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Abstract

Glioblastoma (GBM) is the most aggressive primary malignancy of the central ner-

vous system. Despite standard treatment, comprising surgical resection, followed

by concomitant radiation and chemotherapy, it is incurable. This devastating

prognosis stems from complex multi-layered heterogeneity, which enables GBM

tumour cells to resist treatment and reoccur. Advances in genomic technologies

have classified GBM tumours at the single-cell resolution, revealing that malig-

nant GBM cells occupy distinct neoplastic cell states which resemble neurodevel-

opmental hierarchies and wound healing programs. These states are supported by

complex interactions which include immune, healthy brain and vasculature cells.

To investigate how the cellular landscape of GBM tumours changes through treat-

ment, I utilised an extensive dataset of paired (pre- and post-treatment) GBM

tumour patient samples. These samples were profiled using bulk RNA sequencing

(RNA-seq) and thus characterising their cell type composition in silico, necessi-

tated the use of cellular deconvolution techniques. Benchmarking of such methods

has shown that accuracy and interpretability are highly dependent on the speci-

ficity of the cell type reference used. Therefore, I developed a set of GBM-specific

cell type markers and used these to validate the optimal deconvolution method,

which I also released as a publicly available web application, GBMDeconvoluteR.

Using this tool, I characterised 219 paired GBM samples and uncovered consistent

cell type changes through treatment. These changes were associated with survival

outcomes and aligned with our previously described patient stratification, based

on treatment-resistance mechanisms.

To complement these findings, I then applied a novel spatial proteomics method

and found that hypoxia drives the layered organisation of the GBM tumour mi-

croenvironment (TME) pre-treatment, but post-treatment the GBM TME is less

structured, driven instead by reactive astrocytes and infiltrating lymphocytes.

Collectively, this work highlights some key shifts in the cellular landscape of GBM

through treatment, which may hold therapeutic potential.
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Chapter 1

Introduction

Glioblastomas (GBMs) are the most common type of malignant brain tumour,

accounting for ∼50% of all primary malignancies of the central nervous system

(CNS) and more than half of all gliomas1,2. They are characterised by aggressive

proliferation, diffuse infiltration and resistance to standard-of-care multimodality

treatments, which invariably results in tumour recurrence and mortality on average

∼7 and ∼15 months of diagnosis, respectively3–5.

1.1 Adult-type diffuse gliomas

The classification scheme for CNS tumours was last revised (fifth edition) in 2021

and is provided by the world health organisation (WHO)6. In this framework,

termed WHO CNS classification 5th edition (CNS5), tumours are grouped accord-

ing to the following taxonomy: category, family, type and subtype. GBM tumours

are classified within the adult-diffuse glioma family of CNS tumours which is part

of the broader glioma “category” of tumours (Figure 1.1 and Figure 1.2).

Gliomas are malignancies of the CNS that originate from glial cells: non-neuronal

cells that play a critical role in maintaining homeostasis within the brain and

spinal cord7. Linking the origin of cancers to normal brain cells was first reported

in 1856 by Rudolf Virchow following his rudimentary classification of brain ma-

lignancies based on post-mortem samples8. Subsequently, in 1926, Percival Bailey

and Harvey Cushing, amongst others, introduced the first systematic classification

of CNS tumours, which relied on a combination of histological and morphological

features and their correlation with patient survival outcomes9.

The WHO CNS classification 1st edition (CNS1) continued to focus on histopatho-
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1. Introduction

logical methods to diagnose and classify tumours, comparing tumour cells with

normal brain cells: those resembling astrocytes were called astrocytomas, and

cells resembling oligodendrocytes were called oligodendrogliomas10. In the 2016

revision of the WHO CNS classification 4th edition (CNS4), molecular testing

was first added alongside histological techniques, though it was only used in an

ancillary capacity to diagnose and classify CNS tumours11. Following this in 2021,

the most recent classification scheme (CNS5) made molecular diagnostics founda-

tional to the classification of CNS tumours, whilst still utilising histological and

immunohistochemical techniques as complementary approaches. As a consequence

of this, adult-type diffuse gliomas and pediatric-type gliomas were separated into

distinct tumour families for the first time: these tumours are histologically indis-

tinguishable but have very different biology6. The other major sub-division within

the glioma family of tumours is based on the degree of invasiveness into the sur-

rounding brain tissue. Gliomas which display (based on histology) infiltration into

the surrounding normal brain parenchyma are defined as “diffuse” and those with

better-demarcated margins are labelled with the term “circumscribed”12.

The adult-type diffuse glioma family of tumours comprises several tumour

types which are graded (from 2-4) according to their respective malignancy under

CNS56. Moreover, each tumour type is classified and graded using a combination

of histological and molecular features (Figure 1.2). Herein, the term “glioma” will

be used to refer to the adult-type, diffuse family of gliomas.
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Figure 1.1 | Overview of the 2021 WHO classification of CNS tumours.

Hierarchical tree diagram showing the main CNS tumour categories that make
up the 2021 (5th edition) World Health Organization (WHO) classification of
CNS Tumours. The full taxonomy of this classification follows the following
order: Category; Family; Type and Subtype. All the main CNS tumour
categories and only the “Glioma” family of tumours are shown.
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1. Introduction

Figure 1.2 | Classification & diagnosis workflow of adult-type diffuse
gliomas.

Flow diagram detailing a simplified overview of the classification pathway for
adult-type diffuse gliomas based on CNS5. Molecular features are shown shaded
in red and histological features are shaded in dark blue. The “+” icon denotes
presence/gain, and the “-” icon denotes the loss/maintenance of molecular or
histological feature. Isocitrate dehydrogenase (IDH); alpha thalassemia/mental
retardation syndrome X-linked (ATRX); cyclin-dependent kinase inhibitor 2A/B
gene (CDK2A/B); telomerase reverse transcriptase (TERT); epidermal growth
factor receptor (EGFR); microvascular proliferation (MVP); not otherwise
specified (NOS); O6-methylguanine DNA methyltransferase (MGMT).
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1.2 IDH mutation status

IDH refers to a family of enzymes that feature prominently in the tricarboxylic

acid cycle (TCA), where they catalyse the oxidative decarboxylation of isocitrate,

producing α-ketoglutarate (aKG) and the reduced form of nicotinamide adenine

dinucleotide phosphate (NADP)13. The IDH family comprises of three known

isoforms, IDH1, IDH2 and IDH314. Point-mutations within the binding site of

IDH1 and IDH2 result in a gain-of-function which enables them to catalyse the

reduction of aKG to form the onco-metabolite D-2-hydroxyglutarate (D2HG)15.

The accumulation of D2HG inhibits aKG–dependent dioxygenases, which include

histone demethylases, leading to widespread histone hypermethylation16. These

epigenetic modifications alter the cell metabolism within IDH mutant cells and

make them more susceptible to standard treatment, by reducing their ability to

handle reactive oxygen species (ROS) generated during standard therapy13.

Within adult-diffuse gliomas IDH1 mutations (IDH1:C.395G>A p.R132H) occur

in >80% of all tumours17,18. These mutations are predominantly found within

lower grade, WHO grade 2/3 adult-diffuse gliomas and in secondary GBM tu-

mours that develop from lower grade gliomas19. Differences between isocitrate

dehydrogenase mutated (IDHmut) and isocitrate dehydrogenase wild-type (ID-

Hwt) tumours are also seen in survival outcomes where IDHmut patients have

much better overall survival (OS) and progression-free survival (PFS), irrespec-

tive of grade and are also more responsive to certain drugs20. Given this and the

fact that IDH mutations occur early in in gliomagenesis21, the current WHO clas-

sification of gliomas uses IDH mutation status as the primary molecular biomarker

by which to classify and grade between lower and higher-grade gliomas11.

1.2.1 Oligodendroglioma

Oligodendrogliomas are the least prevalent (∼7% in the US) adult-type diffuse

gliomas and have an incidence rate of 0.29 per 100,000 people1. In comparison

to other adult-type diffuse gliomas, they are associated with a good prognosis

and chemotherapeutic responsiveness, with median survival ranging from 11.19 to

20.45 years22,23. Molecularly, oligodendrogliomas are classified by the coexistence

of IDH1/2 mutations and 1p/19q codeletion24,25. They are graded as either grade

2 or 3, with the latter designation being chosen when there is a significant mitotic

count (> 6 mitoses per 10 high-power fields (HPF)) and/or MVP6; or the presence

of CDK2A/B homozygous deletion26,27.
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1.2.2 Astrocytoma

Astrocytomas have an incidence rate of 0.45 per 100,000 people and make up

∼11% of all diffuse adult-type glioma diagnoses1. They are rarely diagnosed in

adults over the age of 55 as they primarily occur in younger adults, with a me-

dian diagnosis age of 37 years and a median survival that ranges from 7.29 to

9.3 years1. Molecularly, astrocytomas are classified by the concurrence of mu-

tations in IDH1/2 genes, ATRX gene and the tumour suppressor gene, tumour

protein 53 (TP53)6. This is in contrast with oligodendrogliomas, where ATRX

expression is retained and accumulation of p53 is largely absent28. In the WHO

CNS4 classification, astrocytomas carrying a IDH1/2 mutation (IDHmut), were

assigned to three different tumour types (diffuse astrocytoma, anaplastic astrocy-

toma, and glioblastoma) based on histological features11. However, in the current

classification all IDHmut astrocytomas are considered a single type (Astrocytoma,

IDHmut) and are graded within CNS WHO grade 2, 3, or 4 6. Moreover, since

the publication of the CNS5 guidelines, homozygous deletion of CDK2A/B is now

sufficient to classify an astrocytoma as the highest grade (grade 4), even in the

absence of high-grade histopathological features (Figure 1.2)6. This was done, on

account of the poor prognosis and limited OS (∼3 years) in astrocytomas with

deletions of CDK2A/B29,30.

1.3 Grading gliomas

Grading tumours serves an important purpose in that it provides important prog-

nostic information for clinicians based on a tumour’s microscopic features and

allows them to develop the most appropriate treatment plan.

Gliomas are graded from 2-4, though this process is largely subjective and suffers

greatly from inter- and intra-observer variabilities26,31. The reason we do not see

any grade 1 gliomas is because this grade is reserved for tumours that typically

do not infiltrate surrounding tissue6. Gliomas are by their very definition, “dif-

fuse” and do infiltrate into the normal surrounding brain which in turn, makes

them difficult to completely remove, and challenging to treat as residual tumour

facilitates recurrence. Although the process of grading is no longer entirely histo-

logical, there are four main histological features that are commonly referred to as

the AMEN score which are used when determining tumour grade32.

Nuclear atypia (A) - describes the abnormal size, shape and density (nuclear

pleomorphism) of the nucleus within tumour cells and the presence of abnormally
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dense chromatin (hyperchromasia). Lower grade (grade 2) gliomas exhibit minimal

nuclear atypia, whereas higher grade (grade 3-4) have marked to severe nuclear

atypia33,34.

Mitotic activity (M) – a key indicator of a tumour’s proliferative capacity. This is

measured using haematoxylin and eosin staining (H&E) which detects the pres-

ence of mitotic figures that appear as darkly stained sections and represent cells

undergoing chromosomal condensation35. Mitoses are counted in ten consecutive

HPF and form the mitotic index measure. Lower grade (grade 2) gliomas exhibit

minimal mitosis, whereas higher grade (grade 3-4) gliomas show increased mitotic

activity that correlates with a poorer prognosis26. Immunohistochemistry (IHC)

with antibodies for Ki-67 and phosphohistone H3 (pHH3) are also commonly used

to assess the degree of malignancy36–38.

Microvascular proliferation (E) – this was previously known as endothelial prolif-

eration and refers to the aberrant growth of the vasculature within the tumour.

The endothelial cells form glomeruloid structures which can be observed using

H&E staining. This feature is a hallmark of higher grade (grade 4) gliomas where

it is indicative of aggressive tumour behaviours and a worse prognosis39.

Necrosis (N) - This is detected in varying amounts across multiple different cancer

types and refers to areas of dead cells within the tumour40. Histologically this is

seen using H&E staining with acellular areas that comprise nuclear debris that

are surrounded by hypercellular zones of viable tumour cells (pseudopalisading

necrosis)40. Necrosis is largely absent from lower grade gliomas, though is a key

criterion for classifying higher grade (grade 4) gliomas41.

1.4 IDH-wildtype glioblastoma

IDHwt GBM is the most prevalent type of glioma with an incidence rate of 2.66

per 100,000 people and predominately affects older adults with a median age

at diagnosis of ∼65 years old42. There is a slight preponderance toward males

with a 3:2 (male:female) ratio and white patients are more frequently affected

compared with other ethnicities as evidenced by the diverging prevalences between

Europeans/North Americans (3-4 per 100,000) and Asians (0.59 per 100,000)42,43.

The vast majority (∼90%) of IDHwt GBM tumours develop de novo and as such

are termed primary tumours, as opposed to secondary GBM tumours which arise

from progression of a prior lower-grade glioma44. Although primary and secondary

tumours are histologically indistinguishable, they have specific molecular, genetic
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and epigenetic profiles. Secondary GBM tumours are typically found in younger

patients and carry an IDHmut, resulting in a significantly better prognosis com-

pared to primary GBM tumours which are highly aggressive and contain larger

patterns of necrosis45.

1.4.1 Clinical presentation & diagnosis

The clinical presentation of GBM is varied and depends on several factors includ-

ing the tumour size, location and associated edema within the brain. The most

widely reported symptoms are: headaches which are triggered by the Valsalva ma-

neuver and further exacerbated by lying down, coughing or bending over; nausea

and vomiting due to brainstem compression; cognitive impairment and personality

changes such as memory loss, confusion, lethargy and mood swings; focal neuro-

logical deficits; and seizures (∼20% of cases)45,46. In more acute cases (<2%)

some patients experience inter-tumoural hemorrhaging and present with stroke-

like symptoms47. The pre-operative diagnosis of GBM is initially conducted using

the patients clinical history and multimodal imaging techniques such as structural

magnetic resonance imaging (MRI) with gadolinium; computed tomography (CT)

and positron emission tomography (PET)48,49. Historically this process was largely

qualitative and relied exclusively on the interpretation of radiologists. However,

recent developments in CT, MRI, and artificial intelligence have introduced quan-

titative components which are used to supplement subjective analysis49. More

novel techniques such as theranostics have also been explored for use in GBM and

remain under active development49,50. This technique utilises radioactive nuclides

coupled via a linker to an antibody for a cellular target/receptor that can be used

both for imaging (with a PET scanner) and delivering therapeutic radiation to

cancer cells50. Histological and molecular diagnostic techniques are used to con-

firm an initial diagnosis and also to further refine the tumour classification, after

patients have undergone surgical intervention.

1.4.2 Molecular features

The current WHO CNS5 scheme defines IDHwt GBM tumours based on pres-

ence of three main genetic aberrations (TERT, EGFR and chromosome 7 gain

and chromosome 10 loss (Ch +7/-10)) that are routinely tested for as part of the

diagnosis process using a combination of Sanger sequencing; next generation se-

quencing (NGS); fluorescence in situ hybridization (FISH) and polymerase chain

reaction (PCR) techniques6.
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MGMT gene promoter methylation and protein expression are both important

molecular features in GBM classification. Clinically, however, they are primarily

used as prognostic markers for predicting response to alkylating chemotherapy, and

therefore, will be discussed in more detail in the following section on treatment.

TERT mutation

TERT refers to the catalytic subunit of telomerase, an enzyme which plays a criti-

cal role in maintaining telomere lengths51. Telomeres are short, tandem repeats of

deoxyribonucleic acid (DNA) sequences (TTAGGG in humans) found at the ends

of chromosomes, and are pivotal in maintaining genomic stability and integrity,

by preventing DNA degradation and end-to-end fusions52. Most somatic cells

have limited or absent telomerase activity, leading to gradual telomere attrition

over successive cell division cycles; however, in germ cells, stem cells and highly

proliferative cells such as cancer cells, telomerase is frequently reactivated51,52.

In GBM tumours, TERT promoter mutations are found in 70–90% of cases, driv-

ing telomerase reactivation, enabling tumour cells to bypass replicative senescence

and sustain uncontrolled proliferation53. The reactivation of TERT occurs due to

mutations located at −124 base pairs (bp) and −146 bp upstream of the TERT

translation start site54. These mutations create sequences which represent a bind-

ing motif for the E26 transformation-specific family transcription factor which

increase TERT transcription and telomerase activity54.

The prognostic significance of TERT mutations depends on IDH status and the

presence of chromosome 1 short arm and chromosome 19 long arm loss (1p19q)

codeletion. Triple-positive lower grade gliomas (positive for TERT, IDHmut, and

1p19q codeletion), result in a much better prognosis compared with IDHmut GBM

tumours, which in turn have an even worse overall prognosis compared with triple-

negative gliomas24.

EGFR amplification

Receptor tyrosine kinases (RTKs) are trans-membrane glycoproteins which medi-

ate cell-cell interactions and are involved in biological functions such as cell motil-

ity, differentiation, proliferation and metabolism55. Most RTKs are activated via

ligand binding to an extracellular domain which induces a conformational change

in an intracellular catalytic domain55. This activation facilitates the recruitment

of additional proteins which trigger signalling cascades that integrate different
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signalling pathways56. There are 58 known RTKs in humans57: several RTK en-

coding genes such as EGFR, platelet derived growth factor receptor (PDGFR),

and the mesenchymal epithelial transition (MET) factor receptor are implicated

in GBM development56.

EGFR is the most frequently amplified RTK in GBM and seen in ∼40-50% of all

primary GBM tumours and retained through treatment in ∼80% of patients58,59.

The amplified genes are often located on extrachromosomal circular DNA known

as double minutes which are formed during chromothripsis: a chromosomal re-

arrangement event where one or more chromosomes shatter into pieces, then re-

assemble in an unnatural order and/or orientation60. In addition to amplification,

EGFR genes can also harbour point mutations or deletions: the most frequently

occurring deletion is found in exons 2-7 within the extracellular domain of EGFR,

resulting in a truncated mutant variant (EGFRvIII). This specific deletion is found

in ∼50% of all cases and leads to constitutive activation of the EGFR receptor,

independent of ligand binding61,62.

The prevalence of EGFR across multiple cancers has made it a prominent tar-

get of therapeutic intervention by inhibition. This approach has been successful

in the treatment of colorectal, head, neck and lung cancers63–65, though to-date

has proven unsuccessful in GBM66. The reasons for this include differences in

tissues, therapeutic accessibility and the molecular heterogeneity amongst EGFR:

the EGFR mutations in GBM occur within the extracellular domain whilst in

other cancers they occur in the intracellular kinase domain67.

Chromosome +7/-10 alterations

The co-occurrence Ch +7/-10 is commonly found in IDHwt GBM and distin-

guishes it from other lower-grade gliomas60,68. Although this signature is preva-

lent and characteristic, its presence alone is not shown to be prognostic in IDHwt

GBM, though the partial loss of chromosome 10, compared with the complete

loss is associated with a better prognosis69,70. Both +7 and -10 are thought to

occur early in gliomagenesis, with some studies suggesting that chromosome 10

loss precedes the 7 gains, though the exact ordering remains unclear71,72. Three

separate regions are most frequently associated with chromosome 10 loss, with one

on the shorter arm (10p) and two on the longer chromosomal arms (10q)73. The

tumour suppressor phosphatase and tensin homolog (PTEN) is located at 10q and

is suggested as playing a role in GBM tumourigenesis74, in addition to other genes

such as ANXA7, ADARB2, and KLF675,76. The polysomy of chromosome 7 typi-

cally involves the entire chromosome, with EGFR and MET - two key oncogenes
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located on the 7p and 7q arms, respectively - believed to contribute significantly

to the selective advantage conferred by this alteration77. Recently, several studies

have suggested that there is no small set of genes which explain the Ch +7/-10

pattern, but rather it is shaped by the accumulation of multiple haploinsufficient

and triplosensitive genes78,79. What is clear is that this aneuploidy signature is

important in identifying IDHwt GBM tumours, which is why it was introduced

alongside EGFR and TERT in the most recent WHO classification (CNS5)6.

1.4.3 Treatment

Surgery

The first treatment stage following diagnosis is to de-bulk the tumour mass and

relieve intracranial pressure but also provide tissue samples for further molecular

and histopathological testing. The guiding principle for resecting gliomas is termed

maximal safe resection and attempts to remove as much tumour as possible, whilst

preserving healthy neurological function80. However, this is an inherently difficult

task owing to the diffuse nature of GBM, which extends beyond the visible tumour

mass into surrounding brain tissue. Moreover, there is no objective standard for

determining the extent of maximal safe resection, leading to variability depending

on the surgeon attempting the resection80. Recently, the response assessment in

neuro-oncology (RANO) classification system was developed, in an effort to stan-

dardise the extent of tumour resections, though this isn’t routinely used in clinical

practice81. The classification, grouped resections into four categories based on dif-

fering median survival rates; 1.) Supramaximal Resection (∼24 months); 2.) max-

imal contrast-enhancing resection (∼19 months); submaximal contrast-enhancing

resection (∼15 months) and biopsy (∼10 months)81. The entire surgical pro-

cess is guided by MRI, which is the gold standard for diagnosing and monitoring

GBM. Surgeons utilise different MRI sequences to obtain complementary informa-

tion about tumour location, infiltration, and response to treatment (Table 1.1).

Traditionally, surgery has focused on gross total resection (GTR), which aims

to remove all contrast-enhancing tumour visible on T1-contrast enhanced image

(T1-CE) MRI80,82. Although, this can extend patient survival to 20-25 months in

cases where it is achieved, it does not eliminate non-enhancing infiltrative tumour

regions that ultimately contribute to recurrence82. To address this limitation, a

process known as supramaximal resection (SMR) is also used where possible. This

process extends beyond GTR by removing additional tissue, as determined by T2

fluid-attenuated inversion recovery image (T2-FLAIR) regions, accounting for mi-
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croscopic tumour infiltration81–83. This approach has significant advantages over

GTR, with patients who undergo SMR showing improved PFS and OS84,85.

Awake craniotomies are common-place when resecting GBM tumours, as they

allow surgeons to monitor language and motor function during surgery, reducing

the risk of postoperative deficits86. Additionally, the use of the fluorescent dye

5-aminolevulinic acid (5-ALA) has been shown to improve the extent of tumour

resection in GBM patients, as it improves visualisation of tumour margins under a

red-light illumination source87. The use of artificial intelligence is also starting to

be integrated into surgical planning to assist in real-time boundary identification

and is expected to be used more widely in future80.

Table 1.1 | Summary of MRI sequences used in GBM.

MRI Sequence Key Features Clinical Use in GBM

T1-weighted
image (T1-W)

Anatomical brain
structures.

Preoperative
planning/diagnosis.

T1-CE Areas where the
blood-brain barrier is
disrupted.

Define the main tumour mass to
guide GTR and detect recurrent
tumours.

T2-weighted
image (T2-W)

Fluid and edema. Identify tumour-associated
swelling and distinguish between
tumour and necrotic areas.

T2-FLAIR Same as T2-W but with
normal cerebrospinal
fluid (CSF) signals
removed.

Define area of tumour spread
beyond contrast enhancement
to guide SMR and track
progression and
radiation-related changes.

diffusion-
weighted image
(DWI)

Water molecule
movement in the brain.

Differentiate between high-grade
tumours vs cysts and identify
ischemic damage during surgery.

apparent
diffusion
coefficient image
(ADC)

Water diffusion within
the brain.

Define cell density and
determine tumour grade and
treatment response.

perfusion-
weighted image
(PWI)

Blood flow within brain
and tumour.

Differentiate high-grade vs.
low-grade gliomas and areas of
necrosis.

magnetic
resonance
spectroscopy
(MRS)

Metabolic composition
of the tumour.

Differentiate GBM from lower
grade metastases and assess
metabolism to monitor
treatment response.
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Concomitant radiotherapy and chemotherapy

Following surgical resection, the standard of care treatment for primary GBM

tumours is known as the Stupp protocol and has been used in clinical practice

for the past 20 years88. In this protocol patients are treated with a combination

of radiotherapy and chemotherapy with the oral alkylating agent temozolomide

(TMZ). TMZ works by transporting methyl groups at the O6 and N7 positions

of guanine, and at the N3 position of adenine during DNA replication, forming

cytotoxic O6-methylguanine, N7-methylguanine, and N3-methyl-adenine89. These

groups form lethal mismatched base pairs lesions, that cause single- and double-

stranded DNA breaks, which give rise to cell cycle arrest at G2/M followed by

apoptosis89,90.

The radiotherapy regimen comprises of fractionated focal doses of 2 gray (Gy) per

fraction, five days per week, over six weeks, resulting in a total dose of 60 Gy88.

Concomitantly, patients also receive daily oral TMZ which is dosed according

to the patient’s body surface area (BSA) at 75mg per square meter of BSA88,91.

Following the completion of radiotherapy, patients enter the adjuvant phase where

they receive six cycles of TMZ, given at a higher dosage (150–200mg per BSA) over

five days within 28-day cycles88,91. This combined approach has been shown to

significantly extend median survival from 12.1 months to 14.6 months, compared

with radiotherapy alone and has a two-year survival rate of 26.5% compared to

10.4%88,92. A key predictor for the effectiveness of the Stupp protocol is the

methylation status of the MGMT gene promoter93.

MGMT methylation

MGMT is a DNA repair enzyme that protects cells from DNA mismatch damage

that, if left unrepaired, leads to apoptosis and cell death93. Specifically, it works by

repairing the DNA lesions created by TMZ, conferring cells’ resistance to TMZ93.

The expression level of MGMT protein is regulated by epigenetic mechanisms;

when the gene promoter region is methylated the gene is silenced and the MGMT

protein levels are reduced93. Consequently, this reduction causes decreased DNA

repair and makes cancer cells more susceptible to TMZ-induced DNA damage,

thereby improving patient response to the treatment93. This is why MGMT pro-

moter methylation is considered an important prognostic marker and is detailed

in the WHO CNS5 scheme as it can help clinicians predict response to standard

treatment6,91.
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Other treatments

Patients who have unmethylated MGMT promoters have a poorer response to the

standard treatment of care and have a worse OS92,93. Although it has reduced

effectiveness in this cohort, the recommended chemotherapy strategy for these

patients still includes the Stupp protocol, as there are currently no better alter-

natives available91. In cases where patients are younger, combining TMZ with

another alkylating agent, Lomustine (CCNU) may be an option, though this ap-

proach has higher toxicity and its efficacy remains inconclusive94. Likewise, at

least one study has suggested that TMZ should be omitted altogether in elderly

patients (>70 years of age) with unmethylated MGMT promoters as combined

therapy results in a worse survival outcome95. There are also several novel treat-

ments/technologies that are being developed and are available to patients willing

to participate in clinical trials. These can be broadly grouped in to following

categories: 1.) Molecular therapies, e.g., EGFR inhibitors; 2.) Immunotherapies,

e.g., chimeric antigen receptor T cell (CAR-T) therapy and Dendritic vaccines;

3.) Gene therapies, e.g., clustered regularly interspaced short palindromic repeats

(CRISPR) gene editing; 4.) tumour-treating fields (TTFs); 5.) Angiogenesis

inhibitors, e.g., Bevacizumab; 6.) Stem cell therapies96–98. Although these ap-

proaches may show promise in future, to-date none have been superior to either a

placebo or the standard treatment of care in randomised clinical trials96.

1.4.4 Definition of GBM used in this thesis

Throughout the remainder of this thesis, the term GBM will be used to refer to

the following tumour samples, unless stated otherwise:

• Grade 4, IDHwt GBM as defined by WHO CNS5.

• Methylated/unmethylated or unknown MGMT promoter status.

• Obtained from patients who received the standard treatment of care: surgical

resection followed by the Stupp protocol.

• The first recurrent resected tumours.

• Only locally recurrent, i.e., primary and recurrent tumours from the same

brain location.
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1.5 GBM molecular subtypes

In 2008, the cancer genome atlas (TCGA) project began a large-scale, multi-

dimensional analysis of over 20,000 primary cancers and matched normal samples,

spanning 33 cancer types99. GBM was the first tumour type to be profiled: the

genetic profiles of 206 GBM tumours were analysed using RNA-seq100. Subse-

quently, TCGA expanded its scope to include additional layers of cancer biology

through integrative multi-omics approaches comprising DNA methylation, copy

number variation (CNV), chromatin accessibility (e.g., ATAC-seq), proteomics,

and immune profiling101–104. More recently, whole genome sequencing was also

incorporated to capture non-coding alterations and identify novel cancer driver

mutations105.

In the context of GBM, this initiative identified somatic alterations that were

present across 74% of tumours which affected three main pathways100,101: 1.) the

RTK pathway; 2.) the p53 tumour suppressor pathway; 3.) The retinoblastoma

(Rb) cell-cycle regulation pathway. Moreover, they highlighted the heterogene-

ity GBM tumours display and hinted towards the existence of distinct molecular

subgroups.

Building on this work, Phillips et al. transcriptionally profiled high-grade gliomas

and identified three distinct gene signatures that associated with differing patient

survival outcomes: proneural, proliferative and mesenchymal106. Verhaak et al.

later expanded this framework by identifying four molecular subtypes based on

transcriptional profiling: proneural, neural, classical and mesenchymal107. Each

subtype was linked with specific genetic alterations and distinct clinical outcomes,

that helped explain differences in treatment response among GBM patients.

Subsequent studies further refined the four Verhaak et al. subtypes108. The

proneural group was found to include many IDHmut GBM tumours, accounting for

the younger age and had a better prognosis observed in this subtype107,109. Exclud-

ing these cases aligned survival outcomes with those reported for IDHwt GBM43.

Additionally, the neural subtype was removed after it was shown to result from

contamination by non-malignant neural cells, as revealed through tumour-intrinsic

gene clustering108. Thenceforth, IDHwt GBM tumours have been classified into

three molecular subtypes: proneural (PN); classical (CL) and mesenchymal (MES)

(Figure 1.3A). These subtypes represent distinct biological programs, each associ-

ated with specific genetic aberrations, signalling pathways, clinical outcomes and

tumour microenvironmental profiles as discussed below.
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1.5.1 Proneural

PN subtype tumours feature aberrations in PDGFR and are enriched in genes as-

sociated more with neural and oligodendrocytic progenitor cell phenotypes. They

have high tumour purity, low levels of immune infiltration and reduced stromal cell

signals. Although, they have a more favourable survival outcome compared with

MES, they can be less responsive to aggressive treatments and have been shown to

switch at tumour recurrence. PN tumours typically have a higher transcriptional

simplicity score, i.e., their gene patterns are more homogenous/uniform and have

reduced admixture from CL or MES subtype signatures.

1.5.2 Classical

CL tumour subtypes display the Ch +7/-10 chromosomal aneuploidy signature

and resemble proliferating astroglial cell phenotypes. Most CL subtype tumours

amplify genes involved in RTK signalling, such as EGFR which has 4-fold higher

expression. They also commonly (>70% of cases) display deletions in the CDK2A/B

gene, which is a well-established tumour suppressor present across multiple can-

cers. These tumours have low levels of immune cell infiltration and are the most

sensitized to intensive standard treatments, particularly at recurrence, resulting

in a better overall patient survival.

1.5.3 Mesenchymal

MES subtype tumours are most prevalent at recurrence and have the worst prog-

nosis, particularly in cases where tumours are more transcriptionally homogenous.

They are enriched for genes associated with inflammation, wound-healing and ex-

tracellular remodelling, expressing markers such as MET and CHI3L1/YKL40.

MES subtype tumours consistently exhibit low tumour purity and high immune

cell infiltration, mainly from the myeloid lineage immune cells such as M2 macro-

phages and brain-resident microglia. Moreover, 53% of MES tumours show fre-

quent inactivation of the neurofibromin 1 (NF1) gene. NF1 loss through inactiva-

tion results in altered cytokine production and recruitment of immune cells which

promotes an immunosuppressive and pro-tumourigenic environment.

Although GBM tumours can be classified into the three discrete molecular sub-

types detailed above, these labels only represent a dominant phenotype and do not

capture their full biological complexity. In reality, GBM tumours are highly het-

16



1. Introduction

erogeneous, comprising distinct cell populations and regions that exhibit different

subtype signatures within the same tumour mass110. This heterogeneity partially

explains the observed subtype switching that can occur during GBM disease pro-

gression, such as the transition from PN to MES at recurrence - a shift commonly

associated with treatment resistance.

1.6 Glioma stem cells

Prior to the studies which molecularly profiled GBM tumours, Singh et al. in

2004 presented evidence for a rare population of stem-like cell, which were termed

glioma stem cells (GSCs)111. These cells were identified in vivo using immunode-

ficient mice that were transplanted with cells expressing stemness associated cell

membrane markers such as CD133, CD15, CD44, A2B5 or intracellular markers

such as SOX2 and Nestin111–113. Singh et al. and others, reported that GSCs

could self-renew, proliferate continuously and recapitulate a GBM tumour’s orig-

inal histology, suggesting that such properties enabled GBM tumours to resist

therapy, repopulate and recur. It is thought that cellular heterogeneity in GBM

is directly correlated with the size of the GSC population in the GBM tumour

microenvironment (TME): GBM tumours with higher proportions of GSCs have

a worse survival outcome114.

Initially, the prevailing view was that GSCs behaved much like other cancer stem

cells (CSCs); in that they followed a unidirectional hierarchy (Figure 1.3B) where

stem cells create progenitors which then leads to more differentiated cells115,116. In

this model reversibility is restricted between closely related progenitors and CSCs.

However, Bhat et al., demonstrated how PN GSCs could switch to a mesenchymal

signature when exposed to the cytokine tumour necrosis factor-alpha (TNFα) that

is released by macrophages117. Moreover, this study also mechanistically linked

GSC plasticity with TME cell signals, showing how they both facilitate treatment

resistance. More recently, a growing body of work supports the hypothesis that

GBM cells including GSCs and non-stem tumour cells can stochastically alter

their phenotypes and also revert to CSC phenotypes (Figure 1.3A)118–120. This

plasticity has significant implications, as removing the GSCs population alone is

not sufficient, and treatments must also account for the ability of differentiated

cells to revert to more treatment resistant stem-like cells.

The specific mechanisms GSCs employ to resist treatment include increasing DNA

damage repair, blocking apoptotic signalling, altering DNA checkpoints, express-

ing of adenosine triphosphate (ATP)-binding cassette transporters to increase drug
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efflux and inactivating drugs by upregulating glutathione S-transferases (GSTs)

detoxication enzymes121.

1.7 GBM malignant cell states

Bulk transcriptional analyses such as those used to define the molecular subtypes

above, provide an aggregated view of millions of cells within a GBM tumour, but

do not adequately capture the variability between individual cells. In order to

achieve this much higher resolution is required and the development of single-cell

RNA sequencing (scRNA-seq) in the 2010s provided us with such a technology.

Patel et al. was the first to profile GBM at the single-cell level, sequencing 430 cells

across five patients122. Cells for the same patient tumours varied greatly in their

expression of markers for different molecular subtypes and oncogenic signalling

(EGFR, PDGFR). Moreover, the key finding from Patel et al. was that GBM cells

reside on a continuum of stemness, hypoxia, proliferation and quiescence. This

intra-tumoural transcriptional heterogeneity may explain why novel single-target

treatments such as molecular therapies show such low efficacy, as subpopulations

of GBM cells not reliant on that target, persist and drive tumour recurrence.

1.7.1 Neftel et al. (2019)

More recently, as the cost of scRNA-seq technologies has reduced and become

more widely accessible, larger studies have confirmed and further expanded upon

Patel et al.’s seminal findings. In 2019, Neftel et al. used an integrative approach

with scRNA-seq, cell lineage tracing and combined functional assays to compre-

hensively profile 28 GBM tumours123. They identified that malignant GBM cell

heterogeneity is driven by four neoplastic cellular states (Figure 1.3A): astrocyte-

like (AC-like), oligodendrocyte progenitor-like (OPC-like), neural progenitor-like

(NPC-like), and a mesenchymal-like (MES-like) state123. The NPC-like, OPC-like,

and AC-like states express signatures corresponding to neurodevelopmental pro-

grams, whilst MES-like cells do not mirror any normal brain cells. Each tumour

comprised a mixture of multiple neoplastic cell states, present in varying propor-

tions, though the dominant state in a given tumour matched its bulk molecular

subtype. They also confirmed Patel et al.’s finding of plasticity between the cell

states using single-cell lineage tracing experiments in mice, further supporting the

hypothesis that GSCs do not follow a hierarchical differentiation organisation. In

parallel to Neftel et al. numerous other studies found similar gradients of GBM cell
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plasticity, with some incorporating additional cellular properties such as cellular

specialization, metabolism, TME and injury responses124–132.

1.7.2 Wang et al. (2019)

While Neftel et al.’s four-state model is a prominent framework for understanding

malignant GBM cell heterogeneity, other important and overlapping models have

also been proposed. Notably, Wang et al. used scRNA-seq to describe GBM het-

erogeneity as a bi-modal continuum along a single axis of variation (Figure 1.3A),

spanning from PN to MES phenotypes124. The PN end was marked by high ex-

pression of oligodendrocyte and neuronal genes and increased cell proliferation.

Conversely, the MES end was characterised by mesenchymal markers, reduced

proliferation and markers related to hypoxia and proinflammatory cytokines. A

key focus of Wang et al.’s work was to examine the classical GBM subtype, which

they found comprised of a mix of PN and MES phenotypes, enriched with AC-like

cells, mesenchymal GSCs, and variable immune cell infiltration124.

Crucially, the bi-directional PN to MES model aligns with Neftel et al.’s four-cell-

state model: the two MES states correspond directly, and the combined NPC-like

and OPC-like states align with PN. The AC-like state doesn’t perfectly align

with either PN or MES and is considered to be a transitional state, leaning more

towards the MES.

A recent meta-analysis of over 100 single-cell and bulk transcriptomic datasets

supports the view that GBM phenotypic variation occurs primarily along a PN

to MES axis133. The authors argued that other previously defined states (AC-like

and OPC-like) and subtypes (classical and neural) are better interpreted as inter-

mediate or transitional stages along this continuum, rather than discrete entities.

Notwithstanding, this evolving view reflects the dynamic and continuous nature

of GBM malignant cell identity. What remains clear is that malignant GBM cell

states mirror neurodevelopmental cell hierarchies and/or adopt programmes as-

sociated with wound-healing (MES-like) that promote GBM malignant cellular

heterogeneity. This heterogeneity poses major challenges for treating GBM: the

presence of multiple distinct malignant cell populations means that resistance and

disease progression only requires the survival of one such subpopulation.

The following section will briefly discuss what is currently known about the pro-

cesses and mechanisms that facilitate treatment resistance among malignant GBM

cell subpopulations.
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Figure 1.3 | Glioma stem cells, cell states and molecular subtypes.

A) Malignant GBM cells exist across several transcriptionally distinct states
that resemble neurodevelopmental progenitors: OPC-like, NPC-like, AC-like,
and MES-like cells. These neoplastic populations are highly dynamic and exhibit
plasticity, transitioning between states in a non-hierarchical manner. GSCs sit at
the apex of the GBM stemness/entropy hierarchy, facilitating these transitions.
Each progenitor-like state is influenced by specific genetic, microenvironmental,
and therapeutic cues, which act as attractors driving transitions between states.
GBM tumours comprise varying proportions of neoplastic cell states, which
collectively underpin TCGA molecular subtypes: Proneural are enriched in
NPC-like and OPC-like; classical are dominated by AC-like; and MES are
characterised by the MES-like cell state. B) Illustration of normal,
unidirectional, neuronal cell differentiation. Progenitor cells can self-renew;
however, they do not switch once committed to a lineage. Created using
BioRender.

1.8 GBM treatment resistance

Treatment resistance of malignant GBM cells following standard therapy is a ma-

jor therapeutic challenge against limiting GBM disease progression. It is well-

established that malignant GBM cells survive standard-of-care treatment, by ac-

tivating mechanisms that protect against and/or reverse the effects of standard

therapy121. However, it is unclear whether therapeutic intervention is the driver

of resistance in GBM, i.e. does it exert a selective pressure that facilitates the

survival of resistant subclones in a Darwinian-like manner?

To answer this, Barthel et al. and Körber et al. independently profiled the evolu-

tionary trajectories of paired GBM tumour samples71,72. Both studies found that

genetic alterations present in primary GBM tumours, persisted and remained

unchanged through treatment. These findings suggest that standard treatment

exerts minimal selective pressure on GBM cell populations and that resistant cells

arise from enrichment of pre-existing genetic diversity rather than newly acquired

mutations. Building on this, Varn et al. and Hoogstrate et al. considered how

transcriptional, rather than genetic changes, between paired GBM tumour samples

contribute to treatment resistance134,135.

Varn et al. found enrichment of profiles associated with neuronal signalling and

mesenchymal transition within recurrent GBM cells135. This shift was largely

driven by specific interactions within the TME, most notably, increases in myeloid

cells associated with the MES-like GBM cell state. Similarly, Hoogstrate et al.
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found that GBM tumour progression through treatment was characterised by

decreased tumour purity, marked by a reduction in malignant GBM cells and

an increase in normal brain cells, tumour-associated macrophages and vascular-

mediated remodelling of the extracellular matrix134. Wang et al. further validated

these findings using a multi-omics approach that integrated single-cell and spatial

transcriptomics with proteomics to profile 86 matched GBM tumour samples136.

Building on their previous work which identified the PN to MES axis of varia-

tion in GBM cells, they found that most GBM patients undergo a shift (shaped

by treatment) from PN to MES at recurrence. This transition toward a more

resistant phenotype is driven by the upregulation of transcriptional programmes

associated with inflammation/invasiveness and sustained by specific immune cell

interactions with GBM cells, such as tumour-associated macrophages136.

We recently profiled 107 paired GBM tumour samples and stratified patients into

Up and Down responders based on the differential dysregulation of cancer cell-

intrinsic genes regulated by a chromatin remodelling complex137. Up responders

were more quiescent, expressing proneural phenotype markers, whereas Down re-

sponders were more proliferative, expressing mesenchymal phenotype markers.

These differences were demonstrated in vitro and ex vivo using GBM models and

were also found to be influenced by distinct non-malignant cell populations within

the GBM TME.

Collectively, all these studies indicate that GBM evolution is driven by reorgani-

sation and adaptation of the TME with significant involvement of non-malignant

cells, including immune, stromal and vascular components.

1.9 GBM tumour microenvironment

GBM tumours do not solely comprise of a homogenous mass of malignant cells, in-

stead malignant GBM cells are heavily influenced by their surrounding TME138,139.

The GBM TME is a highly dynamic niche which through complex interactions fa-

cilitates tumour growth, immune invasion, treatment resistance and also directly

influences the frequency of cells in each neoplastic cell state123. In addition to

malignant cells, the GBM TME is comprised of non-cancerous, normal brain cells

(astrocytes, oligodendrocytes, neurons and microglia); tumour-resident and infil-

trating immune cells (of myeloid and lymphoid lineages); vasculature components

(pericytes and endothelial cells); and a rich milieu of extracellular components

such as proteins, cytokines, and metabolic factors138,140.
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1.9.1 Non-cancerous brain cells

Astrocytes

Astrocytes are the most abundant cells within the brain (∼50% of all cells) and

are critical for maintaining neuronal homeostasis141. They achieve this by per-

forming varying functions depending on their phenotype and location within the

brain e.g., they regulate the blood-brain barrier (BBB) through interactions with

vasculature141. They also modulate the release of neurotransmitters between neu-

rons and are involved in repairing damaged tissue following injury. With respect

to the latter, astrocytes undergo a process known as astrogliosis where they switch

to a reactive astrocyte phenotype that promotes wound-healing by upregulating

growth factors and adhesion proteins141. In GBM, malignant cells can hijack this

response and spawn tumour-associated reactive astrocytes (TARAs)141,142. These

abnormal astrocytes facilitate GBM tumourigenesis by secreting chemokines such

as transforming growth factor-beta (TGFβ) and interleukin 6 (IL-6), which is

associated with a more inflammatory, MES-like cell state. TARAs are also impli-

cated in being able to assist GBM cells boost their cell metabolism, by horizontal

transfer of mitochondria via microtubules143. They have also been shown to able

to form gap junctions between GBM cells in order to exchange toxins and small

molecules to avoid programmed cell death138,144.

Oligodendrocytes

Oligodendrocytes are another important glial cell within the brain responsible for

maintaining homeostasis by mediating neural plasticity and coordinate metabolic

support to neurons through axon myelination145,146. Myelin is a fatty-acid layer

which ensheathes neurons fibres, increasing the speed and efficiency of neural elec-

trical signals, that are essential for cognitive function147. Although the turnover

of myelin in the brain is high, oligodendrocyte turnover is extremely low (1 in

3000 cells per annum), suggesting that this process is facilitated by mature oligo-

dendrocytes148. In GBM, they are most commonly found at the tumour margins

suggesting they are implicated more with GBM migration/infiltration at the resec-

tion border, as opposed to proliferation145. This has been determined experimen-

tally where inhibiting cytokines released by oligodendrocytes such angiopoietin-2

resulted in reduced infiltration and increased patient survival149. One way they

support GBM cell infiltration into the brain parenchyma is by promoting angio-

genesis150.
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Neurons

Parenchymal neurons are a crucial constituent of the GBM TME as they di-

rectly interact with malignant GBM cells, exerting mitogenic effects that pro-

mote tumour growth. They do this by secreting the synaptic protein neuroligin-3

(NLGN3), and to a lesser extent the brain-derived neurotrophic factor (BDNF)

which induces the PI3K/AKT/mTOR signalling pathway (PAM)151. The PAM

pathway is highly conserved in eukaryotes and regulates cell survival, growth and

proliferation by tightly modulating many additional pathways: its dysregulation

is observed across multiple cancer types152. GBM cells have also been shown to be

able to integrate into neural circuits by expressing synaptic genes and forming glu-

tamate receptor-dependent synapses with neurons153,154. These synapses facilitate

the transfer of electrical signals between normal neurons and GBM cells. More-

over, because GBM cells are often connected to each other via gap junctions this

results in the formation of electrically coupled networks, where electrical impulses

can easily propagate throughout the tumour138,154. This phenomenon could also

explain why some GBM patients experience seizures that are typically only seen

in cases with the worst prognosis45. The degree of connectivity between GBM

cells and neurons in the GBM TME correlates with a worse patient survival and

increased impairment of cognition, as demonstrated in patients when performing

lexical retrieval language tasks during awake surgery153.

1.9.2 Immune cells

The CNS (and by extension the GBM TME) has historically been considered to be

immune-privileged, owing to the presence of the BBB. Consequently, brain tissue

defence heavily relies on innate mechanisms mediated by normal brain cells such

as neurons, astrocytes and also brain-resident immune cells such as microglia155.

This view has now shifted with the discovery of lymphatic drainage systems such

as the meningeal lymphatic compartment located under the skull and drainage to

the cervical lymph node compartment156. These systems have been demonstrated

within mouse models157, but the relevance to GBM remains unknown: the brain

parenchyma is not directly connected to these compartments, and primary GBM

metastases are rare158. More recently, tertiary lymphoid structures (TLSs) have

been found in GBM which may serve as sites for T cell priming and immune

infiltration159.
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Myeloid cells

Macrophages and microglia (collectively known as glioma-associated macrophages

(GAMs)) are the most abundant immune cells found within the GBM TME, com-

prising up to 50% of all cells160. Microglia are brain-resident macrophages which

derive from yolk sac precursors during embryonic development and self-renew in

the CNS160. In contrast, macrophages are derived from bone-marrow progenitors

that migrate to the CNS as monocytes and then differentiate in response to lo-

cal stimuli160. Microglia are found located within the brain parenchyma, whereas

macrophages are found near blood vessels and in the brain meninges – the outer

layer between the brain and the inner skull bone161. Further, in GBM, microglial

GAMs are found in the tumour margins and infiltrating zones, whilst macrophage

GAMs are more prominent in tumour recurrence and areas of necrosis where there

is high hypoxia162. Phenotypically, GAMs are heterogeneous, sitting on continuum

between two functional extremes: a pro-inflammatory (M1) state and an immuno-

suppressive, tumour-promoting (M2) state162,163. They also exhibit a large degree

of plasticity being able to move between M1 and M2 phenotypes in response to

external stimuli.

M1 GAMs directly kill tumour cells by phagocytosis and induce the adaptive im-

mune response by presenting antigens to T cells and also releasing cytokines such

as TNFα, and IL-6164,165. M2 GAMs promote GBM tumourigenesis by releasing

cytokines such as TGFβ, vascular endothelial growth factor (VEGF) which pro-

motes angiogenesis166. They also release matrix metalloproteinases (MMPs) such

as MMP2 and MMP9 which degrade and remodel the GBM extracellular matrix,

hampering cell-cell communication and creating favourable conditions for tumour

infiltration167. Hypoxia induced M2 GAMs release VEGF which can promote

epithelial-to-mesenchymal transition (EMT) programs in GBM cells168. Similarly,

M2 GAMs can also directly induce the MES-like cell state in GBM cells by bind-

ing to the oncostatin M receptor (OSM)132. Immunosuppression by M2 GAMs is

achieved by releasing interleukin 11 (IL-11) to recruit additional GAMs which can

then inhibit the activation of T cells, natural killer cells (NK cells) and dendritic

cells (DCs)169. The paracrine mechanisms employed by M2 GAMs that create an

immunosuppressive TME can equally be initiated by GBM cells160.

DCs are another important myeloid lineage cell within the GBMTME. DCs are po-

tent antigen-presenting cells which capture GBM tumour antigens and co-ordinate

the adaptative immune response by activating T cells and B cells170. Although

they comprise a very small proportion of all cells within the GBM TME, they

act as an important bridge between the innate and adaptive immune response171.
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Given this fact, a group of emerging treatments have attempted utilise DCs to

promote a tumour-specific immune response through effective tumour antigen pre-

sentation in the form of dendritic cell vaccines (DCVs)172. The purported benefit

being that DCV generate cytotoxic anti-tumour responses against multiple GBM

tumour antigens compared with other therapies which are more antigen specific

such as CAR-T therapies171,172.

Lymphoid cells

NK cells are lymphoid cells that form part of the innate immune response and

can recognise GBM tumour antigens without any prior sensitisation, triggering a

cytotoxic cascade which kills tumour cells173. They are located within the perivas-

cular niches and tumour margins in the GBM TME, though can migrate into the

brain parenchyma when the BBB is compromised and more permeable173. In vitro

studies have shown that healthy NK cells can directly kill GBM tumour cells by

releasing granzymes, perforins and also indirectly, by releasing pro-inflammatory

cytokines such as interferon-gamma (IFNγ)174. To counteract this, GBM cells

within the TME release immunosuppressive cytokines such as TGFβ which di-

rectly inhibits NK cell receptors, resulting in them displaying an “exhausted”

phenotype175. Most, nucleated, healthy cells express major histocompatibility

complex (MHC) Class I proteins on their surface which NK cells use as an in-

hibitory ligand to identify “self” cells176. GBM tumour cells, which either lose the

ability to, or which lowly express MHC class I, exploit this process by expressing a

different inhibitory ligand HLA-E176,177. This results in NK cells being present in

the GBM TME but often in non-functional or inhibited states, which may present

a therapeutic opportunity175.

Other lymphocytes within the GBM TME include B cells and T cells, which form

part of the adaptive immune response178. Although they have not received as

much attention as myeloid lineage cells or T cells, B cells play an important role

within the GBM TME179. Their primary role involves differentiating into mature

Plasma B cells, which secrete antibodies in response to GBM antigens and also

antigen-presenting to T cells, via MHC class II surface proteins180. However, they

can also undermine immunity by secreting immunosuppressive cytokines such as

interleukin 10 (IL-10) and TGFβ by acquiring a regulatory B cell (Breg) phenotype

through interactions with GAMs181. Given these dual roles, their effects on GBM

tumourigenesis are highly location- and cell interaction-dependent.

T cells are the main effector cells involved in the adaptative immune response

within GBM tumours. They can both, promote and suppress tumour progres-
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sion, which is partly attributed to presence of different T cell subpopulations that

collectively comprise ∼1-5% of all cells within the GBM TME182,183. The main

subsets of T cells that are widely discussed in relation to GBM tumours include

CD8+ cytotoxic T lymphocytes (CTLs); CD4+ T helper cells (Ths); and CD4+

regulatory T cells (Tregs)182.

CD8+ CTLs are effector immune cells which recognise and lyse MHC class I,

tumour antigens that are expressed on antigen-presenting cells such as DC or

GAMs184. CD4+ Ths are much less prevalent than CTLs and are found located

within the perivascular niches183. These cells are called “helper” cells as they

can induce CD8+ CTLs activity by releasing cytokines and also are involved in

promoting B cell activation and proliferation183. CD4+ Tregs are defined by the

additional expression of forkhead box P3 (FOXP3)+ and are tumour-promoting

cells and associated with immunosuppression and a worse patient prognosis185.

Moreover, they are also specifically associated with hypoxic conditions and an

ability to suppress CTLs186. T cells within the GBM TME exist in a number of

dysfunctional cell states: tolerance, ignorance, anergy and exhaustion183,187:

Tolerance - T cells fail to respond to antigen-presentation signals either due to a

lack of a positive co-stimulatory signal or the presence of inhibitory signals188.

Ignorance - fully functional T cells fail to elicit an immune response either due to

GBM tumour antigens being are anatomically separated and therefore, not easily

accessible, or because GBM cells have downregulated their tumour antigens189.

Anergy – T cell activation requires both an antigen-specific and non-antigen spe-

cific signal (co-stimulation); when the latter is missing, T cells become unrespon-

sive190. GBM cells contribute to this by reducing the expression of co-stimulatory

molecules on antigen-presenting cells189.

Exhaustion – a process where näıve T cells are exposed to a chronically high anti-

gen loads such as in GBM tumours, causing to them enter into a reversible, evo-

lutionarily conserved (to avoid causing damage to normal tissue) hypo-functional

state190,191. When in this state T cells upregulate the expression of inhibitory im-

mune checkpoint molecules, such as programmed cell death protein 1 (PD-1)187.

GBM cells also express these same inhibitory immune checkpoint molecules, in-

ducing T cell exhaustion and dampening the cytotoxic effect of CD8+ CTLs191.
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1.9.3 Vasculature components

The BBB is a distinguishing feature of brain tissue. In healthy individuals it

provides a highly selective barrier that regulates cerebral blood circulation into

the brain parenchyma, protecting it from infectious agents and toxic substances,

including many therapeutic agents192,193. The BBB is made up of a complex

network of arteries, arterioles, capillaries, venules, and veins that are organised

into neurovascular units (NVUs)193. The specific cells which comprise the NVUs

include endothelial cells, mural cells and astrocytic foot processes. Additionally,

microglia are also thought to interact with the NVUs in order to regulate and

repair the BBB in response to injury192,193.

Endothelial cells make up the vessel lumens that form the BBB and are func-

tionally and morphologically distinct compared with other endothelial cells in the

body. Specifically, they are sealed (with endothelial cells) via tight, adheren and

gap junctions, and also express low levels of leukocyte antigens that limit immune

cells from entering the brain parenchyma194,195.

Mural cells include vascular smooth muscle cells and pericytes that are both lo-

cated on the abluminal surface of endothelial cells192. The smooth muscle cells

are found within larger arteries and veins and are separated from the endothelium

by an extracellular matrix layer192. In contrast, pericytes are directly embedded

between endothelial cells and astrocyte end feet projections196.

1.9.4 Microenvironmental heterogeneity

The cells within the GBM TME are compartmentalised into three anatomically

distinct regions or niches (Figure 1.4): perivascular region (PVR), hypoxic tumour

core and the invasive edge178,197. Each of these regions facilitate GBM tumourige-

nesis in different ways and favour specific cell interactions between GBM, stromal

and immune cells, with vasculature being a central player across all three regions.

Perivascular region (PVR)

GBM tumours feature abnormal angiogenesis, mainly caused by the increased

expression of VEGF198. Neoplastic GBM cells (CD133+) actively express VEGF

and other angiogenic factors which cause the detachment of pericytes from the

basement membrane of the BBB, by destroying tight junction proteins199. This

results in enlarged, “leaky” blood vessels that present as glomeruloid structures
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known as MVP; which is a hallmark of GBM39. The compromised BBB allows for

circulating immune cells such as monocytes to enter into the brain parenchyma and

differentiate into more M2-like GAMs200. These activated GAMs further promote

tumour progression by releasing cytokines that increase vascular permeability,

inducing cerebral edema201; hamper the T cell response by causing an exhausted

state202; facilitating neoplastic GBM cell proliferation and resistance to standard

treatment203; and by recruiting additional myeloid lineage cells204.

Hypoxic (necrotic) tumour core

A compromised BBB leads to the inconsistent flow of oxygen around the GBM

tumour. Initially, this causes regions of hypoxia to develop, but later this also

results in areas of cell necrosis197. In response to this, GBM cells elongate their

nuclei and align into rows around the centres of necrosis, termed pseudopalisading

necrosis178,197. The exact reason as to why GBM cells organise into palisade-like

structures is not entirely clear and may include edema-enhanced vessel collapse;

vascular regression, or microscopic intravascular thrombosis driven by overexpres-

sion of pro-coagulants205,206. These regions are regulated by the increased ex-

pression of hypoxia-inducible factor 1-alpha (HIF1α) which, promotes GBM cell

stemness; causes the release of immunosuppressive cytokines; increases resistance

to therapy; and overall, is associated with more aggressive GBM tumours206,207.

High hypoxia, necrotic regions are also typically associated with immunosup-

pressed immune cells such as macrophages and T cells178. It is suggested that

these cells are initially attracted by proinflammatory signals caused by necrotic

cell death and then later sequestered by a combination of being trapped (sur-

rounded by pseudopalisading cells) and/or via upregulation of HIF1α208. More

recently, several studies have found that the MES cell state comprises increased

hypoxic regions, and is associated with macrophages which induce the neoplastic

state in GBM132,208.

Invasive (infiltrating) edge

Diffuse tumour infiltration into the healthy brain parenchyma is a distinguishing

feature of GBM and makes maximal surgical resection an impractical task6. GBM

cells do not metastasise via lymphatic systems or through the vasculature, instead

they spread by displacing astrocytes that are associated with blood vessels209.

The invasive edge denotes regions located at the tumour periphery or margins. As

GBM tumours progress, this niche becomes incorporated into the main tumour
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mass and subsequently transitions, first into the PVR and then finally into hypoxia

tumour core niches210.

GBM cells at the invasive edge integrate into neural circuits by enhancing synapse-

associated gene expression and directly forming synapses with healthy

neurons151,153,154. Astrocytes are also important stromal cells located at the in-

vasive edge as GBM cells link with them via tumour microtubules to transfer

molecules and organelles to facilitate increased metabolic processes143,144,154. The

invasive edge also comprises increased numbers of reactive astrocytes which pro-

duce growth factors, metabolites and cytokines as part of a wound healing response

that increases gliomagenesis131,211. Compared with the PVR and tumour core re-

gions, the invasive edge is also enriched in microglia which promote invasion by

releasing matrix metalloproteinases that degrade the extracellular matrix within

the healthy brain parenchyma212.

1.9.5 Spatial heterogeneity

Recently, Greenwald et al. applied spatial transcriptomics and proteomics to

further characterise the known anatomical regions of GBM at the single-cell res-

olution213. The main focus of this work was the in situ spatial mapping of the

malignant GBM cellular sates that were previously identified by Neftel et al.123.

Their key finding was that GBM tumours are characterised by a combination of

spatially structured and disorganised regions, with the former being particularly

prominent in high-grade gliomas such as IDHwt GBM. Within these structured

regions they identified a higher-order organisation comprising of five repeating

and adjacent layers, extending from hypoxic cores outward to areas resembling

normal brain parenchyma. The layers are maintained by recurring pairwise inter-

actions between specific malignant cell states and non-malignant cell types and

primarily driven by hypoxia, with less hypoxic areas showing reduced structural

organisation.

The five layers proposed by Greenwald et al. each aligned with the classical

anatomical regions found in GBM (Figure 1.4), but extended this understanding

by adding a molecular and cellular framework to explain how these histological

features arise. Layers 1 and 2 correspond to the hypoxic, necrotic tumour core and

the surrounding hypoxia-adjacent zone, respectively. Layer 3 aligns with the PVR

and is adjacent to Layer 4 which represents the neurodevelopmental malignant

cell states (OPC-like, AC-like and NPC-like). Layer 5 aligns with the invasive

(infiltrating) edge and is adjacent to the normal brain parenchyma.
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Figure 1.4 | GBM TME cellular heterogeneity.

Illustration depicting the three main anatomical regions found within GBM
tumours: PVR, hypoxic tumour core and the invasive edge. The PVR features a
compromised BBB and immune cell infiltration of monocytes which differentiate
into macrophages. The activated macrophages release cytokines which suppress
T cells in the PVR. GSCs within the PVR release cytokines, breaking down
vasculature cells to promote tumour growth and therapy resistance. The hypoxic
tumour core comprises a pseudopalisading rim and the necrotic core. The rim is
associated with suppressed macrophages and T cells and an increased presence of
MES-like neoplastic GBM cells. The invasive edge is the interface between the
tumour margin and the brain parenchyma. The GBM cells migrate along the
blood vessels displacing astrocytes, degrading the healthy brain extracellular
matrix components and forming direct connections with neurons. This region is
also associated with a large proportion of brain-resident-microglia and astrocytes
which exhibit a more reactive phenotype. Also depicted are TLSs, which are
thought to serve as localized sites of immune cells which facilitate T cell priming
and immune cell infiltration into the GBM TME.

1.10 Computational investigation of the GBM

TME

Several genomic techniques and computational tools exist to allow researchers to

study the transcriptome of GBM tumours214. The most widely used approach

in this space, involves quantifying ribonucleic acid (RNA) abundances (RNA se-

quencing (RNA-seq)) for differential gene expression analysis across different tis-

sues and conditions (e.g., normal vs diseased tissue)215. More recent advancements

have also integrated higher-resolution, single-cell information (including spatio-

temporal information), enabling us to gain much deeper insights into the different

layers of heterogeneity present within the GBM TME216.

The work presented in this thesis is focussed on RNA-seq data as this repre-

sented the primary form of molecular profiling available for our paired GBM tu-

mour samples. Notwithstanding, it is also important to acknowledge that other

genomic sequencing technologies, including whole-exome and whole-genome se-

quencing which consider DNA rather than RNA, offer complementary insights

into the mutational and structural alterations underpinning GBM tumour biol-

ogy.
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1.10.1 RNA sequencing

Bulk RNA sequencing

Bulk RNA-seq combines the gene expression profiles of all cells within a tumour

sample. This approach has a number of advantages over other RNA-seq tech-

niques: 1.) It is well-established, making it cost-effective across large samples

sizes; 2.) There are many, well-supported methods/tools available for downstream

analyses such as read alignment and abundance quantification; 3.) It has good

read depth range between 5 million – 200 million reads per sample, allowing better

detection of low-abundance transcripts214,215,217. However, the main limitation of

this method is that averaging signals within entire tissue samples makes it difficult

to differentiate signals in heterogenous tissues such as GBM218. This averaging

can also obscure biological variability between samples by masking rare cell popu-

lation signals such as neoplastic GBM cells or infiltrating immune cells, in favour

of more dominant cell types218.

Single-cell RNA sequencing

scRNA-seq overcomes the main limitation of bulk RNA-seq by quantifying tran-

scripts across individual cells within a sample. This enables better identification

of rare cell subpopulations and gene patterns associated with specific cell func-

tions and/or phenotypes. Moreover, this technique also enables lineage tracing of

individual cells providing information about cell development and differentiation

processes218. In order to profile individual cells, they need to be dissociated from

the tissue which is a significant technical limitation of this approach as it induces

stress and can result in the loss of more fragile cells such as neurons214. The tech-

nique is also expensive and labour-intensive, making it currently impractical for

large-scale studies219. There is also the increased prevalence of “dropout” events

with scRNA-seq caused by low amounts of RNA in individual cells, inefficient

RNA capture, and the stochasticity of RNA expression219.

Single-nucleus RNA sequencing

Single-nucleus RNA sequencing (snRNA-seq) is a variant of scRNA-seq which

attempts to overcome the limitation of cell dissociation by only isolating and

sequencing the nucleus of a cell220. This is particularly useful in GBM samples

where enzymatic dissociation is challenging due to the presence of large fragile
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cells that are often tightly connected221. There is also no requirement for live cells

making it ideal for analysing archived formalin-fixed paraffin-embedded (FFPE)

and frozen GBM samples. This reduces the dissociation-inducing cell stresses,

resulting in a more in situ representation of gene expression222. The limitation of

this technique is that it only captures nascent RNA transcripts; while this makes

it useful for understanding gene regulation processes, it does neglect cytoplasmic

RNA signals220. Consequently, it captures fewer overall transcripts compared to

scRNA-seq and also results in signals that comprise more intronic regions223.

1.10.2 Cell deconvolution

Deconvolution refers to a computational approach used to separate signals corre-

sponding to different sources of variations within RNA-seq data224. Whilst this

approach can be used in the removal of unwanted sources of variation, known as

batch-effect correction225, we will only focus on its use for delineating biological

signals corresponding to cell phenotypes. In the context of the GBM TME, de-

convolution can tell us what fraction of a tumour sample is composed of immune

cells, stromal cells and neoplastic GBM cells using only the bulk gene expression

data. Being able to obtain extra resolution from bulk RNA-seq, in silico, is an

attractive proposition, not least because the alternative single-cell based technolo-

gies are prohibitive towards this end, owing to their labour-intensiveness and high

cost224. Although, there are a plethora of different deconvolution tools available

to users (∼50 in the past 15 years), these broadly fall into two distinct categories:

supervised (reference-based) and unsupervised (reference-free) tool226.

Supervised (reference-based) approaches

Supervised cellular deconvolution methods rely on a priori knowledge, supplied

in the form of a non-negative expression matrix that contains the gene expression

profiles of the cell-types of interest224,226,227. These reference profiles can be de-

rived from purified cells, sorted populations, or scRNA-seq data. Most supervised

deconvolution methods use either linear regression or machine learning algorithms

(e.g., support vector regression) to determine the combination of reference profiles

that best “fit” the bulk RNA-seq data227. CIBERSORT and CIBERSORTx are

two popular examples of supervised approaches, though many other techniques

also exist228,229. There are also a smaller number of supervised methods such as

MuSiC which employ probabilistic models to estimate cell type proportions by

assessing the similarity between bulk and reference profiles230. The accuracy of
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all supervised methods depends greatly on the quality of the reference data sup-

plied231. Poor references that contain cell types which are missing in the bulk

sample, can lead to miss-assignment or omission of cell populations231.

Unsupervised (reference-free) approaches

Unsupervised cellular deconvolution methods do not require a pre-defined refer-

ence; instead, they treat deconvolution as a blind source separation problem and

attempt to infer cell type proportions directly from bulk RNA-seq data224,226,231.

These methods rely on non-negative matrix factorisation (NMF) to decompose

bulk RNA-seq matrices into two smaller matrices that represent cell type expres-

sion profiles and their proportions224. A popular example of an unsupervised

deconvolution method is DECODER232. Although these methods offer the conve-

nience of not needing a reference they tend to underperform in benchmarking226.

This may be because they rely entirely on mathematical decomposition which can

produce solutions that lack clear biological interpretation. Moreover, some un-

supervised methods assume that cell types are not correlated, which is not often

the case with some cell types (e.g. immune cells) that share common expression

profiles226,227.

Semi-supervised approaches

Semi-supervised cell deconvolution methods offer a blended approach where they

use partial a priori knowledge in the form of cell-type specific marker to estimate

proportions from bulk RNA-seq data231,233. These methods also utilise both NMF

and linear regression algorithms, but they constrain the decomposition solution

space using the supplied cell-type markers233. A popular example of an unsuper-

vised deconvolution method is MCPCounter234. Although this approach offers the

advantage of being able to detect cell populations that may not be as well char-

acterised, its accuracy relies on marker completeness and specificity to the bulk

RNA-seq data224,226,231,233.

1.10.3 Spatial transcriptomics

Spatial transcriptomics is an emerging field which combines sequencing and imag-

ing in order profile RNA, whilst preserving spatial information235. This is partic-

ularly useful in the context of GBM, as it can provide a multidimensional view

of the TME by combining cell phenotypes with neighbouring interactions216. Fur-
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ther, this information can be used to better understand how cell-cell interactions

change throughout the different anatomical regions within the GBM TME and

also through treatment. This is a rapidly changing field, with new technologies

being developed all the time. The current methods can be grouped according to

how they capture spatial information: array based (solid-phase) methods and in

situ (comprising RNA-seq and fluorescence-based imaging) methods216.

Array-based methods

These methods use a solid surface such as a glass slide comprising millions of bar-

coded oligonucleotides236. Tissue sections are placed directly onto these slides and

permeabilised to remove the RNA which is then reverse-transcribed, sequenced

and then aligned back to original slide using the positional barcodes. The 10X

Genomics Visium platform is a popular example of this method, though it differs

in that glass slides are organised into arrays made up of 5000 spots (each ∼55µm

in diameter and spaced 100µm apart) to capture the transcripts from multiple

cells per spot216,236. These methods are high-throughput and can be used with

both FFPE and frozen samples. One major limitation with these methods is that

older approaches do not offer single-cell resolution: it is limited to the size of each

spot which itself often comprises multiple cells216. Notwithstanding, some newer

technologies have addressed this by using more densely packed spots to capture

near single-cell resolution237,238.

In situ methods

GeoMX and CosMX digital spatial profiling, developed by Nanostring, are both

examples of selective barcoding in situ methods, offering whole transcriptome

and single-cell resolution, respectively216. They differ from solid-phase methods

by using fluorescently-labelled RNA probes that are cleaved, in situ (using ultra-

violet light) and then sequenced over multiple cycles239. One limitation of this

technique is that currently, CosMx uses a pre-defined 6000-gene marker panel

which may not accurately capture specific cell phenotypes and states.

In situ hybridization (ISH) is an established technique that is routinely used in

clinical practice for diagnosing and classifying GBM tumours6,216. It involves

the use of radioactive-, fluorescent- or colorimetric-labelled nucleic acid probes to

visualise DNA and RNA240. The advantage of this method is that it offers high

spatial resolution (sub-cellular, nanometer scale), but with much lower throughput

and an higher technical demand due to it being probe dependent216.
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1.10.4 Spatial proteomics

IHC remains a cornerstone of clinical pathology for disease diagnosis and moni-

toring241, but its limited capacity for multiplexing restricts its utility in complex

environments like the GBM TME242. Spatial proteomics overcomes this limita-

tion by enabling the simultaneous mapping of dozens of proteins across whole

tissue sections243. Unlike spatial transcriptomics, it offers a more stable view of

cell phenotypes, as protein expression is less stochastic than RNA expression and

can capture features such as post-translational modifications242–244. Spatial pro-

teomics is a rapidly evolving field, with current technologies broadly divided into

mass spectrometry–based and multiplexed fluorescence–based approaches216.

Mass spectrometry-based methods

These methods extend cytometry by time-of-flight (CyTOF) technology by quan-

tifying antibodies (up to 40) for proteins of interest that have been tagged with

heavy metal isotopes245. The antibodies are used to stain tissue sections, which

are ablated pixel by pixel (∼1µm) and the vaporized tissue is analysed by CyTOF.

The resulting multiplexed images feature pixels where each one has multiple value

corresponding to abundances of the proteins used. The benefits of this approach

are that it can be applied retrospectively, using archived tissues in FFPE and

also there is very little signal contamination compared with fluorescence-based

techniques245. Imaging mass cytometry (IMC) and multiplexed ion beam imaging

(MIBI) are prominent examples of mass-spectrometry-based spatial proteomics242.

Multiplexed fluorescence-based methods

These methods extend immunofluorescence microscopy to detect up to 50 proteins

by iteratively staining tissue sections in cycles242.

Co-detection by indexing (CODEX) is one such popular example that utilises

fluorescently labelled DNA-barcoded antibodies246. These methods offer high-

sensitivity and high-resolution (sub-cellular) whilst also being non-destructive,

unlike mass-cytometry based methods, allowing additional assays and H&E stain-

ing to be performed242. However, the fluorophores used to identify proteins of

interest can generate background signals (autofluorescence) – an effect that can

be compounded over multiple imaging cycles242.
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1.11 Hypothesis

Malignant GBM cells exhibit high plasticity, transitioning between distinct tran-

scriptional states in response to standard therapy. These neoplastic cell states

align with neurodevelopmental hierarchies and wound-healing programs, and are

shaped by the non-malignant components of the GBM TME, comprising immune,

stromal and vasculature cells. Furthermore, the GBM TME is organised into sub-

anatomical regions and structured layers, each with unique cellular compositions

and interactions that sustain and promote gliomagenesis. To understand and ul-

timately target treatment resistance in GBM, it is essential to characterise how

cell type proportions, interactions, and dynamics within the TME change through

treatment.

1.12 Aims & Objectives

In order to effectively investigate treatment-associated changes in the GBM cel-

lular landscape requires longitudinal samples across multiple patients at scale.

Currently, the largest dataset we hold that meets this criterion is at bulk RNA-

seq level, generated from a large cohort of paired (primary and recurrent) GBM

patient samples. However, these data lack the resolution provided by single-cell

approaches, making it difficult to accurately resolve the cellular landscape of GBM.

To overcome this, I will apply cellular deconvolution techniques to our bulk RNA-

seq data in order to estimate the cellular composition of each tumour sample. I will

first develop a GBM-specific deconvolution tool tailored to this purpose (Chapter

2). Following this, I will deconvolute our paired, bulk RNA-seq GBM patient

samples and examine how the cellular landscape changes through treatment and

how these changes are associated with clinical outcomes or treatment response

(Chapter 3). Finally, I will validate the findings using spatial proteomics to gain

higher-resolution insights into GBM TME cell-cell interactions (Chapter 4).

The chapter-specific aims & objectives are detailed below and in Figure 1.5. In ad-

dition, details of my individual contributions, including the extent of any inherited

work, are also provided.

38



1. Introduction

1.12.1 Chapter 2 - aims & objectives

Aim

Derive a GBM tissue-specific reference signature for cell deconvolution.

Objectives

1. Collate publicly available scRNA-seq data from brain, GBM and other high-

grade glioma tissues.

2. Integrate datasets, annotate distinct immune cell types.

3. Derive a reference signature matrix and marker list comprising markers that

delineate each immune cell type.

4. Benchmark cell deconvolution methods and select the best-performing

method for inferring cell types using bulk RNA-seq data.

Contribution & prior work

The data used in this chapter were obtained from publicly available sources prior

to the start of my work. My contributions began with the quality control and

standardisation of the datasets, followed by the identification of tissue-specific cell

type markers. This included the incorporation of neoplastic cell type markers

previously defined by Neftel et al.123. The cell deconvolution methods employed

were established and published approaches, with their core methodologies left

unchanged. However, the input components - specifically, the marker gene panel

and single-cell expression reference matrix - were curated and expanded to better

reflect GBM tissue-specific profiles. The optimal combination of method and input

was then implemented as a web application (GBMDeconvoluteR), which I fully

developed and deployed.

Additionally, I performed all analyses presented in the published manuscript as-

sociated with this chapter, including orthogonal validation using IMC. Further

details of my contribution to the IMC experimental work can be found in subsec-

tion 1.12.3.
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1.12.2 Chapter 3 - aims & objectives

Aim

Deconvolute bulk RNA-seq data from paired GBM patient samples.

Objectives

1. Obtain cell-type proportion estimates for all paired GBM tumour samples

using the best-performing cell deconvolution method (from chapter 2).

2. Investigate how cell-type proportions change through treatment and which

specific cell types are correlated with changes through treatment.

3. Associate cell type changes with patient survival outcomes.

4. Identify if there any prognostic and predictive features based on changes

in cell-type scores through treatment using supervised and unsupervised

approaches.

Contribution & prior work

The paired GBM patient tumour samples analysed in this study were either gen-

erated in-house or obtained as raw data through international data-sharing agree-

ments, with contributions from institutions in the USA, Europe, and Korea. Prior

to my involvement, the raw read counts had already been pre-processed, aligned,

and normalised for sequencing depth.

My contributions began with the downstream analyses, which included quality

control, cell type deconvolution using GBMDeconvoluteR, and all additional anal-

yses presented in the accompanying draft manuscript. I also analysed publicly

available, pre-processed spatial proteomics data (CODEX) to validate the key

findings related to oligodendrocyte and B cell populations. In addition, I also

performed the orthogonal experimental validation using IMC; further details of

this can be found in subsection 1.12.3.

Experimental validation and analysis using the 10X Visium spatial transcriptomics

platform were carried out by Sophie Williams, who is listed as a named author on

the draft manuscript associated with this chapter.
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1.12.3 Chapter 4 - aims & objectives

Aim

Characterise the GBM TME cell-cell interactions at the spatial resolution.

Objectives

1. Identify protein targets that delineate key cell types and cell states within

the GBM TME.

2. Analyse spatial proteomics data from IMC applied to paired GBM tumour

patient samples.

3. Identify and compare cell-types interactions, pre- and post-treatment.

4. Identify spatial organisational patterns such as cell neighbourhoods and look

at how these change through treatment.

Contribution & prior work

The selection of tumour sample regions of interest, along with all initial experimen-

tal procedures including antibody validation, tissue preparation, and execution of

the IMC workflow was carried out by the named authors listed in the manuscript.

Similarly, all histopathological assessments of the patient tumour samples were

also performed by the named authors.

My contributions began upon receipt of the raw IMC data, that were provided as

multi-stack TIFF image files. From that point onward, I conducted all subsequent

analyses described in the accompanying manuscript, including cell segmentation,

phenotyping, and downstream analyses such as examining cell–cell interactions

and spatial neighbourhood structures.
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Figure 1.5 | Flowchart of chapter-specific aims & objectives.
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2. Paper 1 - GBMdeconvoluteR

Abstract

Background: Characterising and quantifying cell types within

glioblastoma (GBM) tumours at scale will facilitate a better understanding of

the association between the cellular landscape and tumour phenotypes or clinical

correlates. We aimed to develop a tool that deconvolutes immune and neoplastic

cells within the GBM tumour microenvironment (TME) from bulk RNA sequenc-

ing (RNA-seq) data.

Methods: We developed an isocitrate dehydrogenase wild-type (IDHwt) GBM-

specific single immune cell reference consisting of B cells, T cells, natural killer cell

(NK cell), microglia, tumour-associated macrophages (TAMs), monocytes, mast

and dendritic cells (DCs). We used this alongside an existing neoplastic single cell-

type reference for astrocyte-like (AC-like), oligodendrocyte progenitor-like (OPC-

like), neural progenitor-like (NPC-like) and mesenchymal-like (MES-like) GBM

cancer cells to create both marker and gene signature matrix-based deconvolution

tools. We applied single-cell resolution imaging mass cytometry (IMC) to ten

IDHwt GBM samples, five paired primary and recurrent tumours, to determine

which deconvolution approach performed best.

Results: Marker based deconvolution using GBM tissue specific markers was most

accurate for both immune cells and cancer cells, so we packaged this approach as

GBMdeconvoluteR. We applied GBMdeconvoluteR to bulk GBM RNA-seq data

from the cancer genome atlas (TCGA) and recapitulated recent findings from

multi-omics single cell studies with regards to associations between MES-like GBM

cancer cells and both lymphoid and myeloid lineage immune cells. Furthermore,

we expanded upon this to show that these associations are stronger in patients

with worse prognosis.

Conclusions: GBMdeconvoluteR accurately quantifies immune and neoplastic

cell proportions in IDHwt GBM bulk RNA-seq data and is accessible here:

https://gbmdeconvoluter.leeds.ac.uk
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2.1 Introduction

GBM brain tumours consist of a multitude of different neoplastic and

non-neoplastic cell types1. The specific cancer cell subtypes within a GBM are

directly influenced by the cellular composition of the microenvironment, which also

has a role in shaping the progression of the tumour and its adaption to stressors

including treatment2–4. It is of paramount importance to accurately characterise

the cellular make-up of GBM tumours. This will enable us to understand the

phenotypes associated with changing cell landscapes within individual tumours,

and to assess correlation between specific cell populations and the efficacy of new

treatments, particularly immunotherapies. Whilst single cell and spatial- profiling

approaches currently offer the highest resolution of cellular deconvolution, they

are technically challenging, and prohibitively costly for larger sample numbers.

Instead, approaches that propose to quantify cell types from bulk tissue RNA-seq

data have become increasingly popular5–9. These can be split into two main types:

those that employ a full cell-type gene expression signature matrix; and those

based on marker genes for specific cell types. A widely-adopted implementation

of the former approach is CIBERSORTx9, which was recently used to delineate

pan-glioma cell types3. However, key studies have shown that the accuracy of any

gene expression-based computational deconvolution tool is mostly derived from

the signature matrix, or marker genes, underpinning it, which must be derived

from the tissue of interest5,10,11. We, thus, decided to create a tool that can specif-

ically quantify cancer cell types, as delineated by Neftel et al2, and immune cell

types from bulk IDHwt GBM tumour sequencing data. We developed this tool

by amalgamating four independent single-cell GBM datasets to derive signature

matrices for use with CIBERSORTx and marker genes for use with MCPcounter.

The latter was chosen as it has been benchmarked as one of the most accurate

marker gene-based tools available, giving consistently high correlation with ground

truths across cell types12. We then compared results from these GBM-specific pro-

grammes to those from orthogonal cell quantification, using single cell-resolution

IMC, on the same IDHwt GBM samples. We included both primary and recurrent

GBM samples in our tool development and validation, to enable separate quan-

tification of accuracy in longitudinal samples. We found that the MCPcounter

based tool performed best at delineating both immune and neoplastic cancer cell

populations and have made this publicly available as an easily accessible, online

tool: GBMdeconvoluteR.
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2.2 Materials & methods

All statistical analyses were carried out using the R statistical software package

version 4.2.0. The name of each test used, and level of significance achieved, is in-

cluded within the results where the finding from each hypothesis test is confirmed.

Plotting was done using ggplot2 (version 3.3.6).

2.2.1 Dataset selection

Four single cell datasets were identified from literature searches (Table 2.1)13–16.

The inclusion criteria were single-cell RNA sequencing (scRNA-seq) or single-

nucleus RNA sequencing (snRNA-seq) expression data from human IDHwt GBM

samples. Data had to be available as raw counts.

2.2.2 scRNA-seq data preprocessing

The Seurat R package (version 4.1.1) was used for all pre-processing, integration,

clustering, and annotation tasks17. Whilst GSE163120 has a single accession code,

it contains data from both primary and recurrent sample cells that were sequenced

on different platforms so these were processed separately.

2.2.3 Copy-number variant analysis

Single cell datasets were amalgamated. Neoplastic cells were filtered, as has been

done previously, by inferring and removing those with large-scale copy number

variations (CNVs) such as chromosome 7 gain and chromosome 10 loss (Ch +7/-

10) using the inferCNV R package (version 1.3.3)18,19. The inferCNV object was

created using CreateInfercnvObject() taking the raw counts (stored in the RNA

assay of the Seurat object) for each dataset. Annotations were not provided,

instead each dataset was grouped according to sample (i.e. patient). The gene

ordering file used was derived using the annotations from Ensembl Genes 91 for

Human build 38 (GRCh38), taking the gene name, chromosome, and gene span.

The ref group names argument was set to NULL, to average signal across all cells

to define the baseline. The run() function was then used to perform InferCNV

operations to reveal the CNV signal. A cut-off value of 1 was used for all the

datasets apart from GSE163120, where a value of 0.1 was used as suggested by

the documentation for InferCNV.
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Table 2.1 | Single-cell IDH wildtype GBM datasets used as a reference
set for this paper.

Accession Samples Platform

GSE14138313 Single cell RNAseq of ∼18k cells
from 5 primary IDHwt GBM.

Automated microwell
array capture and full
length RNAseq.

GSE16312014 Single cell RNAseq of ∼21k cells
from primary and ∼43k cells
from recurrent IDHwt GBMs.

10X Genomics
GemCode capture and
3’ or 5’ RNAseq.

GSE13543715 Single cell RNAseq of 769 cells
from 4 IDHwt GBMs.

Single cell sorting and
3’ RNAseq.

GSE13879416 Single-cell/nuclei
RNA-sequencing of ∼11k single
cells from 4 IDHwt primary
GBMs.

10X Genomics
Chromium capture and
3’ RNAseq.

2.2.4 Quality control filtering

Each dataset underwent individual quality control (QC) in which metrics were

used to filter out poor quality cells according to dataset-determined thresholds

(Table S2.1): the number of reads, or unique molecular identifiers (nUMI min);

the number of non-zero count genes (nGene); the percentage of mitochondrial

genes (mitochondial ratio min); the percentage of ribosomal genes; and the cell

complexity (gene complexity min), which is a composite measure derived as:

log10(nGene)

log10(nUMI min)

2.2.5 Dataset normalization

Post-filtering, each dataset was normalised individually using SCTransform, whilst

regressing out dataset-specific confounding sources of variation such as riboso-

mal/mitochondrial ratio using the vars.to.regress function argument. Moreover,

due to the disparity in the total number of cells in each dataset, a different number

of variable features were passed to the variable.features.n function argument. The

specific normalisation criteria for each dataset are in Table S2.2.
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2.2.6 Dataset integration

The FindIntegrationAnchors function was applied to the list of SCTransform nor-

malised datasets to identify cross-dataset pairs of cells that were in a matched

biological state. These ”anchors” were then used with IntegrateData to merge all

the datasets together17. The normalization.method argument was set as SCT for

both FindIntegrationAnchors and IntegrateData.

2.2.7 Clustering & cell type assignment

Dimensionally reduction was performed on the integrated datasets using princi-

pal component analysis (PCA) using RunPCA with default settings. This was

followed by uniform manifold approximation and projection (UMAP) which was

implemented using RunUMAP with custom parameters a=0.6 and b=0.75. shared

nearest-neighbour (SNN) graphs were constructed based on Euclidean distance us-

ing FindNeighbours ; taking the default k (k=20), the first 30 principal components

and using the rann method for finding nearest neighbours. Clusters were identified

using FindClusters, with the smart local moving (SLM) algorithm used for cluster

optimization20.

2.2.8 Cell type annotation

Cell counts per cluster, for each clustering resolution parameter (0.1 – 0.8 in 0.1

increments) were cross tabulated with immune cell type labels transferred from

dataset GSE163120. The 0.7 resolution cross-tabulation (Table S2.3) was used,

based on cluster robustness and stability21, to assign cell-type annotation labels

to clusters where the majority of cells had labels for either one distinct cell type

or and/or where the cells were labelled were unknown. The T cell, NK cell and

TAM labelled clusters could not be assigned and were sub-clustered to further

resolve them. This constituting isolation of these cells and repeat of the above

methodology, from the point of having normalised data, to separate cell types.

2.2.9 Deriving GBM immune & neoplastic cell profiles

Immune cell marker genes were identified from the integrated, clustered and anno-

tated data using the scran R package (version 1.2.2)22. The findMarkers function

was used to identify candidate marker genes by testing for those that were differen-

71



2. Paper 1 - GBMdeconvoluteR

tially expressed (DE) between pairs of clusters using both t-test andWilcoxon rank

sum tests. Both ”all” and ”any” pval.type arguments were used to identify genes

which were DE between any two clusters and highly ranked/significantly upregu-

lated genes for a given cluster (”all”) or significantly upregulated compared with all

other clusters (”any”). The multiMarkerStats function was then used to combine

multiple sets of marker statistics. Neoplastic GBM cell marker genes were taken

directly from Neftel et al.2 but were filtered to remove non GBM tumour-intrinsic

(TI) genes, to negate the noise that would result from expression of these in the

TME23. Marker genes for a variety of GBM neoplastic and non-neoplastic cell

types have recently been made available as a resource entitled GBMap. We down-

loaded these directly from the supplementary data of the accompanying preprint

for testing within MCPcounter (denoted MCPcounterGBMap)
24. The neoplastic

cell markers from GBMap were also filtered to only include GBM TI genes.

2.2.10 CIBERSORTx reference expression profile

The single cell data used to derive the neoplastic expression profiles used with

CIBERSORTx was obtained from the Gene Expression Omnibus (GSE131928).

These data comprised ∼23,000 cells which were filtered to include only adult GBM

samples. Each cell came with a score corresponding to 6 neoplastic cell states:

these were converted to four states and then each cell was assigned to a neoplastic

cell state or as a hybrid as described in Neftel et al2. The neoplastic single cell

data was combined with the labelled immune single cells and then randomly down-

sampled such that the total number of cells in the resulting reference matrix was

5075 and of roughly equal class type (Table 2.2)25.

2.2.11 Validation samples

Ten human GBM samples were used for validation via bulk RNA-seq and IMC.

These were de novo primary IDHwt GBM that had been stored in formalin-fixed

paraffin-embedded (FFPE) blocks, and the matched locally recurrent samples fol-

lowing initial de-bulking surgery and treatment with radiation and temozolomide

(TMZ) chemotherapy.
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Table 2.2 | Cell types and numbers used to derive the CIBERSORTx
signature matrix.

Cell type No. of cells

AC 458
B cells 458
DC 458
Mast cells 88
MES 458
Microglia 458
Monocytes 458
NK cells 458
NPC 458
OPC 407
T cells 458
TAM 458

Total 5075

2.2.12 Ethics statement

Samples were from patients at the Walton Centre, UK, that provided informed

consent in writing for the use of their tissue in research. The inclusion of these

samples in this project was following approval by the UK National Health Service’s

Research Ethics Service Committee South Central - Oxford A (Research Ethics

Code: 13/SC/0509).

2.2.13 Bulk RNA-seq

Ribonucleic acid (RNA) was extracted from neuropathologist annotated regions

containing >60% cancer cells using Qiagen kits (Qiagen, Sussex, UK). Paired-end,

100-base pairs (bp) strand-specific whole transcriptome libraries were prepared us-

ing the Illumina NEBNext Ultra Directional RNA Library Prep Kit (New England

BioLabs, Herfordshire, UK). Following ribosomal ribonucleic acid (rRNA) deple-

tion with the NEBNext rRNA kit or Ribo-Zero Gold. Libraries were sequenced on

an Illumina NextSeq2000. RNA-seq data was processed as previously described26.
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2.2.14 Imaging mass cytometry

Antibody selection

A panel of 33 antibodies targeting neoplastic and immune cell subtypes in GBM

was assembled based on literature and manufacturer sources (see Table 2.3 and

Table S2.4). Neoplastic markers were selected from overlapping cancer cell signa-

tures reported in three independent single-cell studies, including Neftel et al.2,16,27.

Antibodies were prioritised as follows: pre-conjugated and previously used in IMC

of GBM or brain; previously used via bespoke conjugation; carrier-free and vali-

dated for immunohistochemistry (IHC) or immunocytochemistry (ICC) in brain

or GBM; or simply available in carrier-free format.

A set of panel-wide control tissues was determined: spleen, brain, tonsil, prostate,

bone marrow, skin and uterus. Control tissue samples from at least two individu-

als were amalgamated into a multi-tissue FFPE block. Multi-tissue block sections

were used in IHC validation and testing of three antibody concentrations at, above

and below those recommended by the manufacturer. Chosen antibody concentra-

tions and control tissue(s) relevant to each antibody are in Table S2.4. Antibody

conjugation and staining and IMC took place at the Flow Cytometry Core Fa-

cility at Newcastle University. Conjugation was performed using MaxPar metal

labelling kits using X8 polymer according to standard manufacturers protocols

(with the exception of Gd157 which was obtained by Trace Sciences International

and was diluted to 0.1M prior to use with MaxPar reagents). Conjugations were

validated by capture on Thermo AbC beads prior to acquisition on a helios mass

cytometer.

Sample preparation & mass cytometry

5µm sections, taken consecutively from the same blocks that underwent bulk RNA-

seq (see above), were stained with a cocktail of all 33 conjugated antibodies after

dewaxing (Xylene) and HIER antigen retrieval in Tris-EDTA (pH9) with 0.5%

Tween 20. Sections were incubated for 30 minutes in 0.3µM iridium to counterstain

the nuclei prior to air drying. A minimum of three 2mm2 regions of interest (ROI)

were annotated per sample within the area corresponding to that from which RNA

was extracted from the adjacent sections. Images were generated on the Hyperion

Tissue Imaging cytometer by ablation of the ROI at a 200Hz frequency with a

1µm diameter laser. Raw MCD files were created and exported as ome-tiff from

MCD Viewer software (Fluidigm).
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Table 2.3 | Antibodies used in IMC.

Marker Cell
category

Type/State Antibody clone(s)

ANXA1 GBM Hypoxia MES-like EPR19342/abcam
ANXA2 GBM Hypoxia MES-like MAB3928/RnD
BCAN GBM NPC-like S294A-6/Thermo
CD3 Immune T cell Fluidigm/3170019D
CD31 Normal Vasculature Fluidigm/EPR3094
CD45 Immune Pan-immune Fluidigm/3152016D
CD8 Immune T cell SK1/Biolegend
CHI3L1 GBM MES-like EPR19078-157/abcam
DNA All - Fluidigm
DLL3 GBM NPC-like EPR22592-18/abcam
EZH2 All Chromatin remodeller EPR9307(2)/abcam
GFAP Normal Astrocyte ab218309 /abcam
HIF1A All Hypoxia 16H4L13/Thermo
HOPX GBM AC-like ab230544
IBA1 Immune Pan-macrophage EPR16588 /abcam
JARID2-C All Chromatin remodeller Developed in house
JARID2-N All Chromatin remodeller EPR6357/abcam
Ki67 All Proliferation B56/Fluidigm
MOG Normal Oligodendrocyte MA5-24644/Thermo
CD56 Normal Immature Neuron HCD56/Biolegend
NeuN Normal Mature Neuron 1B7/Biolegend
NKp46 Immune NK cell MAB1850/RnD systems
OLIG1 GBM OPC-like MAB2417/R&D
P2Y12R Immune Microglia EPR23511-72/abcam
SCD5 GBM OPC-like PA5-59963/Thermo
SLC1A3 GBM AC-like EPR12686/abcam
SMA Normal Vasculature 1A4/R&D
SNAI1 GBM EMT AF3639/R&D
SOD2 GBM MES EPR2560Y/abcam
SOX2 GBM GSC O30-678/Fluidigm
TGFbeta GBM GSC TW4-6H10/Fluidigm
TMEM119 Immune Microglia HPA051870/sigma
TNC GBM GSC MAB2138/R&D

Image pre-processing

Following export, the raw data were converted from to ome-tiff format and seg-

mented into single cells using the steinbock pipeline comprised of the following

steps28. Pixel classification was done using Ilastik (version 1.3.3): Tiff stacks were

generated for each of the proteins in the panel and pixels classified into two chan-

nels as either nuclear, or background. These were used to train a random forest
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classifier, which returned probability masks for each image. The generated prob-

ability maps were processed to create single-cell masks using the image analysis

software CellProfiler (version 4.1.3). First, probabilities were histogram-equalized

(256 bins and kernel size of 17), and then a Gaussian filter was applied to enhance

contrast and smooth the probabilities. Subsequently, an Otsu two-class thresh-

olding approach was used to segment nuclear masks. Cell masks were derived

from an expansion of nuclear masks using a maximum expansion of 3 pixels. The

CellProfiler single cell masks were ultimately overlaid onto the single-cell segmen-

tation masks and single-channel tiff images of all measured channels to extract

single-cell marker expression means. The single-cell data was read into R using

read steinbock from the imcRtools R package (version 1.2.3) and the expression

counts were transformed using an inverse hyperbolic sine function (arcsinh) with

cofactor = 5. The expression counts were corrected for channel spillover using a

non-negative least squares method as previously described29. Briefly, each metal-

conjugated antibody was spotted on an agarose-coated slide, and this was ablated

to generate a background signal which could be used for compensation using the

R Bioconductor package CATALYST (version 1.20.1).

Image analysis

All downstream data visualisations, including image and cell segmentation QC

were completed using the cytomapper (version 1.8.0) and dittoseq (version 1.8.1)

R packages30. Batch effect correction of segmented cells was completed using har-

mony (version 0.1.0)31. Cells were clustered based on their similarity in marker

expression using the PhenoGraph clustering algorithm (k =45) implemented in

Rphenograph (version 0.99.1)32. Cluster IDs were mapped on top of UMAP em-

beddings (n neighbors = 40) derived using the uwot R package (version 0.1.11).

Cell type classification was completed using marker enrichment modelling, im-

plemented in the MEM R packages (version 2.0.0), selecting for markers with

enrichment scores equal to or greater than 3 (display.thresh = 3)33 for the first

clustering, which defined immune cells. Further sub-clustering was required to

annotate neoplastic cells with display.thresh relaxed to 2 (Table S2.5).

Creating and comparing deconvolution approaches

MCPcounter was run via the R Package (version 1.2.0) in two modes: default

mode(MCPdefault) used the universal set of 110 immune cell-type marker genes

that come provided as standard, meaning no neoplastic cell populations were in-
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cluded; GBM mode (MCPGBM) used the GBM-specific neoplastic and immune

cell marker genes derived as outlined above. The Create Signature Matrix mod-

ule of CIBERSORTx was run with default parameters and quantile normalization

disabled, to create a signature matrix using the single-cell-derived immune and

neoplastic expression profiles detailed above. This signature matrix was then used

to infer cell fractions of bulk RNA-seq sample mixtures using the CIBERSORTx

high-resolution Docker container:

https://hub.docker.com/r/cibersortx/hires.

For all runs, the bulk RNA-seq dataset was input as the mixture file and the

respective signature matrix was input as the sigmatrix file. For all runs, the

Batch correction was done in S-mode by setting the rmbatchSmode parameter to

TRUE and the input signature matrix’s respective CIBERSORTx-created source

gene expression profile was input. Finally, absolute mode was set to FALSE for

all runs. Cell population quantities inferred from the GBM sample RNA-seq for

all expression-based deconvolution approaches were compared with those from the

IMC using the Pearson correlation coefficient.

Application to TCGA data

TCGA data was obtained from the Genomics Data Commons Data Portal:

https://portal.gdc.cancer.gov.

The data were filtered on the data category and data type fields to only include

transcriptome profiling and Gene Expression Quantification data, respectively.

Further, only primary, IDHwt GBM cases treated with standard/non-standard

TMZ chemoradiation were selected. The expression values for the 93 samples

were transcripts per million (TPM) normalised counts that were combined into an

expression matrix. This matrix was input to GBMdeconvoluteR, which was run

using our GBM specific marker genes. Outputted scores were used in correlation

analysis using the cor() and cor.test() functions from base R stats package. The

quartiles of overall survival (OS) were calculated and used to extract patients with

a worse (OS less than the lower quartile of 8.55 months) or better (OS greater

than the lower quartile of 20.55 months) prognosis. Plots were generated using

the ggplot2 R package.
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Developing GBMdeconvoluteR

GBMdeconvoluteR was developed as an interactive web application using the

Shiny R package (version 1.7.1) and packaged as a portable container image using

the rocker/shiny:latest base Docker image. The custom image was stored in the

Azure Container Registry and deployed using the Azure App Service. All code

can be found at:

https://github.com/GliomaGenomics/GBMDeconvoluteR

2.3 Results

2.3.1 Identifying GBM-specific cell type profiles

Four independent single cell GBM datasets (Figure 2.1) were used to derive marker

genes, or signature gene expression matrices, for GBM tumour-infiltrating immune

cells: B cells, T cells, NK cells, microglia, TAMs, monocytes, mast and DCs. Fig-

ure 2.1A outlines the process. Datasets underwent pre-processing independently

to filter out poor quality cells and copy number analysis to remove neoplastic cells,

before being amalgamated. There were significant batch effects owing to different

sequencing platforms and originating centres but these were effectively removed

using regularized negative binomial regression34 (Figure 2.1B and Figure S2.1A).

One dataset (GSE163120) included the immune cell annotations determined by

the original study. This information was used to guide clustering, with optimisa-

tion focused first on maximising cluster stability and then on the best separation

of pre-annotated cell types21. Owing to the difficulty in separating immune types

that are known to have similar and overlapping gene expression profiles (namely

TAMs and microglia; and NK cell and T cells) cells assigned to any of these

groupings were isolated and further sub-clustered, resulting in definitive cluster

annotations (Figure 2.1B and Figure S2.1B).

GBM-specific marker genes for each immune cell type were then derived by using

differential expression analysis to highlight the top 25 genes, per annotated clus-

ter, that were uniquely or predominantly expressed in that cluster, and visually

checking these to identify specific cell type markers corresponding to each immune

cell type (Figure 2.1C and Table S2.6). Marker genes for GBM cancer cell sub-

types were adopted from Neftel et al.2. In that study, four neoplastic GBM cell

types were delineated from single cell data. We extracted the marker genes that

Neftel et al. showed to delineate the four subtypes, but then removed those that
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are also expressed in the GBM TME, and would therefore confound the results of

application to bulk tissue profiles23 (Table S2.7).

Single cell expression profiles for annotated GBM-associated immune cells, from

our combined datasets, or for annotated GBM cancer cell subtypes, from Neftel et

al., were amalgamated into a full gene expression matrix. This was then subsam-

pled to produce a total of 5075 single cell gene expression profiles with roughly

equal representation of each cell type (Table 2.2).
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Figure 2.1 | Identifying GBM-specific cell types.

A.) The process adopted to amalgamate several independent single cell GBM
datasets and create a GBM-specific immune cell reference signature gene
expression matrix (for input to CIBERSORTx) or marker gene set (for input to
MCPcounter). B.) The inherent batch effects in the amalgamated data are
evident in dimensionality reduction plots where clusters initially separated by
originating datasets (far left), but were removed by normalisation (middle left
and Figure S1A). Initial clustering and cell type assignment of the normalised
data was unable to resolve TAM and microglia, and T- and NK cell (middle
right) but further sub-clustering enabled these cell types to be further delineated
(far right and Figure S1B). C.) A dot plot showing the expression of chosen
GBM-specific immune cell type markers (y-axis) in each cell type in the
amalgamated single cell data (x-axis).

2.3.2 Developing & validating deconvolution approaches

Two gene-expression based computational deconvolution approaches were investi-

gated owing to previous benchmarking studies finding them to be the best full gene

expression signature matrix-based approach (CIBERSORTx) and marker gene-

based approach (MCPcounter) available12. The approaches are distinct and give

results with different interpretations. Gene expression signature matrix methods

such as CIBERSORTx attempt to quantify cell types in a single sample, enabling

comparison of proportions of all cell types within and between samples. Marker

gene-based methods like MCPcounter instead score a single cell type for compar-

ison of prevalence across samples; the score from cell type A cannot be compared

with cell type B so within-sample comparisons of different cell types is not possible.

To ascertain the accuracy of these programmes and determine which performed

best, we identified five primary and matched recurrent GBM samples on which

to perform both gene expression-based and IMC-based cell type deconvolution

(Figure 2.2A and Figure S2.2). The latter is an approach that characterises cells,

according to protein expression, at single cell resolution in tissues using up to

40 antibodies (Figure 2.2B). We assembled and validated a panel of antibodies

known to distinguish tumour-infiltrating macrophages, microglia, monocytes, NK

cell and T cells (Table 2.3 and Table S2.4).
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Figure 2.2 | Validating the deconvolution approach.

A) Schematic showing how patient samples were used for validation. Regions of
formalin fixed tissue sections were annotated as high tumour cell content by a
neuropathologist (marked in black) and were macro-dissected for RNA-seq. At
least three overlapping regions (blue squares) per sample were subjected to IMC
on a consecutive section. B) Left: A representative image from the IMC for
GBM sample 64 with three of the chosen protein markers annotated. Right: The
UMAP projection of cell types assigned according to the expression of cell type
protein markers quantified by IMC. C-D) Scatterplots of gold standard cell
proportions quantified by IMC (y-axis) versus those predicted by gene expression
based methods (annotated across the top) for immune (C) or neoplastic cancer
(D) cell types indicated down the side. The Pearson’s correlation coefficient (r)
is indicated. The dotted line is the line of best fit and the shaded area denotes
the confidence interval. Marker genes for MCPcounter were either default
(MCPdefault), GBM-specific according to our research (MCPGBM) or
GBM-specific according to GBMap (MCPGBMap) Neoplastic cells: AC-like;
OPC-like; NPC-like and MES-like.

2.3.3 Immune cell quantification

MCPcounter can be used in default mode in which in-built canonical immune

cells markers are employed. When running the programme in this mode it can

only be used for immune cell estimation and we refer to it as MCPdefault. In con-

trast, the mode using the GBM-tissue specific immune and neoplastic cell markers

listed in Table S2.6 and Table S2.7 is denoted MCPGBM . In addition, at the time

of preparing this manuscript a larger GBM-specific single cell resource, GBMap,

was made available that amalgamated 26 single cell brain and GBM datasets24.

We, thus, also ran MCPcounter using the GBMap marker genes, denoting this as

MCPGBMap. We inspected the concordance between absolute cell proportions pre-

dicted by CIBERSORTx, or the relative cell type prevalence scores that resulted

from each version of MCPcounter, and the quantification by IMC. We did this for

all tumours together (Figure 2.2C and Table S2.8) and for primary and recurrent

GBM tumours separately (Figure S2.3A and Table S2.8). Results varied across

cell types but MCPGBM performed best overall: it was the only approach to have

positive correlations across all cell types (Figure 2.2C and Table S2.8) and had the

highest average correlation coefficient (Table S2.8: across all samples, the average

Pearson’s r was 0.37 between IMC and MCPGBM compared with 0.05 between

IMC and CIBERSORTx; 0.27 between IMC and MCPdefault and 0.06 between

IMC and MCPGBMap).
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2.3.4 Neoplastic cell quantification

The four GBM cell types described by Neftel et al. are delineated by gene expres-

sion2. Recent studies have shown that such transcriptional cell-type markers often

do not translate to protein level markers for use in approaches such as IMC35,36.

We set out to test this for the GBM neoplastic cell types, specifically. To that end,

in our IMC panel we included antibodies against markers of the four neoplastic

GBM cell types from Neftel et al., prioritising those that overlapped with markers

of GBM cancer cell subsets identified in two independent studies: Wang et al.16

and Couturier et al.27 (Table 2.3 and Table S2.4). These studies also identified

GBM cancer cell subsets that were labelled differently but showed good agreement

with the Neftel et al. study.

Results (Figure 2.2D and Figure S2.3B and Table S2.9) suggest that the protein

markers that we selected are capable of delineating neoplastic cell types: perfor-

mance varied per method and cell type but to the same degree that it did with

well-established immune cell protein markers. Again, when judging performance

based on correlation with IMC, MCPGBM performed best overall: across all sam-

ples, the average Pearson’s r was 0.43 between IMC and MCPGBM compared with

0.02 between IMC and CIBERSORTx; and 0.22 between IMC and MCPGBMap

(Table S2.9)

2.3.5 Application to TCGA data

Our results show that MCPGBM is able to accurately quantify immune and neo-

plastic cells in GBM tissue bulk sequencing data. To show how this can be use-

ful in gaining biological and clinical insights from large-scale studies, we applied

MCPGBM to bulk RNA-seq data from 93 GBM samples from TCGA. This gave

a score per cell type per sample, allowing us to quantify the correlation of cell

type prevalence across patients (Figure 2.3A). Recent spatial, multi-omics studies

have suggested that different neoplastic GBM cell types associate with, and are

programmed by, different environmental niches of GBM tumours4. A key find-

ing was that MES-like cancer cells associate with both myeloid and lymphoid

compartments, whereas the remaining neoplastic cell types (AC-like, NPC-like

and OPC-like cells) are significantly depleted in immune-rich regions. Our re-

sults recapitulate these findings: we observed significant, high, positive correla-

tions between MES-like and all immune cells quantified, and significant negative

correlations between the remaining neoplastic cell types. This phenomenon was

more pronounced for non-MES-like neoplastic cells associated with neuronal de-
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velopment (NPC-like and OPC-like cells) than for NPC-like and AC-like cells,

also in keeping with the previous findings4. Based on the high numbers of sam-

ples in TCGA we were able to further separate patients using OS quartiles to

extract worse prognosis (OS less than the lower-quartile of 8.55 months) and bet-

ter prognosis (OS greater than the upper-quartile of 20.55 months) cohorts and

compare score distributions (Figure 2.3B) and correlations (Figure 2.3C) in these

patient subsets. The prevalence scores of cell types is not significantly different

between worse or better prognosis patients (Figure 2.3B). This finding is in agree-

ment with a recent study that defined GBM tumour subtypes based on the TME,

but showed no difference in survival between them37. However, our results show

that the correlations between cell-types are markedly different between better and

worse prognosis patients (Figure 2.3C). Patients with worse prognosis have higher

and more significant correlations (both negative and positive) between neoplas-

tic and immune cell types. The TME has been shown to shape the neoplastic

cell landscape over time in GBM, with more aggressive tumours being linked to

greater polarity and classification of neoplastic subtypes3,4,38. Our results suggest

that, in worse prognosis tumours, neoplastic and immune cells are more tightly

associated, potentially through more direct inter-cellular communications, which

could be promising therapeutic targets. These preliminary results exemplify how

our tool can be used to develop new insights and hypotheses, by being applicable

to large scale datasets.
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Figure 2.3 | Application of GBMdeconvoluteR to TCGA data.

MCPGBM was used to score cell types in bulk GBM RNA-seq data from The
Cancer Genome Atlas (TCGA). A) Heatmap of the correlations between cell
type scores across all samples. B) Boxplots showing distribution of cell type
scores for patients with worse or better prognosis (determined by the lower and
upper quartile of overall survival, respectively). C) Heatmap of the correlations
between cell type scores across samples from patients with worse (left) or better
(right) prognosis. Significance is denoted by asterisks: ∗: p<0.05; ∗∗: p<0.01; ∗∗∗:
p<0.001; ∗∗∗∗: p<0.0001; NS: Not Significant.

2.3.6 Incorporating additional neoplastic GBM cell types

and developing GBMdeconvoluteR

To make MCPGBM available to the neuro-oncology community, we have packaged

it into an online application called GBMdeconvoluteR. We also give the user the

option to use the marker genes from GBMap24 because, although these did not

quantify cell types as accurately as MCPGBM , the GBMap reference set extends

the range of GBM non-neoplastic cell types that can be quantified from bulk

expression data. GBMdeconvoluteR is, thus, a web-based application that enables

users to upload bulk GBM expression profiles and output the relative proportion

of immune and neoplastic GBM cells, or using GBMap markers genes as input, to

also include normal brain and blood-vessel cells, across multiple samples.

2.4 Discussion

We have developed the first publicly available GBM specific deconvolution tool

that can infer both neoplastic and non-neoplastic cell population prevalence from

bulk GBM tumour RNA-seq data. This tool was developed by amalgamating four

independent, human, single cell sequencing datasets to create tissue specific cell

type gene expression reference profiles. The single cell data was from de novo

IDHwt GBM either at initial diagnosis (primary) or upon recurrence. Recurrent

GBMs have been shown to have altered transcriptional profiles which may im-

pact on the accuracy of the deconvolution results3, so we included these samples

in the tool development and validation. We found that our approach is suitable

for deconvoluting recurrent GBM tumours but, in keeping with the aforemen-

tioned studies, neoplastic cell deconvolution is not as accurate at the longitudinal

time point. Our study confirms, as shown elsewhere, that tissue specific reference
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datasets are necessary to achieve maximal accuracy in expression-based deconvo-

lution5,10,11.

We used IMC to establish a ground truth for cell type characterisation and quan-

tification, which we then compared against the results from the gene-expression-

based approaches to evaluate their accuracy and identify the most suitable method.

However, it must be noted that the IMC regions, while located within the same

tumour, were substantially smaller than the RNA-seq regions (Figure 2.2A and

Figure S2.2), and the GBM TME is highly heterogeneous4. Moreover, IMC was

performed on adjacent (not identical) tissue sections. As such, deviations from

perfect correlation reflect not only limitations in deconvolution performance but

also genuine biological variation in cell composition. Therefore, while IMC can-

not provide an absolute measure of accuracy, it allows for meaningful comparison

between deconvolution methods to identify the best-performing approach.

Our study is the first to evaluate whether the marker genes of the four GBM

neoplastic cell types, determined by Neftel et al. from gene expression data, are

preferentially expressed at the protein level. We found a clear association be-

tween the protein levels of the selected markers and the gene expression-based

quantification.

GBMdeconvoluteR is a publicly available web-application that enables accurate

quantification of cell type prevalences in GBM samples using bulk RNA-seq data,

using MCPcounter - a marker-gene-based method. The method returns relative,

rather than absolute cell type quantification meaning comparisons are possible

within cell types across samples, but not within samples across cell types. We

applied GBMdeconvoluteR to data from TCGA and were able to confirm recent

findings from single cell resolution multi-omics studies, regarding the specific en-

richment of MES-like neoplastic cells in immune compartments, and depletion of

other GBM cancer cell types. However, because our approach is easily applicable

to large-scale sequencing dataset, we could expand upon this further to show that

this association is stronger in samples from patients with worst prognosis. This

leads to the hypothesis that quantifying immune:neoplastic cell interactions could

be prognostic, or that targeting them could be therapeutically beneficial, exem-

plifying the value in applying GBMdeconvoluteR to gain biological and clinical

insights.

In summary, GBMdeconvoluteR can be used to assess associations between cell

type quantities and phenotypic, molecular or clinical characteristics with applica-

tions for target identification, gaining mechanistic insight or stratifying samples for

retrospective therapeutic evaluation or prospective precision medicine approaches.
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Figure S2.1 | Dataset integration and sub-clustering.

A) UMAP projection of single GBM immune cells amalgamated from 4
independent studies, following batch correction. The top repeats the middle left
panel of Figure 2.1B but the mappings for each individual dataset are then
shown separately below. The data GSE163120 was split in two and processed
independently owing to samples being sequenced on different platforms. B) The
result of isolation and sub-clustering for the T and NK cells (Left) and for the
TAMs and microglia (right).
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Figure S2.2 | H&E stained GBM tumour sections used in validation.

Haematoxylin and eosin staining (H&E) stained FFPE sections of the five
primary (P) and matched recurrent (R) IDHwt GBM tumours used in the
validation of GBMdeconvoluteR. Black circles denote the areas that were
macro-dissected from consecutive slides, and from which RNA was extracted for
bulk sequencing. Blue squares demarcate the 2mm2 regions that underwent
characterisation by IMC. Top left to bottom right these samples are: 64P and
64R, 67P and 67R, 71P and 71R, 82P and 82R and 84P and 84R.
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Figure S2.3 | Concordance between absolute and relative cell type
scores.

Scatterplots, in primary or recurrent GBM samples separately, of gold standard
cell proportions quantified by IMC (y-axis) versus those predicted by gene
expression-based methods (annotated across the top) for immune (A) or
neoplastic cancer (B) cell types indicated down the side. The Pearson’s
correlation coefficient (r) is indicated. The dotted line is the line of best fit and
the shaded area denotes the confidence interval. Marker genes for MCPcounter
were either default (MCPDefault), GBM-specific according to our work
(MCPGBM) or GBM-specific according to GBMap (MCPGBMap). Neoplastic
cells: AC-like; OPC-like; NPC-like; MES-like.
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Table S2.1 | Filter thresholds applied to each single cell dataset used
to produce reference profiles for GBM specific cell types.

dataset nUMI min nGene gene complexity min mitochondial ratio min

GSE135437 1500 700 0.8 0.25
GSE138794 2500 1100 0.8 0.25
GSE141383 500 300 0.8 0.25
GSE163120 P 1800 700 0.8 0.25
GSE163120 R 500 300 0.8 0.25
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Table S2.2 | Single cell dataset-specific normalisation parameters used
prior to data integration.

dataset variable features n vars to regress return only var genes

GSE135437 3000 mitoRatio, riboRatio TRUE
GSE138794 3000 - TRUE
GSE141383 5000 S.Score, G2M.Score TRUE
GSE163120 P 5000 S.Score, G2M.Score, mitoRatio, riboRatio TRUE
GSE163120 R 5000 S.Score, G2M.Score, mitoRatio, riboRatio TRUE
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Table S2.3 | Cell type frequencies for the optimal clustering resolution.

Cell type proportions resulting from the clustering of previously annotated
(GSE163120) cell types. The optimal clustering resolution of 0.7 was empirically
determined based on a sweep of different resolution parameters ranging between
0.1 – 0.8 in increments of 0.1. The N/A field denotes the frequency of cells that
were labelled as unknown.

Cluster B cell DC Mast cell Monocyte NK cell T cell TAM N/A

0 28 2 1 3 1741 8308 30 187
1 4 10 0 45 2 0 6698 1300
2 1 57 0 245 0 1 5258 1094
3 12 0 3 2 177 6071 17 15
4 3 0 1 30 3 2 4988 1106
5 5 14 1 5 10 21 357 4557
6 1 37 4 2632 4 3 518 1574
7 4 6 5 10 107 660 848 2641
8 11 1 0 80 6 7 2154 1543
9 0 26 1 190 0 1 2810 473
10 1 3 3 585 45 214 317 2240
11 0 21 0 5 0 0 3045 114
12 1 39 1 23 0 5 535 2445
13 0 1 0 4 0 1 2414 139
14 1 5 0 104 0 2 1828 604
15 0 1644 0 176 1 1 496 99
16 3 13 2 24 21 36 919 981
17 4 0 0 0 146 1580 5 16
18 0 0 1 0 155 410 91 949
19 0 0 0 0 9 1279 0 12
20 1 1 0 2 0 0 402 681
21 896 12 0 0 7 4 63 6
22 1 622 1 0 0 0 0 14
23 0 0 0 14 1 1 35 521
24 1 0 0 1 0 0 467 94
25 0 0 0 3 0 0 64 198
26 0 0 80 0 0 1 7 0
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Table S2.4 | Details of markers & antibodies used for IMC.

Marker Category Type/State Marker justification (PMIDs) Manufacturer (antibody clone) Antibody justification Concentration (µg/ml) Metal-isotope Control tissue

HOPX cancer AC-like 31327527; 31554641; 32641768 abcam (ab230544) - 100 Yb171 Brain, Tonsil
SLC1A3 EAAT1 cancer AC-like 31327527; 31554641; 32641768 abcam(ab240235) BSA and azide free 1000 Gd158 Brain
GFAP normal astrocyte 25726916 abcam (ab218309) PMID: 34174183 100 Sm149 Brain
CD56 normal neuron 28791027 biolegend (318345) PMID: 28369679 100 Dy162 Brain
IBA1 immune macrophage 32848611 abcam (ab220815) PMID: 34174183 200 Eu153 Spleen, Tonsil
NeuN FOX3 normal neuron 20452351 biolegend (834502) PMID: 34174183 400 Sm147 Brain
ANXA A1 cancer MES-like 31327527; 31554641; 32641768 abcam (ab222398) BSA and azide free - Yb172 Tonsil
ANXA A2 cancer MES-like 31327527; 31554641; 32641768 rndsystems (mab3928) In PBS with Trehalose 8-25 Er166 Prostate, Tonsil
CHI3L1 cancer MES-like 31327527; 31554641; 32641768 abcam (ab255864) BSA and azide free 250 Sm154 Spleen, Brain
SOD2 cancer MES-like 31327527; 31554641; 32641768 abcam (ab227846) BSA and azide free, used in IHC 100 Nd146 Prostate
P2Y12R immune microglia 32848611 abcam (ab274386) BSA and azide free 1000 Lu175 Brain
TMEM119 immune microglia 32848611 sigmaaldrich (HPA051870) PMID: 31740814 500-1000 Gd155 Brain, Tonsil
NKP46 immune NK cell 31784984 rndsystems (mab1850) PMID: 36689332 5-25 Nd144 Spleen
BCAN cancer NPC-like 31327527; 31554641; 32641768 thermofisher (MA5-27639) BSA free, used in ICC 50 Gd160 Brain
DLL3 cancer NPC-like 31327527; 31554641; 32641768 abcam (ab255694) BSA and azide free 100 Nd148 Brain
MOG normal oligodendrocyte 2649509 rndsystems (mab1850) - 5-25 Gd157 Brain
OLIG1 cancer OPC-like 31327527; 31554641; 32641768 rndsystems (mab2417) carrier free, used in IHC 8-25 Yb174 Skin
SCD5 cancer OPC-like 31327527; 31554641; 32641768 thermofisher (PA5-59963) used in IHC 50 Tm169 Brain
CD3 immune T cell 29768164 fluidigm (3170019D) PMID: 36689332 75-200 Er170 Spleen, Tonsil
CD8 immune T cell 29768164 biolegend (344727) PMID: 28369679 200 Ho165 Spleen, Tonsil
DNA1 DNA intercalator - - fluidigm (201192B) Preconugated to 191Ir - Ir191 -
DNA2 DNA intercalator - - fluidigm (201192B) Preconugated to 193Ir - Ir193 -
CD45 immune - 12414720 fluidigm (91H029152) Preconugated to 152Sm 300 Sm152 Spleen, Tonsil
CD31 vasculature - 27055047 fluidigm (3151025D) Preconugated to 151Eu Eu151 Skin, Tonsil, Prostate
SMA vasculature - 19929197 rndsystems (mab1420) used in Cytof 8-25 Dy164 Prostate, Skin, Tonsil
EZH2 - transcript respressive 23720055 abcam (ab231165) BSA and azide free 250 Nd145 Tonsil
HIF1A - hypoxia 11606368 thermofisher (700505) PMID: 32868913 400 Dy161 Bone marrow
JARID2 C Terminus - active 30573669 developed in house - - Nd143 Brain
JARID2 N Terminus - repressed 30573669 abcam (ab251123) BSA free version, validated (by KO) - Yb173 Brain
Ki67 - proliferating 29322240 fluidigm (3168001B) Preconugated to 168Er - Er168 Skin, Tonsil
SNAI1 - EMT 33806868 rndsystems (af3639) BSA and azide free, used in IHC 5-15 Tb159 Ubiquitous
SOX2 - proliferating 30952620 fluidigm (3150019B) Preconugated to 150Nd - Nd150 Brain, Tonsil
TGFBeta - quiescent 30952620 fluidigm (3163010B) Pre-conjugated to 163Dy - Dy163 Spleen, Bone marrow, Prostate
TNC - quiescent 30952620 rndsystems (mab2138) used in IF 8-25 Gd156 Uterus
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Table S2.5 | MEM labels for the imaging mass cytometry.

Initial Clustering of all cells:
Assigned Cell Type Cluster MEM Labels

NK Cells 10 NKP46+4 CD45+4 TGFBeta+3

T Cells 26 CD8+5 CD56+4 SLC1A3+3

T Cells 2 CD3+9 CD45+5

Macrophages 14 IBA1+4

Macrophages 15 IBA1+5

Microglia 6 TMEM119+5 IBA1+4 CD45+3

Microglia 13 ANXA1+5 P2Y12R+3

Monocytes 17 CD31+5

Sub-clustering unassigned cells from above:
Assigned Cell Type Cluster MEM Labels

Neoplastic sub-clusters

1 SLC1A3+5 HOPX+5 JARID2 C+4 CD3+4 SOX2+3 BCAN+3 ANXA1+3 JARID2 N+3 OLIG1+3 P2Y12R+3

2 EZH2+3 SLC1A3+3 JARID2 C+2 SOX2+2 BCAN+2 CD3+2 HOPX+2 OLIG1+2

8 ANEXIN A2+2 ANXA1+2 OLIG1+2

10 HIF1A+7 JARID2 C+4 SCD5+3 CD3+3 TMEM119+2 MOG+2 SNAI1+2 CD56+2 CD8+2 HOPX+2

Further clustering cells from neoplastic sub-cluster 1:
Assigned Cell Type Cluster MEM Labels
AC 9 SLC1A3+2

MES 6 CHI3L1+5 TGFBeta+2 ANEXIN A2+2

NPC 11 DLL3+4 GFAP+3 NKP46+2 NeuN+2

OPC 4 SCD5+5 IBA1+4 SNAI1+3 TGFBeta+3 MOG+2

Further clustering cells from neoplastic sub-cluster 2:
Assigned Cell Type Cluster MEM Labels

AC 2 IBA1+9 JARID2 N+5 CD45+3 MOG+3 SLC1A3+3 EZH2+2

AC 6 P2Y12R+4 SLC1A3+3 HOPX+3 SMA+2

NPC 10 GFAP+9 EZH2+8 NeuN+8 DLL3+8 CD45+5 NKP46+4 CD31+4 SNAI1+4 JARID2 C+3 IBA1+3 MOG+3 SCD5+3

OPC 4 JARID2 C+2 OLIG1+2

Further clustering cells from neoplastic sub-cluster 8:
Assigned Cell Type Cluster MEM Labels

MES 2 SOX2+4 P2Y12R+4 ANXA1+2

MES 3 GFAP+4 CHI3L1+4 SOD2+3 DLL3+3 ANEXIN A2+3 CD31+2 TNC+2 ANXA1+2

MES 5 CHI3L1+4 SMA+2 ANEXIN A2+2

Further clustering cells from neoplastic sub-cluster 10:
Assigned Cell Type Cluster MEM Labels

OPC 3 IBA1+2 MOG+2 OLIG1+2

OPC 2 SCD5+2
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Table S2.6 | Final immune markers chosen for MCPGBM .

Marker Cell type Also

CD79A B cells -

CD79B B cells -

CD37 B cells -

MS4A1 B cells -

BANK1 B cells -

BLK B cells -

VPREB3 B cells -

RP5-887A10.1 B cells -

FCER1A DC -

PLD4 DC -

JAML DC -

PKIB DC -

CTSH DC -

TPSAB1 Mast Cells -

TPSB2 Mast Cells -

CPA3 Mast Cells -

HPGD Mast Cells -

HPGDS Mast Cells -

HDC Mast Cells -

RGS13 Mast Cells -

MAOB Mast Cells -

KRT1 Mast Cells -

AC004791.2 Mast Cells -

SLC45A3 Mast Cells -

SVOPL Mast Cells -

CTSG Mast Cells -

KIT Mast Cells -

VWA5A Mast Cells -

ALDH1A1 Mast Cells -

SDPR Mast Cells -

MS4A2 Mast Cells -

C1orf186 Mast Cells -

GATA2 Mast Cells -

LTC4S Mast Cells -

RP11-354E11.2 Mast Cells -

SLC18A2 Mast Cells -

LAPTM4A Mast Cells -

ANXA1 Mast Cells -

SAMSN1 Mast Cells -

LYZ Monocytes -

VCAN Monocytes -

FCN1 Monocytes -

TIMP1 Monocytes -

S100A9 Monocytes -

S100A12 Monocytes -

S100A6 Monocytes -

EREG Monocytes -

S100A8 Monocytes -

LINC01272 Monocytes -

TYROBP Monocytes TAMs

CFD Monocytes -

SERPINA1 Monocytes -

NEAT1 Monocytes -

CD7 NK Cells -

CCL5 NK Cells T Cells

KLRB1 NK Cells -

KLRC1 NK Cells -

HOPX NK Cells -

GZMB NK Cells -

APOBEC3G NK Cells -

KRT86 NK Cells -

KLRD1 NK Cells -

MATK NK Cells -

IL2RB NK Cells -

HCST NK Cells -

XCL2 NK Cells -

XCL1 NK Cells -

EVL NK Cells T Cells

GNLY NK Cells -

TRDC NK Cells -

CD247 NK Cells -

CD2 NK Cells -

LCK NK Cells T Cells

PRF1 NK Cells -

CST7 NK Cells -
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Marker Cell type Also

CTSW NK Cells -

STMN1 NK Cells -

GZMA NK Cells T Cells

NKG7 NK Cells -

IL32 T Cells NK Cells

SIT1 T Cells -

CD3D T Cells -

GIMAP7 T Cells NK Cells

SPOCK2 T Cells -

IL7R T Cells -

TRBC1 T Cells -

TRBC2 T Cells NK Cells

LCK T Cells NK Cells

CCL5 T Cells NK Cells

CD3G T Cells -

CD3E T Cells NK Cells

CD2 T Cells NK Cells

TRAC T Cells NK Cells

CD27 T Cells -

LTB T Cells -

FTL Macrophages -

C1QC Macrophages Microglia

APOE Macrophages Microglia

C1QB Macrophages Microglia

C1QA Macrophages Microglia

APOC1 Macrophages Microglia

TREM2 Macrophages -

VSIG4 Macrophages Microglia

FCGBP Macrophages Microglia

PLTP Macrophages Microglia

A2M Macrophages -

AIF1 Macrophages -

GPNMB Macrophages -

NPC2 Macrophages -

MT2A Macrophages -

MT1E Macrophages -

CD9 Macrophages -

SAT1 Macrophages -

RP11-552D4.1 Macrophages -

SPP1 Macrophages -

ITGA4 Macrophages -

TGFBI Macrophages -

LGALS3BP Macrophages -

IFITM2 Macrophages -

IFITM3 Macrophages -

TAGLN2 Macrophages -

FPR3 Macrophages -

KYNU Macrophages -

S100A11 Macrophages -

S100A6 Macrophages -

TGM2 Macrophages -

EMILIN2 Macrophages -

GDA Macrophages -

HP Macrophages -

SELL Macrophages -

CD163 Macrophages -

MRC1 Macrophages -

LYVE1 Macrophages -

SIGLEC1 Macrophages -

TMEM119 Microglia -

TREM2 Microglia -

CX3CR1 Microglia -

P2RY12 Microglia -

ALOX5AP Microglia -

ADORA3 Microglia -

IGSF6 Microglia -

ACY3 Microglia -

RASAL3 Microglia -

TBXAS1 Microglia -

SASH3 Microglia -

SUSD3 Microglia -

P2RY13 Microglia -

TMIGD3 Microglia -

GPR34 Microglia -

OLFML3 Microglia -

SELPLG Microglia -

SPARC Microglia -

FOS Microglia -
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Marker Cell type Also

SIGLEC10 Microglia -

C3 Microglia -

SLC2A5 Microglia -

SLC1A3 Microglia -

PF4 Microglia -

BIN1 Microglia -

RNASET2 Microglia -

RGS10 Microglia -

SGK1 Microglia -

F13A1 Microglia -

IFIT3 Microglia -

MCM5 Microglia -

DAB2 Microglia -

IFNGR1 Microglia -

APBB1IP Microglia -

LILRB4 Microglia -

CYFIP1 Microglia -

CXCR2 Microglia -

SCD2 Microglia -

PSAT1 Microglia -

CSF2RA Microglia -

CSF1 Microglia -

CSF1R Mircoglia -

CRYBB1 Microglia -

FCRLS Microglia -

MAFB Microglia -

PMEPA1 Microglia -

CD14 Microglia -

LPL Microglia -

CST7 Microglia -
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Table S2.7 | Neoplastic markers (tumour intrinsic) included in
MCPGBM .

Marker Cell type Tumour intrinsic

CHI3L1 MES yes

ANXA2 MES yes

ANXA1 MES yes

CD44 MES yes

VIM MES yes

MT2A MES no

C1S MES no

NAMPT MES no

EFEMP1 MES yes

C1R MES no

SOD2 MES yes

IFITM3 MES no

TIMP1 MES yes

SPP1 MES yes

A2M MES yes

S100A11 MES yes

MT1X MES yes

S100A10 MES yes

FN1 MES yes

LGALS1 MES yes

S100A16 MES yes

CLIC1 MES yes

MGST1 MES no

RCAN1 MES yes

TAGLN2 MES yes

NPC2 MES yes

SERPING1 MES no

C8orf4 MES yes

EMP1 MES yes

APOE MES no

CTSB MES yes

C3 MES no

LGALS3 MES yes

MT1E MES no

EMP3 MES yes

SERPINA3 MES no

ACTN1 MES yes

PRDX6 MES yes

IGFBP7 MES no

SERPINE1 MES yes

PLP2 MES yes

MGP MES yes

CLIC4 MES yes

GFPT2 MES yes

GSN MES yes

NNMT MES yes

TUBA1C MES yes

GJA1 MES yes

TNFRSF1A MES yes

WWTR1 MES yes

HILPDA MES no

ADM MES yes

DDIT3 MES yes

NDRG1 MES yes

HERPUD1 MES yes

DNAJB9 MES no

TRIB3 MES yes

ENO2 MES yes

AKAP12 MES yes

SQSTM1 MES yes

ATF3 MES yes

NRN1 MES yes

SLC2A1 MES yes

BNIP3 MES no

INSIG2 MES yes

IGFBP3 MES yes

PPP1R15A MES yes

PLOD2 MES yes

GBE1 MES yes

SLC2A3 MES yes

FTL MES yes

WARS MES yes

ERO1L MES yes
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Marker Cell type Tumour intrinsic

XPOT MES yes

HSPA5 MES yes

GDF15 MES yes

EPAS1 MES yes

LDHA MES yes

P4HA1 MES yes

SERTAD1 MES yes

PFKP MES no

PGK1 MES yes

EGLN3 MES no

SLC6A6 MES yes

CA9 MES yes

BNIP3L MES yes

RPL21 MES no

TRAM1 MES yes

UFM1 MES yes

ASNS MES no

GOLT1B MES yes

ANGPTL4 MES yes

SLC39A14 MES yes

CDKN1A MES yes

HSPA9 MES yes

TNC MES yes

ZFP36L1 MES yes

PDLIM4 MES yes

WDR13 MES yes

NPNT MES no

HSPB1 MES yes

SGCE MES yes

GABARAPL1 MES no

PON2 MES yes

CYR61 MES no

COL1A2 MES yes

SAT1 MES yes

ATP1A2 MES yes

CHL1 MES yes

CST3 AC yes

S100B AC yes

SLC1A3 AC yes

HEPN1 AC no

HOPX AC yes

MT3 AC no

SPARCL1 AC no

MLC1 AC yes

GFAP AC no

FABP7 AC yes

BCAN AC yes

PON2 AC yes

METTL7B AC yes

SPARC AC yes

GATM AC yes

RAMP1 AC yes

PMP2 AC yes

AQP4 AC no

DBI AC yes

EDNRB AC yes

PTPRZ1 AC yes

CLU AC yes

PMP22 AC yes

ATP1A2 AC yes

S100A16 AC yes

HEY1 AC yes

PCDHGC3 AC yes

TTYH1 AC yes

NDRG2 AC no

PRCP AC yes

ATP1B2 AC yes

AGT AC yes

PLTP AC yes

GPM6B AC no

F3 AC yes

RAB31 AC yes

PPAP2B AC yes

ANXA5 AC yes

TSPAN7 AC no

CPNE1 AC yes

CSPG4 AC yes

PCMTD2 AC yes
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Marker Cell type Tumour intrinsic

PDZD2 AC yes

METL7B AC no

EGFR-AS1 AC no

MT2A AC no

SOCS2 AC yes

NEAT1 AC no

ATP13A4 AC yes

MEOX2 AC yes

GPR37L1 AC yes

CD82 AC yes

SEC61G AC yes

EGFR AC yes

BCAN OPC yes

PLP1 OPC no

GPR17 OPC yes

FIBIN OPC yes

LHFPL3 OPC yes

OLIG1 OPC yes

PSAT1 OPC yes

SCRG1 OPC yes

OMG OPC no

APOD OPC no

SIRT2 OPC yes

TNR OPC no

THY1 OPC yes

PHYHIPL OPC yes

SOX2-OT OPC no

NKAIN4 OPC yes

LPPR1 OPC no

PTPRZ1 OPC yes

VCAN OPC yes

DBI OPC yes

PMP2 OPC yes

CNP OPC yes

TNS3 OPC yes

LIMA1 OPC yes

CA10 OPC yes

PCDHGC3 OPC yes

CNTN1 OPC yes

SCD5 OPC yes

P2RX7 OPC yes

CADM2 OPC no

TTYH1 OPC yes

FGF12 OPC yes

TMEM206 OPC yes

NEU4 OPC yes

FXYD6 OPC yes

RNF13 OPC yes

RTKN OPC yes

GPM6B OPC no

LMF1 OPC yes

ALCAM OPC yes

PGRMC1 OPC yes

HRASLS OPC yes

BCAS1 OPC no

RAB31 OPC yes

PLLP OPC yes

FABP5 OPC yes

NLGN3 OPC yes

SERINC5 OPC yes

EPB41L2 OPC yes

GPR37L1 OPC yes

PDGFRA OPC yes

RPL32 OPC yes

LSM3 OPC yes

CUTA OPC yes

UBE2E2 OPC no

RPL34 OPC yes

UGDH OPC yes

TXN OPC yes

RPL45A OPC no

MPZL1 OPC yes

CUEDC2 OPC yes

PIP4K2A OPC no

CTHRC1 OPC yes

H19 OPC no

H2AFZ OPC yes

PLAT OPC yes
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Marker Cell type Tumour intrinsic

COX7A2 OPC yes

VDAC2 OPC yes

SOX10 OPC yes

MIF OPC no

CDR1 OPC no

STMN2 OPC no

RP1 OPC no

RPL35 OPC yes

RPS24 OPC yes

COL9A1 OPC yes

PGAM1 OPC no

RPL21 OPC no

SNHG5 OPC no

BEX4 OPC no

GAS5 OPC no

PPA1 OPC no

GAD1 OPC no

LINC00643 OPC no

TCEAL2 OPC no

NME1 OPC yes

BEX1 OPC no

ITM2A OPC no

DLL3 NPC yes

DLL1 NPC yes

SOX4 NPC yes

TUBB3 NPC yes

HES6 NPC yes

TAGLN3 NPC no

NEU4 NPC yes

MARCKSL1 NPC yes

CD24 NPC no

STMN1 NPC yes

TCF12 NPC yes

BEX1 NPC no

OLIG1 NPC yes

MAP2 NPC yes

FXYD6 NPC yes

PTPRS NPC yes

MLLT11 NPC no

NPPA NPC yes

BCAN NPC yes

MEST NPC yes

ASCL1 NPC yes

BTG2 NPC yes

DCX NPC yes

NXPH1 NPC yes

HN1 NPC yes

PFN2 NPC yes

SCG3 NPC yes

MYT1 NPC yes

CHD7 NPC yes

GPR56 NPC yes

TUBA1A NPC yes

PCBP4 NPC yes

ETV1 NPC yes

SHD NPC yes

TNR NPC no

AMOTL2 NPC yes

DBN1 NPC yes

HIP1 NPC yes

ABAT NPC yes

ELAVL4 NPC yes

LMF1 NPC yes

GRIK2 NPC yes

SERINC5 NPC yes

TSPAN13 NPC yes

ELMO1 NPC no

GLCCI1 NPC yes

SEZ6L NPC yes

LRRN1 NPC yes

SEZ6 NPC yes

SOX11 NPC yes

STMN2 NPC no

RND3 NPC yes

HMP19 NPC no

MIAT NPC no

NSG1 NPC no

DLX6-AS1 NPC no
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Marker Cell type Tumour intrinsic

NREP NPC no

FNBP1L NPC yes

STMN4 NPC no

DLX5 NPC no

MAP1B NPC yes

RBFOX2 NPC yes

IGFBPL1 NPC no

TMEM161B-AS1 NPC no

DPYSL3 NPC yes

Sep-03 NPC no

PKIA NPC yes

ATP1B1 NPC no

DYNC1I1 NPC no

CD200 NPC no

SNAP25 NPC no

PAK3 NPC no

NDRG4 NPC yes

KIF5A NPC no

UCHL1 NPC no

ENO2 NPC yes

KIF5C NPC no

DDAH2 NPC yes

TUBB2A NPC no

LBH NPC yes

LOC150568 NPC no

TCF4 NPC yes

GNG3 NPC no

NFIB NPC yes

DPYSL5 NPC yes

CRABP1 NPC no

NFIX NPC yes

CEP170 NPC yes

BLCAP NPC no

VIPR2 NPC yes

PSPH NPC yes

NTRK2 NPC yes

GSTM1 NPC yes

CDKN2A NPC no

CDK4 NPC yes

DCTN2 NPC yes

B4GALNT1 NPC yes

DDIT3 NPC yes

ALCAM NPC yes

DGKB NPC no

LINC00689 NPC no

PHYHIPL NPC yes

RARRES2 NPC no
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Table S2.8 | Concordance between immune cell scores and IMC.

Pearson’s correlation coefficients between IMC and the immune cell scores from
different cell deconvolution methods used in this study. the best correlated
method per sample type is shown highlighted.

Cell Type Method Sample Type Pearson’s r Average r

Macrophages CIBERSORTx All 0.3165

0.052165
Microglia CIBERSORTx All -0.4051
Monocytes CIBERSORTx All 0.3437
NK Cells CIBERSORTx All -0.04644
T Cells CIBERSORTx All N/A
Macrophages MCPDefault All 0.3564

0.26788
Microglia MCPDefault All 0.2434
Monocytes MCPDefault All -0.3598
NK Cells MCPDefault All 0.6306
T Cells MCPDefault All 0.4688
Macrophages MCPGBM All 0.628
Microglia MCPGBM All 0.193
Monocytes MCPGBM All 0.01866 0.365652
NK Cells MCPGBM All 0.4209
T Cells MCPGBM All 0.5677
Macrophages MCPGBMap All 0.7614

0.06302
Microglia MCPGBMap All -0.7328
Monocytes MCPGBMap All 0.2441
NK Cells MCPGBMap All -0.3304
T Cells MCPGBMap All 0.3728

Macrophages CIBERSORTx Primary N/A

-0.46394
Microglia CIBERSORTx Primary -0.8962
Monocytes CIBERSORTx Primary 0.01298
NK Cells CIBERSORTx Primary -0.5086
T Cells CIBERSORTx Primary N/A
Macrophages MCPDefault Primary 0.6936

0.21644
Microglia MCPDefault Primary 0.3849
Monocytes MCPDefault Primary -0.337
NK Cells MCPDefault Primary 0.7782
T Cells MCPDefault Primary -0.4375
Macrophages MCPGBM Primary 0.8253 0.42766
Microglia MCPGBM Primary 0.3283 0.42766
Monocytes MCPGBM Primary -0.1758 0.42766
NK Cells MCPGBM Primary 0.5174 0.42766
T Cells MCPGBM Primary 0.6431 0.42766
Macrophages MCPGBMap Primary 0.9697

-0.068824
Microglia MCPGBMap Primary -0.8095
Monocytes MCPGBMap Primary 0.1084
NK Cells MCPGBMap Primary -0.5152
T Cells MCPGBMap Primary -0.09752

Macrophages CIBERSORTx Recurrent -0.03685

0.1467575
Microglia CIBERSORTx Recurrent -0.09832
Monocytes CIBERSORTx Recurrent 0.4736
NK Cells CIBERSORTx Recurrent 0.2486
T Cells CIBERSORTx Recurrent N/A
Macrophages MCPDefault Recurrent 0.0009185

-0.0142923
Microglia MCPDefault Recurrent -0.02028
Monocytes MCPDefault Recurrent -0.6759
NK Cells MCPDefault Recurrent 0.3468
T Cells MCPDefault Recurrent 0.277
Macrophages MCPGBM Recurrent 0.3758 0.23498
Microglia MCPGBM Recurrent -0.1501 0.23498
Monocytes MCP GB Recurrent -0.0743 0.23498
NK Cells MCPGBM Recurrent 0.2496 0.23498
T Cells MCPGBM Recurrent 0.7739
Macrophages MCPGBMap Recurrent 0.5093

0.135942
Microglia MCPGBMap Recurrent -0.5961
Monocytes MCPGBMap Recurrent 0.1857
NK Cells MCPGBMap Recurrent -0.04689
T Cells MCPGBMap Recurrent 0.6277
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Table S2.9 | Concordance between neoplastic cell scores and IMC.

Pearson’s correlation coefficients between IMC and the neoplastic cell scores
from different cell deconvolution methods used in this study. the best correlated
method per sample type is shown highlighted.

Cell Type Method Sample Type Pearson’s r Average r

AC CIBERSORTx All 0.3372

0.024025
MES CIBERSORTx All -0.2594
NPC CIBERSORTx All -0.1613
OPC CIBERSORTx All 0.1796
AC MCPGBM All 0.2503 0.43265
MES MCPGBM All 0.6448 0.43265
NPC MCPGBM All 0.2662 0.43265
OPC MCPGBM All 0.5693 0.43265
AC MCPGBMap All 0.2011

0.2231125
MES MCPGBMap All 0.5003
NPC MCPGBMap All -0.03285
OPC MCPGBMap All 0.2239

AC CIBERSORTx Primary 0.3563

0.164775
MES CIBERSORTx Primary -0.5799
NPC CIBERSORTx Primary 0.263
OPC CIBERSORTx Primary 0.6197
AC MCPGBM Primary 0.4354

0.7992
MES MCPGBM Primary 0.8923
NPC MCPGBM Primary 0.9434
OPC MCPGBM Primary 0.9257
AC MCPGBMap Primary 0.6451 0.805275
MES MCPGBMap Primary 0.8815 0.805275
NPC MCPGBMap Primary 0.8501 0.805275
OPC MCPGBMap Primary 0.8444 0.805275

AC CIBERSORTx Recurrent -0.6441

-0.24
MES CIBERSORTx Recurrent 0.1488
NPC CIBERSORTx Recurrent -0.1952
OPC CIBERSORTx Recurrent -0.2695
AC MCPGBM Recurrent -0.2283 -0.13695
MES MCPGBM Recurrent 0.3344 -0.13695
NPC MCPGBM Recurrent -0.8784 -0.13695
OPC MCPGBM Recurrent 0.2245 -0.13695
AC MCPGBMap Recurrent -0.6178

-0.23965
MES MCPGBMap Recurrent 0.2415
NPC MCPGBMap Recurrent -0.9085
OPC MCPGBMap Recurrent 0.3262
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Abstract

Background: Isocitrate dehydrogenase wild-type (IDHwt) glioblastoma (GBM)

is an aggressive, incurable brain malignancy characterised by significant cellular

heterogeneity that contributes to treatment resistance. Recently, we proposed

a patient classification of GBM tumours into distinct Up and Down responder

subtypes based on their transcriptional responses to standard treatment.

Methods: Here we used cell deconvolution to identify cell type proportions using

longitudinal, bulk RNA sequencing (RNA-seq) data from 219, paired pre- and

post-treatment IDHwt GBM tumour samples.

Results: We find significant reductions in vascular cells and increases in normal

neurons, oligodendrocytes, and plasma B cells through treatment. Further spatial

proteomics and transcriptomics validated showed that plasma B cells significantly

co-localised with oligodendrocytes. Stratifying patients into Up and Down respon-

ders we observe subtype-specific cellular dynamics: Up responders show elevated

plasma B cells, neurons, and oligodendrocytes post-treatment, indicating a more

proneural (PN) phenotype involving oligodendrocyte remyelination. Down re-

sponders align with a more mesenchymal (MES) phenotype, marked by increased

hypoxia, decreased vasculature that does not associate with any other cell type

and also more myeloid lineage cells.

Conclusions: Responder-specific cellular landscape changes through treatment

reveal potential mechanisms of GBM treatment resistance and therapeutic targets.
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3.1 Introduction

IDHwt GBM is the most common and aggressive type of primary brain malig-

nancy1. Despite aggressive standard treatment of surgical resection, radiation

and chemotherapy, it remains incurable. This failure arises due to a combina-

tion of genetic, epigenetic, developmental and microenvironmental factors that

contribute to GBM tumour heterogeneity1,2.

Building on studies that examined inter-tumour transcriptional heterogeneity within

GBM3,4, single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA se-

quencing (snRNA-seq) have revealed that GBM cells exist in various transcrip-

tionally defined neoplastic states2,4–6. These states mimic distinct neural cell types

and are influenced by epigenetic mechanisms7. Additionally, these states are as-

sociated with properties like proliferation, stemness and neurodevelopmental pro-

grams8; PN-to-MES axis9, cellular specialization and metabolism10; the tumour

microenvironment (TME) and injury responses11.

Previously, we developed a high-throughput cell deconvolution tool to quantify the

cellular composition of IDHwt GBM tumours in-silico12. More recently, we anal-

ysed bulk RNA-seq data from pairs of pre- and post-treatment, IDHwt GBM tu-

mours and identified a subset of genes which were differentially regulated amongst

two patients groups13. These changes were mainly linked to neoplastic cells and

suggested subtype-specific adaptive treatment resistance mechanisms and distinct

TME alterations were at play, leading us to define two responder subtypes: Up

and Down.

In this study, we applied cell deconvolution to significantly enlarged cohorts of

bulk, longitudinally paired IDHwt GBM tumour samples to understand how the

cellular landscape changes through treatment. We used cell type markers for

immune cells, normal brain cells, including vasculature components, and mark-

ers defining neoplastic GBM cells. For the latter we used two schemas as de-

scribed by (1) Neftel et al.2 and (2) Wang et al.9. The first study defined 4 GBM

cell types: oligodendrocyte progenitor-like (OPC-like), astrocyte-like (AC-like),

neural progenitor-like (NPC-like), and mesenchymal-like (MES-like). The MES-

like signatures were further divided into hypoxia-independent mesenchymal-like

(MES1) and hypoxia-dependent mesenchymal-like (MES2) categories. Similarly,

NPC-like signatures were subdivided into oligodendrocyte-lineage associated neu-

ral progenitor-like (NPC1) and neuronal-lineage associated neural progenitor-like

(NPC2), based on the inclusion of oligodendrocyte progenitor cell (OPC)-related

versus neuronal lineage genes, respectively. Conversely, the second study delin-
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eated a bidirectional transcriptional axis with cells on a spectrum between PN

and MES (herein referred to as Wang et al. mesenchymal (MES3))9. We also

expanded our previous work by stratifying these IDHwt patients into responder

subtypes, and further examined the cell type changes specific to each subgroup13.

Finally, we explored whether information contained within the cell type scores was

sufficient to distinguish tumour samples as pre- or post-treatment and identify

different responder subtypes. Our ultimate goal was to uncover biologically and

clinically meaningful insights that could relate to distinct treatment resistance

mechanisms which could be targeted therapeutically.

3.2 Materials & methods

All analyses were performed using the R statistical software package (v4.2.1) and

Python (v3.11)14. Further details of packages and specific versions are provided in

the sections below. The name of each statistical test used, and level of significance

achieved, is included within the results where the finding from each hypothesis test

is confirmed. All plots were generated using ggplot2 (v3.4.4)15.

3.2.1 Data availability

Data used within this study, that isn’t already publicly available, will be made

available at the time of publication. Publicly available data obtained from longi-

tudinal bulk tumour studies is available as described in Table S3.1.

3.2.2 Code Availability

All code used to generate the results detailed in this paper can be found at:

https://github.com/GliomaGenomics/GBM Deconvolution Analysis

3.2.3 Ethics statement

Tumour samples used in this study were obtained from patients at the Walton

Centre, UK, who provided informed consent in writing for the use of their tissue

in research. The inclusion of these samples in this project was following approval
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by the UK National Health Services (NHSs) Research Ethics Service Committee

South Central - Oxford A (Research Ethics Code: 13/SC/0509).

3.2.4 Sample collection & processing

Collection and processing of longitudinal GBM samples for the Stead cohort were

acquired from The Walton Centre, Lancashire Teaching Hospitals, and Leeds

Teaching Hospitals NHS Foundation Trusts via the Brain Tumour Northwest

Tissue Banks and the Leeds Neuropathology Research Tissue Bank. In addi-

tion, tissue samples were obtained from Cambridge University Hospitals NHS

Foundation Trust as part of the brain archive information network UK (BRAIN

UK)16. These samples were processed as previously described17. Briefly, formalin-

fixed paraffin-embedded (FFPE) blocks were sectioned and the first and last sec-

tions were haematoxylin and eosin staining (H&E)-stained and underwent neuro-

pathologist review to identify areas of > 60% tumour. Regions of overlap were

macro-dissected from the intervening sections and ribonucleic acid (RNA) was ex-

tracted using All Prep deoxyribonucleic acid (DNA)/RNA FFPE Kit (catalogue

#80,234) from Qiagen (UK).

3.2.5 Imaging mass cytometry

The imaging mass cytometry (IMC) antibody selection, image processing and

analysis was performed as previously described12.

3.2.6 RNA-seq data acquisition & processing

All RNA extracted in-house underwent ribosomal ribonucleic acid (rRNA) de-

pletion using the NEBNext rRNA Depletion Kit (Human/Mouse/Rat) and then

strand-directional, whole transcriptome library preparation using NEBNext Ultra™

II Directional RNA Library Prep Kit for Illumina©, both from New England Bi-

olabs (UK). Libraries were sequenced on Illumina next-generation sequencers as

100 base pairs (bp) paired-end reads. Raw RNA data was acquired from several

published studies following negotiation of data transfer agreements, where neces-

sary13,18–23. Discovery, Stead cohort sample FASTQ data were trimmed of low-

quality bases, Phred threshold = 20, and adapters via Trim Galore v0.4.3, wrap-

ping Cutadapt v1.8.324. Trimmed reads were quality checked using FASTQC25 and

then aligned to the human reference genome GRCh38.13 using STAR v020201 in
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two-pass mode with a maximum of 5 multireads26. Gene and transcript count and

gene expression were quantified via CuffQuant v2.2.1 taking directional specifics of

the library as input, using probabilistic weighting of multi-reads and quantifying

against the GENCODEv27 human genome annotation with haplotypes and scaf-

folds included27,28. Discovery, glioma longitudinal analysis consortium (GLASS)

cohort RNA-seq data was acquired as pre-processed transcripts per million (TPM)

counts via the GLASS portal at https://www.synapse.org/glass18. The valida-

tion, European organisation for research and treatment of cancer (EORTC) cohort

RNA-seq data was processed according to the methodology previously described

- the raw counts were converted from fragments per kilobase million (FPKM) to

TPM counts19. All TPM counts were then summed per gene and filtered to remove

genes with zero expression and variance across all samples. We also removed non-

protein coding genes, to mitigate against the different library preparation methods

used by the cohorts.

3.2.7 Batch correction

Stead and GLASS cohort patient samples were obtained for multiple sources and

therefore were batch corrected to remove this unwanted source of variation using

Combat-seq from the SVA package (v3.35.2)29. This was visualised before and

after correction using the base R principal component analysis (PCA) function,

prcomp() and taking the first two principal components (Figure S3.1).

3.2.8 Estimating tumour purity

For each patient sample we estimated the purity (proportion of malignant cells)

of the tumour using GBMPurity: a deep learning model specifically designed to

estimate the purity of IDHwt primary GBM from bulk RNA-seq30. We excluded

any samples which did not meet the minimum purity threshold determined by the

model.

3.2.9 Cell deconvolution

Cell type deconvolution was performed using GBMDeconvoluteR, as previously

described12. A custom marker list was supplied to the programme, comprising

of IDHwt GBM tumour-specific immune cell markers from the Ajaib et al. gene

marker list, supplemented with immune and brain resident cell types from the
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Ruiz-Moreno et al. gene marker list31. Additional GBM malignant cell, neoplastic

cell-state markers were also added, taking the original six markers described by

Neftel et al.2 and the two described by Wang et al.9. All off the neoplastic markers

used were originally derived using single cell data and therefore, were refined

using a previously defined methodology2, in order to exclude markers which were

not applicable to bulk RNA-seq data. Moreover, all non-tumour-intrinsic (TI)

markers, as defined by Wang et al. were also filtered out before performing cell

deconvolution4.

3.2.10 Differential cell type scores

All cell type scores were compared using a two-sided, paired, Wilcoxon signed-

rank test implemented in the base R, wilcox.test() function32. Comparisons were

initially performed using data from all of the samples and also individually for

each of the cohorts (Table S3.1): the data were also stratified across up and

Down responder types. All comparison p values were adjusted (q-values) using the

false discovery rate (FDR) method to correct for multiple testing33. Comparisons

were visualised using EnhancedVolcano R package (v1.13.2), taking the log2-fold

changes in cell-type scores and the corrected − log10 p values.

3.2.11 Cell type score correlations

Correlation analysis was conducted with the base R cor() function, using the

Spearman Rank correlation test to account for non-linear associations34 and the

significance of each correlation tested using the cor.test() function. Visualisation of

the correlations were generated using the ggcorrplot R package (v0.1.4.1). Multiple

correlation coefficient thresholds, ranging from 0 to 0.7, were tested to capture

diverse levels of correlation strength and significance.

3.2.12 Testing cell-cell interactions

Cell-cell spatial interactions were tested using the testInteractions from imcR-

tools with the previously described method35. Briefly, co-detection by indexing

(CODEX) spatial interaction graph data (from Greenwald et al.36) edges were

summed and aggregated across individual patients and then divided by the num-

ber of cells of type A that had at least one neighbour of type B. These observed

interactions were compared against a derived null distribution, describing the in-
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teractions formed under spatial randomness. Significance was determined using

two one-tailed permutation tests:

PAB =

1, Cobs = 0;∑
(Cperm≥(≤)Cobs)+1

Nperm+1
, otherwise,

where Cperm is the number of cell pairs (A, B) in each permutation, Cobs is the

actual number of cell pairs (A, B) given a defined distance, and Nperm is the

number of permutations.

3.2.13 Survival analysis

All survival analyses were conducted using the base R survival package (v3.5.7).

Kaplan-Meier survival curves were generated using the survfit() function, tested

for significance using the log-rank test37 and visualised using ggplot2 the survminer

R package (v0.4.9). Cox regression models were generated using the coxph() func-

tion, assessing the relation between progression-free survival (PFS) and overall

survival (OS) in months. The non-linearity of each exploratory variable was exam-

ined using Martingale residuals38, and the proportional hazards (PH) assumptions

for each covariate were assessed using the base R cox.zph() function, correlating

the corresponding set of scaled Schoenfeld residuals with time39. Multivariate Cox

models were initially constructed incorporating each individual cell type score pre-

dictor variable and two known confounder variables (age and O6-methylguanine

DNA methyltransferase (MGMT) expression) and then subsequently, using all

the cell type score predictors. Visualisation of the Cox regression results was done

using the forestploter R package (v1.1.1).

3.2.14 Dimensionality reduction

PCA was performed in 10 dimensions taking a vector of all cell type scores using

the prcomp() R function and visualised using the factoextra R package (v1.0.7).

Further dimensionality reduction was performed in two dimensions for clustering

and visualisation purposes using the pairwise controlled manifold approximation

(PaCMAP) algorithm from the pacmap python package (v0.7.0) using the default

parameters40.
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3.2.15 Unsupervised clustering

K -means clustering was performed using the base R kmeans() function with the

numbers of clusters (k) set between 2-20. The optimal number of k clusters was

determined using the total within-cluster sum of squares (WCSS) method for each

dataset and then visualised using the PaCMAP reduced dimensions. Unsupervised

cluster survival curves were compared for PFS and OS as detailed in the survival

analysis subsection 3.2.13.

3.2.16 Supervised classification

The MLR3 R package (v0.17.2) was used to perform supervised classification41.

Briefly, multiple binary classification algorithms were benchmarked, predicting the

probabilities of outcomes: surgery (primary or recurrent) and responder type (up

or down). Each benchmarked model was then evaluated using the classification

accuracy and classification error metrics and also compared against a featureless

classifier. The initial benchmarking was done using all the data and then following

this, the Stead and GLASS cohorts were re-trained using the top performing model

from the benchmarking process and validated using the EORTC cohort. A 10-

fold cross-validation resampling strategy was employed for all model training and

benchmarking steps. The best performing binary classifier was evaluated using

receiver operator curve-area under the curve (ROC-AUC) analysis and visualised

using the autoplot() function. The most important features of the best performing

model were evaluated using the permutation feature importance (PFI) method42,

implemented in the iml R package (v0.11.1)43.
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Table 3.1 | Summary of clinical metadata.

Summary of the clinical metadata for the paired GBM tumour samples used in
the study. Data are shown for the full cohort (“All samples”) as well as for a
filtered subset of samples with tumour purity ≥ 40%. For each group, metadata
are provided across three contributing datasets: Stead, GLASS and EORTC.
PFS: progression-free survival; OS: overall survival; IQR: interquartile range;
GLASS: glioma longitudinal analysis consortium; EORTC: European
organisation for research and treatment of cancer.

All samples

All Stead GLASS EORTC

tumour pairs (up/down responders) 219 (137/82) 98 (60/38) 23 (14/9) 98 (63/35)
sex (male/female/unknown) 75/37/107 58/31/9 17/ 6/0 0/0/98
median age in years (IQR) 57 (49 - 63) 58 (48 - 63) 60 (50 - 66) 55 (50 - 62)
median PFS in months (IQR) 13 (8 - 21) 13 (9 - 22) 14 (8 - 24) 12 (8 - 19)
median OS in months (IQR) 22 (17 - 33) 21 (17 - 33) 23 (18 - 33) 22 (17 - 33)

Tumour purity (≥ 40%) filtered samples

All Stead GLASS EORTC

tumour pairs (up/down responders) 124 (79/45) 66 (40/26) 9 (6/3) 49 (33/16)
sex (male/female/unknown) 47/23/ 54 41/20/5 6/ 3/0 0/0/ 49
median age in years (IQR) 56 (50 - 63) 57 (49 - 63) 52 (49 - 63) 56 (51 - 62)
median PFS in months (IQR) 15 (10 - 24) 14 (10 - 23) 16 (16 - 32) 15 (9 - 24)
median OS in months (IQR) 23 (17 - 34) 19 (17 - 31) 34 (22- 44) 24 (17 - 34)
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3.3 Results

3.3.1 Overview of cohorts

We restricted our study to de novo, IDHwt GBM tumours, where all patients had

received standard treatment comprising of radiation and temozolomide (TMZ).

All patient samples were longitudinally paired (primary and recurrent) and only

included the first recurrence. In total, we analysed 219 GBM tumour pairs across

three independent datasets, detailed in Table S3.1 and also summarised in Ta-

ble 3.1: Stead13; GLASS18; and EORTC19. The RNA-seq data from the EORTC

and Stead cohorts were processed locally, while the GLASS data were processed

separately 14. The data were sub-divided into discovery (Stead and GLASS) and

validation EORTC cohorts to evaluate consistent longitudinal changes: we ap-

plied batch correction to the discovery cohort to account for multi-centre origins

of these data (Figure S3.1). Further, we excluded tumour sample pairs which had

less than 40% tumour purity30, retaining 124 GBM tumour pairs (Table S3.1 and

Figure 3.1A) for analysis to ensure accurate responder subtype assignment based

on cancer cell content13.

3.3.2 Longitudinal cell type score changes through treat-

ment

Differential cell-type changes

We first investigated how the prevalence of each cell type changed through treat-

ment, in a pair-wise manner across both discovery and validation cohorts (Fig-

ure 3.1B and Table S3.2). We found cells making up the vasculature component

were decreased: endothelial cells (q = 4.46×10−7) and mural cells (q = 7.87×10−4).

Decreased vasculature, specifically endothelial cells, following treatment in GBM

has previously been reported19 and is thought to be a result of the recurrent tu-

mour not having had enough time to re-vascularise following surgical resection.

We also found normal brain cells: neurons (q = 7.76×10−4) and oligodendrocytes

(q = 2.32 × 10−5), significantly increased following treatment. Hoogstrate et al.

previously analysed transcriptional changes in paired IDHwt GBM tumours and

found that deceasing tumour purity was accompanied by increased expression of

neurons and oligodendrocytes19. They and others have also reported increases

in tumour-associated macrophages (TAMs) and T cells19,44. Plasma B cells were
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the only immune cell-type we found that was significantly increased across both

cohorts (q = 2.43 × 10−5). Notably, whilst plasma B cells are increasing, B cell

populations on the whole are found to be decreasing through treatment across

both cohorts, albeit not significantly.

To validate the transcriptional cell type changes, at the protein level, we analysed

IMC using 5 patient samples from our discovery cohort (Table S3.1 and Fig-

ure 3.1C). In agreement with our deconvolution results, we found that endothelial

cell proportions were decreasing (p < 0.01) and normal brain cell populations were

all increasing: neurons (p < 0.01); oligodendrocytes (p < 0.05) and astrocytes (p

< 0.01). This was also apparent when visualising the respective cell-type protein

marker abundances (Figure 3.1C). Astrocytes are the most abundant cell type

found in brain microenvironment and become activated in response to brain in-

jury, in order to form a protective barrier that limits the extent of tissue damage

within the delicate brain tissue and also promotes axonal regrowth45. This may

explain the astrocyte increase observed in IMC data post-treatment, though the

effect, whilst still present, is less pronounced at the transcript level across a larger

cohort, where astrocytes already constitute a major cell population. Conversely,

the immune cell increases observed are likely a consequence of wound healing

response to treatment, predominantly surgical resection46.

Cell type correlations

The GBM TME is shaped by both the properties of individual cell types and

their interactions, which together drive treatment resistance through enhanced

proliferation, invasion, and migration47. To study this interplay, we analysed

correlations in cell type score changes (recurrent – primary) across discovery and

validation cohorts (Figure 3.1D).

We observed strong positive correlations amongst all immune cells except for

plasma B cells, which correlated more strongly with normal brain cells: oligo-

dendrocytes (r = 0.91), astrocytes (r = 0.69), and neurons (r = 0.56).

Plasma B cells are terminally differentiated B cells that secrete Immunoglobulin

M (IgM) early in the immune response and Immunoglobulin G (IgG) later fol-

lowing memory B cell differentiation48. Notably, oligodendrocyte progenitor cells

express high-affinity receptors for the fragment crystallizable region s (Fc regions)

of both antibody types, promoting their maturation49. Disrupting IgM signalling

during neonatal stages has been shown to impair axonal myelination in later de-

velopment48,49.
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Figure 3.1 | Cell type score dynamics and their associations with
survival across discovery and validation cohorts.

A) Schematic representation illustrating the paired patient study design and the
number of patient samples used across each of the discovery (Stead and GLASS)
and validation (EORTC) cohorts. The number of paired samples remaining after
filtering for low tumour purity is also shown. B) Volcano plots showing the
changes in GBMdeconvoluteR cell type scores across paired, primary and
recurrent samples in the discovery cohort. The y-axis represents the − log10
FDR-corrected p-values and the x-axis shows log2-fold changes. Significant cell
type changes (p < 0.05) are highlighted (by cell category) and labelled. The
point shapes indicate whether changes are also significant in the validation
cohort. C) Top: boxplots showing the prevalence of cell type score changes
between primary and recurrent surgery, based on IMC data. Bottom:
representative IMC images showing the protein marker abundance used to
identify normal brain cells including vasculature components. D) Heatmap of
spearman rank correlation coefficients between changes in cell-type scores
(recurrent – primary) in the discovery cohort. The tile fill colour reflects the
direction and strength of the correlation coefficients and only strong correlation
coefficients (≥(-)0.5) that are significant (p < 0.05) across both discovery and
validation cohorts are shown. E-F) Forest plots showing the association between
change (recurrent – primary) in cell-type score through treatment; age at
diagnosis; and MGMT expression in relation to PFS (E) and OS (F) across all
patient samples. Arrows after each cell-type denote the median change for that
cell type across comparison samples: up arrow - increased through treatment;
down arrow – decreased through treatment. Hazard ratios (HRs) are shown as
points, with 95% confidence intervals represented by horizontal bars. Predictors
significantly associated with survival outcomes (p < 0.05) are shaded blue.
Significance thresholds: ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001.

The vasculature cell types (endothelial and mural cells) are strongly correlated (r

= 0.75) with each other. Endothelial cells do not correlate with any other cell

types, though mural cells correlate with T cells (r = 0.55), monocytes (r = 0.56)

and the MES1 (r = 0.60). The immunosuppressive role of TAMs and their role

in inducing a MES-like state in GBM are also well documented50,51, as are the

influences of increased monocytic lineage cells in impacting on OS in tumours

that have a high amount of tertiary lymphoid structures (TLSs) present52.

Amongst normal brain cells we find two patterns of association, one between nor-

mal glial cells and neurons: astrocytes (r = 0.75), oligodendrocytes (r = 0.67) and

those between non-malignant neoplastic cell types, radial glial cells and oligoden-

drocyte progenitor cells (r = 0.51) which also strongly correlate with the malignant

neoplastic cell types.

The malignant neoplastic cell types defined by Neftel et al. also separate into

two groups along a PN to MES axis where MES-like neoplastic cells (MES1 and
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MES2) and neural/glial progenitor-like cells (NPC1/NPC2, OPC-like and AC-

like) are correlated separately. Neftel et al. reported NPC2 associated more with

neuronal lineage genes and also we find this to be the case with NPC2 correlation

with normal neurons (r = 0.57) across both cohorts. Interestingly, whilst we see a

similar separation between MES3 and PN neoplastic cell types defined by Wang

et al., the MES3 is more correlated with normal glial cells such as astrocytes (r =

0.81), neurons (r = 0.58) and the AC-like neoplastic cell type (r = 0.63), rather

than the two Neftel mesenchymal neoplastic cell states.

Taken together these results suggest that, whilst there are some consistent changes

in individual cell types through treatment, coordinated changes in groups of cells

between primary and recurrent GBM are more prevalent. Furthermore, this coor-

dination occurs within cell subsets (immune, neoplastic, etc.) but also implicates

associations between cells of different groupings that may infer functional relation-

ships. An example of this being the coordinated upregulation of oligodendrocytes

and plasma B cells.

Association of cell type changes with survival outcomes

In addition to identifying cell changes and correlations through treatment we also

wanted to assess the impact of such changes on patient survival. Therefore, we

modelled OS and PFS risk associated with the change (recurrent – primary scores)

in each cell type, alongside two confounding predictors known to affect GBM

survival53: age at diagnosis and the expression of MGMT in the primary tumours.

For this analysis we combined the discovery and validation data to increase sta-

tistical power and identify the most robust cell type change predictors. We find

that higher MGMT expression is associated with both an increased risk of PFS

(HR = 1.16, 95% confidence interval (CI): 1.06 - 1.26) and OS (HR = 1.14, 95%

CI: 1.05 - 1.24) resulting in a worse patient outcome, consistent with its use as a

prognostic marker in GBM54.

Aberrant vasculature is a hallmark of GBM progression where it facilitates hy-

poxic niches and creates hostile immune environments55. We find that decreases

in endothelial cells through treatment are associated with better PFS (HR = 0.33,

95% CI: 0.15 - 0.72) and OS (HR = 0.30, 95% CI: 0.14 - 0.68) outcomes, whilst

mural cell decreases through treatment are associated with a worse PFS outcome

(HR = 1.97, 95% CI: 1.05 - 3.69). Although, both vascular cell components are

significantly decreasing through treatment (Figure 3.1B), we note that mural cells

are significantly correlated (Figure 3.1D) with T cells, monocytes and MES1. Mu-
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ral cells collectively refer to smooth muscle cells and pericytes, the latter of which

facilitate GBM cell migration to infiltrating tumour edges56. These pericytes ex-

press mesenchymal stem cell (MSC) molecular markers and when activated under

inflammatory conditions are involved in both angiogenesis and immune-response

mediation57. Additionally, aside from supporting vasculature, pericytes are in-

tegral to neural proliferation by maintaining of the perivascular region (PVR)

which comprises neural progenitors, astrocytes, endothelial cells, pericytes, and

extracellular matrix components57.

Decreases in specific immune cell populations within the GBMTME through treat-

ment are associated with improved patient outcomes. Notably, overall reductions

in microglia correlate with better PFS (HR = 0.14, 95% CI: 4.28 × 10−2 - 0.45)

and OS (HR = 0.22, 95% CI: 7.26×10−2 - 0.67). Similarly, declining natural killer

cell (NK cell) populations, are associated with better PFS (HR = 0.23, 95% CI:

6.26× 10−2 - 0.87) and OS (HR = 0.18, 95% CI: 3.94× 10−2 - 0.80) outcomes.

Other immune cells also show treatment-associated changes in prevalence that

correlates with OS, but not consistently with PFS. Importantly, these associa-

tions with OS depend on the direction of the cell type changes through treatment

(Figure 3.1F). This variability reflects the heterogeneity of immune cell popula-

tions in the GBM TME, where they can be protective when activated, but also

tumour-promoting when co-opted or suppressed, through interactions with neo-

plastic GBM cells and other components of the TME.
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Validating plasma B cell co-localisation with oligodendrocytes

Our data indicate potential functional interplay between plasma B cells and oligo-

dendrocytes in GBM tissue, which appears to be increasingly important through

treatment. To see if we could validate the co-localisation of these cell types in

GBM tissue, we analysed the cell interactions in two publicly available IDHwt

patient samples generated via spatial proteomics (CODEX)36. This also provides

a further layer of validation of cell type identification using gene versus protein

expression. B cells were identified using the pan-B cell marker CD19, which is

also expressed on activated plasma B cells. We found that oligodendrocytes sig-

nificantly interact with B cells (permutation test, p = 9.99 × 10−4) in samples

where B cells were present (Table S3.3 and Figure 3.2A). These interactions were

also confirmed by visual inspection of the protein marker expression in both cell

types (Figure 3.2B).

We also utilised spot-based spatial transcriptomics to examine the spatial distri-

bution of cells from the tumour core and the tumour margin. We found that

plasma B cells co-localise in the same spatial region as oligodendrocytes in both

regions (Figure S3.2 and Figure S3.3). Notably, these niches also comprised very

low expression of all other immune cell types, with the exception of macrophages

which also co-localised with plasma B cells in the tumour core (Figure S3.2.
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Figure 3.2 | Spatial proteomic (CODEX) cell-cell interactions.

A).Dotplot showing the cell-cell interactions based on spatial proteomic analysis
(CODEX) of two patients. The interactions were determined for each cell type
and compared against a null distribution which defined cell positions under
spatial randomness. Interactions were only counted in instances where cells of
type A that had at least one neighbour of type B: the plot shows the most
significant (p < 0.01) interactions that were present across both patient samples.
Shape and point colours both denote the type of significant cell-cell interaction,
and the tile highlights denote the cell category each cell type belongs to. B)
Representative CODEX images across two patient samples showing the protein
marker abundance used to identify oligodendrocytes and B cells with the GBM
TME.

3.3.3 Longitudinal cell type changes across responder types

Differential cell type changes

We recently described how IDHwt GBM tumours can be stratified into two re-

sponder types based on transcriptional changes through treatment: Up and Down

responders13. Further, we showed that the biology underpinning each respon-

der type implicated distinct treatment resistance mechanisms. To expand on this

work, we investigated cellular landscape changes from primary to recurrence in Up

(Figure 3.3A and Table S3.4) and Down (Figure 3.3B and Table S3.5) responder

types separately, using our significantly expanded cohorts. Again, we focus here

on findings from the discovery cohort that were independently confirmed in the

validation cohort.

Post-treatment changes in cell type compositions reveal distinct patterns between

Up and Down responders (Figure 3.3). In Up responders, we find that the increases

in plasma B cells (q = 9.97× 10−6), neurons (q = 2.81× 10−9), and oligodendro-

cytes (q = 4.22× 10−7), which we previously observed when analysing all samples

together (Figure 3.1B), are maintained. In contrast, these changes are absent in

Down responders, which only show significant decreases in endothelial cells (q =

5.64× 10−3) across both cohorts, following treatment.

Strikingly, neurons show opposing effects, being significantly increased over time

in the Up responders (Figure 3.3A), and decreased in the Down responders (Fig-

ure 3.3B). The increasing prevalence of neurons in the Up responders occurs along-

side validated increases in oligodendrocytes and plasma B cells, which are cells

required for myelination necessary to ensheathe newly formed axons. Remyeli-
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nation has been extensively studied in multiple sclerosis (a demyelinating disease

of the central nervous system) where astrocytes and microglia also facilitate re-

myelination by interacting with OPCs58. We find similar patterns with divergent

changes in microglia, astrocytes, and oligodendrocyte populations (including both

normal and neoplastic progenitors) depending on responder classification. Taken

together, this further supports the idea that Up responders uniquely display the

previously identified ‘neuronal signalling’ phenotype that is enriched at recurrence

in GBM in a subset of tumours13,18.

Cell type correlations

We also observe distinct correlation patterns between Up and Down responders,

which are consistent across both the discovery and validation cohorts (Figure 3.3C

and Figure 3.3D). These indicate subtype-specific shifts in cellular landscape

through treatment.

In Up responders plasma B cells show a strong correlation with oligodendrocytes

(r = 0.86) and mast cells (r = 0.59). In contrast plasma B cells are only associated

with astrocytes (r = 0.7) in Down responders. There are also marked differences

between B cell populations between responder types: Up responders are strongly

associated with multiple immune cell types, whereas in Down responders plasma

B cells only correlate with mast cells (r = 0.5).

Mast cells are myeloid lineage-derived cells which possess high affinity receptors for

Immunoglobulin E (IgE) and become sensitised upon binding, leading to degran-

ulation and secretion of cytokines. They play a critical role in linking the innate

and adaptive immune responses by mediating the recruitment and activation of

macrophages, triggering inflammation, vascular dilation and coordinating further

adaptive immune responses. In Up responders mast cells are associated with both

lymphoid and myeloid immune cells, suggestive of immune infiltration and the

involvement of adaptative immunity. Conversely, in Down responders, mast cells

are only significantly associated with NK cells (r = 0.7), suggesting a more im-

munologically restricted environment in which more innate immune mechanisms

dominate, possibly in conjunction with the suppression of adaptative immunity.

Although vasculature components decrease across both responder types (Fig-

ure 3.3A-B), we still find distinct cell type associations present across both co-

horts. In Up responders mural cells and endothelial cells are strongly correlated

whereas in Down responders, no significant association is observed. We previously

reported that Down responders were associated with a more aggressive MES phe-
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notype with hypoxia as a distinguishing feature13. Whilst it is expected that

surgical intervention removes significant amounts of vasculature, the specific loss

of the mural-endothelial cell association is seen when there is a significant break-

down of the blood-brain barrier (BBB). These data suggest that such disruption

of the vasculature is much more prominent in Down responders compared with Up

responders. Additionally, in Up responders we find mural cells strongly associate

with immune cells: T cells (r = 0.54), macrophages (r = 0.60), monocytes (r =

0.58), but these associations are not significant in Down responders.

Normal neurons are significantly associated with normal OPCs (r = 0.63) and

neurodevelopmental malignant cells including, AC-like (r = 0.58) and OPC-like

(r = 0.63) in Down responders. These associations align with recent finding from

Greenwald et al. who reported a five-layer model of spatial organisation in struc-

tured regions within IDHwt GBM tumours, driven by hypoxia36. Taken together

they suggest that Down responders may exhibit a more aggressive phenotype, with

greater infiltration into healthy brain parenchyma. Supporting this, we find that

the MES3 malignant cell type that is associated with hypoxia and mesenchymal

transition is also significantly correlated with normal neurons (r = 0.67) and AC-

like cells (r = 0.65) in Down responders across both cohorts. In contrast, in Up

responders, MES3 is associated with astrocytes (r = 0.79), pointing to potential

differences in spatial organisation and cell interactions between responder types.

In Up responders the PN cell state is associated with all the key neurodevelop-

mental malignant cell types and non-malignant cell types including OPC-like (r =

0.79) and radial glial (r = 0.53), with the exception of the OPC-like neoplastic cell

state. By contrast, in Down responders the PN state shows significant associations

with OPC-like (r = 0.67) and loses all the significant radial glial cell associations

that were present in Up responders: PN (r = 0.53), NPC1 (r = 0.59) and NPC1

(r = 0.6).

We previously reported that Up responders may be able to resist treatment by

converting to more quiescent, proneural phenotype and/or through differentiation

into normal neuronal circuits13. These data suggest radial glial cells may play

a key role in facilitating such a process. Radial glial cells are the first neural

stem cells to appear during embryonic development and have been reported to

be present in adult GBM. They have a capacity for self-renewal, existing between

quiescent and cycling states and have been shown to be able to exit dormancy

through cytokine-mediated activation59.
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Figure 3.3 | Cell type changes in Up and Down responders across
discovery and validation cohorts.

A-B) Volcano plots showing the changes in GBMdeconvoluteR cell type scores
across paired patient samples for Up responder types (A) and Down responder
types (B) in the discovery cohort. The y-axis represents the the − log10
FDR-corrected p-values and the x-axis shows log2-fold changes. Significant cell
type changes (p < 0.05) are highlighted (by cell category) and labelled. The
point shapes indicate whether changes are also significant in the validation
cohort. C-D) Heatmap of Spearman rank correlations between change
(recurrent – primary) in cell-type scores across Up (C) and Down (D)
responders in the discovery cohort. The tile fill colours represent the direction
and strength of each correlation coefficient. The tile fill colour reflects the
direction and strength of the correlation coefficients and only strong correlation
coefficients ≥(-)0.5) that are significant (p < 0.05) across both discovery and
validation cohorts are shown. E-F) Forest plots showing predictors: change
(recurrent – primary) in cell-type score through treatment; age at diagnosis; and
MGMT protein expression and their associations with PFS (left) and OS (right),
across Up responders (E) Down responders (F). Arrows after each cell-type
denote the median change for that cell type across all comparison samples: up
arrow - increased through treatment; down arrow – decreased through treatment.
HRs are denoted as points, with horizontal bars representing the 95% confidence
intervals. The shaded rows indicate predictors which have a significant (p <
0.05) association with survival. Significance thresholds: ∗p < 0.05; ∗∗p < 0.01;
∗∗∗p < 0.001; ∗∗∗∗p < 0.0001.

Association between cell types & survival outcomes

Our recent publication reported that the responder type patient stratification

demarcated differences in treatment resistance mechanisms between patients along

a PN to MES axis13. Here we find (Figure 3.1E-F) that an overall decrease in PN

cells through treatment is associated with a better PFS (HR = 0.25, 95% CI:

8.72 × 10−2 - 0.72) and OS (HR = 0.22, 95% CI: 6.84 × 10−2 - 0.70). While not

statistically significant, the MES3 cell type, which represents the mesenchymal

end of the PN–MES axis used in our stratification9,13, shows an opposite trend

suggesting poorer outcomes that is more pronounced for PFS.

To investigate how responder type-specific, cell type changes associated with sur-

vival outcomes we combined the discovery and validation cohorts to improve sta-

tistical power (Figure 3.3E and Figure 3.3F).

In Up responder, increasing NK cells were correlated with reduced risk in both

PFS (HR = 0.16, 95% CI: 2.88 × 10−2 - 0.92) and OS (HR = 9.76 × 10−2, 95%

CI: 1.31× 10−2 - 0.73). Similarly increasing microglia were associated with better

137



3. Paper 2 - GBM cell changes pre- & post-treatment

PFS (HR = 6.86 × 10−2, 95% CI: 1.32 × 10−2 - 0.36) and OS (HR = 0.16, 95%

CI: 3.30× 10−2 - 0.72), suggesting they are in a pro-inflammatory phenotype.

In contrast, increased macrophages in Up responders are associated with a sig-

nificantly higher PFS (HR = 6.17, 95% CI: 1.09 - 34.84), pointing toward a

more immunosuppressive phenotype. Conversely, in Down responders decreas-

ing macrophages are significantly associated with an increased PFS (HR = >100,

95% CI: 3.57 - >100) and OS (HR = >100, 95% CI: 3.52 - >100), suggestive of a

more pro-inflammatory phenotype.

We also find that, in Up responders, increases in PN cells through treatment are

associated with better PFS (HR = 0.10, 95% CI: 2.06× 10−2 - 0.57) and OS (HR

= 0.14, 95% CI: 2.40 × 10−2 - 0.79). The opposite effect in MES3 across Up

responders is seen where they are associated with a worse PFS, though this isn’t

significant and also not observed for OS.

3.3.4 Supervised classification using cell type scores accu-

rately predicts surgery type

To further evaluate the importance and significance of cell type changes through

treatment, we next investigated whether patterns within the scores themselves

could predict patient surgery type.

We benchmarked twelve different supervised binary classification algorithms, com-

bining all data together to increase statistical power and reduce the effects of

sample size on predictive performance (Figure 3.4A). Several models were able

to achieve ∼70% accuracy, with a corresponding low classification error via 10-

fold cross-validation (Figure 3.4B), indicating that the cell type scores contained

meaningful discriminatory information for distinguishing between surgery types.

Among the top-performing models, the linear discriminant analysis (LDA) model,

achieved a training accuracy of 69.28% (95% CI: ±17.94%) and a test accuracy

of 70.27%, with an area under the ROC-AUC of 0.77 (Figure 3.4C). When strat-

ifying patients by responder type, the classification performance improved. For

Up responders accuracy was 70.83%, with an ROC-AUC of 0.81 (Figure 3.4D).

In Down responders the model achieved an 85.71% accuracy with a ROC-AUC

of 0.92, suggesting that the cell type score changes patterns in these patients is

strongly associated with surgical outcome (85.71%, ROC-AUC 0.92; Figure 3.4E).

We also attempted to classify the responder types (Up and Down)using the cell

types scores, but this approach did not achieve a better classification accuracy

compared with the featureless model(Figure S3.6).
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Having achieved a good classification accuracy for surgery type, we then assessed

which cell types were driving this performance by examining the model feature

(cell type) importance (Figure 3.4C). Both plasma B cells and normal B cells

emerge as important cell types distinguishing between surgery types using all

data, suggesting this signal may have a robust biological underpinning. Addition-

ally, myeloid lineage cells comprising macrophages, microglia, and monocytes were

also highly important for classifying whether a GBM tumour was sampled pre- or

post-treatment. Proneural-associated cell type such as PN and normal neurons

also contributed substantially to predictive performance. Collectively, these top

features correspond with cell types linked to either proneural or mesenchymal phe-

notypes, pointing to an underlying biological axis of variation influencing surgical

outcome. To explore this further, we looked at the feature importance within the

responder type-stratified models.

In Up responders, we see both normal and malignant neurodevelopmental cell

types such as astrocytes, neurons, OPC-like and NPC2 are the most influential

features (Figure 3.4D). Interestingly, the previously noted prominence of B and

plasma B cells from the model using the combined patient data (Figure 3.4C)

does not hold. However, radial glial cells, which were less important, become

highly important features in Up responders, further supporting their role in the

proneural-associated treatment resistance.

The Down responder (Figure 3.4E) stratified model shows important contribution

from myeloid lineage cells, previously shown to align with more mesenchymal

phenotype, namely macrophage, monocytes, and microglia2,9,13. Intriguingly, we

find that whilst the Wang et al. MES3 is highly important for surgery prediction

in Down responders, the Neftel et al. MES1 and MES2 cell states did not appear

as strong predictors.

Endothelial cells were important for prediction in both responder types but had

a greater impact on the predictive performance in Down responders, where the

classification error loss was nearly double that seen in Up responders (∼3 vs ∼1.7).
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Figure 3.4 | Supervised classification of surgery type using cell type
scores.

A) Schematic detailing the process for selecting an optimal machine learning
model to predict surgery type. The best performing model was trained on all
patient samples and on Up/Down responder patient samples, using 70/30
(train/test) split. B) Model benchmarking results: boxplots showing the
classification accuracy (top) and classification error (bottom) across each
machine learning classifier. The benchmarking was conducted using a 10-fold
cross-validation resampling strategy. A featureless model, returning the mean
label frequencies was used as a baseline. C-E) Model performance (top) and
feature importance (bottom) of the best-performing model (LDA) applied to all
patient samples (C); Up responder samples (D); and down responder patient
samples (E). The model performance is shown by the ROC-AUC which indicates
the model’s ability to predict surgery types. The model feature importance is
determined using the classification error (CE) loss of independently shuffling the
values of each feature. Higher increases in CE for a given feature are proportional
to its relative importance for the classifier. The median CE loss over all the
shuffling repetitions is shown as a point and the confidence intervals are denoted
by the length of the horizontal lines. All features are shown ranked in order of
highest (top) importance. Models: generalised linear model with elastic net
(glmnet); k-nearest neighbour (KNN); LDA; logistic regression (Log-reg);
multinomial loglinear model (multinorm); neural network (nnet); quadratic
discriminant analysis (QDA); random forest (ranger); classification tree (rpart);
support vector machine (SVM); extreme gradient boosting (xgboost).

3.3.5 Unsupervised clustering reveals distinct clusters as-

sociated with worse survival outcomes

Building on insights from the supervised classification, we also applied unsuper-

vised machine learning techniques and clustered the cell type scores across surgery

using the combined data, to uncover latent cell type patterns.

When examining resulting clusters stratified by primary and recurrent surgeries

(Figure 3.5A and Figure 3.5B), we identified one primary sample cluster (cluster

3) that was comprised entirely of Up responders (Figure 3.5A). This cluster is

characterised by high levels of cancer cells (Figure 3.5C) and is particularly en-

riched in AC-like, OPC-like, NPC1/NPC2, and PN. It also features low expression

of macrophages, microglia, monocytes and MES1/MES2. All other clusters fea-

tured a mixed responder-type distribution, though the overall trend reflected the

previously reported distribution, with approximately two-thirds of samples being

Up responders and one third Down responders13.
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Although the total number of clusters differed between surgery we found two

comparable immune-rich clusters: primary clusters 5 (Figure 3.5C), and recur-

rent clusters 8 (Figure 3.5D). Both clusters are characterised by high immune

and vascular expression, along with medium cancer and normal brain expression.

The primary cluster is distinguished by lower expression of astrocytes, OPC-like

and MES-like, whereas the recurrent cluster has lower PN and NPC1 expression.

When comparing the survival outcomes of all unsupervised clusters we found no

significant global difference in either OS or PFS (Figure 3.5E). However, pairwise

comparisons revealed a significant OS difference between primary clusters 4 and

5 (q = 0.01, Figure 3.5F). The cluster associated with a worse prognosis (cluster

4) is distinguished by high normal brain expression, particularly astrocytes, and

reduced lymphoid immune cell infiltration.

Since the Up and Down responder subtype remains stable through treatment,

we also performed unsupervised clustering of the primary surgery samples within

each responder (Figure 3.6). We identified two comparable clusters: Up cluster

5 (Figure 3.6A) and Down cluster 2 (Figure 3.6B). These clusters were marked

by similar aggregated expression profiles (Figure 3.6C-D): medium immune/cancer

cells and high vasculature/normal brain cells. Despite their overall similarities, the

clusters differed in their immune composition. Down cluster 2 was primarily driven

by elevated macrophage expression, whereas Up responder cluster 5 comprised

high expression of B cells, plasma B cells, microglia, and mast cells.

We found no significant global differences in OS or PFS when stratifying primary

samples by responder type (Figure 3.6E). Though, pairwise comparisons revealed

that Up responder cluster 7 had a significantly better PFS outcome (q = 4.8×10−2)

compared with Up cluster 8. Up cluster 7 is enriched for both cancer and normal

brain cell types, with the cancer population dominated by OPC-like, NPC1/NPC1,

and PN cells, and the normal brain population by oligodendrocytes and radial glial

cells.
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Figure 3.5 | Unsupervised clustering of cell type scores across all
patients and by surgery type.

A-B) Heatmap of cluster median expression: z-score scaled expression of cell
type scores across each of the unsupervised k-means clusters in primary samples
(A) and recurrent samples (B). The bar plots below the x-axis denote the
percentage of up and Down responder present within each cluster. C-D)
Heatmaps showing the relative enrichment of each cell type class across each of
the clusters in primary samples (C) and recurrent samples (D). E)
Kaplan-Meier survival curve showing the overall survival associated with each of
the primary sample k-means clusters. The dashed lines denote the median
survival associated with each cluster and the p-value represents Peto’s log-rank
test significance indicating if there are difference across all groups
simultaneously. F) post-hoc pairwise comparison of two clusters and their
associated overall survival in primary patient samples. The q value shown is
Peto’s log-rank test significance, corrected for multiple testing (Bonferroni
correction). The table shown below the survival plot details the number of
patients surviving at each given time point.
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Figure 3.6 | Unsupervised clustering of cell type scores in primary
patient samples, split across responder-types.

A-B) Heatmap of cluster median expression: z-score scaled expression of cell
type scores across each of the unsupervised k-means clusters in primary, Up
responder samples (A) and primary, down samples (B). C-D) Heatmaps
showing the relative enrichment of each cell type class across each of the clusters
in primary, Up responders (C) and primary, Down responders (D). E)
Kaplan-Meier survival curve showing the progression-free survival associated
with each of the primary, Up responder sample k-means clusters. The dashed
lines denote the median survival associated with each cluster and the p-value
represents Peto’s log-rank significance indicating if there are difference across all
groups simultaneously. E) post-hoc pairwise comparison of two clusters and their
associated overall survival in primary, Up responder patient samples. The q
value shown is Peto’s log-rank significance, corrected for multiple testing
(Bonferroni correction). The table shown below the survival plot details the
number of patients surviving at each given time point.

3.4 Discussion

In this study we used bulk RNA-seq in conjunction with cell type deconvolution

to profile the cellular composition of a large, paired cohort of IDHwt GBM patient

samples, to better understand how the cell populations change through standard

therapy. We note, our data is skewed towards younger adult patients (<60 years

of age), which may explain why age at diagnosis does not appear significant when

we consider survival associations. Older patients are likely under-represented as

they are less likely to undergo de-bulking surgery, and as a result, paired tumour

samples are less frequently available for this group. This under-representation is

also reflected in the incomplete clinical metadata, particularly in relation to overall

survival, which limits the statistical power to assess survival associations within

finer stratifications.

Tumour purity is a critical factor when interpreting bulk RNA-seq of GBM tu-

mours, given the heterogeneity in non-malignant cells components across samples.

Such heterogeneity can significantly affect the classification of intrinsic tumour

features such as the responder types we have previously reported, and therefore it

should be carefully considered when drawing conclusions about deconvoluted data

from GBM.

Overall, we find that there is a distinct pattern in which increases in oligodendro-

cyte through treatment are associated with parallel increases in plasma B cells.

Moreover, these associations are supported not only by transcriptional correla-
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tions, but also at the protein and spatial-level, where we find they occur more

frequently than is expected by chance. A potential mechanistic link between these

interactions lies in the role of oligodendrocytes in supporting normal neuronal

function through homeostasis of axon myelination. While this relationship is not

widely reported in GBM, it is well established in the context of multiple sclerosis

(MS), which is a demyelinating disease of the central nervous system (CNS)60–62.

In MS, B cells comprise a relatively minor cell population but contribute to dis-

ease progression by producing autoreactive antibodies against myelin upon being

abnormally activated by myelin-reactive T cells61,62. These mechanisms also in-

volve the activation of brain-resident astrocytes and microglia which facilitate

oligodendrocyte damage resulting in the patterns of de-myelination seen in MS61.

In contrast to their pathological role of de-myelination in MS, other studies have

shown that immunoglobulins produced by differentiated B cells can positively in-

fluence OPC cell differentiation and promote remyelination49. Our data supports

the latter in GBM as we find that increases in plasma B cells through treatment

are associated with a reduction in OS risk, suggesting that plasma B cell mediated

OPC differentiation and re-myelination. We find there is a divergence in B cell

dynamics through treatment where increasing plasma B cells are accompanied by

decreases in non-activated B cells. This may reflect a maturation process in which

B cells transition into more activated plasma B cells and reduce their need to in-

teract with other immune cells. We do also observe a lack of broader immune cell

associations between plasma B cells at the protein and spatial levels, indicating

that plasma B cells in GBM may acting independently within the GBM TME.

We also find consistent correlations between mast cells and both the lymphoid

and myeloid lineage immune cells. The role of mast cells in cancer and specif-

ically neuro-inflammation is well-documented63. Mast cells function throughout

the early stages of the innate immune response, initiating and amplifying the ini-

tial response. Due to this role bridging innate and adaptive immunity, they can

be both anti- and pro-tumorigenic, depending on the release of specific cytokines

and mediators64. Additionally, mast cells also directly influence neurogenesis, neu-

rodegeneration and the permeability of the BBB63,64. In our data, we do not find

any strong evidence of direct interactions between masts cells and glial, neural,

or vascular cells. However, we do find that increasing mast cells through treat-

ment are associated with a better PFS, suggesting in the context of GBM they

are playing a more pro-inflammatory role. Given their pivotal role in coordinating

the immune response, modulating mast cell activity may be considered a novel

therapeutic strategy to enhance the efficacy of current immunotherapies in GBM.

Our findings support the view that PN to MES axis represents the primary source
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of cell state variation between malignant GBM cells, consistent with previous

studies13. However, we note key differences exist between the mesenchymal-like

cell states described by Neftel et al. and Wang et al.2,9. The MES3 cell state,

defined by Wang et al., shows strong correlations with astrocytes, AC-like malig-

nant cells, normal OPCs and OPC-like cells. This likely reflects the bi-directional

model proposed by Wang et al., where AC-like cells are considered intermediate

or transitional stages, rather than a discrete subtypes. Further, supporting this,

recent refinements of the Neftel MES-like states identified an astrocyte-related

variant (MES-Ast), which is specifically enriched with more T cells abundance in

addition to the hypoxia and myeloid lineage profiles previously reported65. This

highlights the continuous and context-dependent nature of malignant GBM cell

states. It also reinforces that case for more granular delineation of malignant GBM

cell phenotypes, as by only considering the most variable markers present along a

bi-directional axis, we may be obscuring meaningful biological differences.

We previously reported a responder type stratification and here in this study, we

further added to this model by looking in detail at the cell type changes associated

with each of the responder type through treatment13. We found that NK cell

infiltration through treatment was significantly increased in Up responders, here

we add to this finding by reporting that this increase is associated with a reduced

PFS and OS when looking at this larger cohort.

Although vasculature decreases overall through treatment, we find that the reduc-

tion is associated with different cell types and its composition between responder

types. In our initial paper stratifying patients, we found that there was a greater

reduction in mural cells in Down responder compared with Up responder. Here

we find that mural cells decreases are associated with worse PFS when looking at

all patients, but also that these cells are not correlated with and other cell types

including endothelial cells in Down responders.

Radial glial cells emerge as a potential mechanism by which Up responders adopt

a more quiescent state, supporting treatment resistance through neural stem-like

plasticity.

The plasma B cells associations with oligodendrocytes detailed above are only

found in Up responders; in Down responders we find that they are associated

more with astrocytes, suggesting differing immune-glial interactions that need to

be investigated further. Interestingly, reactive astrocytes were found to be actively

avoiding B cells when we look at significant cell-cell interactions at the protein-

level across two patient samples (Figure S3.2A).
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Using supervised classification of surgery type, based on deconvolved cell-type

scores, we accurately predicted patient surgery status. Further, we were also able

to identify important cell types aligning with the PN to MES axis, when further

stratifying by responder types. These findings reinforce the biological importance

and utility of our responder type stratifications as a model for understanding

treatment resistance in GBM.

In this study we have revealed some prominent changes in the cellular landscape of

GBM, through treatment and aligned these to our previously proposed responder-

type stratification, uncovering key cell type associations that may underpin treat-

ment resistance. Notably, we highlight the potential role of radial glial cells in

facilitating the proneural phenotype observed in Up responders, and the distinct

involvement of antibody-producing plasma B cells, which show responder-specific

associations. Further experimental validation to characterise these interactions

and underlying pathways may uncover new therapeutic targets.
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Figure S3.1 | PCA illustrating batch effects.

Each point represents a sample, coloured by the centre of origin and the shape of
the denotes the sample surgery type with primary tumours (Prim) depicted as
circles and recurrent tumours (Rec) as triangles. Before batch correction (A),
samples cluster based on their centre of origin, indicating significant batch
effects. After correction using the Combat-Seq R package (B), these effects are
mitigated. PC1 and PC2 percentages indicate the proportion of variance
explained by each respective principal component.
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Figure S3.2 | 10X Visium spatial transcriptomics of a GBM tumour
core sample.

Cell type abundance estimates at each spatial spot location using Cell2location
from one GBM patient samples taken from the tumour core region.
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Figure S3.3 | 10X Visium spatial transcriptomics of a GBM tumour
edge sample.

Cell type abundance estimates at each spatial spot location using Cell2location
from one GBM patient samples taken from the tumour edge region.
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Figure S3.4 | Cell type score associated OS across all responder.

A) Forest plots showing the association between OS and the change (∆ score: re-
current – primary) in cell type scores, age, and MGMT expression for Up respon-
ders (A) and Down responders (B). HRs are denoted as points, with horizontal
bars representing the 95% confidence intervals. The shaded rows indicate predic-
tors which have a significant (p < 0.05) association with survival. Significance
thresholds: ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001; ∗∗∗∗ p < 0.0001.
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Figure S3.5 | Cell type score associated PFS across all responder.

A) Forest plots showing the association between PFS and the change (∆ score:
recurrent – primary) in cell type scores, age, and MGMT expression for Up respon-
ders (A) and Down responders (B). HRs are denoted as points, with horizontal
bars representing the 95% confidence intervals. The shaded rows indicate predic-
tors which have a significant (p < 0.05) association with survival. Significance
thresholds: ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001; ∗∗∗∗ p < 0.0001.
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Figure S3.6 | Supervised classification of responder types using cell
type scores.

Model benchmarking results: boxplots showing the classification accuracy (top)
and classification error (bottom) across each machine learning classifier. The
benchmarking was conducted using a 10-fold cross-validation resampling strat-
egy. A featureless model, returning the mean label frequencies was used as a
baseline. B-D) Model performance (top) and feature importance (bottom) of the
best-performing model (LDA) applied to all patient samples (B); primary surgery
samples (C); and recurrent surgery samples (D). The model performance is shown
by the ROC-AUC which indicates the model’s ability to predict surgery types. The
model feature importance is determined using the CE loss of independently shuf-
fling the values of each feature. Higher increases in CE for a given feature are
proportional to its relative importance for the classifier. The median CE loss over
all the shuffling repetitions is shown as a point and the confidence intervals are de-
noted by the length of the horizontal lines. All features are shown ranked in order
of highest (top) importance. Models: glmnet; KNN; LDA; Log-reg; multinorm;
nnet; QDA; ranger; rpart; SVM; xgboost.
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Table S3.1 | Clinical and molecular data of patients included in the study.

The publication id corresponds to the PubMed identifier. The age field contains the age of the patient at diagnosis, and the status
indicates the survival outcome: alive (0.00) or deceased (1.00). The blue shaded rows denote samples which were experimentally
validated using spatial proteomics (IMC).

Patient Cohort Dataset Publication id Responder Sex Age PFS OS Status MGMT exp Purity (pair)

Camb10 Discovery Stead 38326875 up Male 63 12.00 - 1.00 5.59 62%

Camb12 Discovery Stead 38326875 up Male 24 24.00 - 1.00 5.81 24%

Camb13 Discovery Stead 38326875 down Male 55 24.00 - 1.00 2.58 76%

Camb2 Discovery Stead This Publication up Male 33 36.00 - 1.00 10.58 -

Camb4 Discovery Stead 38326875 up Male 52 8.00 - 1.00 6.54 69%

Camb7 Discovery Stead 38326875 up Male 49 18.00 - 1.00 6.87 54%

Camb8 Discovery Stead 38326875 down Male 62 24.00 - 1.00 4.55 77%

Camb9 Discovery Stead 38326875 down Male 40 24.00 - 1.00 3.76 81%

H043 4PGF Discovery Stead 30905762 down Male 42 4.11 35.97 1.00 3.93 31%

H043 63R6 Discovery Stead 30905762 down Male 47 10.22 17.06 0.00 10.22 45%

H043 BU96 Discovery Stead 30905762 up Male 69 1.51 16.70 0.00 8.55 49%

H043 D9MRCY Discovery Stead 30905762 down Male 50 9.63 13.94 1.00 2.42 79%

H043 DSX2 Discovery Stead 30905762 up Male 60 10.92 19.50 0.00 7.19 74%

H043 GESMJV Discovery Stead 30905762 up Male 50 6.67 19.10 0.00 9.27 50%

H043 GKS176 Discovery Stead 30905762 down Male 70 6.84 26.89 0.00 4.92 43%

H043 LNWEGT Discovery Stead 30905762 down Male 57 12.62 26.04 0.00 10.29 52%

H043 N7LCPV Discovery Stead 30905762 up Male 60 9.90 16.67 0.00 7.70 72%

H043 PWC258 Discovery Stead 30905762 up Female 48 21.93 38.40 0.00 1.52 73%

H043 XACH Discovery Stead 30905762 down Female 77 32.68 58.62 0.00 1.82 84%

H043 ZMHY Discovery Stead 30905762 up Female 60 10.65 18.31 1.00 6.47 74%

HF2919 Discovery Stead 26373279 up Male 64 11.00 18.00 1.00 1.82 45%

HF2998 Discovery Stead 26373279 up Female 67 1.00 5.00 1.00 13.38 23%

HF3162 Discovery Stead 26373279 up Male 52 7.00 9.00 0.00 9.95 61%

Imperial14 Discovery Stead This Publication up Female 70 29.16 - 0.00 3.61 44%

Imperial3 Discovery Stead This Publication down Female 59 22.44 - 0.00 14.01 19%

K06 Discovery Stead 26373279 down Female 37 19.00 47.00 1.00 8.16 51%

K12 Discovery Stead 26373279 up Male 50 16.00 33.00 1.00 1.10 43%

K14 Discovery Stead 26373279 up Male 60 27.00 33.00 1.00 4.29 36%

K15 Discovery Stead 26373279 down Female 34 29.00 32.00 1.00 3.74 25%

K16 Discovery Stead 26373279 up Male 51 13.00 32.00 1.00 7.31 38%

K17 Discovery Stead This Publication up Male 29 20.00 31.00 1.00 7.65 -

K20 Discovery Stead 26373279 up Female 38 13.00 25.00 1.00 3.22 16%

K21 Discovery Stead 26373279 up Female 32 12.00 25.00 1.00 5.82 41%

K22 Discovery Stead 26373279 up Male 51 14.00 23.00 1.00 3.86 28%

K24 Discovery Stead 26373279 up Male 74 - 19.00 1.00 0.73 48%

K26 Discovery Stead 26373279 down Female 58 12.00 17.00 1.00 5.76 81%

K27 Discovery Stead 26373279 up Female 72 7.00 16.00 1.00 7.27 59%
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Patient Cohort Dataset Publication id Responder Sex Age PFS OS Status MGMT exp Purity (pair)

K30 Discovery Stead 26373279 down Male 74 6.00 14.00 1.00 6.66 67%

K32 Discovery Stead 26373279 up Male 44 5.00 13.00 1.00 10.24 47%

K34 Discovery Stead 26373279 up Male 45 7.00 12.00 1.00 8.03 28%

K36 Discovery Stead 26373279 up Male 49 3.00 10.00 1.00 10.47 40%

K37 Discovery Stead 26373279 up Male 73 7.00 8.00 1.00 3.74 27%

Leeds101 Discovery Stead 38326875 up Male 59 27.00 37.00 1.00 3.48 81%

Leeds105 Discovery Stead 38326875 down Male 61 22.00 - 1.00 6.85 70%

Leeds106 Discovery Stead 38326875 up Male 62 19.00 21.00 1.00 6.76 65%

Leeds107 Discovery Stead This Publication down Male 40 9.23 - 0.00 0.00 10%

Leeds28 Discovery Stead 38326875 up Female 33 18.00 30.00 0.00 4.75 13%

Preston22 Discovery Stead 38326875 up Male 66 8.00 14.00 1.00 3.32 72%

Preston27 Discovery Stead 38326875 up Male 67 17.00 28.00 1.00 0.00 60%

Preston34 Discovery Stead 38326875 up Male 47 15.00 18.00 1.00 16.16 42%

Preston36 Discovery Stead 38326875 up Female 45 14.00 18.00 1.00 4.18 54%

R001 Discovery Stead 27270107 up - 70 5.00 7.00 1.00 1.41 40%

R002 Discovery Stead 27270107 up - 42 10.00 18.00 1.00 7.65 36%

R003 Discovery Stead 27270107 up - 67 9.00 17.00 1.00 6.29 0%

R005 Discovery Stead 27270107 down - 58 5.00 13.00 1.00 9.28 67%

R006 Discovery Stead 27270107 up - 59 11.00 18.00 1.00 15.19 4%

R007 Discovery Stead 27270107 down - 69 12.00 21.00 1.00 6.10 40%

R008 Discovery Stead 27270107 down - 46 10.00 15.00 1.00 5.67 79%

R009 Discovery Stead This Publication up - 67 40.00 46.00 1.00 2.79 -

R010 Discovery Stead 27270107 up - 50 17.00 23.00 1.00 10.97 43%

s123 Discovery Stead This Publication up Male 28 32.00 - 0.00 3.75 -

s139 Discovery Stead 32102350 down Male 59 1.00 - 0.00 3.09 67%

s151 Discovery Stead 32102350 up Male 68 23.00 - 0.00 0.79 29%

s181 Discovery Stead 32102350 down Male 57 4.00 - 0.00 9.73 35%

s245 Discovery Stead 32102350 up Male 62 4.00 - 0.00 3.73 12%

s259 Discovery Stead 32102350 down Male 56 26.00 - 0.00 2.08 46%

s279 Discovery Stead 32102350 down Male 45 9.00 - 0.00 5.44 41%

s295 Discovery Stead 32102350 down Male 75 6.00 - 0.00 14.12 26%

s309 Discovery Stead 32102350 down Female 74 14.00 - 0.00 7.79 49%

s326 Discovery Stead 32102350 down Female 63 8.00 - 0.00 2.25 48%

s341 Discovery Stead 32102350 down Female 56 31.00 - 0.00 0.56 69%

s357 Discovery Stead 32102350 up Female 72 5.00 - 0.00 9.99 23%

s383 Discovery Stead 32102350 down Female 75 9.00 - 0.00 14.22 38%

s402 Discovery Stead 32102350 down Female 49 3.00 - 0.00 10.51 1%

Walton10 Discovery Stead 38326875 up Male 55 17.00 23.00 1.00 9.29 35%

Walton19 Discovery Stead 38326875 down Female 55 11.00 26.00 1.00 9.01 82%

Walton2 Discovery Stead 38326875 up Female 36 23.00 42.00 1.00 14.19 31%

Walton43 Discovery Stead 38326875 up Male 45 12.20 20.19 1.00 9.55 59%

Walton46 Discovery Stead 38326875 up Male 43 6.90 21.24 1.00 8.32 50%

Walton5 Discovery Stead 38326875 down Male 53 22.00 31.00 1.00 13.57 51%

Walton50 Discovery Stead 38326875 up Male 62 9.21 - 0.00 10.66 13%

Walton55 Discovery Stead 38326875 down Male 63 14.53 24.62 1.00 9.68 37%
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Patient Cohort Dataset Publication id Responder Sex Age PFS OS Status MGMT exp Purity (pair)

Walton59 Discovery Stead 38326875 down Male 64 26.47 - 0.00 3.71 71%

Walton62 Discovery Stead 38326875 up Female 57 13.35 - 0.00 2.35 71%

Walton63 Discovery Stead 38326875 up Male 49 12.89 19.07 1.00 2.36 66%

Walton64 Discovery Stead 38326875 up Male 57 22.55 48.76 1.00 6.29 1%

Walton67 Discovery Stead 38326875 up Male 51 40.73 75.19 1.00 4.26 62%

Walton71 Discovery Stead 38326875 down Female 60 17.10 39.12 1.00 6.36 39%

Walton8 Discovery Stead 38326875 down Female 60 26.00 41.00 0.00 18.41 17%

Walton82 Discovery Stead 38326875 up Female 59 23.24 33.21 1.00 7.78 66%

Walton84 Discovery Stead 38326875 up Female 72 17.49 45.76 1.00 2.53 75%

Walton101 Discovery Stead This Publication down Female 52 14.60 18.50 1.00 1.59 72%

Walton3 Discovery Stead This Publication up Female 60 44.00 48.00 1.00 0.22 -

Walton33 Discovery Stead This Publication up Female 58 16.00 31.50 1.00 0.23 60%

Walton35 Discovery Stead This Publication up Male 61 30.50 - 0.00 0.00 64%

Walton40 Discovery Stead This Publication up Male 59 13.30 - 0.00 1.53 39%

Walton48 Discovery Stead This Publication down Female 66 10.00 15.92 1.00 4.71 54%

Walton91 Discovery Stead This Publication down Male 40 30.57 35.00 1.00 13.01 61%

GLSS-HF-2548 Discovery GLASS 35649412 up Male 52 32.00 40.00 0.00 1.55 46%

GLSS-HF-3050 Discovery GLASS 35649412 down Male 63 16.00 22.00 0.00 13.95 43%

GLSS-HF-57AE Discovery GLASS 35649412 down Female 59 4.00 11.00 0.00 11.82 28%

GLSS-HF-6504 Discovery GLASS 35649412 up Male 64 8.00 26.00 0.00 8.53 29%

GLSS-HF-6658 Discovery GLASS 35649412 up Male 60 5.00 17.00 0.00 11.25 40%

GLSS-HF-9A7A Discovery GLASS 35649412 up Male 49 58.00 75.00 0.00 1.78 53%

GLSS-HF-B972 Discovery GLASS 35649412 up Male 49 7.00 21.00 0.00 12.57 58%

GLSS-HF-DF35 Discovery GLASS 35649412 up Male 64 10.00 13.00 0.00 9.44 38%

GLSS-HF-EE74 Discovery GLASS 35649412 up Male 69 13.00 21.00 0.00 18.65 31%

GLSS-HK-0003 Discovery GLASS 35649412 up Female 67 13.00 25.00 0.00 22.34 0%

GLSS-MD-0022 Discovery GLASS 35649412 down Male 68 4.00 10.00 0.00 9.16 19%

GLSS-MD-0023 Discovery GLASS 35649412 up Male 65 8.00 12.00 0.00 13.20 6%

GLSS-MD-0026 Discovery GLASS 35649412 down Male 77 34.00 44.00 0.00 2.95 41%

GLSS-MD-0035 Discovery GLASS 35649412 down Male 44 20.00 22.00 0.00 2.74 20%

GLSS-SM-R063 Discovery GLASS 35649412 down Female 34 30.00 33.00 0.00 4.70 26%

GLSS-SM-R065 Discovery GLASS 35649412 up Female 38 14.00 26.00 0.00 4.36 16%

GLSS-SM-R066 Discovery GLASS 35649412 down Male 51 14.00 23.00 0.00 5.20 22%

GLSS-SM-R068 Discovery GLASS 35649412 up Male 74 16.00 19.00 0.00 0.96 47%

GLSS-SM-R080 Discovery GLASS 35649412 down Male 60 27.00 33.00 0.00 5.72 38%

GLSS-SM-R083 Discovery GLASS 35649412 down Male 50 16.00 34.00 0.00 1.80 44%

GLSS-SM-R088 Discovery GLASS 35649412 up Female 30 12.00 25.00 0.00 8.21 43%

GLSS-SM-R093 Discovery GLASS 35649412 up Male 73 7.00 8.00 0.00 5.36 27%

TCGA-06-0125 Discovery GLASS 35649412 up Female 63 27.00 48.00 0.00 1.54 62%

AAG Validation EORTC 36898379 down - 44 3.55 12.46 1.00 7.60 32%

AAM Validation EORTC 36898379 up - 63 8.91 13.48 1.00 1.21 43%

AAN Validation EORTC 36898379 up - 50 14.96 17.33 1.00 1.76 63%

AAP Validation EORTC 36898379 up - 48 17.56 59.24 1.00 0.84 21%

AAS Validation EORTC 36898379 down - 37 8.68 16.70 1.00 7.81 21%

AAT Validation EORTC 36898379 up - 63 27.39 41.98 1.00 0.78 66%
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Patient Cohort Dataset Publication id Responder Sex Age PFS OS Status MGMT exp Purity (pair)

AAU Validation EORTC 36898379 up - 53 21.27 42.05 1.00 8.36 37%

AAV Validation EORTC 36898379 up - 61 17.49 46.42 1.00 2.55 67%

AAW Validation EORTC 36898379 up - 41 3.42 14.73 1.00 5.18 20%

AAX Validation EORTC 36898379 up - 43 2.01 24.79 1.00 0.58 66%

ACA Validation EORTC 36898379 up - 65 4.83 8.12 1.00 0.63 35%

ADA Validation EORTC 36898379 down - 56 11.93 19.79 1.00 4.50 52%

AFA Validation EORTC 36898379 down - 54 16.31 27.95 1.00 0.66 59%

AHA Validation EORTC 36898379 up - 51 6.41 10.92 1.00 3.87 54%

AIA Validation EORTC 36898379 down - 65 9.21 14.37 1.00 4.58 24%

AMA Validation EORTC 36898379 up - 62 56.12 57.21 0.00 1.16 51%

AOA Validation EORTC 36898379 down - 65 14.27 19.96 0.00 3.86 38%

AZA Validation EORTC 36898379 up - 64 17.62 32.88 1.00 1.15 20%

AZB Validation EORTC 36898379 down - 54 17.23 20.52 1.00 5.66 65%

AZC Validation EORTC 36898379 down - 60 16.70 23.34 1.00 6.48 57%

AZE Validation EORTC 36898379 down - 56 53.26 74.76 0.00 0.52 39%

AZF Validation EORTC 36898379 up - 46 29.85 41.00 1.00 0.52 30%

BAA Validation EORTC 36898379 down - 75 7.69 18.54 1.00 0.69 0%

BAB Validation EORTC 36898379 up - 52 23.70 32.09 1.00 1.01 61%

BAC Validation EORTC 36898379 up - 58 10.98 26.66 1.00 5.31 39%

BAD Validation EORTC 36898379 up - 62 12.82 21.96 1.00 0.31 62%

BAE Validation EORTC 36898379 down - 77 8.52 14.40 1.00 2.38 53%

BAH Validation EORTC 36898379 up - 45 12.92 46.19 1.00 4.71 39%

BAI Validation EORTC 36898379 up - 46 28.90 43.04 1.00 3.61 28%

BAK Validation EORTC 36898379 up - 65 17.39 21.73 1.00 0.66 24%

BAL Validation EORTC 36898379 down - 59 16.80 38.30 1.00 1.71 0%

BAM Validation EORTC 36898379 down - 51 6.71 17.33 1.00 2.48 56%

BAR Validation EORTC 36898379 down - 54 7.50 18.38 1.00 1.67 7%

BAT Validation EORTC 36898379 up - 52 10.88 14.37 1.00 4.16 77%

BAW Validation EORTC 36898379 down - 64 28.37 37.38 1.00 1.00 69%

CAC Validation EORTC 36898379 up - 45 8.88 18.94 1.00 1.96 30%

CAF Validation EORTC 36898379 down - 28 9.07 22.82 1.00 6.46 32%

CAO Validation EORTC 36898379 up - 50 19.89 30.90 1.00 2.15 68%

CBA Validation EORTC 36898379 up - 57 3.58 6.25 1.00 4.03 3%

CBE Validation EORTC 36898379 up - 54 9.76 17.19 1.00 1.19 63%

CBM Validation EORTC 36898379 up - 55 8.91 11.61 1.00 6.30 47%

CBP Validation EORTC 36898379 up - 61 5.95 17.95 1.00 8.85 31%

CBR Validation EORTC 36898379 up - 60 42.44 11.28 1.00 5.87 66%

CBV Validation EORTC 36898379 up - 50 10.13 45.47 1.00 5.48 8%

CDA Validation EORTC 36898379 up - 66 20.65 29.26 1.00 1.91 24%

CDD Validation EORTC 36898379 up - 56 3.25 20.32 0.00 2.51 32%

DAC Validation EORTC 36898379 up - 64 - 19.69 1.00 2.97 37%

EAC Validation EORTC 36898379 down - 53 31.20 54.44 1.00 1.57 63%

EAD Validation EORTC 36898379 up - 64 32.75 35.97 0.00 0.78 81%

EAE Validation EORTC 36898379 up - 48 24.10 33.53 0.00 4.36 58%

EAI Validation EORTC 36898379 up - 49 6.90 12.39 1.00 4.10 52%
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Patient Cohort Dataset Publication id Responder Sex Age PFS OS Status MGMT exp Purity (pair)

EAJ Validation EORTC 36898379 down - 64 6.38 22.78 1.00 6.44 63%

EAO Validation EORTC 36898379 up - 61 12.03 22.06 1.00 2.20 51%

EAT Validation EORTC 36898379 down - 49 11.51 13.45 1.00 8.49 27%

EAU Validation EORTC 36898379 up - 64 14.17 21.86 1.00 4.00 50%

EAW Validation EORTC 36898379 up - 61 10.59 25.02 1.00 6.54 19%

EAY Validation EORTC 36898379 up - 68 5.88 17.00 1.00 7.43 28%

EAZ Validation EORTC 36898379 down - 57 33.04 38.56 1.00 1.35 74%

EBB Validation EORTC 36898379 up - 76 25.35 38.76 1.00 2.39 42%

EBC Validation EORTC 36898379 down - 58 12.20 25.78 0.00 1.43 58%

EBF Validation EORTC 36898379 up - 49 27.78 38.37 0.00 2.75 50%

EBG Validation EORTC 36898379 up - 56 16.87 28.73 0.00 0.96 56%

EBH Validation EORTC 36898379 down - 57 8.81 16.57 1.00 9.44 17%

EBR Validation EORTC 36898379 down - 50 7.66 9.96 1.00 7.38 35%

EBV Validation EORTC 36898379 up - 52 19.73 28.54 1.00 3.59 14%

ECA Validation EORTC 36898379 up - 66 8.68 21.60 1.00 2.54 29%

ECD Validation EORTC 36898379 down - 54 16.47 25.68 1.00 3.30 29%

ECE Validation EORTC 36898379 up - 64 7.50 14.07 1.00 4.01 33%

ECI Validation EORTC 36898379 up - 70 8.55 11.90 1.00 7.86 71%

ECK Validation EORTC 36898379 down - 63 11.87 18.51 1.00 4.54 49%

ECN Validation EORTC 36898379 up - 62 5.82 10.52 0.00 4.24 32%

FAB Validation EORTC 36898379 up - 44 18.44 24.69 0.00 2.83 80%

FAF Validation EORTC 36898379 down - 24 12.92 28.87 1.00 0.57 40%

FAG Validation EORTC 36898379 down - 51 15.02 29.62 0.00 1.92 66%

FAI Validation EORTC 36898379 down - 55 10.95 18.67 1.00 4.40 36%

FAJ Validation EORTC 36898379 up - 54 39.35 56.61 1.00 0.51 48%

FAK Validation EORTC 36898379 up - 56 8.35 16.44 0.00 6.90 47%

FAM Validation EORTC 36898379 up - 62 22.09 46.45 1.00 1.87 0%

FAN Validation EORTC 36898379 down - 50 23.08 42.08 1.00 0.94 66%

FAP Validation EORTC 36898379 down - 62 7.07 12.16 1.00 6.56 35%

GAG Validation EORTC 36898379 down - 55 16.83 50.83 1.00 3.52 31%

GAH Validation EORTC 36898379 up - 65 19.27 23.97 1.00 2.92 45%

GAI Validation EORTC 36898379 up - 60 6.54 19.50 1.00 5.10 49%

GAK Validation EORTC 36898379 up - 62 11.38 20.71 1.00 1.71 56%

GAL Validation EORTC 36898379 up - 59 20.88 27.72 0.00 1.94 39%

GAM Validation EORTC 36898379 down - 66 18.28 20.91 1.00 7.50 37%

GAP Validation EORTC 36898379 up - 41 8.35 15.91 1.00 5.25 42%

GAR Validation EORTC 36898379 up - 55 18.08 25.58 1.00 1.47 46%

HAB Validation EORTC 36898379 up - 52 7.76 37.25 1.00 1.13 15%

HAD Validation EORTC 36898379 up - 36 9.07 24.39 0.00 11.84 26%

HAE Validation EORTC 36898379 up - 49 6.12 16.01 1.00 4.28 32%

HAF Validation EORTC 36898379 up - 46 7.76 11.24 1.00 6.26 32%

JAE Validation EORTC 36898379 down - 46 6.38 29.42 0.00 1.54 72%

JAH Validation EORTC 36898379 up - 43 35.61 42.15 1.00 2.11 59%

JAK Validation EORTC 36898379 up - 45 14.14 21.86 1.00 3.97 59%

JAL Validation EORTC 36898379 down - 52 6.18 14.66 1.00 7.73 28%
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Patient Cohort Dataset Publication id Responder Sex Age PFS OS Status MGMT exp Purity (pair)

JAN Validation EORTC 36898379 down - 61 - 23.87 1.00 1.95 70%

KAD Validation EORTC 36898379 up - 51 14.17 29.95 1.00 2.27 20%

1
7
5



3.
P
a
p
e
r
2
-
G
B
M

c
e
l
l
c
h
a
n
g
e
s
p
r
e
-
&

p
o
st

-t
r
e
a
t
m
e
n
t

Table S3.2 | Cell type score changes across all patient samples.

Comparisons were performed using all data and separately for the discovery and validation cohorts. Statistical significance was assessed
using the paired, Wilcoxon test and p values shown were adjusted using the FDR method. The change denotes the direction of the
fold-change for each cell type score through treatment from primary to recurrence. The rows are ordered by log2-fold change and shaded
rows denote cell types which were statistically significant (p < 0.05) across one or more cohorts.

Discovery Validation All

p value log2FC Change p value log2FC Change p value log2FC Change

Oligodendrocyte 7.90× 10−3 0.16 up 2.52× 10−3 0.21 up 2.32× 10−5 0.18 up
Plasma B 3.91× 10−3 0.09 up 1.72× 10−2 0.11 up 2.43× 10−5 0.10 up
Neuron 2.06× 10−2 0.10 up 3.84× 10−2 0.08 up 7.76× 10−4 0.09 up
Mast Cell 5.10× 10−2 0.10 up 7.50× 10−1 -0.02 down 2.57× 10−1 0.05 up
MES3 2.41× 10−1 0.05 up 9.74× 10−1 -0.02 down 3.82× 10−1 0.02 up
DC 5.86× 10−1 0.04 up 6.81× 10−1 0.00 down 7.50× 10−1 0.02 up
T Cell 3.81× 10−1 0.06 up 4.71× 10−1 -0.07 down 7.74× 10−1 0.02 up
Astrocyte 1.94× 10−1 0.03 up 9.92× 10−1 -0.01 down 2.57× 10−1 0.01 up
MES2 5.86× 10−1 0.02 up 9.92× 10−1 -0.01 down 7.02× 10−1 0.01 up
Macrophage 5.86× 10−1 0.01 up 9.91× 10−1 0.00 down 7.02× 10−1 0.00 up
NPC2 8.29× 10−1 0.03 up 7.64× 10−1 -0.04 down 9.32× 10−1 0.00 down
OPC 8.29× 10−1 0.00 up 9.91× 10−1 -0.02 down 9.27× 10−1 -0.01 down
OPC Normal 8.29× 10−1 -0.01 down 9.66× 10−1 -0.02 down 7.71× 10−1 -0.02 down
MES1 7.45× 10−1 -0.01 down 4.37× 10−1 -0.03 down 4.83× 10−1 -0.02 down
AC 5.86× 10−1 0.02 up 1.12× 10−1 -0.08 down 7.02× 10−1 -0.02 down
NPC1 7.45× 10−1 -0.01 down 6.41× 10−1 -0.05 down 5.86× 10−1 -0.02 down
Radial Glial 5.86× 10−1 -0.01 down 1.91× 10−1 -0.06 down 2.47× 10−1 -0.02 down
NK Cell 5.86× 10−1 0.02 up 8.47× 10−2 -0.12 down 6.61× 10−1 -0.03 down
Microglia 5.86× 10−1 -0.03 down 3.80× 10−1 -0.04 down 2.68× 10−1 -0.04 down
Monocyte 5.56× 10−1 -0.04 down 4.37× 10−1 -0.04 down 2.57× 10−1 -0.04 down
PN 5.56× 10−1 -0.04 down 4.37× 10−1 -0.07 down 2.57× 10−1 -0.06 down
Mural Cell 2.89× 10−2 -0.08 down 4.88× 10−2 -0.08 down 7.87× 10−4 -0.08 down
B Cell 5.56× 10−1 -0.08 down 2.32× 10−1 -0.13 down 2.00× 10−1 -0.10 down
Endothelial 1.10× 10−3 -0.10 down 1.57× 10−3 -0.13 down 4.46× 10−7 -0.11 down
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Table S3.3 | Patient-specific cell-cell interactions from spatial proteomics (CODEX) data.

The results are separated by patient and show the cell-cell interactions compared to a null model of spatial randomness. Statistical
significance and direction is determined using a permutation test, with p-values indicating interactions more or less likely than random:
1 (significant positive interactions); -1 (significant avoidance interactions); 0 (neutral and/or non- statistically significant interactions).

Patient From cell To cell Observed count Permutations (>) Permutations (<) p value Significance/Direction

ZH1007 AC AC 2.39 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 AC B-cell 0.00 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH1007 AC Inflammatory-Mac 1.25 8.89 × 10−1 1.16 × 10−1 1.16 × 10−1 0

ZH1007 AC MES 2.20 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 AC MES-Hyp - - - - -

ZH1007 AC Mac 1.79 2.00 × 10−3 9.99 × 10−1 2.00 × 10−3 1

ZH1007 AC NPC - - - - -

ZH1007 AC Neuron - - - - -

ZH1007 AC OPC 2.43 3.00 × 10−3 9.98 × 10−1 3.00 × 10−3 1

ZH1007 AC Oligo 1.29 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH1007 AC Reactive-Ast 1.42 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 AC T-cell 1.05 5.88 × 10−1 4.22 × 10−1 4.22 × 10−1 0

ZH1007 AC Vasc 3.01 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 B-cell AC 0.00 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH1007 B-cell B-cell 5.53 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 B-cell Inflammatory-Mac 0.00 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH1007 B-cell MES 1.00 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH1007 B-cell MES-Hyp - - - - -

ZH1007 B-cell Mac 4.45 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 B-cell NPC - - - - -

ZH1007 B-cell Neuron - - - - -

ZH1007 B-cell OPC 2.67 1.06 × 10−1 9.04 × 10−1 1.06 × 10−1 0

ZH1007 B-cell Oligo 1.00 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH1007 B-cell Reactive-Ast 0.00 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH1007 B-cell T-cell 4.39 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 B-cell Vasc 3.63 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Inflammatory-Mac AC 1.15 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH1007 Inflammatory-Mac B-cell 0.00 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH1007 Inflammatory-Mac Inflammatory-Mac 4.82 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Inflammatory-Mac MES 2.45 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Inflammatory-Mac MES-Hyp - - - - -

ZH1007 Inflammatory-Mac Mac 1.74 1.70 × 10−2 9.84 × 10−1 1.70 × 10−2 0

ZH1007 Inflammatory-Mac NPC - - - - -

ZH1007 Inflammatory-Mac Neuron - - - - -

ZH1007 Inflammatory-Mac OPC 2.89 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Inflammatory-Mac Oligo 2.00 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Inflammatory-Mac Reactive-Ast 1.16 2.97 × 10−1 7.05 × 10−1 2.97 × 10−1 0
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Patient From cell To cell Observed count Permutations (>) Permutations (<) p value Significance/Direction

ZH1007 Inflammatory-Mac T-cell 1.16 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Inflammatory-Mac Vasc 3.69 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 MES AC 1.59 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 MES B-cell 3.00 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 MES Inflammatory-Mac 2.87 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 MES MES 4.20 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 MES MES-Hyp - - - - -

ZH1007 MES Mac 2.19 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 MES NPC - - - - -

ZH1007 MES Neuron - - - - -

ZH1007 MES OPC 2.63 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 MES Oligo 1.31 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH1007 MES Reactive-Ast 1.22 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 MES T-cell 1.23 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 MES Vasc 2.96 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 MES-Hyp AC - - - - -

ZH1007 MES-Hyp B-cell - - - - -

ZH1007 MES-Hyp Inflammatory-Mac - - - - -

ZH1007 MES-Hyp MES - - - - -

ZH1007 MES-Hyp MES-Hyp - - - - -

ZH1007 MES-Hyp Mac - - - - -

ZH1007 MES-Hyp NPC - - - - -

ZH1007 MES-Hyp Neuron - - - - -

ZH1007 MES-Hyp OPC - - - - -

ZH1007 MES-Hyp Oligo - - - - -

ZH1007 MES-Hyp Reactive-Ast - - - - -

ZH1007 MES-Hyp T-cell - - - - -

ZH1007 MES-Hyp Vasc - - - - -

ZH1007 Mac AC 1.63 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Mac B-cell 5.11 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Mac Inflammatory-Mac 2.07 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Mac MES 2.98 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Mac MES-Hyp - - - - -

ZH1007 Mac Mac 2.27 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Mac NPC - - - - -

ZH1007 Mac Neuron - - - - -

ZH1007 Mac OPC 2.12 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH1007 Mac Oligo 1.47 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH1007 Mac Reactive-Ast 1.28 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Mac T-cell 1.54 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Mac Vasc 3.93 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 NPC AC - - - - -

ZH1007 NPC B-cell - - - - -

ZH1007 NPC Inflammatory-Mac - - - - -

ZH1007 NPC MES - - - - -
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Patient From cell To cell Observed count Permutations (>) Permutations (<) p value Significance/Direction

ZH1007 NPC MES-Hyp - - - - -

ZH1007 NPC Mac - - - - -

ZH1007 NPC NPC - - - - -

ZH1007 NPC Neuron - - - - -

ZH1007 NPC OPC - - - - -

ZH1007 NPC Oligo - - - - -

ZH1007 NPC Reactive-Ast - - - - -

ZH1007 NPC T-cell - - - - -

ZH1007 NPC Vasc - - - - -

ZH1007 Neuron AC - - - - -

ZH1007 Neuron B-cell - - - - -

ZH1007 Neuron Inflammatory-Mac - - - - -

ZH1007 Neuron MES - - - - -

ZH1007 Neuron MES-Hyp - - - - -

ZH1007 Neuron Mac - - - - -

ZH1007 Neuron NPC - - - - -

ZH1007 Neuron Neuron - - - - -

ZH1007 Neuron OPC - - - - -

ZH1007 Neuron Oligo - - - - -

ZH1007 Neuron Reactive-Ast - - - - -

ZH1007 Neuron T-cell - - - - -

ZH1007 Neuron Vasc - - - - -

ZH1007 OPC AC 1.85 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 OPC B-cell 1.14 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 OPC Inflammatory-Mac 2.80 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 OPC MES 2.47 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 OPC MES-Hyp - - - - -

ZH1007 OPC Mac 1.64 9.36 × 10−1 6.49 × 10−2 6.49 × 10−2 0

ZH1007 OPC NPC - - - - -

ZH1007 OPC Neuron - - - - -

ZH1007 OPC OPC 3.04 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 OPC Oligo 1.49 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH1007 OPC Reactive-Ast 1.25 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 OPC T-cell 1.28 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 OPC Vasc 2.81 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Oligo AC 1.66 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Oligo B-cell 1.50 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Oligo Inflammatory-Mac 1.39 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Oligo MES 1.97 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Oligo MES-Hyp - - - - -

ZH1007 Oligo Mac 1.55 9.99 × 10−4 1.00 9.99 × 10−4 -1

ZH1007 Oligo NPC - - - - -

ZH1007 Oligo Neuron - - - - -

ZH1007 Oligo OPC 2.03 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH1007 Oligo Oligo 2.23 9.99 × 10−4 1.00 9.99 × 10−4 1
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Patient From cell To cell Observed count Permutations (>) Permutations (<) p value Significance/Direction

ZH1007 Oligo Reactive-Ast 1.25 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Oligo T-cell 1.14 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Oligo Vasc 2.90 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Reactive-Ast AC 1.72 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Reactive-Ast B-cell 0.00 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH1007 Reactive-Ast Inflammatory-Mac 1.20 9.90 × 10−1 1.10 × 10−2 1.10 × 10−2 0

ZH1007 Reactive-Ast MES 2.21 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Reactive-Ast MES-Hyp - - - - -

ZH1007 Reactive-Ast Mac 1.64 7.26 × 10−1 2.75 × 10−1 2.75 × 10−1 0

ZH1007 Reactive-Ast NPC - - - - -

ZH1007 Reactive-Ast Neuron - - - - -

ZH1007 Reactive-Ast OPC 2.05 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH1007 Reactive-Ast Oligo 1.58 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH1007 Reactive-Ast Reactive-Ast 1.37 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Reactive-Ast T-cell 1.29 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Reactive-Ast Vasc 2.81 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 T-cell AC 1.57 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 T-cell B-cell 4.25 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 T-cell Inflammatory-Mac 2.35 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 T-cell MES 2.68 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 T-cell MES-Hyp - - - - -

ZH1007 T-cell Mac 2.27 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 T-cell NPC - - - - -

ZH1007 T-cell Neuron - - - - -

ZH1007 T-cell OPC 2.04 9.97 × 10−1 4.00 × 10−3 4.00 × 10−3 -1

ZH1007 T-cell Oligo 1.48 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH1007 T-cell Reactive-Ast 1.10 8.00 × 10−1 2.13 × 10−1 2.13 × 10−1 0

ZH1007 T-cell T-cell 3.16 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 T-cell Vasc 3.75 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Vasc AC 1.35 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Vasc B-cell 2.95 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Vasc Inflammatory-Mac 1.67 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Vasc MES 1.99 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Vasc MES-Hyp - - - - -

ZH1007 Vasc Mac 1.80 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Vasc NPC - - - - -

ZH1007 Vasc Neuron - - - - -

ZH1007 Vasc OPC 1.64 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH1007 Vasc Oligo 1.34 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH1007 Vasc Reactive-Ast 1.21 2.00 × 10−3 9.99 × 10−1 2.00 × 10−3 1

ZH1007 Vasc T-cell 1.39 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH1007 Vasc Vasc 9.23 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 AC AC 7.33 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 AC B-cell 1.17 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 AC Inflammatory-Mac 1.53 1.00 9.99 × 10−4 9.99 × 10−4 -1
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ZH916 AC MES 2.56 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH916 AC MES-Hyp 2.61 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 AC Mac 3.15 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH916 AC NPC 1.70 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 AC Neuron 1.41 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 AC OPC 3.61 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 AC Oligo 1.09 3.00 × 10−3 9.99 × 10−1 3.00 × 10−3 1

ZH916 AC Reactive-Ast 1.54 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 AC T-cell 1.31 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 AC Vasc 2.22 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH916 B-cell AC 2.63 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 B-cell B-cell 4.31 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 B-cell Inflammatory-Mac 2.35 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 B-cell MES 2.39 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH916 B-cell MES-Hyp 1.00 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH916 B-cell Mac 4.98 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 B-cell NPC 0.00 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH916 B-cell Neuron 1.00 1.00 9.01 × 10−1 9.01 × 10−1 0

ZH916 B-cell OPC 1.00 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH916 B-cell Oligo 1.00 9.52 × 10−1 9.89 × 10−1 9.52 × 10−1 0

ZH916 B-cell Reactive-Ast 0.00 1.00 4.00 × 10−3 4.00 × 10−3 -1

ZH916 B-cell T-cell 5.28 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 B-cell Vasc 5.20 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Inflammatory-Mac AC 1.81 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Inflammatory-Mac B-cell 1.53 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Inflammatory-Mac Inflammatory-Mac 3.95 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Inflammatory-Mac MES 3.75 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Inflammatory-Mac MES-Hyp 3.33 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Inflammatory-Mac Mac 3.50 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Inflammatory-Mac NPC 2.06 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Inflammatory-Mac Neuron 1.08 2.00 × 10−3 9.99 × 10−1 2.00 × 10−3 1

ZH916 Inflammatory-Mac OPC 2.75 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Inflammatory-Mac Oligo 1.00 1.00 8.74 × 10−1 8.74 × 10−1 0

ZH916 Inflammatory-Mac Reactive-Ast 1.63 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Inflammatory-Mac T-cell 2.48 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Inflammatory-Mac Vasc 5.22 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 MES AC 2.77 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 MES B-cell 1.38 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 MES Inflammatory-Mac 1.98 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 MES MES 6.99 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 MES MES-Hyp 2.52 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 MES Mac 3.82 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 MES NPC 2.03 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 MES Neuron 1.25 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 MES OPC 3.01 9.99 × 10−4 1.00 9.99 × 10−4 1
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ZH916 MES Oligo 1.04 4.00 × 10−3 9.97 × 10−1 4.00 × 10−3 1

ZH916 MES Reactive-Ast 1.33 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 MES T-cell 1.43 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 MES Vasc 2.18 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH916 MES-Hyp AC 1.62 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 MES-Hyp B-cell 1.00 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH916 MES-Hyp Inflammatory-Mac 2.06 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 MES-Hyp MES 3.03 9.99 × 10−4 1.00 9.99 × 10−4 -1

ZH916 MES-Hyp MES-Hyp 6.39 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 MES-Hyp Mac 2.05 9.99 × 10−4 1.00 9.99 × 10−4 -1

ZH916 MES-Hyp NPC 1.41 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 MES-Hyp Neuron 1.23 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 MES-Hyp OPC 2.50 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 MES-Hyp Oligo 1.00 1.00 8.59 × 10−1 8.59 × 10−1 0

ZH916 MES-Hyp Reactive-Ast 1.88 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 MES-Hyp T-cell 1.25 6.89 × 10−1 3.12 × 10−1 3.12 × 10−1 0

ZH916 MES-Hyp Vasc 1.93 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH916 Mac AC 2.86 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Mac B-cell 1.95 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Mac Inflammatory-Mac 2.25 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Mac MES 4.15 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Mac MES-Hyp 2.56 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Mac Mac 6.57 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Mac NPC 2.02 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Mac Neuron 1.48 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Mac OPC 2.88 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Mac Oligo 1.02 8.29 × 10−2 9.19 × 10−1 8.29 × 10−2 0

ZH916 Mac Reactive-Ast 1.48 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Mac T-cell 2.22 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Mac Vasc 3.64 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 NPC AC 1.60 8.69 × 10−2 9.15 × 10−1 8.69 × 10−2 0

ZH916 NPC B-cell 0.00 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH916 NPC Inflammatory-Mac 1.70 4.60 × 10−1 5.41 × 10−1 4.60 × 10−1 0

ZH916 NPC MES 2.96 9.99 × 10−4 1.00 9.99 × 10−4 -1

ZH916 NPC MES-Hyp 1.61 9.99 × 10−1 2.00 × 10−3 2.00 × 10−3 -1

ZH916 NPC Mac 2.91 9.99 × 10−4 1.00 9.99 × 10−4 -1

ZH916 NPC NPC 3.72 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 NPC Neuron 1.25 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 NPC OPC 3.83 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 NPC Oligo 1.00 9.92 × 10−1 9.80 × 10−1 9.80 × 10−1 0

ZH916 NPC Reactive-Ast 1.13 1.20 × 10−2 9.93 × 10−1 1.20 × 10−2 0

ZH916 NPC T-cell 1.04 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH916 NPC Vasc 2.10 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH916 Neuron AC 1.71 3.90 × 10−2 9.62 × 10−1 3.90 × 10−2 0

ZH916 Neuron B-cell 2.00 9.99 × 10−4 1.00 9.99 × 10−4 1
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ZH916 Neuron Inflammatory-Mac 1.81 1.53 × 10−1 8.48 × 10−1 1.53 × 10−1 0

ZH916 Neuron MES 2.71 9.99 × 10−4 1.00 9.99 × 10−4 -1

ZH916 Neuron MES-Hyp 2.18 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Neuron Mac 3.13 8.69 × 10−1 1.32 × 10−1 1.32 × 10−1 0

ZH916 Neuron NPC 1.25 1.30 × 10−2 9.95 × 10−1 1.30 × 10−2 0

ZH916 Neuron Neuron 2.39 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Neuron OPC 1.90 4.70 × 10−2 9.54 × 10−1 4.70 × 10−2 0

ZH916 Neuron Oligo 1.00 6.47 × 10−1 9.96 × 10−1 6.47 × 10−1 0

ZH916 Neuron Reactive-Ast 2.00 4.00 × 10−3 1.00 4.00 × 10−3 1

ZH916 Neuron T-cell 1.22 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Neuron Vasc 1.50 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH916 OPC AC 3.86 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 OPC B-cell 1.00 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH916 OPC Inflammatory-Mac 1.72 7.19 × 10−2 9.29 × 10−1 7.19 × 10−2 0

ZH916 OPC MES 3.57 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 OPC MES-Hyp 3.39 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 OPC Mac 3.03 9.99 × 10−4 1.00 9.99 × 10−4 -1

ZH916 OPC NPC 2.69 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 OPC Neuron 1.47 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 OPC OPC 6.06 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 OPC Oligo 1.07 3.00 × 10−3 9.98 × 10−1 3.00 × 10−3 1

ZH916 OPC Reactive-Ast 1.66 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 OPC T-cell 1.15 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH916 OPC Vasc 1.95 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH916 Oligo AC 3.20 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Oligo B-cell 2.00 8.99 × 10−3 9.99 × 10−1 8.99 × 10−3 1

ZH916 Oligo Inflammatory-Mac 1.14 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH916 Oligo MES 3.77 1.70 × 10−2 9.84 × 10−1 1.70 × 10−2 0

ZH916 Oligo MES-Hyp 8.00 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Oligo Mac 2.50 9.99 × 10−4 1.00 9.99 × 10−4 -1

ZH916 Oligo NPC 1.00 9.92 × 10−1 7.36 × 10−1 7.36 × 10−1 0

ZH916 Oligo Neuron 1.11 1.30 × 10−2 9.88 × 10−1 1.30 × 10−2 0

ZH916 Oligo OPC 3.44 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Oligo Oligo 1.43 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Oligo Reactive-Ast 1.50 3.00 × 10−3 9.99 × 10−1 3.00 × 10−3 1

ZH916 Oligo T-cell 1.43 9.69 × 10−2 9.13 × 10−1 9.69 × 10−2 0

ZH916 Oligo Vasc 1.60 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH916 Reactive-Ast AC 1.00 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH916 Reactive-Ast B-cell 0.00 1.00 4.00 × 10−3 4.00 × 10−3 -1

ZH916 Reactive-Ast Inflammatory-Mac 1.68 5.70 × 10−1 4.32 × 10−1 4.32 × 10−1 0

ZH916 Reactive-Ast MES 2.00 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH916 Reactive-Ast MES-Hyp 1.88 7.69 × 10−2 9.24 × 10−1 7.69 × 10−2 0

ZH916 Reactive-Ast Mac 2.33 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH916 Reactive-Ast NPC 1.29 1.30 × 10−2 9.88 × 10−1 1.30 × 10−2 0

ZH916 Reactive-Ast Neuron 1.40 1.40 × 10−2 9.87 × 10−1 1.40 × 10−2 0
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Patient From cell To cell Observed count Permutations (>) Permutations (<) p value Significance/Direction

ZH916 Reactive-Ast OPC 3.01 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Reactive-Ast Oligo 1.00 5.89 × 10−1 9.97 × 10−1 5.89 × 10−1 0

ZH916 Reactive-Ast Reactive-Ast 2.27 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Reactive-Ast T-cell 1.31 2.42 × 10−1 7.66 × 10−1 2.42 × 10−1 0

ZH916 Reactive-Ast Vasc 1.40 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH916 T-cell AC 2.02 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 T-cell B-cell 2.34 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 T-cell Inflammatory-Mac 2.65 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 T-cell MES 3.53 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 T-cell MES-Hyp 3.22 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 T-cell Mac 4.59 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 T-cell NPC 1.63 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 T-cell Neuron 1.22 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 T-cell OPC 2.63 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 T-cell Oligo 1.00 1.00 9.46 × 10−1 9.46 × 10−1 0

ZH916 T-cell Reactive-Ast 2.83 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 T-cell T-cell 5.07 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 T-cell Vasc 6.12 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Vasc AC 4.38 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Vasc B-cell 1.71 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Vasc Inflammatory-Mac 2.18 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Vasc MES 2.35 9.99 × 10−4 1.00 9.99 × 10−4 -1

ZH916 Vasc MES-Hyp 1.30 1.00 9.99 × 10−4 9.99 × 10−4 -1

ZH916 Vasc Mac 3.95 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Vasc NPC 1.48 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Vasc Neuron 1.23 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Vasc OPC 1.98 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Vasc Oligo 1.14 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Vasc Reactive-Ast 1.75 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Vasc T-cell 2.54 9.99 × 10−4 1.00 9.99 × 10−4 1

ZH916 Vasc Vasc 1.15 × 101 9.99 × 10−4 1.00 9.99 × 10−4 1
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Table S3.4 | Cell type score changes across Up responder patients.

Comparisons were performed using all Up responder patient samples and also separately for Up responder in each the discovery and
validation cohorts. Statistical significance was assessed using the paired, Wilcoxon test and p values shown were adjusted using the
FDR method. The change filed denotes the main direction of the fold-change for each cell type score through treatment from primary to
recurrence. The rows are ordered by log2-FC and shaded rows denote cell types which were statistically significant (p < 0.05) across one
or more cohorts.

Discovery Validation All

p value log2FC Change p value log2FC Change p value log2FC Change

Oligodendrocyte 4.22× 10−7 0.32 up 5.05× 10−5 0.32 up 1.14× 10−9 0.32 up
Neuron 2.81× 10−9 0.24 up 5.05× 10−5 0.17 up 1.13× 10−10 0.21 up
Plasma B 9.97× 10−6 0.16 up 7.82× 10−5 0.20 up 1.86× 10−9 0.18 up
T Cell 5.70× 10−2 0.13 up 8.52× 10−1 0.08 up 8.85× 10−2 0.11 up
Mast Cell 1.32× 10−2 0.12 up 8.52× 10−1 0.07 up 2.32× 10−2 0.10 up
MES3 1.25× 10−3 0.14 up 4.07× 10−1 0.04 up 1.03× 10−3 0.09 up
NPC2 2.81× 10−2 0.14 up 8.52× 10−1 0.01 up 4.60× 10−2 0.09 up
Astrocyte 1.87× 10−5 0.11 up 2.12× 10−1 0.03 up 4.31× 10−6 0.08 up
OPC 1.14× 10−2 0.11 up 8.52× 10−1 0.02 up 2.40× 10−2 0.08 up
DC 4.19× 10−1 0.04 up 8.52× 10−1 0.09 up 4.18× 10−1 0.06 up
OPC Normal 3.94× 10−3 0.08 up 8.49× 10−1 0.02 up 9.27× 10−3 0.06 up
AC 2.33× 10−4 0.15 up 2.06× 10−1 -0.06 down 6.75× 10−2 0.06 up
Macrophage 2.81× 10−1 0.03 up 3.45× 10−1 0.07 up 8.85× 10−2 0.04 up
NPC1 1.92× 10−1 0.07 up 8.52× 10−1 -0.03 down 4.57× 10−1 0.03 up
NK Cell 4.95× 10−2 0.08 up 8.52× 10−1 -0.06 down 3.65× 10−1 0.03 up
Microglia 5.16× 10−1 0.02 up 8.52× 10−1 0.03 up 4.57× 10−1 0.03 up
PN 4.55× 10−1 0.04 up 8.52× 10−1 -0.03 down 7.38× 10−1 0.01 up
MES2 8.37× 10−1 -0.01 down 8.52× 10−1 0.02 up 9.44× 10−1 0.00 up
Monocyte 8.21× 10−1 -0.02 down 8.52× 10−1 0.02 up 9.44× 10−1 0.00 down
Radial Glial 3.88× 10−1 0.02 up 1.86× 10−1 -0.07 down 5.93× 10−1 -0.01 down
B Cell 5.16× 10−1 -0.02 down 9.30× 10−1 0.00 up 5.93× 10−1 -0.01 down
MES1 3.52× 10−1 -0.03 down 8.56× 10−1 -0.01 down 4.18× 10−1 -0.02 down
Endothelial 3.49× 10−2 -0.07 down 8.28× 10−2 -0.10 down 2.53× 10−3 -0.08 down
Mural Cell 3.17× 10−2 -0.10 down 1.86× 10−1 -0.08 down 5.75× 10−3 -0.09 down
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Table S3.5 | Cell type score changes across Down responder patients.

Comparisons were performed using all Down responder patient samples and also separately for Down responder in each the discovery
and validation cohorts. Statistical significance was assessed using the paired, Wilcoxon test and p values shown were adjusted using the
FDR method. The change filed denotes the main direction of the fold-change for each cell type score through treatment from primary to
recurrence. The rows are ordered by log2-FC and shaded rows denote cell types which were statistically significant (p < 0.05) across one
or more cohorts.

Discovery Validation All

p value log2FC Change p value log2FC Change p value log2FC Change

MES2 3.24× 10−1 0.05 up 4.42× 10−1 -0.05 down 4.61× 10−1 0.02 up
MES1 4.40× 10−1 0.02 up 1.92× 10−1 -0.08 down 7.04× 10−1 -0.01 down
Mast Cell 5.69× 10−1 0.06 up 1.79× 10−1 -0.19 down 7.02× 10−1 -0.03 down
Plasma B 5.35× 10−1 -0.03 down 2.61× 10−1 -0.07 down 1.92× 10−1 -0.04 down
Radial Glial 1.15× 10−2 -0.05 down 5.88× 10−1 -0.03 down 4.46× 10−2 -0.05 down
DC 8.20× 10−1 0.03 up 1.79× 10−1 -0.19 down 6.06× 10−1 -0.05 down
Macrophage 8.82× 10−1 -0.03 down 6.21× 10−2 -0.15 down 1.19× 10−1 -0.06 down
Mural Cell 3.25× 10−1 -0.06 down 1.79× 10−1 -0.10 down 5.57× 10−2 -0.07 down
Oligodendrocyte 3.24× 10−1 -0.10 down 6.69× 10−1 -0.03 down 2.00× 10−1 -0.08 down
Monocyte 3.39× 10−1 -0.07 down 8.21× 10−2 -0.16 down 2.78× 10−2 -0.10 down
Astrocyte 8.05× 10−3 -0.10 down 1.42× 10−1 -0.11 down 1.35× 10−3 -0.11 down
MES3 1.37× 10−1 -0.10 down 1.79× 10−1 -0.14 down 2.01× 10−2 -0.11 down
NPC1 1.42× 10−2 -0.13 down 4.36× 10−1 -0.09 down 2.06× 10−2 -0.11 down
NK Cell 3.68× 10−1 -0.07 down 5.28× 10−2 -0.25 down 2.78× 10−2 -0.12 down
Neuron 5.64× 10−3 -0.14 down 1.86× 10−1 -0.10 down 1.35× 10−3 -0.13 down
Microglia 4.97× 10−2 -0.12 down 4.81× 10−2 -0.20 down 1.35× 10−3 -0.14 down
OPC Normal 3.50× 10−3 -0.17 down 2.24× 10−1 -0.11 down 1.13× 10−3 -0.14 down
T Cell 8.49× 10−1 -0.04 down 5.28× 10−2 -0.39 down 1.10× 10−1 -0.15 down
OPC 1.15× 10−2 -0.18 down 4.13× 10−1 -0.10 down 1.04× 10−2 -0.15 down
NPC2 1.28× 10−2 -0.16 down 2.29× 10−1 -0.15 down 5.37× 10−3 -0.15 down
AC 5.64× 10−3 -0.18 down 4.21× 10−1 -0.12 down 1.61× 10−3 -0.16 down
Endothelial 5.64× 10−3 -0.14 down 1.75× 10−2 -0.20 down 3.22× 10−5 -0.16 down
PN 1.28× 10−2 -0.16 down 2.29× 10−1 -0.16 down 8.64× 10−3 -0.16 down
B Cell 4.71× 10−1 -0.18 down 6.03× 10−2 -0.38 down 4.80× 10−2 -0.24 down
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Abstract

Background: glioblastoma (GBM), the most aggressive adult brain cancer, com-

prises a complex tumour microenvironment (TME) with diverse cellular interac-

tions that drive progression and pathobiology. The aim of this study was to

understand how these spatial patterns and interactions evolve with treatment.

Methods: To explore these relationships, we employed imaging mass cytometry

(IMC) to measure the expression of 34 protein markers, enabling the identification

of GBM-specific cell types and their interactions at single-cell protein level in

paired pre- and post-treatment GBM samples from five patients.

Results: We find a significant post-treatment increase in normal brain cells along-

side a reduction in vascular cells. Moreover, despite minimal overall change in

cellular diversity, interactions among astrocytes, oligodendrocytes, and vascular

cells increase post-treatment, suggesting reorganisation of the TME. The GBM

TME cells form spatially organized layers driven by hypoxia pre-treatment, but

this influence diminishes post-treatment, giving way to less organised layers with

organisation driven by reactive astrocytes and lymphocytes.

Conclusions: These findings provide insight into treatment-induced shifts in

GBMs cellular landscape, highlighting aspects of the evolving TME that appear

to facilitate recurrence and are, therefore, potential therapeutic targets.
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4.1 Introduction

Isocitrate dehydrogenase wild-type (IDHwt) GBM is the most common and aggres-

sive form of adult diffuse glioma, with a median survival of∼15 months1. Standard

treatment consists of surgical resection followed by radiation and chemotherapy

with temozolomide (TMZ)2. However, tumour recurrence is inevitable due to: a)

the infiltrative nature of primary GBM, which precludes complete surgical removal;

and b) significant intra- and inter-tumour heterogeneity, which enables residual

cells to resist chemoradiation and continue proliferating3,4. Characterising how un-

resected GBM cells respond to treatment can highlight potential mechanisms of

treatment resistance that could be additionally targeted with combined therapies.

It is known that IDHwt GBM cells exhibit plasticity across four neoplastic cell

states along a proneural (PN) to mesenchymal (MES) axis5–7: neural progenitor-

like (NPC-like), oligodendrocyte progenitor-like (OPC-like), astrocyte-like (AC-

like), and mesenchymal-like (MES-like). However, these neoplastic cells do not

function in isolation. In their updated hallmarks of cancer, Hanahan and Weinberg

remarked that any understanding of tumours “must encompass the contributions

of the (TME)”8. In GBM the TME comprises a diverse array of tumour cells

and also complex network of immune cells, stromal cells, and vascular elements,

that play a critical role in GBM progression and treatment resistance, acting as a

dynamic ecosystem that influences tumour behaviour and therapeutic response9.

To truly understand GBM tumour response to treatment, therefore, requires char-

acterisation at single-cell level in ways that incorporate information about inter-

actions with the TME. This is now possible through the use of spatial molecular

profiling technologies10. Such approaches have recently been applied to GBM tu-

mours, revealing niches containing specific neoplastic cells and distinct immune-

associated programs11–13. These niches have also been shown to organize into

structured layers, beyond what is visible via conventional microscopy and histopathol-

ogy, and are associated with cellular states such as hypoxia11.

These findings describe consistent organizational patterns across GBM tumours

suggesting that neoplastic phenotypes are driven by environmental interactions.

However, one crucial aspect remains unexplored: how the spatial patterns and

interactions within the TME are impacted by treatment to enable some neoplastic

cells to survive. To begin to address this, we analysed multiplex IMC data14, from

five paired pre- and post-treatment IDHwt GBM patient samples, focusing on

protein-level changes that reveal alterations in cellular prevalence and states.
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4.2 Materials & methods

4.2.1 Data availability

The data used in this study (including the raw high-dimensional TIFF images,

spillover correction files; cell-object segmentation masks; patient and sample meta-

data; phenotype labelled single-cell data and the cell-object spatial information)

are deposited and available online at Zenodo:

https://doi.org/10.5281/zenodo.14679442

4.2.2 Code availability

The analysis code that was used to process the IMC data and produce the results

in this paper can be found on GitHub:

https://github.com/GliomaGenomics/GBM IMC Analysis

4.2.3 Ethics statement

Tumour samples used in this study were obtained from patients at the Walton

Centre, UK, that provided informed consent in writing for the use of their tissue

in research. The inclusion of these samples in this project was following approval

by the UK National Health Service (NHS) Research Ethics Service Committee

South Central - Oxford A (Research Ethics Code: 13/SC/0509).

4.2.4 Imaging mass cytometry analysis

Data acquisition and initial processing of samples is as previously detailed15.

Briefly, for each of the five patients with paired tumour samples from initial surgery

and first recurrence, we selected three spatially spatially distinct 1mm2 regions of

interests (ROIs) per time-point, resulting in a total of 30 ROIs (Table S4.1, Ta-

ble S4.2 and Figure S4.1). An antibody panel of 34 proteins was designed and

control tissues were used to validate each antibody (Table S4.3). Following this

5µm tissue sections were stained with a cocktail of all conjugated antibodies and

each ROI was ablated at a 200Hz frequency with a 1µm diameter laser. The

raw MCD files were exported as exported in OME-TIFF format. All IMC image
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processing and downstream analysis steps were performed using the R statistical

software package (≥ version 4.3.0) and Python (version 3.11.3). Cell-cell interac-

tions, neighbourhoods and contexts were generated using functions from imcRtools

(v1.10.0). All plots were generated using ggplot2 (version 3.5.1).

4.2.5 Cell segmentation

Steinbock16 (v0.13.5) converted raw MCD files into multi-channel TIFF images

(n=30), which were processed with tifffile (v2023.4.12). Nuclear (Ir191, Ir193)

and cytoplasmic (Sm149, Eu153, Dy164, Yb171) channels were combined into

single RGB images using pandas (v2.0.3) and numpy (v1.24.0), followed by ran-

dom cropping into 100µm2 sections. Cellpose (v2.0) was used for segmentation as

previously described17. Random RGB crops were segmented with the pre-trained

cytoplasm model (cyto2 ), iteratively re-annotated, and refined by updating the

model and adjusting the mean pixel diameter. The final model was applied to

full 1000µm2 ROIs using the cellpose train command with default settings. Sig-

nal intensities were extracted using the measure intensities function in Steinbock:

pixels were aggregated by computing the mean intensity across channels. Ad-

ditional spatial features were calculated using the measure regionprops function

(Figure S4.2).

4.2.6 Single-cell & image processing

The quantified single cell data and images were processed as previously detailed15.

Briefly, segmented cell expression counts were transformed using an inverse hyper-

bolic sine function (arcsinh) with cofactor = 5. Following this, single-cells were

integrated to correct for unwanted sources of variation present across each patient

using harmony (Figure S4.3 and Figure S4.4).

4.2.7 Cell phenotyping

Cells with high expression (>90th percentile) across multiple markers (>50% of

marker) were excluded from phenotyping. Expression counts were z-score nor-

malised, was ranked from low (1) to high (20) based on expression levels. Labels

were assigned using a logical gating approach: labels were only assigned if the

marker expression rank exceeded a user-defined threshold (Table S4.4). Where

phenotyping based on marker rank alone was insufficient, marker-specific thresh-
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olds were applied, and intersecting populations were combined to generate final

cell type labels. Cells were classified as having low (< -1.2) or high (> 1.2) hy-

poxia (HIF1A+) and epithelial-to-mesenchymal transition (EMT) (SNAI1+) based

on their z-score normalised expression counts.

4.2.8 Measurement of intra-patient heterogeneity

Shannon entropy (H ) was used to measure the compositional diversity of cell types

across ROIs. To account for differences in cell frequencies across ROIs, 1,000 cells

were randomly sub-sampled per group (i), in each of ten iterations. In each round,

Shannon entropy was calculated using cell type frequencies (Pc) as:

Hi = −
∑
c

Pc log2(Pc)

The Wilcoxon rank-sum test was used to compare Shannon entropy (H ) between

primary and recurrent surgeries, both across all data and within each patient

(n=5).

4.2.9 Spatial interaction graphs

Spatial interaction graphs were generated for each ROI (n=30) using the buildSpa-

tialGraph function from imcRtools with the Delaunay triangulation method. To

reduce spurious connections, edges were pruned by setting the max dist argument

to 50µm.

4.2.10 Testing cell-cell interactions

Cell-cell spatial interactions were tested using the testInteractions from imcRtools

with the previously described histoCAT method18. Briefly, co-detection by index-

ing (CODEX) spatial interaction graph data edges were summed and aggregated

across individual patient/surgery ROIs and then divided by the number of cells of

type A that had at least one neighbour of type B. These observed interactions were

compared against a derived null distribution, describing the interactions formed

under spatial randomness. Significance was determined using two one-tailed per-

mutation tests:
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PAB =

1, Cobs = 0;∑
(Cperm≥(≤)Cobs)+1

Nperm+1
, otherwise,

where Cperm is the number of cell pairs (A, B) in each permutation, Cobs is the

actual number of cell pairs (A, B) given a defined distance, and Nperm is the

number of permutations.

4.2.11 Cell neighbourhoods & spatial contexts

Cellular neighbourhoods (CNs) and Spatial contexts (SCs) were defined using a

previously established method19. Briefly, for each cell in each ROI (n=30), the

proportion of neighbouring cell types was aggregated using the aggregateNeighbors

function from imcRtools. These proportions were then clustered using k-means

with k=12, determined through a parameter sweep and visual inspection.

CNs were further aggregated and SCs identified using the detectSpatialContext

function from imcRtools with default parameters. The filterSpatialContext func-

tion from imcRtools was used to further refine SCs, retaining the most dominant:

1.) SCs present in >3 patients; and 2.) SCs comprising >5% of total cells within

each surgery type.
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4.3 Results

4.3.1 Identifying & labelling cell types in GBM

To assess the spatial evolution of GBM tumours through treatment, we collected

tumour samples from five patients who had undergone surgical resections of both

primary and recurrent IDHwt GBM. Each primary tumour developed de novo,

and all patients received radiation, chemotherapy with TMZ and had a local re-

currence. For patient information see Table S4.1. Three spatially distinct 1mm2

(ROIs) were selected for each tumour sample, following immunohistochemical

staining for key markers of proliferation (Ki67), hypoxia (HIF1A) and immune

cells (CD45), to capture intra-tumour heterogeneity and avoid the bias of exam-

ining only a single small region (Figure 4.1A and Table S4.2).

We designed a panel of 34 protein markers to identify GBM-specific cell types

(neoplastic, immune, and normal brain cells) along with markers of cell states

such as proliferation and hypoxia (see Table S4.2). Using a deep learning-based

image segmentation approach, we assigned cell type labels to each segmented

object and also subsequently grouped cells into four categories: immune, cancer,

normal brain, and vasculature (Figure 4.1B). Approximately 107,000 cells were

labelled across all samples (Figure 4.1C-D) after applying batch effect correction

to account for variability between individual patients and to ensure that expression

profiles were comparable (Figure S4.1 and Figure S4.2).

A comparison of cell categories across each ROI (Figure 4.1E) showed surpris-

ingly consistent within-sample distributions, confirming that there is intra-tumour

TME heterogeneity but that this is not as significant as inter-tumour TME het-

erogeneity. ANOVA analysis (see Table S4.5) confirmed that the effect of patient

& surgery was significant for all cell types (p < 0.001), indicating considerable

inter-tumour heterogeneity. In contrast, intra-tumour heterogeneity, represented

by differences across ROIs, was not significant for any cell category suggesting

that intra-tumour TME variability is less pronounced compared to inter-tumour

heterogeneity. Therefore, we combined the three ROIs per sample, prior to sub-

sequent downstream analyses, to increase the number of cells per sample whilst

minimizing sampling bias from specific regions.

194



4. Paper 3 - Spatially profiling the GBM TME through treatment

195



4. Paper 3 - Spatially profiling the GBM TME through treatment

Figure 4.1 | Cell segmentation and phenotyping overview.

A) Schematic detailing the IMC process for one patient sample, including the
downstream analysis steps comprising of object segmentation and marker
abundance quantification. B) Heatmap of protein marker abundances (rows) for
each of the labelled cell types (columns). The tile colours denote the scaled
(z-score) marker intensities, and the tile highlight colours represent the four
main cell categories. C-D) Uniform manifold approximation and projection
(UMAP) of all (patients and surgeries) cell objects identified following
segmentation, batch correction and phenotyping: cells are coloured by cell
category (C) and cell type (D). E) Proportion of labelled cell categories
(columns) across each ROI. The facets are grouped by patient/surgery and each
of the facet header colours denote an individual patient.

4.3.2 Alterations in cellular prevalence through treatment

in GBM

We first assessed how the prevalence of each cell category changed through treat-

ment, between primary and recurrent samples (Figure 4.2A and Table S4.6).

Whilst a reduction in the percentage of both immune and neoplastic cells was

observed, from primary to recurrence, only the decrease in vasculature cells was

significant (Wilcoxon p = 0.09, 0.06 and 9.88 × 10−3 respectively). The only

significant increase was in the proportion of normal brain cells (Wilcoxon p =

4.52× 10−4).

Drilling down into how specific cell types change through treatment showed that

no individual immune cell type exhibited significant changes (Figure 4.2B and Ta-

ble S4.7). Similarly, no individual cancer cell types altered in a consistent direc-

tion, although the AC-like cancer cell type showed the largest and most consistent

decrease (Wilcoxon p = 0.065). All normal brain cell types showed significant

increases during treatment, with astrocytes exhibiting a particularly notable in-

crease from primary to recurrence (Wilcoxon p = 3.02×10−3), that was consistent

across each patient. Of note, astrocytes appear to be the most prevalent normal

brain cell type overall, consistent with reports of their high prevalence in both

normal brain and the GBM TME20,21. These changes agree with those from our

larger cohort studies where we performed deconvolution from bulk RNA sequenc-

ing (RNA-seq), validating our approach22,23.

The limited number of consistent, significant changes in the prevalence of cell

category or type over time highlights the variability in immune and neoplastic cell

categories, post-treatment, across patients (Figure 4.2A-B). We, therefore decided
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to systematically evaluate how cell diversity changes through treatment, both

overall and at an individual patient level, to determine if any consistent patterns

emerge.
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Figure 4.2 | Changes in GBM cell categories and types through
treatment.

A) Top: stacked bar charts showing the labelled cell category prevalences across
all patients (top left) and also separately for each individual patient. Bottom:
boxplots showing the distribution of each cell category proportion across all
patients grouped by primary and recurrent surgeries. B) Top: stacked bar charts
showing the labelled cell type prevalences across all patients (top left) and also
separately for each individual patient. Bottom: boxplots showing the
distribution of each cell type proportion across all patients grouped by primary
and recurrent surgeries. C) Boxplots showing the distribution of Shannon’s
entropy values grouped by surgery and split across all patients (top left) and also
for each individual patient. D) Boxplots, grouped by surgery showing the
distribution of protein marker abundance for markers which define hypoxia (top)
and the EMT (bottom).
The black horizontal boxplot lines represent the median and the upper and lower
box bounds denote the 25th and 75th quantiles, respectively.AC-like; MES-like;
NPC-like; OPC-like; EMT. Significant p values are represented as: ∗p < 0.05; ∗∗p
< 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001.

4.3.3 Alterations in cellular diversity through treatment

in GBM

To inspect cellular diversity in our samples, we quantified the Shannon’s entropy

(H ) for each one (Figure 4.2C and Table S4.8). A high Shannon’s entropy value

indicates a tumour with many different cell types of similar frequency, whereas low

entropy suggests that the tumour is dominated by few(er) cell types. This metric

thus serves as a good proxy for assessing intra-tumour cellular heterogeneity for

each sample, for example pre- and post-treatment.

We found that, overall, Shannon’s entropy significantly decreased from primary

to recurrence (Wilcoxon q = 3.93 × 10−3, Figure 4.2C), suggesting that cell dis-

tributions become less diverse, likely owing to certain cell types becoming more

dominant within the distribution at recurrence. Linking this back to the results in

Figure 4.2A and Figure 4.2B, this appears to be driven by the greater abundance of

normal brain cells, and especially astrocytes, in the recurrent tumours. However,

analysis of individual patients revealed variability in how cellular heterogeneity

changed over time. Two patients (71 and 84) had significantly increased diver-

sity through treatment (Wilcoxon q = 8.45× 10−17 and 7.10× 10−4, respectively,

Figure 4.2C). In patient 84, this increase was primarily driven by the appearance

of oligodendrocytes at recurrence, which weren’t present in the primary tumour

(Figure 4.2B). Conversely, for patient 71, the increase in entropy was associated
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with a reduction of dominating macrophages in the primary and presence of a

larger neoplastic and normal brain cell fraction at recurrence (Figure 4.2B).

Given a lack of consistent trends in how treatment affects cell type prevalence

or dominance, we proceeded to investigate whether changes in cell state could

indicate how treatment shapes cancer cell phenotypes.

4.3.4 Alterations in neoplastic cellular states through treat-

ment in GBM

The MES phenotype in GBM cancer cells is characterised by high proliferative

and metastatic potential, often leading to a poorer prognosis compared to PN

subtypes24–27. Moreover, elevated hypoxia and the expression of EMT genes, typ-

ically involved in neural tube formation or wound healing, have been shown to be

closely linked to the MES cell state28.

In our IMC panel we included antibodies against proteins indicating hypoxia

(HIF1A) and EMT (SNAI1 & TGFBeta) to assess the proportion of each of

the four identified neoplastic cancer cell types that are in these cellular states,

and how they changed through treatment. We found that significantly more

AC-like cancer cells expressed hypoxia markers post-treatment (Wilcoxon p =

4.98×10−115), whilst significantly fewer MES-like and NPC-like cells did (Wilcoxon

p = 9.62×10−125 and p = 5.49×10−70, respectively) (Figure 4.2D and Table S4.9).

All four neoplastic cell types had a significantly higher proportion of cells ex-

pressing markers of EMT post-treatment, with the largest effect sizes observed in

AC-like and NPC-like cells (Wilcoxon p = 5.29 × 10−161 and p = 2.32 × 10−183,

respectively).

The power of our approach is not just in inspecting paired longitudinal GBM

samples at single cell resolution, but also describing how treatment alters the

cellular landscape in terms of spatial context. Hence, we moved on to looking at

in situ cellular interactions, i.e. cells directly adjacent to one another.

4.3.5 Alterations in cellular interactions through treatment

in GBM

We evaluated pairwise cell-cell adjacency, serving as an indicator of cell interaction

partners, to assess whether any were significantly more likely (cells are ”interact-
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ing”) or less likely (cells are ”avoiding”) compared to the null hypothesis of spatial

randomness (Figure 4.3A and Table S4.10).

We performed this analysis on the primary and recurrent samples separately to see

which significant findings were time-point dependent. Many cell types predomi-

nantly interacted with themselves in the primary tumours (Figure 4.3B). This is in

keeping with previous spatial analysis of GBM that used a ”spot-based” technol-

ogy, that is not resolved at the single-cell level but rather aggregated over a small

defined area (spot), which found that signal from the majority of spots seemed to

emanate from a single cell type11. Our expansion to recurrent samples shows that

these ”self” interactions remained consistent through treatment (Figure 4.3B).

Two additional, clear observations from our results are that there are no cells

significantly avoiding one another, and there are many more recurrence-specific,

significant cell-cell interactions than primary-specific ones (27 versus 10). Hence,

despite finding an overall reduction in cell diversity at recurrence (Figure 4.2C),

there are more interactions between differing cell types, suggesting that these are

non-random and, thus, phenotypically important.

Neoplastic cells

Amongst the GBM cancer cell types, MES-like cells formed the highest number of

significant interactions with other cell types. MES-like interactions with immune

cells remained consistent between paired samples but interactions with normal

brain cells were increased at recurrence.

Vasculature

Despite decreasing through treatment (Figure 4.2A), endothelial cells still formed

significant interactions at both time points (Figure 4.3C). Unique to the primary

tumours were significant interactions from the endothelial cells to the microglia

(permutation test, p = 9.99 × 10−4) and MES-like cancer cells (permutation test,

p = 9.99 × 10−4). MES-like cells interacting with myeloid lineage cells (e.g.,

macrophages and microglia) have been shown to lead to a highly proliferative state,

increasing angiogenesis and contributing to a more invasive phenotype, which may

explain these findings in the primary tumour29. Moreover, these interactions have

also been shown to induce chemo-resistance in GBM, which has the potential

to be addressed therapeutically30. The interactions from the endothelial cells to

the macrophages were particular to recurrent tumours (permutation test, p =

9.99 × 10−4). These findings could be visualised in the IMC data (Figure 4.3C)
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where a clear reduction in endothelial cells over time coincided with changes in

the cells interacting with the remaining vasculature. It has previously been shown

that bone derived macrophages populate a GBM tumour post-treatment, via the

vascular system, which may explain this result and further indicate that therapies

which hijack this infiltration could be effective for preventing or prolonging GBM

recurrence31. Interactions from all normal brain cells to endothelial cells were also

specific to the recurrent tumour. The post-treatment increase in normal brain

cell abundance within the resected tissue (Figure 4.2A) may reflect the brain’s

wound healing response, with neuronal and glial cells re-populating the void left

by surgery32.

Normal brain cells

Significant interactions from and to oligodendrocytes almost universally occurred

in the recurrent tumours, barring those from oligodendrocytes to MES-like cancer

cells, which were primary-specific (Figure 4.3B). This could be observed in the

IMC visualisations (Figure 4.3D). The prevalence of oligodendrocytes increases

from primary to recurrent (Figure 4.2B) suggesting that this population did not

simply expand in situ but rather infiltrated the recurrent TME. In GBM, oligo-

dendrocyte lineage cells have commonly been reported to reside at tumour border

niches including the invasion front/resection border where they co-localise with

macrophages/microglia33. Moreover, oligodendrocytes have been shown to sup-

port GBM tumourigenicity and migration by promoting angiogenesis in GBM34,35.

We also found evidence supporting the model of interactions, as microglia and en-

dothelial cells were significantly interacting with oligodendrocytes at recurrence

(Figure 4.3D).

Of all the normal brain cells, astrocytes were found to significantly interact most

frequently and significantly with the cancer cells, though this is mostly specifi-

cally at recurrence. In fact, aside from “self” interactions which were consistent

through treatment, normal astrocytes only formed significant interactions during

recurrence.

Crosstalk between microglia and macrophages is known to induce reactive astro-

cyte phenotypes, which are crucial for the brain’s wound healing process - a key

aspect in GBM36,37. Moreover, the MES phenotypes, as described by Wang et al.

and Neftel et al., have been shown to overlap significantly with the presence of

reactive astrocytes, indicating that these cells may migrate to injury sites after

resection as part of the healing process32. In our samples we found significant

interactions between normal neurons and astrocytes, suggesting the activation of
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cellular programmes that could restore normal tissue function (Figure 4.3E and

Figure 4.3F).
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Figure 4.3 | Identifying significant GBM TME cell-cell interactions
through treatment.

A) Schematic showing the process for testing if cell types interact more or less
frequently than random. Each cell-cell interaction (edge) from an interaction
graph is counted and averaged across a defined group (e.g., patient, surgery etc.).
These average cell-cell interaction are then divided by the number of cells of type
A that have at least one neighbour of type B. Finally, each observed cell-cell
interaction count is compared against a null distribution that is generated by
shuffling the cell-type labels 1000 times (1000 iterations) and counting the
interactions between two specific cell types, giving the interaction counts under
spatial randomness. Two cell types are “avoiding” when there are the
significantly fewer interactions compared to random expectation for a given p
values threshold. Conversely, when there are significantly more interactions
between the two cell types they are “interacting”. B) Dotplot showing the
significant (p <0.01) cell-cell interactions which are present across a minimum of
three patients. Shape denotes whether a specific cell-cell interaction is significant
across either primary, recurrent or both surgeries. Point colours denote the type
of significant interaction, i.e., interacting/avoiding and also cases where the
interaction type changes through surgery. The tile highlights denote the cell
category of each cell type. C-F) Representative IMC images showing single-cell
segmentation masks coloured by the corresponding cell type labels for primary
(left) and recurrent (right) surgery regions of interest.

4.3.6 Alterations in cellular neighbourhoods through treat-

ment in GBM

Cell interactions within the GBM TME are heavily influenced by the spatial con-

text, as GBM tumours consist of distinct anatomical regions38. To generalise

groups of interacting cell types we defined CNs using a nearest neighbours approach

(Figure 4.4A). This method defined 12 distinct CNs that provided a different level

of structure from that observed based just on individual cells (as exemplified in

Figure 4.4B). As expected, owing to the fact that each cell significantly associates

with itself in both the primary and recurrent tumours (Figure 4.3B) we found that

most CNs are dominated by a specific type (Figure 4.4C). CNs capture multiple

cells in close proximity (Figure 4.4A) so are akin to the information captured by

spot-based spatial technologies such as the 10X Visium platform. Our finding

of dominance of a given cell type in each defined CN agrees with Greenwald et

al.’s recently published results from application of the Visium platform to primary

GBM samples11. Extending these results using IMC, which provides single cell res-

olution, we can further see that this dominance rarely equates to more than 50% of

the cell types in a given CN, meaning there is clear ad-mixture and heterogeneity
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in interacting cells even when signal from one type predominates (Figure 4.4C).

Greenwald et al. proceeded to cluster their spot-based gene expression profiles

into 16 ”metaprograms” (MPs). Our CNs map to these MPs (Table 4.1 and Ta-

ble S4.12), though with some differences due to the level of cellular resolution and

the differences in dimensionality and modality between the two studies. Specifi-

cally, Visium spots capture signals from 1-35 cells, so some MPs result from more

than just nearest neighbours; and MPs are derived from gene expression (typi-

cally 7000 parameters our CNs derive from protein expression (34 parameters). It

is worth noting that we aligned both CN4 (T-cell dominated) and CN10 (natu-

ral killer cell (NK cell) dominated) with the T-cell MP, owing to the functional

similarities between T- and NK-cells39.

Having aligned with previous findings from GBM tumours at a single time-point,

we wished to see how the prevalence of CNs change over time. We see that cer-

tain CNs increased in abundance from primary to recurrent tumours, and others

decrease (Figure 4.4D). Primary samples were enriched in neighbourhoods that

included immune cells, particularly macrophages (CN1 and CN12) and lympho-

cytes (CN10), vasculature (CN5), hypoxic MES-like (CN6) and AC-like cancer

cells (CN8). In contrast, the recurrent surgery samples were enriched in neigh-

bourhoods dominated by normal brain cells: astrocytes (CN9 and CN11); neurons

(CN7); and oligodendrocytes (CN3). Interestingly, we found that whilst hypoxic

mesenchymal-driven CN6 decreased, astrocytic like mesenchymal-driven CN2 was

increased from primary to recurrence.

Ultimately these results reconfirm what was seen when looking at cell type or

category prevalences in isolation (Figure 4.2) i.e. that immune cell-driven (CN1,

CN10 and CN12), vascular-cell driven (CN5) and cancer cell-driven (CN6 and

CN8) neighbourhoods decreased from primary to recurrence, whereas normal brain

cell driven (CN2, CN3, CN7, CN9 and CN11) neighbourhoods increased. CN4,

which was dominated by T-cells, changed least in prevalence over time.

Greenwald et al.’s seminal finding was that, in some primary GBMs, MPs form

organised layers that result in a global tumour architecture, which is seemingly

driven by the presence of hypoxic niches. We, therefore, proceeded to investigate

whether this organisation was evident in our primary samples and whether it was

maintained post-treatment11.
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Figure 4.4 | Identifying distinct GBM TME CNs present across
samples through treatment.

A) Schematic showing the process of identifying CNs: each cells direct
neighbourhood (as defined by an interaction graph) cell fraction is aggregated
and clustered across each patient/surgery. The resulting CN cluster labels are
then mapped to each cell object. The SCs are then defined as locations where
the most dominant CNs interactions are also interacting. B) Plots showing the
single-cell spatial locations of three representative patient/surgery sample regions
of interest visualised as nodes on a 2-dimensional plane, with cell-cell
interactions shown in the form of undirected edges between nodes (top). The
nodes are coloured according to the cell type label (top) and also by the cellular
neighbourhoods they belong to (bottom). C) Stacked bar charts showing the
proportion of each cell category (left) and cell type (right) that is present across
each CN (rows). D) Dot plots showing the relative proportion of cells in each of
the CNs (facets) across each surgery type.

Table 4.1 | Mapping of previously defined spatial GBM
meta-programs to the CNs defined in this study.

Greenwald et al. Meta-program (MP) Meta-program Description CN (Figure 4.4C)

MES-Hyp Hypoxic mesenchymal cancer cells CN6
MES-Ast Astrocytic-like mesenchymal cancer cells CN2
MES Mesenchymal (other) cancer cells
OPC Oligodendrocyte progenitor cell-like cancer cells CN3
AC Astrocytic like cancer cells CN8
NPC Neural progenitor cell-like cancer cells
Oligo Oligodendrocytes CN3
Neuron Neurons CN7 & CN9
Reactive Ast Reactive astrocytes CN9 & CN11
Inflammatory Mac Inflammatory macrophages CN12
Mac Macrophage and microglia CN1
T-cell T-cells CN4 & CN10
B-cell B-cells
Vasc Vasculature CN5
Chromatin-Reg Chromatin regulation
Prolif-Metab Proliferation and metabolism
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4.3.7 Alterations in spatial organisation through treatment

in GBM

To better understand higher order structuring of our CNs, we classified SCs; loca-

tions where distinct CNs were found to consistently interact (Figure 4.4A). When

considering the most dominant CN interactions present across primary and re-

current surgeries our results reproduce similar ordered layers to those reported in

Greenwald et al.11. However, the prevalence and importance of states which make

up the layers differs greatly through treatment, as revealed by the structure and

parameters of the calculated CN interaction networks (Figure 4.5).

In the primary samples the most influential and prevalent cellular neighbour-

hoods were those characterised by layers 1 and layers 3, which denote the hy-

poxic/necrotic core niche and the angiogenesis-immune hub, respectively (Fig-

ure 4.5A). These layers were comprised of CNs with high network centrality scores

across all three measures (degree, closeness and betweenness), indicating their im-

portance for communication between other neighbourhoods and layers. This con-

curs with previous findings suggesting that hypoxia potentially drives the presence

of the organised layers owing to phenotypic consequences of reduced oxygen, es-

pecially at the tumour core11.

Conversely, in recurrent samples there were many more significant interactions

between CNs in different layers (Figure 4.5B) in agreement with our findings from

pairwise cellular interaction analysis (Figure 4.3B). Additionally, the most influ-

ential and prevalent CNs in recurrent samples were mostly in layers 2 and 5,

which represented the hypoxia-adjacent and normal infiltrative brain layers (Fig-

ure 4.5B). This suggests a reduced global structure with less well organised layers,

potentially owing to a reduction in the presence of hypoxic niches in recurrent

versus primary GBM.

Worth noting is that T-cell dominated CN4, which remained the most stably

prevalent between primary and recurrent samples (Figure 4.4D), in combination

with CN10 (together these CNs align to the previously denoted T-cell MP: Ta-

ble 4.1) maintain high network parameters in both primary and recurrent GBMs

(Figure 4.5), implying they are important in driving spatial contexts both pre-

and post-treatment.
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Figure 4.5 | Spatial organisation of CNs across surgeries.

A-B) Top: network graphs with nodes labelled according to the cell
meta-programs identified in Greenwald et al., 2024 along with their
corresponding CNs (shown in the brackets below). The edges represent the most
dominant interactions present across primary surgery (A) and recurrent surgery
(B) ROIs, respectively. Bottom: dot plots showing the number of cells present
across each surgery specific CN and also three network-specific centrality
measures: degree; closeness and betweenness. Both network graphs and their
corresponding metrics are coloured and ordered according to the structured
GBM spatial layers described in Greenwald et al., 2024.

4.4 Discussion

This was a small study (n=5), and technical limitations of protein-based expres-

sion profiling confined the number of markers that could be used to assign cell

types (n=34). This meant that some cells (e.g. B cells) were not included, thereby

reducing our ability to conclusively discern between neoplastic and normal brain

cell types, which they closely related6. Notwithstanding, protein markers exhibit

less stochastic expression and lower signal dropout (false negatives) compared to

single-cell sequencing approaches.

Our results reveal an influx of normal brain cells into the GBM microenvironment

post-treatment, alongside a reduction in vascular cells (Figure 4.2A). The latter

is expected, as surgery aims to de-bulk the highly vascularised tumour core40,41.

However, the reduction in endothelial cells in recurrent GBM suggests a reduced

functional reliance on vasculature, which may explain the failure of angiogenic

therapies like bevacizumab (Avastin) in clinical trials42.

Several large cohort studies which deconvoluted cellular signals from paired GBM

using bulk RNA-seq and single-cell RNA sequencing (scRNA-seq) have reported

an increased presence of oligodendrocytes at recurrence22,43,44. Herein, we con-

firm this finding (Figure 4.2B) and further show that oligodendrocytes integrate

into the GBM TME, as their interactions with other cells significantly increase

at recurrence (Figure 4.3B). Oligodendrocytes are essential for cerebral home-

ostasis and regulate neuronal activity via axon myelination33. We characterised

oligodendrocytes using the myelin oligodendrocyte glycoprotein (MOG) marker

(Figure 4.1B), suggesting that the increases we observe relate to myelinating oligo-

dendrocytes integrating into the tissue and implying a potential functional role for

myelination within the GBM TME post-treatment. Interestingly, the increased in-
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teractions and integration of oligodendrocytes we observed in recurrent tumours,

primarily involve non-neoplastic cells. Among cancer cells, recurrence-specific in-

teractions involving oligodendrocytes are restricted to MES-like neoplastic cells

(Figure 4.3B). Oligodendrocytes have been shown to upregulate the invasive ca-

pacity of GBM cancer cells via Angiopoietin-2 signalling, and MES-like are the

most invasive neoplastic subtype34,45. We found that all neoplastic GBM cells

showed increased EMT at recurrence (Figure 4.2D). Moreover, the CN dominated

by oligodendrocytes (CN3) had higher closeness and degree centrality at recurrence

(Figure 4.5), indicating greater connectivity and interaction with other CNs. We

propose that the role of oligodendrocytes in driving post-treatment recovery of

GBM is worthy of further exploration.

Astrocytes exhibit the largest increase of normal brain cells (Figure 4.2B) within

the recurrent GBM TME, and also the highest number of recurrence-specific in-

teractions, particularly with neoplastic cells (Figure 4.3B). Within the healthy

brain parenchyma, astrocytes are crucial for neuronal cell homeostasis and also

help drive the brain’s injury response by acquiring a reactive phenotype. Con-

sistent with this role, CNs that map to the previously defined reactive astro-

cytic metaprogramme (CN9 and CN11) and the astrocytic mesenchymal metapro-

gramme (CN2), are increased at recurrence (Figure 4.4D and Table 4.1). As-

trocytes also exhibit resistance to apoptosis triggered by death receptors during

inflammation, such as apoptosis antigen 1 and TNF-related apoptosis-inducing

ligands (FAS, TRAIL), indicating their resilience under inflammatory conditions.

Together, this suggests a phenotypic response within the (infiltrating) astrocytic

population of the TME that could serve to protect neoplastic cells.

Previous research has indicated that there is a shift towards a more mesenchymal

state in bulk tumours at recurrence22. Single cell analyses have further refined this

understanding showing that, whilst some GBMs show increase in MES-like can-

cer cells post-treatment, others show increases in more proneural (OPC-like and

NPC-like) cells at recurrence46,47. We also find that that there is no significant,

consistent change in neoplastic cell types at recurrence, but instead, a universal

increase in EMT markers across all the neoplastic cell (Figure 4.2D). This poten-

tially explains the shift to mesenchymal expression signatures observed from bulk

tumour profiling22.

In keeping with our previous findings, AC-like cancer cells reduce most consis-

tently at recurrence23. However, the remaining AC-like cells had elevated levels

of hypoxia (Figure 4.2B and Figure 4.2D), while these decreased within MES-like

and NPC-like cell populations. Hypoxia can induce a reactive astrocyte pheno-
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type within the TME, which may extend to AC-like cancer cells, potentially even

promoting plastic conversion to this neoplastic subtype48,49.

Overall, we find no consistent changes in cellular diversity between primary and

recurrent GBM (Figure 4.2C), suggesting that while cellular heterogeneity is main-

tained, post-treatment GBM tumours have greater interactions between differing

cell types (greater admixture, Figure 4.3 and Figure 4.4). A recent spatial profiling

study of primary GBM tumours by Greenwald et al. concluded that hypoxia drives

organisation of a GBM architecture, composed of layers11. Our findings concur

with theirs for primary GBM but expand further, revealing that this layering is

less structured post-treatment (Figure 4.5). The decrease in CN6, which maps

to their hypoxic MES-like cancer cell metaprogramme (Table 4.1), but increase in

CN2, which maps to their astrocytic MES cancer cell metaprogramme (Table 4.1),

at recurrence suggests that an overall reduction in hypoxia post-treatment, could

drive this increased disorder. This influx and integration of normal brain cells in

the GBM TME at recurrence corresponds with these cells becoming much more

influential in terms of the interaction between cellular layers, particularly CN11

which map to the reactive astrocyte metaprogramme of Greenwald et al. (Fig-

ure 4.5B).

Whilst lymphocyte abundance remains unchanged between primary and recur-

rent GBM (Figure 2B), neighbourhoods (CN4 and CN10) mapping to the T-cell

metaprogramme (Table 4.1) become much more influential in the recurrent GBM

(Figure 4.5B). T-cells and tertiary lymphoid structures (TLSs) (regions enriched

in lymphocytes, resembling CN4 and CN10) have been shown to increase in sub-

sets of paired primary and recurrent GBM46,50,which has renewed interest in un-

derstanding their potential role in immunotherapy. In support of this, activated

T-cells have been shown to associate specifically with astrocytic MES which is the

subtype we also find increased recurrent tumours24.

This study highlights prominent post-treatment changes in the GBM cellular land-

scape and offers novel insight into the importance of specific interactions between

GBM cancer cells and the TME during tumour survival and regrowth. Further

characterisation of these interactions could identify therapeutic targets to over-

come treatment resistance and better treat recurrent tumours.
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Figure S4.1 | Haematoxylin and eosin staining (H&E) stained
formalin-fixed paraffin-embedded (FFPE) sections of the five matched,
primary (P) and recurrent (R) IDHwt GBMtumour samples used in
the study.

The blue outlines demarcate the 1mm2 ROIs that underwent IMC. The FFPE
sections correspond (from left to right) to the following patient/surgeries: A)
64P and 64R; B) 67P and 67R; C) 71P and 71R; D) 82P and 82R; E) 84P and
84R.
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Figure S4.2 | Segmented single-cell object metrics.

A) The total number of cells present in each ROI coloured by patient. B) The
percentage area covered by the segmented cell objects present across each ROI
coloured by patient. C) The distribution of cell diameters corresponding to the
segmented cell objects present in each patient/surgery ROIs.
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Figure S4.3 | UMAP of all segmented single-cell objects before and
after batch correction of min-max scaled protein marker abundances.

The UMAP projections are coloured according to known sources of sample
variation: A) surgery type; B) patient from which samples were obtained; C)
patient and surgery-specific ROI.
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Figure S4.4 | UMAP of all segmented single-cell objects before and
after batch correction of min-max scaled protein marker abundances.

The UMAP projections are coloured according to known sources of sample
variation: A) ROI; B) responder types as defined in Tanner et al.23; C)
immunohistochemistry (IHC) annotation of each ROI based on areas of high
hypoxia, proliferation, and immune cell infiltration.
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Table S4.1 | Clinical and molecular data of patients included in the
study.

The Tumour Loc field denotes the primary tumour brain region. The Age is that
at initial diagnosis. The progression-free survival (PFS) and the overall survival
(OS) are given in months and the Status field denotes: 1=deceased;0=alive. The
responder field corresponds to the responder-type stratification.

Patient Sex Tumour Loc Age PFS OS Status Responder

64 Male Frontal 57 22.55 48.76 1.00 up
67 Male Temporal 51 40.73 75.19 1.00 up
71 Female Temporal 60 17.10 39.12 1.00 down
82 Female Parietal 59 23.24 33.21 1.00 up
84 Female Parietal 72 17.49 45.76 1.00 up

226



4. Paper 3 - Spatially profiling the GBM TME through treatment

Table S4.2 | IMC ROIs analysed in this study.

Image id Patient Surgery ROI IHC annotation

64Prim 001 64 primary 001 prolif
64Prim 002 64 primary 002 hypoxia
64Prim 003 64 primary 003 immune
64Rec 001 64 recurrent 001 immune
64Rec 002 64 recurrent 002 hypoxia
64Rec 003 64 recurrent 003 prolif
67Prim 001 67 primary 001 immune
67Prim 002 67 primary 002 immune
67Prim 003 67 primary 003 unknown
67Rec 001 67 recurrent 001 prolif
67Rec 002 67 recurrent 002 hypoxia
67Rec 003 67 recurrent 003 unknown
71Prim 001 71 primary 001 hypoxia
71Prim 002 71 primary 002 immune
71Prim 003 71 primary 003 prolif
71Rec 001 71 recurrent 001 prolif
71Rec 002 71 recurrent 002 immune
71Rec 003 71 recurrent 003 hypoxia
82Prim 001 82 primary 001 unknown
82Prim 002 82 primary 002 immune
82Prim 003 82 primary 003 prolif
82Rec 001 82 recurrent 001 prolif
82Rec 002 82 recurrent 002 hypoxia
82Rec 003 82 recurrent 003 immune
84Prim 001 84 primary 001 prolif
84Prim 002 84 primary 002 hypoxia
84Prim 003 84 primary 003 immune
84Rec 001 84 recurrent 001 hypoxia
84Rec 002 84 recurrent 002 immune
84Rec 003 84 recurrent 003 prolif
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Table S4.3 | IMC marker panel including marker/antibody justification.

The IDs listed in the marker justify field correspond to PubMed identifiers.AC-like; cytometry by time-of-flight (CyTOF); endoplasmic
reticulum (ER)); EMT; immunocytochemistry (ICC); IHC; immunofluorescence (IF); knock-out (KO); MES-like; NPC-like; OPC-like;
phosphate buffered saline (PBS).

Marker Category Type Cell state Loc 1 Loc 2 Marker justify manufacturer (antibody clone) antibody justify Concentration (µg/mL) Isotope Control tissue

HOPX cancer AC-like cytoplasm 31327527; 31554641; 32641768 abcam (ab230544) 100 Yb171 Brain, Tonsil
SLC1A3 EAAT1 cancer AC-like membrane 31327527; 31554641; 32641768 abcam(ab240235) BSA and azide free 1000 Gd158 Brain
GFAP normal astrocyte cytoplasm 25726916 abcam (ab218309) PMID: 34174183 100 Sm149 Brain
CD56 normal neuron membrane extracellular 28791027 biolegend (318345) PMID: 28369679 100 Dy162 Brain
IBA1 immune macrophage cytoplasm 32848611 abcam (ab220815) PMID: 34174183 200 Eu153 Spleen, Tonsil
NeuN FOX3 normal neuron nucleus 20452351 biolegend (834502) PMID: 34174183 400 Sm147 Brain
ANXA A1 cancer MES-like cytoplasm membrane 31327527; 31554641; 32641768 abcam (ab222398) BSA and azide free Yb172 Tonsil
ANXA A2 cancer MES-like cytoplasm membrane 31327527; 31554641; 32641768 rndsystems (mab3928) In PBS with Trehalose 8-25 Er166 Prostate, Tonsil
CHI3L1 cancer MES-like cytoplasm extracellular 31327527; 31554641; 32641768 abcam (ab255864) BSA and azide free 250 Sm154 Spleen, Brain
SOD2 cancer MES-like mitochondria 31327527; 31554641; 32641768 abcam (ab227846) BSA and azide free, used in IHC 100 Nd146 Prostate
P2Y12R immune microglia membrane 32848611 abcam (ab274386) BSA and azide free 1000 Lu175 Brain
TMEM119 immune microglia cytoplasm membrane 32848611 sigmaaldrich (HPA051870) PMID: 31740814 500-1000 Gd155 Brain, Tonsil
NKP46 immune NK cell membrane 31784984 rndsystems (mab1850) PMID: 36689332 5-25 Nd144 Spleen
BCAN cancer NPC-like extracellular nucleus 31327527; 31554641; 32641768 thermofisher (MA5-27639) BSA free, used in ICC 50 Gd160 Brain
DLL3 cancer NPC-like membrane 31327527; 31554641; 32641768 abcam (ab255694) BSA and azide free 100 Nd148 Brain
MOG normal oligodendrocyte membrane 2649509 rndsystems (mab1850) 5-25 Gd157 Brain
OLIG1 cancer OPC-like nucleus 31327527; 31554641; 32641768 rndsystems (mab2417) carrier free, used in IHC 8-25 Yb174 Skin
SCD5 cancer OPC-like ER 31327527; 31554641; 32641768 thermofisher (PA5-59963) used in IHC 50 Tm169 Brain
CD3 immune T cell membrane 29768164 fluidigm (3170019D) PMID: 36689332 75-200 Er170 Spleen, Tonsil
CD8 immune T cell membrane 29768164 biolegend (344727) PMID: 28369679 200 Ho165 Spleen, Tonsil
DNA1 DNA intercalator nucleus fluidigm (201192B) Preconugated to 191Ir Ir191
DNA2 DNA intercalator nucleus fluidigm (201192B) Preconugated to 193Ir Ir193
CD45 immune membrane 12414720 fluidigm (91H029152) Preconugated to 152Sm 300 Sm152 Spleen, Tonsil
CD31 vasculature membrane 27055047 fluidigm (3151025D) Preconugated to 151Eu Eu151 Skin, Tonsil, Prostate
SMA vasculature cytoplasm 19929197 rndsystems (mab1420) used in Cytof 8-25 Dy164 Prostate, Skin, Tonsil
EZH2 transcript respressive nucleus 23720055 abcam (ab231165) BSA and azide free 250 Nd145 Tonsil
HIF1A hypoxia cytoplasm nucleus 11606368 thermofisher (700505) PMID: 32868913 400 Dy161 Bone marrow
JARID2 C Terminus active nucleus 30573669 developed in house Nd143 Brain
JARID2 N Terminus repressed nucleus 30573669 abcam (ab251123) BSA free version, validated (by KO) Yb173 Brain
Ki67 proliferating nucleus 29322240 fluidigm (3168001B) Preconugated to 168Er Er168 Skin, Tonsil
SNAI1 EMT nucleus cytoplasm 33806868 rndsystems (af3639) BSA and azide free, used in IHC 5-15 Tb159 Ubiquitous
SOX2 proliferating nucleus 30952620 fluidigm (3150019B) Preconugated to 150Nd Nd150 Brain, Tonsil
TGFBeta quiescent extracellular 30952620 fluidigm (3163010B) Pre-conjugated to 163Dy Dy163 Spleen, Bone marrow, Prostate
TNC quiescent extracellular 30952620 rndsystems (mab2138) used in IF 8-25 Gd156 Uterus
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Table S4.4 | Gating criteria used to annotate cell types and cell states.

Cell Type Protein Marker(s) Expression Ranks

Endothelial Cell SMA+ CD31+ ≥ 15
NK cell CD45+ NKP46+ ≥ 14
T Cell CD45+ CD3+ ≥ 11
Macrophage CD45+ IBA1+ ≥ 15
Microglia CD45+ IBA1+ TMEM119+ ≥ 12
Neuron NeuN+ NKP46+ CD3+ ≥ 16
Astrocyte GFAP+ ≥ 17
Oligodendrocyte MOG+ ≥ 18
AC-like SLC1A3 EAAT1+ HOPX+ ≥ 17
MES-like SOD2+ CHI3L1+ ANEXIN A2+ ANXA1+ ≥ 17
NPC-like DLL3+ BCAN+ ≥ 15
OPC-like SCD5+ OLIG1+ ≥ 15
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Table S4.5 | ANOVA comparing intra-tumour (across patient ROIs)
and inter-tumour (within patient and surgery sample) heterogeneity
of cell categories.

The p value significance levels: ∗∗∗∗p < 0.0001; ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p <
0.05; n.s (not significant).

Cell category Source of variation Effect size (F statistic) p value p significance

Immune patient & surgery 5.82 7.62× 10−4 ***
Cancer patient & surgery 9.47 3.33× 10−5 ****
Normal patient & surgery 10.11 2.11× 10−5 ****
Vasculature patient & surgery 4.56 3.01× 10−3 **
Immune ROI 0.32 7.29× 10−1 n.s
Cancer ROI 2.63 9.97× 10−2 n.s
Normal ROI 1.23 3.15× 10−1 n.s
Vasculature ROI 1.75 2.02× 10−1 n.s
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Table S4.6 | Comparison of cell category prevalence between primary
and recurrent samples.

Statistical significance was assessed using an unpaired Wilcoxon test, with
adjusted p-values calculated using the false discovery rate (FDR) method.

Cell category Comparison groups n (per comparison group) p value Adjusted p value

Immune Prim vs Rec 15 9.75× 10−2 9.75× 10−2

Cancer Prim vs Rec 15 6.13× 10−2 8.17× 10−2

Normal Prim vs Rec 15 1.13× 10−4 4.52× 10−4

Vasculature Prim vs Rec 15 4.94× 10−3 9.88× 10−3
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Table S4.7 | Comparison of cell type prevalence between primary and
recurrent samples.

Statistical significance was assessed using an unpaired Wilcoxon test, with
adjusted p-values calculated using the FDR method.

Cell tyoe Comparison groups n (per comparison group) p value Adjusted p value

T cell Prim vs Rec 15 5.12× 10−1 6.83× 10−1

NK cell Prim vs Rec 15 2.02× 10−1 3.72× 10−1

Macrophage Prim vs Rec 15 2.17× 10−1 3.72× 10−1

Microglia Prim vs Rec 15 2.50× 10−1 3.75× 10−1

AC-like Prim vs Rec 15 6.53× 10−2 1.57× 10−1

MES-like Prim vs Rec 15 9.17× 10−1 9.17× 10−1

NPC-like Prim vs Rec 15 8.33× 10−1 9.09× 10−1

OPC-like Prim vs Rec 15 8.14× 10−1 9.09× 10−1

Neuron Prim vs Rec 15 4.17× 10−3 1.98× 10−2

Astrocyte Prim vs Rec 15 3.02× 10−3 1.98× 10−2

Oligodendrocyte Prim vs Rec 15 2.25× 10−2 6.75× 10−2

Endothelial Prim vs Rec 15 4.94× 10−3 1.98× 10−2
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Table S4.8 | Comparison of Shannon’s entropy (H ) between primary
and recurrent samples, quantifying intra-tumour cellular
heterogeneity.

Patient(s) Comparison group n (per comparison group) p value Adjusted p value

All Prim vs Rec 150 3.93× 10−3 3.93× 10−3

64 Prim vs Rec 30 1.43× 10−4 3.58× 10−4

67 Prim vs Rec 30 2.63× 10−2 2.63× 10−2

71 Prim vs Rec 30 1.69× 10−17 8.45× 10−17

82 Prim vs Rec 30 1.52× 10−3 1.90× 10−3

84 Prim vs Rec 30 4.26× 10−4 7.10× 10−4
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Table S4.9 | Changes in GBM cancer cell types across hypoxia and
EMT cellular states in primary and recurrent samples.

Statistical significance was assessed using the unpaired, Wilcoxon test, with
adjusted p-values calculated using the FDR method. The p value significance
levels are denoted using the following symbols: ∗∗∗∗p < 0.0001); ∗∗∗p < 0.001);
∗∗p <0.01); ∗∗p < 0.05); n.s (not significant).

Cell type Cellular State Comparison n cells (primary) n cells (recurrent) p value Adjusted p value p significance

AC-like hypoxia Prim vs Rec 5522 686 4.98× 10−115 9.96× 10−115 ****
MES-like hypoxia Prim vs Rec 9141 3119 9.62× 10−125 3.85× 10−124 ****
NPC-like hypoxia Prim vs Rec 1664 613 5.49× 10−70 7.32× 10−70 ****
OPC-like hypoxia Prim vs Rec 1743 616 7.41× 10−1 7.41× 10−1 n.s
AC-like EMT Prim vs Rec 5522 686 5.29× 10−161 1.06× 10−160 ****
MES-like EMT Prim vs Rec 9141 3119 1.03× 10−7 1.37× 10−7 ****
NPC-like EMT Prim vs Rec 1664 613 2.32× 10−183 9.28× 10−183 ****
OPC-like EMT Prim vs Rec 1743 616 4.40× 10−3 4.40× 10−3 **

234



4. Paper 3 - Spatially profiling the GBM TME through treatment

Table S4.10 | Summarised pair-wise cell-cell interactions compared to
a null model of spatial randomness.

Statistical significance and direction of the interactions were determined using a
permutation test, with p-values indicating interactions more or less likely than
random. The Signif field denotes the aggregated strength and direction of the
pair-wise interactions for a given from and to cell pair: ≥ 1 (significantly
interacting); ≤ −1 (significantly avoiding interactions); 0 (neutral and/or
non-statistically significantly associated). Where interaction types are significant
across both primary and recurrent surgeries, the surgery-specific p values are
listed, otherwise the respective, surgery-specific significant p values are
populated in either the Prim p value or Rec p value fields.

From To Type Across Signif Prim p value Rec p value

AC-like AC-like Interacting Primary 3 9.99 × 10−4

AC-like Astrocyte 0

AC-like Endothelial 2

AC-like MES-like -1

AC-like Macrophage 1

AC-like Microglia 0

AC-like NK cell 0

AC-like NPC-like 1

AC-like Neuron 0

AC-like OPC-like 2

AC-like Oligodendrocyte 1

AC-like T cell 1

Astrocyte AC-like 2

Astrocyte Astrocyte Interacting Both 3 9.99 × 10−4 9.99 × 10−4

Astrocyte Endothelial Interacting Recurrent 2 9.99 × 10−4

Astrocyte MES-like Interacting Recurrent 2 9.99 × 10−4

Astrocyte Macrophage Interacting Recurrent 1 2.00 × 10−3

Astrocyte Microglia 2

Astrocyte NK cell Interacting Recurrent 0 9.99 × 10−4

Astrocyte NPC-like Interacting Recurrent 1 9.99 × 10−4

Astrocyte Neuron 2

Astrocyte OPC-like Interacting Recurrent 2 9.99 × 10−4

Astrocyte Oligodendrocyte Interacting Recurrent 0 9.99 × 10−4

Astrocyte T cell 1

Endothelial AC-like 2

Endothelial Astrocyte Interacting Primary 3 9.99 × 10−4

Endothelial Endothelial Interacting Both 5 9.99 × 10−4 9.99 × 10−4

Endothelial MES-like Interacting Primary 4 9.99 × 10−4

Endothelial Macrophage Interacting Recurrent 0 9.99 × 10−4

Endothelial Microglia Interacting Primary 3 9.99 × 10−4

Endothelial NK cell Interacting Both 4 9.99 × 10−4 9.99 × 10−4

Endothelial NPC-like 0

Endothelial Neuron 1

Endothelial OPC-like 2

Endothelial Oligodendrocyte 1

Endothelial T cell 2

MES-like AC-like -1

MES-like Astrocyte 2

MES-like Endothelial Interacting Both 3 9.99 × 10−4 9.99 × 10−4

MES-like MES-like Interacting Both 5 9.99 × 10−4 9.99 × 10−4

MES-like Macrophage Interacting Recurrent 1 9.99 × 10−4

MES-like Microglia 2

MES-like NK cell Interacting Both 3 9.99 × 10−4 9.99 × 10−4

MES-like NPC-like -2

MES-like Neuron 0

MES-like OPC-like -2

MES-like Oligodendrocyte Interacting Recurrent 1 9.99 × 10−4

MES-like T cell Interacting Primary 4 9.99 × 10−4

Macrophage AC-like Interacting Primary 3 9.99 × 10−4

Macrophage Astrocyte Interacting Primary 4 9.99 × 10−4

Macrophage Endothelial Interacting Both 5 9.99 × 10−4 9.99 × 10−4

Macrophage MES-like Interacting Both 3 9.99 × 10−4 9.99 × 10−4

Macrophage Macrophage Interacting Both 3 9.99 × 10−4 9.99 × 10−4

Macrophage Microglia Interacting Both 5 9.99 × 10−4 9.99 × 10−4

Macrophage NK cell Interacting Both 5 9.99 × 10−4 9.99 × 10−4

Macrophage NPC-like 2

Macrophage Neuron Interacting Primary 3 9.99 × 10−4

Macrophage OPC-like 1
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From To Type Across Signif Prim p value Rec p value

Macrophage Oligodendrocyte Interacting Recurrent 2 9.99 × 10−4

Macrophage T cell Interacting Recurrent 2 9.99 × 10−4

Microglia AC-like 2

Microglia Astrocyte Interacting Primary 4 9.99 × 10−4

Microglia Endothelial Interacting Both 5 9.99 × 10−4 9.99 × 10−4

Microglia MES-like Interacting Both 4 9.99 × 10−4 9.99 × 10−4

Microglia Macrophage Interacting Both 3 9.99 × 10−4 9.99 × 10−4

Microglia Microglia Interacting Both 4 9.99 × 10−4 9.99 × 10−4

Microglia NK cell Interacting Recurrent 2 9.99 × 10−4

Microglia NPC-like Interacting Recurrent 1 9.99 × 10−4

Microglia Neuron 0

Microglia OPC-like 2

Microglia Oligodendrocyte Interacting Recurrent 2 9.99 × 10−4

Microglia T cell Interacting Both 4 9.99 × 10−4 9.99 × 10−4

NK cell AC-like 2

NK cell Astrocyte 0

NK cell Endothelial Interacting Both 5 9.99 × 10−4 9.99 × 10−4

NK cell MES-like 1

NK cell Macrophage Interacting Recurrent 2 9.99 × 10−4

NK cell Microglia Interacting Both 4 9.99 × 10−4 9.99 × 10−4

NK cell NK cell Interacting Both 3 9.99 × 10−4 9.99 × 10−4

NK cell NPC-like 2

NK cell Neuron 1

NK cell OPC-like 2

NK cell Oligodendrocyte Interacting Recurrent 0 9.99 × 10−4

NK cell T cell Interacting Both 3 9.99 × 10−4 9.99 × 10−4

NPC-like AC-like 1

NPC-like Astrocyte Interacting Recurrent 1 9.99 × 10−4

NPC-like Endothelial 2

NPC-like MES-like 0

NPC-like Macrophage 1

NPC-like Microglia 1

NPC-like NK cell -1

NPC-like NPC-like Interacting Recurrent 1 9.99 × 10−4

NPC-like Neuron 2

NPC-like OPC-like 2

NPC-like Oligodendrocyte 1

NPC-like T cell 0

Neuron AC-like 2

Neuron Astrocyte Interacting Recurrent 2 9.99 × 10−4 9.99 × 10−4

Neuron Endothelial Interacting Recurrent 1 9.99 × 10−4 9.99 × 10−4

Neuron MES-like Interacting Recurrent 2 9.99 × 10−4 9.99 × 10−4

Neuron Macrophage 2

Neuron Microglia 1

Neuron NK cell -1

Neuron NPC-like 2

Neuron Neuron 2

Neuron OPC-like 2

Neuron Oligodendrocyte 1

Neuron T cell 1

OPC-like AC-like 1

OPC-like Astrocyte 1

OPC-like Endothelial 1

OPC-like MES-like 1

OPC-like Macrophage 1

OPC-like Microglia 1

OPC-like NK cell -1

OPC-like NPC-like 1

OPC-like Neuron 2

OPC-like OPC-like 2

OPC-like Oligodendrocyte 1

OPC-like T cell 1

Oligodendrocyte AC-like 1

Oligodendrocyte Astrocyte 1

Oligodendrocyte Endothelial Interacting Recurrent 2 9.99 × 10−4

Oligodendrocyte MES-like Interacting Primary 3 9.99 × 10−4

Oligodendrocyte Macrophage 2

Oligodendrocyte Microglia Interacting Recurrent 2 9.99 × 10−4

Oligodendrocyte NK cell -1

Oligodendrocyte NPC-like 1

Oligodendrocyte Neuron 1

Oligodendrocyte OPC-like 1

Oligodendrocyte Oligodendrocyte Interacting Recurrent 2 9.99 × 10−4

Oligodendrocyte T cell Interacting Recurrent 2 9.99 × 10−4

T cell AC-like 2

T cell Astrocyte 1

T cell Endothelial Interacting Both 5 9.99 × 10−4 9.99 × 10−4

T cell MES-like Interacting Both 5 9.99 × 10−4 9.99 × 10−4
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From To Type Across Signif Prim p value Rec p value

T cell Macrophage 0

T cell Microglia Interacting Both 4 9.99 × 10−4 9.99 × 10−4

T cell NK cell Interacting Both 3 9.99 × 10−4 9.99 × 10−4

T cell NPC-like 1

T cell Neuron 1

T cell OPC-like 2

T cell Oligodendrocyte Interacting Recurrent 2 9.99 × 10−4

T cell T cell Interacting Both 3 9.99 × 10−4 9.99 × 10−4

237



4. Paper 3 - Spatially profiling the GBM TME through treatment

Table S4.11 | Summary of defined CNs.

The table details how each CN aligns with Greenwald et al.’s meta programs, and
their relative proportions in primary and recurrent samples. Mac:macrophages;
Inflammatory-Mac: inflammatory macrophages; MES-Ast:MES-like-astrocyte;
Oligo:oligodendrocyte; Vasc:vasculature; AC:AC-like;Reactive-Ast:reactive
astrocytes;Reactive-Ast/Neuron:reactive astrocytes/neurons.

CN Greenwald layer Greenwald label n cells (Prim) Prop (Prim) n cells (Rec) Prop (Rec)

CN1 3 Mac 6943 12.4% 26 0.1%
CN2 2 MES-Ast 2938 5.2% 6143 16.1%
CN3 5 Oligo 3454 6.2% 3009 7.9%
CN4 3 T-cell 6721 12.0% 4418 11.6%
CN5 3 Vasc 5171 9.2% 1560 4.1%
CN6 1 MES-Hyp 9186 16.4% 2451 6.4%
CN7 5 Neuron 1469 2.6% 5737 15.1%
CN8 4 AC 7961 14.2% 887 2.3%
CN9 5 Reactive-Ast/Neuron 765 1.4% 4931 12.9%
CN10 3 T-cell 3454 6.2% 543 1.4%
CN11 5 Reactive-Ast 2725 4.9% 7641 20.1%
CN12 2 Inflammatory-Mac 5179 9.3% 746 2.0%
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Table S4.12 | Comparison of hypoxia and EMT protein marker abundance across surgeries and CNs.

The first column denotes the Greenwald et al meta programs and the corresponding CNs identified in this study. Statistical significance
was assessed using an unpaired Wilcoxon test, with adjusted p-values calculated using the FDR method. Mac:macrophages;
Inflammatory-Mac: inflammatory macrophages; MES-Ast:MES-like-astrocyte; Oligo:oligodendrocyte; Vasc:vasculature;
AC:AC-like;Reactive-Ast:reactive astrocytes;Reactive-Ast/Neuron:reactive astrocytes/neurons.The p value significance thresholds are:
∗∗∗∗p < 0.0001); ∗∗∗p < 0.001); ∗∗p < 0.01); ∗p < 0.05); n.s (not significant).

Greenwald (CN) State Comparison n cells (Prim) n cells (Rec) p value Adjusted p value Significance

MES-Hyp (CN6) hypoxia Prim vs Rec 6527 1407 3.70× 10−20 6.78× 10−20 ****
MES-Ast (CN2) hypoxia Prim vs Rec 748 811 1.52× 10−74 1.67× 10−73 ****
Inflammatory-Mac (CN12) hypoxia Prim vs Rec 777 71 8.52× 10−1 9.13× 10−1 n.s
Mac (CN1) hypoxia Prim vs Rec 262 2 6.77× 10−2 8.27× 10−2 n.s
Vasc (CN5) hypoxia Prim vs Rec 554 36 8.02× 10−3 1.10× 10−2 **
T-cell (CN4 & CN10) hypoxia Prim vs Rec 2406 621 1.40× 10−30 3.08× 10−30 ****
AC (CN8) hypoxia Prim vs Rec 5258 633 6.80× 10−66 3.74× 10−65 ****
Neuron (CN7) hypoxia Prim vs Rec 311 310 9.13× 10−1 9.13× 10−1 n.s
Reactive-Ast/Neuron (CN9) hypoxia Prim vs Rec 106 225 1.07× 10−9 1.68× 10−9 ****
Reactive-Ast (CN11) hypoxia Prim vs Rec 248 478 1.36× 10−41 3.74× 10−41 ****
Oligo (CN3) hypoxia Prim vs Rec 873 440 4.17× 10−42 1.53× 10−41 ****
MES-Hyp (CN6) EMT Prim vs Rec 6527 1407 6.11× 10−1 6.12× 10−1 n.s
MES-Ast (CN2) EMT Prim vs Rec 748 811 2.69× 10−27 9.86× 10−27 ****
Inflammatory-Mac (CN12) EMT Prim vs Rec 777 71 1.43× 10−4 2.25× 10−4 ***
Mac (CN1) EMT Prim vs Rec 262 2 6.12× 10−1 6.12× 10−1 n.s
Vasc (CN5) EMT Prim vs Rec 554 36 4.34× 10−7 7.96× 10−7 ****
T-cell (CN4 & CN10) EMT Prim vs Rec 2406 621 2.82× 10−59 1.55× 10−58 ****
AC (CN8) EMT Prim vs Rec 5258 633 1.04× 10−195 1.14× 10−194 ****
Neuron (CN7) EMT Prim vs Rec 311 310 1.14× 10−1 1.39× 10−1 n.s
Reactive-Ast/Neuron (CN9) EMT Prim vs Rec 106 225 6.90× 10−4 9.49× 10−4 ***
Reactive-Ast (CN11) EMT Prim vs Rec 248 478 1.80× 10−11 3.96× 10−11 ****
Oligo (CN3) EMT Prim vs Rec 873 440 3.60× 10−22 9.90× 10−22 ****
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Chapter 5

Discussion

Glioblastoma (GBM) is arguably the worst cancer diagnosis a person can receive:

it is a deadly and incurable brain cancer with a median survival of just ∼15 months

despite the standard-of-care treatment1,2. Central to this dire prognosis and re-

sistance is the complex heterogeneity which GBM tumours display, comprising

genetic, epigenetic, and microenvironmental factors3–5. Therefore, to effectively

combat this disease, we require comprehensive longitudinal analyses to identify

specific mechanisms and processes that better explain why and how GBM cells

resist treatment and facilitate regrowth of recurrent tumours. However, conduct-

ing such analyses is significantly challenged by patient demographics, where the

median age at diagnosis is ∼65 years old; the rapid disease progression; and the

relatively low (2.66 in 100,000 people) incidence rate of GBM6. Collectively, all

these factors limit the opportunities to collect initial and recurrent tumours sam-

ples that are vitally needed for the types of longitudinal analysis detailed above.

To address this challenge, in our group we have assembled an extensive dataset of

paired (primary and recurrent) GBM patient samples, collected both locally and

through international collaborations7–13.

Historically, GBM diagnosis, classification and wider-research has relied exten-

sively on histological techniques, which although very useful, greatly restrict the

scope of discovery due to limited sample sizes and arduous collection/processing

procedures14. More recent advancements in genomic technologies, particularly

RNA sequencing (RNA-seq), have transformed this landscape by enabling re-

searchers to comprehensively profile tumours at the molecular level15. Such in-

sights have facilitated the identification of distinct GBM molecular subtypes linked

with survival outcomes16, and more recently, GBM malignant cellular states which

resemble neurodevelopmental hierarchies and wound-healing programs5,12,13,17–19.
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Crucially, all these studies found that neoplastic cell states are significantly in-

fluenced by their tumour microenvironment (TME), comprising immune, normal

brain, and vascular cells, with interactions varying distinctly across tumour re-

gions.

Given these recent developments, the overarching aim of this work was to decipher,

at scale, how the cellular landscapes of GBM tumours - not just malignant cells,

but also immune and other TME cell types - change throughout treatment. Our

extensive paired GBM data were profiled using bulk RNA-seq rather than single-

cell techniques, due to practical and financial constraints of profiling such large

numbers of patient samples. Therefore, to analyse these data, first required the

establishment of robust cellular deconvolution methodology. To this end, I devel-

oped GBM-specific immune cell signatures and rigorously evaluated them against

multiple computational cell deconvolution tools to identify the optimal methods

for wider community use, detailed in chapter 2. I then utilised this validated ap-

proach, to characterise the cellular changes within our large, paired longitudinal

GBM dataset, detailed in chapter 3. Finally, to better understand GBM TME

dynamics, I integrated a novel spatial proteomics technique, imaging mass cytom-

etry (IMC), to examine how spatial arrangements of various TME cell types and

states evolve through treatment, detailed in chapter 4.

The following sections summarise the key findings of each paper, discusses limita-

tions, and indicates directions for future work.
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5.1 Chapter 2 - GBMDeconvoluteR

5.1.1 Summary

In this study, I integrated the data from several publicly available, GBM-specific

single-cell RNA sequencing (scRNA-seq) datasets to derive a set of marker genes

for immune cell populations: B cells, T cells, natural killer cells (NK cells), mi-

croglia, tumour-associated macrophages (TAMs), monocytes, mast cells and den-

dritic cells (DCs). These were further supplemented with markers correspond-

ing to malignant GBM neoplastic cell states as previously defined by Neftel et

al.5: astrocyte-like (AC-like), neural progenitor-like (NPC-like), oligodendrocyte

progenitor-like (OPC-like) and mesenchymal-like (MES-like). These markers were

then applied to two prominent computational cell deconvolution methods that

were shown to perform well in a comprehensive benchmarking study20: the semi-

supervised, reference-based MCPcounter21, and the supervised reference-based

CIBERSORTx22. The deconvolution cell proportions were experimentally vali-

dated using a single-cell resolution, gold standard, based on IMC. This valida-

tion demonstrated that MCPcounter, when combined with GBM-specific markers

(MCPGBM), provided superior accuracy in quantifying both immune and neo-

plastic cell populations compared to CIBERSORTx. Further, it highlighted the

importance of using tissue- and disease-specific references for optimal performance

of reference-based tools.

To facilitate wider community accessibility, the results were packaged into GB-

MdeconvoluteR, a user-friendly web application23. This tool also incorporated an

additional single-cell derived marker panel for GBM-specific cell types including

vasculature and normal brain cell type markers24.

Finally, the utility of GBMDeconvoluteR was demonstrated by analysing data

from the cancer genome atlas (TCGA)16, which confirmed previous findings that

mesenchymal GBM cells are strongly associated with immune-rich tumour re-

gions, particularly in patients with aggressive GBM tumours and poorer survival

outcomes25.

5.1.2 Limitations

A key limitation of this work is the restricted inclusion of specific cell types such

as activated M2 macrophages and reactive astrocytes, largely due to the inability

to reliably define such finer-grain cell sub-populations. This stemmed from the
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limited availability of single-cell GBM datasets that met our inclusion criteria at

the time the tool was developed.

The IMC validation method was performed on relatively small regions (3mm2 in

total for a patient) of tissue, whereas bulk RNA-seq was derived from larger areas.

Although we still found strong correlations between this and the computational

methods, the possibility of sampling bias due to this mismatch in spatial scale

remains a concern, which could have introduced false positives. The difference

in modalities (protein vs ribonucleic acid (RNA)) is another such limitation of

the chosen validation method used in this study, as transcript-level expression

values are more stochastic compared with protein expression and may not always

correlate.

Although the marker-panel was specifically designed for isocitrate dehydrogenase

wild-type (IDHwt) GBM tumour samples in mind, these markers are not neces-

sarily accurately and/or applicable for other adult-type diffuse gliomas such as

isocitrate dehydrogenase mutated (IDHmut) GBM, which does limit broader gen-

eralisability.

Finally, GBMdeconvoluteR is based on a semi-supervised, marker-based tool (MCP-

Counter) that returns relative cell type proportions. Therefore, comparing abun-

dances across different cell types within the same sample are not directly possible,

which restricts analytical depth if users wish to compare proportions between two

different cell types.

5.1.3 Perspectives & future work

As part of this work, we sought to identify the most suitable cell deconvolution

method that would work well for our specific GBM patient data and subsequently

developed GBMdeconvoluteR using this approach. Moreover, cell type deconvo-

lution benchmarking studies have consistently suggested that this is the correct

approach, and that the choice of the “best” tool is highly context-dependent20,26,27.

Given this, one way in which this work could be expanded is by supporting mul-

tiple deconvolution tools, allowing users to compare outputs and select the most

appropriate method for their specific needs. Similarly, the cell type markers of-

fered in the tool could be further enhanced to include finer immune cell and brain

stromal cell sub-populations. A potential approach to facilitate this would be to

enable users to upload custom marker panels, rather than selecting one of our

pre-built ones. This would definitely improve flexibility, though would have to be

balanced against suitability/interpretability of the users supplying poorly defined
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markers. We could also expand the existing marker set to include key markers

from other adult-type diffuse gliomas, enhancing GBMdeconvoluteR’s applicabil-

ity to more diverse types of GBM samples, whilst maintaining a degree of control

over marker validity.
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5.2 Chapter 3 - GBM cell changes pre- & post-

treatment

5.2.1 Summary

In this study, I applied GBMDeconvoluteR to our longitudinal, paired GBM

dataset comprising 219 patient tumour samples. Taking the inferred, relative

cell type proportions, I characterised the cellular landscape changes within GBM

through treatment by comparing samples, pair-wise across both time-points. The

dataset in this study was divided into two distinct cohorts (discovery and vali-

dation) to evaluate the consistency of the longitudinal changes. I found notable

changes across vasculature and normal brain cell populations, with particularly

prominent increases observed in plasma B cells and oligodendrocytes through

treatment.

Building on our group’s recent publication, which demonstrated that GBM pa-

tients can be stratified into Up and Down responder subtypes associated with

distinct TME-related treatment resistance mechanisms7, I also applied this classi-

fication to our paired GBM datasets. This confirmed our earlier observation that

Up responders exhibit features consistent with a more proneural (PN) phenotype,

while Down responders are enriched for mesenchymal (MES) characteristics. Im-

portantly, this study extends those findings by identifying specific cell–cell associ-

ations linked to responder status e.g., plasma B cell-oligodendrocyte interactions

which were enriched in Up responders7. These associations were also further sup-

ported using a small validation cohort profiled with both spatial transcriptomics

and spatial proteomics technologies from Greenwald et al.28.

The associations of progression-free survival (PFS) and overall survival (OS) sur-

vival outcome on specific cell type changes through treatment revealed significant

cell type changes, though the clearest patterns aligned with our responder subtype

stratification.

Other notable changes include consistent correlations between mast cell popu-

lations and both myeloid and lymphoid immune cells. Moreover, associations

between radial glial cells and neoplastic GBM cells - particularly in Up respon-

ders – suggests a potential treatment-evasion mechanism by which cells transition

to a more quiescent state. Finally, predictive modelling of surgery type utilising

only the cell type scores underscores that the inferred cell type scores are able

to capture biologically meaningful variation, particularly in relation to treatment
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response.

5.2.2 Limitations

Bulk RNA-seq inherently lacks spatial and single-cell resolution that is required

to confidently assess cell interactions which is why we performed spatial tran-

scriptomics to validate the oligodendrocyte and plasma B cell findings. These

validations were performed based on only one and two patients, for the spatial

transcriptomics and proteomics, respectively. While these findings were consis-

tent with the associations observed between plasma B and oligodendrocytes, in

silico, the small sample size poses a risk of sampling bias. This limitation is par-

ticularly relevant given the high level of intra-tumour heterogeneity that already

exists within GBM tumours. Similarly, in this study we had to exclude a large

number of patient samples when stratifying patients into responder subtypes. This

was done because these samples comprised of low tumour purity (<30% across the

tumour pair) which we previously showed, affected the malignant GBM cell-driven,

responder subtype classification7.

Another limitation in this study is the age distribution of the patients, which is

skewed toward younger patients, when considering that the median age of diag-

nosis for GBM is ∼65 years old6. This likely reflects a greater willingness among

younger patients to undergo repeat surgery, but nonetheless, does still introduce

potential bias. Similarly, incomplete clinical metadata, particularly for overall

patient survival does restrict the statistical power to detect nuanced clinical cor-

relations in this study.

Extending from the GBMDeconvoluteR study, the specificity of marker genes,

especially for distinguishing closely related cell populations or activation states,

such as M2 macrophages or reactive astrocytes, remains a limitation. While we

do still find meaningful associations between cell types, the lack of markers to

delineate finer-grain cell populations does restrict the biological resolution and

interpretability of the significant findings from this study.

5.2.3 Perspectives & future work

As intimated in the above limitations of this study, the key next step for this work

is the comprehensive experimental validation of the major findings, particularly

in the role and associations between plasma B cells and oligodendrocytes. In our

wider-group we have already started this work by investigating specific antibodies
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such as Immunoglobulin G (IgG) and Immunoglobulin E (IgE), which are thought

to influence oligodendrocyte myelination. However, at the time of writing, this

additional work is still ongoing.

Another aspect of validation this study would greatly benefit from is the integra-

tion of additional spatial transcriptomics and proteomics which would strengthen

the validation of the inferred cell-type proportions and interactions. Work for

this is also already in progress within our broader lab group where we are using

the 10X Visium spatial transcriptomics (∼6000 transcripts) platform. This work

contributed to the preliminary plasma B cell–oligodendrocyte validation detailed

in chapter 3, though by utilising a significantly larger marker panel we should be

able to identify more cell types/states and greatly enhance our understanding of

the GBM tumour microenvironment (TME).

Further experimental work is also needed to explore other key findings from this

study, namely the roles of mast cells and radial glial cells. Specifically, future work

would look into the potential immunomodulatory functions of mast cells and the

capacity of radial glial cells to support immune evasion or induce a quiescent state

in malignant GBM cells, especially in response to temozolomide (TMZ).
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5.3 Chapter 4 - Spatially profiling the GBMTME

through treatment

5.3.1 Summary

In this paper I applied a novel spatial proteomics technique, IMC to a subset

(n=5 ) of the longitudinal paired GBM patient samples used in chapter 3. The

aim was to understand how the spatial-organisation of cells within the GBM TME

change through treatment. For each patient-specific surgical time-point, three

small (1mm2) regions of interests (ROIs) were sampled from different anatomical

tumour regions. Following cell-segmentation and phenotyping I assessed broad

“cell category” and more-detailed “cell type” changes through treatment, finding

there was a significant increase in normal brain cells and a notable reduction in

vascular cells. Although the overall cell diversity remained stable through treat-

ment, there was greater ad-mixture of cell types, particularly oligodendrocytes,

astrocytes and vasculature cells, suggestive of TME re-organisation. This study

builds on and extends the findings of Greenwald et al., who recently used a spot-

based, spatial transcriptomics method to show that GBM TME is organised in

to layers driven by hypoxia28. Using a less stochastic, proteomics-based approach

and a paired-sample design, I confirm the finding that hypoxia drives GBM TME

organisation. Moreover, I show that this effect is diminished following treatment,

giving way to a less structured GBM TME which is shaped more by reactive

astrocytes and infiltrating lymphocytes.

5.3.2 Limitations

A clear limitation of this study is the small sample size (n=5 ), which coupled

with the significant inter-patient heterogeneity observed in the study, introduces

the risk of sampling bias and also severely limits the generalisability of the find-

ings. Similarly, the selection of three small regions per surgical samples may not

adequately capture the full spatial heterogeneity that we know is present across

GBM tumours.

There are also several technological limitations related to this study. Firstly, cell

types were characterised based on a small number of markers (n=20 ) due to the

technology being limited to a total of ∼40 markers. Although each marker was

carefully chosen and based on solid justification of prior work, this limitation
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meant that I was not able to delineate all immune cell types. An example of

this are B cell populations which were found to be important in chapter 3. Ad-

ditionally, the restriction to a smaller number of markers also made it difficult to

conclusively discern between closely-related cell types such as neoplastic and nor-

mal brain cell types and NK cell and T cells. Another key technical limitation of

this study relates to the process of cell-segmentation, where I used marker-based

pixel intensities to define cell-objects. I was able to accurately capture the nuclear

features using the two deoxyribonucleic acid (DNA)-intercalating markers, how-

ever, the absence of dedicated cytoplasmic or cell membrane markers meant that

cell boundaries had to be approximated using the localisation patterns of available

markers. The inclusion of a broad-spectrum cytoskeleton or surface marker would

have yielded more accurate cell morphologies and improved segmentation fidelity.

The process for determining cellular neighbourhoods (CNs) and subsequently spa-

tial contexts (SCs), inherently involves user-defined parameters. In this study I

used Delaunay triangulation to capture cellular neighbourhoods based on cell inter-

action graphs as it better accounts for irregular spacing between cells by dividing

the image into planes bounded by a convex hull. However, the definition of the

interaction distances still remains critical and has the potential to introduce bias,

based on the scale chosen. Thus, while our CNs offer valuable insights, they are

subject to methodological limitations that should be considered when interpreting

the results.

5.3.3 Perspectives & future work

At the time of writing, this study is under review and a recurring recommen-

dation from the reviewers has been the need for orthogonal validation to con-

firm the reported findings. In response, we are currently in the process of utilis-

ing a spot-based spatial transcriptomics approach, 10X Visium, which allows us

to profile ∼6000 transcripts, offering a significantly expanded marker-list to use

for phenotyping. Therefore, this would allow us to define a more comprehensive

marker panel that is more sensitive to immune cell subsets such as M1 and M2

macrophage polarization, and the ratio of CD8+ and regulatory T cells (Tregs).

In addition to spatial transcriptomics, this work could be further expanded by

incorporating other targeted (guided by current finding) multimodal approaches

such as metabolomics. The cell-cell interactions and signalling within the GBM

TME are known to be mediated not only by cytokines but also a diverse range of

metabolites. For instance, the role of histamine release by malignant GBM cells

and immune cells such as mast cells and macrophages is well-documented29–31.
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Therefore, integrating the perspective would allow us to better understand the

functional dynamics of the GBM TME.

Given the small sample size of this study, questions around the causality of findings

is pertinent. While there are observed changes in cell populations and TME re-

organisation following treatment, we need further computational and experimental

validation to determine if these changes are directly caused by therapy or reflect

natural GBM disease progression. Addressing this distinction is needed not only

for understanding underlying biology but, also to translate these findings into

clinical application. This may involve the development of therapeutic targets or

new stratification tools to better personalise current and/or emerging therapies.
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5.4 Conclusion

Overall, this work provides:

1. A validated, benchmarked cellular deconvolution tool – GBMdeconvoluteR,

that comprises a custom GBM-specific markers for inferring cell proportions

from bulk RNA-seq data.

2. A comprehensive analysis of pre- and post-treatment cellular composition

changes present in GBM. This includes novel associations such as those

reported between plasma B cells and oligodendrocytes, and which may hold

therapeutic potential.

3. An expansion of work previously undertaken within our group showing that

GBM patients can be stratified into two distinct responder types, that are

linked to specific treatment-resistance mechanisms.

4. New insights into how spatial interactions and organisation within the GBM

TME cells changes through treatment.

5. A valuable paired, longitudinal dataset of GBM patient samples that pro-

vides a vital resource to the community to further explore how GBM tumours

change through stand of care treatment.
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