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Abstract

Buried pipe networks present unique challenges for robotic localization and mapping
due to their constrained environments and limited accessibility. Real-time localiza-
tion and mapping are essential for enabling robots to autonomously navigate these
networks for inspection and maintenance. This thesis introduces methods for robotic
localization and topological mapping in buried pipe networks.

The first method focuses on accurate localization by emphasising junction
detection and real-time mapping. Utilising the structured nature of pipe networks,
the robot identifies and maps junctions, reducing computational load and reliance
on continuous video processing. A localization algorithm employing convolutional
filters accurately identified junctions in the network. When navigating a simulated
pipe network, the robot activated its camera only at junctions, reducing cumulative
localization errors significantly. By comparing newly captured images with a pre-
existing database, the robot determined whether the junction was known or new,
adding it to a topological map.

Building upon this, the second method enhances mapping accuracy by using
panoramic images created from junction photos. These images enabled the robot to
determine the number and angles of junction exits, with the angle error maintained
within 10 degrees. This method generated a topological map that provided a
more accurate representation of the physical layout of the pipe network, improving
navigation and planning.

Developed in a simulation environment and tested in experiments with physical
robots in pipes, the second method demonstrated improved mapping precision and
real-time localization, offering potential applications for the mapping, inspection,
and maintenance of buried infrastructure.
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Chapter 1

Introduction

The field of robotics has experienced rapid advancements in recent years, driving
innovation across sectors such as manufacturing, healthcare, infrastructure, and
service industries. A particularly significant development is in autonomous robots,
which can operate in environments where human intervention is difficult, dangerous,
or costly. These robots are increasingly utilized for infrastructure maintenance,
particularly in confined and hazardous spaces like pipes, tunnels, and underground
networks. With aging infrastructure, growing urbanization, and the demand for
efficient, safe, and cost-effective inspection and maintenance methods, the need for
such autonomous systems is becoming increasingly urgent.

One specialized area within this field is infrastructure robotics, which focuses
on deploying robots in environments such as buried pipe networks. These
networks present unique challenges, including confined spaces, harsh environmental
conditions, and limited access. Autonomous robots designed for these tasks must
possess localization and mapping capabilities to navigate accurately and perform
maintenance effectively.

A critical application within infrastructure robotics is pipe robotics, which
involves the inspection, maintenance, and mapping of buried pipe networks. These
robots must autonomously navigate constrained environments with limited visual
data and often unreliable communication signals. While several robotic solutions
have been developed for general pipe inspection, achieving real-time localization in
these networks remains a significant research challenge.

Localization, the process of determining a robot’s position within its envi-
ronment, is vital for the success of autonomous pipe robots. The confined and
featureless interiors of pipes make accurate localization particularly difficult. This
thesis focuses on a specific aspect of the challenge in buried pipe networks: real-time
localization and topological mapping. While general pipe robotics may address
inspection or damage detection, this research narrows its scope to enhance the
accuracy and efficiency of localization in environments where sensory input is
limited, and traditional methods struggle.

Unlike general pipe robotics, which focuses on tasks such as inspection or damage
detection, this research focuses on the problem of localization. By narrowing the
scope, the aim is to enhance the robot’s ability to localize and map the network
accurately, even with limited sensory input. This targeted approach is expected to
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improve the robot’s operational efficiency and contribute to safer and more reliable
infrastructure maintenance. The research and development of these methods are
central to the ongoing work in the Pipebots project, which is funded by UK Research
and Innovation (UKRI). Pipebots are small, intelligent robots designed to operate
in pipe networks, navigating autonomously to inspect, maintain, and ensure the
integrity of these crucial infrastructures.

1.1 Overview of Infrastructure Robotics

Infrastructure robotics is increasingly playing a pivotal role in enhancing urban
infrastructure management by integrating technologies for efficient and sustainable
operations. As cities expand and their infrastructures age, the need for innovative
solutions to maintain critical systems like water distribution, sewage networks, and
gas supply has become more pressing. Robotics, with its ability to conduct precise
inspections and perform maintenance tasks autonomously, presents a promising
approach to overcoming the limitations of conventional methods. This section delves
into the transformative impact of infrastructure robotics, highlighting their roles,
challenges, and the specific applications within pipe networks.

1.1.1 Roles and Challenges of Infrastructure Robotics

Infrastructure robotics is increasingly becoming integral to managing and maintain-
ing urban environments. Robotics plays transformative roles in various aspects of
infrastructure management, enhancing efficiency, safety, and sustainability. Robots
equipped with sensors such as cameras, LIDAR, sonar, and acoustic sensors conduct
thorough inspections of infrastructure systems (Lattanzi and Miller, 2017). These
sensors allow for the collection of high-resolution data, enabling detailed mapping
and assessment of the structural conditions of critical infrastructure. Visual
inspections identify issues like cracks, blockages, and corrosion, providing vital
information for maintenance planning. Moreover, robots can perform continuous
and autonomous inspections without human intervention, reducing the need for
manual checks that are often labor-intensive and risky (Menendez et al., 2018).
Frequent inspections help detect potential issues early, preventing major failures
and minimizing disruptions (Balaguer and Abderrahim, 2008).

Infrastructure robots play a crucial role in the proactive maintenance of urban
systems. They are capable of performing minor repairs, such as clearing obstructions
and patching small leaks, thereby extending the lifespan of infrastructure assets.
This proactive approach shifts maintenance strategies from reactive to preventive,
leading to cost savings and reduced environmental impact. The integration of
robotics into infrastructure management enables the collection of vast amounts
of data, essential for predictive analytics and decision-making. Robots equipped
with Al algorithms can analyze data in real-time, providing insights into system
performance and identifying areas that require attention (Vrontis et al., 2023). This
data-driven approach enhances understanding and supports the development of more
efficient maintenance strategies.
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Additionally, the use of edge computing and IoT in conjunction with robotics
allows for seamless data integration and analysis. This capability enables utility
companies to optimize asset monitoring and performance evaluation, ensuring
that maintenance resources are allocated effectively. The deployment of robotic
technologies contributes to the resilience of urban infrastructures (Golubchikov and
Thornbush, 2020). By improving the reliability and efficiency of infrastructure
systems, robotics supports sustainable urban development. This aligns with smart
city initiatives that aim to integrate technologies into urban management practices,
enhancing service delivery and environmental protection.

However, the integration of robotics into infrastructure systems, particularly pipe
networks, presents several unique challenges. Robots operating in pipe networks face
harsh and hazardous conditions such as sewer lines, water mains, and underground
pipes. These environments can be wet, dark, and filled with debris, which can
interfere with robotic sensors and mechanical components. The presence of water,
mud, and other particulates can obscure sensor readings and cause damage to
components, posing significant reliability challenges. Additionally, robots must
navigate confined spaces that often have varying diameters, irregular shapes, and
unpredictable layouts, making maneuverability difficult. Navigation systems capable
of adapting to these unpredictable conditions are essential to cope with these
challenges.

Accurate localization and mapping are crucial for robotic operations in pipe
networks. Many current systems rely heavily on visual sensors, which can be
hindered by poor lighting conditions and obstructions. Simultaneous Localization
and Mapping (SLAM) technologies are vital for handling the complexities of
underground pipes, enabling robots to autonomously navigate and map these
environments (Rezende et al., 2020). Effective communication between robots and
their human operators is critical, especially in underground environments where
conventional wireless communication methods can be severely impeded by dense and
metallic surroundings (Zhao et al., 2017). Maintaining reliable communication in
environments with high signal attenuation and interference is a significant challenge,
requiring robust communication protocols. Systems that rely on distance and vision
sensors face challenges in environments with poor visibility or obstructed paths.
Future systems need to integrate additional sensor modalities, such as thermal
imaging or radar, to enhance robustness and ensure reliable operation under various
environmental conditions.

From a practical perspective, scaling robotic systems to cover larger pipe
networks is challenging. Systems that perform well in controlled environments may
face additional challenges in larger networks with numerous junctions and varying
pipe diameters. The overall energy efficiency of robotic systems during long-duration
missions is a concern. Optimizing battery life and energy management strategies
is essential to support extended operations in extensive pipe networks (Gurguze
and Turkoglu, 2018). Real-world scenarios often involve unexpected obstacles and
debris that can impact the robot’s navigation. Obstacle detection and avoidance
algorithms are necessary to improve reliability and safety during operations (Pandey
et al., 2017).

In conclusion, infrastructure robotics plays a multifaceted role in enhancing
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the management and sustainability of urban environments. Through inspection,
maintenance, data collection, and autonomous operation, robots contribute to the
development of smarter, more resilient urban infrastructures. However, overcoming
the challenges associated with pipe network robotics spanning environmental,
technical, and practical domains requires advancements in sensor technologies,
communication systems, and autonomous navigation capabilities, as well as strategic
energy management and scalability solutions. Addressing these issues is crucial for
the successful deployment of robotic systems in diverse and challenging real-world
environments, ultimately supporting the creation of smarter, more connected cities.

1.1.2 Overview of Pipe Networks

Pipe networks are essential to modern urban and industrial systems, facilitating
the transportation of water, gas, oil, and other fluids across extensive areas. These
networks form the backbone of key utilities, ensuring that resources are delivered to
homes, businesses, and industries efficiently. Constructed using durable materials
such as steel, concrete, and plastic, pipe networks are designed to withstand harsh
environmental conditions, pressure variations, and chemical exposure.

In the UK and across Europe, pipe networks are vast and intricate. For instance,
the UK’s water supply network includes approximately 354,000 kilometers of pipes,
while its gas network spans about 284,000 kilometers (Gabriel, 2024; Resources,
2020). These networks are supported by extensive infrastructure, including pumping
stations, reservoirs, and treatment plants, to maintain consistent service delivery.
According to industry data, a significant portion of these networks, particularly
in older cities, was laid in the 19th and early 20th centuries, which makes them
vulnerable to deterioration and failure due to aging (Repair, 2024).

The management and maintenance of these pipe networks are critical to ensuring
their continued operation. In Europe, aging infrastructure is a major concern,
with many countries investing billions annually in maintaining and upgrading their
networks (Repair, 2024). For example, it is estimated that water utilities in Europe
spend around €45 billion annually on the operation, maintenance, and upgrading
of their pipe infrastructure. Despite these efforts, issues such as pipe bursts, leaks,
and blockages remain common, leading to water loss and service disruptions. In the
UK alone, around 3 billion liters of water are lost daily due to leaks (Repair, 2024),
highlighting the scale of the challenge.

The complexity of pipe networks, particularly in urban settings, presents unique
challenges for maintenance and inspection. Conventional methods of manual
inspection and repair often require excavation, which is not only costly and time-
consuming but also disruptive to traffic and daily life. In response to these
challenges, European countries are increasingly turning to technologies such as
robotics, artificial intelligence, and remote sensing to monitor and maintain pipe
networks (Resources, 2020). Robotic systems equipped with cameras, sensors, and
data processing algorithms can navigate through pipes autonomously, identifying
defects, mapping the internal structure, and even performing minor repairs. This
shift towards automation is aimed at reducing operational costs, minimizing
disruptions, and extending the lifespan of the infrastructure (Pipeline and Journal,
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2024).

In addition to technological advancements, many European countries are
adopting more sustainable practices in the management of their pipe networks.
Efforts are being made to reduce water loss, improve the energy efficiency of
pumping stations, and adopt eco-friendly materials for new installations and
repairs. The push towards creating “smart” pipe networks, integrated with real-time
monitoring systems, is also gaining momentum. These smart networks use sensors
to continuously monitor pipe conditions, flow rates, and pressure levels, allowing
for early detection of potential issues and more efficient resource management
(Resources, 2020; Pipeline and Journal, 2024).

In summary, pipe networks are a critical element of modern infrastructure,
supporting a wide range of utilities that are essential to daily life. In the UK
and across Europe, these networks are vast and aging, necessitating significant
investment in their maintenance and modernization. With the help of technologies
and smart infrastructure initiatives, the future of pipe networks looks to be more
resilient, efficient, and sustainable.

However, this study will focus on buried pipe networks, which feature character-
istics such as junctions, manholes, and small pipe diameters, making it inaccessible
for humans to enter the pipes directly. Buried pipe networks are critical components
of urban infrastructure, responsible for collecting and transporting wastewater from
residential, commercial, and industrial areas to treatment facilities. They play a
pivotal role in protecting public health and the environment by preventing the
contamination of natural water bodies. As shown in Figure 1.1, the interior of
a buried pipe is often characterized by limited visibility and confined space, which
complicates maintenance efforts.

Figure 1.1: Interior view of a buried pipe, demonstrating the confined space and
limited visibility that pose challenges for maintenance and inspection.

These networks are typically composed of a series of interconnected pipes and
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channels, designed to transport wastewater by gravity or with the aid of pumps.
Key components include sewer pipes, junctions, manholes, and treatment plants.
The design of buried pipe networks must consider factors such as flow capacity, pipe
material, slope, and access for maintenance, despite the limited accessibility of the
system.

Buried pipe networks face unique challenges, including the management of inflow
and infiltration, aging infrastructure, blockages, and capacity limitations during
heavy rainfall. These challenges necessitate effective design, regular maintenance,
and strategic upgrades to ensure reliable and efficient operation. By focusing on
buried pipe networks, this study aims to explore these challenges in detail. The
internal view of a buried pipe, as seen in Figure 1.2, illustrates the structural
characteristics and potential challenges, which are crucial for understanding how
these systems function and the difficulties in their maintenance.

Figure 1.2: Internal structure of a buried pipe, showcasing its design and potential
obstacles for effective management and maintenance.

The primary focus of this thesis is on localization and mapping within these
buried networks. Accurate localization and mapping are essential for the main-
tenance and repair of these systems, helping to identify the exact locations of
pipes, as well as any defects or blockages within them. This study will explore
technologies and methodologies for achieving localization and mapping in buried
pipe networks, addressing the challenges posed by the inaccessible environments
within these systems. The findings aim to contribute to enhanced performance and
sustainability of these networks through improved maintenance strategies.

1.1.3 Significance, and Characteristics of Buried Pipe Net-
works

Buried pipe networks are a critical component of modern infrastructure, providing

essential services in various sectors, including water distribution, wastewater

management, gas supply, and industrial processes (Moser, 1990). The design,
installation, operation, and maintenance of these underground networks are vital for
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ensuring the continuous delivery of essential resources while minimizing disruptions
to aboveground activities.

The significance of buried pipe networks lies in their hidden yet indispensable
role across multiple domains (Hao et al., 2012). In water distribution systems, these
networks ensure that clean drinking water is delivered to residential, commercial, and
industrial areas without contamination or interruption, even under urban landscapes
(Eiger et al., 1994). They also supply water for fire protection systems, contributing
to public safety. In wastewater and sewage systems, buried pipe networks play a
crucial role in safely transporting sewage and stormwater away from populated areas,
preventing contamination of water bodies, and thus protecting public health and the
environment (Ashley and Hopkinson, 2002). In the realm of gas distribution, buried
pipe networks are designed to deliver natural gas and other fuels safely and efficiently
to homes and industries, ensuring a reliable energy supply (Herrdn-Gonzélez et al.,
2009). In industrial processes, underground pipes transport chemicals, process
fluids, and other materials necessary for manufacturing while reducing hazards
associated with surface piping systems.

The characteristics of buried pipe networks are shaped by their operational
environment, which demands specific design considerations for reliability, longevity,
and safety (Hao et al., 2012). These networks typically consist of pipes made
from materials like steel, PVC, ductile iron, or concrete, chosen for their ability
to withstand varying pressures, fluid types, and environmental conditions. Fittings,
valves, and pumps are integrated into the network to manage flow direction, regulate
pressure, and ensure that fluids move efficiently through the system. In buried
systems, additional factors like soil conditions, corrosion, and external loads must
be considered to prevent system failure over time. Proper fluid dynamics calculations
are essential to avoid issues such as water hammer, which can damage pipes or cause
bursts (Sharifi et al., 2018). The topology of the network is carefully planned to
ensure redundancy, allowing the system to remain operational even if certain sections
need maintenance or experience disruptions.

Operationally, buried pipe networks must be designed to manage pressure
fluctuations that could lead to leaks or bursts, which are particularly challenging to
detect and repair due to the network’s hidden nature. As such, modern buried
networks often incorporate technologies like sensors and automated systems for
real-time monitoring of pressure, flow rates, and potential failures (Narayanan
and Sankaranarayanan, 2019). These technologies enable proactive maintenance
and quick response to emerging issues, reducing the risk of larger disruptions and
environmental damage.

Despite their importance, buried pipe networks face numerous challenges. Aging
infrastructure is a significant concern, with many systems, particularly in older
cities, having been installed decades ago (Doyle et al., 2008). These aging systems
are prone to leakage, which not only results in resource wastage but also poses risks
to public health and environmental safety due to contamination of groundwater or
other resources. Repairing and upgrading buried pipe networks can be complex and
costly, often requiring excavation, which disrupts traffic and daily life (Chung et al.,
2006). However, technological advancements, such as trenchless repair techniques,
are helping to minimize these impacts.
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Overall, the effective management of buried pipe networks is crucial to maintain-
ing their functionality and ensuring that essential services continue to be delivered
safely and efficiently. This involves regular inspection, timely repairs, emergency
response planning, and long-term strategies for upgrading and expanding systems
to accommodate growing demand.

1.1.4 Robots in Buried Pipe Networks

Maintaining buried pipe networks, which are essential for utilities such as water,
gas, and sewage systems, is a challenge due to their underground location and
the difficulty in accessing them. These networks are often hidden beneath layers
of infrastructure, making inspections and repairs time-consuming and disruptive.
Timely maintenance is critical to avoid blockages, leaks, and potential failures
that could lead to service disruptions. Conventional methods of managing these
networks typically involve reactive maintenance, where manual inspections and
repairs are carried out after a failure has been detected. This often necessitates the
excavation of roads and other infrastructure to access the buried pipes, causing traffic
delays, economic impacts, and safety risks for workers entering confined, hazardous
environments.

To address these challenges, there is a growing need for proactive, non-invasive
technologies capable of predicting and mitigating potential failures in pipe networks.
Advancements in robotics offer promising solutions, providing a means to perform
inspections, identify faults, and carry out minor repairs in pipe systems without the
need for significant human intervention. Equipped with sensors and autonomous
navigation capabilities, robots can efficiently operate within pipe networks to detect
issues before they escalate into larger problems, ultimately enhancing the safety and
efficiency of network management (Aitken et al., 2021).

One prominent example of such technology is the Pipebots project, funded by
the UK Research and Innovation (UKRI). Pipebots are small, intelligent robots
designed to navigate the pipe networks of various utilities to perform tasks such as
inspection, cleaning, and minor repairs. These robots are equipped with a range
of sensors, including cameras, LiDAR, and ultrasonic sensors, which allow them to
detect and assess defects in pipes, such as cracks, leaks, and corrosion (Team, 2019).
As shown in Figure 1.3, these sensors and components enable the robot to perform
autonomous navigation and operate effectively within confined environments.

The Pipebots project has successfully developed miniaturized robots that can
access pipes as small as 75 mm in diameter. This capability is particularly
advantageous for older or narrower pipe networks, where manual inspection would
be difficult or impossible. These robots use a combination of visual and acoustic
sensors to map the interior of pipes, enabling the detection of various issues such
as blockages, cracks, and material degradation (Nguyen et al., 2022). The ability
to generate detailed maps and provide accurate condition assessments is crucial for
effective maintenance planning and decision-making.

Robots used in pipe networks can be equipped with various sensors, including
cameras, sonar, LiDAR, and gas detectors, to gather a comprehensive array of
data about the condition of the pipes. For instance, robots equipped with cameras
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Figure 1.3: Illustration of a robot’s sensors and components, showing how the robot
performs autonomous navigation.

can capture detailed images of pipe interiors, allowing for the detection of cracks,
blockages, and other structural issues. The Pipebots project, for example, has
leveraged high-resolution cameras to conduct visual inspections and classify defects
in pipe networks (Team, 2019).

In addition to visual inspections, sonar and LiDAR systems are often used to map
the internal geometry of pipes and identify deformities or sediment build-up that
may not be visible through cameras. Zhang et al. utilized LiDAR technology within
a visual SLAM system to enhance mapping accuracy in pipe networks (Zhang et al.,
2023). LiDAR provides precise distance measurements, enabling robots to create
detailed 3D maps of pipe interiors, even in environments with low light or difficult
conditions. Acoustic sensors can also play a role, as demonstrated by Yu et al., who
utilized sound wave reflections to detect variations in pipe materials and identify
blockages (Yu et al., 2023). This method is especially useful in environments where
visual data is insufficient or unreliable.

Smart pipe networks are becoming key investment areas for utility companies in
developed countries, supporting the transition toward more sustainable and resilient
infrastructure. Advances in robotics, in conjunction with the Internet of Things
(IoT) and edge computing, enable utility companies to collect more detailed infor-
mation about their networks and assets. Robotic systems, operating autonomously
within pipe networks, can continuously monitor conditions, shifting maintenance
strategies from reactive to proactive. These autonomous robotic systems, integrated
with Al and sensing technologies, can supplement conventional data sources to
improve network performance analysis and maintenance planning. With access to
big data from robotic inspections, utility companies can simulate network behavior,
assess performance, and identify potential issues such as bottlenecks or capacity
constraints (Mounce et al., 2021).

The use of robotic technologies in pipe networks also offers the potential for
significant cost savings. Automated inspections can be performed more frequently
and thoroughly than manual methods, leading to earlier detection of issues and
reducing the risk of critical failures. This proactive maintenance approach extends
the lifespan of pipe infrastructure and optimizes resource allocation for maintenance
activities.

The Pipebots project is making strides in advancing micro-robotic systems for
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inspecting and maintaining pipe networks. These small robots are being developed
to navigate the confined spaces within pipes, helping to detect and address potential
issues early on, which could help reduce costs and limit disruptions to infrastructure.
The project is a joint effort between academic institutions and industry partners,
working together to improve the sustainability and efficiency of utility networks.

As a member of the Pipebots project group, I contribute to the development of
autonomous robotic systems for localization and mapping within pipe networks.
Our goal is to create intelligent, resilient systems capable of delivering failure-
free operations, eliminating the need for unplanned excavations and ensuring more
reliable service delivery across critical infrastructure networks.

1.1.5 Mapping and localization

This research addresses the challenges of real-time localization and mapping for
robots operating in constrained environments like buried pipe networks, where
conventional techniques relying on continuous visual input or GPS signals are
ineffective. Instead, this system combines topological mapping with geometric
localization to navigate the unique constraints of pipe networks.

Given the limitations of subterranean settings, such as low-light conditions and
narrow spaces, continuous visual data collection is impractical. Therefore, the
system uses selective visual sampling at critical points like pipe junctions, integrated
with data from distance sensors and inertial measurement units (IMUs). The
primary challenge is accurately localizing the robot based on limited visual data,
while maintaining a precise map of the pipe network. This requires the development
of real-time algorithms that handle image processing, localization, and mapping
despite the limited computational capacity of small robotic systems.

The topological maps generated must not only reflect the network’s connectivity
but also represent the geometric relationships between junctions. This accuracy
is essential for effective navigation and decision-making within the pipe network.
The robot must autonomously identify known and unknown junctions, update its
position, and determine the best navigational path based on the evolving map—all
in real-time. Panoramic image stitching and normalized cross-correlation (NCC)
algorithms are used to enhance the system’s ability to accurately differentiate
between junctions. Additionally, the robot must adapt to fluctuating environmental
conditions such as obstacles, varied geometries, and changes in lighting or water
levels, ensuring robust localization and mapping under adverse conditions.

This research distinguishes itself from previous efforts by moving away from
continuous visual input and metric mapping, both of which are computationally
intensive and less reliable in subterranean environments. Instead, it adopts selective
visual sampling and topological mapping, which reduce the computational and
energy demands on the robot while still maintaining high accuracy. The use of
panoramic image stitching and NCC further enhances map precision, setting this
approach apart from conventional SLAM methodologies.

In contrast to earlier methods like visual SLAM (vSLAM) and LiDAR-based
SLAM, which rely on continuous data collection and struggle in constrained
environments, this system focuses on selective sampling at critical points, improving
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efficiency without sacrificing accuracy. SLAM technologies, especially visual and
LiDAR-based, have shown great promise in many settings, but they face significant
challenges when applied to confined environments like buried pipe networks. These
environments are often characterized by low-light conditions, narrow passages, and
featureless surfaces, which significantly degrade the performance of traditional visual
SLAM systems. In such settings, conventional SLAM approaches that depend
on continuous visual input are impractical due to the lack of distinguishable
landmarks and the inability of cameras to capture meaningful data under poor
lighting conditions. As a result, visual data often becomes noisy, causing drift and
inaccuracies in the robot’s estimated position over time.

Furthermore, LiDAR-based SLAM, while providing precise distance measure-
ments, also struggles in pipe networks due to the smooth, cylindrical surfaces of
pipes, which provide minimal reflective features. This limited reflection reduces
the effectiveness of LIDAR in capturing accurate 3D representations of the pipe’s
geometry. In addition to these physical challenges, the irregular geometries of
some pipe networks, with varying diameters, bends, and junctions, complicate the
generation of reliable and consistent maps. The inability of traditional SLAM
methods to handle such variability can lead to the failure of localization algorithms,
especially in areas where the pipe network branches or where the path becomes more
convoluted.

As shown in Figure 1.4, previous systems often faced difficulties in confined
environments like buried pipes, where continuous data collection becomes less
effective. This is primarily due to sensor limitations, such as the limited range
of LiDAR and the difficulty of processing large amounts of visual data in real-time
under adverse conditions. These methods also struggle with high levels of noise
and interference from environmental factors, such as water accumulation, debris,
or the metallic nature of pipes that can interfere with sensor signals, leading to
inconsistent data and poor map quality. Furthermore, traditional systems often
lack the capability to identify junctions and other critical features that are essential
for accurate mapping and navigation in pipe networks. Junction recognition is a
crucial component for effective localization, as it provides key reference points for
the robot to update its position and continue navigating through the network.

This research addresses these challenges by incorporating NCC (Normalized
Cross-Correlation) algorithms specifically designed for junction identification and
differentiation. By focusing on critical points such as junctions, where the network’s
topology changes, the robot can generate a topological map that accurately reflects
the layout of the pipe network. This method significantly reduces the reliance on
continuous data collection, which is computationally expensive and less reliable in
confined environments. Additionally, the selective sampling strategy ensures that
the robot can operate efficiently without overburdening its limited computational
and energy resources, all while maintaining high levels of mapping accuracy. By
avoiding the pitfalls of continuous data collection, this system provides a more
robust and resource-efficient solution for localization and mapping in underground
pipe networks.

In summary, this research advances previous approaches by developing a
computationally efficient system tailored to the challenges of underground pipe
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Figure 1.4: Example of a SLAM map generated using continuous data collection,
illustrating the challenges of operating in confined environments like buried pipes.
The image shows a point cloud representation of a pipe network generated through
visual and LiDAR-based SLAM techniques.

networks. It leverages selective visual sampling, panoramic image stitching,
and topological mapping to improve localization and mapping accuracy without
overburdening the robot’s limited resources.

1.2 Research Motivation

The motivation for this research stems from the increasing need for improved robotic
systems capable of navigating and mapping buried pipe networks autonomously and
efficiently. The conventional methods of pipe inspection and maintenance, which of-
ten involve sending human workers into hazardous environments, are not only labor-
intensive but also pose significant safety risks. These environments, characterized
by confined spaces and challenging conditions such as poor visibility, obstructions,
and water accumulation, make the application of conventional technologies difficult
and inefficient.

Current robotic systems face significant limitations, particularly when it comes
to real-time localization and accurate mapping in these constrained environments.
Many of these systems rely heavily on visual sensors that are susceptible to
degradation in low-light conditions or environments cluttered with debris and other
obstructions. Additionally, existing systems often struggle with high levels of
localization error, which accumulates over time, leading to inaccurate maps that
limit their utility in maintenance operations.

This research seeks to address these challenges by developing methodologies
for robotic localization and topological mapping that overcome the deficiencies of
existing systems. By improving the efficiency and accuracy of robotic navigation
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in buried pipe networks, this work aims to reduce the dependency on human
intervention, thereby improving safety and operational efficiency in the inspection
and maintenance of urban infrastructure.

Furthermore, this research contributes to the broader field of robotics by
providing methods that can be applied in other similarly confined environments,
such as underground mines, tunnels, and industrial pipes. The work presented here
not only holds the potential to improve the management of buried infrastructure but
also aligns with the increasing demand for smarter, more resilient urban systems in
the context of global urbanization and aging infrastructure.

By enhancing the capabilities of robots to autonomously inspect and map buried
pipe networks, this research promises to deliver long-term benefits for infrastructure
management, reducing operational costs, minimizing disruptions, and improving the
sustainability of urban services.

1.3 Assumptions, Objectives and Contributions

Assumptions

This research is based on several key assumptions essential for the design and
functionality of the autonomous robotic system intended for operation in buried
pipe networks:

1. The robot will operate within confined environments typical of buried pipe
networks. These networks are characterized by limited space and varied
geometries.

2. The pipe networks are assumed to be tree-like structures, characterized as
connected graphs without cycles. This tree structure simplifies the mapping
process by assuming there is a single path between any two nodes without
circular paths (cycles), enhancing the efficiency of the navigation and mapping
algorithms. Although these networks might inherently possess directionality
in practical usage (such as sewer lines where flow is unidirectional), for the
purposes of this research, the network is treated as an undirected acyclic graph
where the robot can navigate in any direction irrespective of the actual flow
direction.

3. The robotic system is equipped with sensors capable of estimating distances.

4. While the system is assumed to have robust real-time processing capabilities,
with hardware and software optimized to manage the computational demands
of image processing, mapping, and autonomous decision-making without
delays, it is also designed to minimize energy and computational demands.

5. The robot is designed to either navigate independently within the pipe
network, identifying junctions and making decisions autonomously without
human intervention, or to be tele-operated by a human.
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Objectives

The primary objectives of this research are to develop methodologies that improve
real-time robotic localization and topological mapping within confined environments
like buried pipe networks. The focus is on addressing the limitations of traditional
SLAM methods and enhancing the efficiency of localization despite the challenging
conditions such as low light and limited visual features. The key objectives include:

1. To develop a localization system that integrates distance sensing and selective
visual sampling to accurately identify junctions and map the topology of
the pipe network. Specifically, “localization” refers to the process by which
the robot determines its position within the network based on the data
collected from the sensors, enabling it to update its map and make navigational
decisions.

2. To design the system to minimize energy and computational demands, ensur-
ing that the robot can operate efficiently over extended periods. Although the
focus on energy minimization was not fully supported by subsequent tests in
this study, this objective remains crucial for future improvements. However,
for the current research, the emphasis was primarily on ensuring the system’s
robustness and efficiency under constrained computational resources.

3. To validate the developed methodologies through extensive simulations and to
test key aspects of the system in simulated and controlled real-world scenarios,
focusing on representative situations that occur in buried pipe networks. While
extensive simulation and real-world evaluations were not fully carried out,
this research tests critical aspects such as junction detection and topological
mapping accuracy under conditions that closely resemble those encountered
in practical applications.

The contributions of this research provide practical advancements in real-time
localization and topological mapping of buried infrastructure, specifically addressing
challenges in junction-based localization and network representation within pipe
environments.

1. Developed a localization approach that integrates distance sensing with limited
visual sampling at junctions. This technique leverages the NCC algorithm for
image matching to distinguish junction geometries, enhancing the robustness
of topological mapping without relying on continuous video processing. This
targeted approach reduces computational load and energy consumption, mak-
ing it feasible for small-scale robotic platforms in constrained environments.

2. Designed a topological mapping framework tailored for pipe networks, which
not only encodes connectivity but also incorporates angular relationships
between nodes. The use of panoramic image stitching at junctions enables
the creation of metrically enhanced maps, improving spatial representation
without requiring a full metric reconstruction of the entire network.
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3. Validated the proposed methodologies through controlled simulations and real-
world experiments in representative pipe environments. The results confirm
the system’s ability to accurately identify junctions and construct a functional
topological map, demonstrating its applicability within realistic operational
constraints.

This research provides a focused contribution by addressing specific challenges in
localization and mapping for buried pipe networks, rather than attempting to solve
the broader problem of robotic navigation in complex underground infrastructures.
The developed methods lay a practical foundation for future improvements in robotic
autonomy for infrastructure inspection and maintenance.

1.4 Structure of the Dissertation

This dissertation is structured to provide an exploration of the research under-
taken, from foundational concepts and literature review to detailed methodologies,
experimental results, and conclusions. Chapter 2 reviews existing literature and
background information in buried pipe networks, their maintenance challenges, and
the role of robotics, highlighting current localization and mapping technologies and
their limitations. Chapter 3 details the development of the autonomous control
system, the use of normalized cross-correlation (NCC) for image stitching, and
the implementation of active vision strategies, presenting experimental results from
both simulations and real-world tests. Chapter 4 focuses on the panoramic image
stitching method for topological mapping, outlining the process, determination of
spatial relationships, and construction of topological maps, with experimental results
validating the approach. Chapter 5 summarises the key findings and contributions,
discusses limitations, and suggests directions for future research, discussing the
impact of the developed methodologies on robotic navigation and mapping in buried
pipe networks.

26



Chapter 2

Background & Literature Review

This chapter provides a critical overview of the research context, focusing on
the key challenges and methodologies related to robotic localization and mapping
within buried pipe networks. It also synthesizes relevant literature to highlight
existing approaches and identify gaps in the field. The chapter is structured as
follows: Section 2.1 introduces Simultaneous Localization and Mapping (SLAM),
a fundamental technique for autonomous robots navigating and mapping confined
environments such as buried pipe networks. Section 2.2 discusses the specific robotic
challenges encountered in pipe network environments. Section 2.3 reviews current
methodologies and technologies used for pipe robot localization and mapping.
Section 2.4 explores various topological mapping techniques tailored to these unique
environments. Finally, Section 2.5 covers essential aspects of autonomous control,
which is crucial for efficient operation within constrained settings.

2.1 Introduction to Simultaneous Localization and
Mapping (SLAM)

Simultaneous Localization and Mapping (SLAM) is a fundamental technique in
robotics that allows a robot to simultaneously construct a map of an unknown
environment and localize itself within that map (Durrant-Whyte and Bailey, 2006).
The problem of SLAM arises when a robot must navigate an environment where
external positioning systems such as GPS are unavailable, and it must rely solely on
internal sensors for both navigation and mapping (Thrun, 2002). In these situations,
SLAM enables a robot to explore and map its surroundings autonomously while
continuously updating its position in real-time.

The core challenge of SLAM is that it involves solving two interdependent
problems simultaneously:

1. **Localization** — Determining the robot’s position and orientation relative
to its surroundings (Dellaert et al., 1999).

2. **Mapping** — Building an accurate map of the environment based on sensor
data (Thrun and Montemerlo, 2006).
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Both tasks are tightly coupled; for instance, an accurate map helps improve
localization, and accurate localization helps refine the map. However, the difficulty
in SLAM lies in the fact that both the robot’s location and the environment map are
initially unknown, and errors in either can propagate, degrading both (Cadena et al.,
2016). These challenges are exacerbated by sensor noise, environmental uncertainty,
and dynamic changes in the surroundings (Tan et al., 2013).

In typical robotic applications, SLAM is employed using a combination of
sensors such as cameras, LIDAR (Light Detection and Ranging), sonar, and Inertial
Measurement Units (IMUs). These sensors help the robot perceive its environment
and track its movement. The sensor data is then used by SLAM algorithms to
update the robot’s position and the map incrementally as the robot moves through
the environment (Engel et al., 2014).

SLAM plays a critical role in environments where traditional external localization
systems like GPS cannot be used. For example, in indoor environments, under-
ground pipe networks, and other confined spaces, SLAM enables robots to navigate
and map their surroundings without relying on external signals (Mur-Artal et al.,
2015). This is particularly important in autonomous systems used for infrastructure
inspection, exploration, and monitoring, where GPS is not available.

The key challenge in SLAM is managing the uncertainty in sensor data and
handling the cumulative errors that can occur over time. As robots explore a space,
errors in positioning can accumulate, leading to ”drift” in the map (Olson, 2009).
Several SLAM techniques have been developed to address these challenges, including
probabilistic methods like Kalman Filters and Particle Filters (Kalman, 1960), which
attempt to estimate the robot’s position and map while accounting for uncertainty
and minimizing error propagation (Fox et al., 2001). In addition, optimization-based
SLAM techniques, such as GraphSLAM, are used to refine both the robot’s path and
the map globally by minimizing the overall error (Thrun and Montemerlo, 2006).

SLAM has been extensively studied and applied in various domains, including
autonomous vehicles, robotic exploration, and mobile robotics (Cadena et al., 2016).
In confined or dynamic environments such as underground pipe networks, SLAM
is especially valuable, as it allows robots to perform tasks such as inspection,
maintenance, and mapping autonomously and efficiently (Aitken et al., 2021).

Recent advancements in SLAM have also incorporated sensor fusion, deep
learning techniques, and hybrid approaches that combine different sensor modalities
to improve performance in challenging environments (Deng et al., 2019). These
advancements allow SLAM to be applied more effectively in complex, cluttered, or
featureless environments where traditional methods may struggle (Song et al., 2022).

In the context of underground pipe networks, SLAM plays a pivotal role
by enabling robots to map the network, navigate through narrow or obstructed
pathways, and detect issues such as leaks or blockages (Aitken et al., 2021). This
application is critical for infrastructure maintenance, as it reduces the need for
manual inspections and enhances the efficiency and safety of operations (Wang et al.,
2023).
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2.2 Robotic Challenges in Pipe Networks

Localization and mapping underground pipe networks pose significant challenges for
robotic systems, primarily due to the harsh environmental conditions, unpredictable
pipe geometries, and stringent operational demands. This section addresses the key
difficulties encountered by both human-operated and autonomous robots in these
environments, emphasizing issues that have shaped current approaches in the field.

2.2.1 Challenges for Human Operated Robots

Operating robots in buried pipe networks involves significant challenges, particularly
when human operators are involved. Harsh conditions, such as poor lighting,
dampness, and varying pipe materials, hinder both movement and sensor accuracy.
Ambiguous or noisy sensor data makes it more difficult for operators to make
informed decisions, and control becomes even more complex in slippery conditions
where robots may drift due to fluid flow. Additionally, varying pipe profiles, such
as encrustation or damage, further complicate navigation.

Roh et al. identify the difficulty of maintaining accurate location and orientation
in pipes that feature bends, vertical sections, and junctions. With no access to
external localization tools like GPS, operators rely on internal sensors (e.g., CCD
cameras, odometry), which are prone to drift over time, complicating human control
and mapping efforts. The lack of distinguishing features in pipe interiors makes it
challenging to create accurate maps and navigate efficiently, emphasizing the need
for simultaneous localization and mapping (SLAM) algorithms to support operators
(Roh and Choi, 2005).

Environmental factors within the pipes exacerbate operational difficulties. Tight,
irregular spaces and slick or debris-covered surfaces impair robot movement and ob-
struct sensors, leading to misinterpretations of data. Humidity, hazardous materials,
and communication difficulties due to signal interference from pipe materials further
complicate the situation. Solutions such as tethered communication systems and
adaptive control strategies are often required, though these increase the complexity
of human control (Bandala et al., 2019).

Additionally, environmental conditions like high temperatures, inert gases, and
pressure variations affect the robot’s mechanical and thermal performance. Boudjabi
et al. discuss the difficulties of controlling robots in such environments, especially
when using actuators like shape memory alloys, which exhibit nonlinearities and
hysteresis (Boudjabi et al., 2003). The integration of multiple sensors and actuators
to improve performance further complicates manual control, often leading to
suboptimal results.

The need for reliable communication is crucial in these environments. As
Doychinov highlights, wireless communication often fails due to interference from
the physical composition of the pipes. Solutions like mesh networks and specialized
wireless systems are necessary to maintain connectivity, ensuring real-time commu-
nication and command delivery (Doychinov et al., 2021).

Finally, sensor reliability is critical in environments that present unpredictable
conditions, such as water, mud, and sediment, which can impair sensor readings.
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While advancements like microphone arrays can help improve real-time decision-
making, they add cognitive burdens on operators, who must interpret and adjust
the robot’s actions accordingly. This highlights the need for Al technologies to
assist in data processing and automate decision-making, reducing the cognitive load
on operators (Yu et al., 2023).

In conclusion, the challenges of human-operated robots in buried pipe networks,
including harsh environmental conditions, sensor limitations, and unreliable com-
munication, underscore the need for advanced technologies such as AI, SLAM
algorithms, and robust communication systems to improve robot operation and
reduce the reliance on human intervention.

2.2.2 Additional Challenges for Autonomous Robots

Deploying autonomous robots in buried pipe networks presents significant challenges
due to unpredictable environments, necessitating solutions for effective navigation,
maintenance, and data collection. Autonomous robots must be equipped with real-
time control systems and decision-making algorithms that allow them to adapt
to harsh and dynamic conditions, including darkness, humidity, and debris. The
development of control algorithms is critical for enabling robots to process sensory
data efficiently to execute their tasks autonomously.

A primary challenge for these robots is navigating the complex layouts of
buried pipe networks. These pipes often have narrow, irregular shapes and varying
diameters, making maneuvering difficult. SLAM technologies play a vital role
in addressing these navigational issues, enabling robots to autonomously create
maps and localize themselves within the environment. SLAM also allows for the
identification of structural issues such as leaks or blockages, facilitating continuous
monitoring of the infrastructure and reducing the need for manual inspections
(Aitken et al., 2021).

Robots like ARSI and KANTARO are designed to function in extreme conditions,
such as low visibility and high humidity. ARSI utilizes a Micro Air Vehicle (MAV)
with RGB-D cameras to autonomously navigate while capturing high-definition
imagery for offline analysis (Chataigner et al., 2019). KANTARO employs a
combination of laser and visual sensors to inspect and navigate pipes in real-time,
using infrared sensors for obstacle avoidance (Nassiraei et al., 2007). These systems
demonstrate how sensor fusion and advanced algorithms enhance the capability of
autonomous robots in challenging environments.

One significant limitation of autonomous robots is their battery life, which is
often constrained by the energy demands of sensors and computational systems.
For example, KANTAROQO faces energy constraints due to the power consumption
of its sensors and propulsion systems, which limits its operational time. To address
this challenge, energy-efficient design strategies are crucial. Selective activation of
vision sensors at critical points can conserve energy and extend battery life.

Another major obstacle is multi-robot coordination, particularly in systems
like Pipebots, which rely on swarm intelligence for large-scale inspections. While
Pipebots share real-time data to improve fault detection and ensure efficient
coverage, communication issues persist due to signal attenuation and interference
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within the underground environment. The use of virtual pheromones for navigation
helps mitigate some of these issues, although ensuring uninterrupted communication
remains a challenge (Parrott et al., 2020).

The reliance on sensors and real-time data processing introduces additional
limitations. For instance, robots such as the In-Pipe Inspection Robot rely on sensor
fusion techniques using contact sensors and inertial measurement units (IMUs) to
maintain precise localization. However, these sensors have limitations, particularly
when issues arise outside of their immediate vicinity. The computational demands
of processing real-time data also contribute to delays in decision-making, which can
reduce overall efficiency (Jang et al., 2022).

In response to these challenges, our robot systems are designed with modular
components for easy replacement and upgrading, reducing downtime and improving
overall performance. By generating topological maps instead of detailed models,
our robots reduce the computational load, simplifying navigation and improving
efficiency. This approach not only reduces power consumption but also increases
adaptability to varying conditions, making the robots more effective for long-term
use in underground infrastructures.

In summary, the deployment of autonomous robots in buried pipe networks faces
several challenges, including navigation complexity, power limitations, and multi-
robot coordination. Through energy-efficient designs, modular components, and
advanced algorithms, these robots are increasingly capable of performing inspection
and maintenance tasks in challenging environments.

2.3 Pipe Robot Localization and Mapping

This section explores the core methods of robotic localization and mapping. These
methods are crucial for the inspection, maintenance, and operation of robotic
systems.

2.3.1 Localization Methods

Localization methods for robotic systems are crucial in environments where GPS is
unavailable, such as buried pipe networks, where robots must navigate and locate
themselves precisely. Several approaches have been developed, each using various
sensor technologies and algorithms to estimate a robot’s position. Despite their
differences, these methods share underlying principles that allow them to be grouped
into categories based on their techniques. Below is a detailed exploration of these
localization methods, organized by their commonalities and sequential progression
in complexity and capability, with appropriate references to key literature.
Probabilistic filtering techniques, including Kalman Filters and Particle Filters,
are widely employed in localization because of their effectiveness in non-static
environments and their ability to cope with sensor noise. One prominent example is
the work by Roumeliotis et al., who integrate Bayesian estimation with Kalman
filtering to improve both accuracy and reliability in mobile robot localization.
This method combines continuous displacement estimates from proprioceptive
sensors, such as wheel encoders and gyroscopes, with discrete landmark observations
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gathered by exteroceptive sensors, such as laser range finders. By applying Multiple
Hypothesis Tracking (MHT), the system maintains several possible hypotheses
about the robot’s location, refining these hypotheses as the robot moves through
its environment and receives more sensor data. This approach allows the robot
to overcome initial uncertainties and sensor noise, making it effective in non-static
and noisy environments, such as offices or underground pipes, where conventional
methods might struggle (Roumeliotis and Bekey, 2000).

Similarly, Fox et al. propose Monte Carlo localization (MCL), a particle filter-
based method that builds upon probabilistic filtering principles. MCL estimates
the robot’s pose by representing possible positions with a set of particles, which
are sampled and assigned importance weights based on the robot’s motion and
sensor data. The method excels in various localization scenarios, including position
tracking, global localization, and the “kidnapped robot” problem, which involves
a robot suddenly being relocated without any awareness of its new position.
MCL’s efficiency comes from its ability to represent multiple hypotheses and focus
computational resources on the most likely ones, making it superior to grid-based
methods in both accuracy and computational efficiency (Fox et al., 2001).

Simultaneous Localization and Mapping (SLAM) techniques offer a more
integrated approach, enabling robots to construct a map of their environment
while simultaneously localizing themselves within it. Su et al. introduce a hybrid
SLAM method that integrates both lidar and visual features for robust global
localization. The system begins by generating a two-dimensional occupancy grid
using lidar scans, which is enriched with visual keyframes captured by an RGB-
D camera. These keyframes are encoded with a Gist global descriptor for fast
retrieval of pose proposals by comparing the current view with previously stored
scenes. For pose refinement, local ORB (Oriented FAST and Rotated BRIEF)
descriptors are used to match features between the current view and candidate
keyframes, eliminating mismatches through RANSAC (Random Sample Consensus).
This hybrid approach is particularly effective in addressing the “kidnapped robot”
problem, as it incorporates a re-localization trigger mechanism based on pose
consistency and keyframe clustering. The combination of precise geometric data
from lidar and rich contextual information from visual sensors enhances localization
accuracy and robustness, even in geometrically challenging environments (Su et al.,
2017).

An alternative SLAM approach is presented by Choset et al., who focus on
topological localization. This method relies on constructing a topological map of
the environment, such as a Generalized Voronoi Graph (GVG), which represents
the spatial relationships between obstacles and free space, rather than explicit
coordinates. The robot localizes itself by navigating through a network of nodes,
referred to as “meet points”, which are equidistant from surrounding obstacles.
The method includes hierarchical localization strategies: zero-dimensional methods
for identifying unique node signatures, one-dimensional methods for analyzing
sequences of edges and nodes, and two-dimensional methods for matching graph
structures. This topological approach is advantageous in changing environments
with sensor noise because it leverages the structure of the environment, allowing the
robot to localize itself based on spatial relationships rather than relying solely on
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precise metric coordinates (Choset and Nagatani, 2001).

Landmark-based localization is another critical method, providing robots with
the ability to identify and utilize distinctive environmental features for improved
positioning. Thrun introduces the Bayesian Landmark Learning (Bal.L) algorithm,
which enables robots to autonomously learn and select the most effective landmarks
from sensor data. This method employs artificial neural networks to extract low-
dimensional features from high-dimensional sensor data, optimizing these features
using Bayesian analysis. The BaLL algorithm dynamically refines the robot’s
beliefs about its location by integrating sensor observations and motion updates,
minimizing localization errors over time. This approach contrasts with conventional
methods that rely on static, human-defined landmarks, offering greater flexibility
and adaptability to varying environments. BaLL has been shown to outperform
conventional methods by providing more accurate and reliable localization across a
range of scenarios (Thrun, 1998a).

Sensor-based localization methods expand upon these approaches by leveraging
various sensory inputs for positioning. Amjad et al. present a detailed overview of
Radio SLAM, which uses radio signal sensors to collect environmental information
and estimate the positions of both the robot and environmental landmarks. Radio
SLAM utilizes multipath propagation components such as Angle of Arrival (AoA),
Angle of Departure (AoD), Time Difference of Arrival (TDoA), and Received
Signal Strength Indicator (RSSI) to determine the positions of the robot and
the landmarks.  Statistical techniques such as Multiple Signal Classification
(MUSIC) and Estimation of Signal Parameters via Rotational Invariance Techniques
(ESPIRIT) are employed to enhance localization accuracy. In addition, filters like
the Extended Kalman Filter (EKF) and Particle Filters (PFs) are used to predict the
robot’s state, further assisting in precise localization and navigation. Radio SLAM
is especially useful in environments where visual SLAM may be less effective, such
as low-light conditions or privacy-sensitive areas, making it a valuable alternative in
certain scenarios (Amjad et al., 2023).

In addition to the aforementioned probabilistic filtering, SLAM, and sensor-
based localization techniques, recent advances in feature matching and deep learning
approaches have also shown promise in robotic localization tasks, especially in
complex environments like buried pipe networks. While traditional methods, such
as Kalman Filters and Particle Filters, have dominated the field, modern techniques
leverage advancements in machine learning to improve robustness and accuracy.

Feature Matching has become an essential component in many localization
strategies, especially for vision-based systems. Methods like SIFT (Scale-Invariant
Feature Transform) and SURF (Speeded-Up Robust Features) are commonly used
for matching distinctive visual features between consecutive frames or keyframes
in SLAM systems. Recent studies, such as those by Lowe (2004) and Bay et al.
(2006), have enhanced the efficiency of these techniques, making them applicable
to various robotic tasks, including localization within confined spaces. These
methods work by detecting and matching local features that are robust to scale,
rotation, and illumination changes, providing valuable data for pose estimation.
Additionally, ORB (Oriented FAST and Rotated BRIEF) descriptors, often used in
visual SLAM, have been employed for better computational efficiency and robustness
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in environments with limited visual textures (Rublee et al., 2011).

A comparative study by Bayraktar and Boyraz (2017) analyzed various combi-
nations of feature detectors and descriptors, including SIFT, SURF, and ORB, in
the context of mobile robot localization. The study found that the SIFT-SURF
combination achieved the highest accuracy, while the ORB-BRIEF combination
offered the fastest processing time.

Incorporating deep learning into localization systems has opened new possibilities
for enhanced feature matching and scene understanding. Recent approaches
have utilized Convolutional Neural Networks (CNNs) (LeCun et al., 1998) to
extract high-level semantic features from images, improving the matching process
in feature-poor environments. For instance, Recurrent Neural Networks (RNNs)
(Rumelhart et al., 1986) and Long Short-Term Memory (LSTM) (Graves and
Graves, 2012) networks are employed to learn spatial-temporal dependencies and
handle challenging dynamic environments, such as those found in underground pipe
networks. These methods have demonstrated increased resilience in complex, noisy,
and cluttered environments where traditional techniques might struggle.

Hu et al. (2022) explores the integration of deep learning techniques to
improve the accuracy and efficiency of pipeline recognition and localization using
Ground Penetrating Radar (GPR). By employing a Faster R-CNN model optimized
with Attention-guided Context Feature Pyramid Networks (ACFPN), the authors
developed an automated system that achieved an impressive average precision
of 0.9256. The approach also incorporates a positioning model using Tesseract
OCR to determine the exact location of buried pipelines, both horizontally and
in terms of depth. On-site experiments conducted with real-world embedded pipes
demonstrated the system’s effectiveness, with localization errors kept under 11 cm.
This work highlights the potential of deep learning for improving pipeline detection
and mapping, offering an automated, accurate, and efficient alternative to traditional
methods used in subsurface utility management.

Karimanzira (2023) introduces a novel approach for detecting and localizing leaks
in water distribution networks (WDNs) using a deep learning-based autoencoder
model. The proposed method employs a hybrid architecture, combining a 3D
Convolutional Neural Network (3DCNN) encoder with a Convolutional Long
Short-Term Memory (ConvLSTM) decoder, and incorporates spatial and temporal
attention mechanisms to enhance the accuracy of leak localization. The model is
trained using water pressure and flow rate data, and its performance is evaluated
with the Water Network Tool for Resilience (WNTR) simulator. The results show
that the model detects leaks with 96% accuracy and a false positive rate of just 4%,
outperforming traditional methods like random forests. This method provides an
efficient and reliable solution for real-time leak detection and localization, offering
significant improvements in the management of water distribution systems.

End-to-end deep learning models, like DeepVO (Deep Visual Odometry) (Wang
et al., 2017), also offer promising solutions for visual localization by directly learning
the relationship between consecutive frames. These models bypass the need for
handcrafted features like SIFT or ORB, relying on a CNN-based architecture
that learns feature correspondences and relative poses from raw sensor data.
Such methods, though computationally intensive, have been shown to outperform
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traditional methods in certain settings, particularly when large amounts of data are
available for training.

The introduction of Deep Reinforcement Learning (DRL) into localization tasks
has been explored in recent research, where a robot learns to localize itself and map
its surroundings by receiving feedback from its environment (Chen et al., 2020).
These approaches involve training a model to make localization decisions based on
sensory inputs, which has the potential to be more adaptable and robust in highly
dynamic and uncertain environments.

2.3.2 Mapping Methods

Effective mapping methods are crucial for the successful operation of robots in buried
pipe networks. These methods allow for the creation of accurate and detailed maps
of the underground environment, which are essential for navigation, inspection, and
maintenance tasks. A variety of techniques have been developed to tackle the unique
challenges of mapping in these constrained environments, including laser scanning,
acoustic sensing, and visual SLAM.

One of the mapping techniques is the real-time algorithm for mobile robot
mapping developed by Thrun et al. This method addresses the simultaneous
localization and mapping (SLAM) problem using a combination of fast scan-
matching techniques and a sample-based probabilistic framework. The approach
relies on 2D laser range finders to incrementally construct maps while calculating
the posterior distribution of robot poses over time. The algorithm uses maximum
likelihood estimation for determining robot positions and integrates posterior
estimation to maintain a probabilistic representation of possible locations. This
robust representation allows the algorithm to handle environments with loops and
multi-robot mapping, where robots collaborate to build a unified map. Moreover,
Thrun et al. extend their method to 3D mapping, employing a dual-laser system
and a multi-resolution algorithm, making it adaptable for real-time navigation and
exploration in various environments, even in the absence of reliable odometric data
(Thrun et al., 2000).

Another approach is the EchoSLAM algorithm by Krekovic et al., which uses
acoustic echoes for SLAM. This method is particularly well-suited for environments
where conventional sensors may be less effective. EchoSLAM operates with a
simple setup of a single omnidirectional sound source and receiver, using echoes
as virtual landmarks to estimate room geometry and robot trajectory. Through a
Bayesian framework, the algorithm calculates times of arrival (TOAs) of the echoes,
allowing for iterative refinement of both the robot’s position and the boundaries
of the environment. This acoustic-based approach demonstrates the potential of
non-conventional sensing modalities in SLAM applications (Krekovié et al., 2016).

In the realm of visual SLAM, Naseer et al. developed a robust method utilizing
visual data from cameras. This approach involves capturing images and extracting
distinctive features using dense HOG (Histogram of Oriented Gradients) descriptors,
which are then associated across multiple images to build a data association graph.
The process models spatial relationships and is treated as a minimum cost flow
problem, optimizing the path through the graph to handle challenges such as
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occlusions or route deviations. This visual SLAM method does not rely on GPS or
odometry, making it versatile for different environments and adaptable to changing
conditions (Naseer et al., 2014).

The integration of multiple sensing modalities, such as LIDAR, acoustic sensors,
and visual cameras, further enhances the robustness and accuracy of mapping
in buried pipe networks. Combining data from these diverse sources enables
the creation of comprehensive and reliable maps by leveraging the strengths of
each sensor type while compensating for their individual limitations. Projects
like Pipebots exemplify this multi-modal approach, using a combination of these
methods to improve mapping accuracy and reliability in underground environments,
such as buried pipe networks (Team, 2019).

The mapping methods for robotic systems, particularly in confined environments
like buried pipe networks, have also evolved with the incorporation of deep learning
and advanced feature matching techniques. Traditional mapping methods, such as
laser-based SLAM and acoustic-based SLAM, are complemented by methods that
integrate visual feature matching and machine learning for improved robustness.

In the domain of visual SLAM, several deep learning-based techniques have been
proposed to enhance map creation. For example, semantic segmentation models,
such as DeepLab (Chen et al., 2017), have been employed in combination with
traditional SLAM methods to generate semantic maps that contain both spatial
and contextual information about the environment. These semantic maps can
significantly improve the robot’s ability to understand and navigate its environment,
particularly in complex, underground spaces where traditional mapping techniques
might lack the precision needed.

A promising approach that has gained attention is DeepFusion (Li et al., 2022),
a method that integrates LiDAR and visual data through deep learning to build
accurate and detailed 3D maps. This technique uses a deep neural network to fuse
the complementary information from both sensor types, ensuring that each sensor’s
limitations are mitigated by the other. For instance, visual data can provide rich
texture and depth information in environments where LiDAR may struggle, while
LiDAR can help mitigate challenges faced by vision-based systems, such as poor
lighting or occlusions. This fusion approach has been successfully applied in various
autonomous navigation systems.

Additionally, learning-based feature matching techniques have been applied to
map generation. For example, the use of deep feature matching networks enables
robots to more reliably match features across various viewpoints, especially when
the environment lacks distinct visual landmarks. These methods can be seen
as extensions of traditional feature matching techniques like SIFT, but they use
deep learning models to improve accuracy and robustness in feature extraction and
matching (Zhou et al., 2017).

To enhance the accuracy of maps in constrained environments, techniques such
as point cloud registration (Pomerleau et al., 2015) and semantic 3D reconstruction
(Cherabier et al., 2018) have been explored. These methods often rely on deep
learning models to classify and refine the quality of the 3D data generated by sensors,
ensuring that the resulting maps are not only spatially accurate but also semantically
meaningful.
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2.4 Topological Mapping Methods

Topological mapping methods prioritize the representation of an environment based
on its connectivity and the relationships between different locations, rather than
focusing on precise geometric details (Thrun, 1998b). These methods are especially
relevant in the environments such as underground pipe networks, where the primary
concern is the connectivity of the network rather than exact spatial measurements.

A common approach to topological mapping is the use of graph-based methods,
where the environment is represented as a graph (Brunskill et al., 2007). In
this representation, nodes correspond to significant locations, such as junctions or
intersections in a pipe network, while edges denote the paths or connections between
these points. This abstraction simplifies the representation of the environments,
facilitating tasks like navigation and path planning.

One noteworthy framework in topological mapping is the Topo map system,
developed by Blochliger et al., which enhances robot navigation by transforming
sparse visual SLAM maps into efficient topological maps. These are particularly
suited for large-scale environments (Blochliger et al., 2018). The method begins with
the creation of a sparse feature-based map using a monocular camera to capture
essential 3D landmarks. From this sparse point cloud, occupancy information is
extracted using Truncated Signed Distance Fields (TSDF), which identify free and
occupied spaces. The environment is then segmented into convex free-space clusters,
within which the robot can move freely without encountering obstacles. Clusters
are merged iteratively, simplifying the topological map by combining neighboring
clusters with minimal obstacles. These clusters form the vertices of a topological
graph, while portals represent transitions between areas, facilitating efficient path
planning through a navigation graph using algorithms like A*. This approach
significantly reduces computational load and storage requirements, making it ideal
for mobile platforms with limited resources.

In a different approach, Zhang et al. proposed a topological mapping method
specifically designed for multi-robot exploration in communication-restricted envi-
ronments (Zhang et al., 2022). This method constructs maps using vertices and
edges, where vertices represent specific areas described by visual descriptors, and
edges denote the paths between them. Robots equipped with panoramic cameras
generate new vertices when current observations do not match existing descriptors,
reducing data transmission between robots by up to 90%. Newly created vertices and
edges are shared among robots, allowing for effective collaboration while minimizing
communication loads. Maps are merged by matching vertex descriptors, and robots
dynamically update the topological map as they explore new areas, maximizing
coverage and minimizing redundancy.

In pipe networks, Zhang et al. further enhanced SLAM by exploiting the
cylindrical regularity of pipes. They combined topological maps with geometric
information derived from the cylindrical structure of the pipes, enabling improved
robot localization and navigation (Zhang et al., 2023). The integration of geometric
data into topological maps allows for improved localization and navigation, espe-
cially in environments with cylindrical geometries such as sewer systems. However,
this hybrid method inherently increases the computational complexity, as the process
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of fusing topological and metric data is more demanding than traditional methods.
The added data processing overhead may limit real-time application, particularly
in scenarios requiring high-frequency decision-making and dynamic environmental
adaptation. For instance, while methods like (Choset and Nagatani, 2001) focus on
simplifying computational load through pure topological maps, our approach offers
improved accuracy but at the cost of increased computational demand. To mitigate
this, optimization techniques, such as selective sensor data fusion and real-time
processing strategies, could be explored to balance performance and computational
efficiency.

Yu et al. introduced a method that uses microphone arrays to facilitate
simultaneous condition detection, localization, and classification within sewer
systems (Yu et al., 2023). Acoustic data from the arrays is used to build a topological
map of the environment, identifying critical features such as blockages and lateral
connections. This method proves effective in scenarios where visual data may be
limited, offering a robust alternative for navigation and inspection in dark, murky;,
or obstructed conditions common in sewer networks.

2.5 Robotic Autonomous Control

Robotic autonomous control plays a critical role in ensuring the efficient operation
of robots within underground pipe networks. These control systems enable robots
to autonomously navigate, inspect, and maintain these environments with minimal
human intervention. This section explores the key aspects of robotic autonomous
control, focusing on control algorithms, decision-making processes, and adaptive
strategies that are essential for autonomous operations within these often unmapped
networks.

The complexity of underground pipe networks, particularly in water and buried
pipe networks, requires robots to operate independently and adaptively (Wong et al.,
2018). Various control algorithms have been developed to address these challenges.
Mounce et al. discuss several critical algorithms, such as Lagrangian-based sensing,
which allows robots to dynamically move within pipes while continuously collecting
data (Mounce et al., 2021). This technique enhances data acquisition compared to
fixed-point methods by enabling real-time environmental sensing.

Another key algorithm is Simultaneous Localization and Mapping (SLAM),
which provides robots with the ability to create accurate 3D maps of the networks
(Mur-Artal et al., 2015). SLAM is particularly useful in feature-sparse environments,
where real-time positioning updates are crucial for navigation. Additionally, swarm
robotics, inspired by natural systems like ant colonies, allows multiple robots to
collaboratively inspect and monitor large sections of pipe networks (Jahanshahi
et al., 2017). These robots share data and optimize their coverage without relying
on centralized control, enabling more efficient and comprehensive monitoring.

Furthermore, Al and machine learning algorithms process the vast amounts of
data collected by these robots, providing insights into pipe conditions and predicting
potential failures (Wang et al., 2021). This enables autonomous decision-making,
allowing the robots to proactively respond to changing environments. Adaptive
control and motion planning algorithms also play a crucial role by enabling the

38



robots to navigate non-static environments, avoid obstacles, and optimize energy
use, ensuring safe and efficient movement through these networks.

For smaller robotic systems navigating in pipe networks, Nguyen et al. present
a control algorithm based on a finite state machine (Nguyen et al., 2022). This
system defines 13 distinct states, such as moving straight, turning, or dealing with
dead ends. The robot uses sensor data to determine its current state and activate
a corresponding decision-making protocol, allowing it to operate autonomously
without external input.

The control strategy is divided into high-level and low-level controls. High-level
control manages decision-making in pipe geometries, while low-level control focuses
on maintaining the robot’s stability and adjusting its speed. Navigation is supported
by range sensors and an Inertial Measurement Unit (IMU), which eliminates the
need for visual input and reduces computational demands. This system ensures that
the robots can explore pipe networks comprehensively and autonomously, ensuring
operational safety and thorough coverage.

For autonomous navigation, stable tracking control methods are essential for
ensuring that robots can follow predefined paths accurately. Kanayama et al.
developed a control system based on a Liapunov function that ensures stability
during path-following in a 2D plane (Kanayama et al., 1990). The robot’s position
and orientation are monitored using a global Cartesian coordinate system, and
deviations from the desired trajectory are corrected by adjusting the robot’s linear
and rotational velocities.

This method has been successfully implemented on real-world robots, such as the
Yamabico-11, showing robustness in both simulations and practical applications.
Stability is validated through the Liapunov function, which guarantees that the
robot consistently returns to its intended path even in the presence of environmental
disturbances.  Velocity and acceleration limits further enhance the system’s
reliability by preventing slippage and maintaining control during sharp turns or
non-smooth paths.

To enhance the adaptability and optimization of robot control systems, rein-
forcement learning (RL) algorithms have been applied to both single-agent and
multi-agent systems. Kiumarsi et al. provide a comprehensive survey of RL
algorithms designed for optimal and autonomous control (Kiumarsi et al., 2017).
These algorithms focus on maximizing long-term rewards by learning from the
environment, particularly in uncertain and changing conditions.

The On-Policy Integral Reinforcement Learning (IRL) Algorithm allows for
real-time updates to the value function and control policy without requiring full
knowledge of the system’s dynamics. By iteratively improving through actor-critic
methods, this algorithm ensures that robots achieve optimal control in challenging
settings. H-infinity (H.,) control algorithms, which treat control problems as zero-
sum games between the controller and environmental disturbances, have also been
employed to handle uncertainties and ensure stable performance.

Finally, OpenRAVE, developed by Diankov and Kuffner, introduces a modular
approach to autonomous control with its Sense-Plan-Act loop (Diankov and Kuffner,
2008). This architecture integrates sensing, planning, and acting components,
enabling robots to continuously collect data, generate navigation plans, and execute
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tasks while responding dynamically to environmental changes. The modularity of
OpenRAVE allows it to be customized for various robotic tasks, making it highly
adaptable for underground pipe inspection.

The system supports real-time feedback, enabling adaptive responses and
flexibility during operations. By integrating with other frameworks, such as
ROS, OpenRAVE facilitates smooth transitions between simulation and real-world
execution, further enhancing the deployment of autonomous systems for challenging
tasks.

The integration of control algorithms, decision-making processes, and adaptive
strategies is crucial for the successful deployment of autonomous robots in un-
derground pipe networks. These systems enable robots to navigate challenging
environments, perform inspections, and carry out maintenance tasks with minimal
human intervention. Projects such as Pipebots exemplify the effectiveness of
these technologies in addressing the challenges of managing buried infrastructure
(Team, 2019). By leveraging these cutting-edge technologies, autonomous robots
can revolutionize the inspection, monitoring, and maintenance of underground pipe
networks, significantly improving the efficiency and reliability of buried pipe network
management.

In conclusion, while the primary localization techniques for robotic systems can
be categorized into probabilistic filtering methods, SLAM techniques, landmark-
based localization, and sensor-based approaches, each has its limitations. Probabilis-
tic methods such as Kalman Filters and Particle Filters provide a strong foundation
for estimating position in changing environments; however, they often struggle with
cumulative errors over time, particularly during extended or challenging navigation
tasks. SLAM techniques enhance a robot’s ability to map and localize itself
concurrently, though these methods tend to be computationally intensive and may
falter in environments lacking distinctive visual features, such as subterranean pipe
networks. Landmark-based methods offer adaptability via feature selection, but
their dependence on identifiable landmarks becomes impractical in featureless or
highly repetitive settings like pipes. Sensor-based approaches, including Radio
SLAM, provide alternatives when conventional methods fail, but are vulnerable
to signal interference and may prove less reliable in intricate underground contexts.

Topological mapping methods typically focus on the connectivity of the en-
vironment rather than precise geometric details. While graph-based topological
maps effectively abstract challenging environments, such as underground pipe
networks, they often fall short when precise navigation and mapping are required
in environments with uniform, repetitive features, like cylindrical pipes. The
integration of more geometric data can mitigate some of these shortcomings, but
such hybrid approaches increase the computational load and are susceptible to
environmental distortions. Furthermore, conventional topological methods may
struggle with real-time processing demands, limiting their practical application in
fast-moving autonomous systems.

This thesis presents a method that integrates precise geometric relationships
into topological maps, thereby creating a hybrid model that combines the strengths
of both topological and metric maps. While this hybrid approach integrates
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geometric relationships into topological maps, providing more accurate navigation,
path planning, and localization, it is important to note that traditional topolog-
ical methods have their own advantages, particularly in terms of computational
efficiency. Topological maps, by focusing on the connectivity of the environment,
allow for faster processing, especially in environments with repetitive structures,
such as pipe networks. However, the addition of geometric data increases the
computational load, which may present challenges in real-time systems. In
comparison, existing works such as (Zhang et al., 2023) and (Blochliger et al., 2018)
have shown that while topological maps are efficient in large-scale environments,
they often struggle with precision in featureless or regular environments. This
work aims to address these limitations by providing a balance between topology
and metric information, although the increased computational complexity should
be considered in environments where computational resources are limited. The
enhanced topological mapping, combined with sensor fusion techniques, merges data
from various sensors, including cameras and inertial measurement units (IMUs).
This enables the generation of a detailed and accurate representation of the
environment, ensuring robust performance even under challenging conditions such
as poor lighting or obstructed views in underground pipe networks. This method
addresses the shortcomings of conventional topological mapping and localization
techniques, enhancing the robot’s operational efficiency and reliability in confined
environments.
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Chapter 3

Real-time robot topological
localization and mapping with
limited visual sampling in
simulated buried pipe networks

3.1 Introduction

The development of robot localization technology has gained significant attention
due to its potential for improving the efficiency of critical infrastructure maintenance,
such as pipelines (Jensfelt, 2001). However, pipeline robotics faces unique challenges
compared to indoor environments, particularly in miniaturizing robots for autonomy.
These robots require accurate sensors, efficient power sources, and real-time
operational algorithms, while also ensuring computational efficiency to minimize
power and hardware requirements. Traditional infrastructure maps often fail to
represent the current state of pipeline networks, leading to outdated information
that can hinder maintenance and repairs (Mounce et al., 2021). Autonomous
mapping techniques, which provide real-time updates, offer a solution to this issue.
However, for efficient navigation, traditional geometric maps may not capture
the full connectivity and relationships of pipeline components, such as junctions.
This limitation calls for topological maps, which focus on the connectivity and
spatial relationships within the network. These maps are more computationally
efficient, reduce error accumulation, and allow for advanced reasoning and planning
(Kortenkamp and Weymouth, 1994).

This work proposes a topological mapping algorithm for autonomous navigation
in buried pipe networks. Topological representations are compact and intuitive,
making them well-suited for real-time applications in constrained environments.
By leveraging these maps, robots can efficiently navigate and perform inspection
tasks in dynamic, underground settings. A commonly used technique for mapping
and localization in such environments is Simultaneous Localization and Mapping
(SLAM), which typically uses geometric representations (Mur-Artal et al., 2015;
Rugg-Gunn and Aitken, 2022). However, our approach focuses on topological maps,
which are more efficient in terms of storage and computation, offering a robust
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solution for autonomous navigation over extended periods.

We present a hybrid approach integrating vision- and nonvision-based strategies
in a single fully autonomous framework. In particular, we use non-vision-based
exploration and navigation while our localization and mapping rely on an active-
vision algorithm, which is only activated at topologically key (landmark) locations.
Nguyen et al. (2022) describe an autonomous robot for pipeline inspection which
they use to demonstrate exhaustive non-visionbased exploration of a physical pipe
network. The small size of the robot (70 g, navigating through 150 mm pipes)
imposes severe limitations on sensors, motors and battery power. Instead of using
a camera, the robot uses distance sensors to navigate through the pipes and to
execute turns and maneuvers at junctions and dead ends. Here, we propose to add
localization and mapping capabilities to this platform. We implement this robot
in a simulated pipe network to develop and test our active vision, localization and
mapping algorithm. In our work, we focus primarily on junctions, as these are
sufficient for the topological mapping of the network. Once the robot arrives at a
junction, it uses its camera to collect an image dataset of the location. The robot
localizes by comparing the images from its current location with the data in its
database. This localization step includes orientation matching, i.e., calculating the
robot’s rotation relative to the orientation in the database. An active vision step
is included to increase the accuracy and robustness of the localization. Finally, the
robot either identifies its location based on a good match with an existing location
in the database or defines its location as novel, adding the location information and
the associated image set to the database and the topological map.

This chapter is organized as follows. In addition to the creation of topological
maps such as mentioned above, we have also developed control algorithms for the
fully autonomous navigation of the robot in our experiments, so that the robot can
generate topological maps in real-time as it explores the pipeline. The methods are
described in Section 3.2, including a brief overview of the autonomous control of
the simulation robot presented by Nguyen et al. (2022) (Section 3.2.1). Although
the physical robot was successful in exploring the pipe network, this study relies on
a motorized camera that has yet to be implemented. Hence, the experiments with
localization and topological mapping are conducted in a simulated environment. The
results are presented in Section 3.3, including simulations of the robot recognizing
junctions in real-time and constructing a topological map as it moves through the
pipeline (Section 3.3.6). Finally, the chapter concludes with a discussion in Section
3.4.

3.2 Materials and methods

The algorithm for automatic control is provided by Nguyen et al. (2022), and
a detailed method overview can be found there. We present a brief discussion
in Section 3.2.1. The experiments in this study were conducted within a small-
scale pipe network simulated in the Gazebo simulator. The network consists of
six junctions and relatively simple pipe structures (Figure 3.1). Additionally, the
interior of the pipes was textured, which might influence the image matching
accuracy. The limited size of the network and the controlled nature of the simulation

43



environment should be noted as these factors may not fully capture the complexity
of real-world applications. The junction recognition process involves distinguishing
between known and unknown junctions (Section 3.2.2). The image matching used
for calculating the similarity between junctions relies on NCC (Section 3.2.3). By
comparing the current junction with all the junction data collected in the database,
the robot’s task is to determine whether the junction has been visited before. If it
has, the robot proceeds to localize (Section 3.2.4). If the junction is new, it is added
to the image database and the topological map is updated (Section 3.2.5).

3.2.1 Robot control for navigation and exploration

The miniature robot is equipped with three range sensors, an inertia measurement
unit (IMU), two wheel-leg encoders, and a camera (800 x 800 Pixels) for sensing.
The robot starts at the entrance of the pipe network and exhaustively explores all the
sections before returning to the starting point. While exploring the pipe network,
the robot encounters all junctions, dead-ends, and obstacles at least once, using
its sensors to autonomously navigate and maneuver to deal with these conditions
based on its estimated states. In our work and Nguyen et al. (2022), we do not
use the camera for autonomous control of the robot but only fuse the data of the
other three types of sensors to estimate the robot’s state. Eleven robot-in-pipe
states capture different positions at T-junction, at left /right branches, at left /right
corners, at straight pipe centerline, inclined in straight pipe, at a dead-end, at a
cross junction, at open-space, and finally, to detect when the robot is approaching
a collision. Three time-of-flight range sensors are installed at the front, front-left,
and front-right of the robot to measure distances from the robot to the surrounding
environment. These distances, combined with IMU data and their historical data,
provide sufficient information for the algorithm to calculate the current robot’s local
state (Nguyen et al., 2022).

Once the robot confirms its estimated local state, it makes a high-level decision
to turn right or left at an angle, go straight, or turn around. By default, the robot
decides to always take the right most unexplored branch at any junction to guarantee
an exhaustive exploration of all sections of the pipe network. Specifically, the robot
turns right at a cross junction, T-junction, right corner, and right branch. It goes
straight at a left branch and in a straight pipe. It turns left at a left corner and
turns around at a dead-end or upon encountering a significant obstacle (that blocks
passage through the pipe cross-section). Depending on the direction of an impending
collision, the robot turns left or right to move away from the pipe walls or obstacles.
A detailed table of actions taken regarding the robot state was explained in Nguyen
et al. (2022). After making a high-level decision, a low-level motor controller is
called to fine-tune the robot’s direction and velocity in the pipes. Encoder values
and their historical data are used to calculate the maneuver’s speed and estimated
turning angles.

As described above, the robot uses three distance sensors mounted on the front to
recognize a junction ahead. At this point, the robot faces the center of the junction
ahead. In our work, we augment the control algorithm in Nguyen et al. (2022)
to command the robot to move forward from the entrance to a junction by a set
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distance (equal to the estimated radius of the junction). Once at the approximate
center of a junction, sampling, localization, and mapping take place, as described
in the following sections. Once complete, the robot returns to the entrance of the
junction, and the original control algorithm resumes.

We noted that the IMU, odometry and laser data are not used for localization
but only for navigation and low-level control. Our localization method as described
in this chapter relies on vision information only.

3.2.2 Identification of known/unknown junctions

EntryTS

Figure 3.1: The simulated pipe network in the Gazebo simulator (Koenig and
Howard, 2004). Pipe diameter 200 mm. Left: External view with the six junctions
and entry point manually labeled. Right: inside view of a pipe with added texture.

The robot visits different junctions as it explores the pipe network (Figure 3.1).
During this exploration, the robot may visit the same junction multiple times via
different paths. In a tree-like network structure, the robot is guaranteed not to
encounter circular paths and can always return to the starting point. We call
previously visited junctions known junctions. Junctions encountered for the first
time are referred to as unknown junctions. This section describes how the robot can
identify whether it is currently in a known or unknown junction. The robot identifies
junctions using a NCC-based image method, which doesn’t require knowing the
specific path taken to reach the junction. As the robot autonomously explores and
performs topological mapping, the database consists only of known junctions. As
more junctions are encountered, the database and map are updated.

When the robot is approximately at the center of a junction (Figure 3.2), it
collects images all around the junction (See example in Figure 3.3). The 360° view
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Figure 3.2: Robot (appearing as a light blue rectangle in a top-down and rear view)
at the approximate center of junction A.

da[5]

Figure 3.3: Collected image set from junction A (example of d4).
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of the current junction is obtained by rotating the camera that is mounted above
the robot (Figure 3.5) in discrete steps. Given the diameter of the simulated pipe,
each image covers an angular width of about 90°. We want a significant overlap
between images and found that a small set of 6 images (corresponding to 60-degree
rotations between images) is sufficient for robust localization (see Section 3.3.2 in
the Results). As the robot explores the environment, it collects images from each
junction, and the stored sets of images are given by:

D = {di}%\lzulm(]unctions

where D is the database, and NumJunctions is the number of known junctions
at that point in the exploration.

To identify a junction, the robot compares the image set collected at the current
junction, d. , with the image sets of all known junctions. Given two image sets d,
and d;, we perform image matching to define the similarity S(d.,d;) between the
two junctions (see Algorithm 2 below). We then compute the maximum similarity
score, Syaz, across all possible known junctions, to obtain the best candidate for a
known junction, here labeled with index j, using:

(Smax, J) = <maX(S(dc, d;)), arg msgx)

Finally, we determine whether the current junction is a known junction or an
unknown junction by thresholding this maximum similarity score S,,.., shown in
Algorithm 1. If the similarity is higher than the threshold, we identify the current
location as a known junction j in the database. Otherwise, we perform active vision
A(d,,d;) to better align the image sets (see Section 3.2.4; Algorithm 3) and repeat
the image-set comparison with junction j in the database. If the similarity is still
lower than the threshold, we define this junction as an unknown junction and add
the current image set d. to the database as a new junction. We also add this junction
to the topological map, as described in Section 3.2.5.

3.2.3 NCC-Based Image Matching and Preprocessing

Normalized Cross-Correlation (NCC) is a widely adopted method in image matching
due to its effectiveness in quantifying the similarity between two image regions.
The rationale for using NCC in this study stems from its ability to measure the
similarity of corresponding pixel intensities between images, independent of their
overall intensity or brightness. This makes NCC suitable for matching images in
grayscale, where variations in lighting conditions and exposure are not significant
factors (Zhao et al., 2006).

The NCC method computes the correlation coefficient between the target image
and the reference image, measuring the alignment and matching of visual features.
In the context of this research, the NCC-based image matching approach is used to
identify the most likely corresponding junction in the database based on the robot’s
current visual input. The algorithm is designed to compute the similarity between
a set of images from the current location of the robot and images of candidate
junctions, ensuring that even slight variations in perspective or orientation are
accounted for through pixel shifts (Rao et al., 2014).
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Algorithm 1: Algorithm for identification of known/unknown junctions.

1 Knoen/Unknown junction K(d.,d;);
Input : Current image set d., corresponding max similarity image set d,
in the database
Output: known/unknown junction 7'rue/False

2 if S0 > similarity_threshold then
3 ‘ return known;

4 else

5 Smaz = A(de, d;);

6 if Syae > similarity_threshold then
7 ‘ return known;

8 else

9 ‘ return unknown;

10 end

11 return unknown;
12 end

While NCC is robust and simple, it has its limitations, especially when the images
contain significant variations in scale, rotation, or affine transformation. Moreover,
NCC is sensitive to noise and may not perform well in the presence of dynamic
changes in the environment, such as occlusions or moving objects. For more complex
scenarios, alternative methods like Scale-Invariant Feature Transform (SIFT) (Lowe,
2004), Speeded-Up Robust Features (SURF) (Bay et al., 2006), or Oriented FAST
and Rotated BRIEF (ORB) (Rublee et al., 2011) could be considered, as they
are designed to handle scale and rotation-invariant matching. However, we also
tried feature-based matching algorithms like SIFT, SURF, and ORB, but in the
pipeline environment, these methods failed to detect sufficient features, and their
performance was poor.

Thus, NCC was chosen in this study for its simplicity, efficiency, and suitability
for comparing grayscale images of similar content. The limitations of NCC can be
mitigated by employing additional pre-processing steps, such as cropping the lower
portion of the image that might be dominated by the robot’s body, as described
earlier. This ensures that only relevant features of the junction are considered during
the matching process, thereby increasing the robustness of the NCC-based approach
(Parker, 2010).

In summary, while NCC provides an efficient and straightforward method for
image matching in our scenario, it is important to consider its limitations in real-
world applications, where more advanced techniques like feature-based methods
might be necessary for handling more complex visual matching tasks. Nevertheless,
within the scope of this study, NCC remains a suitable approach for matching image
sets, as it efficiently calculates the maximum similarity and corresponding offsets
between images. The following sections describe the details of how NCC is applied
in our approach to image matching and its preprocessing steps.

NCC is used to calculate the maximum similarity, S(d,, d;), and corresponding
offset between two different image sets. Let W; and W5 be two matching windows
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of the same size m x n within images I; and I, respectively, with image dimensions
M x N. The average grayscale values of the matching windows are denoted as w;
and uy, where:

m—1n—1 m—1n—1
1 ' ) 1 } )
U1:% E E Wiz +1i,y + ), U2:% Walz + i,y + 7).
i=0 j=0 =0 j=0

The normalized cross-correlation (NCC) between the two windows W; and W,
at position (z,y) is given by:

St Yy (W (i y+4) —ua ) (Wa (z+i,y+5) —uz)

NCC = .
VT ST (W etisy+)—un)® [y S0 (Wae+isy+i)—us)

For greater realism, only grayscale information is used for image analysis. Image
matching is performed for every possible junction pairing (one corresponding to the
robot’s present location and the other for each ‘target’ junction in the database).
There are six images in each image set, and hence six possible offsets between two
image sets. For a given offset, the normalized crosscorrelation is computed (in
the Fourier domain) between all images in the current location with the candidate
matching junction in the database. For each candidate junction, after finding the
image offset with the maximum similarity, the horizontal pixel offset is set to the
position of the maximum cross-correlation value. Looping through all possible
candidate junctions, the pairwise similarity and the corresponding image and pixel
shifts(offsets) are obtained. Finally, the highest similarity score is used to pin down
a single candidate junction. The image-matching data for this junction pair is then
used as a basis for the active vision step.

Image 3 | | Image 4 | | Image5 | .. [Image 36| |Image 1 Image 2
Image Shift i l l l l i
=2
Image 1 Image 2 | | Image3 | .. |Image 34| |Image 35| Image 36

| | | | |
v v v v v v
|<—>| Image 1 Image 2 | | Image3 | .. |lmage 34 | |Image 35| Image 36

Pixel Shift
P =100 pixels

Figure 3.4: An illustration for the image shift I and pixel shift P. (white: currently
sampled junction, orange: image set of a known junction from the stored dataset).
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NCC is a commonly used region-based method in image feature matching. In
the absence of a single 360° panoramic view of the entire junction, here we apply
NCC to one image-pair at a time and increment the possible image shifts to allow for
the robot entering the junction from different pipe sections, as illustrated in Figure
3.4. We match the similarity of gray pixel values in the whole image field in the two
images (I, and Iy). For Iy, we calculate the NCC coefficient between it and the I,
and the corresponding pixel shift that maximizes the match.

We exploit the similarity in the formulation of the crosscorrelation to a
convolution function, which can be implemented efficiently with a Fast Fourier
Transform (FET). To perform a crosscorrelation, we perform a convolution between
one image and a second conjugate image (see Algorithm 2). The implementation
uses python3.6, opencv2, Numpy, and fftconvolve function from scipy.signal.

We note that a preprocessing step is taken before performing the cross-
correlation. Because the lower part of the image contains the robot, which will
affect the accuracy of the comparison results, we crop out the lower half of the
image. Next, we subtract the mean pixel intensity.

3.2.4 Pipeline robot localization using active vision

As previously mentioned, a minimal change to this control algorithm was imple-
mented to allow the robot to approach the approximate center of the junction. In this
section, we describe a second addition to the control algorithm: the implementation
of active vision.

Given the image shift I, pixel shift P, as well as the angle between successive
images (27/6 radians), camera width (27/4.5), and pixel widths (800 pixels), the
relative angle between the two image sets, is (I % 27/6 + P * cam,idth/pizel,idth).
To execute the active vision, we first instruct the robot to move forward by a pre-
estimated distance. At this point, the robot is already near the center of the junction,
and this movement serves only as a fine adjustment. The robot then moves slightly
forward, backward, left, and right, with each movement approximately equal to
the diameter of one wheel, to refine its position and maximize the image similarity
score through active vision. We continue cross-correlating with the same dataset in
the database until we find a direction that increases the similarity. If active vision
increases the similarity sufficiently to exceed to similarity threshold, the junction
can be identified (it is a known junction). Otherwise, it is classified as an unknown
(i.e., new) junction, as described in Section 3.2.2; (Algorithm 3).

3.2.5 Topological mapping

Topological maps capture the relationships between elements of a map that are
represented as nodes (or vertices), connected by edges (Garcia-Fidalgo and Ortiz,
2015). In our case, the map captures connectivity between pipe segments and the
correct order of these edges in each junction. While distance information can be
important for some purposes, the adjacency of pipe segments and junction informa-
tion suffice for path planning in the network. The key to constructing topological
maps is identifying appropriate spatial points of interest in the environment as
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Algorithm 2: Algorithm for computing the similarity of two image sets
and corresponding image shifts, pixel shifts.

1

N

® =

10

11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31

Image Set Cross Correlation S(d,, dp);

Input : Two Image Dataset d, and d,

Output: Similarity S, Image Shifts I, Pixel Shifts P

/* Iterate through all the images and cycle through different
image shifts

for j < 0 to sizeof (d,) J do

for k < 0 to sizeof(d,) K do

/* Read image from junction dataset a and b

/* Pre-processing, read the image in grey channel and
crop the bottom half

Imagel < d,[j];

Image2 < dp[(j + k)N K];

/* Start Cross-Correlation between two images

/* Calculate the difference between each pixel and the
mean of every pixel of one image

Imagel « (Imagel - Mean(Imagel));

Image2 « (Image2 - Mean(Image2));

/* Faster to flip up down and left right, then use
fftconvolve

Flipl < FlipUpDown(FlipLeftRight(Imagel));

OutMatrix <« fftconvolve(Image2, Flipl);

/* Finally, normalize the resulting matrix

similarity s <— Max value in OutMatrix;

pixel shifts p <— Index of s;

Slist < S;

Dilist < P;

end

/* Sum s and calculate the mean

s = Mean(Sum(sys));

/* Sum p together and calculate the mean

p = Mean(Sum(py;st));

end

/* Find the max s and p based on different j for a single
candidate junction

S+ s;

P« p;

I < j;

return S, P, I;

*/

*/

*/
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Algorithm 3: Algorithm for using the active vision to find the maximum
similarity of two image sets based on image shifts, pixel shifts.

1

© 00 N o oA~ W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Active Vision A(d.,d;);

Input : Current image set d., corresponding max similarity image set d,;
Output: Similarity S

/* Using Algorithm 2 to calculate the similarity S, image

shifts I, pixel shifts P */

S, P, I+ S(d., d;);

RelativeAngle < (I x 27w /6 + P x cam_width/pizel width);

Rotate the camera according to RelativeAngle;

/* Initialize S x/
/* Move the robot a little distance forward */
MoveRobot();

d. < RecordImageSet();

Sl = S(dc, dj);

if S; > S then

‘ return St;

else

| MoveBackCenter();

end

/* Move the robot a little distance backward */
MoveRobot();

d. + RecordImageSet();

Sl = S(dc, d]>,

if S; > S then

‘ return Si;
else

| MoveBackCenter();
end

/* Move the robot a little distance left */
MoveRobot();
d. < RecordImageSet();

Sl = S(dc, dj);

if S; > S then

‘ return St;
else

| MoveBackCenter();
end

/* Move the robot a little distance right */
MoveRobot();
d. < RecordImageSet/();

Sl = S(dc, dj);

if S; > S then

‘ return Sq;
return S;
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vertices and extracting sufficient spatial semantic information from these locations.
In addition to their compactness and elegance, topological maps may be more stable
than spatial maps in the face of closed loops (in the absence of absolute position
information). However, our algorithm is specifically designed for tree-structured
networks because the autonomous control strategy ensures exhaustive exploration
only in loop-free environments. If loops were present, the robot could become
trapped in a cycle, continuously revisiting the same paths without a reliable way
to exit. Therefore, while topological maps could theoretically handle loops with
additional mechanisms such as loop closure detection, our current implementation is
limited to tree-structured networks to guarantee complete exploration and successful
mapping. It is possible to consider a more spatially grounded topological map, in
which edges (i.e., pipe sections) are assigned information (e.g., a distance estimate
from dead reckoning, the time taken to move between two vertices, or the energy
consumed). In our case, however, junctions contain sufficient semantic information
about the scene.

Whether a junction is known or unknown dictates whether the topological map
is up to date. Given an unknown junction, the robot firstly adds the image set
d. to the database D, creates a new vertex V,,, and adds an edge F between it
and the previous vertex the robot visited Vj,5;. When moving between two known
junctions, the edge may or may not have been traversed previously. In the absence
of an edge in the map, a new edge will be added between the previous junction
to the current position. Topological maps typically encode vertices and edges in
an adjacency graph. For navigation purposes, it is also useful to disambiguate the
ordering of the edges for each junction. Here, we use the order in which edges are
traversed to assign them integer labels (W). Whenever a new junction is added, if
the edge used to reach the junction is new as well, it is assigned the next unused
integer as its label. Thus, once the map is complete, each edge has a unique label
(see Algorithm 4). Given the exploration algorithm (in our case, consistently taking
the right-most branch), it is then possible to determine the relative orientation of
the pipe sections.

3.3 Results

In this section, we present our experiment with a simulated robot in a pipe
environment. Our overall goal is to test the performance of our system by building
a topological map doing autonomous control. However, before we present these
topological map-building results in Section 3.3.6, we will present a set of simpler
experiments that we have performed to test the localization performance of our
robot. The following five experiments will be presented.

1. Perfect Center: Our first experiment tests if the robot can identify which
junction it is in with respect to the junction in the database when the robot is
initialized at the center of the junction. In this experimental setup, we assume
a precise center position for the junction. However, in real pipe environments,
the existence of a well-defined center may not always be the case. Regardless,
as long as the robot can return to a position close to the first arrival point,
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Algorithm 4: Algorithm for processing a junction during topological map
building.

1 Topological Mapping T'(d., D, Vigst, W, G);

Input : Current image set d., Database D, last vertex V.., Label W, and

Graph G
Output: Graph G
/* Iterate through all the image sets in the database D
/* Initialize S,uzs Prazs Imaz
for i <— 0 to sizeof (D) do
/* Using Algorithm 2 to calculate the similarity S, image
shifts [, pixel shifts P
S, P, T+ S(d., d;);
if S > 5,4 then
Sma:c = Sv
Praz = P7
10 Lz = 1;
11 end

aqR W N

© 0w N o

*/
*/

*/

12 /* Find the max similarity S,,,, through all the comparisons and

corresponding d,.., image shifts I[,,,, and pixel shifts P,

*/

13 /* Determines if the current junction is a known or unknown
junction

14 result = K(d., dnaz);

15 if result == True then

16 /* It’s a known junction. The vertex is the same as the

vertex represented by du.

17 Ve < GetVertex(dpmaz);

18 last vertex Vi s;

19 if Edge(Vigs, Ve) doesn’t exists then

20 /* Create a new Edge F

21 E « NewEdge(Viast, Ve);

22 /* Add the label W to the edge E

23 AddLabel(E, W);

24 W« W+1;

25 /* Add Edge E to Graph G

26 G <+ AddEdge(E, G);

27 return G;

28 else

29 /* It’s an unknown junction

30 /* Add the current image set d. to the database D

31 d. — D;

32 /* Add a new vertex V,,

33 V,, < NewVertex(V,,, d.);

34 G < AddVertex(V,,, G);

35 /* Create a new Edge F

36 E <+ NewEdge(Viast, Va);

37 /* Add the label W to the Edge E

38 AddLabel(E, W); 54

39 W« W+1;

40 /* Add Edge E to Graph G

41 G + AddEdge(E, G);

42 return G:

*/
*/

*/



the method can still function effectively. In this experiment, autonomous
navigation is not used. We also use a robot initialized at the center of the
junction to determine how many images to collect in each junction. The
experiment suggests that six images are sufficient (see Section 3.3.2).

2. Noise: To validate that six images suffice even for the imperfect positioning
of the robot in the center of the junction, we repeated the above experiments
such that robot will be located at 3 cm off center (see Section 3.3.3).

3. Active: To test the robot’s ability to improve its localization through active
vision, in this set of experiments, the robot is initialized at the off-center
position and uses active vision (see Section 3.3.4).

4. Entrance: To more realistically simulate the process of the robot traveling
autonomously in the pipeline, we place the robot on the edge of the junction
in the pipeline, and perform a similar set of experiments. The robot moves
forward a distance of the junction radius to the center before switching on its
camera (see Section 3.3.5).

5. Autonomous: The robot is simulated under the fully autonomous exploration
and control mode. A topological map is built (see Section 3.3.6).

3.3.1 Experimental setup

Figure 3.5: Robot simulated in the pipe network.

We model the mobile robot in a pipe network (Figure 3.1), and test our
localization algorithm using ROS (Quigley et al., 2009) and the physics simulator
Gazebo 9 (Koenig and Howard, 2004). The robot 3D model was designed in
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Solidworks (see Figure 3.5; Nguyen et al. (2022) for details of the design) and
imported into Gazebo. The imported model in Gazebo is shown in Figure 3.5.
The robot has six wheel-legs, with wheel diameter 28 mm. Three left wheel-legs are
connected and are actuated by a DC motor. Similarly, three right wheel-legs are
connected and controlled by the second DC motor. The two motors are independent
and controlled by two PID (proportional integral differential) controllers. Each
motor controller is implemented in Gazebo-ROS using the ros_control package
(allowing complex joint control algorithm to be applied to the DC motor instead of
standard differential drive).

Figure 3.5 shows the simulated pipe structure in Gazebo and the simulated
pipe network with the robot. The grayscale texture was imposed on the simulation
environment to ensure that junctions look distinct. This is an underlying assumption
of our work—i.e. that there is a visual difference between geometrically identical
junctions. In a pipe network of any age, this is likely to be true but needs to
be experimentally verified in future work. The robot is controlled by sending
commands to its two ros_control motor controllers. The simulation provides an
idealized scenario for the robot model, in which we can develop and test the proposed
algorithms for localization and mapping.

3.3.2 Initializing the robot at the center of the junction

We collected images for each junction, sampled with a robot positioned precisely at
the center of each junction as a reference database. Figure 3.3 shows sample data
collected from one junction.

To determine a robust number of images that would suffice for localization, we
performed a preliminary experiment, in which we placed the robot in the center of
each of the six junctions in our network. As each image has a view of about 90°,
more than four images would be required to ensure some overlap between adjacent
images. We compared image sets with 6, 9, 18, and 36 images. For each case,
four image sets were collected from each junction, facing four different directions (at
90-degree intervals) resulting in 24 image sets. We used the same robot to collect
all the data sets required for the experiment at the same position in the pipeline.
Defining the image sets from different robot orientations of the same junction as
“Same” and image sets from different junctions as “Different”. We calculated the
similarity scores to the Same and Different junctions for image sets with 6, 9, 18,
and 36 images. We present the results in Figure 3.6. While increasing the number of
images yields higher accuracy, even with only six images, junctions can be recognized
and the rotational error is small (< 3°). The result demonstrates the robustness of
the algorithm to the number of images used, with six images being sufficient to
reliably identify junctions under perfect center conditions.

To verify whether we can distinguish between known and unknown junctions,
we collected sets of images for six junctions within the pipeline under different
experimental conditions. For each experimental condition, we collected 5 imagesets
at each junction giving us a total of 30 imagesets. We then compared the collected
imagesets pairwise. Based on whether these sets of images originated from the
same junctions or different junctions, we computed similarity results for junctions
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Figure 3.6: Assessing junction similarity for different sized image sets. Junction
similarity results for 24 image sets (4 per junction at 90-degree intervals) under
Perfect Center conditions. The similarity is compared for different numbers of
images per image set. Boxplot (showing the Upper whisker, Upper quartile, Median,
Lower quartile, and Lower whisker from the top to the bottom for the known junction
(blue) and unknown junctions (green).) Applying a threshold of 0.36 (red horizontal
line) would allow for accurate recognition of known junctions and distinguishing
unknown junctions.

Table 3.1: Summary of similarity results across different image sets under different
conditions. Note the low similarity obtained for unknown junctions, across all
conditions.

Similarity + std ‘ Perfect center ‘ Noise ‘ Active ‘ Entrance ‘ Autonomous ‘

|
| Known junction | 0.700 & 0.157 | 0.614 + 0.112 | 0.675 & 0.166 | 0.643 & 0.150 | 0.631 =+ 0.109 |
| Unknown junction | 0.276 & 0.028 | 0.276 + 0.027 | 0.276 & 0.024 | 0.280 + 0.031 | 0.273 £ 0.025 |

Table 3.2: Summary of rotation error across different image sets under different
conditions.

‘ Rotation error (radians) ‘ Perfect center ‘ Noise ‘ Active ‘ Entrance ‘ Autonomous ‘

| Known junction | 0.054 | 0.044 | 0.051 | 0.047 | 0.101
Unknown junction 0.377 | 0.473] 0.610 | 0.717 0.856
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Figure 3.7: Image matching between junctions in the simulated pipe network (orange
line: mean values, lower quartile: median of the lower half of the dataset, upper
quartile: median of the upper half of the dataset, red line: threshold 0.36). Similarity
scores for “Same” are computed as S(dj,d;z), where dj and d;z are different
imagesets captured from the same junction . Similarity scores for “Different” are
computed as S(d;,d;), where d; and d; are different imagesets captured from the
different junctions, ¢ and j. Same and different junctions can be robustly separate
by the threshold.
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labeled as “known” and “unknown”. Notably, each known category comprises 60
data points(imageset pairs coming from same junction) in its box plot, while the
unknown category encompasses 375 data points(imageset pairs coming from different
junctions). These results are presented in Tables 3.1, 3.2; Figure 3.7.

3.3.3 Initializing the robot in the off-center junction posi-
tion

To validate that six images suffice even for the imperfect positioning of the robot
in the center of the junction, we repeated the above experiment for eleven image
sets collected from robots that were located 3 cm off the center from a random
direction (‘Noise’) (Tables 3.1, 3.2; Figure 3.7). Henceforth, all image sets consist of
six images per junction. Next, we tested the robustness of our junction identification
algorithm. To verify that the identification of ‘known’ junctions was reliable, we also
checked the relative angular offset (obtained from the image and pixel shifts) and
confirmed that these agreed with the different robot orientations.

3.3.4 Using active vision

Our next experiment tests the robot’s ability to improve its localization through
active vision. While our noisy experiment still showed good results, we expect that
more realistic pipe conditions may result in greater slippage or possible errors in
estimating the radius of a junction. To address such conditions, here, we move
the robot’s position to bring it closer to the position at the time of image set
acquisition in the database (corresponding to previous visits to the known junction).
Active vision dramatically improves the robot’s position recognition accuracy over
the ‘noise’ experiment above.

3.3.5 Initializing the robot at the entrance of a junction

After setting up a simulation environment, we applied the same control methods
described in Nguyen et al. (2022) to the simulated mobile robot. We updated
the algorithm so the robot could move to the center of the junction and execute
image collection for localization and mapping. The robot was able to explore
the simulated pipe network exhaustively in the simulation environment, but also
experienced failure in some maneuvers due to sensitivity to positioning, when
resuming navigation of the network after visiting a junction. Here, we focus on
results from successful runs.

To more realistically simulate the process of the robot traveling autonomously
in the pipeline, we place the robot on the edge of the junction in the pipeline
(‘Entrance’). The robot is oriented toward the center of the junction where its
distance sensors detect a junction ahead while advancing in the pipeline. From
this ‘entrance’ point, the robot moves forward at a fixed distance, set to be the
radius of the junction. As in previous experiments, we collect image data at the
position where the robot finally stops, which can better simulate the heading error
in the real world. We collected eleven image datasets of robots after having moved
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autonomously from the edge to the center of the junction. A comparison of these
eleven image sets’ data in the database is shown in Tables 3.1, 3.2; Figure 3.7.

From Table 3.1 results and using a threshold of 0.36 in the similarity, the robot
can recognize the same junction, even off-center. However, it should be noted
that this threshold may not be universally applicable and could depend on specific
conditions such as the quality of the images, the camera’s field of view, or the
environment in which the robot operates. In our experiment, the 0.36 threshold was
effective for the specific setup, but further tests under varying conditions would be
needed to determine its robustness across different scenarios. In the third step of
the active vision experiment, the robot achieves slightly improved mean similarities
but is subject to larger variability. The robots from the junction entrance were all
identified quite well and were considerably more accurate than the second and third
sets of experiments.

3.3.6 Autonomously generating an ordered topological map

We now test our method under fully autonomous conditions. For this experiment,
the junction database is initially empty and is updated every time the robot traverses
a new and different junction, from those previously visited. We conducted 7
experiments each starting at different position in the pipe network shown in Figure
3.1. The starting positions were: S,A,B,C,D,E,F. The robot was able to generate the
correct topological map successfully from all of these starting positions. In Figure
3.8, we shown one example. The robot starts at entrance location S and exhaustively
explores the network until it returns to the entrance. At every junction, based on the
image database of previously visited junctions and the robot’s ability to recognize the
current junction, the robot’s topological map is updated in real-time. A successful
map is shown based on the above perfect junction sampling.

We define the topological map as an undirected graph in which each node
represents a junction that was visited and imaged by the robot. Each time the robot
identifies its location with a junction in the database, it successfully proceeds without
updating the map. Conversely, when the robot arrives at a new, unfamiliar node,
the current junction and its set of images are successfully added to the database,
a new node is added to the graph, and an appropriately labeled edge connects the
previously visited node to the current node (Figure 3.8).

3.4 Conclusion

Our work employs a multimodal sensing strategy to combine a miniature au-
tonomous robot’s exploration, localization, and mapping in a simulated pipe
network. While the results presented here are based on simulation experiments,
we note that the robot is based on the SolidWorks model used to build a
physical miniature model that successfully explored a similar pipe network. A
key challenge in this work arises from the miniature robot’s limited mobility and
limited power. Hence we sought an efficient (powersaving) strategy that requires
relatively little computation and storage. We rely on our finding in (Nguyen
et al., 2022) that the range sensor data in the physical robot is accurate and
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Step 1 Step 2

Figure 3.8: Dynamic topological map, generated during autonomous exploration
of a simulated pipe network (shown in Figure 3.1). The six steps correspond to
the six updates, each time a new (unknown) junction is visited. The edge labels
represent the order in which the junctions were added to the map, and their relative
orientations were determined with the knowledge of the rule-based exploration
algorithm, yielding an ordering consistent with the pipe network. For visualisation,
90°angles were always assumed between adjacent edges since this is usually the case
in real life situations.
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can make good estimates of the surrounding environment when the robot executes
navigation and obstacle avoidance. We proposed that vision sensors are rich in
data and we demonstrate that using fast NCC methods suffice in our experiments
to identify environmental landmarks. We adapted traditional image-matching
techniques to pipeline geometries and rotational movement of the camera. We
further propose that active vision may be useful to compensate for the limitations
of poor positioning of robots during realistic autonomous movement in pipeline
environments. It is important to highlight that although a specific robot model
was used in our simulated experiments, the vision-based localization technique we
propose is designed to be compatible with various robotic systems, rather than being
limited to a particular robot. As long as a robot is capable of exploring the pipe
network and equipped with a camera, our method can be employed for topological
mapping of the network.

Our work primarily focuses on developing image-matching algorithms for active
vision. However, it is important to address the main limitation encountered
with the physical robot, which relates to the location and motorization of the
mounted camera. In future work, we plan to conduct tests and evaluations in
a physical setting using either the same robotic platform or an alternative one
that allows for panoramic imaging, enabling us to assess the performance of both
the vision-based algorithm and the control mechanism. It should be noted that
the sensors used in our work were studied solely in the simulation environment,
and therefore, it is challenging to reliably estimate the accuracy of the robot in
an actual physical setting. Furthermore, conducting experiments with physical
robots in realistic pipe networks introduces additional complexities due to sensor
limitations, robot stability, and control issues. It is crucial to acknowledge the
significant challenges associated with system integration and electronic isolation in
real-world pipe networks, which are often wet, dirty, and cluttered. To thoroughly
evaluate the performance, reliability, and durability of the in-pipe robot, extensive
testing and validation in real-world pipeline environments are essential. Another
noteworthy challenge in real-world deployments is failure recovery. For instance,
if the robot becomes stuck inside the pipe network, our current method does not
provide a solution for rescuing it. Additionally, realpipe networks often pose the
challenge of dark lighting conditions. Consequently, in a practical deployment, the
robot may require onboard lighting to support the camera’s visibility. Under such
settings, the usefulness and feasibility of active vision can be more extensively tested.
The experiments conducted in our work have primarily focused on a specific pipe
texture. Conducting experiments in a physical pipe environment will enable us to
test our proposed method with real pipe textures and verify our hypothesis that the
distinct textures at junctions are sufficiently different to enable the differentiation of
various junctions. However, the specific texture chosen in our simulated environment
may not fully capture the variations found in real-world pipeline networks. Factors
such as corrosion, dirt accumulation, and wear over time can introduce significant
variability in visual appearance, potentially affecting the performance of our NCC-
based matching approach. Future work should therefore evaluate our method across
a diverse range of textures to better understand its generalization capabilities and
robustness in real-world applications. In summary, while our work emphasizes
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image-matching algorithms for active vision, it is crucial to recognize and address
the challenges posed by the physical robot’s limitations, system integration in real-
world pipe networks, failure recovery, lighting conditions, and the need to validate
the method with different pipe textures in physical pipe environments.
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Chapter 4

Localization and Metrically
Enhanced Topological Mapping
via Panoramic Image Stitching

4.1 Introduction

In this chapter, we introduce an approach to enhance robotic localization and
mapping within buried pipe networks by utilizing panoramic image stitching. This
method aims to improve the accuracy of topological maps, which are critical for
robotic navigation and decision-making processes in such intricate environments.
By integrating panoramic imaging, the robot can capture comprehensive visual data
at junctions, allowing for a detailed understanding of the spatial relationships and
geometrical configurations of the network.

The concept of Metrically Enhanced Topological Mapping (METM) is in-
troduced, which leverages the benefits of both topological and metric maps.
Conventional topological maps offer an abstract representation of the environment
by illustrating connectivity between significant points, such as junctions, through
nodes and edges. However, these maps often lack precise geometric details, which
are crucial for accurate localization and navigation in environments where small
positional errors can lead to significant operational challenges.

Our approach involves stitching together panoramic images at critical junctions
within the pipe network to derive precise angular relationships between different
paths. This enhanced mapping process provides a more accurate representation
of the physical layout of the network, enabling the robot to make more informed
navigation decisions. By incorporating real-world geometric relationships into the
topological framework, we improve the robot’s ability to navigate pipe configura-
tions, reduce localization errors, and optimize path planning.

This chapter details the development of the panoramic image stitching technique,
the challenges associated with its implementation, and the integration of this
method into the robotic system. We also present extensive experimental evaluations,
including simulations and real-world trials, to validate the effectiveness and accuracy
of the proposed method. The results demonstrate that the integration of panoramic
image stitching significantly enhances the robot’s mapping capabilities, leading to
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improved performance in navigation and task execution within buried pipe networks.

Metrically Enhanced Topological Mapping (METM)

In this work, we propose the term Metrically Enhanced Topological Mapping
(METM) to describe a technique that enhances conventional topological maps
by incorporating precise angular relationships between nodes. This method is
designed to offer a more precise and informative representation of the environment,
which can be particularly valuable for improving localization and navigation in
intricate, confined spaces such as buried pipe networks. This approach maintains the
high-level abstraction of topological maps, which represent environments through
nodes (significant locations) and edges (connections between these locations),
while embedding real-world angular information. By integrating true angular
relationships, METM improves the system’s ability to accurately navigate and
localize within an environment, facilitating more effective path planning and spatial
orientation. This method is particularly beneficial in pipe environments, enhancing
the capabilities of autonomous systems such as mobile robots and inspection robots
by providing both connectivity and accurate directional guidance.

4.2 Assumptions, Objectives and Contributions

This section outlines the assumptions, objectives, and contributions of the research
in developing a real-time robotic localization and METM system for buried pipe
networks using panoramic image stitching. It extends the assumptions, objectives,
and contributions presented in Section 1.3 by incorporating additional objectives
and contributions specific to the methodologies employed in this chapter.

Objectives

1. Stitch together images captured at each junction to create a panoramic view
and compare this panoramic image with those from previous junctions to
determine the robot’s current location.

2. Develop a method for real-time robotic localization and generate metrically
enhanced topological maps of buried pipe networks through panoramic image
stitching.

3. Document the robot’s orientation each time an image is captured to ensure
the map includes precise angular relationships between nodes.
Contributions

1. Introduction of an approach that utilizes panoramic image stitching to
compare unique locations within the pipe network, leveraging the wide
field of view and resolution of panoramic images to accurately identify and
differentiate junctions and other critical points.
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2. Development of a METM system designed for pipe networks, representing
network connectivity and including angular relationships between nodes for a
metrically enhanced representation.

4.3 Problem Description

The technical problem addressed in this research involves the real-time localization
and METM of autonomous robots operating in buried pipe networks, where
conditions such as confined spaces and limited distinguishing features present
significant challenges to conventional methods. The system focuses on identifying
the robot’s position at junctions using a combination of visual and distance sensor
data to generate metrically enhanced topological maps that accurately represent the
connectivity and angular relationships between junction exits.

The input data consists of high-resolution images (1920x1080 pixels) captured at
regular intervals, alongside precise range measurements (with a +1 cm tolerance).
Odometry is utilized specifically to determine the robot’s orientation upon reaching
junctions, without attempting to address odometry drift. Due to the lack of
distinctive visual features in the homogeneous pipe environment, correcting for drift
is impractical. Instead, the system uses orientation data to assist with positioning
at junctions.

The system’s output is a topological map where nodes represent junctions and
edges represent pipe segments. Angular information between junction exits is
captured to ensure an accurate representation of the network’s physical layout.
Junction geometry and exit angles are determined through panoramic image
stitching, which provides a comprehensive view of each junction and the angular
relationships between exits.

Unlike methods that rely on template matching, this approach utilizes panoramic
image stitching to extract the geometric features of the junction and the angles of
each exit. The identification of the robot’s current position is achieved by comparing
the geometric relationships between the current junction and its exits with the
spatial relationships recorded at the previous node, allowing the system to determine
adjacency and connectivity within the network.

The problem is further constrained by the requirement for real-time operation,
necessitating efficient data processing to ensure low-latency decision-making. The
system updates the robot’s pose and the topological map dynamically as the robot
navigates the network, maintaining an accurate and up-to-date representation of
both the network’s structure and orientation.

4.4 Autonomous Control

The autonomous control system used in this research is based on the control
algorithm developed by Nguyen et al. (Nguyen et al., 2022). As discussed in
Section 3.2.1, this algorithm enables the robot to navigate buried pipe networks
autonomously by utilizing a state-based decision-making process. For further
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details on the algorithm’s implementation, please refer to Section 3.2.1, where it
is thoroughly explained.

4.5 Panoramic Image Stitching

The development of a reliable and accurate panoramic image stitching method is
an effective approach for improving the localization and mapping of robots within
buried pipe networks. This section details the principles and methodologies of
panoramic image stitching, focusing on capturing, processing, and combining images
into panoramic views using the normalized cross-correlation (NCC) algorithm to
determine the best stitching positions.

The process begins with the selective activation of the robot’s vision sensors
at critical points within the pipe network, such as junctions. The use of distance
sensors helps identify these critical points, at which the vision sensors are activated
to capture a series of images from different angles. This selective activation is
designed to conserve energy and computational resources, as continuous image
capture is unnecessary and inefficient in the confined and repetitive environment
of pipe networks.

Once the robot arrives at a junction, it uses its IMU (Inertial Measurement
Unit) to record the current orientation of the camera relative to its initial position.
The IMU measures the robot’s orientation through its gyroscope, which detects
rotational movement around the three axes. These measurements are relative,
meaning they provide the robot’s orientation in reference to its starting point, rather
than an absolute orientation. The IMU tracks changes in angular velocity over time
to calculate the robot’s orientation, with its accuracy depending on the quality of
the sensor and the accumulation of drift over time. To mitigate errors, the robot can
periodically recalibrate its orientation based on known reference points. This IMU is
integrated into our custom-developed robot, Skatebot, as shown in Figure 4.9a. This
initial angle is saved and will be used later to calculate the actual angle corresponding
to each exit of the junction. After capturing this orientation data, the robot begins
rotating its vision sensors to cover a 360-degree field of view. The rotation is carefully
controlled to ensure sufficient overlap between consecutive images, which is essential
for accurate stitching. Typically, the robot captures images at fixed angular intervals
to ensure complete coverage of the junction. As illustrated in Figures 4.1a, 4.1b,
and 4.1c, the robot captures images at angles of 0 degrees, 90 degrees, and 180
degrees, respectively. These figures serve as examples to illustrate the process. In
practice, the robot captures images at 30-degree intervals, ensuring comprehensive
coverage of the junction. By combining the initial IMU-recorded angle with the
subsequent image captures, the robot can accurately map and determine the angles
corresponding to each junction exit, facilitating precise mapping and navigation
across the complete 360-degree view, as shown in Figure 4.2, where different angles
of the junction are captured by the rotating camera on the robot.

The captured images are then processed to correct any distortions caused by
the camera lens and the confined space of the pipe. This preprocessing step is
vital to ensure that the images can be accurately aligned and combined. Common
preprocessing techniques include lens distortion correction, image scaling, and
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(a) The robot captures an (b) The robot captures an (c¢) The robot captures an
image at 0 degrees. image at 90 degrees. image at 180 degrees.

Figure 4.1: The robot captures images by rotating its skate to cover a junction,
showing different angles of vision capture.

(h) Image 8

(i) Image 9 (j) Image 10 (k) Image 11 (1) Image 12

Figure 4.2: Different angles of a junction captured by a rotating camera on a robot.
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contrast adjustment to handle varying light conditions within the pipe.

The core of the panoramic image stitching process involves aligning the
preprocessed images to create a seamless panoramic view. This is achieved through
Algorithm 5:

Algorithm 5 creates a seamless panoramic image from a set of images captured
at a junction within a pipe network. It starts by initializing an empty panoramic
image P, which is progressively built by aligning and adding each image from the
input set /. For each image, the algorithm computes the horizontal shift required
for alignment with P using the NCC method. First, both the current image and
the panoramic image P are converted to greyscale to simplify the comparison. The
algorithm then identifies the rightmost Region of Interest (ROI) in the panoramic
image where the new image is expected to align. The ROI is extracted from the
panoramic image starting from the position where the new image width fits entirely
within the rightmost part of the panoramic image. The NCC score is computed
between the greyscale version of the current image and the ROI, generating an
NCC matrix that measures similarity at various shift positions. The peak in the
NCC matrix identifies the best matching position, and the corresponding shift is
calculated. This initial shift is then adjusted to account for the starting position
of the ROI within the panoramic image, ensuring accurate horizontal alignment.
The adjusted shift shiftX is applied to the current image, which is then added
to the panoramic image, expanding the view. This process is repeated for each
image in the input set I, and once all images are processed, the algorithm returns
the final panoramic image. This approach ensures accurate alignment, creating a
seamless and reliable panoramic image, which is crucial for effective localization and
navigation in pipe networks.

The resulting panoramic image provides a detailed view of the junction, which is
crucial for the robot’s localization and mapping tasks. By comparing the panoramic
images captured at different junctions, the robot can accurately determine its current
location within the pipe network. This comparison involves matching the current
panoramic image with those stored in the robot’s database, using the NCC algorithm
to ensure precise localization.

One of the key advantages of using panoramic images is their ability to capture a
wide field of view with high resolution, providing detailed spatial information about
the junction. This is particularly important in the environment of pipe networks,
where precise localization is challenging due to the lack of distinctive landmarks and
the repetitive nature of the surroundings.

The effectiveness of the panoramic image stitching method is validated through
both simulations and real-world experiments. Simulations allow for the testing
and refinement of the stitching algorithms in a controlled environment, while real-
world deployments demonstrate the method’s reliability and practicality in actual
pipe networks. These experiments have shown that the panoramic image stitching
method, using NCC for alignment, provides accurate and reliable localization,
significantly enhancing the robot’s ability to navigate and map the network.

We present the detailed results of these experiments in Section 4.8. For
example, Figure 4.6 illustrates the panoramic image generated in a simulated pipe
environment, demonstrating the method’s ability to accurately capture the structure
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Algorithm 5: Panoramic Image Stitching Algorithm

1 Panoramic Image Stitching (I);

Input : Set of images [ = {1, [5,...,I,} from the current junction
Output: Panoramic Image P

2 /* Initialize an empty panoramic image P */
3 P « InitializePanoramiclmage();

4 /x For each image, compute the horizontal shift using NCC and
align it with the panoramic image P */
5 foreach image; € I do
6 /* Convert both the current image and the panoramic image to
greyscale */
7 greyImage < ConvertToGreyscale(image;);
8 greyP < ConvertToGreyscale(P);
9 /* Determine the region of interest (ROI) in P where image;
is expected to align */
10 imageWidth <— Width(greyImage);
11 panoramicWidth <— Width(greyP);
12 ROI < ExtractROI(greyP, panoramicWidth - imageWidth,
panoramicWidth);
13 /* Compute the NCC matrix between the current image and the
ROI in P *x/
14 necScore < NCC(greyImage, ROI);
15 /* Find the peak in the NCC matrix, which gives the best
match */
16 maxNCC < nccScore;
17 /* Initially, we set maxNCC as the result from the first NCC
computation */
18 shiftX < 0;
19 /* Initial horizontal shift for the first alignment */
20 /* For each possible horizontal shift (x-axis), compute the
overlap between the current image and the ROI */
21 for x =1 to Width(ROI) — 1 do
22 /* Slide the current image over the ROI and compute the
NCC for each shifted position */
23 shifted ROI < ShiftROI(ROI, x);
24 shiftedImage < Shiftlmage(greyImage, x);
25 necScore < NCC(shiftedImage, shiftedROT);
26 if nccScore > maxrNCC' then
27 maxNCC < nccScore;
28 shiftX < x;
29 end
30 end
31 /* Adjust the shift to account for the starting position of
the ROI in P */
32 shiftX < shiftX + (panoramicWidth — imageWidth);
33 /* Add the shifted image to the panorama */
34 P <+ AddShiftedToPanorama(image;, shiftX, P);
35 end 70

36 return P;




and exits of junctions. Furthermore, Figure 4.10 provides an example from real-
world experiments, showcasing a stitched panoramic image from the ICAIR Lab.
These figures demonstrate how the panoramic image stitching method effectively
supports METM and localization in both simulated and real-world environments.

4.6 Spatial Relationships

In this section, we discuss the methodology for determining spatial relationships
within the pipe network, focusing on the logical process used to identify and
differentiate nodes (junctions). The approach relies heavily on panoramic image
analysis and angular measurements to build an accurate topological map of the
network.

Figure 4.4:
Template
| image
- used for
Figure 4.3: Template matching using NCC to identify exits. matching.

In the panoramic image, the robot employs template matching techniques to
identify the exit positions of the junction as shown in Figure 4.3. By performing
NCC with a predefined exit template, peaks in the NCC matrix indicate potential
exit locations. For each detected exit, the relative angle 6,.tive is calculated using
the formula:

x
ere ative — - . 360 d 4.1
fat (Wldth of panoramic 1mage) 8 CBICes (4.1)

where z is the x-coordinate of the peak in the NCC matrix.

To determine the actual angle 0., of each exit, the robot adds the initial angle
Oimu Obtained from the IMU when the camera starts capturing images. The final
exit angle is calculated as:

eactual = erelative + eimu (42)

As the robot moves through the pipe network, it constructs a topological map
consisting of nodes (junctions) and edges (paths between them). Each node records
the number of exits and their angular directions. To determine whether a junction
is new or previously visited, the robot first compares the current junction’s exit
configuration (number of exits and their angles) with the stored configurations of all
adjacent nodes from the previous node. If both the number of exits and the angles
match within a defined tolerance, the robot further verifies the relative position
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Algorithm 6: Node Identification and Differentiation

1 NodeldentificationAndDifferentiation (Adjacent node list A);
Input : Adjacent node list A
Output: Identification of junction as new or previously known
2 /* Step 1: Image Capture and Exit Extraction */
3 Capture panoramic image P at the current junction;
4 Call DetectExits(P, i) to extract exits Ep = {ep,,€p,,...,ep, } and their

angular directions 0p = {0p,0p,,...,0p, };

5 /* Step 2: Comparison with Adjacent Nodes Using Exit Count and

Angle Matching */
6 foreach adjacent node A; € A do
7 Extract exits F4, = {€a,1,€4,2,--.,€a,n} and their angular directions

04, = {0a,1,04,2,-..,04n};

8 /* Step 3: Exit Count and Angle Matching */

if |[Ep| = |Ea,| and Angles 0% and 04, match within a defined

tolerance then
10 /* Step 4: IMU-Based Relative Position Matching */
11 Compare the IMU angle from the current node to the previous node,
IMU currentNode; With the IMU angle from the candidate adjacent
node A; to the previous node, IMU 4, prevNode:
AIMU = |IMUcurrentNode - (IMUAi—mrevNode + 1800)|

12 if AIMU < IMU Threshold then
13 Identify as previously known node;
14 return previously known node;
15 end
16 end
17 end
18 /* Step 5: Identification of New Node */

19 Identify as new node;
20 return new node;
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between the nodes using IMU data. If the relative position matches, the junction is
identified as previously visited; otherwise, it is recorded as a new junction.

Once the exits are identified, the robot determines which exit to take next based
on its navigation strategy. This strategy typically involves selecting the right-most
unexplored exit to ensure systematic coverage of the network. The robot records
the current junction’s exits and their angles.

When the robot reaches the next junction, it again captures a panoramic image
and identifies the exits and their angles. To determine if this junction is a new node
or one that has been previously visited, the robot compares the current junction’s
exit configuration with the recorded information of all known connections from the
adjacent node.

The algorithm 6 is designed to determine whether a junction in a navigation
or mapping system is a known node or a new node. It begins by capturing a
panoramic image P at the current junction and uses an exit detection algorithm to
extract the exits Ep = ep,,ep,,...,ep, and their corresponding angular directions
Op = 0p,,0p,,...,0p,. This information is compared to the stored data of exits
and angles from adjacent nodes A = A, As, ..., A,. In this context, “adjacent
nodes” refer to all nodes that are directly connected to the previously visited node.
These adjacent nodes are identified based on their direct connection to the previous
node through the graph structure representing the topological map. When the
robot arrives at a new junction, it compares the current junction’s exits and angles
with those of all adjacent nodes of the previous node, rather than comparing the
current junction to all nodes in the entire network. For each adjacent node A;,
the algorithm extracts exits E4, = €4,1,€4,2,--.,€4,, and their angular directions
Oa, =04,1,04,2,...,04,,. If the number of exits at the current junction | Ep| matches
the number of exits at an adjacent node |E4,| and their angular directions match
within a defined tolerance, the algorithm proceeds to verify the relative position
using IMU data.

First, the algorithm computes the angular difference between the current node
and a potential match from the database. The potential match refers to a node
or junction that has already been identified as geometrically similar based on
the previously computed features, such as the number of exits and their angular
directions. This is achieved by comparing the IMU angle recorded during the robot’s
passage through the junction to the IMU data of the adjacent nodes of the previous
node (denoted as IM Us,gjacentNode—sprevNode)- Specifically, the algorithm calculates
the absolute difference between the current node’s IMU angle and the stored IMU
angle of the adjacent node, adjusted by 180° (since the orientation could be reversed
when revisiting nodes). The comparison is expressed as:

A[MU = |IMUcurrentN0de - (IMUadjacentNode%prevNode + 1800)‘

If this difference, AIMU, falls within a predefined threshold, it confirms that the
junction is a previously known node. If the difference exceeds the threshold, it
indicates that the junction is new and should be recorded as such. This IMU-based
relative positioning allows the robot to maintain an accurate and up-to-date map
by cross-referencing orientation data from previous visits to junctions.

This process enables the algorithm to accurately distinguish between known and
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new nodes, dynamically updating the map or navigation system based on both exit
configurations and relative positioning.

The algorithm 7 identifies exits in 360-degree panoramic images through a series
of steps. Initially, the algorithm preprocesses the image by converting it to greyscale
and applying a Gaussian blur to reduce noise. Then, it employs NCC to compare
the greyscale image with a pre-defined exit template, producing an NCC matrix that
highlights areas of similarity. The algorithm detects local maxima in the NCC matrix
above a certain threshold, indicating potential exit locations. For each detected
peak, it calculates the corresponding angle using the Formula 4.1 which maps the
horizontal position to an angle within the 360-degree view. Finally, the algorithm
returns a list of these angles, representing the positions of exits in the panoramic
image.

Algorithm 7: Exit Detection from Panoramic Images

1 DetectExits (P, Oy );

Input : Panoramic image P (360 degrees), IMU initial angle 6,
Output: List of detected exits with their angles

/* Step 1: Preprocessing */
Convert P to greyscale;

Apply Gaussian Blur to reduce noise;

/* Step 2: Template Matching Using NCC */
Load the exit template T'emp;

Perform NCC between P and Temp;

necMatriz < NCC(P, Temp);

/* Step 3: Detect Peaks in NCC Matrix x/
Find local maxima in nccMatrixz above a threshold;

foreach peak (z,y) in nccMatriz do

/* Compute template center and angle for each detected exit

*/
13 Compute template center Teepter < T + w;

14 Compute angle 0 « (#ﬁtg)) x 360 + Himu> mod 360 degrees;
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15 Append 60 to exit list;

16 end

17 /* Step 4: Return Detected Exits */
18 return list of detected exits with their angles;

This logical process ensures that the robot can accurately distinguish between
new and previously visited junctions, even in the repetitive environment of a pipe
network. By continuously updating the topological map with detailed spatial
relationships, the robot can maintain an accurate representation of the network’s
structure.

The topological map itself consists of nodes representing junctions, with edges
indicating the paths between them. Fach node includes information about the
number of exits and their angular directions, while the edges store the direction and
distance to the connected nodes. This detailed mapping allows the robot to navigate
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efficiently, avoid redundant exploration, and ensure coverage of the network.

In summary, the spatial relationship methodology involves capturing panoramic
images at junctions, analyzing these images to identify exits and their angles, and
using logical comparisons to distinguish between new and previously visited nodes
based on all known connections. This process allows the robot to build a precise and
reliable topological map of the buried pipe network, facilitating effective navigation
and inspection tasks.

4.7 Metrically Enhanced Topological Mapping

METM is a critical component in the robotic navigation and localization system for
buried pipe networks. This section details the methodology and processes involved
in creating a topological map that accurately represents the spatial structure and
connectivity of the pipe network, facilitating efficient navigation and inspection
tasks.

The topological map is constructed as the robot explores the pipe network,
using data collected from distance sensors and panoramic images. The algorithm 8
constructs a topological map G using panoramic images. It starts by initializing an
empty graph G. For each panoramic image P, it determines if the image represents
a new or known junction by comparing it with panoramic images of adjacent nodes
A from the last node P, using a separate node identification algorithm. If the
junction is identified as new, a new vertex is added to the graph. The topological
map G is then updated with new vertices and edges based on the identified junctions.
Finally, the list of adjacent junctions A is updated, and the map G is returned.

The algorithm 9, is designed to update a topological map by integrating angle
information extracted from panoramic images. The algorithm takes as input the
current vertex, a new vertex, the existing topological map, and a panoramic image
of the last node. It begins by extracting exits and their respective angles from the
panoramic image. It then selects the exit whose angle is closest to 180 degrees within
the 0-180 degree range. If the new vertex is not already present in the topological
map, it adds the vertex based on the chosen exit’s angle. Subsequently, if an edge
between the current and new vertex does not exist, it adds this edge to the map,
embedding the angle information. The updated topological map is then returned,
reflecting these additions and modifications. This process aids in the creation of a
structured map that incorporates directional information, enhancing navigation and
mapping accuracy. As shown in the accompanying Figure 4.5, the map gradually
expands by integrating new vertices and edges based on the extracted angle data,
resulting in a progressively detailed representation of the environment.

The resulting topological map consists of nodes representing junctions and edges
indicating the paths between them. Each node contains detailed information about
the number of exits and their angular directions. The edges store data on the
direction traveled between nodes, ensuring the map accurately represents the spatial
layout of the pipe network.

By continuously updating the topological map with new data, the robot
maintains an accurate representation of the network. This enables efficient
navigation, as the robot can use the map to plan optimal routes, avoid redundant
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Algorithm 8: Algorithm for Topological Mapping with Panoramic Images

1 TopologicalMappingWithPanoramiclmages (P, A);
Input : panoramic images P, Panoramic images of all adjacent nodes
from the last node A = {A;, Ao, ..., A, }, panoramic images of the
last node P,
Output: Topological Map G
2 /* Initialize the topological map (G as an empty graph */
3 G < InitializeTopologicalMap();
4 /x For panoramic image P, identify if it represents a known or

unknown junction x/
5 ‘/current — NULL7
6 /* Compare with all adjacent nodes */
7 /* Use Algorithm 6 to determine if the current junction is new
or known */

8 is_new <— NodeldentificationAndDifferentiation(A = { Ay, As, ..., An});

9 if is_new then

10 ‘ Vinew < AddNew Vertex(panoramic_image, G);

11 end

12 /* Update the topological map G with new vertices and edges */
13 G < UpdateTopologicalMap(Veyrrents Vaew, G5 Plast);

14 /* Update the adjacent junction list */
15 A < GetAdjacentJunctions(Ve, G);

16 return G;

Figure 4.5: The flowchart illustrates the gradual expansion of a topological map,
as new nodes and edges are added based on angular information from panoramic
images.
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Algorithm 9: Update Topological Map with Angle Information

1

© O N O U A w

10
11
12
13
14
15
16
17
18
19
20
21
22

UpdateTopologicalMap (exit_list, Veyrrent, View, G);

Input : Extract exits from the panoramic image exit_list, Current vertex
Vewrrent, New vertex V,,.,,, Topological Map G
Output: Updated Topological Map G
/* Step 1: Choose the exit with angle closest to 180 degrees
within 0-180 range */

chosen_exit < NULL;
min_angle_dif f < 180;
foreach exit € exit_list do
if 0 < exit.angle < 180 then
angle_dif f < |180 — exit.anglel;
if angle_dif f < min_angle_dif f then
main_angle_dif f < angle_dif f;
chosen_exit < exit;
end
end
end
/* Step 2: Add vertex based on chosen exit’s angle */
if V. s not in G then
‘ Add V., to G at angle chosen_exit.angle;
end
/* Step 3: Add edge with chosen angle information */
if edge between Vi,rent and Ve does not exist in G then
‘ Add edge E(Veyrrents Vaew, chosen_exit.angle) to G;

end
return G,
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exploration, and ensure coverage of the network.

The topological mapping method has been validated through extensive simula-
tions and real-world experiments. Simulations provide a controlled environment for
testing and refining the algorithms, while real-world deployments demonstrate the
system’s reliability and practicality in actual pipe networks. These experiments have
shown that the topological mapping method can accurately represent pipe networks,
facilitating effective navigation and inspection.

In summary, topological mapping is a fundamental aspect of the robotic system,
enabling precise and reliable navigation within buried pipe networks. By capturing
and analyzing spatial relationships at junctions, recording angular directions, and
systematically exploring the network, the robot constructs a detailed topological
map that supports efficient and effective maintenance and inspection tasks.

4.8 Experiments & Results

4.8.1 Hypotheses

The study on real-time robotic localization and metrically enhanced topological
mapping in buried pipe networks posits several key hypotheses that underpin the
development and validation of the proposed methodologies:

1. The first hypothesis posits that the panoramic image stitching method can
accurately identify and differentiate junctions within a pipe network. Accurate
junction identification is fundamental for precise localization and navigation.
The panoramic image stitching method, which leverages the normalized cross-
correlation (NCC) algorithm, is expected to provide high-resolution, detailed
images that capture the unique spatial configurations of each junction. By
comparing these images, the robot should be able to distinguish between
different junctions accurately, even in repetitive environments.

2. The second hypothesis is that the METM system can effectively represent
the spatial layout of a pipe network, including both connectivity and precise
angular relationships between nodes. This system is anticipated to reflect
the actual geometric orientations within the network, providing a reliable
framework for navigation. The hypothesis emphasizes the importance of
geometric accuracy in the map, which is achieved by recording the robot’s
orientation each time an image is captured. This ensures that the angular
relationships between nodes are well-documented and accurately represented
in the topological map.

These hypotheses collectively aim to validate the proposed methodologies
for enhancing the efficiency and reliability of robotic localization and mapping
in buried pipe networks. By addressing these hypotheses through rigorous
experimentation and analysis, the research seeks to demonstrate the practical
viability and advantages of the developed systems. The outcomes of these tests
will provide valuable insights into the effectiveness of the panoramic image stitching
method and the accuracy of the METM system in real-world applications.
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4.8.2 Experimental setup

The experimental setup was meticulously crafted to test the proposed hypotheses
rigorously in both simulated and real-world environments. For the purpose of this
study, a mobile robotic platform was developed and equipped with various sensors,
including distance sensors, a high-resolution RGB vision system, and an inertial
measurement unit (IMU). The robotic platform was tasked with autonomously
localizing and mapping pipe networks.

The vision system, critical for image-based navigation, captured high-resolution
images of pipe junctions, which were then processed using NCC techniques to build a
panoramic image. The IMU assisted with orientation and movement tracking within
the pipe networks, while the distance sensors were deployed to detect and measure
the distance from the robot to the surrounding pipe walls, crucial for navigating
through tight and confined spaces.

The experimental validation was performed in two distinct environments:
simulations and real-world physical testing. Simulations, presented in Section 4.8.3,
were executed using real image data and accurately modeled pipe environments that
included variations in pipe network and junction configurations. The simulated
environments closely mirrored real-world conditions, with the inclusion of typical
variations found in buried pipe networks, such as T-junctions, Y-junctions, curves,
and different environmental factors like lighting and debris. However, it is
important to note that the number of junctions and the complexity of the pipe
network configurations were constrained by the limitations of the experimental pipe
conditions. Consequently, the simulations could not encompass more complex or
irregular configurations that may be encountered in larger, real-world pipe networks.

In parallel to the simulations, real-world experiments, presented in Section 4.8.4,
were conducted in a controlled environment set up at the ICAIR (The Integrated
Civil and Infrastructure Research Centre) Laboratory. The testbed was designed to
simulate an underground pipe network, with known dimensions and configurations
representing typical challenges encountered in buried infrastructures. However, the
testbed was intentionally simplified to include a limited number of junction types
and obstacles, which may not fully represent the variety of real-world pipe network
configurations encountered in larger and more complex systems. The physical
testbed included a range of junction types and pre-placed obstacles to test the
robot’s ability.

The control algorithms and image processing techniques were implemented in
Python, leveraging tools such as OpenCV and SciPy for efficient computation. The
Robot Operating System (ROS) was employed to integrate and manage the robotic
system’s hardware and software components. ROS facilitated communication
between the various sensors, motors, and control algorithms, enabling seamless
operation of the robotic platform. The navigation algorithm was built around a
finite state machine (FSM) to manage the robot’s decision-making at junctions
and to ensure efficient and exhaustive exploration of the pipe network. The
NCC algorithm facilitated image matching, while the FSM handled autonomous
navigation decisions, ensuring the robot could correctly interpret its surroundings
and make appropriate decisions in real time.

The key performance metrics included the accuracy of the topological map
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generated by the robot and the reliability of junction identification. These metrics
were evaluated throughout the robot’s operation in both the simulated and real-
world environments, providing insights into the system’s robustness, accuracy, and
potential for scalability to larger and more pipe networks. The results obtained from
both simulation and real-world testing are expected to inform future improvements
and adaptations of the system, ensuring its capability to handle more diverse and
challenging pipe network configurations in practical applications.

4.8.3 Real Data-Driven Simulation
Validation of Panoramic Image Stitching

In this experiment, we evaluated the effectiveness of our panoramic image stitching
method in accurately recognizing the number and angles of exits at each junction
within the pipe network. The goal was to assess the precision of junction
identification when panoramic images are used.

The experimental procedures involved collecting numerous high-resolution im-
ages from within actual pipes, and capturing various pipe junctions in real
environments. These images, taken under controlled conditions with a high-
resolution camera, depicted junctions with different numbers of exits and angles.
We manually combined these real images to simulate 10 distinct pipe scenarios,
each featuring 1 to 4 exits at different angles, mimicking real-world junction
configurations. These images were then seamlessly stitched together using our
Algorithm 5. The stitched panoramic images were analyzed using Algorithm 7. It
is important to emphasize that all the images used in the simulations were sourced
from actual robots operating in real pipe environments, and the simulations were
generated through different combinations of these real images.

Figure 4.6: This is a panoramic image artificially generated by rearranging the
sequence of collected images to form a pipe structure. The panoramic view shows a
junction with three exits at different angles, allowing for accurate identification and
measurement of the angles between the exits.

As shown in Figure 4.6, the panoramic image clearly illustrates a junction with
three distinct exits, allowing for accurate identification and angular measurements
of the exits in a pipe environment.

The panoramic image stitching experiment was conducted to validate the
system’s capability of accurately identifying exits and their angles at pipe junctions.
The experiment was carried out in a simulated environment that closely replicated
real-world conditions, utilizing real images of various pipe junctions. These
junctions ranged from configurations with 1 to 4 exits, designed to simulate typical
underground pipe scenarios.
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The robot utilized a high-resolution camera to capture 36 overlapping images
at each junction, rotating 10 degrees between each image to cover a full 360-degree
view. This setup ensured significant overlap between images, which was necessary for
accurate panoramic stitching. The captured images were processed using Algorithm
5.

The system was evaluated in fifteen different junction configurations. Each
junction contained a varying number of exits and exit angles. These panoramic
images were analyzed to detect the number of exits and measure the angles between
them. The system’s performance was assessed using two primary metrics: Exit
Count Accuracy and Angular Accuracy.

The Exit Count Accuracy was measured by comparing the number of exits
detected from the panoramic image with the actual number of exits present at the
junction. Similarly, the Angular Accuracy was assessed by comparing the detected
angles between the exits with the known angles. The panoramic image stitching
method achieved a 100% accuracy in detecting the number of exits and a 4+ 9.5°
accuracy in measuring the angles.

These experiments demonstrated that the panoramic image stitching method is
highly reliable for exit detection and angular measurement. The setup effectively
simulated real-world conditions, making it a possible method for applications in
underground pipe networks.

Metrically Enhanced Topological Mapping Accuracy

In this section, we discuss the experimental design and results of our METM
accuracy tests for underground pipe networks using a robotic system. We designed
four distinct underground pipe network configurations to test our METM algorithm.
Each configuration included multiple junctions with different shapes and layouts.
The experimental setup involved a robot navigating through these junctions,
capturing images at each junction, and updating the topological map based on
the collected data. The four shapes tested are illustrated in the Figures 4.7. Each
configuration represents a different complexity level in terms of junction shapes and
connectivity.

At each junction, the robot utilized artificially generated high-resolution panoramic
images. These images were then processed using our algorithm to identify the
junction type and orientation. The algorithm’s ability to accurately identify
junctions and update the topological map was tested. This involved verifying
the accuracy of junction identification and the precision of the recorded angular
directions between nodes.

The generated topological maps of the four distinct topological network configu-
rations, illustrated in Figure 4.8, provide a comprehensive view of the experimental
setups used to validate the mapping algorithm. The experimental results demon-
strate that the METM algorithm is effective in accurately identifying junctions
and their orientations across various underground pipe network configurations.
The results demonstrated that the algorithm consistently achieved completeness
in the generated networks, effectively mapping the entire network structure, even as
complexity increased. These findings indicate the reliability of the METM system,
providing a foundation for its deployment in real-world applications.
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Figure 4.7: Different configurations of underground pipe networks.
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4.8.4 Real-robot results

In this section, we present the experimental results of testing the real robot, Skatebot
(Figure 4.9a), in ICAIR’s real pipe environment (Figure 4.9b). Skatebot is a
collaborative development by the Pipebot project team, designed specifically for
pipe inspection and mapping. The robot integrates many sensors, including LiDAR,
cameras and acoustic sensors. It features front and rear LED lights for operation in
dark environments, a rotatable platform for enhanced maneuverability, and a four-
wheel drive system for navigating pipe networks. Powered by an onboard battery
with an LED level display, Skatebot can function both autonomously and via manual
remote control. Its core control system is built around a Raspberry Pi 4B, which
manages its sensors and controls, enabling automated exploration and METM of
pipe environments. The ICAIR pipe setup features only two junctions, but we
conducted multiple tests from different entry points. Four different entry points
were used for the tests. One junction was under illuminated conditions, while the
other junction was in complete darkness. Each test iteration was conducted three
times to ensure consistency.

(a) Skatebot in ICAIR Lab

(b) ICAIR Pipe Setup Overview

Figure 4.9: Skatebot in ICAIR Lab and ICAIR Pipe Setup

The real-world experiments were designed to rigorously test the hypotheses
outlined in our study. The Skatebot was equipped with distance sensors, vision
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sensors, and an inertial measurement unit (IMU). The vision sensors captured
high-resolution images, while the distance sensors detected junctions and measured
distances to the pipe walls. The experimental environment was a controlled testbed
replicating actual pipe network conditions with variations in junction types.

Figure 4.10: Example of a stitched panoramic image from the real-robot experiment.
This panoramic view shows a junction with three exits at different angles.

Due to the current unreliability of the autonomous navigation algorithm on
the Skatebot, we used a joystick to mimic the robot’s autonomous exploration
route in the pipe environment. The robot navigated through the ICAIR pipe
setup, capturing high-resolution panoramic images, as shown in Figure 4.10, at
each junction. These images were processed using our panoramic image stitching
algorithm, which leveraged the normalized cross-correlation (NCC) method for
precise image alignment. The algorithm identified junctions and measured angles
between exits.

Each test iteration demonstrated the robot’s capability to generate a metrically
enhanced topological map of the pipe network. The generated maps, as seen in
Figure 4.11, showed that the robot consistently identified the junctions and their
orientations correctly. Even with the limited number of junctions, the robot’s
performance in creating reliable topological maps underscores its potential for
deployment in more pipe networks.
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Figure 4.11: Example of a topological map generated by Skatebot in ICAIR Lab
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The results from the real-robot experiments in ICAIR’s pipe environment high-
light the system’s accuracy in METM. During these tests, the system consistently
identified junctions correctly, and the angle measurements between junction exits
remained within a tolerance of +10 degrees. This was achieved across various tests,
even when conditions varied, such as one junction being illuminated and another in
complete darkness. These findings confirm the system’s reliability and precision in
constructing metrically enhanced topological maps of underground pipe networks.

4.8.5 Limitations

Despite the results obtained from both simulation and real-world experiments, the
research has several limitations that must be acknowledged. These limitations
highlight areas for future improvement and the challenges that need to be addressed
for practical implementation in diverse and challenging environments.

Although the system demonstrated real-time processing capabilities in controlled
environments, its performance under high computational loads needs further
validation. In larger networks, the computational demands for image processing,
data analysis, and decision-making may increase significantly. Ensuring that the
system can maintain real-time performance without excessive delays or resource
consumption is crucial for practical applications.

Energy consumption is another area of concern. While the selective activation
of vision sensors conserved energy and computational resources, the overall energy
efficiency of the system in long-duration missions remains a challenge. The robot’s
battery life and energy management strategies need to be optimized to support
extended operations in extensive pipe networks. Future research should focus on
developing more energy-efficient hardware and algorithms to prolong operational
time.

Furthermore, the current system assumes relatively stable environments for
accurate mapping. However, real-world pipe networks can change over time due
to maintenance activities, natural wear and tear, and environmental factors. The
system’s ability to adapt to and update the topological map in response to these
changes needs to be investigated further. Continuous and adaptive mapping
strategies could enhance the system’s long-term reliability and accuracy.

The practical implementation of the system also requires seamless integration
with existing pipe network infrastructure, including compatibility with various pipe
materials, sizes, and layouts. Developing standard protocols and interfaces for
integration with different types of infrastructure will be essential for widespread
adoption.

Lastly, in real-world scenarios, the presence of unexpected obstacles and debris
can significantly impact the robot’s localization. The current system’s ability to
detect and avoid such obstacles needs further refinement. Implementing obstacle
detection and avoidance algorithms could improve the robot’s reliability and safety
during operations.

In summary, while the research presents a method for real-time robotic
localization and metrically enhanced topological mapping in buried pipe networks,
addressing these limitations will be crucial for deploying the system in diverse
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and challenging real-world environments. Future work should focus on enhancing
environmental robustness, scalability, sensor reliability, real-time processing capa-
bilities, energy efficiency, adaptive mapping strategies, and integration with existing
infrastructure. By overcoming these challenges, the system can be further developed
to provide reliable and efficient solutions for the maintenance and inspection of
underground pipe networks.

4.9 Conclusion

This research has presented an approach to real-time robotic localization and met-
rically enhanced topological mapping within buried pipe networks using panoramic
image stitching. The study focused on developing and validating methodologies that
address the unique challenges posed by the confined environments of underground
pipe networks.

The first major contribution of this work is the integration of panoramic image
stitching for the identification and differentiation of junctions. By leveraging
the normalized cross-correlation (NCC) algorithm, the system accurately captures
high-resolution panoramic images, enabling precise identification of junctions and
exits. This method demonstrated high success rates in simulations and effectively
supported the robot’s localization tasks.

The second contribution is the development of a METM system that not
only represents the connectivity of the network but also includes precise angular
relationships between nodes. This approach ensures that the map accurately reflects
the physical layout and orientations within the pipe network, facilitating reliable
navigation and decision-making.

Simulation results supported all two hypotheses, demonstrating that the system
could accurately identify junctions, generate precise topological maps. The valida-
tion through both controlled simulations and real-world experiments underscores
the practicality and reliability of the proposed methodologies. In real-world tests,
the robot navigated the testbed environment, confirming the system’s ability to
handle actual pipe network conditions. The real-world experiments provided further
evidence of the system’s robustness and adaptability, although they also highlighted
areas needing improvement.

Despite the outcomes, the research identified several limitations that must be
addressed in future work. These include the need for enhanced environmental ro-
bustness, scalability, sensor reliability, real-time processing capabilities, and energy
efficiency. Additionally, the system’s ability to adapt to changing environments and
integrate seamlessly with existing infrastructure requires further investigation.

In summary, this research provides a framework for real-time robotic localization
and metrically enhanced topological mapping in buried pipe networks. By
addressing the identified limitations and continuing to refine the system, it holds
potential to enhance the efficiency and reliability of maintenance and inspection
operations in underground infrastructure. The findings provide insights and
techniques to the field of robotics and autonomous systems, facilitating future
advancements in navigating and managing confined environments.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this research, we introduced and validated two methods for real-time robotic
localization and metrically enhanced topological mapping in buried pipe networks.
The key challenge was addressing the limited mobility and power constraints of
miniature robots in confined environments. Our work leveraged multimodal sensing
strategies, combining distance sensors and vision sensors, to enhance the robot’s
navigation and mapping capabilities.

The first method focused on localization through efficient junction detection
and mapping. By using distance sensors to identify junctions and activating vision
sensors only at critical points, we reduced computational load and minimized reliance
on continuous video processing. This approach employed a localization algorithm
utilizing convolutional filters for image matching, enabling the robot to identify
and differentiate junctions by comparing newly captured images with a pre-existing
database. This method demonstrated the robot’s ability to explore and map the pipe
network, reducing cumulative localization errors and improving overall navigation
accuracy.

Building on the first method, the second method enhanced mapping accuracy
by creating panoramic images from junction photos. These panoramic images
provided a view of the junctions, allowing for precise identification of the number and
angles of junction exits. By comparing the robot’s trajectory and passed junctions,
this method generated a topological map that included real-world geographic
relationships, offering a more accurate representation of the physical layout of the
pipe network. This refined mapping capability facilitated improved navigation
and planning, and was validated through extensive simulations, showcasing its
effectiveness in real-time localization of pipe networks.

The results from implementing and testing these methods in controlled simu-
lations and small-scale real-world experiments demonstrated the feasibility of the
proposed approaches. However, these findings were based on relatively idealized
conditions, which may not fully capture the variability and complexity encountered
in larger, more unpredictable real-world pipe networks. While the system effectively
identified junctions and generated accurate topological maps, the real-world tests
revealed areas for improvement, particularly under more challenging environmental
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conditions. Although these tests confirmed the system’s adaptability to certain pipe
network conditions, the limited range of the tests and the controlled experimental
setup may not fully replicate the complexities of larger networks. Factors such as
environmental fluctuations, pipe corrosion, and debris presence were not extensively
tested, which underscores the need for further exploration to evaluate the system’s
performance in more diverse and challenging environments.

5.2 Contributions

This research makes several key contributions to the field of robotic localization and
metrically enhanced topological mapping in buried pipe networks. A localization
method has been developed, integrating distance sensing with selective visual
sampling at junctions. This method optimizes the localization process by reducing
the need for continuous visual input while maintaining sufficient accuracy. The
application of Normalized Cross-Correlation (NCC) for junction recognition enables
the system to distinguish between known and unknown junctions in real time,
contributing to the overall reliability of localization within the network.

Additionally, the research proposes a method for generating metrically enhanced
topological maps that represent both the connectivity and spatial relationships
between junctions. By using panoramic image stitching at junctions, the robot
can estimate the number of exits and their angles, providing a more detailed and
accurate layout of the pipe network. This method improves navigation and supports
decision-making in tasks like inspection and maintenance.

The system’s performance was validated through simulations and physical
experiments in small-scale pipe networks, demonstrating its ability to localize
junctions and generate topological maps in real time. These results provide a
foundation for future work in larger and more challenging pipe networks.

5.3 Limitations

While this research presents promising results for real-time localization and metri-
cally enhanced topological mapping in buried pipe networks, several limitations must
be acknowledged. The controlled environments used in simulations and physical
tests, particularly with small-scale pipe networks, do not fully capture the variability
and complexity of real-world pipe networks. These experimental setups were
relatively idealized and less challenging compared to the extreme and unpredictable
conditions typically encountered in larger, more complex networks. In real-world
environments, factors such as temperature fluctuations, high humidity, corrosive
substances, and varying levels of debris can introduce significant uncertainties, which
were not extensively tested in the current setup. As such, the system’s performance
in more challenging and unpredictable conditions remains uncertain.

Additionally, the scalability of the system to larger, more intricate pipe networks
with numerous junctions and varying pipe diameters has not been fully evaluated.
While the system performed effectively in the controlled, small-scale networks used
in these experiments, the performance in more complex and larger-scale networks,
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where computational load, energy consumption, and system reliability could be
stressed, has not been thoroughly explored. Furthermore, conditions such as
sediment build-up, strong external vibrations, or other real-world interferences were
not extensively tested in this study.

Another limitation lies in the system’s reliance on selective visual sampling and
distance sensors. In environments with obstructed paths or low visibility, such
as those with dirt, water, or physical barriers, these sensors may underperform,
potentially leading to localization errors. The absence of multi-sensor fusion—such
as integrating acoustic, thermal, or radar sensors—further limits the system’s
robustness in such challenging environments. While future work may address this by
incorporating additional sensor modalities, the current system remains vulnerable
to sensor degradation or environmental obstructions.

Furthermore, the control algorithms were optimized for specific, idealized
conditions and may not generalize well to more diverse and unpredictable real-world
pipe networks without further refinement. Additionally, the lack of optimization for
real-time computational resources raises concerns about the system’s scalability for
larger networks or long-term operations, particularly in energy-constrained scenarios
requiring extended deployments.

Finally, while the topological maps generated by the system are effective for
mapping static environments, they do not yet account for dynamic changes, such
as ongoing maintenance or the addition of new sections to the network. This limits
the system’s adaptability and long-term reliability in real-world applications where
environmental changes are frequent.

In conclusion, although the proposed system offers a viable solution for real-
time localization and mapping in buried pipe networks, addressing these limitations
is crucial to ensure its effectiveness in more challenging, larger-scale environments.
Future research should focus on testing the system in larger, more complex networks,
incorporating multi-sensor fusion, and refining control algorithms to handle diverse,
real-world conditions.

5.4 Future Work

Future developments could focus on several key areas to address the limitations
identified in this study while building on the successes of the current research. First,
integrating distance metrics into topological maps would provide a more detailed and
accurate representation of the network layout. Incorporating a metric dimension
for each node could improve both localization and mapping accuracy, particularly
in more complex pipe configurations. This addition would allow for more precise
distance measurements and better support the navigation of robots in challenging
environments.

Another practical improvement would be to enhance the stability of control
algorithms, particularly in response to environmental changes or network irregu-
larities. Currently, the system has been shown to perform well under controlled
conditions, but the ability to handle dynamic conditions, such as sudden changes
in pipe orientation or network topology, remains an area for improvement. Future
work should focus on refining the control algorithms to ensure consistent and reliable
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performance, even when the network undergoes unexpected shifts.

A crucial next step would be testing the system in larger, more complex pipe net-
works. While the current research demonstrates the system’s effectiveness in small-
scale experiments, the scalability of the system in more extensive environments,
with varying pipe diameters and greater numbers of junctions, must be thoroughly
assessed. This would help determine the system’s efficiency and reliability in real-
world scenarios, where network complexity is much higher.

In addition, developing adaptive mapping techniques that can update topological
maps in real time as the network changes over time will be an important step
forward. This adaptability would allow the system to handle ongoing changes due
to maintenance, environmental degradation, or the addition of new sections to the
network, ensuring that the maps remain relevant and accurate over time.

Lastly, integrating additional sensor modalities, such as acoustic sensors or radar,
could significantly improve the robustness of the system, especially in environments
where visibility is low or physical barriers obstruct sensors. Such multi-sensor fusion
would enhance the system’s ability to operate in diverse and challenging conditions,
making it more adaptable to the unpredictable nature of real-world pipe networks.

In summary, while the current research has demonstrated the feasibility of real-
time localization and topological mapping in controlled settings, future work should
focus on addressing the system’s scalability, adaptability, and robustness in larger,
more dynamic environments. By incorporating distance metrics, refining control
algorithms, testing in larger networks, and integrating additional sensors, the system
could evolve into a more reliable and effective tool for maintaining and inspecting
complex underground pipe networks.

5.5 Final Thoughts

The development of robotic systems capable of localization and mapping con-
fined environments such as underground pipe networks has the potential to
revolutionize infrastructure maintenance. The methodologies developed in this
research, especially those centered on selective visual sampling and metrically
enhanced topological mapping, pave the way for more efficient and reliable robotic
solutions. As we move forward, further advancements could focus on the integration
of multi-modal sensor fusion, including acoustic, thermal, or radar sensing, to
increase robustness in visually challenging environments. Future iterations of
this system may also benefit from adaptive mapping strategies that dynamically
adjust to ongoing changes in pipe networks, such as infrastructure modifications or
environmental factors. Moreover, exploring real-time optimization of computational
resources and energy efficiency will be key in extending the operational capabilities
of autonomous systems. These enhancements could impact not only the field of
infrastructure robotics but also broader applications in other confined and hazardous
environments like underground mines or industrial systems. Ultimately, the work
presented in this thesis offers valuable insights and techniques that can be further
developed to enhance the capabilities of autonomous robotic systems, contributing
to their evolution into more resilient and intelligent solutions.
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