store of knowledge interacts with modality-free control mechanisms, a parallel 

literature focused on a small number of single cases suggests that deficits in semantic 

access (as opposed to storage) can selectively affect verbal comprehension. This 

distinction between access and storage deficits has been shown most clearly through 

refractory effects in cyclical semantic tasks (Warrington & Cipolotti, 1996). These 

occur when a small group of semantically related items are repeatedly presented, with 

the participant required to select a target among closely-related distractors. The target 

and distractors are presented repeatedly across several cycles, so that competition with 

the target increases. In those who have ‘access’ impairments, there is a decline in 

performance over cycles, due to “a reduction in the ability to utilize the system 

efficiently for a period of time following activation” (Warrington & McCarthy, 1983). 

Impairments of this nature suggest there are modality-specific semantic systems 

which are independent (Warrington & Cipolotti, 1996; Warrington & Crutch, 2004; 

Warrington & McCarthy, 1983; Warrington & Shallice, 1979), since access to the 

visual domain is completely intact, while refractory effects occur only in the verbal 
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domain (Warrington & Crutch, 2004; Warrington & McCarthy, 1983). In a more 

recent version of this account, investigating a wider range of modalities, the key 

distinction has been between the auditory and visual domains – with both spoken 

word and environmental sound tasks showing refractory effects (Crutch & 

Warrington, 2008b).  

SA patients can show the same pattern of refractory effects, but across 

modalities, and not restricted to the verbal domain . These are suggested to result from 

a multimodal control impairment (Gardner, et al., 2012; Jefferies, et al., 2007), since 

executive control requirements should increase on later cycles which are characterised 

by stronger activation of competitors. Although SA patients and ‘access’ patients 

show a difference in performance relating to modality, other key characteristics of 

‘access’ patients are also shared with SA patients. Both SA and ‘access’ patients show 

strong cueing effects, inconsistent performance when the same items are retested, an 

absence of word frequency effects, sensitivity to semantic relatedness of distractors 

and to both speed of presentation as well as cycle (Gardner, et al., 2012; Jefferies, et 

al., 2007; Warrington & Crutch, 2004; Warrington & McCarthy, 1983). The decline 

in performance over cycles is a central feature in both groups of patients, revealing 

that knowledge is retained but retrieval can fail in certain circumstances (in contrast to 

SD patients).  

While there are few verbal only access patients in the literature, with much of 

the work done in a single individual, AZ (Crutch & Warrington, 2003c, 2004, 2005a, 

2005b, 2007; Warrington & Crutch, 2004), plus one or two additional cases (Crutch & 

Warrington, 2008a, 2008b), such patients appear to pose a problem for our account of 

semantic cognition, in which domain-general semantic control mechanisms interact 

with amodal representations, resulting in refractory deficits which occur regardless of 

modality – in both word and picture tasks in SA. Moreover, it is unclear if verbal-only 

access patients show (i) a strong influence of the control demands of semantic tasks, 

like SA cases (this time restricted to verbal stimuli), and (ii) an association between 

their verbal comprehension problems and executive deficits (which would also be 

restricted to verbal inputs). We had an unusual opportunity to study a patient with a 

verbal-only semantic access deficit in detail. 

We test the following accounts to explain this pattern: (1) A semantic ‘access’ 

deficit, as envisaged by Warrington and Crutch (2004), where accuracy is inconsistent 
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and refractory in the verbal domain, but at ceiling in the visual domain, implying 

separate access mechanisms for verbal and non-verbal semantic systems, which can 

be independently damaged. (2) A semantic control deficit, revealed by strong effects 

of control demands on semantic tasks like those seen in SA, but this time restricted to 

the verbal domain. This pattern might be suggestive of parallel semantic control 

systems organised according to modality. (3) An input processing deficit, where 

performance in all auditory tasks (semantic and non-semantic) is severely impaired in 

relation to other modalities. ‘Noisy’ auditory input could lead to error-prone 

activation of amodal concepts within the ATL, and since auditory cortex is responsive 

to both speech and non-speech sounds (Benson, et al., 2001), such a deficit might 

affect semantic judgments for environmental sounds as well as speech. (4) A 

combination of damage to the auditory input paired with damage to semantic control 

regions might lead to deficits in semantic control across domains, with an accentuated 

deficit in the verbal domain, if auditory input deficits can normally be compensated 

for by executive control mechanisms.  

In the case study that follows, we assess (i) whether the patient shows 

sensitivity to control manipulations only in the verbal domain, (ii) if he shows 

association between executive and comprehension impairments along modality 

specific lines, and (iii) if any of the accounts above might be able to explain his 

impairment. 

Case report 

Our male participant, DNe, was 68 years old, with a secondary school 

education until the age of 15. He had had several jobs prior to his stroke, including 

being a bus driver and draftsman. He had a large left hemisphere lesion resulting from 

haemorrhage 22 years previously, which was characterised via lesion tracing using the 

Damasio templates (Damasio & Damasio, 1989). His MRI showed damage to the 

angular gyrus (BA 39, 40) spreading anteriorly to include large sections of the 

temporal lobe (particularly the superior temporal gyrus), and prefrontal regions 

including BA 6, 9, 44, 47, and the majority of BA 45 (see Figure 3.1). He had right-

sided hemiplegia. 
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Figure 3.1: MRI images of DNe’s lesion 

 

DNe was severely dysphasic: over the course of the study he said only, ‘yes’, 

‘no’ and ‘why’, with some evidence of counting up to three (when self initiated). He 

showed verbal comprehension impairments, and severe speech processing impairment 

on auditory discrimination and rhyme judgment tasks (background 

neuropsychological assessments are detailed in Table 3.1). Nonetheless, a pure tone 

audiogram reveals he had normal, or higher than the average age-matched norms for 

tones between 500Hz and 4000Hz (Davis, 1995). His hearing level was marginally 

impaired at a very low (250Hz) and very high tones (8000Hz). Impairments in this 

range are not expected to impact on the perception of speech, given the spectral 

properties of speech (Charpentier, 1986).  
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Table 3.1: Background neuropsychological test scores  

 Test Max 
Normal 

cut-off 
DNe 

Picture naming From Cambridge semantic battery 64 59.1 0* 

Auditory 

discrimination 
Minimal pairs (PALPA 2) 72 63.7 46* 

Rhyme 

judgment 
Spoken words (PALPA 15) 60 NA 29 

 Written words (PALPA 15) 60 NA 37 

 Pictures (PALPA 14) 40 NA 22 

Comprehension Cambridge word-picture matching 64 62.7 56* 

 Word-picture matching (PALPA 4) 40 35.6 34* 

 
Spoken sentence-to-picture 

matching (CAT) – a subset of items 
10  7 

 
Written sentence-to-picture 

matching (CAT) – a subset of items 
10  7 

Executive 
Raven’s Colored Progressive 

Matrices  sets A, AB & B 
36 13.0

a
 29 

 Trail making A 24  24 

 Trail making B 23  23 

 Brixton Spatial Rule Attainment 55 28.0 34 

Visual/spatial 

(VOSP) 
Dot counting 10 8.0 8 

 Position discrimination 20 18.0 20 

 Number location 10 7.0 8 

 Cube analysis 10 6.0 9 

Attention 

(TEA) 
Map search 80 38.4 43 

 Visual elevator count 10 1.3 10 

 Telephone search (time per target)  2.0 3.9 

 Auditory elevator count 7 4.2 5 

 
Auditory elevator count with 

distraction 
10 2.6 1* 
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Working 

memory 
Auditory digit span (forwards) - 5 0* 

 Auditory digit span (backwards) - 2 0* 

 

Auditory digit matching span 

(PALPA 13) with ‘yes’ or ‘no’ 

response 

7  6 

 

Written digit matching span (using 

PALPA 13 materials) with ‘yes’ or 

‘no’ response 

7 NA 4 

 Corsi block-tapping task 7 3.6 3* 

* Denotes impaired performance. Control performance and normal cut-offs taken from published texts except 

where stated. NA = not available. a = norms standardised on children. PALPA (Psycholinguistic Assessments of 

Language Processing in Aphasia, Kay, Lesser & Coltheart, 1992), Cambridge Semantic Memory Battery (Adlam, 

Patterson, Bozeat & Hodges, 2010; Bozeat, Lambon Ralph, Patterson, Garrard & Hodges, 2000), CAT 

(Comprehensive Aphasia Test; Swinburn, Porter & Howard, 2004), Raven’s Colored Progressive Matrices (Raven, 

1962), Trail Making test (Reitan, 1958), Brixton Spatial Rule Attainment Task (Burgess & Shallice, 1997), VOSP 

(Visual Object and Space Perception battery, Warrington & James, 1991), TEA (Test of Everyday Attention, 

Robertson, Ward, Ridgeway & Nimmo-Smith, 1994), Corsi block-tapping task (Kessels, van Zandvoort, Postma, 

Kappelle & de Haan, 2000).  

 

DNe was notably expressive in his mannerisms, and was able to communicate 

to some extent through writing and drawing, for example, describing the ‘cookie 

theft’ cartoon (see Figure 3.2).  In contrast, his spoken description comprised only 

repetition of the word ‘yeah’ with hand gestures pointing to different aspects of the 

picture. It was noted in preliminary testing that he showed refractory effects only in 

the verbal domain. Impairments on executive control/attention tasks were largely 

restricted to the auditory domain, for example the elevator counting task, TEA 

(Robertson, et al., 1994). In contrast, non-verbal executive tasks, such as the trail 

making and Brixton Spatial Rule task were performed within the normal range (see 

Table 3.1).  
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Figure 3.2: DNe’s written description of the Cookie Theft picture (Goodglass & 

Kaplan, 1983).  

 

Experimental tasks 

In the following section we investigate (1) a go-no go task involving auditory 

and written words for semantic and phonological judgements, (2) semantic processing 

across picture, written and spoken word and environmental sound tasks, (3) the effect 

of semantic variables on comprehension; e.g., imageability and frequency, (4) 

semantic control manipulations across modalities, (5) cyclical matching across 

modalities and (6) effect of degraded speech input on controls’ performance on our 

experimental tasks.  

1. Go-no go task involving auditory and written words for semantic and 

phonological judgements 

In order to compare performance across modalities, a go-no go task was 

devised in a 2x2 design, comparing two modalities (written and spoken), and two 

conditions, semantic or phonological. The semantic condition involved deciding if 

words were animals or man-made objects. The phonological condition involved 

distinguishing words beginning with a /b/ and those beginning with other phonemes 

(/n/, /p/, /m/).  

Procedure 

75% of 200 trials involved a ‘go’ response (a button press), and 25% involved 

inhibiting a response, or button press (‘no go’). In the written conditions, a word 

appeared on the screen for the length of the trial (1500ms), and for the auditory 

conditions, a green dot was displayed whilst the sound file played (mean 474ms, 
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241ms) with the trial length fixed at 1500ms. In the perceptual task, nonwords of one 

syllable which began with /b/ required a ‘no go’ response (e.g., ‘bip’, ‘bem’), whilst 

all other non-words, which had as their initial phoneme /n/, /p/ and /m/ required the 

spacebar to be pressed (e.g., ‘nup’, ‘pag’, ‘mip’). In the semantic task, animals 

required a ‘no go’ response (e.g., ‘sheep’), whilst manmade items required a ‘go’ 

response (e.g., ‘chair’). All items were monosyllabic. To explore the effect of time of 

presentation, the auditory semantic task was presented for both 1500ms and 650ms (in 

separate testing sessions). E-prime was used to present the stimuli and collect the 

responses. Both accuracy and RT were recorded. RT analysis is for correct responses 

only.  

Results 

Reaction time data (RT, shown in Table 3.2) revealed no significant 

differences (p > .1), so accuracy effects are reported. In both the written semantic and 

perceptual task, DNe scored near ceiling (193/200 and 196/200 respectively). In the 

auditory perceptual task, DNe’s performance fell to chance. He scored 99/200, with 

the majority of errors (68%) reflecting failures to respond on ‘go’ trials. In the 

auditory semantic task, DNe scored 156/200. Again, the majority of errors (77%) 

were no responses on ‘go’ trials. A McNemar test revealed higher accuracy on the 

semantic task (p < .001). Reducing the trial length to 650ms in the auditory semantic 

task reduced DNe’s accuracy to 90/200, with 87% of errors from not responding to 

‘go’ trials. A McNemar test showed a significant effect of presentation time on 

accuracy: p < .001.  
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Table 3.2: DNe’s reaction time in the go-no go task 

    Mean 

(ms) 

SD 

Written Semantic 1500ms 778 230 

  Perceptual 1500ms 745 201 

Spoken Semantic 1500ms 712 159 

  Semantic 650ms 526 116 

  Perceptual 1500ms 1145 220 

Written/spoken refers to presentation modality. Semantic/perceptual refers to the type of decision. 1500ms/650ms 

refers to the trial duration. Trials where the reaction time was greater than 2 SD from the mean were not included 

in analysis.  

 

Summary  

These results suggest an auditory processing deficit, or a input processing 

deficit paired with a semantic control deficit. DNe showed impairment in his ability to 

activate semantic representations, although this impairment was not specifically 

semantic. There was no evidence of an inhibitory deficit on no-go trials, but instead 

failure to activate phonological/semantic representations from spoken words on go 

trials. This pattern would be expected to occur with an input processing deficit. In the 

next section, we explore how this deficit affects semantic tasks across modalities. 

2. Semantic processing across picture, written, spoken word and 

environmental sounds tasks 

We investigated DNe’s performance across modalities in a range of tasks 

which assess semantic comprehension.  

Procedure 

We used two tests from the Cambridge Semantic Battery (Adlam, Patterson, 

Bozeat, & Hodges, 2010; Bozeat, et al., 2000), (1) The Camel and Cactus task (CCT, 

Bozeat et al., 2000) contained 64 trials, and involved matching a probe with one of 

four related items (e.g., does CAMEL go with CACTUS, TREE, SUNFLOWER, or ROSE?). 

There were three versions of the test, (i) a picture-picture matching task, matching a 

probe picture (e.g., CAMEL) with a target picture (e.g., CACTUS); (ii) a written word-
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written word matching task, matching a written probe word with a written target 

word; and (iii) a spoken word-written word matching task, matching a spoken probe 

with a written target word. All 3 conditions used the same items, and were presented 

on different testing sessions. In both tasks in which written words were used, the 

target and distractors were read out aloud by the researcher. (2) A 48-item 

environmental sounds matching task (Bozeat et al., 2000) involved matching a sound 

or word to one of ten pictures. The distractors were semantically related to the target. 

The probe was given as a sound (e.g., ‘woof’), spoken word (e.g., ‘dog’) or written 

word. Both tasks were untimed, and spoken words were only presented once.  

Results  

Camel and Cactus Task results: DNe was in the normal range for the CCT task 

when the materials were presented as pictures or written words, suggesting he did not 

have a substantial impairment of semantic cognition across modalities. However, he 

was impaired on tasks involving auditory materials.  

A McNemar test showed no significant difference between written and picture 

versions of the CCT (p = .109). In contrast, DNe’s performance on the spoken version 

of the task was significantly worse than both the written (p = .001) and picture 

versions (p < .001). We examined the extent to which DNe was impaired in relation to 

controls by using the “Singlims” procedure (Crawford & Garthwaite, 2002), which 

uses a modified t-statistic to examine whether an individual is significantly below a 

control group, taking into account group size and standard deviation. This suggested 

his accuracy was only impaired in the spoken version of the task, not the written or 

picture versions (see Table 3.3).  

Environmental sounds results: DNe showed a significant impairment in 

relation to controls in environmental sound and spoken word modalities, but showed 

normal performance with written words (shown in Table 3.3). Performance on spoken 

words and sounds was equivalent (McNemar test, p = .815).  
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Table 3.3: DNe’s performance on semantic tasks across modalities 

 Test Max 
Control 

mean (SD) 
DNe Singlims 

Camel and 

Cactus task 
Picture-picture matching 64 58.9 (3.10) 61 

t = .646, p = 

.534 

 Written word matching 64 60.7 (2.06) 56 
t = 2.175, p 

= .058 

 
Spoken word-written word 

matching 
64 

(assumed 

same as 

written 

version) 

36* 
t = 11.432, 

p < .001 

Environmental 

Sounds task 
Sound-picture matching 48 41.2 (2.5) 33* 

t = 3.127, p 

= .012 

 
Spoken word-picture 

matching 
48 47.8 (0.6) 36* 

t = 18.751, 

p < .001 

 
Written word-picture 

matching 
48 

(assumed 

same as 

spoken 

version) 

47 
t = 1.271,   

p = .235 

* Denotes impaired performance. Bold represents significant impairment. Camel and Cactus task and 

Environmental Sounds test (Bozeat, Lambon Ralph, Patterson, Garrard & Hodges, 2000). A non-parametric t-test 

(Singlims) was used to compare DNe’s performance to the control mean (Crawford, Garthwaite & Ryan, 2011).  

 

Summary 

DNe’s results again show an input processing deficit. His performance on 

standard measures of semantic processing was only impaired in the auditory modality 

(both spoken word and environmental sound stimuli). In aphasia patients, there is 

often a coupling between spoken and written comprehension (Behrns, Wengelin, 

Broberg, & Hartelius, 2009; Warrington & McCarthy, 1983), suggesting similar 

control demands across these modalities.  
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3. Effect of semantic variables on comprehension.  

SA patients show better performance on highly imageable items compared 

with items which are more abstract in meaning (Hoffman, et al., 2010; Jefferies, et al., 

2007). Conversely, they show no effect of word frequency (Hoffman, Jefferies, et al., 

2011; Hoffman, Rogers, et al., 2011; Jefferies, et al., 2007). This is also one of the key 

characteristics of ‘access’ patients, who show a lack of frequency effects (Crutch & 

Warrington, 2005a), with worse performance on abstract words compared to concrete 

words (Crutch & Warrington, 2005a; Warrington & McCarthy, 1983). We assessed 

DNe’s performance a synonym judgement task which manipulated items according to 

imageability and frequency (Jefferies, et al., 2009).  

Method 

A synonym judgement task involved matching a probe word with a target 

word presented alongside two unrelated distractors. This had 96 items in two 

frequency bands (high and low: 128 (102) and 4.6 (4.5) counts per million in the 

Celex database respectively) and three imageability bands (high: 622/700, SD = 14; 

medium: 452/700, SD = 26; and low: 275/700, SD = 17), producing sixteen trials in 

each of the six frequency-by-imageability conditions (see Jefferies, et al., 2009). For 

example, a low imageability, low frequency item involved matching SUFFIX with 

INFLECTION, PERPETRATOR or TEMERITY. A low imageability, high frequency item 

involved matching CONSIDER to THINK, DEVELOP or DETERMINE. A high imageability, 

low frequency item involved matching CHESTNUT with CONKER, SWAMP or EAGLE. 

Finally, a high imageability, high frequency item involved matching MONEY with 

CASH, CAR or CHURCH. Responses were untimed. In two versions of the task, 

examined in separate sessions, the probe was presented as either a spoken or written 

word. In both versions, the response options were presented as written items and also 

read aloud by the researcher.  

Results 

Table 3.4 shows DNe’s performance on spoken and written synonym 

judgement tasks. There was a significant overall difference between DNe’s 

performance on the spoken and written tasks: χ
2
(1) = 14.527, p < .001. In the written 

task, DNe showed an effect of imageability, with higher performance on more 

imageable words:  χ
2
(2) = 25.59, p <.001. Modified t-tests, using the singlims 
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procedure (Crawford & Garthwaite, 2002), established the degree of deficit at each 

level of imageability and frequency are presented in  

 

Table 3.4. An imageability effect was found in the spoken version of the task: 

χ
2
(2) = 12.673, p = .002. There was no effect of frequency in either the written 

version: χ
2
(1) = .549, p = .459; or spoken version: χ

2
(1) = 1.191, p = .275, consistent 

with SA and ‘access’ patients’ performance.  

 

Table 3.4: DNe’s scores on the synonym judgement task 

 Test Max 
Control 

mean (SD) 
DNe Singlims 

Written synonym 

judgment  
Overall 96 94.5 (1.76) 75* t = 10.813, p <.001 

 Low imageability 32 30.8 (1.32) 15* t = 11.681, p <.001 

 Medium imageability 32 32 (0.65) 29* t = 4.504, p <.001 

 High imageability 32 31.85 (0.49) 31 t = 1.693, p = .107 

 Low frequency 48 47.4 (0.99) 36* t = 11.238, p <.001 

 High frequency 48 47.1 (1.00) 39* t = 7.856, p <.001 

Spoken probe 

synonym judgment  
Overall 96 

(assumed 

same as 

written) 

65* t = 16.357, p <.001 

 Low imageability 32  14* t = 21.421, p <.001 

 Medium imageability 32  26* t = 9.008, p <.001 

 High imageability 32  25* t = 13.643, p <.001 

 Low frequency 48  30* t = 17.152, p <.001 

 High frequency 48  35* t = 11.760, p <.001 

*Denotes impaired performance. Max = number of items in each task. Bold represents significant impairment. 

Synonym judgement task (Jefferies, Patterson, Jones & Lambon Ralph, 2009). “Singlims” procedure (Crawford & 

Garthwaite, 2002) uses a modified t-statistic to examine whether an individual is significantly below a control 

group, taking into account group size and standard deviation.  
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Summary 

DNe’s performance on this task suggested impairment beyond an auditory 

input processing deficit. Although there was a significant difference between accuracy 

on spoken and written tasks, combined with impaired ability to access the meanings 

of even highly imageable probe items when these words were spoken aloud, DNe 

showed characteristics of SA and ‘access’ patients in the written domain, indicating 

that semantic variables impact on his performance in non-auditory modalities. An 

impairment was perhaps not seen on the written word form of the CCT because this 

task did not involve judgments about abstract items. Abstract words may be more 

challenging for DNe to comprehend for at least two reasons: (1) since their processing 

draws less upon sensory-motor features, they may make more demands on auditory-

verbal mechanisms (Pavio, 1986); (2) these words may also pose greater demands on 

executive-semantic mechanisms, since they can have a wider range of meanings in 

different situations – they have a large number of lexical associates, appear in a large 

number of linguistic context and have a large number of meanings or senses 

(Hoffman, Rogers, et al., 2011). The absence of frequency effects even in the written 

domain, in line with the performance of SA and ‘access’ cases, is consistent with this 

hypothesis, since frequent words are also thought to draw more heavily on semantic 

control, counteracting their normal processing advantage in patients with semantic 

control deficits (Hoffman, Jefferies, et al., 2011; Hoffman, Rogers, et al., 2011). This 

is because high frequency items activate spurious or irrelevant associations. 

Almaghyuli et al. (2012) showed that frequency of distractors influences performance 

– so that there is higher performance on high frequency items when they are presented 

with low frequency items – as these words have less varied meanings and occur in 

fewer contexts (e.g., KEEP with SAVE, DERIVATION or ENIGMA). These findings 

motivate further investigation of the impact of semantic control demands on 

comprehension across modalities, given that background neuropsychological testing 

reveal executive deficits restricted to the verbal domain.  

4. Semantic control manipulations across modalities 

DNe completed three tasks that manipulated semantic control demands in 

different ways, (1) by increasing the semantic distance between categorically related 

items, (2) by manipulating semantic ambiguity through comparisons of the dominant 

or subordinate meaning of homonyms, and (3) by comparing semantic matching 
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across closely or weakly associated items.  All 3 tasks assessed performance across 

modalities. These assessments were designed for the use in SA patients, who show an 

effect of semantic distance and semantic ambiguity (these tasks have not been run on 

‘access’ patients so far). All tasks had unlimited response time.  

Task 1: Nearest Neighbour Judgements 

The semantic nearest neighbour task, involved matching a probe word to a 

target word in the same semantic category: the ‘nearest neighbour’ (Noonan, et al., 

2010). This was therefore not an association matching task, but instead selection was 

based on how many features overlapped with the probe item. There were 4 conditions, 

in a 2 by 2 design, manipulating semantic similarity and modality. The degree of 

semantic control required was manipulated by varying semantic similarity of the 

probe with the target, whilst keeping the distractors the same. When the probe and the 

target were closely related, they shared much of their semantic structure, making it 

relatively easy to determine the target word, e.g., HAT, with CAP, FUTON or SPADE. 

When the probe and the target were distantly related, additional semantic control was 

required to work out the relevant semantic link, since there were overlapping features, 

e.g., HAT, with STOCKING, FUTON, or SPADE. Further details of the test and further 

examples of the stimuli can be found in Noonan et al. (2010). We contrasted two 

modalities, spoken and written. The response options were always presented as 

written words to reduce verbal short term memory demands, but the probes were 

either read aloud or shown as a written word. The same 64 words were tested in all 

conditions of relatedness and modality, over different testing sessions, which led to 

256 trials.  

Results 
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Table 3.5 shows DNe’s performance on the nearest neighbour task. A 

McNemar test revealed a significant difference between performance on written and 

spoken versions (p < .001). DNe’s high performance on the written task produced no 

significant difference between close or distant category decisions: χ
2 

(1) = 2.133, p = 

.144. However, in the spoken version of the task, there was a semantic control effect – 

close category decisions were significantly more accurate than distant category 

decisions: χ
2 

(1) = 7.850, p = .005.  
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Table 3.5: DNe’s performance on semantic control tasks across modalities 

 Test Max 
Control mean 

(SD) 
DNe Singlims 

Ambiguity 

test 

Written probe – 

dominant meaning 
30 29.5 (0.53) 25* t = 7.937,  p <.001 

 
Written probe  - 

subordinate meaning 
30 28.875 (0.64) 16* t = 18.941, p <.001 

 
Spoken probe – 

dominant meaning 
30 (assumed the 

same as written 

probe) 

23* t = 11.563,  p <.001 

 
Spoken probe – 

subordinate meaning 
30 12* t = 24.859,  p <.001 

Nearest 

neighbour 

task 

Written probe - close 64 64 (0)
a
 62*  

 Written probe - distant 64 62.625 (1.685) 58* t = 2.588,  p = .036 

 Spoken probe – close 64 (assumed the 

same as written 

probe) 

56* t = 75.425,  p <.001 

 Spoken probe - distant 64 39* t = 13.219,  p <.001 

* Denotes impaired performance. Bold represents significant impairment. Ambiguity and nearest neighbour task 

(Noonan, Jefferies, Corbett & Lambon Ralph, 2010). Max = number of items in each task. “Singlims” procedure 

(Crawford & Garthwaite, 2002) uses a modified t-statistic to examine whether an individual is significantly below 

a control group, taking into account group size and standard deviation. a = no singlims test conducted as the SD for 

controls was 0. 

 

Task 2: Comprehension of ambiguous words 

A semantic ambiguity task (Noonan et al., 2010) examined the ability of DNe 

to selectively focus on the less dominant meanings of polysemous words. A word 

with multiple meanings is thought to activate these meanings in parallel (Onifer & 

Swinney, 1981; Rodd, Gaskell, & Marslen-Wilson, 2004; Simpson & Burgess, 1984). 

Less frequent meanings, however, show a processing disadvantage (Simpson, 1985). 

Therefore, control processes are required to select less frequent meanings, and avoid 

the dominant interpretation (Rodd, et al., 2005; Zempleni, et al., 2007). The semantic 

ambiguity task involved matching a homonym to a related word, in four conditions, in 

a 2 x 2 design, manipulating dominance (e.g., dominant or subordinate), and modality 

for the probe word (written and spoken). As before, response options were always 
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presented as written words. In half of the trials, the target referred to the dominant 

meaning of the probe (e.g., FILM to be matched with MOVIE, COAL, PRINCE, or GOLF. 

The other half of the trials used the subordinate meaning (e.g., FILM, to be matched 

with SKIN, COAL, PRINCE or GOLF). There were 30 items, presented at both levels of 

meaning, and in both modalities, on different testing sessions (totalling 120 trials).  

Results 

DNe’s scores in the ambiguity task are presented in Table 5. There was no 

overall difference between performance on the written and spoken tasks (p = .424). In 

both modalities, he showed a semantic control deficit – that is, lower accuracy on 

non-dominant than dominant meaning trials. This was significant in the written 

modality: χ
2 

(1) = 4.800, p = .028, and the spoken modality: χ
2 

(1) = 8.297, p = .004. 

Modified t-tests (Crawford & Garthwaite, 2002) showed DNe was impaired in all 

conditions in relation to controls (see   
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Table 3.5).  

Task 3: Strong and weak association matching  

To investigate if DNe had a semantic control deficit for non-verbal materials, 

we used a task manipulating semantic control demands across four conditions, with 

two variables, association strength between the probe and target (strong and weak) 

and modality (spoken word vs. picture). Association strength is often used to 

manipulate semantic control demands in the functional neuroimaging literature (Badre 

& Wagner, 2002, 2007; Thompson-Schill, et al., 1997; Wagner, Paré-Blagoev, et al., 

2001), since strong associations are thought to be retrieved relatively automatically, 

while weak associations require more effortful controlled semantic retrieval followed 

by a comparison of different possible semantic links. This task used items from 

Krieger-Redwood (2012). Stimuli were acquired from the MRC psycholinguistic 

database. The EAT (Edinburgh Association Thesaurus) was used to acquire 

associations. The 'highly' related items were ones with the highest number of 

responses (e.g., 57% of people said “cat” for DOG). The ‘weakly’ related items were 

ones with the lowest number of responses (e.g., 1% of people said “paw” for DOG).  

There was no significant difference between frequency of the probe (M = 51, 

SD = 100) and either the target in the strong condition (M = 67, SD = 166), or weak 

condition (M = 60, SD = 90): F<1, or any of these 3 items paired together in a t-test (t 

≤ 1.124, p ≥ .263). There was also no effect of imageability between the probe (M = 

592, SD = 49), or target in the strong condition (M = 577, SD = 84) or weak condition 

(M = 579, SD = 67): F(2,140) = 1.521, p = .222. However, there was a difference 

between the target and probe for the weak condition: t(172) = 2.095, p = .038, and 

approaching significance for the strong condition: t(154) = 1.837, p = .068, but there 

was no difference between the strong and weak condition targets: t < 1. In the spoken 

version, pre-recorded spoken words were presented. In the picture version, items were 

sourced from Wikimedia commons, a freely licensed media file repository (with all 

images in the public domain). Picture stimuli were coloured pictures all fitted to a 

standard 255 x 149 pixel size.  

This task involved matching strong associates, such as KNIFE with FORK, or 

weak associates, such as SHOE with BRUSH. The target was presented alongside two 

unrelated distractors such as CLOUD and ARROW. There were 90 items. This task is 

shown in Figure 3.3.  
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Weak associates (left) and strong associates (right). Pictures are sourced from the Wikimedia commons. Commons 

is a freely licensed media file repository, all images are in the public domain. 

Figure 3.3: Example of the Picture Semantic Association test 

 

Results 

DNe’s performance is shown in Figure 3.4. With an unlimited time to respond, 

DNe was able to detect the majority of picture associations (92% correct overall), and 

made some errors on spoken word associations (73% correct overall), but there was 

no significant difference between overall performance on these two tasks: χ
2
 (1) = 

.635, p = .425. In both tasks, his performance did not vary according to strength of 

association. In the word task, he scored 76% and 71% for high and low association 

conditions, respectively: χ
2
(1) = .455, p = .500. In the picture task, he scored 94% and 

90% for the high and low association conditions, respectively: χ
2
(1) = 1.239, p = .266. 

It was noted, however, that DNe often responded extremely slowly. Therefore, 

we assessed only those trials completed within seven seconds. Accuracy fell on both 

tasks: from 92% to 63% in the picture task, and from 73% to 47% in the spoken word 

task. There was no significant difference between these modalities: χ
2
(1) = .004, p = 

.951. For the word task, DNe scored 47% for both high and low association 

conditions. For the picture task, DNe scored 74% and 52% for the high and low 

association conditions respectively. This effect of association strength was significant: 

χ
2
(1) = 9.569, p = .002.  

http://en.wikipedia.org/wiki/File:NCI_clove_ham.jpg
http://en.wikipedia.org/wiki/File:Red_High_Heel_Pumps.jpg
http://en.wikipedia.org/wiki/File:Sow_with_piglet.jpg
http://upload.wikimedia.org/wikipedia/commons/d/d2/Football4.png
http://en.wikipedia.org/wiki/File:Monticola_gularis_male_non-breeding_-_Khao_Yai.jpg
http://en.wikipedia.org/wiki/File:Happiness.jpg
http://en.wikipedia.org/wiki/File:Male_Right_Foot_1.jpg
http://en.wikipedia.org/wiki/File:Liliumbulbiferumflowertop.jpg
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Error bars showing standard error of mean. Chance level = 33%. 

Figure 3.4: The effect of association strength on accuracy in spoken word and picture 

tasks.  

 

Summary 

DNe showed sensitivity to semantic control manipulations across modalities. 

Manipulations of semantic distance between probe and target, ambiguity and 

association strength all produced evidence for a semantic control deficit in written, 

spoken and picture modalities. DNe’s impairment cannot be explained entirely by an 

auditory input processing deficit, since he shows parallel deficits across modalities 

like SA patients (Jefferies & Lambon Ralph, 2006). Nonetheless, his performance is 

notably worse overall on spoken word tasks, consistent with the view that a control 

deficit co-occurs with an input processing deficit. These two deficits appear to interact 

in tasks involving comprehension of spoken words, and produce a larger semantic 

control deficit in the auditory domain.  

5. Cyclical matching across modalities 

Cyclical matching experiments were examined across four modalities: written 

words, spoken words, environmental sounds and pictures. This method was developed 

from previous experiments (Gardner, et al., 2012; Warrington & Crutch, 2004; 
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Warrington & McCarthy, 1983). DNe matched a probe item (presented in one of the 

above modalities) with a target picture presented alongside three distractor pictures. 

The same items were presented repeatedly across several cycles, such that recently-

selected targets became distractors, and distractors became targets. Jefferies et al. 

suggested that control demands increase across this task, because over cycles the 

target and distractors become highly activated, and so choosing among competing 

items becomes more difficult. A reduction in accuracy across cycles, referred to as a 

‘refractory effect’, is found in SA patients with impaired semantic control. 

Warrington and colleagues also find refractory effects in ‘access’ patients, and 

suggest that items, after activation, become temporarily unavailable. 

In the written word, non-verbal sound and picture conditions, the distractor 

items were semantically related. In the verbal-spoken domain only, (1) the effect of 

semantic relatedness was assessed, comparing accuracy on related and unrelated sets. 

These required matching of the probe word ‘kettle’ with a picture of a kettle alongside 

either related items, such as WHISK, JUG and CORKSCREW, or unrelated items, such as 

BED, FORK and MOTORBIKE. (2) The effect of phonological relatedness was also 

assessed. A phonological-related trial used a spoken probe, such as ‘watch’, to be 

matched to a picture of a watch displayed alongside pictures of items beginning with 

the same phoneme, for example, WHEEL, WELL and WHIP. In the unrelated condition, 

distractors did not begin with the same phoneme, for example, FENCE, HOUSE and 

STAR.  

Procedure 

An array of four pictures was displayed; the probe item was presented together 

with the four-item array, either through speakers or as a picture or written word at the 

top of the screen. The participant indicated his response by pointing to one of the 

pictures, and the experimenter pressed a key which advanced the task onto the next 

trial. The experimenter recorded accuracy (our primary dependent variable) while 

response time (RT) was recorded by the computer. As soon as a response was given, 

the next trial was presented. The participant had ten seconds to respond, before the 

next trial was presented and an error was recorded. There were four practice items 

before the start of each block. There were 160 items in the written task, picture task 

and spoken semantically-unrelated tasks (all using the same stimuli as targets and 

distractors). This included 10 sets of semantically related items, with 16 trials for each 
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set (4 trials per cycle, with 4 cycles). There were 128 items in the environmental 

sounds task (8 sets of 16 items). There were 288 items in the spoken semantically 

related task, using a spoken word version of the environmental sounds task (with 8 

sets) and the picture task (with 10 sets). There were 256 items in the spoken 

phonologically related and unrelated conditions (16 sets of 16 items for each 

condition). Beyond the change in modality, other key aspects of the task remained 

consistent: there were always 4 cycles, in a 4 alternative forced choice design. There 

was an RSI of 0 seconds, between a response and the presentation of the following 

trial. The related and unrelated sets in the semantic and phonological manipulations 

employed the same items but assigned to different sets.  

Results 

DNe showed evidence of refractory effects, defined as declining accuracy 

across cycles, in all verbal-spoken versions of the task, but not in any non-verbal or 

non-auditory versions of the task. This included the environmental sounds, picture 

and written word tasks. DNe showed a gradual decline in performance over cycles in 

all spoken word versions of this task, including with both phonetically related and 

semantically related sets (see Figure 5). When analysing all spoken-verbal trials, the 

decline in performance was significant in a McNemar test between cycles 1 and 4 (p = 

.001). Equivalent analyses across all non-auditory tasks and/or non-verbal tasks 

(written, environmental sounds and picture tasks) yielded no effect of cycle. Using a 

McNemar test, and analysing data across both semantic and phonological spoken-

word tasks, both related (p = .030) and unrelated (p = .011) sets showed significant 

refractory effects between cycles 1 and 4 (see Figure 3.6). When analysing related and 

unrelated sets together, the semantic (p = .030) and phonological conditions (p = .023) 

both showed refractory effects between cycles 1 and 4 (see Figure 3.7). The effect of 

relatedness of the semantic and phonological task is shown in Figure 3.8. There was 

no effect of cycle for the combined data from non-spoken modalities between any pair 

of cycles. There was also no refractory effect for any individual non-spoken task 

across any pairs of cycles (p > .5).  
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Error bars show standard error of mean. Spoken condition includes all spoken tasks: phonologically related and 

unrelated, and semantically related and unrelated sets. 

Figure 3.5: DNe’s semantic matching performance on the same items over four cycles 

across modalities.  
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Non-spoken modalities include written, environmental sounds and picture tasks. Error bars show standard error of 

mean. 

Figure 3.6: DNe’s cyclical semantic matching performance comparing related and 

unrelated distractors for spoken word-picture matching compared with non-spoken 

modalities 
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Phonological and semantic tasks, combining data from related and unrelated conditions. Error bars show standard 

error of mean. 

Figure 3.7: DNe’s refractory performance in phonological and semantic tasks 

 

Figure 3.8: DNe’s refractory performance with regards relatedness 
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A set of five logistic regressions analysed the predictive value of individual 

variables. Each model included two variables: modality/task (e.g., phonologically 

related versus unrelated sets) and cycle (see Table 3.6).  

 

Table 3.6: Predictor variables for multiple logistic regression  

Data entered into model Task (A v. B) Cycle 

1. Cycle and modality: spoken v. 

nonspoken 
Wald = 47.489, p < .001 Wald = 11.067, p = .001 

2. Cycle and modality: 

environmental sounds v. spoken 
Wald = 6.088, p = .014 Wald = 11.263, p = .001 

3. Cycle and non-spoken modalities: 

pictures v. written words 
Wald = 2.074, p = .150 Wald = .218, p = .641 

4. Cycle and non-spoken modalities: 

pictures v. environmental sounds 
Wald = 3.140, p = .076 Wald = .025, p = .876 

5. Cycle and non-spoken modalities: 

written words v. environmental 

sounds 

Wald = 9.029, p = .003 Wald = .366, p = .545 

6. Cycle and spoken tasks: related v. 

unrelated, combining semantic and 

phonological sets 

Wald = 51.116 

p <.001 

Wald = 12.557 

p < .001 

7. Cycle and spoken tasks: semantic 

v. phonological, combining related 

and unrelated sets 

Wald = 3.740 

p = .053 

Wald = 11.919 

p = .001 

This shows 7 logistic regression analyses, each looking at the effect of cycle, and a comparison between two tasks 

(or groups of tasks) from the refractory paradigm. Bold represents significant impairment.  

 

(1) The first logistic regression included data from all tasks, and revealed a 

significant effect of cycle and task (results in Table 3.6). The data was then 

considered separately for verbal and non-verbal tasks. (2) A logistic regression using 

data only from the non-verbal tasks (including environmental sounds, written words 

and pictures) found no evidence for a predictive effect of cycle. Despite employing 

the auditory modality, the environmental sounds task resembled the pattern for 
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pictures in this experiment. (3) In contrast, the logistic regression with data from all 

verbal tasks (including semantic and phonological tasks with both related and 

unrelated distractors) found a strong effect of cycle. Dissecting this data in further 

analysis, we found the effect of cycle was replicated across all four spoken word 

conditions. (4) There was no difference between overall accuracy on semantic and 

phonological trials, suggesting DNe was equally impaired at both tasks. (5) There was 

a significant effect of relatedness of distractors, showing DNe’s performance was 

significantly worse in the related condition (including data from both the semantic and 

phonological tasks) – although this did not interact with cycle. All the results are 

provided in Table 3.6.  

Summary 

DNe shows some similarities to SA patients. He shows strong refractory 

effects in the verbal domain, and his accuracy is affected by relatedness of the 

distractors, as in SA (Jefferies, et al., 2007). However, unlike both SA patients and at 

least some ‘access’ patients, DNe does not show refractory effects with environmental 

sounds (Crutch & Warrington, 2008b; Gardner, et al., 2012). With this task, he shows 

a striking modality effect with specific impairment of the spoken word domain. In 

addition, DNe shows a deficit in all spoken word tasks, including phonologically 

related items. These findings are consistent with an input processing deficit 

hypothesis, combined with a semantic control deficit, which results in greater 

impairment on later cycles, particularly notable on related sets which generate 

stronger competition. 

6. Effect of degraded speech input on controls 

The evidence so far points to an input processing deficit, potentially combined 

with a semantic control deficit. The input processing deficit is revealed by DNe’s 

more severe impairment in auditory-verbal semantic and phonological tasks compared 

with written and non-verbal tasks. However, it is unclear if this input processing 

deficit could give rise to the refractory effects and deficits on control-demanding tasks 

that DNe showed in the auditory-verbal domain. This pattern might instead reflect the 

interaction of the input deficit paired with a semantic control deficit, since in 

challenging tasks, degraded auditory input cannot be overcome via executive 

mechanisms.  
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In order to explore this issue, we tested the auditory-word and environmental 

sounds cyclical tasks in a group of twelve age-matched control subjects (age mean = 

72 years, SD = 11years), without brain damage, and with an average education until 

18 years. There were 4 males and 8 females. We presented words and/or sounds for 

comprehension both in white noise and in no noise. In the white noise condition, the 

sound files used in the ‘no noise’ condition were embedded in white noise, generated 

by Adobe Audition software. The amplitude of the noise was half that of the semantic 

stimulus, meaning the noise covered 50% of the sound from the audio file – leaving it 

partially audible. The tasks used were the nearest neighbour task (Study 3) and two 

refractory tasks involving environmental sounds and spoken word matching (Study 

5). The order of these tasks was counterbalanced across subjects, and the tasks were 

run over two sessions.  

Results 

The data from the nearest neighbour task is shown in Table 3.7. As 

participants produced many errors in the ‘noise’ conditions, we focused analysis on 

accuracy, as RT showed a similar pattern (see Figure 3.9). 

 

Error bars show standard error of mean.  

Figure 3.9: Reaction time of controls in the Nearest Neighbour Task (Noonan et al., 

2010).  
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In relation to accuracy, there was a strong effect of noise: t(11) = 18.569, p 

<.001. The difference between close and distant semantic category judgements was 

significant both in the noise condition: t(11) = 4.046, p = .002, and no noise condition: 

t(11) = 4.267, p = .001. There was an overall effect of both noise: F(1, 11) = 344.819, 

p < .001, and semantic distance: F(1, 11) = 39.063, p < .001. However, there was no 

interaction: F(1, 11) = 1.782, p = .209. Participants were greatly affected by noise, but 

this did not interact with semantic control demands. This is in contrast to the effects 

shown by DNe, who showed an effect of semantic control demands but only in the 

written domain.   

 

Table 3.7: Nearest neighbour task for healthy participants in white noise and no noise 

conditions, with close and distant targets  

 Close Distant  

White noise 

 
43 (9.4) 35 (11.3) 

No noise  99 (1.1) 94 (4.5) 

Data shown are means (and standard deviation), accuracy correct as a percentage.  

 

A 2 by 2 by 4 within subjects ANOVA was performed on the refractory data, 

examining the factors of task (word-picture or sound-picture matching), condition 

(noise or no noise) and cycle (1-4). The effect of task was non-significant: F <1. 

There was a strong effect of noise: F(1, 11) = 92.268, p <.001, although this did not 

differ between tasks (task by noise interaction: F(1, 11) = .151, p = .705). The effect 

of cycle was significant: F(3, 9) = 6.350, p = .013, although this corresponded to 

improved accuracy across cycles, the opposite of DNe’s data. This was particularly 

prominent in the noise condition, since performance was at ceiling in the no noise 

condition, leading to a significant interaction between cycle and noise: F(3, 9) = 

9.841, p = .003. The effect of cycle was greater in the word-picture than sound-picture 

matching tasks, reflecting an interaction with task: F(3,9) = 5.023, p = .026. This 

caused a three-way interaction of task by noise by cycles: F(3, 9) = 5.575, p = .019. 

The reaction time data is displayed in Figure 3.10.  



  

 122 

 

Figure 3.10: Reaction time of controls in the refractory tasks. Error bars show 

standard error of mean.  

 

 

To unpick this three-way interaction, we examined each task separately.  

The spoken-word refractory task data is shown in Figure 3.11. A repeated-

measures ANOVA revealed a significant effect of cycle: F(3,9) = 7.935, p = .007, 

noise: F(1,11) = 43.870, p < .001, and a significant cycle by noise interaction: F(3, 9) 

= 12.391, p = .002. In the spoken word no-noise condition, there was ceiling 

performance, and no significant cycle effect: F(3, 9) = 1.138, p = .385. In the noise 

condition, there was a significant increase in accuracy over cycles, the opposite of a 

refractory pattern: F(3, 9) = 9.911, p = .003. This suggests participants were impaired 

by noise, but only in the initial presentations. This is in contrast to DNe who shows a 

reduction in accuracy over cycle.  
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Also presenting DNe’s scores for the spoken word refractory task (with no white noise). Error bars show standard 

error of mean. 

Figure 3.11: Data from healthy participants performing a spoken word refractory task 

with words presented in white noise and no noise conditions  

 

The environmental sounds refractory task data is shown in Figure 3.12. A 

repeated measures ANOVA revealed a significant effect of cycle: F(3,9) = 3.936, p = 

.048, noise: F(1,11) = 158.880, p < .001, and an interaction between cycle and noise 

approaching significance: F(3,9)  = 3.127, p = .080. There was no significant effect of 

cycle in the no noise condition: F(3, 9) = 1.703, p = .235. In the noise condition, there 

was an improvement in performance over cycles which approached significance: F(3, 

9) = 3.232, p = .075.  A similar pattern was found for the spoken word and 

environmental sounds tasks. Again, this is in contrast to DNe, who shows a different 

refractory effect in these two tasks (see Study 5).  
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Also presenting DNe’s scores for the environmental sounds word refractory task (with no white noise). Error bars 

show standard error of mean. 

Figure 3.12: Data from healthy participants in a sound refractory task with sounds 

presented in white noise and no noise conditions  

 

Summary 

Healthy controls do not show the same pattern as DNe when they have an 

input deficit, externally generated using white noise. Controls did not show an 

interaction between semantic control demands (high v. low) and input deficit (white 

noise v. no noise conditions), suggesting that strong effects of semantic control 

demands cannot be produced from an input processing deficit but require an 

additional deficit of semantic control mechanisms.  

Discussion 

While there has been vigorous debate about the contribution of amodal and 

modality-specific representations in conceptual knowledge for many years, the role of 

modality in relation to the semantic control network has not been widely discussed. 

Jefferies and Lambon Ralph’s (2006) model involves a modality-general control 

system interacting with amodal conceptual representations giving rise to semantic 
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control deficits in words, pictures and action tasks in patients with semantic aphasia 

(SA). However, case studies AZ and BBB described by Warrington and colleagues 

(1983, 2004) show refractory effects which are modality specific: performance only 

declines across cycle in auditory word tasks in what they term semantic ‘access’ 

patients. We had the rare opportunity to study such a patient, DNe, who in 

preliminary testing showed refractory effects only in tasks involving spoken words. 

This case study was used to assess (1) whether sensitivity to control manipulations 

was specific to the auditory-verbal domain, and (2) if there was an association 

between executive and comprehension impairments along modality specific lines. 

Such a pattern might motivate revision of both Jefferies and Lambon Ralph’s 

multimodal model of semantic cognition, and Warrington et al.’s account, in which 

refractory effects are not associated with executive control. 

At first glance, DNe shows a pattern similar to semantic ‘access’ patients. He 

showed significantly poorer performance in the verbal modality than the visual 

modality (Warrington & Crutch, 2004). This was clearest in cyclical matching tasks, 

where he showed reduced performance across cycles only in auditory-verbal tasks. 

However, DNe showed deficits in all phonological tasks, which suggests an auditory 

input processing deficit, and he also showed subtle effects of semantic control 

manipulations across modalities, indicating that he may have additional impairment of 

multimodal semantic control, like SA cases (Jefferies & Lambon Ralph, 2006).  

Below, we explore the possibility that this pattern of impaired semantic and 

executive control within the auditory-verbal domain might be explained in terms of 

the combined effects of a relatively mild, general control deficit, paired with an 

auditory processing deficit. This, while not explicitly discussed by Jefferies and 

Lambon Ralph (2006), is consistent with their account in which semantic cognition 

comprises three components: (1) an amodal semantic hub, (2) modality-specific 

‘spokes’ that interact with the hub and provide it with its inputs, and (3) a semantic 

executive control mechanism, which brings task relevant features to the fore. The first 

two elements are derived from a model of semantic representation proposed by 

Rogers et al. (2004), describing multiple layers distinguishing cortical areas which 

includes sets of units dedicated to specific visual or verbal processes, and amodal 

semantic units. They argue that the whole system involves interactions among 

perceptual representations in different modalities – and so damage to visuosemantic 
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processing may have consequences for the system’s ability to hold on to its semantic 

representations. Maintenance of stable semantic representations depends on preserved 

connectivity between the semantic system and the perceptual/motor representations 

with which it is connected. Activation of semantic representations is not rigid, 

however, and is directly shaped by context (Jefferies & Lambon Ralph, 2006, see also 

Figure 3.13).  

 

If input processing is disrupted, this will affect semantic control predominantly in that domain (shown in the right 

panel). 

Figure 3.13: Conceptualisation of the Jefferies and Lambon Ralph (2006) model 

incorporating input modality.  

 

According to this model, presented in Figure 3.13, these three elements are 

highly interactive: an auditory input processing deficit would be expected to produce 

noisy or insufficient activation of an intact amodal semantic representation, leading to 

a deficit primarily in a single modality. The functional consequences of an additional 
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amodal semantic control deficit would then be difficulty in semantic tasks with high 

control demands, particularly for auditory-verbal materials which generate error-

prone conceptual activation, since executive resources are required to overcome 

processing difficulties in these circumstances, for example, matching an ambiguous 

homonym such as PEN with its subordinate meaning SHEEP.  

Crutch and Warrington (2011a) argue that there are both unimodal and amodal 

representations, as well as multimodal representations which activated to more than 

one modality (not necessarily equally). They argue that patients who show different 

performance in two different modalities have unequal damage to multimodal 

representations, with representations tuned towards written information exhibiting a 

‘storage-type’ impairment, and representations tuned towards spoken information 

exhibiting an ‘access-type’ impairment, due to the nature of the input. They suggest 

that executive control cannot account for a difference in ‘access’ patterns across 

modalities.  

However, it is possible to account for DNe’s performance in two alternative 

ways. One hypothesis is that (1) there are separate control mechanisms specific to 

verbal and non-verbal domains. DNe could have severe damage to the verbal control 

system, with only partial damage to the non-verbal systems, producing milder deficits 

on high-semantic control tasks employing pictures. Although incorporating the idea of 

semantic control, this is similar to Warrington and Crutch’s account of parallel 

modality specific semantic ‘systems’, which are not a simple disconnection of a single 

modality (Warrington & Crutch, 2004). (2) An interaction of control and input, which 

stems from an input processing deficit, which could also lead to the discrepancy 

between the verbal and visual domain. Noisy activation from an impaired verbal input 

leads to activation errors of semantic items, and in healthy volunteers, leads to 

increased activation in semantic control regions (Davis & Johnsrude, 2003; Sharp et 

al., 2010). If DNe has an impairment of both input processing and semantic control, 

he would show particular difficulty in high demand conditions, such as fast 

presentations or weakly related items. Evidence gathered from this study will help us 

scrutinize these two potential explanations for DNe’s performance.   
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General and specific control networks 

There is a clear evidence for modality general control regions, which go 

beyond semantics. A large ‘multi-demand’ network has been described, with the same 

regions showing significant activation to a wide range of ‘control’ tasks (Duncan, 

2010). Duncan and Owen (2000) analysed 20 studies which tested executive control: 

tasks involving response conflict, novelty, working memory, delayed memory and 

perceptual difficulty (see also Duncan, 2006). Although the foci of activation were 

somewhat distributed, there was similarity of activation across demands and 

experiments, which suggested a dorsal frontoparietal network, including inferior 

frontal sulcus, dorsolateral prefrontal cortex, supplementary motor areas, adjacent 

cingulate cortex and areas in and around the intraparietal sulcus (Dosenbach, et al., 

2008; Duncan, 2006, 2010; Duncan & Owen, 2000; Nagel, et al., 2008; Wager, 2004). 

Additional literature suggests partially overlapping yet somewhat different 

regions are implicated in linguistic/semantic control. The semantic control network, 

like the ‘multi-demand’ network, involves areas in and around (and inferior to) the 

inferior frontal sulcus and intraparietal sulcus mentioned above, but also involves 

‘semantic specific’ regions - the pMTG (Dosenbach, et al., 2008; Duncan, 2006, 

2010; Nagel, et al., 2008) and anterior IFG (Devlin, et al., 2003; Noonan, et al., 

submitted). Whitney et al. (2011) used TMS to assess the roles of these regions in 

both semantic and non-semantic tasks. The semantic control tasks involved controlled 

retrieval of distant associates (e.g., SALT with SUGAR), and feature selection (e.g., 

matching according to colour BEETROOT with BLOOD). The non-semantic control task 

involved matching a probe letter (e.g., ‘b’) to a local letter feature, ‘b’ presented 

within a conflicting global Navon letter (e.g., ‘K’). TMS to pMTG and IFG found 

disruption only to semantic control tasks, not the non-semantic Navon task. 

Stimulation of the dAG did disrupt the non-semantic Navon task, as well as specific 

aspects of semantic control: feature selection and not ‘controlled retrieval’ of distant 

associations (Whitney, et al., 2012). This suggests that the dAG/IPS may overlap with 

regions involved in allocating attention to internal and external representations 

beyond the semantic domain. The large region that comprises the IFG may be further 

distinguished, with the most anterior parts being predominantly semantic, while 

posterior parts are involved in phonological decisions and resolving linguistic conflict 



  

 129 

(Devlin, et al., 2003; Gold & Buckner, 2002; Gough, Nobre, & Devlin, 2005; Snyder, 

Feigenson, & Thompson-Schill, 2007). 

While there is partial differentiation of function across the neural network 

underpinning semantic and non-semantic control, there are two reasons why it is 

unlikely that either DNe or other auditory-verbal ‘access’ patients have a verbal-

specific control deficit. Firstly, our case study and the ‘access’ patients described in 

the literature have large lesions, and it is perhaps implausible to link their lesions to 

aspects of the control network that are more specific to semantics – e.g., damage to 

anterior LIFG or pMTG. Additionally, although semantic specific control is nearly 

always tested in the verbal domain (Dumontheil, et al., 2011; Duncan, 2006, 2010; 

Hon, Epstein, Owen, & Duncan, 2006; Nagel, et al., 2008), both LIFG and pMTG 

have been implicated in non-verbal semantic cognition, in picture and action tasks. 

This makes it unlikely that even selective damage to pMTG or anterior LIFG would 

result in refractory effects specific to verbal comprehension – instead, one might 

expect multimodal semantic control deficits, like those seen in SA. While pMTG is 

thought to be important in the interface of phonological processing and semantic 

representations (Hickok & Poeppel, 2004, 2007; Turken & Dronkers, 2011), it is also 

involved in semantic judgements of non-verbal items, such as actions relating to 

pictured objects (Kellenbach, et al., 2003), and in word and picture semantic 

association tasks (Hoffman, Pobric, et al., 2011). The LIFG is associated with 

language production (Schnur, et al., 2005); but it is also involved in control beyond 

this domain (Hagoort, 2005; Thompson-Schill, 2003), in particular during semantic 

memory retrieval (Badre, et al., 2005; Thompson-Schill, et al., 1997; Wagner, Paré-

Blagoev, et al., 2001), visual target search (Fink, et al., 2006), action recognition 

(Hamzei, et al., 2003) and face recognition tasks (Rajah, et al., 2008). Thus, this 

literature suggests that sites involved in semantic control that do not form part of the 

multi-demand control network are nevertheless not restricted in their processing to 

particular modalities, but instead contribute to our understanding of words, pictures 

and actions. Additionally, evidence from Warrington et al. suggests ‘access’ patients 

may not be at ceiling level on visual tasks (indeed, on one visual object matching task, 

performance of case study VER is just 68%, Warrington & McCarthy, 1983). This 

suggests that there is little evidence for distinct modality-specific control systems. 
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‘Noisy’ activation of semantics from audition 

Semantic comprehension requires both input and control processes to be 

intact. If auditory processing is impaired, as in DNe, this could potentially increase 

the control demands of word comprehension tasks, reducing the executive resources 

available for overcoming task demands in high control conditions. This could produce 

the pattern of results seen in semantic ‘access’ patients – an apparent control deficit 

only in the auditory domain.  

Bilateral STS is crucial for auditory processing of speech (Hickok & Poeppel, 

2007; Scott & Johnsrude, 2003). When speech is unrecognisable, ATL activation is 

reduced, suggesting that incomprehensible speech fails to activate semantic stored 

representations within this region (Scott, et al., 2000). Additionally, studies involving 

degraded speech show an increased activation in linguistic control areas, such as 

LIFG (Davis & Johnsrude, 2003; Zekveld, Heslenfeld, Festen, & Schoonhoven, 

2006). For example, increasing perceptual difficulty leads to increased activation 

around BA 45 in the LIFG (Sharp, et al., 2010), the same region which responds to 

post-retrieval selection of semantic competitors (Badre & Wagner, 2007). Similarly, 

older people with age-related hearing loss show correlated impairments in executive 

control (Larsby, Mathias, Bjorn, & Stig, 2005; Li & Lindenberger, 2002; Pichora-

Fuller, Schneider, & Daneman, 1995), with expectancy-based attentional control 

modulating auditory identification (George et al., 2007; Murphy, Schneider, Speranza, 

& Moraglia, 2006), and exaggerated effects of semantic priming, suggesting 

contextual information helps to compensate for disturbances of sensory processing 

(Aydelott, Leech, & Crinion, 2010; Sheldon, Pichora-Fuller, & Schneider, 2008). 

Therefore, distorted input from auditory speech areas, as well as problems with 

linguistic control (preventing the patients from compensating for the degraded input) 

could give rise to ‘verbal-only’ access deficits.  

We attempted to test the hypothesis that DNe’s refractory and semantic 

control impairments could result from degraded auditory input alone using age-

matched controls (Study 6). We found that controls showed no interaction between 

perceptual noise and task demands in a semantic distance task, and they showed 

improved performance over trials in the noise-embedded verbal refractory task. This 

suggests that an auditory input deficit alone would not produce the pattern shown by 

DNe. Moreover, in more demanding semantic tasks, DNe showed an effect of 
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semantic control manipulations in picture and written modalities, suggesting he has 

impairments that go beyond auditory processing. 

Degraded input may increase control demands, since executive control 

processes could compensate for ‘noisy’ activation. In patients like DNe, this type of 

compensation is not possible. As predicted by Jefferies and Lambon Ralph’s (2006) 

model, disruption of auditory input paired with a mild amodal semantic control deficit 

leads to particular difficulty on control-demanding auditory-verbal tasks combined 

with ‘access’ impairment in this domain. The semantic control network is distributed, 

and includes the pMTG which is close to the auditory cortex. Therefore, this 

hypothesis may explain several case studies in the literature that show an ‘access’ or 

control deficit in only one modality. 
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Does posterior temporoparietal cortex support semantic control? A direct 

comparison of semantic deficits following temporoparietal, prefrontal and 

bilateral anterior temporal lobe lesions. 
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Abstract 

For the first time, we explored the effect of lesion location on behavioural 

performance of semantic aphasia (SA) patients, who have damage to the prefrontal 

cortex (PF+) and/or temporoparietal cortex (TP-only). Past research suggests SA 

patients with these two lesions may show similar deficits of semantic control, yet the 

functional neuroimaging literature proposes a unique role for the prefrontal cortex. To 

explore this apparent controversy, five TP-only, and ten PF+ SA patients, were 

compared to ten semantic dementia (SD) patients, who have damage to semantic 

representations, on a range of tasks which assessed sensitivity to semantic and 

executive control. SD patients showed clear evidence of degraded knowledge on 

every semantic task: in contrast both SA groups showed a qualitatively different 

pattern. Relative to SD, both TP-only and PF+ patients: (1) showed inconsistency 

across items when the task demands changed; (2) were more influenced by semantic 

selection and inhibition demands on a semantic association task; (3) exhibited 

attenuated effects of lexical frequency; and (4) showed evidence of poor semantic 

regulation in their verbal output – performance on picture naming was substantially 

improved when provided with a phonological cue. Despite these similarities, some 

differences emerged. PF+ patients were less fluent, showed more associative picture 

naming errors, and overall somewhat stronger SA characteristics (e.g., they were 

more inconsistent, and less affected by frequency). Additionally, it would found that 

patients with damage to posterior temporal regions as opposed to frontoparietal cortex 

were less affected by a task requiring dampening down of a prepotent distractor, 

suggesting posterior temporal regions are not involved in this aspect of semantic 

control. Taken together these findings suggest that semantic impairment in TP-only 

and PF+ cases is underpinned by damage to a semantic control network instantiated 

across anterior and posterior cortical areas, and helps to constrain theories about the 

contribution of each cortical region to semantic control. 
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Introduction 

Semantic deficits following different aetiologies of brain damage have suggested that a 

large network of regions is implicated in semantic cognition. These can be segmented according to 

function – with regions implicated in either semantic representation (damaged in semantic 

dementia, SD; Lambon Ralph & Patterson, 2003) or selection and retrieval of these items in a 

context specific way (disrupted in semantic aphasia, SA; Jefferies & Lambon Ralph, 2006). 

As noted in Chapter 1, a highly selective deficit in semantic memory is seen in SD and 

arises from degradation of conceptual representations. Patients show impaired conceptual 

knowledge in the context of relatively spared functioning in other cognitive areas – such as 

episodic memory and executive functioning (Hodges, et al., 1992b; Snowden, Goulding, & Neary, 

1989). Due to the degenerative nature of this brain disorder, SD patients are strongly influenced by 

item frequency and familiarly – with low frequency items being degraded first (Funnell, 1995; 

Lambon Ralph, et al., 1998). They show strong item-specific consistency across different tests of 

semantic knowledge (Bozeat, et al., 2000), suggesting degradation of the underlying semantic 

representation of an item.  

In comparison to SD patients, SA patients show: (1) performance that is predicted by 

control participants’ ratings of executive difficulty (Noonan, et al., 2010); (2) item consistency 

only on tasks which have similar control requirements, for example consistency on an association 

task which uses either picture or written word modalities, but not between association judgements 

and word-picture matching; Jefferies & Lambon Ralph, 2006); (3) minimal effects of 

frequency/familiarity, when task demands are held constant (Hoffman, Rogers, et al., 2011); (4) 

impaired performance on picture naming, which is greatly improved when given the initial 

phoneme as a cue (Jefferies, Patterson, et al., 2008); (5) effects of semantic control demands 

which are similar across modalities, with impaired performance on non-verbal action tasks, picture 

tasks and verbal tasks (Corbett, Jefferies, & Lambon Ralph, 2009; Jefferies & Lambon Ralph, 

2006); and (6) correlations between poor semantic performance and backgrounds measures of 

executive functioning (Baldo, et al., 2010; Baldo, et al., 2005; Jefferies & Lambon Ralph, 2006).   

SA patients often have large lesions, and at least two lesion types have been previously 

described (Gardner, et al., 2012), including (i) those with lesions to left inferior frontal gyrus 

(LIFG) which also extend to posterior temporal and/or inferior parietal regions (PF+ patients), and 

(ii) those with lesions restricted to posterior brain regions, incorporating posterior temporal and/or 

inferior parietal regions (TP-only patients). Little is known about how these patients differ. 
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However, across semantic control tasks, TP-only and PF+ patients show striking similarity in the 

impact of semantic control demands on performance. 

Those with prefrontal damage have impairments of selection (see selection theory; Badre 

et al., 2005). For example, Thompson-Schill et al. (1998) have shown that focal inferior prefrontal 

damage can affect the ability to generate verbs for nouns, but only in ‘high selection’ demand 

conditions (e.g., for nouns with many potential verbs, such as CAT, compared to nouns with a 

single dominant response, such as SCISSORS). Generating sentences when the stimulus has multiple 

conceptual propositions that compete for selection are impaired in frontal patients (Robinson, et 

al., 2005). Patients have impairments at processing/selecting the correct linguistic context, 

showing impairments at tasks using homonyms which are words with multiple meanings 

according to context (Bedny, et al., 2007). Lesions to LIFG also leads to lack of semantic priming 

of ambiguous words, suggesting difficulty processing context-appropriate meanings in the 

presence of competing meanings (Metzler, 2001). Campanella et al. (2012) studied a single patient 

following the resection of a left frontal glioma, and showed that this patient is less accurate with 

distantly related items (compared to closely related items), inconsistency of concepts, but showed 

no effect of frequency. This lack of frequency effect has been explained in terms of selecting the 

appropriate linguistic context. Hoffman and colleagues argue that highly frequent words are more 

semantically diverse – so have meaning in many contexts (e.g., FIRE can be used to describe a 

personality, being sacked, or a physical fire (Hoffman, et al., 2010; Hoffman, Rogers, et al., 2011). 

Therefore, although there is a natural advantage for high frequency words, this is counteracted in 

frontal patients by the need to select the appropriate linguistic context for the word. 

Lesions to posterior regions – including posterior temporal cortex and angular gyrus – 

produce semantic deficits too. Performance on semantic tasks is associated with damage to these 

regions (Berthier, 2001; Dronkers, et al., 2004; Saygin, et al., 2003; Schwartz, et al., 2009). More 

specifically, posterior regions are related to semantic control, with damage to this region 

disrupting performance on more control demanding tasks in relation to less demanding tasks – 

including tasks involving selecting distantly related items compared to closely related items, being 

aided by a phonetic cue in a picture naming task, and showing impairments on non-verbal action 

tasks with multiple subcomponents (Corbett, Jefferies, Ehsan, et al., 2009; Corbett, Jefferies, & 

Lambon Ralph, 2009; Corbett, et al., 2011; Jefferies, Hoffman, et al., 2008; Noonan, et al., 2010).  

However, there are two notable behavioural distinctions between those with and without 

prefrontal damage. (1) Berthier (2001) found that ‘anterior’ patients were significantly less fluent 

than ‘posterior’ patients – a finding which is supported by fMRI data which suggests the posterior 
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semantic control region posterior middle temporal gyrus (pMTG) is only responsive to 

comprehension tasks, and not expressive tasks (Noonan, et al., submitted). (2) Additionally, 

Chapter 2 found a difference in performance using a cyclical matching task (the ‘refractory’ task). 

SA patients with PF+ damage show refractory effects - or a decline in accuracy across cycles. 

Those with TP-only damage do no show this pattern (Campanella, et al., 2009; Gardner, et al., 

2012; Jefferies, et al., 2007; Schnur, et al., 2009). 

This subtle difference in behaviour found in PF+ and TP-only patients raises the possibility 

that, while both regions underpin semantic control, they provide functionally distinct 

contributions, accentuated by the refractory task. However, the difference found in the refractory 

task could be related to a number of different factors which are unusual in this cyclical task in 

comparison to other semantic tasks where no difference is found. These include repetition of 

related stimuli, switching between targets over a period of time, having a limited time to respond, 

dampening down items which are prepotent or having previously relevant items as distractors.  

The posterior temporal cortex 

The posterior temporal cortex has been implicated in a number of different disorders of 

language or semantics, which has led some to question its role in semantic control, and rather to 

suggest it has a role in representation. The pMTG is sometimes considered to be a repository of 

semantic representations (Binder, et al., 2009; Martin, 2007). The idea for a representation 

particularly for tools in the pMTG has been supported by fMRI studies (Beauchamp, Lee, Haxby, 

& Martin, 2002; Kable, et al., 2005; Martin & Chao, 2001). However, questions have been raised 

about the nature of these fMRI tasks. Devlin and colleagues (Devlin, Russell, et al., 2002) used 

three tasks to show no uncorrected significance for man-made objects over animals. Even when 

assessing just manipulable objects, with an ROI over the pMTG, this did not reach a corrected 

significance level (see also Gerlach, Law, Gade, & Paulson, 2000). They suggest some previous 

work has used uncorrected statistical thresholds, or stimuli which are not controlled for frequency 

or visual complexity (see also Tyler et al., 2003). Equally, there are tasks or participants where 

null results for tools have been found (Chao, et al., 1999; Moore & Price, 1999; Perani et al., 

1999). Devlin et al. (Devlin, Moore, et al., 2002) did find consistent pMTG activation for tools in 

comparison to animals – but only for more complex semantic tasks (see also Price & Friston, 

2002; Tyler, et al., 2000). This suggests there may be an interaction between activation for tools 

and control (Davey & Jefferies, in prep). For example, pMTG activation for action word 

generation was specific to a generation task and over and above that shown when naming an 

object (Martin, et al., 1995). Tyler et al. (2003) found activation for the names of animals and 

biological actions are largely overlapped, with no evidence of category specificity for living 
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compared with nonliving categories. This matches our findings from patients. SA patients show 

deficits for actions (Corbett, Jefferies, Ehsan, et al., 2009; Corbett, Jefferies, & Lambon Ralph, 

2009; Corbett, et al., 2011), but also for words and pictures with no action component (Noonan, et 

al., 2010), with performance on these tasks not correlated with category (Gardner, et al., 2012). 

This suggests that damage to posterior regions leads to deficits in demanding semantic tasks which 

is not dependent on category. However, it remains plausible that restricted damage to posterior 

temporal cortex could lead to a category-specific deficit (Damasio, Grabowski, Tranel, Hichwa, & 

Damasio, 1996; Patterson, et al., 2007).  

Another group of researchers, based on patient data, suggest damage to a posterior 

temporal region leads to pure anomia – considered to result from a disconnection between 

preserved semantic knowledge and phonological word forms (Foundas, Daniels, & Vasterling, 

1998; Hillis et al., 2005; Hillis, Tuffiash, Wityk, & Barker, 2002; Raymer et al., 1997). Indeed, 

some semantic control studies find greater activation in this region for verbal in comparison to 

non-verbal tasks (Krieger-Redwood, 2012), although it is important in both modalities (Hoffman, 

Pobric, et al., 2011). Damage to left BA 37 (inferior temporal region) correlates with lexical 

processing impairments in stroke patients (DeLeon et al., 2007). It is assumed that in these 

patients, input from semantics is disrupted, leading to insufficient activation required for word 

production (Lambon Ralph, et al., 2000). Comprehension is usually good (Gainotti, Silveri, Villa, 

& Miceli, 1986; Lambon Ralph, 1998), with patterns of performance suggestive of mild SA. For 

example, naming errors are semantically appropriate (Benson, 1979, 1988; Damasio, et al., 1996; 

Lambon Ralph, Moriarty, & Sage, 2002), and there is also mild inconsistency on an item-by-item 

basis (Lambon Ralph, 1998). Performance is increased by phonemic cueing (Lambon Ralph, 

1998; Patterson, Purell, & Morton, 1983), and patients have the ability to produce tip-of-the-

tongue information about unnamed items (Lambon Ralph, et al., 2000). Therefore, these patients 

appear to have a conflict between their spoken production and word comprehension. Indeed, 

another group of patients have the opposite deficits – impaired auditory comprehension with intact 

repetition and fluent speech – in transcortical sensory aphasia (TSA; Goldstein, 1948). Some of 

our SA patients show these symptoms (cf. Table 4.1). Boatman et al. (2000) used electrical 

interference via electrodes to seizure patients, and found regions associated with TSA 

characteristics in MTG particularly, but also other regions of the temporal lobe, temporo-occipital 

cortex and the parietal lobe. Characteristics of pure anomia patients are similar to SA patients 

(albeit milder), and so this literature does not conflict with our claims that posterior temporal 

regions are involved in semantic control.  
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Wernicke’s aphasia patients (who show similar symptoms to TSA without the ability to 

repeat) have a brain damage to posterior superior temporal cortex (pSTG; Eggert, 1977), posterior 

middle temporal gyrus (pMTG; Dronkers, et al., 2004; Ogar et al., 2011) and angular gyrus (AG; 

Chertkow, et al., 1997). Because damage is focal around pSTG, their deficits in auditory 

processing are often more pronounced, although often paired with semantic control deficits across 

domains (Robson, Sage, & Lambon Ralph, 2012). This suggests that it is possible to have damage 

to a ‘spoke’ (e.g., the auditory spoke), as well as damage to semantic control mechanisms (e.g., 

pMTG), which lead to a more pronounced deficit in one domain, paired with multimodal semantic 

control deficits (Goodglass, Kaplan, & Barresi, 2001; Ogar, et al., 2011).  

Representation interacting with control? 

As alluded to above - patients may share similar lesions but show different behavioural 

characteristics. The major difference of opinion comes at the distinction between representation 

and semantic control. Semantic control is comprised of both multi-demand areas, involved in 

domain general control (Duncan, 2010; Duncan & Owen, 2000), and ‘semantic’ regions involved 

in processes like controlled retrieval/integration which are specific to semantic control (Noonan, et 

al., submitted). There is evidence for category effects and domain effects mentioned above, but 

also numerous examples of domain-general effects in pMTG too (Devlin, Russell, et al., 2002; 

Hoffman, Pobric, et al., 2011; Noonan, et al., 2010). It is plausible that the area of the pMTG 

involved in control and representation is different. SA patients may have lesions which do not 

distinguish the contributing cortex for representation and control.  

Given distributed network, a key question remains over the role of each component. 

Neuropsychological evidence is useful in distinguishing which areas are necessary for particular 

functions. However, given that the majority of SA patients’ lesions encompass several semantic 

regions, neuroscientific evidence has been useful in discerning separable roles. The most 

important aim of this study is to provide good evidence that posterior SA patients can show SA 

characteristics, given that previous literature contains too few posterior cases to analyse 

sufficiently as a separate group (Jefferies & Lambon Ralph, 2006).  

Given this distributed network, a key question concerns the role of each component. This 

is likely to be at least partially distinct. Critically however, no study to date has directly compared 

TP-only, PF+ and SD patients. Although all semantic control tasks by their very nature require 

semantic representation, we are able to differentiate the contribution of both representation and 

control by looking at the pattern of performance across a battery of tasks. For example, those with 

a representational deficit for certain items will show consistency of errors on the same items in 

different tasks, no improvement after phonological cues in picture naming, and little effect of 
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semantic control manipulations in tasks tapping the same items. Additionally, a representational 

deficit is also paired with word frequency effects, as low frequency items are more likely to 

degrade first. Currently, it is unclear whether TP-only patients will show effects of semantic 

storage variables comparable to that seen in SD patients, or whether they will be more similar to 

PF+ patients. PF+ show difficulty shaping the relevant aspects of their conceptual knowledge to 

perform the task at hand, but they do not show impairment of semantic representation (Metzler, 

2001; Samson, et al., 2007; Swick & Knight, 1996; Thompson-Schill, et al., 1998). Therefore PF+ 

cases provide an ideal comparison group to test the degree of semantic control impairment in TP-

only patients.  

The aim of this study is to assess two controversies in the literature. Firstly, a number of 

theories propose that temporoparietal areas are specifically involved in semantic storage, either 

through representing individual sensory/motor features (Martin, 2007), or by mediating access to 

broadly distributed conceptual representations (Hickok & Poeppel, 2004, 2007). This study 

critically evaluates the nature of semantic knowledge deficits in TP-only patients in an attempt to 

better understand the contributions of temporoparietal cortex to semantic cognition. If 

temporoparietal areas are involved solely in semantic representation we would expect 

comprehension problems in this group to be qualitatively similar to patients with SD. In contrast, 

if temporoparietal areas also contribute toward semantic control then we might expect greater 

similarly between TP-only patients and PF+ cases with multimodal comprehension problems. 

Previous studies have not been able to address these issues because they have either used a small 

number of cases or employed assessments which have not allowed the separation of conceptual 

representation from semantic control (Berthier, 2001; Jefferies & Lambon Ralph, 2006). Secondly, 

there is limited work comparing PF+ and TP-only patients, with previous work grouping together 

patients with heterogeneous lesions into a single analysis (Corbett, Jefferies, Ehsan, et al., 2009; 

Corbett, Jefferies, & Lambon Ralph, 2009; Jefferies & Lambon Ralph, 2006; Noonan, et al., 2010; 

Soni, et al., 2009; Soni, et al., 2011). However, differences in neuroimaging literature suggest that 

despite many similarities, a detailed neuropsychological investigation of semantic and executive 

control in TP-only and PF+ patients has the potential to elucidate the role of these regions in 

specific aspects of semantic cognition. Therefore, for the first time, we will directly compare TP-

only and PF+ patients on a range of tasks which assess performance on non-semantic and 

semantic control experimental tasks.  
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Methods 

Participants 

There were twenty five patients separated into three groups, ten SD patients, and fifteen 

SA patients, five of whom were TP-only (lesions only affecting temporoparietal regions), and ten 

of whom were PF+ patients (lesions affecting prefrontal cortex and/or temporoparietal regions). 

Stroke patients: SA patients were recruited from stroke clubs and speech and language 

therapy services in Manchester and York, UK. Patients were selected for the study if they showed 

impairments on both word and picture association tasks (the Camel and Cactus Task, CCT). All of 

the patients had chronic impairments resulting from a CVA at least one year prior to testing. The 

group included patients with fluent and less fluent profiles (Table 4.1 provides background 

aphasialogical and demographic information).  
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Table 4.1: Semantic aphasia patient demographic information 

Patient Age Edu Group Aetiology Aphasia Type BDAE 

Compreh  

BDAE 

Fluency 

BDAE 

Repetition 

Nonword 

repetition 

Word 

Repetition  

Cookie 

theft WPM 

HN 80 15 TP-only Ischemia  Anomic/ TSA NT NT NT 56 86 59 

SC 80 16 TP-only Haemorrhage Anomic/ TSA 37 90 60 87 98 84 

EW 74 15 TP-only   NT NT NT NT 80 NT 

ME 40 16 TP-only Subarachnoid 

haemorrhage 

TSA 33 100 100 93 100 63 

KS 59 16 TP-only Haemorrhage TSA 43 97 100 73 94 84 

PG 63 18 PF+ Subarachnoid 

haemorrhage 

TSA 20 40 80 73 91 27 

NY 67 15 PF+  Mixed 

transcortical 

47 37 40 40 81 42 

KH 73 14 PF+  Mixed 

Transcortical 

30 30 40 43 80 29 

JM 69 18 PF+ Haemorrhage TSA 22 63 40 87 95 26 

BB 59 16 PF+ Subarachnoid 

haemorrhage 

Mixed 

Transcortical 

10 17 55 83 96 11 

KA 78 14 PF+ Thomboembolic/partial 

haemorrhage 

Global 0 23 0 0 0 NT 

LS 75 15 PF+  TSA 13 90 90 90 96 30 

GH 56 15 PF+  Global NT NT NT 30 75 3 

DB 83 16 PF+  TSA/Wernicke’s 13 90 30 70 85 11 

EC 66  16 PF+   Global  NT NT  NT NT NT 0 

Edu = age of leaving education. Aphasia classifications were derived from the Boston Diagnostic Aphasia Examination (BDAE; Goodglass, 1983).  Fluency percentile is derived from phrase length, melodic line and 

grammatical form ratings. Repetition percentile is average word and sentence repetition.Transcortical sensory aphasia (TSA) was defined as good or intermediate fluency/repetition and poorer comprehension. 

Word/nonword repetition (%): Tests 8 and 9 from PALPA (Psycholinguistic Assessments of Language Processing in Aphasia, Kay et al., 1992). Cookie theft description assesses fluency (words-per-minute), Nicholas & 

Brookshire, 1993. 
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Stroke lesion analyses: Scans were available for 13/15 SA patients. CT/MRI scans were 

manually traced onto Damasio’s standardised templates (Damasio & Damasio, 1989). Lesion 

analyses revealed that 5/13 SA patients had infarcts confined to temporal/parietal cortices (HN, 

SC, EW, ME & KS). 8/13 patients had damage which extended into the frontal lobes (NY, KH, 

BB, KA, LS, DB, GH & EC). CT/MRI scans were not available for PG or JM. However, 

radiological reports were present in both cases. PG’s report indicated a left frontal lesion but made 

no definitive statement about more posterior damage. JM’s lesion was extensive effecting left 

hemisphere frontal, temporal and parietal cortices. Both PG and JM were included in the PF+ 

group. Table 4.2 presents a breakdown of the patients’ lesions to the left hemisphere, relative to 

areas involved in semantics: prefrontal regions (BA 9, 46, 47, 45, 44), temporal regions (BA 22, 

21, 20, 36, 38) and parietal lobe (BA 39, 40). These are defined by previous functional 

neuroimaging and neuropsychological studies of semantic cognition (Chertkow, et al., 1997; 

Demb, et al., 1995; Hart & Gordon, 1990; Thompson-Schill, et al., 1997; Vigneau et al., 2006; 

Wagner, Paré-Blagoev, et al., 2001).  
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Table 4.2: Lesion analysis for stroke patients  

   Prefrontal Posterior 

temporal 

 Temporal Parietal 

Patient Group Lesion size 

(% of 

template 

damaged)
a 
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      BA9 BA46 BA47 BA45 BA44 BA22 BA21 BA20 BA36 BA38 BA37 BA39 BA40 BA19 

                                 

HN TP-only 6 - - - - - - 2 1 - - 2 - - 2 

SC TP-only 8 - - - - - - 2 2 - - 2 2 1 1 

EW TP-only 2 - - - - - - - 1 - - 1 - - - 

ME TP-only 5 - - - - - - 1 2 2 - 1 - - 1 

KS TP-only 2 - - - - - 1 2 - - - 2 - - 1 

                 

NY PF+ 14 - 1 2 2 2 2 - - - - - 1 1 - 

KH PF+ 8 1 - - - 2 - 1 2 2 - 2 1 - 2 

BB
b PF+ 3 - - 2 2 2 1 - - - - - - - - 

KA PF+ 6 - - - - 2 2 1 - - - 1 - 1 - 

LS PF+ 17 - 1 - 2 2 - 2 2 - - 2 2 2 2 

DB PF+ 12 1 1 1 2 2 2 1 - - - - - 1 - 

GH PF+ 12 - - 2 1 1 2 1 - - - 2 1 2 1 

EC PF+  17 - - 2 1 2 2 1 - - 1 1 - 1 - 

Quantification of lesion: 2 = complete destruction/serious damage to cortical grey matter; 1 = partial destruction/mild damage to cortical grey matter. Anatomical abbreviations: 

DLPFC = dorsolateral prefrontal cortex; orbIFG = pars orbitalis in inferior frontal gyrus; trIFG,= pars triangularis in inferior frontal gyrus; opIFG = pars opercularis in inferior frontal 

gyrus; sTP = superior temporal pole; pSTG = posterior superior temporal gyrus; pMTG = posterior middle temporal gyrus; ITG = inferior temporal gyrus; FG = fusiform gyrus; POT = 

posterior occipitotemporal area; SMG = supramarginal gyrus; AG = angular gyrus; OL = occipital lobe. a Lesion size was estimated by overlaying a standardised grid of squares onto 

each patient’s template and working out the percentage of squares damaged relative to the complete undamaged template. b BB showed additional signs of ventricular enlargement in 

the left hemisphere. No scan available for JM or PG, though radiographers report reveals PF+ lesion.  
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All patients with lesions affecting the frontal lobe had damage to BA 44. Most also 

had damage to BA 47 and 45 (although KH and KA did not). Most also had damage 

extending to BA 21 (pMTG; except BB and NY). All TP-only patients had damage to BA 37 

(occipital temporal cortex). The majority also had damage to BA 21 (pMTG; except SC and 

EW).  

There was a significant difference between the lesion size of PF+ patients (M = 11%, 

SD = 5.1), and TP-only patients (M = 5%, SD = 2.6), t(11) = 2.632, p = .023. Factor analysis 

was used to extract one composite semantic score. A single factor accounted for 54% of the 

variance in four semantic tasks: naming, WPM, CCTp and synonym tasks. This factor 

analysis was also run for four executive control tasks: BSRA, digit span (forwards and 

backwards), and RCPM. This single factor accounted for 58% of the variance. The composite 

semantic score and executive score correlated with each other: r = .623, p = .013. Lesion size 

did not significantly correlate with the composite semantic score: r = -.463, p = .111, or 

composite executive score: r = -.388, p = .190.  

SD patients: Ten SD patients took part in this study; all were identified through the 

Memory and Cognitive Disorders Clinic at Addenbrooke’s Hosptial, Cambridge, UK. These 

patients, first described by Bozeat et al. (2000) fulfilled all of the published criteria for SD 

(Hodges, Patterson, Oxbury, & Funnell, 1992a; Hodges, et al., 1992b): they had word-finding 

difficulties in the context of fluent speech and showed impaired semantic knowledge and 

single word comprehension; in contrast, phonology, syntax, visual-spatial abilities and day to 

day memory were relatively well preserved. MRI revealed focal bilateral atrophy of the 

inferior and lateral aspects of the anterior temporal lobes in every case.  

For two tasks (synonym judgement task and semantic distance task) data was not 

available from the main SD cohort. For the synonym judgement task, SA patients were 

compared with an additional cohort of eleven SD patients recruited in Cambridge, Bath and 

Liverpool, UK. These cases have also been described in detail elsewhere (Jefferies, et al., 

2009). With regards the semantic distance task, four SD patients recruited in Manchester and 

Bath were used. Two have been previously described in this paper – GE was from the 

‘synonym’ cohort, JW from the main SD cohort. The other two patients have been described 

elsewhere, both NH (Hoffman & Lambon Ralph, 2011; Mayberry, Sage, Ehsan, & Lambon 

Ralph, 2011), and TM (Jefferies, Rogers, & Lambon Ralph, 2011) The SD groups were 

matched on background semantic performance – there were no difference across any of the 

four tests from 64-item semantic battery (naming, WPM, CCTp, CCTw; t < 1). 
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1.Non-semantic executive control 

Neuropsychological tests were used to assess cognitive abilities in our patient cohort, 

in visual and non-visual domains. This included tests of working memory, attention, and 

reasoning. We expected that SA patients would show significantly worse performance than 

SD patients, due to their lesions affecting semantic and non-semantic control mechanisms in 

prefrontal and temporoparietal cortex. However, we predicted that PF+ patients would be 

particularly impaired, as this region is implicated strongly in non-semantic control.  

Procedure 

The tasks used were: (1) the Visual Object and Space Processing battery, VOSP 

(Warrington & James, 1991), using the space perception subparts 5-8: dot counting, position 

discrimination, number location and cube analysis.  (2) Forward and backward digit span 

(Wechsler, 1987). (3) An Elevator Counting task, which involved counting tones played with 

or without distracting tones, from the Test of Everyday Attention, TEA (Robertson, et al., 

1994). (4) The Ravens Coloured Progressive Matrices test (RCPM: Raven, 1962), which 

assesses non-verbal reasoning using pattern and rule completion. (5) The Wisconsin Card 

Sorting test, WCST (Stuss, et al., 2000), which examines the flexibility of rule-based 

categorisation after feedback. (6) And finally, the Brixton Spatial Rule Attainment task 

(BSRA: Burgess & Shallice, 1997), involves the detection of spatial patterns, and switching 

in light of feedback.  

Results  

Table 4.3 shows the background data for each patient. When looking at the correlation 

between lesion size and each task, there was no significant correlation between naming, 

WPM, CCTp, CCTw, category or letter fluency, any subtest of VOSP, WCST, TEA with 

distraction, digit span (forwards or backwards), or RCPM. However, there was a significant 

correlation with lesion size and synonym judgement accuracy (r = -.743, p = .004); and TEA 

(r = -.560, p = .026).  
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Table 4.3: Background neuropsychological data for all patients 
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Max   64 64 64 64 96 - - - - 10 20 10 10 36 6 54 10 7 

Cut 

off 

  59 63 53 57 91 62 18 5 2 8 18 7 6 13a 1† 28 2.6 4.2 

                     

ME -

0.50 

-

0.05 

4* 62* 13* 33* 80* 25* 14* 6 3 3* 15* 2* 4* 13 0* 11* 9 7 

KS 0.14 1.92 21* 46* 44* NT 81* NT NT 8 4 NT NT NT NT 31 NT 28 9 5 

SC 0.63 0.56 28* 63 47* 56* 71* 17* 24 6 2 10 17* 10 9 22 6 25* 1* 7 

EW 1.19 0.87 45* 57* 45* 48* 86* 34* 20 4* 2 10 20 10 7 30 1 33 NT  NT  

HN 1.39 0.58 51* 50* 54 54* 89* 49* 14* 6 2 8 19 9 4* 20 6 28 9 7 

                     

                     

EC -

1.90 

-

1.35 

1* 40* 32* 20* 41* 0* 0* 0* 0* 3* 14* 10 6* 12* NT 24* 1* 1* 

LS -

1.80 

-

0.65 

5* 48* 15* 16* 47* 11* 8* 4* 1* 6* 16* 8 4* 16 0* 14* 3 2* 

KA -

1.20 

-

1.98 

0* 35* 46* 36* 60* 0* 0* 0* 0* 0* 14* 6* NT 12* 1 6* 5 5 

BB -

0.50 

-

0.11 

9* 53* 38* 30* 63* 13* 0* 5 0* 10 18 8 2* 24 1 23* 4 0* 

DB -

0.10 

0.85 39* 46* 51* 46* 54* 14* 0* 4* 2 6* 0* 10 3* 31 0* 31* 2* 2 

GH 0.29 -

0.37 

19* 60* 45* 29* 71* 15* 2* 2* 0* 10 4* 0* 0* 32 NT 18* 6* 1* 

JM 0.32 -

0.69 

30* 61* 37* 37* 69* 17* 1* 3* 2 10 19 5* 3* 14 2 12* 3 0* 

KH 0.55 -0.8 29* 62* 46* 41* 61* 18* 0* 4* 2 10 18 9 3* 12* 0* 7* 6 3* 

PG 0.70 0.64 44* 58* 44* 40* 69* 4* 2* 6 2 5* 20 9 10 23 0* 26* 0* 3* 

NY 0.73 0.59 51* 60* 36* 39* 69* 25* 5* 3* 2 10 20 10 5* 26 2 34* 2* 3* 

                     

                     

JP   59 64 61 62 NT 79 27 6 5 10 NT 10 NT 9 NT NT NT NT 

WM   57* 63 56 52* NT 67 29 8 7 10 20 9 10 22 NT NT NT NT 

SL   45* 60* 52* 34* NT 45* 45 6 3 10 NT 10 NT NT NT NT NT NT 
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JC   43* 58* 47* 37* NT 36* 23 8 4 10 20 10 9 23 NT NT NT NT 

AT   17* 57* 51* 43* NT 32* 20 8 5 10 NT 10 NT 34 NT NT NT NT 

DS   17* 58* 43* 44* NT 13* 7* 6 4 10 20 9 10 33 NT NT NT NT 

DC   11* 36* 31* 18* NT 10* 16* 7 2 10 17 10 10 8 NT NT NT NT 

JH   6* 18* 30* NT NT 12* 19 6 5 10 20 10 10 31 NT NT NT NT 

JW   9* 23* 22* NT NT 7* NT 5 5 10 NT NT NT 35 NT NT NT NT 

IF     1* 18* 19* 10* NT 7* 16* 5 5 10 20 NT 6 31 NT NT NT NT 

SA patients are arranged within each group according to composite semantic severity scores. This is a single factor extracted 

from naming, WPM, CCTp and synonym judgement tasks (which all SA patients have done). Executive control composite 

scores are a single factor extracted from BSRA, RCPM and digit span (forwards and backwards), which all SA patients have 

done. * = impaired performance. NT = not tested. † Cut-off for 50–74 year olds (regardless of educational level). a = norms 

standardised on children. WPM = spoken word to picture matching; CCTw/p = camel and cactus test of associative semantic 

knowledge presented with words and pictures, respectively; VOSP = visual object and space processing battery; RCM = 

Raven’s Coloured Matrices; WCST = Wisconsin card sorting test – number of categories attained; Brixton spatial rule 

attainment task – accuracy; TEA = elevator counting with and without distraction from the test of everyday attention. 

Category fluency scores refer to the total number of items produced across six semantic categories. Letter fluency refers to 

the combined scores from the letters F, A and S.  

 

 

Table 4.4 compares SD and PF+ patients. Where data is available, it is clear that SD 

patients have no significant impairments on executive control tests, unlike PF+ patients, and 

the difference between groups is significant or approaching significance on all t-tests.  

 

Table 4.4: Statistical comparison of SD and PF+ patients 

Task Significance level 

VOSP t(18) = 4.713, p < .001 

Digit span: forwards t(18) = 4.685, p < .001 

Digit span: backwards t(18) = 6.400, p < .001 

Interaction: digit span forwards and backwards F(1,18) < 1 

RCPM t(17) = 1.160, p = .262 

Naming t(18) < 1 

WPM t(18) < 1 

CCTp  t(18) < 1 

CCTw  t(18) < 1 

Category fluency t(18) = 2.214, p = .040 

Letter fluency t(17) = 5.924, p < .001 

VOSP = Visual Object and Space Processing battery (Warrington & James, 1991); digit span (Wechsler, 1987), TEA = Test 

of Everyday Attention (TEA; Robertson, Ward, Ridgeway & Nimmo-Smith, 1994), Ravens Coloured Progressive Matrices 

(RCPM, Raven, 1962), Brixton Spatial Rule Attainment task (BSRA; Burgess & Shallice, 1997). Naming = Cambridge 64 

item naming task (Bozeat et al., 2000); WPM = 64 item word-picture matching task (Bozeat et al., 2000); CCTp/CCTw = 

Camel and Cactus task – in picture or word form (Bozeat et al., 2000). All significant effects reflect SD patients’ higher 

performance. N.T. = too few SD patients to make a comparison (n = 1).  
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Table 4.5 compares SD to TP-only patients. There was fewer data to compare 

between these groups, but analyses nevertheless showed a significant difference between 

groups, particularly on the most executively demanding task, the backwards digit span.  

 

Table 4.5: Statistical comparison of SD and TP-only patients 

Task Significance level 

VOSP t(13) = 3.555, p = .004 

Digit span: forwards t(13) = < 1 

Digit span: backwards t(13) = 2.818, p = .015 

Interaction: digit span forwards and backwards F(1,13) = 2.909, p = .112 

RCPM t(12) < 1 

Naming t(13) < 1 

WPM  t(13) = 1.103, p = .290 

CCTp t(13) < 1 

CCTw  t(10) = 1.090, p = .301 

Category fluency t(12) < 1 

Letter fluency t(11) < 1 

VOSP = Visual Object and Space Processing battery (Warrington & James, 1991); digit span (Wechsler, 1987), TEA = Test 

of Everyday Attention (TEA; Robertson, Ward, Ridgeway & Nimmo-Smith, 1994), Ravens Coloured Progressive Matrices 

(RCPM, Raven, 1962), Brixton Spatial Rule Attainment task (BSRA; Burgess & Shallice, 1997). Naming = Cambridge 64 

item naming task (Bozeat et al., 2000); WPM = 64 item word-picture matching task (Bozeat et al., 2000); CCTp/CCTw = 

Camel and Cactus task – in picture or word form (Bozeat et al., 2000). All significant effects reflect SD patients’ higher 

performance. NT = too few SD patients to make a comparison (n = 1).  

 

Finally, Table 4.6 compares TP-only and PF+ patients. The tasks which placed the 

largest demands on verbal working memory, digit span and elevator counting, showed 

significant differences between the groups. This may be due, in part, to impaired verbal 

output in the PF+ group. 
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Table 4.6: Statistical comparison of PF+ and TP-only patients 

Task Significance level 

VOSP t(13) = 1.044, p = .316 

Digit span: forwards t(13) = 2.915, p = .012 

Digit span: backwards t(13) = 2.839, p = .014 

Interaction: digit span forwards and backwards F(1,13) = 3.123, p = .101 

TEA: without distraction t(12) = 3.244, p = .007 

TEA: with distraction t(12) = 3.768, p = .003 

Interaction: TEA with and without distractor F(1,12) = 2.408, p = .147 

RCPM t(13) < 1 

WCST t(10) = 2.144, p = .058 

BSRA t(13) = 1.117, p = .284 

PALPA 9 (word repetition) t(12) = 1.1372, p = .193 

Naming t(13) < 1 

WPM t(13) < 1 

CCTp t(13) < 1 

CCTw t(12) = 2.543, p = .026 

Synonym judgment t(13) = 3.847, p = .002 

Category fluency t(12) = 3.360, p = .006 

Letter fluency t(12) = 8.087, p < .001 

VOSP = Visual Object and Space Processing battery (Warrington & James, 1991); digit span (Wechsler, 1987), TEA = Test 

of Everyday Attention (TEA; Robertson, Ward, Ridgeway & Nimmo-Smith, 1994), Ravens Coloured Progressive Matrices 

(RCPM, Raven, 1962), Wisconsin card sorting task (WSCT; Milner, 1964); Brixton Spatial Rule Attainment task (BSRA; 

Burgess & Shallice, 1997); PALPA (Psycholinguistic Assessments of Language Processing in Aphasia; Kay, Lesser & 

Coltheart, 1992). Naming = Cambridge 64 item naming task (Bozeat et al., 2000); WPM = 64 item word-picture matching 

task (Bozeat et al., 2000); CCTp/CCTw = Camel and Cactus task – in picture or word form (Bozeat et al., 2000).  All 

significant effects reflect TP-only patients’ higher performance.  

 

Cross task comparisons 

 We compared two different tasks to compare changes in task demands, to assess 

whether one subgroup is more influenced by one factor than another. These factors were (1) 

speech output, (2) self-generation, (3) modality, and (4) complexity. (1) To assess the factor 

‘speech output’, we compared a task with this factor (naming) with one without this factor 

(WPM) which is similar in other ways – they both involve matching a single word onto a 

picture, and include the same concepts. We compared naming and WPM, and found a 

significant effect of task: F(1,22) = 57.516, p < .001, but no interaction: F(2,22) = 1.186, p = 
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.324, or main effect of group: F(2,22) < 1. This reflects a higher performance in the WPM 

than naming task across patients. (2) For the factor ‘self-generation’, we compared naming 

(without self generation), and category fluency (with self generation). In a comparison of 

naming and category fluency, there was no effect of task: F(1,21) < 1, or group: F(2,21) = 

1.324, p = .287, but there was an interaction: F(2,21) = 3.666, p = .043. TP-only and SD 

patients are similar at both tasks, whereas PF+ patients are worse at the category fluency task. 

(3) In a comparison of modality, we compared CCTp and CCTw, and found no effect of task: 

F(1,19) = 1.295, p = .269, or group: F(2,19) < 1, but was an interaction: F(2,19) = 7.733, p = 

.003. Using Bonferroni corrected, two-tailed t-tests, we found SD were worse at the CCTw 

than CCTp: t(7) = 3.208, p = .030; as were PF+ patients: t(9) = 3.040, p = .028. TP-only 

patients show the reverse pattern, although the numbers were too low to run a similar t-test. 

(4) In a comparison of complexity, comparing a simple task (WPM) with a more complex 

task (CCTw). In this comparison, there was a significant effect of task: F(1,19) = 36.189, p < 

.001, but no interaction: F(2,19) = 1.136, p = .342, or main effect of group: F(2,19) = 1.162, 

p = .334. Performance was higher across patients in the WPM task in relation to CCTw.  

Summary 

Where comparison was possible (e.g., RCPM), SD patients show very little sign of 

executive control impairments. In contrast, all PF+ showed deficits on at least 4/11 executive 

control subtests, although these differed across subjects. All TP-only patients showed deficits 

on at least 1/11 control subtests, and were less impaired than PF+ patients on executive 

control tasks.  No TP-only patient shows impairment on the backwards digit span, a 

demanding working memory task, and the majority of TP-only patients show normal 

performance on the elevator counting task, and Raven’s non-verbal reasoning task. This 

reflects the importance of PFC for domain-general executive control, though it does not rule 

out a contribution from posterior areas – particularly the inferior parietal regions.  

There was significantly higher performance from TP-only patients in some semantic 

tasks (the CCTw and synonym judgement task). This may reflect TP-only patients’ preserved 

ability to select the appropriate linguistic context for high frequency words which are 

semantically diverse (Hoffman, et al., 2010; Hoffman, Rogers, et al., 2011) – which is needed 

in CCTw and the synonym task, two tasks where there was a notable difference between PF+ 

and TP-only patients. It may also reflect visual impairments in TP-only patients (particularly 

notable in patient ME on the VOSP task), leading to comparatively worse performance in 

picture tasks. Notably, performance on category and letter fluency was also significantly 
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higher in TP-only patients than PF+ patients, perhaps reflecting preserved ability to switch 

between items, as well as higher fluency overall.  

2.Item consistency  

SA patients have been shown to be inconsistent across tasks tapping the same 

concepts (Jefferies & Lambon Ralph, 2006), with performance affected by the task demands 

and not predictable from the items themselves. For example, patients may be accurate in a 

word-picture matching task for the item CAT, but fail to match this item to an associated 

picture (e.g., MILK) in an association task. In contrast, SD patients show strong item 

consistency, reflecting degraded item knowledge (Bozeat, et al., 2000; Patterson, et al., 

2007). SD patients are always consistent when the items are the same (Jefferies & Lambon 

Ralph, 2006), and show correlations even when items are different, suggesting there is a 

single semantic factor which is similar across these tested items (e.g., concrete, frequent 

items). We predicted that SD patients would show strong item consistency across tasks, and 

PF+ would not show this effect. We predicted that TP-only patients would also be 

inconsistent, similar to PF+ patients. However, given their control deficits are less severe in 

the tasks above; they may not show as strong an effect as PF+ patients. We tested the same 

items across different semantic tasks which tapped different input and output modalities and 

which involved different control demands (Adlam, et al., 2010; Bozeat, et al., 2000).  

Procedure 

64-items were taken from 8 semantic categories: domestic animals, foreign animals, 

birds, fruit, large household items, small household items, vehicles and tools; which can be 

split into two main categories: living and manmade. There were four test components: (1) 

spoken word-picture matching (WPM, target presented with 9 semantically related 

distractors, as black and white line drawings), (2) picture naming (black and white line 

drawings) and the Camel and Cactus Test (CCT) – assessed using both (3) picture and (4) 

word versions (Bozeat et al.2000). The CCT is a  test of associative semantic knowledge 

similar to the Pyramid and Palm Trees test (Howard & Patterson, 1992). Patients were asked 

to decide which of four pictures/words were most associated to a probe picture/word (e.g., 

camel with cactus, rose, tree, or sunflower). In addition, we used ratings from Jefferies and 

Lambon Ralph (2006), provided by normal participants that assessed (a) the ease with which 

the relevant semantic relationship could be identified (e.g., understanding that a camel goes 

with a cactus because they are both found in the desert—and not because camels eat cacti); 

(b) the strength of association between the probe and the target (how often are camels and 
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cacti thought of together?) and (c) the difficulty of rejecting the distractors. The participants 

rated each trial on a scale of 1–5. 

Results 

 An omnibus logistic regression was carried out on all the data, with the following 

predictive variables: participant ID, task (CCTp, CCTw, WPM and naming), familiarity, 

patient group (SD, TP-only and PF+) and the group by task interaction. This found 

significant values of all these variables, including the interactive term: Wald > 37.2, p ≤ .001.  

Task consistency 

 We predicted that Both SA and SD patients would show within task consistency 

(between CCTp and CCTw), as the tasks demands were similar in these tasks, and only the 

modality changed. A logistic regression assessed whether a predictor variable (e.g., CCTw) 

could predict performance on a second task (CCTp), and vice versa. The variables entered 

into the model were: participant ID, predictor task, familiarity rating, patient group, group by 

predictor task interaction. If one task significantly predicts another, this suggests consistent 

performance across assessments. With between task consistency (e.g., WPM and CCTp), we 

predicted less consistency in the SA groups in relation to SD patients. The results are 

displayed in Table 4.7 (raw data is in Table 4.8).  
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Table 4.7: Logistic regression across all patients 

Predictor 

variable 

(task) 

Predictive 

variable 

(task) 

Task  Group  Task x 

group 

Patient ID Familiarity  

CCTw CCTp 27.646*** 7.9** N.S. 105.727 *** 5.603* 

CCTp CCTw 29.041 *** N.S. 8.448* 114.841 *** N.S. 

CCTw WPM N.S. N.S. N.S. 117.586 *** 5.396* 

WPM CCTw  N.S. N.S. N.S. 151.764 *** N.S. 

CCTw Naming  N.S. N.S. N.S. 109.526 *** 5.658* 

Naming   CCTw  N.S. 19.203 *** N.S. 316.279 *** 30.485 *** 

CCTp WPM 3.914* N.S. N.S. 138.230 *** N.S. 

WPM CCTp 4.178* N.S. N.S. 204.645 *** 4.866* 

CCTp Naming N.S. N.S. N.S. 132.849 *** N.S. 

Naming CCTp N.S. 25.919 *** N.S. 358.105 *** 42.906 *** 

WPM Naming 20.688 *** N.S. 6.410* 143.643 *** N.S. 

Naming  WPM 17.497 *** 8.587 *** N.S. 306.620 *** 38.713 *** 

* = p < .05; ** = p < .01; *** = p < .001. Values are Wald values. N.S. = accuracy on one task did not predict accuracy on 

the other assessment. N.T. = not tested, due to the main effect of familiarity being non-significant.  

 

 

Table 4.8: Performance on four semantic tasks with differing control demands 

 CCTp CCTw Naming WPM 

PF+ 60.78 (48.86) 52.34 (49.98) 43.59 (49.63) 76.41 (42.49) 

TP-only 63.13 (48.32) 75.00 (43.39) 47.19 (49.99) 83.20 (37.46) 

SD 63.13 (48.28) 58.01 (49.40) 41.41 (49.29) 71.09 (45.37) 

Data are shown in percentage with means (and standard deviations) for each group of subjects. 

 

 To further explore this data, a logistic regression was run for each group (shown in 

Table 4.9, Table 4.10 and Table 4.11). We predicted that SD patients would show more item 

consistency, and more of an effect of familiarity than TP-only and PF+ patients, due to 

degraded representations of less familiar items, independent of task demands.  
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Table 4.9: Logistic regression for PF+ patients 

Predictor variable (task) Predictive variable (task) Task  Familiarity  

CCTw CCTp 27.709*** N.S. 

CCTp CCTw 27.710*** N.S. 

CCTw WPM N.S. N.S. 

WPM CCTw N.S. N.S. 

CCTw Naming 13.307*** N.S. 

Naming CCTw 13.307*** N.S. 

CCTp WPM 4.299* N.S. 

WPM CCTp 4.297* N.S. 

CCTp Naming 5.312* N.S. 

Naming CCTp 5.314* N.S. 

WPM Naming 13.259*** N.S. 

Naming WPM 13.283*** N.S. 

* = p < .05; ** = p < .01; *** = p < .001. Values are Wald values. N.S. = accuracy on one task did not predict accuracy on 

the other assessment.  

 

Table 4.10: Logistic regression for TP-only patients 

Predictor variable (task) Predictive variable (task) Task  Familiarity  

CCTw CCTp 16.129*** 6.861** 

CCTp CCTw 16.210*** N.S. 

CCTw WPM N.S. N.S. 

WPM CCTw N.S. N.S. 

CCTw Naming 10.357*** N.S. 

Naming CCTw 10.368*** 4.559* 

CCTp WPM N.S. N.S. 

WPM CCTp N.S. N.S. 

CCTp Naming 28.505*** N.S. 

Naming CCTp 28.561*** 13.265*** 

WPM Naming 8.531** N.S. 

Naming WPM 8.588** 11.747*** 

* = p < .05; ** = p < .01; *** = p < .001. Values are Wald values. N.S. = accuracy on one task did not predict accuracy on 

the other assessment.  
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Table 4.11: Logistic regression for SD patients 

Predictor variable (task) Predictive variable (task) Task  Familiarity  

CCTw CCTp 63.886*** N.S. 

CCTp CCTw 63.852*** 3.871* 

CCTw WPM 38.000*** N.S. 

WPM CCTw 37.910*** 6.004* 

CCTw Naming 40.191*** N.S. 

Naming CCTw 40.265*** 11.765*** 

CCTp WPM 58.985*** 3.943* 

WPM CCTp 58.939*** 8.794** 

CCTp Naming 47.259*** N.S. 

Naming CCTp 47.406*** 13.694*** 

WPM Naming 81.324*** 3.835* 

Naming WPM 81.394*** 9.308** 

* = p < .05; ** = p < .01; *** = p < .001. Values are Wald values. N.S. = accuracy on one task did not predict accuracy on 

the other assessment.  

 

Summary 

There was strong consistency across all patient groups for within task consistency 

(CCTp vs. CCTw), reflecting the similar task demands. There was huge variation between all 

patients, and individual patient had a higher predictive value than any other variable. 

Nonetheless, when separating patient into subgroups, there was clearly higher consistency in 

SD patients compared to the two SA groups. Additionally, TP-only patients showed some 

predictive value of familiarity, something which has commonly been associated with SD 

patients.  

 

Category effects: four semantic tasks (CCTp, CCTw, WPM & naming) 

  The Cambridge Semantic Battery (Adlam, et al., 2010; Bozeat, et al., 2000), 

involves four tests that include the same concepts, drawn from 8 categories and divided 

equally into natural and man-made objects. We categorised all items as either manmade or 

natural. Accuracy scores for each category are show in Figure 4.1. A logistic regression 

included patient ID, group, familiarity, category, and category by group. This found a 

significant effect of category: Wald = 7.572, p = .006, group: Wald = 24.221, p < .001, and 
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category by group interaction: Wald = 10.900, p = 012, as well as a main effect of familiarity: 

Wald = 22.244, p < .001, and participant: Wald = 878.053, p < .001.  

 

 

Tasks used in this graph: Camel and Cactus (picture and word versions), word-picture matching and naming (Bozeat et al., 

2000; 2002). 

Figure 4.1: Category effects across four semantic comprehension tasks 

 

The effect of category was looked at for each group (with a model including patient 

ID, familiarity and category). The effect of category was not significant for PF+ patients 

(Wald < 1), but was for TP-only patients: Wald = 7.841, p = .005 (where familiarity was not). 

For SD patients, the effect of familiarity was significant: Wald = 48.221, p < .001, the effect 

of category was not (Wald < 1). Contrary to many theories, the effect of category on TP-only 

patients reflected higher performance on manmade (71%) compared to living items (61%). 

However, the effect of familiarity was much less influential in TP-only patients than SD 

patients.  

Category effects: verbal fluency 

We then analysed the scores we had which were distinguished according to category 

(from TP-only and PF+ patients, Figure 4.2). When comparing living and non-living 

categories, there was a significant effect of category: F(1,10) = 5.834, p = .036, and 

significant effect of group: F(1,10) = 9.472, p = .012, but no interaction: F < 1. This reflected 
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higher performance for living items, and an overall higher score from TP-only patients. TP-

only patients showed more fluctuation of response across categories in relation to PF+ 

patients, who were impaired across categories.  

 

Error bars show standard error of mean 

Figure 4.2: Correct items on category fluency, according to category 

 

Bonferroni-corrected independent-groups t-tests were used to further explore this 

data. Significant values represent higher performance from TP-only patients. There was a 

significant different between PF+ and TP-only patients for fluency in the categories animals: 

t(10) = 6.197, p < .001, and vehicles: t(10) = 2.981, p = .034. There were no other significant 

differences (including no group effect for tool fluency).  

Summary 

For the category effects analysis of responses to the Cambridge Semantic Battery, 

PF+ patients showed no category effects, whereas TP-only patients do. There was larger 

variance in the data from TP-only patients, with an overall higher level of accuracy in relation 

to PF+ and SD patients.  This may be due to some effect of visual feature overlap in TP-only 

patients (many of whom have damage to visual cortex). In WPM/naming, PF+ and TP-only 

patients were similar for the living categories, but TP-only patients showed higher scores on 

non-living categories, suggesting their relatively poorer performance for living things might 

0 

2 

4 

6 

8 

10 

12 

tools animals fruit birds dog household 
objects 

vehicles boats 

N
u

m
b

e
r 

o
f 

co
rr

e
ct

 it
e

m
s 

Category 

PF+ 

TP-only 



  

 159 

have been linked to visual overlap. The two categories which had lowest scores across 

comprehension tasks – fruit and birds – are difficult to visually distinguish. Indeed, categories 

with high visual overlap (e.g., animals) activate extra visual areas, thought to be required to 

differentiate the category exemplars (Tyler, et al., 2003), leading some to suggest that 

category-specific deficits are a reflection of perceptual deficits (Humphreys & Riddoch, 

2003). Overall, PF+ patients don’t show category effects because their executive deficits are 

‘blind’ to category, whereas TP-only patients show effects which are driven by visual 

impairment.  

In relation to verbal fluency, TP-only patients typically showed higher performance 

on categories which were highly familiar, and which easily subcategorise (e.g., animals  

farm animals, zoo animals, pets), whereas PF+ patients showed blanket impairment in this 

task. The natural advantage some categories have is missing in PF+ patients, due to reduced 

verbal fluency.  

 

Factors which affected performance 

Jefferies and Lambon Ralph (2006) collected ratings from healthy participants, who 

scored each item from 1-5, with a high rating meaning lower control demands or an easier 

relationship to work out. There were three questions: (1) ease of determining the relevant 

semantic relationship, (2) co-occurrence of probe and target, and (3) ease of rejecting 

distractors. In SA, reduced consistency across tasks in relation to SD patients could reflect the 

extent to which semantic control is required in each trial. Jefferies and Lambon Ralph (2006) 

found that SD patients, like SA patients, showed an effect of co-occurrence of the probe and 

target (inter-item frequency), but they did not show an effect of the other two factors, which 

were more associated with semantic control. 

Logistic regression was used to assess each group separately. This model included 

patient ID, rating and familiarity. For question 1, there was a significant predictive effect of 

ratings for the PF+ group (Wald = 17.863, p < .001), TP-only patients (Wald = 23.914, p < 

.001), and SD patients (Wald = 13.279, p < .001). The effect, although significant in all 

patients, is weaker in SD patients, as shown in Figure 4.3.  
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Figure 4.3: Impact of ease of determining semantic relationship between probe and target on 

performance in PF+, TP-only and SD patients. 

 

For question 2, there was a significant predictive effect of ratings for PF+ (Wald = 

12.709, p < .001), TP-only (Wald = 20.691, p < .001), and SD patients (Wald = 18.179, p < 

.001). This is shown in Figure 4.4.  

 

Figure 4.4: Impact of co-occurence of the probe and target on accuracy in PF+, TP-only and 

SD patients. 
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For question 3, there was a significant effect in PF+ (Wald = 10.623, p = .001), TP-

only (Wald = 16.376, p < .001), and SD patients (Wald = 10.167, p = .001). This is shown in 

Figure 4.5.  

 

Figure 4.5: Effect of ease of rejecting distractors on accuracy in PF+, TP-only and SD 

patients. 

 

Groups were paired to find whether an interaction between group and factor was 

significant. A model including familiarity, group, rating, rating by group was run. (1) 

Comparing PF+ and SD patients, the interaction of rating and group was not significant for 

question 1, 2, but for question 3 the interaction of group and factor was (Wald = 4.777, p = 

.029). (2) In a comparison of TP-only and SD patients, there was no significant predictive 

interaction of group and factor for question 2, but was for question 1 (Wald = 6.901, p = 

.009) and 3 (Wald = 10.132, p = .001). (3) A comparison of TP-only and PF+ patients found 

the interaction of rating and subgroup was not significant for question 1 or 3, but was for 

question 2 (Wald = 7.486, p = .006). TP-only patients show higher performance on items 

which co-occur in relation to PF+ patients, who only show a marginal effect of this variable.  

Summary 

The impact of several factors which influence the ease of making semantic 

associations was found to be important in all patients, but was particularly strong in TP-only 

patients. The impact may have been less statistically strong in PF+ patients due to their lower 

performance, which may have reduced the impact of these control factors on performance. 
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3.Naming 

Previous investigations of SA patients have shown that their picture naming 

performance bears the hallmarks of a regulatory control impairment. Specifically, SA patients 

make associative errors that are almost never seen in SD, suggesting SA patients have 

difficulty directing activation to the correct target item, and away from competitors and 

miscues (Jefferies, Patterson, et al., 2008; Soni, et al., 2009). We determined the extent to 

which SA patients performance could be modulated by the amount of intrinsic constraint 

provided across different verbal production tasks (e.g., picture naming, category and letter 

fluency). Picture naming has the largest external constraint, as it gives an image of an item 

with one, or in some cases a few, possible correct responses. Letter fluency has the least 

constraint, with many possible correct items from different semantic categories. Category 

fluency is in-between these two tasks; it has more constraint than letter fluency, because it 

involves activating and selecting a select number of items based on the named category. 

However, there are more potential correct responses than in picture naming. Therefore, we 

predict that SA patients (potentially PF+ more than TP-only patients) will be worse at tasks 

with less external constraint, in relation to tasks with higher constraint, due to the 

manipulation of task demand.  

Procedure 

Category fluency was examined in both groups using six category labels (i.e., 

ANIMALS, BIRDS, FRUIT, HOUSEHOLD OBJECTS, TOOLS, and VEHICLES). Letter fluency was also 

assessed using the letters ‘F’, ‘A’ and ‘S’. In both fluency tasks patients were given one 

minute to produce as many exemplars as possible.  SA patients were additionally tested on 

the Boston Naming Test (BNT; Kaplan, Goodglass, & Weintraub, 1983) and provided with 

the prescribed phonemic cue for items they could not name.  

Results 

Picture naming errors 

The 64 item naming test was used to examine patterns of naming errors in our SD and 

stroke groups. The three groups were at the same level of accuracy: F < 1, and there was a 

significant main effect of category: F(7,15) = 10.222, p < .001, but no interaction with group: 

F(14,32) = 1.658, p = .116. This stems from higher performance overall on domestic animals 

which are highly familiar, in relation to foreign animals and birds; and higher performance on 

small household objects and vehicles than large household objects or tools.  

In an analysis across all errors, the majority of errors were semantic or omission (see  
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Table 4.12), which lead to a main effect of error type: F(5,17) = 161.728, p < .001. 

There was also a significant interaction of error and group: F(10,36) = 2.110, p = .050, but no 

main effect of group: F < 1.  

 

Table 4.12: Type of picture naming errors across PF+, TP-only and SD patients 

 PF+ TP-only SD 

Total correct 40.63 (29.0) 47.31 (29.4) 41.41 (34.4) 

Errors    

Semantic 28.81 (19.6) 55.42 (27.5) 45.12 (14.8) 

Phonological  11.38 (12.0) 5.93 (13.3) 6.54 (8.2) 

Unrelated  4.97 (7.0) 3.56 (7.1) 0.39 (0.8) 

Preservative  13.45 (14.4) 1.78 (3.2) 10.52 (13.2) 

Omission 66.40 (29.5) 30.41 (23.9) 37.24 (23.3) 

Descriptive  1.59 (3.1) 2.90 (3.9) 0.19 (0.6) 

Semantic errors    

Co-ordinate 61.71 (20.9) 61.59 (16.5) 74.03 (25.7) 

Superordinate 10.97 (12.8) 29.01 (22.0) 24.72 (25.4) 

Associative  27.32 (16.5) 9.40 (12.4) 1.30 (4.1) 

Scores are shown as a percentage. Means (and standard deviations) of the proportion of each type of error for each patient 

group. KA is not included in the analysis due to being unable to complete the 64 item naming task.  

 

To further explore this significant interaction, one-way ANOVAs were used to 

compare each of the six error types across patients (in terms of proportion of error): semantic, 

phonological, unrelated, preservative, omission or descriptive.  

There was no difference in (i) phonological or (ii) omission errors between groups (F 

< 1). (iii) There was also no difference in semantic errors overall: F(2,23) = 2.894, p = .078, 

although there was a trend towards less semantic errors in PF+ patients than TP-only patients 

or SD patients. (iv) There was no significant effect of group in unrelated errors: F(2,23) = 

1.617, p = .222,  (v) perservative errors: F(2,23) = 1.403, p = .268 or (vi) descriptive errors: 

F(2,23) = 1.913, p = .172.  

A further analysis on the semantic errors examined the production of co-ordinate, 

superordinate or associative errors as a proportion of total semantic errors (see Figure 4.6). 

There was a significant effect of type of error: F(2,20) = 35.037, p < .001, and a significant 

interaction of group and error: F(4,42) = 4.444, p = .004, but no main effect of group: F < 1. 
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There was no difference between groups on coordinate errors: F(2,23) = 1.027, p = .375; 

superordinate errors: F(2,23) = 1.868, p = .179; but was for associative errors: F(2,23) = 

13.069, p < .001.  

 

Figure 4.6: Type of semantic errors produced in picture naming across PF+, TP-only and SD 

patients. Error bars show standard error of mean.  

 

Bonferroni-corrected independent samples t-tests found no significant differences 

between TP-only and PF+ patients, for coordinate: t < 1, superordinate: t(12) = 2.187, p = 

.147, or associative errors: t(12) = 2.298, p = .120. TP-only patients show slightly more 

superordinate errors, whereas PF+ patients show more associative errors, although this does 

not come out statistically.  In a comparison between PF+ and SD patients, PF+ patients make 

more associative errors: t(12) = 5.054, p < .001, but there was no difference superordinate or 

coordinate errors (t < 1.7, p ≥ .372). In a comparison between TP-only and SD patients, there 

was no significant difference of coordinate or superordinate errors (t < 1), or associative 

errors: t(13) = 1.923, p = .231.  

Cueing effects in naming 

The BNT also allowed us to examine the effects of phonological cues on naming 

performance. BNT performance in the two stroke groups was examined using a 2 (group) x 2 
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(cueing) ANOVA. There was a main effect of cueing: F(1,8) = 64.733, p < .001. This was 

significant in each individual patient, from both TP-only and PF+ groups (see Table 4.13).  

 

Table 4.13: BNT scores for each individual patient 

  Accuracy (/64) Cueing  

  No cue (/60) Final cue (/60)  

PF+ JM 19 42 p < .001  

PF+ NY 23 52 p < .001  

PF+ KH 20 37 p < .001  

PF+ BB 1 43 0 < .001  

PF+ KS 3 52 p < .001  

PF+ DB 24 42 p < .001  

PF+ GH 15 48 p < .001  

PF+ PG 34 57 p < .001  

TP-only KS 10 NT NA  

TP-only SC 8 44 p < .001  

TP-only ME 1 46 p = .001  

McNemar scores for the effect of cueing in each SA patient. NT = not tested. NA = not available.  

 

In both PF+ and TP-only groups, initial naming performance was poor (28.9% and 

10.6% respectively) but improved substantially following cues (77.7% and 75%).  No group 

difference or interaction between group and cueing was detected: F(1,8) = 1.684, p = .231.  

Summary: Both TP-only and PF+ groups showed clear evidence of regulatory control 

problems in their verbal output. Their picture naming errors revealed a tendency to be pulled 

toward associative responses (e.g., SQUIRREL   “nuts”).  This was particularly noticeable in 

PF+ patients. Deficits in control mechanisms could lead to associative errors, due to inability 

to inhibit the most readily accessible response, usually a strong associate of the target. This 

also reflects considerable remaining knowledge about the target items. Conversely, degraded 

semantic representations lead to more superordinate errors, as specific item knowledge is 

reduced. However, TP-only patients make more superordinate errors than PF+ patients, and 
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make the same number of superordinate errors as SD patients. It is not clear why this is the 

case, although it may again be related to visual overlap between items of the same category, 

leading patients to name an item as simply ‘fruit’ rather than a more specific item such as 

‘apple’. In both SA patients, errors in naming were greatly reduced when phonemic cues 

helped the patient to direct activation toward the correct target and away from potential 

competitors.    

Verbal fluency 

In an omnibus 3 by 3 ANOVA (letter fluency, category fluency, naming by group), 

there was a main effect of task: F(2,17) = 8.642, p = .003, but not group: F(2,18) = 1.982, p = 

.167, or an interaction: F(4,26) = 2.018, p = .113. In an ANOVA comparing letter and 

category fluency there was a significant effect of task: F(1,18) = 14.540, p = .001, and a 

significant effect of group: F(2,18) = 6.025, p = .010, but no interaction: F < 1. This reflects 

higher performance from SD patients, followed by TP-only and then PF+ patients; and higher 

performance overall on the category task.  

In a one-way ANOVA comparing category fluency, there was no group difference 

between SD, PF+ and TP-only: F(2,21) = 1.955, p = .169. In terms of letter fluency, a one-

way ANOVA revealed a significant group difference: F(2,20) = 17.684, p < .001. Bonferroni 

corrected t-tests showed that PF+ patients were more impaired than the TP-only patients: 

t(10) = 3.264, p = .027, and SD patients: t(15) = 6.622, p < .001; TP-only and SD patients 

were not significantly different: t(11) = 1.583, p = .426 (see Figure 4.7). 
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Figure 4.7: Naming, category and letter fluency accuracy in PF+, TP-only and SD patients 

 

In Bonferroni-corrected, independent-samples t-tests, which looked at group 

difference per task, TP-only patients were significantly more fluent than PF+ patients on both 

letter fluency: t(10) = 3.264, p = .027, and category fluency: t(10) = 3.078, p = .036, but not 

naming: t < 1. Although SD patients are more fluent than PF+ patients, this was only 

significant for letter fluency: t(15) = 6.622, p < .001. There were no differences between SD 

and TP-only patients.  

 Summary: Both TP-only and PF+ patients are worse at letter fluency than category 

fluency or naming, which is the task which requires the most self-directed regulation. 

However, PF+ patients show significantly lower fluency in relation to TP-only patients, both 

in category and letter fluency. This suggests PF+ show a classic pattern associated with 

executive control deficits, and SD patients performed poorly on semantic tasks regardless of 

their regulatory requirement. TP-only patients showed strong cueing for picture naming, but 

seem able to produce category/letter exemplars.  
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Synonym judgement was assessed in SA patients, and a separate cohort of 11 SD 

patients, using a 96 item synonym judgement task from Jefferies et al. (2009) which 

orthogonally varied frequency (high and low) across three imageability bandings (high, 

medium and low). There were three response options, one target and two distractors. The 

distractors were unrelated, but both target and distractors were matched to the probe word for 

frequency and imageability.  

 

 

Results  

Table 4.14: Synonym judgment scores 

 LI: LF MI:LF HI:LF LI:HF MI:HF HI:HF 

SD 5.5 (3.11) 7.3 (3.98) 10.5 (4.76) 10.0 (4.75) 13.7 (3.00) 13.6 (1.96) 

PF+ 8.3 (2.5) 9.0 (3.37) 13.3 (2.21) 8.1 (1.85) 9.6 (2.50) 12.1 (1.85) 

TP-only 8.4 (2.30) 14.0 (1.41) 15.8 (.45) 11.6 (2.97) 14.8 (1.64) 15.0 (1.22) 

LI = low imageability, MI = medium imageability, HI = high imageability, LF = low frequency, HF = high frequency. 96 

items are split into 6 categories of imageability and frequency, each with a maximum score of 16. Data shows means (and 

standard deviations) across the three groups.  

 

Results are shown in Table 4.14. There was significant correlation of this task with 

lesion size, in overall score (r = -.697, p = .008). There was also a correlation of lesion size 

with high frequency scores (r = -.757, p = .003), low frequency scores (r = -.571, p = .041), 

high imageability items (r = -.738, p = .004), and low imageability items (r = -.672, p = .012). 

This suggests lesion size correlates with the task generally, rather than a particular aspect of it 

(such as less imageable items). 

A 3 (group) x 2 (frequency) x 3 (imageability) ANOVA revealed a main effect of 

group, F(2,23) = 3.631, p = .043, frequency: F(1,23) = 25.355, p < .001, and an interaction of 

frequency and group: F(2,23) = 22.269, p < .001. There was also a main effect of 

imageability: F(2,22) = 75.253, p < .001, which showed a marginal interaction with group: 

F(4,46) = 2.513, p = .054. There was an interaction of frequency and imageability: F(2,22) = 

5.406, p = .012, but no three way interaction: F(4,46) = 1.312, p = .280.   

There was an overall effect of group when comparing TP-only and PF+ patients: 

F(1,13) = 14.067, p = .002, TP-only and SD patients: F(1,14) = 4.672, p = .048, but not PF+ 
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and SD patients: F(1,19) < 1. This shows that TP-only patients show higher performance 

overall.  

Individual group performance is shown in Figure 4.8, Figure 4.9 and Figure 4.10. SD 

patients showed higher performance for high than low frequency words. In a comparison of 

frequency (high vs. low), there was a main effect of frequency: F(1,23) = 25.355, p < .001; 

group: F(2,23) = 3.631, p = .043; and interaction: F(2,23) = 22.269, p < .001. In an ANOVA 

comparing two groups, SD and PF+ patients showed a significant interaction of group and 

frequency: F(1,19) = 36.787, p < .001; and a similar interaction was found for SD and TP-

only patients: F(1,14) = 15.097, p = .002. The two SA groups showed a similar effect of 

frequency: F(1,13) = 2.438, p = .142. In Bonferroni-corrected paired-samples t-test for each 

group, there was no significant difference between high and low frequency for PF+ or TP-

only patients, but there was a significant difference for SD patients: t(10) = 7.910, p < .001. 

This suggests the frequency effect is significantly greater in SD patients than TP-only or PF+ 

patients.  

 

Figure 4.8: SD imageability x frequency scores. From the synonym judgement task (Jefferies 

et al., 2009).  
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Figure 4.9: PF+ imageability x frequency performance. From the synonym judgement task 

(Jefferies et al., 2009). 

 

Figure 4.10: TP-only imageability x frequency performance. From the synonym judgement 

task (Jefferies et al., 2009). 
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F(2,23) = 3.631, p = .043; and a trend towards significant interaction between imageability 

and group: F(4,46) = 2.513, p = .054. When comparing two patient groups, there was an 

interaction of imageability and group for PF+ and TP-only patients: F(2,12) = 4.052, p = 

.045; but not for PF+ compared to SD patients: F(2,18) = 3.11, p = .069, or TP-only 

compared to SD patients: F(2,13) < 1. Bonferroni-corrected t-tests found that TP-only 

patients showed higher performance than PF+ cases on high imageability words: t(13) = 

3.080, p = .027, and medium imageability words: t(13) = 4.004, p = .006, but not low 

imageability words: t(13) = 1.774, p = .297.  

Summary: All patients were influenced by imageability, but TP-only patients only 

showed impaired performance for low imageability words, whereas SD and PF+ patients 

showed impairments for medium imageability words as well (reflecting higher performance 

overall in TP-only patients). SD patients were very sensitive to frequency. TP-only patients 

showed some effects of frequency, but not to the same extent as SD patients. PF+ patients 

had identical performance on high and low frequency items. High frequency items appear in 

more linguistic contexts. Thus – although a normal sample would show a high frequency 

word advantage, patients with control deficits do not show this effect - as high frequency 

words also require selecting the appropriate linguistic context. This leaves performance on 

high and low frequency words the same. This selection process of high frequency words 

appears to be particularly dependent on the PFC – given the trend towards higher 

performance on high frequency words in TP-only patients but not PF+ patients.  

5.Semantic control tasks  

Four tasks assessed different aspects of semantic control in PF+ and TP-only SA groups. 

The first two tasks were taken from Noonan et al. (2010), and the second adapted from 

Whitney et al. (2011).  

(i) Semantic distance 

The degree of semantic control required was manipulated by varying semantic similarity 

of the probe with the target, whilst keeping the distractors the same. When the probe and the 

target were closely related, they shared much of their semantic structure, (e.g. HAT, with CAP, 

FUTON or SPADE). When the probe and the target were only distantly related, additional 

semantic control was required to work out the relevant semantic link (e.g. HAT, with 

STOCKING, FUTON, or SPADE). Distantly related items were more demanding as all of the items 

were equally distantly related to the target. Further details of the test and further examples of 

the stimuli can be found in Noonan et al. (2010). 
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Procedure 

The semantic distance task (Noonan et al., 2010) involved matching a probe word to 

the target word in the same semantic category. There were two levels of relatedness, either 

matching a closely or distantly related item. The same 64 words were tested in both 

conditions of relatedness, over different testing sessions, which led to 128 responses. This 

included data from 12 patients, 8 PF+ (DB, GH, EC, PG, NY, BB, KA, LS), and 4 TP-only 

(KS, HN, SC, ME). For this task, we were also able to compare these patients with a separate 

cohort of 4 SD patients (GE, TM, NH and JW).  

Results 

There was a correlation with lesion size in SA and closely related words: r = -.751, p 

= .008; but not distantly related word: r = -.504, p = .114. There was no correlation of the 

difference between close and distant responses and lesion size. Data from the nearest 

neighbour task is presented in Figure 4.11. When assessing all patients (SD, PF+ and TP-

only), we found a main effect of semantic closeness: F(1,13) = 56.041, p < .001, and an 

interaction of group and closeness: F(2,13) = 4.483, p = .033, but no main effect of group: 

F(2,13) = 1.335, p = .297.  

 

Figure 4.11: Semantic distance effects in the nearest neighbour task (Noonan et al., 2010).  
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= 24.695, p = .001). This is also true of a comparison of TP-only and SD patients, with a 

significant interaction: F(1,6) = 9.565, p = .021, and main effect of closeness: F(1,6) = 

32.458, p = .001, but no effect of group: F < 1. In a comparison of PF+ and TP-only patients, 

there was a main effect of semantic closeness: F(1,10) = 67.646, p <.001; but no main effect 

of group: F(1,10) = 3.509, p = .091; or interaction: F(1,10) = .234, p = .639. Both TP-only 

and PF+ patients showed the same effects of task demand. Nonetheless, individuals from 

both SA groups of patients showed an effect of semantic control manipulation (see Table 

4.15). 

 

Table 4.15: Effects of semantic control manipulations in individual patients 

  Accuracy (/64) Semantic 

distance 

Accuracy (/30) Semantic 

ambiguity 

  Close Distant   Dominant  Subordinate   

PF+ PG 54 51 p = .644 19 17 p = .804 

PF+ KH NT NT  19 10 p = .022 

PF+ NY 50 34 p = .010 23 13 p = .031 

PF+ BB 58 38 p < .001 14 13 p = 1 

PF+ KA 54 28 p < .001 21 8 p < .001 

PF+ LS 44 29 p = .012 11 10 p = 1 

PF+ DB 49 22  12 5  

PF+ GH 61 36  24 14  

PF+ EC 36 24  12 6  

TP-only KS 57 33  21 13  

TP-only HN 64 52  26 23  

TP-only SC 60 35 p < .001 26 20 p = .109 

TP-only ME 59 39 p = .001 23 10 p = .002 

Results show p values from related-samples McNemar test 
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(ii) Semantic ambiguity 

A semantic ambiguity task used polysemous words to select the less dominant meaning of 

these words when appropriate to the task (in relation to the dominant meaning). A word with 

multiple meanings is thought to activate these meanings in parallel (Onifer & Swinney, 1981; 

Rodd, et al., 2004; Simpson & Burgess, 1984). Less frequent meanings, however, show a 

processing disadvantage (Simpson, 1985). Therefore, control processes are required to select 

less frequent meanings, and avoid the dominant interpretation (Rodd, et al., 2005; Zempleni, 

et al., 2007). The semantic ambiguity task (Noonan et al., 2010) involved matching a 

homonym to a related word that was either associated with either the dominant or subordinate 

meaning.  

Procedure 

A semantic ambiguity task (Noonan et al., 2010) involved matching a homonym with 

a related word. There were two levels of relatedness, dominant, e.g., matching FIRE with HOT, 

and subordinate, matching FIRE with RIFLE. There were 30 items, each presented in both 

conditions of relatedness, on different testing sessions (totalling 60 responses). This included 

data from 13 patients, 9 PF+ (DB, GH, EC, PG, KH, NY, BB, KA, LS), and 4 TP-only (KS, 

HN, SC, ME). 

Results 

There was no correlation between lesion size and the effect of semantic ambiguity, 

either the difference between dominant and non-dominant responses, or the accuracy scores 

for either (r ≤ -.441, p ≥ .151). Results from the ambiguity task are shown in Figure 4.12. An 

ANOVA revealed a main effect of semantic ambiguity: F(1,11) = 29.041, p <.001. There was 

a significant effect of patient group: F(1,11) = 6.902, p = .024, but no interaction: F(1,11) = 

.131, p = .724. The lack of interaction suggests that although TP-only patients’ performance 

was higher than PF+ patients, both groups showed an equivalent influence of semantic 

control demands. This is shown in the individual patient analysis, displayed in Table 4.15.  
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Figure 4.12: Ambiguity task results (task from Noonan et al., 2010).  

 

 (iii) Feature selection  
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of the irrelevant association (Badre, et al., 2005; Thompson-Schill, et al., 1997).  
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unrelated distractors; (iii) a semantic feature selection task, matching an aspect of an item 

(colour, shape, size or texture) with another item. For example, when matching according to 

colour, participants were given an item e.g., BLOOD, which was to be matched with a 

similarly coloured item e.g., BEETROOT. On one version of the semantic feature selection task 

(iiia) there was a prepotent distractor. Participants were presented with the target, one 

distractor which was globally associated to the target (e.g., CELERY) and one unrelated 

distractor (e.g., HAY). On a second version of the task (iiib) participants did not have to 

inhibit a related distractor, and were instead presented with two unrelated distractors. 

Participants were told the feature (e.g., colour) before the block, and this was presented 

throughout the trials as a reminder. Because patients were very poor at this task, a reminder 

(verbally prompting the feature to be matched) was given at the beginning of each trial. Each 

feature selection was presented in a block of eight, with four features, totalling 32 items. Each 

feature additionally had two practice trials. (iv) A figure feature selection task involved 

matching a probe figure with a target figure along a particular feature (colour, shape, size and 

texture). Similarly to the semantic version, this task had 32 items in blocks of eight. This task 

had 4 choices. Features between the probe and target were similar, but not identical (to avoid 

visual matching). For example, when matching colour, participants were asked to match the 

most similar colours, such as red with pink (see Figure 4.13 and Figure 4.14). This task was 

run on 9 patients: 5 PF+ (DB, GH, PG, NY, BB), and 4 TP-only (KS, HN, SC, ME). 

 

 

 

The probe is presented at the top, with four possible responses underneath. The probe was to be matched to the target 

according to a certain feature. The correct response for colour feature matching is circled. 

Figure 4.13: Figure feature selection task - example trial. 
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Figure 4.14: Example instruction screens for the figure selection task showing which items to 

match on the features ‘colour’ and ‘shape’.  

 

Results 

This task involved semantic global associations (high and low), semantic feature 

selection (with/without prepotent distractor) and figure feature selection. Lesion size did not 

correlate with the global association tasks (high or low), the semantic feature selection task or 

figure feature selection task. Data was then analysed in a number of ways. (1) A comparison 

between high and low global associations (Figure 4.15) revealed a strong effect of condition: 

F(1,7) = 27.275, p = .001, but not group: F(1,7) = 3.662, p = .097. There was no interaction: 

F(1,7) = 3.332, p = .111. However, as is evident from the graph, Bonferroni-corrected t-tests 

found the difference between high and low associations was greater for PF+ patients: t(4) = 

4.737, p = .018, than TP-only patients: t(3) = 2.777, p = .138. (2) In an analysis comparing 

low global associations and semantic feature selection, the low global associations were 

significantly easier: F(1,7) = 48.638, p < .001, and this did not interact with group: F < 1. 

There was a significant main effect of group: F(1,7) = 5.723, p = .048. (3) The effect of a 

prepotent distractor was assessed using ANOVA (Figure 4.16). This found an effect of task: 

F(1,7) = 11.001, p = .013, and a main effect of group: F(1,7) = 6.792, p = .035, but no 

interaction F < 1. (4) A comparison of semantic (with prepotent distractor) and figure feature 

selection task finds no significant effects: F(1,7) < 2.7, p ≥ .144. This suggests that the tasks 

had similar control demands, and that both groups were equally impaired. (5) A comparison 

of semantic feature selection (without prepotent distractor) and figure feature selection found 

performance on the semantic task significantly higher: F(1,7) = 31.478, p = .001, but no main 

effect of group F(1,7) = 3.940, p = .088, or interaction: F(1,7) = 1.032, p = .343.  
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Figure 4.15: Strong versus weak global semantic associations (Feature selection task; 

Whitney et al., 2011). 

 

 

Figure 4.16: Semantic feature selection with and without a prepotent distractor (Feature 

selection task; Whitney et al., 2011).  
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 Individual analyses were run across patients (Table 4.16). It was noted that none of 

the TP-only patients showed a difference between high and low semantic global associations, 

and this difference was only found in some PF+ patients.  

 

Table 4.16: Individual differences between semantic feature selection tasks 

 Prefrontal TP-only 

  GH DB PG NY BB HN SC ME KS 

High-Low N.S. N.S. 0.039 0.007 N.S. N.S. N.S. N.S. N.S. 

Low-SF < .001 0.006 < .001 0.035 0.001 0.002 < .001 0.012 0.017 

SF-SF(ND) 0.021 N.S. 0.004 0.006 N.S. N.S. < .001 N.S. 0.013 

SF-FF N.S. N.S. N.S. N.S. N.S. 0.002 N.S. N.S. N.S. 

SF(ND)-FF N.S. N.S. 0.027 N.S. N.S. 0.031 0.013 N.S. 0.003 

          

High  94 (25) 75 (44) 97 (18) 84 (37) 88 (34) 97 

(18) 

97 

(18) 

100 

(0) 

84 

(37) 

Low  81 (40) 59 (50) 75 (44) 50 (51) 75 (44) 97 

(18) 

81 

(40) 

91 

(30) 

72 

(46) 

Semantic 

feature (SF) 

13 (34) 28 (46) 19 (40) 22 (42) 31 (47) 66 

(48) 

16 

(37) 

63 

(49) 

34 

(48) 

Semantic 

feature without 

distractor 

(SF(ND))  

38 (49) 41 (50) 56 (50) 53 (51) 16 (37) 59 

(50) 

63 

(49) 

59 

(50) 

66 

(48) 

FF 28 (46) 31 (47) 22 (42) 44 (50) 22 (42) 28 

(46) 

31 

(47) 

44 

(50) 

22 

(42) 

Results show p values from McNemar tests. SF = semantic feature selection with prepotent distractor; SF(ND) = semantic 

feature selection with no prepotent distractor; FF = figure feature selection. Scores are presented as percentage correct (with 

SD).  

 

Summary 

TP-only patients show a subtle but consistent higher performance in all tasks with 

high and low semantic control demands. However, this never interacts with task demands, 

which suggests TP-only patients show the same semantic control deficits as PF+ patients in 
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the two aspects of semantic control which were tested: global associations and feature 

selection.  

 (iv) Switching task 

The final task examined the aspect of semantic control involved in switching. There 

were ‘switching’ and ‘non-switching’ blocks: all the decisions involved matching according 

to either semantic associations or categorical relationship, but in the switching condition, the 

matching criteria were switched on every trial (so that on one trial, the participant had to 

match according to an association: e.g., TREE with AXE; an on the next trial, the participant 

had to match according to an category, e.g., TREE with FLOWER). In the ‘non-switching’ 

condition, the type of matching was fixed for the whole block.  

This task was used because the PFC (and not the pMTG) has been implicated in 

switching between tasks (Dove, Pollmann, Schubert, Wiggins, & Yves von Cramon, 2000; 

Hirshorn & Thompson-Schill, 2006; Troyer, Moscovitch, & Winocur, 1997), with reduced 

verbal switching in patients with frontal lobe damage (Troyer, Moscovitch, Winocur, 

Alexander, & Stuss, 1998; Troyer, Moscovitch, Winocur, Leach, & Freedman, 1998). This 

may be because switching involves selecting a weakly activated item over already active 

representations, with the LIFG critical for this response conflict (Thompson-Schill, 2005). 

Additionally, recent evidence has found a difference between PF+ and TP-only patients in the 

refractory task (Gardner, et al., 2012), which involves switching from a target which is still 

present, in a cyclical matching task.  

Procedure  

A single item (e.g., AXE) was presented as a picture, for matching with one of three 

words, the target word being either categorically related (e.g., HAMMER) or associatively 

related (e.g., TREE). The two distractor words were unrelated. Words which were targets were 

matched for frequency and imageability with words which were used as distractors, using the 

CELEX Lexical Database (Baayen, Piepenbrock, & Van Rijn, 1995) and MRC 

psycholinguistic database (Wilson, 1988). There was no frequency/imageability difference 

for the targets used in categorical and associative tasks: t < 1, with target frequency being 27 

and 37 words per million for categorical and associative words respectively, and 585/700 and 

580/700 imageability ratings for categorical and associative words respectively. Probes were 

the same across conditions. There was no frequency/imageability difference for the 

distractors used in categorical and associative tasks: t < 1, with distractor frequency being 24 

and 31 words per million for categorical and associative words respectively, and 591/700 and 

596/700 imageability ratings for categorical and associative words respectively. Using the 



  

 181 

Edinburgh Associative Thesaurus (EAT; Kiss, Armstrong, Milroy, & Piper, 1973), we used 

categorical and associative items which were infrequently paired with the target word 

(associative: M = 4.4, categorical: M = 3.4). The difference between conditions was not 

significant: t < 1.  

Each item was presented in a block of eight trials, with four associative and four 

categorical relationships. These were presented in two ways: (i) in a no-switching condition, 

all four associative and four categorical relationships were matched in blocks for each item 

(counterbalancing which relationship is presented initially); and (ii) in a switching condition, 

the four associative and four categorical relationships were interleaved within the block of 

eight trials for each item. There were a total of 14 items, with eight trials for each item, and 

the same items presented in both conditions across different testing sessions. This task was 

run on 9 patients, 5 PF+ (NY, DB, GH, PG, BB) and 4 TP-only (SC, HN, KS, ME).  

Results  

Lesion size did not correlate with performance on categorical or associative trials, or 

on switch in relation to non-switch conditions. An omnibus ANOVA including switching 

(switch or no switch task), condition (categorical or associative) and group (TP-only or PF+) 

was performed. The effect of switch had no main effect: F(1,7) = .134, p = .725. The effect of 

condition was significant: F(1,7) = 31.237, p = .001, driven by higher performance in the 

categorical compared with associative matching condition. The main effect of group was not 

significant: F(1, 7) = 2.623, p = .149, and there was no interaction between switching and 

group: F(1,7) = .339, p = .579; or condition and group: F(1,7) = 1.379, p = .279, and no three 

way interaction: F(1,7) = .600, p = .464. 

We analysed the ‘no switch’ condition in more detail. Although this presented all 

categorical and all associative items together, there was still a ‘switch’ trial between these 

two blocks. Over 8 trials, the first 4 items were one condition (e.g., associative) and the last 4 

in another condition (e.g., categorical). Therefore, performance on item 4 (after 3 trials of one 

condition) was compared to item 5 (the first item of a new condition). This is shown in Figure 

4.17. 

There was a significant main effect of switch: F(1,7) = 29.068, p = .001, but no effect 

of group or interaction (F < 1). In independent samples t-tests, there was a significant 

difference between groups on the ‘switch’ trial (item 5): t(6) = 2.516, p = .046, but not on the 

‘no-switch’ trial (item 4): t(6) = 1.837, p = .116. PF+ patients showed a significant drop in 

performance on the ‘switch’ trial in relation to TP-only patients.  



  

 182 

 

Figure 4.17: Performance on ‘switch’ trials (trial 5), and ‘no switch’ trials (trial 4) 
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switch conditions (Table 4.17). There was a trend towards PF+ patients being more likely to 
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TP-only patients. This was not significant in an independent t-test: associative: t(7) = 1.935, p 
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Table 4.17: Individual differences in switching task 

 PF+ TP-only 

 GH DB PG NY BB HN SC ME KS 

switch-no 

switch 

N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 

categorical-

associative 

0.052

* 

< .001 0.035 N.S. < .001 < .001 N.S. N.S. N.S. 

switch 72 

(45) 

60 

(49) 

79 

(41) 

63 

(49) 

76 

(43) 

87 

(34) 

88 

(33) 

70 

(46) 

75 

(43) 

no switch 81 

(39) 

55 

(50) 

77 

(42) 

57 

(50) 

78 

(42) 

89 

(31) 

86 

(35) 

73 

(44) 

72 

(45) 

categorical 82 

(38) 

70 

(46) 

84 

(37) 

65 

(48) 

90 

(30) 

96 

(19) 

90 

(30) 

77 

(42) 

77 

(42) 

associative 71 

(45) 

46 

(50) 

71 

(45) 

54 

(50) 

63 

(48) 

79 

(41) 

83 

(38) 

66 

(48) 

71 

(46) 

Results show p values from McNemar tests. Scores are presented as percentage correct (with SD). * = p < .06.  

 

Summary 

Both groups show a similar impairment overall, with both affected by whether the 

relationship was categorical or associative. There was some evidence that TP-only patients 

showed higher performance, but only on the most demanding tasks, such as the associative 

matching during the switching task, and during the ‘switch’ trial after a build up of 

presentations in another relationship.  

Frontoparietal vs. pMTG+ 

 A comparison was made which grouped these patients differently: rather than 

separating according to whether they had prefrontal lesions or not, we compared patients who 

had lesions to either prefrontal and/or angular gyrus (GH, PG, NY, BB, SC), the 

‘frontoparietal’ group, with those with damage to temporal regions, which sometimes 

extended to prefrontal cortex, the ‘pMTG+’ group (DB, HN, KS, ME, KA). The main 

difference between these groups was the involvement of the parietal lobe: none of the 

pMTG+ group had impairment of the angular gyrus (BA 39), with only DB showing damage 

to prefrontal regions BA 47/45.Overall, pMTG+ patients had damage which was more 

inferior (all involving pMTG). Frontoparietal patients had damage to PFC and angular gyrus, 
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and marginally fewer had pMTG implicated. A comparison between TP-only, PF+, pMTG+ 

and frontoparietal patients is displayed in Figure 4.18. 

 

 

Figure 4.18: A comparison of key brain regions implicated in semantic control between the 

four SA patient groups. 

 

 We assessed performance on the above four semantic control tasks, and report the 

significant interactions between group and task. In the semantic feature selection task, we 

found two significant interactions. (1) The effect of a prepotent distractor was assessed using 

ANOVA (comparing semantic feature selection with and without prepotent distractor). Here 

there was a significant effect of task: F(1,7) = 23.148, p = .002, a significant effect of group: 

F(1,7) = 5.974, p = .044, and a significant interaction: F(1,7) = 10.327, p = .015. This shows 

those with damage to pMTG+ were less susceptible to prepotent distractors, whereas the 

group with damage to frontoparietal regions are less able to direct their attention away from 

prepotent responses. This is shown in Figure 4.19. 
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Figure 4.19: pMTG+ vs. frontoparietal patients on semantic feature selection with and 

without a prepotent distractor 

 

(2) A comparison of semantic (with prepotent distractor) and figure feature selection 

task finds no effect of task: F(1,7) = 1.178, p = .314, but a significant effect of group: F(1,7) 

= 6.832, p = .035, and an interaction of group and task: F(1,7) = 10.551, p = .014. This is 

shown in Figure 4.20. Both groups are equally as impaired figure feature selection task. 

However, those with frontoparietal damage are more impaired at the semantic feature 

selection task (with prepotent distractor), whereas those with pMTG+ damage show higher 

performance on this task.  
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Figure 4.20: pMTG+ vs. frontoparietal patients on semantic (with prepotent distractor) and 

figure feature selection tasks 

 

Summary 

When comparing those with frontoparietal to those with pMTG+ damage, some 

notable differences emerged. There was no difference between strong and weak associations, 

but the effect of a prepotent distractor had a big effect of the frontoparietal group, which was 

not shown in the pMTG+ group. Additionally, those in the frontoparietal were impaired at 

both a figure and semantic feature selection task, but those with pMTG+ damage showed a 

higher performance in the semantic feature selection task.  

 

Discussion 

The exact role posterior temporoparietal cortex plays in semantic cognition is unclear 

from the current literature. Recent work by our group has suggested that regions within this 

area, along with the PFC, supports the task selective regulation of semantic behaviour 

(Jefferies & Lambon Ralph, 2006; Noonan, et al., 2010; Whitney, Kirk, et al., 2011; Whitney, 

et al., 2012). It is likely that some regions of the temporoparietal lobe are important in 

representation of semantic knowledge (Hickok & Poeppel, 2004, 2007; Martin, 2007; Martin 

& Chao, 2001), but it is nonetheless maintained that areas exist which are critical for 
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semantic control (Noonan et al., submitted). There is still opinion, however, that control is 

exclusively the domain of the PFC (Badre & Wagner, 2007; Demb, et al., 1995; Wagner, 

Paré-Blagoev, et al., 2001). The current study examined two research questions to address 

this conflict in the literature: (1) the performance of PF+ patients (with confirmed lesions in 

the prefrontal cortex and potentially also damage to temporoparietal areas) in comparison to 

TP-only (damage focused on the temporoparietal region and leaving PFC intact). Little 

research has compared these two groups in terms of semantic control performance. The 

majority of evidence suggests these roles play a similar part in semantic control (Noonan, et 

al., submitted; Whitney, Kirk, et al., 2011; Whitney, et al., 2012), with performance identical 

on a number of semantic control tasks. However, there is some suggestion that the prefrontal 

cortex plays a unique role in some aspects of semantic control (Gardner, et al., 2012; Noonan, 

et al., submitted). (2) TP-only patients were also compared to semantic dementia (SD) 

patients, who show deficits in the representation of semantic knowledge (Mummery, et al., 

2000). SD patients therefore show consistency across the same items in different tasks. We 

wanted to assess whether our TP-only patients would show this effect. In particular, certain 

temporoparietal regions, such as the IPL and pMTG, are associated with tool and action 

knowledge, so we tested particularly whether there were category effects in TP-only patients. 

We used a multitude of tasks and analyses to unpick the nature of the semantic deficits in 

PF+, TP-only and SD patients. The results are summarised in Table 4.18.  
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Table 4.18: Overview of similarities and differences between patient groups 

‘SA’ characteristics Patient response  

 PF+ TP-only SD 

Executive control impairment    

Inconsistency across items    

No category effects    

No familiarity effects    

Picture naming errors: 

associative 

   

Cueing effects    

Low verbal fluency    

Letter fluency < category fluency    

Imageability effects*    

No frequency effects    

Semantic distance effects    

Semantic ambiguity effects    

Semantic feature selection deficit    

Figure feature selection deficit    

Deficits with prepotent distractor    

Switching deficit    

 = some evidence of this characteristic,  = strong evidence of this characteristic,  = no significant evidence for this 

characteristic. * = imageability also a characteristic of SD patients. 

 

 Our current results are readily interpretable within a framework which views semantic 

cognition as composed of (at least) two principal components: (1) conceptual representations, 

underpinned by the anterior temporal lobes, specifically the basal fusiform gyrus (Binney, et 

al., 2012), which is an amodal system with links to modality-specific ‘spokes’, and is 

necessary to bind together disparate aspects of the same concept and group of concepts. (2) 

Additionally, there are regulatory control processes instantiated across a wide cortical 

network, including at least three main regions: the left inferior frontal gyrus (LIFG), posterior 

middle temporal gyrus (pMTG) and dorsal angular gyrus (dAG) (Noonan, et al., submitted).  

A comparison of SD patients and SA patients is useful because their lesion sites show 

little overlap. SA usually occurs after a stroke, and the fusiform gyri are well protected from 
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blood clots which can cause stroke (Visser, Jefferies, et al., 2010). Although the aSTG can be 

vulnerable to stroke (Phan, Donnan, Wright, & Reutens, 2005; Phan, Fong, Donnan, & 

Reutens, 2007; Schwartz, et al., 2009), the fusiform region which is thought critical to 

semantic representation is unaffected by stroke. Therefore, the exploration of SA patients’ 

semantic memory deficit is on the assumption that the semantic representations of the 

fusiform gyri are intact, but the retrieval mechanisms that access this store are faulty. It is, of 

course, possible that ‘spokes’ are damaged in these patients, leading to an overall deficit 

which is greater in one domain than another (but nonetheless, semantic control deficits 

present in all domains).  

Isolated PFC damage has been shown to lead to high-level difficulties controlling 

semantic competition (Metzler, 2001; Novick, Kan, Trueswell, & Thompson-Schill, 2009; 

Robinson, Shallice, Bozzali, et al., 2010; Thompson-Schill, et al., 1998). However, it is 

unclear how stroke patients with damage to temporoparietal regions (TP-only patients) fit in. 

Evidence suggests this region is multimodal (Hoffman, Pobric, et al., 2011; Vandenberghe, et 

al., 1996; Visser, Embleton, et al., 2012), and has rich connections with other temporal, 

frontal, parietal and occipital regions, allowing it to act as a contextual ‘hub’ (Turken & 

Dronkers, 2011). We would not dispute that these areas contribute toward specific 

representations of semantic feature knowledge. However, it is possible that these ventral and 

lateral temporal areas are distinct from those structures which critically underpin semantic 

control (Whitney, Jefferies, et al., 2011). Equally, it is plausible that different regions of the 

posterior temporal cortex are involved in both ‘control’ and ‘representation’ (Jefferies, in 

press). A deficit in tool and action knowledge by its very nature may be paired with a 

semantic control impairment – as these particular types of knowledge require interactive/ 

contextual knowledge, which is semantically demanding.  

Some TP-only patients also have damage to angular gyrus, and it was not possible to 

distinguish posterior regions within the scope of this paper, due to the number of patients, as 

well as the generally large lesion sizes we found in our sample. Nonetheless, AG has also 

been implicated in semantic control (Noonan, et al., submitted).  

As well as the difference between TP-only and SD patients, this paper also assesses 

the different contribution of the PFC and posterior regions to semantic control. There is much 

evidence to suggest PF+ and TP-only patients have similar control deficits (Corbett, et al., 

2011; Jefferies & Lambon Ralph, 2006; Noonan, et al., 2010), which includes sensitivity to 

ambiguity and semantic distance (Noonan, et al., 2010). However, there is emerging evidence 

that LIFG, pMTG and dAG play different roles in semantic control (Noonan et al., 
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submitted). Because of the lesion locations (with PF+ patients showing damage to prefrontal 

and posterior regions), it has been most fruitful to assess the role of the PFC in relation to the 

other regions. (1) TP-only and PF+ patients show a difference in performance on a refractory 

task (Gardner et al., 2012).  PF+ patients show more preservations of earlier responses in 

picture naming (Schnur, et al., 2006; Schnur, et al., 2009), and decline in accuracy of 

repeated items with a build-up of competition between targets and distractors (Gardner, et al., 

2012). (2) Additionally, while LIFG responded to the control demands of semantic tasks 

involving both production and comprehension, the contribution of pMTG is restricted to 

executive control of receptive tasks (Noonan et al., submitted).  

Our studies found similarities and differences between PF+ and TP-only patients. The 

similarities provide critical support for the idea that both prefrontal and temporoparietal 

regions make important contributions to semantic regulation, but the nature and extent of this 

contribution may differ. Both groups showed a difference to SD patients in item consistency. 

When the nature of the task changed – e.g., when they had to make associative judgements 

rather than matching a word to a picture – performance of SA patients was variable on an 

item-by-item basis, as patients were not always able to make the appropriate computational 

shifts required for the different types of semantic assessments. This lack of flexibility also 

explains why SA patients’ associative judgements were more strongly predicted by the 

requirement for task specific semantic retrieval compared with SD patients. SA patients were 

no longer able to explore and manipulate semantic knowledge online. This inconsistency 

across tasks was more prominent in PF+ than TP-only patients, but nonetheless substantially 

greater in SA patients than SD patients.  

We also found evidence for attenuated affects lexical frequency in both stroke groups 

– compared to SD – although this effect was again much stronger in the PF+ group. The lack 

of frequency effect has been explained in terms of high frequency items being more 

semantically diverse (Hoffman, Jefferies, et al., 2011; Hoffman, Rogers, et al., 2011), so 

appearing in many contexts (e.g., FIRE to mean losing your job, describing someone’s 

personality, or a physical bonfire, house fire or BBQ). Usually, high frequency words have a 

natural advantage (simply because of their regularity in language), but also have this 

additional control requirement involving choosing the appropriate linguistic context – which 

may cancel out the advantage in those with control impairments. Frequent exposure to an 

item may lead to poorer performance in SA patients if that concept has been paired with 

many strongly associated exemplars, across a range of different contexts – in this case 
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semantic control is required to select the specific facet of the item’s meaning which is 

appropriate for the particular task at hand.  

PF+ patients made significantly more associative errors than either TP-only or SD 

patients in picture naming, which reflected their difficultly directing activation toward a 

target item they still retained knowledge of.  Subsequently, constraining the task with 

phonemic cues boosted SA patients’ performance and revealed they still retained the 

knowledge for many items they previously could not name. As the task became less 

constrained and internally generated organisation became more important (i.e., naming vs. 

category fluency, and category vs. letter fluency), PF+ patients showed a significant effect of 

self-generation, where TP-only patients did not.  

It was found that TP-only and PF+ patients both showed an impairment on tasks 

which have high semantic control demands in relation to tasks with low semantic control 

demands. This impairment was the same in both SA patient groups across a range of control 

manipulations. Both groups showed poorer performance on distant category exemplars in 

relation to close category exemplars; subordinate in relation to dominant meanings to 

homonyms; and feature selection compared to global association. This suggests that both 

regions have an equal role in retrieval of distant meanings, or that an intact network, and 

connectivity of these regions, is crucial for semantic control. 

There were, however, some points of difference, which point to a unique role for the 

PFC in some aspects of semantic control. (1) In particular, it seems to be crucial for 

dampening down prepotent distracting and highly-relevant items. This is true in 

associative picture naming errors – where the associated item has to be dampened down for 

correct picture naming (e.g., PIANO  LESSONS; BATH  WATER). Higher performance in the 

WPM from TP-only patients, for example, could also be explained by the role of the PFC in 

dampening down prepotent distractors. As all the distractors in the WPM are strongly related 

to the target, you would expect performance to be worse in PF+ than TP-only patients, and 

for this variable to have a stronger effect for PF+ than TP-only patients. (2) PF+ patients 

show less of an effect of frequency, a characteristic which is associated with semantic 

diversity. It is plausible, therefore, that the PFC is involved in selecting the appropriate 

linguistic context for an item – particularly difficult for high frequency words. This may 

explain the modality effect for the Camel and Cactus task (CCT), where performance was 

higher for the picture than word version in PF+ but not TP-only patients. In the picture task, 

participants were given the concrete, correct meaning for the item by its very nature, whereas 

in the written version, the word does not give the correct contextual meaning. (3) There is 
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subtle evidence to suggest a role for the PFC in switching. The evidence is weak from the 

switching task, perhaps due to the highly imageable items chosen as stimuli. Nonetheless, the 

PF+ patients are more rigid in their response, leading to worse performance on the same 

items when switching is required, in relation to non-switching. Perhaps more convincingly, 

there were strong differences between these patients in category fluency – with TP-only 

patients being significantly more fluent than PF+ patients. This is a task which requires 

switching from the current item to another, semantically similar response. (4) PF+ patients 

showed more evidence for a deficit beyond semantics – of executive control. This is 

consistent with a recent meta-analysis (Noonan et al., submitted), which found that pMTG 

was not implicated beyond semantic control. The fact that some executive control 

impairments were found in the TP-only group may be related to AG damage.  

A direct comparison of SD and TP-only patients on semantic representation of tool 

use found no evidence for item consistency in TP-only patients. TP-only patients’ knowledge 

for manmade items was actually superior to knowledge of living things (a pattern not shown 

in PF+ and SD patients). TP-only patients, however, do show a category effect, but it is likely 

that this is due to other factors. Often, the lesion extends through some of the temporal lobe, 

to affect areas which process visual input. The two categories which TP-only patients are 

particularly impaired at naming, (FRUITS and BIRDS), have high visual overlap, and it is 

possible that the input from the visual stream is impaired, leading to a bias towards visually 

distinct items. It is also possible that a visual ‘spoke’ has been disrupted, leading to damage 

to stored representations for visual forms, that play a greater role in ANIMALS than TOOLS. We 

know this is restricted to the visual form, as categories which led to particularly high 

performance on a verbal fluency task were not necessarily visually dissimilar (ANIMALS and 

HOUSEHOLD OBJECTS). It is likely performance on this verbal fluency task reflects a pattern 

found in healthy controls, and is due to the ease of subcategorisation for each category.  

We also compared frontoparietal patients with those with pMTG damage (pMTG+). 

Although it was difficult to distinguish the different regions involved in semantic control, 

separating the patients according to pMTG damage meant that we were able to compare a 

group who all had damage to pMTG with those with damage to other regions (see Figure 16). 

Our results suggest that the pMTG is not involved in all aspects of semantic control. 

Frontoparietal patients showed disruption to the semantic feature selection task with a 

prepotent distractor. As found in picture naming errors in this study (more associative errors 

in PF+ patients), and also the refractory task (with an effect in PF+ but not TP-only patients; 



  

 193 

Gardner et al., 2012), PF+ patients may have particular difficulty dampening down a 

prepotent distractor.  

The reason for this subtle difference in PF+ and TP-only patients in a number of 

different tasks may be that the TP-only patients show a smaller effect of semantic control. 

Their performance is usually higher than both SD and PF+ patients, suggesting a milder 

deficit of semantic control. A recent meta-analysis of neuroimaging studies revealed the left 

prefrontal cortex is strongly and consistently activated in executive-semantic tasks, while the 

TP-region shows a somewhat smaller peak of activation which is only significant in some 

studies/tasks (Noonan, et al., submitted). This may also explain why TP-only patients fail to 

show refractory effects. However, these patients show the same degree of semantic control 

impairments when performing other semantic tasks (e.g., feature selection), which instead 

suggests PFC and pMTG may make unique contributions to semantic control. Most 

interestingly, although the lesion size of TP-only patients is significantly smaller, this does 

not correlate with semantic or executive control impairments.  

Another possibility is that PF+ patients have damage to a larger number of ‘nodes’ 

within the distributed semantic control network, compared with TP-only patients (major 

control regions being LIFG, pMTG and dAG). The majority of TP-only patients have damage 

to just 1 of these critical control regions, but PF+ patients have an average damage to 2.25 of 

these 3 regions. If the regions have different roles to play in semantic control, it may be that 

damage to more than one region does not cause a greater semantic control impairment on 

each task, but rather causes a greater semantic control impairment overall (as each task 

requires different elements of semantic control). It has recently been found that TMS over 

LIFG causes increased compensatory activation of pMTG in a semantic control task 

(Whitney, et al., submitted), suggesting flexible recruitment of semantic control regions 

according to control demands. The more regions which are damaged, the less able the system 

is to recruit other cortical regions to compensate during demanding tasks.  

With a greater number of TP-only patients we have been able to confirm, for the first 

time, that the nature of the semantic impairment in TP-only cases is similar to PF+ cases and 

distinct from SD patients with degraded knowledge. Our TP-only patients did not show a 

profile consistent with a static storage disorder, or evidence of a category specific semantic 

impairment for tools, which may be expected if they had lost knowledge of specific semantic 

features. Instead our patients with temporoparietal lesions – to the same extent as those 

patients with PFC involvement – were impaired at regulating their semantic knowledge in a 

task appropriate fashion. We have also been able to show that those with frontoparietal (in 
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relation to pMTG+ damage) are more impaired in semantic feature selection when a 

prepotent distractor is present. Subtle differences in TP-only and PF+ patients clearly exist. 

Future studies should assess the nature of the semantic control demands in each task, with 

stringent comparison tasks, to gauge which regions are uniquely involved in a particular 

aspect of control. Additionally, the effect of damage to more than one control region (or 

connectivity between regions), should be considered.  
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5.  CHAPTER FIVE 
 

 

 

 

 

 

 

 

 

 

 

The role of the right hemisphere in semantic control 
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Abstract  

 Semantic cognition recruits a wide cortical network, in both the left hemisphere (LH) 

and right hemisphere (RH). This includes brain regions that contribute to (i) input processing, 

(ii) semantic representations and (iii) processes which mediate semantic retrieval and control 

over semantic activation (e.g., semantic control). In terms of processing, there are subtle 

domain specialisations between the hemispheres – although the hypotheses relating to the 

specialisation of the RH are wide ranging, from face processing to metaphor comprehension. 

Nonetheless, a wide cortical network including both right and left inferior frontal gyri has 

been proposed for semantic control, albeit with a smaller cluster in the RH.  Semantic aphasia 

(SA) patients have damage to left inferior frontal and/or temporoparietal regions. They 

typically show near-normal performance on tasks which are low control demands, e.g., when 

given a phonemic cue in picture naming. However, their performance is reduced when the 

control demands are high e.g., when matching two distantly-related items. This pattern is 

seen across modalities. Our aim was to test RH patients to assess their semantic control 

deficits. There were three alternative predictions for RH performance in these tasks. (1) 

Impairments qualitatively similar to those found in SA patients, with performance correlating 

with semantic control demands of the task. - but found in semantic materials in which the RH 

is specialised in processing, e.g., metaphors. (2) A reduced semantic control deficit, with the 

RH playing a smaller, but still necessary role in semantic control. (3) No semantic control 

impairments, if an intact LH is able to take over the semantic control functions which usually 

recruit the RH. We analysed the effects of manipulating semantic control in tasks which are 

thought to be processed in the RH: face identity, face expression, social concepts, metaphors 

and summation of distant concepts, in 6 RH stroke patients and 12 age-matched controls. 

Evidence for a semantic control impairment can be seen in 2 of 7 semantic control tasks – a 

face emotion refractory task and a summation task. Performance was influenced by the nature 

of the task, rather than the material itself (on a picture naming face emotion task, no 

refractory effect was found). Two properties of these tasks –configural processing and 

inhibition of distracters – may be key to the semantic deficits found. From our data, it appears 

RH patients are largely able to overcome their control deficits through their intact left 

hemisphere control regions, except for when a task is particularly demanding of the RH 

semantic system.  
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Introduction 

 Semantic cognition involves a wide cortical network, in both initial sensory 

processing (Catani & Ffytche, 2005), representation (Martin, 2007; Patterson, et al., 2007) 

and controlled retrieval and selection of information guided by the task and context  (Badre, 

et al., 2005; Jefferies & Lambon Ralph, 2006; Thompson-Schill, et al., 1997).  

Semantic processing in the left and right hemispheres 

Semantic representational damage is seen in semantic dementia (SD) and herpes 

simplex encephalitis, where patients nearly always have bilateral anterior temporal lobe 

(ATL) damage (Lambon Ralph, Lowe, & Rogers, 2007; Mion et al., 2010; Mummery et al., 

2000; Nestor, Fryer, & Hodges, 2006; Noppeney et al., 2007). It is thought that both ATLs 

store similar semantic representations. For example, patients with unilateral damage – 

through resection for temporal lobe epilepsy, tumour resection or vascular accident (Lambon 

Ralph, Cipolotti, et al., 2010), have far less severe semantic impairments, suggesting that 

either hemisphere can compensate for the other. There are only exceptions found to this in 

particular cases such as for less frequent or abstract concepts, where the bilateral network 

appears to be necessary (Lambon Ralph, et al., 2012). This bilateral ‘hub’ is not only 

supported by patient data, but neuroimaging too. A recent meta-analysis (Visser, Jefferies, et 

al., 2010) revealed no significant difference in the distribution of peaks across the two 

hemispheres in words or pictures, although the LH shows slightly more peaks overall. Pobric 

et al. (2010a) showed that rTMS to either ATL produced significant increases in reaction 

time in both word and picture semantic association tasks. Therefore, it is thought that both 

hemispheres, and the connections between them, support amodal semantic representations in 

a bilateral ‘hub’ (Binney, Embleton, Jefferies, Parker, & Lambon Ralph, 2010; Lambon 

Ralph, Sage, Jones, & Mayberry, 2010; Rogers et al., 2004).  

Although the hemispheres have many similarities, there are subtle differences.  SD 

patients with more damage to the left hemisphere show more anomia (Lambon Ralph, et al., 

2001), and there is some evidence that those with more right hemisphere damage are more 

impaired at naming faces (Dell, 1989; Snowden, et al., 2004). Mion and colleagues (2010) 

found that verbal semantic tasks correlated with damage to left fusiform and left 

parahippocampal gyrus, whilst a visual semantic association task correlated with damage to 

the right fusiform gyrus. In an fMRI study, Visser and Lambon Ralph (2011) found similar 
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levels of activation in left and right vATL in picture and sound tasks, but much higher 

involvement of the LH in a spoken word task. This stems from a basic ‘right = visual’, ‘left = 

verbal’ premise. However, more detailed hypotheses for the RH have been put forward, and 

these are detailed below.  

1. RH specialisation – faces and emotions 

While initial processing of written words occurs within the visual-word form area 

(VWFA) in the left mid-fusiform (Cohen & Dehaene, 2004), faces produce specific 

activation in the fusiform face area (FFA) of the right mid-fusiform (Gauthier, et al., 2000), 

suggesting an early processing distinction between the hemispheres. fMRI and lesion studies 

have found RH dominance for a wide range of tasks requiring comprehension of emotional 

stimuli, including face expression processing (Blonder, Bowers, & Heilman, 1991; Bowers & 

Bauer, 1985; Kucharska-Pietura, Phillips, Gernand, & David, 2003; Nakamura et al., 1999), 

leading to theories which suggest expressions through non-verbal signals are mediated by the 

RH (Adolphs, Damasio, Tranel, Cooper, & Damasio, 2000; Kolb & Taylor, 2000; Silberman 

& Weingartner, 1986). Emotional expressions in the face activate several distinct regions, 

including right or bilateral amygdala, cingulate gyrus, orbitofrontal cortex, and other 

prefrontal areas (Blair, Morris, Frith, Perrett, & Dolan, 1999; Brieter et al., 1996; Dolan et al., 

1996; Morris et al., 1996; Nakamura, et al., 1999; Vuilleumier, Armony, Driver, & Dolan, 

2001). The ‘right hemisphere hypothesis’ emphasises the dominance of this hemisphere in 

emotion processing (Adolphs, et al., 2000; Blonder, et al., 1991; Borod, 2000; George et al., 

1996). Neuropsychological studies have found that in tasks which require the participant to 

select a word which best describes a face emotion, RH patients (compared to both LH 

patients and controls) showed impaired performance overall, even when taking into account 

face perception ability (Kucharska-Pietura, et al., 2003). In fMRI tasks which require 

judgement of an individuals’ emotion, both the right orbitofrontal cortex (Blair & Cipolotti, 

2000; Blair, et al., 1999) and right lateral prefrontal cortex are activated (George et al., 1993; 

Nakamura, et al., 1999). Even in tasks where faces are presented for 250ms or masked, 

fearful faces activate the right fusiform gyrus to a greater extent than the left (Vuilleumier, et 

al., 2001).  

2. RH specialisation – social judgements 

However, it is not simply the case that the LH processes words and the RH processes 

faces. Disruption to the RH has been associated with deficits of social cognition (Adolphs, 

1999; Ellis, Ellis, Fraser, & Deb, 1994). Theory of mind is the ability to infer the mental 
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states of others, particularly in making non-literal inferences (Weed, 2008; Weed, McGregor, 

Nielsen, Roepstorff, & Frith, 2010). It has been found that RH stroke patients show 

impairments on cartoon tasks which require attribution of mental states (Happe, Brownell, & 

Winner, 1999). This role of the RH in theory of mind is congruent with its perceived role in 

emotion processing of faces (Adolphs, et al., 2000). Ruby and Decety asked participants 

questions based on their own or the perspective of another person. Imagining another’s 

perspective activated frontopolar cortex and right inferior parietal lobe (Ruby & Decety, 

2003, 2004). It has been found that patients with RH damage show greater empathy deficits 

than LH cases (Perry et al., 2001; Rankin et al., 2006; Shamay-Tsoory, Tomer, & Aharon-

Peretz, 2005; Shamay-Tsoory, Tomer, Berger, & Aharon-Peretz, 2003; Shamay-Tsoory, 

Tomer, Berger, Goldsher, & Aharon-Peretz, 2005; Shamay-Tsoory, Tomer, Goldsher, 

Berger, & Aharon-Peretz, 2004). Atrophy to the right ATL is associated with behavioural 

changes, such as a lack of inhibition or empathy (Liu et al., 2004; Rankin, et al., 2006). 

Similarly, an fMRI study, in which participants were asked to make a relatedness judgement 

on two words which were either social (e.g., TACTLESS – IMPOLITE) or animal (e.g., 

NUTRITIOUS – USEFUL), found that only the right superior anterior temporal lobe survived an 

analysis which assessed activity for social versus animal concepts – suggesting it reflects 

social cognitive processes (Zahn et al., 2007). This study highlights the RH’s involvement 

beyond picture tasks, in language comprehension. Indeed, in sentence processing, sentences 

with a moral content produce right anterior temporal – but not left anterior temporal 

activation (Moll, de Oliveira-Souza, Bramati, & Grafman, 2002; Moll, Eslinger, & Oliveira-

Souza, 2001; Oliveira-Souza & Moll, 2000). Zahn et al. (2007) assessed hypometabolism 

across a cohort of 47 frontotemporal lobar degeneration and corticobasal syndrome patients 

in comparison to performance on animal or social concepts. Those with right superior ATL 

hypometabolism were significantly more impaired on social concepts than animal concepts. 

Additionally, this correlated with inappropriate social behaviours (see also Bartolomeo, 

Thiebaut de Schotten, & Doricchi, 2007; Konen, Behrmann, Nishimura, & Kastner, 2011; 

Mort et al., 2003). Therefore, it appears that rather than the RH being specialised for visual or 

particularly for face processing, it may be the nature of the stimuli itself (e.g., social) which 

leads to a deficit in RH patients.  

3. RH specialisation – metaphors 

A noticeable behavioural impairment in RH stroke patients is that they perform more 

poorly than LH aphasic patients on picture metaphor tasks, giving more literal responses, e.g., 

responding to ‘he has a heavy heart’ with a picture of someone carrying a heavy heart 
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(Winner & Gardner, 1977). This suggests that patients are unable to identify the appropriate 

situation in which a specific expression is suitable (Brownell, et al., 1990; Foldi, et al., 1983; 

Myers, 1983; Rehak, et al., 1992; Rinaldi, et al., 2004; Zaidel, et al., 2002). Much data has 

come from patients who show deficits in comprehending higher-level language (Gagnon, 

Goulet, Giroux, & Joanette, 2003; Gold & Faust, 2010; Kircher et al., 2004; Mitchell & 

Crow, 2005). fMRI data is less convincing – with some evidence that the RH contributes to 

metaphor processing (Bottini, et al., 1994; Faust & Mashal, 2007), verbal creativity and 

abstractness (Gold, et al., 2011), sarcasm (Giora, et al., 2000) and inferences (Jung-Beeman, 

Bowden, & Gernsbacher, 2000). For example, the right inferior temporal gyrus has been 

shown to activate more for conventional metaphors than literal sentences (Ahrens et al., 

2007). However, some argue that both hemispheres have the ability to process metaphors 

alone (Faust & Weisper, 2000; Kacinik & Chiarello, 2007; Rapp, et al., 2007; Schmidt, et al., 

2007).  

RH specialisation - theories 

Of course, it is possible to link together these disparate specialisations into 

overarching theories of the role of the RH. For example, the distinction between the right 

FFA and left VWFA has been interpreted in terms of the processes that are required for 

words and faces, as opposed to differences in modality or input (Bukach, Gauthier, & Tarr, 

2006; Cohen & Dehaene, 2004; Gauthier & Palmeri, 2002; Palmeri & Gauthier, 2004; Price 

& Devlin, 2003; Tarr & Gauthier, 2000). This group of researchers suggest that faces require 

configural processing – using a holistic analysis rather than element-element analysis, and 

words or symbols instead need analytical analysis – assessing each element in turn (Dien, 

2009). 

Similarly, this could be a useful distinction for other RH specialisations – with the RH 

being specialised for a gestalt analysis over analytical processing. In relation to this, the 

coarse semantic coding hypothesis has been put forward to describe the RH role in metaphors 

(Jung-Beeman, 2005). This suggests the LH focuses on dominant, literal or contextually 

relevant meanings, and the RH activates a broader semantic field, which sustains the meaning 

of a wide range of distant associates. This is similar to the graded salience hypothesis (Giora, 

1997), which suggests that the left hemisphere processes meanings which are particularly 

salient – be that through prior context, familiarity or dominant/ conventional meanings; and 

non-salient comprehension involves the RH (Giora, 2009; Giora, et al., 2000). These theories 

can be integrated (Mashal, et al., 2009), if one assumes that familiar items are often closely 
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related – or become closely related – and novel items are distantly related. In relation to 

social judgments, the weak central coherence theory (Norbury, 2005; Rundblad & Annaz, 

2010), stems from the failure to integrate sources of information to establish meaning, for 

example, integrating different elements of a face (the eyes or mouth), and not being able to 

extract the overall expression. This means focusing on small details rather than large, 

globally coherent patterns of information (Frith, 1989). This directly relates to the idea that 

the RH is involved in face processing because it is interested in configural processing. 

Finally, the stimulus-driven attention hypothesis (Corbetta & Shulman, 2002) suggests that a 

largely lateralised RH system is involved in reorienting attention according to new or 

distinctive stimuli. Conversely, an area which is largely left lateralised is involved in goal-

directed attention. This suggests that the RH is critical in focusing attention on aspects of a 

stimulus which are unusual, and shifting attention away from more typical interpretations of 

the stimuli.  

All these theories share common strands, and suggest that the reason behind the 

deficits found in RH patients for faces, social judgements or metaphors can be explained by 

the role of the RH in making global or ‘coarse’ judgements, and being involved in unfamiliar 

or unusual stimuli.  

Executive control  

Control demands have been shown to be an important factor in semantic tasks 

(Jefferies & Lambon Ralph, 2006), though it is unclear how these relate to the processing 

specialisms of the RH which are described in the theories above. Semantic aphasia (SA) 

patients, with damage to left prefrontal and/or temporoparietal regions show little evidence 

that they have lost semantic representations. Instead they show: (1) lower performance on 

high demand tasks, such as matching items that are in the same category but not closely 

related, like ‘salt’ with ‘sugar’, but almost ceiling performance on tasks with low control 

demand, such as matching items which are of the same category and closely related, such as 

‘salt’ with ‘pepper’ (Noonan, et al., 2010); (2) consistency of performance across semantic 

decisions which have the same level of difficulty and task demands, such as semantic 

association in word and picture modalities, but not across tasks with different demands, such 

as word to picture matching and association matching (Jefferies & Lambon Ralph, 2006); and 

(4) general executive control impairments which go beyond the semantic domain, and 

correlate with the degree of impairment on semantic tasks (Jefferies & Lambon Ralph, 2006). 

This suggests that SA patients have intact semantic representations but deregulated 
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conceptual processing, such that they are unable to focus processing on relevant features and 

associations in the absence of external constraints, i.e., a semantic control deficit.  

Because of these deficits, we find that SA patients show good performance on certain 

tasks, but impaired performance on the same task which has been manipulated to require 

more control. (1) SA patients are better able to perform a synonym judgement task, when the 

distractor foils are weakly associated to the probe (e.g., NEAT – TIDY, MESSY or LUCKY), in 

relation to a task where there is a distractor which is strongly related to the probe (e.g., HAPPY 

– CHEERFUL, SAD, or CONSCIOUS; Noonan et al., 2010). (2) Patients show strong effects of 

cues towards picture naming, whether they are phonemic (e.g., /b/ for bed), word or sentence 

cues (Corbett, et al., 2008; Jefferies, Patterson, et al., 2008). Additionally, they can be 

miscued towards a related but incorrect word (Soni, et al., 2009; Soni, et al., 2011). (3) SA 

patients are better at matching strongly related word, in relation to weakly related word. This 

occurs even if the probe word remains the same, e.g., performance is significantly better on 

matching LEAF-TREE compared to LEAF-PAGE (Noonan, et al., 2010). (4) Finally, a cyclical 

word-picture matching task has been used to show a decline in accuracy over repetitive 

presentation of the same, semantically related set of items (refractory effects; Warrington & 

McCarthy, 1983). Cyclical tasks typically use a target with distractors which are closely 

related, with the target on one trial becoming the distractor on another, and vice versa. This 

increases competition between the target and distractor, because all items are highly 

activated, so it becomes more difficult to reject the distractors (Jefferies, et al., 2007).  

Prefrontal vs. temporoparietal regions 

In SA patients, those with prefrontal and those with temporoparietal lesions show 

virtually identical semantic control impairments (e.g., Noonan et al., 2010; Jefferies et al., 

2008; Corbett et al., 2011). Additionally, fMRI data reveals an executive control network 

which spans both prefrontal and parietal regions (Duncan, 2010). However, a recent meta-

analysis (Noonan et al., submitted) did not find RH temporo-parietal activation for semantic 

control specifically. Therefore, although patients with prefrontal damage with or without 

temporoparietal damage (PF+) and those with damage restricted to the temporoparietal cortex 

(TP-only) may both show impairments on executive control tasks - consistent with the large 

network involved in executive control - there may be a difference in relation to semantic 

control – with PF+ patients showing more effects of semantic control demands than TP-only 

patients.  
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Executive control processes have been described as emerging from a bilateral network 

(Duncan, 2006, 2010; Duncan & Owen, 2000; Miller & Cohen, 2001), with fronto-parietal 

areas involved in domain general control, and contributing to the shaping of activation 

according to the task (Freedman, Riesenhuber, Poggio, & Miller, 2001). In terms of 

semantics, the RIFG, like the LIFG, has shown to be consistently activated by semantic tasks, 

though the LIFG is typically more responsive to verbal material (Noonan, et al., submitted; 

Vigneau, et al., 2011), including many key studies on semantic control (Badre, et al., 2005; 

Snyder, et al., 2011; Thompson-Schill, et al., 1997; Wagner, Paré-Blagoev, et al., 2001). 

However, little research has explored the role of the right hemisphere in semantic control. 

Our hypothesis is that, given the role of the RH in semantic processing as well as control, 

patients with RH stroke might show: (1) qualitiatively similar semantic control impairments 

to those found in SA patients, with performance correlating with semantic control demands of 

the task - but in semantic materials in which the RH is specialised in processing, e.g., 

metaphors. (2) It is also possible that, given the smaller peak of activation in RIFG compared 

to LIFG in semantic control tasks, we may find a reduced semantic control deficit, with the 

RH playing a smaller, but still necessary role in semantic control. (3) Finally, given the 

noticeable difference between LH and RH patients in language ability, and simple 

comprehension tasks, we may find no semantic control impairments, suggesting an intact LH 

is able to take over the semantic control functions which usually recruit the RH. 

Some researchers have already pointed out the importance of executive function in 

communication impairments after RH lesion or dysfunction. Given that pragmatic and 

higher-order language comprehension requires flexibility, inhibition and intention decoding, 

this suggests that comprehension relies on executive control (Champagne-Lavau & Joanette, 

2009; Martin & McDonald, 2003). There is some evidence to suggest this is the case (Leslie, 

Friedman, & German, 2004; Leslie, German, & Pollizi, 2005; Verte, Guerts, Roeyers, 

Ooosterlaan, & Sergeant, 2006). For example, performing a dual-task impairs the ability to 

perform a theory of mind task (Bull, Phillips, & Conway, 2008; McKinnon & Moscovitch, 

2007), and verbal executive function correlates with pragmatic communication abilities in 

TBI patients (Douglas, 2010). Additionally, the type of error made in language can be 

reflected by corresponding executive deficits (McDonald, 1993). For example, a patient who 

makes frequent topic shifts and is highly garrulous also showed poor impulse control on 

cognitive tasks (and not preservative errors seen in other patients). Disinhibition may 

decrease ability to use indirect or subtle language (McDonald & Pearce, 1996).  
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Despite scepticism from proponents of the domain general theory of control, who 

argue that there is a bilateral system that is involved in all aspects of control (Hampshire, et 

al., 2010; Hampshire, et al., 2009), there is suggestion that the RIFG is linked to a particular 

aspect of executive control – inhibition (Aron, et al., 2004; Chikazoe, et al., 2007; 

Lenartowicz, et al., 2011). Inhibition is required when there are task eligible but incorrect 

items present. Milham et al. (2001) devised a stroop task which involved the traditional 

conflict of ink colour and written colour, with participants having to name the ink colour and 

ignore the written colour word. Additionally, they studied the effect of adding written colours 

which were never ink colours (“ineligible”). This condition did not activate RH regions of the 

prefrontal cortex, although homologue LH regions showed similar activation for both 

“eligible” and “ineligible”. This suggests that the RH is needed in response to relevant 

conflicts, when an automatic behaviour needs to be overridden. Similarly in a “go no-go” 

task, where participants have to press a button when presented with one stimulus, but 

withhold this behaviour after presentation of another stimulus, the RIFG activation is seen in 

the “no-go” inhibition trials. This is particularly true in more complex versions of the task, 

such as when the subject has to remember a sequence of presentation of stimulus (e.g. “X-Y-

X-Y”), and inhibit responding to previously relevant items (e.g. “X-Y-Y-X”) which requires 

a high degree of inhibitory control (Garavan, et al., 1999).  

This study 

Because the RIFG has been linked to both executive control (either domain general or 

more specific aspects of control), as well as semantics, it is important to test the hypothesis 

that RH patients are more impaired on semantic tasks when the semantic control demands are 

maximised. The aim of this study was to assess the semantic deficits in RH stroke patients in 

relation to the semantic control demands of the task. There were three potential outcomes to 

these studies. (1) A deficit of semantic control which is more pronounced for material 

thought to be processed predominantly in the RH. For example, RH patients may show no 

impairment on picture naming of everyday objects, even when these are presented repeatedly 

at a fast rate, requiring control to selection, inhibit, and then reselect items (in a cyclical task). 

Nevertheless, they might show refractory deficits when naming face emotions. (2) A weak 

control deficit across tasks which are specifically recruiting this hemisphere, with only subtle 

differences to controls on the highest demand tasks. This would suggest the RH has a smaller, 

but still necessary role in control. This prediction is based on the weaker RH activation for 

semantic cognition in neuroimaging literature. Nonetheless, we wanted to test whether RH 
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patients would show some of the patterns of LH cases for domains in which they are 

impaired, e.g., inconsistency, refractory effects, cueing and distractor strength. (3) Patients 

may show no semantic control impairments compared with healthy controls. This could be 

the case, since the semantic control network activates predominantly LH regions. Patients 

may be able to utilise intact LH regions to take over the semantic control functions which 

usually recruit the RH. This finding would also suggest that the RH is not necessary for 

semantic control, as patients are able to cope with demanding semantic tasks using their LH 

network.  

Two additional hypotheses will be tested. Firstly, domain general executive control 

will be assessed, in tasks which are traditionally used to assess inhibition, as well as other 

executive control tasks, such as non-verbal reasoning which do not assess inhibition. We will 

compare scores on these tasks and predict that RH patients will be worse at tasks which 

require inhibition. Secondly, we will assess the role of the prefrontal cortex where possible. 

We hypothesised that patients with known damage to this region would show both executive 

and semantic impairments, with semantic control impairments much greater than those 

without known prefrontal damage.  

Methods 

Participants 

There were 6 RH stroke patients, and between 10 and 12 aged-matched controls of 

similar educational background (different controls were used for each task). SA patients were 

recruited from stroke clubs in Yorkshire, UK. Patients were selected for the study if they 

showed impairments on two or more subsets of the Right Hemisphere Language Battery 

(Bryan, 1995). 

Stroke lesion analyses: Scans were available for 4/6 patients (FBu, CNe, DJe, ARi). 

PSm was not able to be scanned due to a metal stent, but a radiographer’s report from the 

time revealed an acute infarct in the territory of the right middle cerebral artery. EHo did not 

wish to be scanned and no radiographers report was available. CT/MRI scans that were 

available were manually traced onto Damasio’s standardised templates (Damasio & Damasio, 

1989). This is shown in Table 5.1. Three patients showed damage to prefrontal regions (CNe, 

DJe and ARi). We grouped these patients into those with known prefrontal damage (PF+). A 

second, comparison group was formed for the purpose of this study. This included FBu, 

without prefrontal damage. It also included PSm and EHo, both of whom did not have 

hemiplegia, suggesting their lesions may be relatively small and/or with a posterior focus. For 
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the purposes of this analysis, we labelled these patients ‘other’. Because of the small sample 

size and insufficient data for accurate lesion location analysis, we only assessed RH patients 

in these subgroups briefly.  

Comparison SA group: We compared RH patients to our SA patients presented in 

Chapter 4. 15 SA patients were recruited from stroke clubs and speech and language therapy 

services in Manchester and York, UK. These SA patients showed impairments on both word 

and picture association tasks (the Camel and Cactus Test, CCT). All of the patients had 

chronic impairments resulting from a CVA at least one year prior to testing. They were 

matched for age and years of education (t > 1), but had damage exclusively to the left 

hemisphere. On one executive control task (the trail making task), no data was available for 

this group of SA patients. Therefore, a group of 8 SA patients were used to compare to the 

RH group. This group of SA patients did not differ significantly from the previously reported 

SA group in terms of their semantic or executive abilities, age and years of education (t > 1).  

In terms of our experimental tasks, we also thought it would be fruitful to explore the 

effects of semantic control manipulations in both RH and SA patients. Therefore, we 

compared our new tasks run in RH patients with tasks previously run with our SA patients 

which use the same semantic control manipulations (all patients reported in these 

experimental paradigms have also been described in detail in Chapter 4). For example, we 

compared our RH patients face emotion picture naming task with and without cues with our 

SA patients’ performance on the Boston Naming Task with and without cues (BNT; Kaplan, 

et al., 1983). Although we expected that in some cases, the RH and SA tasks could not be 

matched for overall accuracy (as they were different tasks), they could still be compared for 

the degree of performance on high vs. low demand conditions to check for an interaction of 

group and semantic control demands. 

Controls: We used a cohort of 19 aged-matched controls from a participant database 

at the University of York. Participants had no prior history of brain injury, and showed 

unimpaired cognitive functioning on the Mini-Mental State Examination (Folstein, et al., 

1975). Independent t-tests showed that the age of the controls did not differ from the patients. 

Of this cohort, there were 12 controls in Experiment 2, 10 in Experiment 3, 11 in Experiment 

4 and 12 in Experiments 5 & 6. The numbers of controls in each experiment varied slightly 

due to hearing ability (we only used those with good hearing when the task had auditory 

probes or cues), as well as availability. 
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Table 5.1: Lesion analysis for stroke patients 

 

 

Patient Group Lesion 
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     BA9 BA46 BA47 BA45 BA44 BA6 BA22 BA21 BA20 BA36 BA37 BA39 BA40 BA38 BA19 

ARi PF+ 4  -  - - - 2 2 1 -  -  -  -  -  - -  - 

CNe PF+ 7 - - - 1 - 2 2 1 - - 2 1 2 - - 

DJe PF+ 11 - - - - 2 1 2 2 - - 2 2 2 - - 

FBu ‘other’ 3 - - - - - 1 1 1 - - - - - - - 

Quantification of lesion: 2 = complete destruction/serious damage to cortical grey matter; 1 = partial destruction/mild damage to cortical grey matter. Anatomical abbreviations: 

DLPFC = dorsolateral prefrontal cortex; orbIFG = pars orbitalis in inferior frontal gyrus; trIFG,= pars triangularis in inferior frontal gyrus; opIFG = pars opercularis in inferior frontal 

gyrus; sTP = superior temporal pole; pSTG = posterior superior temporal gyrus; pMTG = posterior middle temporal gyrus; ITG = inferior temporal gyrus; FG = fusiform gyrus; POT = 

posterior occipitotemporal area; SMG = supramarginal gyrus; AG = angular gyrus; OL = occipital lobe. No scan available for PS or EH.  
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1.Background neuropsychology 

Rationale 

SA patients who showed deficits in semantic control also showed impaired 

performance on domain-general control tasks. It has been shown that the RH is involved 

in a domain general control network (Duncan, 2010). Therefore, we wanted to see if 

damage to the RH after stroke would produce difficulties on standardised assessments of 

working memory, attention and reasoning to the same extent as has been found after LH 

stroke. This included working memory, attention, reasoning and processing. We also 

assessed our RH cases on the semantic battery we have used with LH cases (although 

only used the most demanding tasks). 

Procedure 

We used a number of semantic and non-semantic background assessments. 

Semantic: (1) The Camel and Cactus task, picture version (CCTp; Bozeat, et al., 2000) 

used 64 items, and involved matching a probe with one of four related items (e.g., does 

CAMEL go with CACTUS, TREE, SUNFLOWER, or ROSE?). (2) A synonym judgement task 

involved matching a probe word with a target word presented alongside two unrelated 

distractors. This had 96 items in two frequency bands (high and low) and three 

imageability bands (high, medium and low), producing sixteen trials in each of the six 

frequency-by-imageability conditions (see Jefferies, et al., 2009). For example, a low 

imageability, low frequency item involved matching SUFFIX with INFLECTION, 

PERPETRATOR or TEMERITY. A low imageability, high frequency item involved matching 

CONSIDER to THINK, DEVELOP or DETERMINE. A high imageability, low frequency item 

involved matching CHESTNUT with CONKER, SWAMP or EAGLE. Finally, a high 

imageability, high frequency item involved matching MONEY with CASH, CAR or CHURCH. 

Responses were untimed. 

RH language: (3) The right hemisphere language battery (RHLB, Bryan, 1994) involved 

six subtests: (i & ii) A metaphor word and picture task, involving matching a probe item 

(a spoken sentence), with one of four possible interpretations. For example, in the word 

task, the experimenter reads: “He didn’t take the changes lying down. (1) He didn’t want 

to lie down, (2) He protested against the changes, or (3) change made him tired”. The 

picture task has a spoken sentence to be matched with a target presented with 3 

distractors as an image. There were 10 items in each test. (iii) An inference test, involved 
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reading a short paragraph and answering questions requiring inferences about the story. 

This used three paragraphs (and a practice paragraph) with four questions about each 

one. (iv) Word-picture matching, involved 20 items where the name of the item was 

matched with a corresponding picture. (v) A humour test involved 10 items. A sentence 

was read out, and the participant was required to pick which of four possible sentences 

was the best punchline for the joke. For example, the experimenter read out: “A judge 

had just finished telling the prisoner that he was free to go, as the jury found him not 

guilty of fraud. The prisoner then asked: (A) When can I leave sir? (B) What about my 

friends? (C) Does that mean I can keep the money? (D) What time is it please?” These 

responses were: (A) neutral, (B) emotional, (C) correct, or (D) unrelated. (vi) A test of 

emphatic stress, where the researcher read a sentence which described a picture, and the 

participant described a similar picture with the same prosody. There were 10 items. (4) 

The Familiar and Novel Language Comprehension test (FANL, Kempler & Van Lancker 

Sidis, 1996), used 20 items, with a four-choice picture test of (i) novel (literal) phrases 

and (ii) familiar metaphoric phrases. A sentence was presented verbally and participants 

were asked to pick the picture which reflects the sentence (e.g., metaphoric – ‘he’s got 

his head in the clouds’; literal – ‘he’s chasing after a white duck’).  

Visual/Neglect: (5) The Visual Object and Space Processing battery, VOSP (Warrington 

& James, 1991), involved a number of perceptual tasks, including counting, location 

analysis and position discrimination.  (6) The Bells Cancellation test is a test of neglect, 

and involved marking all images of a BELL on a sheet of paper.  

Executive Control: (7) Forward and backward digit span (Wechsler, 1987), assessed 

working memory. (8) An Elevator Counting task involved counting varying length tones 

which were played with or without distraction, from the Test of Everyday Attention 

(Robertson, et al., 1994). (9) The Ravens Coloured Progressive Matrices test (RCPM: 

Raven, 1962), assessed non-verbal ability using pattern and rule recognition of shapes 

and colours. (10) The Brixton Spatial Rule Attainment task (BSRA: Burgess & Shallice, 

1997), involved adapting patterns of responses based on feedback. (11) The Hayling test 

was single word sentence completion, with participants ending the sentence with either 

the logical conclusion, or a word which was unconnected to the sentence. (12) The trails 

test involved linking letters and numbers in order, in an easy condition (e.g., 1-2-3...) and 

difficult condition (e.g., 1-A-2-B-3-C..., Reitan, 1958).  
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Results  

Results are shown in Table 5.2. Factor analysis was used to extract a single factor 

across multiple tasks which tap the same concept (e.g., semantic, executive, visual and 

RH language). The scores in the table represent the regression co-efficient for each 

patient on the basis of this factor, with scores of 0 representing mean performance, scores 

above this being higher than average, and negative scores being below average. There 

were only 6 cases, so any correlates run had limited power. There were no significant 

correlations between these four factors, except between visual and executive factors: r = 

.857, p = .029. This may reflect some of the demanding aspects of the visual tasks (e.g., 

cube analysis), as well as the visual executive tasks (e.g., RCPM), which may have 

overlapping demands.  

 

Table 5.2: Background neurology of RH patients 

  
Max 

Normal 

cut off CNe ARi DJe FBu PSm EHo 

Semantic 

   

 

 

   

CCT pictures 64 52 52 56 55 57 58 54 

Synonym task - words 96 91 95 88* 89* 94 79* 87* 

Low imageability 32 27.6 31 29 26* 30 16* 24* 

Medium imageability 32 30.8 32 30* 32 32 32 31 

High imageability  32 30.9 32 29 31 32 31 32 

Low frequency 48 44.9 48 45 44* 48 38* 45 

High frequency  48 44.4 47 43* 45 46 41* 42* 

Semantic factor 

  

1.35 -0.36 0.13 0.67 -1.60 -0.18 

 
   

 

 

   

Executive functioning 

   

 

 

   

BSRA 55 28 38 21* 31 27* 27* 24* 

Hayling - sensible 15 11 14 14 15 12 13 13 
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Hayling unconnected  15 11 1* 6* 7* 1* 1* 5* 

RCPM (A, AB, B) 36 21.7                 26 30 24 35 23 21* 

TEA 7 6 6 NT 6 NT 7 6 

TEA (with distraction) 10 3 0* NT 5 NT 2* 7 

Trail making (A) 24 
 

24 24 NT 24 24 NT 

Trail making (B) 23 
 

7* 22 NT 23 17* NT 

Digit Span forwards 8 5 4* 7 6 5 4* 5 

Digit Span backwards 7 2 3 4 3 2 2 NT 

Executive factor 

  

-1.38 1.44 -0.32 0.82 -0.52 -0.29 

 

Visuospatial 

   

 

 

   

VOSP-screening 20 17.8             18 20 19 18 20 NT 

VOSP-incomplete 

letters 20 16.9 18 20 19 20 20 NT 

VOSP-silhouettes 30 10.0 13 24 21 17 23 NT 

VOSP-object decision 20 10.5 16 18 18 14 19 NT 

VOSP-progressive 

silhouettes - 6.0 15 10 10 13 11 NT 

VOSP - dot counting 10 9.5 9* 10 10 8* 10 10 

VOSP - position 20 17.1 19 20 20 20 19 20 

VOSP - number 

location 10 4.7 7 10 5 10 10 9 

VOSP – cube analysis 10 5.4 4* 10 8 9 7 3* 

Bells cancellation test 35 32 32 35 33 33 34 32 

Visual factor   -1.31 1.49 -0.18 0.52 0.30 -0.82 
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RH language   

 

 

 

   

Metaphor pictures 10 8.3 10 6* 6* 0* 3* 6* 

Metaphor words 10 8.3 10 10 10 10 9 10 

Lexical semantic 

(WPM) 20 19.4 18 19 20 19 19 18 

Inferences 12 8.0 12 9 10 11 9 12 

Humour test 10 8.8 5* 9 0* 9 3* 7* 

Emphatic stress 10 10 9* 8* 5* 6* 4* 7* 

FANL – metaphors 

(pictures) 20 16.7                13* 16* 15* NT 16* 15* 

FANL - literal phrases 

(pictures) 20 16.6 16* 18 15*  NT 18 17 

Language factor 

  

1.27 0.21 -0.83 -0.08 -1.40 0.83 

WPM = spoken word to picture matching; CCT = camel and cactus test of associative semantic knowledge; VOSP = 

visual object and space processing battery; RCPM = Raven’s Coloured Progressive Matrices; BSRA = Brixton spatial 

rule attainment task; TEA = elevator counting with and without distraction from the test of everyday attention.  

Raven’s Progressive Matrices norms calculated from Luszcz, M.A. (1992). Predictors of memory in young-old and 

old-old adults. International Journal of Behavioral Development, 15(1), 147-166. Bells Cancellation test (Gauthier, 

Dehaut & Joanette, 1989). RHLB = right hemisphere language battery (Bryan, 1994). FANL = Familiar and Novel 

Language Comprehension Test (Kempler & Van Lancker Sidis, 1996). Semantic, executive, visual and language factor 

scores created from the tasks in each subset where all participants have a score.   

 

 (1) The Camel and Cactus Task was analysed by examining the extent to which 

patients were impaired in relation to controls by using the “Singlims” procedure 

(Crawford & Garthwaite, 2002). This uses a modified t-statistic to examine whether an 

individual is significantly below a control group, taking into account group size and 

standard deviation. Singlims tests revealed no significant difference from controls in any 

patient, suggesting they are performing at a normal level. (2) The synonym judgement 

task was analysed using modified t-tests, which revealed a significant difference from 

controls in four patients: ARi (t = 3.604, p = .002), EHo (t = 4.830, p < .001), DJe (t = 

3.125, p = .007), and PSm (t = 9.595, p < .001). All four of these patients showed 

significantly impaired performance on low or medium imageability words but normal 

performance on high imageability words – a similar pattern to that found in SA patients. 

In an omnibus ANOVA, there was no significant effect of frequency: F < 1; 
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imageability: F(2,4) = 4.096, p = .108, or interaction: F(2,4) = 1.201, p = .390. For 

imageability, there was marginally higher performance in high imageability compared 

with low imageability words: t(5) = 2.245, p = .075; and medium imageability compared 

with low imageability words: t(5) = 2.342, p = .066; but not medium imageability 

compared with high imageability words: t(5) = 1.000, p = .363.  

(3) A paired-samples t-test comparing scores on the right hemisphere language 

battery subtasks involving metaphor pictures and metaphor sentences found a significant 

difference between the two: t(5) = 3.5, p = .017, reflecting a lower performance in the 

picture task across RH patients. A Revised Standardised Difference Test (RSDT) 

revealed a significantly lower performance in the picture task compared with the written 

sentences for ARi, EHo and DJe (t = 6.321, p < .001), FBu (t = 15.258, p < .001), and 

PSm (t = 9.640, p < .001). Controls did not show this modality difference, as shown in 

Figure 5.1, displaying our patient data, and control data from 30 age-matched participants 

presented in Bryan (1995).  

 

 

Error bars show standard error of the mean.  

Figure 5.1: Scores on the picture and word versions of metaphor subtasks from the Right 

Hemisphere Language Battery (Bryan, 1995).  
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(4) Modified t-tests were run for the FANL tasks. Patients do slightly worse at the 

metaphor task (M = 15.0, SD = 1.2), in relation to the literal task (M = 16.7, SD = 1.3), 

which is an opposite trend to healthy controls. For the literal phrases, there was a 

significant impairment for CNe (t = 2.357, p = .040), and DJe (t = 3.093, p = .011). This 

was not significant for PSm or ARi (t < 1), or EHo (t = 1.620, p = .136). For the 

metaphors, there was significant impairment for all patients: DJe and EHo (t = 3.395, p = 

.007), ARi and PSm (t = 2.524, p = .030), and CNe (t = 5.135, p < .001). A RSDT 

revealed significantly worse performance on the metaphor task for ARi (t = 2.320, p = 

.043); CNe (t = 3.818, p = .003); EHo (t = 2.502, p = .031); PSm (t = 2.320, p = .042); 

but not DJ (t < 1).  

(5&6) The VOSP task and Bells Cancellation task revealed high performance 

across the subtasks, with some errors in the dot counting and cube analysis. Overall, no 

neglect was evident. (7) Digit span performance was normal, and those who scored 

below the normal cut off on the forwards digit span were within the normal range on the 

backwards digit span. (8) Elevator counting task showed performance was not at ceiling, 

but was nonetheless within the normal range. (9) Raven’s Coloured Progressive Matrices 

showed a range of scores, within the normal range, with one exception, EHo, who was 

marginally beneath it (see Table 2).  (10) The Brixton Spatial Rule Attainment task found 

4 of the 6 patients outside the normal range, two noticeably so. (11) The Hayling 

sentence completion task was performed poorly. When asked to complete with a sensible 

word, most patients were within normal range. However, they were unable to come up 

with an unconnected word to the sentence. (12) The trails making task also found 

impairments in the majority of patients on the more difficult switching condition.   

Comparative executive performance to SA patients 

Semantic: In the CCTp, RH patients were significantly more accurate that our SA 

patients: F(1,19) = 10.230, p = .005. This was also true for the synonyms task: F(1,19) = 

13.068, p = .002. In an omnibus ANOVA of the effects of frequency and imageability 

across groups, there was a significant main effect of imageability: F(2,18) = 33.002, p < 

.001, but not frequency: F < 1. There was also a main effect of group: F(1,19) = 15.617, 

p = .001. Imageability interacted with group: F(2,18) = 7.660, p = .004, but frequency did 

not: F < 1. There was no three way interaction.  Although both groups showed higher 

performance with high imageability items (means: RH = 31, SA = 27), in relation to low 
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imageability items (means: RH = 26, SA = 18), the difference was greater in our SA 

patients.   

Visual: There was no significant difference between groups on the dot position 

task: F(1,19) = 2.437, p = .135, position discrimination task: F(1,19) = 3.642, p = .072, 

number location task: F < 1, or cube analysis: F(1,19) = 2.618, p = .122.  

Executive: In the RCPM, there was no significant difference between groups: 

F(1,19) = 2.393, p = .138. This was also true for the BSRA: F(1,17) = 2.299, p = .148. In 

an ANOVA comparing digit span forwards and backwards, there was a main effect of 

task: F(1,18) = 43.286, p < .001, but no interaction: F < 1, or main effect of group: 

F(1,18) = 2.250, p = .151. Comparing TEA with and without distraction, there was no 

main effect of task: F(1,15) = 2.573, p = .130; or main effect of group: F(1,15) = 1.399, p 

= .255; or interaction: F < 1. Using the second SA group, we compared performance on 

the trail making task. Over both groups, task B was significantly more difficult than task 

A: F(1,11) = 17.994, p = .001, but this did not interact with group: F < 1. There was no 

main effect of group: F(1,11) = 1.727, p = .216, suggesting RH patients are performing 

similarly to our SA patients.  

In the Hayling task, a repeated measures ANOVA was run on both sensible and 

unconnected sentence completion in 8 of our SA patients and our RH patients. Although 

there was no group difference in performance (F < 1), performance on the ‘sensible’ 

sentence completion was higher than the ‘unconnected’ sentence completion: F(1,12) = 

172.402, p < .001, and there was a significant interaction with group: F(1,12) = 16.726, p 

= .001. RH patients showed more errors in the unconnected sentences condition, but had 

higher accuracy in the sensible sentences condition. This is shown in Figure 5.2. 
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Error bars show standard error of the mean. 

Figure 5.2: Sentence completion accuracy with sensible or unconnected words from the 

Hayling Test (Burgess & Shallice, 1997).  

 

With regards to the type of error made in the unconnected sentences task, Type A 

errors represent strongly connected words (e.g., AT LAST THE TIME FOR ACTION HAD... 

‘come’), and Type B errors are somewhat connected (e.g., MOST CATS SEE VERY WELL 

AT... ‘dawn’). This time, a group difference was found: F(1,12) = 9.169, p = .011, but 

there was no main effect of error type or interaction (F < 1). This is shown in Figure 5.3. 

When looking at each error type as a proportion of total errors, there was no significant 

effects (F < 1).  
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Unconnected sentence completion version of the Hayling Test  (Burgess & Shallice, 1997). Error bars show standard 

error of the mean.  

Figure 5.3: Number of connected (Type A) and somewhat connected (Type B) errors  

Summary 

RH patients show that in relation to SA patients, their semantic comprehension 

impairments are much milder (show by significantly better performance on CCTp and 

synonym judgement tasks). However, like SA patients, they show no frequency effects, 

and show some evidence of an imageability effect. There was no difference between 

groups on visual tasks. However, all RH patients were impaired on at least one metaphor 

task which used pictures. Additionally, there was a striking pattern of performance on 

executive control tasks. In all 5 tasks which we were able to run a comparative analysis 

on, there was no interaction between group and task, suggesting a similar effect of 

executive control impairment in both groups. There was also no group differences, 

suggesting the impairments are similar across patient groups.  

RH patients also showed a notable impairment at the Hayling sentence 

completion task (finishing a sentence with an unconnected word). They were able to 

inhibit naming the target end to the sentence (e.g., cats see very well.... ‘at night’) but 

instead named a close associate or synonym of that word (e.g., cats see very well ... ‘in 

the evening’). Patients showed an impairment on control (e.g., Hayling sentence 

completion, BSRA, Trail Making, TEA) which was not matched by their semantic 

impairment (e.g., CCTp, synonym task).  
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2.Cyclical matching task: face emotions 

Rationale 

 Our SA patients show a decline in accuracy, or refractory effects, after multiple 

presentations of the same items (Gardner, et al., 2012; Jefferies, et al., 2007). The 

semantic distance of the target and distractors is of particular importance (Crutch & 

Warrington, 2003a, 2004, 2007, 2010b), with stronger effects for closely related targets 

over distantly related targets (Jefferies, et al., 2007). The RH has been linked to 

knowledge of faces (Snowden, et al., 2004) particularly face emotions (Bowers, Blonder, 

Feinberg, & Heilman, 1991; Harciarek & Heilman, 2009). Additionally, test-retest 

correlations of face emotion recognition were weak in these patients, although it was 

high in healthy controls (Zgaljardic, Borod, & Sliwinski, 2002). Inconsistent 

performance to the same stimuli has been shown in SA patients, and is thought to be a 

trait of ‘access’ rather than storage deficits (Crutch & Warrington, 2011a; Jefferies & 

Lambon Ralph, 2006). This suggests that there may be reason to believe RH patients are 

impaired at accessing the meaning of emotions. Therefore, we tested the hypothesis that 

our RH patients would show a refractory effect for face emotions. 

Procedure 

 The cyclical emotion matching task involved matching a spoken emotion to a 

picture of a face. The 7 emotions were: HAPPY, SAD, ANGRY, FEARFUL, SURPRISED, 

CONTEMPTUOUS and DISGUSTED. Faces were from the Radboud Faces Database (Langner 

et al., 2010). There were 8 sets, each with 4 different emotions that were probed. Each set 

used the same identity and orientation of face, to maximise the visual overlap between 

items. There were four pictures displayed, one target with three distractors. Each target 

was presented four times, with the target and distractors rotating across the 16 trials. The 

experimenter moved on the trial when patient made a response. After 10 seconds without 

a response, the next trial was presented. As soon as a response was made, the next trial 

was presented.  
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Results 

There was a main effect of cycle: F(3,14) = 6.310, p = .006, and an interaction of 

cycle with group: F(3,14) = 8.416, p = .002. Additionally, there was a main effect of 

group: F(1,16) = 7.341, p = .015. This is shown in Figure 5.4.  

 

 

Error bars show standard error of mean.  

Figure 5.4: Accuracy across cycles for the refractory emotion matching task in controls 

and patients 

 

Tests of the four a priori hypotheses were conducted using Bonferroni adjusted 

alpha levels of .0125 per test (.05/4). Independent samples t-tests found no significant 

effect of group at cycle 1: F(1,16) = 1.492, p = .240, cycle 2: F(1,16) = 3.251, p = .090, 

but a group difference at cycle 3: F(1,16) = 8.582, p = .010, and cycle 4: F(1,16) = 

12.484, p = .003. This shows patients were performing at a normal level initially, but 

significantly declined over cycles. In a repeated measures ANOVA for each group, there 

was a marginal effect of cycle for the controls: F(3,9) = 2.936, p = .092, showing their 

increased in accuracy over cycles. For patients, there was also an effect of cycle: F(3,3) = 

16.533, p = .023, but this reflects their decline in accuracy over cycles.  

Each patient was analysed individually, to see if the refractory effect was 

consistent across patients. Using McNemar, no patient showed significant differences 
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across any cycle (p ≥ .07). The patients who showed a marginal effect of cycle, DJe, CNe 

and ARi, had known prefrontal damage. The PF+ group was compared to the ‘other’ 

group using logistic regression. This included cycle and group. No significant effect of 

group was found: Wald = 1.926, p = .165, although the effect of cycle was significant: 

Wald = 6.970, p = .008.  

Consistency analysis using logistic regression found no consistent performance 

when using a cycle to predict another cycle in any comparison. 

 

Comparison with SA patients 

A comparison with SA patients was made, using the data from controls and LH 

patients from Chapter 2 (Gardner, et al., 2012), which was a simple word-picture 

matching task, matching an spoken word (e.g., ‘fork’) with a picture of the same item 

(e.g., FORK, SPOON, SPATULA, or KNIFE). This is shown in Figure 5.5. In an ANOVA 

comparing RH and SA patients, there was an effect of cycle: F(3,11) = 4.491, p = .027, 

but no interaction of cycle and group: F(3,11) = 1.283, p = .328. There was no main 

effect of group (F < 1). 

 

Refractory task used for SA cases (showing controls from this experiment): word-picture matching task (Experiment 1 

from Chapter 2). Refractory task used for RH cases: emotion word-picture matching. Error bars show standard error of 

mean.  

Figure 5.5: The effect of cycle on accuracy for SA patients and RH patients  
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Finally, we compared a single LH case with RH patients on the same task 

(comparing face emotion matching), to see if the refractory effects were comparable. The 

patient, DB, has been described before (Gardner, et al., 2012), and has an extensive LH 

lesion (see Chapters 2 & 4). He was chosen to perform this task because he shows 

refractory effects in other tasks, and the largest refractory effects have been found in the 

most severe cases (Gardner, et al., 2012).  

Figure 5.6 shows that the single case was markedly more impaired than the RH 

patients, with a greater drop in accuracy across cycles. In relation to this SA patient, RH 

patients appear more similar to controls.  

 

 

Error bars show standard error of mean.  

Figure 5.6: Accuracy across cycles for controls, RH patients and a single SA case  

 

Summary 

 RH patients show a similar refractory effect in this domain compared to LH 

patients in a simpler semantic task (although this is not significant in any individual 

patient). There is some evidence that this is driven by PF+ patients (as is the case with 

SA cases), suggesting the prefrontal cortex is particularly involved in selecting a target 

amongst prepotent distractors. For the first time (in our knowledge), the prefrontal right 

hemisphere has been shown to be involved in this cyclical task, when using items highly 

specific to RH processing.  
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3.Face emotion picture naming 

Rationale 

SA patients show impairments in picture naming, which is dramatically improved 

with phonemic cueing (e.g., /b/ for bed) and impaired by miscueing a semantically 

related alternative, such as /l/ for tiger (Corbett, et al., 2008; Jefferies, Patterson, et al., 

2008; Soni, et al., 2009; Soni, et al., 2011). Given that a significant refractory effect was 

found for face emotion matching, we tested the hypothesis that picture naming of face 

emotions would also be impaired and affected by cues RH stroke patients.   

Procedure 

 Pictures were selected from the Radboud Faces Database. These emotions were 

surprise, fear, sadness, anger and disgust. Happy was left out due to it being easily 

perceived in the previous refractory task, and as there is debate about whether happy 

emotions are represented in the RH (Nijboer & Jellema, 2012). Pictures were presented 

for 3 seconds, and the patients’ naming response was recorded. During each presentation, 

there was either (i) a cue (the first phoneme of the emotion), (ii) a miscue (the first 

phoneme of a different emotion), or (iii) no cue (presenting a ‘click’ sound at the 

beginning of the trial). Each participant was given a list of the 5 emotions before the test, 

which they were allowed to refer to at any point during the task. There were 262 items, 

87 in the cue and no cue condition, and 88 in the miscue condition (results were analysed 

as percentage correct).  

Results 

 In an ANOVA, the effect of cue was significant: F(2,13) = 11.331, p = .001, as 

was the effect of group: F(1,14) = 13.346, p = .003, but the interaction was not 

significant: F(2,13) = 1.122, p = .355. This is shown in Figure 5.7. In an ANOVA 

comparing miscues with no cues, there was a significant effect of task: F(1,14) = 6.845, p 

= .020, group: F(1,14) = 10.885, p = .005, but no interaction: F < 1. In a comparison of 

cues and no cues, there was a significant effect of task: F(1,14) = 21.226, p < .001, 

group: F(1,14) = 33.321, p < .001, but no interaction: F(1,14) = 2.382, p .145. Finally, 

comparing cues with miscues, there was an effect of task: F(1,14) = 24.406, p < .001, and 

group: F(1,14) = 12.171, p = .004, but no interaction: F < 1.  
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Error bars show standard error of mean 

Figure 5.7: Effect of cueing condition on emotion picture naming performance 

 

Although patients were worse overall, the effect of cueing was equivalent in 

patients and controls. Individual ANOVAs (for patients and controls), found no 

significant effect of cue condition for patients: F(2,4) = 3.122, p = .152, but there was for 

controls: F(2.8) = 9.091, p = .009. McNemar tests were used to assess the effect of 

cueing in each patient (see Table 5.3). There was individual variability, with those with 

low scores overall not showing any significant difference between conditions.   
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Table 5.3: Effects of cueing on performance  

  DJe ARi CNe EHo FBu PSm 

Cue v. miscue 0.014* < .001*  0.839 0.176 0.263 < .001* 

Cue v. no cue 1 < .001*  0.678 1 0.256 < .001* 

Miscue v. no 

cue 

0.01* 0.76  1 0.280 1 1 

Cue  51 87 39 45 47 53 

Miscue 30 44 37 34 36 25 

No cue 49 48 36 44 38 23 

Overall 43 60 37 41 40 34 

McNemar tests showing p values. Accuracy scores are as a percentage.  

 

Actual word errors 

 We analysed the proportion of word errors across each patient. These are shown 

in Table 5.4. Semantic errors include either (i) co-ordinate errors, e.g., a word which was 

given to them at the beginning (‘surprised’ for FEARFUL); (ii) associative errors, e.g., 

giving words which are related to the picture (‘smell’ for DISGUSTED), and (iii) novel 

words which were not given as one of the five options (‘determined’ for ANGRY).  
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Table 5.4: Proportion of errors made in RH patients in face emotion picture naming 

  DJe ARi CNe EHo FBu PSm Average  

Perservative 34 19 8 15 23 17 19 

Omission 20 49 74 26 39 13 37 

Semantic 46 32 18 59 38 70 44 

Semantic        

Co-ordinate 76 44 21 29 27 27 37 

Novel 24 56 46 58 66 54 51 

Associative 0 0 33 13 7 19 12 

Errors are shown as %, with errors classified as either preservative, omission or semantic. The semantic errors were 

further divided into those which were co-ordinate, novel or associative errors.  

 

Comparison to SA patients’ cueing effects 

 We compared our RH patients in this task to our SA patients described previously 

(Chapter 4) doing the Boston Naming Test (BNT; Kaplan, et al., 1983) which was run 

with and without a cue. This is shown in Figure 5.8. These were different tasks, so we did 

not run a direct comparison. However, we wanted to assess whether the direction of 

deficit was the same in both patient groups. In our SA patients, there was a significant 

improvement in performance after a cue: t(9) = 8.757, p < .001. In our RH patients, the 

effect was the same, although there was only marginal significance: t(5) = 2.359, p = 

.065.  
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Task used for SA patients: Boston Naming Test (BNT; Kaplan, et al., 1983, shown in Chapter 4). Task used for RH 

patients: face emotion picture naming. Error bars show standard error of mean.  

Figure 5.8: A comparison between SA and RH patients on picture naming tasks with and 

without a phonemic cue.  

 

In terms of picture naming errors, there was a trend towards more associative 

errors in SA patients, and more preservative errors in RH patients (shown in Figure 5.9). 

However, the standard deviations were large, and the group differences for each error 

type were not significant. Removing participants who were extreme outliers, 2 standard 

deviations above the mean, removed just one patient for the preservative errors (SA 

patient LS), which led to a significant difference in preservative errors between groups: 

F(1,17) = 8.668, p = .009. There were no other significant effects found using this 

method.  
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Error bars show standard error of mean.  

Figure 5.9: Picture naming errors in SA and RH patients (error bars show standard error).  

 

Summary 

Patients were affected by cueing to the same extent as controls. Individual 

variation was large, and performance overall was low – for controls it was 68%, and RH 

patients 42% across all conditions. Given that both groups made significant numbers of 

errors even in uncued naming, it is perhaps unsurprising that some participants did not 

show a miscueing effect – the single phoneme might have been insufficient to strongly 

activate the name of the competitor emotion. In contrast, the cueing effect was strong in 

the basic picture naming task used with SA patients (Chapter 4), where there was a clear 

target word response. The empirical data is therefore insufficient to determine whether 

the SA cases show stronger cueing effects per se, or whether this apparent difference was 

a function of the tasks that the patients were tested on. In relation to picture naming 

errors, there was a trend towards significantly more preservation errors in RH patients, 

and more associative errors in SA patients. However, they both show a large number of 

semantic and omissions overall.  
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4.Social synonym matching 

Rationale 

Our SA patients have shown an effect of manipulating the target and distractor 

strength on performance – with higher performance on tasks where there is a closely 

related target (e.g., PRUNE – PLUM) compared to a weakly related target (e.g., PRUNE – 

SHRUB; Noonan et al., 2010). These authors also found that patients making a synonym 

judgement (e.g., HAPPY – CHEERFUL) were more impaired when there was a strong 

antonym distractor present (e.g., SAD; Noonan et al., 2010).  

The RH involvement in emotion processing has been extended to involvement in 

social interpretation more generally (Semrud-Clikeman, Goldenring Fine, & Zhu, 2011). 

The RH has been shown to be involved in the Heider and Simmel task – consisting of 

‘social’ and ‘non-social’ animations of small geometric shapes, with ‘social’ shapes 

seeming to interact and react to the other shapes’ response (Ross & Olson, 2010). fMRI 

has found that the ability to perceive eye-gaze of other people from photos or videos is 

strongly lateralized to the RH  (Pelphrey, Viola, & McCarthy, 2004). The ‘theory of 

mind’ network is thought to involve the temporoparietal region of the right hemisphere, 

and activity in this region is higher in autistic individuals comprehending social passages 

requiring social inferences, which authors suggest reflect increased processing demands 

in these patients in relation to controls (Mason, Williams, Kana, Minshew, & Just, 2008). 

We explored the hypothesis that meanings for social words may be impaired, and that 

within a task tapping linguistic social judgements, sensitivity to control demands can be 

assessed.  

Procedure 

Words were taken from Zahn et al. (2007), and the target and distractors were 

matched for frequency and imageability. Participants were required to match a social 

word (e.g., HAPPY) with a (i) a strongly related synonym (e.g., CONTENT, DUTIFUL or 

FIRM), (ii) a weakly related synonym (e.g., FRIENDLY, DUTIFUL or FIRM), (iii) a weakly 

related synonym with antonym distractor (e.g., FRIENDLY, SAD or FIRM). We predicted 

that the strongly-related synonym matching is a relatively automatic process, via 

spreading activation from the target (Collins & Loftus, 1975; Masson, 1991; Neely, 

1990; Wagner, Paré-Blagoev, et al., 2001). However, weakly related matching tasks 

require additional executive control resources, as they do not automatically activate. The 
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weakly related matching task was made more demanding by adding a prepotent 

distractor. All words were written, and trials moved on after 7 seconds if there was no 

response (and the next trial was presented immediately after a response). There were 48 

items in each condition, with the same probe being used in all three conditions, presented 

at the same time as the target and two distractors.  

Results 

An ANOVA revealed a significant effect of condition: F(2,14) = 24.635, p < 

.001, and group: F(1,15) = 4.634, p = .048, but no interaction of condition with group: F 

< 1. This is shown in Figure 5.10.  

.  

 

Error bars show standard error of mean.  

Figure 5.10: performance on social synonym tasks across different semantic control 

conditions.  

 

An ANOVA for each group individually revealed that the effect of condition was 

significant for both patients: F(2,4) = 75.726, p = .001, and controls: F(2,9) = 12.952, p = 

.002. McNemar tests were carried out on each patient. No significant effects were found 

for any patient (p ≥ .065). 
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Comparison to SA patients 

 We were able to assess whether both groups of patients show an effect of the 

manipulation of semantic control, but because the tasks we were comparing were 

different, it is not clear whether a larger effect in one group means that they show more 

semantic control deficits, or whether the task was more sensitive to semantic control.  

Firstly, we wanted to see whether both groups showed an effect of distractor 

strength. The SA task was developed by Noonan et al. (2010), examining synonym 

matching in the presence of an antonym distractor, and run on 7 of our cohort of SA 

patients. This task had a demanding condition, involving matching a word such as HAPPY 

with a synonym CHEERFUL when presented with a strong antonym distractor e.g., SAD, 

and an unrelated distractor CONSCIOUS. In a less demanding condition, the distractors 

strength was manipulated, so that it was only weakly related to the probe (e.g., NEAT to 

be paired with TIDY, MESSY or LUCKY).  

This compares with our RH task which manipulated distractor strength. In one 

condition, there were unrelated distractors (‘weak’), whereas in another (‘weak with 

antonym’), there was an antonym present. Both RH tasks used the same probe and target. 

The results are displayed in Figure 5.11. RH patients do not show an effect of distractor 

type (t < 1), whereas SA patients do: t(6) = 3.7, p < .01.  

 

Errors bars show standard error of mean 

Figure 5.11: Comparison of SA and RH patients in performance on a task with and 

without strong antonym distractors 
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A further comparison was made with SA patients comparing performance 

according to strength of association between the probe and target. To do this, we 

averaged RH performance on the ‘weak’ association tasks to have one accuracy estimate 

for ‘strong’ and one for ‘weak’ associations. We compared this performance to SA 

patients on a task which also manipulated the strength of association between the probe 

and target (Ambiguity Task; Noonan et al., 2010, data from 13 of our SA patients as 

presented in Chapter 4). This is shown in Figure 5.12. Again, the tasks were very 

different, and may have tapped semantic control in a different way, and been more or less 

demanding to the control network. SA patients show a significant effect of strength of 

probe and target: t(12) = 5.905, p < .001; as do RH patients: t(5) = 5.114, p = .004.  

 

Error bars show standard error of the mean.  

Figure 5.12: Comparison of SA and RH patients on tasks which manipulate the strength 

of association between the probe and the target 

 

Summary 

There was a significant effect of the semantic control manipulation, but for both 

RH patients and controls. The average score for patients, across all tasks, including the 

more challenging versions of the task, was 79%, suggesting patients found this set of 

tasks relatively easy. Additionally, in comparison with SA patients, our RH show a 

similar effect of strength of probe-target, but do not show an effect of strength of 
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distractor in this task. This suggests SA patients may have a more global semantic control 

deficit, whereas RH patients may have specific impairments of control.  

 

5.Metaphor task 

SA patients show a strong effect of distractor strength, being more impaired when 

the distractors are closely related to the target, compared to when they are semantically 

unrelated (Jefferies, et al., 2007). Jefferies and Lambon Ralph (2006) found there were 

three semantic control factors which affected SA performance in an association matching 

task: (i) ease of determining the relevant semantic relationship, (ii) co-occurence of the 

probe and target, and (iii) ease of rejecting distractors. These factors affected SA 

patients’ performance far more than SD patients who did not have semantic control 

deficits (see also Chapter 4). We therefore used this paradigm (related vs. unrelated 

distractors) to test the deficits of metaphoric knowledge in our RH patients. 

There is evidence that the RH plays a role in language tasks which involve 

metaphors (Anaki, et al., 1998; Faust & Mashal, 2007; Pobric, et al., 2008), a theory 

which stems from RH lesion patients’ literal interpretations of  metaphors (Winner & 

Gardner, 1977). There is much debate about whether this is true, particularly given the 

mixed fMRI data, where some researchers suggest the RH is either less involved than the 

LH, being involved as an addition to the LH because of the demands of the task (Lee & 

Dapretto, 2006; Rapp, et al., 2012; Stringaris, et al., 2006). However, studies using a split 

visual field have found presenting metaphors for comprehension to the ‘left hemisphere’ 

compared with the ‘right hemisphere’ led to an increased reaction time for 

comprehension (Anaki, et al., 1998; Faust & Mashal, 2007; Faust & Weisper, 2000; 

Schmidt, et al., 2007). We explored the hypothesis that deficits found for metaphor tasks 

in our RH sample were related to the semantic control demands of these tasks. 

Procedure 

Participants were asked to match word pairs (taken from Pobric, et al., 2008) 

according to either their literal meanings or using conventional metaphors. The initial 

word was presented as a probe, and the target word presented underneath with three 

distractors. The distractors were either related or unrelated to the target. Distractors 

across conditions were matched to the target for frequency and imageability, and across 

tasks (metaphor and literal pairs) for frequency and imageability.  
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For example, in the conventional metaphors task, BAD was to be paired with EGG, 

MILK, BUTTER, or MEAT in the related condition; and BAD with EGG, POT, LIPS, or OWL in 

the unrelated condition. In the literal task, the word BAD with BOY, INDIVIDUAL, MALE, or 

GENT in the related condition, and BAD with BOY, FUNDING, GRAIN or REEF in the unrelated 

condition.  

Results 

An 2 x 2 x 2 omnibus ANOVA including distractor type (related or unrelated), 

task (literal or metaphoric words), and group revealed a main effect of distractor: F(1,16) 

= 63.844, p < .001, and group: F(1,16) = 7.916, p = .012. The effect of task (either literal 

or metaphoric) approached significance: F(1,16) = 4.327, p = .054. However, the 

interactions were non-significant, both for distractor and group: F(1,16) = 1.303, p = 

.270, and word type and group: F < 1. The three-way interaction was also non-

significant: F < 1.  The data is shown in Table 5.5. This indicates that patients were 

impaired at both the literal and metaphoric word task in relation to controls. 

 An ANOVA for metaphoric word pairs included distractor type (related or 

unrelated) and group, revealed a main effect of distractor type: F(1,16) = 24.968, p < 

.001, and a main effect of group: F(1,16) = 5.869, p = .028, but no interaction: F(1,16) = 

1.198, p = .290.  Both groups were more accurate with unrelated distractors. For literal 

word pairs, there was also a main effect of distractor type: F(1,16) = 30.577, p < .001, 

and group: F(1,16) = 7.463, p = .015, but no interaction: F < 1. 

 

Table 5.5: Accuracy across different distractor types and word pairs 

 Metaphors – 

unrelated 

distractors 

Metaphors – 

related 

distractors 

Literal pairs – 

unrelated 

distractors 

Literal pairs – 

related 

distractors 

Controls  91.1 (4.1) 86.0 (7.4) 97.3 (2.4) 91.0 (5.2) 

Patients 85.5 (7.5) 77.7 (6.3) 92.3 (4.0) 85.1 (7.1) 

Mean scores (and standard deviation) shown as a percentage.  

An ANOVA on the patient data found a significant overall effect of distractor: 

F(1,5) = 34.091, p = .002, but no main effect of word type: F(1,5) = 3.073, p = .140, or 
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interaction: F < 1. This reflected higher performance with unrelated distractors across 

both metaphors and literal pairs, with no significant difference between these two tasks. 

This pattern was identical for controls, who showed a main effect of distractors: F(1,11) 

= 33.904, p < .001, but not of word type: F(1,11) = 1.288, p = .281, or an interaction: F < 

1. When using Bonferroni-corrected t-tests to assess group differences per task, there 

were no significant differences apart from the literal word-pairs with unrelated 

distractors: t(16) = 3.350, p = .016. Indeed, McNemar analyses (Table 5.6), found few 

significant effects in individual patients. This may be because all patients performed at a 

high level, with the average score being 86% across all tasks (percentage accuracy also 

shown in Table 5.6).  
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Table 5.6: Individual effects of condition 

  CNe DJe ARi EHo PSm FBu Group 

average 

Metaphors – unrelated 

vs. related distractors 

.057 .581 .180 .078 .824 .035*  

Literal – unrelated vs. 

related distractors 

.035* .063 1 .424 .078 1  

Metaphors unrelated vs. 

literal unrelated 

distractors 

0.774 .021 1 .180 .078 .388  

Metaphors related vs. 

literal related distractors 

1 .238 .344 .054 .839 .359  

Metaphors related vs. 

literal unrelated 

.031* .003* .344 .003* .167 .359  

Metaphors unrelated vs. 

literal related 

.167 .607 1 .832 1 .388  

Metaphors – unrelated 90 87 96 82 75 93 87.2 

Metaphors – related 78 82 88 69 78 79 79.0 

Literal – unrelated 92 98 95 91 89 88 92.2 

Literal - related 78 90 94 85 75 88 85.0 

Table shows p values from McNemar tests. Scores on each task are shown as a percentage.  

 

Comparison with SA patients 

 As stated previously, we were cautious about comparing our RH data to SA data, 

as the two groups did not do the same task. Nonetheless, we were interested to see 

whether both groups would show some effect of semantic control manipulation of 

distractor type, particularly as there were discrepancies between the groups on the Social 

Synonym Task (with RH patients not showing an effect of distractor manipulations).  
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In our RH task, there were distractors which were related and unrelated to the 

target. We compared our results from the metaphor word matching task with a cohort of 

8 of the SA patients presented in Chapter 4. The SA patients had also performed a task 

which manipulated the distractor strength, published by Jefferies et al. (2007). This was a 

word-picture matching task, differing from our metaphor task in that there were five 

picture distractors. Nonetheless, both groups differed from the controls on these tasks, 

suggesting an impairment.   

As is evident from Figure 5.13, both groups show the same direction of effect 

when the distractors were manipulated. SA and RH patients were better at correctly 

selecting the target among unrelated distractors. This is significant for SA patients: t(7) = 

17.7, p = .004, and RH patients: t(5) = 3.024, p = .029. 

 

Task used for SA patients: word-picture matching (Jefferies et al., 2007). Task used for RH patients: metaphor word-

pair matching. Error bars show standard error of mean.  

Figure 5.13: The effect of distractor type on performance of SA and RH patients 
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negated any significant group by task interactions between RH patients and controls, with 

each patient performing at a high level across all conditions. Additionally, RH patients 

may be less impaired at word tasks overall. Words are significantly easier for these 

patients in relation to pictures in the metaphor tasks of the Right Hemisphere Language 

Battery, which may have reduced the effects of semantic control manipulations.  

 

6.Summation task 

To manipulate semantic control demands, we used a technique that has been 

successful with SA patients: phonemic cueing. From the assumption that SA patients 

retain the appropriate meanings, but have difficulty constraining their semantically-

driven behaviour, and we would expect to see benefit from external constraints such as 

the correct initial phoneme (Corbett, et al., 2008; Jefferies, Patterson, et al., 2008). 

Activation spreads to distractors (Dell, 1989; Dell & O'Seaghdha, 1992; Dell, et al., 

1997), and so other semantic co-ordinates and associations will equally be activated, 

leading to worse performance after miscueing of semantically related words, e.g., /w/ for 

‘bath’ (Soni, et al., 2009; Soni, et al., 2011).  

In this final task, we explored the coarse semantic coding hypothesis in more 

detail (Jung-Beeman, 2005). This theory suggests the LH focuses on dominant, literal or 

contextually relevant meanings, and the RH activates a broader semantic field, which 

sustains the meaning of a wide range of distant associates. Many visual field experiments 

have confirmed the RH is predisposed to ‘coarse coding’, showing faster processing of 

distantly related words in comparison to the LH (Anaki, et al., 1998; Faust & Mashal, 

2007; Mashal & Faust, 2009). In particular, Beeman et al. (1994) suggests that the RH is 

required to group together disparate words to create an overarching meaning (e.g., EYES – 

CLOSED – NIGHT  SLEEP; or FOOT – CRY – GLASS  CUT). Each word is only distantly 

related to the target, but together they accumulate support for the meaning of the target 

word.  

In this final task, we tested the RH ability to comprehend written words in 

relation to the coarse semantic coding hypothesis, and in conditions where semantic 

control demands are manipulated.  
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Procedure  

We tested this hypothesis in a 2 by 2 design, using stimuli from Beeman et al. 

(1994). Participants were asked to pick a target word amongst distractors. The probe was 

either (i) three weak associates of the target, or (ii) one strong associate. This uses a 

similar method to Beeman et al., who judged the priming effects of weak associates (e.g., 

SUBWAY – NOISE – BUILDING  CITY) compared to a single strong probe with two 

unrelated distractors (e.g., WHETHER – TOWN – NONE  CITY).  

The probe word/s were presented one at a time (for 1 second), and then the target 

and 3 distractors appeared. These were presented for an unlimited time until a response 

was made. The distractors were either (iii) related to the target or (iv) related to the 

probe. This is shown in Table 5.7. Distractors related to the probes were related to each 

probe word, but not the summed meaning of all three words together. Distractors related 

to the target were synonyms of the target word. The target was the same across 

conditions, with distractors matched to the target for frequency and imageability. 

 

Table 5.7: Distractors in the summation task 

 

Additionally, for the weak associates with distractors related to the target (1b in 

Table 5.7), two further conditions were added. This included (v) semantic cueing and (vi) 

semantic miscueing of the probes. Examples are shown in Table 5.8. ‘Cues’ were related 

to the correct association between the probe and the target (e.g., AGGRESSIVE to link CAT 

Condition Probe(s) Target a. Distracters 

related to each 

probe 

b. Distractors 

related to 

target 

 

1. Weak 

Associates 

Cat  

Attacks  

Paw 

 

Scratch 

Whiskers 

Hit 

Foot 

Scrape 

Rub 

Scar 

 

2. Strong 

associates 

 

Itch  

 

Scratch 

Whiskers 

Hit 

Foot 

Scrape 

Rub 

Scar 
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with SCRATCH). Cue words were chosen that were not strongly related to either the probe 

or target (≤ 2% of people respond to the cue with this word), according to the Edinburgh 

Associative Thesaurus (EAT; Kiss, et al., 1973). Instead they were chosen to cue the 

correct semantic context of the word – by relating the two words together. The miscue 

was created to produce the opposite effect – by cueing the semantic context of the probe 

word which is irrelevant for comprehending the target.  

 

Table 5.8: Example stimuli from the summation task 

 

Results  

An ANOVA on cue condition (cue, miscue, or no cue), and group, found a 

significant effect of cue: F(2,14) = 12.096, p = .001, and a significant cue by group 

interaction: F(2,14) = 7.064, p = .008, and a significant effect of group: F(1,15) = 16.987, 

p = .001. This is shown in Figure 5.14. Separate ANOVAs were run to assess the 

interaction of the two cue conditions with group. An ANOVA for cued and miscued tasks 

revealed a significant main effect of condition: F(1,15) = 15.243, p = .037; group: 

F(1,15) = 19.412, p = .001, but no interaction: F(1,15) = 1.297, p = .273. For cued and 

uncued, there was a significant effect of condition: F(1,16) = 7.152, p = .017, and group: 

F(1,16) = 10.599, p = .005; and an interaction: F(1,16) = 6.834, p = .019. This reflects 

patients impaired performance in the cue condition in comparison to the no cue 

Condition Probe(s) Cue words Target Distracters 

related to the 

target 
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Weak Associates-
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Cat  
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condition. Finally, in a comparison of miscue with no cue, there was an effect of 

condition: F(1,15) = 25.667, p < .001, group: F(1,15) = 12.297, p = .003, and an 

interaction: F(1,15) = 15.062, p = .001. This again reflects patients’ impaired 

performance on the miscue condition in relation to the uncued condition. Patients were 

impaired with any added words – either cues or miscues – in relation to no cues. This 

pattern of results suggests that patients were distracted by any additional meanings, 

particularly those which are not relevant to the task. 

 

Error bars show standard error of the mean.  

Figure 5.14: Effect of cue condition in the summation task on the two groups 

 

A 2 x 2 x 2 ANOVA on all the uncued conditions was run (data shown in Table 

5.9). This examined group, distractor type (related to target or probe), and strength of 

association (weak or strong). There was a significant effect of strength of association: 

F(1,15) = 44.747, p < .001, distractor type: F(1,15) = 4.987, p = .041, and group: F(1,15) 

= 9.406, p = .008. Strength of association interacted with group: F(1,15) = 6.443, p = 

.023, as did distractor type and group: F(1,15) = 9.349, p = .008, with performance on 

distractors related to the probe significantly lower than distractors related to the target in 

the patient group, and performance on weak associates worse than strong associates in 

this group. Strength of association and distractor type interacted: F(1,15) = 18.673, p = 

.001, and there was a three-way interaction: F(1,15) = 4.838, p = .044. This reflects 
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patients’ impaired performance for weak associates with distractors related to the probe, 

a difference which is not replicated in the strong association task, or with controls. In this 

task, distractors related to the target could actually help participants, cueing them to the 

weak association being probed.  

 

Table 5.9: Data from the summation task  

Association 

strength 

Distractors  Patients Controls  

Strong  Related to the target 31.3 (2.9) 32.6 (2.7) 

 Related to the probe  32.0 (1.4) 34.7 (1.5) 

Weak  Related to the target 28.0 (3.5) 30.0 (3.7) 

 Related to the probe  19.2 (9.0) 29.5 (3.6) 

Means show accuracy (/38) with standard deviation 

 

Indeed, for weak associations, distractors related to the target actually produced a 

higher response – particularly for patients. There was a significant effect of distractor: 

F(1,15) = 13.897, p =.002, group: F(1,15) = 9.162, p = .008, and an interaction: F(1,15) 

= 9.194, p = .008. This may be because for weak associations, the distractors related to 

the target may guide selection towards the correct interpretation of the items, as they are 

not too different from the target itself. Distractors which are related to the probe items 

individually led to performance on a par with the miscue condition for patients, 

suggesting patients get easily distracted by semantic meanings which are not directly 

related to the task – whether these are presented as distractors or miscues. Indeed, in the 

strong associates task, there was marginally worse performance when the distractors 

were related to the target: F(1,15) = 3.721, p = .073. Although there was higher 

performance in controls: F(1,15) = 4.979, p = .041, these variables did not interact: 

F(1,15) = 1.053, p = .321.  

PF+ vs. ‘other’ 

A preliminary analysis was run to compare subgroups of RH patients. We 

compared those with known prefrontal lesions with those whose lesion was either 



  

242 

 

unknown, or was more posterior. Of course, this means those in the ‘other’ group may 

have had prefrontal lesions too, which is why the analysis should not be treated as 

anything more than preliminary.  

A logistic regression was used to compare those with a known prefrontal lesion 

(ARi, CNe and DJe) with the ‘other’ patients without known prefrontal damage (FBu, 

EHo, and PSm). Across all tasks, when patient ID, task, group and task by group were 

entered into the analysis, there was a main effect of group (Wald = 6.302, p = .012), 

patient ID (Wald = 69.468, p < .001), and task (Wald = 64.597, p < .001), but no 

interaction (Wald = 9.764, p = .082). We analysed the main effect of group for each 

subtask (in a logistic regression model including patient ID and group). For the weak 

probes with distractors related to the probe, the group effect was significant (Wald = 

6.215, p = .013). For the other tasks, this was non-significant.  

A logistic regression with patient data from the cue and miscue elements of the 

summation task was run (with predictor variables patient ID, task, group, and task by 

group interaction). This found a significant predictive value of task: Wald = 11.084, p = 

.001, and group x task interaction: Wald = 5.018, p = .025. This shows that performance 

by PF+ patients was more impaired on the cue task, but that performance fell for both 

groups for the miscue task. For the PF+ group, there is very little difference between the 

cue and miscue condition, suggesting that for this group, additional words are equally 

distracting. Conversely, the ‘other’ group only showed significant impairments in the 

miscue task.  

Individual McNemar analyses were carried out (Table 5.10). This shows the 

variation in accuracy between patients on each task, particularly in relation to cueing 

condition. Three patients showed the predicted pattern, with lower performance in the 

miscue condition in relation to the other conditions: FBu, EHo and DJe. CNe was 

impaired with the presence of either a cue or miscue in relation to no cue. ARi showed 

significantly higher performance in the miscued than cued condition, an unexpected 

finding. PSm showed a milder effect of condition throughout (noted by the lack of 

significant differences in all comparisons).  
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Table 5.10: McNemar tests of each patient’s performance on the summation task 

 DJe ARi CNe PSm EHo FBu 

Cued v. miscued  .049* .007* .629 .180 .039* .013* 

Cued v. no cue .523  .003* .002* .791 .481 .289 

Miscue v. no cue  .002* .549 .001* .096 .017* .001* 

Weak v. strong 

(related distractors) 

.065  1  .581 .146 .118 .388 

Weak v. strong 

(unrelated 

distractors) 

.001* .125 .001* .267  .001* .180 

Weak related v. 

weak unrelated 

distractors 

.004* .388 .001* .804 .012* .581 

Strong related v. 

strong unrelated 

distractors 

.688 .625  1 .508 .581 1 

Cued 61 53 32 68 50 63 

Miscued 37 82 24 53 29 34 

No cue (weak 

related) 

71 89 74 74 61 74 

Weak (unrelated) 39 79 21 68 29 66 

Strong (related) 89 87 82 89 79 84 

Strong (unrelated) 84 92 79 82 71 82 

Significance values (p) are from McNemar tests. Scores for each task displayed as a percentage.  

Consistency 

We used logistic regression to predict the performance on one task based on 

another. These tasks use the same items. It has been found (Chapter 4) that SA cases can 

show inconsistency even for the same items, when the demands of the task change but 

are consistent when the demands don’t change (e.g., during the same task presented in 

different modalities). Our RH data is shown in Table 5.11. Unlike SA cases, there was 
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high consistency between tasks, with performance on one task predicting performance on 

another - with the exception of the lowest demand condition – strongly associated words 

with unrelated distractors.  

 

Table 5.11: Logistic regression showing the predictive value of performance on each task 

 Strong 

Related to 

target 

Strong 

related to 

probes 

Weak 

Related to 

target 

Weak 

Related to 

probes 

Cued 

related to 

target 

Miscued 

related to 

target 

Strong 

Related to 

target 

 W = 

9.398, p = 

.002 

 W = 

4.496, p = 

.034 

W = 

3.953, p = 

.047 

W = 

4.583, p = 

.032 

Strong 

related to 

probe 

W = 

9.398, p = 

.002 

     

Weak 

Related to 

target 

   W = 

4.699, p = 

.030 

 W = 

4.186, p = 

.041 

Weak 

Related to 

probe 

W = 

4.496, p = 

.034 

 W = 

4.699, p = 

.030 

 W = 

16.449, p 

< .001 

W = 

31.351, p 

< .001 

Cued 

related to 

target 

W = 

3.953, p = 

.047 

  W = 

16.449, p 

< .001 

 W = 

9.708, p = 

.002 

Miscued 

related to 

target 

W = 

4.583, p = 

.032 

 W = 

4.186, p = 

.041 

W = 

31.351, p 

< .001 

W = 

9.708, p = 

.002 

 

Each row presents a predictor variable, with the predictive variable as a column. Wald (W) and p values are presented 

for significant results. Cells coloured in orange have no significant predictive values.  
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Comparison with SA patients 

This summation task was quite different to ones tested in SA patients in many 

respects. However, one dimension which manipulates semantic control demands – probe-

target strength – could be compared, albeit in a preliminary way.  

SA patients performed an Ambiguity Task (Chapter 4), where the strength 

between the probe and target was manipulated, with one strongly related condition, and 

one weakly related condition. Similarly, in this task, we had one strong single probe 

versus the multiple weak probes on the summation task. Figure 5.15 shows that both SA 

and RH patients are worse at a task where the probe and target are distantly related, in 

comparison to a strong probe-target association. This is similar to the findings of the 

Social Synonym task presented above, and is significant for SA patients: t(12) = 5.905, p 

< .001, and RH patients: t(5) = 3.953, p = .011.  

 

Task for SA patients: Ambiguity task (Noonan et al., 2010; Chapter 4). Task for RH patients: summation task (close = 

single strong associate, distant = 3 weak associates). Error bars show standard error from mean.  

Figure 5.15: The effect of probe-target strength on performance comparing SA with RH 

performance. 

 

Summary 

RH patients behaved differently to controls on this task. Firstly, they were 

negatively affected by either a cue or miscue in relation to no cue, whereas controls 

performed at the same level for all three conditions. RH patients showed a significant 
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drop in performance for distractors related to the probes in the weak association task in 

comparison to distractors related to the target (with controls maintaining their 

performance throughout). PF+ patients showed the effect of ‘distraction’ more than the 

‘other’ group – most notable with distractors related to the probes. These results suggest 

a role for the RH in inhibition, with our patients showing reduced ability to orient their 

attention towards a correct semantic context when other distracting meanings were 

presented. Additionally, RH patients showed a similar direction of response to SA 

patients, who were both worse at distantly related probes and targets in relation to a 

strong probe-target relationship. 

 

Overall summary 

We manipulated semantic control demands in five semantic tasks using the 

following methods: changing the distractors to be either related or unrelated to the target 

(SA patients show impairments with related distractors), adding a cue or miscue (SA 

patients show improvements with a phonemic cue, and are impaired with a miscue), 

changing the association strength between the probe and target (SA patients are better at 

tasks where there is a strong association between the probe and target), and cyclical 

presentations (SA patients show a refractory effect when items are presented repeatedly). 

We also assessed RH patients on a battery of semantic, executive and language tasks.  

Firstly, we found that although semantic performance was high, executive 

impairments were not significantly different from our SA patients. In our experimental 

tasks, we found evidence of a semantic control impairment in comparison to controls, on: 

the summation task and the face emotion refractory task. Both these tasks require 

inhibition (in the summation task, participants had to inhibit distractors as well as 

miscues, and in the face emotion refractory task, participants had to inhibit a previously 

relevant item). They also require configural processing (the summation task involves 

grouping distantly related words to a single meaning, and the face emotion task requires 

linking multiple facial features to produce an overarching emotion). There are at least 

three possible ways to interpret the data: (1) the role of the RH in semantic control is 

relatively weak, (2) the role of the RH in semantic control is specific to certain aspects of 

control or certain processes, (3) some of our tasks lacked the sensitivity to determine the 

role of the RH. The significant effects of control manipulation on two tasks suggest that 
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the RH has some part to play in semantic control, and evidence for this will be reviewed 

in the discussion.  

Discussion 

 Semantic processing is thought to recruit both hemispheres, in initial sensory 

processing (Catani & Ffytche, 2005; Poeppel, 2001), representation (Lambon Ralph, et 

al., 2001; Lambon Ralph, Pobric, & Jefferies, 2009b; Snowden, et al., 2004) and control 

(Badre, et al., 2005; Noonan, et al., submitted; Snyder, et al., 2011; Thompson-Schill, et 

al., 1997; Wagner, Paré-Blagoev, et al., 2001). However, studies into semantic control 

have so far exclusively considered patients with left hemisphere brain damage (SA 

patients; e.g., Jefferies & Lambon Ralph, 2006, Jefferies et al., 2007, Noonan et al., 

2010). The aim of this study was to analyse the effect of a RH lesion on semantic control. 

We examined a range of phenomena previously shown in SA cases, including cueing, 

inconsistency, sensitivity to distractor strength, manipulations of probe-target strength, 

and cylical presentations. There were three potential patterns of performance that these 

patients were hypothesised to show: (1) a deficit to the same degree as SA patients, but 

with semantic material processed and represented in the RH, (2) a weaker control deficit, 

with only subtle deficits – given that data suggests a smaller peak of activation in the RH 

for semantic control (and representation), (3) or no control impairments in relation to 

controls – suggesting the RH is an ‘overflow’ hemisphere for semantics, and although it 

is used in the healthy population, is not necessary for semantic control (but see TMS 

studies, e.g., Pobric, et al., 2010a; Pobric, et al., 2008).  

Overall, our evidence suggests that RH patients have deficits which are 

qualitatively similar to our SA patients. This is unsurprising, given that bilateral 

processes are thought to be involved in semantic control (Noonan, et al., submitted). 

Nonetheless, our evidence does not negate the theories which specify a specific role for 

the RH in certain processes (e.g., inhibitory or configural), as RH patients were impaired 

on tasks which have these demands. It is likely that there are subtle specialisations 

between the hemispheres, leading to semantic control effects which may be stronger in 

certain tasks than others.  

We found some evidence that RH patients were impaired to similar level as our 

SA patients. This was most notable in our comparison of executive control tasks, where 

the same tasks were performed at an equivalent level in both patient groups, even though 
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the SA cases showed more substantial deficits on simple semantic tasks. In fact, our RH 

patients showed worse performance on the Hayling sentence completion task, when 

asked to finish a sentence with an unconnected word. There was also evidence that SA 

patients show a similar degree of refractoriness to our RH patients in a cyclical task, but 

only when comparing two different tasks using materials which each group found 

difficult.  

There was evidence that RH patients showed impairments which were in the 

same direction as our SA cases, even if the tasks we were comparing were different. We 

found evidence that our RH patients shown an effect of probe-target strength, in both the 

summation task and the social synonyms task. There was a negative effect of miscueing 

for our RH patients in both the face emotion naming and summation task. The effect of 

cueing led to higher performance than miscueing in both tasks, but did not lead to higher 

performance than no cue in the summation task. There was an effect of relatedness of the 

distractor in some, but not all tasks – for the summation task, distractors relating to the 

probe impaired performance, and for the metaphor task, performance was worse with 

related distractors. However, for the social synonyms task, this pattern was not found.  

The effects which semantic control manipulations have on the patients gives the 

first evidence that RH patients show a semantic control deficit. The RH has been shown 

to reliably activate during semantic control tasks (Noonan, et al., submitted), and the 

domain-general control network is bilateral (Duncan, 2010). Therefore, the RH appears 

to play a part in control beyond inhibition. However, our RH patients did show deficits 

for inhibitory tasks, supporting the notion that this region is associated with inhibitory 

processing (Aron, et al., 2004; Konishi, et al., 1999).   

However, it was noted that RH patients show a weak semantic control deficit in 

relation to controls. This could be related to the tasks used in comparisons – which, 

although they shared similar semantic control manipulations, may have been more or less 

sensitive to control. Often, we were unable to compare the same task in the two groups 

(our SA patients would have been at floor on the majority of these tasks). For example, 

the face emotion picture naming may have found less of an effect of cueing because of 

the different stimuli used (in the SA case, the picture had a single possible response, e.g., 

‘chair’, so cues would be more helpful. In our RH patients, the picture had several 

potential responses, e.g., ‘sad’, ‘unhappy’, ‘upset’, ‘miserable’, ‘sorrow’, ‘gloomy’, 
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‘tearful’, ‘mournful’, ‘dejected’, so a cue of /s/ would be less helpful). Additionally, a 

phonemic cue may not have been very helpful, given uncued errors were frequent. In 

terms of relatedness of distractors, both the probe and target were related to the distractor 

in the SA task which involved matching a spoken word (e.g., ‘chair’) to a picture 

presented among distractors (e.g., CHAIR, TABLE, BED, or BOOKCASE). In the metaphor 

task, this was not the case (e.g., ‘politican’ with PLATFORM, STAGE, CHAIR, or FLOOR). In 

the metaphor task, the distractors are related to each other and the target, but not the 

probe (e.g., FLOOR and POLITICIAN are unrelated). Additionally, in the social synonyms 

task, the effect of an antonym distractor may have been weakened by not all the stimuli 

having a prominent ‘antonym’ (e.g., RESPONSIBLE-FOOLISH) which may have meant the 

antonym was not as distracting as those used in the Noonan et al. (2010) task, which used 

non-social as well as social synonym-antonym pairs. The effect of strength of probe-

target association was weaker in RH patients, possibly because it was less easy to find a 

‘weak’ synonym for a social word (e.g., strong: AGGRESSIVE-ANGRY; weak: AGGRESSIVE-

CRUEL), as in both conditions, the connection between the words is relatively easy. In the 

comparison task, SA patients had the same word probe with one dominant and one 

subordinate meaning (e.g., strong: PLANT-VEGETABLE, weak: PLANT-FACTORY).   

In relation to controls, it was only two tasks – the summation task and refractory 

task – where RH patients showed a significant effect of semantic control manipulations 

and controls did not. On these tasks, RH patients and controls performance was not 

significantly different with low semantic control demands (e.g., on the first cycle of the 

refractory task, and in the summation task with strong associates), but performance 

became impaired with the same items presented under high semantic control conditions.  

As predicted by some researchers (Aron, et al., 2004; Garavan, et al., 1999), our 

RH patients show impairments on tasks which require inhibition. For example, they show 

refractory effects (Experiment 2), which requires inhibiting previously relevant 

distractors in order to correctly select the target. In the summation task (Experiment 6), 

participants show worse performance with cues. This may be because cues activate extra 

semantic associations which are unnecessary for the task. However, there are some tasks 

where patients do not show control effects where inhibitory processes are required (such 

as the social synonym judgement task, involving inhibiting an antonym distractor, or the 

picture naming task, where RH patients had the same level of accuracy in the ‘miscue’ 
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condition as the ‘no cue’ condition). This may reflect elements of the task itself – 

mentioned above.  

Additionally, our findings support the hypotheses that the RH is involved in 

configural processing, with patients showing impairments on tasks which have this 

demand (Bruyer, 2011; Jung-Beeman, 2005; Jung-Beeman, et al., 2000; Maurer, Le 

Grand, & Mondloch, 2002). Configural processing refers to perceiving relations among 

the features of a stimulus, such as a face (Maurer, et al., 2002; Thompson, 1980). 

Although this term often refers to faces, it can be used to describe sentence processing 

(but see Bruyer, 2011; Leder & Carbon, 2006). This is because readers construct holistic 

meanings of a sentence, with contextual information incorporated into an overall 

representation, and information about specific word concepts that are irrelevant or 

inappropriate to the meaning of the sentence as a whole are not included in the 

representation (Anderson & Bower, 1972; Jung-Beeman, 2005; Merrill, Sperber, & 

McCauley, 1981). It is unclear how this relates to control – whether it is a distinct 

process or whether it is part of the control mechanism.  

Another finding of was that RH patients were always significantly worse than 

controls on our experimental semantic tasks (regardless of semantic control demands). 

This suggests impairments on the tasks which could reflect (1) impaired semantic 

processing/representation, (2) slower performance, (3) inattention to all the possible 

options or (4) a mixture of two or more of these. We suggest an impairment of top-down 

allocation of attention, as described below.  

(1) Although it is likely there was some impaired semantic processing, 

performance was at or near normal on the background semantic tasks (although these 

tapped different semantic representations to our experimental tasks). Additionally, 

performance on all tasks did show an effect of semantic control (similar to that found in 

SA patients), but this was no different to that seen in age-matched controls. (2) Patients 

do show slower performance, and in tasks with a time limit, this produced errors. (3) 

However, the most interesting finding was from assessing the type of errors made in our 

patients. In particular, SA patients made perserveration errors on around 10% of trials in 

the Boston Naming Test (BNT; Kaplan, et al., 1983, see Chapter 4), whereas RH patients 

made these errors on around 20% of the trials. This perseverance could be explained by 

an inhibition deficit of the most recently activated item. Corbetta and Shulman (2002) 
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suggest that there is a largely lateralised system in the RH activated to ‘bottom-up’ 

stimulus detection, which requires reorientation of attention (such as presentation of 

stimuli that induce task-contingent shifts of attention). Several diverse executive control 

tasks which require seemingly diverse cognitive functions are right lateralized, including 

sustained attention (Coull, Frackowiak, & Frith, 1998; Coull, Frith, Frackowiak, & 

Grasby, 1996; Manly et al., 2003), inhibition (Garavan, et al., 1999; Menon, et al., 2001) 

and oddball tasks (McCarthy, Luby, Gore, & Goldman-Rakic, 1997). Fassbender et al. 

(2006) suggest that response inhibition tasks involve a combination of neural 

amplification and active inhibition (Burle, Vidal, Tandonnet, & Hasbroucq, 2004). The 

same region is involved in maintenance of a task set as inhibition of a prepotent response 

(Aron, et al., 2003; de Zubicaray, Andrew, Zelaya, Williams, & Dumanoir, 2000; 

Garavan, et al., 1999; Kawashima et al., 1996; Konishi, et al., 1999). It has been 

suggested that this frontoparietal network is involved in allocating top-down attentional 

resources – and that inhibition is part of this attentional process (Fassbender et al., 2006). 

Recruitment of the RH during response inhibition tasks may reflect increase in more 

general attentional processes (Hampshire, et al., 2010; Hampshire, et al., 2009). 

Therefore, if our patients have deficits in this top-down allocation of attention, we would 

expect impairments on tasks which have extra stimuli present (either in the form of cues 

or miscues), distractors which are irrelevant (leading to diversion of attention), inhibitory 

tasks (such as the Hayling sentence completion task, and the refractory task), and those 

which require configural processing (e.g., the processing and maintenance of several 

items into a single factor, such as face emotion processing). Response inhibition is 

thought to be central in attentional control, as inhibiting response to distracting stimuli is 

important to maintain task behaviour.  

 

And finally, this study explored the effect of right prefrontal damage on 

performance on a range of tasks. The analyses should be taken as preliminary, given the 

small patient numbers and an incomplete set of MRI/CT scans. However, in the 

summation task, PF+ patients were more disrupted by distractors related to the probe. 

This did not relate to overall accuracy, given the ‘other’ subgroup were often worse at 

tasks than PF+ patients. This suggests that these deficits are linked to the wider semantic 

control network described by Noonan and colleagues (submitted), which found evidence 

for a right prefrontal (but not temporoparietal) role in semantic control more generally.  
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The key findings of this study were: (1) RH patients showed a notable non-

semantic executive control deficit similar to our SA patients. (2) RH patients showed 

effects of semantic control which were similar to our SA patients – for distractors, cues/ 

miscues, probe-target strength and cyclical matching. The effects are often as significant 

as those found in SA patients, although the effects are hard to compare across different 

tasks. Therefore, there is evidence for a semantic control deficit. Nonetheless, our data 

does not exclude the possibility that RH patients may have a greater deficit for tasks 

involving inhibition and configural processes, which supports the previously mentioned 

theories of the RH. (3) RH patients were impaired overall (not dependent on control 

demands), and they made many preservation errors in picture naming. This suggests our 

RH patients have top-down attentional deficit, additional to the semantic control deficits 

found. 

Taken as a whole, this study gives the first evidence that damage to the RH 

control network leads to a pattern of semantic impairment which is qualitatively similar 

to SA but distinct from SD patients – leading to effects of cueing, distractor strength, 

probe-target strength and refractoriness. Further research is needed to to dissect the role 

of different regions of the RH in control, to find whether there is a unique role of the RH 

is in semantic cognition more generally, and discover whether the mixture of configural 

processing and inhibitory demands in semantic tasks always leads to a semantic control 

deficit in RH patients.  
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Introduction  

Semantic cognition involves retrieval of meanings in a context dependent way, 

allowing us to interact with items in a task flexible manner (Binney, et al., 2010; Jefferies 

& Lambon Ralph, 2006; Whitney, et al., 2012). Correct retrieval of a meaning requires at 

least three cognitive mechanisms: (i) conversion and combination of sensory properties 

into meaning (Andrews, et al., 2009), (ii) storage linking items together according to 

meaning (Patterson, et al., 2007), and (iii) control mechanisms which allow flexibility 

and specificity of retrieval from the store in a context appropriate way (e.g., Jefferies & 

Lambon Ralph, 2006; Rogers & McClelland, 2004). A qualitative difference has been 

found in comparisons between a representational deficit (shown in semantic dementia; 

SD), and a semantic control deficit (shown in semantic aphasia; SA; Jefferies & Lambon 

Ralph, 2006). However, the semantic control network involves a distributed network, 

including posterior sites and the right hemisphere (Noonan, et al., submitted). This thesis 

explored the role of different regions in semantic control, by assessing behavioural 

deficits in verbal and non-verbal domains, shown in patients with different lesion 

locations.  The motivation for this thesis was to further analyse the effect of these two 

variables (modality and lesion location) on performance on semantic tasks in patients 

after stroke.  

 Chapter 2 presented work comparing SA patients with anterior (PF+) and 

posterior (TP-only) lesions on a refractory task across modalities, with evidence of a 

multimodal refractory effect in PF+ patients, and no refractory effects in TP-only 

patients. In Chapter 3, case study DNe was described, who showed a deficit which was 

significantly greater in the verbal compared with visual domain. He nonetheless showed 

semantic control impairments in all modalities, although his semantic control 

impairments in non-verbal domains was only evident in the most demanding tasks. 

Chapter 4 reviewed SD, PF+ and TP-only patients’ performance on a multitude of 

executive control, semantic control and background neuropsychological tasks. It was 

concluded that, although PF+ and TP-only patients were more similar to each other than 

they were to SD patients, there were certain situations where TP-only patients showed 

weaker semantic control effects, and thus were less stereotypically ‘SA’ than PF+ 

patients. Chapter 5 examined executive and semantic control deficits in right 

hemisphere (RH) patients, with evidence of an executive impairment to the same extent 

as our SA patients. Semantic control impairments were much subtler in RH patients, and 
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sometimes opposite to the direction of impairment we would have expected, given our 

SA patients’ performance. The findings from these chapters will be discussed in relation 

to theoretical conclusions, and future directions.  

 

Theme 1: The effect of lesion location on semantic control 

 Although much research has focused on the left inferior frontal gyrus (LIFG) in 

semantic control (Badre, et al., 2005; Schnur, et al., 2005; Schnur, et al., 2009; 

Thompson-Schill, et al., 1997; Thompson-Schill, et al., 1999), evidence suggests that 

semantic control involves a large-scale neural network (Corbett, Jefferies, & Lambon 

Ralph, 2009; Noonan, et al., submitted; Whitney, et al., submitted; Whitney, Kirk, et al., 

2011; Whitney, et al., 2012). A recent meta-analysis (Noonan, et al., submitted) revealed 

that as well as LIFG involvement, sites consistently showing a response to semantic 

demands include the right IFG (RIFG), posterior middle temporal gyrus (pMTG) and 

dorsal angular gyrus (dAG), bordering and/or within the intraparietal sulcus (IPS). It has 

been suggested that these regions play an essential role in semantic control. Semantic 

aphasia (SA) patients with prefrontal and/or temporoparietal lesion show no notable 

differences on a range of semantic tasks (Berthier, 2001). Tasks which manipulate 

semantic control reveal similar deficits for both lesion locations (Corbett, Jefferies, & 

Lambon Ralph, 2009; Noonan, et al., 2010). Additionally, SA patients with anterior and 

posterior lesions show equal improvement with the provision of external constraints, 

such as cues (Jefferies, Patterson, et al., 2008). TMS to pMTG or LIFG has been shown 

to have an equivalent negative effect on semantic control task performance (Whitney, 

Kirk, et al., 2011; Whitney, et al., 2012). Additionally, a recent TMS study has shown 

stimulation of LIFG leads to compensatory increases in activation of pMTG in semantic 

conditions with high demands (Whitney, et al., submitted). This, and fMRI evidence of 

coupled activation cited above, suggests these regions work in concert to regulate 

semantic activation. 

 Chapter 4 assessed 5 TP-only and 10 PF+ patients, in relation to semantic 

dementia (SD) patients, on a range of semantic and executive control tasks. Chapter 4 

shows that PF+ and TP-only patients have many similarities: (1) both show executive 

control impairments beyond the semantic domain (although these are more severe in the 

PF+ group). The TP-only patients typically showed damage to dAG/IPS regions, thought 

to be involved in domain-general control, as well as damage to posterior temporal areas. 
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Therefore, the finding does not contradict the view that pMTG is involved uniquely in 

semantic control. (2) TP-only and PF+ show inconsistency across tasks with different 

task demands, showing good consistency across tasks with similar demands (such as the 

picture and word version of the camel and cactus task, CCT), but no consistency between 

tasks of different demands (such as word-picture matching and picture naming). (3) Both 

TP-only and PF+ are both as influenced by semantic control manipulations over a range 

of tasks, such as matching dominant and subordinate meanings to homonyms; matching 

close and distant exemplars of the same semantic category; and semantic feature 

selection in comparison to global association tasks. (4) PF+ and TP-only patients showed 

the same effect of cueing during a picture naming task – showing the same degree of 

impairment before cue, and the same improvement after a phonemic cue was given.  

However, there were some notable differences found in Chapter 4. In particular, 

TP-only patients showed some positive effects of word frequency, which were not seen 

in PF+ patients. These are much more subtle than those found in SD patients, who show 

much higher performance in high frequency compared to low frequency words. As well 

as frequency effects, TP-only patients also showed an effect of familiarity, which this 

time was at a similar level to SD patients. This was found in relation to performance on 

the CCT, picture naming and word-picture matching tasks. The lack of frequency or 

familiarity effects in PF+ patients is thought to relate to the fact that high frequency 

words tend to appear in a wide range of linguistic contexts and therefore require more 

constraint to direct activation to aspects of knowledge which are relevant (Almaghyuli, et 

al., 2012; Hoffman, Jefferies, et al., 2011). This role for semantic control in high 

frequency words is thought to counter-act the normal advantage enjoyed by high 

frequency words, due to their higher resting activation levels (Dell, 1989). Thus, it 

appears that TP-only patients are able to use ‘post-retrieval selection’ to capture the 

appropriate meaning of a word in these tasks.  

In our comparison between PF+ and TP-only patients, we were also interested in 

naming tasks. This is because the functional neuroimaging meta-analysis (Noonan, et al., 

submitted) highlighted a second difference between the LIFG and pMTG – between 

receptive and expressive tasks. The LIFG is strongly involved in picture naming (Belke, 

et al., 2005; Krieger-Redwood & Jefferies, in prep.; Schnur, et al., 2009; Schwartz, et al., 

2006), and was found to be equally activated by receptive and expressive tasks. 

Conversely, the pMTG was only active for receptive tasks. Patients with damage to LIFG 
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were notably more impaired than those with damage to posterior regions at expressive 

tasks, such as word fluency (Berthier, 2001). Chapter 4 did find a difference in the type 

of picture naming error made. TP-only patients made more superordinate errors than PF+ 

patients, something found more commonly in SD patients. Additionally, PF+ patients 

made significantly more associative errors. This adds to evidence that suggests that the 

prefrontal regions are involved in dampening down prepotent distractors. An associative 

error is the prepotent response to a picture, and so patients with difficulty dampening 

down this prepotent response will produce the most associative errors. In contrast, 

superordinate errors would occur with patients who have difficulty retrieving item 

specific information – a role of the temporoparietal cortex. It is unlikely that these 

superordinate errors reflect loss of knowledge, since these patients show hugely 

significant increase in accuracy after cueing. They also show non-verbal cueing effects, 

similar to PF+ patients (Corbett, et al., 2011).  

 Chapter 2 used a cyclical matching task to assess semantic control impairments 

in patients with prefrontal damage (PF+)  and those restricted to the temporoparietal 

cortex (TP-only). The cyclical task presents the same small set of semantically related 

items to be matched with a probe word, picture or sound (e.g., ‘cat’ with a picture of a 

CAT, presented with DOG, RABBIT and HAMSTER). The target on one trial (e.g., CAT) 

becomes a distractor on another trial (where the target is DOG). Both the target and 

distractors become highly activated, leading to competition for selection between the 

presented items. Three groups of researchers (Campanella, et al., 2009; Jefferies, et al., 

2007; Schnur, et al., 2009) have found refractory effects associated with lesion of the 

LIFG, but reduced or non-existent refractory effects in patients with temporoparietal 

lesions (TP-only patients). Chapter 2 provides further support for the difference between 

PF+ and TP-only patients, and confirms that TP-only patients who show impairments on 

other control tasks, do not show effects of cycle in this task. It also suggests that modality 

effects are not correlated with lesion location, as refractory effects were found in PF+ 

patients in picture, spoken word and environmental sound tasks – and not in TP-only 

patients in any modality. This difference in performance according to lesion location is 

likely to reflect a functional difference between the contribution of LIFG and regions 

within our patients’ temporo-parietal lesions to semantic control – with the LIFG playing 

a role in aspects of semantic control which the temporoparietal region is not involved in. 

Badre et al.’s (2005) model involves the temporoparietal region in retrieving items, 
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particularly when they have multiple meanings. The LIFG is activated for these tasks, but 

additionally is involved in selecting among previously activated and competing items (cf. 

Thompson-Schill, et al., 1997; Wagner, Paré-Blagoev, et al., 2001). The TP-region is not 

thought crucial for “selection”. It is thought that inhibition of previously relevant items 

uniquely involves the inferior prefrontal cortex (Grison, Paul, Kessler, & Tipper, 2005). 

 Given the refractory effect produces a difference in performance between PF+ 

and TP-only patients, it would be interesting to further explore the reasons behind this 

difference. In Chapter 4, we found some evidence that the reason for this difference was 

related to the dampening down of prepotent distractors. However, it could be related to a 

number of different factors which are unusual about the refractory task: repetition of 

related stimuli, switching between targets over a period of time, having a limited time to 

respond, dampening down items which are prepotent or having previously relevant items 

as distractors. A carefully designed fMRI study could assess the impact of each factor in 

a semantic task, looking at the activation of LIFG and pMTG, to assess the reason behind 

the refractory effect.  

 

 Evidence from Chapter 2 and 4 suggests that the temporoparietal region is not 

involved in all aspects of semantic control. TP-only patients did not show decreased 

accuracy on the refractory task, showed effects of word frequency and produce 

superordinate picture naming errors, and those with damage to pMTG were less 

susceptible to prepotent distractors. Dampening down prepotent distractors seems to be a 

particular role of the LIFG (Hoffman, et al., 2010), given the data from the refractory 

task (Schnur, et al., 2009). Nonetheless, the posterior semantic control regions (pMTG/ 

dAG) contribute to semantic control of tasks which use ambiguous words (Hoenig & 

Scheef, 2009; Rodd, et al., 2005; Zempleni, et al., 2007),  figurative meanings (Chen, et 

al., 2008; Lee & Dapretto, 2006; Rapp, et al., 2004; Shibata, Abe, Terao, & Miyamoto, 

2007), or associations (Badre, et al., 2005; Gold et al., 2006; Noppeney, Phillips, & Price, 

2004; Thompson-Schill, et al., 1997; Wagner, Maril, et al., 2001; Wagner, Paré-Blagoev, 

et al., 2001). This suggests that strategic aspects of semantic processing such as these 

emerge from the interplay of anterior and posterior cortical areas and not PFC in 

isolation. Indeed, PFC and temporoparietal cortices are well situated for interactive 

reciprocal communication; tractography has revealed a number of distinct white matter 
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pathways connecting the two cortical territories (Glasser & Rilling, 2008; Parker et al., 

2005; Saur et al., 2008).  

Overall, evidence from these chapters suggests partially distinct and partially 

overlapping roles for semantic control areas within the whole semantic network. Most 

interestingly, left TP-only patients show that there are semantic control tasks which the 

LIFG can achieve without an intact pMTG/dAG (TP-only patients maintain the ability to 

inhibit/ dampen down prepotent distractors, and these patients are significantly more 

fluent). Nonetheless, TP-only and PF+ patients show an equal deficit in high demand 

conditions in relation to low demand conditions. This suggests that either these regions 

have overlapping functions, or that the connectivity between the regions is vital for this 

role (Fiebach, Rissman, & D'Esposito, 2006; Friederici, 2009; Matsumoto, Nair, 

LaPresto, Najm, & Bingaman, 2004; Parker, et al., 2005).  

The separate/joint role of different semantic control regions could be further 

explored in patients using tDCS. Anodal (excitatory) stimulation of LIFG in TP-only 

patients may increase their ability to perform semantic control tasks. This would imply 

that regions have overlapping functions, and upregulating the LIFG compensates for the 

loss of pMTG. It may also be, however, that anodal stimulation of LIFG in PF+ patients 

would also reduce deficits, suggesting that perilesional brain regions can take over the 

role of the damaged LIFG, in line with patient neuroimaging studies (Crinion & Leff, 

2007).  These regions have been shown to activate in recovered stroke patients (Cao, 

Vikingstad, George, Johnson, & Welch, 1999; Warburton, Price, Swinburn, & Wise, 

1999; Zahn et al., 2004; Zahn et al., 2002), along with homotopic language regions 

(Rosen, et al., 2000). Early functioning is predicted by RH activation, whereas later 

recovery is predicted by LH activation. However, the RH might remain important for 

semantic control recovery in SA patients. Additionally, it is not clear if damage to LIFG 

can be fully compensated for by activation of other regions, or whether LIFG is 

necessary for some aspects of semantic control (e.g., those highlighted by Badre et al. as 

‘post-retrieval selection’). This could be tested by assessing the difference between 

controls and patients after tDCS on a range of semantic control tasks.  

 The role of connectivity between regions could be further explored by assessing 

performance relative to connectivity rather than lesion location or size (Catani & 

Mesulam, 2008; de Zubicaray, et al., 2011; Duffau, 2008; Glasser & Rilling, 2008). The 

TP-only group shows highly varied performance, and this may be due to greater or lesser 
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residual connectivity from pMTG to LIFG. Quantifying the relationship between the 

connection of pMTG and LIFG with behavioural scores on semantic control tasks is 

novel. However, the importance of this connectivity has recently been shown in a TMS 

study (Whitney et al., submitted). In this study, rTMS to LIFG to ‘knock out’ this region 

led to increased activation of pMTG, but only in a high demand condition of the semantic 

task. This suggests that a lesion in one region can be compensated for by activated in the 

remaining regions of the semantic control network.  

The role of connectivity between the LIFG and pMTG could be further explored 

using a double pulse rTMS study, while healthy participants are performing a semantic 

control task, such as those described in Noonan et al. (2010). Participants are known to 

perform at the same level with rTMS to either LIFG or pMTG (Whitney et al., 2011). 

However, it is not clear whether rTMS to both regions would produce a super additive 

deficit in performance. If this is the case, it would suggest some compensatory 

performance from the unstimulated site in semantic control – further reason to suggest an 

overlap of function of these two regions.  

 

Chapter 5 considers the role of other semantic control regions highlighted in a 

recent meta-analysis (Noonan, et al., submitted). In particular, the role of RH regions was 

assessed. While studies focus on the LIFG in semantic cognition, consistent activation 

has been found in the RIFG. There is evidence for a bilateral domain-general executive 

control network (Duncan, 2006, 2010; Duncan & Owen, 2000), as well as a bilateral 

semantic control network, reported in studies which often emphasise the role of the LIFG 

(Badre, et al., 2005; Devlin, et al., 2003; Hoffman, et al., 2010; Moss et al., 2005; 

Robinson, Shallice, Bozzali, et al., 2010; Schnur, et al., 2009; Snyder, et al., 2011; 

Thompson-Schill, et al., 1997; Wagner, Paré-Blagoev, et al., 2001).  

Chapter 5 found evidence of both non-semantic and semantic control deficits, 

suggesting the RH has some role to play in control. Deficits in executive control were 

found in RH patients to the same extent as our SA cases. However, these did not 

correlate with semantic performance as they do in SA patients, suggesting a somewhat 

different deficit. We also found refractory effects to the same extent in SA patients and 

RH patients, but only for items which each group found difficult (e.g., for SA patients, 

everyday objects, for RH patients, face emotions).  
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There were many differences between these two groups, with suggestion that RH 

patients are qualitatively different from SA cases. RH patients were at normal level on a 

range of background semantic tasks testing basic concepts, and showed significantly 

higher accuracy than SA patients. In terms of semantic control manipulations, SA 

patients showed a larger effect of this manipulation on almost all of the comparisons, 

although the tasks which SA and RH patients were tested on differed. The most notable 

difference, however, was the opposite pattern of behaviour found with regards distractors 

and cues: RH patients showed worse performance in the presence of semantic cues in 

relation to no cue, and unrelated compared to related distractors.  

It was hypothesised that the RH patients have difficulty in top-down allocation of 

attentional resources (Corbetta & Shulman, 2002), which gives rise to deficits in tasks 

requiring configural processing, as well as inhibitory responses – with target detection 

and inhibition highly related processes which have both been linked to the RIFG 

(Hampshire, et al., 2010; Hampshire, et al., 2009). For example, there was impaired 

performance when the task involves inhibition. Impaired performance with unrelated 

distractors and cues may be due to activation of extra semantic meanings, which were 

unnecessary for the task. Participants also showed impairment on the Hayling sentence 

completion task, and the face emotion refractory task, both of which have an inhibitory 

element. However, some tasks which require inhibition (e.g., such as the social synonym 

judgement task with antonym distractors) did not show a difference between ‘high’ and 

‘low’ conditions, suggesting RH patients have something more than an inhibitory deficit.  

There was also impairment on tasks requiring configural processing. Configural 

processing refers to any phenomenon that involves perceiving relations among the 

features of a stimulus, such as a face (Maurer, et al., 2002; Thompson, 1980). Although 

this term often refers to faces, it can be used to describe sentence processing (Anderson 

& Bower, 1972; Jung-Beeman, 2005; Merrill, et al., 1981). Whether top-down allocation 

of attention to both configural processes and inhibitory processes are part of the same 

disorder, or whether they are separate, remains to be seen. However, the additive effect of 

configural processing and inhibition in a single task seemed to lead to the effects of 

semantic control seen in RH patients. (1) The face emotion refractory task involves 

configural processing of the face, as well as inhibition of previously activated items. (2) 

The summation task involves configuration of weakly related probe words (e.g., LEGS – 

REST – BENCH  SIT), as well as inhibition of distractors and cues/miscues. In these tasks, 
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patients showed identical performance to controls in conditions where there was not the 

conjunction of these two control demands (e.g., in the refractory task, cycle 1; and the 

summation task without cues/micues). The inhibitory/configural processing account may 

also explain the increased of perservation in RH patients on the face emotion picture 

naming task in relation to SA patients on a naming task. This may be because RH 

patients have either (i) not noticed the change in face stimuli, reflecting a configural 

processing deficit, or (ii) been unable to inhibit repeating the activated expression word, 

or both.  

It could be argued that it is these elements of a task, rather than the stimuli 

themselves (e.g., faces and distantly related words), which produce the deficits. If so, RH 

patients would show semantic control impairments even on basic items, such as 

household objects, when the task is demanding in these ways, such as if they were 

presented in a go-no go task which uses Gestalt Completion items as its stimuli (Ekstrom, 

French, & Harman, 1976). This is something which has not yet been tested, although the 

RH has already been hypothesised to be involved in configural processing and inhibition 

(Aron, et al., 2004; Garavan, et al., 1999; Huberle & Karnath, 2012; Konishi, et al., 1999; 

Menon, et al., 2001; Snyder, Shpaner, Molholm, & Foxe, 2012; Wasserstein, Zappulla, 

Rosen, & Gerstman, 1987).  

 

 Given the preliminary nature of Chapter 5, the role of the RH could be further 

explored. Both RH vs. LH and anterior/posterior comparisons (in both hemispheres) 

would benefit from a larger series of patients, to provide a greater opportunity to explore 

the roles of specific regions. Predictions about more focal sites (e.g., IPS vs. pMTG; 

RIFG vs. RpMTG) could then be tested with TMS.  

Additionally, the tasks used in the RH chapter do not explore all aspects of 

semantic control. For example, none of the tasks use visual-only stimulus (e.g., either the 

probe or target uses a written or spoken word). It has been argued that the RH is 

particularly involved in visual semantics (e.g., Mion et al., 2010; Snowden et al., 2004), 

and it may be that the involvement of language in each task is reducing the effect of the 

semantic control impairment that would otherwise be found in these patients. A picture-

picture task which manipulates semantic control demands would be an important test for 

these patients. The role of the RH in social cognition almost always focuses on visual 

interpretations of people or scenes, and the RH’s role in social words is predicted only by 
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a single group (Zahn et al., 2007). This is also true of metaphors, some believe the RH 

plays a role in metaphor picture interpretation rather than sentence comprehension 

(Winner & Gardner, 1977). Each of these semantic tasks could be retested using visual 

stimuli.  

There are some tasks which, according to fMRI tasks, lead to bilateral activation, 

but which RH patients perform at a normal level. However, RH patients did show 

impairments on tasks with configural and inhibitory requirements. Therefore healthy 

subjects could be tested on a task requiring (i) configural and inhibitory processing, and 

(ii) neither of these components but of equally high demand. With rTMS over RIFG, we 

could assess the necessity of the RIFG in these tasks. Some role for RIFG in semantic 

processing has already been shown using this method (Pobric, et al., 2008) 

  As the domain-general control network includes a bilateral system, it may well 

be the case that the RH patients show deficits in tasks that require configural processing 

and inhibition, but do not use semantics (e.g., the feature figure selection task described 

in Chapter 4). It still remains a question, however, whether RH patients show an 

impairment on the more demanding tasks (e.g., that the RH is an ‘overflow’ hemisphere), 

or whether it is specifically involved in these certain aspects of control. Given the 

exploratory nature of Chapter 5, the findings are open to interpretation and require 

further research. It is not yet fully clear, for example, whether the deficit involves 

particular stimuli (e.g., face emotions and distantly related concepts), or whether it is a 

deficit purely related to the task demands. Another suggestion given in Chapter 5 is that 

patients showed perservation of speech (e.g., referring to each face presented as 

‘surprised’). This may account for their impaired performance overall on most tasks (e.g., 

perservation of motor action towards a particular space). It is not yet clear if this is an 

additional deficit of RH patients, e.g., an inattentional deficit, occurring from not being 

aware of new stimuli being presented (Corbetta & Shulman, 2002). This may interacts 

with semantic control demands (e.g., inhibition), or whether it works in parallel to 

semantic control (e.g., it is not influenced by the demands of the task).  

 

The data from this thesis provides new evidence into the role of different areas of 

the semantic control network. For the first time, PF+ and TP-only patients have been 

studied as separate groups, and differences in behaviour has been found. The connection 
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of the RH with semantic control has never been explored, and this study provides 

preliminary evidence that it has some role to play in semantic control.  

 

Theme 2: Modality and domain effects 

 SA patients have a semantic control deficit across domains, showing equal 

impairments in word, picture and action tasks (Corbett, Jefferies, Ehsan, et al., 2009; 

Corbett, et al., 2008; Corbett, Jefferies, & Lambon Ralph, 2009; Jefferies & Lambon 

Ralph, 2006). These patients show a strong influence of control demands, with higher 

performance on picture naming with a cue in comparison to no cue, and for strong 

associations compared to weak association matching. These effects have been found in 

verbal and non-verbal domains alike (Corbett, et al., 2011; Jefferies, Patterson, et al., 

2008).  Aphasic patients might be expected to show more substantial semantic deficits 

for verbal materials, while SD patients show amodal deficits. Of course, it is possible to 

show deficits for a single modality, if damage occurs to a ‘spoke’ which holds 

representations of a particular modality (Patterson, et al., 2007). However, the ‘access’ 

behavioural deficit (e.g., inconsistent performance over a period of time), is qualitatively 

different semantic deficit to those with a representational deficit, and is specific to the 

auditory domain (Crutch & Warrington, 2008b; Warrington & Crutch, 2004). However, 

if SA cases have deficits of semantic control across modalities, they might show ‘access’ 

impairments also across modalities. This is the hypothesis tested in Chapter 2.  

 Chapter 2 assesses the performance of SA patients on a picture, spoken word and 

environmental sounds cyclical tasks. The ‘refractory’ effect has been described as (1) 

impaired access to semantics following activation (McNeil, et al., 1994; Warrington & 

Cipolotti, 1996; Warrington & McCarthy, 1983, 1987), (2) increased lexical competition 

impairing verbal selection (Belke, et al., 2005; Damian, et al., 2001; Schnur, et al., 2006), 

(3) deficits in neuromodulation, which lead to inattention to new inputs and reduced 

synaptic depression of distractors which have been targets (Gotts & Plaut, 2002), and (4) 

deficits in multimodal semantic control mechanisms which produce increased 

competition between targets and previously relevant distractors, irrespective of the 

requirement for lexical selection or production (Jefferies, et al., 2007). The main 

difference between these theories is modality – the first two emphasise the refractory 

effect in the verbal domain, the neuromodulation theory is potentially applicable across 

domains, and the semantic control theory proposes an amodal refractory effect.  As a 
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group, SA patients show ‘access’ deficits across modalities. Across 3 experiments 

comparing verbal and non-verbal refractory tasks using 3 methods, there was also 

inconsistency and variation between patients. Individually, there were some patients who 

showed the refractory effect only in the verbal domain (e.g., PG, NY), and some that 

showed it only in the visual domain (e.g., BB), but the majority (e.g., DB, KA, LS) 

showed refractory effects in more than one modality. Patients that only showed 

significant refractory effects in one modality showed semantic control deficits across 

domains in other tasks, and therefore this finding is likely to reflect the fact that not all 

SA or ‘access’ patients show strong refractory effects (Crutch & Warrington, 2008b). SA 

patients with single modality refractory effects showed the same pattern in all modalities, 

but more weakly than classic refractory cases – who might represent the extreme end of a 

continuum (Jefferies, et al., 2007). Additionally, our patients were greatly influenced by 

the difficulty of the task – with some (e.g., LS, DB) showing only verbal impairments on 

an identity matching experiment, however, in further experiments involving association 

matching, these patients showed the opposite pattern (e.g., stronger refractory effects in 

non-verbal than verbal judgements).  

The refractory effect is described by Warrington and colleagues as a deficit in the 

verbal system. It is therefore possible that, if systems are separate, multimodal refractory 

effects of SA patients seen in Chapter 2 may be because SA patients have deficits to all 

systems, which remain independent – the visual system, the verbal system and the non-

verbal auditory system. To test this, we interleaved the trials, so that on one trial, a 

picture was presented, followed by a word, then picture and word – or vice versa. We 

found mixed data from SA patients on this task – there was a significant drop in accuracy 

in patient DB - who showed the most dramatic refractory effects in the single modality 

tasks. However, patients were, on the whole, distracted by the change in modality – and 

did not attend to a spoken word probe after seeing a picture as a probe. This may be 

related to damage to the dAG, leading to deficits of attention to task related items 

(Noonan, et al., submitted; Seghier, et al., 2010). It is therefore possible that SA patients 

have damage to all modality ‘access’ systems. However, it is at least plausible for an 

amodal refractory effect to exist, given the work by Forde and Humphreys (1997) which 

suggests spreading activation across verbal and non-verbal domains. It also seems 

unlikely that a semantic control region could exist which was modality specific – seeing 
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as there is activation across tasks and domains in these control regions (Duncan, 2006, 

2010; Duncan & Owen, 2000; Freedman, et al., 2001).  

An association task was run in Chapter 2, which had strongly related probes 

(presented as either spoken words or pictures, e.g., forms of transport), but targets and 

distractors (always presented as pictures) which were not as strongly related (e.g., 

runway, train tracks, motorway and field). This experiment found a weaker effect of 

refractoriness, with only marginal significance. This suggests the importance of the 

relatedness of the targets and distractors – which are pictures in all refractory tasks 

(Crutch & Warrington, 2008b; Jefferies, et al., 2007; Warrington & Crutch, 2004). This 

is further evidence for an amodal system – as the refractory effect is stronger with both 

related picture targets and related picture or word probes.  

It has also been noted that picture refractory tasks which involve matching the 

same item invariably have greater visual overlap than tasks which require matching 

associated items, leading to a weaker effect in this modality than the verbal modality 

(Caramazza, Hillis, Rapp, & Romani, 1990; Chertkow, Bub, & Caplan, 1992; Forde & 

Humphreys, 1997; Riddoch, et al., 1988). The stimuli in the picture task were chosen to 

be visually dissimilar, but this remained an issue with certain stimuli (e.g. CAMERA), 

leading to the refractory effect being marginally weaker (but not significantly so) in the 

picture task in relation to the spoken word task in Experiment 1. This was the reason 

behind running follow-up experiments, including a refractory task which involved 

matching associated items with no visual overlap.  

 

 In Chapter 3, we explored a patient (DNe) with a verbal-only semantic access 

deficit in detail. He showed refractory effects restricted to the spoken modality – in 

contrast to case studies AZ and BBB who showed refractory effects extending to non-

verbal auditory stimuli (Crutch & Warrington, 2008b), although he was impaired at 

matching environmental sounds to pictures. However, on more demanding tasks, he 

showed a semantic control impairment on written and picture tasks (e.g., the synonym 

judgement task, ambiguity and semantic distance tasks, and association tasks). This 

profile suggests a profound auditory impairment and mild difficulties in high-control 

semantic tasks across modalities. An amodal semantic system interacts with modality-

specific spokes, and can lead to amodal impairments which are accentuated in a single 

domain. SA cases have control deficits across modalities, but this suggests that it is 
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possible to have a deficit heightened in one modality. The semantic control network is 

distributed, and includes the pMTG which is close to the auditory cortex (pSTG). It is 

perhaps unsurprising to find a patient with an auditory impairment combined with mild 

semantic control deficits across modalities, given the proximity of pMTG to pSTG.  

Disruption of auditory input paired with a mild amodal semantic control deficit leads to a 

control deficit, with noticeably reduced performance in the auditory domain (while still 

showing the effects of semantic control in this domain). This hypothesis may explain 

several case studies in the literature that seem to show an ‘access’ or control deficit in 

only one modality. 

Another explanation for his performance on certain tasks is described by Crutch 

and Warrington (2011a). They argue that discrepancies between modalities can result 

from the graded nature of representations, where some neurons are multimodal – but still 

preferentially process a particular modality. They suggest that deficits in representations 

which activate to spoken information leads to ‘access’ like impairments, which are 

category independent, frequency independent and more significant in multiple than single 

presentation tasks. It is certainly true that DNe never shows normal performance on 

spoken word tasks – suggesting the possibility for a representational deficit. Nonetheless, 

his performance on non-verbal tasks is related to semantic control demands – so for 

example, he is significantly worse at subordinate than dominant meaning comprehension 

of an ambiguous homonym. These two conditions of the task uses the same number of 

items, as well as the same distractors, and holds constant frequency and imageability 

levels. It is hard to link this data with the suggestion of the representational deficit 

described above. We would therefore predict that the patient described by Crutch and 

Warrington (2011a) would show semantic control impairments in non-verbal tasks which 

were more demanding – like DNe.  

 

In order to fully test the hypothesis that impaired initial processing of a single 

domain, paired with domain general control impairments, lead to control deficits 

accentuated in one modality, a test on healthy participants would be useful. In Chapter 

3, healthy participants show impaired performance in tasks when they have degraded 

auditory input – but this does not correlate with semantic control demands. In order to 

test the hypothesis that impairment of both input and control leads to this deficit, a 

behavioural test could be carried out involving both degraded input and a dual-task (e.g., 
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a semantic task using words embedded in pink noise, paired with an n-back task). This 

could be extended to degraded visual input stimuli too. 

 ‘Spokes’ support sensory, verbal and motor sources, and are necessary for domain 

and modality specific representation, whereas the ‘hub’ is necessary for amodal 

representation (Patterson, et al., 2007). TMS to spokes has been found to influence 

performance only on tasks which are processed in this region (Pobric, et al., 2010b). In 

this task, rTMS to ATL generates category-general impairment, whereas rTMS to IPL 

induces category-specific deficits for man-made objects in relation to living things. 

Therefore, it is possible that dual rTMS, of both LIFG and a ‘spoke’ (either auditory 

regions such as the STS or visual areas such as ITL) would lead to a refractory deficit 

that was greater in this domain. All our PF+ patients in Chapter 2 had damage to LIFG 

as well as posterior regions, and this pattern of brain injury might be crucial in producing 

the effects of interest. We would predict that TMS to a spoke, such as pSTG, may 

produce modality specific deficits in the task but not a decline in performance over 

cycles, where TMS of LIFG and pSTG may produce refractory effects in a single 

modality.  

 Wernicke’s Aphasia (WA) patients have lesions centring pSTG regions, and most 

show a strong modality effect – having particular difficulties with the spoken domain. It 

has been shown that this acoustic-phonological deficit extends to semantic processing, 

producing greater deficits in understanding words than pictures, and auditory stimuli over 

visual stimuli (Robson, Keidel, Lambon Ralph, & Sage, 2012; Robson, Sage, et al., 

2012), possibly due to a lesion extending to pMTG. It is not yet clear, however, if this 

phonological deficit interacts with refractory effects in a single modality. For example, it 

may be that LIFG damage causes refractory effects, and when paired with pMTG 

damage, these effects are multimodal. However, when paired with unimodal regions – 

such as the pSTG, the refractory effects may remain only in this modality (as seen in our 

case study). Therefore, analysis of patients’ lesion location, and remaining or damaged 

connectivity between LIFG and pSTG/ pMTG, may be fruitful in learning how the 

refractory effect comes about in single modality cases. We would predict that patients 

with damage to LIFG and pSTG would show refractory effects specific to the verbal 

domain.  
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Chapter 3 describes a variety of refractory tasks in single-case DNe. Verbal tasks 

included using items which were semantically related and unrelated (distractors and 

targets selected from different categories), and phonologically related or unrelated (items 

which began with the same letter e.g., WATCH, WHEEL, WELL, and WHIP, or items 

beginning with different letters, taken from other cycles). DNe showed a decline in 

performance over cycles in all spoken word versions of this task – including unrelated 

items. This suggests something different to the pattern seen in SA patients – who show a 

strong effect of relatedness in this task (Jefferies, et al., 2007). DNe was greatly affected 

by length of display – with performance on phoneme discrimination being particularly 

poor, but good performance on pictures displayed indefinitely. His performance radically 

altered in a go-no go task where SRI was altered a few hundred milliseconds. Therefore, 

it is possible that DNe’s performance is influenced by this – leading to a mild semantic 

control deficit paired with a general slowing of processing, which invariably affects 

words over pictures (as spoken words have a limited presentation period). This may 

mean that given the ability to repeat a spoken word probe, he is able to process this to the 

same level as a picture. DNe shows fatigue of the representations that continually repeat 

within each block, but this doesn’t spread to semantically related items any more than 

unrelated items. DNe shows a strong effect of presentation rate, along with a notable 

decline in accuracy over testing time within a task and over a session (metal fatigue). It 

may be that this mental fatigue is particularly prominent in the verbal domain as the 

presentation of each probe is only once and relatively short. To test this, we could assess 

DNe’s performance on novel items in cycle 4, in relation to old items in cycle 4. If there 

was no difference, it would suggest the deficit goes beyond the semantic domain. 

Additionally, we could shorted the environmental sounds stimuli (currently, they are 

around 5 seconds), to see if his performance decreases to the same magnitude as seen in 

the spoken word task – an auditory deficit similar to ‘access’ and SA patients (Crutch & 

Warrington, 2008b; Gardner, et al., 2012).  

  In Chapter 4, TP-only patients show greater impairment for visual items: 

it was notable that they showed significantly higher performance in comparison to both 

SD and PF+ patients on the CCT word task (~20%) than tasks involving pictures, such as 

picture naming, word-picture matching or the CCT picture task (~5%). Some patients 

may be particularly impaired at visual stimuli processing (e.g., ME), who show strong 

effects of picture naming cues, low performance on background neuropsychological 
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visual tasks (e.g., VOSP), but high performance on executive tasks without visual 

demands (e.g., digit span, TEA). This patient, however, shows impairment on semantic 

control tasks (e.g., being worse at subordinate meanings than dominant meanings of an 

ambiguous word) where items are both presented in written form and read out. Therefore, 

there is evidence of TP-only patients showing a semantic control deficit, but with a 

particular deficit for visual items. This deficit may lead to more consistent performance 

across tasks (with accuracy maintained over these relatively simple semantic tasks), 

category effects with word-picture matching (with items from the some categories being 

more difficult to differentiate), more superordinate naming errors (if the patient is able to 

decipher an object belongs to a certain category, but nothing more specific about the 

item).  

In Chapter 5, we assessed RH patients for semantic control impairments across 

modalities. In particular, we focused on picture tasks involving faces, and written word 

tasks involving metaphors (two aspects of semantics which are thought to rely on the 

RH). We found that patients showed semantic control deficits across modalities, 

suggesting both LH and RH contribute to semantic cognition across modalities, with a 

possible division of labour between them.  

We also tested RH patients on another refractory task, using face identity 

matching (spoken word-picture matching, of people who were related according to job, 

e.g., “Marilyn Monroe” presented with other actresses). When subjects were asked to 

match a name to a face identity, their performance was at ceiling across cycles. 

Therefore, the refractory effect is highly dependent on the stimuli. In the task that did 

find refractory effects, using face emotions of the same identity face, the target and 

distractors were much harder to visually differentiate, which may have lead to the build 

up of competition between the target and distractors. RH patients may be particularly 

sensitive to visual similarity (given their configural processing deficits), and so the 

refractory task which used visually similar items produced a stronger effect.  

 

However, there was some evidence for a difference in performance according to 

modality – most notably on the metaphor picture and word tasks. There was also 

impairment on a relatively simple matching task which used faces (refractory task), 

which was only seen with words when the task was highly demanding (the summation 

task). It is possible, therefore, that this RH performance also reflects an interaction of 
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modality-dependent visual ‘spokes’, and executive control mechanisms, leading to 

accentuated deficits in a single domain (while still present in more challenging tasks in 

other domains). This would therefore predict a similar pattern in our RH patients to DNe 

in Chapter 3, with the exception that the deficit would be greater for visual than verbal 

materials. The pattern seen in Chapter 5 may reflect damage to visual spokes in right 

temporal and parietal areas (Bartolomeo, et al., 2007; Konen, et al., 2011; Mort, et al., 

2003), paired with damage to control regions, which produce higher performance in the 

verbal compared to visual domain. The same task in two different modalities is required 

to assess this hypothesis thoroughly.  

 

Concluding remarks 

This thesis explores the impact of damage to different areas of the distributed 

cortical network underpinning semantic cognition, employing tasks which aim to assess 

the effects of modality and manipulations of semantic control demands. The research 

builds on previous data to show that semantic control impairment in SA results in 

multimodal refractory effects when competition builds up within a small set of 

semantically-related items that are presented repeatedly as both targets and distracters 

(Chapter 2). It explores several controversies in the literature, such as the proposal that 

there are modality-specific ‘access’ patients: our case study in Chapter 3 suggests that at 

least some patients with modality specific ‘access’ impairments have a dual deficit – i.e., 

input processing problems combined with multimodal control deficits. Chapters 4 and 5 

look in more detail at potential dissociations between stroke cases who have damage to 

different sites within the distributed network underpinning semantic control. We found 

that patients with damage to anterior and posterior semantic control regions are broadly 

similar but show some dissociations (Chapter 4). Finally, this thesis provides a 

preliminary investigation of a novel idea – that semantic deficits following RH stroke 

may reflect damage to bilateral semantic control processes which are qualitatively similar 

to those seen in SA cases with left hemisphere damage (Chapter 5). The fact that RH 

cases were found to show effects of several relevant manipulations – such as refractory 

variables, cueing, strength of association and distractor strength – provides some support 

for this view.  These patient studies explore the neural basis of semantic control to 

understand the mechanisms which lead to multimodal comprehension under normal 

circumstances and deficits in this area.   
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