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Abstract

In this thesis we deal with regularisation by noise phenomena in partial differential equations caused by

multiplicative noises. In particular, we study the solvability of stochastic reaction-diffusion equations

in the case when the “drift” or “reaction term” is so irregular that it is not even a function, but merely

a distribution in the Schwartz-sense. We provide the definition of solution, which is a priori not

well-understood. We use Malliavin calculus to obtain estimates related to the density of the solution

of the driftless equation, such as quantitative bounds on all Malliavin derivatives of the solution, and

a quantitative nondegeneracy result for the first Malliavin derivative. We use these results to prove an

“integration by parts” result for computing expectations of functions of the driftless equation. We also

show the Lipschitz continuity of the Malliavin derivatives of the driftless equation in the initial condition,

and quantify how well the driftless equation approximates the general case with (possibly distributional)

drift. We combine the aforementioned results with state-of-the-art stochastic sewing techniques to prove

a well-posedness result for the stochastic reaction-diffusion equation with distributional drift, derive

stability estimates, and establish the temporal and spatial regularity of the solution. Moreover, we provide

bounds on the Hölder norms of the density of solution of the driftless equation, and all of its derivatives.
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Chapter 1

Introduction

1.1 What is an SPDE?

A stochastic partial differential equation (SPDE) is a partial differential equation that is perturbed by some

random fluctuations. The simplest and most studied SPDE is the stochastic heat equation

(𝜕𝑡 − Δ)𝑣 = 𝜉. (1.1.1)

Here Δ :=
∑𝑑
𝑖=1

𝜕2

𝜕𝑥2
𝑖

denotes the Laplacian in 𝑑 ∈ ℕ dimensions and 𝜉 is a random noise term that

represents a random heat source. The solution of the equation (and generally, that of any SPDE) is an

infinite dimensional stochastic process. Below we give some other examples of applications of SPDEs.

We will use the notation ∇ := ( 𝜕
𝜕𝑥1
, . . . , 𝜕

𝜕𝑥𝑑
) for the del operator in 𝑑 ≥ 2 dimensions, and by convention

for 𝑑 = 1 we set ∇ := 𝜕
𝜕𝑥

.

• The research area of stochastic fluid dynamics is centered around the study of turbulent fluids,

which may be modelled by the stochastic Burger’s equation

(𝜕𝑡 − Δ)𝑣 = 𝑣∇𝑣 + 𝜉,

or the stochastic Navier-Stokes equation

(𝜕𝑡 + 𝑣∇ − Δ)𝑣 + ∇𝑝 = 𝜉, div(𝑣) = 0,

which (just as its deterministic counterpart) remains an area of active research. For a detailed

overview of the topic we point the reader to [BF20]
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1.1. What is an SPDE? Chapter 1. Introduction

• An important model for surface growth from physics is Kardar-Parisi-Zhang (KPZ) equation

(𝜕𝑡 − Δ)ℎ = (∇ℎ)2 + 𝜉.

The KPZ equation describes the fluctuations of a wide a range of stochastic models, called the KPZ

universality class (see [HQ18]).

• The dynamical 𝜙4
3 model is the SPDE

(𝜕𝑡 − Δ)𝜙 = 𝐶𝜙 − 𝜙3 + 𝜉,

which appears in Quantum Field Theory and in the theory of phase transitions (see [Hai16]).

• In the Heath–Jarrow–Morton framework, the price 𝐵(𝑡, 𝑇) at time 𝑡 of a zero-coupon bond (paying

one unit of currency at the maturity time 𝑇) is modelled by

𝐵(𝑡, 𝑇) = exp
(
−
∫ 𝑇−𝑡

0
𝑓 (𝑡, 𝜃)𝑑𝜃

)
where the forward rate 𝑓 (𝑡, ·) is some infinite dimensional stochastic process. In [Con05] the model

𝑓 (𝑡, 𝜃) = 𝑟 (𝑡) + 𝑠(𝑡) (𝑌 (𝜃) + 𝑋𝑡 (𝜃))

is established, where the stochastic processes 𝑟, 𝑠 are jointly Markovian, 𝑌 is a deterministic shape

function, and the deformation map 𝑋 solves a parabolic SPDE

(𝜕𝑡 − 𝜕𝜃 − 𝜕2
𝜃 )𝑋𝑡 (𝜃) = 𝑏𝑡 , 𝜃 (𝑋𝑡 (𝜃)) + 𝜎(𝑋𝑡 (𝜃))𝜉.

• The flow of an ideal gas through a porous medium in the presence of random fluctuations can be

described by the stochastic porous media equation (see e.g. [BDPR16])

𝜕𝑡𝑣 = Δ( |𝑣 |𝑚−1) + 𝜉,

which is a generalisation of the stochastic heat equation.

Now suppose that instead of modelling the diffusion of heat, we want to model the diffusion of a

chemical in a gel. Then we may add a “reaction term” or “drift” 𝑏(𝑣) to the stochastic heat equation

2



Chapter 1. Introduction 1.1. What is an SPDE?

(1.1.1), to obtain the stochastic reaction-diffusion equation

(𝜕𝑡 − Δ)𝑣 = 𝑏(𝑣) + 𝜉. (1.1.2)

Note that the noise in above equation is additive, i.e. we simply added the noise to the equation. However,

in applications (such as the aforementioned one in chemistry) it is often desirable that the magnitude of the

noise depends on the state of the solution. Then the following multiplicative model is more appropriate

(see [Hai21]):

(𝜕𝑡 − Δ)𝑣 = 𝑏(𝑣) + 𝜎(𝑣)𝜉.

This equation is the main topic of this thesis. If the drift 𝑏 is sufficiently regular, then the existence and

uniqueness of solutions is well-known. In the present work we will study the case of irregular (and in fact

distributional) drift 𝑏.

The question is: how do we formalise the notion of solution for SPDEs? For illustration, we will

construct the solution to the additive stochastic heat equation (1.1.1). To this end, consider the partial

differential equation (PDE)

(𝜕𝑡 − Δ)𝑢(𝑡, 𝑥) = 𝐹 (𝑡, 𝑥), 𝑢0 = 0 (1.1.3)

for (𝑡, 𝑥) ∈ [0, 1] ×ℝ. In order to construct the solution we recall that the heat kernel on ℝ is given for

(𝑡, 𝑥) ∈ [0, 1] ×ℝ by

𝑝ℝ𝑡 (𝑥) :=
1

√
4𝜋𝑡

exp
(
− |𝑥 |2

4𝑡

)
,

and for 𝑥, 𝑦 ∈ ℝ and 𝑡 ∈ [0, 1] we denote 𝑝ℝ𝑡 (𝑥, 𝑦) := 𝑝ℝ𝑡 (𝑥 − 𝑦). By Duhamel’s formula it is known that

the solution to (1.1.3) is given by

𝑢(𝑡, 𝑥) =
∫ 𝑡

0

∫
ℝ

𝑝ℝ𝑡−𝑟 (𝑥, 𝑦)𝐹 (𝑡, 𝑥)𝑑𝑦𝑑𝑟. (1.1.4)

Let moreover𝑊 := {𝑊 (𝑡, 𝑥) : (𝑡, 𝑥) ∈ [0, 1] ×ℝ} be a Brownian sheet, i.e. a centered Gaussian process

with covariance function given for (𝑡, 𝑥), (𝑠, 𝑦) ∈ [0, 1] ×ℝ by

𝔼
(
𝑊 (𝑡, 𝑥)𝑊 (𝑠, 𝑦)

)
= (𝑡 ∧ 𝑠) (𝑥 ∧ 𝑦).
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1.1. What is an SPDE? Chapter 1. Introduction

Although𝑊 (𝑡, 𝑥) is not differentiable in the 𝑡 and 𝑥 variables, we may consider the object

𝜉 (𝑡, 𝑥) :=
𝜕2𝑊 (𝑡, 𝑥)
𝜕𝑡𝜕𝑥

(1.1.5)

in the generalised sense, which we call “space-time white noise”. Informally, we can view 𝜉 as a centered

Gaussian process with covariace function

𝔼(𝜉 (𝑡, 𝑥)𝜉 (𝑠, 𝑦)) = 𝛿(𝑡 − 𝑠)𝛿(𝑥 − 𝑦)

where 𝛿 denotes the Dirac-delta. Suppose that we wish to define the solution of (1.1.3) for 𝐹 (𝑡, 𝑥) := 𝜉 (𝑡, 𝑥).

The main idea is that even though the object 𝜉 (𝑡, 𝑥) is not defined pointwise, we still may give meaning to

the integral

∫ 𝑡

0

∫
ℝ

𝑝ℝ𝑡−𝑟 (𝑥, 𝑦)
𝜕2𝑊 (𝑟, 𝑦)
𝜕𝑟𝜕𝑦

𝑑𝑦𝑑𝑟, (1.1.6)

i.e. the right-hand-side of the Duhamel formula (1.1.4), which will allow us to construct the solution to

(1.1.3). The idea of constructing a new concept of a stochastic integral to solve the equation is analogous

to what we do in the finite dimensional case, where to make sense out of the SDE

𝑑𝑋𝑡

𝑑𝑡
= 𝑏(𝑋𝑡 ) + 𝜎(𝑋𝑡 )

𝑑𝑊𝑡

𝑑𝑡
,

we construct the Itô integral
∫ 1

0 (. . . )𝑑𝑊𝑡 : 𝐿2(Ω × [0, 1]) → 𝐿2(Ω) which allows us to express the

solution as

𝑋𝑡 = 𝑋0 +
∫ 𝑡

0
𝑏(𝑋𝑟 )𝑑𝑟 +

∫ 𝑡

0
𝜎(𝑋𝑟 )𝑑𝑊𝑟 .

We proceed with rigorously defining the space-time white noise (1.1.5).

Definition 1.1.1 (Space-time white noise). Let (𝐻, ⟨·, ·⟩𝐻) be a separable Hilbert space. A Gaussian

process 𝜉 := {𝜉 (ℎ) : ℎ ∈ 𝐻} is called space-time white noise if

1. 𝔼𝜉 (ℎ) = 0 for all ℎ ∈ 𝐻

2. 𝔼(𝜉 (ℎ1)𝜉 (ℎ2)) = ⟨ℎ1, ℎ2⟩𝐻 .

Example 1.1.2. Choose 𝐻 = 𝐿2( [0, 1]), and for ℎ ∈ 𝐻 let 𝜉 (ℎ) :=
∫ 1

0 ℎ(𝑟)𝑑𝑊𝑟 . Then for all ℎ ∈ 𝐻 we

4



Chapter 1. Introduction 1.1. What is an SPDE?

have 𝔼𝜉 (ℎ) = 0, and for ℎ1, ℎ2 ∈ 𝐻 we have

𝔼(𝜉 (ℎ1)𝜉 (ℎ2)) = 𝔼
( ∫ 1

0
ℎ1(𝑟)𝑑𝑊𝑟

∫ 1

0
ℎ2(𝑟 ′)𝑑𝑊𝑟 ′

)
=

∫ 1

0
ℎ1(𝑟)ℎ2(𝑟)𝑑𝑟 = ⟨ℎ1, ℎ2⟩𝐻 .

Hence 𝜉 defines space-time white noise with respect to 𝐻.

Let 𝒫 denote the predictable 𝜎-algebra on Ω × [0, 1] generated by all left-continuous processes that

are adapted to the filtration (ℱ𝑡 )𝑡∈[0,1] of𝑊 . For any metric space ℳ let ℬ(ℳ) denote the collection of

Borel subsets, and ℬ𝑏 (ℳ) the collection of bounded Borel subsets. Let 𝑓 ∈ 𝐿2(Ω × [0, 1] × ℝ) such

that 𝑓 : Ω × [0, 1] ×ℝ → ℝ is 𝒫 ⊗ ℬ(ℝ)-measurable. We proceed with discussing the meaning of the

stochastic integral with respect to the space-time white noise 𝜉 corresponding to the separable Hilbert

space 𝐻 = 𝐿2( [0, 1] ×ℝ). Take the space-time white noise 𝜉 and for (𝑡, 𝐴) ∈ [0, 1] ×ℬ𝑏 (ℝ) define

𝑀𝑡 (𝐴) := 𝜉 (1[0,𝑡 ]×𝐵 (·)).

Then {𝑀𝑡 (𝐴) : 𝑡 ∈ [0, 1], 𝐴 ∈ ℬ𝑏 (ℝ)} is an example of a Martingale measure. Roughly speaking,

this means that for all 𝐴 ∈ ℬ𝑏 (ℝ) the process (𝑀𝑡 (𝐴))𝑡∈[0,1] is a martingale, and for any disjoint sets

𝐴1, 𝐴2 ∈ ℬ𝑏 (ℝ) we have 𝑀𝑡 (𝐴1 ∪ 𝐴2) = 𝑀𝑡 (𝐴1) +𝑀𝑡 (𝐴2), for the formal definition we direct the reader

to [Bal18]. According to [Kry99] it was Itô who first considered integration with respect to martingale

measures in [Itô51], and his approach to defining the integral with respect to the space-time white noise

was popularised by Walsh in [Wal86]. The construction can be summarised as follows: For a simple

random field that is defined for (𝜔, 𝑡, 𝑥) ∈ Ω × [0, 1] ×ℝ by

𝑓𝑡 (𝑥, 𝜔) = 1[𝑎,𝑏]×𝐴(𝑡, 𝑥)𝑌 (𝜔) (1.1.7)

with 0 ≤ 𝑎 ≤ 𝑏 ≤ 1, 𝐴 ∈ ℬ𝑏 (ℝ) and 𝑌 a bounded ℱ𝑎-measurable random variable, the stochastic

integral is then defined by

∫ 1

0

∫
ℝ

𝑓𝑟 (𝑦)𝜉 (𝑑𝑦, 𝑑𝑟) := 𝑌
(
𝑀𝑏 (𝐴) − 𝑀𝑎 (𝐴)

)
.

The definition is then extended to any 𝒫 ⊗ ℬ(ℝ)-measurable random field 𝑓 ∈ 𝐿2(Ω × [0, 1] ×ℝ) by

approximating 𝑓 by a sequence of linear combinations of simple random fields of the form (1.1.7). A

conscise introduction to the above approach can be found in [Bal18]. Below we give a brief description

of the analytic approach, which was introduced by Gyöngy and Krylov in [GK81]. The advantage of

5



1.1. What is an SPDE? Chapter 1. Introduction

this approach is that it decomposes the stochastic integral with respect to the space-time noise into a

countable sum of Itô integrals, whose properties we are already familiar with. By [Kry99, Section 8.2]

the Brownian sheet may be written in the form

𝑊 (𝑡, 𝑥) =
∑︁
𝑛∈ℕ

𝑊𝑛
𝑡

∫ 𝑥

0
ℎ𝑛 (𝑦)𝑑𝑦

where (ℎ𝑛)𝑛∈ℕ forms an orthonormal basis for 𝐿2(ℝ) and (𝑊𝑡 )𝑛∈ℕ is a sequence of independent Wiener

processes. Thus recalling the informal definition (1.1.5), in the sense of generalised derivatives we have

𝜉 (𝑡, 𝑥) :=
𝜕2𝑊 (𝑡, 𝑥)
𝜕𝑡𝜕𝑥

=
∑︁
𝑛∈ℕ

𝑑𝑊𝑛
𝑡

𝑑𝑡
ℎ𝑛 (𝑥).

Heuristically we may perform the following symbolic computation using the above:

∫ 1

0

∫
ℝ

𝑓 (𝑟, 𝑦)𝜉 (𝑟, 𝑦)𝑑𝑦𝑑𝑟 =
∫ 1

0

∫
ℝ

𝑓 (𝑟, 𝑦) 𝜕
2𝑊 (𝑟, 𝑦)
𝜕𝑦𝜕𝑟

𝑑𝑦𝑑𝑟

=

∫ 1

0

∫
ℝ

𝑓 (𝑟, 𝑦)
∑︁
𝑛∈ℕ

𝑑𝑊𝑛
𝑟

𝑑𝑟
ℎ𝑛 (𝑦)𝑑𝑦𝑑𝑟

=
∑︁
𝑛∈ℕ

∫ 1

0

∫
ℝ

𝑓 (𝑟, 𝑦)ℎ𝑛 (𝑦)𝑑𝑦𝑑𝑊𝑛
𝑟 .

The last expression is rigorously defined, and we will use it as definition for the stochastic integral, i.e. we

define

∫ 1

0

∫
ℝ

𝑓 (𝑟, 𝑦)𝜉 (𝑑𝑦, 𝑑𝑟) :=
∑︁
𝑛∈ℕ

∫ 1

0

∫
ℝ

𝑓 (𝑟, 𝑦)ℎ𝑛 (𝑦)𝑑𝑦𝑑𝑊𝑛
𝑟 .

From here on we will work on the periodic spatial domain 𝕋 = ℝ/ℤ (equivalently: the interval [0, 1]

with the endpoints identified). Analogously to the definition above, for 𝑔 ∈ 𝐿2(Ω × [0, 1] × 𝕋 ) such that

𝑔 : Ω × [0, 1] × 𝕋 → ℝ is 𝒫 ⊗ ℬ(𝕋 )-measurable, the stochastic integral is defined for 0 ≤ 𝑠 ≤ 𝑡 ≤ 1 by

∫ 𝑡

𝑠

∫
𝕋

𝑔(𝑟, 𝑦)𝜉 (𝑑𝑦, 𝑑𝑟) :=
∑︁
𝑛∈ℕ

∫ 𝑡

𝑠

∫
𝕋

𝑔(𝑟, 𝑦)𝑒𝑛 (𝑦)𝑑𝑦𝑑𝑊𝑛
𝑟

where (𝑒𝑛)𝑛∈ℕ forms an orthonormal basis for 𝐿2(𝕋 ). From the expansion above it is clear that

𝔼

∫ 𝑡

𝑠

∫
𝕋

𝑓 (𝑟, 𝑦)𝜉 (𝑑𝑦, 𝑑𝑟) = 0.

It is also immediate to see that (
∫ 𝑡

0

∫
𝕋
𝑓 (𝑟, 𝑦)𝜉 (𝑑𝑦, 𝑑𝑟))𝑡∈[0,1] is adapted to the filtration of the white

6



Chapter 1. Introduction 1.2. Notation

noise. The moments of the stochastic integral can be estimated using the following version of the

Burkholder-Davis-Gundhy inequality (see e.g. [LR17]) which states that for 𝑝 ∈ (0,∞) there exists a

constant 𝐶𝑝 such that for a sequence of adapted processes (𝑔𝑛)𝑛∈ℕ and for 𝑇 ∈ [0, 1] we have

𝔼 sup
𝑡∈[0,𝑇 ]

���∑︁
𝑛∈ℕ

∫ 𝑡

0
𝑔𝑛 (𝑟)𝑑𝑊𝑛

𝑟

���𝑝 ≤ 𝐶𝑝𝔼
( ∫ 𝑇

0

∑︁
𝑛∈ℕ

|𝑔𝑛 (𝑟) |2𝑑𝑟
) 𝑝/2

.

It follows from the above inequality (see e.g. [CHN21]) that for 𝑝 ≥ 2 we have




 ∫ 𝑡

0

∫
𝕋

𝑓 (𝑟, 𝑦)𝜉 (𝑑𝑦, 𝑑𝑟)




𝐿𝑝 (Ω)

≲
( ∫ 𝑡

0

∫
𝕋

∥ 𝑓 (𝑟, 𝑦)∥2
𝐿𝑝 (Ω)𝑑𝑦𝑑𝑟

)1/2
.

In the case where 𝑓 is deterministic, the distribution of the stochastic integral is explicitly known:

∫ 𝑡

0

∫
𝕋

𝑓 (𝑟, 𝑦)𝜉 (𝑑𝑦, 𝑑𝑟) ∼ N
(
0,

∫ 𝑡

0

∫
𝕋

| 𝑓 (𝑟, 𝑦) |2𝑑𝑦𝑑𝑟
)
.

Example 1.1.3. Let 𝑣0 ∈ 𝔹 and consider the stochastic heat equation

(𝜕𝑡 − Δ)𝑣 = 𝜉, 𝑣(0, ·) = 𝑣0.

The solution (the concept of which we will later define rigorously) is given by

𝑣(𝑡, 𝑥) = 𝑃𝑡𝑣0(𝑥) +
∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝜉 (𝑑𝑦, 𝑑𝑟).

with 𝑃𝑡𝑣0(𝑥) :=
∫
𝕋
𝑝𝑡 (𝑥, 𝑦)𝑣0(𝑦)𝑑𝑦, where 𝑝𝑡 denotes the periodic heat kernel (see (1.3.10)). Since the

integrand of the stochastic integral above is deterministic, we know that

𝑣(𝑡, 𝑥) ∼ N
(
𝑃𝑡𝑣0(𝑥),

∫ 𝑡

0

∫
𝕋

|𝑝𝑡−𝑟 (𝑥, 𝑦) |2𝑑𝑦𝑑𝑟
)
.

1.2 Notation

Let 𝐻 := 𝐿2( [0, 1] × 𝕋 ). Let 𝜉 := {𝜉 (ℎ) : ℎ ∈ 𝐻} be space-time white noise on a complete probability

space (Ω,ℱ,ℙ), and suppose that ℱ is generated by 𝜉. Let (ℱ𝑡 )𝑡∈[0,1] be the filtration generated by 𝜉

and augmented by the 𝜎-algebra Ngenerated by all ℙ-null sets, that is

ℱ𝑡 := 𝜎
({
𝜉 (1[0,𝑟 )×𝐵) : 𝑟 ∈ [0, 𝑡], 𝐵 ∈ ℬ(𝕋 )

})
∨N
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1.2. Notation Chapter 1. Introduction

where for two 𝜎-algebras 𝒳,𝒴 we denote 𝒳∨𝒴 := 𝜎(𝒳∪𝒴). The predictable 𝜎-algebra on Ω× [0, 1]

is denoted by 𝒫. The conditional expectation given ℱ𝑡 is denoted by 𝔼𝑡 := 𝔼(·|ℱ𝑡 ). We use 𝐿𝑝 as a

shorthand for 𝐿𝑝 (Ω). For a sub-𝜎-algebra 𝒢 ⊂ ℱ, the conditional 𝐿𝑝-norm is denoted by

∥ · ∥𝐿𝑝 |𝒢 := (𝔼( | · |𝑝 |𝒢))1/𝑝,

and for 𝑝 ∈ [1,∞), 𝑞 ∈ [1,∞] we denote

∥ · ∥𝐿𝒢𝑝,𝑞 := ∥∥ · ∥𝐿𝑝 |𝒢∥𝐿𝑞 . (1.2.8)

Let 𝐴 ⊆ 𝕋 𝑑 and (𝐵, | · |) be a normed space. We denote by 𝔹(𝐴, 𝐵) the collection of measurable functions

𝑓 : 𝐴→ 𝐵 such that

∥ 𝑓 ∥𝔹(𝐴,𝐵) := sup
𝑥∈𝐴

| 𝑓 (𝑥) | < ∞.

We denote space of continuous functions 𝑓 : 𝐴→ 𝐵 by 𝐶 (𝐴, 𝐵), and it is also canonically equipped with

the 𝔹-norm. For 𝛼 ∈ ℕ we denote by 𝐶𝛼 (𝐴, 𝐵) the space of continuous functions 𝑓 : 𝐴→ 𝐵 such that

for all multi-indices 𝑙 = (𝑙1, . . . , 𝑙𝑑) ∈ (ℤ≥0)𝑑 with |𝑙 | :=
∑𝑑
𝑖=1 𝑙𝑖 ≤ 𝛼 the derivative 𝜕𝑙 𝑓 is continuous,

and

∥ 𝑓 ∥𝐶𝛼 (𝐴,𝐵) :=
∑︁
|𝑙 | ≤𝛼

∥𝜕𝑙 𝑓 ∥𝔹 < ∞.

By convention the above sum includes the term ∥𝜕 (0,...,0) 𝑓 ∥𝔹, where we define 𝜕 (0,...,0) 𝑓 := 𝑓 . For

𝛼 ∈ (0, 1) and 𝑓 : 𝐴→ 𝐵, the 𝛼-Hölder seminorm of 𝑓 is given by

[ 𝑓 ]𝐶𝛼 (𝐴,𝐵) := sup
𝑥,𝑦∈𝐴
𝑥≠𝑦

| 𝑓 (𝑥) − 𝑓 (𝑦) |
|𝑥 − 𝑦 |𝛼 ,

where the norm in the denominator denotes the 𝑙2 distance in 𝑑-dimensions. For 𝛼 ∈ (1,∞) \ ℤ we then

denote by 𝐶𝛼 (𝐴, 𝐵) the space of all functions such that for all multi-indices 𝑙 ∈ (ℤ≥0)𝑑 with |𝑙 | < 𝛼, the

derivative 𝜕𝑙 𝑓 exists, and

∥ 𝑓 ∥𝐶𝛼 (𝐴,𝐵) := ∥ 𝑓 ∥𝐶 ⌊𝛼⌋ (𝐴,𝐵) +
∑︁

𝛼−1≤ |𝑙 |<𝛼
[𝜕𝑙 𝑓 ]𝐶𝛼−|𝑙 | (𝐴,𝐵) < ∞.
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Chapter 1. Introduction 1.3. Mild solutions

The collection of smooth (i.e. infinitely differentiable) and bounded functions with bounded derivatives

will be denoted by

𝐶∞(𝐴, 𝐵) :=
∞⋂
𝑛=0

𝐶𝑛 (𝐴, 𝐵).

When no ambiguity can arise, we will simply abbreviate 𝐶𝛼 (𝐴) or 𝐶𝛼 for 𝐶𝛼 (𝐴, 𝐵).

In the proofs of lemmas/theorems for two functions 𝑓 , 𝑔 we often write 𝑓 ≲ 𝑔 to mean that there

exists a constant 𝑁 > 0 such that 𝑓 ≤ 𝑁𝑔 and that 𝑁 depends only on the parameters specified in the

corresponding lemma/theorem.

1.3 Mild solutions

We proceed with formalising the concept of solution for the main object of study of the present thesis, i.e.

the multiplicative stochastic reaction diffusion equation on [0, 1] × 𝕋

(𝜕𝑡 − Δ)𝑢 = 𝑏(𝑢) + 𝜎(𝑢)𝜉, 𝑢 |𝑡=0 = 𝑢0 (1.3.9)

with deterministic initial condition 𝑢0 ∈ 𝐶 (𝕋 ). We begin by defining the solution of (1.3.9) when 𝑏 and

𝜎 are regular functions. The periodic heat kernel on 𝕋 is defined for 𝑡 ∈ [0, 1] and 𝑥, 𝑦 ∈ 𝕋 by

𝑝𝑡 (𝑥, 𝑦) :=
∑︁
𝑘∈ℤ

𝑝ℝ𝑡 (𝑥 − 𝑦 + 𝑘), (1.3.10)

and for 𝑓 : 𝕋 → ℝ and (𝑡, 𝑥) ∈ (0, 1] × 𝕋 we denote 𝑃𝑡 𝑓 (𝑥) :=
∫
𝕋
𝑝𝑡 (𝑥, 𝑦) 𝑓 (𝑦)𝑑𝑦 and 𝑃0 𝑓 := 𝑓 .

Similarly, the convolution of a map 𝑔 : ℝ → ℝ with 𝑝ℝ𝑡 is denoted by 𝑃ℝ
𝑡 𝑔, and we set 𝑃ℝ

0 𝑔 := 𝑔.

Definition 1.3.1 (Mild solution). Let 𝑢 : Ω × [0, 1] × 𝕋 → ℝ be a 𝒫 ⊗ ℬ(𝕋 )-measurable random field

such that 𝑢(𝑡, 𝑥) is continuous in (𝑡, 𝑥) ∈ [0, 1] × 𝕋 . We say that 𝑢 is a mild solution of (1.3.9) if for each

(𝑡, 𝑥) ∈ [0, 1] × 𝕋 we have

𝑢(𝑡, 𝑥) = 𝑃𝑡𝑢0(𝑥) +
∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝑏(𝑢(𝑟, 𝑦))𝑑𝑦𝑑𝑟 +
∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝜎(𝑢(𝑟, 𝑦))𝜉 (𝑑𝑦, 𝑑𝑟)

almost surely.

Remark 1.3.2. Notice that for 𝜎 = 0 this is simply the deterministic reaction-diffusion equation. Moreover

for 𝑏 = 0 and for nonzero 𝜎 the above equation is the stochastic heat equation. If we set both coefficients to

be zero, i.e, 𝑏 = 𝜎 = 0, we get 𝑢(𝑡, 𝑥) = 𝑃𝑡𝑢0(𝑥) which is the solution to the deterministic heat equation.

9



1.3. Mild solutions Chapter 1. Introduction

The well-posedness of (1.3.9) for the case of Lipschitz coefficients is a classic result (see [Wal86]):

Proposition 1.3.3. Suppose that 𝑏, 𝜎 ∈ 𝐶1. Then there exists a unique mild solution 𝑢 to (1.3.9).

The existence part of the lemma above is shown by proving that the Picard iteration scheme (𝑈𝑛)𝑛∈ℤ≥0

given by

𝑈0(𝑥) =
∫
𝕋

𝑝𝑡 (𝑥, 𝑦)𝑢0(𝑦)𝑑𝑦,

𝑈𝑛+1(𝑡, 𝑥) := 𝑈0(𝑡, 𝑥) +
∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝑏(𝑈𝑛 (𝑟, 𝑦))𝑑𝑦𝑑𝑟

+
∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝜎(𝑈𝑛 (𝑟, 𝑦))𝜉 (𝑑𝑦, 𝑑𝑟).

converges to a solution (see e.g. [Wal86]). It is instructive to see at how uniqueness is proven, since

the techniques used in the proof can be seen as a starting point for the proof of uniqueness for the

non-Lipschitz case. We will need the following lemmas:

Lemma 1.3.4. For every 𝛾 ∈ (1, 2] there exists a constant 𝑁 (𝛾) > 0 such that for all 𝑡 ∈ [0, 1],

∫ 𝑡

0

∫
𝕋

𝑝
𝛾
𝑡−𝑟 (𝑥, 𝑦)𝑒−𝜆(𝑡−𝑟 )𝑑𝑦𝑑𝑟 ≤

𝑁
√
𝜆
.

Proof. The left-hand-side is controlled by

∫ 𝑡

0
(𝑡 − 𝑟)−1/2(𝛾−1)𝑒−𝜆(𝑡−𝑟 )𝑑𝑦𝑑𝑟 ≤

∫ 𝑡

0

1
√
𝑡 − 𝑟

𝑒−𝜆(𝑡−𝑟 )𝑑𝑟 =
2
√
𝜆

∫ √
𝜆𝑡

0
𝑒−𝜃

2
𝑑𝜃

=

√
𝜋

√
𝜆

erf(
√
𝜆𝑡) ≤

√
𝜋

√
𝜆

where we used the change of variables 𝜃 :=
√
𝜆(𝑡 − 𝑟)1/2 and the fact that |erf(·) | ≤ 1. □

Lemma 1.3.5 (A Grönwall-type inequality). Fix 𝑠 ≥ 0. Let 𝐶 ∈ 𝔹( [𝑠, 1],ℝ) be a non-decreasing

function and let 𝑓 : [𝑠, 1] × 𝕋 → [0,∞) be a bounded function. Suppose that there exists 𝛾 ∈ (1, 2] and

𝑁0 ≥ 0 such that for all 𝑡 ∈ [𝑠, 1] and 𝑥 ∈ 𝕋 we have

𝑓 (𝑡, 𝑥) ≤ 𝐶 (𝑡) + 𝑁0

∫ 𝑡

𝑠

∫
𝕋

𝑝
𝛾
𝑡−𝑟 (𝑥, 𝑦) 𝑓 (𝑟, 𝑦)𝑑𝑦𝑑𝑟.

Then there exists a constant 𝑁 = 𝑁 (𝛾, 𝑁0) such that for all 𝑡 ∈ [𝑠, 1] we have

sup
𝑥∈𝕋

𝑓 (𝑡, 𝑥) ≤ 𝑁𝐶 (𝑡).

10



Chapter 1. Introduction 1.3. Mild solutions

Proof. Let 𝜆 > 0 and consider the non-decreasing function of time 𝑚 : [𝑠, 1] → ℝ, that is given by

𝑚𝑡 := sup
𝑠≤𝑟≤𝑡

sup
𝑥∈𝕋

(
𝑓 (𝑟, 𝑥)𝑒−𝜆𝑟

)
.

Then

𝑓 (𝑡, 𝑥) ≲ 𝐶 (𝑡) +
∫ 𝑡

0

∫
𝕋

𝑝
𝛾
𝑡−𝑟 (𝑥, 𝑦)𝑚𝑟𝑒𝜆𝑟𝑑𝑦𝑑𝑟,

where used the definition of 𝑚 and the fact that [𝑠, 𝑡] ⊂ [0, 𝑡]. Multiplying both sides by 𝑒−𝜆𝑡 and noting

that 𝑚𝑟 ≤ 𝑚𝑡 for 𝑟 ≤ 𝑡 gives

𝑓 (𝑡, 𝑥)𝑒−𝜆𝑡 ≲ 𝐶 (𝑡)𝑒−𝜆𝑡 + 𝑚𝑡
∫ 𝑡

0

∫
𝕋

𝑝
𝛾
𝑡−𝑟 (𝑥, 𝑦)𝑒−𝜆(𝑡−𝑟 )𝑑𝑦𝑑𝑟.

Let 𝑇 ∈ [𝑠, 1]. Using Lemma 1.3.4 to estimate the second term, and taking supremum over (𝑡, 𝑥) ∈

[𝑠, 𝑇] × 𝕋 we get

𝑚𝑇 ≲ 𝐶 (𝑇) + 𝑚𝑇√
𝜆
.

Choosing 𝜆 to be sufficiently large, we get that 𝑚𝑇 ≲ 𝐶 (𝑇). Since, 𝑇 ∈ [𝑠, 1] was arbitrary, the result

follows by the definition of 𝑚. □

Now we are in position to prove the uniqueness of solutions to (1.3.9) for the case when 𝑏, 𝜎 ∈ 𝐶1.

Proof of uniqueness in the Lipschitz case. Suppose that 𝑢1, 𝑢2 are two solutions. Then

𝑢1(𝑡, 𝑥) − 𝑢2(𝑡, 𝑥) =
∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦) (𝑏(𝑢1(𝑟, 𝑦)) − 𝑏(𝑢2(𝑟, 𝑦)))𝑑𝑦𝑑𝑟

+
∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦) (𝜎(𝑢1(𝑟, 𝑦)) − 𝜎(𝑢2(𝑟, 𝑦)))𝜉 (𝑑𝑦, 𝑑𝑟).

Therefore by the Minkowski inequality, the Burkholder-Davis-Gundhy inequality and the Hölder inequality

and by the regularity of 𝑏 and 𝜎:

∥𝑢1(𝑡, 𝑥) − 𝑢2(𝑡, 𝑥)∥𝐿𝑝 ≲ ∥𝑏∥𝐶1

∫ 1

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)∥𝑢1(𝑟, 𝑦) − 𝑢2(𝑟, 𝑦)∥𝐿𝑝𝑑𝑦𝑑𝑟

+ ∥𝜎∥𝐶1

( ∫ 𝑡

0

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)∥𝑢1(𝑟, 𝑦) − 𝑢2(𝑟, 𝑦)∥2

𝐿𝑝
𝑑𝑦𝑑𝑟

)1/2

≲
( ∫ 𝑡

0

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)∥𝑢1(𝑟, 𝑦) − 𝑢2(𝑟, 𝑦)∥2

𝐿𝑝
𝑑𝑦𝑑𝑟

)1/2
.
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Therefore

∥𝑢1(𝑡, 𝑥) − 𝑢2(𝑡, 𝑥)∥2
𝐿𝑝

≲
∫ 𝑡

0

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)∥𝑢1(𝑟, 𝑦) − 𝑢2(𝑟, 𝑦)∥2

𝐿𝑝
𝑑𝑦𝑑𝑟.

Hence by Lemma 1.3.5 we have that

sup
(𝑡 ,𝑥 ) ∈ [0,1]×𝕋

∥𝑢1(𝑡, 𝑥) − 𝑢2(𝑡, 𝑥)∥𝐿𝑝 = 0

and thus for all (𝑡, 𝑥) ∈ [0, 1] × 𝕋 we have 𝑢1(𝑡, 𝑥) = 𝑢2(𝑡, 𝑥) almost surely, hence uniqueness holds. □

The regularity of the solution in the Lipschitz case is also classical. To state the result we introduce

the following notation: For a random field 𝑓 : Ω× [0, 1] × 𝕋 → ℝ and for 𝛾1, 𝛾2 ∈ [0, 1] we say that 𝑓 is

of class 𝐶𝛾1,𝛾2 ( [0, 1] × 𝕋 , 𝐿𝑝) if

∥ 𝑓 ∥𝐶𝛾1 ,𝛾2 ( [0,1]×𝕋 ,𝐿𝑝 ) := sup
(𝑡 ,𝑥 ) ∈ [0,1]×𝕋

∥ 𝑓 (𝑡, 𝑥)∥𝐿𝑝 + sup
0≤𝑠<𝑡≤1

sup
𝑥,𝑦∈𝕋

∥ 𝑓 (𝑡, 𝑥) − 𝑓 (𝑠, 𝑦)∥𝐿𝑝
|𝑡 − 𝑠 |𝛾1 + |𝑥 − 𝑦 |𝛾2

< ∞.

Proposition 1.3.6. Suppose that 𝑏, 𝜎 ∈ 𝐶1 and that 𝑢 solves the (1.3.9). Then for all 𝑝 ≥ 1 and for any

𝜀 ∈ (0, 1
2 ) we have

𝑢 − 𝑃·𝑢0 ∈ 𝐶1/4−𝜀/2,1/2−𝜀 ( [0, 1] × 𝕋 , 𝐿𝑝),

so in particular if 𝑢0 ∈ 𝐶1/2−𝜀 (𝕋 ,ℝ) then 𝑢 ∈ 𝐶1/4−𝜀/2,1/2−𝜀 ( [0, 1] × 𝕋 , 𝐿𝑝).

In the present thesis it will also be shown that this remains true for a much larger class of drifts 𝑏

(provided that 𝜎 is sufficiently smooth and nondegenerate).

1.4 Besov spaces and negative Hölder spaces

The aim of this section is to introduce Besov spaces, to extend Hölder spaces to negative exponents, and

to highlight the connection between the two types of spaces. In order to define Besov spaces, first we

recall some terminology. An annulus in ℝ𝑑 (with 𝑑 ∈ ℕ) is a set of the form {𝑥 ∈ ℝ𝑑 : 𝑎 < |𝑥 | < 𝑏} for

some 0 < 𝑎 ≤ 𝑏 ≤ 1. A function 𝑓 : ℝ𝑑 → ℝ is called radial if 𝑓 (𝑥) = 𝑓 (𝑦) for any 𝑥, 𝑦 ∈ ℝ𝑑 such that

|𝑥 | = |𝑦 |. Let

𝒮 :=
{
𝑓 ∈ 𝐶∞(ℝ𝑑 ,ℝ) : ∀𝑎, 𝑏 ∈ ℕ𝑑 , sup

𝑥∈ℝ𝑑

��� 𝑑∏
𝑖=1

𝑥
𝑎𝑖
𝑖
𝜕
𝑏1
1 . . . 𝜕

𝑏𝑑
𝑑
𝑓 (𝑥)

��� < ∞
}
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denote the Schwartz space of rapidly decreasing functions. A linear continuous map 𝒮 → ℝ is called a

tempered distribution. The space of tempered distributions is denoted by 𝒮
′.

Definition 1.4.1 (dyadic partition of unity). A sequence of compactly supported infinitely differentiable

radial functions (𝜂 𝑗)∞𝑗=−1 is called a dyadic partition of unity if the following hold:

• supp(𝜂−1) is a closed ball (with respect to the 𝑙2-norm on ℝ𝑑) centered at the origin.

• supp(𝜂0) is the closure of an annulus.

• 𝜂 𝑗 (𝑥) = 𝜂0(2− 𝑗𝑥) for all 𝑥 ∈ ℝ𝑑 and for 𝑗 ∈ ℤ≥0.

•
∑∞
𝑗=−1 𝜂 𝑗 (𝑥) = 1 for all 𝑥 ∈ ℝ𝑑 .

•
∑∞
𝑗=−1 |𝜂 𝑗 (𝑥) |2 ∈ [ 1

2 , 1] for 𝑥 ∈ ℝ𝑑 .

• For any 𝑖, 𝑗 ∈ ℤ≥−1, if |𝑖 − 𝑗 | ≥ 2 then supp(𝜂𝑖) ∩ supp(𝜂 𝑗) = ∅.

We say that a compactly supported infinitely differentiable radial function 𝜂 : ℝ𝑑 → [0, 1] generates a

dyadic partition of unity if there exists a partition of unity (𝜂 𝑗)∞𝑗=−1 such that 𝜂0 = 𝜂.

It is known that there exists a compactly supported infinitely differentiable radial function 𝜂 : ℝ𝑑 →

[0, 1] that generates a partition of unity (𝜂 𝑗)∞𝑗=−1 (see e.g. [BCD11]). Define the Paley-Littlewood blocks

Δ 𝑗 𝑓 := F−1
(
𝜂 𝑗F( 𝑓 )

)
where ℱ denotes the Fourier transform, i.e. ℱ( 𝑓 ) (𝑥) :=

∫
ℝ𝑑

𝑓 (𝑦)𝑒−𝑖2𝜋𝑥 ·𝑦𝑑𝑦 and the inverse transform

ℱ
−1 is given by ℱ

−1( 𝑓 ) =
∫
ℝ𝑑

𝑓 (𝑦)𝑒𝑖2𝜋𝑥 ·𝑦𝑑𝑦.

Definition 1.4.2 (Besov-space). Let 𝑠 ∈ ℝ and 𝑝, 𝑞 ∈ [1,∞] We define ∥ · ∥ℬ𝑠
𝑝,𝑞

: 𝒮′ → [0,∞] for

𝑞 < ∞ by

∥ 𝑓 ∥ℬ𝑠
𝑝,𝑞

:=
( ∞∑︁
𝑗=−1

(
2 𝑗𝑠 ∥Δ 𝑗 𝑓 ∥𝐿𝑝

)𝑞)1/𝑞

and for 𝑞 = ∞ by

∥ 𝑓 ∥ℬ𝑠
𝑝,∞ := sup

𝑗≥−1
2 𝑗𝑠 ∥Δ 𝑗 𝑓 ∥𝐿𝑝 .

We say that a tempered distribution 𝑓 ∈ 𝒮
′ belongs in the Besov space ℬ

𝑠
𝑝,𝑞, if ∥ 𝑓 ∥ℬ𝑠

𝑝,𝑞
< ∞.
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It turns out that the space ℬ
𝑠
𝑝,𝑞 does not depend on our choice of generator 𝜂 for the dyadic partition

of unity. To indicate the domain and codomain, we may use the notation ℬ(ℝ𝑑 ,ℝ). The following result

can be found e.g. in [ABLM24]

Proposition 1.4.3. Let 𝛼 ∈ (0,∞) \ ℤ. Then

𝐶𝛼 (ℝ𝑑 ,ℝ) = ℬ
𝛼
∞,∞(ℝ𝑑 ,ℝ).

We extend the notion of Hölder-spaces for negative exponents as follows: For 𝛼 < 0 we say that a

tempered distribution 𝑓 is of class 𝐶𝛼 (ℝ,ℝ), if

∥ 𝑓 ∥𝐶𝛼 (ℝ,ℝ) := sup
𝜀∈ (0,1]

𝜀−𝛼/2∥𝑃ℝ
𝜀 𝑓 ∥𝔹(ℝ,ℝ) < ∞.

The following result is taken from [DGL23], and we will use it to relate Besov and Hölder spaces to

each other for the case of negative regularity.

Proposition 1.4.4. Let 𝛾 ∈ ℝ \ℤ. There exists a constant 𝑁 = 𝑁 (𝛾) such that for all 𝑓 ∈ 𝐶𝛾 (ℝ) we have

∥(1 − Δ)−1 𝑓 ∥𝐶𝛾+2 (ℝ) ≤ 𝑁 ∥ 𝑓 ∥𝐶𝛾 (ℝ) .

While for negative exponents the Besov and Hölder spaces might not coincide, they are still essentially

the same. To be rigorous, the following relation holds between the two types of spaces:

Lemma 1.4.5. Let 𝛼 ∈ (−∞, 0) \ ℤ. For any 𝜀 > 0 we have

ℬ
𝛼+𝜀
∞,∞ (ℝ,ℝ) ⊂ 𝐶𝛼 (ℝ,ℝ) ⊂ ℬ

𝛼
∞,∞(ℝ,ℝ)

Proof. We begin with proving that ℬ𝛼+𝜀
∞,∞ ⊂ 𝐶𝛼. To this end let 𝑓 ∈ ℬ

𝛼+𝜀
∞,∞ . by [Per20, inequality (3.4)]

for 𝛽 ∈ ℝ and 𝛾 ≥ 0 we have

∥𝑃ℝ
𝑡 𝑓 ∥ℬ𝛽+𝛾

∞,∞
≲ 𝑡−𝛾/2∥ 𝑓 ∥

ℬ
𝛽
∞,∞
.

Choosing 𝛽 := 𝛼 + 𝜀 and 𝛾 := −𝛼 (which indeed satisfies 𝛾 ≥ 0), we get that

∥𝑃ℝ
𝑡 𝑓 ∥ℬ𝜀

∞,∞ ≲ 𝑡𝛼/2∥ 𝑓 ∥ℬ𝛼+𝜀
∞,∞ .

14



Chapter 1. Introduction 1.4. Besov spaces and negative Hölder spaces

Using Proposition 1.4.3 and the inequality above, we have

∥𝑃ℝ
𝑡 𝑓 ∥𝔹 ≤ ∥𝑃ℝ

𝑡 𝑓 ∥𝐶 𝜀 ≲ ∥𝑃ℝ
𝑡 𝑓 ∥ℬ𝜀

∞,∞ ≲ 𝑡𝛼/2∥ 𝑓 ∥ℬ𝛼+𝜀
∞,∞ .

Hence multiplying both sides by 𝑡−𝛼/2, it follows that

𝑡−𝛼/2∥𝑃ℝ
𝑡 𝑓 ∥𝔹 ≲ ∥ 𝑓 ∥ℬ𝛼+𝜀

∞,∞ .

Now taking the supremum of both sides over 𝑡 ∈ (0, 1], by the definition of the 𝐶𝛼-norm we get that

∥ 𝑓 ∥𝐶𝛼 ≲ ∥ 𝑓 ∥ℬ𝛼+𝜀
∞,∞ .

The above inequality shows that any 𝑓 ∈ ℬ
𝛼+𝜀
∞,∞ must be also in 𝐶𝛼. Hence it is proven that

ℬ
𝛼+𝜀
∞,∞ ⊂ 𝐶𝛼. (1.4.11)

We proceed with proving that 𝐶𝛼 ⊂ ℬ
𝛼
∞,∞. It suffices to show that for all 𝑛 ∈ ℤ≥0 we have

for 𝛼 ∈ (−2𝑛,∞) \ ℤ that 𝐶𝛼 ⊂ ℬ
𝛼
∞,∞. The statement is known to be true in initial case 𝑛 = 0 by

Proposition 1.4.3. Suppose that the statement holds for some 𝑛 ∈ ℤ≥0. We aim to show that it also holds

for 𝑛 + 1. To this end let 𝛼 ∈ (−2(𝑛 + 1),∞) \ ℤ and 𝑔 ∈ 𝐶𝛼. Define

𝐺 :=
∫ ∞

0
𝑒−𝑡 (𝑃ℝ

𝑡 𝑔)𝑑𝑡 = (1 − Δ)−1𝑔 (1.4.12)

where the second equality is stated e.g. in [DGL23, Proof of Lemma 2.4]. Then by Proposition 1.4.4 we

have

𝐺 ∈ 𝐶𝛼+2.

But 𝛼 + 2 ∈ (−2𝑛,∞) \ℤ, and thus by the induction hypothesis we have 𝐶𝛼+2 ⊂ ℬ
𝛼+2
∞,∞ and thus it follows

that

𝐺 ∈ ℬ
𝛼+2
∞,∞. (1.4.13)

Hence using that by (1.4.12) we have (1 − Δ)𝐺 = 𝑔, the triangle inequality, [JIP23, Lemma 1], and
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(1.4.13), we get that

∥𝑔∥ℬ𝛼
∞,∞ ≤ ∥𝐺∥ℬ𝛼

∞,∞ + ∥Δ𝐺∥ℬ𝛼
∞,∞ ≲ ∥𝐺∥

ℬ
𝛼+2
∞,∞

< ∞,

and thus 𝑔 ∈ ℬ
𝛼
∞,∞. We have shown that if 𝑔 ∈ 𝐶𝛼, then we must have 𝑔 ∈ ℬ

𝛼
∞,∞. This proves that

𝐶𝛼 ⊂ ℬ
𝛼
∞,∞. (1.4.14)

Recalling that we assumed that 𝛼 ∈ (−2(𝑛 + 1),∞) \ ℤ the induction argument is complete, and thus

(1.4.14) holds for any 𝛼 ∈ (−∞, 0) \ ℤ. Hence the proof is finished. □

For 𝛼 > −1 we denote the completion of 𝐶∞ in the norm ∥ · ∥𝐶𝛼 by 𝐶𝛼+.

Remark 1.4.6. For all 𝜀 > 0 we have the inclusions 𝐶𝛼+𝜀 ⊂ 𝐶𝛼+ ⊂ 𝐶𝛼.

1.5 Introduction to regularisation by noise

Recall that an equation is called “well-posed” if for any initial condition there exists a unique solution. If

a problem is not well-posed, we call it “ill-posed”. While “regularisation by noise” is not a rigorously

defined term, we give the following informal definition (see e.g. [BDG21]): The phenomenon when the

presence of a random forcing makes an ill-posed problem well-posed.

The simplest example is the following. Let 𝑏 : ℝ → ℝ be a function, 𝑥0 ∈ ℝ, and consider the

ordinary differential equation (ODE)

𝑑𝑋𝑡 = 𝑏(𝑋𝑡 )𝑑𝑡, 𝑋0 = 𝑥0.

If 𝑏 is not Lipschitz, then the solution might not be unique, and if 𝑏 is not continuous then the solution

might not exist at all. However perturbing the equation with (possibly multiplicative) Brownian noise, we

obtain the stochastic differential equation (SDE)

𝑑𝑋𝑡 = 𝑏(𝑋𝑡 )𝑑𝑡 + 𝜎(𝑋𝑡 )𝑑𝑊𝑡 , 𝑋0 = 𝑥0, (1.5.15)

which is strongly well-posed even if 𝑏 is merely bounded and measurable, provided that 𝜎 ∈ 𝐶2 such that

𝜎 ≥ 𝜇 with some constant 𝜇 > 0 (see [Ver80]). The origins of regularisation by noise can be traced back

to Zvonkin’s seminal work [Zvo74], where he constructed a map 𝑓 : [0, 1] × ℝ → ℝ (which became

16
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known as the Zvonkin transform) such that for each 𝑡 ∈ [0, 1] the map 𝑓 (𝑡, ·) is a bijection and 𝑓 (𝑡, 𝑋𝑡 )

solves an SDE with no drift, and using this he proved the well-posedness of (1.5.15) in 1 dimension for

bounded and measurable drift 𝑏. In [Por75] Portenko proved the existence of solutions to (1.5.15) in

higher dimensions for the case when the drift is the sum of a bounded and an 𝐿𝑝-integrable function.

In [Ver80] Veretennikov has used the Zvonkin transform to provide a well-posedness result in higher

dimensions for bounded and measurable 𝑏 . For the case of additive noise, path-by-path uniqueness has

been proven by Davie in [Dav07], which means that for almost all Brownian paths𝑊𝑡 there is a unique 𝑋𝑡

that solves the equation. In [KR05] Krylov and Röckner show the strong well-posedness of the SDE

𝑑𝑋𝑡 = 𝑏(𝑡, 𝑋𝑡 )𝑑𝑡 + 𝑑𝑊𝑡

under the condition that 𝑏 ∈ 𝐿𝑞 ( [0, 1], 𝐿𝑝 (ℝ𝑑)) with 𝑝 ≥ 2, 𝑞 > 2 such that 2
𝑞
+ 𝑑
𝑝
< 1.

While the phenomenon of regularisation by noise may seem strange, there is actually an intuitively

clear explanation: the noise pushes the solution out of the points of the domain where 𝑏 is poorly behaved.

Consequentially, the solution will not “get stuck” in a problematic part of the domain. For this, however it

is needed that the noise is present, which is why we had to impose the condition that 𝜎 is bounded away

from zero. Below we will show some examples of regularisation by noise in finite and infinite dimensions.

Example 1.5.1 (Regularisation by noise repairing the uniqueness of an ODE). Since the map 𝑥 ↦→
√︁
|𝑥 |

is not Lipschitz-continuous, uniqueness fails for the ODE

𝑑𝑋𝑡 =
√︁
|𝑋𝑡 |𝑑𝑡, 𝑋0 = 0, 𝑡 ∈ [0, 1] .

Indeed, for any 𝑐 ∈ [0, 1], the function

𝑋𝑡 =
(𝑡 − 𝑐)2

4
1(𝑐,∞) (𝑡)

is a solution, since for 𝑡 ∈ (𝑐, 1] we have

𝑑𝑋𝑡

𝑑𝑡
=
𝑑

𝑑𝑡

( (𝑡 − 𝑐)2

4

)
=

1
2
(𝑡 − 𝑐) =

√︂
1
4
(𝑡 − 𝑐)2 =

√︁
|𝑋𝑡 |

and for 𝑡 ∈ [0, 𝑐] we have
𝑑𝑋𝑡

𝑑𝑡
=
𝑑

𝑑𝑡
0 = 0 =

√︁
|𝑋𝑡 |.
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However, the equation that is obtained by perturbing our ODE with additive Brownian noise, i.e. the SDE

𝑑𝑋𝑡 =
√︁
|𝑋𝑡 |𝑑𝑡 + 𝑑𝑊𝑡

admits a unique strong solution in any spatial domain of the form [−𝑛, 𝑛] with 𝑛 ∈ ℕ (until the solution

hits the boundary), since on a compact domain 𝑥 ↦→
√︁
|𝑥 | is bounded and measurable (and in fact of 𝐶1/2

regularity).

The following example is taken from [AG01]

Example 1.5.2 (Regularisation by noise repairing the uniqueness of a PDE). Consider the deterministic

reaction-diffusion equation

(𝜕𝑡 − Δ)𝑢(𝑡, 𝑥) = 2
√︁

sin(𝜋𝑥)𝑢(𝑡, 𝑥) + 𝜋2𝑢(𝑡, 𝑥) ∀(𝑡, 𝑥) ∈ [0,∞) × [0, 1],

𝑢(𝑡, 0) = 𝑢(𝑡, 1) = 0 ∀𝑡 ∈ [0,∞),

𝑢(0, 𝑥) = 0 ∀𝑥 ∈ [0, 1] .

Uniqueness fails, since both 𝑢(𝑡, 𝑥) = 0 and 𝑢(𝑡, 𝑥) = 𝑡2 sin(𝜋𝑥) solve the equation. However the addition

of a Brownian noise term guarantees the existence of a unique mild solution

Example 1.5.3 (Regularisation by noise repairing the existence of solutions of an ODE and a PDE).

Recall that the sign function is given by sgn(𝑥) := −1(−∞,0) (𝑡) + 1(0,∞) (𝑡) and thus define a square wave

by

𝑏(𝑥) := sgn(sin(𝑥)).

Since 𝑏 is discontinuous, the ODE 𝑑𝑋𝑡 = 𝑏(𝑋𝑡 )𝑑𝑡 does not have a solution. However since 𝑏 is bounded

and measurable, the SDE

𝑑𝑋𝑡 = 𝑏(𝑋𝑡 )𝑑𝑡 + 𝑑𝑊𝑡 , 𝑋0 = 0

admits a unique strong solution. Similarly even though the PDE (𝜕𝑡 −Δ)𝑢 = 𝑏(𝑢) does not have a solution,

the SPDE

(𝜕𝑡 − Δ)𝑢 = 𝑏(𝑢) + 𝜉, 𝑢(0, ·) = 0

admits a unique mild solution.

If 𝑏 ∈ 𝐶𝛼 with 𝛼 ≥ 0 then it is clear how to define the solution of the SDE (1.5.15), as we can rewrite
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it as the integral equation

𝑋𝑡 = 𝑥0 +
∫ 𝑡

0
𝑏(𝑋𝑟 )𝑑𝑟 +

∫ 𝑡

0
𝜎(𝑋𝑟 )𝑑𝑊𝑟 .

However if 𝑏 ∈ 𝐶𝛼 with 𝛼 ∈ (−1, 0) then the composition 𝑏(𝑋𝑡 ) is not defined, since 𝑏 is not a pointwise

defined object, but merely a generalised function in the Schwartz-sense. Hence the usual concept of

solution breaks down. To overcome this difficulty, we could say that (𝑋𝑡 ) is a regularised solution of the

above SDE if there is a drift term 𝐷𝑡 such that

1. For any sequence (𝑏𝑛)𝑛∈ℕ ⊂ 𝐶∞ such that 𝑏𝑛 → 𝑏 in 𝐶𝛼 we have that

sup
𝑡∈[0,1]

��� ∫ 𝑡

0
𝑏𝑛 (𝑋𝑡 )𝑑𝑡 − 𝐷𝑡

��� → 0

in probability as 𝑛→ ∞.

2. For all 𝑡 ∈ [0, 1] we have

𝑋𝑡 = 𝑥0 + 𝐷𝑡 +
∫ 𝑡

0
𝜎(𝑋𝑡 )𝑑𝑊𝑡 .

The above approach originates from the paper [BC01] by Bass and Chen, where they show the strong

well-posedness of the SDE (1.5.15) for 𝑏 ∈ ℬ
𝛼
∞,∞ with 𝛼 > −1/2. The way that Bass and Chen define

the solution for distributional drift was generalised to SPDEs in [ABLM24]. The definition that we will

use in the present work to characterise the solution of (1.3.9) is consistent with the definition used in

[ABLM24].

Remark 1.5.4. For this approach to work we need such a sequence (𝑏𝑛) to exist, in other words we

need 𝑏 ∈ 𝐶𝛼+. However due to the chain of embeddings in Remark 1.4.6, it is equivalent to prove

well-posedness for 𝑏 ∈ 𝐶𝛼 for all 𝛼 ∈ (−1, 0) and for 𝑏 ∈ 𝐶𝛼+ for all 𝛼 ∈ (−1, 0).

1.6 The literature

In the field of stochastic partial differential equations (SPDEs), the first results on regularisation by noise

can be traced back to the works of Gyöngy and Pardoux [GP93a], [GP93b]. Therein, the authors consider

SPDEs of the form

(𝜕𝑡 − Δ)𝑢 = 𝑏(𝑢) + 𝜉, 𝑢 |𝑡=0 = 𝑢0, (1.6.16)
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which corresponds to (1.3.9) with 𝜎 = 1. It is well known that the deterministic counterpart of (1.6.16)

admits a unique solution provided that 𝑏 is a Lipschitz continuous function. Without Lipschitz regularity,

solutions may not exists or may not be identified uniquely. The situation changes in the presence of noise.

It is shown in [GP93a] and [GP93b] that (1.6.16) admits a unique strong solution provided that 𝑏 is merely

the sum of a bounded measurable function and an 𝐿𝑝-integrable function with some 𝑝 ≥ 2. Similar

results were obtained for SPDEs in an abstract Hilbert-space framework with bounded and measurable

drift in [DPFPR13]. In [BM19], Butkovsky and Mytnik show when 𝑏 is bounded and measurable,

path-by-path uniqueness also holds for (1.6.16). For such drift, discrete approximation schemes for the

solution of (1.6.16) have been established with an optimal rate in [BDG23], quantifying earlier results

from [Gyö98, Gyö99].

Notice that in all the previous results, 𝑏 is quite irregular, nevertheless it is a function. The first

well-posedness result which accommodates distributional drift 𝑏 is due to Athreya, Butkovsky, Mytnik,

and Lê in [ABLM24]. In such case, the composition 𝑏(𝑢) is not well-defined a priori and solutions

to (1.6.16) are defined in a regularised sense. They show in [ABLM24] that (1.6.16) admits a unique

probabilistically strong solution provided that 𝑏 belongs to the Besov space ℬ
𝛼
𝑞,∞ with 𝛼 − 1/𝑞 ≥ −1,

𝛼 > −1, and 𝑞 ∈ [1,∞]. Such Besov space includes bounded measurable functions, 𝐿1-integrable

functions, as well as Radon measures. To obtain such results, [ABLM24] establishes Lipschitz regularity

for some related singular integrals using the stochastic sewing lemma introduced in [Lê20]. The regularity

threshold −1 is in agreement with the finite dimensional analogue [CG16] where it is shown that any SDE

driven by additive fractional Brownian motion with Hurst parameter 𝐻 ∈ (0, 1) has a unique solution

provided that the drift belongs to the Besov–Hölder space ℬ
𝛼
∞,∞ with 𝛼 > 1 − 1

2𝐻 . The two results are

related by setting 𝐻 = 1/4, which is the temporal regularity of the random field solution of (1.6.16) with

𝑏 = 0. Quantitative convergence of discrete approximation schemes under the assumptions of [ABLM24]

is also considered by Goudenége, Haress and Richard in [GHR24], extending [BDG23].

All of the aforementioned results concern the additive noise case. For the multiplicative case, much

less is known. In [BGP94] the authors show that (1.3.9) has a unique solution when 𝜎 is regular and

bounded away from 0, and the drift is measurable and satisfies the “one-sided linear growth condition”

that 𝑦𝑏(𝑦) ≲ 1 + 𝑦2 for 𝑦 ∈ ℝ. This was followed by the papers [Gyö95, AG01] where well-posedness is

shown for the case of locally bounded/integrable drift respectively. The proofs from these references rely

on the Girsanov theorem, 𝐿𝑝-estimates for the density of the driftless equation, and a comparison principle.

In particular, their method also uses comparison between the equation and its driftless counterpart, and

they use Malliavin calculus to derive estimates for the density 𝑓𝑡 ,𝑥 of the solution 𝜙 of the drifless equation,
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building on the previous work [PZ93] of Pardoux and Zhang where they used Malliavin calculus to

study continuity properties of the density. However the method of [BGP94] is based on the estimation of∫ 𝑇
0

∫
𝕋

∫
ℝ
| 𝑓𝑡 ,𝑥 (𝑦) |𝑝𝑑𝑦𝑑𝑥𝑑𝑡, and to this end they only need to estimate the first two Malliavin derivatives

of 𝜙. In comparison, in the present thesis we derive estimates for the Hölder norms of all derivatives

𝑓
(𝑛)
𝑡 ,𝑥 of the density. To achieve this, we must derive estimates on all Malliavin derivatives of 𝜙. An other

improvement of the present thesis is the rate of blowup of the negative moments of the Malliavin matrix.

In particular, while in [BGP94] the blowup is of order 𝑡−1/2 for small times, in the present thesis we are

able to get this down to 𝑡−1/4.

The well-posedness result in this thesis is an analogue of [ABLM24] for the multiplicative noise

case. Namely, we show existence and uniqueness for (1.3.9) when 𝜎 is regular and bounded away from 0,

the drift belongs to the Besov–Hölder space ℬ
𝛼
𝑞,∞ with 𝛼 > −1 and 𝑞 = ∞. For simplicity, we do not

consider the case when 𝑞 < ∞, which allows us to obtain qualitative stability results and highlight the

essential elements of our approach. Similar to [ABLM24], our method also relies on the stochastic sewing

lemma from [Lê20] which does not rely on Girsanov theorem nor comparison principles. Therefore, the

techniques within could also be applied to equations driven by Lévy noise and to systems of equations.

Compare with [ABLM24], while the probabilistic properties of the noise term in the additive case

are explicitly understood, this is no longer the case for our multiplicative equation (1.3.9). Therefore,

employing the sewing methods in the present thesis is more involved than [ABLM24]. In the sewing

arguments in previous works, one approximates a solution using the integral form of the corresponding

equation. This works quite well in the additive noise case, [CG16, ABLM24]. It also works quite well in

some multiplicative noise cases if the noise is not too irregular, for example equations driven by fractional

Brownian motion with Hurst parameter 𝐻 > 1/2 (see [DG24]). However, for 𝐻 < 1/2, this approach

leads to suboptimal results. The same is true for the setting of the present thesis. With such an approach,

one would only be able to obtain well-posedness when 𝑏 has positive Hölder regularity (and in that case

well-posedness is already known, see [GP93a] and [GP93b]). Instead, in order to cover the whole regime

𝑏 ∈ ℬ
𝛼
∞,∞ with 𝛼 > −1, we come up with sewing arguments that employ the flow of the driftless equation.

Consequently, we need (and obtain) some regularisation estimates related to the density of the solution

to the driftless equation and its derivatives. These estimates are achieved via Malliavin calculus which

demands a relatively high regularity from 𝜎. This approach is not equation-specific but rather works as a

general principle.
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1.7 Formulation and the well-posedness result

We introduce our main assumptions and the concept of solution to (1.3.9) for the case of distributional

drift.

Assumption 1.7.1. The function 𝑏 is of class 𝐶𝛼+ for some 𝛼 ∈ (−1, 0) and the function 𝜎 is of class 𝐶4.

Moreover, there exists a positive constant 𝜇 such that

𝜎2(𝑥) ≥ 𝜇2 for all 𝑥 ∈ ℝ.

Finally, the initial condition 𝑢0 : 𝕋 → ℝ is a bounded and continuous deterministic function.

Definition 1.7.2 (Regularised solution). Let 𝑢 : Ω× [0, 1] × 𝕋 → ℝ be a 𝒫 ⊗ℬ(𝕋 )-measurable random

field, such that 𝑢(𝑡, 𝑥) is continuous in (𝑡, 𝑥) ∈ [0, 1] × 𝕋 . We say that 𝑢 is a regularised solution of

(1.3.9) if there exists a 𝒫 ⊗ ℬ(𝕋 )-measurable random field 𝐷𝑢 : Ω × [0, 1] × 𝕋 → ℝ such that

1. For any sequence (𝑏𝑛)𝑛∈ℕ ⊂ 𝐶∞ such that 𝑏𝑛 → 𝑏 in 𝐶𝛼, we have that

sup
(𝑡 ,𝑥 ) ∈ [0,1]×𝕋

���𝐷𝑢𝑡 (𝑥) − ∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝑏𝑛 (𝑢(𝑟, 𝑦))𝑑𝑦𝑑𝑟
��� −→ 0 (1.7.17)

in probability.

2. For each (𝑡, 𝑥) ∈ [0, 1] × 𝕋 ,

𝑢(𝑡, 𝑥) = 𝑃𝑡𝑢0(𝑥) + 𝐷𝑢𝑡 (𝑥) +
∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝜎(𝑢(𝑟, 𝑦))𝜉 (𝑑𝑦, 𝑑𝑟) a.s. (1.7.18)

Remark 1.7.3. For a given regularised solution 𝑢, the random field 𝐷𝑢 is uniquely characterised by relation

(1.7.17). Furthermore, in the more regular setting when 𝛼 ≥ 0, Definition 1.7.2 reduces to the standard

notion of a mild solution. In such case by (1.7.17) one has 𝐷𝑢𝑡 (𝑥) =
∫ 𝑡

0

∫
𝕋
𝑝𝑡−𝑟 (𝑥, 𝑦)𝑏(𝑢(𝑟, 𝑦))𝑑𝑦𝑑𝑟 .

For (𝑆, 𝑇) ∈ [0, 1]2 such that 𝑆 ≤ 𝑇 , let us define the simplices

[𝑆, 𝑇]2
≤ := {(𝑠, 𝑡) ∈ [𝑆, 𝑇]2 : 𝑠 ≤ 𝑡} and [𝑆, 𝑇]2

< := {(𝑠, 𝑡) ∈ [𝑆, 𝑇]2 : 𝑠 < 𝑡}.

To describe the regularity of the solutions, we introduce the following spaces of random fields.

Definition 1.7.4 (The spaces𝒱𝛽
𝑝 , 𝒰𝛽

𝑝 and𝒰𝛽). Let 𝛽 ∈ [0, 1] and 𝑝 ∈ [1,∞). We denote by𝒱𝛽
𝑝 [0, 1] the

collection of all 𝒫 ⊗ℬ(𝕋 )-measurable functions 𝑓 : Ω× [0, 1] ×𝕋 → ℝ such that 𝑓 ∈ 𝔹( [0, 1] ×𝕋 , 𝐿𝑝)

22



Chapter 1. Introduction 1.8. Overview of methods of proofs

and

[ 𝑓 ]
𝒱
𝛾
𝑝 [0,1] := sup

𝑥∈𝕋
sup

(𝑠,𝑡 ) ∈ [0,1]2
<

∥ 𝑓𝑡 (𝑥) − 𝑃𝑡−𝑠 𝑓𝑠 (𝑥)∥𝐿ℱ𝑠
𝑝,∞

|𝑡 − 𝑠 |𝛾 < ∞.

For (𝑆, 𝑇) ∈ [0, 1]2
≤ , the space 𝒱

𝛽
𝑝 [𝑆, 𝑇] and the corresponding seminorm are defined analogously. We

denote by 𝒰
𝛽
𝑝 the collection of all regularised solutions 𝑢 of (1.3.9) such that 𝐷𝑢 ∈ 𝒱

𝛽
𝑝 [0, 1]. We

moreover define

𝒰
𝛽 :=

∞⋂
𝑝=1

𝒰
𝛽
𝑝 .

We are now in position to state our main theorem.

Theorem 1.7.5 (Well-posedness). Let Assumption 1.7.1 hold. There exists a regularised solution 𝑢 to

(1.3.9) in the class 𝒰1+𝛼/4. Moreover if 𝑣 is another solution of (1.3.9) in the class 𝒰𝛽

2 for some 𝛽 ≥ 1
2 −

𝛼
4 ,

then 𝑢(𝑡, 𝑥) = 𝑣(𝑡, 𝑥) almost surely for all (𝑡, 𝑥) ∈ [0, 1] × 𝕋 .

1.8 Overview of methods of proofs

The bulk of the proofs relies on moment estimates for singular integrals which are typically of the form

𝐼 :=
∫ 1

0

∫
𝕋

ℎ(𝑦) 𝑓 (𝑢(𝑟, 𝑦))𝑑𝑦𝑑𝑟

where ℎ is an integrable function, 𝑢 is a solution to (1.3.9) and 𝑓 is a distribution with negative Hölder

regularity. An effective tool to estimate moments of 𝐼, which emerges from [Lê20], is the stochastic

sewing lemma. Heuristically, the lemma decomposes 𝐼 corresponding to partitions of the time interval

[0, 1] with vanishing mesh size. More precisely, let 𝜋 be a partition of [0, 1], then one writes

𝐼 =
∑︁

[𝑠,𝑡 ]∈𝜋

∫ 𝑡

𝑠

∫
𝕋

ℎ(𝑦) 𝑓 (𝑢(𝑟, 𝑦))𝑑𝑦𝑑𝑟.

On each subinterval [𝑠, 𝑡], we approximate the random variable
∫ 𝑡
𝑠

∫
𝕋
(. . .)𝑑𝑦𝑑𝑟 by its conditional

expectation given ℱ𝑠, i.e. 𝔼𝑠
∫ 𝑡
𝑠

∫
𝕋
(. . .)𝑑𝑦𝑑𝑟. Because the conditional law of 𝑢(𝑟, 𝑦) given ℱ𝑠 is

unknown a priori, we further approximate 𝑢(𝑟, 𝑦) by a random variable, denoted by 𝜓𝑠 (𝑟, 𝑦). There are

two desirable properties for these approximations. First, one must recover 𝐼 when the mesh size of 𝜋

vanishes, namely

𝐼 = lim
| 𝜋 |↓0

∑︁
[𝑠,𝑡 ]∈𝜋

𝔼𝑠
∫ 𝑡

𝑠

∫
𝕋

ℎ(𝑦) 𝑓 (𝜓𝑠 (𝑟, 𝑦))𝑑𝑦𝑑𝑟.
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Second, the conditional expectation 𝔼𝑠 𝑓 (𝜓𝑠 (𝑟, 𝑦)) is well-defined and can be estimated so that for some

𝑝 ≥ 2 and 𝜀 > 0, one has

∥𝔼𝑠
∫ 𝑡

𝑠

∫
𝕋

ℎ(𝑦) 𝑓 (𝜓𝑠 (𝑟, 𝑦))𝑑𝑦𝑑𝑟 ∥𝐿𝑝 (Ω) ≲ (𝑡 − 𝑠) 1
2+𝜀 (1.8.19)

and

∥𝔼𝑠
∫ 𝑡

𝑎

∫
𝕋

ℎ(𝑦) [ 𝑓 (𝜓𝑠 (𝑟, 𝑦)) − 𝑓 (𝜓𝑎 (𝑟, 𝑦)] ∥𝐿𝑝 (Ω) ≲ (𝑡 − 𝑠)1+𝜀 (1.8.20)

for every 𝑠 ≤ 𝑎 ≤ 𝑡. Under these two properties, the stochastic sewing lemma can be applied, and it

provides estimates for the 𝑝-th moment of 𝐼.

Let us explain how 𝜓𝑠 is chosen. Relation (1.7.18) provides a natural decomposition of a solution as

the sum of a nondegenerate noise and the drift, namely

𝑢(𝑡, 𝑥) = 𝑃𝑡𝑢0(𝑥) + 𝐷𝑢𝑡 (𝑥) +𝑉𝑡 (𝑥), where 𝑉𝑡 (𝑥) =
∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝜎(𝑢(𝑟, 𝑦))𝜉 (𝑑𝑦, 𝑑𝑟).

It follows that for each 𝑠 ≤ 𝑡,

𝑢(𝑡, 𝑥) = 𝑃𝑡−𝑠𝑢(𝑠, ·) (𝑥) + [𝐷𝑢𝑡 (𝑥) − 𝑃𝑡−𝑠𝐷𝑢𝑠 (𝑥)] + [𝑉𝑡 (𝑥) − 𝑃𝑡−𝑠𝑉𝑠 (𝑥)] .

One could then choose to approximate 𝑢(𝑡, 𝑥) by the random variable

𝜓𝑠 (𝑡, 𝑥) := 𝑃𝑡−𝑠𝑢(𝑠, ·) (𝑥) + [𝑉𝑡 (𝑥) − 𝑃𝑡−𝑠𝑉𝑠 (𝑥)] .

The error of this approximation can be quantified by the following estimate

∥𝑢(𝑡, 𝑥) − 𝜓𝑠 (𝑡, 𝑥)∥𝐿𝑝 (Ω) ≲ |𝑡 − 𝑠 |𝛾 (1.8.21)

for every 𝑠 ≤ 𝑡 and for some 𝛾 > 0. The larger the value of 𝛾 is, the better the approximation is. We note

that

[𝑉𝑡 (𝑥) − 𝑃𝑡−𝑠𝑉𝑠 (𝑥)] =
∫ 𝑡

𝑠

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝜎(𝑢(𝑟, 𝑦))𝜉 (𝑑𝑦, 𝑑𝑟).

In the additive case (i.e. when 𝜎 is a constant), 𝑉𝑡 (𝑥) − 𝑃𝑡−𝑠𝑉𝑠 (𝑥) has a normal distribution and hence,

the conditional expectation 𝔼𝑠 𝑓 (𝜓𝑠 (𝑡, 𝑥)) can be evaluated precisely. The stochastic sewing method

described above can be applied (i.e. achieving (1.8.19) and (1.8.20)) under some suitable regularity
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assumptions on 𝑓 and that 𝛾 > 1/2 − 𝛼/4 ≈ 3/4 for 𝛼 ≈ −1 (recall that −1 < 𝛼 < 0 is the regularity of

the drift). This is the approach from [ABLM24].

Going toward the multiplicative noise case, one might hope that a similar argument would work.

Notice that in this case, the distribution of 𝑉𝑡 (𝑥) − 𝑃𝑡−𝑠𝑉𝑠 (𝑥) conditionally on ℱ𝑠 is not known a priori.

A naive way to circumvent this issue is to consider

𝜓𝑠 (𝑡, 𝑥) := 𝑃𝑡−𝑠𝑢(𝑠, ·) (𝑥) +
∫ 𝑡

𝑠

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝜎(𝑢(𝑠, 𝑦))𝜉 (𝑑𝑦, 𝑑𝑟), (1.8.22)

which is obtained by freezing the solution in the integrand at time 𝑠. In this way, conditionally on ℱ𝑠,

𝜓𝑠 (𝑡, 𝑥) once again has a normal distribution, which allows for concrete analysis. However, one can not

go far with this choice as it is immediate that

𝑢(𝑡, 𝑥) − 𝜓𝑠 (𝑡, 𝑥) =
∫ 𝑡

𝑠

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)
(
𝜎(𝑢(𝑟, 𝑦)) − 𝜎(𝑢(𝑠, 𝑦))

)
𝜉 (𝑑𝑦, 𝑑𝑟),

whose moments are (expectedly) of order |𝑡 − 𝑠 |1/2 (consisting of two contributions of the same order

1/4 from the stochastic integral and from the temporal regularity of the solution). The exponent 1/2

falls short of the required threshold 3/4 which is necessary in the additive case. This makes the naive

approximation (1.8.22) unsuitable for the sewing method under Assumption 1.7.1.

In order to resolve these issues, we introduce the following approximation

𝜓𝑠 (𝑡, 𝑥) := 𝜙𝑢(𝑠, · ) ,𝑠 (𝑡, 𝑥), (1.8.23)

where 𝜙𝑧,𝑠 denotes the solution to the driftless equation

(𝜕𝑡 − Δ)𝜙𝑧,𝑠 = 𝜎(𝜙𝑧,𝑠)𝜉, 𝜙𝑧,𝑠 (𝑠, ·) = 𝑧(·).

Observe that when 𝜎 is a constant, (1.8.22) and (1.8.23) coincide, but otherwise they are generally

different. Indeed, we show in Section 3.1 that the approximation (1.8.23) satisfies the estimate (1.8.21)

with 𝛾 = 1 + 𝛼/4 which is larger than 1/2 − 𝛼/4 as is required for the application of the sewing method.

The distribution of 𝜓𝑠 (𝑡, 𝑥) conditioned on ℱ𝑠 might not be as explicit as in the additive noise case but

nevertheless, one can extract the information which is sufficient to verify (1.8.19) and (1.8.20). This

essentially boils down to obtaining estimates related to the density of the solution of the driftless equation

and its derivatives, which are achieved by tools from Malliavin calculus (see Section 2.3).
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When comparing our method to the existing ones from the literature, we can draw some similarities

as well as genuine differences. The works [BGP94, Gyö95, AG01] also utilise estimates on the density of

the solution to the driftless equation, however, in a completely different way. In fact, these works use

Girsanov theorem to extract relevant and useful a priori estimates for the solution to (1.3.9) from the

solution of the driftless equation. Under our main assumption, the Girsanov theorem is not applicable

which makes this argument obsolete. Additionally, our uniqueness argument relies on qualitative stability

estimates, as opposed to comparison principles in the aforementioned works. Similarly to [ABLM24],

we also use stochastic sewing method. However, while [ABLM24] relies on the approximation (1.8.22),

we introduce and utilise the better approximation (1.8.23). To the best of the author’s knowledge, this

is the first time it has been used in the study of regularisation by noise phenomena by sewing methods.

Furthermore, because the conditional law of 𝜓𝑠 is not explicit, additional works have been carried out in

order to apply the sewing method successfully.

The driftless equation also appears in [CD22] in the study of regularisation by multiplicative fractional

noise for SDEs. In this work, the authors employ a transformation, which is based on the inverse of

the flow generated by the driftless equation, to transform the original equation into an additive one.

Comparing the results of [CD22] and [DG24] reveals that such transformation is quite demanding and

does not lead to results which are in alignment with [CG16]. The connection between (1.3.9) and the

driftless equation is well-known, perhaps since the Girsanov theorem. Another instance of such relation

appears in [IS01] in a different context. Our work therefore exhibits a new connection between the two

equations.

1.9 Stochastic sewing

We begin with introducing increment notation. Let (𝑆, 𝑇) ∈ [0, 1]2
<. For any functions 𝒜 : [𝑆, 𝑇] → ℝ,

𝐴 : [𝑆, 𝑇]2
≤ → ℝ, for any (𝑠, 𝑡) ∈ [0, 1]2

≤ and 𝑎 ∈ [𝑠, 𝑡], we define 𝒜𝑠,𝑡 := 𝒜𝑡 − 𝒜𝑠, and 𝛿𝐴𝑠,𝑎,𝑡 :=

𝐴𝑠,𝑡 − 𝐴𝑠,𝑎 − 𝐴𝑎,𝑡 .

Before stating the stochastic sewing lemma, we first give a general idea about what it does. Suppose

that we are given some 𝑝 ≥ 2, 𝒜 : [0, 1] → 𝐿𝑝 (Ω) starting from zero, such that 𝒜𝑡 is ℱ𝑡 -measurable,

and we want to bound the 𝐿𝑝-norm ∥𝒜𝑠,𝑡 ∥𝐿𝑝 . The idea of stochastic sewing is the following: Instead of

trying to bound ∥𝒜𝑠,𝑡 ∥𝐿𝑝 directly, we construct an object 𝐴𝑠,𝑡 according to the following criteria:

1. 𝐴𝑠,𝑡 has to be sufficiently “close” to 𝒜𝑠,𝑡 on any time interval [𝑠, 𝑡] ⊂ [0, 1].

2. 𝐴𝑠,𝑡 should be easier to approximate than 𝒜𝑠,𝑡 .
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A stochastic sewing lemma will then enable us to “sew together” the local bounds on 𝐴𝑠,𝑡 on the small

time intervals [𝑠, 𝑡] into a bound for 𝒜𝑠,𝑡 . The most strightforward application is bounding the 𝐿𝑝-norm

of

𝒜𝑠,𝑡 =

∫ 𝑡

𝑠

𝑓 (𝑋 (𝑟))𝑑𝑟

where (𝑋𝑟 )𝑟∈[0,1] is some adapted stochastic process and 𝑓 is some irregular function.

The first stochastic sewing lemma is introduced in [Lê20]. To best suit our purpose herein, we state a

conditional version of the lemma which applies in settings with 𝐿ℱ𝑠𝑞,𝑝-norms (defined in (1.2.8)). This

version is originated from the works [FHL24, ABLM24, Lê23], where the reader can find its proof.

Lemma 1.9.1 (Conditional stochastic sewing lemma). Let 𝑝, 𝑞 satisfy 2 ≤ 𝑞 ≤ 𝑝 ≤ ∞ with 𝑞 < ∞. Let

(𝑆, 𝑇) ∈ [0, 1]2
≤ and let 𝐴 : [𝑆, 𝑇]2

≤ → 𝐿𝑝 (Ω) be a function such that for any (𝑠, 𝑡) ∈ [𝑆, 𝑇]2
≤ the random

vector 𝐴𝑠,𝑡 is ℱ𝑡 -measurable. Suppose that for some 𝜀1, 𝜀2 > 0 and 𝐶1, 𝐶2 the bounds

∥𝐴𝑠,𝑡 ∥𝐿ℱ𝑠
𝑞,𝑝

≤ 𝐶1 |𝑡 − 𝑠 |1/2+𝜀1 , ∥𝔼𝑠𝛿𝐴𝑠,𝑎,𝑡 ∥𝐿𝑝 ≤ 𝐶2 |𝑡 − 𝑠 |1+𝜀2 (1.9.24)

hold for all 𝑆 ≤ 𝑠 ≤ 𝑎 ≤ 𝑡 ≤ 𝑇 . Then, there exists a unique map 𝒜 : [𝑆, 𝑇] → 𝐿𝑝 (Ω) such that 𝒜𝑆 = 0,

𝒜𝑡 is ℱ𝑡 -measurable for all 𝑡 ∈ [𝑆, 𝑇], and the following bounds hold for some constants 𝐾1, 𝐾2 > 0:

∥𝒜𝑠,𝑡 − 𝐴𝑠,𝑡 ∥𝐿ℱ𝑠
𝑞,𝑝

≤ 𝐾1 |𝑡 − 𝑠 |1/2+𝜀1 (1.9.25)

∥𝔼𝑠 (𝒜𝑠,𝑡 − 𝐴𝑠,𝑡 )∥𝐿𝑝 ≤ 𝐾2 |𝑡 − 𝑠 |1+𝜀2 . (1.9.26)

Furthermore, there exists a constant 𝐾 depending only on 𝜀1, 𝜀2, 𝑑, 𝑝 such that 𝒜 satisfies the bound

∥𝒜𝑠,𝑡 ∥𝐿𝒢𝑠𝑞,𝑝 ≤ 𝐾𝐶1 |𝑡 − 𝑠 |1/2+𝜀1 + 𝐾𝐶2 |𝑡 − 𝑠 |1+𝜀2

for all (𝑠, 𝑡) ∈ [𝑆, 𝑇]2
≤ .

We will call 𝐴 a germ of the process 𝒜. In practice, we mostly take 𝑞 = 𝑝 (in which case, 𝐿ℱ𝑠𝑞,𝑝-norm

and 𝐿𝑝-norm coincide) and 𝑝 = ∞.

Example 1.9.2 (A simple example of a sewing argument). Let 𝑓 be a smooth function and𝑊 a Wiener

process. Suppose that the want to show that ∥
∫ 𝑡
𝑠
𝑓 ′(𝑊𝑟 )𝑑𝑟 ∥𝐿𝑝 ≲ (𝑡 − 𝑠)1/2+𝜀/2 in such a way that the

bound only depends on the 𝐶 𝜀-norm of 𝑓 for some arbitrarily small 𝜀 > 0.
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To this end we may define the germ to be the conditional expectation

𝐴𝑠,𝑡 := 𝔼𝑠
∫ 𝑡

𝑠

𝑓 ′(𝑊𝑟 )𝑑𝑟.

Then using that 𝑊𝑟 can be decomposed to an ℱ𝑠-measurable term (𝑊𝑠) and a term (𝑊𝑟 −𝑊𝑠) that is

independent from ℱ𝑠, we get that

𝐴𝑠,𝑡 =

∫ 𝑡

𝑠

𝔼𝑠 𝑓 (𝑊𝑟 −𝑊𝑠 +𝑊𝑠)𝑑𝑟 =
∫ 𝑡

𝑠

𝔼Γ(𝑊𝑠)𝑑𝑟

with Γ : ℝ → ℝ given by

Γ(𝑥) := 𝔼 𝑓 ′(𝑊𝑟−𝑠 + 𝑥).

But using integration by parts and the fact that
∫
ℝ
𝑝ℝ𝑟−𝑠 (𝑦)𝑦 𝑓 (𝑥)𝑑𝑦 = 𝑓 (𝑥)𝔼𝑊𝑟−𝑠 = 0, we can see that

Γ(𝑥) =
∫
ℝ

𝑝ℝ𝑟−𝑠 (𝑦) 𝑓 ′(𝑦 + 𝑥)𝑑𝑦

= −
∫
ℝ

𝑝ℝ𝑟−𝑠 (𝑦)
𝑦

𝑟 − 𝑠 𝑓 (𝑦 + 𝑥)𝑑𝑦

= − 1
𝑟 − 𝑠

∫
ℝ

𝑝ℝ𝑟−𝑠 (𝑦)𝑦( 𝑓 (𝑦 + 𝑥) − 𝑓 (𝑥))𝑑𝑦.

Therefore

∥Γ(𝑥)∥𝐿𝑝 ≲ (𝑟 − 𝑠)−1
∫
ℝ

𝑝ℝ𝑟−𝑠 (𝑦) |𝑦 |∥ 𝑓 ∥𝐶 𝜀 |𝑦 |𝜀𝑑𝑦

≲ ∥ 𝑓 ∥𝐶 𝜀 (𝑟 − 𝑠)−1𝔼|𝑊𝑟−𝑠 |1+𝜀

≲ ∥ 𝑓 ∥𝐶 𝜀 (𝑟 − 𝑠)−1(𝑟 − 𝑠) (1+𝜀)/2

≲ ∥ 𝑓 ∥𝐶 𝜀 (𝑟 − 𝑠)−1/2+𝜀/2

It follows by integrating the above bound that

∥𝐴𝑠,𝑡 ∥𝐿𝑝 ≤ ∥ 𝑓 ∥𝐶 𝜀 (𝑡 − 𝑠)1/2+𝜀/2.

We also have

𝔼𝑠𝐴𝑠,𝑎,𝑡 = 𝔼𝑠 (𝐴𝑠,𝑡 − 𝐴𝑠,𝑎 − 𝐴𝑎,𝑡 ) = 𝔼𝑠
( ∫ 𝑡

𝑠

−
∫ 𝑎

𝑠

−
∫ 𝑡

𝑎

)
𝑓 ′(𝑊𝑟 )𝑑𝑟 = 0.
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Note moreover that for 𝒜𝑡 :=
∫ 𝑡

0 𝑓 ′(𝑊𝑟 )𝑑𝑟 we have

∥𝐴𝑠,𝑡 −𝒜𝑠,𝑡 ∥𝐿𝑝 =




𝔼𝑠 ∫ 𝑡

𝑠

𝑓 ′(𝑊𝑟 )𝑑𝑟 −
∫ 𝑡

𝑠

𝑓 ′(𝑊𝑟 )𝑑𝑟




𝐿𝑝

≲



 ∫ 𝑡

𝑠

𝑓 ′(𝑊𝑟 )𝑑𝑟




𝐿𝑝

≲ ∥ 𝑓 ′∥𝔹(𝑡 − 𝑠).

(Note that according to the sewing lemma the ∥ 𝑓 ′∥𝔹 in the last line will not appear in the final bound!)

Finally, since 𝐴𝑠,𝑡 = 𝔼𝑠𝒜𝑠,𝑡 , it follows that

∥𝔼𝑠 (𝐴𝑠,𝑡 −𝒜𝑠,𝑡 )∥𝐿𝑝 = 0.

Hence by the stochastic sewing lemma it follows that ∥𝒜𝑠,𝑡 ∥𝐿𝑝 ≲ ∥ 𝑓 ∥𝐶 𝜀 (𝑡 − 𝑠)1/2+𝜀/2, i.e.




 ∫ 𝑡

𝑠

𝑓 ′(𝑊𝑟 )𝑑𝑟




𝐿𝑝

≲ ∥ 𝑓 ∥𝐶 𝜀 (𝑡 − 𝑠)1/2+𝜀/2.

1.10 Malliavin calculus

The Malliavin calculus was first developed and introduced by Paul Malliavin in the seminal work [Mal78].

It is an infinite dimensional differential calculus “with respect to” the white noise. In particular, it makes

it possible to differentiate random fields with respect to the space-time white noise, and thus it extends the

theory of Sobolev-spaces to the stochastic setting. A great introduction to the topic is [Hai21], and for

more detail we recommend the references [Nua06] and [SS04].

We begin with a simple example to explain why and how we will use Malliavin calculus in this thesis.

Let (𝑊𝑡 )𝑡∈[0,1] be a Wiener process and 𝑓 a function. An important tool in regularisation by noise is that

using the regularising property of the noise, we can obtain a bound on 𝔼 𝑓 ′(𝑊𝑡 ) in terms of ∥ 𝑓 ∥𝔹. In

particular, using integration by parts, we get that

𝔼 𝑓 ′(𝑊𝑡 ) =
∫
ℝ

𝑝ℝ𝑡 (𝑦) 𝑓 ′(𝑦)𝑑𝑦

= [𝑝ℝ𝑡 (𝑦) 𝑓 (𝑦)]
𝑦→∞
𝑦→−∞ −

∫
ℝ

𝑑

𝑑𝑦
(𝑝ℝ𝑡 (𝑦)) 𝑓 (𝑦)𝑑𝑦

=

∫
ℝ

𝑝ℝ𝑡 (𝑦)
𝑦

𝑡
𝑓 (𝑦)𝑑𝑦,

and therefore using that𝑊𝑡 ∼ N(0, 𝑡) and the Hölder inequality yields

|𝔼 𝑓 ′(𝑊𝑡 ) | ≤
∥ 𝑓 ∥𝔹
𝑡

∫
ℝ

𝑝ℝ𝑡 (𝑦) |𝑦 |𝑑𝑦 =
∥ 𝑓 ∥𝔹
𝑡

𝔼|𝑊𝑡 | ≲
∥ 𝑓 ∥𝔹
𝑡

(
𝔼|𝑊𝑡 |2

)1/2 ≲
∥ 𝑓 ∥𝔹√
𝑡
.
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The above bound is an interesting result, since if instead of 𝔼 𝑓 ′(𝑊𝑡 ) we would have 𝔼 𝑓 ′(𝑥) = 𝑓 ′(𝑥) for

some deterministic value 𝑥 ∈ ℝ, then obtaining such a bound would be impossible, and we would be

forced to bound in terms of the (much stronger) 𝐶1-norm of 𝑓 .

In the above example we used that the density of𝑊𝑡 ∼ N(0, 𝑡) is explicitly known. However, often

we are in the situation that instead of𝑊𝑡 we are given a more general random variable 𝑋 for which the

density does not have a nice analytic form (e.g. when 𝑋 = 𝑢(𝑡, 𝑥) is the solution of some SPDE). In this

case we cannot use the above method. To overcome this issue, it is often still possible to use Malliavin

calculus, which gives us the tools to construct a random variable 𝐺 such that

𝔼 𝑓 ′(𝑋) = 𝔼
(
𝑓 (𝑋)𝐺

)
,

which will allow us to get a bound of the form

|𝔼 𝑓 ′(𝑋) | ≤ ∥ 𝑓 ∥𝔹∥𝐺∥𝐿1 .

The theory extends to repeated integration by parts as well. Below we introduce the formalism of Malliavin

calculus in infinite dimensions and state some key results.

Recall that we set 𝐻 := 𝐿2( [0, 1] × 𝕋 ). Let 𝒲 denote the the space of smooth and cylindrical random

variables, i.e. random variables of the form

𝐹 = 𝑓 (𝜉 (ℎ1), . . . , 𝜉 (ℎ𝑛))

for some 𝑛 ∈ ℕ, ℎ1, . . . , ℎ𝑛 ∈ 𝐻, and for some smooth 𝑓 such that 𝑓 and its partial derivatives of all

orders have polynomial growth. The Malliavin derivative of such a random variable is given by

𝒟𝜃,𝜁 𝐹 :=
𝑛∑︁
𝑖=1

𝜕𝑖 𝑓 (𝜉 (ℎ1), . . . , 𝜉 (ℎ𝑛))ℎ𝑖 (𝜃, 𝜁)

for all (𝜃, 𝜁) ∈ [0, 1] × 𝕋 where 𝜕𝑖 denotes partial derivative with respect to the 𝑖-th argument. For 𝑘 ∈ ℕ

we say that a map 𝑔 : ( [0, 1] × 𝕋 )𝑘 → ℝ is of class 𝐻⊗𝑘 if ∥𝑔∥𝐻⊗𝑘 := (
∫
( [0,1]×𝕋 )𝑘 |𝑔(𝜂) |

2𝑑𝜂)1/2 < ∞,

and we set ∥ · ∥𝐿𝑝 (Ω,𝐻⊗𝑘 ) := ∥∥ · ∥𝐻⊗𝑘 ∥𝐿𝑝 . For all 𝑘 ∈ ℕ, 𝑝 ≥ 1 the iterated Malliavin derivative is

defined for (𝜃1, 𝜁1), . . . , (𝜃𝑘 , 𝜁𝑘) ∈ [0, 1] ×𝕋 by 𝒟
𝑘
(𝜃1,𝜁1 ) ,..., (𝜃𝑘 ,𝜁𝑘 ) := 𝒟𝜃1,𝜁1 . . .𝒟𝜃𝑘 ,𝜁𝑘 , and it is closable

as an operator from 𝐿𝑝 (Ω) into 𝐿𝑝 (Ω;𝐻⊗𝑘) (see [Hai21]). By convention, the 0-th Malliavin derivative

is the identity map, and 𝐻⊗0 := ℝ. For 𝑘 ∈ ℤ≥0 and 𝑝 ≥ 1, we denote by 𝒲
𝑘
𝑝 the completion of 𝒲 with
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Chapter 1. Introduction 1.10. Malliavin calculus

respect to the norm

𝐹 ↦→ ∥𝐹∥
𝒲
𝑘
𝑝

:=
(
𝔼|𝐹 |𝑝 +

𝑘∑︁
𝑖=1

𝔼∥𝒟𝑖𝐹∥ 𝑝
𝐻⊗𝑖

)1/𝑝
.

We moreover use the notation

𝒲
𝑘 :=

⋂
𝑝≥1

𝒲
𝑘
𝑝 .

On the class 𝒲𝑘
𝑝 one can also define the

.
𝒲

𝑘
𝑝 -seminorm by

𝐹 ↦→ ∥𝐹∥ .
𝒲
𝑘
𝑝

:= ∥∥𝒟𝑘𝐹∥𝐻⊗𝑘 ∥𝐿𝑝 .

By convention, we have

∥ · ∥
𝒲

0
𝑝
= ∥ · ∥ .

𝒲
0
𝑝
= ∥ · ∥𝐿𝑝 .

Note that ∥ · ∥
𝒲
𝑘
𝑝

and
∑𝐾
𝑖=0 ∥ · ∥ .

𝒲
𝑖
𝑝

are equivalent norms. The above definitions can be extended for the

Hilbert-space valued case as follows. Let 𝑉 be a separable Hilbert-space, and consider the family 𝒲(𝑉)

of random variables of the form

𝐹 =

𝑚∑︁
𝑖=1

𝐹𝑖𝑣𝑖

for some 𝐹1, . . . , 𝐹𝑚 ∈ 𝒲, and 𝑣1, . . . , 𝑣𝑚 ∈ 𝑉 . Recall that for sets 𝐴, 𝐵 and maps 𝑓 : 𝐴 → ℝ and

𝑔 : 𝐵 → ℝ the tensor product 𝑓 ⊗ 𝑔 : 𝐴 × 𝐵 → ℝ is defined by ( 𝑓 ⊗ 𝑔) (𝑥, 𝑦) = 𝑓 (𝑥)𝑔(𝑦) . For 𝑘 ≥ 1,

we define

𝒟
𝑘𝐹 :=

𝑚∑︁
𝑗=1

𝒟
𝑘𝐹𝑗 ⊗ 𝑣 𝑗 .

Then 𝒟
𝑘 is a closable operator from 𝐿𝑝 (Ω;𝑉) into 𝐿𝑝 (Ω;𝐻⊗𝑘 ⊗ 𝑉) for any 𝑝 ≥ 1. We define the space

𝒲
𝑘
𝑝 (𝑉) as the completion 𝒲(𝑉) with respect to the norm

𝐹 ↦→ ∥𝐹∥
𝒲
𝑘
𝑝 (𝑉 ) :=

(
𝔼∥𝐹∥ 𝑝

𝑉
+

𝑘∑︁
𝑖=1

𝔼∥𝒟𝑖𝐹∥ 𝑝
𝐻⊗𝑖⊗𝑉

)1/𝑝
.

For a random variable 𝑢 ∈ 𝐿2(Ω;𝐻) it is said that 𝑢 ∈ dom(𝛿), if there exists a constant 𝑐 > 0 such that

𝔼⟨𝒟𝐹, 𝑢⟩𝐻 ≤ 𝑐∥𝐹∥𝐿2

for all 𝐹 ∈ 𝒲
1

2 . If this holds, then 𝛿(𝑢) denotes the unique element of 𝐿2(Ω) that satisfies

𝔼(𝐹𝛿(𝑢)) = 𝔼⟨𝒟𝐹, 𝑢⟩𝐻
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for any 𝐹 ∈ 𝒲
1

2 . The random variable 𝛿(𝑢) is called the Skorokhod integral (or the divergence) of 𝑢. If in

addition 𝑢 is adapted, then the Skorokhod integral coincides with the usual stochastic integral, that is for

all 𝑡 ∈ [0, 1] we have ∫ 𝑡

0

∫
𝕋

𝑢(𝑟, 𝑦)𝜉 (𝑑𝑦, 𝑑𝑟) = 𝛿(𝑢1[0,𝑡 ]).

The following result follows from [Nua06, Proposition 2.1.4]

Proposition 1.10.1 (Malliavin integration by parts). Let 𝑛 ∈ ℕ, 𝑢, 𝐺0 ∈ 𝒲
𝑛 and let 𝑓 : ℝ → ℝ be 𝑛

times differentiable. Suppose moreover that for all 𝑝 ∈ [1,∞), we have 𝔼∥𝒟𝑢(𝑡, 𝑥)∥−𝑝
𝐻

< ∞. Define

iterated Skorokhod integrals recursively for 𝑘 ∈ {0, . . . , 𝑛 − 1} by

𝐺𝑘+1 := 𝛿
(

𝒟𝑢

∥𝒟𝑢∥2
𝐻

𝐺𝑘

)
.

The following holds:

𝔼
(
∇𝑛 𝑓 (𝑢)𝐺0

)
= 𝔼

(
𝑓 (𝑢)𝐺𝑛

)
.

We also recall the combinatorial notation from [CHN21]. Let 𝑛 ∈ ℕ.

• For 1 ≤ 𝑘 ≤ 𝑛, we denote by Λ(𝑛, 𝑘) the set of partitions of the integer 𝑛 of length 𝑘 , that is, if

𝜆 ∈ Λ(𝑛, 𝑘), then 𝜆 ∈ ℕ𝑘 , and by writing 𝜆 = (𝜆1, . . . , 𝜆𝑘), it satisfies

𝜆1 ≥ · · · ≥ 𝜆𝑘 ≥ 1 and
𝑘∑︁
𝑖=1

𝜆𝑖 = 𝑛.

• For 𝜆 ∈ Λ(𝑛, 𝑘), we let P(𝑛, 𝜆) be all partitions of 𝑛 ordered objects {𝜃1, . . . , 𝜃𝑛}, with 𝜃1 ≥ · · · ≥

𝜃𝑛 into 𝑘 groups {𝜃1
1, . . . , 𝜃

1
𝜆1
}, . . . , {𝜃𝑘1 , . . . , 𝜃

𝑘
𝜆𝑘
}, such that within each group the elements are

ordered, i.e. 𝜃 𝑗1 ≥ · · · ≥ 𝜃 𝑗
𝜆 𝑗

for 1 ≤ 𝑗 ≤ 𝑘 . Note that |P(𝑛, 𝜆) | =
( 𝑛
𝜆1,...,𝜆𝑘

)
= 𝑛!
𝜆1!...𝜆𝑘! .

• For a generic element

𝛾 := ((𝜃1, 𝜁1), . . . , (𝜃𝑛, 𝜁𝑛)) ∈ ([0, 1] × 𝕋 )𝑛,

we will denote by 𝛾̂𝑘 the element of ( [0, 1] × 𝕋 )𝑛−1 that is obtained by omitting the 𝑘-th entry of 𝛾,

i.e.

𝛾̂𝑘 := ((𝜃1, 𝜁1), . . . , (𝜃𝑘−1, 𝜁𝑘−1), (𝜃𝑘+1, 𝜁𝑘+1), . . . , (𝜃𝑛, 𝜁𝑛)). (1.10.27)
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We state some generic estimates on the Malliavin derivatives of functions of random variables which

are needed in later sections. The proofs of these results rely purely on elementary principles, such as the

chain rule.

Proposition 1.10.2 ([CHN21, Lemma 5.3]). Suppose that 𝑓 ∈ 𝐶𝑛 and 𝜙 ∈ 𝒲
𝑛. Then, for almost all

𝛾 = ((𝜃1, 𝜁1), . . . , (𝜃𝑛, 𝜁𝑛)) ∈ ([0, 1] × 𝕋 )𝑛, we have

𝒟
𝑛
𝛾 𝑓 (𝜙) =

𝑛∑︁
𝑘=1

𝑓 (𝑘 ) (𝜙)
∑︁

𝜆∈Λ(𝑛,𝑘 )

∑︁
P(𝑛,𝜆)

𝑘∏
𝑗=1

𝒟
𝜆 𝑗

(𝜃 𝑗1 ,𝜁
𝑗

1 ) ,..., (𝜃 𝑗
𝜆 𝑗
,𝜁
𝑗

𝜆 𝑗
)
𝜙. (1.10.28)

Lemma 1.10.3. Fix some constants 𝜀 > 0 and 𝑛 ∈ ℕ. For 𝑖 ∈ {1, . . . , 4} consider random variables

𝜙𝑖 ∈ 𝒲
𝑛. Suppose that for all 𝑝 ∈ [1,∞) and 𝑘 ∈ {1, . . . , 𝑛 − 1} there exists a constant 𝑁0 = 𝑁0(𝑘, 𝑝)

such that

max
𝑖∈{1,...,4}

∥𝜙𝑖 ∥ .
𝒲
𝑘
𝑝
≤ 𝑁0𝜀

𝑘 . (1.10.29)

Suppose that 𝑓 : ℝ → ℝ is smooth. For all 𝑝 ∈ [1,∞) the following statements hold.

(a) There exists a constant 𝑁 = 𝑁 (𝑛, 𝑝, ∥ 𝑓 ∥𝐶𝑛) > 0 such that

∥ 𝑓 (𝜙1)∥ .
𝒲
𝑛
𝑝
≤ 𝑁𝜀𝑛 + 𝑁 ∥𝜙1∥ .

𝒲
𝑛
𝑝
.

(b) There exists a constant 𝑁 = 𝑁 (𝑛, 𝑝, ∥ 𝑓 ∥𝐶𝑛+1) such that

∥ 𝑓 (𝜙1) − 𝑓 (𝜙2)∥ .
𝒲
𝑛
𝑝
≤ 𝑁

𝑛−1∑︁
𝑖=0

𝜀𝑛−𝑖 ∥𝜙1 − 𝜙2∥ .
𝒲
𝑖

2𝑝
+ 𝑁 ∥𝜙1 − 𝜙2∥ .

𝒲
𝑛
𝑝
. (1.10.30)

(c) Suppose moreover that (1.10.29) also holds for 𝑘 = 𝑛. There exists a constant 𝑁 = 𝑁 (𝑛, 𝑝, ∥ 𝑓 ∥𝐶𝑛+2)

such that

∥ 𝑓 (𝜙1) − 𝑓 (𝜙2) − 𝑓 (𝜙3) + 𝑓 (𝜙4)∥ .
𝒲
𝑛
𝑝

≤ 𝑁
∑︁

𝑖+ 𝑗+𝑘=𝑛
∥𝜙1 − 𝜙2∥ .

𝒲
𝑖

4𝑝

(
∥𝜙1 − 𝜙3∥ .

𝒲
𝑗

4𝑝
+ ∥𝜙2 − 𝜙4∥ .

𝒲
𝑗

4𝑝

)
𝜀𝑘

+ 𝑁
𝑛−1∑︁
𝑖=0

∥𝜙1 − 𝜙2 − 𝜙3 + 𝜙4∥ .
𝒲
𝑖

2𝑝
𝜀𝑛−𝑖 + 𝑁 ∥𝜙1 − 𝜙2 − 𝜙3 + 𝜙4∥ .

𝒲
𝑛
𝑝
.
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Proof. By (1.10.28) we can see that

∥ 𝑓 (𝜙1)∥ .
𝒲
𝑛
𝑝
≲ ∥ 𝑓 ∥𝐶1 ∥𝜙1∥ .

𝒲
𝑛
𝑝
+ ∥ 𝑓 ∥𝐶𝑛

𝑛∑︁
𝑘=2

∑︁
𝜆∈Λ(𝑛,𝑘 )

∑︁
𝒫 (𝑛,𝜆)

𝑘∏
𝑗=1

∥𝜙1∥ .
𝒲
𝜆 𝑗

2𝑘 𝑝

.

The second term in this expression can be estimated using (1.10.29) by

𝑛∑︁
𝑘=2

∑︁
𝜆∈Λ(𝑛,𝑘 )

∑︁
𝒫 (𝑛,𝜆)

𝑘∏
𝑗=1

𝜀𝜆 𝑗 ≲ 𝜀𝑛

where we used the definition of Λ(𝑛, 𝑘). This proves point (a).

We proceed by proving point (b). Note that by the Minkowski inequality and the Leibniz rule, by

(1.10.29), and by point (a) we get

∥ 𝑓 (𝜙1) − 𝑓 (𝜙2)∥ .
𝒲
𝑛
𝑝
=




 ∫ 1

0
𝑓 ′(𝜃𝜙1 + (1 − 𝜃)𝜙2) (𝜙1 − 𝜙2)𝑑𝜃




 .
𝒲
𝑛
𝑝

≲
∫ 1

0

( 𝑛−1∑︁
𝑖=0

∥ 𝑓 ′(𝜃𝜙1 + (1 − 𝜃)𝜙2)∥ .
𝒲
𝑛−𝑖

2𝑝
∥𝜙1 − 𝜙2∥ .

𝒲
𝑖

2𝑝

+ ∥∥ 𝑓 ′
(
𝜃𝜙1 + (1 − 𝜃)𝜙2)

𝒟
𝑛 (𝜙1 − 𝜙2)∥𝐻⊗𝑛 ∥𝐿𝑝

)
𝑑𝜃

≲
𝑛−1∑︁
𝑖=0

∥ 𝑓 ′∥𝐶𝑛−𝑖𝜀𝑛−𝑖 ∥𝜙1 − 𝜙2∥ .
𝒲
𝑖

2𝑝
+ ∥ 𝑓 ′∥𝔹∥𝜙1 − 𝜙2∥ .

𝒲
𝑛
𝑝
.

From here point (b) follows.

Finally, we prove point (c). By Lemma 1.11.6 we have that

∥ 𝑓 (𝑢1) − 𝑓 (𝑢2) − 𝑓 (𝑢3) + 𝑓 (𝑢4)∥ .
𝒲
𝑛
𝑝

≤



 ∫ 1

0

∫ 1

0
(𝜙1 − 𝜙2)

(
𝜃 (𝜙1 − 𝜙3) + (1 − 𝜃) (𝜙2 − 𝜙4)

)
∇2 𝑓 (Θ1(𝜃, 𝜂))𝑑𝜂𝑑𝜃




 .
𝒲
𝑛
𝑝

+



(𝜙1 − 𝜙2 − 𝜙3 + 𝜙4)

∫ 1

0
∇ 𝑓 (Θ2(𝜃))𝑑𝜃




 .
𝒲
𝑛
𝑝

=: 𝐴 + 𝐵,

where for each 𝜃, 𝜂 ∈ [0, 1], the expressions Θ1(𝜃, 𝜂),Θ2(𝜃) are convex combinations of 𝜙1, . . . , 𝜙4. By

the Minkowski inequality and by the Hölder inequality, we get we get

𝐴 ≲
∫ 1

0

∫ 1

0

∑︁
𝑖+ 𝑗+𝑘=𝑛

∥𝜙1 − 𝜙2∥ .
𝒲
𝑖

4𝑝
∥𝜃 (𝜙1 − 𝜙3) + (1 − 𝜃) (𝜙2 − 𝜙4)∥ .

𝒲
𝑗

4𝑝

× ∥∇2 𝑓 (Θ1(𝜃, 𝜂))∥ .
𝒲
𝑘

4𝑝
𝑑𝜂𝑑𝜃.
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By using point (a) for 𝑘 ≥ 1, and using the regularity of 𝑓 for 𝑘 = 0, we can see that ∥∇2 𝑓 (Θ(𝜃, 𝜂))∥ .
𝒲
𝑘

4𝑝
≲

𝜀𝑘 . Therefore we get

𝐴 ≲
∑︁

𝑖+ 𝑗+𝑘=𝑛
∥𝜙1 − 𝜙2∥ .

𝒲
𝑖

4𝑝

(
∥𝜙1 − 𝜙3∥ .

𝒲
𝑗

4𝑝
+ ∥𝜙2 − 𝜙4∥ .

𝒲
𝑗

4𝑝

)
𝜀𝑘 .

Finally,

𝐵 ≲
∫ 1

0

𝑛−1∑︁
𝑖=0

∥𝜙1 − 𝜙2 − 𝜙3 + 𝜙4∥ .
𝒲
𝑖

2𝑝
∥∇ 𝑓 (Θ1(𝜃))∥ .

𝒲
𝑛−𝑖

2𝑝
𝑑𝜃 + ∥𝜙1 − 𝜙2 − 𝜙3 + 𝜙4∥ .

𝒲
𝑛
𝑝
∥ 𝑓 ′∥𝔹

≲
𝑛−1∑︁
𝑖=0

∥𝜙1 − 𝜙2 − 𝜙2 + 𝜙4∥ .
𝒲
𝑖

2𝑝
𝜀𝑛−𝑖 + ∥𝜙1 − 𝜙2 − 𝜙3 + 𝜙4∥ .

𝒲
𝑛
𝑝

where the last inequality again follows from point (a). Hence the proof is finished. □

Lemma 1.10.4. Consider constants 𝜀, 𝑐 > 0, 𝑛 ∈ ℤ≥0. Let 𝑋 ∈ 𝒲
𝑛+1,𝑌 ∈ 𝒲

𝑛 with𝑌 ≥ 0. Suppose that

for all 𝑝 ∈ (2,∞) there exists a constant 𝑁0 = 𝑁0 > 0 such that for all 𝑘 ∈ {1, . . . , 𝑛 + 1}, 𝑙 ∈ {0, . . . , 𝑛}

we have

∥𝑋 ∥ .
𝒲
𝑘
𝑝
≤ 𝑁0𝜀

𝑘 , ∥𝑌 ∥ .
𝒲
𝑙
𝑝
≤ 𝑁0𝜀

𝑐+𝑙, 𝔼[𝑌−𝑝] ≤ 𝑁0𝜀
−𝑐𝑝 . (1.10.31)

Define an 𝐻-valued random variable by 𝑤 := 𝒟𝑋
𝑌

. Then, for each 𝑝 ∈ [1,∞), there exists a constant

𝑁 = 𝑁 (𝑁0, 𝑛, 𝑝) > 0 such that

∥𝒟𝑛𝑤∥𝐿𝑝 (Ω,𝐻⊗(𝑛+1) ) ≤ 𝑁𝜀𝑛+1−𝑐 .

Proof. Due to Hölder’s inequality we may assume that 𝑝 > 2. By (1.10.31) and a simple approximation

argument (shifting 𝑌 away from 0), for 𝑚 ∈ {1, . . . , 𝑛}, 𝛾 ∈ ([0, 1] × 𝕋 )𝑚 we have

𝒟
𝑚
𝛾 (𝑌 )−1 =

𝑚∑︁
𝑘=1

(−1)𝑘𝑘!
(𝑌 )𝑘+1

∑︁
𝜆∈Λ(𝑛,𝑘 )

∑︁
P(𝑛,𝜆)

𝑘∏
𝑗=1

𝒟
𝜆 𝑗

(𝜃 𝑗1 ,𝜁
𝑗

1 ) ,...(𝜃 𝑗
𝜆 𝑗
,𝜁
𝑗

𝜆 𝑗
)
𝑌 .

Thus by (1.10.31) we have

∥𝒟𝑚(𝑌−1)∥𝐿𝑝 (Ω;𝐻⊗𝑚 ) ≲
𝑚∑︁
𝑘=1

𝜀−𝑐 (𝑘+1)
∑︁

𝜆∈Λ(𝑚,𝑘 )

∑︁
P(𝑚,𝜆)

𝑘∏
𝑗=1

𝜀𝑐+𝜆 𝑗

≲
𝑚∑︁
𝑘=1

𝜀−𝑐 (𝑘+1)
∑︁

𝜆∈Λ(𝑚,𝑘 )

∑︁
P(𝑚,𝜆)

𝜀
∑𝑘
𝑗=1 (𝑐+𝜆 𝑗 )
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≲
𝑚∑︁
𝑘=1

𝜀−𝑐 (𝑘+1)+𝑐𝑘+𝑚 ≲ 𝜀𝑚−𝑐 . (1.10.32)

For 𝛾 ∈ ([0, 1] × 𝕋 )𝑛 and for 𝜂 ∈ [0, 1] × 𝕋 , using the Leibniz rule, we have

𝒟
𝑛
𝛾𝑤(𝜂) =

∑︁
𝜆1+𝜆2=𝑛

∑︁
(𝛾1,𝛾2 ) ∈P(𝑛,2)

𝒟
𝜆1
𝛾1 (𝒟𝜂𝑋)𝒟𝜆2

𝛾2 (𝑌
−1). (1.10.33)

Using (1.10.33), (1.10.31) and (1.10.32) we get that

∥∥𝒟𝑛𝑤∥𝐻⊗(𝑛+1) ∥𝐿𝑝 ≲
∑︁

𝜆1+𝜆2=𝑛

∑︁
(𝛾1,𝛾2 ) ∈P(𝑛,2)

∥∥𝒟𝜆1+1𝑋 ∥𝐻⊗(𝜆1+1) ∥𝐿2𝑝 ∥∥𝒟𝜆2 (𝑌−1)∥𝐻⊗𝜆2 ∥𝐿2𝑝

≲
∑︁

=𝜆1+𝜆2=𝑛

∑︁
(𝛾1,𝛾2 ) ∈P(𝑛,2)

𝜀𝜆1+1𝜀𝜆2−𝑐 ≲ 𝜀𝑛+1−𝑐

as required. □

1.11 Useful estimates

Lemma 1.11.1. Let 𝜀 ∈ (0, 1/2), 𝛾 ∈ (0, 𝜀), and define

𝛿 :=
2(𝜀 − 𝛾)
1 − 2𝛾

.

Then 𝛿 ∈ (0, 1), and for all (𝑡, 𝑥), (𝑠, 𝑦) ∈ [0, 1] × 𝕋 , we have

(
|𝑡 − 𝑠 |1/4−𝛾/2 + |𝑥 − 𝑦 |1/2−𝛾

)1−𝛿
≤ |𝑡 − 𝑠 |1/4−𝜀/2 + |𝑥 − 𝑦 |1/2−𝜀 . (1.11.34)

Proof. We begin by noting that since 𝜀 ∈ (0, 1/2), we have 𝛿 < 2(𝜀−𝛾)
2𝜀−2𝛾 = 1. The positivity of 𝛿 also

immediately follows from the fact that 0 < 𝛾 < 𝜀 < 1/2. So we have 1 − 𝛿 ∈ (0, 1), and thus the map

𝑥 ↦→ |𝑥 |1−𝛿 is subadditive. Hence the left hand side of (1.11.34) is bounded by

|𝑡 − 𝑠 | (1/4−𝛾/2) (1−𝛿 ) + |𝑥 − 𝑦 | (1/2−𝛾) (1−𝛿 ) .

Now we just need to check that the powers in this expression match the powers on the right hand side of

(1.11.34). This is indeed true, since

(1
4
− 𝛾

2
)
(1 − 𝛿) = 1

4
(1 − 2𝛾)

(
1 − 2(𝜀 − 𝛾)

1 − 2𝛾

)
=

1
4
(1 − 2𝛾 − 2(𝜀 − 𝛾)) = 1

4
− 𝜀

2
,
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and

(1
2
− 𝛾

)
(1 − 𝛿) = 1

2
(1 − 2𝛾)

(
1 − 2(𝜀 − 𝛾)

1 − 2𝛾

)
=

1
2
(1 − 2𝛾 − 2(𝜀 − 𝛾)) = 1

2
− 𝜀,

and thus the proof is finished. □

Proposition 1.11.2. For any 𝛾 ∈ [0, 1] there exists a constant 𝑁 = 𝑁 (𝛾) > 0 such that for all 𝑡 ∈ [0, 1]

and 𝑥, 𝑥, 𝑦 ∈ 𝕋 we have

|𝑝𝑡 (𝑥, 𝑦) − 𝑝𝑡 (𝑥, 𝑦) | ≤ 𝑁 |𝑥 − 𝑥 |𝛾𝑡−𝛾/2 (𝑝2𝑡 (𝑥, 𝑦) + 𝑝2𝑡 (𝑥, 𝑦)
)
. (1.11.35)

Moreover for any 𝛾, 𝛽 ∈ [0, 1] with 𝛼 ≤ 𝛽 there exists a constant 𝑁 = 𝑁 (𝛾, 𝛽) > 0 such that for all

(𝑠, 𝑡) ∈ [0, 1]2
≤ and 𝑥, 𝑥 ∈ 𝕋 and for all 𝑓 ∈ 𝐶𝛼 (𝕋 ) we have

|𝑃𝑡 𝑓 (𝑥) − 𝑃𝑠 𝑓 (𝑥) | ≤ 𝑁 ∥ 𝑓 ∥𝐶𝛾 ( |𝑥 − 𝑥 |𝛽 + |𝑡 − 𝑠 |𝛽/2)𝑠 (𝛾−𝛽)/2. (1.11.36)

The first inequality of the lemma above is taken from the proof of [ABLM24, Lemma C2], while the

second inequality can be found in [BDG23].

Proposition 1.11.3. For any 𝜀 ∈ (0, 1] there exists a constant 𝑁 = 𝑁 (𝜀) > 0 such that for all

(𝑠, 𝑡) ∈ [0, 1]2
≤ , the following inequalities hold:

∫
𝕋

|𝑝𝑡 (𝑥, 𝑦) − 𝑝𝑡 (𝑥, 𝑦) |𝑑𝑦 ≤ 𝑁 |𝑥 − 𝑥 |𝜀𝑡−𝜀/2, (1.11.37)∫ 𝑡

0

∫
𝕋

|𝑝𝑡−𝑟 (𝑥, 𝑦) − 𝑝𝑡−𝑟 (𝑥, 𝑦) |2𝑑𝑦𝑑𝑟 ≤ 𝑁 |𝑥 − 𝑥 |1−𝜀𝑡 𝜀/2, (1.11.38)∫ 𝑠

0

∫
𝕋

|𝑝𝑡−𝑟 (𝑥, 𝑦) − 𝑝𝑠−𝑟 (𝑥, 𝑦) |2𝑑𝑦𝑑𝑟 ≤ 𝑁 |𝑡 − 𝑠 |1/2−𝜀/2. (1.11.39)

Proof. The inequality (1.11.37) can be found in Lemma C2 of ([ABLM24]). We proceed with proving

(1.11.38). To this end note that by (1.11.35) for 𝛾 ∈ [0, 1] for all 𝑡 ∈ [0, 1] and 𝑥, 𝑥 ∈ 𝕋 we have

∫ 𝑡

0

∫
𝕋

|𝑝𝑡−𝑟 (𝑥, 𝑦) − 𝑝𝑡−𝑟 (𝑥, 𝑦) |2𝑑𝑦𝑑𝑟 ≲
∫ 𝑡

0

∫
𝕋

|𝑥 − 𝑥 |2𝛾 (𝑡 − 𝑟)−𝛾 (𝑝2(𝑡−𝑟 ) (𝑥, 𝑦) + 𝑝2(𝑡−𝑟 ) (𝑥, 𝑦))2𝑑𝑦𝑑𝑟

≲ |𝑥 − 𝑥 |2𝛾
∫ 𝑡

0
(𝑡 − 𝑟)−𝛾− 1

2 𝑑𝑟

≲ |𝑥 − 𝑥 |2𝛾𝑡 1
2 −𝛾 ,

where the penultimate inequality follows from the fact that
∫
𝕋
|𝑝2(𝑡−𝑟 ) (𝑥, 𝑦) |2𝑑𝑦 ≲ (𝑡 − 𝑟)−1/2. Now
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choosing 𝛾 := 1
2 − 𝜀

2 ∈ [0, 1
2 ), it follows that

∫ 𝑡

0

∫
𝕋

|𝑝𝑡−𝑟 (𝑥, 𝑦) − 𝑝𝑡−𝑟 (𝑥, 𝑦) |2𝑑𝑦𝑑𝑟 ≲ |𝑥 − 𝑥 |2( 1
2 −

𝜀
2 ) 𝑡

1
2 −( 1

2 −
𝜀
2 ) = |𝑥 − 𝑥 |1−𝜀𝑡 𝜀2

as required.

We proceed with proving (1.11.39). To this end for 0 ≤ 𝑟 ≤ 𝑠 ≤ 𝑡 ≤ 1 and for 𝑥, 𝑦 ∈ 𝕋 define

𝑓𝑟 (𝑦) := 𝑝𝑡−𝑟 (𝑥, 𝑦) − 𝑝𝑠−𝑟 (𝑥, 𝑦).

We may write the square of the above in the following form:

| 𝑓𝑟 (𝑦) |2 = (𝑝𝑡−𝑟 (𝑥, 𝑦) − 𝑝𝑠−𝑟 (𝑥, 𝑦)) 𝑓𝑟 (𝑦) = 𝑝𝑡−𝑟 (𝑥, 𝑦) 𝑓𝑟 (𝑦) − 𝑝𝑠−𝑟 (𝑥, 𝑦) 𝑓𝑟 (𝑦).

Using the above and (1.11.36), we can see that for 𝛽, 𝛾 ∈ [0, 1] we have

∫
𝕋

| 𝑓𝑟 (𝑦) |2𝑑𝑦 = 𝑃𝑡−𝑟 𝑓𝑟 (𝑥) − 𝑃𝑠−𝑟 𝑓𝑟 (𝑥) ≲ ∥ 𝑓𝑟 ∥𝐶𝛾 |𝑡 − 𝑠 |𝛽/2(𝑠 − 𝑟) (𝛾−𝛽)/2.

Applying this with 𝛾 = 0 and 𝛽 = 1 − 𝜀 ∈ [0, 1), and using that by the triangle inequality we have

∥ 𝑓𝑟 ∥𝐶0 ≤ ∥𝑝𝑡−𝑟 (𝑥, ·)∥𝐶0 + ∥𝑝𝑠−𝑟 (𝑥, ·)∥𝐶0 ≲ (𝑠 − 𝑟)−1/2, we get that

∫ 𝑠

0

∫
𝕋

|𝑝𝑡−𝑟 (𝑥, 𝑦) − 𝑝𝑠−𝑟 (𝑥, 𝑦) |2𝑑𝑦𝑑𝑟 =
∫ 𝑠

0

∫
𝕋

| 𝑓𝑟 (𝑦) |2𝑑𝑦𝑑𝑟

≲
∫ 𝑠

0
∥ 𝑓𝑟 ∥𝐶0 |𝑡 − 𝑠 |

1
2 −

𝜀
2 (𝑠 − 𝑟) 𝜀2 − 1

2 𝑑𝑟

≲ |𝑡 − 𝑠 | 1
2 −

𝜀
2

∫ 𝑠

0
(𝑠 − 𝑟) 𝜀2 −1𝑑𝑟

≲ |𝑡 − 𝑠 | 1
2 −

𝜀
2 𝑠𝜀/2 ≲ |𝑡 − 𝑠 | 1

2 −
𝜀
2 ,

where we used that 𝑠 ≤ 1. Thus the proof is finished.

□

Lemma 1.11.4 (A commonly used corollary of Hölder’s inequality). Let 𝛾 ∈ (1, 3), 𝛿 ∈ (0, 3). There

exists

𝑝 >
3 − 𝛿
3 − 𝛾 , such that

(
𝛾 − 𝛿

𝑝

) 𝑝

𝑝 − 1
≥ 1, (1.11.40)

38



Chapter 1. Introduction 1.11. Useful estimates

and a constant 𝑁 = 𝑁 (𝛿, 𝛾, 𝑝) > 0, such that for all (𝑠, 𝑡) ∈ [0, 1]2
≤ we have

( ∫ 𝑡

𝑠

∫
𝕋

|𝑝𝑡−𝑟 (𝑥, 𝑦) |𝛾 𝑓 (𝑟, 𝑦)𝑑𝑦𝑑𝑟
) 𝑝

≤ 𝑁 (𝑡 − 𝑠)
(3−𝛾) 𝑝

2 + 𝛿−3
2

∫ 𝑡

𝑠

∫
𝕋

|𝑝𝑡−𝑟 (𝑥, 𝑦) | 𝛿 𝑓 𝑝 (𝑟, 𝑦)𝑑𝑦𝑑𝑟. (1.11.41)

Proof. Note that for any 𝛾 ∈ (1, 3), 𝛿 ∈ (0, 3) we have lim𝑝→∞
(
𝛾 − 𝛿

𝑝

)
𝑝

𝑝−1 = 𝛾 > 1, and thus it follows

that for sufficiently large 𝑝 the conditions (1.11.40) hold. By Hölder’s inequality, the left-hand-side of

(1.11.41) is bounded by

( ∫ 𝑡

𝑠

∫
𝕋

|𝑝𝑡−𝑟 (𝑥, 𝑦) | (𝛾−
𝛿
𝑝
) 𝑝

𝑝−1 𝑑𝑦𝑑𝑟

) 𝑝−1
𝑝

·𝑝 ∫ 𝑡

𝑠

∫
𝕋

|𝑝𝑡−𝑟 (𝑥, 𝑦) | 𝛿 𝑓 𝑝 (𝑟, 𝑦)𝑑𝑦𝑑𝑟.

Moreover using the results ∥𝑝𝑡 ∥𝔹(𝕋 ) ≲ 𝑡−1/2 and ∥𝑝𝑡 ∥𝐿1 (𝕋 ) = 1 to interpolate, we can see that the first

factor is bounded by

( ∫ 𝑡

𝑠

(𝑡 − 𝑟)
− 1

2

(
(𝛾− 𝛿

𝑝
) 𝑝

𝑝−1 −1
)
𝑑𝑟

) 𝑝−1
≲ (𝑡 − 𝑠)

(
− 1

2

(
(𝛾− 𝛿

𝑝
) 𝑝

𝑝−1 −1
)
+1
)
(𝑝−1)

= (𝑡 − 𝑠)
(3−𝛾) 𝑝

2 + 𝛿−3
2 ,

and thus the proof is finished. □

Lemma 1.11.5 (Conditional BDG inequality for stochastic convolutions). Let 0 ≤ 𝑠 ≤ 𝑡, 𝑛 ∈ ℤ≥0 and let

𝑋 : Ω × [0, 1] × 𝕋 → 𝐻⊗𝑛 be a 𝒫 ⊗ ℬ(ℝ)-measurable 𝐻⊗𝑛-valued random field. For all 𝑝 ∈ [2,∞)

there exists a constant 𝐶𝑝 such that if 𝑓𝑡 ∈ 𝐿2( [0, 𝑡] × 𝕋 ) for all 𝑡 ∈ [0, 1], then for all (𝑠, 𝑡) ∈ [0, 1]2
≤ we

have

𝔼𝑠



 ∫ 𝑡

𝑠

∫
𝕋

𝑓𝑡 (𝑟, 𝑦)𝑋 (𝑟, 𝑦)𝜉 (𝑑𝑦, 𝑑𝑟)



𝑝
𝐻⊗𝑛

≤ 𝐶𝑝𝔼𝑠
( ∫ 𝑡

𝑠

∫
𝕋

𝑓 2
𝑡 (𝑟, 𝑦)∥𝑋 (𝑟, 𝑦)∥2

𝐻⊗𝑛𝑑𝑦𝑑𝑟

) 𝑝/2
, (1.11.42)

and consequentially







 ∫ 𝑡

𝑠

∫
𝕋

𝑓𝑡 (𝑟, 𝑦)𝑋 (𝑟, 𝑦)𝜉 (𝑑𝑦, 𝑑𝑟)




𝐻⊗𝑛




2

𝐿𝑝 |ℱ𝑠

≤ 𝐶𝑝
∫ 𝑡

𝑠

∫
𝕋

𝑓 2
𝑡 (𝑟, 𝑦)∥∥𝑋 (𝑟, 𝑦)∥𝐻⊗𝑛 ∥2

𝐿𝑝 |ℱ𝑠𝑑𝑦𝑑𝑟. (1.11.43)

The inequality (1.11.42) follows from the classic conditional BDG inequality. From (1.11.42) we can

see that (1.11.43) holds by the Minkowski inequality
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Lemma 1.11.6. Suppose that 𝑓 : ℝ → ℝ is twice differentiable. Then for 𝜙1, . . . , 𝜙4 ∈ ℝ we have

𝑓 (𝜙1) − 𝑓 (𝜙2) − 𝑓 (𝜙3) + 𝑓 (𝜙4)

=

∫ 1

0

∫ 1

0
(𝜙1 − 𝜙2) (𝜃 (𝜙1 − 𝜙3) + (1 − 𝜃) (𝜙2 − 𝜙4))∇2 𝑓 (Θ1(𝜃, 𝜂))𝑑𝜂𝑑𝜃

+ (𝜙1 − 𝜙2 − 𝜙3 + 𝜙4)
∫ 1

0
∇ 𝑓 (Θ2(𝜃))𝑑𝜃 (1.11.44)

where Θ1(𝜃, 𝜂) and Θ2(𝜃) are the convex combinations of 𝜙1, . . . , 𝜙4 given by

Θ1(𝜃, 𝜂) := 𝜂(𝜃𝜙1 + (1 − 𝜃)𝜙2) + (1 − 𝜂) (𝜃𝜙3 + (1 − 𝜃)𝜙4),

Θ2(𝜃) := 𝜃𝜙3 + (1 − 𝜃)𝜙4.

Moreover

| 𝑓 (𝜙1) − 𝑓 (𝜙2) − 𝑓 (𝜙3) + 𝑓 (𝜙4) |

≤ ∥ 𝑓 ∥𝐶2 |𝜙1 − 𝜙2 | |𝜙1 − 𝜙3 | + ∥ 𝑓 ∥𝐶1 |𝜙1 − 𝜙2 − 𝜙3 + 𝜙4 |. (1.11.45)

Proof. We begin by proving (1.11.44). Using the notation

𝜙𝜃1,2 := 𝜃𝜙1 + (1 − 𝜃)𝜙2, 𝜙𝜃3,4 := 𝜃𝜙3 + (1 − 𝜃)𝜙4,

the expression 𝑓 (𝜙1) − 𝑓 (𝜙2) − 𝑓 (𝜙3) + 𝑓 (𝜙4) can be rewritten as

(𝜙1 − 𝜙2)
∫ 1

0
∇ 𝑓 (𝜙𝜃1,2)𝑑𝜃 − (𝜙3 − 𝜙4)

∫ 1

0
∇ 𝑓 (𝜙𝜃3,4)𝑑𝜃

= (𝜙1 − 𝜙2)
∫ 1

0

(
∇ 𝑓 (𝜙𝜃1,2) − ∇ 𝑓 (𝜙𝜃3,4)

)
𝑑𝜃 + (𝜙1 − 𝜙2 − 𝜙3 + 𝜙4)

∫ 1

0
∇ 𝑓 (𝜙𝜃3,4)𝑑𝜃.

The second term is exactly as desired, and the first term can be written as

(𝜙1 − 𝜙2)
∫ 1

0
(𝜙𝜃1,2 − 𝜙

𝜃
3,4)

∫ 1

0
∇2 𝑓 (𝜂𝜙𝜃1,2 + (1 − 𝜂)𝜙𝜃3,4)𝑑𝜂𝑑𝜃

which is indeed the first term of the desired expression. Hence (1.11.44) is proven. To prove (1.11.45), we

set

𝛿𝑖, 𝑗 := 𝜙 𝑗 − 𝜙𝑖
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and we note that 𝑓 (𝜙1) − 𝑓 (𝜙2) − 𝑓 (𝜙3) + 𝑓 (𝜙4) can be written as

𝑓 (𝜙1) − 𝑓 (𝜙1 + 𝛿1,2) − 𝑓 (𝜙3) + 𝑓 (𝜙3 + 𝛿1,2) − 𝑓 (𝜙3 + 𝛿1,2) + 𝑓 (𝜙3 + 𝛿3,4)

= −𝛿1,2

∫ 1

0
∇ 𝑓 (𝜙1 + 𝜃𝛿1,2)𝑑𝜃 + 𝛿1,2

∫ 1

0
∇ 𝑓 (𝜙3 + 𝜃𝛿1,2)𝑑𝜃

+ (𝛿3,4 − 𝛿1,2)
∫ 1

0
∇ 𝑓 (𝜙3 + 𝜃𝛿3,4 + (1 − 𝜃)𝛿1,2)𝑑𝜃

= 𝛿1,2𝛿1,3

∫ 1

0

∫ 1

0
∇2 𝑓 (𝜂𝜙3 + (1 − 𝜂)𝜙1 + 𝜃𝛿1,2)𝑑𝜃𝑑𝜂

+ (𝛿3,4 − 𝛿1,2)
∫ 1

0
∇ 𝑓 (𝜙3 + 𝜃𝛿3,4 + (1 − 𝜃)𝛿1,2)𝑑𝜃.

Hence (1.11.45) follows as well. □

Lemma 1.11.7 (The 𝒱
𝛾
𝑝 -bracket is triangular in time). Let 𝑝 ∈ [1,∞), 𝛾 > 0, and let 𝑓 ∈ 𝒱

𝛾
𝑝 . Then for

all 0 ≤ 𝑆 ≤ 𝑄 ≤ 𝑇 ≤ 1 we have

[ 𝑓 ]
𝒱
𝛾
𝑝 [𝑆,𝑇 ] ≤ 2[ 𝑓 ]

𝒱
𝛾
𝑝 [𝑆,𝑄] + 2[ 𝑓 ]

𝒱
𝛾
𝑝 [𝑄,𝑇 ] . (1.11.46)

Consequently, for any integer 𝐾 ≥ 2 we have

[ 𝑓 ]
𝒱
𝛾
𝑝
≲ 2𝐾

𝐾−1∑︁
𝑖=0

[ 𝑓 ]
𝒱
𝛾
𝑝 [ 𝑖

𝐾
, 𝑖+1
𝐾

] . (1.11.47)

Proof. For (𝑠, 𝑡) ∈ [0, 1]2
≤ define

𝐴(𝑠, 𝑡) := sup
𝑥∈𝕋

∥ 𝑓𝑡 (𝑥) − 𝑃𝑡−𝑠 𝑓𝑠 (𝑥)∥𝐿ℱ𝑠
𝑝,∞
.

For (𝑠, 𝑡) ∈ [𝑆, 𝑄]2
≤ ∪ [𝑄,𝑇]2

≤ , we clearly have

𝐴(𝑠, 𝑡) ≤ [ 𝑓 ]
𝒱
𝛾
𝑝 [𝑠,𝑡 ] (𝑡 − 𝑠)𝛾 ≤

(
[ 𝑓 ]

𝒱
𝛾
𝑝 [𝑆,𝑄] + [ 𝑓 ]

𝒱
𝛾
𝑝 [𝑄,𝑇 ]

)
(𝑡 − 𝑠)𝛾 . (1.11.48)

We also need to check what happens in the case when 𝑄 ∈ (𝑠, 𝑡). Then we write

𝐴(𝑠, 𝑡) ≤ sup
𝑥∈𝕋

∥ 𝑓𝑡 (𝑥) − 𝑃𝑡−𝑄 𝑓𝑄 (𝑥)∥𝐿ℱ𝑠
𝑝,∞

+ sup
𝑥∈𝕋

∥𝑃𝑡−𝑄 𝑓𝑄 (𝑥) − 𝑃𝑡−𝑠 𝑓𝑠 (𝑥)∥𝐿ℱ𝑠
𝑝,∞

= 𝐵(𝑠, 𝑡) + 𝐶 (𝑠, 𝑡).
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Note that as 𝑠 ≤ 𝑄, we have ∥ · ∥𝐿𝑝 |ℱ𝑠 ≤ ∥∥ · ∥𝐿𝑝 |ℱ𝑄 ∥𝐿𝑝 |ℱ𝑠 ≤ ∥ · ∥
𝐿
𝑄
𝑝,∞

, and thus

𝐵(𝑠, 𝑡) ≤ sup
𝑥∈𝕋

∥ 𝑓𝑡 (𝑥) − 𝑃𝑡−𝑄 𝑓𝑄 (𝑥)∥𝐿𝑄𝑝,∞ = 𝐴(𝑄, 𝑡).

Moreover using that 𝑠 ≤ 𝑄, we have

𝐶 (𝑠, 𝑡) = sup
𝑥∈𝕋

∥𝑃𝑡−𝑄
(
𝑓𝑄 − 𝑃𝑄−𝑠 𝑓𝑠

)
(𝑥)∥

𝐿
ℱ𝑠
𝑝,∞

≤ sup
𝑥∈𝕋

∥ 𝑓𝑄 (𝑥) − 𝑃𝑄−𝑠 𝑓𝑠 (𝑥)∥𝐿ℱ𝑠
𝑝,∞

= 𝐴(𝑠, 𝑄).

By the above bounds on 𝐵 and 𝐶, we conclude that

𝐴(𝑠, 𝑡) ≤ 𝐴(𝑠, 𝑄) + 𝐴(𝑄, 𝑡) ≤
(
[ 𝑓 ]

𝒱
𝛾
𝑝 [𝑆,𝑄] + [ 𝑓 ]

𝒱
𝛾
𝑝 [𝑄,𝑇 ]

)
(𝑡 − 𝑠)𝛾 (1.11.49)

By adding up the bounds (1.11.48) and (1.11.49), we can see that for all (𝑠, 𝑡) ∈ [𝑆, 𝑇]2
≤ and 𝑄 ∈ [𝑆, 𝑇],

we have

𝐴(𝑠, 𝑡) ≤ 2
(
[ 𝑓 ]

𝒱
𝛾
𝑝 [𝑆,𝑄] + [ 𝑓 ]

𝒱
𝛾
𝑝 [𝑄,𝑇 ]

)
(𝑡 − 𝑠)𝛾 ,

from which the desired result follows. □

Lemma 1.11.8 (The 𝐿𝑝-valued 𝐶1/4,1/2-norm, and the 𝒱
1/4
𝑝 -bracket). Let 𝛼 ∈ (−1, 0) and 𝑝 ∈ [1,∞).

There exists a constant 𝑁 = 𝑁 (𝑝, 𝛼) > 0 such that for 𝑓 ∈ 𝒱
1/4
𝑝 ∩ 𝐶0,1/2( [0, 1] × 𝕋 , 𝐿𝑝) we have

∥ 𝑓 ∥𝐶1/4,1/2 ( [0,1]×𝕋 ,𝐿𝑝 ) ≤ 𝑁 [ 𝑓 ]
𝒱

1/4
𝑝

+ 𝑁 ∥ 𝑓 ∥𝐶0,1/2 ( [0,1]×𝕋 ,𝐿𝑝 ) .

Proof. We decompose the space–time Hölder norm to the sup norm, and spatial and temporal seminorms

as follows:

∥ 𝑓 𝑛∥𝐶1/4,1/2 ( [0,1]×𝕋 ,𝐿𝑝 )

≤ ∥ 𝑓 𝑛∥𝔹( [0,1]×𝕋 ,𝐿𝑝 ) + sup
𝑥∈𝕋

[ 𝑓 𝑛 (·, 𝑥)]𝐶1/4 ( [0,1] ) + sup
𝑡∈[0,1]

[ 𝑓 𝑛 (𝑡, ·)]𝐶1/2 (𝕋 ,𝐿𝑝 ) . (1.11.50)

To bound the temporal seminorm, note that for (𝑠, 𝑡) ∈ [0, 1]2
≤ we have

∥ 𝑓 (𝑡, ·) − 𝑓 (𝑠, ·)∥𝔹(𝕋 ,𝐿𝑝 ) ≤ ∥ 𝑓 (𝑡, ·) − 𝑃𝑡−𝑠 𝑓 (𝑠, ·)∥𝔹(𝕋 ,𝐿𝑝 ) + ∥𝑃𝑡−𝑠 𝑓 (𝑠, ·) − 𝑓 (𝑠, ·)∥𝔹(𝕋 ,𝐿𝑝 )

=: 𝐴(𝑠, 𝑡) + 𝐵(𝑠, 𝑡). (1.11.51)
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Since ∥ · ∥𝐿𝑝 ≤ ∥ · ∥
𝐿
ℱ𝑠
𝑝,∞

, it follows that

𝐴(𝑠, 𝑡) ≤ [ 𝑓 ]
𝒱

1/4
𝑝 [𝑠,𝑡 ] (𝑡 − 𝑠)

1/4.

Moreover by a standard heat kernel estimate

𝐵(𝑠, 𝑡) ≲ ∥ 𝑓 (𝑠, ·)∥𝐶1/2 (𝕋 ,𝐿𝑝 ) (𝑡 − 𝑠)
1/4.

By putting the above bounds on 𝐴 and 𝐵 into (1.11.51), we can see that

sup
𝑥∈𝕋

[ 𝑓 (·, 𝑥)]𝐶1/4 ( [0,1],𝐿𝑝 ) ≲ [ 𝑓 ]
𝒱

1/4
𝑝 [𝑠,𝑡 ] + ∥ 𝑓 ∥𝐶0,1/2 ( [0,1]×𝕋 ,𝐿𝑝 ) .

Using this bound on the second term of (1.11.50) finishes the proof. □
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Chapter 2

Malliavin calculus for the driftless equation

This chapter is concerned with the solution of the driftless multiplicative stochastic heat equation

(𝜕𝑡 − Δ)𝜙 = 𝜎(𝜙)𝜉, 𝜙(0, ·)= 𝜙0 (2.0.1)

and its Malliavin derivatives. Herein, 𝜙0 ∈ 𝐶 (𝕋 ) is fixed and the solution 𝜙 : Ω × [0, 1] × 𝕋 → ℝ is a

𝒫 ⊗ ℬ(𝕋 )-measurable random field, a.s. continuous on [0, 1] × 𝕋 , and satisfies the following equation

almost surely

𝜙(𝑡, 𝑥) = 𝑃𝑡𝜙0(𝑥) +
∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝜎(𝜙(𝑟, 𝑦))𝜉 (𝑑𝑦, 𝑑𝑟), ∀(𝑡, 𝑥) ∈ [0, 1] × 𝕋 . (2.0.2)

2.1 Moment bounds for Malliavin derivatives

We will show the following result.

Lemma 2.1.1. Let 𝜙 be the solution of (2.0.1). For any 𝑛 ∈ ℤ≥0 and 𝑝 ∈ [1,∞), if in addition 𝜎 ∈ 𝐶𝑛,

then there exists some constant 𝑁 = 𝑁 (𝑛, 𝑝, ∥𝜎∥𝐶𝑛) such that for all 𝑡 ∈ [0, 1] we have

sup
𝑥∈𝕋

∥𝜙(𝑡, 𝑥)∥ .
𝒲
𝑛
𝑝
≤ 𝑁 (1 + 1𝑛=0∥𝑢0∥𝔹(𝕋 ) )𝑡𝑛/4.

To show this, let us recall the following non-quantitative result from [BP98, Proposition 4.3].

Proposition 2.1.2 (Boundedness and Malliavin differentiability). Let 𝜙 be the solution of (2.0.1). For any

𝑛 ∈ ℕ, 𝑝 ∈ [1,∞), if 𝜎 ∈ 𝐶𝑛, then we have

sup
(𝑡 ,𝑥 ) ∈ [0,1]×𝕋

∥𝜙(𝑡, 𝑥)∥𝒲𝑛
𝑝
< ∞.
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We will also need the following result from [CHN21, Lemma 5.6]:

Proposition 2.1.3. Let 𝜙 be the solution of (2.0.1), and let 𝑛 ∈ ℕ, 𝑝 ∈ [1,∞), 𝜎 ∈ 𝐶𝑛. Then for all

(𝑡, 𝑥) ∈ [0, 1] × 𝕋 and for almost every 𝛾 = (𝜃𝑖 , 𝜁𝑖)𝑛𝑖=1 ∈ ([0, 1] × 𝕋 )𝑛, we have

𝒟
𝑛
𝛾𝜙(𝑡, 𝑥) = 1[0,𝑡 ] (𝜃∗)

𝑛∑︁
𝑘=1

𝑝𝑡−𝜃𝑘 (𝑥, 𝜁𝑘)𝒟𝑛−1
𝛾̂𝑘

[𝜎(𝜙(𝜃𝑘 , 𝜁𝑘))]

+ 1[0,𝑡 ] (𝜃∗)
∫ 𝑡

𝜃∗

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝒟𝑛
𝛾 [𝜎(𝜙(𝑟, 𝑦))]𝜉 (𝑑𝑦, 𝑑𝑟), (2.1.3)

where 𝛾̂𝑘 is defined by (1.10.27) and 𝜃∗ := max𝑘∈{1,...,𝑛} 𝜃𝑘 .

Remark 2.1.4. Note that in the above equation the stochastic integral can be taken over the time interval

[0, 𝑡] rather than [𝜃∗, 𝑡], since for 𝑟 ≤ 𝜃∗ the Malliavin derivative 𝒟
𝑛
𝛾𝜎(𝜙(𝑟, 𝑦)) is zero (see [SS04,

Remark 5.1]).

We can now proceed with the proof of Lemma 2.1.1.

Proof of Lemma 2.1.1. We will prove the result by induction. By the BDG1 inequality and by the

boundedness of 𝜎, the result holds for the case 𝑛 = 0. Suppose that the result holds for the first (𝑛 − 1)

Malliavin derivatives. We aim to show that the result also holds for the 𝑛-th Malliavin derivative. Assume

without loss of generality that 𝑝 ≥ 2. By (2.1.3) and the BDG inequality, we get

∥𝜙(𝑡, 𝑥)∥2.
𝒲
𝑛
𝑝

≲ ∥𝑝𝑡−· (𝑥, ·)𝒟𝑛−1𝜎(𝜙(·, ·))1[0,𝑡 ] (·)∥2
𝐿𝑝 (Ω;𝐻𝑛 )

+
∫ 𝑡

0

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)∥𝜎(𝜙(𝑟, 𝑦))∥2.

𝒲
𝑛
𝑝

𝑑𝑦𝑑𝑟

=: 𝐴(𝑡, 𝑥) + 𝐵(𝑡, 𝑥). (2.1.4)

We proceed with proving that

𝐴(𝑡, 𝑥) ≲ 𝑡𝑛/2. (2.1.5)

Indeed, in the 𝑛 = 1 case, we have by the boundedness of 𝜎 that

𝐴(𝑡, 𝑥) = ∥𝑝𝑡−· (𝑥, ·)𝜎(𝜙(·, ·))1[0,𝑡 ] (·)∥2
𝐿𝑝 (Ω,𝐻 ) ≲ ∥𝑝𝑡−· (𝑥, ·)1[0,𝑡 ] (·)∥2

𝐻 ≲ 𝑡1/2.

Moreover in the 𝑛 ≥ 2 case, by point (a) of Lemma 1.10.3 and by the induction hypothesis we have for
1We call the Burkholder-Davis-Gundy inequality “BDG inequality” for brevity.
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(𝜃, 𝜁) ∈ [0, 𝑡] × 𝕋 that

∥𝜎(𝜙(𝜃, 𝜁))∥ .
𝒲
𝑛−1
𝑝

≲ 𝜃 (𝑛−1)/4 + ∥𝜙(𝜃, 𝜁)∥ .
𝒲
𝑛−1
𝑝

≲ 𝜃 (𝑛−1)/4 ≲ 𝑡 (𝑛−1)/4,

and thus using Minkowski’s inequality and the above bound, we get that

𝐴(𝑡, 𝑥) = ∥∥𝑝𝑡−· (𝑥, ·)∥𝒟𝑛−1𝜎(𝜙(·, ·))∥𝐻⊗(𝑛−1) 1[0,𝑡 ] (·)∥𝐻 ∥2
𝐿𝑝

≤


𝑝𝑡−· (𝑥, ·)∥𝜎(𝜙(·, ·))∥ .

𝒲
𝑛−1
𝑝

1[0,𝑡 ] (·)


2
𝐻

≲ 𝑡 (𝑛−1)/2∥𝑝𝑡−· (𝑥, ·)1[0,𝑡 ] (·)∥2
𝐻 ≲ 𝑡𝑛/2

as required. Hence (2.1.5) is proven. We now proceed by bounding 𝐵. By point (a) of Lemma 1.10.3 and

by the induction hypothesis we have

𝐵(𝑡, 𝑥) ≲
∫ 𝑡

0

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)

(
𝑟𝑛/4 + ∥𝜙(𝑟, 𝑦)∥ .

𝒲
𝑛
𝑝

)2
𝑑𝑦𝑑𝑟

≲
∫ 𝑡

0

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)𝑟𝑛/2𝑑𝑦𝑑𝑟 +

∫ 𝑡

0

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)∥𝜙(𝑟, 𝑦)∥2.

𝒲
𝑛
𝑝

𝑑𝑦𝑑𝑟

≲ 𝑡 (𝑛+1)/2 +
∫ 𝑡

0

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)∥𝜙(𝑟, 𝑦)∥2.

𝒲
𝑛
𝑝

𝑑𝑦𝑑𝑟. (2.1.6)

By (2.1.4), and by our bounds (2.1.5), (2.1.6) on 𝐴, 𝐵, we conclude that

∥𝜙(𝑡, 𝑥)∥2.
𝒲
𝑛
𝑝

≲ 𝑡𝑛/2 +
∫ 𝑡

0

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)∥𝜙(𝑟, 𝑦)∥2.

𝒲
𝑛
𝑝

𝑑𝑦𝑑𝑟.

By Proposition 2.1.2 we have that sup(𝑟 ,𝑦) ∥𝜙(𝑟, 𝑦)∥ .
𝒲
𝑛
𝑝
< ∞. Therefore by Lemma 1.3.5, the statement

we aim to show also holds for the 𝑛-th Malliavin derivative. Thus the proof is finished. □

Lemma 2.1.5. Let 𝑛 ∈ ℤ≥0, 𝑝 ∈ [1,∞), 𝜎 ∈ 𝐶𝑛+1, and let 𝜙 solve (2.0.1). There exists some constant

𝑁 = 𝑁 (𝑛, 𝑝, ∥𝜎∥𝐶𝑛+1) such that for all 𝑡 ∈ (0, 1] we have

sup
𝑥∈𝕋




∥𝒟𝜙(𝑡, 𝑥)∥2
𝐻




 .
𝒲
𝑛
𝑝

≤ 𝑁𝑡 (𝑛+2)/4.

Proof. By using the Minkowski inequality, the Leibniz rule, Hölder’s inequality, and Lemma 2.1.1, we

can see that

∥∥𝒟𝜙(𝑡, 𝑥)∥2
𝐻 ∥ .

𝒲
𝑛
𝑝
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=







𝒟𝑛

∫ 1

0

∫
𝕋

(𝒟𝜃,𝜁 𝜙(𝑡, 𝑥))2𝑑𝜁𝑑𝜃




𝐻⊗𝑛





𝐿𝑝

≤



 ∫ 1

0

∫
𝕋

∥𝒟𝑛
(
𝒟𝜃,𝜁 𝜙(𝑡, 𝑥)𝒟𝜃,𝜁 𝜙(𝑡, 𝑥)

)
∥𝐻⊗𝑛𝑑𝜁𝑑𝜃





𝐿𝑝

≤
𝑛∑︁
𝑖=0




 ∫ 1

0

∫
𝕋

∥𝒟𝑖 (𝒟𝜃,𝜁 𝜙(𝑡, 𝑥))𝒟𝑛−𝑖 (𝒟𝜃,𝜁 𝜙(𝑡, 𝑥))∥𝐻⊗𝑛𝑑𝜁𝑑𝜃





𝐿𝑝

=

𝑛∑︁
𝑖=0




 ∫ 1

0

∫
𝕋

∥𝒟𝑖
𝒟𝜃,𝜁 𝜙(𝑡, 𝑥)∥𝐻⊗𝑖 ∥𝒟𝑛−𝑖

𝒟𝜃,𝜁 𝜙(𝑡, 𝑥)∥𝐻⊗(𝑛−𝑖) 𝑑𝜁𝑑𝜃





𝐿𝑝

≤
𝑛∑︁
𝑖=0




( ∫ 1

0

∫
𝕋

∥𝒟𝑖
𝒟𝜃,𝜁 𝜙(𝑡, 𝑥)∥2

𝐻⊗𝑖𝑑𝜁𝑑𝜃

)1/2 ( ∫ 1

0

∫
𝕋

∥𝒟𝑛−𝑖
𝒟𝜃,𝜁 𝜙(𝑡, 𝑥)∥2

𝐻⊗(𝑛−𝑖) 𝑑𝜁𝑑𝜃

)1/2



𝐿𝑝

=

𝑛∑︁
𝑖=0




∥𝒟𝑖+1𝜙(𝑡, 𝑥)∥𝐻⊗(𝑖+1) ∥𝒟𝑛−𝑖+1𝜙(𝑡, 𝑥)∥𝐻⊗(𝑛−𝑖+1)





𝐿𝑝

≤
𝑛∑︁
𝑖=0

∥𝜙(𝑡, 𝑥)∥ .
𝒲
𝑖+1

2𝑝
∥𝜙(𝑡, 𝑥)∥ .

𝒲
𝑛−𝑖+1

2𝑝
≲

𝑛∑︁
𝑖=0

𝑡 (𝑖+1)/4𝑡 (𝑛−𝑖+1)/4 ≲ 𝑡 (𝑛+2)/4

as required. □

2.2 Lipschitzness in the initial condition

For any 𝑧 ∈ 𝐶 (𝕋 ), let 𝜙𝑧 denote the solution of (2.0.1) with 𝜙0 = 𝑧. For 𝑛 ∈ ℕ, 𝜎 ∈ 𝐶𝑛, 𝑞 ∈ [1,∞),

(𝑧1, 𝑧2) ∈ (𝐶 (𝕋 ))2, (𝑡, 𝑥) ∈ [0, 1] × 𝕋 , we define

𝐹
(2)
𝑞,𝑛 (𝑡, 𝑥, 𝑧1, 𝑧2) := ∥𝜙𝑧1 (𝑡, 𝑥) − 𝜙𝑧2 (𝑡, 𝑥)∥ .

𝒲
𝑛
𝑞
, (2.2.7)

Σ
(2)
𝑞,𝑛 (𝑡, 𝑥, 𝑧1, 𝑧2) := ∥𝜎(𝜙𝑧1 (𝑡, 𝑥)) − 𝜎(𝜙𝑧2 (𝑡, 𝑥))∥ .

𝒲
𝑛
𝑞
. (2.2.8)

The main result of this section is the following:

Lemma 2.2.1. Let 𝑛 ∈ ℤ≥0 and assume that 𝜎 ∈ 𝐶𝑛+1. For all 𝑞 ∈ [2,∞), (𝑡, 𝑥) ∈ [0, 1] × 𝕋 , we have

that

𝐹
(2)
𝑞,𝑛 (𝑡, 𝑥, ·, ·) ∈ 𝐶 ((𝐶 (𝕋 ))2).

Moreover for all 𝑞, 𝑝1 ∈ [2,∞) and 𝑝2 ∈ [2,∞] there exists a constant 𝑁 = 𝑁 (𝑛, 𝑝1, 𝑝2, 𝑞, ∥𝜎∥𝐶𝑛+1)

such that for any 𝜎-algebra G ⊂ F and any random variables 𝑍, 𝑍̄ ∈ 𝐿𝑝1∨𝑝2 (Ω, 𝐶 (𝕋 )) and for all

(𝑡, 𝑥) ∈ [0, 1] × 𝕋 we have



𝐹 (2)
𝑞,𝑛 (𝑡, 𝑥, 𝑍, 𝑍̄)




𝐿𝒢𝑝1 , 𝑝2

≤ 𝑁𝑡𝑛/4 sup
𝑥∈𝕋

∥𝑍 (𝑥) − 𝑍̄ (𝑥)∥𝐿𝒢𝑝1 , 𝑝2
.

Proof. The result will be proven by induction.
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Step 1: We show that the statement holds for 𝑛 = 0. For 𝑧, 𝑧 ∈ 𝐶 (𝕋 ), we have by (2.0.2) that

𝜙𝑧 (𝑡, 𝑥) − 𝜙 𝑧̄ (𝑡, 𝑥) = 𝑃𝑡 (𝑧 − 𝑧) (𝑥) +
∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦) (𝜎(𝜙𝑧 (𝑟, 𝑦)) − 𝜎(𝜙 𝑧̄ (𝑟, 𝑦))𝜉 (𝑑𝑦, 𝑑𝑟).

Therefore, by the BDG inequality we get

∥𝜙𝑧 (𝑡, 𝑥) − 𝜙 𝑧̄ (𝑡, 𝑥)∥2
𝐿𝑞

≲ |𝑃𝑡 (𝑧 − 𝑧) (𝑥) |2 +
∫ 𝑡

0

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)∥𝜙𝑧 (𝑟, 𝑦) − 𝜙 𝑧̄ (𝑟, 𝑦)∥2

𝐿𝑞
𝑑𝑦𝑑𝑟. (2.2.9)

Notice that by the triangle inequality and Proposition 2.1.2, it follows that the norm in the integrand is

bounded in (𝑟, 𝑦). Hence using Lemma 1.3.5, we conclude that

𝐹
(2)
𝑞,0 (𝑡, 𝑥, 𝑧, 𝑧) = ∥𝜙𝑧 (𝑡, 𝑥) − 𝜙 𝑧̄ (𝑡, 𝑥)∥𝐿𝑞 ≲ sup

(𝑡 ,𝑥 ) ∈ [0,1]×𝕋
|𝑃𝑡 (𝑧 − 𝑧) (𝑥) |

≲ sup
𝑥∈𝕋

|𝑧(𝑥) − 𝑧(𝑥) |. (2.2.10)

By the triangle inequality, it follows that 𝐹 (2)
𝑞,0 (𝑡, 𝑥, ·, ·) ∈ 𝐶 ((𝐶 (𝕋 ))

2,ℝ). This implies that 𝐹 (2)
𝑞,0 (𝑡, 𝑥, 𝑍, 𝑍̄)

is indeed defined as a random variable. We begin by showing that the desired inequality holds for the case

when ∥𝑍 ∥𝔹, ∥ 𝑍̄ ∥𝔹 < 𝑁 almost surely, for some constant 𝑁 < ∞. By evaluating (2.2.9) at (𝑧, 𝑧) = (𝑍, 𝑍̄),

and then taking the 𝐿𝒢𝑝1, 𝑝2-norm of the square root of both sides, we get

∥𝐹 (2)
𝑞,0 (𝑡, 𝑥, 𝑍, 𝑍̄)∥𝐿𝒢𝑝1 , 𝑝2

≲ ∥𝑃𝑡 (𝑍 − 𝑍̄) (𝑥)∥𝐿𝒢𝑝1 , 𝑝2
+



 ∫ 𝑡

0

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦) |𝐹

(2)
𝑞,0 (𝑟, 𝑦, 𝑍, 𝑍̄) |

2𝑑𝑦𝑑𝑟



1/2

𝐿𝒢𝑝1
2 ,

𝑝2
2

≲ sup
𝑤∈𝕋

∥𝑍 (𝑤) − 𝑍̄ (𝑤)∥𝐿𝒢𝑝1 , 𝑝2
+
( ∫ 𝑡

0

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)∥𝐹

(2)
𝑞,0 (𝑟, 𝑦, 𝑍, 𝑍̄)∥

2
𝐿𝒢𝑝1 , 𝑝2

𝑑𝑦𝑑𝑟

)1/2
,

where to obtain the last expression, we used Minkowski’s inequality and the assumption that 𝑝1, 𝑝2 ≥ 2.

Hence we may conclude that

∥𝐹 (2)
𝑞,0 (𝑡, 𝑥, 𝑍, 𝑍̄)∥

2
𝐿𝒢𝑝1 , 𝑝2

≲
(

sup
𝑤∈𝕋

∥𝑍 (𝑤) − 𝑍̄ (𝑤)∥𝐿𝒢𝑝1 , 𝑝2

)2

+
∫ 𝑡

0

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)∥𝐹

(2)
𝑞,0 (𝑟, 𝑦, 𝑍, 𝑍̄)∥

2
𝐿𝒢𝑝1 , 𝑝2

𝑑𝑦𝑑𝑟.

Note that by (2.2.10) and due to the fact that ∥𝑍 ∥𝔹, ∥ 𝑍̄ ∥𝔹 ≤ 𝑁 , we have sup𝑟 ,𝑦 ∥𝐹
(2)
𝑞,0 (𝑟, 𝑦, 𝑍, 𝑍̄)∥𝐿𝒢𝑝1 , 𝑝2

≲
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2𝑁 . Hence by the above inequality and by Lemma 1.3.5 we get

∥𝐹 (2)
𝑞,0 (𝑡, 𝑥, 𝑍, 𝑍̄)∥𝐿𝒢𝑝1 , 𝑝2

≲ sup
𝑤∈𝕋

∥𝑍 (𝑤) − 𝑍̄ (𝑤)∥𝐿𝒢𝑝1 , 𝑝2
.

We now remove the assumption that ∥𝑍 ∥𝔹, ∥ 𝑍̄ ∥𝔹 < 𝑁 . Indeed, if this does not hold, then we can construct

the sequence of truncations (𝑍𝑁 , 𝑍̄𝑁 ) := ((𝑁 ∧ 𝑍) ∨ (−𝑁), (𝑁 ∧ 𝑍̄) ∨ (−𝑁)). Then using the continuity

of 𝐹 (2)
𝑞,0 and Fatou’s lemma, the above inequality, and the fact that truncation is a Lipschitz operation, we

get

∥𝐹 (2)
𝑞,0 (𝑡, 𝑥, 𝑍, 𝑍̄)∥𝐿𝒢𝑝,∞ ≤ lim inf

𝑁→∞
∥𝐹 (2)
𝑞,0 (𝑡, 𝑥, 𝑍𝑁 , 𝑍̄𝑁 )∥𝐿𝒢𝑝1 , 𝑝2

≲ lim inf
𝑁→∞

sup
𝑤∈𝕋

∥𝑍𝑁 (𝑤) − 𝑍̄𝑁 (𝑤)∥𝐿𝒢𝑝1 , 𝑝2

≤ sup
𝑤∈𝕋

∥𝑍 (𝑤) − 𝑍̄ (𝑤)∥𝐿𝒢𝑝1 , 𝑝2
.

This finishes the proof of the case 𝑛 = 0.

Step 2: Suppose that the result holds for 𝐹 (2)
𝑞,0 , . . . , 𝐹

(2)
𝑞,𝑛−1 for some 𝑛 ∈ ℕ. We aim to show that it

also holds for 𝐹 (2)
𝑞,𝑛. We first assume that for all (𝑡, 𝑥) ∈ [0, 1] × 𝕋 , 𝐹 (2)

𝑞,𝑛 (𝑡, 𝑥, 𝑧, 𝑧) is continuous in the

(𝑧, 𝑧) variable and later we will show that this is indeed the case. By Proposition 2.1.3, we have

𝐹
(2)
𝑞,𝑛 (𝑡, 𝑥, 𝑧, 𝑧) = ∥𝒟𝑛 [𝜙𝑧 (𝑡, 𝑥) − 𝜙 𝑧̄ (𝑡, 𝑥)] ∥𝐿𝑞 (Ω,𝐻⊗𝑛 )

≲



𝑝𝑡−· (𝑥, ·)𝒟𝑛−1 (𝜎(𝜙𝑧 (·, ·)) − 𝜎(𝜙 𝑧̄ (·, ·)))1[0,𝑡 ]





𝐿𝑞 (Ω;𝐻⊗𝑛 )

+



 ∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝒟𝑛
(
𝜎(𝜙𝑧 (𝑟, 𝑦)) − 𝜎(𝜙 𝑧̄ (𝑟, 𝑦))

)
𝜉 (𝑑𝑦, 𝑑𝑟)





𝐿𝑞 (Ω;𝐻⊗𝑛 )

=: 𝐴(𝑧, 𝑧) + 𝐵(𝑧, 𝑧). (2.2.11)

By Lemma 2.1.1 we may apply point (b) of Lemma 1.10.3 with 𝜀 = 𝑠1/4, to see that for any 𝑚 ≤ 𝑛 and

(𝑠, 𝑦) ∈ [0, 1] × 𝕋 we have

Σ
(2)
𝑞,𝑚(𝑠, 𝑦, 𝑍, 𝑍̄) = ∥𝜎(𝜙𝑧 (𝑠, 𝑦)) − 𝜎(𝜙 𝑧̄ (𝑠, 𝑦))∥ .

𝒲
𝑚
𝑞

≲
𝑚−1∑︁
𝑖=0

𝑠 (𝑚−𝑖)/4∥𝜙𝑧 (𝑠, 𝑦) − 𝜙 𝑧̄ (𝑠, 𝑦)∥ .
𝒲
𝑖

2𝑞
+ ∥𝜙𝑧 (𝑠, 𝑦) − 𝜙 𝑧̄ (𝑠, 𝑦)∥ .

𝒲
𝑚
𝑞
.

Thus by using the induction hypothesis and the definition of 𝐹 (2) , we can see that

∥Σ (2)
𝑞,𝑚(𝑠, 𝑦, 𝑍, 𝑍̄)∥𝐿𝒢𝑝1 , 𝑝2

≲ 𝑠𝑚/4 sup
𝑦∈𝕋

∥𝑍 (𝑦) − 𝑍̄ (𝑦)∥𝐿𝒢𝑝1 , 𝑝2
+ ∥𝐹 (2)

𝑞,𝑚(𝑠, 𝑦, 𝑍, 𝑍̄)∥𝐿𝒢𝑝1 , 𝑝2
. (2.2.12)
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We can bound 𝐴 by applying this result (with 𝑚 := 𝑛 − 1) as follows:

∥𝐴(𝑍, 𝑍̄)∥𝐿𝒢𝑝1 , 𝑝2

≲


𝑝𝑡−· (𝑥, ·)

Σ (2)

𝑞,𝑛−1(·, ·, 𝑍, 𝑍̄)



𝐿𝒢𝑝1 , 𝑝2

1[0,𝑡 ]



𝐻

≲



𝑝𝑡−· (𝑥, ·) sup

(𝜃,𝜁 ) ∈ [0,𝑡 ]×𝕋

(
𝜃
𝑛−1

4 sup
𝑤∈𝕋

∥𝑍 (𝑤) − 𝑍̄ (𝑤)∥𝐿𝒢𝑝1 , 𝑝2
+ ∥𝐹 (2)

𝑞,𝑛−1(𝜃, 𝜁 , 𝑍, 𝑍̄)∥𝐿𝒢𝑝1 , 𝑝2

)
1[0,𝑡 ]





𝐻

≲ 𝑡𝑛/4 sup
𝑤∈𝕋

∥𝑍 (𝑤) − 𝑍̄ (𝑤)∥𝐿𝒢𝑝1 , 𝑝2
(2.2.13)

where for the last inequality we used the induction hypothesis. Now we also bound 𝐵. To this end, note

that by the BDG inequality we have

𝐵(𝑧, 𝑧) ≲
( ∫ 𝑡

0

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)∥𝜎(𝜙𝑧 (𝑟, 𝑦)) − 𝜎(𝜙 𝑧̄ (𝑟, 𝑦))∥2.

𝒲
𝑛
𝑞

𝑑𝑦𝑑𝑟

)1/2
,

and thus using (2.2.12) we get

∥𝐵(𝑍, 𝑍̄)∥2
𝐿𝒢𝑝1 , 𝑝2

≲
∫ 𝑡

0

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)



Σ (2)
𝑞,𝑛 (𝑟, 𝑦, 𝑍, 𝑍̄)



2
𝐿𝒢𝑝1 , 𝑝2

𝑑𝑦𝑑𝑟

≲
∫ 𝑡

0

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)

(
𝑡𝑛/4 sup

𝑤∈𝕋
∥𝑍 (𝑤) − 𝑍̄ (𝑤)∥𝐿𝒢𝑝1 , 𝑝2

+ ∥𝐹 (2)
𝑞,𝑛 (𝑟, 𝑦, 𝑍, 𝑍̄)∥𝐿𝒢𝑝1 , 𝑝2

)2
𝑑𝑦𝑑𝑟

≲ 𝑡 (𝑛+1)/2 sup
𝑤∈𝕋

∥𝑍 (𝑤) − 𝑍̄ (𝑤)∥2
𝐿𝒢𝑝1 , 𝑝2

+
∫ 𝑡

0

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)∥𝐹

(2)
𝑞,𝑛 (𝑟, 𝑦, 𝑍, 𝑍̄)∥2

𝐿𝒢𝑝1 , 𝑝2
𝑑𝑦𝑑𝑟. (2.2.14)

By putting the bounds (2.2.13) and (2.2.14) into (2.2.11) we can see that

∥𝐹 (2)
𝑞,𝑛 (𝑡, 𝑥, 𝑍, 𝑍̄)∥2

𝐿𝒢𝑝1 , 𝑝2
≲ 𝑡𝑛/2 sup

𝑤∈𝕋
∥𝑍 (𝑤) − 𝑍̄ (𝑤)∥2

𝐿𝒢𝑝1 , 𝑝2

+
∫ 𝑡

0

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)∥𝐹

(2)
𝑞,𝑛 (𝑟, 𝑦, 𝑍, 𝑍̄)∥2

𝐿𝒢𝑝1 , 𝑝2
𝑑𝑦𝑑𝑟. (2.2.15)

If (𝑍, 𝑍̄) = (𝑧, 𝑧) ∈ (𝐶 (𝕋 ))2 is deterministic, then we may repeat the proof without assuming that

𝐹
(2)
𝑞,𝑛 (𝑡, 𝑥, 𝑧, 𝑧) is continuous in (𝑧, 𝑧). The above inequality then simply states that

|𝐹 (2)
𝑞,𝑛 (𝑡, 𝑥, 𝑧, 𝑧) |2 ≲ 𝑡𝑛/2 sup

𝑤∈𝕋
|𝑧(𝑤) − 𝑧(𝑤) |2 +

∫ 𝑡

0

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦) |𝐹

(2)
𝑞,𝑛 (𝑟, 𝑦, 𝑧, 𝑧) |2𝑑𝑦𝑑𝑟

Note that by the definition of 𝐹 (2) and by Proposition 2.1.2 we have

sup
(𝑡 ,𝑥 ) ∈ [0,1]×𝕋

|𝐹 (2)
𝑞,𝑛 (𝑡, 𝑥, 𝑧, 𝑧) | ≤ sup

(𝑡 ,𝑥 ) ∈ [0,1]×𝕋
∥𝜙𝑧 (𝑡, 𝑧)∥ .

𝒲
𝑛
𝑞
+ sup

(𝑡 ,𝑥 ) ∈ [0,1]×𝕋
∥𝜙 𝑧̄ (𝑡, 𝑧)∥ .

𝒲
𝑛
𝑞
< ∞,
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so using Lemma 1.3.5 we get

∥𝜙𝑧 (𝑡, 𝑥) − 𝜙 𝑧̄ (𝑡, 𝑥)∥ .
𝒲
𝑛
𝑞
= |𝐹 (2)

𝑞,𝑛 (𝑡, 𝑥, 𝑧, 𝑧) | ≲ 𝑡𝑛/4 sup
𝑥∈𝕋

|𝑧(𝑥) − 𝑧(𝑥) | ≲ sup
𝑥∈𝕋

|𝑧(𝑥) − 𝑧(𝑥) |.

From this it easily follows that for all (𝑡, 𝑥) ∈ [0, 1] × 𝕋 the map 𝐹 (2)
𝑞,𝑛 (𝑡, 𝑥, ·, ·) is of class 𝐶 ((𝐶 (𝕋 ))2,ℝ).

Now going back to (2.2.15), if ∥𝑍 ∥𝔹, ∥ 𝑍̄ ∥𝔹 ≤ 𝑁 for some given 𝑁 > 0 then the desired result follows by

Lemma 1.3.5. For the general case we can repeat the truncation argument from the 𝑛 = 0 case to finish

the proof. □

2.3 Nondegeneracy

Throughout the section we assume that 𝜎 ∈ 𝐶1 such that there exists a constant 𝜇 > 0 such that for all

𝑥 ∈ ℝ we have 𝜎2(𝑥) ≥ 𝜇2. Let 𝜙1, . . . , 𝜙𝐾 solve the driftless equation (2.0.1) with initial conditions

𝜙1
0, . . . , 𝜙

𝐾
0 respectively. Consider the convex combination

Θ(𝑡, 𝑥) :=
𝐾∑︁
𝑖=1

𝑐𝑖𝜙
𝑖 (𝑡, 𝑥). (2.3.16)

with
∑𝐾
𝑖=1 𝑐𝑖 = 1 and 𝑐1, . . . , 𝑐𝐾 ∈ [0, 1]. For a smooth map 𝑔 and a nonnegative integer 𝑛, we aim to

obtain estimates on the expectation of ∇𝑛𝑔(Θ(𝑡, 𝑥)) which depend only on a Besov–Hölder norm of 𝑔

with a negative index, see Lemma 2.3.4 below.

The following lemma quantifies Theorem 4.5 in the chapter by Nualart in [DKM+09].

Lemma 2.3.1. For any 𝑝 ∈ (2,∞) there exists some constant 𝑁 = 𝑁 (𝑝, ∥𝜎∥𝐶1 , 𝜇), such that for all

𝑡 ∈ [0, 1] we have

sup
𝑥∈𝕋

𝔼∥𝒟Θ(𝑡, 𝑥)∥−𝑝
𝐻

≤ 𝑁𝑡−𝑝/4.

Proof. By Proposition 2.1.3 we have for (𝑡, 𝑥), (𝜃, 𝜁) ∈ [0, 1] × 𝕋 that

𝒟𝜃,𝜁Θ(𝑡, 𝑥) = 1[0,𝑡 ] (𝜃)𝑝𝑡−𝜃 (𝑥, 𝜁)
𝐾∑︁
𝑖=1

𝑐𝑖𝜎(𝜙𝑖 (𝜃, 𝜁))

+ 1[0,𝑡 ] (𝜃)
∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)
( 𝐾∑︁
𝑖=1

𝑐𝑖𝜎
′(𝜙𝑖 (𝑟, 𝑦))𝒟𝜃,𝜁 𝜙

𝑖 (𝑟, 𝑦)
)
𝜉 (𝑑𝑦, 𝑑𝑟)

=: 𝐴(𝜃, 𝜁) + 𝐵(𝜃, 𝜁).

51



2.3. Nondegeneracy Chapter 2. Malliavin calculus for the driftless equation

From this we can see that

∫ 𝑡

0

∫
𝕋

|𝒟𝜃,𝜁Θ(𝑡, 𝑥) |2𝑑𝜁𝑑𝜃 ≥ 1
2

∫ 𝑡

𝑡−𝛿

∫
𝕋

|𝐴(𝜃, 𝜁) |2𝑑𝜁𝑑𝜃 −
∫ 𝑡

𝑡−𝛿

∫
𝕋

|𝐵(𝜃, 𝜁) |2𝑑𝜁𝑑𝜃

=: 𝐼 𝛿𝐴 − 𝐼 𝛿𝐵 .

So since |𝐴(𝜃, 𝜁) | ≥ 1[0,𝑡 ] (𝜃)𝑝𝑡−𝜃 (𝑥, 𝜁)𝜇, and by the properties of the heat kernel, it follows that

𝐼 𝛿𝐴 =
1
2

∫ 𝑡

𝑡−𝛿

∫
𝕋

|𝐴(𝜃, 𝜁) |2𝑑𝜁𝑑𝜃 ≥ 𝜇2
∫ 𝑡

𝑡−𝛿

∫
𝕋

|𝑝𝑡−𝜃 (𝑥, 𝜁) |2𝑑𝜁𝑑𝜃 ≥ 𝑘𝜇2𝛿1/2

for some universal constant 𝑘 > 0. Thus

𝐼 𝛿𝐴 ≥ 𝑐0𝛿
1/2 with 𝑐0 = 𝑘𝜇2.

Therefore for 𝜀 ∈ (0, 𝑐0𝛿
1/2) we have

ℙ
( ∫ 𝑡

0

∫
𝕋

|𝒟𝜃,𝜁Θ(𝑡, 𝑥) |2𝑑𝜁𝑑𝜃 < 𝜀
)
≤ ℙ(𝐼 𝛿𝐴 − 𝐼 𝛿𝐵 < 𝜀)

≤ ℙ(𝐼 𝛿𝐵 > 𝑐0𝛿
1/2 − 𝜀)

≤ (𝑐0𝛿
1/2 − 𝜀)−𝑝𝔼|𝐼 𝛿𝐵 |

𝑝 (2.3.17)

where the last inequality holds by Markov’s inequality. We will now need to bound the expectation in the

last line. Note that

𝔼|𝐼 𝛿𝐵 |
𝑝 = 𝔼

��� ∫ 𝑡

𝑡−𝛿

∫
𝕋

��� ∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)
( 𝐾∑︁
𝑖=1

𝑐𝑖𝜎
′(𝜙𝑖 (𝑟, 𝑦))𝒟𝜃,𝜁 𝜙

𝑖 (𝑟, 𝑦)
)
𝜉 (𝑑𝑦, 𝑑𝑟)

���2𝑑𝜁𝑑𝜃���𝑝
= 𝔼




 ∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)
( 𝐾∑︁
𝑖=1

𝑐𝑖𝜎
′(𝜙𝑖 (𝑟, 𝑦))𝒟𝜙𝑖 (𝑟, 𝑦)

)
𝜉 (𝑑𝑦, 𝑑𝑟)




2𝑝

𝐿2 ( [𝑡−𝛿,𝑡 ]×𝕋 )

≲ 𝔼
( ∫ 𝑡

𝑡−𝛿

∫
𝕋

|𝑝𝑡−𝑟 (𝑥, 𝑦) |2
𝐾∑︁
𝑖=1

∥𝒟𝜙𝑖 (𝑟, 𝑦)∥2
𝐿2 ( [𝑡−𝛿,𝑡 ]×𝕋 )𝑑𝑦𝑑𝑟

) 𝑝
where we used the BDG inequality, and the fact that ∥𝒟𝜙𝑖 (𝑟, 𝑦)∥𝐿2 ( [𝑡−𝛿,𝑡 ]×𝕋 ) = 0 for 𝑟 < 𝑡 − 𝛿. Noting

that 𝑟 − 𝛿 < 𝑡 − 𝛿, and that 𝒟𝜃,𝜁 𝜙
𝑖 (𝑟, 𝑦) = 0 for 𝜃 > 𝑟 , we may bound the 𝐿2( [𝑡 − 𝛿, 𝑡] × 𝕋 ) norm in the

expression by the 𝐿2( [𝑟 − 𝛿, 𝑟] × 𝕋 )-norm, and write

𝔼|𝐼 𝛿𝐵 |
𝑝 ≲

𝐾∑︁
𝑖=1

𝔼
( ∫ 𝑡

𝑡−𝛿

∫
𝕋

|𝑝𝑡−𝑟 (𝑥, 𝑦) |2∥𝒟𝜙𝑖 (𝑟, 𝑦)∥2
𝐿2 ( [𝑟−𝛿,𝑟 ]×𝕋 )𝑑𝑦𝑑𝑟

) 𝑝
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≤ 𝛿𝑝/2−1
𝐾∑︁
𝑖=1

∫ 𝑡

𝑡−𝛿

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝔼∥𝒟𝜙𝑖 (𝑟, 𝑦)∥2𝑝
𝐿2 ( [𝑟−𝛿,𝑟 ]×𝕋 )𝑑𝑦𝑑𝑟

=: 𝛿𝑝/2−1
𝐾∑︁
𝑖=1

𝐺𝑖 (2.3.18)

where we used Lemma 1.11.4 with 𝛾 = 2 and 𝛿 = 1. To bound 𝐺𝑖, we will need to bound

∥𝒟𝜙𝑖 (𝑟, 𝑦)∥𝐿2 ( [𝑟−𝛿,𝑟 ]×𝕋 ) . To this end, note that for (𝜃, 𝜁) ∈ [0, 𝑡] × 𝕋 we have

𝒟𝜙𝑖 (𝑡, 𝑥) = 𝑝𝑡−𝜃 (𝑥, 𝜁)𝜎(𝜙𝑖 (𝜃, 𝜁)) +
∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝜎′(𝜙𝑖 (𝑟, 𝑦))𝒟𝜃,𝜁 𝜙
𝑖 (𝑟, 𝑦)𝜉 (𝑑𝑦, 𝑑𝑟).

Therefore using the BDG inequality, we get

𝔼∥𝒟𝜙𝑖 (𝑡, 𝑥)∥𝑞
𝐿2 ( [𝑡−𝛿,𝑡 ]×𝕋 ) ≲ ∥𝑝𝑡−· (𝑥, ·)∥𝑞𝐿2 ( [𝑡−𝛿,𝑡 ]×𝕋 )

+ 𝔼
( ∫ 𝑡

0

∫
𝕋

|𝑝𝑡−𝑟 (𝑥, 𝑦) |2∥𝒟𝜙𝑖 (𝑟, 𝑦)∥2
𝐿2 ( [𝑡−𝛿,𝑡 ]×𝕋 )𝑑𝑦𝑑𝑟

)𝑞/2

=: 𝐴̄ + 𝐵̄.

We have 𝐴̄ ≲ 𝛿𝑞/4. Moreover by applying Lemma 1.11.4 with 𝛾 = 𝛿 = 2 to 𝐵̄ and noting again that

∥𝒟𝜙𝑖 (𝑟, 𝑦)∥𝐿2 ( [𝑡−𝛿,𝑡 ]×𝕋 ) ≤ ∥𝒟𝜙𝑖 (𝑟, 𝑦)∥𝐿2 ( [𝑟−𝛿,𝑟 ]×𝕋 ) we get

𝐵̄ ≲ 𝑡 (𝑝−1)/2
∫ 𝑡

0

∫
𝕋

|𝑝𝑡−𝑟 (𝑥, 𝑦) |2𝔼∥𝒟𝜙𝑖 (𝑟, 𝑦)∥𝑞𝐿2 ( [𝑟−𝛿,𝑟 ]×𝕋 )𝑑𝑦𝑑𝑟

for 𝑞 > 2. Therefore we obtain

𝔼∥𝒟𝜙𝑖 (𝑡, 𝑥)∥𝑞
𝐿2 ( [𝑟−𝛿,𝑟 ]×𝕋 ) ≲ 𝛿𝑞/4 +

∫ 𝑡

0

∫
𝕋

|𝑝𝑡−𝑟 (𝑥, 𝑦) |2𝔼∥𝒟𝜙𝑖 (𝑟, 𝑦)∥𝑞𝐿2 ( [𝑟−𝛿,𝑟 ]×𝕋 )𝑑𝑦𝑑𝑟.

By Proposition 2.1.2 we can see that the 𝑞-th moment in the integrand is bounded in (𝑟, 𝑦). Hence by

Lemma 1.3.5 it follows that

𝔼∥𝒟𝜙𝑖 (𝑡, 𝑥)∥𝑞
𝐿2 ( [𝑟−𝛿,𝑟 ]×𝕋 ) ≲ 𝛿𝑞/4.

Applying this with 𝑞 = 2𝑝 to bound 𝐺𝑖 , we get

𝐺𝑖 ≲
∫ 𝑡

𝑡−𝛿

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝛿𝑝/2𝑑𝑦𝑑𝑟 ≲ 𝛿𝑝/2+1. (2.3.19)

Now putting (2.3.19) into (2.3.18), we get 𝔼|𝐼 𝛿
𝐵
|𝑝 ≲ 𝛿𝑝. Putting this into (2.3.17) we see that for all
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𝛿 ∈ [0, 𝑡] and all 𝜀 ∈ (0, 𝑐0𝛿
1/2), we have

ℙ(∥𝒟Θ(𝑡, 𝑥)∥2
𝐻 < 𝜀) ≲ (𝑐0𝛿

1/2 − 𝜀)−𝑝𝛿𝑝 .

So if 𝜀 ∈ (0, (𝑐0/2)
√
𝑡), we can choose 𝛿(𝜀) := 4

𝑐2
0
𝜀2, to get

ℙ(∥𝒟Θ(𝑡, 𝑥)∥2
𝐻 < 𝜀) ≲ 𝜀𝑝 .

Let 𝐿 := (2/𝑐0) 𝑝/2𝑡−𝑝/4. Notice that if 𝛾 > 𝐿, then 𝛾−2/𝑝 ∈ (0, (𝑐0/2)
√
𝑡), and consequently we have

ℙ(∥𝒟Θ(𝑡, 𝑥)∥2
𝐻 < 𝛾−2/𝑝) ≲ 𝛾−2.

Hence, we have

𝔼∥𝒟Θ(𝑡, 𝑥)∥−𝑝
𝐻

=

∫ ∞

0
ℙ
(
∥𝒟Θ∥−𝑝

𝐻
≥ 𝛾

)
𝑑𝛾 ≤ 𝐿 +

∫ ∞

𝐿

ℙ(∥𝒟Θ∥2
𝐻 < 𝛾−2/𝑝)𝑑𝛾

≲ 𝐿 +
∫ ∞

𝐿

𝛾−2𝑑𝛾

≲ 𝐿 + 𝐿−1 ≲ 𝑡−𝑝/4,

which finishes the proof. □

For (𝑡, 𝑥) ∈ [0, 1] × 𝕋 , we consider the 𝐻-valued random variables 𝑤𝑡 ,𝑥 which are given for all

(𝜃, 𝜁) ∈ [0, 1] × 𝕋 by

𝑤𝑡 ,𝑥 (𝜃, 𝜁) :=
𝒟𝜃,𝜁Θ(𝑡, 𝑥)
∥𝒟Θ(𝑡, 𝑥)∥2

𝐻

.

For given 𝑛 ∈ ℕ and for a 𝐶 ( [0, 1] × 𝕋 )-valued random variable 𝐺0 such that for all (𝑡, 𝑥) ∈ [0, 1] × 𝕋

𝐺0(𝑡, 𝑥) ∈ 𝒲
𝑛, we may define iterated Skorokhod integrals for all 𝑘 ∈ {0, . . . , 𝑛−1} and (𝑡, 𝑥) ∈ [0, 1]×𝕋

recursively by

𝐺𝑘+1(𝑡, 𝑥) = 𝛿(𝑤𝑡 ,𝑥𝐺𝑘 (𝑡, 𝑥)).

Then by Proposition 1.10.1, for any 𝑓 ∈ 𝐶∞ we have the integration-by-parts formula

𝔼
(
∇𝑘 𝑓 (Θ)𝐺0

)
= 𝔼

(
𝑓 (Θ)𝐺𝑘

)
To bound the iterations (𝐺𝑘)𝑘∈{0,...,𝑛} , we will need the following bounds on 𝑤 and its Malliavin
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derivatives.

Lemma 2.3.2. Let 𝑝 ∈ [1,∞), 𝑛 ∈ ℤ≥0, and 𝜎 ∈ 𝐶𝑛+1. Then there exists a constant 𝑁 =

𝑁 (𝑝, 𝑛, ∥𝜎∥𝐶𝑛+1 , 𝜇) such that for all (𝑡, 𝑥) ∈ [0, 1] × 𝕋 , we have

∥𝒟𝑛𝑤𝑡 ,𝑥 ∥𝐿𝑝 (Ω;𝐻⊗(𝑛+1) ) ≤ 𝑁𝑡 (𝑛−1)/4.

Proof. Fix (𝑡, 𝑥) ∈ [0, 1] × 𝕋 and let 𝑋 := Θ(𝑡, 𝑥), 𝑌 := ∥𝒟Θ(𝑡, 𝑥)∥2
𝐻

and 𝑤 := (𝒟𝑋)/𝑌 . We may

assume that 𝑝 > 2. By Lemma 2.1.1, Lemma 2.1.5 and Lemma 2.3.1 respectively, we have

∥𝑋 ∥ .
𝒲
𝑘
𝑝
≲ 𝑡

𝑘
4 , ∥𝑌 ∥ .

𝒲
𝑘
𝑝
≲ 𝑡

2+𝑘
4 , 𝔼(𝑌 )−𝑝 ≲ 𝑡−

2𝑝
4 .

Therefore by Lemma 1.10.4 (with 𝜀 := 𝑡1/4 and 𝑐 = 2) to obtain

∥𝒟𝑛𝑤∥𝐿𝑝 (Ω;𝐻⊗(𝑛+1) ≲ (𝑡1/4)𝑛+1−2 ≲ 𝑡 (𝑛−1)/4

as required. □

Lemma 2.3.3. Let 𝑛 ∈ ℤ≥0, and 𝜎 ∈ 𝐶𝑛. Then for each 𝑘, 𝑚 ∈ ℤ≥0 such that 𝑘 + 𝑚 ≤ 𝑛 and for all

𝑝 ∈ [1,∞) there exists a constant 𝑁 = 𝑁 (𝑘, 𝑚, 𝑝, ∥𝜎∥𝐶𝑛 , 𝜇) such that with 𝑞 := 2𝑚𝑝 we have for all

(𝑡, 𝑥) ∈ [0, 1] × 𝕋 that

∥𝐺𝑚(𝑡, 𝑥)∥𝒲𝑘
𝑝
≤ 𝑁𝑡−𝑚/4∥𝐺0(𝑡, 𝑥)∥𝒲𝑘+𝑚

𝑞
.

Proof. For notational convenience, fix (𝑡, 𝑥) ∈ [0, 1] × 𝕋 , set 𝑤 := 𝑤𝑡 ,𝑥 , and for 𝑖 = 1, . . . , 𝑛 set

𝐺𝑖 := 𝐺𝑖 (𝑡, 𝑥). The proof will be done by induction with respect to the 𝑚 variable. For 𝑚 = 0 the

statement is obviously true. Now suppose that the statement is true for some 𝑚 ≤ 𝑛 − 1. That is, we

suppose that for all 𝑙 ∈ ℤ≥0 such that 𝑙 + 𝑚 ≤ 𝑛 we have

∥𝐺𝑚∥𝒲𝑙
𝑝
≲ 𝑡−𝑚/4∥𝐺0∥𝒲𝑙+𝑚

2𝑚𝑝
.

We show that the statement is also true for 𝑚 + 1, i.e. that for all 𝑘 ∈ ℤ≥0 such that 𝑘 + (𝑚 + 1) ≤ 𝑛, we

have

∥𝐺𝑚+1∥𝒲𝑘
𝑝
≲ 𝑡−(𝑚+1)/4∥𝐺0∥𝒲𝑘+𝑚+1

2𝑚+1𝑝
. (2.3.20)
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Let 𝑘 ∈ ℤ≥0, such that 𝑘 +𝑚 + 1 ≤ 𝑛. Since the divergence 𝛿 : 𝒲𝑘+1
𝑝 → 𝒲

𝑘
𝑝 is a bounded linear operator

(see [Nua06, Proposition 1.5.7 and point 1 of remarks of Chapter 1]), we have

∥𝐺𝑚+1∥𝒲𝑘
𝑝
= ∥𝛿(𝑤𝐺𝑚)∥𝒲𝑘

𝑝
≲ ∥𝑤𝐺𝑚∥𝒲𝑘+1

𝑝 (𝐻 )

≲
𝑘+1∑︁
𝑖=0

∥𝒟𝑖 (𝑤𝐺𝑚)∥𝐿𝑝 (Ω;𝐻⊗(𝑖+1) )

≲
𝑘+1∑︁
𝑖=0

∑︁
𝜆1+𝜆2=𝑖

∥𝒟𝜆1𝑤∥𝐿2𝑝 (Ω;𝐻⊗(𝜆1+1) ) ∥𝒟
𝜆2𝐺𝑚∥𝐿2𝑝 (Ω;𝐻⊗𝜆2 ) .(2.3.21)

By Lemma 2.3.2, and since 𝜆1 ≥ 0, we have

∥𝒟𝜆1𝑤∥𝐿2𝑝 (Ω;𝐻⊗(𝜆1+1) ) ≲ 𝑡 (𝜆1−1)/4 ≲ 𝑡−1/4. (2.3.22)

Moreover since 𝜆2 + 𝑚 ≤ 𝑘 + 1 + 𝑚 ≤ 𝑛, by the induction hypothesis we have

∥𝒟𝜆2𝐺𝑚∥𝐿2𝑝 (Ω;𝐻⊗𝜆2 ) ≤ ∥𝐺𝑚∥
𝒲
𝜆2

2𝑝
≲ 𝑡−𝑚/4∥𝐺0∥

𝒲
𝜆2+𝑚

2𝑚+1𝑝
≤ 𝑡−𝑚/4∥𝐺0∥𝒲𝑘+1+𝑚

2𝑚+1𝑝
. (2.3.23)

Now putting (2.3.22) and (2.3.23) into (2.3.21), we get

∥𝐺𝑚+1∥𝒲𝑘
𝑝
≲ 𝑡−1/4𝑡−𝑚/4∥𝐺0∥𝒲𝑘+1+𝑚

2𝑚+1𝑝
.

Hence (2.3.20) holds, and the proof is finished. □

Lemma 2.3.4. Let 𝑛 ∈ ℤ≥0, 𝜎 ∈ 𝐶𝑛+1, 𝛽 ∈ (−2,−1) ∪ (−1, 0), and set 𝑞 := 2𝑛+21(−1,0) (𝛽) +

2𝑛+31(−2,−1) (𝛽) and 𝑚 := (𝑛 + 1)1(−1,0) (𝛽) + (𝑛 + 2)1(−2,−1) (𝛽). There exists a constant 𝑁 =

𝑁 (𝑛, 𝛽, ∥𝜎∥𝐶𝑛+1 , 𝜇) such that for all 𝑔 ∈ 𝐶∞, (𝑡, 𝑥) ∈ [0, 1] × 𝕋 , we have

��𝔼(∇𝑛𝑔(Θ(𝑡, 𝑥))𝐺0(𝑡, 𝑥)
) �� ≤ 𝑁 ∥𝑔∥𝐶𝛽 𝑡

𝛽−𝑛
4 ∥𝐺0(𝑡, 𝑥)∥𝒲𝑚

𝑞
.

Proof. Let 𝑓 ∈ 𝐶∞ be the solution of (1 − Δ) 𝑓 = 𝑔 and let (𝑡, 𝑥) ∈ [0, 1] × 𝕋 . By Proposition 1.10.1 and

by the definition of 𝑓 , we get

|𝔼(∇𝑛𝑔(Θ(𝑡, 𝑥))𝐺0(𝑡, 𝑥)) | = |𝔼(𝑔(Θ(𝑡, 𝑥))𝐺𝑛 (𝑡, 𝑥)) |

≤ |𝔼( 𝑓 (Θ(𝑡, 𝑥))𝐺𝑛 (𝑡, 𝑥)) | + |𝔼(Δ 𝑓 (Θ(𝑡, 𝑥))𝐺𝑛 (𝑡, 𝑥)) | =: 𝐴 + 𝐵.
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It follows easily from Lemma 2.3.3 and Proposition 1.4.4 that

𝐴 ≤ ∥ 𝑓 ∥𝔹∥𝐺𝑛 (𝑡, 𝑥)∥𝐿1 ≤ ∥ 𝑓 ∥𝐶2+𝛽 𝑡−𝑛/4∥𝐺0(𝑡, 𝑥)∥𝒲𝑛
2𝑛

≲ ∥𝑔∥𝐶𝛼 𝑡−𝑛/4+𝛽/4∥𝐺0(𝑡, 𝑥)∥𝒲𝑚
𝑞
. (2.3.24)

It remains to be shown that the desired bound also holds on 𝐵. To this end, we first note that by Jensen’s

inequality and by the BDG inequality for 𝛾 ∈ (0, 1) we have




(Θ(𝑡, 𝑥) −
𝐾∑︁
𝑖=1

𝑐𝑖𝑃𝑡𝜙
𝑖 (0, ·) (𝑥)

)𝛾



𝐿2

≤



 𝐾∑︁
𝑖=1

𝑐𝑖

(
𝜙𝑖 (𝑡, 𝑥) − 𝑃𝑡𝜙𝑖 (0, ·) (𝑥)

)


𝛾
𝐿2

≤
𝐾∑︁
𝑖=1




 ∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝜎(𝜙𝑖 (𝑟, 𝑦))𝜉 (𝑑𝑦, 𝑑𝑟)



𝛾
𝐿2

≲ 𝑡𝛾/4. (2.3.25)

We first consider the case that 𝛽 ∈ (−1, 0). By Proposition 1.10.1, the fact that 𝔼𝐺𝑛+1 = 0, and (2.3.25)

with 𝛾 = 1 + 𝛽 ∈ (0, 1), we get

𝐵 = |𝔼(∇ 𝑓 (Θ(𝑡, 𝑥))𝐺𝑛+1(𝑡, 𝑥)) |

=

���𝔼((∇ 𝑓 (Θ(𝑡, 𝑥)) − ∇ 𝑓
( 𝐾∑︁
𝑖=1

𝑐𝑖𝑃𝑡𝜙
𝑖 (0, ·) (𝑥)

))
𝐺𝑛+1(𝑡, 𝑥))

)���
≲ ∥∇ 𝑓 ∥𝐶1+𝛽




(Θ(𝑡, 𝑥) −
𝐾∑︁
𝑖=1

𝑐𝑖𝑃𝑡𝜙
𝑖 (0, ·) (𝑥)

)1+𝛽



𝐿2
∥𝐺𝑛+1(𝑡, 𝑥)∥𝐿2

≲ ∥ 𝑓 ∥𝐶2+𝛽 𝑡
1+𝛽

4 ∥𝐺𝑛+1(𝑡, 𝑥)∥𝐿2

≲ ∥𝑔∥𝐶𝛽 𝑡
𝛽−𝑛

4 ∥𝐺0(𝑡, 𝑥)∥𝒲𝑛+1
𝑞
, (2.3.26)

where for the last inequality we used Proposition 1.4.4 and Lemma 2.3.3. We now also deal with the case

when 𝛽 ∈ (−2,−1). Repeating the same steps with one more iteration of Malliavin integration by parts

and with 𝛾 = 2 + 𝛽 ∈ (0, 1), we can see that

𝐵 = |𝔼( 𝑓 (Θ(𝑡, 𝑥))𝐺𝑛+2(𝑡, 𝑥)) |

≲ ∥ 𝑓 ∥𝐶2+𝛽




(Θ(𝑡, 𝑥) −
𝐾∑︁
𝑖=1

𝑐𝑖𝑃𝑡𝜙
𝑖 (0, ·) (𝑥)

)2+𝛽



𝐿2
∥𝐺𝑛+2(𝑡, 𝑥)∥𝐿2

≲ ∥𝑔∥𝐶𝛽 𝑡
𝛽−𝑛

4 ∥𝐺0(𝑡, 𝑥)∥𝒲𝑛+2
𝑞
. (2.3.27)

By (2.3.26) and (2.3.27) we can see that for all 𝛽 ∈ (−2,−1) ∪ (−1, 0) we have

𝐵 ≲ ∥𝑔∥𝐶𝛽 𝑡
𝛽−𝑛

4 ∥𝐺0(𝑡, 𝑥)∥𝒲𝑚
𝑞
. (2.3.28)
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By the bounds (2.3.24) and (2.3.28) on 𝐴 and 𝐵 respectively, the proof is finished. □

Let 𝑠 ≥ 0 and suppose that 𝑍 : Ω × 𝕋 → ℝ is an ℱ𝑠 ⊗ ℬ(𝕋 )-measurable map, such that 𝑍 (𝑥) is

continuous in 𝑥 and that sup𝑥∈𝕋 ∥𝑍 (𝑥)∥𝐿2 < ∞. Let 𝜙𝑍,𝑠 denote the solution of

(𝜕𝑡 − Δ)𝜙𝑍,𝑠 = 𝜎(𝜙𝑍,𝑠)𝜉 in (𝑠, 1) × 𝕋 , 𝜙𝑍,𝑠𝑠 = 𝑍. (2.3.29)

For (𝑡, 𝑥) ∈ [𝑠, 1] × 𝕋 , the solution satisfies the integral equation

𝜙𝑍,𝑠 (𝑡, 𝑥) = 𝑃𝑡−𝑠𝑍 (𝑥) +
∫ 𝑡

𝑠

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝜎(𝜙𝑍,𝑠 (𝑟, 𝑦))𝜉 (𝑑𝑦, 𝑑𝑟). (2.3.30)

We will moreover use the shorthand

𝜙𝑍 (𝑡, 𝑥) := 𝜙𝑍,0(𝑡, 𝑥). (2.3.31)

In the next lemma, we show a Markov-type property which will be used often. Recall that 𝐶 (𝕋 )

denotes the collection of continuous functions 𝑓 : 𝕋 → ℝ, and it is equipped with the sup-norm ∥ · ∥𝔹.

The topology induced by this norm generates the Borel 𝜎-algebra ℬ(𝐶 (𝕋 )) which coincides with the

cylindrical 𝜎-algebra. Moreover, recall that since 𝐶 (𝕋 ) is separable, the notions of measurable, weakly

measurable, and strongly measurable 𝐶 (𝕋 )-valued maps on Ω coincide. In addition, a continuous random

field 𝑢 : Ω × 𝕋 → ℝ is actually a 𝐶 (𝕋 )-valued random variable.

Lemma 2.3.5. Let 𝑏, 𝜎 ∈ 𝐶1(ℝ), 𝑀 ∈ ℕ, (𝑍𝑖)𝑀𝑖=1 ⊂ 𝐿2(Ω,ℱ𝑠,ℙ;𝐶 (𝕋 )) ∩ 𝔹(𝕋 , 𝐿2(Ω)), and let 𝜙𝑍,𝑠

be the unique solution of (2.3.29). Further, for 𝑝 ∈ [1,∞), 𝑓 ∈ 𝐶1(ℝ𝑀 ), 𝑡 ∈ [𝑠, 1], and 𝑥 ∈ 𝕋 , define

𝑔 : (𝐶 (𝕋 ))𝑀 → ℝ by

𝑔(𝑧1, . . . , 𝑧𝑀 ) := 𝔼 𝑓
(
𝜙𝑧1 (𝑡 − 𝑠, 𝑥), . . . , 𝜙𝑧𝑀 (𝑡 − 𝑠, 𝑥)

)
.

Then, for 𝑖 = 1, . . . , 𝑀 and 𝑍𝑖 ∈ 𝐿2(Ω,F𝑠,ℙ;𝐶 (𝕋 )) ∩ 𝔹(𝕋 , 𝐿2(Ω)), we have

𝔼𝑠 𝑓
(
𝜙𝑍1,𝑠 (𝑡, 𝑥), . . . , 𝜙𝑍𝑀 ,𝑠 (𝑡, 𝑥)

)
= 𝑔(𝑍1, . . . , 𝑍𝑀 ). (2.3.32)

Proof. Suppose first that the 𝑍𝑖 are simple random variables of the form

𝑍𝑖 =

𝐾∑︁
𝑘=1

ℎ𝑘,𝑖1𝐸𝑘 (2.3.33)
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where 𝐾 ∈ ℕ, (ℎ𝑘,𝑖)𝐾𝑘=1 ⊂ 𝐶 (𝕋 ) and (𝐸𝑘)𝐾𝑘=1 ⊂ F𝑠 is a partition of Ω. In this case, we have for

(𝑡, 𝑥) ∈ [𝑠, 1] × 𝕋 that

𝔼𝑠 𝑓 (𝜙𝑍1,𝑠 (𝑡, 𝑥), . . . , 𝜙𝑍𝑀 ,𝑠𝑠,𝑡 (𝑡, 𝑥))

= 𝔼𝑠 𝑓
( 𝐾∑︁
𝑘=1

1𝐸𝑘𝜙
ℎ𝑘,1,𝑠 (𝑡, 𝑥), . . . ,

𝐾∑︁
𝑘=1

1𝐸𝑘𝜙
ℎ𝑘,𝑀 ,𝑠 (𝑡, 𝑥)

)
= 𝔼𝑠

𝐾∑︁
𝑘=1

1𝐸𝑘 𝑓 (𝜙ℎ𝑘,1,𝑠 (𝑡, 𝑥), . . . , 𝜙ℎ𝑘,𝑀 ,𝑠 (𝑡, 𝑥))

=

𝐾∑︁
𝑘=1

1𝐸𝑘𝔼
𝑠 𝑓 (𝜙ℎ𝑘,1,𝑠 (𝑡, 𝑥), . . . , 𝜙ℎ𝑘,𝑀 ,𝑠 (𝑡, 𝑥))

=

𝐾∑︁
𝑘=1

1𝐸𝑘𝔼 𝑓 (𝜙ℎ𝑘,1 (𝑡 − 𝑠, 𝑥), . . . , 𝜙ℎ𝑘,𝑀 (𝑡 − 𝑠, 𝑥))

=

𝐾∑︁
𝑘=1

1𝐸𝑘𝑔(ℎ𝑘,1, . . . , ℎ𝑘,𝑀 ) = 𝑔(𝑍1, . . . , 𝑍𝑀 ),

which shows (2.3.32). For the general case, since 𝑍𝑖 ∈ 𝐿2(Ω,F𝑠,ℙ;𝐶 (𝕋 )), for 𝑖 = 1, . . . , 𝑀 there exist

sequences (𝑍𝑛
𝑖
)𝑛∈ℕ of the form (2.3.33) such that ∥𝑍𝑛

𝑖
− 𝑍𝑖 ∥𝔹(𝕋 ) → 0 almost surely and in 𝐿2(Ω) as

𝑛→ ∞. For those 𝑍𝑛
𝑖
𝑠 and for (𝑡, 𝑥) ∈ [𝑠, 1] × 𝕋 we have

𝔼𝑠 𝑓 (𝜙𝑍𝑛1 ,𝑠 (𝑡, 𝑥), . . . 𝜙𝑍𝑛𝑀 ,𝑠 (𝑡, 𝑥)) = 𝑔(𝑍𝑛1 , . . . , 𝑍
𝑛
𝑀 ). (2.3.34)

It follows from Lemma 2.2.1 that for all (𝑡, 𝑥) ∈ [𝑠, 1] × 𝕋 , the map 𝐿2(Ω;𝐶 (𝕋 )) ∋ 𝑍 ↦→ 𝜙𝑍,𝑠 (𝑡, 𝑥) ∈

𝐿2(Ω) is Lipschitz. From this, it firstly follows that 𝜙𝑍𝑛𝑖 ,𝑠 (𝑡, 𝑥) → 𝜙𝑍𝑖 ,𝑠 (𝑡, 𝑥) in 𝐿2(Ω), which by using

the Lipschitz continuity of 𝑓 implies that

𝔼𝑠 𝑓 (𝜙𝑍𝑛1 ,𝑠 (𝑡, 𝑥), . . . , 𝜙𝑍𝑛𝑀 ,𝑠 (𝑡, 𝑥)) −→ 𝔼𝑠 𝑓 (𝜙𝑍1,𝑠 (𝑡, 𝑥), . . . 𝜙𝑍𝑀 ,𝑠 (𝑡, 𝑥))

in 𝐿2(Ω). Secondly, it also follows that the function 𝑔 : 𝐶 (𝕋 )𝑀 → ℝ is continuous. Hence, upon taking

the limit in probability with 𝑛→ ∞ in (2.3.34), the result follows. □

Lemma 2.3.6. Let 𝐾 ∈ ℕ, and for 𝑧1, . . . , 𝑧𝐾 ∈ 𝐶 (𝕋 ), (𝑠, 𝑡) ∈ [0, 1]2
≤ , 𝑥 ∈ 𝕋 , consider the convex

combination

Φ𝑧1,...,𝑧𝐾 ,𝑠 (𝑡, 𝑥) :=
𝐾∑︁
𝑖=1

𝑐𝑖𝜙
𝑧𝑖 ,𝑠 (𝑡, 𝑥).
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Let ℎ ∈ 𝐶 (ℝ𝐾 ), and for 𝑞 ∈ [1,∞) and 𝑖 ∈ ℤ≥0 define 𝐻𝑞,𝑖 : (𝐶 (𝕋 ))𝐾 → ℝ by

𝐻𝑞,𝑖 (𝑧1, . . . , 𝑧𝐾 ) := ∥ℎ
(
𝜙𝑧1 (𝑡 − 𝑠, 𝑥), . . . , 𝜙𝑧𝐾 (𝑡 − 𝑠, 𝑥)

)
∥ .
𝒲
𝑖
𝑞
.

Let 𝑍1, . . . , 𝑍𝐾 be ℱ𝑠-measurable 𝐶 (𝕋 )-valued random variables and 𝑔 ∈ 𝐶∞(ℝ). For all 𝑛 ∈ ℤ≥0,

𝛽 ∈ (−2,−1)∪(−1, 0) there exists a constant𝑁 = 𝑁 (𝑛, 𝛽, ∥𝜎∥𝐶𝑛+1 , 𝜇) such that with 𝑞 := 2𝑛+21(−1,0) (𝛽)+

2𝑛+31(−2,−1) (𝛽) and 𝑚 := (𝑛 + 1)1(−1,0) (𝛽) + (𝑛 + 2)1(−2,−1) (𝛽) we have

���𝔼𝑠 (∇𝑛𝑔 (Φ𝑍1,...,𝑍𝐾 ,𝑠 (𝑡, 𝑥)
)
ℎ
(
𝜙𝑍1,𝑠 (𝑡, 𝑥), . . . , 𝜙𝑍𝐾 ,𝑠 (𝑡, 𝑥)

) )���
≤ 𝑁 ∥𝑔∥𝐶𝛽 (𝑡 − 𝑠)

𝛽−𝑛
4

𝑚∑︁
𝑖=0

𝐻𝑞,𝑖
(
𝑍1, . . . , 𝑍𝐾

)
.

Proof. By Lemma 2.3.5 we have

���𝔼𝑠 (∇𝑛𝑔 (Φ𝑍1,...,𝑍𝐾 ,𝑠 (𝑡, 𝑥)
)
ℎ
(
𝜙𝑍1,𝑠 (𝑡, 𝑥), . . . , 𝜙𝑍𝐾 ,𝑠 (𝑡, 𝑥)

) )��� = 𝐺 (𝑍1, . . . , 𝑍𝐾 ), (2.3.35)

where for 𝑧1, . . . , 𝑧𝐾 ∈ 𝐶 (𝕋 ) we define

𝐺 (𝑧1, . . . , 𝑧𝐾 ) :=
���𝔼(∇𝑛𝑔 ( 𝐾∑︁

𝑖=1
𝑐𝑖𝜙

𝑧𝑖 (𝑡 − 𝑠, 𝑥)
)
ℎ(𝜙𝑧𝑖 (𝑡 − 𝑠, 𝑥), . . . , 𝜙𝑧𝐾 (𝑡 − 𝑠, 𝑥))

)���.
By Lemma 2.3.4 we have

𝐺 (𝑧1, . . . , 𝑧𝐾 ) ≲ ∥𝑔∥𝐶𝛽 (𝑡 − 𝑠)
𝛽−𝑛

4 ∥ℎ(𝜙𝑧1 (𝑡 − 𝑠, 𝑥), . . . , 𝜙𝑧𝑀 (𝑡 − 𝑠, 𝑥))∥𝒲𝑚
𝑞

≲ ∥𝑔∥𝐶𝛽 (𝑡 − 𝑠)
𝛽−𝑛

4

𝑚∑︁
𝑖=0

∥ℎ(𝜙𝑧1 (𝑡 − 𝑠, 𝑥), . . . , 𝜙𝑧𝑀 (𝑡 − 𝑠, 𝑥))∥ .
𝒲
𝑖
𝑞

= ∥𝑔∥𝐶𝛽 (𝑡 − 𝑠)
𝛽−𝑛

4

𝑚∑︁
𝑖=0

𝐻𝑞,𝑖 (𝑧1, . . . , 𝑧𝐾 ). (2.3.36)

Now putting (2.3.36) into (2.3.35), the desired result follows. □

2.4 Estimates on the density

In the previous sections we have proven estimates on the Malliavin derivatives of the solution 𝜙(𝑡, 𝑥) to

driftless equation (2.0.1) equation, which allowed us to prove Lemma 2.3.3. In turn this lemma implies

estimates on the Hölder norm of the density 𝑓𝑡 ,𝑥 : ℝ → [0,∞) of 𝜙(𝑡, 𝑥)..

Theorem 2.4.1 (Regularity of density). Let 𝛾 > 0. Suppose that 𝜎 ∈ 𝐶 ⌊𝛾⌋+2 satisfies 𝜎 ≥ 𝜇 for some
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constant 𝜇 > 0. For (𝑡, 𝑥) ∈ (0, 1] × 𝕋 the solution 𝜙(𝑡, 𝑥) of (2.0.1) admits a density 𝑓𝑡 ,𝑥 and there

exists a constant 𝑁 = 𝑁 (∥𝜎∥𝐶 ⌊𝛾⌋+2 , 𝜇), such that for each (𝑡, 𝑥) ∈ (0, 1] × 𝕋 , the density satisfies

sup
𝑥∈𝕋

∥ 𝑓𝑡 ,𝑥 ∥𝐶𝛾 (ℝ,ℝ) ≤ 𝑁𝑡−(𝛾+1)/4.

Proof. Let (𝑡, 𝑥) ∈ [0, 1] × 𝕋 , and define iterated Skorokhod integrals by

𝐺0 := 1,

𝐺𝑘+1(𝑡, 𝑥) := 𝛿
(

𝒟𝜙(𝑡, 𝑥)
∥𝒟𝜙(𝑡, 𝑥)∥𝐻2

𝐺𝑘 (𝑡, 𝑥)
)
.

Then by Proposition 1.10.1 for 𝑛 ∈ ℤ≥0 and for any 𝑛-times differentiable map 𝑔 : ℝ → ℝ we have that

𝜙(𝑡, 𝑥) and the sequence (𝐺𝑛 (𝑡, 𝑥))𝑛∈ℕ satisfies the integration by parts formula

𝔼∇𝑛𝑔(𝜙(𝑡, 𝑥)) = 𝔼
(
𝑔(𝜙(𝑡, 𝑥))𝐺𝑛 (𝑡, 𝑥)

)
.

Hence by [SS04, Proposition 2.1/(2.3)] we have that the 𝑛-th derivative 𝜕𝑛 𝑓𝑡 ,𝑥 (𝑧) := 𝜕𝑛 𝑓𝑡,𝑥 (𝑧)
𝜕𝑧𝑛

of the

density of 𝜙 is given for 𝑧 ∈ ℝ by

𝜕𝑛 𝑓𝑡 ,𝑥 (𝑧) = (−1)𝑛𝔼
(
1𝑧≤𝜙 (𝑡 ,𝑥 )𝐺𝑛+1(𝑡, 𝑥)

)
.

Therefore using Lemma 2.3.3 we get

|𝜕𝑛 𝑓𝑡 ,𝑥 (𝑧) | ≲ 𝔼
(
|1𝑧≤𝜙 (𝑡 ,𝑥 ) | |𝐺𝑛+1 |

)
≲ ∥𝐺𝑛+1∥𝐿1 ≲ 𝑡−(𝑛+1)/4. (2.4.37)

Note moreover that for 𝛽 ∈ (0, 1), for 𝑧1, 𝑧2 ∈ ℝ, we have using the above inequality that

|𝜕𝑛 𝑓𝑡 ,𝑥 (𝑧1) − 𝜕𝑛 𝑓𝑡 ,𝑥 (𝑧2) | = |𝜕𝑛𝑧 𝑓𝑡 ,𝑥 (𝑧1) − 𝜕𝑛𝑧 𝑓𝑡 ,𝑥 (𝑧2) |1−𝛽 |𝜕𝑛𝑧 𝑓𝑡 ,𝑥 (𝑧1) − 𝜕𝑛𝑧 𝑓𝑡 ,𝑥 (𝑧2) |𝛽

≲ ∥𝜕𝑛𝑧 𝑓𝑡 ,𝑥 ∥
1−𝛽
𝔹

∥𝜕𝑛𝑧 𝑓𝑡 ,𝑥 ∥
𝛽

𝐶1 |𝑧1 − 𝑧2 |𝛽

≲ ∥ 𝑓𝑡 ,𝑥 ∥1−𝛽
𝐶𝑛

∥ 𝑓𝑡 ,𝑥 ∥𝛽𝐶𝑛+1 |𝑧1 − 𝑧2 |𝛽

≲
(
𝑡−

𝑛+1
4
)1−𝛽 (

𝑡−
𝑛+2

4
)𝛽 |𝑧1 − 𝑧2 |𝛽 = 𝑡−

𝑛+1−𝛽𝑛−𝛽+𝛽𝑛+2𝛽
4 |𝑧1 − 𝑧2 |𝛽

= 𝑡−
𝑛+1+𝛽

4 |𝑧1 − 𝑧2 |𝛽 .
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Therefore we get

[𝜕𝑛 𝑓𝑡 ,𝑥]𝐶𝛽 ≲ 𝑡−
𝑛+1+𝛽

4 . (2.4.38)

Finally, the desired estimate follows by applying (2.4.37) and (2.4.38) with 𝑛 := ⌊𝛾⌋ and with 𝛽 := 𝛾− ⌊𝛾⌋

to obtain

∥ 𝑓𝑡 ,𝑥 ∥𝐶𝛾 = ∥ 𝑓𝑡 ,𝑥 ∥𝐶𝑛+𝛽 = ∥ 𝑓𝑡 ,𝑥 ∥𝐶𝑛 + [ 𝑓 𝑛𝑡,𝑥]𝐶𝛽 ≲ 𝑡−
𝑛+1

4 + 𝑡−
𝑛+1+𝛽

4 ≲ 𝑡−
𝑛+1+𝛽

4 = 𝑡−
𝛾+1

4 ,

and thus the proof is finished. □
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Chapter 3

Well-posedness

3.1 Driftless approximation

In this section we deal with the approximation of the solution 𝑢(𝑡, 𝑥) by 𝜙𝑢(𝑠, · ) ,𝑠 (𝑡, 𝑥). The main results

of this section are Lemma 3.1.4 and Lemma 3.1.6.

Lemma 3.1.1 (Boundedness of regularised solutions ). Let 𝑢 be a regularised solution of (1.3.9) with

initial condition 𝑢(0, ·) = 𝑢0 ∈ 𝐶 (𝕋 ) and let 𝑝 ∈ [2,∞). There exists a constant 𝑁 = 𝑁 (𝑝, ∥𝜎∥𝔹) such

that for all (𝑡, 𝑥) ∈ [0, 1] × 𝕋 we have

∥𝑢(𝑡, 𝑥)∥𝐿𝑝 ≤ 𝑁

(
∥𝑢0∥𝔹(𝕋 ) + ∥𝐷𝑢𝑡 (𝑥)∥𝐿𝑝 + 𝑡1/4

)
. (3.1.1)

Consequently, if 𝑢 ∈ 𝒰
0
𝑝, then

sup
(𝑡 ,𝑥 ) ∈ [0,1]×𝕋

∥𝑢(𝑡, 𝑥)∥𝐿𝑝 < ∞. (3.1.2)

Proof. From (1.7.18) and the BDG inequality we can see that

∥𝑢(𝑡, 𝑥)∥2
𝐿𝑝

≲ ∥𝑢0∥2
𝔹(𝕋 ) + ∥𝐷𝑢𝑡 (𝑥)∥2

𝐿𝑝
+
∫ 𝑡

0

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)∥𝜎∥2

𝔹𝑑𝑦𝑑𝑟,

and thus the inequality (3.1.1) follows. Now suppose that 𝑢 ∈ 𝒰
0
𝑝. Then noting that 𝐷𝑢𝑡 = 𝐷𝑢𝑡 − 𝑃𝑡−0𝐷

𝑢
0 ,

we have

sup
(𝑡 ,𝑥 ) ∈ [0,1]×𝕋

∥𝐷𝑢𝑡 (𝑥)∥𝐿𝑝 ≤ [𝐷𝑢]
𝒱

0
𝑝
< ∞.

Also, note that by Assumption 1.7.1 the initial condition 𝑢(0, ·) is bounded. Therefore all terms on the

63



3.1. Driftless approximation Chapter 3. Well-posedness

right hand side of (3.1.1) are bounded in (𝑡, 𝑥), and thus (3.1.2) follows. □

Recall that the random fields 𝜙𝑧,𝑠 (𝑡, 𝑥) and 𝜙𝑧 (𝑡, 𝑥) are defined by (2.3.30) and (2.3.31) respectively.

Let 𝜎 ∈ 𝐶1, 𝛼 ∈ (−1, 0), 𝛽 ∈ [0, 1], 𝑝 ∈ [1,∞), and for 𝑖 = 1, 2 let 𝑏𝑖 ∈ 𝐶𝛼, and suppose that 𝑢𝑖 ∈ 𝒰
𝛽
𝑝

are regularised solutions of the stochastic reaction–diffusion equations

(𝜕𝑡 − Δ)𝑢𝑖 = 𝑏𝑖 (𝑢𝑖) + 𝜎(𝑢𝑖)𝜉. (3.1.3)

For (𝑆, 𝑇) ∈ [0, 1]2
≤ we define the 𝒮𝛽𝑝 [𝑆, 𝑇]-bracket of 𝑢1 and 𝑢2 by

[𝑢1, 𝑢2]
𝒮
𝛽
𝑝 [𝑆,𝑇 ]

:= sup
𝑥∈𝕋

sup
(𝑠,𝑡 ) ∈ [𝑆,𝑇 ]2

<

∥𝑢1(𝑡, 𝑥) − 𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑡, 𝑥) − 𝑢2(𝑡, 𝑥) + 𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑡, 𝑥)∥𝐿𝑝
|𝑡 − 𝑠 |𝛽 . (3.1.4)

Remark 3.1.2. Note that for all 𝑠 ∈ [0, 1], by definition, the random field 𝑢𝑖 (𝑠, 𝑥) is continuous in

𝑥, and by Lemma 3.1.1 we have sup𝑥∈𝕋 ∥𝑢𝑖 (𝑠, 𝑥)∥𝐿𝑝 < ∞. Therefore the equation (2.3.29) starting

from 𝑢𝑖 (𝑠, ·) does indeed have a unique solution (see e.g. [Wal86]), which is denoted by 𝜙𝑢𝑖 (𝑠, · ) ,𝑠 (𝑡, 𝑥).

Consequentially, the expression (3.1.4) is well-defined.

For brevity, we will use the convention

[𝑢1, 𝑢2]
𝒮
𝛽
𝑝

:= [𝑢1, 𝑢2]
𝒮
𝛽
𝑝 [0,1]

.

Moreover recalling the definition of the 𝒱
𝛽
𝑝 [𝑆, 𝑇]-bracket from Definition 1.7.4, we set

[ 𝑓 ]
𝒱
𝛽
𝑝

:= [ 𝑓 ]
𝒱
𝛽
𝑝 [0,1] .

By the triangle inequality and by Lemma 2.2.1 the following result holds:

Lemma 3.1.3. Let 𝜎 ∈ 𝐶1, 𝑏1, 𝑏2 ∈ 𝐶𝛼, 𝛽 ∈ (0, 1], 𝑝 ∈ [2,∞) and let 𝑢1, 𝑢2 be regularised solutions of

(3.1.3) in the class 𝒰𝛽
𝑝 . There exists some constant 𝑁 = 𝑁 (𝑝, ∥𝜎∥𝐶1 , 𝛼, 𝛽) such that for all (𝑠, 𝑡) ∈ [0, 1]2

≤

we have

∥𝑢1(𝑡, ·) − 𝑢2(𝑡, ·)∥𝔹(𝕋 ,𝐿𝑝 ) ≤ [𝑢1, 𝑢2]
𝒮
𝛽
𝑝 [𝑠,𝑡 ]

(𝑡 − 𝑠)𝛽 + 𝑁 ∥𝑢1(𝑠, ·) − 𝑢2(𝑠, ·)∥𝔹(𝕋 ,𝐿𝑝 ) .

Lemma 3.1.4 (Driftless approximation). Let 𝜎 ∈ 𝐶1, 𝛼 ∈ (−1, 0), 𝑏 ∈ 𝐶𝛼. Let 𝑝 ∈ [2,∞), 𝛽 ∈

[0, 1 + 𝛼
4 ] and let 𝑢 be a regularised solution of (1.3.9) in the class 𝒰𝛽

𝑝 . Then there exists a constant
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𝑁 = 𝑁 (𝑝, ∥𝜎∥𝐶1 , 𝛼, 𝛽) such that for all 0 ≤ 𝑠 ≤ 𝑡 ≤ 1, we have

sup
𝑥∈𝕋

∥𝑢(𝑡, 𝑥) − 𝜙𝑢(𝑠, · ) ,𝑠 (𝑡, 𝑥)∥
𝐿
ℱ𝑠
𝑝,∞

≤ 𝑁 [𝐷𝑢]
𝒱
𝛽
𝑝 [𝑠,𝑡 ] (𝑡 − 𝑠)

𝛽 .

Proof. By splitting the stochastic integral in (2.0.2) at time 𝑠, we have

𝑢(𝑡, 𝑥) = 𝑃𝑡𝑢(0, ·) (𝑥) + 𝐷𝑢𝑡 (𝑥) +
∫ 𝑠

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝜎(𝑢(𝑟, 𝑦))𝜉 (𝑑𝑦, 𝑑𝑟)

+
∫ 𝑡

𝑠

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝜎(𝑢(𝑟, 𝑦))𝜉 (𝑑𝑦, 𝑑𝑟). (3.1.5)

Moreover using (2.3.30) to compute 𝜙𝑢(𝑠, · ) ,𝑠 (𝑡, 𝑥) and then (1.7.18) to express 𝑢(𝑠, ·), we get

𝜙𝑢(𝑠, · ) ,𝑠 (𝑡, 𝑥) = 𝑃𝑡−𝑠
(
𝑃𝑠𝑢(0, ·) + 𝐷𝑢𝑠 (·) +

∫ 𝑠

0

∫
𝕋

𝑝𝑠−𝑟 (·, 𝑦)𝜎(𝑢(𝑟, 𝑦))𝜉 (𝑑𝑦, 𝑑𝑟)
)
(𝑥)

+
∫ 𝑡

𝑠

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝜎(𝜙𝑢(𝑠, · ) ,𝑠 (𝑟, 𝑦))𝜉 (𝑑𝑦, 𝑑𝑟)

= 𝑃𝑡𝑢(0, ·) (𝑥) + 𝑃𝑡−𝑠𝐷𝑢𝑠 (𝑥) +
∫ 𝑠

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝜎(𝑢(𝑟, 𝑦))𝜉 (𝑑𝑦, 𝑑𝑟)

+
∫ 𝑡

𝑠

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝜎(𝜙𝑢(𝑠, · ) ,𝑠 (𝑟, 𝑦))𝜉 (𝑑𝑦, 𝑑𝑟) (3.1.6)

where the last equality follows from the semigroup property that 𝑃𝑡−𝑠𝑃𝑠 = 𝑃𝑡 . Comparing (3.1.5) and

(3.1.6), we can see that the error of the driftless approximation is given by

𝑢(𝑡, 𝑥) − 𝜙𝑢(𝑠, · ) ,𝑠 (𝑡, 𝑥) = 𝐷𝑢𝑡 (𝑥) − 𝑃𝑡−𝑠𝐷𝑢𝑠 (𝑥)

+
∫ 𝑡

𝑠

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)
(
𝜎(𝑢(𝑟, 𝑦)) − 𝜎(𝜙𝑢(𝑠, · ) ,𝑠 (𝑟, 𝑦))

)
𝜉 (𝑑𝑦, 𝑑𝑟).

Hence by the conditional BDG inequality (see Lemma 1.11.5), we get

∥𝑢(𝑡, 𝑥) − 𝜙𝑢(𝑠, · ) ,𝑠 (𝑡, 𝑥)∥2
𝐿𝑝 |ℱ𝑠 ≲ ∥𝐷𝑢𝑡 (𝑥) − 𝑃𝑡−𝑠𝐷𝑢𝑠 (𝑥)∥2

𝐿𝑝 |ℱ𝑠

+
∫ 𝑡

𝑠

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)



𝜎(𝑢(𝑟, 𝑦)) − 𝜎(𝜙𝑢(𝑠, · ) ,𝑠 (𝑟, 𝑦))

2
𝐿𝑝 |ℱ𝑠𝑑𝑦𝑑𝑟. (3.1.7)

Therefore

∥𝑢(𝑡, 𝑥) − 𝜙𝑢(𝑠, · ) ,𝑠 (𝑡, 𝑥)∥2
𝐿
ℱ𝑠
𝑝,∞

≲ [𝐷𝑢]2
𝒱
𝛽
𝑝 [𝑠,𝑡 ]

(𝑡 − 𝑠)2𝛽

+
∫ 𝑡

𝑠

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)∥𝑢(𝑟, 𝑦) − 𝜙𝑢(𝑠, · ) ,𝑠 (𝑟, 𝑦)∥2

𝐿
ℱ𝑠
𝑝,∞
𝑑𝑦𝑑𝑟. (3.1.8)
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From (3.1.7) and the fact that 𝑢 ∈ 𝒰
𝛽
𝑝 , we see that

sup
(𝑡 ,𝑥 ) ∈ [0,1]×𝕋

∥𝑢(𝑡, 𝑥) − 𝜙𝑢(𝑠, · ) ,𝑠 (𝑡, 𝑥)∥
𝐿
ℱ𝑠
𝑝,∞

≲ [𝐷𝑢]
𝒱

0
𝑝
+ ∥𝜎∥𝔹 < ∞.

Hence by (3.1.8) and by Lemma 1.3.5, we obtain that

sup
𝑥∈𝕋

∥𝑢(𝑡, 𝑥) − 𝜙𝑢(𝑠, · ) ,𝑠 (𝑡, 𝑥)∥2
𝐿
ℱ𝑠
𝑝,∞

≲ [𝐷𝑢]2
𝒱
𝛽
𝑝 [𝑠,𝑡 ]

(𝑡 − 𝑠)2𝛽 ,

which implies the desired result. □

Assumption 3.1.5. Let 𝛼 ∈ (−1, 0), 𝑏 ∈ 𝐶𝛼, 𝑛 ∈ ℤ≥0, and let 𝜎 ∈ 𝐶𝑛+2 such that there exists a constant

𝜇 > 0 such that for all 𝑥 ∈ ℝ, 𝜎2(𝑥) > 𝜇2. Let 𝛽 ∈ [ 1
2 , 1 + 𝛼

4 ], and suppose that 𝑢1, 𝑢2 are regularised

solutions of (1.3.9) in the class 𝒰𝛽 ,

For (𝑠, 𝑎) ∈ [0, 1]2
≤ consider the (𝐶 (𝕋 ))4-valued ℱ𝑎-measurable random variable

𝑍 :=
(
𝜙𝑢

1 (𝑠, · ) ,𝑠 (𝑎, ·), 𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑎, ·), 𝑢1(𝑎, ·), 𝑢2(𝑎, ·)
)
. (3.1.9)

Recall the definitions of 𝐹 (2) and Σ (2) from (2.2.7) and (2.2.8). Moreover for (𝑡, 𝑥) ∈ [0, 1] × 𝕋 and

𝑧 = (𝑧1, . . . , 𝑧4) ∈ (𝐶 (𝕋 ))4, define

𝐹
(4)
𝑞,𝑛 (𝑡, 𝑥, 𝑧) := ∥𝜙𝑧1 (𝑡, 𝑥) − 𝜙𝑧2 (𝑡, 𝑥) − 𝜙𝑧3 (𝑡, 𝑥) + 𝜙𝑧4 (𝑡, 𝑥)∥ .

𝒲
𝑛
𝑞
, (3.1.10)

Σ
(4)
𝑞,𝑛 (𝑡, 𝑥, 𝑧) := ∥𝜎(𝜙𝑧1 (𝑡, 𝑥)) − 𝜎(𝜙𝑧2 (𝑡, 𝑥)) − 𝜎(𝜙𝑧3 (𝑡, 𝑥)) + 𝜎(𝜙𝑧4 (𝑡, 𝑥))∥ .

𝒲
𝑛
𝑞
. (3.1.11)

By Lemma 2.2.1, it follows that the expression in (3.1.10) is continuous in 𝑧. Similarly, by Lemma 2.2.1,

the product and chain rule formulas for Malliavin derivatives, it is easy to see that the same holds for the

expression in (3.1.11). Our next task is to obtain an estimate on 𝐹 (4) evaluated at 𝑍 . This estimate is

given in the next lemma.

Lemma 3.1.6 (Four point estimate). Let Assumption 3.1.5 hold. Then for all 𝑝 ∈ [2,∞), there exists a

constant 𝑁 = 𝑁 (𝑛, 𝑝, ∥𝜎∥𝐶𝑛+2 , 𝛼, 𝛽) such that for all (𝑆, 𝑇) ∈ [0, 1]2
≤ , (𝑠, 𝑎) ∈ [𝑆, 𝑇]2

≤ , 𝑡 ∈ [0, 1− 𝑎 + 𝑠]

and 𝑥 ∈ 𝕋 , we have that

sup
𝑥∈𝕋

∥𝐹 (4)
𝑝,𝑛 (𝑡, 𝑥, 𝑍)∥𝐿𝑝

≤ 𝑁 (1 + max
𝑖∈{1,2}

[𝐷𝑢𝑖 ]
𝒱
𝛽

2𝑝
)
(
[𝑢1, 𝑢2]

𝒮
1/2
𝑝 [𝑆,𝑎] + ∥𝑢1(𝑆, ·) − 𝑢2(𝑆, ·)∥𝔹(𝕋 ,𝐿𝑝 )

)
|𝑎 − 𝑠 | 1

2
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where 𝑍 is defined by (3.1.9).

To prove the above estimate, we will need the following auxiliary lemma.

Lemma 3.1.7. Let Assumption 3.1.5 hold. Then for all 𝑝 ∈ [2,∞) there exists a constant 𝑁 =

𝑁 (𝑛, 𝑝, ∥𝜎∥𝐶𝑛+2 , 𝛼, 𝛽) such that for all (𝑠, 𝑎) ∈ [0, 1]2
≤ , 𝑡 ∈ [0, 1 − 𝑎 + 𝑠] and 𝑥 ∈ 𝕋 we have

∥Σ (4)
𝑝,𝑛 (𝑡, 𝑥, 𝑍)∥𝐿𝑝 ≤ 𝑁 max

𝑖∈{1,2}
[𝐷𝑢𝑖 ]

𝒱
𝛽

2𝑝
sup
𝑥∈𝕋

∥𝑢1(𝑠, ·) − 𝑢2(𝑠, ·)∥𝔹(𝕋 ,𝐿𝑝 ) (𝑎 − 𝑠)𝛽

+ 𝑁1𝑛≥1

𝑛−1∑︁
𝑖=0

∥𝐹 (4)
2𝑝,𝑖 (𝑡, 𝑥, 𝑍)∥𝐿𝑝 + 𝑁 ∥𝐹 (4)

𝑝,𝑛 (𝑡, 𝑥, 𝑍)∥𝐿𝑝 .

Proof. We begin by proving the result for 𝑛 ≥ 1. By point (c) in Lemma 1.10.3 (which we can apply with

𝜀 = 𝑡1/4 ∈ [0, 1] by Lemma 2.1.1) and by the triangle inequality and Hölder’s inequality we have that

∥Σ (4)
𝑝,𝑛 (𝑡, 𝑥, 𝑍)∥𝐿𝑝 |ℱ𝑠

≲
∑︁
𝑖+ 𝑗≤𝑛



𝐹 (2)
4𝑝,𝑖 (𝑡, 𝑥, 𝑍1, 𝑍2)




𝐿2𝑝 |ℱ𝑠

( ∑︁
𝑙∈{1,2}



𝐹 (2)
4𝑝, 𝑗 (𝑡, 𝑥, 𝑍𝑙, 𝑍𝑙+2)




𝐿2𝑝 |ℱ𝑠

)
+
𝑛−1∑︁
𝑖=0



𝐹 (4)
2𝑝,𝑖 (𝑡, 𝑥, 𝑍)




𝐿𝑝 |ℱ𝑠 + ∥𝐹 (4)

𝑝,𝑛 (𝑡, 𝑥, 𝑍)∥𝐿𝑝 |ℱ𝑠

=: 𝐴 + 𝐵 + 𝐶.

We can immediately see that ∥𝐵∥𝐿𝑝 , ∥𝐶∥𝐿𝑝 can be estimated by the second and third terms of the desired

bound. We proceed with showing that ∥𝐴∥𝐿𝑝 can be estimated by the first term of the desired bound. To

this end, note that by Lemma 2.2.1 and by Lemma 3.1.4 we have for 𝑙 = 1, 2, uniformly in 𝑗 ∈ {0, . . . , 𝑛}

that



𝐹 (2)
4𝑝, 𝑗 (𝑡, 𝑥, 𝑍𝑙, 𝑍𝑙+2)




𝐿
ℱ𝑠
2𝑝,∞

≲ sup
𝑥∈𝕋

∥𝑍𝑙 (𝑥) − 𝑍𝑙+2(𝑥)∥𝐿ℱ𝑠
2𝑝,∞

= sup
𝑥∈𝕋

∥𝜙𝑢𝑙 (𝑠, · ) ,𝑠 (𝑎, 𝑥) − 𝑢𝑙 (𝑎, 𝑥)∥
𝐿
ℱ𝑠
2𝑝,∞

≲ (𝑎 − 𝑠)𝛽 max
𝑙∈{1,2}

[𝐷𝑢𝑙 ]
𝒱
𝛽

2𝑝 [𝑠,𝑎]
.

Therefore

𝐴 ≲ (𝑎 − 𝑠)𝛽 max
𝑙∈{1,2}

[𝐷𝑢𝑙 ]
𝒱
𝛽

2𝑝

∑︁
𝑖+ 𝑗≤𝑛

∥𝐹 (2)
4𝑝,𝑖 (𝑡, 𝑥, 𝑍1, 𝑍2)∥𝐿2𝑝 |ℱ𝑠 . (3.1.12)
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Applying Lemma 2.2.1 with 𝑞 = 4𝑝, (𝑝1, 𝑝2) = (2𝑝, 𝑝), 𝒢 = ℱ𝑠, we get

∥𝐹 (2)
4𝑝,𝑖 (𝑡, 𝑥, 𝑍1, 𝑍2)∥𝐿ℱ𝑠

2𝑝,𝑝
≲ 𝑡𝑖/4 sup

𝑥∈𝕋
∥𝑍1(𝑥) − 𝑍2(𝑥)∥𝐿𝒢2𝑝,𝑝

= 𝑡𝑖/4 sup
𝑥∈𝕋

∥𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑎, 𝑥) − 𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑎, 𝑥)∥𝐿𝒢2𝑝,𝑝
= 𝑡𝑖/4 sup

𝑥∈𝕋
∥𝐹2𝑝,0(𝑎 − 𝑠, 𝑥, 𝑢1(𝑠, ·), 𝑢2(𝑠, ·))∥𝐿𝑝 ,

for all 𝑖 ∈ {0, . . . , 𝑛}, where the last equality holds by Lemma 2.3.5. So applying Lemma 2.2.1 with

𝑞 = 2𝑝, 𝑝1 = 𝑝2 = 𝑝, and with an arbitrary sub-𝜎-algebra 𝒢 ⊂ ℱ, we get from the above inequality that

∥𝐹 (2)
4𝑝,𝑖 (𝑡, 𝑥, 𝑍1, 𝑍2)∥𝐿ℱ𝑠

2𝑝,𝑝
≲ sup
𝑥∈𝕋

∥𝑢1(𝑠, 𝑥) − 𝑢2(𝑠, 𝑥)∥𝐿𝑝 ,

and the bound is uniform in 𝑖 ∈ {0, . . . , 𝑛}. Now taking the 𝐿𝑝-norm on (3.1.12),and applying the above

inequality, we get that

∥𝐴∥𝐿𝑝 ≲ (𝑎 − 𝑠)𝛽 max
𝑙∈{1,2}

[𝐷𝑢𝑙 ]
𝒱
𝛽

2𝑝

∑︁
𝑖+ 𝑗+𝑘

∥𝐹 (2)
4𝑝,𝑖 (𝑡, 𝑥, 𝑍1, 𝑍2)∥𝐿ℱ𝑠

2𝑝,𝑝

≲ (𝑎 − 𝑠)𝛽 max
𝑙∈{1,2}

[𝐷𝑢𝑙 ]
𝒱
𝛽

2𝑝
sup
𝑥∈𝕋

∥𝑢1(𝑠, 𝑥) − 𝑢2(𝑠, 𝑥)∥𝐿𝑝 .

which finishes the proof for the 𝑛 ≥ 1 case. Finally, for the 𝑛 = 0 case, note that using (1.11.44), we have

∥Σ (4)
𝑝,𝑛 (𝑡, 𝑥, 𝑍)∥𝐿𝑝 |ℱ𝑠 ≤ ∥𝐹 (4)

2𝑝,𝑛 (𝑡, 𝑥, 𝑍1, 𝑍2)∥𝐿2𝑝 |ℱ𝑠

∑︁
𝑙∈{1,2}

∥𝐹 (2)
2𝑝, 𝑗 (𝑡, 𝑥, 𝑍𝑙, 𝑍𝑙+2)∥𝐿2𝑝 |ℱ𝑠

+ ∥𝐹 (4)
𝑝,0 (𝑡, 𝑥, 𝑍)∥𝐿𝑝 |ℱ𝑠

=: 𝐴̃ + 𝐶̃.

By estimating ∥ 𝐴̃∥𝐿𝑝 and ∥𝐶̃∥𝐿𝑝 the same way as we did for ∥𝐴∥𝐿𝑝 and ∥𝐶∥𝐿𝑝 respectively, one can

show that the desired result also holds for 𝑛 = 0, which finishes the proof. □

We are now in position to prove Lemma 3.1.6.

Proof of Lemma 3.1.6. We begin by confirming that sup(𝑡 ,𝑥 ) ∈ [0,1]×𝕋 ∥𝐹 (4)
𝑝,𝑛 (𝑡, 𝑥, 𝑍)∥𝐿𝑝 < ∞. This is

indeed true, since by the triangle inequality, Lemma 2.2.1 and Lemma 3.1.4 we have

sup
𝑥∈𝕋

∥𝐹 (4)
𝑝,𝑛 (𝑡, 𝑥, 𝑍)∥𝐿𝑝 ≤

∑︁
𝑖∈{1,2}

∥𝐹 (2)
𝑝,𝑛

(
𝑡, 𝑥, 𝜙𝑢

𝑖 (𝑠, · ) ,𝑠 (𝑎, ·), 𝑢𝑖 (𝑎, ·)
)
∥𝐿𝑝

≲
∑︁

𝑖∈{1,2}
𝑡
𝑛
4 sup
𝑥∈𝕋

∥𝜙𝑢𝑖 (𝑠, · ) ,𝑠 (𝑎, 𝑥) − 𝑢𝑖 (𝑎, 𝑥)∥𝐿𝑝
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≲ 𝑡
𝑛
4 (𝑎 − 𝑠)𝛽 max

𝑖∈{1,2}
[𝐷𝑢𝑖 ]

𝒱
𝛽
𝑝
. (3.1.13)

The rest of the proof will be done by induction.

Step 1: We prove that the statement holds for 𝑛 = 0. By (2.3.30) we have for 𝑧 ∈ (𝐶 (𝕋 ))4 that

(𝜙𝑧1 − 𝜙𝑧2 − 𝜙𝑧3 + 𝜙𝑧4) (𝑡, 𝑥) = 𝑃𝑡 (𝑧1 − 𝑧2 − 𝑧3 + 𝑧4) (𝑥)

+
∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)
(
𝜎(𝜙𝑧1 (𝑟, 𝑦)) − 𝜎(𝜙𝑧2 (𝑟, 𝑦)) − 𝜎(𝜙𝑧3 (𝑟, 𝑦)) + 𝜎(𝜙𝑧4 (𝑟, 𝑦))

)
𝜉 (𝑑𝑦, 𝑑𝑟).

Therefore by the BDG inequality

𝐹
(4)
𝑝,0 (𝑡, 𝑥, 𝑧)

≲ 𝑃𝑡 (𝑧1 − 𝑧2 − 𝑧3 + 𝑧4) (𝑥) +
( ∫ 𝑡

0

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)

��Σ (4)
𝑝,0(𝑟, 𝑦, 𝑧)

��2𝑑𝑦𝑑𝑟)1/2

=: 𝐴(𝑧) + 𝐵(𝑧). (3.1.14)

By the definition of the 𝒮1/2
𝑝 -bracket, we have

∥𝐴(𝑍)∥𝐿𝑝 ≤ sup
𝑥∈𝕋

∥𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑎, 𝑥) − 𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑎, 𝑥) − 𝑢1(𝑎, 𝑥) + 𝑢2(𝑎, 𝑥)∥𝐿𝑝

≲ [𝑢1, 𝑢2]
𝒮

1/2
𝑝 [𝑠,𝑎] (𝑎 − 𝑠)

1/2.

Moreover using Lemma 3.1.7, one can show that

∥𝐵(𝑍)∥𝐿𝑝 ≲ max
𝑖∈{1,2,}

[𝐷𝑢𝑖 ]
𝒱
𝛽

2𝑝
sup
𝑥∈𝕋

∥𝑢1(𝑠, 𝑥) − 𝑢2(𝑠, 𝑥)∥𝐿𝑝 (𝑎 − 𝑠)𝛽

+
( ∫ 𝑡

0

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)∥𝐹

(4)
𝑝,0 (𝑟, 𝑦, 𝑍)∥

2
𝐿𝑝
𝑑𝑦𝑑𝑟

)1/2
.

Using the above bounds on 𝐴, 𝐵, the decomposition (3.1.14), and the assumption that we have 𝛽 ≥ 1/2,

we can see that

∥𝐹 (4)
𝑝,0

(
𝑡, 𝑥, 𝑍

)
∥2
𝐿𝑝

≲
���(1 + max

𝑖∈{1,2,}
[𝐷𝑢1]

𝒱
𝛽

2𝑝
)
(
[𝑢1, 𝑢2]

𝒮
1/2
𝑝 [𝑆,𝑎] + ∥𝑢1(𝑆, ·) − 𝑢2(𝑆, ·)∥𝔹(𝕋 ,𝐿𝑝 )

)
(𝑎 − 𝑠)1/2

���2
+
∫ 𝑡

0

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)∥𝐹

(4)
𝑝,0 (𝑟, 𝑦, 𝑍)∥

2
𝐿𝑝
𝑑𝑦𝑑𝑟.

Since by assumption 𝑢1, 𝑢2 ∈ 𝒰
𝛽

2𝑝, we have max𝑖∈{1,2} [𝐷𝑢
𝑖 ]
𝒱
𝛽

2𝑝
< ∞. Therefore by (3.1.13) we have that
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the norm in the integrand is bounded in (𝑟, 𝑦). Hence using Lemma 1.3.5 finishes the proof for the 𝑛 = 0

case.

Step 2: Let 𝑛 ∈ ℕ and suppose that the statement holds for 𝐹 (4)
𝑝,0, . . . , 𝐹

(4)
𝑝,𝑛−1 for all 𝑝 ≥ 2. We aim

to show that then the result also holds for 𝐹 (4)
𝑝,𝑛 for all 𝑝 ≥ 2. Let 𝛾 = (𝜃𝑖 , 𝜁𝑖)𝑛𝑖=1 ∈ ([0, 1] × 𝕋 )𝑛 and

𝑧 ∈ (𝐶 (𝕋 ))4. Then by Proposition 2.1.3 we have that

𝒟
𝑛
𝛾 (𝜙𝑧1 − 𝜙𝑧2 − 𝜙𝑧3 + 𝜙𝑧4) (𝑡, 𝑥)

= 1[0,𝑡 ] (𝜃∗)
𝑛∑︁
𝑘=1

𝑝𝑡−𝜃𝑘 (𝑥, 𝜁𝑘)

×𝒟
𝑛−1
𝛾̂𝑘

[
𝜎(𝜙𝑧1 (𝜃𝑘 , 𝜁𝑘)) − 𝜎(𝜙𝑧2 (𝜃𝑘 , 𝜁𝑘)) − 𝜎(𝜙𝑧3 (𝜃𝑘 , 𝜁𝑘)) + 𝜎(𝜙𝑧4 (𝜃𝑘 , 𝜁𝑘))

]
+ 1[0,𝑡 ] (𝜃∗)

∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)

×𝒟
𝑛
𝛾

[
𝜎(𝜙𝑧1 (𝑟, 𝑦)) − 𝜎(𝜙𝑧2 (𝑟, 𝑦)) − 𝜎(𝜙𝑧3 (𝑟, 𝑦)) + 𝜎(𝜙𝑧4 (𝑟, 𝑦))

]
𝜉 (𝑑𝑦, 𝑑𝑟).

Taking the ∥ · ∥𝐿𝑝 (Ω;𝐻⊗𝑛 ) -norm of both sides and using the BDG inequality gives

𝐹
(4)
𝑝,𝑛 (𝑡, 𝑥, 𝑧1, 𝑧2, 𝑧3, 𝑧4)

≲ ∥1[0,𝑡 ] (·)𝑝𝑡−· (𝑥, ·)𝒟𝑛−1 [𝜎(𝜙𝑧1 (·, ·)) − 𝜎(𝜙𝑧2 (·, ·)) − 𝜎(𝜙𝑧3 (·, ·)) + 𝜎(𝜙𝑧4 (·, ·))] ∥𝐿𝑝 (Ω;𝐻⊗𝑛 )

+
( ∫ 𝑡

0

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦) |Σ

(4)
𝑝,𝑛 (𝑟, 𝑦, 𝑧) |2𝑑𝑦𝑑𝑟

)1/2

=: 𝐴(𝑧1, 𝑧2, 𝑧3, 𝑧4) + 𝐵(𝑧1, 𝑧2, 𝑧3, 𝑧4). (3.1.15)

We begin by bounding 𝐴. Note that

𝐴(𝑧) ≲

∥1[0,𝑡 ] (·)𝑝𝑡−· (𝑥, ·)∥∥𝒟𝑛−1 [𝜎(𝜙𝑧1 (·, ·)) − 𝜎(𝜙𝑧2 (·, ·)) − 𝜎(𝜙𝑧3 (·, ·)) + 𝜎(𝜙𝑧4 (·, ·))] ∥𝐻⊗(𝑛−1) ∥𝐿𝑝 ∥𝐻

= ∥1[0,𝑡 ] (·)𝑝𝑡−· (𝑥, ·)Σ (4)
𝑝,𝑛−1(·, ·, 𝑧)∥𝐻 ,

and thus (recalling the definition of 𝑍 from (3.1.9)) we have 𝐴(𝑍) ≲ ∥1[0,𝑡 ] (·)𝑝𝑡−· (𝑥, ·)Σ (4)
𝑝,𝑛−1(·, ·, 𝑍)∥𝐻 .

Hence using the Minkowski inequality we obtain that

∥𝐴(𝑍)∥𝐿𝑝 ≲ ∥1[0,𝑡 ] ( ·) 𝑝𝑡−· (𝑥, ·)∥Σ (4)
𝑝,𝑛−1(·, ·, 𝑍)∥𝐿𝑝 ∥𝐻

≤ ∥1[0,𝑡 ] (·)𝑝𝑡−· (𝑥, ·)∥𝐻 sup
(𝜃,𝜁 ) ∈ [0,𝑡 ]×𝕋

∥Σ (4)
𝑝,𝑛−1(𝜃, 𝜁 , 𝑍)∥𝐿𝑝 .

To bound the first factor, we note that ∥1[0,𝑡 ] (·)𝑝𝑡−· (𝑥, ·)∥𝐻 ≲ 𝑡1/4 ≤ 1, and to bound the second factor
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we use that by Lemma 3.1.7 and by the induction hypothesis, for (𝜃, 𝜁) ∈ [0, 𝑡] × 𝕋 we have that

∥Σ (4)
𝑝,𝑛−1(𝜃, 𝜁 , 𝑍)∥𝐿𝑝

≲ max
𝑖∈{1,2}

[𝐷𝑢𝑖 ]
𝒱
𝛽
𝑝
∥𝑢1(𝑠, ·) − 𝑢2(𝑠, ·)∥𝔹(𝕋 ,𝐿𝑝 ) (𝑎 − 𝑠)𝛽 +

𝑛−1∑︁
𝑖=0

∥𝐹 (4)
2𝑝,𝑖 (𝜃, 𝜁 , 𝑍)∥𝐿𝑝

≲ (1 + max
𝑖∈{1,2}

[𝐷𝑢𝑖 ]
𝒱
𝛽

2𝑝
)
(
[𝑢1, 𝑢2]

𝒮
1/2
𝑝 [𝑆,𝑎] + ∥𝑢1(𝑆, ·) − 𝑢2(𝑆, ·)∥𝔹(𝕋 ,𝐿𝑝 )

)
(𝑎 − 𝑠) 1

2 ,

where we used Lemma 3.1.3 and that by assumption we have 𝛽 ≥ 1/2. Hence we can see that

∥𝐴(𝑍)∥𝐿𝑝 ≲ (1 + max
𝑖∈{1,2}

[𝐷𝑢𝑖 ]
𝒱
𝛽

2𝑝
)
(
[𝑢1, 𝑢2]

𝒮
1/2
𝑝 [𝑆,𝑎] + ∥𝑢1(𝑆, ·) − 𝑢2(𝑆, ·)∥𝔹(𝕋 ,𝐿𝑝 )

)
(𝑎 − 𝑠) 1

2 .

We proceed with bounding 𝐵. Note that

∥𝐵(𝑍)∥
𝐿
ℱ𝑠
2, 𝑝

≲
( ∫ 𝑡

0

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)∥Σ

(4)
𝑞,𝑛 (𝑟, 𝑦, 𝑍)∥2

𝐿
ℱ𝑠
2, 𝑝
𝑑𝑦𝑑𝑟

)1/2
. (3.1.16)

By Lemma 3.1.7 and the induction hypothesis we have for all (𝑟, 𝑦) ∈ [0, 𝑡] × 𝕋 that

∥Σ (4)
𝑝,𝑛 (𝑟, 𝑦, 𝑍)∥𝐿𝑝

≲ max
𝑖∈{1,2}

[𝐷𝑢𝑖 ]
𝒱
𝛽

2𝑝
∥𝑢1(𝑠, ·) − 𝑢2(𝑠, ·)∥𝔹(𝕋 ,𝐿𝑝 ) (𝑎 − 𝑠)𝛽

+
𝑛−1∑︁
𝑖=0

∥𝐹 (4)
2𝑝,𝑖 (𝑟, 𝑦, 𝑍)∥𝐿𝑝 + ∥𝐹 (4)

𝑝,𝑛 (𝑟, 𝑦, 𝑍)∥𝐿𝑝

≲ (1 + max
𝑖∈{1,2}

[𝐷𝑢𝑖 ]
𝒱
𝛽

2𝑝
)
(
[𝑢1, 𝑢2]

𝒮
1/2
𝑝 [𝑆,𝑎] + ∥𝑢1(𝑆, ·) − 𝑢2(𝑆, ·)∥𝔹(𝕋 ,𝐿𝑝 )

)
(𝑎 − 𝑠)1/2

+ ∥𝐹 (4)
𝑝,𝑛 (𝑟, 𝑦, 𝑍)∥𝐿𝑝 .

where we again used the assumption that 𝛽 ≥ 1
2 . Putting this into (3.1.16), we can see that

∥𝐵(𝑍)∥𝐿𝑝

≲ (1 + max
𝑖∈{1,2}

[𝐷𝑢𝑖 ]
𝒱
𝛽

2𝑝
)
(
[𝑢1, 𝑢2]

𝒮
1/2
𝑝 [𝑆,𝑎] + ∥𝑢1(𝑆, ·) − 𝑢2(𝑆, ·)∥𝔹(𝕋 ,𝐿𝑝 )

)
(𝑎 − 𝑠)1/2

+
( ∫ 𝑡

0

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)∥𝐹

(4)
𝑝,𝑛 (𝑟, 𝑦, 𝑍)∥2

𝐿𝑝
𝑑𝑦𝑑𝑟

)1/2
.

By our bounds on 𝐴, 𝐵 we may conclude that

∥𝐹 (4)
𝑝,𝑛 (𝑡, 𝑥, 𝑍)∥𝐿𝑝
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≲ (1 + max
𝑖∈{1,2}

[𝐷𝑢𝑖 ]
𝒱
𝛽

2𝑝
)
(
[𝑢1, 𝑢2]

𝒮
1/2
𝑝 [𝑆,𝑎] + ∥𝑢1(𝑆, ·) − 𝑢2(𝑆, ·)∥𝔹(𝕋 ,𝐿𝑝 )

)
(𝑎 − 𝑠)1/2

+
( ∫ 𝑡

0

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)∥𝐹

(4)
𝑝,𝑛 (𝑟, 𝑦, 𝑍)∥2

𝐿𝑝
𝑑𝑦𝑑𝑟

)1/2
.

By (3.1.13) the norm in the integrand is bounded in (𝑟, 𝑦). Hence by Lemma 1.3.5 the proof is finished. □

Lemma 3.1.8 (Four point BDG inequality for driftless approximations). Let 𝑝 ∈ [2,∞), 𝜎 ∈ 𝐶2,

𝛼 ∈ (−1, 0), 𝛽 ∈ [0, 1 + 𝛼/4] and for 𝑖 = 1, 2, let 𝑏𝑖 ∈ 𝐶𝛼 and suppose that 𝑢𝑖 ∈ 𝒰
𝛽 are regularised

solutions of

(𝜕𝑡 − Δ)𝑢𝑖 = 𝑏𝑖 (𝑢𝑖) + 𝜎(𝑢𝑖)𝜉 (𝑑𝑦, 𝑑𝑟).

There exists a constant 𝑁 = 𝑁 (𝑝, ∥𝜎∥𝐶2 , 𝜀, 𝛼, 𝛽) such that for (𝑠, 𝑡) ∈ [0, 1]2
≤ we have




 ∫ 𝑡

𝑠

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)

×
(
𝜎(𝑢1(𝑟, 𝑦)) − 𝜎(𝑢2(𝑟, 𝑦)) − 𝜎(𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑟, 𝑦)) + 𝜎(𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑟, 𝑦))

)
𝜉 (𝑑𝑦, 𝑑𝑟)





𝐿𝑝

≤ 𝑁 [𝐷𝑢1]
𝒱
𝛽

2𝑝
∥𝑢1(𝑠, ·) − 𝑢2(𝑠, ·)∥𝔹(𝕋 ,𝐿𝑝 ) (𝑡 − 𝑠)

1
4+𝛽

+ 𝑁
( ∫ 𝑡

𝑠

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)



𝑢1(𝑟, 𝑦) − 𝑢2(𝑟, 𝑦) − 𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑟, 𝑦) + 𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑟, 𝑦)


2
𝐿𝑝
𝑑𝑦𝑑𝑟

)1/2
.

Proof. By the BDG inequality and by (1.11.45) in Lemma 1.11.6 we have




 ∫ 𝑡

𝑠

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)
(
𝜎(𝑢1(𝑟, 𝑦)) − 𝜎(𝑢2(𝑟, 𝑦))

− 𝜎(𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑟, 𝑦)) + 𝜎(𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑟, 𝑦))
)
𝜉 (𝑑𝑦, 𝑑𝑟)




2

𝐿𝑝

≲
∫ 𝑡

𝑠

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)




𝜎(𝑢1(𝑟, 𝑦)) − 𝜎(𝑢2(𝑟, 𝑦))

− 𝜎(𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑟, 𝑦)) + 𝜎(𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑟, 𝑦))



2

𝐿𝑝
𝑑𝑦𝑑𝑟

≲ 𝐼 + 𝐽

with

𝐼 :=
∫ 𝑡

𝑠

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)




(𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑟, 𝑦) − 𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑟, 𝑦)
) (
𝜙𝑢

1 (𝑠, · ) ,𝑠 (𝑟, 𝑦) − 𝑢1(𝑟, 𝑦)
)


2

𝐿𝑝
𝑑𝑦𝑑𝑟

𝐽 :=
∫ 𝑡

𝑠

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)∥𝑢1(𝑟, 𝑦) − 𝑢2(𝑟, 𝑦) − 𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑟, 𝑦) + 𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑟, 𝑦)∥2

𝐿𝑝
𝑑𝑦𝑑𝑟.

By the tower rule, Hölder’s inequality, Lemma 3.1.4, Lemma 2.3.5 and Lemma 2.2.1 (where we recall the
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definition (2.2.7) of 𝐹 (2) ), we can see that




(𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑟, 𝑦) − 𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑟, 𝑦)
) (
𝜙𝑢

1 (𝑠, · ) ,𝑠 (𝑟, 𝑦) − 𝑢1(𝑟, 𝑦)
)



𝐿𝑝

≤





𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑟, 𝑦) − 𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑟, 𝑦)




𝐿2𝑝 |ℱ𝑠



𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑟, 𝑦) − 𝑢1(𝑟, 𝑦)



𝐿2𝑝 |ℱ𝑠





𝐿𝑝

≲ [𝐷𝑢1]
𝒱
𝛽

2𝑝
(𝑡 − 𝑠)𝛽






𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑟, 𝑦) − 𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑟, 𝑦)



𝐿2𝑝 |ℱ𝑠





𝐿𝑝

= [𝐷𝑢1]
𝒱
𝛽

2𝑝
(𝑡 − 𝑠)𝛽




𝐹 (2)
2𝑝,0

(
𝑟 − 𝑠, 𝑦, 𝑢1(𝑠, ·), 𝑢2(𝑠, ·)

)



𝐿𝑝

≲ [𝐷𝑢1]
𝒱
𝛽

2𝑝
(𝑡 − 𝑠)𝛽 ∥𝑢1(𝑠, ·) − 𝑢2(𝑠, ·)∥𝔹(𝕋 ,𝐿𝑝 ) .

Putting this bound into the definition of 𝐼, we get that

𝐼 ≲ [𝐷𝑢1]2
𝒱
𝛽

2𝑝
(𝑡 − 𝑠)2𝛽 ∥𝑢1(𝑠, ·) − 𝑢2(𝑠, ·)∥2

𝐶 (𝕋 ,𝐿𝑝 )

∫ 𝑡

𝑠

∫
𝕋

𝑝2
𝑡−𝑟 (𝑥, 𝑦)𝑑𝑦𝑑𝑟

≲ [𝐷𝑢1]2
𝒱
𝛽

2𝑝
(𝑡 − 𝑠)2𝛽+ 1

2 ∥𝑢1(𝑠, ·) − 𝑢2(𝑠, ·)∥2
𝔹(𝕋 ,𝐿𝑝 ) .

This bound on 𝐼 and the definition of 𝐽 together give the desired bound. □

3.2 Regularisation estimates

Let 𝑢, 𝑢1, 𝑢2 be regularised solutions of (1.3.9) with potentially different drift terms, 𝑓 be a measurable

kernel on (0, 1] × 𝕋 and 𝑔 be a smooth function on ℝ. In this section, we obtain quantitative bounds

for expressions of the forms
∫ 𝑡
𝑠

∫
𝕋
𝑓𝑟 (𝑦)𝑔(𝑢(𝑟, 𝑦))𝑑𝑦𝑑𝑟 and

∫ 𝑡
𝑠

∫
𝕋
𝑓𝑟 (𝑦) (𝑔(𝑢1(𝑟, 𝑦)) − 𝑔(𝑢2(𝑟, 𝑦)))𝑑𝑦𝑑𝑟

which depend on a Besov–Hölder norm of 𝑔 with a negative index.

Lemma 3.2.1. Let Assumption 1.7.1 hold and let 𝑢 be a regularised solution of (1.3.9). Suppose that

𝑓 : (0, 1] × 𝕋 → ℝ is a measurable function such that there exist constants 𝐾 > 0 and 𝜁 ∈ [0, 1
4 ] such

that for all 𝑡 ∈ (0, 1] it holds that ∫
𝕋

| 𝑓𝑡 (𝑦) |𝑑𝑦 ≤ 𝐾𝑡−𝜁 .

Let 𝑝 ∈ [1,∞). For all 𝜆 ∈
(
4𝜁 − 2,−1

)
∪ (−1, 0) and for all 𝛽 in the nonempty set ( 1

4 − 𝜆
4 + 𝜁, 1 + 𝛼

4 ],

if 𝑢 ∈ 𝒰
𝛽

2 then there exists a constant 𝑁 = 𝑁 (𝑝, ∥𝜎∥𝐶2 , 𝜇, 𝜆, 𝛼, 𝛽, 𝜁), such that for all 𝑔 ∈ 𝐶∞,

(𝑠, 𝑡) ∈ [0, 1]2
≤ and 𝒢 ∈ {ℱ𝑠, {∅,Ω}} we have




 ∫ 𝑡

𝑠

∫
𝕋

𝑓𝑡−𝑟 (𝑦)𝑔(𝑢(𝑟, 𝑦))𝑑𝑦𝑑𝑟




𝐿𝒢𝑝,∞

≤ 𝑁 ∥𝑔∥𝐶𝜆𝐾
(
(𝑡 − 𝑠)1+ 𝜆4 −𝜁 + [𝐷𝑢]

𝒱
𝛽

2 [𝑠,𝑡 ] (𝑡 − 𝑠)
𝛽+ 𝜆+3

4 −𝜁
)
.
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Proof. We may assume that 𝑝 > 2. For (𝑆, 𝑇) ∈ [0, 1]2
≤ and (𝑠, 𝑡) ∈ [𝑆, 𝑇]2

≤ we consider the germ

𝐴𝑠,𝑡 := 𝔼𝑠
∫ 𝑡

𝑠

∫
𝕋

𝑓𝑇−𝑟 (𝑦)𝑔(𝜙𝑢(𝑠, · ) ,𝑠 (𝑟, 𝑦))𝑑𝑦𝑑𝑟.

Then

|𝐴𝑠,𝑡 | ≲
∫ 𝑡

𝑠

∫
𝕋

| 𝑓𝑇−𝑟 (𝑦) | |𝔼𝑠𝑔(𝜙𝑢(𝑠, · ) ,𝑠 (𝑟, 𝑦)) |𝑑𝑦𝑑𝑟.

Note that by Lemma 2.3.6 (with 𝑛 = 0) we have

|𝔼𝑠𝑔(𝜙𝑢(𝑠, · ) ,𝑠 (𝑟, 𝑦)) | ≲ ∥𝑔∥𝐶𝜆 (𝑟 − 𝑠)𝜆/4.

By the two inequalities above, by the fact that ∥ 𝑓𝑇−𝑟 ∥𝐿1 (𝕋 ) ≤ 𝐾 (𝑇 − 𝑟)−𝜁 ≤ 𝐾 (𝑡 − 𝑟)−𝜁 and by the

Cauchy–Schwarz inequality, we have

∥𝐴𝑠,𝑡 ∥𝐿𝒢𝑠𝑝,∞ ≲ ∥𝑔∥𝐶𝜆
∫ 𝑡

𝑠

(𝑟 − 𝑠)𝜆/4
∫
𝕋

| 𝑓𝑇−𝑟 (𝑦) |𝑑𝑦𝑑𝑟

≲ ∥𝑔∥𝐶𝜆
∫ 𝑡

𝑠

(𝑟 − 𝑠)𝜆/4(𝑡 − 𝑟)−𝜁 𝑑𝑟

≲ ∥𝑔∥𝐶𝜆𝐾 (𝑡 − 𝑠)1+𝜆/4−𝜁 .

From the assumption that 𝜆 > 4𝜁 − 2 it follows that the exponent 1 + 𝜆/4 − 𝜁 is greater than 1/2, and thus

the first condition in (1.9.24) is satisfied. Let 𝑎 ∈ [𝑠, 𝑡]. Then

|𝔼𝑠𝛿𝐴𝑠,𝑎,𝑡 | = |𝔼𝑠 (𝐴𝑠,𝑡 − 𝐴𝑠,𝑎 − 𝐴𝑎,𝑡 ) |

=

���𝔼𝑠 ∫ 𝑡

𝑎

∫
𝕋

𝑓𝑇−𝑟 (𝑦)𝔼𝑎
(
𝑔(𝜙𝑢(𝑠, · ) ,𝑠 (𝑟, 𝑦)) − 𝑔(𝜙𝑢(𝑎, · ) ,𝑎 (𝑟, 𝑦))

)
𝑑𝑦𝑑𝑟

���.
By the Fundamental Theorem of Calculus and Lemma 2.3.6 (with 𝑛 = 1), we get that

���𝔼𝑎 (𝑔(𝜙𝑢(𝑠, · ) ,𝑠 (𝑟, 𝑦)) − 𝑔(𝜙𝑢(𝑎, · ) ,𝑎 (𝑟, 𝑦)))���
=

��� ∫ 1

0
𝔼𝑎

(
∇𝑔

(
𝜃𝜙𝑢(𝑠, · ) ,𝑠 (𝑟, 𝑦) + (1 − 𝜃)𝜙𝑢(𝑎, · ) ,𝑎 (𝑟, 𝑦)

) (
𝜙𝑢(𝑠, · ) ,𝑠 (𝑟, 𝑦) − 𝜙𝑢(𝑎, · ) ,𝑎 (𝑟, 𝑦)

))
𝑑𝜃

���
=

��� ∫ 1

0
𝔼𝑎

(
∇𝑔

(
𝜃𝜙𝜙

𝑢(𝑠, ·) ,𝑠 (𝑎, · ) , 𝑎 (𝑟, 𝑦) + (1 − 𝜃)𝜙𝑢(𝑎, · ) ,𝑎 (𝑟, 𝑦)
)

×
(
𝜙𝜙

𝑢(𝑠, ·) ,𝑠 (𝑎, · ) , 𝑎 (𝑟, 𝑦) − 𝜙𝑢(𝑎, · ) ,𝑎 (𝑟, 𝑦)
))
𝑑𝜃

���
≲ ∥𝑔∥𝐶𝜆 (𝑟 − 𝑎) (𝜆−1)/4

3∑︁
𝑖=0

𝐹
(2)
16,𝑖 (𝑟 − 𝑎, 𝑦, 𝜙

𝑢(𝑠, · ) ,𝑠 (𝑎, ·), 𝑢(𝑎, ·))
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where 𝐹 (2) is defined by (2.2.7). Therefore using the above result, Lemma 2.2.1 and Lemma 3.1.4, we get

𝔼𝑠
���𝔼𝑎 (𝑔(𝜙𝑢(𝑠, · ) ,𝑠 (𝑟, 𝑦)) − 𝑔(𝜙𝑢(𝑎, · ) ,𝑎 (𝑟, 𝑦)))���

≲ ∥𝑔∥𝐶𝜆 (𝑟 − 𝑎) (𝜆−1)/4
3∑︁
𝑖=0

𝔼𝑠𝐹
(2)
16,𝑖

(
𝑟 − 𝑎, 𝑦, 𝜙𝑢(𝑠, · ) ,𝑠 (𝑎, ·), 𝑢(𝑎, ·)

)
≲ ∥𝑔∥𝐶𝜆 (𝑟 − 𝑎) (𝜆−1)/4 sup

𝑥∈𝕋
∥𝜙𝑢(𝑠, · ) ,𝑠 (𝑎, 𝑥) − 𝑢(𝑎, 𝑥)∥

𝐿
ℱ𝑠
2,∞

≲ ∥𝑔∥𝐶𝜆 (𝑟 − 𝑎) (𝜆−1)/4 [𝐷𝑢]
𝒱
𝛽

2 [𝑆,𝑇 ] (𝑎 − 𝑠)
𝛽 .

By the above inequality, by the assumptions on 𝑓 and by the fact that 𝑡 − 𝑎, 𝑎 − 𝑠 ≤ 𝑡 − 𝑠, we get

∥𝔼𝑠𝛿𝐴𝑠,𝑎,𝑡 ∥𝐿∞ ≲ 𝔼𝑠
∫ 𝑡

𝑎

∫
𝕋

𝑓𝑇−𝑟 (𝑦)∥𝑔∥𝐶𝜆 [𝐷𝑢]𝒱𝛽

2 [𝑆,𝑇 ] (𝑟 − 𝑎)
(𝜆−1)/4(𝑎 − 𝑠)𝛽𝑑𝑦𝑑𝑟

≲ ∥𝑔∥𝐶𝜆 [𝐷𝑢]𝒱𝛽

2 [𝑆,𝑇 ] (𝑎 − 𝑠)
𝛽

∫ 𝑡

𝑎

(𝑟 − 𝑎) (𝜆−1)/4
∫
𝕋

𝑓𝑇−𝑟 (𝑦)𝑑𝑦𝑑𝑟

≲ ∥𝑔∥𝐶𝜆 [𝐷𝑢]𝒱𝛽

2 [𝑆,𝑇 ] (𝑎 − 𝑠)
𝛽𝐾

∫ 𝑡

𝑎

(𝑡 − 𝑟)−𝜁 (𝑟 − 𝑎)𝜆/4−1/4𝑑𝑟

≲ ∥𝑔∥𝐶𝜆 [𝐷𝑢]𝒱𝛽

2 [𝑆,𝑇 ]𝐾 (𝑡 − 𝑠)𝛽−𝜁+𝜆/4+3/4.

By the assumption that 𝛽 > 1/4 − 𝜆/4 + 𝜁 , it follows that the exponent 𝛽 − 𝜁 + 𝜆/4 + 3/4 is greater than 1,

and thus the second condition in (1.9.24) is also satisfied. Let

𝒜𝑠,𝑡 :=
∫ 𝑡

𝑠

∫
𝕋

𝑓𝑇−𝑟 (𝑦)𝑔(𝑢(𝑟, 𝑦))𝑑𝑦𝑑𝑟.

By the regularity of 𝑔 and by Lemma 3.1.4 we can easily see that (1.9.25) and (1.9.26) are satisfied. All

conditions of Lemma 1.9.1 are satisfied. Consequently, the conclusion follows from Lemma 1.9.1 and the

fact that (𝑆, 𝑇) ∈ [0, 1]2
≤ was arbitrary. □

Corollary 3.2.2. Let Assumption 1.7.1 hold and let 𝑢 be a regularised solution of (1.3.9) and let

𝑝 ∈ [1,∞). Then for all 𝜆 ∈ (−2,−1) ∪ (−1, 0), 𝛽 ∈ ( 1
4 −

𝜆
4 , 1+

𝛼
4 ], if 𝑢 ∈ 𝒰

𝛽

2 then there exists a constant

𝑁 = 𝑁 (𝑝, ∥𝜎∥𝐶2 , 𝜇, 𝜆, 𝛼, 𝛽), such that for all 𝑔 ∈ 𝐶∞, (𝑠, 𝑡) ∈ [0, 1]2
≤ , 𝑥 ∈ 𝕋 , we have




 ∫ 𝑡

𝑠

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝑔(𝑢(𝑟, 𝑦))𝑑𝑦𝑑𝑟




𝐿
ℱ𝑠
𝑝,∞

≤ 𝑁 ∥𝑔∥𝐶𝜆
(
(𝑡 − 𝑠)1+𝜆/4 + [𝐷𝑢]

𝒱
𝛽

2 [𝑠,𝑡 ] (𝑡 − 𝑠)
𝛽+ 𝜆+3

4

)
.

Proof. Fix 𝑥 ∈ 𝕋 and for each (𝑟, 𝑦) ∈ (0, 1] × 𝕋 define 𝑓𝑟 (𝑦) := 𝑝𝑟 (𝑥, 𝑦). Then 𝑓 is a measurable

function which satisfies
∫
𝕋
𝑓𝑟 (𝑦)𝑑𝑦 = 1. Hence, applying Lemma 3.2.1 (with 𝐾 := 1, 𝜁 := 0), we obtain
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the result. □

Corollary 3.2.3. Let Assumption 1.7.1 hold and let 𝑢 be a regularised solution of (1.3.9) and let

𝑝 ∈ [1,∞). Then for all 𝜆 ∈ (−1, 0) and for all 𝛽 ∈ ( 1
2 −

𝜆
4 , 1 + 𝛼

4 ], if 𝑢 ∈ 𝒰
𝛽

2 then there exists a constant

𝑁 = 𝑁 (𝑝, ∥𝜎∥𝐶2 , 𝜇, 𝜆, 𝛽) such that for all 𝑔 ∈ 𝐶∞, (𝑠, 𝑡) ∈ [0, 1]2
≤ and 𝑥 ∈ 𝕋 we have




 ∫ 𝑡

𝑠

∫
𝕋

(
𝑝𝑡−𝑟 (𝑥, 𝑦) − 𝑝𝑡−𝑟 (𝑥, 𝑦)

)
𝑔(𝑢(𝑟, 𝑦))𝑑𝑦𝑑𝑟





𝐿
ℱ𝑠
𝑝,∞

≤ 𝑁 ∥𝑔∥𝐶𝜆 (1 + [𝐷𝑢]
𝒱
𝛽

2
) |𝑥 − 𝑥 |1/2.

Proof. Fix 𝑥, 𝑥 ∈ 𝕋 , and for each (𝑟, 𝑦) ∈ (0, 1] × 𝕋 , define 𝑓𝑟 (𝑦) := 𝑝𝑟 (𝑥, 𝑦) − 𝑝𝑟 (𝑥, 𝑦). Then

by (1.11.37), we have
∫
𝕋
𝑓𝑟 (𝑦)𝑑𝑦 ≤ 𝐶 |𝑥 − 𝑥 |1/2𝑟−1/4 for some constant positive 𝐶. Hence applying

Lemma 3.2.1 (with 𝐾 := 𝐶 |𝑥 − 𝑥 |1/2 and 𝜁 := 1/4), we obtain the stated estimate. □

Lemma 3.2.4. Let 𝑝 ∈ [2,∞), 𝛼 ∈ (−1, 0), and let 𝜎 ∈ 𝐶4 such that there exists constant 𝜇 > 0 such

that for all 𝑥 ∈ ℝ we have 𝜎2(𝑥) ≥ 𝜇2. For 𝑖 = 1, 2, let 𝑏𝑖 ∈ 𝐶𝛼 and let 𝑢𝑖 be regularised solutions of

(𝜕𝑡 − Δ)𝑢𝑖 = 𝑏𝑖 (𝑢𝑖) + 𝜎(𝑢𝑖)𝜉

in the class 𝒰𝛽 for some 𝛽 ∈ ( 1
2 − 𝛼

4 , 1 + 𝛼
4 ]. There exists a constant 𝑁 = 𝑁 (𝑝, ∥𝜎∥𝐶4 , 𝜇, 𝛼, 𝛽) such that

for all 𝑔 ∈ 𝐶∞, (𝑠, 𝑡) ∈ [0, 1]2
≤ and 𝑥 ∈ 𝕋 we have




 ∫ 𝑡

𝑠

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)
(
𝑔(𝑢1(𝑟, 𝑦)) − 𝑔(𝑢2(𝑟, 𝑦))

)
𝑑𝑦𝑑𝑟





𝐿𝑝

≤ 𝑁 ∥𝑔∥𝐶𝛼 (1 + max
𝑖∈{1,2}

[𝐷𝑢𝑖 ]
𝒱
𝛽

2𝑝
) (𝑡 − 𝑠) (3+𝛼)/4

×
(
[𝑢1, 𝑢2]

𝒮
1/2
𝑝 [𝑠,𝑡 ] + ∥𝑢1(𝑠, ·) − 𝑢2(𝑠, ·)∥𝔹(𝕋 ,𝐿𝑝 )

)
.

Proof. Let (𝑆, 𝑇) ∈ [0, 1]2
≤ , 𝑥 ∈ 𝕋 and for (𝑠, 𝑡) ∈ [𝑆, 𝑇]2

≤ define the germ

𝐴𝑠,𝑡 (𝑥) := 𝔼𝑠
∫ 𝑡

𝑠

∫
𝕋

𝑝𝑇−𝑟 (𝑥, 𝑦)
(
𝑔(𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑟, 𝑦)) − 𝑔(𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑟, 𝑦))

)
𝑑𝑦𝑑𝑟.

We first bound ∥𝐴𝑠,𝑡 ∥𝐿𝑝 . Using Lemma 2.3.6(with 𝑛 = 1 and thus 𝑞 = 8) and recalling the definition of

𝐹 (2) from (2.2.7), we have

���𝔼𝑠 (𝑔(𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑟, 𝑦)) − 𝑔(𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑟, 𝑦))
)���

=

��� ∫ 1

0
𝔼𝑠

(
∇𝑔

(
𝜃𝜙𝑢

1 (𝑠, · ) ,𝑠 (𝑟, 𝑦) + (1 − 𝜃)𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑟, 𝑦)
) (
𝜙𝑢

1 (𝑠, · ) ,𝑠 (𝑟, 𝑦) − 𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑟, 𝑦)
))
𝑑𝜃

���
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≲ ∥𝑔∥𝐶𝛼 (𝑟 − 𝑠) (𝛼−1)/4
2∑︁
𝑖=0

𝐹
(2)
8,𝑖

(
𝑟 − 𝑠, 𝑦, 𝑢1(𝑠, ·), 𝑢2(𝑠, ·)

)
.

We take the 𝐿𝑝-norm on the inequality, and by Lemma 2.2.1 we get

∥𝔼𝑠 (𝑔(𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑟, 𝑦)) − 𝑔(𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑟, 𝑦))∥𝐿𝑝

≲ ∥𝑔∥𝐶𝛼 (𝑟 − 𝑠) (𝛼−1)/4∥𝑢1(𝑠, ·) − 𝑢2(𝑠, ·)∥𝔹(𝕋 ,𝐿𝑝 ) .

Using the definition of 𝐴, and the above inequality, we get

∥𝐴𝑠,𝑡 (𝑥)∥𝐿𝑝 ≲
∫ 𝑡

𝑠

∫
𝕋

𝑝𝑇−𝑟 (𝑥, 𝑦)∥𝑔∥𝐶𝛼 (𝑟 − 𝑠) (𝛼−1)/4∥𝑢1(𝑠, ·) − 𝑢2(𝑠, ·)∥𝔹(𝕋 ,𝐿𝑝 )𝑑𝑦𝑑𝑟

≲ ∥𝑔∥𝐶𝛼
(
[𝑢1, 𝑢2]

𝒮
1/2
𝑝 [𝑆,𝑇 ] + ∥𝑢1(𝑆, ·) − 𝑢2(𝑆, ·)∥𝔹(𝕋 ,𝐿𝑝 )

)
(𝑡 − 𝑠) (3+𝛼)/4. (3.2.17)

We proceed with an estimate for ∥𝔼𝑠𝛿𝐴𝑠,𝑎,𝑡 ∥𝐿𝑝 for 𝑎 ∈ [𝑠, 𝑡]. Note that

|𝔼𝑠𝛿𝐴𝑠,𝑎,𝑡 | = |𝔼𝑠 (𝐴𝑠,𝑡 − 𝐴𝑠,𝑎 − 𝐴𝑎,𝑡 ) |

=

���𝔼𝑠 ∫ 𝑡

𝑎

∫
𝕋

𝑝𝑇−𝑟 (𝑥, 𝑦)𝔼𝑎
(
𝑔(𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑟, 𝑦)) − 𝑔(𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑟, 𝑦))

− 𝑔(𝜙𝑢1 (𝑎, · ) ,𝑎 (𝑟, 𝑦)) + 𝑔(𝜙𝑢2 (𝑎, · ) ,𝑎 (𝑟, 𝑦))
)
𝑑𝑦𝑑𝑟

���.
For (𝑟, 𝑦) ∈ [0, 1] × 𝕋 and 𝑧 ∈ (𝐶 (𝕋 ))4, we define

Γ𝑟 ,𝑦 (𝑧) :=
��𝔼(𝑔(𝜙𝑧1 (𝑟 − 𝑎, 𝑦)) − 𝑔(𝜙𝑧2 (𝑟 − 𝑎, 𝑦)) − 𝑔(𝜙𝑧3 (𝑟 − 𝑎, 𝑦)) + 𝑔(𝜙𝑧4 (𝑟 − 𝑎, 𝑦))

) ��.
For brevity, we fix (𝑟, 𝑦) ∈ [𝑠, 𝑡] × 𝕋 and we set Γ := Γ𝑟 ,𝑦 , 𝜙𝑖 := 𝜙

𝑧𝑖
𝑟−𝑎 (𝑦) and 𝛿𝑖, 𝑗 := 𝜙 𝑗 − 𝜙𝑖. By

Lemma 1.11.6 we get

Γ(𝑧) ≤
��� ∫ 1

0

∫ 1

0
𝔼
(
𝛿1,2

(
𝜃𝛿1,3 + (1 − 𝜃)𝛿2,4

)
∇2𝑔(Θ1(𝜃, 𝜂))

)
𝑑𝜃𝑑𝜂

���
+
��� ∫ 1

0
𝔼
(
(𝛿3,4 − 𝛿1,2)∇𝑔(Θ2(𝜃))

)
𝑑𝜃

���
where Θ1,Θ2 are convex combinations1 of 𝜙1, . . . , 𝜙4. Hence using Lemma 2.3.4 (with 𝑛 = 2 and 𝑛 = 1

1In particular:

Θ1 (𝜃, 𝜂) := 𝜂(𝜃𝜙1 + (1 − 𝜃)𝜙2) + (1 − 𝜂) (𝜃𝜙3 + (1 − 𝜃)𝜙4), Θ2 (𝜃):= 𝜃𝜙3 + (1 − 𝜃)𝜙4,

but this is not important for the proof.

77



3.2. Regularisation estimates Chapter 3. Well-posedness

for the first and second terms respectively) and recalling the definition of 𝐹 (4) from (3.1.10) we get that

Γ(𝑧) ≲ ∥𝑔∥𝐶𝛼 (𝑟 − 𝑎)−1/2+𝛼/4
∫ 1

0
∥𝛿1,2(𝜃𝛿1,3 + (1 − 𝜃)𝛿2,4)∥𝒲3

16
𝑑𝜃

+ ∥𝑔∥𝐶𝛼 (𝑟 − 𝑎)−1/4+𝛼/4∥𝛿3,4 − 𝛿1,2∥𝒲2
8

≲ ∥𝑔∥𝐶𝛼 (𝑟 − 𝑎)−1/2+𝛼/4
3∑︁
𝑖=0

𝐹
(2)
32,𝑖 (𝑟 − 𝑎, 𝑦, 𝑧1, 𝑧2)

×
(
𝐹

(2)
32,𝑖 (𝑟 − 𝑎, 𝑦, 𝑧1, 𝑧3) + 𝐹 (2)

32,𝑖 (𝑟 − 𝑎, 𝑦, 𝑧2, 𝑧4)
)

+ ∥𝑔∥𝐶𝛼 (𝑟 − 𝑎)−1/4+𝛼/4
2∑︁
𝑖=0

𝐹
(4)
8,𝑖 (𝑟 − 𝑎, 𝑦, 𝑧). (3.2.18)

Let

𝑍 := (𝜙𝑢
1 (𝑠, · )
𝑠,𝑎 , 𝜙

𝑢2 (𝑠, · )
𝑠,𝑎 , 𝑢1(𝑎, ·), 𝑢2(𝑎, ·)).

By Lemma 2.2.1 and Lemma 3.1.4, we have that for 𝑙 = 1, 2, 𝑖 ∈ ℤ≥0 that

∥𝐹 (2)
32,𝑖 (𝑟 − 𝑎, 𝑦, 𝑍𝑙, 𝑍𝑙+2)∥𝐿2 |ℱ𝑠 ≲ sup

𝑥∈𝕋
∥𝑍𝑙 (𝑥) − 𝑍𝑙+2(𝑥)∥𝐿ℱ𝑠

2,∞
≲ [𝐷𝑢𝑙 ]

𝒱
𝛽
𝑝
(𝑡 − 𝑠)𝛽 .

Using this, and Lemma 2.2.1, we can see that

∥𝔼𝑠
(
𝐹

(2)
32,𝑖 (𝑟 − 𝑎, 𝑦, 𝑍1, 𝑍2)𝐹 (2)

32,𝑖 (𝑟 − 𝑎, 𝑦, 𝑍𝑙, 𝑍𝑙+2)
)
∥𝐿𝑝

≲ ∥∥𝐹 (2)
32,𝑖 (𝑟 − 𝑎, 𝑦, 𝑍1, 𝑍2)∥𝐿2 |ℱ𝑠 ∥𝐹

(2)
32,𝑖 (𝑟 − 𝑎, 𝑦, 𝑍𝑙, 𝑍𝑙+2)∥𝐿2 |ℱ𝑠 ∥𝐿𝑝

≲ [𝐷𝑢𝑙 ]
𝒱
𝛽
𝑝
(𝑡 − 𝑠)𝛽 ∥∥𝐹 (2)

32,𝑖 (𝑟 − 𝑎, 𝑦, 𝑍1, 𝑍2)∥𝐿2 |ℱ𝑠 ∥𝐿𝑝

≲ [𝐷𝑢𝑙 ]
𝒱
𝛽
𝑝
(𝑡 − 𝑠)𝛽 sup

𝑥∈𝕋
∥𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑎, 𝑥) − 𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑎, 𝑥)∥

𝐿
ℱ𝑠
2, 𝑝

≲ max
𝑙∈{1,2}

[𝐷𝑢𝑙 ]
𝒱
𝛽

2𝑝
(𝑡 − 𝑠)𝛽 sup

𝑥∈𝕋
∥𝑢1(𝑠, 𝑥) − 𝑢2(𝑠, 𝑥)∥𝐿𝑝 . (3.2.19)

Note moreover that by Lemma 3.1.6,

2∑︁
𝑖=0

∥𝔼𝑠𝐹 (4)
8,𝑖 (𝑟 − 𝑎, 𝑦, 𝑍)∥𝐿𝑝

≲ (1 + max
𝑙∈{1,2}

[𝐷𝑢𝑙 ]
𝒱
𝛽

2𝑝
)
(
[𝑢1, 𝑢2]

𝒮
1/2
𝑝 [𝑆,𝑇 ] + ∥𝑢1(𝑆, ·) − 𝑢2(𝑆, ·)∥𝔹(𝕋 ,𝐿𝑝 )

)
|𝑡 − 𝑠 |1/2.(3.2.20)

Using (3.2.18), (3.2.19) and (3.2.20), we get that

∥𝔼𝑠Γ(𝑍)∥𝐿𝑝
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≲ ∥𝑔∥𝐶𝛼 (𝑟 − 𝑎)−1/2+𝛼/4
3∑︁
𝑖=0

∑︁
𝑙∈{1,2}

∥𝔼𝑠
(
𝐹

(2)
32,𝑖 (𝑟 − 𝑎, 𝑦, 𝑍1, 𝑍2)𝐹 (2)

32,𝑖 (𝑟 − 𝑎, 𝑦, 𝑍𝑙, 𝑍𝑙+2)
)
∥𝐿𝑝

+ ∥𝑔∥𝐶𝛼 (𝑟 − 𝑎)−1/4+𝛼/4
2∑︁
𝑖=0

∥𝔼𝑠𝐹 (4)
8,𝑖 (𝑟 − 𝑎, 𝑦, 𝑍)∥𝐿𝑝

≲ ∥𝑔∥𝐶𝛼 (𝑟 − 𝑎)−1/2+𝛼/4 max
𝑙∈{1,2}

[𝐷𝑢𝑙 ]
𝒱
𝛽

2𝑝
(𝑡 − 𝑠)𝛽 sup

𝑥∈𝕋
∥𝑢1(𝑠, 𝑥) − 𝑢2(𝑠, 𝑥)∥𝐿𝑝

+ ∥𝑔∥𝐶𝛼 (𝑟 − 𝑎)−1/4+𝛼/4

×
2∑︁
𝑖=0

(1 + max
𝑙∈{1,2}

[𝐷𝑢𝑙 ]
𝒱
𝛽

2𝑝
) ( [𝑢1, 𝑢2]

𝒮
1/2
𝑝 [𝑆,𝑇 ] + ∥𝑢1(𝑆, ·) − 𝑢2(𝑆, ·)∥𝔹(𝕋 ,𝐿𝑝 ) ) (𝑡 − 𝑠)1/2

≲ ∥𝑔∥𝐶𝛼 (1 + max
𝑙∈{1,2}

[𝐷𝑢𝑙 ]
𝒱
𝛽

2𝑝
) ( [𝑢1, 𝑢2]

𝒮
1/2
𝑝 [𝑆,𝑇 ] + ∥𝑢1(𝑆, ·) − 𝑢2(𝑆, ·)∥𝔹(𝕋 ,𝐿𝑝 ) )

×
(
(𝑟 − 𝑎)−1/2+𝛼/4(𝑡 − 𝑠)𝛽 + (𝑟 − 𝑎)−1/4+𝛼/4(𝑡 − 𝑠)1/2

)
.

Therefore, by using Lemma 2.3.5 and the above bound, we get

∥𝔼𝑠𝛿𝐴𝑠,𝑎,𝑡 ∥𝐿𝑝

≲
∫ 𝑡

𝑎

∫
𝕋

𝑝𝑇−𝑟 (𝑥, 𝑦)∥𝔼𝑠Γ𝑟 ,𝑦 (𝑍)∥𝐿𝑝𝑑𝑦𝑑𝑟

≲ ∥𝑔∥𝐶𝛼 (1 + max
𝑙∈{1,2}

[𝐷𝑢𝑙 ]
𝒱
𝛽

2𝑝
) ( [𝑢1, 𝑢2]

𝒮
1/2
𝑝 [𝑆,𝑇 ] + ∥𝑢1(𝑆, ·) − 𝑢2(𝑆, ·)∥𝔹(𝕋 ,𝐿𝑝 ) )

×
(
(𝑡 − 𝑠)𝛽

∫ 𝑡

𝑎

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦) (𝑟 − 𝑎)−1/2+𝛼/4𝑑𝑦𝑑𝑟

+ (𝑡 − 𝑠)1/2
∫ 𝑡

𝑎

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦) (𝑟 − 𝑎)−1/4+𝛼/4𝑑𝑦𝑑𝑟
)

≲ ∥𝑔∥𝐶𝛼 (1 + max
𝑙∈{1,2}

[𝐷𝑢𝑙 ]𝒱2𝑝 ) ( [𝑢1, 𝑢2]
𝒮

1/2
𝑝 [𝑆,𝑇 ] + ∥𝑢1(𝑆, ·) − 𝑢2(𝑆, ·)∥𝔹(𝕋 ,𝐿𝑝 ) )

×
(
(𝑡 − 𝑠)𝛽 (𝑡 − 𝑎)1/2+𝛼/4 + (𝑡 − 𝑠)1/2(𝑡 − 𝑎)3/4+𝛼/4

)
≲ ∥𝑔∥𝐶𝛼 (1 + max

𝑙∈{1,2}
[𝐷𝑢𝑙 ]𝒱2𝑝 ) ( [𝑢1, 𝑢2]

𝒮
1/2
𝑝 [𝑆,𝑇 ] + ∥𝑢1(𝑆, ·) − 𝑢2(𝑆, ·)∥𝔹(𝕋 ,𝐿𝑝 ) )

×
(
(𝑡 − 𝑠)𝛽+1/2+𝛼/4 + (𝑡 − 𝑠)5/4+𝛼/4

)
. (3.2.21)

Note that 𝛽 + 1/2 + 𝛼/4 and 5/4 + 𝛼/4 are greater than 1 by the assumptions that 𝛽 > 1/2 − 𝛼/4 and

that 𝛼 > −1. Consequently, by (3.2.17) and (3.2.21), we have that the condition (1.9.24) is satisfied. In

addition, by using Lemma 3.1.4 and the regularity of 𝑔, it is straightforward to see that the process

𝒜𝑡 :=
∫ 𝑡

0

∫
𝕋

𝑝𝑇−𝑟 (𝑥, 𝑦)
(
𝑔(𝑢1(𝑟, 𝑦)) − 𝑔(𝑢2(𝑟, 𝑦))

)
𝑑𝑦𝑑𝑟

satisfies (1.9.25) and (1.9.26). Consequently, the conclusion follows from Lemma 1.9.1 and the fact that

(𝑆, 𝑇) ∈ [0, 1]2
≤ was arbitrary. □
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Corollary 3.2.5. Let 𝑝 ∈ [2,∞) and let 𝜎 ∈ 𝐶4 such that there exists a constant 𝜇 > 0 such that

𝜎2(𝑥) ≥ 𝜇2. For 𝑖 = 1, 2, let 𝑏𝑖 ∈ 𝐶𝛼 and let 𝑢𝑖 be regularised solutions of

(𝜕𝑡 − Δ)𝑢𝑖 = 𝑏𝑖 (𝑢𝑖) + 𝜎(𝑢𝑖)𝜉

in the class 𝒰𝛽 for some 𝛽 ∈
( 1

2 − 𝛼
4 , 1 + 𝛼

4
]
. There exists a constant 𝑁 = 𝑁 (𝑝, ∥𝜎∥𝐶4 , 𝜇, 𝛼, 𝛽) such that

for all 𝑔1, 𝑔2 ∈ 𝐶∞, (𝑠, 𝑡) ∈ [0, 1]2
≤ , we have




 ∫ 𝑡

𝑠

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)
(
𝑔1(𝑢1(𝑟, 𝑦)) − 𝑔2(𝑢2(𝑟, 𝑦))

)
𝑑𝑦𝑑𝑟





𝐿𝑝

≤ 𝑁
(
1 + max

𝑖∈{1,2}
[𝐷𝑢𝑖 ]

𝒱
𝛽

2𝑝

)
|𝑡 − 𝑠 | (3+𝛼)/4

×
(
∥𝑔1 − 𝑔2∥𝐶𝛼−1 + ∥𝑔2∥𝐶𝛼

(
[𝑢1, 𝑢2]

𝒮
1/2
𝑝 [𝑠,𝑡 ] + ∥𝑢1(𝑠, ·) − 𝑢2(𝑠, ·)∥𝔹(𝕋 ,𝐿𝑝 )

))
.

Proof. Since 𝛽 > 1
2 − 𝛼

4 = 1
4 − 𝛼−1

4 , we can see that the condition of Corollary 3.2.2 is satisfied with

𝜆 = 𝛼−1. The desired result follows from Corollary 3.2.2 and Lemma 3.2.4 by the triangle inequality. □

3.3 The 𝒮𝑝-bracket of two solutions

Throughout the section we work with the following assumption:

Assumption 3.3.1. Let 𝜎 ∈ 𝐶4 such that there exists constant 𝜇 > 0 such that 𝜎2(𝑥) ≥ 𝜇2. Let

𝛼 ∈ (−1, 0), 𝛽 ∈ ( 1
2 − 𝛼

4 , 1 + 𝛼
4 ], and suppose that for 𝑖 = 1, 2 we are given 𝑏𝑖 ∈ 𝐶𝛼+ and that 𝑢𝑖 are

regularised solutions of

(𝜕𝑡 − Δ)𝑢𝑖 = 𝑏𝑖 (𝑢𝑖) + 𝜎(𝑢𝑖)𝜉 (𝑑𝑦, 𝑑𝑟)

in the class 𝒰𝛽 with initial conditions 𝑢𝑖 (0, ·) = 𝑢𝑖0 ∈ 𝐶 (𝕋 ).

Recall the definition of the 𝒮1/2
𝑝 -bracket from (3.1.4). Informally, the aim of this section is to show

that

[𝑢1, 𝑢2]
𝒮

1/2
𝑝 [0,1] ≲ ∥𝑢1

0 − 𝑢
2
0∥𝔹(𝕋 ) + ∥𝑏1 − 𝑏2∥𝐶𝛼−1 .

Lemma 3.3.2. Let Assumption 3.3.1 hold and let 𝑝 ∈ [2,∞). Then [𝑢1, 𝑢2]
𝒮

1/2
𝑝
< ∞. Moreover there

exists a constant 𝑁 = 𝑁 (𝑝, 𝜇, ∥𝜎∥𝐶4 , 𝛼, 𝛽) such that

[𝑢1, 𝑢2]
𝒮

1/2
𝑝 [𝑠,𝑡 ]

≤ 𝑁
(
1 + max

𝑖∈{1,2}
[𝐷𝑢𝑖 ]

𝒱
𝛽

2𝑝

)
(1 + ∥𝑏2∥𝐶𝛼)
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×
(
∥𝑏1 − 𝑏2∥𝐶𝛼−1 + [𝑢1, 𝑢2]

𝒮
1/2
𝑝 [𝑠,𝑡 ] + ∥𝑢1(𝑠, ·) − 𝑢2(𝑠, ·)∥𝔹(𝕋 ,𝐿𝑝 )

)
(𝑡 − 𝑠) (1+𝛼)/4. (3.3.22)

Proof. Let (𝑆, 𝑇) ∈ [0, 1]2
≤ . We begin by verifying that the 𝒮

1/2
𝑝 -bracket is finite. By the triangle

inequality, and by Lemma 3.1.4, we have for (𝑠, 𝑡) ∈ [𝑆, 𝑇]2
≤ that

sup
𝑥∈𝕋

∥𝑢1(𝑡, 𝑥) − 𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑡, 𝑥) − 𝑢2(𝑡, 𝑥) + 𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑡, 𝑥)∥
𝐿
ℱ𝑠
𝑝,∞

≤ max
𝑖∈{1,2}

sup
𝑥∈𝕋

∥𝑢𝑖 (𝑡, 𝑥) − 𝜙𝑢𝑖 (𝑠, · ) ,𝑠 (𝑡, 𝑥)∥
𝐿
ℱ𝑠
𝑝,∞

≲ max
𝑖∈{1,2}

[𝐷𝑢𝑖 ]
𝒱
𝛽
𝑝
(𝑡 − 𝑠)𝛽 ≲ max

𝑖{1,2}
[𝐷𝑢𝑖 ]

𝒱
𝛽
𝑝
(𝑡 − 𝑠)1/2,

where we used that by assumption we have 𝛽 ≥ 1
2 −

𝛼
4 >

1
2 . Thus by the fact that ∥ · ∥𝐿𝑝 = ∥∥ · ∥𝐿𝑝 |ℱ𝑠 ∥𝐿𝑝 ≤

∥ · ∥
𝐿
ℱ𝑠
𝑝,∞

, it follows that

[𝑢1, 𝑢2]
𝒮

1/2
𝑝

≲ max
𝑖∈{1,2}

[𝐷𝑢𝑖 ]
𝒱
𝛽
𝑝
, (3.3.23)

which is finite, since by assumption 𝑢𝑖 ∈ 𝒰
𝛽. Note that for (𝑠, 𝑡) ∈ [0, 1]2

≤ , 𝑥 ∈ 𝕋 we have by (2.3.30)

and by (1.7.18) that

𝑢1(𝑡, 𝑥) − 𝑢2(𝑡, 𝑥) − 𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑡, 𝑥) + 𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑡, 𝑥) =

= 𝑢1(𝑡, 𝑥) − 𝑢2(𝑡, 𝑥) − 𝑃𝑡−𝑠
(
𝑢1(𝑠, ·) − 𝑢2(𝑠, ·)

)
(𝑥)

−
∫ 𝑡

𝑠

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)
(
𝜎(𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑟, 𝑦)) − 𝜎(𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑟, 𝑦)

)
𝜉 (𝑑𝑦, 𝑑𝑟)

=

(
𝐷𝑢

1
𝑡 − 𝐷𝑢2

𝑡 − 𝑃𝑡−𝑠𝐷𝑢
1
𝑠 + 𝑃𝑡−𝑠𝐷𝑢

2
𝑠

)
(𝑥)

+
∫ 𝑡

𝑠

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)
(
𝜎(𝑢1(𝑟, 𝑦)) − 𝜎(𝑢2(𝑟, 𝑦))

− 𝜎(𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑟, 𝑦)) + 𝜎(𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑟, 𝑦))
)
𝜉 (𝑑𝑦, 𝑑𝑟)

=: 𝐼 (𝑡, 𝑥) + 𝐽 (𝑡, 𝑥).

For 𝑖 = 1, 2 let (𝑏𝑖,𝑛)𝑛∈ℕ ⊂ 𝐶∞ with 𝑏𝑖,𝑛 → 𝑏𝑖 in 𝐶𝛼. Then by Definition 1.7.2 and by Fatou’s lemma,

we have

sup
(𝑡 ,𝑥 ) ∈ [0,1]×𝕋

∥𝐼 (𝑡, 𝑥)∥𝐿𝑝

≲ lim inf
𝑛→∞

sup
(𝑡 ,𝑥 ) ∈ [0,1]×𝕋




 ∫ 𝑡

𝑠

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)
(
𝑏1,𝑛 (𝑢1(𝑟, 𝑦)) − 𝑏2,𝑛 (𝑢2(𝑟, 𝑦))

)
𝑑𝑦𝑑𝑟





𝐿𝑝
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So by Corollary 3.2.5 we have

∥𝐼 (𝑡, 𝑥)∥𝐿𝑝 ≲ |𝑡 − 𝑠 | (3+𝛼)/4(1 + max
𝑖∈{1,2}

[𝐷𝑢𝑖 ]
𝒱
𝛽

2𝑝
)

×
(
∥𝑏1 − 𝑏2∥𝐶𝛼−1 + ∥𝑏2∥𝐶𝛼

(
[𝑢1, 𝑢2]

𝒮
1/2
𝑝 [𝑠,𝑡 ] + ∥𝑢1(𝑠, ·) − 𝑢2(𝑠, ·)∥𝔹(𝕋 ,𝐿𝑝 )

))
.

Note moreover that by Lemma 3.1.8 we have

∥𝐽 (𝑡, 𝑥)∥𝐿𝑝

≲ [𝐷𝑢1]
𝒱
𝛽

2𝑝
∥𝑢1(𝑠, ·) − 𝑢2(𝑠, ·)∥𝔹(𝕋 ,𝐿𝑝 ) (𝑡 − 𝑠)

1
4+𝛽

+
( ∫ 𝑡

𝑠

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)


𝑢1(𝑟, 𝑦) − 𝑢2(𝑟, 𝑦) − 𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑟, 𝑦) + 𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑟, 𝑦)



2
𝐿𝑝
𝑑𝑦𝑑𝑟

)1/2
.

By our bounds on 𝐼, 𝐽 and by the observation that 1
4 + 𝛽 > 1

4 + 1
2 − 𝛼

4 >
3
4 + 𝛼

4 , we conclude that

∥𝑢1(𝑡, 𝑥) − 𝑢2(𝑡, 𝑥) − 𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑡, 𝑥) + 𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑡, 𝑥)∥2
𝐿𝑝

≲

≲ (1 + max
𝑖∈{1,2}

[𝐷𝑢𝑖 ]
𝒱
𝛽

2𝑝
)2(1 + ∥𝑏2∥𝐶𝛼)2

×
(
∥𝑏1 − 𝑏2∥𝐶𝛼−1 + [𝑢1, 𝑢2]

𝒮
1/2
𝑝 [𝑠,𝑡 ] + ∥𝑢1(𝑠, ·) − 𝑢2(𝑠, ·)∥𝔹(𝕋 ,𝐿𝑝 )

)2
(𝑡 − 𝑠) (3+𝛼)/2

+
∫ 𝑡

𝑠

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)


𝑢1(𝑟, 𝑦) − 𝑢2(𝑟, 𝑦) − 𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑟, 𝑦) + 𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑟, 𝑦)



2
𝐿𝑝
𝑑𝑦𝑑𝑟.

Note that the norm in the integrand is bounded in (𝑟, 𝑦), since it is bounded by [𝑢1, 𝑢2]
𝒮

1/2
𝑝

, which is finite

by (3.3.23). Using Lemma 1.3.5, and Lemma 3.1.3 (where we recall that 𝑆 ≤ 𝑠 ≤ 𝑡), we get

∥𝑢1(𝑡, 𝑥) − 𝑢2(𝑡, 𝑥) − 𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑡, 𝑥) + 𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑡, 𝑥)∥𝐿𝑝

≲ (1 + max
𝑖∈{1,2}

[𝐷𝑢𝑖 ]
𝒱
𝛽

2𝑝
) (1 + ∥𝑏2∥𝐶𝛼)

×
(
[𝑢1, 𝑢2]

𝒮
1/2
𝑝 [𝑆,𝑡 ] + ∥𝑢1(𝑆, ·) − 𝑢2(𝑆, ·)∥𝔹(𝕋 ,𝐿𝑝 ) + ∥𝑏1 − 𝑏2∥𝐶𝛼−1

)
(𝑡 − 𝑠) (3+𝛼)/4.

Therefore dividing both sides by (𝑡 − 𝑠)1/2 and taking supremum over (𝑠, 𝑡) ∈ [𝑆, 𝑇]2
<, we obtain the

desired bound with (𝑆, 𝑇) in place of (𝑠, 𝑡). Now the desired result follows by the fact that (𝑆, 𝑇) ∈ [0, 1]2
≤

was arbitrary. □

Lemma 3.3.3 (Splitting the 𝒮1/2
𝑝 -bracket). Let Assumption 3.3.1 hold and let 𝑝 ∈ [2,∞). There exists a
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constant 𝑁 = 𝑁 (𝑝, ∥𝜎∥𝐶4 , 𝜇, 𝛼, 𝛽) such for all (𝑆, 𝑇) ∈ [0, 1]2
≤ and 𝑄 ∈ [𝑆, 𝑇] we have

[𝑢1, 𝑢2]
𝒮

1/2
𝑝 [𝑆,𝑇 ] ≤ 𝑁 (1 + max

𝑖∈{1,2}
[𝐷𝑢𝑖 ]

𝒱
𝛽

2𝑝
)
(
[𝑢1, 𝑢2]

𝒮
1/2
𝑝 [𝑆,𝑄] + ∥𝑢1(𝑆, ·) − 𝑢2(𝑆, ·)∥𝔹(𝕋 ,𝐿𝑝 )

)
+ 2[𝑢1, 𝑢2]

𝒮
1/2
𝑝 [𝑄,𝑇 ] .

Proof. For (𝑠, 𝑡) ∈ [0, 1]2
≤ , we set

𝐴(𝑠, 𝑡) := sup
𝑥∈𝕋

∥𝑢1(𝑡, 𝑥) − 𝑢2(𝑡, 𝑥) − 𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑡, 𝑥) + 𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑡, 𝑥)∥𝐿𝑝 .

For (𝑠, 𝑡) ∈ [𝑆, 𝑄]2
≤ or (𝑠, 𝑡) ∈ [𝑄,𝑇]2

≤ , we clearly have

𝐴(𝑠, 𝑡) ≤
(
[𝑢1, 𝑢2]

𝒮
1/2
𝑝 [𝑆,𝑄] + [𝑢1, 𝑢2]

𝒮
1/2
𝑝 [𝑄,𝑇 ]

)
|𝑡 − 𝑠 |1/2. (3.3.24)

For 𝑠 ≤ 𝑄 < 𝑡, by using the triangle inequality and keeping in mind the definition of 𝐹 (4)
𝑝,0 (see (3.1.10))

we have

𝐴(𝑠, 𝑡) ≤ 𝐴(𝑄, 𝑡)

+ sup
𝑥∈𝕋

∥𝜙𝑢1 (𝑄, · ) ,𝑄 (𝑡, 𝑥) − 𝜙𝑢2 (𝑄, · ) ,𝑄 (𝑡, 𝑥) − 𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑡, 𝑥) + 𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑡, 𝑥)∥𝐿𝑝

= 𝐴(𝑄, 𝑡) + sup
𝑥∈𝕋



𝐹 (4)
𝑝,0

(
𝑡 −𝑄, 𝑥, 𝜙𝑢1 (𝑠, · ) ,𝑠 (𝑄, ·), 𝜙𝑢2 (𝑠, · ) ,𝑠 (𝑄, ·), 𝑢1(𝑄, ·), 𝑢2(𝑄, ·)

)


𝐿𝑝

From this and Lemma 3.1.6, we conclude that for 𝑠 ≤ 𝑄 < 𝑡

𝐴(𝑠, 𝑡) ≤ [𝑢1, 𝑢2]
𝒮

1/2
𝑝 [𝑄,𝑇 ] |𝑡 − 𝑠 |

1/2

+ 𝑁 (1 + max
𝑖∈{1,2}

[𝐷𝑢𝑖 ]
𝒱
𝛽

2𝑝
)
(
[𝑢1, 𝑢2]

𝒮
1/2
𝑝 [𝑆,𝑄] + ∥𝑢1(𝑆, ·) − 𝑢2(𝑆, ·)∥𝔹(𝕋 ,𝐿𝑝 )

)
|𝑡 − 𝑠 |1/2. (3.3.25)

By the above combined with (3.3.24), the inequality (3.3.25) holds for any (𝑠, 𝑡) ∈ [𝑆, 𝑇]2
≤ , from which

the claim follows. □

Lemma 3.3.4. Let Assumption 3.3.1 hold and let 𝐾 ∈ ℤ≥2, 𝑝 ∈ [2,∞). There exists a constant

𝑁 = 𝑁 (𝑝, ∥𝜎∥𝐶4 , 𝐾, 𝜇, 𝛼, 𝛽) such that with 𝑀 := 𝑁 (1 + max𝑖∈{1,2} [𝐷𝑢
𝑖 ]𝒱2𝑝 ) we have

[𝑢1, 𝑢2]
𝒮

1/2
𝑝

≤ (𝐾 − 1)𝑀𝐾−1∥𝑢1
0 − 𝑢

2
0∥𝔹(𝕋 ) + 2

𝐾−1∑︁
𝑖=0

𝑀 𝑖 [𝑢1, 𝑢2]
𝒮𝑝 [ 𝐾−𝑖−1

𝐾
, 𝐾−𝑖
𝐾

] .

Proof. Let 𝑎𝑠,𝑡 := [𝑢1, 𝑢1]
𝒮

1/2
𝑝 [𝑠,𝑡 ] and 𝑢1,2

0 := ∥𝑢1
0 − 𝑢

2
0∥𝔹(𝕋 ) . We will begin by using induction to show
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that for all 𝑛 ∈ {1, . . . , 𝐾 − 1} we have

𝑎0,1 ≤ 𝑀𝑛𝑎0, 𝐾−𝑛
𝐾

+
( 𝑛∑︁
𝑖=1

𝑀 𝑖
)
𝑢

1,2
0 + 2

𝑛−1∑︁
𝑖=0

𝑀 𝑖𝑎 𝐾−𝑖−1
𝐾

, 𝐾−𝑖
𝐾
. (3.3.26)

By Lemma 3.3.3 we have that

𝑎0,1 ≤ 𝑀 (𝑎0, 𝐾−1
𝐾

+ 𝑢1,2
0 ) + 2𝑎 𝐾−1

𝐾
,1,

therefore (3.3.26) holds for the initial case 𝑛 = 1. Now suppose that (3.3.26) holds for some 𝑛 ∈ ℕ.

We will show that it also holds for 𝑛 + 1. To this end, we first apply the induction hypothesis and then

Lemma 3.3.3, to get that

𝑎0,1 ≤ 𝑀𝑛𝑎0, 𝐾−𝑛
𝐾

+
( 𝑛∑︁
𝑖=1

𝑀 𝑖
)
𝑢

1,2
0 + 2

𝑛−1∑︁
𝑖=0

𝑀 𝑖𝑎 𝐾−𝑖−1
𝐾

, 𝐾−𝑖
𝐾

≤ 𝑀𝑛
(
𝑀
(
𝑎0, 𝐾−𝑛−1

𝐾
+ 𝑢1,2

0
)
+ 2𝑎 𝐾−𝑛−1

𝐾
, 𝐾−𝑛
𝐾

)
+
( 𝑛∑︁
𝑖=1

𝑀 𝑖
)
𝑢

1,2
0 + 2

𝑛−1∑︁
𝑖=0

𝑀 𝑖𝑎 𝐾−𝑖−1
𝐾

, 𝐾−𝑖
𝐾

= 𝑀𝑛+1𝑎0, 𝐾−𝑛−1
𝐾

+ 𝑀𝑛+1𝑢1,2
0 +

( 𝑛∑︁
𝑖=1

𝑀 𝑖
)
𝑢

1,2
0 + 2𝑀𝑛𝑎 𝐾−𝑛−1

𝐾
, 𝐾−𝑛
𝐾

+ 2
𝑛−1∑︁
𝑖=0

𝑀 𝑖𝑎 𝐾−𝑖−1
𝐾

, 𝐾−𝑖
𝐾

= 𝑀𝑛+1𝑎0, 𝐾−𝑛−1
𝐾

+
( 𝑛+1∑︁
𝑖=1

𝑀 𝑖
)
𝑢

1,2
0 + 2

𝑛∑︁
𝑖=0

𝑀 𝑖𝑎 𝐾−𝑖−1
𝐾

, 𝐾−𝑖
𝐾

as required. Therefore (3.3.26) is proven. Now choosing 𝑛 := 𝐾 − 1 in (3.3.26), we get

𝑎0,1 ≤
( 𝐾−1∑︁
𝑖=1

𝑀 𝑖
)
𝑢

1,2
0 + 𝑀𝐾−1𝑎0, 1

𝐾
+ 2

𝐾−2∑︁
𝑖=0

𝑀 𝑖𝑎 𝐾−𝑖−1
𝐾

, 𝐾−𝑖
𝐾

≤ (𝐾 − 1)𝑀𝐾−1𝑢1,2
0 + 2

𝐾−1∑︁
𝑖=0

𝑀 𝑖𝑎 𝐾−𝑖−1
𝐾

, 𝐾−𝑖
𝐾

as required. □

Lemma 3.3.5. Let Assumption 3.3.1 hold. For all 𝑝 ∈ [2,∞) there exists a positive constant 𝐾0 =

𝐾0(max𝑖∈{1,2} [𝐷𝑢
𝑖 ]
𝒱
𝛽

2𝑝
, 𝑝, ∥𝜎∥𝐶4 , 𝜇, 𝛼, 𝛽) such that if 𝐾 ∈ ℤ satisfies 𝐾 > 𝐾0, then there exists a

constant 𝑀 = 𝑀 (𝑝, ∥𝜎∥𝐶1 , 𝛼, 𝛽) such that for all 𝑛 ∈ {0, . . . , 𝐾} we have that

[𝑢1, 𝑢2]
𝒮

1/2
𝑝 [ 𝑛

𝐾
, 𝑛+1
𝐾

] ≤ 𝑀𝐾
(
∥𝑢1(0, ·) − 𝑢2(0, ·)∥𝔹(𝕋 ) + ∥𝑏1 − 𝑏2∥𝐶𝛼−1

)
.

Proof. By Lemma 3.3.2 there exists some 𝑁 = 𝑁 (𝑝, 𝜇, ∥𝜎∥𝐶4 , 𝛼, 𝛽) > 0 such that for all 𝐾 ∈ ℕ and
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𝑛 ∈ {0, . . . , 𝐾 − 1} we have

[𝑢1, 𝑢2]
𝒮

1/2
𝑝 [ 𝑛

𝐾
, 𝑛+1
𝐾

]

≤ 𝑁 (1 + max
𝑖∈{1,2}

[𝐷𝑢𝑖 ]
𝒱
𝛽

2𝑝
) (1 + ∥𝑏2∥𝐶𝛼)

×
(
[𝑢1, 𝑢2]

𝒮
1/2
𝑝 [ 𝑛

𝐾
, 𝑛+1
𝐾

] +


𝑢1 ( 𝑛

𝐾
, ·
)
− 𝑢2 ( 𝑛

𝐾
, ·
)



𝔹(𝕋 ,𝐿𝑝 ) +


𝑏1 − 𝑏2



𝐶𝛼−1

)
𝐾−(1+𝛼)/4.

Let ⌈·⌉ denote the ceiling function, and define the constants

𝑁̃ := 𝑁 (1 + max
𝑖∈{1,2}

[𝐷𝑢𝑖 ]
𝒱
𝛽

2𝑝
) (1 + ∥𝑏2∥𝐶𝛼),

𝐾0 :=
⌈
(2𝑁̃) 4

1+𝛼
⌉
. (3.3.27)

Then for 𝐾 > 𝐾0 we have that

[𝑢1, 𝑢2]
𝒮

1/2
𝑝 [ 𝑛

𝐾
, 𝑛+1
𝐾

] ≤


𝑢1 ( 𝑛

𝐾
, ·
)
− 𝑢2 ( 𝑛

𝐾
, ·
)



𝔹(𝕋 ,𝐿𝑝 ) + ∥𝑏1 − 𝑏2∥𝐶𝛼−1 . (3.3.28)

In particular, by choosing 𝑛 = 0, we have

[𝑢1, 𝑢2]
𝒮

1/2
𝑝 [0, 1

𝐾
] ≤ ∥𝑢1

0 − 𝑢
2
0∥𝔹(𝕋 ) + ∥𝑏1 − 𝑏2∥𝐶𝛼−1 . (3.3.29)

Let

𝑎𝑛 := [𝑢1, 𝑢2]
𝒮

1/2
𝑝 [ 𝑛

𝐾
, 𝑛+1
𝐾

] +


𝑢1 ( 𝑛

𝐾
, ·
)
− 𝑢2 ( 𝑛

𝐾
, ·
)



𝔹(𝕋 ,𝐿𝑝 ) + ∥𝑏1 − 𝑏2∥𝐶𝛼−1 .

In the 𝑛 = 0 case we can use (3.3.29) to bound the first term to get

𝑎0 ≤ 2
(
∥𝑢1

0 − 𝑢
2
0∥𝔹(𝕋 ) + ∥𝑏1 − 𝑏2∥𝐶𝛼−1

)
. (3.3.30)

For the general case 𝑛 ∈ {1, . . . , 𝐾 − 1} we first use (3.3.28) to get rid of the first term in the definition of

𝑎𝑛, and then we apply Lemma 3.1.3 as follows:

𝑎𝑛 ≤ 2
(

𝑢1 ( 𝑛

𝐾
, ·
)
− 𝑢2 ( 𝑛

𝐾
, ·
)



𝔹(𝕋 ,𝐿𝑝 ) + ∥𝑏1 − 𝑏2∥𝐶𝛼−1

)
≤ 𝑀

(
[𝑢1, 𝑢2]

𝒮
1/2
𝑝 [ 𝑛−1

𝐾
, 𝑛
𝐾
] +



𝑢1 (𝑛 − 1
𝐾

, ·
)
− 𝑢2 (𝑛 − 1

𝐾
, ·
)



𝔹(𝕋 ,𝐿𝑝 ) + ∥𝑏1 − 𝑏2∥𝐶𝛼−1

)
= 𝑀𝑎𝑛−1

for some constant 𝑀 = 𝑀 (𝑝, ∥𝜎∥𝐶1 , 𝛼, 𝛽) > 2. Iterating this result 𝑛 times and then applying (3.3.30),
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we get

𝑎𝑛 ≤ 𝑀𝑛𝑎0 ≤ 𝑀𝑛2
(
∥𝑢1

0 − 𝑢
2
0∥𝔹(𝕋 ) + ∥𝑏1 − 𝑏2∥𝐶𝛼−1

)
≤ 𝑀𝐾−1𝑀

(
∥𝑢1

0 − 𝑢
2
0∥𝔹(𝕋 ) + ∥𝑏1 − 𝑏2∥𝐶𝛼−1

)
,

which finishes the proof. □

Lemma 3.3.6 (𝒮1/2
𝑝 -stability of regularised solutions). Let Assumption 3.3.1 hold and let 𝑝 ∈ [2,∞).

There exists a continuous map (with dependencies as indicated below)

𝑓 = 𝑓𝑝,∥𝜎 ∥
𝐶4 ,𝜇,𝛼,𝛽 : [0,∞)2 → [0,∞)

such that 𝑓 (𝑥, 𝑦) is increasing in both the 𝑥 and 𝑦 variables, and that the following inequality holds:

[𝑢1, 𝑢2]
𝒮

1/2
𝑝

≤ 𝑓
(

max
𝑖 ∈{1,2}

∥𝑏𝑖 ∥𝐶𝛼 , max
𝑖∈{1,2}

[𝐷𝑢𝑖 ]
𝒱
𝛽

2𝑝

) (
∥𝑢1

0 − 𝑢
2
0∥𝔹(𝕋 ) + ∥𝑏1 − 𝑏2∥𝐶𝛼−1

)
.

Proof. Let 𝐾 ∈ ℤ be sufficiently large so that it satisfies the assumption of Lemma 3.3.5. By

(3.3.27) we know that we can choose 𝐾 = 𝑁0(1 + max𝑖∈{1,2} [𝐷𝑢
𝑖 ]
𝒱
𝛽

2𝑝
) 4

1+𝛼 (1 + ∥𝑏2∥𝐶𝛼)
4

1+𝛼 with

𝑁0 = 𝑁0(𝑝, 𝜇, ∥𝜎∥𝐶4 , 𝛼, 𝛽). Then there exists a constant 𝑀1 = 𝑀1(𝑝, ∥𝜎∥𝐶1 , 𝛼, 𝛽) such that

[𝑢1, 𝑢2]
𝒮

1/2
𝑝 [ 𝑛

𝐾
, 𝑛+1
𝐾

] ≤ 𝑀𝐾
1
(
∥𝑢1

0 − 𝑢
2
0∥𝔹(𝕋 ) + ∥𝑏1 − 𝑏2∥𝐶𝛼−1

)
. (3.3.31)

Recall moreover that by Lemma 3.3.4 there exists a constant 𝑁2 = 𝑁2(𝑝, ∥𝜎∥𝐶4 , 𝐾, 𝜇, 𝛼, 𝛽) such that for

𝑀2 := 𝑁2(1 + max𝑖∈{1,2} [𝐷𝑢
𝑖 ]
𝒱
𝛽

2𝑝
) we have

[𝑢1, 𝑢2]
𝒮

1/2
𝑝

≤ (𝐾 − 1)𝑀𝐾−1
2 ∥𝑢1

0 − 𝑢
2
0∥𝔹(𝕋 ) + 2

𝐾−1∑︁
𝑖=0

𝑀 𝑖
2 [𝑢

1, 𝑢2]
𝒮

1/2
𝑝 [ 𝐾−𝑖−1

𝐾
, 𝐾−𝑖
𝐾

] . (3.3.32)

By (3.3.31), we get that the second term on the right hand side of (3.3.32) is bounded by

2
𝐾−1∑︁
𝑖=0

𝑀 𝑖
2𝑀

𝐾
1
(
∥𝑢1

0 − 𝑢
2
0∥𝔹(𝕋 ) + ∥𝑏1 − 𝑏2∥𝐶𝛼−1

)
≤ 2(𝐾 − 1) (𝑀1𝑀2)𝐾

(
∥𝑢1

0 − 𝑢
2
0∥𝔹(𝕋 ) + ∥𝑏1 − 𝑏2∥𝐶𝛼−1

)
.
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Therefore

[𝑢1, 𝑢2]
𝒮

1/2
𝑝

≤ (𝐾 − 1)
(
𝑀𝐾−1

2 + 2(𝑀1𝑀2)𝐾
) (
∥𝑢1

0 − 𝑢
2
0∥𝔹(𝕋 ) + ∥𝑏1 − 𝑏2∥𝐶𝛼−1

)
,

and the desired result follows by the definitions of 𝐾, 𝑀1, 𝑀2. □

3.4 The 𝒱𝑝-bracket of the drift and an a priori estimate

The aim of this section is to provide a priori bounds on a regularised solution of (1.3.9) under Assumption

1.7.1.

Lemma 3.4.1. Let Assumption 1.7.1 hold, let 𝛽 ∈ ( 1
4 − 𝛼

4 , 1 + 𝛼
4 ] and assume that 𝑢 is a regularised

solution of (1.3.9) in the class 𝒰𝛽

2 . Then 𝑢 is also of class 𝒰𝛽 . Moreover for all 𝑝 ∈ [2,∞) there exists a

constant 𝑁 = 𝑁 (𝑝, ∥𝜎∥𝐶4 , 𝜇, 𝛼, 𝛽) > 0 such that

[𝐷𝑢]
𝒱
𝛽
𝑝
≤ 𝑁 exp

(
𝑁 ∥𝑏∥

4
𝛼+3
𝐶𝛼

)
.

Proof. Let (𝑏𝑛)𝑛∈ℕ ⊂ 𝐶∞ be a sequence of smooth functions such that 𝑏𝑛 → 𝑏 in 𝐶𝛼. Then by the

definition of 𝐷𝑢 (see (1.7.17)), by the conditional Fatou’s lemma and the usual Fatou’s lemma, for 𝑝 ≥ 2

and for (𝑠, 𝑡) ∈ [0, 1]2
≤ , 𝑥 ∈ 𝕋 we have that

∥𝐷𝑢𝑡 (𝑥) − 𝑃𝑡−𝑠𝐷𝑢𝑠 (𝑥)∥𝐿ℱ𝑠
𝑝,∞

≲ lim inf
𝑛→∞

sup
𝑥∈𝕋




 ∫ 𝑡

𝑠

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝑏𝑛 (𝑢(𝑟, 𝑦))𝑑𝑦𝑑𝑟




𝐿
ℱ𝑠
𝑝,∞
.

Therefore by applying Corollary 3.2.2 we know that

∥𝐷𝑢𝑡 (𝑥) − 𝑃𝑡−𝑠𝐷𝑢𝑠 (𝑥)∥𝐿ℱ𝑠
𝑝,∞

≲ ∥𝑏∥𝐶𝛼
(
(𝑡 − 𝑠)1+𝛼/4 + [𝐷𝑢]

𝒱
𝛽

2 [𝑠,𝑡 ] (𝑡 − 𝑠)
𝛽+ 𝛼+3

4

)
≲ ∥𝑏∥𝐶𝛼

(
(𝑡 − 𝑠)𝛽 + [𝐷𝑢]

𝒱
𝛽

2 [𝑠,𝑡 ] (𝑡 − 𝑠)
𝛽+ 𝛼+3

4

)
,

where we used the assumption that 𝛽 ≤ 1 + 𝛼/4. Hence there exists 𝑁̃ = 𝑁̃ (𝑝, ∥𝜎∥𝐶4 , 𝜇, 𝛼, 𝛽) such that

for all (𝑠, 𝑡) ∈ [0, 1]2
≤ we have

[𝐷𝑢]
𝒱
𝛽
𝑝 [𝑠,𝑡 ] ≤ 𝑁̃ ∥𝑏∥𝐶𝛼 + 𝑁̃ ∥𝑏∥𝐶𝛼 [𝐷𝑢]

𝒱
𝛽

2 [𝑠,𝑡 ] (𝑡 − 𝑠)
(𝛼+3)/4. (3.4.33)

Since we assumed that 𝑢 ∈ 𝒰
𝛽

2 , we have [𝐷𝑢]
𝒱
𝛽

2
< ∞, and thus by the inequality (3.4.33) we have

[𝐷𝑢]
𝒱
𝛽
𝑝
< ∞, and thus 𝑢 ∈ 𝒰

𝛽
𝑝 . Since 𝑝 ≥ 2 was arbitrary, it follows that 𝑢 ∈ 𝒰

𝛽 .
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Note that on the right hand side of (3.4.33), the [𝐷𝑢]
𝒱
𝛽

2 [𝑠,𝑡 ] may be replaced with [𝐷𝑢]
𝒱
𝛽
𝑝 [𝑠,𝑡 ] . Hence

choosing sufficiently large 𝐾 ∈ ℕ, it follows that

max
𝑖∈{0,...,𝐾−1}

[𝐷𝑢]
𝒱
𝛽
𝑝 [ 𝑖

𝐾
, 𝑖+1
𝐾

] ≲ ∥𝑏∥𝐶𝛼 . (3.4.34)

To this end we may pick 𝐾 :=
⌈
(2𝑁̃ ∥𝑏∥𝐶𝛼)

4
𝛼+3

⌉
. Moreover using Lemma 1.11.7 and the inequality

(3.4.34), we obtain that

[𝐷𝑢]
𝒱
𝛽
𝑝 [0,1] ≤ 2𝐾

𝐾−1∑︁
𝑖=0

[𝐷𝑢]
𝒱
𝛽
𝑝 [ 𝑖

𝐾
, 𝑖+1
𝐾

]

≲ 2𝐾
𝐾−1∑︁
𝑖=0

∥𝑏∥𝐶𝛼 ≲ 𝐾2𝐾 ∥𝑏∥𝐶𝛼 ,

which finishes the proof . □

Lemma 3.4.2 (The regularity of 𝐷𝑢). Let Assumption 1.7.1 hold, and let 𝑝 ∈ [2,∞), 𝛽 ∈ ( 1
2 − 𝛼

4 , 1 + 𝛼
4 ].

There exists a constant 𝑁 = 𝑁 (𝑝, ∥𝜎∥𝐶4 , 𝜇, 𝛼, 𝛽) > 0 such that if 𝑢 is a regularised solution of class 𝒰𝛽 ,

then

∥𝐷𝑢∥
𝐶

1
4 ,

1
2 ( [0,1]×𝕋 ,𝐿𝑝 )

≤ 𝑁 (1 + ∥𝑏∥𝐶𝛼) (1 + [𝐷𝑢]
𝒱
𝛽
𝑝
).

Proof. Noting that ∥ · ∥𝐿𝑝 = ∥∥ · ∥𝐿𝑝 |ℱ𝑠 ∥𝐿𝑝 ≤ ∥∥ · ∥𝐿𝑝 |ℱ𝑠 ∥𝐿∞ and that from the definition of 𝐷𝑢 (see

(1.7.17)) we have 𝐷𝑢0 = 0, we conclude for all (𝑡, 𝑥) ∈ [0, 1] × 𝕋 that

∥𝐷𝑢𝑡 (𝑥)∥𝐿𝑝 ≤ ∥𝐷𝑢𝑡 (𝑥) − 𝑃𝑡−0𝐷
𝑢
0 (𝑥)∥𝐿ℱ𝑠

𝑝,∞
≤ [𝐷𝑢]

𝒱
𝛽
𝑝
. (3.4.35)

Let (𝑏𝑛)𝑛∈ℕ ⊂ 𝐶∞ be a sequence of smooth functions such that 𝑏𝑛 → 𝑏 in 𝐶𝛼. By (1.7.17), Fatou’s

lemma and Corollary 3.2.3, we can see that for all 𝑥, 𝑥 ∈ 𝕋 and 𝑡 ∈ [0, 1] we have

∥𝐷𝑢𝑡 (𝑥) − 𝐷𝑢𝑡 (𝑥)∥𝐿𝑝 ≤ lim inf
𝑛→∞




 ∫ 𝑡

0

∫
𝕋

(𝑝𝑡−𝑟 (𝑥, 𝑦) − 𝑝𝑡−𝑟 (𝑥, 𝑦))𝑏𝑛 (𝑢(𝑟, 𝑦))𝑑𝑦𝑑𝑟




𝐿𝑝

≲ ∥𝑏∥𝐶𝛼 (1 + [𝐷𝑢]
𝒱
𝛽
𝑝
) |𝑥 − 𝑥 |1/2. (3.4.36)

By (3.4.35) and (3.4.36) we can see that

sup
𝑡∈[0,1]

∥𝐷𝑢𝑡 ∥𝐶1/2 (𝕋 ) ≲ (1 + ∥𝑏∥𝐶𝛼) (1 + [𝐷𝑢]
𝒱
𝛽
𝑝
). (3.4.37)
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Finally, note that since by assumption we have 𝛽 > 1
2 − 𝛼

4 >
1
4 , and thus

[𝐷𝑢]
𝒱

1/4
𝑝

≤ [𝐷𝑢]
𝒱
𝛽
𝑝
. (3.4.38)

By (3.4.37) and (3.4.38), the desired bound holds for the 𝐶0, 1
2 ( [0, 1] × 𝕋 , 𝐿𝑝)-norm and for the 𝒱

1/4
𝑝 -

bracket. Hence by Lemma 1.11.8 the proof is finished. □

Lemma 3.4.3 (An a priori estimate). Let Assumption 1.7.1 hold, and let 𝑝 ∈ [2,∞), 𝜀 ∈ (0, 1
2 ),

𝛽 ∈ ( 1
2 −

𝛼
4 , 1+

𝛼
4 ]. There exists a constant 𝑁 = 𝑁 (𝑝, ∥𝜎∥𝐶4 , 𝜇, 𝛼, 𝛽, 𝜀) > 0 such that if 𝑢 is a regularised

solution of class 𝒰𝛽 , then

∥𝑢 − 𝑃·𝑢0(·)∥𝐶1/4−𝜀/2,1/2−𝜀 ( [0,1]×𝕋 ,𝐿𝑝 ) ≤ 𝑁 (1 + ∥𝑏∥𝐶𝛼) (1 + [𝐷𝑢]
𝒱
𝛽
𝑝
).

Proof. For (𝑡, 𝑥) ∈ [0, 1] × 𝕋 denote

𝑉𝑡 (𝑥) :=
∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝜎(𝑢(𝑟, 𝑦))𝜉 (𝑑𝑦, 𝑑𝑟).

By the triangle inequality

∥𝑢 − 𝑃𝑢0∥𝐶1/4−𝜀/2,1/2−𝜀 ( [0,1]×𝕋 ,𝐿𝑝 ) ≤ ∥𝐷𝑢∥𝐶1/4−𝜀/2,1/2−𝜀 ( [0,1]×𝕋 ,𝐿𝑝 ) + ∥𝑉 ∥𝐶1/4−𝜀/2,1/2−𝜀 ( [0,1]×𝕋 ,𝐿𝑝 ) .

But by Lemma 3.4.2, we know that ∥𝐷𝑢∥𝐶1/4,1/2 ( [0,1]×𝕋 ,𝐿𝑝 ) ≲ (1 + ∥𝑏∥𝐶𝛼) (1 + [𝐷𝑢]
𝒱
𝛽
𝑝
) and it can

be seen from the BDG inequality and by the heat kernel estimates (1.11.38) and (1.11.39) that

∥𝑉 ∥𝐶1/4−𝜀/2,1/2−𝜀 ( [0,1]×𝕋 ,𝐿𝑝 ) ≲ 1, and thus the proof is finished. □

3.5 The proof of well-posedness

Theorem 3.5.1 (Uniqueness). Let Assumption 1.7.1 hold, let 𝛽 ∈ ( 1
2 − 𝛼

4 , 1 + 𝛼
4 ] and suppose that

𝑢1, 𝑢2 are regularised solutions of (1.3.9) in the class 𝒰𝛽

2 . Then 𝑢1(𝑡, 𝑥) = 𝑢2(𝑡, 𝑥) almost surely for all

(𝑡, 𝑥) ∈ [0, 1] × 𝕋 .

Proof. Since 𝑢1, 𝑢2 ∈ 𝒰
𝛽

2 , it also follows by Lemma 3.4.1 that 𝑢1, 𝑢2 ∈ 𝒰
𝛽. Thus Assumption 3.3.1

satisfied. Therefore by Lemma 3.3.6 we have for 𝑝 ∈ [2,∞) that

[𝑢1, 𝑢2]
𝒮

1/2
𝑝

≤ 0.
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So since 𝑢1(𝑡, ·) − 𝑢2(𝑡, ·) = 𝑢1(𝑡, ·) − 𝑢2(𝑡, ·) − 𝜙𝑢1 (0, · ) ,𝑠 (𝑡, ·) + 𝜙𝑢2 (0, · ) ,𝑠 (𝑡, ·), it follows that

sup
(𝑡 ,𝑥 ) ∈ [0,1]×𝕋

∥𝑢2(𝑡, 𝑥) − 𝑢2(𝑡, 𝑥)∥𝐿𝑝 = 0,

and the desired result follows. □

Let Assumption 1.7.1 hold. The rest of the section is concerned with proving the existence of

regularised solutions in the class 𝒰1+ 𝛼4 . Let (𝑏𝑛)𝑛∈ℕ ⊂ 𝐶∞ such that 𝑏𝑛 → 𝑏 in 𝐶𝛼. Suppose that for all

𝑛 ∈ ℕ, 𝑢𝑛 is the classical mild solution of the SPDE

(𝜕𝑡 − Δ)𝑢𝑛 = 𝑏𝑛 (𝑢𝑛) + 𝜎(𝑢𝑛)𝜉, 𝑢𝑛 (0, ·)= 𝑢(0, ·). (3.5.39)

We call (𝑢𝑛)𝑛∈ℕ the sequence of approximate solutions, and for (𝑡, 𝑥) ∈ [0, 1] × 𝕋 we define the

corresponding approximate drift term and approximate noise term respectively by

𝐷𝑢
𝑛

𝑡 (𝑥) :=
∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝑏𝑛 (𝑢𝑛 (𝑟, 𝑦))𝑑𝑦𝑑𝑟,

𝑉𝑢
𝑛

𝑡 (𝑥) :=
∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝜎(𝑢𝑛 (𝑟, 𝑦))𝜉 (𝑑𝑦, 𝑑𝑟).

By Lemma 3.4.1 we have for all 𝑝 ≥ 1, that

sup
𝑛∈ℕ

[𝐷𝑢𝑛]
𝒱

1+𝛼/4
𝑝

< ∞. (3.5.40)

Lemma 3.5.2 (Convergence of the approximate drift and noise terms). Let Assumption 1.7.1 hold,

and let 𝑝 ∈ [1,∞) and 𝜀 ∈ (0, 1
2 ). Then the sequences (𝐷𝑢𝑛)𝑛∈ℕ, (𝑉𝑢𝑛)𝑛∈ℕ are convergent in

𝐶
1
4 −

𝜀
2 ,

1
2 −𝜀 ( [0, 1] × 𝕋 , 𝐿𝑝).

Proof. Assume without loss of generality that 𝑝 > 2. By Corollary 3.2.5 (with 𝛽 = 1 + 𝛼
4 ) and by

Lemma 3.3.6 we have

sup
(𝑡 ,𝑥 ) ∈ [0,1]×𝕋

∥𝐷𝑢𝑛𝑡 (𝑥) − 𝐷𝑢𝑚𝑡 (𝑥)∥𝐿𝑝

= sup
(𝑡 ,𝑥 ) ∈ [0,1]×𝕋




 ∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)
(
𝑏𝑛 (𝑢𝑛 (𝑟, 𝑦)) − 𝑏𝑚(𝑢𝑚(𝑟, 𝑦))

)
𝑑𝑦𝑑𝑟





𝐿𝑝

≲ ∥𝑏𝑛 − 𝑏𝑚∥𝐶𝛼−1 + [𝑢𝑛, 𝑢𝑚]
𝒮

1/2
𝑝 [0,1] ≲ ∥𝑏𝑛 − 𝑏𝑚∥𝐶𝛼 −→ 0 (3.5.41)
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as 𝑛→ ∞. Moreover by Lemma 3.4.2 (with 𝛽 = 1 + 𝛼
4 ) and by (3.5.40), we have that

sup
𝑛∈ℕ

∥𝐷𝑢𝑛 ∥𝐶1/4,1/2 ( [0,1]×𝕋 ,𝐿𝑝 ) < ∞. (3.5.42)

By (3.5.41), (3.5.42), and by a standard interpolation argument, we can see that (𝐷𝑢𝑛)𝑛∈ℕ is Cauchy in

𝐶
1
4 −

𝜀
2 ,

1
2 −𝜀 ( [0, 1] × 𝕋 , 𝐿𝑝).

We proceed with showing that the same is true for the sequence (𝑉𝑛)𝑛∈ℕ. To this end note that by the

BDG inequality, by the definition of the 𝒮1/2
𝑝 -bracket, and by Lemma 3.3.6 we have

sup
(𝑡 ,𝑥 ) ∈ [0,1]×𝕋

∥𝑉𝑢𝑛𝑡 (𝑥) −𝑉𝑢𝑚𝑡 (𝑥)∥𝐿𝑝

= sup
(𝑡 ,𝑥 ) ∈ [0,1]×𝕋




 ∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)
(
𝜎(𝑢𝑛 (𝑟, 𝑦)) − 𝜎(𝑢𝑚(𝑟, 𝑦))

)
𝜉 (𝑑𝑦, 𝑑𝑟)





𝐿𝑝

≲ 𝑡1/4∥𝑢𝑛 − 𝑢𝑚∥𝔹( [0,1]×𝕋 ,𝐿𝑝 ) ≤ [𝑢𝑛, 𝑢𝑚]
𝒮

1/2
𝑝

≲ ∥𝑏𝑛 − 𝑏𝑚∥𝐶𝛼−1 −→ 0 (3.5.43)

as 𝑛, 𝑚 → ∞. Let 𝛾 ∈ (0, 𝜀). Using the BDG inequality and the heat kernel estimates (1.11.38), (1.11.39),

we can see that for all 𝑛 ∈ ℕ, 𝑠, 𝑡 ∈ [0, 1], 𝑥, 𝑥 ∈ 𝕋 the following estimates hold:

∥𝑉𝑢𝑛𝑡 (𝑥) −𝑉𝑢𝑛𝑡 (𝑥)∥2
𝐿𝑝

≲
∫ 𝑡

0

∫
𝕋

(𝑝𝑡−𝑟 (𝑥, 𝑦) − 𝑝𝑡−𝑟 (𝑥, 𝑦))2𝑑𝑦𝑑𝑟 ≲ |𝑥 − 𝑥 |1−2𝛾 ,

∥𝑉𝑢𝑛𝑡 (𝑥) −𝑉𝑢𝑛𝑠 (𝑥)∥2
𝐿𝑝

≲
∫ 𝑠

0
(𝑝𝑡−𝑟 (𝑥, 𝑦) − 𝑝𝑠−𝑟 (𝑥, 𝑦))2𝑑𝑦𝑑𝑟 +

∫ 𝑡

𝑠

𝑝2
𝑡−𝑟 (𝑥, 𝑦)𝑑𝑦𝑑𝑟

≲ |𝑡 − 𝑠 |1/2−𝛾 .

Therefore we conclude that

sup
𝑛∈ℕ

∥𝑉𝑢𝑛 ∥
𝐶

1
4 − 𝛾2 ,

1
2 −𝛾 ( [0,1]×𝕋 ,𝐿𝑝 )

< ∞. (3.5.44)

By (3.5.43), (3.5.44), and by a standard interpolation argument, we can see that (𝑉𝑛)𝑛∈ℕ is also Cauchy

in 𝐶 1
4 −

𝜀
2 ,

1
2 −𝜀 ( [0, 1] × 𝕋 , 𝐿𝑝), and thus the proof is finished. □

Consistently with the above lemmas, we will thus denote

𝐷𝑢̃ := lim
𝑛→∞

𝐷𝑢
𝑛

and 𝑉 𝑢̃ := lim
𝑛→∞

𝑉𝑢
𝑛

,

where the limits are taken pointwise in (𝑡, 𝑥) ∈ [0, 1] × 𝕋 , in probability. Moreover, it follows that for all
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𝜀 ∈ (0, 1/2) and 𝑝 ∈ [1,∞) we have 𝐷𝑢̃, 𝑉 𝑢̃ ∈ 𝐶 1
4 −

𝜀
2 ,

1
2 −𝜀 ( [0, 1] × 𝕋 , 𝐿𝑝) and

lim
𝑛→∞

(
| |𝐷𝑢̃ − 𝐷𝑢𝑛 ∥

𝐶
1
4 − 𝜀2 ,

1
2 −𝜀 ( [0,1]×𝕋 ,𝐿𝑝 )

+ ||𝑉 𝑢̃ −𝑉𝑢𝑛 ∥
𝐶

1
4 − 𝜀2 ,

1
2 −𝜀 ( [0,1]×𝕋 ,𝐿𝑝 )

)
= 0. (3.5.45)

Moreover for (𝑡, 𝑥) ∈ [0, 1] × 𝕋 , we define

𝑢̃(𝑡, 𝑥) := 𝑃𝑡𝑢0(𝑥) + 𝐷𝑢̃𝑡 (𝑥) +𝑉 𝑢̃𝑡 (𝑥). (3.5.46)

Lemma 3.5.3 (𝑉 𝑢̃ is the noise term of 𝑢̃). Let Assumption 1.7.1 hold. For all (𝑡, 𝑥) ∈ [0, 1] × 𝕋 , we have

𝑉 𝑢̃𝑡 (𝑥) =
∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝜎(𝑢̃(𝑟, 𝑦))𝜉 (𝑑𝑦, 𝑑𝑟).

Proof. By the definitions of 𝐷𝑢̃ and 𝑉 𝑢̃ (see (3.5.45)), by Fatou’s lemma, and by the definition of 𝑢̃ (see

(3.5.46)) we have for 𝑝 ≥ 2 that

∥𝑉 𝑢̃𝑡 (𝑥) −
∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝜎(𝑢̃(𝑟, 𝑦))𝜉 (𝑑𝑦, 𝑑𝑟)∥2
𝐿𝑝

≤ lim inf
𝑛→∞




 ∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝜎(𝑢𝑛 (𝑟, 𝑦)) − 𝜎(𝑢̃(𝑟, 𝑦))𝜉 (𝑑𝑦, 𝑑𝑟)




𝐿𝑝

≲ 𝑡1/4 lim inf
𝑛→∞

∥𝑢𝑛 − 𝑢̃∥𝔹( [0,1]×𝕋 ,𝐿𝑝 )

≲ lim
𝑛→∞

∥𝐷𝑢𝑛 − 𝐷𝑢̃∥𝔹( [0,1]×𝕋 ,𝐿𝑝 ) + lim
𝑛→∞

∥𝑉𝑢𝑛 −𝑉 𝑢̃∥𝔹( [0,1]×𝕋 ,𝐿𝑝 ) = 0,

and thus the proof is finished. □

We proceed with verifying that the definition of 𝐷𝑢̃ is not an abuse of notation, i.e. that 𝐷𝑢̃ is indeed

the drift of 𝑢̃ as prescribed in (1.7.17). To this end, we will first need to prove the following lemma.

Lemma 3.5.4. Let Assumption 1.7.1 hold, and for 𝑛 ∈ ℕ define random fields 𝑓 𝑛 : Ω× [0, 1] × 𝕋 → ℝ by

𝑓 𝑛 (𝑡, 𝑥) := 𝐷𝑢̃𝑡 (𝑥) −
∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝑏𝑛 (𝑢̃(𝑟, 𝑦))𝑑𝑦𝑑𝑟. (3.5.47)

Then for any 𝑝 ∈ [1,∞) we have that ∥ 𝑓 𝑛∥
𝐶

1
4 ,

1
2 ( [0,1]×𝕋 ,𝐿𝑝 )

−→ 0 as 𝑛→ ∞.

Proof. To bound the sup norm, we note that by Fatou’s lemma, Corollary 3.2.2 (with 𝑔 = 𝑏𝑚 − 𝑏𝑛) and

Lemma 3.4.1, we have that

∥ 𝑓 𝑛∥𝔹( [0,1]×𝕋 ,𝐿𝑝 ) = sup
(𝑡 ,𝑥 ) ∈ [0,𝑇 ]×𝕋




𝐷𝑢̃𝑡 (𝑥) − ∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝑏𝑛 (𝑢̃(𝑟, 𝑦))𝑑𝑦𝑑𝑟




𝐿𝑝
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≤ lim inf
𝑚→∞

sup
(𝑡 ,𝑥 ) ∈ [0,𝑇 ]×𝕋




 ∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟
(
𝑏𝑚(𝑢𝑚(𝑟, 𝑦)) − 𝑏𝑛 (𝑢𝑚(𝑟, 𝑦))

)
𝑑𝑦𝑑𝑟





𝐿𝑝

≲ lim inf
𝑚→∞

∥𝑏𝑚 − 𝑏𝑛∥𝐶𝛼 (1 + [𝐷𝑢𝑚]
𝒱

1+𝛼/4
𝑝

) (𝑡 − 𝑠)1+𝛼/4 ≲ ∥𝑏 − 𝑏𝑛∥𝐶𝛼 ,

and thus

lim
𝑛→∞

∥ 𝑓 𝑛∥𝔹( [0,1]×𝕋 ,𝐿𝑝 ) = 0. (3.5.48)

Next, we bound the spatial seminorm. Let 𝑥, 𝑥 ∈ 𝕋 . In the calculation below we will use the definitions

of 𝐷𝑢̃ 𝑢̃, 𝑓 𝑛 (see (3.5.45), (3.5.46), and (3.5.47)) and the continuity of the approximate drifts, Fatou’s

lemma, Corollary 3.2.3 (with 𝑔(𝑥) = 𝑏𝑚(𝑥) − 𝑏𝑛 (𝑥)) and (3.5.40),

sup
𝑡∈[0,1]

∥ 𝑓 𝑛 (𝑡, 𝑥) − 𝑓 𝑛 (𝑡, 𝑥)∥𝐿𝑝

= sup
𝑡∈[0,1]




𝐷𝑢̃𝑡 (𝑥) − 𝐷𝑢̃𝑡 (𝑥) − ∫ 𝑡

0

∫
𝕋

(𝑝𝑡−𝑟 (𝑥, 𝑦) − 𝑝𝑡−𝑟 (𝑥, 𝑦))𝑏𝑛 (𝑢̃(𝑟, 𝑦))𝑑𝑦𝑑𝑟




𝐿𝑝

= sup
𝑡∈[0,1]

lim inf
𝑚→∞




 ∫ 𝑡

0

∫
𝕋

(
𝑝𝑡−𝑟 (𝑥, 𝑦) − 𝑝𝑡−𝑟 (𝑥, 𝑦))

(
𝑏𝑚(𝑢𝑚(𝑟, 𝑦)) − 𝑏𝑛 (𝑢𝑚(𝑟, 𝑦))

)
𝑑𝑦𝑑𝑟





𝐿𝑝

≲ lim inf
𝑚→∞

∥𝑏𝑚 − 𝑏𝑛∥𝐶𝛼 (1 + [𝐷𝑢𝑚]
𝒱

1+𝛼/4
2𝑝

) |𝑥 − 𝑥 |1/2 ≲ ∥𝑏 − 𝑏𝑛∥𝐶𝛼 |𝑥 − 𝑥 |1/2.

Therefore

lim
𝑛→∞

sup
𝑡∈[0,1]

[ 𝑓 𝑛 (𝑡, ·)]𝐶1/2 (𝕋 ,𝐿𝑝 ) = 0. (3.5.49)

Finally, note that for 𝑠, 𝑡 ∈ [0, 1] we have by Fatou’s lemma, Corollary 3.2.2 (with 𝑔 = 𝑏𝑚 − 𝑏𝑛), and

Lemma 3.4.1, that

sup
𝑥∈𝕋

∥ 𝑓 𝑛 (𝑡, ·) − 𝑃𝑡−𝑠 𝑓 𝑛 (𝑠, 𝑥)∥𝐿ℱ𝑠
𝑝,∞

= sup
𝑥∈𝕋




𝐷𝑢̃𝑡 (𝑥) − ∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝑏𝑛 (𝑢̃(𝑟, 𝑦))𝑑𝑦𝑑𝑟

− 𝑃𝑡−𝑠
(
𝐷𝑢̃𝑠 (·) −

∫ 𝑠

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝑏𝑛 (𝑢̃)𝑑𝑦𝑑𝑟
)



𝐿
ℱ𝑠
𝑝,∞

≤ sup
𝑥∈𝕋

lim inf
𝑚→∞




 ∫ 𝑡

𝑠

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦) (𝑏𝑚(𝑢𝑚(𝑟, 𝑦)) − 𝑏𝑛 (𝑢𝑚(𝑟, 𝑦)))𝑑𝑦𝑑𝑟




𝐿
ℱ𝑠
𝑝,∞

≲ lim inf
𝑚→∞

∥𝑏𝑚 − 𝑏𝑛∥𝐶𝛼 (1 + [𝐷𝑢𝑚]
𝒱

1+𝛼/4
2𝑝

) (𝑡 − 𝑠)1+𝛼/4

≲ ∥𝑏 − 𝑏𝑛∥𝐶𝛼 (𝑡 − 𝑠)1+𝛼/4.
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It follows that

lim
𝑛→∞

[ 𝑓 𝑛]
𝒱

1+𝛼/4
𝑝

= 0. (3.5.50)

By (3.5.48), (3.5.49), (3.5.50), and by Lemma 1.11.8 the proof is finished. □

Corollary 3.5.5 (𝐷𝑢̃ is the drift of 𝑢̃). Let Assumption 1.7.1 hold. Then the pair (𝑢̃, 𝐷𝑢̃) satisfies the

condition (1.7.17) from Definition 1.7.2, that is for any sequence (𝑏𝑛)𝑛∈ℕ ⊂ 𝐶∞ such that 𝑏𝑛 → 𝑏 in 𝐶𝛼,

we have

sup
(𝑡 ,𝑥 ) ∈ [0,𝑇 ]×𝕋

���𝐷𝑢̃𝑡 (𝑥) − ∫ 𝑡

0

∫
𝕋

𝑝𝑡−𝑟 (𝑥, 𝑦)𝑏𝑛 (𝑢̃(𝑟, 𝑦))𝑑𝑦𝑑𝑟
��� −→ 0

in probability as 𝑛→ ∞.

Theorem 3.5.6 (Existence). Let Assumption 1.7.1 hold. Then the process 𝑢̃ is a regularised solution of

(1.3.9) in the class 𝒰1+𝛼/4.

Proof. Since for all 𝑛 ∈ ℕ, the random field 𝑢𝑛 (which is a classically defined mild solution) is

𝒫 ⊗ ℬ(𝕋 )-measurable, so is the limit 𝑢̃. By the definition of 𝑢̃ and by Lemma 3.5.2 we have that

𝑢̃ − 𝑃·𝑢0 ∈ 𝐶1/4−𝜀,1/4−𝜀/2( [0, 1] × 𝕋 , 𝐿𝑝)

for 𝑝 ≥ 1 and for any 𝜀 > 0. Therefore by Kolmogorov’s continuity theorem, the random field

𝑢̃(𝑡, 𝑥) − 𝑃𝑡𝑢(0, ·) (𝑥) is continuous in (𝑡, 𝑥). So noting that 𝑃𝑡𝑢(0, 𝑥) is also continuous in (𝑡, 𝑥), it

follows that 𝑢̃(𝑡, 𝑥) is continuous in (𝑡, 𝑥). Note moreover that by Corollary 3.5.5, the pair (𝑢̃, 𝐷𝑢̃) satisfies

(1.7.17). Finally, we observe that by the definition of 𝑢̃ and by Lemma 3.5.3 the integral equation (1.7.18)

is satisfied. Therefore it is clear that 𝑢̃ is a regularised solution of (1.3.9). Moreover for all 𝑝 ≥ 1 we have

[𝐷𝑢̃]
𝒱

1+𝛼/4
𝑝

≤ lim inf
𝑛→∞

[𝐷𝑢𝑛]
𝒱

1+𝛼/4
𝑝

≤ sup
𝑛∈ℕ

[𝐷𝑢𝑛]
𝒱

1+𝛼/4
𝑝

< ∞,

where the last inequality holds by (3.5.40). Therefore 𝑢̃ ∈ 𝒰
1+𝛼/4, and the proof is finished. □
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[ABLM24] S. Athreya, O. Butkovsky, K. Lê, and L. Mytnik. Well-posedness of stochastic heat

equation with distributional drift and skew stochastic heat equation. Comm. Pure Appl. Math.

77, no. 5, (2024), 2708–2777. doi:10.1002/cpa.22157.
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