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Abstract

In this thesis we deal with regularisation by noise phenomena in partial differential equations caused by
multiplicative noises. In particular, we study the solvability of stochastic reaction-diffusion equations
in the case when the “drift” or “reaction term” is so irregular that it is not even a function, but merely
a distribution in the Schwartz-sense. We provide the definition of solution, which is a priori not
well-understood. We use Malliavin calculus to obtain estimates related to the density of the solution
of the driftless equation, such as quantitative bounds on all Malliavin derivatives of the solution, and
a quantitative nondegeneracy result for the first Malliavin derivative. We use these results to prove an
“integration by parts” result for computing expectations of functions of the driftless equation. We also
show the Lipschitz continuity of the Malliavin derivatives of the driftless equation in the initial condition,
and quantify how well the driftless equation approximates the general case with (possibly distributional)
drift. We combine the aforementioned results with state-of-the-art stochastic sewing techniques to prove
a well-posedness result for the stochastic reaction-diffusion equation with distributional drift, derive
stability estimates, and establish the temporal and spatial regularity of the solution. Moreover, we provide

bounds on the Holder norms of the density of solution of the driftless equation, and all of its derivatives.
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Chapter 1

Introduction

1.1 What is an SPDE?

A stochastic partial differential equation (SPDE) is a partial differential equation that is perturbed by some

random fluctuations. The simplest and most studied SPDE is the stochastic heat equation
(0 —A)v =¢&. (1.1.1)

2 L . . . .
Here A := Z:.il % denotes the Laplacian in d € N dimensions and ¢ is a random noise term that

i

represents a random heat source. The solution of the equation (and generally, that of any SPDE) is an

infinite dimensional stochastic process. Below we give some other examples of applications of SPDEs.

o

., 52— ) for the del operator in d > 2 dimensions, and by convention
Oxyg

We will use the notation V := (0%1, ..

ford =1wesetV := 6%.

* The research area of stochastic fluid dynamics is centered around the study of turbulent fluids,

which may be modelled by the stochastic Burger’s equation
(0 = A)v =vVv + ¢,
or the stochastic Navier-Stokes equation
(0, + vV =AW+ Vp =¢, div(v) =0,

which (just as its deterministic counterpart) remains an area of active research. For a detailed

overview of the topic we point the reader to [BF20]
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* An important model for surface growth from physics is Kardar-Parisi-Zhang (KPZ) equation
(6; = A)h = (Vh)* + £.

The KPZ equation describes the fluctuations of a wide a range of stochastic models, called the KPZ

universality class (see [HQ18]).

* The dynamical d)g model is the SPDE

(6 —N)p=Coh—¢°+&,

which appears in Quantum Field Theory and in the theory of phase transitions (see [Hai16]).

* In the Heath—Jarrow—Morton framework, the price B(¢,T) at time ¢ of a zero-coupon bond (paying

one unit of currency at the maturity time 7') is modelled by

T-t
B(t,T):exp( - f(t,@)de)

where the forward rate f(z, -) is some infinite dimensional stochastic process. In [Conos]| the model

f(1.0) =r(1) +s(1)(Y(6) + X, (6))

is established, where the stochastic processes r, s are jointly Markovian, Y is a deterministic shape

function, and the deformation map X solves a parabolic SPDE

(0; = 0g — 05) X1 (0) = by o(X,(0)) + T (X, (0))€.

* The flow of an ideal gas through a porous medium in the presence of random fluctuations can be

described by the stochastic porous media equation (see e.g. [BDPR16])
v = A" + £,

which is a generalisation of the stochastic heat equation.

Now suppose that instead of modelling the diffusion of heat, we want to model the diffusion of a

chemical in a gel. Then we may add a “reaction term” or “drift” b(v) to the stochastic heat equation
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(1.1.1)), to obtain the stochastic reaction-diffusion equation

(0 = A)v =b(v) +¢&. (1.1.2)

Note that the noise in above equation is additive, i.e. we simply added the noise to the equation. However,
in applications (such as the aforementioned one in chemistry) it is often desirable that the magnitude of the
noise depends on the state of the solution. Then the following multiplicative model is more appropriate

(see [Haiz1]):

(0, = Ay =b(v)+ g (v)é.

This equation is the main topic of this thesis. If the drift b is sufficiently regular, then the existence and
uniqueness of solutions is well-known. In the present work we will study the case of irregular (and in fact
distributional) drift b.

The question is: how do we formalise the notion of solution for SPDEs? For illustration, we will
construct the solution to the additive stochastic heat equation (1.1.1)). To this end, consider the partial

differential equation (PDE)

(0; = Mu(t,x) = F(t,x), up=0 (1.1.3)

for (z,x) € [0, 1] x R. In order to construct the solution we recall that the heat kernel on R is given for

(t,x) € [0,1] X R by

pr(x) =

! exp ( - |x|2)
Vant 4t )
and for x,y € R and ¢ € [0, 1] we denote p®(x,y) := pR(x — y). By Duhamel’s formula it is known that

the solution to is given by
t
uex) = [ [ P e Fndyar, (1.1.4)
0o Jr

Let moreover W := {W(z,x) : (t,x) € [0, 1] X R} be a Brownian sheet, i.e. a centered Gaussian process

with covariance function given for (¢, x), (s, y) € [0, 1] X R by

E(W(t,x)W(s,y)) = (t As)(x Ay).
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Although W(z, x) is not differentiable in the ¢ and x variables, we may consider the object

O*W(t,x)

£, = —

(1.1.5)

in the generalised sense, which we call “space-time white noise”. Informally, we can view & as a centered

Gaussian process with covariace function

E(£(2,x)&(s,y)) = 6(1 = 5)6(x - y)

where § denotes the Dirac-delta. Suppose that we wish to define the solution of for F(t,x) = £(1,x).
The main idea is that even though the object £(¢, x) is not defined pointwise, we still may give meaning to

the integral

d O*W(r,
/ / P, (x, y)%dydr, (1.1.6)
0o Jr rdy

i.e. the right-hand-side of the Duhamel formula (1.1.4), which will allow us to construct the solution to
(1.1.3). The idea of constructing a new concept of a stochastic integral to solve the equation is analogous

to what we do in the finite dimensional case, where to make sense out of the SDE

dX; dw;
— =bH(X X,
i (X)) + o (X;) T

we construct the It integral /01( o )dWy s Ly(Q % [0,1]) — Lo (Q) which allows us to express the

solution as

t t
X =Xo+ / b(X,)dr + / o(X,)dw,.
0 0
We proceed with rigorously defining the space-time white noise (1.1.5)).

Definition 1.1.1 (Space-time white noise). Let (H, (-, -)) be a separable Hilbert space. A Gaussian

process & := {£(h) : h € H} is called space-time white noise if
1. Eé(h) =0forall h e H

2. E(&(h1)é(h2)) = (hy, ho)h.

Example 1.1.2. Choose H = L,([0, 1]), and for & € H let £(h) := /01 h(r)dW,. Then for all h € H we



Chapter 1. Introduction 1.1. What is an SPDE?

have E&(h) = 0, and for hy, hy € H we have

1 1 1
E(eeh) = [ maw, [ neaw) = [ ooy = g,

Hence ¢ defines space-time white noise with respect to H.

Let & denote the predictable o-algebra on Q X [0, 1] generated by all left-continuous processes that
are adapted to the filtration (%;);¢[0,1] of W. For any metric space ./ let (/) denote the collection of
Borel subsets, and 9%, () the collection of bounded Borel subsets. Let f € L,(Q X [0, 1] X R) such
that f : Q% [0,1] X R — R is # ® B(R)-measurable. We proceed with discussing the meaning of the
stochastic integral with respect to the space-time white noise ¢ corresponding to the separable Hilbert

space H = L,([0, 1] x R). Take the space-time white noise & and for (¢, A) € [0, 1] X B, (R) define

M;(A) == &L, 1xB(+))-

Then {M;(A) : t € [0,1],A € %B,(R)} is an example of a Martingale measure. Roughly speaking,
this means that for all A € %;,(R) the process (M;(A));¢[0,1] is a martingale, and for any disjoint sets
A1, Ay € By (R) we have M; (A1 UAy) = M, (A1) + M, (A>), for the formal definition we direct the reader
to [Bal18]]. According to [Krygg] it was Itd6 who first considered integration with respect to martingale
measures in [[t051]], and his approach to defining the integral with respect to the space-time white noise
was popularised by Walsh in [Wal86]. The construction can be summarised as follows: For a simple

random field that is defined for (w, t,x) € Q x [0, 1] X R by

Ji(x, w) = 1apixalt, x)Y (w) (1.1.7)

withO <a <b <1, A € %B,(R) and Y a bounded F,-measurable random variable, the stochastic

integral is then defined by

[ [ #rrein,an = v (s, - o).
0 R

The definition is then extended to any & ® B (R)-measurable random field f € L,(Q x [0, 1] X R) by
approximating f by a sequence of linear combinations of simple random fields of the form (1.1.7). A
conscise introduction to the above approach can be found in [Bal18]]. Below we give a brief description

of the analytic approach, which was introduced by Gyongy and Krylov in [GKS81]]. The advantage of
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this approach is that it decomposes the stochastic integral with respect to the space-time noise into a
countable sum of It6 integrals, whose properties we are already familiar with. By [Krygg) Section 8.2]

the Brownian sheet may be written in the form
X
Wi =YW [ hoa
neN 0
where (), en forms an orthonormal basis for L, (R) and (W;),en is a sequence of independent Wiener

processes. Thus recalling the informal definition (1.1.5)), in the sense of generalised derivatives we have

W (t,x) o AW
£(tx) = prv e 7 hp(x).

neN

Heuristically we may perform the following symbolic computation using the above:

1 ! oW (r,y)
/0 /R F(rY)E(r, y)dydr = /0 /R 70 D iy

! dwn
/O /R f(r,y)nzeéI o hn(y)dydr

2 /0 | /[R f(r,y)hn (y)dydWy'.

neN

The last expression is rigorously defined, and we will use it as definition for the stochastic integral, i.e. we

define

/01 /Rf(r’y)hn(y)dyde,

From here on we will work on the periodic spatial domain T = R/Z (equivalently: the interval [0, 1]

/0 | /Rf (r.y)é(dy. dr) = )

neN

with the endpoints identified). Analogously to the definition above, for g € L,(Q X [0, 1] X T) such that

g: QX [0,1] XT — Ris P ® AB(T)-measurable, the stochastic integral is defined for 0 < s <7 < 1 by

[t/Tg(r,Y)f(dy,dr) = Z/st[rg(”»)’)en(y)dydwr’l

neN

where (e;,),en forms an orthonormal basis for L, (T). From the expansion above it is clear that

E / t /T F(r, Y)E(dy, dr) =0,

It is also immediate to see that (/Ot [[r f(r,y)é(dy,dr))ie0,1] is adapted to the filtration of the white
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noise. The moments of the stochastic integral can be estimated using the following version of the
Burkholder-Davis-Gundhy inequality (see e.g. [LR17]]) which states that for p € (0, o) there exists a

constant C,, such that for a sequence of adapted processes (g,)nen and for T € [0, 1] we have

E sup |Z/ 2u(r)dW;" SCP[E(/OTZ|gn(r)|2dr)p/2
neN

te[0,T]
It follows from the above inequality (see e.g. [CHN21l]) that for p > 2 we have

H/ /f(r Y)E(dy,dr) L@ s / /llf(r y)||L (Q)dydr)

In the case where f is deterministic, the distribution of the stochastic integral is explicitly known:

[ [remea.an~afo. [* [17¢.par)

Example 1.1.3. Let vg € B and consider the stochastic heat equation

(0 —=A)yv =&, v(0,:) =vp.
The solution (the concept of which we will later define rigorously) is given by

V(t,3) = Prvo(x) + /0 /T prr (v, V)E(dy, dr).

with P;vo(x) = /[r pe(x,y)vo(y)dy, where p; denotes the periodic heat kernel (see (1.3.10)). Since the

integrand of the stochastic integral above is deterministic, we know that
t
0 ~ ¥ (2o, [ [ Ipies ) Payar).
o Jr

1.2 Notation

Let H := L([0,1] x T). Let & := {£(h) : h € H} be space-time white noise on a complete probability
space (Q, #,P), and suppose that F is generated by &. Let (%;),¢[0,1] be the filtration generated by &

and augmented by the o-algebra N generated by all P-null sets, that is

Fi = o ({€joryxp) 17 € 0,1], B € B(T)}) v N
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where for two o--algebras ', % we denote X' V¥ := o (X U%). The predictable o--algebra on Q% [0, 1]
is denoted by 2. The conditional expectation given % is denoted by E’ := E(:|%;). We use L, as a

shorthand for L, (). For a sub-c-algebra & C %, the conditional L ,-norm is denoted by
- llL,1e = (E(- P1g)'P,

and for p € [1,0), g € [1, co] we denote

-z, =z, e, (1.2.8)

Let A C T and (B, | -|) be a normed space. We denote by B(A, B) the collection of measurable functions

f : A — B such that

Il fllma,B) = sup | f(x)] < co.
xX€A

We denote space of continuous functions f : A — B by C(A, B), and it is also canonically equipped with
the B-norm. For @ € N we denote by C* (A, B) the space of continuous functions f : A — B such that
for all multi-indices [ = (I1,...,1g) € (Zs0)¢ with |I] = Zl‘.lzl l; < a the derivative 0’ f is continuous,

and

Ifllcacan = D 10" flle < oo.
| <a
By convention the above sum includes the term [|3(%~9) f||g, where we define (%0 f := f. For

a € (0,1)and f : A — B, the @-Holder seminorm of f is given by

2

Fleean = sup LB =IO

X, yEA |-x - yl(l
XFEy

where the norm in the denominator denotes the I, distance in d-dimensions. For a € (1, o) \ Z we then
denote by C%(A, B) the space of all functions such that for all multi-indices I € (Zs0)? with |I| < a, the

derivative 0 f exists, and

Ifllcacan = Iflcam+ D, [8'Fleauiam <.

a-1<|l|<a
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The collection of smooth (i.e. infinitely differentiable) and bounded functions with bounded derivatives
will be denoted by

C™(A,B) := ﬁ C"(A, B).
n=0

When no ambiguity can arise, we will simply abbreviate C*(A) or C* for C*(A, B).
In the proofs of lemmas/theorems for two functions f, g we often write f < g to mean that there
exists a constant N > 0 such that f < Ng and that N depends only on the parameters specified in the

corresponding lemma/theorem.

1.3 Mild solutions

We proceed with formalising the concept of solution for the main object of study of the present thesis, i.e.

the multiplicative stochastic reaction diffusion equation on [0,1] X T
(0 — Nu = b(u) + o (u)é, Uuly=0 = Uo (1.3.9)

with deterministic initial condition uy € C(T). We begin by defining the solution of when b and

o are regular functions. The periodic heat kernel on T is defined fort € [0, 1] and x,y € T by

pi(x,y) = Zp"f(x—wk), (1.3.10)
keZ

and for f : T — R and (¢,x) € (0,1] x T we denote P, f(x) := prt(x,y)f(y)dy and Pof = f.

Similarly, the convolution of a map g : R — R with p7 is denoted by Pf'g, and we set Pig = g.

Definition 1.3.1 (Mild solution). Letu : QX [0,1] X T — R be a P ® B(T)-measurable random field
such that u(z, x) is continuous in (¢, x) € [0, 1] x T. We say that u is a mild solution of if for each
(t,x) € [0,1] x T we have

u(t,x) = Pyuig(x) + /O /1T pror (v )b (u(r, y))dydr + /0 /T pror (e ) (u(r. Y)E(dy. dr)

almost surely.

Remark 1.3.2. Notice that for o = 0 this is simply the deterministic reaction-diffusion equation. Moreover
for b = 0 and for nonzero o the above equation is the stochastic heat equation. If we set both coefficients to

be zero, i.e, b = 0 = 0, we get u(t,x) = P;ug(x) which is the solution to the deterministic heat equation.
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The well-posedness of (1.3.9) for the case of Lipschitz coefficients is a classic result (see [Wal86])):
Proposition 1.3.3. Suppose that b, € C'. Then there exists a unique mild solution u to (1.3.9).

The existence part of the lemma above is shown by proving that the Picard iteration scheme (Up,)nez.,
given by

0o = [ pix o)y
t
U (0:3) = Uo(t) + [ [ picy )b (U )y
0o JT
t
+ [ [ per @ty n,

converges to a solution (see e.g. [Wal86[]). It is instructive to see at how uniqueness is proven, since

the techniques used in the proof can be seen as a starting point for the proof of uniqueness for the

non-Lipschitz case. We will need the following lemmas:

Lemma 1.3.4. For every y € (1,2] there exists a constant N(y) > 0 such that for all t € [0, 1],

t
N
Y —A(t-r)
p/_.(x,y)e dydr < —.
./o /T - Vi

Proof. The left-hand-side is controlled by

/t( ) 1/2(y-1) j—A(t )d d ! 1 At )d 2 va 02d
t—r)” eI yrS/ —e VT r:—/ e " de
0 0o Vi—r VaJo

_Vr vz
—\/Zerf(\//ﬂ)s -

where we used the change of variables 6 := VA(r — r)'/? and the fact that |erf(-)| < 1. O

Lemma 1.3.5 (A Gronwall-type inequality). Fix s > 0. Let C € B([s, 1], R) be a non-decreasing
Sfunction and let f : [s,1] X T — [0, 00) be a bounded function. Suppose that there exists y € (1,2] and

No = 0 such that for all t € [s,1] and x € T we have

t
s <ot [ ol cnse
s
Then there exists a constant N = N(7y, Ny) such that for all t € [s, 1] we have

sup f(t,x) < NC(1).

xeT

10



Chapter 1. Introduction 1.3. Mild solutions

Proof. Let A > 0 and consider the non-decreasing function of time m : [s, 1] — R, that is given by

m; == sup sup (f(r,x)e ).

s<r<t xeT

Then
t
s s Cos [ [ pl ymetdyar,
0 T

where used the definition of 7 and the fact that [s, ] c [0, ¢]. Multiplying both sides by e~* and noting

that m, < m, forr <t gives

t
f(t,x)e ™ < C(t)e +m,/0 /szy—r (x, y)e ) dyar.

Let T € [s,1]. Using to estimate the second term, and taking supremum over (z,x) €
[s,T] x T we get

my < C(T) + 2L

Va

Choosing A to be sufficiently large, we get that my < C(T). Since, T € [s, 1] was arbitrary, the result

follows by the definition of m. m|
Now we are in position to prove the uniqueness of solutions to for the case when b, o € C1.

Proof of uniqueness in the Lipschitz case. Suppose that u1, up are two solutions. Then

ul(t,X)—uz(t,X)=/O /sz-r(x,y)(b(ul(r,y))—b(uz(r,y)))dydr

+/0 /Tpt-r(x,y)(ff(ul(r,y))—ff(uz(r,y)))é*(dy, dr).

Therefore by the Minkowski inequality, the Burkholder-Davis-Gundhy inequality and the Holder inequality

and by the regularity of b and o:

1
() = w200l < Weller [ [ prerrolln(r,) =)l dvr
' 2 2 12
cloler( [ [ r el -ne.IE )

! 2 2 1/2
([ Lot - ut i, dir) "
T

11
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Therefore
2 ! 2 2
(.0 =000, 5 [ [ 2 o)l ) = a0, v
Hence by we have that

sup  luy (2, x) —ua(t, )|z, =0
(t,x)€[0,1]xT

and thus for all (¢,x) € [0, 1] X T we have u;(z, x) = u,(¢,x) almost surely, hence uniqueness holds. O

The regularity of the solution in the Lipschitz case is also classical. To state the result we introduce
the following notation: For a random field f : QX [0, 1] X T — R and for y;, y> € [0, 1] we say that f is

of class C"72([0,1] x T, L) if

1/ (2,x) = f(s, Mle
Ifllenmoapri,y = swp  [F(6)lL, + sup sup = 2 < oo
(t,x)€[0,1]xT 0<s<t<lx,yeT It - S| L+ |x - yl 2

Proposition 1.3.6. Suppose that b, o € C' and that u solves the (1.3.9)). Then for all p > 1 and for any
e € (0, %) we have

u— P.ug € CY4=/212=2([0, 11 x T, L),
so in particular if ug € C'?=2(T,R) then u € C'/4=4/2112=2(10,1] x T, Lp).

In the present thesis it will also be shown that this remains true for a much larger class of drifts b

(provided that o is sufficiently smooth and nondegenerate).

1.4 Besov spaces and negative Holder spaces

The aim of this section is to introduce Besov spaces, to extend Holder spaces to negative exponents, and
to highlight the connection between the two types of spaces. In order to define Besov spaces, first we
recall some terminology. An annulus in R¢ (with d € N) is a set of the form {x € R? : a < |x| < b} for
some 0 < a < b < 1. A function f : R?Y — R is called radial if f(x) = f(y) for any x, y € R? such that

|x| = |y|. Let

8 = {f € C*(R,R) : Va,b € N?, sup ]i[xi“faf’l ...af;df(x)| < oo}

xeR4d i=1

12
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denote the Schwartz space of rapidly decreasing functions. A linear continuous map & — R is called a

tempered distribution. The space of tempered distributions is denoted by &”.

Definition 1.4.1 (dyadic partition of unity). A sequence of compactly supported infinitely differentiable

radial functions (7, .‘;‘;_1 is called a dyadic partition of unity if the following hold:
« supp(n7_1) is a closed ball (with respect to the I,-norm on R¢) centered at the origin.
* supp(no) is the closure of an annulus.
* nj(x) =no(27/x) forall x € R and for j € Zy.
. Z;’.’;_l nj(x)=1forallx € R,
. Z;‘;_l |77j()c)|2 € [%, 1] for x € R¥.
* Foranyi,j € Z-_1,if |i — j| > 2 then supp(#n;) N supp(n;) = 0.

We say that a compactly supported infinitely differentiable radial function  : R¢ — [0, 1] generates a

dyadic partition of unity if there exists a partition of unity (1; ;‘;_ , such that o = n.

It is known that there exists a compactly supported infinitely differentiable radial function n : R? —

[0, 1] that generates a partition of unity (77‘,');‘;_ | (see e.g. [BCD11]). Define the Paley-Littlewood blocks
Arf = (mF ()
where & denotes the Fourier transform, i.e. % (f)(x) := f[Rd f(y)e 27X¥ dy and the inverse transform

F~lisgivenby F~I(f) = /[Rd f(y)e?7*ydy.

Definition 1.4.2 (Besov-space). Let s € R and p,g € [1, 0] We define || - ||z : §" — [0, 0] for
q < o by
— is a\1/q
1y = (D (27 18510L,)")

j=1

and for g = oo by

1f ;. = sup 2704 £l -
fon

S , . P
We say that a tempered distribution f € &” belongs in the Besov space %, .. if || f{las5 , < 0.

13



1.4. Besov spaces and negative Holder spaces Chapter 1. Introduction

It turns out that the space %, , does not depend on our choice of generator n for the dyadic partition
of unity. To indicate the domain and codomain, we may use the notation 8(R<, R). The following result

can be found e.g. in [ABLM24]

Proposition 1.4.3. Let @ € (0,00) \ Z. Then
C*(RY,R) = B2 (R, R).

We extend the notion of Holder-spaces for negative exponents as follows: For @ < 0 we say that a

tempered distribution f is of class C* (R, R), if

Ifllcemp) == sup & *?||PRfllpwrr) < oo
£€(0,1]

The following result is taken from [DGL23]], and we will use it to relate Besov and Holder spaces to

each other for the case of negative regularity.

Proposition 1.4.4. Lety € R\ Z. There exists a constant N = N (7y) such that for all f € C” (R) we have

(1 =) flleremy < Nllfller®)-

While for negative exponents the Besov and Holder spaces might not coincide, they are still essentially

the same. To be rigorous, the following relation holds between the two types of spaces:

Lemma 1.4.5. Let « € (—c0,0) \ Z. For any € > 0 we have
Beooa(R,R) € C*(R,R) € B, (R, R)

Proof. We begin with proving that 35 ¢ C?. To this end let f € BL'S. by [Perz0, inequality (3.4)]

for 8 € Rand y > 0 we have

R -y/2
1PF fll ooy < 721 f N

Choosing S := a + € and y := —a (which indeed satisfies y > 0), we get that

R 2
PR fllss . <t I fll e

14
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Using [Proposition 1.4.3| and the inequality above, we have

PR flis < 1PR fllce < PR fllme... < 1721 fllpeve.
Hence multiplying both sides by 1~ /2, it follows that
PR flle < 1 fllgare
Now taking the supremum of both sides over ¢ € (0, 1], by the definition of the C“-norm we get that
I fllce < | fllgazs
The above inequality shows that any f € %%'5 must be also in C*. Hence it is proven that
BITE cC. (1.4.11)

We proceed with proving that C* C %S . It suffices to show that for all n € Z5¢ we have

for @ € (=2n,00) \ Z that C* C A, .. The statement is known to be true in initial case n = 0 by

[Proposition 1.4.3} Suppose that the statement holds for some n € Z>(y. We aim to show that it also holds

forn+1. Tothisendlet @ € (-=2(n+1),00) \ Z and g € C¢. Define

G = /we_’(P?g)dt =(1-A)"lg (1.4.12)
0

where the second equality is stated e.g. in [DGL23|, Proof of Lemma 2.4]. Then by [Proposition 1.4.4| we

have
G c Cll+2.

But @ +2 € (—2n, o) \ Z, and thus by the induction hypothesis we have C**? ¢ %2*2 and thus it follows

,00

that
Ge 95’0%*0% (1.4.13)

Hence using that by (1.4.12) we have (1 — A)G = g, the triangle inequality, [JIP23, Lemma 1], and

15



1.5. Introduction to regularisation by noise Chapter 1. Introduction

(1.4.13), we get that

lgllze., < IGllae., +11AG|ge ., < 1G]l gan < oo,
and thus g € &g, . We have shown that if g € C?, then we must have g € % . This proves that
CYC B - (1.4.14)

Recalling that we assumed that @ € (=2(n + 1), 00) \ Z the induction argument is complete, and thus

(1.4.14)) holds for any @ € (—c0,0) \ Z. Hence the proof is finished. O
For @ > —1 we denote the completion of C* in the norm || - ||ca by C**.

Remark 1.4.6. For all € > 0 we have the inclusions C**¢ c C** c C“.

1.5 Introduction to regularisation by noise

Recall that an equation is called “well-posed” if for any initial condition there exists a unique solution. If
a problem is not well-posed, we call it “ill-posed”. While “regularisation by noise” is not a rigorously
defined term, we give the following informal definition (see e.g. [BDG21l]): The phenomenon when the
presence of a random forcing makes an ill-posed problem well-posed.

The simplest example is the following. Let b : R — R be a function, xo € R, and consider the

ordinary differential equation (ODE)
dXt = b(Xt)dt, X() = XQ-.

If b is not Lipschitz, then the solution might not be unique, and if b is not continuous then the solution
might not exist at all. However perturbing the equation with (possibly multiplicative) Brownian noise, we

obtain the stochastic differential equation (SDE)
dXt = b(Xt)dt‘l‘O_(Xt)th, X() = X0, (1515)

which is strongly well-posed even if b is merely bounded and measurable, provided that o € C? such that
o > u with some constant u > 0 (see [Ver8ol). The origins of regularisation by noise can be traced back

to Zvonkin’s seminal work [Zvo74]], where he constructed a map f : [0, 1] X R — R (which became

16



Chapter 1. Introduction 1.5. Introduction to regularisation by noise

known as the Zvonkin transform) such that for each ¢ € [0, 1] the map f (¢, -) is a bijection and f (¢, X;)
solves an SDE with no drift, and using this he proved the well-posedness of in 1 dimension for
bounded and measurable drift b. In [Por75|] Portenko proved the existence of solutions to in
higher dimensions for the case when the drift is the sum of a bounded and an L ,-integrable function.
n [[Ver8a] Veretennikov has used the Zvonkin transform to provide a well-posedness result in higher
dimensions for bounded and measurable b . For the case of additive noise, path-by-path uniqueness has
been proven by Davie in [Davo7||, which means that for almost all Brownian paths W, there is a unique X;

that solves the equation. In [KRo5]] Krylov and Rockner show the strong well-posedness of the SDE
dX[ = b(t, Xl)dt + th

under the condition that b € L, ([0, 1],LP(Rd)) with p > 2, g > 2 such that % + % < 1.

While the phenomenon of regularisation by noise may seem strange, there is actually an intuitively
clear explanation: the noise pushes the solution out of the points of the domain where b is poorly behaved.
Consequentially, the solution will not “get stuck™ in a problematic part of the domain. For this, however it
is needed that the noise is present, which is why we had to impose the condition that o is bounded away

from zero. Below we will show some examples of regularisation by noise in finite and infinite dimensions.
Example 1.5.1 (Regularisation by noise repairing the uniqueness of an ODE). Since the map x +— +/|x]|
is not Lipschitz-continuous, uniqueness fails for the ODE

Indeed, for any ¢ € [0, 1], the function

(t-c)?

Xt: 4

l(c,oo) (Z)

is a solution, since for z € (¢, 1] we have

— 2
= (5T = -0 = je—or = VR

and for t € [0, c] we have

dt

7



1.5. Introduction to regularisation by noise Chapter 1. Introduction

However, the equation that is obtained by perturbing our ODE with additive Brownian noise, i.e. the SDE

dXt =V |Xt|d[ + th

admits a unique strong solution in any spatial domain of the form [—#n, n] with n € N (until the solution
hits the boundary), since on a compact domain x — +/|x| is bounded and measurable (and in fact of C'/2

regularity).
The following example is taken from [AGoO1]]

Example 1.5.2 (Regularisation by noise repairing the uniqueness of a PDE). Consider the deterministic

reaction-diffusion equation

(8; — Au(t,x) = 2+/sin(zx)u(t, x) + 72u(t,x) ¥(t,x) € [0, ) x [0,1],
u(t,0)=u(t,1)=0 V€ [0, ),

u(0,x) =0 Vx e [0,1].

Uniqueness fails, since both u(¢,x) = 0 and u(t, x) = t* sin(7x) solve the equation. However the addition

of a Brownian noise term guarantees the existence of a unique mild solution

Example 1.5.3 (Regularisation by noise repairing the existence of solutions of an ODE and a PDE).
Recall that the sign function is given by sgn(x) := —1(_c,0) (¢) + 1(0,0) () and thus define a square wave
by

b(x) := sgn(sin(x)).

Since b is discontinuous, the ODE dX; = b(X;)dt does not have a solution. However since b is bounded
and measurable, the SDE

admits a unique strong solution. Similarly even though the PDE (9; — A)u = b(u) does not have a solution,
the SPDE
(al —A)M :b(l/i)+§, M(O’ ) :O

admits a unique mild solution.

If b € C* with @ > 0 then it is clear how to define the solution of the SDE (1.5.15)), as we can rewrite
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it as the integral equation

t t
X,=x0+/ b(Xr)dr+/ o (X,)dW,.
0 0

However if b € C* with @ € (-1, 0) then the composition b(X;) is not defined, since b is not a pointwise
defined object, but merely a generalised function in the Schwartz-sense. Hence the usual concept of
solution breaks down. To overcome this difficulty, we could say that (X;) is a regularised solution of the

above SDE if there is a drift term D, such that

1. For any sequence (b"),en € C* such that b — b in C* we have that

t
sup ’/ b(X,)dt - D,| — 0
tel0,1] "' 40

in probability as n — oo.

2. Forall ¢ € [0, 1] we have

t
Xt =X()+Dt+‘/ O_(Xt)dW[
0

The above approach originates from the paper [BCo1l] by Bass and Chen, where they show the strong
well-posedness of the SDE for b € B, with @ > —1/2. The way that Bass and Chen define
the solution for distributional drift was generalised to SPDEs in [ABLM24]|. The definition that we will
use in the present work to characterise the solution of is consistent with the definition used in

[ABLM24]|.

Remark 1.5.4. For this approach to work we need such a sequence (b") to exist, in other words we
need b € C**. However due to the chain of embeddings in [Remark 1.4.6} it is equivalent to prove
well-posedness for b € C? for all @ € (—1,0) and for b € C** for all a € (-1,0).

1.6 The literature

In the field of stochastic partial differential equations (SPDEs), the first results on regularisation by noise
can be traced back to the works of Gyongy and Pardoux [GPg3al, [GP93bf. Therein, the authors consider

SPDEs of the form

(0 = Au = b(u) +§&, Uli=0 = Uo, (1.6.16)
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which corresponds to with o = 1. It is well known that the deterministic counterpart of
admits a unique solution provided that b is a Lipschitz continuous function. Without Lipschitz regularity,
solutions may not exists or may not be identified uniquely. The situation changes in the presence of noise.
It is shown in [[GP93a] and [GP93b] that admits a unique strong solution provided that b is merely
the sum of a bounded measurable function and an L ,-integrable function with some p > 2. Similar
results were obtained for SPDEs in an abstract Hilbert-space framework with bounded and measurable
drift in [DPFPR13]]. In [BM1gf], Butkovsky and Mytnik show when & is bounded and measurable,
path-by-path uniqueness also holds for (1.6.16)). For such drift, discrete approximation schemes for the
solution of have been established with an optimal rate in [BDG23]], quantifying earlier results
from [[Gy098|, |(Gyogol.

Notice that in all the previous results, b is quite irregular, nevertheless it is a function. The first
well-posedness result which accommodates distributional drift b is due to Athreya, Butkovsky, Mytnik,
and L& in [ABLM24]]. In such case, the composition b(u) is not well-defined a priori and solutions
to are defined in a regularised sense. They show in [ABLM24] that admits a unique
probabilistically strong solution provided that b belongs to the Besov space B, witha - 1/g > -1,
a > —1, and g € [1,o]. Such Besov space includes bounded measurable functions, L;-integrable
functions, as well as Radon measures. To obtain such results, [ABLM24]| establishes Lipschitz regularity
for some related singular integrals using the stochastic sewing lemma introduced in [Lé20]. The regularity
threshold —1 is in agreement with the finite dimensional analogue [[CG16]] where it is shown that any SDE
driven by additive fractional Brownian motion with Hurst parameter H € (0, 1) has a unique solution
provided that the drift belongs to the Besov—Holder space A, ., with @ > 1 — % The two results are
related by setting H = 1/4, which is the temporal regularity of the random field solution of with
b = 0. Quantitative convergence of discrete approximation schemes under the assumptions of [ABLM24]|
is also considered by Goudenége, Haress and Richard in [GHR24], extending [BDG23)].

All of the aforementioned results concern the additive noise case. For the multiplicative case, much
less is known. In [BGPog4] the authors show that has a unique solution when o is regular and
bounded away from 0, and the drift is measurable and satisfies the “one-sided linear growth condition”
that yb(y) < 1+ y? for y € R. This was followed by the papers [Gy695},[AGo1] where well-posedness is
shown for the case of locally bounded/integrable drift respectively. The proofs from these references rely
on the Girsanov theorem, L ,-estimates for the density of the driftless equation, and a comparison principle.
In particular, their method also uses comparison between the equation and its driftless counterpart, and

they use Malliavin calculus to derive estimates for the density f; . of the solution ¢ of the drifless equation,
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building on the previous work [PZg3|] of Pardoux and Zhang where they used Malliavin calculus to
study continuity properties of the density. However the method of [BGPg4] is based on the estimation of
/OT /T /R | f7.x(y)|Pdydxdt, and to this end they only need to estimate the first two Malliavin derivatives
of ¢. In comparison, in the present thesis we derive estimates for the Holder norms of all derivatives

(n)
t

T of the density. To achieve this, we must derive estimates on all Malliavin derivatives of ¢. An other

improvement of the present thesis is the rate of blowup of the negative moments of the Malliavin matrix.
In particular, while in [BGPg4]] the blowup is of order r~!/? for small times, in the present thesis we are
able to get this down to r~1/4.

The well-posedness result in this thesis is an analogue of [ABLM24]] for the multiplicative noise
case. Namely, we show existence and uniqueness for when o is regular and bounded away from 0,
the drift belongs to the Besov—Holder space %, ., with @ > —1 and g = oo. For simplicity, we do not
consider the case when g < oo, which allows us to obtain qualitative stability results and highlight the
essential elements of our approach. Similar to [ABLM24], our method also relies on the stochastic sewing
lemma from [L&20] which does not rely on Girsanov theorem nor comparison principles. Therefore, the
techniques within could also be applied to equations driven by Lévy noise and to systems of equations.
Compare with [ABLM24]], while the probabilistic properties of the noise term in the additive case
are explicitly understood, this is no longer the case for our multiplicative equation (1.3.9). Therefore,
employing the sewing methods in the present thesis is more involved than [ABLM24f]. In the sewing
arguments in previous works, one approximates a solution using the integral form of the corresponding
equation. This works quite well in the additive noise case, [CG16, | ABLM24]]. It also works quite well in
some multiplicative noise cases if the noise is not too irregular, for example equations driven by fractional
Brownian motion with Hurst parameter H > 1/2 (see [DG24]]). However, for H < 1/2, this approach
leads to suboptimal results. The same is true for the setting of the present thesis. With such an approach,
one would only be able to obtain well-posedness when b has positive Holder regularity (and in that case
well-posedness is already known, see [GP93a] and [GPg3b]). Instead, in order to cover the whole regime
b € B ., witha > —1, we come up with sewing arguments that employ the flow of the driftless equation.
Consequently, we need (and obtain) some regularisation estimates related to the density of the solution
to the driftless equation and its derivatives. These estimates are achieved via Malliavin calculus which
demands a relatively high regularity from o-. This approach is not equation-specific but rather works as a

general principle.
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1.7 Formulation and the well-posedness result

We introduce our main assumptions and the concept of solution to for the case of distributional

drift.
Assumption 1.7.1. The function b is of class C®* for some @ € (—1,0) and the function ¢ is of class C*.
Moreover, there exists a positive constant y such that

o?(x) > u* forallx € R.

Finally, the initial condition uy : T — R is a bounded and continuous deterministic function.

Definition 1.7.2 (Regularised solution). Letu : QX [0, 1] X T — R be a P ® % (T)-measurable random
field, such that u(¢,x) is continuous in (#,x) € [0, 1] X T. We say that u is a regularised solution of

(1.3.9) if there exists a & ® JB(T)-measurable random field D* : Q x [0, 1] X T — R such that

1. For any sequence (b"),en € C* such that b — b in C%, we have that

sup
(£,x)€[0,1]1xT

D (x) - /0 /T Prr (2. )B" (u(r y))dydr| — 0 (17.17)

in probability.

2. Foreach (t,x) € [0,1] X T,
t
u(t,x) = Pyuo(x) + DY (x) +‘/0 ‘/Tpt_r(x,y)O'(u(r,y))f(dy,dr) a.s. (1.7.18)

Remark 1.7.3. For a given regularised solution u, the random field D* is uniquely characterised by relation

(1.7.17). Furthermore, in the more regular setting when a > 0, reduces to the standard
notion of a mild solution. In such case by one has D¥(x) = fot /1r Pr—r(x,y)b(u(r,y))dydr.

For (S,T) € [0, 1]? such that S < T, let us define the simplices
[S,T1% := {(s,1) € [S,T]* : s <t} and [S,T]2 = {(s,1) € [S,T]*: s <1}.

To describe the regularity of the solutions, we introduce the following spaces of random fields.

Definition 1.7.4 (The spaces %’8 , %ﬁ and %P). Let 8 € [0,1] and p € [1, ). We denote by Wpﬁ [0, 1] the

collection of all % ® % (T)-measurable functions f : Qx [0, 1] X T — R such that f € B([0, 1] xT, L)
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and
l.fe () = Pr—s fs (X)IILgsw

[flor :=sup  sup < o0,
75 [0,1] *€T (s.)e[0.1]2 It —s|”

For (S,T) € [0, l]zs, the space %,’8 [S,T] and the corresponding seminorm are defined analogously. We
denote by %g the collection of all regularised solutions u# of (1.3.9) such that D¥ € %B [0,1]. We

moreover define

(o)
B ._ B
uP =\
We are now in position to state our main theorem.

Theorem 1.7.5 (Well-posedness). Let Assumption[1.7.1|hold. There exists a regularised solution u to

in the class %'*/*. Moreover if v is another solution of u) in the class CZZB for some B > 5 -7,

then u(t,x) = v(t,x) almost surely for all (t,x) € [0,1] X T.

1.8 Overview of methods of proofs

The bulk of the proofs relies on moment estimates for singular integrals which are typically of the form

1
. /0 /T 1) f u(ry))dydr

where 4 is an integrable function, u is a solution to and f is a distribution with negative Holder
regularity. An effective tool to estimate moments of /, which emerges from [L&20], is the stochastic
sewing lemma. Heuristically, the lemma decomposes I corresponding to partitions of the time interval

[0, 1] with vanishing mesh size. More precisely, let & be a partition of [0, 1], then one writes

/ / B (u(r, y))dydr.

[s,t]en

On each subinterval [s,?], we approximate the random variable fs ! f[r(' ..)dydr by its conditional
expectation given F;, i.e. [E* fst fT(. ..)dydr. Because the conditional law of u(r,y) given F; is
unknown a priori, we further approximate u(r, y) by a random variable, denoted by y*(r, y). There are
two desirable properties for these approximations. First, one must recover I when the mesh size of x

vanishes, namely

= jim, 3 E [ [ s eonasar
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Second, the conditional expectation E* f (¢*(r, y)) is well-defined and can be estimated so that for some

p = 2and € > 0, one has

”[ES/ /Th(y)f(ws(r,y))dydrHLp(sz) S (1-5)2 (1.8.19)

and

e [ [ @ ) - Fe el @ < (-9 (1:8.20)

for every s < a < t. Under these two properties, the stochastic sewing lemma can be applied, and it
provides estimates for the p-th moment of /.
Let us explain how ¢* is chosen. Relation (1.7.18)) provides a natural decomposition of a solution as

the sum of a nondegenerate noise and the drift, namely
t
u(t,x) = Piug(x) + DY (x) + Vi (x), where V;(x) = ‘/0 /Tp,_r(x, Yo (u(r,y))é(dy, dr).
It follows that for each s < 1,
u(t,x) = Pr_su(s, ) (x) + [D (x) = Pr—sD{(xX)] + [Vi(x) = Pr—s Vs (x)].
One could then choose to approximate u(z, x) by the random variable
Yo (1,x) = Prosu(s, ) (x) + [Vi(x) = Pr—s Vs (x)].
The error of this approximation can be quantified by the following estimate
lu(t,x) = (1. X)L, @) < 1t s (1.8.21)

for every s < t and for some y > 0. The larger the value of v is, the better the approximation is. We note

that

V() = Py V()] = / /T pror (e y)or (u(r. Y)E(dy. dr).

In the additive case (i.e. when o is a constant), V;(x) — P;_V,(x) has a normal distribution and hence,

the conditional expectation E* f(*(¢,x)) can be evaluated precisely. The stochastic sewing method

described above can be applied (i.e. achieving (1.8.19) and (1.8.20))) under some suitable regularity
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assumptions on f and that y > 1/2 — a/4 = 3/4 for @ = —1 (recall that —1 < @ < 0 is the regularity of
the drift). This is the approach from [ABLM24].

Going toward the multiplicative noise case, one might hope that a similar argument would work.
Notice that in this case, the distribution of V;(x) — P;_;V,(x) conditionally on & is not known a priori.

A naive way to circumvent this issue is to consider

W (1,%) 1= Prosii(s, ) (x) + / A pr—r(x.y)or (u(s, Y)E(dy. dr), (1.8.22)

which is obtained by freezing the solution in the integrand at time s. In this way, conditionally on ;,
Y5 (t, x) once again has a normal distribution, which allows for concrete analysis. However, one can not

go far with this choice as it is immediate that

u(tx) — g (1,x) = / /T Pror () (e y)) — o (s, y))E(dy. dr),

whose moments are (expectedly) of order | — s|'/2

(consisting of two contributions of the same order
1/4 from the stochastic integral and from the temporal regularity of the solution). The exponent 1/2

falls short of the required threshold 3/4 which is necessary in the additive case. This makes the naive

approximation (1.8.22)) unsuitable for the sewing method under [Assumption 1.7.1}

In order to resolve these issues, we introduce the following approximation

Wi (t,x) == ¢S (1, x), (1.8.23)

where ¢%* denotes the solution to the driftless equation

(0 = DN)¢™* =0 (6°)E,  ¢77(s,) =2(1).

Observe that when o is a constant, and coincide, but otherwise they are generally
different. Indeed, we show in[Section 3.1|that the approximation (1.8.23)) satisfies the estimate
with ¥ = 1 + a/4 which is larger than 1/2 — @ /4 as is required for the application of the sewing method.
The distribution of (¢, x) conditioned on &, might not be as explicit as in the additive noise case but
nevertheless, one can extract the information which is sufficient to verify and (1.8.20). This
essentially boils down to obtaining estimates related to the density of the solution of the driftless equation

and its derivatives, which are achieved by tools from Malliavin calculus (see [Section 2.3).
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When comparing our method to the existing ones from the literature, we can draw some similarities
as well as genuine differences. The works [BGPog4l (Gy695) [AGo1] also utilise estimates on the density of
the solution to the driftless equation, however, in a completely different way. In fact, these works use
Girsanov theorem to extract relevant and useful a priori estimates for the solution to (1.3.9) from the
solution of the driftless equation. Under our main assumption, the Girsanov theorem is not applicable
which makes this argument obsolete. Additionally, our uniqueness argument relies on qualitative stability
estimates, as opposed to comparison principles in the aforementioned works. Similarly to [ABLM24],
we also use stochastic sewing method. However, while [ABLM24]| relies on the approximation (1.8.22)),
we introduce and utilise the better approximation (1.8.23). To the best of the author’s knowledge, this
is the first time it has been used in the study of regularisation by noise phenomena by sewing methods.
Furthermore, because the conditional law of ¢* is not explicit, additional works have been carried out in
order to apply the sewing method successfully.

The driftless equation also appears in [[CD22] in the study of regularisation by multiplicative fractional
noise for SDEs. In this work, the authors employ a transformation, which is based on the inverse of
the flow generated by the driftless equation, to transform the original equation into an additive one.
Comparing the results of [CD22]] and [DG24]| reveals that such transformation is quite demanding and
does not lead to results which are in alignment with [CG16]. The connection between and the
driftless equation is well-known, perhaps since the Girsanov theorem. Another instance of such relation
appears in [ISo1]] in a different context. Our work therefore exhibits a new connection between the two

equations.

1.9 Stochastic sewing

We begin with introducing increment notation. Let (S, T) € [0, 1]2. For any functions & : [S,T] — R,
A S, T]2S — R, for any (s,¢) € [0, 1]2S and a € [s,1], we define /s, := o, — I, and 6A; 4 =
Ast —Asa — Aaye

Before stating the stochastic sewing lemma, we first give a general idea about what it does. Suppose
that we are given some p > 2, & : [0, 1] — L, (€) starting from zero, such that &, is %;-measurable,
and we want to bound the L,-norm ||/ (||, . The idea of stochastic sewing is the following: Instead of

trying to bound || (||, directly, we construct an object A ; according to the following criteria:
1. Ajg, has to be sufficiently “close” to &5, on any time interval [s,¢] c [0, 1].
2. Ag,; should be easier to approximate than </ ;.
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A stochastic sewing lemma will then enable us to “sew together” the local bounds on A ; on the small
time intervals [s,¢] into a bound for &/, ;. The most strightforward application is bounding the L ,-norm

of
oy, = / FX(P)dr

where (X, ),e[0,1] is some adapted stochastic process and f is some irregular function.
The first stochastic sewing lemma is introduced in [L&20]. To best suit our purpose herein, we state a
conditional version of the lemma which applies in settings with LZ}—norms (defined in ). This

version is originated from the works [FHL24, |ABL.M24, [L€23]], where the reader can find its proof.

Lemma 1.9.1 (Conditional stochastic sewing lemma). Let p, g satisfy 2 < g < p < co with q < co. Let
(S,7) € [0, 1]2S andlet A : [S, T]2S — L, (Q) be a function such that for any (s, t) € [S, T]2S the random

vector Ay, is F-measurable. Suppose that for some €1, €2 > 0 and C1, C; the bounds
As.cll 7o < Crle = |25 IE6AsallL, < Calt = s]™* (1.9.24)

hold for all S < s < a <t <T. Then, there exists a unique map & : [S,T] — L,(Q) such that o5 = 0,

Ay is Fy-measurable for all t € [S,T], and the following bounds hold for some constants Ky, K, > 0:

s, — As,t”Lgisp < Kilt —s|'/> (1.9.25)

s, t — Ast)IL, = D210 — . .0.
IE (oo = As)llz,, < Kalt = 5|72 (1.9.26)
Furthermore, there exists a constant K depending only on €1, €3, d, p such that o satisfies the bound
s ill o < KCilt = 5|21 + KCyt — 5]'+22
q.p

forall (s,t) €[S, T]zs.

We will call A a germ of the process & . In practice, we mostly take ¢ = p (in which case, Li‘p—norm

and L ,-norm coincide) and p = oo.

Example 1.9.2 (A simple example of a sewing argument). Let f be a smooth function and W a Wiener
process. Suppose that the want to show that || fst frWydr|l, < (- 5)1/2+2/2 in such a way that the

bound only depends on the C®-norm of f for some arbitrarily small & > 0.
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To this end we may define the germ to be the conditional expectation

t
Ao =B [ W

Then using that W, can be decomposed to an F-measurable term (W;) and a term (W, — W) that is

independent from F;, we get that

t t
As,t:/ [Esf(Wr—WS+WS)dr:/ ET(W,)dr

with ' : R — R given by

['(x) :=Ef (W,_g +x).

But using integration by parts and the fact that fR PRy f(x)dy = f(x)EW,_s = 0, we can see that

) = /R PR O (3 + )y

= —/piR_s(y)%f(y +x)dy
R r S

/R PRy (F( +2) — F())dy.

r—s

Therefore

TGz, < (r—S)_l/piR_s(y)lylllfllcslylsdy
R
S fllcs(r = )" EIW,—|'**
S fllce(r =)~ (r =)+

S Ifllce(r = 5)7 112402
It follows by integrating the above bound that

As,ellz, < Ifllce(t —s) 72+,

We also have

t a t
[ESAs,a,t =FE* (As,t - As,a - Aa,t) = [Es('/ _/ _/ )f’(Wr)dr =0.
s K a
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Note moreover that for of; := fol f(W,)dr we have

IES/Stf’(Wr)dr—‘/stf’(Wr)dr L, < ‘ /stf’(Wr)dr .
S s = s).

||As,t - ﬂs,t”L,, =

P

(Note that according to the sewing lemma the || f’||p in the last line will not appear in the final bound!)

Finally, since A ; = E*d ;, it follows that

IE*(As,r — 5.0z, = 0.

Hence by the stochastic sewing lemma it follows that ||Zs ¢ ||, < [[fllc= (7 — s)1/Z+el2 e

S Ifllce (2 = 5)' 12202,

r

(Wy)dr L

1.10 Malliavin calculus

The Malliavin calculus was first developed and introduced by Paul Malliavin in the seminal work [Mal78]].
It is an infinite dimensional differential calculus “with respect to” the white noise. In particular, it makes
it possible to differentiate random fields with respect to the space-time white noise, and thus it extends the
theory of Sobolev-spaces to the stochastic setting. A great introduction to the topic is [Hai21l], and for
more detail we recommend the references [Nuao6|] and [SSo4]].

We begin with a simple example to explain why and how we will use Malliavin calculus in this thesis.
Let (W;)se[0,1] be a Wiener process and f a function. An important tool in regularisation by noise is that
using the regularising property of the noise, we can obtain a bound on Ef’(W;) in terms of || f||g. In

particular, using integration by parts, we get that

Ef’(Wt)=Ap5(y)f’(y)dy
RO OIS - / 4 RO )y
t y——0 R dy t
- [ rwEroa,
R

and therefore using that W, ~ W (0, ¢) and the Holder inequality yields

”f”[EB Iflls

||f||[a(
\/_

Erwy) < 12 /R PR vldy = gy < W8 gy o2

29



1.10. Malliavin calculus Chapter 1. Introduction

The above bound is an interesting result, since if instead of E f"(W;) we would have E f/(x) = f’(x) for
some deterministic value x € R, then obtaining such a bound would be impossible, and we would be
forced to bound in terms of the (much stronger) C L_norm of f.

In the above example we used that the density of W, ~ N (0, r) is explicitly known. However, often
we are in the situation that instead of W, we are given a more general random variable X for which the
density does not have a nice analytic form (e.g. when X = u(¢, x) is the solution of some SPDE). In this
case we cannot use the above method. To overcome this issue, it is often still possible to use Malliavin

calculus, which gives us the tools to construct a random variable G such that
Ef/(X) =E(£(0G),
which will allow us to get a bound of the form

IEf (Ol < 1/ 1lBlGllL,-

The theory extends to repeated integration by parts as well. Below we introduce the formalism of Malliavin
calculus in infinite dimensions and state some key results.
Recall that we set H := Ly ([0, 1] X T). Let 7" denote the the space of smooth and cylindrical random

variables, i.e. random variables of the form

F=f(&(h),....&(hy))

for some n € N, hy,...,h, € H, and for some smooth f such that f and its partial derivatives of all

orders have polynomial growth. The Malliavin derivative of such a random variable is given by

DocFi= ) 0if (E(M), ..., £(ha))hi(6,)
i=1

forall (0,¢) € [0, 1] x T where 9; denotes partial derivative with respect to the i-th argument. For k € N

we say that a map g : ([0,1] x T)*¥ — R is of class H®¥ if ||g|| ek := (/([0,1]x1r)k lg(m)|2dn)'/? < oo,

and we set || - ||L,,(Q,H®k) = |IIl - llgexllL,. Forall k € N, p > 1 the iterated Malliavin derivative is
defined for (01, 1), ..., (Ok, k) € [0,1] X T by 9{‘91’41) ’’’’’ (20 = Do,,¢, - - - Doy, » and it is closable

as an operator from L, (€) into L, (Q; H ®k) (see [Haiz1]]). By convention, the O-th Malliavin derivative

is the identity map, and H®® := R. For k € Zs¢ and p > 1, we denote by ka the completion of %" with
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respect to the norm
k

. 1/p
F o Fllys = (EIFIP + ) EIDFII,)
i=1
We moreover use the notation
k ._ k
vk = (7).
p=1
On the class ‘ka one can also define the 7/'pk—seminorm by
. k
F = 1Flloy = 27 FllmekllL, -
By convention, we have
- Nlg = 11 Ml = W~ Nl -
Note that || - ”W:f and Z£0 || - ||%}i are equivalent norms. The above definitions can be extended for the
r

Hilbert-space valued case as follows. Let V be a separable Hilbert-space, and consider the family %" (V)

of random variables of the form
F = i Fiv;
i=1
for some Fy,...,F, € W', and vy,...,v, € V. Recall that for sets A, B and maps f : A — R and
g : B — R the tensor product f ® g : AX B — Ris defined by (f ® g)(x,y) = f(x)g(y) . Fork > 1,

we define

PF =) DFrev;.
j=1

Then 2* is a closable operator from L p(;V)into L, (Q; H ®k ® V) for any p > 1. We define the space

ka (V) as the completion 7 (V) with respect to the norm

k . 1/p
F o IFllys vy = (ENFIG + Y END FI ) -
i=1
For a random variable u € L,(€Q; H) it is said that u € dom(6), if there exists a constant ¢ > 0 such that
E(DF,uyn < cl|F||L,

forall F € ‘W;. If this holds, then §(u) denotes the unique element of L, () that satisfies

E(F6(u)) = E(DF, u)y
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forany F € %/21. The random variable 6 (u) is called the Skorokhod integral (or the divergence) of u. If in
addition u is adapted, then the Skorokhod integral coincides with the usual stochastic integral, that is for

all r € [0, 1] we have

t
[ [ utretas.an = stution.
0 JT
The following result follows from [Nuao6), Proposition 2.1.4]

Proposition 1.10.1 (Malliavin integration by parts). Letn € N, u,Gg € W" and let f : R — R be n
times differentiable. Suppose moreover that for all p € [1, ), we have [Ellc@u(t,x)llglp < oo. Define

iterated Skorokhod integrals recursively for k € {0,...,n— 1} by

Du k)

Grs1:=0
(||9M||§1

The following holds:

E(V"f(u)Go) = E(f ()G ).

We also recall the combinatorial notation from [CHN21l]. Let n € N.
* For 1 < k < n, we denote by A(n, k) the set of partitions of the integer n of length k, that is, if
A€ A(n, k), then 2 € N¥, and by writing A = (44,...,Ag), it satisfies

Ay =221 and Z/ll-zn.

* For A € A(n, k), we let P (n, A) be all partitions of n ordered objects {6, ...,0,}, with6; > --- >
6, into k groups {6!,. .., 951 b {6k, 9’3}(}, such that within each group the elements are

. j / . !
ordered, i.e. 6 > --- > Hflj for 1 < j < k. Note that |2 (n, 1)| = (/ll,-}:l',/lk) =

* For a generic element

Y= ((01,81), ..., (6n, &n)) € ([0,1] X T)",

we will denote by 9 the element of ([0, 1] x T)"~! that is obtained by omitting the k-th entry of vy,

1.e.

Pk = ((01,41), - -, (Ok=1, Lk=1) (Ok+1, Lk1)s - - s (Ony En))- (1.10.27)
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We state some generic estimates on the Malliavin derivatives of functions of random variables which
are needed in later sections. The proofs of these results rely purely on elementary principles, such as the

chain rule.

Proposition 1.10.2 ([CHN21l, Lemma 5.3]). Suppose that f € C" and ¢ € W™". Then, for almost all

Y = ((91’ {1)9 LR (en, {n)) € ([0, 1] X —I]—)n, we have

n k

n _ (k) A
Z2ORDIAICED VDN | e (1.10.28)
= AeA(n,k) P(n,A) j=1 7N
Lemma 1.10.3. Fix some constants € > 0 and n € N. Fori € {1,...,4} consider random variables

@' € W". Suppose that forall p € [1,00) and k € {1,...,n— 1} there exists a constant Nog = No(k, p)

such that

max 1611574 < Nog*. (1.10.29)
Suppose that f : R — R is smooth. For all p € [1, o) the following statements hold.
(a) There exists a constant N = N(n, p, || fllcr) > O such that
(@)l < N+ NIig I,
(b) There exists a constant N = N(n, p, || f||cn+1) such that
n—1 )
1F@) = @y <N YN8 = Pl + NI = Flyye (1110.30)
i=0 P

(c) Suppose moreover that also holds for k = n. There exists a constant N = N(n, p, || 1l cn+2)

such that

1F(6") = £(8%) = £(8) + F(8)llz
SN DT N8 =l (100 =&l +16° =¥l )6t

i+j+k=n
n—1
1 2 3 4 —i 1 2 3 4
N D 118" =07 = ¢+ 0t £ NI - 87— 67+
i=0 P
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Proof. By (1.10.28) we can see that

n

k
1F @Dz < Utz + 11l > [Tet0 -

J
k=2 AeA(n,k) P(n,A) j=1 2kp

The second term in this expression can be estimated using by

n

52 3 [lerse

k=2 1eA(n,k) P(n,A) j=1

where we used the definition of A(n, k). This proves point (a).

We proceed by proving point (b). Note that by the Minkowski inequality and the Leibniz rule, by
(1.10.29)), and by point (a) we get

1
17D =@l = | [ 06+ =006 0" - 400t

1 n-1
< [ (X108 + =08 e - 0l
i=0 P 2p

+l (04" + (1= 0)81)2" (8" = )l genlli, )do

—_

n

—i 1 2 1 2
S ) M Nen-ie""lg" — ¢ II?;; +|1f lell¢” — ¢ II%;T,-
: P

Il
(=]

4

From here point (b)) follows.

Finally, we prove point (c). By we have that

176 = £G) = ) + ),
1 1
| [ ] @ =00 -6+ (1= 006 - )75 (@1(0.)dnd]
0 0

IA

L2
t@ -4 ¢4)/01 Vf(@z(é)))dgn%gl

=: A+ B,

where for each 6,7 € [0, 1], the expressions @ (6, 17), ©,(6) are convex combinations of ¢!, ..., #* By

the Minkowski inequality and by the Holder inequality, we get we get

1 1
A< ‘/() ,/() Z ”¢1 _ ¢2||‘7i4’ ||9(¢1 _ ¢3) + (1 _ 0)(¢2 _ ¢4)”W'4j7

i+j+k=n

X |IV? £ (©1(6, Mz dnd®.
P
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By using point (H) for k > 1, and using the regularity of f for k = 0, we can see that || V2 £ (©(6, 1)) ||7},‘ <
4p

ek, Therefore we get

A 30 =Dl (16" =0l + 167 8l )t

i+j+k=n

Finally,
1n-1
B</ le¢‘—¢2—¢3+¢4ll%i IVF(©1(0) 157,10 + 11" = ¢ = 6+ ¢l 7., /'l
Z||¢ 0=+ @l o g - 8= 0 4

where the last inequality again follows from point (a). Hence the proof is finished. O

Lemma 1.10.4. Consider constants ,¢ > 0,n € Zsq. Let X € W™, Y € W™ withY > 0. Suppose that

forall p € (2, 0) there exists a constant Ny = Ny > O such that forall k € {1,...,n+1}, 1€ {0,...,n}
we have
X1l < No&e*, 1Yl < No&*, E[Y™P] < Nog™“P. (1.10.31)
24 P

Define an H-valued random variable by w := %. Then, for each p € [1, ), there exists a constant

N = N(Nyp,n, p) > 0 such that

19" wli1,, @.mem) < Neh*i=¢,

Proof. Due to Holder’s inequality we may assume that p > 2. By and a simple approximation

argument (shifting ¥ away from 0), form € {1,...,n},y € ([0, 1] X T)" we have
k

m (-D*k!
2,'(Y)” ! Z (1)l Z Z l_[ (aJ &, (Hﬁ'j,éjj)y'

AeA(n,k) P(n,A) j=

Thus by we have

x~

”@m(Y_I)HLp(Q;H@m) < ig—c(lﬁl) Z Z n8c+/lj
k=1

AeA(m,k) P(m,A) j=1

Sgg—c(kﬂ) Z Z 82§Zl(c+/l_,-)

AeA(m,k) P(m,Q)
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m
< Zg—c(k+1)+ck+m < gm=c. (1.10.32)
k=1

Fory € ([0,1] x T)" and for 7 € [0, 1] X T, using the Leibniz rule, we have

Diw(n) = Z Z (D, X)DE (Y. (1.10.33)
/11+/12:n (71,72)6901,2)

Using ((1.10.33), (1.10.31]) and (1.10.32) we get that

A1+l A -1
M2 Wlhgswnlle, < D >0 S X e s, 1122 D ens 1,
/l1+/12:n (yl,yz)eg(n,Z)

< Z Z glitlgla—c < ghtl-c

=i+=n (y1,y2) €9 (n,2)

as required. |

1.11  Useful estimates
Lemma 1.11.1. Let € € (0,1/2), y € (0, &), and define

5= 2e-y)
1 -2y

Then 6 € (0, 1), and for all (t,x), (s,y) € [0,1] X T, we have

1-6
(|t s 2 y|1/2_7) < |t — 5|42 g |y = y| 22 (1.11.34)

2(e-y) _

Proof. We begin by noting that since ¢ € (0, 1/2), we have § < 352, = 1. The positivity of ¢ also

immediately follows from the fact that 0 < y < & < 1/2. So we have 1 — ¢ € (0, 1), and thus the map

x > |x|'~¢ is subadditive. Hence the left hand side of (1.11.34)) is bounded by

= s|(1/4—7/2)(1—5) +|x— y|(1/2—7)(1—5)_

Now we just need to check that the powers in this expression match the powers on the right hand side of

(1.11.34). This is indeed true, since

FNY.
TR

(;11 —%)(1 -6) = }1(1 —2y)(1 —M) !

-2y =Z(1—27—2(8—7)):
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and
1 1 2(e—7y) 1 1
) (1-6)==(1-2 (1——):—1—2 “2(e-9)) == —s,
(3= =30-2)(1-F—57)=5(1-2y-2e~y) =3¢
and thus the proof is finished. O

Proposition 1.11.2. For any vy € [0, 1] there exists a constant N = N(y) > 0 such that for all t € [0, 1]

and x,x,y € T we have

1pe(x,y) = pe(Z )| < Nlx = #7172 (par (x, ) + pa(F,3)). (1.11.35)

Moreover for any y, 8 € [0, 1] with @ < B there exists a constant N = N(y,8) > 0 such that for all

(s,1) € [0, 1]2S and x,x € T and for all f € C*(T) we have
P, f(x) = P fB)] < NIl fller (1x — 718 + [t = s1P2)s )12, (1.11.36)
The first inequality of the lemma above is taken from the proof of [ABLM24, Lemma C2], while the

second inequality can be found in [BDG23|.

Proposition 1.11.3. For any ¢ € (0, 1] there exists a constant N = N(g) > 0 such that for all

(s,1) € [0, 1]%, the following inequalities hold:

/Ipt(x,y) — pi (& y)|dy < N|x — 5|51 /2, (1.11.37)
T
t
/ / Dior (5, ) = proy (B y) Pedydr < Nix — 55152, (1.1138)
0 T
S
/0 / imr (5, 9) = Py () Pdydr < Nt - 5|21, (1.1130)
T

Proof. The inequality can be found in Lemma C2 of ([ABLM24]]). We proceed with proving
(1.11.38). To this end note that by fory € [0,1] forall ¢ € [0,1] and x, X € T we have

t t
[ [perteon =pertoiPavar < [ [ 1= = 07 (paer (o) + paiey (5o Py
T T
t
< |x—x|27/ (t—r) " 2dr
0

< -5,

where the penultimate inequality follows from the fact that /[r |P2(1-r) (x, WI2dy < (t —r)~1/2. Now

37



1.11. Useful estimates Chapter 1. Introduction

choosing y := % -5 €0, %), it follows that

t
/ / pr—r (x5, 3) = pr_r (B Y)Pdydr < [x — 52379 137G=8) = |y — 573
0 T

as required.

We proceed with proving (1.11.39). To thisend for0 <r < s <t <1 and forx,y € T define

) =pir(x,y) = ps—r(x,y).

We may write the square of the above in the following form:

|fr(y)|2 = (Pz—r(x, Y) - ps—r(x, y))fr(y) = pt—r(x’ y)fr(y) _ps—r(-x’ y)fr(y)

Using the above and (1.11.36), we can see that for 8,y € [0, 1] we have

_[T |fr(DPdy = Proy fr(x) = Pooy fr(x) < N fyllerlt = s1PP2 (s =) P2,

Applying this with y = 0 and B8 = 1 — & € [0, 1), and using that by the triangle inequality we have

1/2

Ifrllco < Mlpe—r(x, )l co + lps—r(x,)llco (s —r)7 /%, we get that

[ [ = pesenbasar= [ [ 15.0)Pavar

S 1 c c 1
s/ filleolt — s (s = )5 ar
0

where we used that s < 1. Thus the proof is finished.

O

Lemma 1.11.4 (A commonly used corollary of Holder’s inequality). Lety € (1,3), 6 € (0,3). There

exists

1)
, such that ()/——) P > 1, (1.11.40)

>
p 3 p/'p-1

-y
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and a constant N = N (6,7, p) > 0, such that for all (s,t) € [0, 1] we have

([ [iprtenr seasar)

< N(t—s) 307 3/ /Ipt F (I FP(r,y)dydr. (1.11.41)

Proof. Note that for any y € (1,3), 6 € (0,3) we have lim,, _,« (y - %) ﬁ =¥ > 1, and thus it follows

that for sufficiently large p the conditions (1.11.40) hold. By Hélder’s inequality, the left-hand-side of
(1.11.41]) is bounded by

t s\ p. ezl t
([ [ioertesno 8% asar) ™ [ [l ryyavar.
N N

Moreover using the results ||p;||lg(T) < =2 and ||p: || L,(1) = 1 to interpolate, we can see that the first

factor is bounded by
-1 -4y L2 p-1 (_l —9y L 1) )
/(l‘— ) y P )dr) < (t—s) 2(( p’p-1 )+ (p- _( B )mm 4053

and thus the proof is finished. |

Lemma 1.11.5 (Conditional BDG inequality for stochastic convolutions). Let 0 < s <t, n € Z>¢ and let
X:Q x[0,1]XT — H®" be a P ® B(R)-measurable H®*"-valued random field. For all p € [2, o)
there exists a constant C,, such that if f; € Lo([0,t] X T) forall t € [0, 1], then for all (s,t) € [0, 1]2S we

have

()X )y, dn)|

! r/2
<o ([ [ ROIXC pmmdrar)™ (111.42)

and consequentially

(7

/ fi(r, DX (. )€y, dr)|

Hen

—CI’/ ‘/Tfrz(r’y)||||X(’”,)’)||H®"||ip|%dydr. (1.11.43)

The inequality (1.11.42) follows from the classic conditional BDG inequality. From (1.11.42]) we can
see that (1.11.43)) holds by the Minkowski inequality
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Lemma 1.11.6. Suppose that f : R — R is twice differentiable. Then for ¢4, ..., ¢4 € R we have

F(@1) = f(p2) — f(¢3) + f(¢4)
1 1
= /0 /0 (b1 — 2)(0(d1 — ¢3) + (1 — 0)(¢2 — $4)) V2 (©1(0,77))dndo

!
+(¢1 —¢2—¢3+¢4)/0 Vf(02(0))do (1.11.44)

where O1(6,n) and ©,(8) are the convex combinations of ¢y, . . ., ¢4 given by

©1(0,n) =n(0¢1+ (1 - 0)¢2) + (1 = 1) (6¢3 + (1 - 0)¢4),

02(6) =03 + (1 - 0) 4.
Moreover

|f (1) = f(p2) — f(#3) + f(¢a)l
<N fllc2ldr = d2llg1 — 3l + I fllcr b1 — ¢2 — ¢3 + ¢al. (1.11.45)

Proof. We begin by proving (1.11.44)). Using the notation
81, =001+ (1=0)ps,  ¢7,:=0¢3+(1-0)g,
the expression f(¢1) — f(¢2) — f(#3) + f(Ps) can be rewritten as

1 1
(61— 62) /0 V(69,06 - (65— $) /0 V£ (2,6

1 1
= @1=00) [ (V101 = TF@L0)a0+ (01 b2 =2+ 0) [ VF(8L a0,
The second term is exactly as desired, and the first term can be written as
1 1
(0r=02) [ @la=08) [V Fols+ (-l ando

which is indeed the first term of the desired expression. Hence (1.11.44)) is proven. To prove (1.11.45)), we

set

0ij i =¢;— i
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Chapter 1. Introduction 1.11. Useful estimates

and we note that f(¢1) — f(¢2) — f(p3) + f(¢4) can be written as
f(p1) = f(p1+012) = f(P3) + f(¢3+612) — f(¢3+612) + f(h3+034)
1 1
= —51,2‘/0 V(o1 +6612)d6 + 51,2/0 V(g3 +6612)d6
1
+ (03,4 —01,2) /0 Vf(¢3+0634+(1-6)012)d0
1 pl
= 51,251,3/0 /0 V2 f(ngs + (1 —m)¢ + 061 2)d0dn

1
+ (53,4 - 51,2) / Vi(ps+ 0034 + (1- 9)51,2)d9.
0

Hence (1.11.45)) follows as well. O

Lemma 1.11.7 (The 7, -bracket is triangular in time). Let p € [1,00), ¥ > 0, and let f € 7). Then for

all0 < S <Q <T < 1wehave

[f]‘Wpy[S,T] < z[f]%;/[s,g] + Z[f]%}[Q,T]- (1.11.46)

Consequently, for any integer K > 2 we have

[flor < 2K§[f]7g[lg,il+g]- (1.11.47)
Proof. For (s,1) € [0, 1]% define
A(s,1) = sup 1fe () = Pres fs (Ol 75 -
For (s,1) € [S, Q]2 U [Q,T]%, we clearly have
A1) < [ flagian (=) < ([Flogisor *+ flogion) @ - )7 (1.11.48)

We also need to check what happens in the case when Q € (s, ). Then we write

A(s,t) < sup || fi(x) = Pi—g fo(X)ll 7 +sup [|Pi—gfo(x) = Pios fs(X)|l 7
xeT p,*> xeT p,co

= B(s,t) + C(s,1).
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Note that as s < Q, we have || - [|.,17, < llll - Iz, 1701z, 1% < |l - ”L,?,m’ and thus
B(s,1) < sup I1fe(x) = Profo()ll o = A(Q.1).
Moreover using that s < Q, we have
C(s,1) =sup||P;_o(fo — Po-sfs) @)l 7 < supllfo(x) = Po_sfs(X)|l, 5 =A(s,0).
xeT P xeT peo

By the above bounds on B and C, we conclude that

A(s, 1) < A(s, Q) + A(Q,1) < ([f]%}[S,Q] + [f]WI}[Q,T])(I —s)” (1.11.49)

By adding up the bounds (]1.1 1.48[) and (]1.1 1.49[), we can see that for all (s,7) € [S, T]2S and Q € [S,T],

we have

A0 < 2([flogisor *+ Ulogiom )t =97,

from which the desired result follows. O

Lemma 1.11.8 (The L, -valued C!/*!/2-norm, and the %,1/4—bracket). Leta € (—1,0) and p € [1, ).

There exists a constant N = N(p, a) > 0 such that for f € %1/4 N C%1/2(10,1] x T, L,) we have

I lciaarnoaxT.L,) < N[f]%w + NI fllcorroa)xT.L,)-

Proof. We decompose the space—time Holder norm to the sup norm, and spatial and temporal seminorms

as follows:

1™ ez 0,11t L)

< lsco.axT.L,) +suplf™* () cvaoayy + sup [ (2, ')]cl/2(1r,Lp)- (1.11.50)
xeT 1€[0.1]

To bound the temporal seminorm, note that for (s,7) € [0, 1]2S we have

A

1f @) = f(sMer.L,) < W) = Pisf(s.)lBr.L,) + 1Pisf(s,2) = f(s.)ll(T.L,)

cA(s, 1) + B(s,1). (1.11.51)
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Since || - ||z, < || - |l # . it follows that
P,
A(s,t) < [f]%pl/“[s,t](t — s)1/4.
Moreover by a standard heat kernel estimate
1/4
B(s,1) < If (s: Mlerzer,r,) (=)™

By putting the above bounds on A and B into (1.11.51]), we can see that

Sug[f('yX)]c1/4([o,1],Lp) < [f]%l/zt[s,t] + [ fllcoarzgo,11xT.L,)-
xXe

Using this bound on the second term of ([1.11.50) finishes the proof. O
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Chapter 2

Malliavin calculus for the driftless equation

This chapter is concerned with the solution of the driftless multiplicative stochastic heat equation

(0r = AN)¢p = o (9)¢, #(0, )= o (2.0.1)

and its Malliavin derivatives. Herein, ¢og € C(T) is fixed and the solution ¢ : QX [0,1] X T — Ris a
P @ 9%B(T)-measurable random field, a.s. continuous on [0, 1] X T, and satisfies the following equation

almost surely

¢(t’x) = Pt¢0(-x) +A Apt—r(xa y)U(¢(r’ y))f(dy,d}’), V(I,X) € [O’ 1] x T. (2-0-2)

2.1 Moment bounds for Malliavin derivatives

We will show the following result.

Lemma 2.1.1. Let ¢ be the solution of (2.0.1). Foranyn € Zo and p € [1, ), if in addition o € C",

then there exists some constant N = N(n, p, ||o||cn) such that for all t € [0, 1] we have

sup [l4(1, )l < N(1+ Lacolluollser) ™.

xeT

To show this, let us recall the following non-quantitative result from [BP9g&| Proposition 4.3].

Proposition 2.1.2 (Boundedness and Malliavin differentiability). Let ¢ be the solution of (2.0.1). For any

neN, pell,o),ifo e C" then we have

sup gz, 0) |y < 0.
(t,x)€[0,1]xT
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Chapter 2. Malliavin calculus for the driftless equation  2.1. Moment bounds for Malliavin derivatives

We will also need the following result from [CHN21, Lemma 5.6]:

Proposition 2.1.3. Let ¢ be the solution of (2.0.1), and let n € N, p € [1,00),0° € C". Then for all

(t,x) € [0,1] X T and for almost every y = (6;, {;);, € ([0,1] X T)", we have

Drp(1,%) = 110.01(0%) )" pro, (x, 5D [0 (¢(0k, L))
k=1

100@) [ [ poenleele@a. @y

where V. is defined by and 0* := maxge(i,. . n} Ok.

Remark 2.1.4. Note that in the above equation the stochastic integral can be taken over the time interval
[0, 7] rather than [6%,7], since for r < 6" the Malliavin derivative 270 (¢(r,y)) is zero (see [SSo4)

Remark 5.1]).

We can now proceed with the proof of

Proof of [Lemma 2.1.1] We will prove the result by induction. By the BDG] inequality and by the

boundedness of ¢, the result holds for the case n = 0. Suppose that the result holds for the first (n — 1)
Malliavin derivatives. We aim to show that the result also holds for the n-th Malliavin derivative. Assume

without loss of generality that p > 2. By and the BDG inequality, we get

N

||¢(t,x)||;n ||pr—~(x,')9"_10@(','))l[o,t](')llzLP(g;Hn)

o [ [ p ootz dvar
o Jr L

1 A(t,x) + B(t,x). (2.1.4)

We proceed with proving that
A(t,x) < "2 (2.1.5)
Indeed, in the n = 1 case, we have by the boundedness of o that
A(t,2) = 1Pe- (6, )T (@ N1 ONT gy S 1Pr= (6 )00 Ol 12,

Moreover in the n > 2 case, by point () of and by the induction hypothesis we have for

'We call the Burkholder-Davis-Gundy inequality “BDG inequality” for brevity.
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2.1. Moment bounds for Malliavin derivatives  Chapter 2. Malliavin calculus for the driftless equation

(0,2) € [0,1] X T that
o (@8, Dl < 8" 411608, Ol 5,01 < 8D < 17D,
p pr
and thus using Minkowski’s inequality and the above bound, we get that

A(t) = lpe— (e D" T (@ Do Lo Ol
< lpe— (e o (@ Dl 10 Olly

<t P pe (e 0. Ol < 12

as required. Hence is proven. We now proceed by bounding B. By point (a) of and

by the induction hypothesis we have

t ) 4 2
s s [ [ rh e s 10l dvar
0 T p

d t
s/ /Pf—r(x,y)rn/Zdydr+/ /p?_,(x,y)||¢(r,y)||;ndydr
o JT o Jr -
t
< t(n+1)/2+/ /Ptz—r(x,y)llgb(r,y)ll;ndydr. (2.1.6)
o Jr 1

By (2-1.4), and by our bounds (2.1.5)), on A, B, we conclude that

t
601, < 2 [0 [ 52 wnloe I, dvar.
P 0 T P
By Proposition we have that sup,. , [l¢(r, y) ”7}# < o0. Therefore by the statement
we aim to show also holds for the n-th Malliavin derivative. Thus the proof is finished. O

Lemma 2.1.5. Letn € Zs, p € [1, ), o € C"™!, and let ¢ solve . There exists some constant

N = N(n, p, ||o||cn+1) such that for all t € (0, 1] we have

. < Nt2)/4,
ny

120,01

sup
xeT

Proof. By using the Minkowski inequality, the Leibniz rule, Holder’s inequality, and we

can see that

Dot )| ||
I12¢( x)llyllf,,/;,
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oy

< ||/01/T||9"(99,g¢(1,x)90,g¢(f’x))

:Z” / | / 19" a6 (1.2 | o
gZH / /II9 Do, (1, x)IIH@,ldgde / /”9n D 0.3 Prorn. ,)dZdé)l/z

LP
=2 1271 8t 0) o 12" 01, )l grocnon |
72
n
<) |le(t, x)“Wm”(b(f X)HWn S Z,(z+1)/4t(n 1) /4 < (n+2) /4
i=0 i=0
as required. O

2.2 Lipschitzness in the initial condition

For any z € C(T), let ¢* denote the solution of with ¢g = z. Forn € N, o € C", g € [1, ),
(z1,22) € (C(T))?, (t,x) € [0,1] x T, we define

F(t,x,21,22) 1= 197 (1, %) - ¢22(17X)||W'qm (2.2.7)
2 (tx,21.22) = [ (87 (1.0)) = (672 (1.2) L7 (2.2.8)

The main result of this section is the following:

Lemma 2.2.1. Let n € Z( and assume that o € C™*'. Forall g € [2, o), (t,x) € [0,1] x T, we have
that

F2)(t,x,-,-) € C((C(T))?).

Moreover for all g, p1 € [2,00) and py € [2, o] there exists a constant N = N(n, p1, p2, 4, ||o||cn+1)
such that for any o-algebra 6 C F and any random variables Z,Z € L\, (Q, C(T)) and for all

(t,x) € [0,1] X T we have
(2) 7 n/4 -7
||Fq’n(t,x,Z,Z)HL§]’p2 < Nt sup 1Z(x) = Z2()lg

Proof. The result will be proven by induction.
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2.2. Lipschitzness in the initial condition Chapter 2. Malliavin calculus for the driftless equation

Step 1: We show that the statement holds for n = 0. For z,Z € C(T), we have by that

¢*(1,x) = ¢*(1,%) = Pr(z = 2) (%) +/0 Apz—r(x,y)(0(¢z(r,y)) ~ a(¢*(r, y))é(dy, dr).

Therefore, by the BDG inequality we get

16(0.0) = (.02,
<IP=2Ps [ [ ple e g, dd. 2o

Notice that by the triangle inequality and Proposition[2.1.2] it follows that the norm in the integrand is

bounded in (7, y). Hence using we conclude that

2 = zZ -
F(6,x,2,2) = 16560 = ¢* (6,0, € sup  |Pi(z =2 ()]
(t,x)€[0,1]xT
< sup |z(x) — Z(x)]. (2.2.10)
xeT

By the triangle inequality, it follows that F,  (1,, -,-) € C((C(T))2, R). This implies that . (t,x, Z, Z)
is indeed defined as a random variable. We begin by showing that the desired inequality holds for the case
when || Z||g, || Z||g < N almost surely, for some constant N < co. By evaluating at (z,7) = (Z,2),

. g .
and then taking the L}, , -norm of the square root of both sides, we get

(2 7
”Fq,o (t’-x’Z’ Z)HLJ%],PZ
5 ! 2 (2) 512 1/2
SIPZ =Dy, +| [ ] pir e nIE 0y 2. 2) Payr|
’ T

Pl P2
2°72

_ 4 _ 1/2
2
< sup 1Z(w) = Z(w)ll g, p2+(/0 Ap?_r(x,ynw;,g(r,y,z,z>||§.;,;I dydr)
B 1-P2

weT

where to obtain the last expression, we used Minkowski’s inequality and the assumption that py, po > 2.

Hence we may conclude that

2
(2 AN _ 7
IF (e 2. D, s (sup 1Z0w) = Zw)lg, )

weT

t
2 _
+/ /p%—r(x’y)llF‘;’g(ray’Zaz)”i‘g dydr
0 JT P1-P2

Note that by (2.2.10)) and due to the fact that || Z||g, || Z||p < N, we have sup, y ||F;23(r,y,Z, Z)||L§ ., S
’ ’ 1:P2
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Chapter 2. Malliavin calculus for the driftless equation 2.2. Lipschitzness in the initial condition

2N. Hence by the above inequality and by we get

(©) 7 _ 7
IF (5. Z, Dy < sup 1Z00) = Zn) g,

weT

We now remove the assumption that || Z||g, || Z||g < N. Indeed, if this does not hold, then we can construct
the sequence of truncations (Zy, Zy) := (N A Z) V (=N), (N A Z) V (=N)). Then using the continuity
of F;zg and Fatou’s lemma, the above inequality, and the fact that truncation is a Lipschitz operation, we

get

) S 0 _
I1F, (. Z, Z)“Lf,,m < I%HJ?f I1F, o x, ZN’ZN)”L‘?;IM

< . . _ —
< lim inf sup 1Zn (W) =ZnW)lg

< sup [|Z(w) - ZW)l,,

g .
weT P1-P2

This finishes the proof of the case n = 0.

Step 2: Suppose that the result holds for F (2) F® _ for some n € N. We aim to show that it

PRIREREE S
also holds for FCE,Z,), We first assume that for all (¢,x) € [0,1] X T, Féz,)l (t,x,z,7) is continuous in the

(z,Z) variable and later we will show that this is indeed the case. By Proposition we have

Fyo(t,x,2,2) = 19" [¢% (1, %) = 87 (£, 0]l (@, mom)

< |Pt—.(x, .)gn—l(o—(¢2(., ) = o (% (-, N) Lo, Ly (@sH)
o [ [rerneic@ e -cwoomeaan|, o
=: A(z,2) + B(z,2). (2.2.11)

By we may apply point @) of with & = s'/4, to see that for any m < n and

(s,y) € [0,1] X T we have

Zgon(5.3.2.2) = (6% (5.3) = (6 (5.7l

m—1
< DTSRG (5 y) = ¢ (s, ) logs +1167(5.3) = 67 (5.0) -
=0 2 !
Thus by using the induction hypothesis and the definition of F(?), we can see that

@) 5 < /4 _7 . (2) A
1Zgm (8,9, 2, 2)llpg <5 i‘ﬁ”z(y) ZOWpg |, A NEGm (9. Z, D)l g - (2.2.12)
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2.2. Lipschitzness in the initial condition Chapter 2. Malliavin calculus for the driftless equation

We can bound A by applying this result (with m := n — 1) as follows:

1AZ D)l .
(2
g e ->||2 62D Yol
n-1 o 2) =

Slpcey sup (0% sup iz - ZO0)llyg  +IFY)(0.0.2.2) 1,5 g

t (0,£)€[0,.]xT weT Lprp a-n-1 Ljypy) 1011 H
< "% sup 1Z(w) = Z(w)ll g (2.2.13)

weT ’1-P2

where for the last inequality we used the induction hypothesis. Now we also bound B. To this end, note

that by the BDG inequality we have
= ! 2 z 2 172
b s ([ [ wolo@ oo - o@ e, ar)
0 JT q

and thus using we get

IB(Z,2)13,

sz
/ / i CNEGH 2. 2, 2) [ dyar
P1-P2

< [" [ s 1200 - 200y, +1EE 0 2Dy, ) v

t
—_ 2 —_
<102 sup | Z(w) - Z() 2, +/0 '/Tpf_r(x,y)HF(;’,)l(r,y,Z, DIy, dydr. (22.14)
1:P2 1-P2

weT

By putting the bounds (2.2.13)) and (2.2.14)) into (2.2.11) we can see that

IFG (L x. Z. D)2, < " sup | Z(w) = Z(w)II%,

Lpi.py weT l’l P2

t
o [ [ Ry 22, b Gaas)

l7 1-P2

If (Z,Z) = (z,7) € (C(T))? is deterministic, then we may repeat the proof without assuming that

Fy (2) . (2,x,z,Z) is continuous in (z, 7). The above inequality then simply states that

t
I, 2, )12 < 7% sup |z(w) = Z(w)[? + /0 /T P (L I, y, 2, 2) Pdydr

weT

Note that by the definition of F®) and by Proposition we have

2 — _
sup  [FO(txzdl < sup (65Dl + sup 6512, < o,
(t,x)€[0,1]xT (¢,x)€[0,1]xT kS (¢,x)€[0,1]xT a4
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so using we get

167(8,0) = 67 )z, = 1P (10,2 D) < 17 sup J2(x) = 200 sup |2(x) = Z(@)].

xeT xeT

From this it easily follows that for all (¢,x) € [0, 1] x T the map Fq(’z,)l(t, x,-, ) is of class C((C(T))%, R).
Now going back to , if | Z||g, |Z||lp < N for some given N > 0 then the desired result follows by
For the general case we can repeat the truncation argument from the n = 0 case to finish

the proof. O

2.3 Nondegeneracy

Throughout the section we assume that o € C! such that there exists a constant g > 0 such that for all
x € R we have 0?(x) > u?. Let ¢', ..., ¢X solve the driftless equation with initial conditions

¢(1), cees q)OK respectively. Consider the convex combination

K

O(t,x) = Z cid' (1,x). (2.3.16)

i=1

with Zﬁl ¢;=1landcy,...,cx € [0,1]. For a smooth map g and a nonnegative integer n, we aim to

obtain estimates on the expectation of V"g(0O(¢, x)) which depend only on a Besov—Holder norm of g

with a negative index, see below.
The following lemma quantifies Theorem 4.5 in the chapter by Nualart in [DKM™og9].

Lemma 2.3.1. For any p € (2, 00) there exists some constant N = N(p, ||c||c1, ), such that for all
t € [0, 1] we have

sup E|2O(1, x)||,f < Nt™P/*,

xeT

Proof. By Proposition [2.1.3| we have for (7,x), (6,¢) € [0,1] x T that

K
D6,60(1,%) = 110, (O)pi-0(x,0) ) i (9 (6, 0))

t i=1 B
110,11 (0) /0 / pt_r<x,y>(;cia’<¢i<r,y))%,mi(r,y))f(dy, dr)

= A(6,0) + B(8,0).
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2.3. Nondegeneracy Chapter 2. Malliavin calculus for the driftless equation

From this we can see that

/ / (D0,00(t, 1) Pdzd6 > + / / |A(6, 0)Pdzd - /5 /T |B(6, ) Pdgdo

=15 - 1.
So since |A(6, {)| = 1(0,:1(0) pr—o(x, {) 1, and by the properties of the heat kernel, it follows that
1 t t
=5 [ [1ueordaass e [ [ip-awopdde s ke
-6 JT -5 JT
for some universal constant £ > 0. Thus
Ig > codl/2 with ¢ = k,uz.
Therefore for € € (0, co6'/%) we have

t
[P’(/ /|99,§@(z,x)|2dgd9 < s) <P(IS - 18 < &)
0 T
<P(I§ > cos'? - &)

< (co6'* — &) PE|IS|P (2.3.17)

where the last inequality holds by Markov’s inequality. We will now need to bound the expectation in the

last line. Note that

/t6/'/t/pt—r(x>y)(iCiO',((/’i(r,y))@()’g(ﬁi(r,y))é—'(dy, dr)2
'~ i=1

[E”/ /Pr r (6, y) cio’ (¢ (r,y)2¢' (r, y))é—‘(dy,d )

[ 4
[E(/ 6'A—|pz_r(x’y)|zz||9¢l(r’y)”iz([t—é,z]xT)dydr)
= i=1

E|Ig|” = E

p
d{d@‘

Ly([t—6,t]1xT)

A

where we used the BDG inequality, and the fact that | D¢ (r, y) I ([z-5,:1xT) =0 for r <t — 6. Noting
that r — 6 <t — 8, and that @g’é’(ﬁi(}’, y) = 0 for 8 > r, we may bound the L,([¢ — §,¢] X T) norm in the

expression by the Ly ([r — 6, 7] X T)-norm, and write

K ¢ ‘ ,
[Ell(s Z / 6'/1]-|pt—r(x’y)|2||9¢l(r’y)”iz([r—é,r]xw]')dyd’")
i=1 -
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K
< P21 Z/ /Pr r @ ENDY (oD (s 1y dydr
i=1
K
_. gp/2-1 Z G; (2.3.18)

where we used with y = 2 and § = 1. To bound G;, we will need to bound

Do (r, YL, ([r-6,71xT)- To this end, note that for (6, () € [0,7] X T we have

D (1.3) = pr-o (5, D)o (8. 0)) + /0 /T Pror (V)T (& (o) Do 6 (o V)E(dy. dr).

Therefore using the BDG inequality, we get

EID¢ (1.0 (1—s.1xm) S 1PN (_ 1)

t
([ [ 1peer G PIDS g v

=: A+ B.

)Q/2

We have A < §9/4. Moreover by applying with y = § = 2 to B and noting again that

D¢ (r, Vs ([1-6.01xT) < WD (ro V) lLy([r-6,r1xT) We get

Bt [ [ (e PP L gy

for g > 2. Therefore we obtain

I (1O 1y S0+ [ [ 1pir G PEIDE (0L e i

By |Proposition 2.1.2| we can see that the g-th moment in the integrand is bounded in (r, y). Hence by

it follows that

ENDe (1Y (s i) S 07

Applying this with g = 2p to bound G;, we get
t
< / /pt-r(x, y)6P2dydr < sPI*, (2.3.19)
t—-6JT

Now putting |D into lb we get [E|Ig|” < 6P. Putting this into 1} we see that for all
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2.3. Nondegeneracy Chapter 2. Malliavin calculus for the driftless equation

5 € [0,¢] and all & € (0, cos'/?), we have
P(|20(1,x)|1% < €) < (co8'/* —&)7PsP.

Soif & € (0, (co/2)V1), we can choose &(g) := L&, to get

P
P(|20(1,x)|3 < €) < &P.
Let L := (2/co)P/?t~P/*. Notice that if y > L, then y~2/P € (0, (co/2)V1), and consequently we have
P20, )l <y P) sy

Hence, we have

oo

El26.)l,, = /0 P(I26l = v)dy <L+ /L P(I20I2 <y 2/P)dy

sL+/ y_zdy
L

< L+L Y <P,

which finishes the proof. |

For (#,x) € [0,1] x T, we consider the H-valued random variables w, , which are given for all

(6,¢) € [0,1] X T by
99[@(2‘,)6)

(6, =
Y

For given n € N and for a C([0, 1] x T)-valued random variable G such that for all (¢,x) € [0,1] x T
Go(t,x) € W™, we may define iterated Skorokhod integrals forall k € {0, ...,n—1}and (t,x) € [0, 1] xT

recursively by

Grs1(t,x) = 6(w xGi (2, x)).

Then by |Proposition 1.10.1}, for any f € C* we have the integration-by-parts formula

E(V*f(©)Go) = E(f(©)Gx)

To bound the iterations (G )eqo....,n}> we Will need the following bounds on w and its Malliavin

.....
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Chapter 2. Malliavin calculus for the driftless equation 2.3. Nondegeneracy

derivatives.

Lemma 2.3.2. Let p € [1,0), n € Zso, and o € C"™!. Then there exists a constant N =

N(p,n, ||o||cn+, 1) such that for all (t,x) € [0, 1] X T, we have

19" we llp,, @upseny < NeODI,

Proof. Fix (t,x) € [0,1] X T and let X := O(¢t,x), Y := ||£JZG)(t,x)||l2q and w := (2X)/Y. We may

assume that p > 2. By|Lemma 2.1.1} [Lemma 2.1.5|and [Lemma 2.3.1|respectively, we have

k 24k _ _2p
Xl s 25, Wl s e, E@)P 517+,

Therefore by (with & := t'/* and ¢ = 2) to obtain

||9”W”L,,(Q;H®("+]) < (t1/4)n+1—2 < t(n—l)/4

as required. |

Lemma 2.3.3. Let n € Zs, and o € C". Then for each k,m € Zsq such that k + m < n and for all
p € [1, 00) there exists a constant N = N(k, m, p, ||o||cn, u) such that with g := 2™ p we have for all

(¢,x) € [0,1] X T that
1Gm (1)t < NE™ 1 Got, ) o

Proof. For notational convenience, fix (#,x) € [0,1] X T, set w := w;, and for i = 1,...,n set
G; = G(t,x). The proof will be done by induction with respect to the m variable. For m = 0 the
statement is obviously true. Now suppose that the statement is true for some m < n — 1. That is, we

suppose that for all [ € Z5q such that / + m < n we have
-m/4
1Gmllzy < =" 11Gollgyzn-

We show that the statement is also true for m + 1, i.e. that for all k € Zg such that k + (m + 1) < n, we

have

G metllopre S 17 DGl oyptrmet. (2.3.20)
P 2m+1p
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2.3. Nondegeneracy Chapter 2. Malliavin calculus for the driftless equation

Let k € Z»(, such that k + m +1 < n. Since the divergence ¢ : "%/pk” - ‘W/pk is a bounded linear operator

(see [Nuao6l Proposition 1.5.7 and point 1 of remarks of Chapter 1]), we have

Gt H(Wzb = ”5(WGm)||7/I§~ 3 ||WGm||7/I§~'+1(H)

k+1
< 3 ND WGl oumotion)
i=0
k+1
A A
<> 12, @me 120Gl @uren) - (2321)
i=0 A;+A=i

By|Lemma 2.3.2} and since A4; > 0, we have

||9/11W||L2p(g;y®</11+1>) < =D/ <14 (2.3.22)

Moreover since Ay + m < k + 1 +m < n, by the induction hypothesis we have

2 —m/4 —m/4
”9 2Gm“L2p(Q;H®’12) < ||Gm”7//12 <t m/ ”G()”%//Iz+m <t m/ ||GO”W"+“""' (2323)

2p 2m+]p 2m,+lp
Now putting (2.3.22) and (2.3.23) into (2.3.21), we get
1Gmatllops < 7 474G llgyrrstim.
7, v
p 2m+1p

Hence holds, and the proof is finished. m|

Lemma 2.3.4. Let n € Zso, 0 € C™, B € (=2,-1) U (-1,0), and set g = 2"™21(_1 0)(B)

+

2"+31(_2’_1)(,B) and m = (n+ 1)1_10)(B) + (n +2)1(_» _1)(B). There exists a constant N

N(n, B, ||o||cn+1, 1) such that for all g € C*=, (t,x) € [0,1] X T, we have

n pn
|E(V"g(0(1,x))Go(t,x))| < Nliglcet = 1Go(t, x) ||z

Proof. Let f € C* be the solution of (1 —A)f = g and let (¢,x) € [0, 1] X T. By|Proposition 1.10.1|and

by the definition of f, we get

[E(V"g(O(1,x))Go(2,x))| = [E(g(O(1,x))Gn(t, x))]

< [E(f(O(1,x)Gn (2, x)| + [E(Af(O(1,X))Gn(1, X)) =0 A+ B.
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It follows easily from and Proposition that
A < f1BIGa (D), < 1fllczst ™ IGo(t D) llwn < lglicat™ P NGo(t, ) llam.  (2.3.24)

It remains to be shown that the desired bound also holds on B. To this end, we first note that by Jensen’s

inequality and by the BDG inequality for y € (0, 1) we have
S 4 LS b4
0t.0) = 2ePrd 0| <[ 2 e¢'c.0 - o'
(o0 cra0.9) D40 - P W)

i=1
i “ /o | /T”’—r@’ D@ (ry)Edy.ar)|[

2ad (2.3.25)

IA

A

We first consider the case that 8 € (-1, 0). By [Proposition 1.10.1} the fact that EG .41 = 0, and

withy =1+ 8 € (0, 1), we get

B = |E(Vf(O(,x))G 1 (2, X))
K

- ’[E((Vf(@(t, X)) - Vf( > eiPg (0, -)(x)))Gn+1 (t, x)))’

i=

S IVEllcrs

K . 148
(060 =D erPi# 0.96)) | 1t )

14
S Ifllczst * 1Gna (1, )|,

pn
< llgllest ™ ||G0(t,x)||%n+1, (2.3.26)

where for the last inequality we used Proposition [1.4.4]and [Lemma 2.3.3l We now also deal with the case

when B8 € (-2, —1). Repeating the same steps with one more iteration of Malliavin integration by parts

and with y =2+ 8 € (0, 1), we can see that

B = [E(f(O(1,x))Gns2(t,x))|

K . 2+
(0.5) = Y ciPid 0.9) | 1G st

i=1

S N fllces

B-n
< llgllest ™= ||G0(t,x)||7/qn+2- (2.3.27)
By (2.3.26) and we can see that for all 8 € (-2, -1) U (~1,0) we have

B-n
B < llglicst = 11Go(t, X)lary- (2.3.28)
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2.3. Nondegeneracy Chapter 2. Malliavin calculus for the driftless equation

By the bounds (2.3.24)) and (2.3.28) on A and B respectively, the proof is finished. O

Let s > 0 and suppose that Z : Q x T — R is an F; ® B(T)-measurable map, such that Z(x) is

continuous in x and that sup .y [|Z(x)||, < co. Let ¢Z** denote the solution of
(0 =M™ = (¢7)é  in(s,)xT, ¢ =Z. (2.3.29)
For (z,x) € [s,1] x T, the solution satisfies the integral equation

673 (%) = Py Z(x) + / / Prr (2. ) 0 (87 (ro )y, d). (2.3.30)
K T

We will moreover use the shorthand

¢% (t,x) = ¢%0(1,x). (2.3.31)

In the next lemma, we show a Markov-type property which will be used often. Recall that C(T)
denotes the collection of continuous functions f : T — R, and it is equipped with the sup-norm || - ||g.
The topology induced by this norm generates the Borel o-algebra 98(C(T)) which coincides with the
cylindrical o-algebra. Moreover, recall that since C(T) is separable, the notions of measurable, weakly
measurable, and strongly measurable C(T)-valued maps on Q coincide. In addition, a continuous random

fieldu : QX T — R is actually a C(T)-valued random variable.

Lemma 2.3.5. Let b,o € C'(R), M € N, (Z))M, c L (Q, %, P;C(T)) N B(T, L2(Q)), and let ¢$**

be the unique solution of. Further, for ple [1,00), f € CHRM) te[s,1],andx €T, define
g (C(MHM > Rby
gz, vzm) = Ef (6% (1= 5,%), ..., ™M (1 — 5,X)).
Then, fori=1,...,M and Z; € Ly(Q, F,,P; C(T)) N B(T, L(Q)), we have
ESf (%5 (8, %), ..., "M 5(t,x)) = g(Z1,. .., Zm1). (2.3.32)
Proof. Suppose first that the Z; are simple random variables of the form

K
Zi= hilg, (2.3.33)
k=1
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where K € N, (hi;)f, c C(T) and (Ex){_, C Fy is a partition of Q. In this case, we have for

(t,x) € [s,1] X T that

ESf(¢% (1, %), ..., 225 (1,x))

K K
=B D s g™ (), Y g 8" 1)
k=1 k=1

K
=B ) g f(@" (1,2), ., 66 (1,0)

k=1

15 E°f (@1 (1.2), ... ¢4 (1, x))

1, Ef (@1 (1 = 5,%),...,¢" M (t - 5,x))

DM T T

lEkg(hk,la---’hk,M) :g(Zb---,ZM),

x~
1l
—_

which shows (2.3.32)). For the general case, since Z; € L,(Q, %, P; C(T)), fori = 1,..., M there exist
sequences (Z!"),en of the form (2.3.33) such that [|Z]' — Z;||gT) — 0 almost surely and in L»(Q) as

n — oo. For those Z!'s and for (¢,x) € [s,1] x T we have

ES (¢ 5 (1, %), ... %M (2,x)) = g(Z0, ..., Z). (2.3.34)

It follows fromthat for all (t,x) € [s,1] X T, the map L,(Q;C(T)) 3 Z — ¢%*(t,x) €
L,(Q) is Lipschitz. From this, it firstly follows that ¢ % (¢, x) — ¢%>(¢,x) in L,(Q), which by using

the Lipschitz continuity of f implies that

E*f (%0 (1, %), ..., 74 (1,%)) — E° f(¢73(1,x), ... 7 (1, %))

in L,(€). Secondly, it also follows that the function g : C(T) — R is continuous. Hence, upon taking

the limit in probability with n — co in (2.3.34)), the result follows. O

Lemma 2.3.6. Let K € N, and for zy,...,zx € C(T), (s,t) € [0, l]zs, x € T, consider the convex
combination

K

i=1
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2.4. Estimates on the density Chapter 2. Malliavin calculus for the driftless equation

Let h € C(RX), and for g € [1,00) and i € Z> define H, ; : (C(T))X — R by

Hyi(z1s. .o 2k) = (% (1 = 5,%), ..., %K (1 = s,x))ll%i.

Let Zy,...,Zx be Fs-measurable C(T)-valued random variables and g € C*(R). For all n € Zx,
B € (-2,-1)U(-1,0) there exists a constant N = N (n, B, |0 || cn+1, ) such that with g = 2”+21(_1,0) (B)+
2"*31(_2,_1)(,8) andm := (n+1)1_1 0)(B) + (n+2)1(_2,_1)(B) we have

m
B-n
<Nligles(t =) D" Hyi(Z1. ... Zk).
i=0

B (Vg (@7 ZK’s(t,x))h(rpzl’s(t,x),...,¢ZK’S(l,x)))‘=G(Zl,...,ZK), (2.3.35)

where for zy,...,zx € C(T) we define
K
G(z1,...,2K) = |[E(V"g( Z cidp“(t — s,x))h(qSZi(t —85,%),..., 0% (1 — s,x)))|.

i=1

By we have

Gzt k) S lglles(t =) T (@7 (1 = 5.0),.... 6™ (1 8,2 g

< lglles (= )5 Y A7 (1 = 5.0 ... 6™ (1 = 5.0))lL
i=0

m
B-n
= llglles(t=s) ™+ ) Hyi(z1,...,2K). (2.3.36)
q
i=0
Now putting (2.3.36)) into (2.3.35), the desired result follows. m|

2.4 Estimates on the density

In the previous sections we have proven estimates on the Malliavin derivatives of the solution ¢(z, x) to
driftless equation equation, which allowed us to prove In turn this lemma implies

estimates on the Holder norm of the density f; » : R — [0, o) of ¢(t,x)..
Theorem 2.4.1 (Regularity of density). Lety > 0. Suppose that o € CYY*2 satisfies o > p for some
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constant p > 0. For (t,x) € (0,1] X T the solution ¢(t,x) of admits a density f; x and there

exists a constant N = N(||o||c1yi+2, 1), such that for each (t,x) € (0, 1] X T, the density satisfies

sup Hft,x”CV(R’R) < N[_(7+1)/4'
xeT

Proof. Let (t,x) € [0, 1] X T, and define iterated Skorokhod integrals by

Go = 1,
Do(t,x)

Grr(1,x) = 6(m

Gk(t,x)).

Then by [Proposition 1.10.1|for n € Z5( and for any n-times differentiable map g : R — R we have that

¢(t,x) and the sequence (G, (f,x))nen satisfies the integration by parts formula

EV"g(¢(1,%)) = E(g(6(1,x)Gn(1,)).

Hence by [SSo4l, Proposition 2.1/(2.3)] we have that the n-th derivative 0" f; x(z) = ani;’;,(Z) of the

density of ¢ is given for z € R by
0" fix(2) = (~1)"E(Leco(r,0 Gt (1)),
Therefore using [Lemma 2.3.3| we get
10" fr.x(2)] [E(|lzs¢(t,x)||Gn+l|) S Gl s e~ D/A, (2.4.37)

Note moreover that for 8 € (0, 1), for z;, zo € R, we have using the above inequality that

|6nft,x(zl) - anft,x(ZZ)l = |agft,x(zl) - aznft,x(ZZ)ll_'Blaznft,x(Zl) - agft,x(ZZN'g
< 102 fixllg P02 fi N 21 = 2ol
< el P Ul |21 = 22l

_n+l - _n+2 _ n+l-Bn-p+pn+2p
()P T -—nf =T AT a-nlf

_n+l+B

=t 7 |z1 -2l
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2.4. Estimates on the density Chapter 2. Malliavin calculus for the driftless equation

Therefore we get

_n+l+B

[0" fixlcp St7 % . (2.4.38)

Finally, the desired estimate follows by applying (2.4.37) and (2.4.38)) with n := | y] and with 8 :=y — | y|

to obtain

n+l _n+l+,8 _n+l+B y+1

| fexller = frxllens = frxllen + [fldes s 675 41777 <0777 =177,

and thus the proof is finished. O
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Chapter 3

Well-posedness

3.1 Driftless approximation

In this section we deal with the approximation of the solution u(z, x) by ¢*(>)-(, x). The main results

of this section are [Lemma 3.1.4|and [Lemma 3.1.6|

Lemma 3.1.1 (Boundedness of regularised solutions ). Let u be a regularised solution of with
initial condition u(0,-) = ug € C(T) and let p € [2, ). There exists a constant N = N(p, ||o||g) such

that for all (t,x) € [0,1] X T we have
(e 9) 1z, < N(llollscry + DY ()1, +1'12). (3.1.1)
Consequently, if u € %°, then

sup lu(z, %)L, < oo. (3.1.2)
(t,x)€[0,1]1xT

Proof. From (1.7.18) and the BDG inequality we can see that

t
0l < Wl +10¢ I, + [ [ o2, celielBayar

and thus the inequality 1) follows. Now suppose that u € %2. Then noting that D} = D} — P,_oDy,
we have

sup  [IDY ()|, < [D"] 50 < oo,
(¢,x)€[0,1]xT

Also, note that by Assumption [1.7.1]the initial condition u(0, ) is bounded. Therefore all terms on the
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3.1. Driftless approximation Chapter 3. Well-posedness

right hand side of (3.1.1)) are bounded in (¢, x), and thus (3.1.2) follows. ]

Recall that the random fields ¢% (¢, x) and ¢*(¢, x) are defined by and respectively.
Leto € C',a e (-1,0),8€[0,1], p € [1,00), and fori = 1,2 let b’ € C?, and suppose that u’ € %ff

are regularised solutions of the stochastic reaction—diffusion equations
(0 = Au' = b (') + o (u')é. (3.1.3)

For (S,T) € [0, 1]2S we define the cS’g[S, T]-bracket of u' and u? by

llu (£,x) = "5 (,x) = uP (1, %) + ¢35 (1,0) |1,

(3-1.4)

[u',u?] s :=sup  sup
SplS.T] xeT (s,0)e[S, T2 |t — Slﬁ

Remark 3.1.2. Note that for all s € [0, 1], by definition, the random field u’(s,x) is continuous in

x, and by we have sup, .1 [lu’ (s, x)|| L, < . Therefore the equation li starting

from u’ (s, -) does indeed have a unique solution (see e.g. [Wal86]]), which is denoted by ¢“i(s")’s(t, X).

Consequentially, the expression (3.1.4) is well-defined.

For brevity, we will use the convention
[ul,uz]é,g = [ul,uz]é,g[o’l].
Moreover recalling the definition of the %,B [S, T]-bracket from Definition we set
[fge =11 op10.0)-

By the triangle inequality and by the following result holds:

Lemma 3.1.3. Leto € C', b',b?> € C? B € (0,1], p € [2,0) and let u', u® be regularised solutions of
in the class %g There exists some constant N = N(p, ||o||c1, @, B) such that for all (s, t) € [0, 1]2S

we have

lu' (2,) = u? (1, )l(T.L,) < [ul,uz]sg[s,,](f =P+ Nllu'(s,) = (s, ) lB(T.L,)-

Lemma 3.1.4 (Driftless approximation). Let o € C', @ € (=1,0), b € C? Let p € [2,00), B €

[0, 1+ §] and let u be a regularised solution of in the class ‘Zlg . Then there exists a constant
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Chapter 3. Well-posedness 3.1. Driftless approximation

N=N(p,|lo|ct,a,B) such that forall0 < s <t < 1, we have

sup |lu(r, x) — ¢“ )5 (s, x)”LZ‘oo < N[Du]%f[s,t](t - 5)B.

xeT

Proof. By splitting the stochastic integral in at time s, we have

u(t,x) = Pu(0,)(x) + D (x) + /0 A prr(x. )0 (u(r. Y)E(dy. dr)

t
[ [peryeaioedan. G
S
Moreover using to compute ¢*(*-)>5 (¢, x) and then (1.7.18)) to express u(s, -), we get

00 1.0 = Pros(Pa0.) + DY+ [ [ s Conoturometay.an)o
-/ t [ peer e @ ety dr)
= Pai0.900 + ProuDiW 4 [ [ sy tutretay.an
-/ t [P e e @ ey dn) - G

where the last equality follows from the semigroup property that P;_;Ps = P;. Comparing (3.1.5)) and
(3.1.6)), we can see that the error of the driftless approximation is given by

u(t,x) = ¢“3(1,x) = D (x) = P;_s DY (x)

t
o [ [ Pt = @ )ty an).
A
Hence by the conditional BDG inequality (see[Lemma 1.11.5)), we get

lu(r, ) = 6“0 (1,017 |5, S IDF(x) = Pr—s DY (0)I7

Lp |gs

o [ [ lle o —o@ s ol g dvdr. Gag)

Therefore

_ qu(s,),s 2 uy2 _ 28
Ju(r.3) = 6 1D, < (D gy (1=9)

t
+/ /szz_r(x,y)llu(r,y) =" )5, dydr. (3.1.8)
K P,
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From 1b and the fact that u € % , we see that

sup ||M(l,x) — ¢M(S,'),S(t’x)”LgS < [DM]WO + ”O-”B < oo,
(t,x)€[0,1]xT 2 j2

Hence by (3.1.8) and by [Lemma 1.3.5} we obtain that

sup |lu(t,x) — uls:)os(p )12, < [D*]? t—s)P,
sup (. 2) = ¢ ()25 S (D (0=

which implies the desired result. |

Assumption 3.1.5. Leta € (-1,0),b € C¥, ne€ Zsp,andlet o € C™*2 such that there exists a constant

u > 0 such that for all x € R, o2(x) > p2. Let B e [, 1+ 71, and suppose that ul,u

2’
solutions of in the class %P,

2 are regularised

For (s, a) € [0, 1]2S consider the (C(T))*-valued %,-measurable random variable

7 = (¢ul(s,'),5(a7 D, ¢M2(S,')’S(a, ), ul(a, 3, uz(a, )) (3.1.9)

Recall the definitions of F®) and 2 from (2.2.7) and (2.2.8). Moreover for (7,x) € [0,1] x T and

z2=(z21,...,24) € (C(T))*, define

Fan(t.2,2) = (|67 (1.0) = ¢%(1.x) = ¢%(1.0) + 6% (1.2) | . (3.1.10)

Egn(t,3.2) = o (67 (1.2)) = o (¢7(1,2)) = (87 (1.0)) + (G (1) g (Br11)

By it follows that the expression in is continuous in z. Similarly, by

the product and chain rule formulas for Malliavin derivatives, it is easy to see that the same holds for the
expression in (3.1.11)). Our next task is to obtain an estimate on F) evaluated at Z. This estimate is

given in the next lemma.

Lemma 3.1.6 (Four point estimate). Let Assumption[3.1.5|hold. Then for all p € [2, ), there exists a
constant N = N(n, p, ||o||cn+2, @, B) such that for all (S,T) € [0, l]zs, (s,a) €[S, T]ZS, te0,1-—a+s]

and x € T, we have that

4
sup || Fytn(t, x, 2)|Ir,,

xeT

ut 1.2 1 2 1
< N(1+ max [D ]%;;)([u 112y 0y + 0 (S,0) = (S, M.z, Jla = 512
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Chapter 3. Well-posedness 3.1. Driftless approximation

where Z is defined by (3.1.9).

To prove the above estimate, we will need the following auxiliary lemma.

Lemma 3.1.7. Let Assumption hold. Then for all p € [2,0) there exists a constant N =

N(n, p, ||o||cn+, @, B) such that for all (s, a) € [0, l]zs, t€[0,1—a+s]andx €T we have

4 i
=S (. x, 2]z, < N max [D"].s sup lu' (s, ) = u?(s, Mn(r.2,) (@ - 5)
ie{1,2} 2P xeT

n-1

4 4

+ Nzt D IF) (65, D)y, + NIESH (1,5, 2) L,
i=0

Proof. We begin by proving the result for n > 1. By point (c) in[Lemma 1.10.3](which we can apply with
e=1"*¢c[0,1] by and by the triangle inequality and Holder’s inequality we have that

4
IS AT

; ||Fi2i(”x’ Zl’ZZ)“szla(l ;2} ”Fﬁz?;’(”x’ ZZ’Z”Z)Hszl%)
itj=sn €l,

A

n-1
+ ) B e x DN, 5+ IESS % D)1,
i=0

:A+B+C.

We can immediately see that || B||.,, [|C||, can be estimated by the second and third terms of the desired

P’

bound. We proceed with showing that ||A|., can be estimated by the first term of the desired bound. To

this end, note that by and by we have for / = 1,2, uniformly in j € {0,...,n}

that

12 (6.3, 21, Z1o) | 7o < sup 1 Z0(x) = Zisa ()]
’ 2p,0 xeT 2p,o

I(s,-
= sup [[¢" )% (a, %) — ' (a, )l

Fs
xeT 2p,00
< — B Dul .
S (=9 ma, ID")5
Therefore
1 2)
A < (a—s)? max [D" F (t.x.Z1.7 o L ia
( ) le{1,2}[ ]%i H;n” 4P,l( 1 22)\| L1 7 (3 )
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3.1. Driftless approximation Chapter 3. Well-posedness

Applying[Cemma 2.2.1] with g = 4p, (p1, p2) = (2p, p), G = F;, we get

, .
IFg) (e 21 Z) 2 17 sup 2 (x) = Za(0)ll 5.
2p.p xeT p.p

= i sup || ) (a, x) — ¢ (a, I
xeT PP

=" sup || Fap.o(a — s,x,u' (s, ), u?(5,))lr,»

xeT

for all i € {0,...,n}, where the last equality holds by So applying with

q =12p, p1 = p2 = p, and with an arbitrary sub-o-algebra & c &, we get from the above inequality that

2 1 2
IESY (1%, Z1, Zo)ll e < sup [l (s,%) = 2 (5, 2) |2
2p.p xeT

P’

and the bound is uniformin i € {0,...,n}. Now taking the L ,-norm on (3.1.12),and applying the above

inequality, we get that

A < (a-s)P max F(Z) t,x, 21,72 Fs
1411z, < (@ =) max [D l;}ku i (0020 2l 70

1
< (a-s)® max [D* sup ||lu' (s, x) = u*(s, x
(a9 max 101, sup ' (s.5) = (5.9l

which finishes the proof for the n > 1 case. Finally, for the n = 0 case, note that using (1.11.44]), we have

4 4 2
ISt x, D) i, < NFse (% 21, Z) iz D, W Fs (1% 20, Z12) | oy 157
1e{1,2}

4
HIFS (6.2, 2) L, 17,

By estimating ||A||Lp and ||C’||Lp the same way as we did for ||A||., and ||C||L, respectively, one can

show that the desired result also holds for n = 0, which finishes the proof. O

We are now in position to prove|Lemma 3.1.6

Proof of[Lemma 3.1.6, We begin by confirming that sup, )c[0.1)xT ||FI(,‘}2L(t,x, Z)||L, < co. This is

indeed true, since by the triangle inequality, [Lemma 2.2.1|and [Lemma 13.1.4| we have

2
up IFln (1,5 D), < ) (o9 (@, ), (a,)
x€l ie{1,2}

< > tHsup ¢4 (@) — ui (@),

ie{t,2y X€T
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Chapter 3. Well-posedness 3.1. Driftless approximation

<ti(a—s)P ig{l?é}[D”l]%f. (3.1.13)

The rest of the proof will be done by induction.

Step 1: We prove that the statement holds for n = 0. By 1b we have for z € (C(T))* that

(%1 — ¢ — ¢ + ¢™)(t,x) = Pr(z1 — 22 — 23 + 24) ()

+ / / Prr e (@ (7 (1o y)) = (62 (1, y)) — (67 (roy) + (67 (r, y)))E(dy. d).
0 T
Therefore by the BDG inequality

4
F ,(,,())(t,x, 2)
' ) 2
sha-n-avas ([ [ eolEiesofor)
0 T

=: A(z) + B(2). (3.1.14)

1/2

By the definition of the & ;,/ 2 bracket, we have

1 . 2(g..
1A(2)]lz, < sup [l <+ (a,x) — ¢ )5 (a,x) — ' (a,x) + u?(a, %)L,
X€
< [ul,uz]é,[g/z[s’a](a — 52

Moreover using |[Lemma 3.1.7} one can show that

B(D)lL, $ D H(s,x) —u (s, - s5)P
1B, < max (D],p sup ' (5,) = (5, )l (@ =)

t 1/2
4
+(/0 /Tp?_r(x,y)llF;,())(r,y,Z)||2Lpdyd,») .

Using the above bounds on A, B, the decomposition (3.1.14]), and the assumption that we have 8 > 1/2,

we can see that

4) 2
IFW (. 2) 12,
2
u' 1.2 lro N 2(¢ . _ q)1/2
$|“+i§?ﬁ§,}[0 L ([t g g+ (8. = 35, ez, ) (@ = )]

t
4
« [ Lo lEaey 2, dvar

Since by assumption u', u® € %ﬁp, we have max;e (1,2} [D“i] < co. Therefore by (3.1.13]) we have that

B
72p
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3.1. Driftless approximation Chapter 3. Well-posedness

the norm in the integrand is bounded in (7, y). Hence using finishes the proof for the n = 0
case.

Step 2: Let n € N and suppose that the statement holds for F (4), o F “) _, forall p > 2. We aim
ps p.n

to show that then the result also holds for Fl(,i‘)l forall p > 2. Lety = (6;,4)", € ([0,1] x T)" and

i=1

z € (C(T))*. Then by Proposition we have that
9;/1(¢Z| _ ¢Z2 _ ¢Z3 + ¢Z4)(I, X)

= 1j0,,1(6") Z Pi—e6; (%, {k)
=1

x DL o (67 Ok, &x)) = o (92 (6k, L)) = 07 (6% (Bk, 1)) + o (6% (6, £1)) ]

t
1101 (6°) / / Pior(5,3)
0 T

X Dy [0 (7 (r,y)) = o (67 (r,y)) = o (¢% (r,3)) + (67 (r,y)) | (dy, dr).

Taking the || - ||, (@;zren)-norm of both sides and using the BDG inequality gives

4
F;(),zl(l‘,x,zl,zz,a,z:;)

< Mo (e (5 ID™ o (7 (1) = (672 1) = G2 ) (8 (o Wl caron,
t 1/2
N (/o /Tp?"(x’y)m;i;(r,y,z)leydr)

=t A(z1, 22,23, 24) + B(21, 22, 23, 24). (3.1.15)
We begin by bounding A. Note that

A(2) S
110,61 () Pe—-(x, HND™ o (89 () = (2 (-, ) = (6% (-, ) + (6% (s Dl e I, 1

= 10,1 () pe— (%)=L ¢ Dl
P

and thus (recalling the definition of Z from (3.1.9)) we have A(Z) < |10, () ps—. (x, .)zg" LG Dl

n

Hence using the Minkowski inequality we obtain that

4
1A(2)IIL, < o1y pe— (6 S G D),

4
<M Ope—Ge)llm sup  IIZ (6,4, ),
(0,2)€[0,t]xT

To bound the first factor, we note that [|1j9,,](-)pr—.(x, ) ||z < '/* < 1, and to bound the second factor
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Chapter 3. Well-posedness 3.1. Driftless approximation

we use that by and by the induction hypothesis, for (6, ) € [0,¢] x T we have that

4
=09 (6,4, 2)lln,,

A

n-1
i T N 020w . B 4)
l_g{l%}[D“ ]%gHM (s,) —u”(s,)lB(T.L,) (@ — ) +; 1F,,.:(6. 4. D)L,

A

i 1.2 1 2 1
(1+ max [D" ]%i)([“ g1 g * 105 =12 (S,lara, ) (@ = )%,

where we used Lemma [3.1.3] and that by assumption we have 8 > 1/2. Hence we can see that
ul 12 1 2 1

1A, 5 (14 max (D] ([ 0] gy g + 10152 = (St ) a = 9.

We proceed with bounding B. Note that
' 2 C)) 2 12
1B@lys < ([ [ P GonIE@ . D)2, dyr) (3.1.16)
2,p 0 T L2,p

By|[Lemma 3.1.7]and the induction hypothesis we have for all (r,y) € [0,7] x T that

4
1= (r v, D),

< D“i 1 1) — 2 . _ B
< may [0 ' (5.) = (5. Motz (a =)

n—1
4 4
+ D ED (13, D, + IFS0(r, 3, D,
i=0

u’ 12 N _ a2
< (1+ max [D log) ([0 gz + 10 (81) =125, lacr.r ) (a = )

4
+IES v, DL, -
. . 1 . . .
where we again used the assumption that 8 > 5. Putting this into 1D we can see that

I1B(Z)]IL,

i 12 Leg N 2(Q . _ a2
< (1+ max [D"],0 (1121 g )+ 106 (S, = 028, s,z ) (= )

t 12
([ [ enEsaey. 2R avr)
o Jr P

By our bounds on A, B we may conclude that

4
IFSh (2, x, 2)lz,
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3.1. Driftless approximation Chapter 3. Well-posedness

i 1.2 lee N _ 020 . _ a2
S (1+ max [D"], )([u ] g1 g + I (S.0) =P (S, )||B<T,L,,>)<a 5)

t 12
4
([ [orrnrihoy 2, aar) "

By the norm in the integrand is bounded in (r, y). Hence by[Lemma 1.3.5|the proof is finished. O

Lemma 3.1.8 (Four point BDG inequality for driftless approximations). Let p € [2,0), o € C?,
@€ (=1,0), B e [0,1+a/4] and fori = 1,2, let b’ € C® and suppose that u' € UP are regularised
solutions of

(8; — ANu' = b'(u') + o (u)é(dy, dr).
There exists a constant N = N(p, |0 ||c2, €, @, B) such that for (s,t) € [0, 1]2S we have

’/;/sz_r(x,y)

X (! (r,3) = @2 (r,3) = o (¢ O (0, 3) + (870 (1, 3) )€ (dy, di)

1 1
< N[D* ]%illul(s, ) = u?(s,)ls(r.L,) (= )3

Lp

! (s, 2(s.- 2 172
V([ [ r el ) =R ) =065 i) 1 0 ] dvar)
s T

Proof. By the BDG inequality and by (1.11.45) in|Lemma 1.11.6{we have

“ / | /T” () () = (2 (r.)

1 2 2
=0 (@) + (@ () Jé v, )|

< [ [rwaew e -

2
L

— (@ () + (@O ()| dydr
P

<I+J
with

1= t L8605 =070 ) (000 ) = )

2dd
prr

! 1. . 2.
sim [ Pl ) = R ) = 876 ) 670 ) dvr
N

By the tower rule, Holder’s inequality, [Lemma 3.1.4} [Lemma 2.3.5|and |[Lemma 2.2.1|(where we recall the
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Chapter 3. Well-posedness 3.2. Regularisation estimates

definition of F?)), we can see that

1 . 20a . 1 .
R R R R () | LR R R o) |
I(e. 2(q..
o R R G

S 10y = 9P l9 02 ) - 9

P

ul(s,"),s _ 1
¢) (ray) u (r’y)”szlgS L

= (D1 = 9P|l =53 (5,0, 265) |

2p

< [D* los (t = )Pllu’ (5,-) = u? (s, )l 1) -
74

Putting this bound into the definition of /, we get that

| t
1< [D"]? 2 (- )P lu' (s, ) — u? (s, -)IIZqu Lp>/ /Tpg_r(x, y)dydr
2p N

S D2 5 (1= 9% (s5.) ~ (5. ) B, -

2p

This bound on 7 and the definition of J together give the desired bound. m|

3.2 Regularisation estimates

Let u, u', u” be regularised solutions of with potentially different drift terms, f be a measurable
kernel on (0, 1] X T and g be a smooth function on R. In this section, we obtain quantitative bounds

for expressions of the forms fst f[r fr ) g(u(r,y))dydr and fst f[r (g (r,y)) — gW?(r,y)))dydr

which depend on a Besov—Holder norm of g with a negative index.

Lemma 3.2.1. Let Assumption hold and let u be a regularised solution of (1.3.9). Suppose that

1

f:(0,1] X T — R is a measurable function such that there exist constants K > 0 and { € [0, 3

<] such

that for all t € (0, 1] it holds that
J 1y < ki€

Let p € [1,00). Forall A € (4 —2,-1) U (-1,0) and for all B in the nonempty set (— -z +§ 1+ 1,
ifu € %ﬁ then there exists a constant N = N(p,||o||c2, 1, A, @, B, ), such that for all g € C=,
(s,1) € [0, 1] and G € {F;,{0,Q}} we have

(u(r,y))dydr||

,00

a_ a+3
szvngncaK((r—s)l” ol 1%ﬁ[5,,]<t—s>ﬁ+4 ).
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3.2. Regularisation estimates Chapter 3. Well-posedness

Proof. We may assume that p > 2. For (S,T) € [0, 1]2S and (s,1) € [S, T]2S we consider the germ
t
Mo =B [ [ frer0g@ o oy
K T
Then
t
A e
N
Note that by (with n = 0) we have
[E g (6“5 (r, )] < lIgllea(r = )V,

By the two inequalities above, by the fact that || fr—, ||, (1) < K(T —r)™% < K(r —r)~¢ and by the

Cauchy—Schwarz inequality, we have

t
4cilygy, < lellex [ =57 [ 1frerlavar
’ )

t
< liglles / (=YYt =)< dr

< llgllcak (1 = ) +/4<.

From the assumption that A > 4/ — 2 it follows that the exponent 1 + 2/4 — { is greater than 1/2, and thus

the first condition in ((1.9.24)) is satisfied. Let a € [s,¢]. Then

|[ES5As,a,t| = |[ES (As,t - As,a - Aa,t)l

E’ / | /TfT—r(y)[Ea(g(¢u(s")’s(r’)’)) = (9" ) v |

By the Fundamental Theorem of Calculus and (with n = 1), we get that

E(3(8" ) (r,)) - (" (7, ) )|
- ’/01 E“ (Vg(9¢u(s,.>,s(r, y)+(1- 9)¢“(“")’“(r,y)) (¢u(s")’s(r,y) - ¢”(a")’a(r’y)))d0|
= /0l E(Ve (00" @19 y) + (1= )¢ (1, )

y (¢¢”<S")’S(“">’a(r,y) _ ¢u(a,-),a(r,y)))d9‘

3
- 2 .
< lglea(r =)=V F2 (r - a,y, ") (a,), u(a, )
i=0
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Chapter 3. Well-posedness 3.2. Regularisation estimates

where F?) is defined by . Therefore using the above result, [Lemma 2.2.1|{and [Lemma 3.1.4] we get

[ES

E(g(6") () - 86" (7, ) )|

3
_ s (2 u(s,),s
< lglea(r =)D H Y B RS (r - a,y, 6" (a, ), u(a, "))
i=0

< lgllea(r = a) =D sup |95 (a, x) - u(a, )|

-
L/s
xeT 2,00

< lglleatr =) DHD gy oy (a = )P,

By the above inequality, by the assumptions on f and by the fact thatt —a,a —s <t — s, we get

t
IE6As asllL. < E° / /T FrorOIgllealD Ny s 7y (r = )=V a = )P dyar
a
t
< lllcr 1D Typi (@ = [ =@V [ g rdyar
a

t
<l D"y (@ = K [ (1 =r) €= a4 Var

a

< llgllea [Du]%ﬁ[s’T]K(l‘ _ g)fEra/a3)4,

By the assumption that 8 > 1/4 — 1/4 + ¢, it follows that the exponent 8 — ¢ + 1/4 + 3/4 is greater than 1,

and thus the second condition in (1.9.24) is also satisfied. Let

oy, = / / Fr—r (Vg (u(r.y))dydr.
K T

By the regularity of g and by [Lemma 3.1.4] we can easily see that (1.9.25) and (1.9.26) are satisfied. All
conditions of are satisfied. Consequently, the conclusion follows from [Lemma 1.9.1]and the

fact that (S,T) € [0, l]é was arbitrary. O

Corollary 3.2.2. Let Assumption hold and let u be a regularised solution of (1.3.9) and let
p € [1,00). Thenforalld € (-2,-1)U(-1,0), B € (}1 - %, 1+ 5], ifu € %5 then there exists a constant

N =N, |lo|lc2, 4, A, @, B), such that for all g € C*, (s,1t) € [0, I]ZS, x € T, we have

||‘[l‘[Tpf—r(x’y)g(u(r,y))dydr

" 13
< Nliglea (= )44 4 D"y, (1 = 5/P55°).

Fs
Lpe

Proof. Fix x € T and for each (r,y) € (0,1] X T define f.(y) := p,(x,y). Then f is a measurable
function which satisfies f[r fr(y)dy = 1. Hence, applying(with K :=1, ¢ :=0), we obtain
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3.2. Regularisation estimates Chapter 3. Well-posedness

the result. o

Corollary 3.2.3. Let Assumption hold and let u be a regularised solution of and let
p € [1,00). Then forall A € (—1,0) and forall B € (% - f;l, 1+ ifue ?lf then there exists a constant

N = N(p, ||lollc2, 1, A, B) such that for all g € C*, (s,t) € [0, 1]2s and x € T we have

Proof. Fix x,x € T, and for each (r,y) € (0,1] X T, define f.(y) := p,(x,y) — pr(X,y). Then
by 1b we have f[r f-(y)dy < C|x = %|"2r~1/* for some constant positive C. Hence applying

(with K := C|x — |'/? and ¢ := 1/4), we obtain the stated estimate. O

/ /T(pt_r(x,y)—pt_r(i,y))g(u(r,y))dydr

< Nllgllea (1 + [D"]y )l - 7'72.

Fs
LP »00

Lemma 3.2.4. Let p € [2,00), a € (=1,0), and let & € C* such that there exists constant u > 0 such

that for all x € R we have 0>(x) > u?. Fori=1,2, let b’ € C® and let u’ be regularised solutions of
(0, — ANu' =b'(u') + o (u')é

in the class %P for some f8 € (% — 7> 1+ {1 There exists a constant N = N(p, ||o|| ¢4, p, @, B) such that

forall g € C*, (s,t) € [0, 1]2S and x € T we have

/ fv pror(2.3) (8 () — (W3 (r.y))) dydr

< Nllellce(1 + p* f — 5)Bra)/4
< Nlglee(1+ max [D"],)( =)

Lp

X () g1, g+ et (5) = 12, )-
Proof. Let (S,T) € [0, 1]25, x € T and for (s,1) € [S, T]2S define the germ
. d Iie ) ¢ 2(¢ ) ¢
Aa) =8 [ [ pr ) (06" 05 30 = 500 0 v
S

We first bound |[Ag ]|, . Using with n = 1 and thus ¢ = 8) and recalling the definition of

F® from , we have

B (96" 0 (r, 1) - (60 ()|

=| /0 (V060 1) + (1= )86 () (7605 (13) = #2605, ]
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Chapter 3. Well-posedness 3.2. Regularisation estimates

2
v— 2
S ||g”C“(r_s)(( 1)/4ZF3(,1~)(V—S,)7”41(S, ')7”2(Sa ))
i=0

We take the L,,-norm on the inequality, and by we get

IE* (2(6™ &) (r, ) = (6" (ro )i,

< lgllca (r =)Dl (s, ) = u? (s, ) lBer.,)-

Using the definition of A, and the above inequality, we get

t
1As, (L, < / /pT-r(x, Wliglice (r =) D u (s,+) = u?(s, )lg(r,z, ) dydr
K T

S lgllca (1! #2] gy + e (5,) = (S, Mlar.n, ) (1 = ) G2.17)

24
We proceed with an estimate for [|E°6A; 4.¢||z, for a € [s,1]. Note that
|[Es6As,a,t| = |[ES(AS,t - As,a - Aa,t)|

£ [ [ pr (0" 0 ) - 2870 )

= g0, ) + g (877, y)) ) dyr|

For (r,y) € [0,1] x T and z € (C(T))*, we define

Tyy(2) = [E(g(¢% (r — a.y)) — g(¢2(r —a,y)) — g(¢%(r — a,y)) +g(¢%(r — a,y)))|.

For brevity, we fix (r,y) € [s,¢] x T and we set " := I, , ¢; := ¢;_,(y) and 6; ; := ¢; — ¢;. By
[Cemma 1116 we get

ra<| [ 1 / E(51.061. + (1 - 062 V(01 (0.1 o

+ |/01 E((634 — 51,2)Vg(®2(9)))d0|

where @1, ©; are convex combination{’|of ¢1, . .., ¢4. Hence using[Lemma 2.3.4(withn =2 and n = 1

'In particular:

©1(6,n) :=1(0¢1 + (1 = 0)p2) + (1 =) (643 + (1 = 6)d4), 02(0):= 0¢3 + (1 — 0) ¢4,

but this is not important for the proof.
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3.2. Regularisation estimates Chapter 3. Well-posedness

for the first and second terms respectively) and recalling the definition of F*) from we get that

1
() < llgllca(r - )2+ / 161,2001.3-+ (1 = 0)62.9) 2 d6
0
+|gllca (r — a)VH /465 4 — 51,2||%2

3

< liglce(r—a)™ 2 X F (r —a,,21,20)
=0

X (F3(22,),-(r -a,y,21,23) + F3(22’)l.(r -a,y, 2, Z4))

2
- 4
+llgllca(r—a)™ /4 N F& (r—a,y,7). (3:2.18)
i=0

Let

T(o. 20 .
Z = (¢4 ), g4 5w a, ), 6P (a, ).

By|Lemma 2.2.1|and |[Lemma 3.1.4} we have that for / = 1,2,i € Z that

2 1
||F3(2’)[(1” -a,y, Z, Zl+2)||L2|gs < Su% ||Zl(x) - Zl+2(X)||L§iS < [Du ]%;B(l‘ - S)B.
X€ >0
Using this, and [Cemma 2.2.1] we can see that

1B (FL = a3, 21, Z) P = 0,3, 21, Z1) I

2 2
< WER,(r = a.y. Z1. Z) Ly 1Fsy s (r = a.y. Z1, Zio) | 12, 1,

! 2
S D1y p(t = 9P IIF (= a3, Z1. Z) i,

S D155t = 5/ sup l¢* 5 (a,x) = 600 (@, 0l 0
P xeT Zp
l
< max [DY t—s)Psu U(s,x) — u?(s, x . 2.1
max (D], (1= )" sup ' (5.2) 45,2, (32.19)

Note moreover that by

2
4
DIEFD G -a,y,2),
i=0

L 1.2 1 2 1/2
< (1+lg{1§1’>§}[D“ ]%ﬁ)([u ] gryg gy ¥l (S,) — (S, ‘)||[B(T,L,,))|t_s| .(3.2.20)

Using (3.2.18)), (3.2.19) and (3.2.20)), we get that

IE°T(Z)l,,
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3

— v 2
< lgllca(r =)™ 23" N B (FSL 0= a.y. 20, )34 = a3, 2. 212) I,
i=0 Ie{1,2}

2
- 4
+lglice(r —a) ot X NEFS (r - a,y,2) |1,
i=0
Tl max D], (1= ) sup ! (5,3) = (s, 0l
le{1,2} xeT

+ IIgllca(r —a)”/Aralt

< liglice(r —a)

1.2 leo N 2(¢ . —_ 12
XZ“H“}?& o)L g gy + ' (5.) =3 (8. ) o2, (7 = 5)

ul 1.2 1 2
< llgllc (14 max (D 1y ) ([ ] gun gy + ' (5,) =S, g, )

% ((I" _ a)—1/2+(t/4(t _ S)B + (I" _ a)—1/4+(t/4(t _ S)I/Z).

Therefore, by using and the above bound, we get

”[Esé‘As,a,l‘”L,’7

t
< / / prr D E Ty (2) 0, dydr
a T

L 1.2 1 2
S llgllce (1 max (D1 p) (L'l gy + ' (S,) = (S e, )

t
< (0= [ [ pere) - P dyar
a T
t
tt=9" [ [ ps -0 e tayar)
a T
! 1.2 1 2
S llgllce (14 max [D"Yos, ) ([t ] gy + ' (5,) = (S, o)
% (([ _ S)’B(f _ a)1/2+a'/4 + (l _ S)I/Z(t _ a)3/4+0z/4)
L 1.2 1 2
S lgllce (1 4+ max [0 og, ) ([ ] gy + ' (5,) = (S, o)

X ((t — s)PH2rald s)5/4+0‘/4). (3.2.21)

Note that 8+ 1/2 + @/4 and 5/4 + a/4 are greater than 1 by the assumptions that 8 > 1/2 — a/4 and

that @ > —1. Consequently, by and (3.2.21), we have that the condition (1.9.24)) is satisfied. In

addition, by using and the regularity of g, it is straightforward to see that the process

_ [ 1 2
oy = /0 /T pror (o) (! (7)) — (2(r,y))) dydr

satisfies (1.9.23)) and (1.9.26). Consequently, the conclusion follows from and the fact that

(S,T) € [0, 1] was arbitrary. O
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3.3. The &)-bracket of two solutions Chapter 3. Well-posedness

Corollary 3.2.5. Let p € [2,00) and let & € C* such that there exists a constant u > 0 such that

o2(x) > u* Fori=1,2, let b’ € C¥ and let u' be regularised solutions of
(0 = Mu' = b'(u') + o (u')é

in the class UP for some B € (% -1+ %] There exists a constant N = N(p, ||o||cs, 1, @, B) such that

for azllgl,g2 e C*%, (s,1) € [0, 1]23, we have

/ /T pror () (g ' (rey) = 2 (. ) dydr

)lt _ s|(3+a')/4

L,
< N(l+ ma p*
( s 1D

x (1" = &l +lgllcn (s ul g,y + 1l (5) = 12, lar.e, ) )

Proof. Since 8 > % -4= Alf - “T_l, we can see that the condition of |Corollary 3.2.2[is satisfied with

A = a— 1. The desired result follows from|Corollary 3.2.2|and[Lemma 3.2.4|by the triangle inequality. O

3.3 The §,-bracket of two solutions

Throughout the section we work with the following assumption:

Assumption 3.3.1. Let ¢ € C* such that there exists constant g > 0 such that o-?(x) > u?. Let
a € (-1,0), B € (4 — 2,1+ <], and suppose that for i = 1,2 we are given b’ € C* and that u' are
regularised solutions of

(8; — A’ = b'(u') + o (u')é(dy, dr)
in the class % with initial conditions u’ (0, -) = u6 e C(T).

Recall the definition of the & 11)/ %_bracket from ll Informally, the aim of this section is to show

that

1 .2 1 2 1 2
() g 1y Mty =l + 116" = Bl ot

Lemma 3.3.2. Let Assumption|3.3.1|hold and let p € [2,0). Then [u',u?]

g2 < o Moreover there
P

exists a constant N = N(p, i, ||o||c4, @, B) such that

12
[u,u ]&,L/Z[s,t]

< N(1+ p* 1+ ||| ce
< N( ié??,’é}[ ]%/;)( 6% ca)
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Chapter 3. Well-posedness 3.3. The &),-bracket of two solutions

X (15" = Bl + [l ] gy 4l (5,) =125, ) e, ) 0 = 9) 1507 3.3.22)

Proof. Let (S,T) € [0, l]zs. We begin by verifying that the S;/ ?_bracket is finite. By the triangle

inequality, and by , we have for (s,1) € [S, T]2S that

sup [lu! (1, x) = ¢ D5 (1, x) — u? (£,x) + ¢ 55 (1, %) |

Fs
xeT Lp,oo
< max sup ||’ (£, x) — 6“5 (1, x|, 7
max sup [l (1,) = 00 (1 9l g5
< max [D*].s(t —s)® < max [D* ﬁt—Sl/z,
i€{1,2}[ ]% ( ) i{1,2}[ ]% ( )
where we used that by assumption we have § > %—% > % Thus by the fact that |||, = [[|| -2, /l, <

| - Il % . it follows that
[),(x)

12 < max [D”l]

1,2
u.,u B
[ ]517 ie{l,2} 7p°

(3.3.23)

which is finite, since by assumption u’ € %8. Note that for (s,¢) € [0, l]zs, x € T we have by 1|
and by (1.7.18]) that

w (1,0) = u?(1,) = ¢ 5 (1,x) + ¢ ) (1, x) =
= 1 (1,0) = 12 (1,0) = Poy (1 (5.) = 12(s.)) (x)
[ [ P @ ) - 6 ey an
- (D’;' _p¥ _p_,D" + Pt_stjz)(x)
+/s /sz-r(x,y) (o (u' (r,3)) = o (u(r, y))
= (8" I () + o (60 (r, 1))y, dr)

cI(t,x)+J(t,x).

Fori=1,2let (b""),cny C C® with b** — b’ in C?. Then by Deﬁnitionand by Fatou’s lemma,

we have

sup |l 1(t, %)L,
(t,x)€[0,1]xT

< liminf sup
n=% (¢,x)€[0,1]xT

/ /T Pror () (1" (! (1)) — B*" (W2 (. y)) dydr

Lp
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3.3. The &)-bracket of two solutions Chapter 3. Well-posedness

So by|Corollary 3.2.5/we have

I1(t,x < |t = s|% /%1 + max D
10z, < le=s10 (14 max [D"],,0)

X (16" = B2llcans + NPl ca ([ L gy + ! 5, ) = 25V, ))-
Note moreover that by we have

17 (2, X)|IL,,

1 1
< [Du ]%ﬁ ”I’tl(s’ ) - MZ(S’ ')||[B(T,L17)(t - s)4+ﬁ
P

! ul S,°),8 M2 S,°),S 2 1/2
([ [l 00 =) = 8 ) + 670 ) dvar)

By our bounds on /, J and by the observation that }1 +8 > % + % -q> % + 7, we conclude that

||Ml(l,X) —MZ(I,X) _¢u|(s,'),s(t,x) +¢u2(s,~),S(t’x)”%P <

< (1 4+ max p* 2(1 + ||b?||ca)?
(14 max [D"],)2(1+ D7)

2
X (1! = D2llcans + ) g,y + et (5) =125, larn, ) (1 =) )2

! Lig.. 2(s.- 2
o [ [ perlle ) =) = 6605 09) 4070 v,
A

Note that the norm in the integrand is bounded in (r, y), since it is bounded by [u!, u?] 172, Which is finite

P

by (3.3.23). Using|Lemma 1.3.5} and|Lemma 3.1.3|(where we recall that § < s < ), we get

e (1,x) = u?(1,2) = ¢ O (1,2) + ¢S5 (1, 0) |1,

<1+ p* 1+ || ce
< ( ig{lg}[ ]72!;)( 16°]lce)

X ([ 2] g g+ 1 (5,) = 1208, cr, 2, + 16" = BPllant ) (1 = ) CH) 4,

r

Therefore dividing both sides by (# — 5)!/? and taking supremum over (s, ) € [S,T]%, we obtain the
desired bound with (S, T') in place of (s, ). Now the desired result follows by the fact that (S, T) € [0, 1]2S

was arbitrary. m|

Lemma 3.3.3 (Splitting the ofll,/ 2—bracket). Let Assumption hold and let p € [2, c0). There exists a
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Chapter 3. Well-posedness 3.3. The &),-bracket of two solutions

constant N = N(p, ||o||c4, 1, @, B) such for all (S,T) € [0, 1] and Q € [S,T] we have

1.2 ut 1.2 1 2
[M s U ] 1/2[5 T] < N(l +1g{l?)§}[D ]%ﬁ)([u ,u ]cfl],/z[S,Q] + ||M (S, ) —u (Sa ')”B(T,LP))

+ 2[u1,u2] sV o.r)

Proof. For (s,t) € [0, 1]23, we set

A(s,1) = sup [lu' (1,%) = u?(t,%) = ¢ 5 (1,x) + 6 5 (2, 3) |,

xeT

For (s,1) € [S, Q]ZS or (s,t) € [Q,T]ZS, we clearly have

ACs.1) < (1] g o) + [0 g1 i = 51172 (3:324)

For s < Q < t, by using the triangle inequality and keeping in mind the definition of F;’% (see (3.1.10))

we have

A(s, 1) < A(Q,1)

+sup || (@0 (1, x) = ¢ (DL (1, x) = ' ) (1,x) + 6 S (1,0) I,

xeT

= A(Q t) + SuP HF( ) -0, x, ¢ul(s,~),S(Q’ ')’ ¢u2(s,')’S(Q’ ')’ ul (Q’ ')’ uz(Q’ ))“LP

From this and [Lemma 3.1.6] we conclude that for s < Q <t

12

A(s, 1) < [u', u?] | — s

1/2QT

1 2 1 2 1/2
N+ max (D710 ([0 0%] gy o)+ 1 (S2) =128 lacre, I = 51 (3.3:25)

ie{l,2}

By the above combined with (3.3-24), the inequality (3.3.25)) holds for any (s, ) € [S,T]%, from which

the claim follows. O

Lemma 3.3.4. Let Assumption hold and let K € Zs», p € [2,00). There exists a constant

N =N(p,|lollcs K, u, a, B) such that with M := N(1 + max;e(1 2} [D”i]%p) we have

K-1
[u!, uz]&}’/z < (K = DM uf - udllar) +2 )" M[u', W, K Ky,
i=0
Proof. Letay, = [u', u1]§|/z[s " and u(l)’2 = ||u(1) - u%lqu). We will begin by using induction to show
5 Ls,
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3.3. The &)-bracket of two solutions Chapter 3. Well-posedness

that for alln € {1,...,K — 1} we have

n n—1

ap,1 < M"ao’% + (Z Mi)l/t(l)’2 + 22 MiaK—i—l K-i. (3.3.26)

K > K
i=1 i=0

By we have that

1,2
ap,1 < M(ao’% +u, )+2a%’1,

therefore (3.3.26)) holds for the initial case n = 1. Now suppose that (3.3.26)) holds for some n € N.

We will show that it also holds for n + 1. To this end, we first apply the induction hypothesis and then

to get that

n n—1

aop,1 < M"ay k-n + ( E Mi)l/t(l)’2 +2 E Miaki-i ki
K — e K K
i= i=

n n-1
<M" (M(ao K-n-1 + u(l),Z) +2a K-n-1 K—n) + ( Z 1\/11.)14(1)’2 +2 Z MiaK—i—l K-i
’ K K L K ° K
i=1 i=0
n n-1
= Mn+1a0 K-n-1 + Mn+lu(l)’2 + (Z Ml)u(l)’2 +2M"aK-n-1 K-n +2 Z M'ak-i-1 k-i
> K K °* K K ° K
i=1 i=0

n+l n

= M"+1a0 K-n-1 + (Z Ml)l/t(l)’2 + 22 M'ak-i-1 k-i
P K K ° K
i=1 i=0
as required. Therefore is proven. Now choosing n := K — 1 in (3.3.26), we get
K-1 K-2
ap,1 < ( Z Ml)l/t(l)’2 +MK_1a0 1 +2 Z M'ak-i-1 k-i
*K K °* K
i= i=0
K-1
< (K- I)MK_lbt(l)’2 +2 Z M'ak_io1 ki
K ° K
i=0
as required. |

Lemma 3.3.5. Let Assumption hold. For all p € [2, ) there exists a positive constant Ky =

Ko(max;e (2} [D”i] D, ol css s @, B) such that if K € Z satisfies K > Ko, then there exists a

5
Vop’

constant M = M (p, ||o||c1, @, B) such that for all n € {0, ..., K} we have that
(', u?] i n ey < MK (||M1(0, ) =u?(0,)lper) + Ib' - b2||ca—1) :
Sp x>k

Proof. By there exists some N = N(p, i, ||o||c4, @, ) > O such that for all K € N and
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Chapter 3. Well-posedness 3.3. The &),-bracket of two solutions

ne{0,...,K— 1} we have

[uls u2]§1/2 n n+l

P K’ K
< N(l+ ma p* 1+ ||b?||ca
(1 max [D],.0)(1+1b2lce)
n

n -
iy F HL‘I(K ) - MZ(E’ ')H[EB(T,LP) + ”bl - bz“cml)K ()i,

1.2
(G PP

Let [-] denote the ceiling function, and define the constants

N:=N(1+ p* 1+ ||| ce).
( ig{lf‘,’é}[ ]%r;)( 16| ce)

Ko = [(21\7)%]. (3.3.27)

Then for K > Ky we have that

G P A uZ(%, Moz, + 1" = llcanr. (3.3.28)
In particular, by choosing n = 0, we have
[ w1200,y < ltg = ugllescr) + 116" = b2 ca-r. (33:29)
Let

n 2
-

© +]1b' = B[] ca-r.

) —u

n
a, = [ul,uz]éﬁyz[%,%ﬂ] + Hul( (E’ ')||B(1I,L,,)

In the n = 0 case we can use to bound the first term to get
a0 <2 (Jluy - udllacr) + 16" = bllcan) (3-3.30)

For the general case n € {1,..., K — 1} we first use (3.3.28) to get rid of the first term in the definition of
ay, and then we apply as follows:

n n
an <2l () =12 (2 Mgy 1, + 18" = ¥l
n-— n-1
< M1t g g+l () =2 (o Mg, + 18 = Pl
=May-

for some constant M = M (p, ||o||c1, @, B) > 2. Iterating this result n times and then applying (3.3.30),
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3.3. The &)-bracket of two solutions Chapter 3. Well-posedness

we get

an < M"ag < M"2([lug - ugllar) + 116" = b*l|ca-t)

< M5 M (lug = ugllser) + 16" = B[l canr),

which finishes the proof. O

Lemma 3.3.6 (S *-stability of regularised solutions). Let Assumption hold and let p € [2, ).

There exists a continuous map (with dependencies as indicated below)

[ = Follolpsmap : 10,00 = [0,00)

such that f(x,y) is increasing in both the x and y variables, and that the following inequality holds:

U u? < max ||b'||ce, ma pv ( L +]|b" = b2 af).
2] gy < £ max 6o max 1D%1,0) (g = llace) + 16" = B2llces

Proof. Let K € Z be sufficiently large so that it satisfies the assumption of By

3.3.27) we know that we can choose K = Ny(1 + maxie{l,z}[D”i]Wﬁ)%a(l + ||b2||cw)%a with
2p

No = No(p, i, ||o|| 4, @, B). Then there exists a constant M| = M (p, ||o||c1, @, B) such that
[Ml,uz]gyz[%’%l] < M (luy - ugllser) + 116" = bl ca1). (3.3.31)

Recall moreover that by [Lemma 13.3.4|there exists a constant No = Na(p, |0 ||+, K, 1, @, B) such that for

M := Ny(1 + max;e (1 2 [D"].,6 ) we have
2p

K-1
1 .2 <(K-1 MK—l 1_ .2 +2 Mi 1 2 o e A,
[l/l , U ]057117/2 —= ( ) 2 ”u() uOHB(-ﬂ—) ; 2[” s U ](S’ll)/z[KIé ],KKI (3 3 32)

By (3.3.31)), we get that the second term on the right hand side of (3.3.32)) is bounded by

K-1

2 )" MM (llug - udllacr) + 15" = bl ca-1)
i=0

< 2(K - (M M)X (lud = wllacr + 16" = Bl o).
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Chapter 3. Well-posedness 3.4. The 7/,-bracket of the drift and an a priori estimate

Therefore

2 < (K = 1) (ME +2(M M) ) (luf — udllsr) + 1B = b || car),

1 .2
u,u
[ ]

and the desired result follows by the definitions of K, My, M>. m]

3.4 The 7),-bracket of the drift and an a priori estimate

The aim of this section is to provide a priori bounds on a regularised solution of under Assumption

7.1}

Lemma 3.4.1. Let Assumption hold, let B € ( % — 4. 1+ $1 and assume that u is a regularised
solution of in the class %f . Then u is also of class %P. Moreover for all p € [2, o) there exists a

constant N = N(p, ||o||c4, 1, @, B) > O such that
(D], p < Nexp (NIIBIZT ).

Proof. Let (b"),en € C* be a sequence of smooth functions such that »” — b in C®. Then by the
definition of D" (see (1.7.17)), by the conditional Fatou’s lemma and the usual Fatou’s lemma, for p > 2

and for (s,1) € [0, I]ZS, x € T we have that

1Dy (x) — Pr— sD“(X)IIL/; < lim inf sup

xeT

pt (6, y)b" (u(r, y))dydr

U‘Zv .
Lyl

Therefore by applying we know that

u a/+3
IDY() = Py DAl llbllce (2= )% + (D], (1 = 5)57F)

(z+3
s||b||ca(<r—s>ﬁ+[D“J%ﬁ[s,t]v ),

where we used the assumption that 8 < 1 + /4. Hence there exists N = N(p, ||o||c+, i, @, §) such that

for all (s,1) € [O, 1] we have

(D" 1, 1y < Nlblica + Nlbllca D ], (= )@, (34.33)

Since we assumed that u € %f , we have [D“]%ﬁ < oo, and thus by the inequality (3.4.33]) we have

[D¥].p < o0, and thus u € %g . Since p > 2 was arbitrary, it follows that u € %P.
r
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Note that on the right hand side of (3.4.33)), the [D"]. s [5.1] MY be replaced with [D“]%ﬁ[s - Hence
2 ’ pr ’

choosing sufficiently large K € N, it follows that

1y S [l (3-4.34)

i+l
> K

m
2
e
B
=
N
-
x|~

To this end we may pick K := [(21\7 ||b||ca)ﬁ-|. Moreover using [Lemma 1.11.7|and the inequality

(3-4.34), we obtain that

K-1
u K u
[D%5p10,47 =2 Z(;[D losrg.

1=

K-1

<25 > Ibllce s K2X|b]|ce,
i=0
which finishes the proof . O

Lemma 3.4.2 (The regularity of D*). Let Assumptionhold, and let p € [2,0), B € (% -1+ 41

There exists a constant N = N(p, ||o|| ¢4, 4, @, B) > O such that if u is a regularised solution of class UP,

then
u < @ u
10"t b e,y S N+ bllea) (14 [D%], ).
Proof. Noting that || - ||, = Il - I, 1% I, < Il - Iz, %I, and that from the definition of D" (see
li we have Dj = 0, we conclude for all (t,x) € [0,1] X T that
IDF ()l < ID{(x) = Pr-oDg(0)l 7 < [D*]gp- (3.4.35)

Let (b"),en C C* be a sequence of smooth functions such that 5" — b in C®. By (1.7.17)), Fatou’s
lemma and [Corollary 3.2.3| we can see that for all x,x € T and ¢ € [0, 1] we have

1D¥(0) = DY@z, < liminf | /0 /T (Pr-r(x.3) = pr-r (EY)D" (u(r. y))dydr

< Ibllca (1 +[D"] )l =517 (3.4:36)

Ly

By (3.4.35) and (3.4.36) we can see that

s[%p] ID{llcre(ry s (4 1Ibllca) (1 + [D¥]gp). (3-4.37)
te[0,1
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Finally, note that since by assumption we have 5 > % -q> le’ and thus

[D"lg.1s < [D]gp. (3.4.38)

p

By (3-4.37) and (3.4.38)), the desired bound holds for the CO:z ([0,1] x T, L,,)-norm and for the %,1/4-
bracket. Hence by the proof is finished. m|

Lemma 3.4.3 (An a priori estimate). Let Assumption hold, and let p € [2,0), ¢ € (0, %),
B e (% — 4> 1+ 1. There exists a constant N = N(p, ||o || c+, 4, @, B, &) > O such that if u is a regularised

solution of class UP, then

llu = PoatoC)llcrrs-erin-e(jo.11xt.1,,) < N(L+[lbllca) (1 +[D"]5p).

Proof. For (t,x) € [0,1] X T denote

Vi(x) = fo /T Prr (v V)0 (u(r, Y)E(dy. dr).

By the triangle inequality

||u — PMO||C1/4*8/2’1/2*8([0,1]><1I,Lp) < ||Du||C1/4fg/2,1/278([O’I]XT’LP) + ”V||C1/4*8/2’1/2*8([0,1]><1I,Lp)-

But by , we know that “Du||C1/4’1/2([0,1]><T,L,,) S (1 +bllce)(1 + [D¥],,5) and it can
P

be seen from the BDG inequality and by the heat kernel estimates (1.11.38) and (1.11.39) that

IVIlc1a-er212-¢ j0,11xT.L,,) S 1, and thus the proof is finished. ]

3.5 The proof of well-posedness

Theorem 3.5.1 (Uniqueness). Let Assumption hold, let B € (% - 4> 1 + 7] and suppose that
u', u* are regularised solutions of in the class %5 . Then u'(t,x) = u?(t,x) almost surely for all
(t,x) € [0,1] X T.

Proof. Since u',u’ € %P | it also follows by that u', u?> € %P. Thus Assumption m
satisfied. Therefore by we have for p € [2, o) that

[ul,uz]é,l/z < 0.

r
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3.5. The proof of well-posedness Chapter 3. Well-posedness

Sosince u'(¢,-) —u?(t,-) = u'(t,-) —u?(t,") - ¢”l(0")’s(t, )+ gb“z(o")’s(t, -), it follows that

sup  [lu*(t,x) — (£, x)||,, =0,
(t,x)€[0,1]xT

and the desired result follows. m]

Let Assumption hold. The rest of the section is concerned with proving the existence of
regularised solutions in the class %'*%. Let (b"),en C C* such that 5" — b in C®. Suppose that for all

n € N, u" is the classical mild solution of the SPDE
(0r = Mu" =b"(u") + o (u")¢, u™(0,-)=wu(0,). (3-5-39)

We call (u"),en the sequence of approximate solutions, and for (¢,x) € [0,1] X T we define the

corresponding approximate drift term and approximate noise term respectively by

D" (x) := /O /T Pror (e )" (" (o) dydr.

t
Ve (x) = /0 /T Pror (6, )0 (W (1 Y)E(dy, dr).
By[Lemma 3.4.1] we have for all p > 1, that

sup[D“"]%wm < 00, (3.5.40)

neN p

Lemma 3.5.2 (Convergence of the approximate drift and noise terms). Let Assumption hold,
and let p € [1,00) and ¢ € (0, %). Then the sequences (D" )nen, (V¥ )nen are convergent in

1_e 1

Ca227%([0,1] x T, Lp).

Proof. Assume without loss of generality that p > 2. By [Corollary 3.2.5(with § = 1 + {) and by
we have

sup  |IDY" (x) - D" ()l

(t,x)€[0,1]xT
t
= s | [ [ pe e 67 - b )y
(t,x)€[0,1]xT " JO JT Ly
< D" = B o + [ 0™ g ) < 1B = B o — 0 (3.5.41)
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as n — oo. Moreover by (with 8 =1+ 7) and by (3.5.40), we have that

sup ”Dun||C'/4v'/2([0,1]><1T,Lp) < 0. (3.5.42)
ne

By (3.5.41), (3.5.42), and by a standard interpolation argument, we can see that (D*"),,cy is Cauchy in
1_e 1

§-5372([0,1] X T, L,).

We proceed with showing that the same is true for the sequence (V"*),en. To this end note that by the

BDG inequality, by the definition of the & 11,/ 2—bracket, and by [Lemma 3.3.6|we have

sup IV (x) = VI (),
(t,x)€[0,1]1xT

= sup
(,x)€[0,1]xT

[ [ peren e - o )edy.an
0 T

L,

< M =l 01172, < [0 g1 S 11" = Bt — 0 (3:543)

asn,m — oo. Lety € (0, £). Using the BDG inequality and the heat kernel estimates (1.11.38), (1.11.39)),

we can see that foralln e N, 5,7 € [0, 1], x,x € T the following estimates hold:

t
V6=V @I, < [ [ i) = peer Gy s e =51,

N t
V" (o) = Ve (0l < /O (Pe—r (x,¥) = Ps—r(x,y)dydr + / pi_y (x,y)dydr

N

< e —s|'?.
Therefore we conclude that

sup [Vl 1y1- < co. (3.5.44)

in c%—%%—‘?([o, 1] X T, L,), and thus the proof is finished. O

Consistently with the above lemmas, we will thus denote
D" := lim D*" and V% := lim V*",

n—oo n—oo

where the limits are taken pointwise in (z,x) € [0, 1] X T, in probability. Moreover, it follows that for all
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. i _ nu” i _ yu” —
Jim, (“D D ”c%—%%‘g([o,uxv,L},) +vei-v ”c%-%%-g([o,uxv,Lp)) 0. 3545
Moreover for (¢,x) € [0, 1] x T, we define
i(t,x) = Prug(x) + D (x) + V¥ (x). (3.5.46)

Lemma 3.5.3 (V% is the noise term of it). Let Assumption hold. Forall (t,x) € [0,1] X T, we have

Vi(x) = /0 /T po—r (e ) (a(r,y))E(dy. dr).

Proof. By the definitions of D% and V¥ (see (3.5.45)), by Fatou’s lemma, and by the definition of i (see
(3-5.46)) we have for p > 2 that

Wi = [ [ et e an,

< limint | /0 /T Py () (W (. ) = o (@(r, y)E(dy, dr)

n—oo

L,

A

1/47: - n_ =
" liminf [lu” — dllm(0,11x7,1,,)

2\

Jim ID*" = D™|lg((0,11xT.L,) + Jim V" = V¥lg(o,11xT,1,) = O,

and thus the proof is finished. |

We proceed with verifying that the definition of D¥ is not an abuse of notation, i.e. that D¥ is indeed

the drift of i as prescribed in (1.7.17). To this end, we will first need to prove the following lemma.

Lemma 3.5.4. Let Assumption[1.7.1hold, and for n € N define random fields f" : Qx [0,1] xT — R by

F(1.x) = D (x) /O /T pr—r (e )" (a(r. y))dydr. (3.5.47)

Then for any p € [1, ) we have that ||f”||ci’%([0 XT.L) —> Oasn — oo
> »Lp

Proof. To bound the sup norm, we note that by Fatou’s lemma, (with g = b™ — b™) and
ILemma 3.4.1} we have that

If"lB(o.11xT.L,,) =  sup
(1,x)€[0,T]xT

pr = [ [ st aar

L,
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< liminf sup
M= (¢ x)e[0,T]xT

< liminf [|™ = b"||ce (1 + [D*"]., 1ears) (1 = ) < b - b"|ce,
m-—-o0

and thus

Tim [ f* ls(0.11x7.L,) =0

[ [rertomaneon -srareoma],

P

(3.5.48)

Next, we bound the spatial seminorm. Let x, X € T. In the calculation below we will use the definitions

of D" i, f™ (see (3.5.45). (3.5.46), and (3.5.47)) and the continuity of the approximate drifts, Fatou’s

lemma, (with g(x) = b™(x) — b"(x)) and (3.5.49),

sup [1£"(t,%) = f" (1.9,

te[0,1]

= swp |80 -DE@ = [ [(presten) = pir bt nasar]

te[0,1] P

= sup timint]| [ [ (prer509) = iy ) (6707 00) =57 )

te[0,1]

< liminf ||6™ = b"||ce (1 + [D*" |l — %' < ||b = b colx — x|V
m-—-oo P

Therefore

lim sup [f"(1,)]cinr,L,) =0

=% rel0,1]

Finally, note that for s,¢ € [0, 1] we have by Fatou’s lemma, (with g = p™

that

sup [|f" (2, ) = Pr—s f" (5, %)l 7
xeT L

= sup
xeT

|D?(X)—/OtApz_r(x,y)b”(ﬁ(r,y))dydr

P50 [ [ pes o @dyar)

Fs
p,oo

< sup liminf

xeT m—oo

Trpt—r(x,y)(bm(um(r,y)) = b"(u"™(r,y)))dydr

Fs
Lpls

< liminf [|b™ = 5" [|co (1 + [D""] 1easa) (£ = 5) /4
m—oo 2p

S b= b"llca(r = 5)' 0,
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It follows that

lim [f"]%lmm =0. (3.5.50)

n—oo

By (3-5-48), (3.5.49). (3-5-50), and by [Lemma 1.11.8|the proof is finished. m|

Corollary 3.5.5 (D" is the drift of if). Let Assumption hold. Then the pair (ii, D®) satisfies the
condition from Definition|[1.7.2] that is for any sequence (b™)nen C C* such that b — b in C?,
we have

sup
(t,x)€[0,T]xT

t
Di(x) - /O /T pror (e )" (a(r, y))dydr| — 0
in probability as n — oo.

Theorem 3.5.6 (Existence). Let Assumption|[1.7.1hold. Then the process ii is a regularised solution of

in the class U 1*@/*,

Proof. Since for all n € N, the random field u" (which is a classically defined mild solution) is

P ® %B(T)-measurable, so is the limit 7. By the definition of 7 and by we have that
ii — P.ug € CY4=14=212([0, 11 x T, L,,)

for p > 1 and for any € > 0. Therefore by Kolmogorov’s continuity theorem, the random field
i(t,x) — P;u(0,-)(x) is continuous in (¢,x). So noting that P;u(0, x) is also continuous in (z, x), it
follows that ii(z, x) is continuous in (¢, x). Note moreover that by the pair (ii, D%) satisfies
(1.7:17). Finally, we observe that by the definition of 7 and by [Lemma 3.5.3| the integral equation (1.7.18)

is satisfied. Therefore it is clear that i is a regularised solution of (1.3.9). Moreover for all p > 1 we have

[D™]. 1sars < liminf[D*"]. 1vas < sup[D*"]

l+a/d < OO0,
7 n—00 7 7,

neN p

where the last inequality holds by (3.5.40). Therefore ii € %'**/#, and the proof is finished. m|

94



Bibliography

[ABLM24] S. ATHREYA, O. Butkovsky, K. L&, and L. MyTNnik. Well-posedness of stochastic heat

[AGo1]

[Bal18]

[BCo1]

[BCD11]

[BDG21]

[BDG23]

[BDPR16]

equation with distributional drift and skew stochastic heat equation. Comm. Pure Appl. Math.

77, no. 5, (2024), 2708—2777.|doi:10.1002/cpa.22157.

A. ALABERT and I. GY6NGY. On stochastic reaction-diffusion equations with singular force

term. Bernoulli 7, no. 1, (2001), 145-164. doi:10.2307/3318606.

R. M. BaLaN. A gentle introduction to spdes: the random field approach, 2018. URL

https://arxiv.org/abs/1812.02812.

R. F. Bass and Z.-Q. CHEN. Stochastic differential equations for Dirichlet processes. Probab.

Theory Related Fields 121, no. 3, (2001), 422-446. doi:10.1007/s004400100151.

H. BaHourri, J.-Y. CHEMIN, and R. DANcHIN. Fourier analysis and nonlinear partial
differential equations, vol. 343 of Grundlehren der mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2011.

doi:10.1007/978-3-642-16830-7.

O. Butkovsky, K. DarEeioTis, and M. GERENCSER. Approximation of SDEs: a stochastic
sewing approach. Probab. Theory Related Fields 181, no. 4, (2021), 975—-1034. doi:

10.1007/s00440-021-01080-2.

O. Burtkovsky, K. Dareroris, and M. GERENcCSER. Optimal rate of convergence for
approximations of SPDEs with nonregular drift. SIAM J. Numer. Anal. 61, no. 2, (2023),

1103—-1137.|do1:10.1137/21M1454213,

V. BarBu, G. Da PraTo, and M. ROCKNER. Stochastic porous media equations,
vol. 2163 of Lecture Notes in Mathematics. Springer, [Cham], 2016. |doi:10.1007/

978-3-319-41069-2.

95


http://dx.doi.org/10.1002/cpa.22157
http://dx.doi.org/10.2307/3318606
https://arxiv.org/abs/1812.02812
http://dx.doi.org/10.1007/s004400100151
http://dx.doi.org/10.1007/978-3-642-16830-7
http://dx.doi.org/10.1007/s00440-021-01080-2
http://dx.doi.org/10.1007/s00440-021-01080-2
http://dx.doi.org/10.1137/21M1454213
http://dx.doi.org/10.1007/978-3-319-41069-2
http://dx.doi.org/10.1007/978-3-319-41069-2

BIBLIOGRAPHY BIBLIOGRAPHY

[BF20]

[BGPo4]

[BM19]

[BP98]

[CD22]

[CG16]

[CHN21]

[Conos]

[Davo7]

[DG24]

[DGL23]

[DKM*o09]

L. A. Bianchr and F. FLanpoLi. Stochastic Navier-Stokes equations and related models.

Milan J. Math. 88, no. 1, (2020), 225—246. doi:10.1007/s00032-020-00312-9.

V.BaLvy, I. GyonaGy, and E. PArRpoux. White noise driven parabolic SPDEs with measurable

drift. J. Funct. Anal. 120, no. 2, (1994), 484—510. doi:10.1006/jfan.1994.1040.

O. Butkovsky and L. MyTnik. Regularization by noise and flows of solutions for a stochastic

heat equation. Ann. Probab. 47, no. 1, (2019), 165—212. |doi:10.1214/18-A0P1259.

V. BarLrLy and E. PArRpoux. Malliavin calculus for white noise driven parabolic SPDEs.

Potential Anal. 9, no. 1, (1998), 27-64. |do1:10.1023/A:1008686922032.

R. CateLLiER and R. DuBoscq. Regularization by noise for rough differential equations

driven by gaussian rough paths. arXiv preprint arXiv:2207.04251 (2022).

R. CaTteLLiEr and M. GUBINELLI. Averaging along irregular curves and regularisation
of ODEs. Stochastic Processes and their Applications 126, no. 8, (2016), 2323-2366.

doi:https://doi.org/10.1016/j.spa.2016.02.002.

L. Cuen, Y. Hu, and D. NuaLarT. Regularity and strict positivity of densities for the
nonlinear stochastic heat equation. Mem. Amer. Math. Soc. 273, no. 1340, (2021), V+102.

doi:10.1090/memo/1340.

R. Cont. Modeling term structure dynamics: an infinite dimensional approach. Int. J. Theor.

Appl. Finance 8, no. 3, (2005), 357-380. [doi:10.1142/50219024905003049.

A. M. Davie. Uniqueness of solutions of stochastic differential equations. Int. Math. Res.

Not. IMRN , no. 24, (2007), Art. ID rnm124, 26. [doi:10.1093/imrn/rnm124.

K. Dareroris and M. GERENcCSER. Path-by-path regularisation through multiplicative noise
in rough, Young, and ordinary differential equations. Ann. Probab. 52, no. 5, (2024),

1864-1902. doi:10.1214/24-aop1686.

K. DarEIOTIS, M. GERENCSER, and K. LE. Quantifying a convergence theorem of Gyongy

and Krylov. Ann. Appl. Probab. 33, no. 3, (2023), 2291—2323. doi:10.1214/22-aap1867.

R. DaLang, D. KHosHNEVISAN, C. MUELLER, D. NuaLART, and Y. X1A0. A minicourse

on stochastic partial differential equations, vol. 1962 of Lecture Notes in Mathematics.

96


http://dx.doi.org/10.1007/s00032-020-00312-9
http://dx.doi.org/10.1006/jfan.1994.1040
http://dx.doi.org/10.1214/18-AOP1259
http://dx.doi.org/10.1023/A:1008686922032
http://dx.doi.org/https://doi.org/10.1016/j.spa.2016.02.002
http://dx.doi.org/10.1090/memo/1340
http://dx.doi.org/10.1142/S0219024905003049
http://dx.doi.org/10.1093/imrn/rnm124
http://dx.doi.org/10.1214/24-aop1686
http://dx.doi.org/10.1214/22-aap1867

BIBLIOGRAPHY BIBLIOGRAPHY

[DPFPR13]

[FHL24]

[GHR24]

[GK81]

[GPg3a]

[GP93b]

[Gy695]

[Gy698]

[Gyd99]

[Hai16]

Springer-Verlag, Berlin, 2009. Held at the University of Utah, Salt Lake City, UT, May 8-19,

2006.

G. Da PraTo, F. FLANDOLI, E. PrioLA, and M. ROCkNER. Strong uniqueness for stochastic
evolution equations in Hilbert spaces perturbed by a bounded measurable drift. Ann. Probab.

41, no. 5, (2013), 3306—3344. doi:10.1214/12-A0P763.

P. K. Friz, A. Hocquer, and K. L&. Rough stochastic differential equations, 2024. URL

https://arxiv.org/abs/2106.10340.

L. GoupeNEGE, E. M. HarEss, and A. RicHArRD. Numerical approximation of the stochastic
heat equation with a distributional reaction term, 2024. URL https://arxiv.org/abs/

2405.08201.

I. Gyonay and N. V. KryLov. On stochastic equations with respect to semimartingales. 1.

Stochastics 4, no. 1, (1980/81), 1—21.|doi:10.1080/03610918008833154.

I. Gyonagy and E. PArRpoux. On quasi-linear stochastic partial differential equations. Probab.

Theory Related Fields 94, no. 4, (1993), 413—425. doi:10.1007/BF@1192556.

I. Gyongy and E. PArRpoux. On the regularization effect of space-time white noise on
quasi-linear parabolic partial differential equations. Probab. Theory Related Fields 97, no.

1-2, (1993), 211—229. |[doi:10.1007/BF01199321.

I. Gyonagy. On non-degenerate quasi-linear stochastic partial differential equations. Potential

Anal. 4, no. 2, (1995), 157-171.|doi:10.1007/BF@1275588.

I. Gyonay. Lattice approximations for stochastic quasi-linear parabolic partial differential
equations driven by space-time white noise. I. Potential Anal. 9, no. 1, (1998), 1—25.

doi:10.1023/A:1008615012377.

I. Gyongy. Lattice approximations for stochastic quasi-linear parabolic partial differential
equations driven by space-time white noise. II. Potential Anal. 11, no. 1, (1999), 1-37.

doi:10.1023/A:1008699504438.

M. Harer. Regularity structures and the dynamical <D‘3‘ model. In Current developments in

mathematics 2014, 1—49. Int. Press, Somerville, MA, 2016.

97


http://dx.doi.org/10.1214/12-AOP763
https://arxiv.org/abs/2106.10340
https://arxiv.org/abs/2405.08201
https://arxiv.org/abs/2405.08201
http://dx.doi.org/10.1080/03610918008833154
http://dx.doi.org/10.1007/BF01192556
http://dx.doi.org/10.1007/BF01199321
http://dx.doi.org/10.1007/BF01275588
http://dx.doi.org/10.1023/A:1008615012377
http://dx.doi.org/10.1023/A:1008699504438

BIBLIOGRAPHY BIBLIOGRAPHY

[Haiz1]

[HQ18]

[ISo1]

[1to51]

[JIP23]

[KRos5]

[Kryg9]

[Lézo]

[Le23]

[LR17]

[Mal78]

M. HaIrer. Introduction to Malliavin calculus, 2021. URL https://www.hairer.org/

notes/Malliavin.pdfl

M. Hairer and J. QuasTeL. A class of growth models rescaling to KPZ. Forum Math. Pi 6,

(2018), €3, 112.|d01:10.1017/fmp.2018. 2.

P. ImxeLLER and B. Scumarruss. The conjugacy of stochastic and random differential
equations and the existence of global attractors. J. Dynam. Differential Equations 13, no. 2,

(2001), 215—249. doi:10.1023/A: 1016673307045,
K. IT6. On stochastic differential equations. Mem. Amer. Math. Soc. 4, (1951), 51.

L. M. C. JAQuEz, E. IssocL10, and J. ParLczewski. Convergence rate of numerical scheme
for SDEs with a distributional drift in Besov space, 2023. URL https://arxiv.org/abs/

2309.11396.

N. V. KryLov and M. ROckNER. Strong solutions of stochastic equations with singular
time dependent drift. Probab. Theory Related Fields 131, no. 2, (2005), 154—196. |doi:

10.1007/500440-004-0361-2.

N. V. KryLov. An analytic approach to SPDEs. In Stochastic partial differential equations:
six perspectives, vol. 64 of Math. Surveys Monogr., 185—242. Amer. Math. Soc., Providence,

RI, 1999. doi:10.1090/surv/064/05.

K. LE. A stochastic sewing lemma and applications. Electron. J. Probab. 25, (2020), Paper

No. 38, 55.1doi:10.1214/20-ejp442.

K. L&. Stochastic sewing in Banach spaces. Electron. J. Probab. 28, (2023), Paper No. 26,

22.|doi:10.1214/23-e3p918!

S. V. Lototsky and B. L. Rozovsky. Stochastic partial differential equations. Universitext.

Springer, Cham, 2017. |[doi:10.1007/978-3-319-58647-2.

P. MaLL1AVIN. Stochastic calculus of variation and hypoelliptic operators. In Proceedings
of the International Symposium on Stochastic Differential Equations (Res. Inst. Math. Sci.,
Kyoto Univ., Kyoto, 1976), Wiley-Intersci. Publ., 195—263. John Wiley & Sons, New
York-Chichester-Brisbane, 1978.

98


https://www.hairer.org/notes/Malliavin.pdf
https://www.hairer.org/notes/Malliavin.pdf
http://dx.doi.org/10.1017/fmp.2018.2
http://dx.doi.org/10.1023/A:1016673307045
https://arxiv.org/abs/2309.11396
https://arxiv.org/abs/2309.11396
http://dx.doi.org/10.1007/s00440-004-0361-z
http://dx.doi.org/10.1007/s00440-004-0361-z
http://dx.doi.org/10.1090/surv/064/05
http://dx.doi.org/10.1214/20-ejp442
http://dx.doi.org/10.1214/23-ejp918
http://dx.doi.org/10.1007/978-3-319-58647-2

BIBLIOGRAPHY BIBLIOGRAPHY

[Nuao6]

[Per20]

[Por75]

[PZ93]

[SSo4]

[Ver8o]

[Wal86]

[Zvo74]

D. NuaLarT. The Malliavin calculus and related topics. Probability and its Applications

(New York). Springer-Verlag, Berlin, second ed., 2006.
N. Perkowski. Paracontrolled distributions and singular SPDEs. Lecture notes (2020).

N. I. PortENKO. On the existence of solutions of stochastic differential equations with
integrable drift coefficient. Theory of Probability & Its Applications 19, no. 3, (1975),

552-557. doi: 10.1137/1119061.

E. Parpoux and T. S. ZuHANG. Absolute continuity of the law of the solution of a parabolic

SPDE. J. Funct. Anal. 112, no. 2, (1993), 447—458. |doi:10.1006/jfan.1993.1040.

M. Sanz-SorE. A course on Malliavin calculus with applications to stochastic partial

differential equations. Lecture Notes (2004).

A. J. VEReTENNIKOV. Strong solutions and explicit formulas for solutions of stochastic

integral equations. Mat. Sb. (N.S.) 111(153), no. 3, (1980), 434—452, 480.

J. B. WaLsH. An introduction to stochastic partial differential equations. In Ecole d’été
de probabilités de Saint-Flour, XIV—1984, vol. 1180 of Lecture Notes in Math., 265-439.

Springer, Berlin, 1986. |[doi:10.1007/BFb0074920.

A. K. Zvonkin. A transformation of the phase space of a diffusion process that will remove

the drift. Mat. Sb. (N.S.) 93(135), (1974), 120—149, 152.

99


http://dx.doi.org/10.1137/1119061
http://dx.doi.org/10.1006/jfan.1993.1040
http://dx.doi.org/10.1007/BFb0074920

	Introduction
	What is an SPDE?
	Notation
	Mild solutions
	Besov spaces and negative Hölder spaces
	Introduction to regularisation by noise
	The literature
	Formulation and the well-posedness result
	Overview of methods of proofs
	Stochastic sewing
	Malliavin calculus
	Useful estimates

	Malliavin calculus for the driftless equation
	Moment bounds for Malliavin derivatives
	Lipschitzness in the initial condition
	Nondegeneracy
	Estimates on the density

	Well-posedness
	Driftless approximation
	Regularisation estimates
	The  p-bracket of two solutions
	The  p-bracket of the drift and an a priori estimate
	The proof of well-posedness


