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Abstract 
 

Prostate cancer is the most diagnosed cancer in men in the Western world. Currently, 

most treatments are directed towards an androgen receptor-expressing cell, which 

encompasses the majority of prostate tumours. Unfortunately, the tumour recurs in the 

majority of patients. This recurrence is thought to arise due to the presence of a rare 

population of prostate cancer stem cells. These cells are also hypothesized to be 

responsible for tumour initiation, maintenance, recurrence and metastasis. It is 

therefore important to develop novel therapies to target these tumour-initiating cells.  

 

Interleukin-6 (IL-6) is a pro-inflammatory cytokine, which is involved in the regulation of 

a multitude of cellular functions, including proliferation, apoptosis, and differentiation. 

IL-6 and the associated JAK-STAT signalling pathway have been implicated in the 

development and progression of a variety of tumours, including prostate cancer.  

 

In this study we have demonstrated that these stem-like cells, selected from primary 

prostate cancer cultures have elevated IL-6 levels and express the IL-6 receptor, 

suggesting that these cells are constitutively active. Targeting IL-6, and downstream 

activation of STAT3, resulted in a significant decrease in colony forming ability of these 

stem-like cells. Moreover, treatment with a small molecule inhibitor of STAT3 resulted 

in a modest inhibition of tumour growth, with a significant increase in the proportion of 

CD24+ luminal cells. Whilst the impact on established tumours was modest, LLL12 

abolished tumour initiation, suggesting that activation of STAT3, through IL-6, is 

important for the maintenance of the undifferentiated stem-like cells within prostate 

tumours. Targeting the JAK-STAT signalling pathway in this cell population might result 

in a more durable response to current standard of care therapies.  
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1. Introduction 

1.1. The prostate and prostate cancer 

1.1.1. Anatomy and development of the human prostate 
 

The prostate is located towards the base of the bladder surrounding the urethra (Figure 

1.1). The main function of the prostate is to produce hormones and secrete proteins for 

semen production and is therefore essential for the reproductive system. It also 

functions as an endocrine gland, as it helps the rapid metabolism of testosterone to 

dihydrotestosterone (DHT), which is a more effective androgen (Kumar and Majumder, 

1995). 

 

 
Figure 1.1. Schematic representation of the location of the human prostate gland.The 

walnut sized prostate is located in front of the rectum and towards the base of the bladder, 

surrounding the urethra. Image taken from 1 

  

                                                
1 www.harvardprostateknowledge.org/prostate-basics 
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The human adult prostate is a complex tubulo-alveolar gland composed of an epithelial 

parenchyma embedded within a connective tissue matrix. The epithelial cells are 

arranged in glands composed of ducts that branch out from the urethra and terminate 

into acini. The human prostate is a heterogeneous organ, which can be divided into 

central, transition and peripheral zones. In a young adult prostate gland, the peripheral 

zone is the largest zone (70% of the glandular tissue) and surrounds the urethra. The 

second largest zone (25%) is the central zone, which surrounds the ejaculatory ducts. 

The transition zone makes up only 5% of the volume (Figure 1.2A). The whole organ is 

encapsulated in a fibrous capsule (McNeal, 1981). The majority of prostate cancers 

arise in the peripheral zone (70%) compared to 20% in the transition zone and 10% 

within the central zone, whereas Benign Prostatic Hyperplasia (BPH) mainly occurs 

within the transitional zone (McNeal et al., 1988).  

Each glandular zone has specific architectural and stromal features, as in all zones of 

the prostate the acini are distributed evenly with columnar secretory luminal cell lining 

the lumen. In the human prostate, basal cells line the basement membrane (Figure 

1.2B). However, within the different zones of the prostate there are differences in the 

parenchymal components of the prostate as there is a variation in size, shape and 

number of acini and in compactness and looseness of stroma (McNeal, 1981; Amin et 

al., 2010). 

 

 
 

Figure 1.2. Schematic representation of the anatomy and organisation of the human 

prostate gland.A. Zonal anatomy of the human prostate gland of a young adult, consisting of 

the peripheral zone (70%), central zone (25%) and transition zone (5%), according to (McNeal, 

1981). B. Organisation of the prostate duct, consisting of epithelial cells: basal cells layer, 

neuroendocrhine cells and secretory luminal cells, and stromal cells. Adapted from (Abate-Shen 

and Shen, 2000). 
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The development of the human prostate begins during the ninth week of 

embryogenesis (Kellokumpu-Lehtinen et al., 1979), in response to testosterone 

stimulation. It starts with the outgrowth of epithelial buds from the urogenital sinus 

epithelium into the surrounding urogenital sinus mesenchyme (UGM) (Cunha et al., 

1987). By the 11th week, some of the prostatic outgrowths acquire a lumen 

(Kellokumpu-Lehtinen et al., 1980). Mesenchymal cells differentiate into smooth 

muscle, fibroblasts and blood vessels, and the epithelial buds form ducts that elongate, 

branch out and terminate into acini, whilst the stroma of the glands thin (Kellokumpu-

Lehtinen et al., 1980). From the 20th week of gestation up to puberty, the immature 

prostatic acini and ducts are lined by multiple layers of immature cells with round nuclei 

and very little cytoplasm. In the immature epithelium, cytokeratins (CK) of simple and 

stratified epithelium are expressed (primary cytokeratins; numbers 7, 8, 18 and 19) 

(Wernert et al., 1987). During puberty, where the levels of testosterone increase again 

(Coffey and Pienta, 1987), the prostate undergoes dramatic morphological changes as 

the immature multilayered epithelium differentiates into a two-layered epithelium 

consisting of peripheral flattened to cuboidal basal cells and inner secretory cylindrical 

epithelium (Kellokumpu-Lehtinen et al., 1981; Aumuller, 1991). In parallel with epithelial 

differentiation, the epithelial-mesenchymal interaction induces UGM to proliferate and 

differentiate into prostatic smooth muscle and interfasicular fibroblasts (Cunha et al., 

1992).  

 

The main cell types within the mature prostate gland are basal, secretory luminal and 

neuroendocrine cells (Aumuller, 1991) (Figure 1.3). The luminal epithelial cells 

represent the major cell type in normal prostate. They are terminally differentiated, 

express high levels of androgen receptor (AR) (Sar et al., 1990) and are dependent 

upon androgens for their survival (Kyprianou and Isaacs, 1988b). The luminal cells are 

the ‘factory’ within the epithelium generating secretory products like prostate-specific 

antigen (PSA) and prostatic acid phosphatase (PAP) (Lilja and Abrahamsson, 1988).  

Basal cells are relatively undifferentiated, express low/undetectable levels or AR 

(Bonkhoff and Remberger, 1993) and are androgen-independent for their survival 

(Kyprianou and Isaacs, 1988b). The basal cells lack secretory activity but, unlike 

luminal cells, are able to proliferate, indicating a role of basal cells in epithelial renewal, 

and the development of hyperplastic and neoplastic disorders in the human prostate 

(Bonkhoff et al., 1994). Rare neuroendocrine cells are located within the basal layer 

and they are terminally differentiated and androgen-insensitive (Bonkhoff et al., 1995). 

The neuroendocrine cells secrete a variety of hormones, including serotonin, calcitonin 

and chromogranin family of peptides (di Sant'Agnese, 1998; Abrahamsson, 1999). The 

neuroendocrine cells are essential for the growth and differentiation, and for the 
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homeostatic regulation of the secretory processes in the mature prostate gland (di 

Sant'Agnese, 1992). Closely associated with the basal cell surface is the basement 

membrane, which is a layer of specialized matrix that surrounds the normal prostate 

gland and acts as a barrier separating epithelial cells from connective tissue (Bonkhoff 

et al., 1991). Because of the basement membrane, the epithelium normally lacks the 

supply of blood vessels and lymphatic ducts, and therefore totally relies on the stroma 

for its metabolic needs. The stromal cells within the normal prostate gland consist of a 

mixture of cell types, including myofibroblasts, fibroblasts and smooth muscle cells, 

which express the AR. The stromal cells are responsible for prediction of epithelial cell 

development, maintenance and differentiation as they supply nutrients and growth 

factors (Kassen et al., 1996; Hayward et al., 1997; Berry et al., 2008). 

 

 

 
Figure 1.3. Schematic representation of the architecture of the human prostate 

epithelium. The human prostate epithelium consists of the basal layer of relatively 

undifferentiated basal cells and a luminal layer of terminally differentiated secretory luminal 

cells, separated from stromal cells by the basement membrane. Taken from (Kroon et al., 

2011).  
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1.1.2. Prostate epithelial stem cells 
 

Adult stem cells are an essential component of tissue homeostasis, as they support on-

going tissue regeneration, and replacing terminally differentiated cells with a short 

lifespan or lost cells due to apoptosis or injury. Due to this important function, these 

stem cells need to be able to self-renew and differentiate throughout the lifespan of an 

adult. In self-renewing epithelial tissue, the rare stem cell population has the capacity 

for unlimited growth and its progeny are either stem cells or cells with more limited 

proliferative capacity, named transit amplifying (TA) cells. These transit amplifying 

(progenitor) cells divide to maintain tissue balance, but are limited to a fixed number of 

cell divisions before they terminally differentiate (Potten, 1981; Hall and Watt, 1989). 

Initial studies on stem cells focused on tissues with rapid cell turnover, such as skin 

and intestine (Potten, 1981; Hall and Watt, 1989). However other epithelia, such as the 

liver and pancreas, have a slow cell turnover under normal conditions but do have 

special adaptation for regeneration (Finegood et al., 1995; Alison et al., 1997; Slack, 

2000). These studies have provided evidence that all epithelial tissue contain cells that 

are capable of repopulating during a normal lifespan or at least under circumstances of 

tissue repair (Slack, 2000).  

 

The prostate is an androgen-dependent organ, which normally undergoes very limited 

regeneration or turnover. The prostate undergoes involution following castration, but 

can completely regenerate if androgen levels are restored (Isaacs and Coffey, 1989). 

Isaacs showed that this cycle of involution, followed by regeneration, can be repeated 

numerous times and postulated the existence of a population of long-lived, androgen-

independent stem cells (SC) responsible for regeneration of the gland (Isaacs, 1985). 

This led to a model of prostate lineage in which androgen-independent SCs give rise to 

androgen-responsive transit amplifying cells, which differentiate into secretory luminal 

cells, which are both androgen-dependent and terminally differentiated (Isaacs and 

Coffey, 1989).  

 

Basal and luminal cells can be discriminated on the basis of their localization, 

morphology and expression of specific cytokeratins (Figure 1.3). For example, CK5 

and CK14 are expressed by basal cells, whereas the luminal cells of the prostate 

predominantly express CK8 and CK18 (Sherwood et al., 1991). Keratin expression 

patterns in the prostate have provided evidence of epithelial cells that are 

phenotypically intermediate between basal and luminal cells. Cells have been 

identified, in the luminal layer, that express both CK5 and CK18 while some basal cells 

lack CK14 expression, but express low levels of CK18 and CK5 (Verhagen et al., 1992; 
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Xue et al., 1998; van Leenders et al., 2000). These results indicate that basal and 

luminal cells are linked in a hierarchical pathway.  

 

Although the overall organization of the murine prostate differs from that of the human 

prostate gland, studying the murine prostate provides a unique opportunity to study the 

biology of the human prostate. Sugimura et al. have shown that the proliferating cells 

are located at the tips of ducts (Sugimura et al., 1986) and suggested that prostatic 

stem cells are located in the distal region (Kinbara et al., 1996). However, quiescent 

cells were subsequently shown to be located in the proximal region of the duct nearest 

the urethra. These cells also have a high proliferative potential and are capable of 

reconstituting large, branched glandular structures in collagen gels (Tsujimura et al., 

2002). Tsujimura and co-workers proposed that the stem cells migrate distally towards 

the proliferating tips where they terminally differentiate (Tsujimura et al., 2002).  

The proposal that prostate stem cells are located within the basal layer of epithelial 

cells is supported by evidence provided by Signoretti et al., who has shown that p63, 

which is expressed by basal cells (Yang et al., 1998), is essential for normal prostate 

development in the mouse (Signoretti et al., 2000). With histological examination, they 

found that new born p63(-/-) male mice do not develop a prostate, suggesting that p63 is 

necessary for the formation of ducts or epithelial budding structures (Signoretti et al., 

2000).  

 

Recently, using the murine haematopoietic stem cell marker Sca-1 (Spangrude et al., 

1988), it was shown that Sca-1+ prostate cells can self-renew (in a sphere-forming 

assay) for several generations. Moreover Sca-1+ cells can differentiate in vivo to 

produce prostatic tubule structures containing basal and luminal cells. Sca1+ cells are 

also localized to the basal cell layer within the proximal region of the murine prostate 

(Lawson et al., 2007). Leong and colleagues also showed enrichment of stem cells 

within the proximal region of the mouse prostate. They determined that lin-/Sca-

1+/CD133+/CD44+/CD177+ cells (localized to the basal compartment of mouse prostate) 

can generate a prostate after transplantation in vivo (Leong et al., 2008). The 

regenerated prostate had a branching morphology with epithelial tubules composed of 

basal, luminal and neuroendocrine cells. Nonetheless, there is still some controversy 

as to whether stem cells are located within the basal layer. The Nkx3.1 gene regulates 

prostate epithelial differentiation, and is expressed within the luminal cells and rare 

basal cells, in the mouse prostate. Expression is rapidly lost after castration and is 

restored following prostate regeneration when androgen levels are restored. Wang and 

colleagues (2009) showed that, in the castrate-resistant state, Nkx3.1 expression is 

restricted to the luminal cells and only those genetically marked. They observed that 



 20 Introduction 

Nkx3.1-marked luminal cells were able to give rise to both basal and luminal cells 

following androgen-induced regeneration (Wang et al., 2009b).  

 

In the human prostate, several studies have revealed that prostatic basal cells can 

differentiate into luminal cells in vitro (Liu et al., 1997; Robinson et al., 1998). Basal 

epithelial cells, isolated on the basis of high surface expression of α2β1-integrin, are 

clonogenic in vitro (Hudson et al., 2000; Collins et al., 2001) and have the potential to 

regenerate a fully differentiated human prostate epithelium in vivo (Collins et al., 2001). 

Using the CD133 antigen, which was first identified as a marker for human 

haematopoietic stem cells (Yin et al., 1997), further enriched for the stem cell 

population (Richardson et al., 2004). The cells expressing CD133 are restricted to the 

α2β1
hi population and are located within the basal layer. Richardson and colleagues 

showed that these α2β1
hi/CD133+ cells had a greater colony-forming ability and 

proliferative potential in vitro than α2β1
hi/CD133- cells. Moreover, when grafted together 

with prostate stromal cells, which is necessary for a functional and morphological 

differentiated prostate (Lang et al., 2001), into nude mice α2β1
hi/CD133+ generated 

prostatic acini, unlike the α2β1
hi/CD133- cells (Richardson et al., 2004).  

 

With the use of lineage-tracking lentiviruses it has been shown that the basal stem 

cells have the capacity to differentiate through a hierarchy of cells (Frame et al., 2010). 

All together, the observations suggest that basal and luminal cells are linked in a 

hierarchical pathway, which is most accurately described as a continuum with different 

stages of change, rather than a single switch from one cell type to another (Figure 1.4) 

(Oldridge et al., 2012).  

 

Thus, with the use of different cell surface markers, the following cells types can be 

isolated from human prostate tissue: basal (CD44+CD24-), luminal (CD44-CD24+) and 

stromal cells. With the use of cell surface marker, the basal cell population can be 

subdivided into stem cells (α2β1
hi/CD133+), transit-amplifying (α2β1

hi/CD133-) and 

committed basal cells (α2β1
low) as shown in Figure 1.5. 
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Figure 1.4. Schematic representation of the human prostate epithelium as a hierarchical 

pathway. Stem cells are mostly quiescent and generate the rapidly proliferating transit 

amplifying cells. Although these cells maintain a degree of multipotency, they are largely 

committed to differentiation and give rise to committed basal cells. Through the differentiation 

process, terminally differentiated secretory luminal cells are then formed. Taken from (Oldridge 

et al., 2012).  

 

 

 

 

 
 

Figure 1.5. Fractionation of prostate epithelial cells. Cells can be separated into basal cells 

(CD44+CD24-) and terminally differentiated luminal cells (CD44-CD24+). The basal cells can be 

further separated into a committed basal population (integrin α2β1
low), transit-amplifying 

population (integrin α2β1
hi CD133-) and stem cell population (integrin α2β1

hi CD133+), on the 

basis of expression of cell surface markers integrin α2β1 and CD133.  
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The identification and characterization of stem cells in the normal prostate is important, 

because they may represent a major target for carcinogenesis as well as a potential 

source of BPH (De Marzo et al., 1998). It was hypothesized in the 1960s that cancers 

exist in a hierarchy consisting of cells with different proliferative potentials (Southam 

and Brunschwig A., 1961; Bruce and Van Der Gaag, 1963). The cancer stem cell 

(CSC) hypothesis presumes that the bulk population of cancerous cells arise from 

CSCs (Hamburger and Salmon, 1977), defined as a rare population of cells that 

maintain the rest of the population. Normal stem cells and cancer stem cells have 

shared properties, such as the capacity to self-renew and differentiate to give rise to 

multi-cellular lineages (Wicha et al., 2006). These properties are important for CSCs to 

maintain and promotes spread of the tumour.  
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1.1.3. Prostate cancer 

1.1.3.1. Prostate cancer incidence 

 

In the United Kingdom (UK), over 40,000 men were diagnosed with prostate cancer in 

2009 and over 10,000 men died from prostate cancer in 2010, according to the most 

recent statistics. Prostate cancer is the most frequently diagnosed cancer in men, in 

economically developed countries, as it accounts for 25% of the male cases in the UK 

(Figure 1.6) (Source: Cancer Research UK). Even though there has been a large 

increase (>25 fold) in the incidence of prostate cancer in many countries worldwide, 

there has been little change or even a small decline in mortality. This is because of the 

wide utilization of PSA testing, which detects clinically important tumours as well as 

slow-growing tumours that might otherwise escape diagnosis. Prostate cancer 

incidence is strongly related to age, as 80% of prostate tumours are diagnosed in men 

over the age of 65. However race (black) and family history also remain well-

established risk factors for prostate cancer (Hsing and Chokkalingam, 2006; Jemal et 

al., 2011).  

 

 

 
Figure 1.6. The ten most commonly diagnosed male cancer in the UK (2009), with prostate 

cancer being the most commonly diagnosed male cancer at 25.2%. Taken from Cancer 

Research UK.   
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1.1.3.2. Diseases of the prostate 
 

Even though prostate cancer is the cause of 7% of all cancer deaths in the UK, it is not 

the only disease of the prostate. Other problems of the prostate include Prostatitis and 

BPH. Prostatitis describes a combination of infectious diseases (acute and chronic 

bacterial prostatitis), a chronic pelvic pain syndrome and asymptomatic inflammation of 

the prostate (Drach et al., 1978; Krieger et al., 2008), which usually occurs in the 

peripheral zone of the prostate gland (Blacklock, 1991). Prostatitis has been most 

commonly diagnosed in 36 - 65 year old men and can be easily treated with antibiotics, 

or nonsteroidal anti-inflammatory drugs (Stevermer and Easley, 2000), although there 

are many potential causes of the disease. 

 

Benign prostate hyperplasia is a non-malignant enlargement of the prostate, which can 

be associated with lower urinary tract symptoms (LUTS). Histologic BPH shows 

microscopic evidence of prostate stromal and epithelial hyperplasia, which only occurs 

in the transition zone of the prostate gland (McNeal, 1988). The microscopic nodules 

undergo further hyperplastic changes and increase in size, ultimately developing into 

macroscopic nodules. Because of these changes, the original anatomy of the prostate 

becomes distorted and the BPH tissue enlarges significantly during this stage, however 

during this stage the symptoms might not be apparent. The final stage of BPH 

development is the occurrence of clinical symptoms, as a result of this enlargement of 

the prostate, i.e. LUTS (decrease in the force and calibre of urinary stream and the 

sensation of incomplete bladder emptying) (Oesterling, 1991). Almost half of men at 

the age of 60 exhibit histological evidence of BPH, and almost 90% of men develop 

histological BPH by the age of 90 (Roehrborn, 2002). However only between 15 and 

30% of these men have symptoms. The development of BPH requires both ageing and 

androgens (Coffey and Walsh, 1990; Lepor, 2004) and the most effective treatment for 

BPH is transurethral resection of the prostate (TURP) to reduce the enlargement of the 

prostate and reduce the symptoms. However it has also been shown that treatment 

with finasteride, which is a competitive inhibitor of 5α-reductase, resulted in sustained 

decrease in serum dihydrotestosterone concentration as well as a decrease in PSA 

levels and prostatic volume (Gormley et al., 1992). So, treatment of finasteride is 

beneficial to men with BPH.  

 

1.1.3.3. Diagnosis of prostate cancer 

 

The diagnosis of prostate cancer is currently based on the quantification of serum 

levels of the prostate secretory protein; PSA. The prostate gland normally produces 
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PSA as it functions as a serine protease to maintain the fluidity of seminal fluid (Watt et 

al., 1986). In general, PSA levels of < 4 ng/mL are considered normal, however when 

the PSA levels are above 4 ng/mL, a biopsy is usually taken for further examination. 

Although PSA testing has led to an increase in the detection of prostate cancer, it has 

substantial drawbacks. There is a lack of specificity within the range of 4 – 10 ng/mL, 

which is a diagnostic grey zone in which prostate cancer is only present in 25% of the 

patients. Most patients with prostate cancer with PSA level less than 10 ng/mL have 

early-stage disease, whilst more than 50% of the patients with PSA levels higher than 

10 ng/mL have advanced disease (Catalona et al., 1994). Patients with prostate cancer 

also have significantly lower levels of free-PSA circulating in their blood. Thus, the use 

of the free-PSA percentage can enhance the specificity of PSA screening and 

decrease the number of unnecessary biopsies. If biopsies are only performed on 

patients with less than 25% free-PSA, with PSA levels between 4 – 10 ng/mL, it would 

detect 95% of the cancers and spare 20% of patients (with BPH) from biopsy (Catalona 

et al., 1998). However it has also been shown that 15% of patients with PSA levels less 

then 4 ng/mL had detectable prostate cancer in the biopsy (Thompson et al., 2004). 

Thus it is important to identify and characterize prostate cancer biomarkers that could 

supplement PSA testing, and studies have already shown evidence for such specific 

biomarkers, such as PCA3 (Laxman et al., 2008; Wu et al., 2011).  

Once the initial testing of the patients’ serum indicate an increase in the levels of PSA, 

other methods are used to examine the size and shape of the prostate, such as a 

Digital Rectal Examination (DRE) or transrectal ultrasonography (TRUS). However to 

confirm the presence of prostate cancer, a biopsy is taken and histologically analysed 

and graded according to the Gleason tumour grading system (Gleason, 1966). 

Prostate cancers are stratified into five grades on the basis of the glandular pattern and 

degree of differentiation (Figure 1.7), with 1 representing normal cellular histology and 

5 representing a high malignant phenotype. The five grade patterns are used to 

generate a histological score, which can be arranged from 2 to 10, by adding the 

primary grade pattern and the secondary grade pattern, whereby the primary grade 

pattern is the most predominant and the secondary pattern is the second most 

common pattern. A patient with prostate cancer with a Gleason score above 7 usually 

has a poor clinical outcome.  
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Figure 1.7. Gleason grading system for prostatic adenocarcinoma. Grades are from 1 to 5 

depending on the degree of differentiation. These grades are assigned to the primary and 

secondary pattern within a surgical specimen. Taken from (Gleason, 1966). 
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1.1.3.4. Treatment of prostate cancer 
 

1 
The treatment options for prostate cancer depend on the stage of the disease and the 

androgen responsive status of the tumour. If the cancer is still confined to the prostate, 

known as localized disease, a “watchful waiting” treatment strategy is often 

recommended. These patients are monitored closely and active treatment is postponed 

until it is required. This therapeutic alternative has emerged in men with low risk 

prostate cancer (Chodak et al., 1994) and it has been demonstrated that at 10 years, 

these men have a prostate cancer-specific survival of 97% (Klotz et al., 2010).  

 

Radical prostatectomy, removal of the entire prostate gland, is the only treatment for 

localized prostate cancer that has shown a reduction in metastasis and therefore 

prostate cancer-free survival (Bill-Axelson et al., 2008). The radical prostatectomy 

options include retropublic and perineal approaches as well as minimal invasive, 

robotic or laparoscopic, surgery. However, surgical removal of the prostate increases 

the chance of these patients experiencing erectile dysfunction, although this risk has 

been significantly reduced with the introduction of nerve-sparing surgery (Walsh, 

2007).  

 

Another treatment option for localised prostate cancer is radiotherapy, which uses 

radiation to cause DNA damage within the tumour cells. There are two types of 

radiotherapy; external beam radiotherapy or internal radiation. The external beam 

method uses 3-dimensional conformal radiotherapy, intensity-modulated radiotherapy, 

or image-guided radiotherapy, and a more recently developed technique of 4-

dimensional conformal radiotherapy, which takes organ motion into account. All these 

methods have the advantage to escalate the radiation dose while minimizing the 

toxicity to the surrounding normal tissue. It has been shown that there is an increased 

efficiency when an increased dose of radiation is applied (Zietman et al., 2005). 

Internal radiotherapy, also known as brachytherapy, involves implantation of 

radioactive seeds into the patients, providing radiation from the inside of the prostate.  

 

Beside radical prostatectomy and radiotherapy, cryosurgical ablation of the prostate 

and high-intensity focussed ultrasound (HIFU) has emerged as alternative therapeutic 

approaches in patients with localised prostate cancer. These therapies are known as 

“minimal invasive therapies” as these have similar chances of a positive outcome but 

with fewer side effects (Aus, 2006; Ahmed et al., 2012). 
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Hormone therapy is a well-established form of treatment for the various stages of 

prostate cancer, which has escaped the prostatic capsule. The most common target 

being the androgen receptor, as the primary tumour is dependent on androgens for its 

growth and survival. It was shown in the late 60s that orchiectomy induced the 

regression of prostate cancer (Huggins, 1967) and since this discovery, androgen 

ablation therapy has been the main treatment of hormone-sensitive prostate cancer 

(Balk, 2002). The tumour initially responds well to androgen ablation therapy, as the 

main cell type within prostate carcinoma is the AR-positive secretory luminal cell 

(Nagle et al., 1987). Therefore a reduction in tumour growth is observed initially but 

ultimately, and in most cases, the therapy fails and the prostate cells become castrate-

resistant (Feldman and Feldman, 2001). Treatment failure can also be explained by the 

presence of tumour initiating cells or cancer stem cells (described in sections 1.1.5), as 

these cells are independent of androgens for their survival (Collins et al., 2005) and it 

has been suggested that these cells are more resistant to radiation (Phillips et al., 

2006) and chemotherapies (Dean et al., 2005).  

 

Chemotherapy is a treatment option for advanced prostate cancer with metastasis and 

when hormone therapy fails (Beedassy and Cardi, 1999). This therapy targets rapidly 

dividing cells within the tumour mass, but unfortunately chemotherapy affects all the 

cells of the body as it circulates through the blood stream and therefore has many 

severe side affects. This being the reason that chemotherapy is usually only 

recommended as a last treatment option.  

 

In summary, when prostate cancer is confined to the prostatic capsule, it can be 

managed effectively using “watchful waiting” or with radical surgery intervention. 

However, if the cancer is not detected early or in a more aggressive form of the 

disease, there is no effective treatment for advanced prostate cancer. This is because 

the treatment strategies are designed for a homogeneous mass of cells. However, as 

prostate cancer is heterogeneous, new treatment strategies are needed to target the 

therapy-resistant tumour initiating cells (Table 1).  

 
Table 1. Prostate cancer treatment: current target and therapy resistance. 

  

Therapy Target  Resistance 

Surgery! Removal of the entire prostate gland! Residual tumour!

Radiotherapy Highly proliferating cells Tumour initiating cells divide slowly 

Chemotherapy Highly proliferating cells Tumour initiating cells divide slowly 

Hormone therapy Androgen Receptor expressing cells Tumour initiating cells do not express the AR 
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1.1.4. Development of prostate cancer 
 

Studies in the 1960s showed that cancers are composed of a heterogeneous 

population of cells with differences in their potential to self-renew and reconstitute the 

tumour upon transplantation (Bruce and Van Der Gaag, 1963; Hamburger and Salmon, 

1977; Stahel et al., 1985). These studies led to the development of two theories to 

explain these observations: stochastic and hierarchical models. The stochastic model 

predicts cancer cells of many different phenotypes have the potential to proliferate 

extensively. Whilst the hierarchical model predicts that only a subset of cancer cells, 

termed cancer stem cells, have the ability to proliferate extensively and form new 

tumours, whilst most cancer cells have limited proliferative potential (Reya et al., 2001). 

This model, i.e. that only cancer stem cells are able to initiate tumour growth and 

metastasize, explains the failure of current therapies to eradicate the entire tumour. 

However, resistance to therapy in many cancers may also be explained by an 

accumulation of epigenetic and genetic differences in tumorigenic cancer cells that lack 

any hierarchical organisation, described by the clonal evolution model (Nowell, 1976; 

Shackleton et al., 2009). This model was proposed in the 1970s, as mutations in 

oncogenes and tumour suppressor genes were found to cause most human cancers. 

This model of clonal evolution proposes that most neoplasms arise from single 

“mutated” cells-of-origin and that tumour progression results from subsequently 

additional genetic changes within the original clone, allowing selection of a more 

aggressive subline, so tumour cells are more genetically unstable than normal cells. 

This genetic instability and associated selection progress results in advanced human 

malignancy being highly individual; karyotypically and biologically. Hence each person 

might require individualized therapy (Nowell, 1976; Clevers, 2011). Thus, in a single 

tumour there might be multiple cancer stem cell clones that are genetically distinct, but 

they will always have a common ancestor: the cancer cell-of-origin which sustained the 

first oncogenic mutation.  

Because tissue stem cells and cancer stem cells share characteristics, such as the 

ability to self-renew and differentiate, it is thought that the cancer stem cell might arise 

from mutation(s) of the tissue stem cells (Bonnet and Dick, 1997). This is not surprising 

as normal stem cells are long-lived by nature and therefore more likely to be subjected 

to the accumulation of multiple mutations that are required for carcinogenesis. The 

initial mutation will provoke a multistep process which will lead to the development of 

prostate cancer: progressing from normal epithelia to high-grade prostate intraepithelial 

neoplastic lesions (PIN) to invasive carcinoma, and potentially to metastatic prostate 

cancer (Figure 1.8) (Abate-Shen and Shen, 2000). Common mutations that are 

implicated with the initiation and progression of prostate cancer are shown in Table 2. 
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Figure 1.8. Pathway of the progression of human prostate cancer. The different stages of 

the progression from normal prostate epithelium to high-grade prostatic intraepithelial neoplasia 

to invasive carcinoma to metastatic prostate cancer. Taken from (Abate-Shen and Shen, 2000). 

  



 31 Introduction 

Table 2. Common mutation and genes involved in the initiation and development of prostate 

cancer. 

 

Affected gene Phenotype Reference 

Androgen-receptor Expression is maintained even in an androgen-
independent tumours (amplified or mutated) 

(Marcelli et al., 1990; 
Visakorpi et al., 1995) 

C-Cam Expression is decreased in PIN and lost in 
carcinoma (Kleinerman et al., 1995) 

C-met Expression is increased in PIN, carcinoma and 
metastasis 

(Pisters et al., 1995) 
  

E-cadherin Decreased expression in PIN and carcinoma (Umbas et al., 1994) 

FGFs Overexpression in carcinoma (Kwabi-Addo et al., 2004) 

Integrins Decreased expression  (Cress et al., 1995) 

Myc Amplified In carcinoma (Thompson et al., 1989)  

NKX3.1 Mutation causes prostatic epithelial 
hyperplasia and dysplasia (Bhatia-Gaur et al., 1999) 

P53 Frequently mutated in metastatic prostate 
cancer (Eastham et al., 1995) 

PTEN Expression is lost in advanced prostate cancer (Li et al., 1997) 

Telomerase Reduced telomere length and increased 
telomerase activity in PIN and carcinoma (Sommerfeld et al., 1996) 

TGFβ Decreased expression in prostate cancer 
metastasis (Djakiew, 2000) 
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Prostate cancer is thought to arise from high-grade PIN (Zynger and Yang, 2009) or a 

hyper-proliferative lesion known as proliferative inflammatory atrophy (PIA), possibly by 

hormonal imbalances, exposure to environmental factors, such as infectious agents 

and dietary carcinogens, leading to the development of chronic inflammation (De 

Marzo et al., 1999). The risk of developing prostate cancer increases with age, as the 

largest numbers of cases are diagnosed within the age range 72 - 74, but ethnicity and 

family history and even diet are also thought to play a role (Snowdon et al., 1984; 

Gronberg, 2003).  
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1.1.4.1. Castrate resistant prostate cancer 
 

Prostate cancer cells are initially dependent on androgens, and therefore androgen 

ablation has been the key treatment for this stage of prostate cancer. Initially the 

treatment shows good results, and there is usually a significant clinical regression and 

biochemical response as measured by the decrease in serum PSA in 80 - 90% of 

patients. The treatment does lead to remission that lasts 2 - 3 years, however almost 

all patients progress to an androgen-independent prostate cancer, also referred to as 

castrate resistant prostate cancer (CRPC), resulting in death within 16 – 18 months 

(Feldman and Feldman, 2001; Pienta and Bradley, 2006). At present, there is no 

effective treatment for this stage of the disease, and in order to develop new drugs and 

to optimize androgenic suppression in CRPC, it is important to identify and 

characterize the mechanisms that result in this stage of the disease. It has been shown 

that in CRPC patients, the serum levels of androgens are still sufficient for AR 

activation, and subsequently cancer cell survival. It is thought that these androgens 

arise from the direct synthesis of androgens in prostate cancer cells due to the up-

regulation of synthetic enzymes, to produce testosterone and DHT (Mohler et al., 

2004). It has also been shown that there is an increased expression of the AR, allowing 

for enhanced ligand binding in the presence of low levels of androgens (Visakorpi et 

al., 1995). Although the wild-type AR can only be activated by testosterone and DHT, 

the specificity of the AR has been shown to be expanded by mutations. Because of 

these mutations, the AR can be activated by non-androgenic steroid molecules that are 

normally present in the circulation (Veldscholte et al., 1992; Buchanan et al., 2001). 

Another mechanism for the development of CRPC is the activation of different signal 

transduction pathway in the castrate resistant cancer cells. It has been shown that 

deregulated growth factors, including epidermal growth factors, insulin-like growth 

factors and cytokines, including IL-6, are able to enhance the activation of the AR in 

the absence, or of low levels, of androgens (Culig et al., 1994; Culig et al., 2002). A 

more recently accepted mechanism for the development of CRPC is the presence of 

prostate cancer stem cells, as these cells are resistant to current therapies, and most 

important are AR-negative and therefore independent of androgens for survival (Collins 

et al., 2005). So it is thought that these cells are responsible for maintaining tumour 

growth and development of prostate cancer.  

 

Patients with CRPC have only limited treatment options. Since 2004, the 

chemotherapeutic docetaxel has been used in patients with CRPC, however this only 

shows a median survival benefit of 2 - 3 months (Tannock et al., 2004). Since then, 

multiple new therapy strategies have been developed for patients with CRPC, including 
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Abiraterone. This drug is a potent and highly selective inhibitor of androgen 

biosynthesis that blocks the synthesis of DHT (inhibitor of CYP17A1). Even though 

phase III studies have shown prolonged survival of patients with CRPC, the median 

survival was only extended by 4 months (de Bono et al., 2011).  

 

Apart from newly developed drugs that are able to reduce circulating levels of 

androgens, other treatment methods that are beneficial for patients with CRPC include 

non-hormonal approaches such as, bisphosphonates and denosumab which are 

treatments that benefit patients with bone metastasis (most common metastasis for 

prostate cancer patients), chemotherapies and a vaccine: sipuleucel-T (Amaral et al., 

2012). However, the survival benefit of these therapy strategies in CRPC is modest. 

Therefore it is important to design new treatment strategies, and it is crucial to take the 

different cell types into account, including prostate cancer stem cells as current 

therapies are not aimed for this relatively quiescent, AR-negative cell type (Collins et 

al., 2005; Maitland and Collins, 2008b).  
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1.1.5. Prostate cancer stem cells 
 

The origin of prostate cancer is still controversial. As prostate cancer mainly consists of 

luminal cells, it has been the prevailing view that these AR-expressing luminal cells are 

the tumour-initiating cells (Nagle et al., 1987; Maitland and Collins, 2008b). The 

observation that telomerase is expressed within the luminal compartment in high-grade 

PIN, thus extending the lifespan of these cells, has added weight to this proposal 

(Meeker et al., 2002). Others have suggested that an intermediate cell, which 

expresses both basal and luminal keratin markers, could give rise to prostate cancer 

(Verhagen et al., 1992).  

 

However, it has been shown, with the use of a phosphatase and tensin homolog 

(PTEN) knockout mouse, that not only the tumour microenvironment can enhance the 

stemness and growth potential of tumour initiating cells but that the tumour initiating 

cell strongly expresses the basal marker p63 (Liao et al., 2010), confirming that the cell 

of origin of prostate cancer has a basal origin. It is more plausible that normal tissue 

stem cells are the targets for transformation given their longevity. This has been 

definitively demonstrated by Bonnet and Dick, in 1997 they showed that the tumour 

initiating cells, in acute myeloid leukaemia (AML), shared cell surface markers with 

normal hematopoietic stem cells (Bonnet and Dick, 1997). More recently, Barker and 

colleagues showed that crypt stem cells are the cells of origin of intestinal cancer 

(Barker et al., 2009). This study demonstrated a rapid transformation of stem cells, 

through loss of adenomatous polyposis coli (APC), toward initiating intestinal 

adenomas (Barker et al., 2009). This has been supported by studies that used lineage 

tracing of cells in mice and showed that a subset of normal (stem) cells drives tumour 

growth, including glioma stem cells (Chen et al., 2012), crypts stem cells (Schepers et 

al., 2012) and epidermal stem cells (Driessens et al., 2012). 

There are several lines of evidence that support the proposal that prostate cancer stem 

cells arise from prostate epithelial stem cells. Metastases often include rare cells that 

are phenotypically undifferentiated, expressing basal cell markers, such as cytokeratins 

5 and 14. (Liu et al., 2002; Lang et al., 2009). Advanced prostate cancers can respond 

to low levels of androgens, but the castrate resistant state results from clonal 

expansion of androgen-independent cells that are present at a frequency of 1 per 105 - 

106 androgen-responsive cells (Craft et al., 1999). Cancer stem cells share numerous 

markers with normal stem cells. More recent work from our laboratory compared 

isolated populations, from primary prostate cancers, for clonogenic potential. It was 

shown that only the most primitive cells (CD44+/α2β1
hi/CD133+), which were identical 

phenotypically to normal prostate epithelial stem cells, could self-renew in vitro (Collins 
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et al., 2005). Additionally, under differentiating conditions, AR+/ PAP+/CK18+ luminal 

cells could be identified in these cultures suggesting that they were derived from the 

more primitive population. In support of this finding, the CD44+ population from 

xenograft tumours and cell lines has enhanced proliferative potential and tumour-

initiating ability in vivo compared to CD44- cells (Patrawala et al., 2006). The CD44+ 

cells are likewise AR- and express higher mRNA levels of stemness genes, such as 

OCT3/4 and BMI-1. Using clonally derived human prostate cancer epithelial cells, 

expressing human telomerase reverse transcriptase (hTERT) Gu and co-workers (Gu 

et al., 2007) demonstrated that these lines could regenerate tumours in mice that 

resembled the original patient tumour with respect to Gleason score. The tumours 

contained luminal, basal and neuroendocrine cells, implying that the clone of origin 

could differentiate into the epithelial cells lineages of the prostate. In this case, the 

tumour initiating cell was AR- and p63- and expressed the stem cell genes Oct-4, 

Nanog, Sox2, nestin, CD44, CD133 and c-kit. Moreover, Sca-1 sorted cells, enriched 

for cells with prostate-regenerating activity, showed evidence of basal and luminal 

lineage.  

 

A recurrent genomic alteration in prostate cancer is the expression of TMPRSS2-ETS 

fusion genes (Tomlins et al., 2005), with TMPRSS2-ERG being the most frequently 

detected (Demichelis and Rubin, 2007). The presence of the fusion is associated with 

PSA biochemical failure (Demichelis and Rubin, 2007) and occurs with a frequency of 

approximately 50% (Tomlins et al., 2005). Identification of the TMPRSS2.ETS fusion 

gene in approximately 20% of PIN lesions suggests that it is an early event in prostate 

tumourigenesis (Cerveira et al., 2006) and recent findings that TMPRSS2:ERG is 

expressed in α2β1
hi/CD133+ cells from prostate tumours (Birnie et al., 2008) supports 

the hypothesis that the cell of origin of prostate cancer is a stem cell.  

 

The ultimate evidence for the identification of the cell or origin of cancer, also termed 

cancer stem cells, is serial xenotransplantation. This assay will show that these cells 

have the ability to initiate a tumour that can be serially transplanted and is identical to 

the parental tumour from which it was derived. It has been confirmed that the strongest 

tumour-initiating fraction, where less than 100 cells have the capacity to initiate new 

tumour growth in immunocompromised mice, has a basal phenotype (Maitland et al., 

2011).  

 

Based on this evidence, the cell culture model that is used in our laboratory are primary 

tumour cells, derived from patient biopsies, which can be sorted on the basis of the 

expression of the following cell surface markers: α2β1 integrin and CD133 (Figure 1.9). 
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This is based on the finding that human prostate biopsies can be fractionated into 

basal, luminal and progenitor cells as first described in the normal prostate (Richardson 

et al., 2004), and that this can also be applied to malignant tissue as the same fractions 

can be identified (Collins et al., 2005), but in different proportions, The basal cell 

fraction accounts for approximately 1% of the tumour mass, however they are 

expanded in in vitro culture. Although the α2β1
hi/CD133+ population has the potential to 

self renew and proliferate and differentiate to recapitulate the phenotype of the original 

tumour in vitro (Collins et al., 2005), it has currently not been demonstrated in vivo that 

these cells are able to initiate tumour growth. Therefore in this study they are labelled 

as follows: α2β1
hi/CD133+ are stem-like cells, α2β1

hi/CD133- are transit amplifying cells 

(TA: progeny of the stem-like cells) and α2β1
low are committed basal cells (CB) derived 

from malignant tissue from prostate biopsies.  
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Figure 1.9. Schematic representation of the fractionation of human prostate biopsies. Cell 

fractionation of enriched stem-like cells (α2β1
hi/CD133+), transit amplifying cells 

(α2β1
hi/CD133-) and committed basal cells (α2β1

low), following expansion in vitro, from 

malignant tissue derived from prostate biopsies. Modified from (Maitland et al., 2011).  
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1.1.6. Prostate cancer stem cells and therapy resistance 
 

In the last decade, there has been an explosion in the number of papers published on 

cancer stem cells, and there has now been a consensus; that CSCs must be taken into 

consideration when developing new therapies, particularly with tumours that are prone 

to relapse (Dean et al., 2005; Lee and Herlyn, 2007; Eyler and Rich, 2008; Fabian et 

al., 2009; Winquist et al., 2009; Frank et al., 2010). However, before targeting prostate 

CSCs specifically, there needs to be proof that they are resistant to current therapies 

and preferably an explanation of the mechanism of resistance. Ultimately, it is 

important to design diagnostic test(s) to determine whether, when the CSC component 

of a tumour is eliminated, that this results in tumour eradication or cure (Drewa and 

Styczynski, 2008; Woodward et al., 2009). 

 

Very little is known about therapy resistance of prostate CSCs, and most studies are 

based on cancer cell lines and tissue sections. However, increasing numbers of 

studies are now using primary epithelial cell cultures from patient samples, a focus of 

which is the response of epithelial cells to DNA damage caused by radiotherapy or 

chemotherapeutic agents. In terms of DNA repair, homologous recombination (HR), 

nucleotide excision repair (NER), base excision repair (BER) and mismatch repair 

(MMR) have all been examined. There are reduced levels of MMR proteins, including 

hMLH1 and hMSH2, in various prostate cancer cell lines (Yeh et al., 2001). More 

significantly, there are defects in MMR in prostate tumour foci as indicated by the 

absence of PMS1 and PMS2 proteins (Chen et al., 2003). In contrast, another study 

found increased levels of PMS2 in recurrent prostate cancer patients and suggested 

this to be of use as a marker with prognostic potential (Norris et al., 2009). Increased 

expression of this protein has been associated with increased mutation frequency and 

resistance to apoptosis. Even though conflicting results have been observed regarding 

an increase or decrease in repair protein, it does indicate that these proteins have the 

potential to cause mutations that may be involved in tumour progression. Combination 

of radiotherapy with inhibitors of DNA repair has been explored by Bristow et al. 

(Bristow et al., 2007). Mutations in BRCA1 and BRCA2, key proteins in the double-

strand break (DSB) response, have been found in familial prostate cancers (Dong, 

2006; Levy-Lahad and Friedman, 2007). Cells with these mutations are defective in 

DSB repair and are more sensitive to radiation (Farmer et al., 2005). Other DSB 

response proteins, such as ATM, have an increased expression in prostate tumours 

and p53 is frequently mutated in (advanced) prostate cancer (Angele et al., 2004; 

Cuddihy and Bristow, 2004). Mutations of Chk2 have also been observed (Dong, 

2006). These proteins are involved in cell cycle checkpoints, abrogation of which can 
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lead to radioresistance and metastasis (Bristow et al., 2007). An altered BER pathway 

and response to oxidative stress have also been implicated in prostate cancer (Xu et 

al., 2002; Chen et al., 2003; Rybicki et al., 2004; Trzeciak et al., 2004).  

 

With the study of CSCs, the prostate field can follow the lead of other fields. CD133+ 

cells from hepatocellular carcinoma are resistant to doxorubicin and fluorouracil, which 

is due to expression of bcl-2, Akt and PKB; components of an anti-apoptotic survival 

pathway (Ma et al., 2008). Glioma stem cells are resistant to chemotherapeutic agents 

(Murat et al., 2008) and have increased activation of DNA damage checkpoints and 

more efficient DNA repair in response to irradiation, with inhibition of Chk1 and Chk2 

kinase restoring radio sensitivity (Bao et al., 2006). These studies on cell lines and 

whole populations of primary epithelial cells can be used as a basis for studies on 

prostate CSCs, as we now have the ability to isolate these cells and analyse their 

response, which is likely to be significantly different to the more differentiated cells. 

Ultimately, in cancer cells there is an upset in control of DNA repair and cell cycle 

checkpoints, and depending on the mutation the cells may be more sensitive to 

treatment or resistant to treatment. Therefore it is imperative to explore the specific 

response of prostate CSCs to different treatments, in order to manipulate therapy. This 

would allow for prediction of success of certain therapies and also for manipulation of 

treatments to exploit defects in the prostate CSCs. 
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1.1.7. Models for studying prostate cancer 

1.1.7.1. Cell lines 

 

One of the limitations of prostate cancer research is the difficulty in generating 

permanent cell lines for in vitro studies (Abate-Shen and Shen, 2000). This limitation is 

related to the inherently slow growth of most prostate tumours and the slow 

proliferation rate of normal prostatic epithelial cells (Isaacs and Coffey, 1989). There 

have been several spontaneously immortalized prostate cells lines, derived from 

metastatic lesions, which are commonly used: DU145 (Stone et al., 1978), PC-3 

(Kaighn et al., 1979) and LNCaP (Horoszewicz et al., 1980). Unfortunately, expanded 

primary prostate cells only survive and proliferate short-term in culture and rarely 

immortalize spontaneously. Therefore, there are several prostate cell lines that are 

immortalized using different viral transformation genes, such as simian virus (SV40), 

human papillomavirus-18 (HPV) or telomerase (hTERT) (Webber et al., 1996). More 

recently, prostate cell lines have been spontaneously immortalized from trans-rectal 

needle biopsy of the prostate of patients with advanced, metastatic CRPC. Not only are 

these newly established cell lines from the primary tumour, unlike the cell lines that 

were derived in the late 70s, the cells show a intermediate phenotype, express basal 

markers with some luminal and cancer-marker gene expression that are commonly 

present in prostate tumours and these cells express stem-cell markers which makes 

them a more representative pre-clinical model for studying CPRC (Attard et al., 2009).  

 

The advantage of using cell lines is that the cells are immortalized and therefore have 

the ability to grow indefinitely in culture. However, the most commonly used cell lines 

have been established from metastatic lesions, and therefore do not accurately 

simulate the biological behaviour of primary tumours. Also, the established cell lines do 

not reflect the full spectrum of heterogeneity that is observed in prostate cancer. This 

accounts for the failure of many clinical-trials, as these are based on results obtained in 

pre-clinical studies using immortalized cell lines. Therefore it is important to perform 

pre-clinical in vitro studies on a more accurate model that is more closely related to the 

heterogeneity observed in the patients’ tumour.  
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1.1.7.2. Primary cells 
 

Due to the limitations of immortalized prostate cell lines, it is important to use primary 

cell cultures, which are a better representation of the patients’ tumour as they contain a 

mixture of several different cell phenotypes. They also have the advantage that a given 

observation can be confirmed by studying cell cultures derived from numerous patients 

(reviewed in (Peehl, 2005)). These cell cultures are derived from prostate (needle) 

biopsies, from radical prostatectomy or TURP, of malignant and benign tissue. 

However, these cell cultures have a limited life span before they senesce, which is an 

added difficulty compared to working with immortalized cell lines.   

 

Primary cell cultures can be derived from benign tissue, which acts as a “normal” 

control as well as all grades of prostate cancer, including CRPC. However there is 

currently no cancer-specific cell surface antigen that can sort live cancer cells from 

non-cancerous cells. However, cells can be screened for TPMRSS2 fusion (Birnie et 

al., 2008). It was also shown in this publication that the gene expression profile of the 

malignant cells clustered away from the normal gene expression profile. Histological 

analysis and xenografts derived from the same tissue has shown that the majority of 

the cells are malignant (Maitland et al., 2011).  

 

1.1.7.3. Mouse models 
 

Even though cell lines provide a model for identifying prospective target genes in a 

quick and efficient manner it is important to extend the knowledge that has been 

obtained in in vitro studies into a pre-clinical in vivo model. Moreover, mouse models 

have provided valuable information about the biology and pathology of prostate cancer, 

as well as being a useful system for assessing novel treatment strategies in vivo.  

 

There are two main classes of mouse models for studying prostate cancer: xenografts 

or genetically engineered mouse models (GEMMs). The xenograft model uses an 

immunocompromised mouse as a recipient of human tumour tissue or cell lines. 

Because of their immune-deficient nature, these mice are not able to mount an 

immunological response to foreign tissue and this allows the growth of human tumours. 

The most commonly used immunocompromised mouse models are NUDE mice, which 

lack T lymphocytes (Flanagan, 1966), SCID mice, which lack B and T lymphocytes 

(Custer et al., 1985) and NOD/SCID mice, which lack B and T lymphocyte and have 

low levels of natural killer (NK) cell activity (Shultz et al., 1995). Residual immune 

response, in particular NK cells, severely inhibit the efficient uptake of human tumour 
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tissue and cells. Therefore the xenograft model used in this study is the Rag2γ-/-C-/- 

mouse, which lack B and T lymphocytes and most importantly NK cells activity 

(Goldman et al., 1998).  

 

There are two main sites used for engraftment of tumour tissue in xenograft models: 

subcutaneous and orthotopic implantation. Orthotopic implantation, i.e. at the original 

site of the tumour, has been suggested to be more representative due to the interaction 

of tumour cells with their relevant organ environment (Fidler, 1990), which is more 

relevant for the progression of prostate cancer. Orthotopic implantation of prostate 

cancer cell lines results in reproducible formation of metastasis, whilst metastasis is 

rarely achieved with subcutaneous implantation (Rembrink et al., 1997). However 

subcutaneous implantation is technically simple and it results in an easy to palpate and 

measurable tumour.   

 

Xenografts that are established with the use of prostate cell lines have a high degree of 

predictability and rapid tumour formation. However most cell lines have been 

maintained for decades in vitro, thus lack the architectural and cellular complexity of in 

vivo tumours. Therefore, the resulting xenograft does not represent the genetics and 

histology of the human tumour (Becher and Holland, 2006). Currently no mouse model 

fully recapitulates all features of prostate cancer (Valkenburg and Williams, 2011). 

However in this study ‘near-patient’ xenografts were used whereby tumour biopsies of 

patients with primary prostate cancer were engrafted into Rag2γ-/-C-/- mice. The 

advantage of this mouse strain was that limiting numbers of cells could be engrafted 

with high efficiency (Maitland et al., 2011). As the tumour shares more similarities with 

the patients’ tumour, compared to cell lines, it is a more predictable model that can be 

used in developing new therapeutic agents.  

 

The GEMM allow for the development of mice carrying genetic modifications equivalent 

to those associated with human tumours. This model validates if a specific genetic 

modification is important for tumour initiation or progression, but it also provides an 

improved model for the development and testing of new therapeutic agents 

(Valkenburg and Williams, 2011). This was initially done with the introduction of DNA 

constructs, under the control of a prostate-specific promoter, that were designed to 

induce the expression of proteins, for example the transgenic adenocarcinoma of the 

mouse prostate (TRAMP) model. In this model, the SV40 tumour antigens were 

regulated by the prostate-specific rat probasin promoter, and these mice develop 

epithelial hyperplasia at 8 weeks, which progresses to PIN by 18 weeks and at 28 

weeks these mice have developed metastasis (Greenberg et al., 1995; Gingrich et al., 
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1996). The introduction of oncogenes usually results in a mild phenotype and rarely 

progresses to metastasis, for example the transgenic RAS mouse, which develops PIN 

and could therefore serve as a tool for the study of early events in prostate cancer 

(Scherl et al., 2004). Apart from transgenic mouse models, there are also traditional 

and conditional knockout mouse models. In the traditional (whole body) knockout 

mouse model, a tumour suppressor gene is deleted, for example PTEN. The PTEN 

knockout mouse showed that PTEN is essential for early embryonic development, as 

homozygous knockouts were lethal. Heterozygous knockouts were viable, however 

they did develop PIN and therefore showed that PTEN is a critical early regulator of 

prostate cancer development (Di Cristofano et al., 1998). The conditional model knocks 

out the same genes that are used in the traditional model, however the modifications 

are localized to a specific tissue. The main advantage is that it allows for studying 

specific genes in specific tissue, and for studying genes that would result in embryonic 

lethality in the traditional knockout model; for example PTEN. This conditional knockout 

for prostate cancer results in PIN formation which progresses to invasive 

adenocarcinoma, and it is therefore a more appropriate model of prostate cancer 

(Wang et al., 2003). Although the GEMM provide insights of the importance of a single 

gene in the development of prostate cancer, the mutation does occur in the entire body 

or tissue and is present from early development. However this is not the case for 

human cancer development, as mutations occur randomly and most probably in a 

single (stem) cell, resulting in focal disease development (Valkenburg and Williams, 

2011).  
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1.2. Inflammation and cancer 

 
Inflammation is a critical component in the development of a tumour. Many cancers 

arise from sites of infection, chronic irritation and inflammation. This link between 

chronic inflammation and cancer was first observed in 1863, by Rudolf Virchow, when 

he observed leukocytes within neoplastic tissue. From this observation he 

hypothesized that inflammatory cells might enhance cancer cell proliferation (Balkwill 

and Mantovani, 2001). Although it is now known that proliferation of cells alone does 

not cause cancer, sustained cell proliferation in a environment rich in inflammatory 

cells, growth factors, activated stroma and DNA-damage promoting factors does have 

the potential to promote neoplastic risk (Coussens and Werb, 2002). Inflammation is 

the biological response of vascular tissue to harmful stimuli, such as pathogens, 

damaged cells or irritants. It involves the activation and directed migration of 

leukocytes (neutrophils, monocytes and eosinophils) from the circulating blood systems 

to the region where there is damage. Acute inflammation is self-limiting, because the 

production of anti-inflammatory cytokines is quickly followed by the pro-inflammatory 

cytokines based on antigen specificity and timing of activation. There are two 

components of the acute immune system: innate and adaptive. Innate immune cells 

include dendritic cells, NK-cells, macrophages, neutrophils, basophils, eosinophils and 

mast cells, which are the first cells to respond to foreign pathogens. Adaptive immune 

cells, including B and T lymphocytes, have a more specific and larger response due to 

their long-lived memory (de Visser et al., 2006).  

When tissues are chronically stressed, the interaction between innate and adaptive 

immune cells can be disturbed, for example adaptive immune responses can cause 

ongoing and excessive activation of innate immune cells (de Visser et al., 2006). 

Chronic inflammation is due to persistence of the initiation factors or failure of the 

mechanisms that is required for resolving the inflammatory response (Coussens and 

Werb, 2002).  

 

Chronic inflammation accounts for 15 - 20% of deaths from cancer worldwide (Balkwill 

and Mantovani, 2001) and inflammation is linked to all types of human cancers, 

including, lung, bladder, pancreas, colorectal, skin and prostate cancer (Cook, 1992; 

Farrow and Evers, 2002; De Marzo et al., 2007; Michaud, 2007; Engels, 2008; Terzic 

et al., 2010). Chronic inflammation can be triggered by many environmental causes, for 

example, 20% of chronic inflammation related cancers are caused by tobacco (Parkin, 

2011) and 35% can be attributed to dietary factors (20% of cancer burden is linked to 

obesity) (Aggarwal et al., 2009). It is also well known that chronic inflammation can be 

triggered by bacterial and viral infections; Helicobacter pylori infection can cause 
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gastric cancer (Uemura et al., 2001) and HPV causes cervical cancer (Walboomers et 

al., 1999). It has been shown that treatment with non-steroidal anti-inflammatory 

agents can decrease the incidence and mortality of several types of cancer, although 

this effect only occurs after long-term (15 - 20 years) treatment (Baron and Sandler, 

2000). 

 

The hallmark of cancer-related inflammation is the presence of inflammatory cells and 

inflammation mediators (including chemokines and cytokines) in tumour tissue, tissue 

remodelling and angiogenesis, which is similar to what is seen in chronic inflammatory 

responses and tissue repair. Inflammatory cells are present in the microenvironment of 

all tumours even if the initiation of the tumour is related to the activation of oncogenes. 

This led to the hypothesis that two separate pathways connect inflammation and 

cancer: an extrinsic and intrinsic pathway (Mantovani et al., 2008). The extrinsic 

pathway is driven by inflammatory conditions that facilitate the development of cancer, 

such as inflammatory bowel disease as these patients have a high risk of developing 

colorectal cancer (Ekbom et al., 1990). The intrinsic pathway is driven by genetic 

events that cause the cancer cells to produce inflammatory mediators, therefore 

creating an inflammatory microenvironment in tumours that do not have an underlying 

inflammation condition, such as the RET/PTC1 oncogene. This has been shown to 

induce the expression of inflammatory chemokines and cytokines in normal human 

thyrocytes and chronic inflammatory thyroiditis has been linked to tumour progression 

(Borrello et al., 2005).  

 

Tumour-associated macrophages (TAM) are a major component of the inflammatory 

response in malignant tissue, and are derived from circulating monocytes, by 

chemotactin cytokines released by malignant and stromal tumour cells (Mantovani et 

al., 1992). TAMs have been shown to have both pro- and anti-tumour activity. It has 

been demonstrated that when macrophages are activated classically (also called an 

M1 response), through stimulants such as interferon gamma (INF-γ) or 

lipopolysaccharide (LPS), they produce large amounts of pro-inflammatory cytokines 

that have the potential to kill neoplastic cells (Bingle et al., 2002). However, as these 

stimulants are rarely present at the tumour site, it is more likely that TAMs are activated 

alternatively (M2 response), mainly through interleukin-10, and this phenotype is able 

to promote tumour growth by the secretion of various cytokines, which promote cancer 

cell survival and proliferation (Sica et al., 2000). Additionally, TAMs are also involved 

with angiogenesis, invasion and metastasis (Mantovani et al., 1992). Moreover, high 

levels of TAMs in tumours are often associated with poor prognosis (Bingle et al., 

2002).  
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The nuclear factor-κB (NF-κB) pathway is an important regulator of TAM function, as it 

is the central mechanism that maintains the alternative phenotype (M2) of TAMs 

(Hagemann et al., 2008). It has been shown that during chronic inflammation, NF-κB 

activation in TAMs triggers the release of certain pro-inflammatory cytokines, such as 

IL-6, which has been linked to tumour growth (Libermann and Baltimore, 1990; Schafer 

and Brugge, 2007). Even though NF-κB activity has mainly been associated with a pro-

inflammatory phenotype, it has also been shown that inhibition of IKKβ (upstream 

activator of NF-κB) activity in TAMs is able to reverse the M2 phenotype and re-

educate them to an M1 phenotype activating the TAMs to kill cancer cells, which 

resulted in regression of the tumour (Hagemann et al., 2008). Due to this plasticity of 

the TAM phenotype and the complex role of NF-κB, there is conflicting view of the role 

of NF-κB in inflammation. Nevertheless, targeting NF-κB, or downstream effectors, 

could be a potential therapy to block the tumour promoting role of TAMs in cancer 

tissue and possible restoring their intrinsic anti-tumour activity (Mancino and Lawrence, 

2010). 
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1.2.1. Inflammation and prostate cancer 
 

Chronic inflammation has been associated with many types of cancer, including 

prostate cancer, where it often occurs in the peripheral zone of the prostate gland 

(Blacklock, 1991). An increase in hyper proliferative epithelial cells is observed in focal 

atrophy lesions, also known as PIA (De Marzo et al., 1999). As PIA, high-grade PIN 

and carcinoma occur with preference in the peripheral zone of the prostate, and cells 

that are associated with these disease stages have a very similar phenotype. It is 

hypothesized that PIA is a precursor of high-grade PIN (De Marzo et al., 1999; Putzi 

and De Marzo, 2000).  

 

There are several different aetiological agents that are thought to contribute to the 

initiation of prostatic inflammation, such as infections, dietary factors, hormonal 

changes and urine reflex. It is known that several pathogenic organisms can infect and 

induce an inflammatory response in the prostate, including sexually transmitted 

organisms and non-sexually transmitted organisms (Poletti et al., 1985; Cohen et al., 

2005). Also, the correlation between an increased risk of developing more advanced 

prostate cancer and the consumption of dietary fat and/or high fat animal products, 

such as red meat, and a decreased risk with a high intake of fruit, vegetables, fibres 

and soy products has been established for some time (Giovannucci et al., 1993), as is 

the link between hormonal changes, such as increased levels of oestrogens, and the 

development of prostate cancer. An increase in oestrogen levels can result in 

architectural alterations in the prostate (Risbridger et al., 2003). Another aetiological 

agent that has been proposed to be involved in the development of chronic 

inflammation in the prostate, is chemical irritation from urine reflux (Persson and 

Ronquist, 1996). It has been shown that crystalline uric acid, which is released from 

dying cells, is able to directly engage the caspase-1 activating NALP3 “inflammasome”, 

which results in the production of inflammatory cytokines (Martinon et al., 2006). All 

these mechanisms of chronic epithelial injury may result in a break of the apparent 

immune “tolerance” of the prostate due to the release of antigens by damaged prostate 

epithelial cells, causing a chain reaction that further sustains and stimulates the 

inflammatory response and increases the prostatic inflammatory infiltrates (De Marzo 

et al., 2007).  

 

The inflammatory network is a complex interaction of genes and transcription factors 

that are involved in the innate and adaptive immune system. Recently, studies have 

shown an association between one or multiple single nucleotide polymorphisms 

(SNPs) in inflammation related pathways, and their relation to an increased risk of 
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prostate cancer (Zheng et al., 2006). There has been an association between a SNP in 

the promoter region of alpha-1-antichymotrypsin (ACT), which is an acute-phase 

protein that is upregulated in response to inflammation, and an increased risk of 

prostate cancer. (Licastro et al., 2008). Another study showed that individuals carrying 

a SNP in IL-8 (47CT) or simultaneous SNPs in IL-1B(511CC) and IL-10(1082GG) had 

a significant increased risk in developing aggressive prostate cancer compared to 

individuals who did not carry these genotypes (Zabaleta et al., 2009).  

 

Thus multiple pro-inflammatory cytokines, and their related pathways have been 

identified as potential mediators in the development from prostatic inflammation to 

prostate carcinoma, such as IL-1, TNFα and IL-6 and the JAK-STAT signalling 

pathway, which can be activated through IL-6. These cytokines have been shown to be 

upregulated in PIN and prostate cancer (Hobisch et al., 2000).  
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1.2.2. JAK-STAT signalling pathway 
 

One of the most common cytokine signalling pathways is the Janus-kinase (JAK)-

signal transducer and activator of transcription (STAT) pathway, which was discovered 

through studies of transcription activation by interferons (Darnell et al., 1994). The 

binding of cytokines to a cell-surface receptor results in receptor dimerization and 

subsequently activation of JAK tyrosine kinases. Specific tyrosine residues on the 

receptor are then phosphorylated by activated JAKs and create docking sites for the 

SH-domains that occur in all STATs. The receptor bound STAT is then phosphorylated 

by JAKs, dimerizes and leaves the receptor to translocate to the nucleus, where they 

activate gene transcription (Darnell, 1997) (Figure 1.10).  

 

The mammalian JAK family has four members: JAK1, JAK2, JAK3 and tyrosine kinase 

2 (TYK2) and there are seven members of the STAT family: STAT1, STAT2, STAT3, 

STAT4, STAT5a, STAT5b and STAT6. JAKs and STATs have specific functions in 

various immune responses (Shuai and Liu, 2003). The JAK-STAT signalling pathway 

can be regulated at many steps by distinct mechanisms. Key regulators include the 

suppressor of cytokine signalling (SOCS) proteins, protein inhibitor of activated (PIA) 

STATs family, as well as protein tyrosine phosphatases (PTPs). SOCS proteins are 

generally expressed at low levels in unstimulated cells and are rapidly induced by 

cytokine stimulation. Thus, SOCS proteins inhibit the JAK-STAT signalling pathway, by 

a direct inhibition of JAK enzymatic activity, forming a classic negative feedback loop. 

However, SOCS protein can also regulate signalling downstream of other cytokines 

(cross talk) (Croker et al., 2008). There are several PTPs that have been indicated to 

regulate JAKs, including SPH1, SPH2 and CD45. The PTP regulate the JAK-STAT 

signalling pathway by dephosphorylation of JAKs, however specific PTPs 

dephosphorylate specific JAKs (Shuai and Liu, 2003). The last key regulator of the 

JAK-STAT signalling pathway, PIAs, interact with phosphorylated STAT3 and inhibit its 

DNA binding or the transactivating capacity (Shuai, 2006; Hoefer et al., 2012). Both 

PTPs and PIA are constitutively present in cells and therefore represent the first level 

of regulation, whilst SOCSs proteins are the second level of control.  
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Figure 1.10. Schematic representation of the JAK-STAT signalling pathway. The pathway 

becomes activated after binding of cytokines to a cell-surface receptor, which dimerizes and 

activates JAKs. This creates docking sites for STATs, which are then phosphorylated, dimerize 

and translocate to the nucleus to activate gene transcription.  
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Dysregulation of the JAK-STAT signalling pathway has been implicated in many types 

of disease, including immune diseases and cancer. It has been shown that STATs are 

constitutively activated in many cancers, including leukemia (Weber-Nordt et al., 1996), 

breast (Watson and Miller, 1995), ovarian (Huang et al., 2000), head and neck 

(Grandis et al., 1998), lung (Song et al., 2003), colorectal (Corvinus et al., 2005), 

glioblastoma (Rahaman et al., 2002) and prostate cancer (Dhir et al., 2002). 

Constitutively activation of STATs in cancer is accompanied by hypermethylation of 

SOCS genes (Yoshikawa et al., 2001; He et al., 2003; Sutherland et al., 2004). These 

results suggest that SOCS proteins might act as tumour suppressors. This is confirmed 

by experimental overexpression of SOCS proteins in cancer cells, which resulted in 

decreased levels of STAT activity, inhibition of phosphorylation, induction of apoptosis 

and inhibition of tumour growth (Iwahori et al., 2011).  

 

It is particularly STAT3 that is constitutively activated in many types of cancer, 

including prostate cancer (Bromberg, 2002; Mora et al., 2002). The first evidence 

showing a direct link between STAT3 and oncogenesis was from a study by Yu and 

colleagues. They showed that STAT3 is constitutively activated in cells transformed by 

an oncogene, Src (Yu et al., 1995). Direct evidence was shown with a constitutively 

active STAT3 mutant, which transformed fibroblasts in culture, and the transformed 

cells were able to form tumours in NUDE mice (Bromberg et al., 1999). The first 

evidence that showed the importance of STAT3 activation in cancer cells was shown in 

multiple myeloma. It was shown that activated STAT3 plays an essential role in 

preventing apoptosis in these cancer cells through the activation of anti-apoptotic 

proteins Bcl-xL (Catlett-Falcone et al., 1999). Since then many other proteins have 

been found that are crucial for cancer cell proliferation and survival, and are also 

regulated by STAT3, such as survivin, Cyclin D1 and c-myc (Kiuchi et al., 1999; 

Masuda et al., 2002; Kanda et al., 2004). More evidence that STAT3 is implicated in 

cancer cell survival is that inhibition of STAT3 has been shown to result in an increase 

of apoptotic cells and growth inhibition in vivo. (Burke et al., 2001; Iwamaru et al., 

2007). 

 

Not only is STAT3 implicated in inflammation and cancer, it has also been shown to be 

important for embryonic development. STAT3 is the only embryonic lethal knockout 

within the STAT family (Takeda et al., 1997) This is not surprising, as it has 

subsequently been shown that STAT3 activation is important for the self-renewal of 

pluripotent mouse embryonic stem (ES) cells (Niwa et al., 1998; Matsuda et al., 1999). 

However activation of STAT3 is not required to maintain human ES cells in their 

undifferentiated state or their ability to self-renew (Humphrey et al., 2004; Ying et al., 
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2008). However, it also has been shown that STAT3 is important for stem cell 

maintenance (of adult tissue stem cells), including neural stem cells (Gu et al., 2005) 

and small-intestine crypt stem cells (Matthews et al., 2011). More recently it has 

became apparent that STAT3 is involved in the maintenance of cancer stem-like cells, 

including breast cancer (Zhou et al., 2007), liver cancer (Tang et al., 2008), colon (Lin 

et al., 2011) and glioblastoma (Sherry et al., 2009). Inhibition of STAT3 resulted in a 

decrease of viable stem-like cells as well as a decrease in tumorigenicity. In summary, 

constitutive activation of STAT3 is observed in many types of cancer. In addition, 

STAT3 is important for the maintenance of mES cells, adult tissue stem cells as well as 

cancer stem-like cells in a variety of tissue.  
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1.2.2.1. STAT3 activation and prostate cancer 
 

It has been shown that STAT3 is constitutively activated in human prostate tumours, as 

well as prostate cell lines (Mora et al., 2002). This study also showed that increased 

levels of activated STAT3 were highly correlated with more aggressive prostate 

tumours, determined by Gleason score. Moreover, STAT3 is active in 77% of lymph 

node and 67% of bone metastasis of clinical prostate cancers, and activation of STAT3 

in prostate cell lines resulted in a 33-fold increase in lung metastasis (Abdulghani et al., 

2008). Inhibition of STAT3 in prostate cells induced significant growth inhibition and 

apoptosis as well as inhibition of tumour growth (Ni et al., 2000; Mora et al., 2002).  

 

In prostate cancer, STAT3 is a target of the IL-6 family of cytokines, which includes IL-

6, IL-11, leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neutrotrophic 

factor (CNTF), cardiotrophin1 and 3 (CT1, CT2), cardiotrophin-like cytokine (CLC) and 

IL-31 (Pflanz et al., 2002; Heinrich et al., 2003; Dillon et al., 2004). Apart from IL-31, 

the cytokines share a common receptor subunit; glycoprotein 130 (gp130), and IL-6, IL-

11 and CNTF have a specific non-signalling α-receptor. IL-6 and IL-11 signal via gp130 

homodimers, whilst the remaining IL-6 family of cytokines signal via heterodimers of 

gp130 and LIF receptor, gp130 and OSM receptor or gp130 and IL-27 receptor. 

Additionally, OSM has the exceptional capacity to recruit two different receptor 

complexes (Figure 1.11) (Heinrich et al., 2003; Cornelissen et al., 2012). The activation 

of STAT3 is initiated by the binding of a ligand to its receptor, which leads to the 

dimerization of the cytoplasmic domain of the receptor and activation of associated 

JAKs, this leads to the phosphorylation of STAT3, which allows for the dimerization of 

STAT3 and translocation to the nucleus. STAT3 is predominantly phosphorylated by a 

tyrosine kinase (Tyr705) in the carboxyl-terminal domain, however STAT3 

phosphorylation is supplemented by phosphorylation of a specific serine residue 

(Ser727) (Wen et al., 1995).  

 

STAT3 inhibitors have been emerging as promising anticancer therapies, and the most 

popular strategy to inhibit STAT3 activity is by disrupting the upstream tyrosine 

kinases. JAK2 inhibitors have been used in clinical trials, and have found to be very 

tolerable with no adverse impact on quality of life. Moreover, the phase I/II clinical 

trials, using JAK2 inhibitors for treatment of patients with myeloproliferative disorders 

has shown promising initial results (Bellido and Te Boekhorst, 2012; Shodeinde and 

Barton, 2012).  
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Figure 1.11. Schematic representation of STAT3 activation through the IL-6 family of cytokines. IL-6 and IL-11 bind their specific receptor component prior to 

binding to gp130, which then forms a homodimer complex. Whilst the other IL-6 family of cytokines interact with a heterodimers complex, consisting of gp130 and 

LIF receptor, IL-27α receptor or OSM receptor. The LIF receptor/gp130 complex can be subdivided according to the presence of absence of CNTF receptor within its 

receptor complex.  
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1.2.2.2. IL-6 and prostate cancer 

 

That STAT3 is constitutively activated in prostate cancer is not unexpected as it has 

been shown in many studies that the associated cytokine IL-6 is overexpressed in 

patients with prostate cancer (Smith and Keller, 2001).  

The first implication that IL-6 was involved in the progression of prostate cancer was a 

study by Siegall and colleagues. They showed that prostate cancer cells secreted IL-6 

and expressed the IL-6 specific receptor, gp80 (Siegall et al., 1990), so it was thought 

that IL-6 might act as a growth factor for prostate cancer cells. Since then, multiple 

studies have demonstrated that IL-6 is elevated in sera of patients’ with prostate 

cancer (Twillie et al., 1995; Adler et al., 1999). Moreover, it has been shown that IL-6 is 

elevated in serum from men with metastatic CRPC compared to normal control, BPH 

or localized prostate cancer (Drachenberg et al., 1999). Additionally, the IL-6 specific 

receptor gp80 is highly expressed by prostate cancer cells compared to benign disease 

(Chung et al., 1999; Hobisch et al., 2000; Giri et al., 2001). So, not only does IL-6 act 

as a growth factor for prostate cells, it also plays a role in the progression of localized 

prostate cancer to the CRPC stage of the disease. It is thought that IL-6 undergoes a 

functional transition from paracrine growth inhibitor to autocrine growth stimulator in the 

progression of prostate cancer to a hormone-castration phenotype (Chung et al., 

1999).  

 

The biological activity of IL-6 is initiated through binding of a specific IL-6 receptor gp80 

and the common receptor subunit gp130. However some cells that express lower 

levels of the IL-6 transmembrane receptor, can bind to a soluble form of the IL-6R (sIL-

6R), which subsequently binds to gp130 and activates STAT3. High levels of sIL-6 is 

associated with high-grade prostate cancer, therefore it was suggested that it could be 

a potential circulating biomarker for prostate cancer (Terracciano et al., 2011).  

 

It has also been shown that IL-6-mediated activation of STAT3 is able to increase the 

levels of PSA and activate several androgen-responsive promoters, in the absence of 

androgens. Suggesting that IL-6 is able to activate the AR in androgen-independent 

prostate cancer cells (Chen et al., 2000; Lin et al., 2001). In addition, overexpression of 

IL-6 protects prostate cancer cells from undergoing apoptosis induced by androgen 

deprivation therapy, this effect is mediated through activation of STAT3 (Lee et al., 

2004). More recently it has been shown that IL-6 contributes to resistance to 

bicalutamide treatment (Feng et al., 2009). These results show that IL-6 is an important 

factor in prostate cancer progression and therapy resistance and is therefore an 

important therapeutic target. 
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In addition to the JAK-STAT signalling pathway, through activation of STAT3, IL-6 is 

also able to activate Ras, MAPK, Cox-2, Wnt and the PI3K/AKT pathway (Heinrich et 

al., 2003; Guo et al., 2012). However due to the high levels of secreted IL-6, IL-6 

receptor and constitutively activated STAT3 in prostate cancer cells (and the ability of 

IL-6 to activate the AR in the absence of androgens) the focus of this and many other 

studies is the activation of STAT3, through IL-6 signalling in prostate cancer.  

 

Because IL-6 is implicated in prostate cancer growth and progression, it is important to 

target IL-6 signalling. Various compounds that antagonize IL-6 production, including 

non-steroidal anti-inflammatory agents, oestrogens, and cytokines have been used, 

however these drugs also have effects on cancer cells that go far beyond their anti-IL-6 

properties (Trikha et al., 2003). Thus, a more specific anti-IL-6 neutralizing antibody is 

required. One of the most widely used neutralizing antibodies against IL-6 is CNTO 

328, which is a murine-human chimeric monoclonal antibody (also known as 

siltuximab). The main advantage of this neutralizing antibody is that it has shown no 

life-threatening side affects and has a long half-life of 17.8 days (van Zaanen et al., 

1998; Trikha et al., 2003). The results with CNTO 328 have shown it to be capable of 

neutralizing IL-6’s functions in a variety of human cancers, including multiple myeloma 

(Voorhees et al., 2007), ovarian cancer (Guo et al., 2010), and prostate cancer (Steiner 

et al., 2006; Fizazi et al., 2012). 

 

As expected, treatment of prostate cancer cells with the anti-IL-6 antibody CNTO 328 

resulted in significant inhibition of cell viability in vitro as well as modest growth 

inhibition in vivo, using LNCaP-IL-6+ cells (Steiner et al., 2006). Furthermore, treatment 

with CNTO328 inhibited the conversion of androgen-dependent prostate cancer to 

androgen-independent prostate cancer in vivo (Wallner et al., 2006). Phase I clinical 

trials did show that CNTO 328 is safe to use in patients with prostate cancer and it 

resulted in down regulation of genes that are associated with prostate cancer (Karkera 

et al., 2011). Unfortunately, phase II clinical trials with patients’ with metastatic CRPC 

did not show an improved clinical outcome over chemotherapy (Fizazi et al., 2012).  
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1.2.3. Targeting the JAK-STAT signalling pathway in prostate 

cancer stem cells 
 

Due to the failure of current therapies against prostate cancer, especially CRPC, it is 

important to develop new treatment strategies. Since prostate cancer stem cells are at 

the root of the tumour and are not targeted with current therapies, as well as being 

responsible for metastasis, elimination of these CSCs offers the potential to completely 

eradicate the tumour (Lou and Dean, 2007; Maitland and Collins, 2008b; van den 

Hoogen et al., 2010; Wang et al., 2012). One approach could be differentiation therapy, 

which attempts to end the cycle of self-renewal by encouraging the cells to differentiate 

into a more committed cell type. Cancer stem cells rely highly on certain signalling 

pathway in order to maintain the ability to self-renew and differentiate and 

understanding these mechanisms could be a potential target to inhibit these functions 

in cancer stem cells (Hu and Fu, 2012).  

 

It has been shown, in gene expression profiling study, that JAK-STAT signalling is a 

key process in the α2β1
hi/CD133+ (stem-cell like) population of prostate cancer (Birnie 

et al., 2008). As IL-6 is mainly associated with prostate cancer as a growth factor or AR 

activator in the absence of androgens it is involved in the majority of tumour cells. 

However in the stem cell population, where the AR is not expressed, but IL-6 is highly 

expressed, it is thought to act here as a cell survival factor (Maitland and Collins, 

2008a).  

It has been shown that targeting the JAK-STAT signalling pathway, either through 

targeting IL-6 or STAT3 phosphorylation, has a promising effect on the cancer stem 

cell phenotype. For example, glioblastoma stem cells (GSC) express significantly 

higher levels of the IL-6 specific receptor compared to the non-stem glioma cells, 

suggesting that these cells require IL-6 signalling. When the IL-6 receptor is targeted, 

using shRNA, it was shown that GSC had a decreased percentage in proliferating 

cells, viable cells as well as a loss to serial passage neurospheres (assay for self-

renewal) in the knockdown GSCs. As the GSCs are the tumour-initiating cells it was 

encouraging that there was an increase in survival of mice bearing glioblastoma 

xenografts that had the IL-6 or IL-6R knockdown. Moreover, treatment with an anti-IL-6 

antibody also resulted in an inhibition of growth of a human glioma xenograft (Wang et 

al., 2009a). A similar result was observed for colon cancer-initiating cells. It was shown 

that the CD133+ cells expressed higher levels of IL-6 and STAT3 compared to the 

CD133- population. With the use of a novel STAT3 inhibitor, LLL12, it was shown that 

the CD133+ cells had decrease cell viability and tumoursphere-forming capacity as well 

as an overall reduction in cell number after inhibition of STAT3. Moreover, treatment 
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with LLL12 resulted in a decreased ability of the cancer-initiating CD133+ cells to form 

tumours (Lin et al., 2011). Both these studies show that constitutively activating 

STAT3, through IL-6, is important for the survival and proliferation of tumour-initiating 

cells. There is preliminary evidence that this also might be important for prostate 

cancer-initiating cells, due to high expression of IL-6 and several components of the 

JAK-STAT signalling pathway in the stem cells population of malignancy (Birnie et al., 

2008).  

 

In most studies, inhibiting the JAK-STAT signalling pathway is done by targeting 

upstream targets, such as JAKs or IL-6. A widely used JAK inhibitor is pyridine-6 (P6), 

which is a reversible ATP inhibitor and has been found to inhibit the JAKs in the low 

nanomolar range (Lucet et al., 2006). It has been shown that P6 is a more sensitive 

inhibitor compared to AG490, another commonly used JAK2 inhibitor (Pedranzini et al., 

2006). It has been shown previously that P6 successfully inhibits STAT3 activation in 

prostate cancer cells (Azare et al., 2007). A recently developed inhibitor, named LLL12, 

which is specifically directed against phospho-STAT3 (Tyr705), was also used in this 

study. This molecule has been derived from curcumin, which is a compound that has 

been used in cancer chemoprevention (Cheng et al., 2001). Treatment with LLL12 

resulted in inhibition of STAT3 and inhibition of proliferation in a variety of cancer cells, 

including breast, pancreatic and glioblastoma (Lin et al., 2010). An overview of the 

three inhibitors, and their targets, used in this study are shown in Figure 1.12.  

 

  



 60 Introduction 

 
 
Figure 1.12. Schematic representation of inhibitors of the JAK-STAT signalling pathway. 

(1) CNTO 328 is an anti-IL-6 antibody which binds and prevents IL-6 activation of the IL-6R 

(gp80), (2) P6 is a pan-JAK inhibitor which binds via an induced fit mechanism, buried within a 

narrow JAK-ATP binding pocket., and (3) LLL12 is a specific phospho-STAT3 (Tyr705) inhibitor, 

which binds directly to the phosphoryl tyrosine 705 binding site of the STAT3 monomer. The 

levels of ρSTAT3 after treatment will determine the efficiency of these inhibitors.  
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1.3. Main research strategies and aims 
 
Currently there is no effective therapy for advanced prostate cancer. This is potentially 

due to the presence of undifferentiated cancer stem cells, which are not targeted in the 

current therapy strategies for prostate cancer. Thus it is important to develop new 

strategies that target these slow cycling, AR-negative cells, in order to eradiate the 

entire tumour mass. One strategy to target these cancer stem cells is through 

perturbation of a signalling pathway that the cells depend on for the maintenance of the 

undifferentiated stem cell phenotype. Disruption of this pathway could lead to 

perturbation of stem cell self-renewal directing the cells to terminal differentiation or 

making them more amenable to current standard of care therapies. One of the 

signalling pathways that has shown to be important for cancer stem cell maintenance 

and viability is the JAK-STAT signalling pathway, through activation of STAT3 (Zhou et 

al., 2007; Wang et al., 2009a; Lin et al., 2011).  

Using gene expression profiling, components of the JAK-STAT signalling pathway 

were found to be overrepresented in the α2β1
hi/CD133+ (stem-like) population of 

primary prostate cancer cell cultures (Birnie et al., 2008). The focus of this study was to 

validate these findings and determine the importance of the JAK-STAT signalling 

pathway for the maintenance of prostate cancer stem cells using in vitro and in vivo 

techniques. The following questions were addressed: 

 

• Do the prostate cancer stem-like cells signal through an autocrine IL-6/STAT3 

signalling pathway?  

 

• Is STAT3 activation important for maintenance of the prostate cancer stem-like 

cells? 

 

• What is the effect of phospho-STAT3 inhibition on tumour growth and tumour 

initiation? 
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2. Materials and Methods 

2.1. Mammalian cell culture 

2.1.1. Cell lines 
 

All human cell lines were purchased from American Type Culture Collection (ATCC, 

USA) or the European Collection of Animal Cell Culture (ECACC, UK), except for 

P4E6, PNT1a and PNT2-C2, which were derived in our laboratory (Berthon et al., 

1995; Maitland et al., 2001). PNT1a, PNT2-C2 and LNCaP cells were cultured in 

Roswell Park Memorial Institute-1640 (RPMI) (Invitrogen) supplemented with 10% 

Fetal Calf Serum (FCS) (PAA) and 2 mM L-Glutamine (Invitrogen) (R10). PC-3 cells 

were cultured in Ham’s F-12 medium (Lorza) supplemented with 7% FCS and 2 mM L-

glutamine (H7). P4E6 cells were cultured in Keratinocyte Serum-Free Medium (KSFM) 

(Invitrogen) supplemented with 2% FCS, 2 mM L-glutamine, 5 ng/mL Epidermal 

Growth Factor (EGF), 50µg/mL bovine pituitary extract (Invitrogen) (K2). All cells were 

cultured in cell-culture tissue flasks (Corning) and cells were routinely cultured in T25 

flask at 37 °C in 5% CO2. List of different cell culture medium that have been used is 

shown in appendix 1.  

 

2.1.2. Primary cell culture 
 

Patient prostate tissue was collected with ethical permission from York District Hospital 

(York) and Castle Hill Hospital (Cottingham, Hull). Prostate tissue was obtained only 

from patients who had given informed consent. The Local Research Ethics Committees 

approved use of patient tissue. Prostate tissue was taken from patients undergoing 

transurethral resection of the prostate, radical prostatectomy (open and laparoscopic) 

or cystectomy (for bladder cancer), and all patient samples were anonymized. For 

patients undergoing radical prostatectomy, we received three core biopsies per side, 

which were taken from the right and left apex and base of the prostate using a core 

biopsy needle (14G). For each biopsy side: one core was fixed in OCT (Fisher 

Scientific) or 10% (v/v) formalin for histology, one core was engrafted into Rag2-/-γC-/- 

mice and the remaining core (or two when the sample was not required for 

engraftment) was digested for further culturing. From patients undergoing TURP, a 

small piece (~5 mm3) of tissue was taken and was placed in OCT or formalin for 

histology. For this study patients with BPH were used as controls as well as those 

patients undergoing cystectomies for bladder cancer if there were no indications of 
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tumour spread to the prostate. Details of patient’s samples (including Gleason grade) 

are listed in appendix 2. 

 

Prostate tissue biopsies were transported, the same day from the hospital, in transport 

medium (RPMI supplemented with 5% FCS and 2 mM L-Glutamine (R5) containing an 

antibiotic-antimycotic mixture containing 100 U/mL Penicillin, 100 µg/mL streptomycin, 

and 0.25 µg/mL Fungizon (ABM, Invitrogen)) at 4°C. The biopsies were placed in a 

Petri dish and washed with 10 mL phosphate buffered saline (PBS). 200 U/mL 

collagenase (Lorne laboratories Ltd) was dissolved in 2.5 mL KSFM (supplemented 

with 5 ng/mL EGF, 50 µg/mL bovine pituitary extract, 2 mM L-Glutamine) and 5 mL 

R10 containing ABM. The solution was then was passed through a 0.22 µM filter unit 

(Millipore) prior to use. This mixture was added to the biopsy tissue, which was finely 

chopped (1 mm3) with a disposable scalpel (Swann Morton). The tissue was then 

transferred to an Erlenmeyer flask and treated overnight in the 200 U/mL collagenase 

solution in an orbital shaker at 37°C at 80 Revolutions Per Minute (RPM). After this 

incubation period the cell suspension was transferred to a universal and mechanically 

disrupted by tituration through a 21G blunt needle (Kendall Tyco Healthcare). The 

suspension was then centrifuged for 10 minutes at 2000RPM, washed in 10 mL PBS 

and centrifuged for a further 10 minutes at 2000RPM. This wash step was repeated 

once more. Organoids were separated from the stromal cells by differential 

centrifugation (800RPM for 1 minute), which resulted in a pellet of organoids, cells and 

supernatant containing stromal cells. The organoids were collected using a wetted 

Pasteur pipette. This step was repeated until all organoids were collected. Stromal cells 

were transferred to a T25 flask in R10 containing ABM and maintained for culture. This 

differential centrifugation step, to separate the stromal cells from the epithelial cells, 

does not apply to high Gleason grade cancer, due to the lack of organoids. The 

organoids were washed with 10 mL PBS, centrifuged for 3 minutes at 1300RPM, 

resuspended in 5 mL 0.05% Trypsin/EDTA (Invitrogen) and incubated in an orbital 

shaker for 30 minutes at 37°C at 80RPM. After this incubation step, 10 mL R10 was 

added to inactivate the trypsin, and the suspension was centrifuged for 3 minutes at 

1300RPM resulting in a pellet of epithelial cells. Epithelial cells were cultured in the 

presence of irradiated (60 gray (Gy)) mouse embryonic fibroblasts (STO) mouse feeder 

cells on collagen-I coated plastic ware (BD biosciences) in KSFM supplemented with 5 

ng/mL EGF, 50 µg/mL bovine pituitary extract, 2 mM L-glutamine, 2 ng/mL stem cell 

factor (First Link Ltd, UK), 1 ng/mL granulocyte-macrophage colony-stimulating factor 

(GM-CSF, Miltenyi Biotec) and 100 ng/mL cholera toxin (Sigma-Aldrich) (Stem Cell 

Medium, SCM). Cells were cultured at 5% CO2 at 37°C and medium was changed 
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every 2 - 3 days until they reached 80% confluency, which was when cells were split at 

a standard ratio of 1:2.  

2.1.3. Isolation of subpopulations from primary prostate epithelial 

cell cultures 
 

After expansion of primary prostate cells in culture, the cells were washed once with 

PBS and 0.05% Trypsin/EDTA was added followed by ~5 minute incubation at 5% CO2 

at 37°C. Detached cells were collected in 10 mL R10 and two washes with PBS to 

ensure all cells were collected. Cell suspension was centrifuged for 3 minutes at 

1300RPM and the cell pellet was resuspended in 5 mL SCM. The cells were then 

selected for α2β1 integrin high expression using rapid adhesion to the substrate; Type I 

collagen, for 20 minutes at 37°C. The Collagen-I coated plates were pre-treated with 

0.3% Bovine Serum Albumin (BSA) (Sigma Aldrich) for 1 hour at 37°C, to minimise 

non-specific binding. Non-adherent cells (α2β1
low; the 20min+ fraction) were collected 

by at least three washes with PBS. The cells were subsequently resuspended in SCM. 

Adherent cells (α2β1
hi) were detached using 0.05% trypsin/EDTA, after 5 - 10 minutes 

incubation at 5% CO2 at 37°C all the cells were collected using two washes of PBS to 

ensure all cells are collected. The α2β1
hi cells were further enriched for CD133 

expression using a CD133 microbead kit, according to the manufacturer’s protocol 

(Miltenyi Biotec). Briefly, cells were resuspended in 300 µL MACS buffer (PBS 

supplemented with 2 mM EDTA and 0.5% FCS), and incubated with 100 µL FcR 

blocking buffer and 100 µL CD133-microbeads, at 4°C for 30 minutes. The cell 

suspension was washed once with 4 mL MACS buffer and centrifuged for 3 minutes at 

1300RPM. The cell pellet was resuspended in 500 µL MACS buffer and applied to a 

pre-prepared MS column. The column was washed three times with 3 mL MACS 

buffer, which resulted in a flow through of CD133- cells and elute of CD133+ cells. The 

purity of CD133+ cells was further enriched over a second MS column. Cells were 

washed once with R10, centrifuged for 3 minutes at 1300RPM and resuspended in 

SCM for further use. This procedure resulted in three cell populations: α2β1
hi/CD133+ 

(stem-like cells), α2β1
hi/CD133- (transit amplifying cells) and α2β1

low (committed basal 

cells).  
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2.1.4. Isolation of lymphocytes from patients peripheral blood 

samples 
 

Blood samples were taken from patients, who had given informed consent as 

described in section 2.1.2. The lymphocytes isolated from the blood samples could be 

used for genotyping, as a reference. Blood was taken using blood collection tubes and 

stored at 4°C until transported. Blood was transferred to a 15 mL falcon tube and 

diluted 1:1 with PBS and slowly layered onto 5 mL Lymphocyte Separation Medium 

(LSM) (MP Biomedical) followed by centrifugation for 30 minutes at 1800RPM with the 

brake off. Using a Pasteur pipette, the lymphocyte layer, which is a narrow creamy 

layer in between the yellow-orange layer of plasma and clear layer of LSM, was gently 

aspirated off and transferred to a fresh 15 mL tube. The lymphocytes were washed 

once with PBS and centrifuged for 5 minutes at 2100RPM. The cells could be used for 

further analysis, but were usually stored at -80°C for future use in genotyping analysis 

using a PowerPlex ® 16 System (Promega). Analysis was performed by miss Hannah 

Walker.  

 

2.1.5. Determination of live cell number 
 

To determine live cell counts, cell suspensions were mixed in a 1:1 ratio with 0.4% 

Trypan Blue Stain (Sigma) in a total volume of approximately 20 µL. After mixing, the 

cell number was counted using a haemocytometer (10 µL per chamber), which resulted 

in a live cell number (non-stained cells) and total cell number (stained and non-stained 

cells). To calculate dead cells, the live cell number was subtracted from the total cell 

number.  

 

In addition, two alternative methods were used to determine the cell number of the 

α2β1
hi/CD133+ fraction due to limited cells (0.01% of the total culture). (1) All adherent 

cells were counted, using an eyepiece graticule (NE11a – 20 mm) or (2) 10 µL from a 

100 µL cell suspension, was diluted 1:1 with 0.4% Trypan blue and was then counted 

on a haemocytometer. Instead of counting only the cells that were within the grid, the 

entire area of the haemocytometer was counted for all live cells contained in the 10 µL. 

This resulted in a more accurate estimate of total live cells per 100 µL.  
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2.2. Transcriptional expression 

2.2.1. RNA extraction 
 

RNA extraction was performed using an RNeasy Mini Kit (Qiagen) according to the 

manufacturer’s protocol. Briefly, cells were resuspended in 350 µL RTL buffer, apart 

from the α2β1
hi/CD133+ population, which was resuspended in 100 µL due to low cell 

numbers. The cell lysate was added onto a column and centrifuged for 2 minutes at full 

speed to remove cell debris. A one-time volume of 70% EtOH was added to the flow 

through and this mixture was added onto a binding column. Column, with bound RNA, 

was washed three times and RNA was eluted using 30 µL RNase-free water. RNA 

quality was checked using a Nanodrop spectrophotometer and RNA was stored at -

80°C. 

 

2.2.2. RT-PCR 
 

Reverse transcription was performed using up to 5 µg RNA, in a total volume of 12 µl 

that contained 100 ng random hexamer primers (Invitrogen) and 10 mM dNTPs 

(Invitrogen). This mixture was heated to 65°C, for 5 minutes followed by 2 minutes on 

ice. The following enzymes were then added: 1x First Strand buffer (Invitrogen), 0.1 M 

dithiothreitol (DTT) (Invitrogen), 40 U RNase Inhibitor (RNaseOUT, invitrogen) and 200 

U reverse transcriptase II (Invitrogen) in a total volume of 20 µL. The reaction was 

incubated at 25°C for 10 minutes, 42°C for 50 minutes and 70°C for 15 minutes. 

Synthesized cDNA was stored at -20°C.  

 

One tenth of cDNA (or ddH2O as a negative control) was added to a PCR reaction mix 

containing: 1 µM forward and reverse primers (Appendix 3a), 1.5 mM MgCl2 

(Promega), 0.2 mM dNTPs, 1 U GoTaq polymerase (Promega), 25 U GoTaq buffer 

(Promega). The standard PCR cycle profile details are shown below: 

94°C for 2 minutes 

94°C for 30 seconds 

60°C for 30 seconds 

72°C for 30 seconds 

72°C for 2 minutes 

30 cycles 
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The annealing temperature (60°C) was for glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH), but the annealing temperature to detect IL-6 was 54°C. The 

reaction was carried out using GeneAmp PCR system 9700 thermal cycler (Applied 

Biosystems).  

 

10 µL of the resulting PCR reaction was added onto a 1.5% (w/v) agarose (Invitrogen) 

gel, together with a 100 base pair (bp) marker (Invitrogen) to assess product size. Gels 

were visualized using the GeneGenius UV transilluminator (Syngene). 

 

2.2.3. Quantitative RT-PCR 
 

RNA, from selected α2β1
hi/CD133+, α2β1

hi/CD133- and α2β1
low primary prostate cells, 

was isolated as described in section 2.1.3. and cDNA reverse transcription was 

performed as described in section 2.2.2. qRT-PCR reaction was performed using 2 µL 

cDNA, 1x Taqman PCR mastermix (AB Applied Biosystems), 1x TaqMan gene 

expression assay (AB Applied Biosystems) (Appendix 3b) in a total volume of 20 µL 

per well. Reactions were run in triplicate wells on an ABI 700 real-time PCR machine 

(provided by the Technology Facility (TF)), and expression levels were standardized to 

RPLP0.  
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2.3. Protein expression 

2.3.1. Primary prostate cells 

2.3.1.1. SDS-PAGE and Western blot 

2.3.1.1.1. Preparation of whole cell lysates  

 

Primary prostate cells, at a density of 2 x 105 cells per well of a 6-well collagen I-coated 

plate, were washed once with PBS, and whole cell lysate was prepared by adding 

500µL Cytobuster protein extraction reagent (Novagen) per well followed by an 

incubation step for 5 minutes at room temperature (RT). Occasionally, cell lysates were 

prepared from a confluent 10 cm2 collagen-I plate, which required 1 mL cytobuster 

protein extraction reagent. The cells were harvested from the plate, using a cell 

scraper, and centrifuged for 5 minutes at 14,000xg at 4°C. The supernatant was 

collected and 1x complete protease inhibitor (Roche) and 1x PhosSTOP (phosphatase 

inhibitor cocktail, Roche) was added. Samples were stored at -80°C. 

 

2.3.1.1.2. Preparation of cytoplasmic and nuclear extracts 

 

Primary prostate cells, at a density of 2 x 105 cells per well of a 6-well collagen I-coated 

plate were washed once with PBS. Cells were harvested using 0.05% trypsin/EDTA 

and after R10 was added to neutralise the trypsin, all cells were collected with one PBS 

wash and the cells were centrifuged for 3 minutes at 1300RPM. Cytoplasmic and 

nuclear extracts were prepared using the nuclear and cytoplasmic extraction reagent 

from Thermo Scientific, according to the manufacturer’s protocol. Briefly, cell pellets 

were resuspended in ice-cold CER-I buffer, 1x complete protease inhibitor, 1x 

PhosSTOP and rigorously vortexed for 15 seconds and placed on ice for 10 minutes. 

Buffer CER-II was added, rigorously vortexed, incubated on ice for one minute, 

vortexed again for 5 seconds and centrifuged for 5 minutes at 14,000 xg. Supernatant 

(cytoplasmic extract) was transferred to a pre-chilled tube and immediately stored at -

80°C. The cell pellet was washed once with PBS and resuspended in ice cold NER 

buffer, vortexed for 15 seconds and place on ice for 10 minutes and vortexed again for 

15 seconds every 10 minute, for a total of 40 minutes. The cell suspension was 

centrifuged for 10 minutes at 14,000 xg the supernatant (nuclear extract) was 

transferred to a pre-chilled tube and immediately stored at -80°C.  
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2.3.1.1.3. BCA assay for the determination of protein 

concentrations 

 

Protein concentrations were determined using the bicinchoninic acid (BCA) protein 

assay (Thermo Scientific) according to the manufacturer’s protocol. Briefly, 10 µL of 

unknown protein lysate was added to 200 µL of WR buffer (in triplicate) to a 96 well 

plate including a BSA standard, ranging from 0 – 2000 µg/mL. After 30 minutes 

incubation at 37 °C, absorbance was measured at a wavelength of 544 nm on a BMG 

Labtech POLARstar OPTIMA plate reader.  

 

2.3.1.1.4. SDS-PAGE gel electrophoreses and Western blotting 

 

Sodium dodecyl sulphate (SDS) loading buffer (10% (v/v) glycerol, 1% SDS, 0.125 M 

Tris-Cl Ph 6.8, 2.5% β-mercaptoethanol and bromphenol blue to colour) was added to 

protein lysates (~15 µg) and heated for 5 minutes at 100°C. The mixture was rigorously 

vortexed for 10 seconds and loaded onto a 10% Tris-SDS acrylamide gel, using the 

mini-PROTEAN Tetra Cell system (Biorad). Precision plus kaleidoscope (Biorad) and 

biotinylated (Cell signalling technologies) protein markers were included to determine 

the molecular weight of the protein samples. Gels were run for 2 hours at 80 volt (V) in 

SDS running buffer (25 mM Tris, 0.19 M Glycine, 3.5 mM SDS). When finished, gels 

were submerged in transfer buffer (48 mM Tris, 39 mM Glycine, 10% (v/v) Methanol 

(MeOH)) for 15 minutes. Proteins were immediately transferred onto an (MeOH pre-

treated) Immobilon-P membrane (Millipore) for 2 hours at 100 V at RT (or overnight at 

30 V at 4°C) in transfer buffer. Membrane was air-dried, re-wet using MeOH, and 

washed twice in Tris-buffered saline (TBS: 150 mM NaCl, 50 mM Tris/HCl, pH 7.5). 

Non-specific sites were blocked using 5% (w/v) non-fat skimmed milk (Marvel) for 1 

hour at RT. Primary antibodies (Appendix 4A) were incubated for 1 hour at RT or 

overnight at 4°C. Membranes were washed twice with TBS/0.1%Tween-20 (TBS-T) 

and once with 2.5% (w/v) Marvel. This was followed by a one-hour incubation step with 

peroxide-labelled secondary antibodies (Appendix 4C, 1:5000 anti-IgG peroxide and 

1:5000 anti-biotin-HRP; Cell signalling technologies). Membranes were washed four 

times with TBS-T, followed by chemiluminescent detection using the BM 

Chemiluminescence Western Blotting Substrate (POD) system (Roche). Bound 

antibody was visualised using ECL Hyperfilm (Amersham) and these were manually 

processed using developer and fixer solutions (GBX, Kodak).  

When multiple probing of the same membrane was required, the membrane was 

stripped of antibody by incubation in stripping buffer (20 mM Tris/HCl, 0.05% (v/v) SDS, 
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20 mM DTT)) for 30 - 50 minutes at RT. Membranes were washed at least three times 

with TBS-T, and membrane probing was resumed from the blocking step above.  

 

2.3.1.2. Enzyme-Linked Immunosorbent spot (ELISPOT) assay 

  

The ELISPOT assay was performed using a human IL-6 Elispot kit (Abcam, ♯ab46548) 

according to the manufacturer’s protocol. Briefly, a 96 PVDF-bottomed-well plate 

(Millipore) was incubated with 70% ethanol for 30 seconds at RT, washed three times 

with PBS and incubated with human IL-6 capture antibody overnight at 4 °C. The 

following day, the wells were washed once with PBS, blocked with 2% skimmed milk 

for 2 hours at RT, emptied and washed again with PBS, before cells were added to the 

wells. If necessary, the plate could be stored at 4°C after wells were left to air-dry, 

before cells were added. Cells were added at a range between 1000 – 100,000 cells 

per well, in triplicate, the plate was covered and placed for 15 - 20 hours in a 5% CO2 

incubator at 37°C. It was important for the plates not to be moved during this incubation 

period, as this might result in inaccurate read out. After the incubation time, the wells 

were emptied, incubated with PBS/0.1% tween-20 for 10 minutes at 4°C and washed 

four times with PBS/0.1% tween-20. Detection antibody, diluted in PBS/1% BSA, was 

added and incubated for 1 - 2 hours at RT, followed by three washes with PBS/0.1% 

tween-20. Streptavidin-Alkaline phosphatase (1:5000) was added, incubated for 1 hour 

at 37 °C and wells were washed three times with PBS/0.1% tween-20. This was 

followed by an extra step, to prevent high background, this included washing both 

sides of the PVDF membrane under running distilled water and removing residual 

buffer by repeated tapping on absorbent paper. Nitro-blue tetrazolium chloride / 5-

bromo-4-chloro-3’-indolyphosphate p-toluidine salt (NBT/BCIP) was used for 

visualisation, this was added to the wells and incubated for 2 - 10 minutes at RT until 

the spots became visible. The wells were rinsed three times with distilled water, dried 

and left overnight at 4 °C for the spots to become sharper. Spots were analysed using 

an ELISPOT reader (AID EliSpot Reader System), provided by St. James’ Hospital in 

Leeds.  
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2.3.1.3. Enzyme-Linked ImmunoSorbent Assay (ELISA) 
 

Unselected or selected (α2β1
hi/CD133+, α2β1

hi/CD133- and α2β1
low) primary prostate cells 

were plated at low cell density (500 - 1000 cells), in triplicate, onto a collagen-I coated 

96-well plate (BD biosciences), in the presence of irradiated STO cells. Included were 

wells containing only irradiated mouse feeder cells or medium, which were the negative 

controls. Conditioned medium was collected from cultures after 48 hours incubation at 

5% CO2 at 37°C, and immediately stored at -20°C. The concentration of secreted IL-6 

in the conditioned medium was measured using the Quantikine High Sensitive ELISA 

(R&D systems, ♯HS600B), according to the manufacturer’s protocol. Briefly, 

conditioned medium or IL-6 standards were added to a 96-well polystyrene microplate 

coated with a mouse monoclonal antibody against IL-6, and incubated for 2 hours at 

RT on a horizontal orbital microplate shaker (Titertek). Wells were washed six times 

with washing buffer, and IL-6 conjugate was added to each well and incubated for 2 

hours at RT on the microplate shaker. This was followed by six washes, and substrate 

solution was then added to the wells and incubated for 1 hour at RT. Amplifier solution 

was then added to each well and incubated for 30 minutes at RT followed by stop 

solution. The optical density of each well was determined within 30 minutes using the 

BMG Labtech POLARstar OPTIMA microplate reader at 485 nm and 620 nm. The 

readings from 485nm were corrected against those from 620 nm as this corrected for 

optical imperfections of the plate. Analysis was performed relative to the negative 

control wells (medium only). 

 

2.3.1.4. Cell-Based ELISA 

 

A Cell-Based ELISA was used to measure the levels of phosphorylated STAT3 

(Tyr705) and total STAT3 simultaneously in primary prostate cells (R&D systems, 

♯KCB4606), and performed according to the manufacturer’s protocol. Briefly, primary 

prostate cells were plated onto black, collagen I coated 96-well plates in triplicate, at an 

optimal cell density of 10,000 cells per well. Cells were left overnight in a 5% CO2 

incubator at 37°C, to adhere. Cells were washed once with PBS and fixed with 4% 

(w/v) paraformaldehyde (PFA) for 20 minutes at RT. Cells were washed twice with PBS 

and the fixed cells could be stored for up to 2 weeks at 4°C in PBS. PBS was aspirated 

off and the wells were washed three times for 5 minutes with 1x washing buffer. 

Quenching buffer (0.6% Hydrogen Peroxide (H2O2) in 1x washing buffer) was added 

and incubated for 20 minutes at RT. Cells were washed three times for 5 minutes with 

washing buffer, incubated with blocking buffer for 1 hour at RT and washed again three 

times for 5 minutes. Primary antibody mixture (1:100 phospho-STAT3 (Tyr705) 
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antibody + 1:100 total STAT3 antibody) was added to the wells and incubated 

overnight at 4°C. Primary antibody mixture was removed, and cells were washed three 

times, for 5 minutes with washing buffer. Secondary antibody (1:100 HRP-conjugated 

antibody + 1:100 AP-conjugated antibody) was then added for 2 hours at RT. The wells 

were washed twice with washing buffer, followed by a further two washes in PBS. 

Substrate F1 was added, for 20 - 60 minutes at RT and substrate F2 was added for an 

additional 20 - 40 minutes at RT. The fluorescence intensity was measured using the 

BMG Labtech POLARstar OPTIMA microplate reader at a wavelength of 540, 

representing the amount of phosphorylated STAT3, and at a wavelength of 360 nm, 

representing the amount of total STAT3 in the cells. The relative fluorescence units 

(RFUs) from the control wells (secondary antibody alone) were subtracted from all 

sample wells. The phosphorylated STAT3 fluorescence at 540 nm in each well was 

normalized to that of total STAT3 fluorescence at 360 nm.  

 

2.3.1.5. Flow cytometry 

2.3.1.5.1. Detection of cell surface protein(s) 

 

For this set of experiments either primary prostate cells or tumour cells from xenografts 

were used. For primary cells, a semi-confluent 10 cm2 collagen-I coated plate of 

primary cells was harvested using 0.05% Trypsin/EDTA. For the xenografts, mouse 

cells were firstly depleted as described in section 2.5.2.1. Harvested cells were washed 

once with MACS buffer and subsequent cell labelling was performed on a MACSmix 

Tube Rotator (Miltenyi Biotec). If unconjugated primary antibodies were used, cells 

were initially incubated in 20% serum (from the second antibody species) for 10 

minutes at 4°C to inhibit non-specific binding. Cells were incubated with either primary 

antibodies (Appendix 4A), unlabelled, or non-specific isotype as negative controls 

(Appendix 4B), and 20% FcR blocking buffer (Miltenyi Biotec) in a total volume of 

100µL MACS buffer, for 10 minutes at 4°C. For dual labelling of multiple membrane 

markers, antibodies were added simultaneously in a total volume of 100 µL. Secondary 

antibodies (Appendix 4C) were added and incubated for 30 minutes at 4°C and cells 

were then resuspended in MACS buffer and 1:1000 SYTOX blue cell dead stain 

(Invitrogen) was added 5 minutes before analysis on a Cyan ADP flow cytometer 

(DAKO,), using 405, 488 and 633 lasers (Table 3). Results were analysed using 

Summit v4.3 software (Beckman Coulter).  
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2.3.1.5.2. Detection of intracellular antigen(s)  

 

For the detection of intracellular antigens, cell suspensions were initially incubated with 

1:1000 LIVE/DEAD Fixable Violet Dead Cell Stain (Invitrogen) for 30 minutes at 4°C. 

For the detection of cell surface antigens, cells were then labelled with membrane 

antibodies as described in section 2.1.3.5.1, followed by fixing the cells in 0.5% PFA 

(w/v) (or 1.5% (v/v) formaldehyde for xenograft cells) for 5 - 10 minutes at 4°C. Cells 

were permeabilised with 0.1% saponin (or ice-cold MeOH for xenograft cells) for 10 

minutes at 4°C. Cells were subsequently labelled with intracellular antibody for 30 

minutes at 4°C, washed twice with MACS buffer and resuspended in 500 µL and then 

analysed on the Cyan ADP flow cytometer, using 405, 488 and 633 lasers (Table 3). 

Results were analysed using Summit v4.3 software.  

 
Table 3. Cyan ADP flow cytometry lasers. 

 
 

2.3.1.5.3. Data analysis 

 

All events were analysed using the following gates; i) pulse width to exclude doublets 

and exclude debris, ii) Violet 1 channel to exclude dead cells as cells were labelled with 

either a live/dead stain, or Sytox blue which emits at a wavelength of 405nm and iii) 

FS/SS dot plot which depicts granularity and cell size. All other gates were set to the 

unlabelled or isotype control and fluorescence cells were analysed using the FITC-, PE 

and APC channel. Due to spectral overlap of the FITC detector into the PE detector 

(Table 3), compensation was performed when analysing cells that were dual labelled 

with a FITC and PE antibody.  

  

Secondary antibody Excitation Emission 

FITC 488 510 - 550 

Alexa 288 488 510 - 550 

PE 488 560 - 590 

Violet 1 405 425 - 475 

Violet 2 405 510 - 550 

APC 633 645 - 685 

Alexa 647 633 645 - 685 



 75 Materials and methods 

2.3.1.6. Immunofluorescence with fixed cells  
 

Primary prostate cells were selected as described in section 2.1.3 and plated onto 

collagen-I coated 8 well chamber slides (BD bioscience), at a maximum density of 

5x104 cells per chamber. Cells were left for 2 - 3 hours to adhere, washed once with 

PBS and blocked in 10% serum for 30 minutes on ice. Primary antibodies (Appendix 

4A) were added, incubated for 1 hour on ice and washed twice with PBS. Cells were 

fixed with 4% (w/v) PFA for 20 minutes at RT and washed twice for 10 minutes with 50 

mM NH4Cl. Alternatively, cells were left overnight in 50 mM NH4Cl. Cells were washed 

twice with PBS and incubated with secondary antibody (Appendix 4C) for 1 hour at RT 

in the dark. After two washes in PBS, slides were mounted in Vectashield with DAPI 

(Vector laboratories) and visualised using a Zeiss LSM 510 meta confocal microscope 

(provided by the TF). 

 

2.3.2. Prostate tissue 

2.3.2.1. Preparation of tissue blocks and sections  

 

Prostate tissue was fixed in 10% (v/v) formalin for at least 24 hours and was then 

transferred to 70% ethanol (EtOH). The tissue was then placed in an embedding 

cassette (Cell Path) and submerged in fresh 70% EtOH for 10 minutes, on a shaker. 

The cassette was placed in fresh absolute EtOH and incubated for 10 minutes on a 

shaker; this was repeated two more times. The cassette was submerged into fresh 

isopropanol for two times 10 minutes, submerged in fresh xylene (Fisher Scientific) for 

four times 10 minutes and excess xylene was removed and the cassette was placed 

into Histoplast Paraffin at 60 - 65°C (Thermo Scientific) for four times 15 minutes. 

Samples were embedded in moulds with molten wax and allowed to set on a cold plate 

at -10°C. Paraffin-embedded sections of tissues were prepared using APES-coated 

(2% (3’aminopropyl triehoxysilane) (v/v) (Sigma) in acetone) SuperFrost Plus slides 

(Merck), sections were cut using a microtome and were 5 µM in thickness. Mrs. Katy 

Hyde carried out these procedures.  

 

2.3.2.2. Hematoxylin & eosin (H&E) staining 

 

Paraffin embedded tissues sections, as described in section 2.3.2.1. were dewaxed in 

xylene for 2x 10 minutes and 2x 1 minute, xylene was refreshed after each step. 

Sections were re-hydrated using EtOH (3x 1 minute absolute EtOH followed by 1 
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minute in 70% EtOH), washed for one minute under running tap water, and were then 

placed in hematoxylin (Harris) for 4 minutes. Slides were washed for one minute under 

running tap water and placed for 5 seconds in 70% EtOH/1% hydrochloric acid and 

washed again for one minute under running tap water. Slides were placed in Eosin 

(Harris) for one minute and washed again for one minute under running tap water. 

Slides were dehydrated for one minute with 70% EtOH, 3x 1 minute absolute EtOH 

and 2x 1 minute Xylene and mounted in DPX mounting medium (Sigma). Mrs. Katy 

Hyde carried out this procedure.  

 

2.3.2.3. Immunohistochemistry 

 

Slides with paraffin embedded tissue sections, as described in 2.3.2.1, were dewaxed 

in xylene and re-hydrated in EtOH as described in section 2.3.2.2. Antigen retrieval 

was performed by boiling twice for 6 minutes in 0.01 M Citrate buffer in a microwave, at 

900W. Sections were equilibrated to RT and rehydrated for 5 minutes in TBS, and a 

PAP-pen was used to draw around the tissue sections. Sections were blocked for 15 

minutes in 5% serum (depending on which species secondary antibody was raised in) 

at RT, incubated with primary antibodies (Appendix 4A) or an isotype control (Appendix 

4B), for 1 hour at RT and washed three times in TBS. Biotinylated secondary 

antibodies were added (Appendix 4C: 1:200 (DAKO)), incubated for 30 minutes at RT 

and slides were washed three times in TBS and incubated with streptavidin-HRP 

conjugate (1:200 (DAKO)) for 30 minutes at RT. After three washes in TBS, 

3,3’Diaminobenzidine (DAB) substrate (Sigma) was added for approximately 5 

minutes, slides were washed twice with ddH2O, counterstained with Haematoxilin QS 

(Vector Laboraties) and mounted in DPX mounting medium (Sigma). Images were 

taken using an Olympus BX51 light microscope. 

 

2.3.2.4. Immunofluorescence  

 

Slides with paraffin embedded tissue sections, as described in 2.3.2.1, were baked for 

20 minutes at 60°C, dewaxed in xylene as described in 2.3.2.2., and antigen retrieval 

was performed by boiling for 3x 10 minutes in 0.01 M Citrate buffer in a microwave at 

900W. Sections were equilibrated to RT and washed three times in PBS, and a PAP-

pen was used to draw around the sections. Sections were blocked in 10% serum for 30 

minutes at RT, and incubated with primary antibodies (Appendix 4A) overnight at 4 °C. 

Sections were washed four times in PBS, incubated with secondary antibodies 

(Appendix 4C) for 1 hour minutes at RT in the dark, and washed three times with PBS. 
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Slides were mounted using Vectashield with DAPI and visualised using a Zeiss LSM 

510 meta confocal microscope.  

 

2.4. Functional analysis 

2.4.1. Clonogenic recovery assay 
 

Semi-confluent, primary prostate epithelial cells derived from patients with cancer and 

benign disease, were treated with the drug/antibody of interest at the optimal 

concentration and time. Following treatment, the cells were selected for α2β1
hi/CD133+ 

(stem-like), α2β1
hi/CD133-  (TA) and α2β1

low (CB) cells as described in section 2.3.1. or 

for CD133+ (stem-like) and CD133- (progenitor) cells. The sorted fractions were 

counted and plated, in triplicate, onto 35 cm2 collagen-I coated dishes (BD 

Biosciences) at a density of 100 live cells/well together with irradiated STO feeder cells, 

which is required for colony initiation of prostate epithelial cells. SCM was changed 

every two days and STOs were added when required. Colonies were counted as for 

the following sizes: 1 - 7 cells, 8 - 15 cells, 16 - 31 cells or >32 cells (5 population 

doublings), which was usually between 10 - 14 days. Colony formation efficiency (CFE) 

(# of colonies/number of cells plated x 100%) was normalised to the CFE generated 

from cells treated with vehicle alone.  
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2.5. In Vivo studies  

2.5.1. General animal husbandry 
 

All animal work was carried out in the Biological Service Facility (BSF), at the 

University of York according to the scientific procedures act of 1986. Under this act 

mice undergoing any procedure were checked daily for any adverse clinical signs of 

tumour cell engraftment and/or treatment.   

 

All animal work was approved by the University of York Animal Procedures and Ethics 

Committee and performed under a United Kingdom Home Office Licence. All 

procedures were carried out under Personal Licence number 60/12977 and Project 

license number 60/3701 with training provided by Dr. Anne Collins (project licence 

holder), Mr. Alan Haigh and Mr. Paul Berry.  

 

2.5.2. Subcutaneous xenotransplantation of prostate tumour cells  

2.5.2.1. Depletion of mouse endothelial and lineage positive blood 

cells 
 

Tumours from serially transplantable xenografts were taken once the tumour size 

reached 15 mm. The mice were humanely euthanized using a schedule I method and 

tumours were harvested and placed into transport medium (R10 + ABM + 10 nM DHT). 

The tumour was placed in a Petri dish and washed once with PBS before adding 200 

U/mL collagenase dissolved in 2.5 mL KSFM supplemented with 5 ng/mL EGF, 50 

µg/mL bovine pituitary extract and 2 mM L-Glutamine and 5 mL R10 containing ABM 

and 5 nM (DHT), which was passed through a 0.22 µM filter unit (Millipore) prior to use. 

Tumour tissue was finely chopped (~1 mm3) with a disposable scalpel. The tissue was 

then transferred to an Erlenmeyer flask and treated overnight in 200 U/mL collagenase 

in an orbital shaker at 37°C at 80RPM. After this incubation period the cell suspension 

was transferred to a universal and mechanically disrupted by tituration through a 21G 

blunt needle. The suspension was then centrifuged for 10 minutes at 2000RPM, 

washed in 10 mL PBS and centrifuged for a further 10 minutes at 2000RPM, this wash 

step was repeated once more. The pellet was resuspended in 5 mL 0.05% 

Trypsin/EDTA, incubated for 30 minutes at 37°C, R10 was added to inactivate the 

trypsin and the cell suspension was centrifuged for 3 minutes at 1300RPM. The cell 

pellet was resuspended in 10 mL R10, passed through a 21G blunt needle, and a 40 
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µm cell strainer (BD Biosciences). The cell strainer was washed three times with R10, 

and cells were centrifuged for 3 minutes 1300RPM. The tumour cell pellet was 

resuspended in 15 mL R10 and to further separate viable cells from dead cells and 

tissue debris, the tumour cell suspension was separated by density centrifugation using 

Ficoll-Paque Plus (MP Biomedicals). An underlayment of Ficoll-Paque Plus was 

created by pipetting 15 mL of Ficoll-Paque Plus slowly below the cell suspension being 

careful not to mix the two layers. The cell suspension and Ficoll layer were centrifuged 

for 30 minutes at 1800RPM with the brake turned off. The cells at the interface of the 

Ficoll-Paque Plus and cell dissociation buffer were collected and transferred to a fresh 

50 mL tube. Fresh R10 was added to the cell suspension to dilute it 1:3 (e.g. 20 mL 

R10 added to 10 mL of cell suspension). The cells were collected by centrifugation for 

10 minutes at 1300RPM and the media decanted. The cell pellet was then 

resuspended in 80 µL MACS buffer, 20 µL anti-mouse biotin antibody cocktail (Miltenyi 

Biotec), and 5 µL CD31:biotin antibody (AbD serotec) and incubated for 10 minutes at 

4°C using MACSmix Tube Rotator. 60 µL MACS buffer and 40 µL anti-biotin 

Microbeads (Miltenyi Biotec) were added and further incubated for 15 minutes at 4°C 

on mixer. The cell suspension was washed once with 5 mL MACS buffer, the cell pellet 

was resuspended in 500 µL and added onto a pre-prepared LS column and the column 

was washed three times with 3 mL MACS buffer. The elute of Lin-CD31- cells (human) 

was collected for further use.  

 

2.5.2.2. Engraftment of prostate tumour cells  

 

Lin-CD31- tumour cells were counted and the required cell number was added to a 

fresh 1.5 mL Eppendorf tube together with 2 x 105 irradiated STO cells. The cell 

suspension was centrifuged for 4 minutes at 1600RPM in a bench top centrifuge. The 

cell pellet was then resuspended in 50 µL ice-cold Matrigel basement membrane 

complex (BD biosciences) and kept on ice. Cells were injected subcutaneously, using a 

1 mL insulin syringe (27G) (BD Biosciences), into the left flank of a Rag2-/-γC-/- mouse 

supplemented with a 17.5 mg 5α-DHT tablet (Innovative Research of America): 90 

days slow-release of androgens, which was subcutaneously placed under the right 

flank. These surgical procedures were carried out under general anaesthesia of 2.5% 

Isoflurane (Abbott) along with oxygen and prior to surgery mice were given 4.5 mg/kg 

Rimadyl (Pfizer) as a local anaesthetic. Mice were monitored the following day to 

ensure the procedure was preformed successfully and after that weekly to monitor 

tumour growth.  

Tumour volume was measured every 2 - 3 days. Tumours were measured using digital 

calliper (Duratool DC150), and tumour volume (mm3) was calculated using the 
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Ellipsoidal formula: ½(length x width2). For all treatments, unless otherwise indicated, 

treatment commenced once the tumour volume had reached 5 mm.  

 

2.5.3. Intraperitoneal injection of drug into Rag2-/-γC-/- mice 
 

LLL12, synthesized and obtained from the laboratory of Prof. Pui-Kai (Tom) Li, was 

prepared at a stock solution of 5 mg/mL in dimethyl sulfoxide (DMSO). The stock 

solution stored at -20°C in aliquots of 500 µL was prepared fresh (daily) using a vehicle 

of 10% DMSO, 5% Tween-80 (Sigma), 10% poly(ethylene glycol)400 (PEG400) 

(Sigma) and warm sterile 0.9% sodium chloride solution (Sigma) to prepare a solution 

of 0.5 mg/mL. This was sonicated for 10 minutes at 37°C using a water bath sonicator, 

and diluted 1:1 with vehicle control to create a 0.25 mg/mL solution and drug mixtures 

were kept at 37°C until injection. Mice were randomized into three groups of 10, which 

were either treated with (1) vehicle control, (2) 5 mg/kg LLL12 or (3) 2.5 mg/kg LLL12. 

The drug was administered via intraperitoneal (IP) injection, at 10 mL/kg body weight 

(BW) using a 1mL insulin syringe. Animals were kept under 2.5% isoflurane 

anaesthetics when this procedure was performed as it was thought to be better for the 

health and wellbeing of the animal.  

 

2.5.4. Ex vivo treatment of human xenograft cells 
 

Xenograft tumours were depleted for mouse endothelial and lineage positive blood 

cells as described in section 2.5.2.1. and Lin-CD31- tumour cells were counted. Equal 

tumour cell numbers were resuspended in 1 mL SCM and treated with either vehicle 

control or LLL12. The cell suspension was placed in a 48-well collagen-I coated plate 

(BD biosciences) and incubated overnight at 37°C at 5% CO2. The following day, the 

cell suspension was counted and equal number of live cells, usually in a limited dilution 

curve from 105 – 101 cells, was added to a fresh 1.5 mL Eppendorf tube together with 2 

x 105 irradiated STO cells. The suspension was centrifuged for 4 minutes at 1600RPM 

in a bench top centrifuged. The cell pellet was resuspended in 50 µL Matrigel, and 

injected subcutaneously as described in section 2.5.2.2.  
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2.5.5. Analyses of treatment response 
 

Tumours were measured every 2 - 3 days and tumour volume (mm3) was measured 

using the Ellipsoidal formula: ½(length x width2). The difference between two 

measurements was then calculated as a percentage increase. Due to variance in 

tumour size at the start date, usually varying from 5 – 8 mm, the tumour volume at the 

start date was adjusted to 100 mm3 and the percentage increase was then used to 

calculate tumour growth. Some tumours were not measureable at the start of 

treatment, this was observed in the control as well as the treatment groups therefore 

we concluded that this was a random effect and not due to treatment. Therefore the 

tumour growth rate was normalized to the same start date as the mice that had 

measurable tumours at the start of treatment. Once the tumour growth was 

standardized for each mouse, the tumour volumes were then averaged per treatment 

group. The growth curves were generated and the error bars represented the standard 

error of the mean (SEM). 

 

The Kaplan-Meier survival curve was created using Sigmaplot software (Systat 

Software, Inc), with a dot representing a censored event. This was most likely due to 

weight loss or inflammation around the tumour. The software provides a 95% 

confidence interval and a Log-Rank test for statistical analysis. 

 

Tumour initiation frequency was calculated using L-Calc Limited Dilution Analysis 

Software (StemSoft Software, Inc). This software provided a 95% confidence interval 

and includes the Pearson’s chi-square test for statistical analysis. 
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3. Results I  

 

In vitro analysis of interleukin-6 and phosphorylated STAT3, as 

a potential therapeutic target, in prostate cancer (stem-like) 

cells 

 

3.1. IL-6 expression in primary prostate cells 

3.1.1. IL-6 mRNA expression in selected populations  
 

Previous work from our laboratory of an expression profile of the α2β1
hi/CD133+ 

population determined that IL-6 is overexpressed. This study was based on 12 patients 

with prostate cancer, Gleason grade seven and over and was compared to seven 

patients with benign disease (Birnie et al., 2008). In order to validate these findings, 

qRT-PCR was performed on a number of primary cultures derived from patients with 

benign and malignant disease.  

 

To verify that the cDNA synthesis had worked, especially because of the limited 

amount of starting RNA from the α2β1
hi/CD133+ population, a standard PCR for GAPDH 

was performed for the different populations: α2β1
hi/CD133+ (stem-like cells), 

α2β1
hi/CD133- (transit amplifying cells) and α2β1

low (committed basal cells), which from 

now on will be referred to as stem-like, TA and CB. Results are shown for 

representative samples of primary prostate cells derived from patients with cancer 

(Gleason 7, Gleason 8, CRPC) and benign disease (Figure 3.1A). The control PCR for 

GAPDH confirmed that cDNA synthesis was successful for each cell population, and 

bands were not due to contamination, as the H2O controls were negative.  

 

The qRT-PCR results demonstrated that IL-6 expression was indeed higher within the 

stem-like population in Gleason 7 (P<0.05) and Gleason 8 cancers (P<0.005), whereas 

there was no significant difference in expression between the populations in CRPC and 

benign disease (Figure 3.1B).  

 

The overall levels of IL-6 expression were low in benign disease, Gleason 7 and CRPC 

compared to the Gleason 8 sample. However, the results show that within the Gleason 

7 samples there was a 1.7-fold increase in IL-6 expression in the stem-like population 
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compared to the CB population. Furthermore, the Gleason 8 sample showed a 17-fold 

and 2.3 fold increase, in IL-6 expression in the stem-like and TA population respectivily 

compared to the CB population. Interestingly, the results also show that primary 

prostate cells derived from a CRPC patient had low or undetectable levels of IL-6.  
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Figure 3.1. qRT-PCR analysis for IL-6 expression in primary prostate cells. A. Bands 

showing controls PCR for GAPDH to check cDNA quality, a 100 bp Marker (M) and negative 

controls (H20) for cDNA synthesis and a second H20 control was for the PCR cycle. B. 

Quantification of qRT-PCR of IL-6 expression of a series of primary prostate cell populations 

(SC (stem-like cells), TA, CB) derived from patients with BPH (green), Gleason 7 (blue) 

Gleason 8 (purple) and CRPC (red) disease. Only one representative sample is shown for each 

group. The results are expressed as relative to the housekeeping gene RPLP0 and then 

normalized to the ΔCt of the CB population, which was set to one. The student’s t-test was used 

to determine differences between each population*P<0.05 and **P<0.005.  
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3.1.2. Summary of IL-6 mRNA expression in selected populations 

of primary prostate cells 
 

Further samples were analysed to confirm the initial findings shown in Figure 3.1B. The 

results from a further analysis of patients with benign disease (n=5), high Gleason 

grade hormone naïve cancer (n=5) and CRPC (n=3) confirmed the initial findings 

(Figure 3.2). In high Gleason grade hormone-naïve cancers (Gleason 7 and above) the 

more undifferentiated stem-like and TA cells had an average of ~30 fold change in IL-6 

mRNA expression, which was 6-fold higher compared to the more differentiated CB 

cells (~5 fold change), although this data was not significant which was likely due to 

patient variability. As indicated by the different symbols, each patient showed a distinct 

pattern: high IL-6 expression in the undifferentiated stem-like population and lower IL-6 

expression in the more differentiated CB population. In contrast, the pattern of high IL-6 

expression in the undifferentiated cells was not observed in cells derived from benign 

disease or CRPC, and the IL-6 mRNA expression levels were overall lower compared 

to that observed in high Gleason grade hormone-naïve cancers. This implies that IL-6 

plays an important role in cancer and specifically the more undifferentiated stem-like 

cells within this disease, although these IL-6 expression levels needed to be confirmed 

at the protein level.  
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Figure 3.2. Overall results of IL-6 mRNA expression in a series of primary prostate cancer 

and benign cultures. qRT-PCR of IL-6 expression on selected stem-like cell (SC), TA and CB 

cells derived from patients with benign disease (n=5) (black), high Gleason grade hormone-

naïve cancer (n=5) (grey) and CRPC (n=3) (light grey). The results are expressed as relative to 

the housekeeping gene RPLP0 and the fold difference is normalised to the average Ct-value of 

the CB population from benign samples. Each symbol represents a different patient and the bar 

represents the average within each group.  
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3.1.3. IL-6 protein expression in selected populations 

3.1.3.1. Levels of secreted IL-6 in selected populations of primary 

prostate cells, using ELISPOT assay 
 

As IL-6 is a secreted protein, the ELISPOT assay was used. This method is able to 

identify the levels of IL-6 secretion at a single cell level. So, this method is very 

sensitive, which is important when working with the rare stem-like population. The 

number of cells secreting IL-6 is determined by counting the number of spots and the 

amount of IL-6 secreted is determined by spot size.  

 

Firstly, the method needed to be optimized; this was done using lymphocytes in the 

presence of 1 µg/mL LPS to stimulate IL-6 production. The lymphocytes were plated 

onto PVDF-bottom plates, pre-labelled with capture IL-6 antibody, at a cell density 

range from 100 - 100,000 cells per well, to determine the optimal cell number. The 

results showed that at least 1000 - 10,000 lymphocytes were required (Figure 3.3A). 

As the lymphocytes were stimulated with LPS to produce IL-6 it was probable that most 

cells produced IL-6. However, with primary prostate cells, we wanted to determine the 

basal levels of secreted IL-6 from the selected primary prostate cells. Therefore, a 

density of 10,000 cells/well was chosen, as it was likely that not all cells would secrete 

IL-6. Unfortunately this cell number was not achievable for the stem-like population and 

all cells obtained from cell selections were plated. As the cell number could not 

accurately be determined the cell number was not known. It was obvious that within the 

TA population more cells secreted IL-6 as more spots were observed compared to the 

CB population; some spots were also bigger suggesting that the amount of IL-6 per cell 

was also higher (Figure 3.3B). Unfortunately the software was not able to distinguish 

between small spots and background; therefore the results were not accurate. Also the 

number of stem-like cells was unknown and there were not enough spots to count 

which meant that this population could not be taken in account when the results were 

analysed. Therefore it was decided that this method was not sensitive enough to 

determine the levels of secreted IL-6 in selected primary prostate cells.  
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Figure 3.3. Levels of secreted IL-6 in selected populations of primary prostate cells, using ELISPOT. A. To determine the sensitivity of the ELISPOT assay, 

lymphocyte cells were plated down, in the presence of 1 µg/mL LPS, at a density range from 100 - 100,000 cells/well. B. Representative (n=6) of primary prostate 

cells, derived from a cancer sample (Gleason 3+4), were selected for stem-like (SC), TA and CB cells and plated down at a density of 10,000 cells/well. Due to low 

yield, the cell number for the stem-like population was unknown. Controls included unselected cells and a medium control. Cells were plated down on in a PVDF-

bottomed-plate pre-coated with human IL-6 capture antibody and secreted levels of IL-6 were analysed using ELISPOT assay. This data was obtained during my 

undergraduate project (Sept. 2007 – May 2008).  
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3.1.3.2. Levels of secreted IL-6 in selected populations of primary 

prostate cells, using ELISA  

3.1.3.2.1. Optimization of the High Sensitivity Human IL-6 ELISA 

 

Normally a commercially available ELISA has a standard range from 0 - 300 pg/mL 

and is used to determine the levels of cytokine from stimulated cells. As we wanted to 

measure the levels of IL-6 from selected, un-stimulated primary prostate cells, this 

assay would not have been sensitive enough. Therefore, a High Sensitivity ELISA was 

used, which has a standard range from 0 - 10 pg/mL and would normally be used for 

low levels of secreted cytokine, but in this case could also be used to determine the 

levels from low cell numbers.  

 

Firstly it was important to determine the optimal cell number, hence primary prostate 

cells were plated at low density (500 – 2500 cells). Following 48 hours’ incubation, the 

conditioned medium was collected and the levels of IL-6 determined by HS ELISA. As 

shown in Figure 3.4, as few as 500 cells were enough to analyse the levels of secreted 

IL-6. As the number of cells that secrete IL-6 might vary between samples, it was 

decided that 1000 cells should be the minimum required to accurately determine IL-6 

levels. This density was used in the following experiments.  

 

3.1.3.2.2. HS ELISA for IL-6 on selected populations of primary 

prostate cells 

 

Conditioned medium from selected stem-like, TA and CB cells from primary prostate 

cells were analysed for IL-6 from patients with benign disease, hormone-naïve cancer 

and CRPC. The results show that the stem-like cells from a high Gleason grade 

hormone-naïve cancer had higher levels of secreted IL-6 compared to the TA and CB 

populations (Figure 3.5). This pattern was also observed in the CRPC sample, 

although the levels of IL-6 were lower compared to the hormone-naïve cancer sample. 

The levels of secreted IL-6, from the patient with benign disease, did not follow this 

pattern of high IL-6 from the more undifferentiated cells, and the IL-6 levels were also 

lower compared to the cancer sample. It was also confirmed that STO feeder cells did 

not secrete detectable levels of IL-6. These initial results were interesting and further 

samples were analysed to confirm this trend.  
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Figure 3.4. Optimisation of ELISA assay to analyse levels of secreted IL-6. The standard 

range of the High Sensitivity human IL-6 ELISA was from 0 - 10 pg/mL. Primary prostate cells 

were plated down at a density of 500, 1000 and 2500 cells per well in a collagen-I coated 96-

well plate in the presence of irradiated STO feeder cells. After 48 hours incubation, cell medium 

was collected and analysed for levels of secreted IL-6. The log scale showed that conditioned 

medium, collected from 500 - 2500 cells was sufficient and was within the range of the standard 

curve. STO feeder cells, and cell-free medium were used as negative controls and had 

undetectable levels of IL-6.  
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Figure 3.5. IL-6 levels from conditioned medium of primary prostate cell cultures. 

Representative samples from primary prostate cell cultures derived from benign disease 

(green), hormone-naïve cancer (blue) and CRPC (red). Samples were selected for stem-like 

(SC), TA and CB cells and were plated down at a density of 1000 cells per well in a collagen-I 

coated 96-well plate in the presence of irradiated STO feeder cells, STO feeder cells only or 

medium only were included as negative controls. After 48 hours, the conditioned medium was 

collected and the levels of IL-6 were analysed using a High Sensitive Human IL-6 ELISA. Levels 

of IL-6 are shown in pg/mL and the error bars represent the standard deviation from triplicate 

samples of conditioned medium.  
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3.1.3.2.3. Analysis of secreted IL-6 levels from a series of primary 

prostate cell cultures  

 

Further analysis of IL-6 levels from a series of primary cell cultures (benign disease 

(n=6), hormone-naïve cancer (n=8) and CRPC (n=3)) confirmed the previous results 

and showed that the more undifferentiated stem-like and TA cells (from the hormone-

naïve samples) had an average of 4-fold higher IL-6 levels compared to the more 

differentiated CB cells, which was statistically significant (P<0.05). The undifferentiated 

stem-like and TA cells from CRPC samples showed 3-fold higher IL-6 expression 

compared to the more differentiated CB cells, although this was not statistically 

significant due mostly to patient variability and the limited number of samples that were 

analysed. The undifferentiated TA cells, but not stem cells, from benign disease, 

showed 2-fold higher IL-6 expression compared to the more differentiated CB cells 

although overall levels of IL-6 expression were lower compared to the hormone-naïve 

cancers and CRPC (Figure 3.6). 
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Figure 3.6. Overall results of IL-6 levels in a sereis of primary prostate cancer and benign 

cultures. Overall results of ELISA analysis for secreted IL-6 levels using conditioned medium 

collected after 48 hours incubation from 1000 pre-selected stem-like (SC), TA and CB cells. 

Cells were from primary prostate cell cultures derived from benign disease (n=6) (black), 

hormone-naïve cancer (n=8) (grey) and CRPC (n=3) (light grey). Levels of IL-6 are in pg/mL 

and levels are represented relative to the CB cells within each individual sample, which is 

represented using different symbols and a bar represents the average within each group. 

Statistical analysis was performed using the student’s t-test, P*<0.05.  
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3.2. IL-6 receptor expression in primary prostate cells 

3.2.1. IL-6 receptor expression in prostate cell lines by Western blot 

 
As shown in section 3.1.3.2.3, IL-6 is more highly expressed in the undifferentiated 

stem-like and TA cells derived from prostate cancer samples. Therefore it is possible 

that these cells require IL-6, via an autocrine signaling pathway, for the maintenance of 

their undifferentiated phenotype. In order for IL-6 to activate the associated JAK-STAT 

signaling pathway, the IL-6 specific receptor, gp80 is required.  

 

To confirm the presence of IL-6 receptor gp80, Western blot analysis was used initially, 

on an unselected population of prostate epithelial cells. As a positive control for this 

experiment, a number of prostate cell lines known to express the receptor were used. 

The results showed that 3 out of 5 prostate cell lines expressed the IL-6 specific 

receptor (Figure 3.7A), but the receptor was not detected in any of the primary cells 

analyzed (results not shown). As the IL-6 receptor is a large membrane protein, urea 

gels were used to denature the protein, but again the receptor was not detected by this 

method (Figure 3.7B). 

 

As the receptor is known to be present in prostate tissue (Hobisch et al., 2000) a 

different method was used to verify these results.  
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Figure 3.7. IL-6 receptor expression in prostate cell lines and primary prostate cells, by 

Western blot. Western blot analysis for the IL-6 receptor (gp80) and β-actin (loading control) in 

prostate cell lines: (1) PNT1a, (2) PNT2-C2, (3) P4E6, (4) PC-3 and (5) LNCaP (A) and a panel 

of primary prostate cells (B). PC-3 cells were included in panel B as a negative control and 

P4E6 cells as a positive control, the samples in the panel B were loaded onto a urea SDS-page 

gel.  
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3.2.2. IL-6 receptor expression in benign prostate tissue 

3.2.2.1. Immunohistochemistry for IL-6 receptor 
 

Immunohistochemistry was performed to confirm the presence of the IL-6 receptor in 

prostate tissue (Hobisch et al., 2000). As benign prostate tissue has a very organized 

structure, the different cell types were apparent after H&E staining was performed, 

which revealed the organized structure of prostate stromal cells surrounding the acini, 

which contain basal and luminal cells (Figure 3.8A) (McNeal, 1981). The 

immunohistochemical staining for the IL-6 receptor gp80 showed that all the secretory 

luminal cells expressed the receptor, but with a focal expression in the basal cells, 

although this was not very obvious from the DAB staining (Figure 3.8B). Pancytokeratin 

was used as a positive control to show that the technique had worked and the IgG 

negative control showed that the staining was specific for the IL-6 receptor (Figure 

3.8C/D). 

  

3.2.2.2. Immunofluorescence for IL-6 receptor  

 

Immunofluorescence staining was used to get a clearer image of the basal cells 

expressing the IL-6 receptor. Benign prostate tissue was used, as here the basal and 

luminal cells are clearly defined, as shown in Figure 3.8A. Sections were co-stained 

with cytokeratin-5 (CK5) to define the basal cells (Sherwood et al., 1991). The images 

shown in Figure 3.9 confirmed that the luminal cells express the IL-6 receptor with focal 

expression in rare basal cells (Figure 3.9). Most of the basal cells, indicated by the 

cells positive for CK5, did not express the IL-6 receptor. However, rare IL-6 receptor 

expressing cells within the basal layer were indicated by co-expression (orange) of 

CK5 (red) and IL-6 receptor (green) (white arrow in Figure 3.9C). The level of staining 

was analyzed relative to the IgG control (Figure 3.9D).  
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Figure 3.8. IL-6 receptor staining of BPH paraffin embedded tissue sections. A. H&E 

staining of a paraffin-embedded tissue section showing the structure and different cell types 

(basal, luminal and stromal cells) within benign prostate tissue. Benign prostate tissue section 

stained with anti-IL-6 receptor (B), pancytokeratin (C) and an isotype IgG negative control (D). 

Images were taken using an Olympus BX51 light microscope at 20x (A) or 40x magnification (B-

D).  
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Figure 3.9. IL-6 receptor and CK-5 co-staining of BPH paraffin embedded tissue 

sections.  

Immunofluorescence on paraffin embedded benign prostate tissue section for the IL-6 

receptor (-Alexa488) (green) and CK5 (-Alexa568) (red), as a basal marker. Slides were 

counterstained with DAPI (blue), which stains the nuclei. Results show individual 

channels (A), merge image (B), magnified area to highlight co-localisation of IL-6 

receptor on rare basal cells (arrows) (C) and IgG negative control (D). Images were taken 

using a Zeiss LSM 510 meta confocal microscope at 63x magnification. 
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3.2.3. Leukemia Inhibitory Factor receptor expression in benign 

prostate tissue  
 

The JAK-STAT signaling pathway can be activated through a number of ligands and 

their receptors. The most studied receptors other than IL-6 and the IL-6 specific 

receptor gp80, which can activate the pathway, are LIF and OSM receptors. Therefore 

it was important to test for the expression of these receptors in prostate tissue. 

Immunohistochemical staining showed that the LIF receptor was only expressed on the 

secretory luminal cells within benign tissue, and not the basal cells (Figure 3.10A). The 

positive control, pancytokeratin and the IgG negative control showed that the staining 

was specific (Figure 3.10B/C). 

 

Staining for the OSM receptor was attempted using the same technique on benign 

prostate tissue sections.  However, despite using several different antibodies and a 

positive control (HeLA cells), staining for the OSM receptor was not observed on 

prostate tissue and a recommended positive control; HeLa cells (results not shown). 

 

As the LIF receptor appeared to be exclusively expressed on the secretory luminal 

cells, no further investigation was performed for the LIF receptor, as it was unlikely that 

selected basal cells (stem-like, TA and CB) would express the LIF-receptor. Therefore, 

the focus of this study was on IL-6 and the IL-6 receptor. Further investigation on the 

selection cell populations was then undertaken.  
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Figure 3.10. LIF receptor staining of BPH paraffin embedded sections. Immunohistochemistry on paraffin embedded benign prostate tissue section for 

the LIF receptor (A), pancytokeratin (B) and an isotype IgG negative control (C). LIF receptor staining was confined to the luminal cells indicated by the black 

arrow. Images were taken using an Olympus BX51 light microscope at 40x magnification. 

 

 



 

 102 Results I 

3.2.4. IL-6 receptor expression on selected primary prostate cells 

3.2.4.1. Immunofluorescence staining for IL-6 receptor 

 

Immunofluorescence of prostate tissue sections showed that rare cells within the basal 

layer express the IL-6 specific receptor (gp80) (Figure 3.9C). However, prostate cancer 

tissue is disorganized, and consists of 99% luminal cells and 1% basal cells. Because 

we are mainly interested in the stem-like, TA and CB cells, which are all located within 

the basal compartment, immunohistochemical analysis would not be appropriate to 

detect the IL-6 receptor in tissue sections from a cancer sample due to the limited 

basal cell numbers.  

 

To determine if the stem-like, TA and CB cells, which reside within the basal cell layer, 

express the receptor, immunofluorescent staining was performed on selected cells 

from short-term primary cultures derived from patients’ samples. Although the basal 

cells are rare within prostate cancer tissue, in primary cultures, the basal cells expand, 

whilst the secretory luminal cells cannot be cultured (Peehl, 1992). Thus, the different 

cell types (stem-like, TA and CB cells) can be selected from cell cultures and stained, 

by immunofluorescence, for the IL-6 receptor gp80.  

 

As the receptor is a plasma membrane-bound protein, we used a live-cell staining 

technique to determine receptor expression on the cell surface of live cells. The results 

show that ~60 - 9 5% of the stem-like cells derived from prostate cancer and benign 

disease, express the IL-6 receptor (Figure 3.11D). However, the TA and CB cells also 

express the receptor, but to a lesser extent (~20 and <10% respectively). 

Quantification of cells expressing the receptor show that IL-6 receptor expression 

reduced with differentiation (Figure 3.11D). There was no observed difference in the 

intensity of staining i.e. the amount of IL-6 receptors per cells.  

 

Although the pattern of IL-6 receptor expression was similar between the different 

disease stages, the results did suggest that there was a higher percentage of stem-like 

cells, derived from patients with prostate cancer, that expressed the IL-6 receptor 

compared to stem cells derived from patients with benign disease, >90% relative to 

~60 - 70%.  

 



 

 

 

 

 

 

 

 

Figure 3.11. IL-6 receptor staining on selected cells from primary prostate cultures. Immunofluorescence for the IL-6 receptor on selected stem-like (SC), TA 

and CB cells, from primary prostate cell cultures derived from cancer (A) and benign disease (B). IgG negative control for cancer (left) and benign cells (right) (C). 

Cells were counterstained with DAPI to stain the nuclei before analysis on a Zeiss LSM 510 meta confocal microscope at 63x magnification. D. Quantification of 

Immunofluorescence for the IL-6 receptor on selected cells (stem-like, TA and CB) from primary cultures derived from prostate cancer (n=1) (red) and benign 

disease (n=2) (grey). Cells were counterstained with DAPI before counting 10 random fields at 63x magnification for the number of IL-6 receptor-expressing cells 

relative to total cells per field. Cells were scored by eye and intensity levels were relative to the IgG control. All the stem-like cells were counted due to small cell 

numbers. The results are expressed as the percentage of positive cells per population. 
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3.2.4.2. Flow cytometry analysis for IL-6 receptor 

 

To confirm the IL-6 receptor expression in a quantitative manner, flow cytometry was 

used. Primary cultures were co-stained with antibodies to the IL-6R, CD49b, which 

marks the α2
hi population that includes both the stem-like and TA cells (Collins et al., 

2001), or CD133, which is a marker of stem cells.  

 

The results of three primary cultures (from three individuals) showed that an average of 

44% of cancer cells (range 29.45 – 46.54%), expressed CD49b (Figure 3.12A). These 

levels are similar when α2
hi and α2

low cells are separated by rapid collagen-I adhesion 

(Table 4). 

 
Table 4. Percentage of α2

hi and α2
low cells from several primary prostate cancer cell cultures. 

 
 

Only a small percentage of these CD49b-positive cells (2.3%) expressed the receptor. 

However, those cells did not express CD133 (Figure 3.12). Indeed, all the cells 

expressing the receptor were not CD133 positive, by flow cytometry (Figure 3.12B). 

These results are in contrast to the immunofluorescence study of sorted cell 

populations (Figure 3.11) in which the CD133 population expressed the highest levels 

of receptor. Nonetheless, a small percentage of the α2
hi population did express the 

receptor and these cells have been previously shown to encompass the stem cells and 

transit amplifying population (Collins et al., 2001).  

 

 

  

Primary prostate cells α2
hi cells (%) α2

low cells (% 

Gleason 7 (3+4) 49.1 50.9 

Gleason 7 (4+3) 31.3 68.7 

Gleason 9 (4+5) 65.1 34.9 

Gleason 9 (4+5) 34.9 65.1 

CRPC 59.9 40.1 
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Figure 3.12. Flow cytometry analysis for the IL-6 receptor, CD49b and CD133 on primary 

prostate cells. Representative dot-plots, of three primary cultures, labelled with IL-6 receptor (-

Alexa488), CD49b (-PE) and CD133 (-APC). A. Dual labelling with CD49b and FITC. B. Dual 

labelling with IL-6 receptor and CD133. Due to spectral overlap of the FITC detector into the PE 

detector, compensation was performed between single labelled samples and unlabelled to 

minimize the effect when analysing cells that were dual labelled for IL-6 receptor (-Alexa488) 

and CD49b (-PE). Analyses were performed relative to the IgG control and Sytox Blue was 

used to exclude dead cells.  
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The results shown in Figure 3.12 indicate that CD133 is not expressed in prostate 

cultures. However, this is not the case as single labeling with CD133 does detect a rare 

population (Figure 3.13). It was often observed that co-labelling with other cell surface 

markers ‘quenched’ the detection of CD133.  

 

To exclude this possibility, primary prostate cells were pre-selected, using rapid 

adhesion to type I collagen, to select for α2β1
hi and α2β1

low cells, instead of labeling the 

cells with CD49b antibody. Cells were subsequently labeled with antibodies to CD133 

and the IL-6 receptor. A representative dot-plot, of four primary cultures (from four 

individuals), confirmed that a small proportion of cells that rapidly adhere to type I 

collagen (2%) express the receptor, but unlike the previous observation (Figure 3.12) 

they do express CD133. These results also confirm the results shown in Figure 3.12 in 

which 22% of the α2β1
low cells and only 2% of the α2β1

hi cells express the IL-6 receptor 

(Figure 3.14A/B).  
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Figure 3.13. Flow cytometry analysis for CD133 on primary prostate cancer cells. 

Representative dot-plot of primary prostate cancer cells single labelled for CD133 (-APC) (y-

axis). Analyses were performed relative to the IgG control and sytoxblue was used to exclude 

dead cells. 
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Figure 3.14. Flow cytometry analysis for the IL-6 receptor and CD133 from pre-selected 

α2β1
hi and α2β1

low cells. Representative dot-plots, of four primary cancer cultures, pre-selected 

by adherence to collagen-I. Non-adherent cells were selected after 20 minutes adherence to 

type 1 collagen and the adherent fraction was harvested by trypsin at the same time. Both 

fractions were then labelled with CD133 (-APC) and IL-6 receptor (Alexa-488). A. α2β1
hi cells 

labelled for IL-6 receptor (-Alexa488) and CD133 (-APC). B. Magnified area to highlight rare 

high-expressing CD133 positive cells that co-expressed the IL-6 receptor. C. α2β1
low cells 

labelled for IL-6 receptor (-Alexa488). Analyses were performed relative to the IgG control and 

sytoxblue was used to exclude dead cells. 

 
 
  

IL-6 receptor 

C
D

13
3 

2% 

0.02% 

A B 

IL-6 receptor 

C 

22% 



 

 110 Results I 

3.3. Activation of the JAK-STAT signaling pathway 

3.3.1. STAT3 phosphorylation in primary prostate cells 

 
IL-6 signals through a receptor composed of two subunits: the common gp130 

receptor, shared with the other IL-6 family cytokines, and the IL-6 specific receptor 

gp80. Binding of IL-6 to the IL-6 receptor induces gp130 homodimerization, followed by 

activation of JAK, and the cytoplasmic tail of gp130 becomes phosphorylated which 

creates docking sites for STAT factors, which subsequently become phosphorylated, 

form dimers and translocate to the nucleus (Heinrich et al., 1998). Signalling by IL-6 

generally induces STAT3 phosphorylation, and it has been shown that STAT3 is 

constitutively active in prostate cancer cells lines and in prostate cancer tissue, using 

immunohistochemical staining (Dhir et al., 2002; Mora et al., 2002).  

 

In order to determine whether the JAK-STAT signaling pathway is activated in primary 

prostate cells, derived from cancer and benign disease, the levels of phosphorylated 

STAT3 (Tyr705) was determined by Western blot analysis. Results show that all the 

primary prostate cell cultures that were analyzed, 2 benign and 5 cancer samples, had 

detectable levels of ρSTAT3 (Figure 3.15A), suggesting that the pathway is 

constitutively active. The levels of ρSTAT3 were quantified relative to total STAT3, and 

confirmed that 3 of the 5 primary prostate cancer samples had higher levels of ρSTAT3 

compared to the benign cells (Figure 3.15B). 
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Figure 3.15. Levels of phosphorylated STAT3 in primary prostate cells. A. Western blot 

analysis for ρSTAT3, total STAT3 and β-actin (loading control) on primary cell culture lysates 

derived from benign disease (n=2) and cancer (n=5). B. Quantification of Western blot, the 

results are expressed as levels of ρSTAT3 relative to total STAT3 (benign; light blue bar and 

cancer; dark blue bars). Analysis was performed using Image-J software.  
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3.4. Inhibition of STAT3 phosphorylation in primary prostate 

cells 

3.4.1. Inhibition of STAT3 phosphorylation using pyridone-6 
 

A widely used inhibitor of JAK-STAT signaling is Pyridone-6 (P6), which is a specific 

pan-JAK inhibitor (Lucet et al., 2006). This inhibitor can be used at a much lower 

concentration and with faster kinetics than a commonly used JAK2 inhibitor, AG490, 

which was the first and best characterized JAK tyrosine kinase inhibitor, but was 

thought to be less specific compared to P6. (Pedranzini et al., 2006). It has already 

been shown that P6 is able to inhibit STAT3 phosphorylation in a variety of prostate 

cancer cell lines. However it was important to determine if inhibition of ρSTAT3, using 

P6, could also be achieved in primary prostate cell cultures. 

 

Firstly, the optimal concentration and treatment time was determined. Primary prostate 

cells, derived from cancer samples, were treated for 16 hours with 0.5 or 5 µM P6, 

DMSO (P6 solvent) or medium only (SCM). The cells were subsequently lysed and 

loaded onto a SDS-PAGE gel for Western blot analysis. The results show that primary 

prostate cancer cells treated for 16 hours with P6, at both concentrations, resulted in 

decreased levels of ρSTAT3. This result was confirmed in three different prostate 

cancer samples (Figure 3.16A). The levels of ρSTAT3 were quantified relative to the 

levels of total STAT3 (Figure 3.16B). The quantified levels of phosphorylated STAT3, 

of three samples, were then averaged and show that there was a significant (P<0.005) 

decrease of phosphorylated STAT3 after treatment with 0.5 µM (85% decrease) and 5 

µM (98% decrease) P6 for 16 hours compared to the DMSO control (Figure 3.16C).  

 



 

 

 

 

 

 

 

 
Figure 3.16. Effect of Pyridone-6 on phosphorylated STAT3 levels in a series of primary prostate cells. A. Western blot analysis for ρSTAT3, total STAT3 and 

β-actin (loading control) of three primary prostate cell cultures derived from cancer samples, treated with 0.5 and 5 µM P6, DMSO (P6 solvent) or untreated (UT) for 

16 hours. B. Quantification of Western blot of three primary prostate cancer cultures, the results are expressed as the levels of ρSTAT3 relative to total STAT3, 

following treatment with 5 µM P6, for 16 hours. C. Average levels of ρSTAT3 relative to total STAT3 (n=3) after treatment with P6, analysis was performed using 

Image J software and the error bars are the standard deviation of three primary cancers. Statistical analysis was performed using the students t-test, *P<0.05. 
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In order to have a functional effect, it is important that treatment with P6 results in 

inhibition of nuclear ρSTAT3 as well as downstream targets. Therefore, cells were 

treated with 5 µM P6, for 16 – 72 hours, to determine the levels of ρSTAT3 and the 

downstream target SOCS3. The nuclear protein fraction was normalized against tata-

binding protein (TBP), which is a transcription factor that binds to the TATA box and is 

a commonly used nuclear loading control. The cytoplasmic protein fraction was 

normalized against β-actin (Figure 3.17B). The results show that 16 hours treatment 

with P6 resulted in down-regulation of nuclear ρSTAT3, but at that time point inhibition 

of SOCS3 was not observed (Figure 3.17A). However, after 48 hours, a decrease in 

nuclear ρSTAT3 as well as he downstream target SOCS3 was observed (Figure 

3.17A). This effect was maintained after 72 hours treatment with 5 µM P6 (results not 

shown). Therefore, for further experiments cells were treated with 5 µM P6, as this 

showed the most significant decrease in levels of ρSTAT3, after 48 hours treatment 

without detectable cytotoxicity. 

 

  



 

 116  Results I 

 
 

Figure 3.17. Time course of treatment of primary prostate cancer cells with Pyridone-6. A. 

Western blot analysis for ρSTAT3, total STAT3, SOCS3, TATA-binding protein (TBP) (nuclear 

loading control) and β-actin (cytoplasmic loading control). Nuclear and cytoplasmic extracts of 

primary prostate cell cultures (derived from a cancer sample) were obtained following treatment 

with 5 µM P6 or DMSO, for 16 and 48 hours. B. Quantification of Western blot. The levels of 

ρSTAT3, total STAT3 and SOCS are expressed relative to the respective loading controls. 
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3.4.2. Inhibition of the JAK-STAT pathway using neutralizing 

antibodies 

3.4.2.1. Inhibition of the JAK-STAT pathway using commercially 

available neutralizing antibodies to IL-6, LIF and OSM 
 

In order to determine which ligand of the IL-6 family of cytokines activates the JAK-

STAT pathway in the prostate cells were treated with neutralizing antibodies to IL-6, 

LIF and OSM, and the levels of ρSTAT3 were subsequently analyzed using Western 

blotting. 

 

Initially, primary prostate cells were treated for 48 hours with 5 µg/mL of neutralizing 

antibodies against IL-6, LIF, OSM or a combination of all three. As a positive control, 

cells were treated with 5 µM P6, and IgG controls were included as negative controls. 

The results indicated that there was no decrease in ρSTAT3 levels following treatment 

with 5 µg/mL of anti-LIF, IL-6 or OSM. However, there was a decrease of ~50 % in 

ρSTAT3 levels when the cells were treated with a combination of all three (Figure 

3.18A).  

 

As inhibition of ρSTAT3 levels were not observed when the primary prostate cells were 

treated with 5 µg/mL of neutralizing antibodies to either LIF, IL-6 or OSM, the 

concentration of all antibodies was increased to 10 and 50 µg/mL (Figure 3.18). At 10 

µg/ml of anti-IL-6 there was a decrease in the levels of ρSTAT3 of 40% relative to the 

untreated control and 50% relative to the IgG control (Figure 3.18B). There was no 

decrease in the levels of ρSTAT3 with anti-OSM relative to the untreated control or the 

IgG control (Figure 3.18B). When the concentration of antibodies was increased to 50 

µg/ml, this inhibitory effect with anti-IL-6 was similarly observed, but there was also a 

decrease of 40% with the isotype control, suggesting that there was a non-specific 

effect (Figure 3.18C). In all experiments, treatment with 5 µM P6 reduced ρSTAT3 

levels (Figure 3.18).  
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Figure 3.18. Effect of neutralizing antibodies against IL-6, LIF and OSM on phosphorylated STAT3 levels. Figure 30. Western blot analysis for ρSTAT3, total 

STAT3 and β-actin (loading control) of primary cell cultures derived from prostate cancers. Cells were treated with 5 µg/mL (A), 10 µg/mL (B) and 50 µg/mL (C) 

neutralizing antibodies against IL-6 (mouse IgG), LIF (goat IgG) and OSM (mouse IgG) for 48 hours. Included, as controls, were cells treated with 5 µM P6, DMSO 

(vehicle control for P6) or IgG isotype controls. Western blots were quantified using Image J software and are expressed as relative to total STAT3 (100%).  
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3.4.2.2. Inhibition of STAT3 phosphorylation using CNTO 328 

 

CNTO 328 is a neutralizing antibody against IL-6 that has been used in clinical trials for 

prostate cancer (Trikha et al., 2003; Fizazi et al., 2012). It is a chimeric monoclonal 

which has the advantage of a long half-life (medium 18 days). This is beneficial 

compared to other antibodies, for example BE-8, which has a short half-life of 3 - 4 

days (Trikha et al., 2003).  

 

CNTO 328 has been used in several phase I/II clinical trials, including for prostate 

cancer, although the outcome of this trial in patients with metastatic castration-resistant 

prostate cancer did not show a significant improvement (Trikha et al., 2003; Fizazi et 

al., 2012). This antibody was used because it has been shown to have high affinity for 

the IL-6 receptor and has neutralizing activity (van Zaanen et al., 1996). Primary 

prostate cells were treated with 50 - 1 µg/mL CNTO 328 for 24, 48 and 72 hours and 

the levels of ρSTAT3 were determined by Western blotting. However, in these initial 

experiments there was no apparent difference in the levels of ρSTAT3 with treatment 

(results not shown). The experiment was repeated for up to 6 days, as Steiner et al. 

showed that an inhibition of ρSTAT3 levels was observed after 6 days treatment of 

prostate cancer cell lines with CNTO 328 (Steiner et al., 2006). The results show that 

after 4 days treatment there was a ~90% decrease in ρSTAT3 levels compared to the 

untreated control (Figure 3.19). This effect was even greater after 6 days of treatment, 

where a ~95% decrease in ρSTAT3 levels was obtained (Figure 3.19). This decrease 

in ρSTAT3 was noted at concentrations from 5 – 200 µg/mL CNTO328.  

 

To confirm this finding, a further three primary prostate cell cultures, derived from 

cancer samples, were treated with 10 µg/mL of CNTO 328 for 2, 4 and 6 days (Figure 

3.20A). The results show optimal inhibition of ρSTAT3 was achieved after 6 days 

(P<0.05). The results also demonstrate the variability between patients. When the 

levels were averaged (from the three samples), a 90% decrease in ρSTAT3 was 

observed after 6 days of treatment with CNTO 328 compared to the untreated control 

(Figure 3.20C) (P<0.05).  

  



 

 

 

 

 

 

 

 

Figure 3.19. Effect of CNTO 328 on phosphorylated STAT3 levels. A. Primary prostate cancer cells (Gleason 7) were treated with increasing concentrations of 

CNTO 328 for 2, 4 and 6 days and were then subjected to Western blot for ρSTAT3, total STAT3 and β-actin (loading control). B. Quantification of Western blot for 

ρSTAT3, which is expressed relative to total STAT3, after treatment with CNTO 328 for 2 (blue), 4 (red) and 6 (green) days. Analysis was performed using Image J 

software. 
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Figure 3.20. Effect of CNTO 328 on phosphorylated STAT3 levels in a series of primary prostate cancer cells. A. Primary cells were subjected to Western blot 

for ρSTAT3, total STAT3 and β-actin (loading control) following treatment with CNTO 328. Three primary cell cultures derived from prostate cancer samples 

(Gleason 3+4 (PEH052/11 and PEH069/11)), Gleason 4+5 (PEH047/11) were treated with 10 µg/mL CNTO (+) or untreated (-) for 2, 4 or 6 days. B. Quantification of 

Western blot of the three primary cultures for ρSTAT3; which is expressed as relative to total STAT3 and normalized to the untreated control (100%). C. Average 

levels of ρSTAT3 from three primary prostate cancer cultures. Results are expressed as relative to total STAT3 and are normalised to the untreated control. The 

results were quantified using Image J software. Statistical analysis was performed using the Students t-test, *P<0.05. 
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3.4.3. Inhibition of STAT3 phosphorylation using a direct inhibitor, 

LLL12 

3.4.3.1. Optimization of treatment with LLL12 

 

The previous section demonstrated that, JAK-STAT signaling is activated through IL-6, 

in the prostate. A more direct way to inhibit STAT3 phosphorylation is to target STAT3 

directly. LLL12 is a specific small molecule inhibitor, which binds to the phosphoryl 

tyrosine 705 binding site of the STAT3 monomer (Lin et al., 2010). It has previously 

been shown that LLL12 inhibits STAT3 phosphorylation, subsequently affecting tumour 

growth in a variety of cancers, including breast cancer and glioblastoma (Lin et al., 

2010; Ball et al., 2011; Wei et al., 2011).  

 

In order to determine whether LLL12 is able to inhibit STAT3 phosphorylation in 

primary prostate cancer cells, we wanted to measure the levels of ρSTAT3 and total 

STAT3 after cells were treated with increasing concentrations of the drug, at different 

time points. In order to do this in a fast and quantitative manner, a cell-based ELISA 

was used. This method measures the levels of ρSTAT3 and total STAT3 

simultaneously, in fixed cells. Firstly, it was important to determine the sensitivity of this 

assay, therefore primary prostate cells, derived from a cancer sample, were plated at 

different densities, up to 20,000 cells/well. The results show that at least 10,000 cells 

/well were required to detect pSTAT3 (Figure 3.21A).  

 

To determine the optimal concentration of LLL12 in primary prostate cells were treated 

with increasing concentrations of LLL12, for up to to 72 hours. Cells were then fixed 

and the levels of ρSTAT3 and total STAT3 were measured. The results show a 

statistically significant inhibition of ρSTAT3 with 1 – 10 µM LLL12, after 24 hours of 

treatment (P<0.05) (apart from one outlier, at 5 µM). When the treatment time was 

extended to 48 hours, a decrease in ρSTAT3 was observed with 1 – 10 µM, however 

this was not statistically significant due to the high error bars seen in the untreated 

control. Cells treated with 1 - 10 µM LLL12 for 72 hours also showed a statistically 

significant decrease in ρSTAT3 compared to the untreated control (P<0.05) (Figure 

3.21B).  
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Figure 3.21. Optimization of primary prostate cells treated with LLL12 to inhibit 

phosphorylation of STAT3. A. Optimization of cell-based ELISA. Cells were plated at densities 

ranging from 0 - 20,000 cells per 96-well plate to determine the minimal cell number required to 

detect phosphorylated STAT3 and total STAT3 simultaneously. The analysis was performed by 

subtracting the values obtained from secondary antibody controls, resulting in relative 

fluorescence units (RFU). B. Cell-based ELISA for phosphorylated STAT3 relative to total 

STAT3. 104 primary prostate cells were treated with LLL12 (0 - 10 µM), in duplicate, for 24, 48 

and 72 hours. The error bars is represented by the standard deviation of duplicate values and 

statistical analysis was performed using the student t-test. The results were normalised to 

untreated cells at each time point, *P< 0.05.  
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3.4.3.2. Change in cell morphology following treatment with LLL12 
 

It has already been show in various cancers that LLL12 induces apoptosis (Lin et al., 

2010). When primary prostate cells, derived from a cancer sample, were treated with 1 

µM LLL12 for 24 hours, the cell morphology changed significantly. More membrane 

blebbing and rounded, floating cells were observed with treatment (Figure 3.22A), 

suggesting that some cells were undergoing apoptosis. This change in morphology 

was different to treatment with 5 µM P6. Those cells lost their cobblestone appearance 

and became more fibroblastoid (Figure 3.22A).  

 

3.4.3.3. Western blot analysis for ρSTAT3 in primary prostate cells 

treated with LLL12 
 

To confirm inhibition of STAT3 phosphorylation in primary prostate cells after treatment 

with LLL12, Western blot analysis was performed. Primary prostate cells, derived from 

benign disease, were treated with 1 – 10 µM LLL12 for 24 hours. The results showed 

complete inhibition of ρSTAT3 after treatment with LLL12 compared to the DMSO and 

untreated control cells (Figure 3.22B). It was apparent from the β-actin loading control 

that there was less protein in each lane, but this was due to some cell death during 

treatment. As β-actin and total STAT3 could still be detected, although at lower levels 

compared to the untreated control, we could conclude that the inability to detect 

ρSTAT3 was due to treatment with LLL12 and not due to low protein loading. Cells 

treated with P6 also showed inhibition of ρSTAT3 following treatment, relative to the 

untreated controls.  

 

3.4.3.4. Flow cytometry analysis of primary prostate cells treated 

with LLL12 
 

To confirm this result, we performed flow cytometry on primary prostate cells, derived 

from a cancer sample, following treatment with 1 µM LLL12, for 24 hours. Because the 

dead cells were gated out, using a live/dead stain, the analysis was performed solely 

on live cells labeled for ρSTAT3. The results showed that only 5% of the primary 

prostate cells had detectable levels of ρSTAT3 after treatment with LLL12, compared 

to 91% of the vehicle treated control cells (Figure 3.22C). Cells were gated relative to 

unlabeled cells (R12). 



 

 

 

 

 

 

 

 
Figure 3.22. Effect of LLL12 on phosphorylated STAT3 levels in primary prostate cells. A. Images of primary prostate cells derived from a cancer after 48 hours 

treatment with 5 µM P6 or 24 hours treatment with 1 µM LLL12. The control cells were cultured in stem cell medium only. The right panel shows a magnified image 

of primary cells after treatment with LLL12. Images were taken on an EVOS microscope (Advanced Microscopy Group) at 10x magnification. B. Western blot 

analysis for ρSTAT3, total STAT3 and β-actin (loading control) of primary prostate cells derived from benign disease, treated with either 1 - 10 µM LLL12 (for 24 

hours), 5 µM P6 (positive control), DMSO (vehicle control) and untreated control (upper panel). Lower panel: quantification of Western blot, which is expressed as 

ρSTAT3 relative to total STAT3. C. Flow cytometry histograms of primary prostate cells derived from a cancer sample for ρSTAT3 (-APC) treated with a DMSO 

control or 1 µM LLL12, for 24 hours. Analysis was performed relative to unlabelled cells; dead cells were excluded using a live/dead cells stain prior to fixing, 

permeabilizing and labelling the cells for intracellular ρSTAT3. 
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We were able to show (using three different techniques) that treatment with LLL12, 

resulted in a significant inhibition of STAT3 phosphorylation in benign and cancer 

primary prostate cells. The results also show that >90 % of primary prostate cancer 

cells express ρSTAT3, suggesting that this pathway is constitutively. When activation 

of this pathway was blocked, it had a negative effect on the viability of the cells 

suggesting that the cells require this pathway for their survival.  
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3.5. Importance of the JAK-STAT signalling pathway for cell 

survival 

3.5.1. Colony formation efficiency following treatment with P6  
 

It has been suggested by several groups that the JAK-STAT signalling pathway is 

important for stem cell self-renewal (reviewed in (Morrison and Spradling, 2008)) and 

CSC survival (Sherry et al., 2009; Marotta et al., 2011). As the JAK-STAT signalling 

pathway is constitutively active in primary prostate cells by autocrine activation via IL-6, 

it is likely that the pathway is important for the maintenance of these undifferentiated 

prostate cancer stem-like cells. In order to test this, colony forming recovery assays 

were performed following treatment with STAT3 inhibitors, either directly (LLL12) or 

indirectly (anti-IL-6 antibody and P6).  

 

Primary prostate cells, derived from a high Gleason grade (hormone-naïve) cancer, 

were treated with 5 µM P6 to inhibit STAT3 phosphorylation, or with a DMSO vehicle 

control. Following treatment, stem-like, TA and CB cells were selected as previously 

described (section 2.1.3), plated in the presence of irradiated STO feeder cells and 

scored for colonies after ~14 days. Stem-like colonies were considered to be >32 cells 

(at least 5 population doublings). Colonies smaller than 32 cells were also counted to 

determine the impact of STAT3 inhibition on colony forming efficiency (Figure 3.23). 

 

The results show that, from a high Gleason grade (4+5) sample, 20.5 % of stem-like 

cells, 14.3% of TA and 60% of CB cells had formed colonies >32 cells. Interestingly, 

the stem-like cells were unable to initiate colonies, following treatment with P6. In 

contrast, treatment resulted in a ~2 fold increase in CFE of the TA population with a 

decrease in CFE of the CB population (19%) (Figure 3.24A). 

 

The experiment was repeated with a Gleason 3+4 sample. In contrast to the Gleason 

grade 4+5 sample, the CFE was much lower overall, and treatment had no significant 

effect on the stem-like and CB cells. There was a small decrease with treatment in the 

TA population, but this effect was not significant. Treatment did affect colonies <32 

cells, in the stem-like population, such that colonies <32 cells were not detected 

following treatment. This effect was not observed with either the TA or CB cells. The 

CFE for the TA cells showed a 3 - 4 fold increase compared to the stem-like 

population, however no significant difference between the DMSO (control) and P6 

treated cells. Compared to the stem-like cells and TA cells, the cells from the CB 

population were inefficient in forming colonies, as expected (Figure 3.24B). 
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Figure 3.23. Images of colonies derived from single stem-like cells. Primary prostate cancer 

cells derived from a high Gleason grade hormone-naïve cancer (4+5) were treated for 48 hours 

with 5µM P6 or vehicle (DMSO) control. Stem-like, TA and CB cells were then selected and 

plated in triplicate, at a density of 100 cells/well in a 35mm2 collagen-I coated dish, in the 

presence of irradiated STO feeder cells. Cells were incubated for ~14 days; until colonies were 

observed in the DMSO control wells. Images of a small colony (<32 cells) (A) and a larger 

colony (>32 cells) (B) derived from stem-like cells. Images were taken using an EVOS 

microscope at 10x magnification. 

  



 

 

 

 

 

 

 

 

Figure 3.24. Colony forming efficiency of primary prostate cells derived from prostate cancer and benign disease, following treatment with P6. Primary 

prostate cells derived from a Gleason grade 4+5 (A), Gleason grade 3+4 (B) or benign disease (C) were treated for 48 hours with 5 µM P6 or vehicle (DMSO) 

control. Stem-like (SC), TA and CB cells were then selected and plated in triplicate, at a density of 100 cells/well in a 35mm2 collagen-I coated dish, in the presence 

of irradiated STO feeder cells. Cells were incubated for ~14 days; until colonies were observed in the DMSO control wells. Colony forming efficiency (CFE), was 

calculated using the average colony number, from triplicate. Colonies were manually counted, using a Leica light microscope at 10x magnification, and scored 

between 8 - 15 cells, 16 - 31 cells or > 32 cells (5 doublings) (indicated by coloured bars from light to dark respectively). The error bars are represented by the SEM. 

N.C. means no colonies were observed. 
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Treatment with P6 had no significant effect on the CFE of either the SC, TA or CB 

population, from a benign sample. In this sample the SC population failed to form many 

colonies, but colonies were observed from both the TA and CB population. The CFE of 

the TA population was 6% and with treatment this increased to 10% (1.5-fold increase), 

this was from colonies bigger then 32 cells. No difference was observed from smaller 

colonies. Similarly, treatment resulted in an increase in the CFE of the CB population, 

from 1.7% (control) to 5.5% (treatment) (3-fold increase) (Figure 3.24C). 

 

Thus, the results for the primary prostate cells, derived from Gleason 3+4 cancer 

(Figure 3.24B) and benign disease (Figure 3.24C), showed a higher CFE for the TA 

cells compared to the stem-like population. However, there was no significant 

difference between P6 treatment and the control as was observed from the high 

Gleason grade (4+5) cancer analysed (Figure 3.24A). 

 

3.5.1.1. Using a Rho-associated kinase inhibitor to improve colony 

formation efficiency  
 

The CFE of primary cells is highly variable and in some cases (4/18 samples analysed) 

the efficiency was too low to include in the analysis (<5 colonies per well). The majority 

of these cultures were derived from benign samples. To improve efficiency, a Rho-

associated kinase (ROCK) inhibitor was used; Y-27632. It has been shown that this 

ROCK inhibitor reduces dissociated-induced apoptosis and therefore increases colony 

forming efficiency. A >10-fold increase in CFE has been reported (Watanabe et al., 

2007). Primary prostate cells were treated with 5 µM P6 (or DMSO) together with 10 

µM Y-27632, for 2 days prior to selecting for stem-like, TA and CB cells. After plating, 

Y-27632 was added again until the assay was stopped, to count colonies. The results 

show that there was a 2 - 3-fold increase in CFE, when cells were treated with the 

ROCK inhibitor, although this effect was only observed in the TA and CB (progenitor) 

population (Figure 3.25). As the ROCK inhibitor did not increase the CFE of the stem-

like population, no further investigation was carried out.  
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Figure 3.25. Colony forming efficiency of primary prostate cancer cells, following 

treatment with P6, + / - ROCK inhibitor. Primary prostate cells derived from a cancer sample 

were treated with 5 µM P6 (blue bar) or DMSO as control (black bar) together with (+) or without 

(-) 10 µM Rock inhibitor (Y-27632). Following treatment, stem-like (SC), TA and CB cells were 

selected and plated at a density of 100 cells/well in a 35mm2 collagen-I coated dish in the 

presence of irradiated STO feeder cells. Colonies were manually counted, using a Leica light 

microscope at 10x magnification and scored if > 32 cells, at 14 days. The CFE was calculated 

using the average colony number, from triplicates, and the error is represented by the standard 

deviation.  

 



 

 136 Results I 

3.5.2. Summary of results on the effect of treatment with the JAK 

inhibitor (P6) on colony forming recovery 

 
Primary prostate cells, derived from benign disease, failed to initiate a sufficient 

number of colonies to include in the analysis. This phenomenon was observed in four 

different samples. Therefore only cultures derived from prostate cancer samples were 

analysed for their effect on CFE following treatment with P6.  

 

In the following analysis (Figure 3.26) the TA and CB cells were grouped together as 

the trend was consistent following treatment with P6, in all the samples analysed. 

When an increase in CFE was observed in the TA population (after treatment with P6) 

there was also an increase in CFE for the CB population. Therefore, cell populations 

were grouped as CD133+ (stem-like cells) and CD133- (progenitor cells) (Figure 3.26). 

Due to high patient variability, the samples were grouped into disease stages: Gleason 

grade 7, Gleason grade (>8) hormone-naïve, and CRPC. Most prostate cancer 

samples collected fall into the Gleason 7 group (n=8). Only 3 were analysed from high 

Gleason (hormone-naïve) grade disease and four from CRPC. 

 

Treatment of high Gleason grade (hormone-naïve) cells, with P6 resulted in a decrease 

in CFE of the stem-like population, compared to the vehicle control. This was observed 

in 3/3 samples analysed with an average decrease of 70% CFE. However, this 

decrease in CFE was not significant, due to the limited number of samples analysed. 

The progenitor population showed an increase in CFE of 40%, following treatment with 

P6, however this increase was only observed in 2/3 samples, showing that there is a 

degree of variability within this population compared to the stem-like population.  

 

In contract, there was an increase (60%) in CFE of the stem-like population (following 

treatment with P6) from cells derived from Gleason 7 cancers. However 3/8 samples 

showed a decrease in CFE. Similarly, the progenitor population showed an increase 

(140%) in CFE following treatment.  

 

The CRPC samples that were analysed showed, in 3/4 samples, an increase in CFE of 

the stem-like population, after treatment with P6. The average increase was 100%, 

although there was a high degree of variability between samples. There was a minimal 

effect with P6 treatment on the progenitor population (40% increase in CFE). However 

only in 2/4 samples an increase in CFE was observed, after P6 treatment. The 2 

samples that showed a decrease only had a minimal decrease of 20% CFE. So, the 
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average CFE of the progenitor cells was an increase of 40% compared to the DMSO 

control.  

 

Significance was not achieved, which was probably due to limited number of samples 

but also patient variability as shown by the wide spread between the individual samples 

(Figure 3.26).  
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Figure 3.26. Overall results on colony forming efficiency of a series of primary prostate 

cancer cell cultures, following treatment with the JAK inhibitor, P6. Primary prostate cells, 

derived form high Gleason 7 (n=8), Gleason grade hormone-naïve cancer (n=3), and CRPC 

(n=4) samples, were treated for 48 hours with 5 µM P6 or DMSO (vehicle control). Cells were 

selected for CD133+ (stem-like cells) and CD133- (progenitor cells), and plated at a cell density 

of 100 cells/well in a 35mm2 collagen-I coated dish together with irradiated STO feeder cells. 

Colonies were manually counted, using a Leica light microscope at 10x magnification. Colonies 

were scored if they were ≥32 cells. The results are expressed relative to the DMSO control 

(CFE=1), indicated by the red line. Each symbol represents a different patient samples, and the 

bar represent the average.  
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3.5.3. The effect of the IL-6 neutralizing antibody CNTO 328 on 

Colony forming efficiency of prostate primary cells  

 
As previously observed (section 3.4.2.2), IL-6 is the primary ligand activating the JAK-

STAT pathway in the prostate. To determine the functional consequences of inhibition 

of the ligand binding to its receptor, colony formation assays were performed after 

treatment with CNTO 328. Primary prostate cells, derived from high Gleason grade 

cancer samples, were treated with 10 µg/mL CNTO 328, for 6 days. Colonies were 

then scored from CD133+ (stem-like cells) and CD133- (progenitor cells) The CFE of 

the cancer stem-like population, showed a significant inhibition (P<0.05) compared to 

the untreated control. This was observed in 3/3 samples analysed, with an average 

50% decrease in CFE compared to the control. However, the progenitor cells were 

more variable in terms of their response to CNTO328 treatment as 2 out of 3 patients 

tested had an increased ability to form colonies (Figure 3.27A).  

 

3.5.4. The effect of treatment with the STAT3 inhibitor, LLL12 on 

colony forming efficiency 

 
Another inhibitor, LLL12, which directly inhibits STAT3 activation, was next used and 

as shown previously (Figure 3.21), had a significant effect on the levels of ρSTAT3 in 

primary prostate cells. Therefore it was important to determine the functional 

consequences of this inhibition, using a colony formation assay. Primary prostate 

cancer cells, derived from high Gleason grade cancers, were treated with 1 µM LLL12, 

for 24 hours. The ability to form colonies was significantly decreased for the stem-like 

cells (CD133+) (P<0.05) as well as the progenitor cells (CD133-) (P<0.005), with 

treatment (Figure 3.27B). This decrease in CFE was observed in 4/4 samples 

analysed, with a 75% decrease in CFE in the stem-like population and an even greater 

decrease of 90% in the progenitor population. 



 

Results I 140 

 
 

Figure 3.27. Colony formation efficiency of primary prostate cancer cells following 

treatment with CNTO 328 and LLL12. Primary prostate cells, derived from high Gleason grade 

cancers, were treated with 10 µg/mL CNTO 328 for 6 days (n=3) (A) or 1µM LLL12 for 24 hours 

(n=4) (B). Selected cells, CD133+ (stem-like cells (SC-like)) and CD133- (progenitor cells) were 

plated at a density of 100 cells/well in 35mm2 collagen-I coated dishes in the presence of 

irradiated STO feeder cells. Colonies were manually counted when > 32 cells using a Leica light 

microscope at 10x magnification and colony forming efficiency (CFE) was calculated relative to 

the DMSO control (CFE=1), indicated by the red line. Each symbol represents a different patient 

and the bar represents the average CFE. Students t-test was used to test for statistical 

significance, *P<0.05 **P<0.005.  
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4. Results II 

 

Targeting STAT3 in a ‘near patient’ xenograft model 

 

4.1. Optimisation of protocol to determine the effect of LLL12 

on tumour growth in a ‘near patient’ xenograft  

 
To determine whether JAK-STAT signalling is important for prostate cancer (stem) cells 

in vivo, we used a unique xenograft model. Dr. Anne Collins developed this xenograft 

model, in which xenografts were established by engrafting prostate biopsies into Rag2-

/-γC-/- mice, as described previously (Maitland et al., 2011). They are ‘near-patient’, low 

passage and can be re-derived from frozen cells. The tumours are routinely genotyped 

and compared to patient’s lymphocytes to confirm their identity.  

The small molecule inhibitor LLL12 was used in this set of experiments to inhibit 

STAT3 phosphorylation. It was used at two concentrations: 5 mg/kg and 2.5 mg/kg as 

recommended by our collaborator Prof. Pui-Kai (Tom) Li, who kindly donated this 

molecule. Previous publications had also shown the molecule to be active in breast 

cancer xenografts and glioblastoma at those concentrations (Lin et al., 2010). As 

illustrated in Figure 4.1, serially-transplantable xenografts were dissociated into single 

cells and depleted of mouse hematopoietic lineage positive and endothelial cells before 

engrafting human Lin-/CD31- cells into recipient mice, normally in groups of 10 to 

determine the effect of LLL12 on tumour growth. The mice were supplemented with 

slow-release DHT (up to 90 day release) at tumour initiation. Treatment was initiated 

once the tumour had become established (approximately 5 mm) (Figure 4.1). The 

number of tumour cells required to initiate tumour growth varied between xenografts 

and depended upon tumour frequency calculation. Tumour frequencies for those 

xenografts used in this set of experiments are shown in Table 5.  

 
Table 5. Tumour initiation frequency of “near patients” xenografts used in this study. Data was 

kindly provided by Dr. Anne Collins.  

 

Xenograft pathology Tumour frequency (95% confidence interval) 

Y019 CRPC 1:433 (1:124 – 1:1,515) 

Y018 CRPC 1:15,518,198 (1:370,036 – 1:650,786,317) 

H027 CRPC 1:28,397 (1:3,089 – 1:202,166) 
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Figure 4.1. Overview of the in vivo protocol to determine the effect of LLL12 on tumour 

growth. Serially-transplantable xenografts, maintained in Rag2-/-γC-/- mice, were dissociated 

into single cells and depleted of mouse Lin+/CD31+ cells (see section 2.5.2.1) before implanting 

Lin-/CD31- cells back into recipient Rag2-/-γC-/- mice supplemented with slow-release DHT 

pellets (right flank).  Tumour cells were implanted sub-cutaneous in Matrigel together with 

irradiated STO feeder cells (left flank) in 30 mice as 10 mice per group were used for each 

experiment. 
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4.2. Levels of STAT3 phosphorylation in a panel of ‘near 

patient’ xenografts  

 
It has been reported that LLL12 is most effective in tumours expressing high levels of 

ρSTAT3 (Lin et al., 2010). Therefore, the levels of ρSTAT3 were determined in a panel 

of 7 ‘near patient’ xenografts.  

As shown in Figure 4.2A, three of the xenograft tumours were derived from patients 

with Gleason grade 7 prostate cancers, and four were from CRPC. Quantification of 

Western blot analysis for total and ρSTAT3 showed that 4/7 xenografts had high levels, 

compared to the expression of ρSTAT3 in primary prostate cells, 2/7 had lower levels 

of ρSTAT3 and one xenograft had undetectable levels of ρSTAT3 (Figure 4.2C). 

Primary prostate cell lysate (which was included as a positive control) expressed one 

band for ρSTAT3. However, the xenograft tumour cells showed two bands for ρSTAT3, 

which are possibly two different isoforms: STAT3α and STAT3β (Caldenhoven et al., 

1996). The sample with undetectable levels of ρSTAT3 (H016) also had undetectable 

levels of total STAT3 and the β-actin loading control was considerable lower compared 

to the other xenograft samples. So it could be that insufficient amount of protein was 

loaded onto the gels, but as the results gave an indication of the ρSTAT3 status in the 

panel of xenografts, no further optimization was performed. There was also no 

correlation between Gleason grade and ρSTAT3 status.  
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Figure 4.2. Levels of phosphorylated STAT3 in a series of ‘near patient’ xenografts. A. 

Table of xenografts and the patient’s diagnosis, Tx: unable to evaluate Gleason grade of 

tumour. B. Western blot analysis for ρSTAT3, total STAT3 and β-actin (loading control) of 

several xenograft samples and primary prostate cells derived from a cancer (positive control). 

C. Quantification of Western blot, which is expressed as for ρSTAT3 relative to total STAT3. 

The amount of protein expressed was quantified using Image J software.  
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4.3. Inhibition of tumour growth using the ρSTAT3 inhibitor 

LLL12  

4.3.1. Treatment of tumours derived from Y019 xenograft with 

LLL12 

 
The effect of LLL12 on tumour growth of Y019 was determined. This xenograft was 

chosen because it expresses high levels of ρSTAT3 (Figure 4.2). Unfortunately, tumour 

incidence was particularly low in this experiment (Figure 4.3), and therefore it was 

impossible to draw any conclusion from this data. Firstly, only 3/10 mice grew tumours 

in the control group, 5/10 mice in the 2.5 mg/kg LLL12 treatment group and 3/10 in the 

5 mg/kg LLL12 treatment group. The tumour volumes for all mice were also 

asynchronous, although treatment for all groups was started simultaneously. Thus, the 

relative change (percentage increase) in tumour growth was recorded. This meant that 

the control group had reached their end point after only 10 days of treatment. Despite 

these setbacks, it was observed that LLL12 at 5 mg/kg, halted tumour growth, in all 3 

mice. Unfortunately, there were serious side effects at this dose and all mice in this 

group were culled, eight days after treatment. It was clear that there was no significant 

difference in the growth of tumours between the vehicle control and the group treated 

with 2.5 mg/kg LLL12 after 8 days of treatment (Figure 4.3). Due to limited number of 

tumours per group, only 1/3 from the vehicle control group, 5/7 of the 2.5 mg/kg LLL12 

treatment group and 1/3 of the 5 mg/kg LLL12 treatment group were analysed by flow 

cytometry, to determine the basal (CD44+) and luminal (CD24+) phenotype after 

treatment.  

 

For flow cytometry, the gating strategy is shown in Figure 4.4. Firstly, doublets and 

debris were gated out using pulse width (Figure 4.4A) and dead cells were gated out 

using a live/dead stain (Sytox Blue) (Figure 4.4B). Finally, only cells of the correct size 

and granularity for epithelial cells were included in the analysis (Figure 4.4C). Prior to 

flow cytometry the tumour xenografts were depleted for mouse endothelial cells and 

lineage positive blood cells.  
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Figure 4.3. Growth curve of Y019 xenograft after treatment with LLL12. Mice were injected 

with 9.4 x 104 human tumour cells, once tumours were approximately 5mm, mice were treated 

with daily IP injections of either vehicle control (n=3), 2.5 mg/kg LLL12 (n=5) or 5 mg/kg LLL12 

(n=3), which started at day 58 post initiation of tumour. Mice treated with 5 mg/kg, fell ill after 8 

days of treatment, as these were emaciated and lost > 10% BW, and has to be culled. Tumour 

volume (mm3) was calculated using the Ellipsoidal formula: 1/2(length x width2). Results are 

expressed as the percentage increase between each measurement. The starting volume of the 

tumour was normalized to 100 mm3 to standardize between different tumour volumes. The error 

bars are represented by the SEM. 
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Figure 4.4. Flow cytometry gating strategy. Single Lin-/CD31- human tumour were labelled for 

cell surface markers: CD44(-FITC) and CD24(-PE). A. Histogram of pulse width to exclude 

debris and doublets B. Histogram plot of cells stained with Sytox blue (blue) to exclude dead 

cells relative to unlabelled cells (black). C. Dot-plot of Forward (cell size) and Side Scatter (cell 

granularity) to include cells with the correct size and granularity i.e. exclude debris.  
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Results showed that 2/5 tumours, from the 2.5 mg/kg LLL12 treatment group, had a 

decrease in CD44+ expressing cells compared to the vehicle control, as these samples 

showed an average of 1.5% CD44+ cells (range 0.61– 2.4%), compared to the control, 

in which 25% of cells expressed CD44+. Moreover, in 2/5 tumours from the 2.5 mg/kg 

LLL12 treatment group, an increase in CD24+ content was observed, 13.1% (range 5.2 

– 21.4%) compared to 1.9% from the vehicle control (Figure 4.5) (Appendix 6). 

However this was observed in one tumour control but it does indicate that inhibition of 

STAT3 phosphorylation potentially changes the cellular composition of the xenograft 

tumours.  

 

The second xenograft used was H027. However only 1/30 mice formed a tumour. As 

these ‘near-patient’ xenografts are low passage, they are unpredictable in terms of 

growth incidence and latency unlike the “classical” cell line models that have been 

serially transplanted in mice for decades and are likely to bear little resemblance to 

human prostate cancer (van Weerden et al., 2009). 
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Figure 4.5. Flow cytometry analysis of Y019 xenograft tumour cells after treatment with 

LLL12. Representative flow cytometry analysis of Y019 xenograft tumours, after treatment with 

vehicle control (n=1), 2.5 mg/kg LLL12 (n=5) and 5 mg/kg LLL12 (n=1). Dot-plots of human Lin-

CD31- cells dual labelled for CD44-FITC (x-axis), which labelled the cells with a basal 

phenotype and CD24-PE (y-axis), which labelled cells with a luminal phenotype. The number of 

cells expressing each marker was set against an IgG isotype control or cells only control.  

  

25% 

1% 

0.9% 

C
D

24
-P

E
 

23% 

2.9% 

2.3% 

86% 

0.37% 

0.42% 

CD44-FITC 

A   Vehicle control 

B   2.5 mg/kg LLL12 

C   5 mg/kg LLL12 



 

 151 Results II 

4.3.2. Treatment of tumours derived from Y018 xenograft with 

LLL12 
 

The above experiment was repeated with YO18, which also expresses ρSTAT3, but at 

low levels (Figure 4.2B/C). Tumours were initiated from 3.6 x 105 Lin-/CD31- tumour 

cells, randomized into 10 mice per group. Treatment started when tumours were 

approximately 5 mm (day 37 after engraftment). 27/30 mice grew tumours, however 

two mice were too ill (>10% weight loss, emaciated) after three days of treatment with 

5 mg/kg LLL12 and had to be taken out of the study. After one-day of recovery for the 

remaining mice, the dose was lowered to 3.75 mg/kg to minimize this cytotoxic effect. 

This resulted in 9/10 mice for the vehicle control group, 9/10 mice for the 2.5 mg/kg 

LLL12 treatment group and 7/10 mice for the 3.75 mg/kg LLL12 treatment group.  

 

The results show that with treatment there was a difference in the rate of tumour 

growth between the control group and those mice treated with either 2.5 or 3.75 mg/kg 

LLL12. This was most noticeable at day 15, with a 40 - 50 % difference in tumour 

volume (Figure 4.6). However this difference in tumour volume was not significant, due 

to the variability in tumour volume between individual mice, which was most significant 

in the control group. The results shown in the growth curve are until day 15, however it 

is worth mentioning that the treatment time did go up to day 39, but after day 15 the 

number of mice per group declined rapidly and this resulted in inaccurate growth curve 

due to high variability.  

 

The survival curve shows that the average survival for mice in the control group was 22 

days and, 22.5 days for the 2.5 mg/kg LLL12 treatment group and 25 days for the 3.75 

mg/kg LLL12 treatment group (Figure 4.7). Although there was a small survival 

advantage with LLL12 treatment, this was not significant compared to the control.  
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Figure 4.6. Growth curve of Y018 xenograft after treatment with LLL12. Mice were injected 

with 3.6 x 105 human tumour cells, once tumours were approximately 5 mm, mice were treated 

with daily IP injections of either vehicle control (n=9), 2.5 mg/kg LLL12 (n=9) or 5 mg/kg LLL12 

(n=7), which started at day 37 post initiation of tumour. Mice treated with 5 mg/kg, fell ill after 3 

days of treatment as these were emaciated and lost > 10% BW, and 2 mice were lost from this 

group. The treatment dose was lowered to 3.75 mg/kg LLL12. Tumour volume (mm3) was 

calculated using the Ellipsoidal formula: 1/2(length x width2). Results are expressed as the 

percentage increase between each measurement. The starting volume of the tumour was 

normalized to 100 mm3 to standardize between different tumour volumes as starting point. The 

error bars are represented by the SEM. 
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Figure 4.7. Survival curves of Y018 xenograft after treatment with LLL12. Mice were 

injected with 3.6 x 105 human tumour cells, once tumours were approximately 5 mm, mice were 

treated with daily IP injections of vehicle control, 2.5 mg/kg LLL12 and 3.75 mg/kg LLL12. A 

Kaplan-Meier curve was generated using Sigma Plot software. Tumours were taken when they 

reached 15 mm. The dark circles indicate censored mice, due to weight loss with therapy. 
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4.3.2.1. Histological analysis of Y018 xenograft post treatment 
 

Tumour tissue of Y018 xenograft was analysed by H&E staining to determine if any 

morphological changes occured after treatment with LLL12. Representative results are 

shown in Figure 4.8, the results show that there was no obvious difference in tumour 

morphology following treatment with LLL12 (Figure 4.8). Xenograft tumours, from each 

treatment group, had areas of tightly packed tumour cells with areas of obvious 

necrosis. However, there was no observable difference in necrosis between controls 

and treatment groups.   

 

4.3.2.2. Flow cytometry analysis of Y018 xenograft post treatment 

 

Using cell surface antigens (CD133, CD44 and CD24), changes in cell content with 

treatment were analysed: CD44 was used to label the basal cells and CD24 was used 

to label luminal cells within the xenograft tumours. However, due to high auto 

fluorescence of cells, which was most apparent in the APC channel (results not 

shown), we were not able to get enough cell counts for CD133 for an accurate result. 

Therefore it was decided to focus on the expression of CD44 and CD24, as previous 

results (section 5.3.1.) suggested that treatment had an effect on the proportion of 

these cells.  

 

The number of xenograft tumours analysed by flow cytometry were: 4/9 from the 

vehicle control group, 6/9 from the 2.5 mg/kg LLL12 treatment group and 3/7 from the 

3.75 mg/kg LLL12 treatment group (Appendix 7). The remaining tumours retrieved from 

this experiment were not analysed by flow cytometry as the Lin-/CD31- yield was too 

low.  

 

As shown in Figure 4.4, dead cells were excluded from the analysis, using a live/dead 

stain. Using these data it was shown that there was a slight increase in percentage of 

dead cells after treatment with LLL12. The vehicle group showed 45.5% (range 22.7 -

60.8%) cell death, compared to 57% (range 46.2 – 65.2%) in the 2.5 mg/kg treatment 

group and 56.7% (range 43.3 – 82.5%) in the 3.75 mg/kg LLL12 treatment group. 

However, this increase of 25% dead cells, after treatment with LLL12 compared to the 

vehicle control, was not significant (Figure 4.9A).  
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Figure 4.8. H&E staining of Y018 xenograft paraffin embedded tissue sections. H&E staining of representative tissue sections of Y018 xenograft tumours after 

treatment with vehicle control (n=5), 2.5 mg/kg LLL12 (n=8) or 3.75 mg/kg LLL12 (n=6). Images were taken using an Olympus BX51 light microscope at 40x 

magnification. 
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The results showed that there was no difference in the number of cells expressing 

CD44 after LLL12 treatment. CD44 was expressed by ~66% (range 51 – 80%) in the 

control group, ~70% (range 54 – 86%) in the 2.5 mg/kg LLL12 treatment group and 

~64% (range 33 – 85%) in the higher dose of 3.75 mg/kg LLL12 group (Figure 4.9B) 

(Appendix 7). However, there was a significant difference (P<0.05) in the expression of 

CD24 after treatment with LLL12. The percentage of cells expressing CD24 in the 

control group was 0.67% (range 0.25 – 1.12%) compared to a 4-fold increase to 2.84% 

of the CD24+ population (range 0.24 – 11.1%) in the 2.5 mg/kg group and a 2-fold 

increase to 1.34% (range 1.01 – 1.57%) of the CD24+ population in the 3.75 mg/kg 

LLL12 treatment group (Figure 4.9B). Although there was a 4-fold increase in the 

percentage of cells expressing CD24 with 2.5mg/kg treatment, this effect was not 

significant due to the variability in expression between tumours. Only 3/6 tumours 

showed this increase in CD24 content in this group. In contrast, 2/3 tumours derived 

from 3.75 mg/kg LLL12 treatment group had increased CD24 content and this effect 

achieved significance (P<0.05).  

 

The cells expressing CD24 were heterogeneous in the vehicle control, but this increase 

in CD24 content, with LLL12 treatment, was only observed by cells expressing low 

levels of CD24 (Figure 4.9B). When comparing the low-expressing CD24 cells (1 

decade shift in expression), the difference became more apparent as the percentage of 

cells in the vehicle control expressing CD24 was 0.24% (range 0.08 – 0.48%) 

compared to 2.22% in the 2.5 mg/kg LLL12 treatment group, which is a 9-fold increase 

and 0.83% (range 0.69 – 1%) in the 3.75 mg/kg LLL12 treatment group which is a 3-

fold increase in content. 4/6 tumours analysed from the 2.5 mg/kg group and 3/3 from 

the 3.75 mg/kg LLL12 treatment group showed this increase in CD24 content, which 

was a significant increase compared to the vehicle control (P<0.05) (Figure 4.9C).  

 



 

   

Figure 4.9. Flow cytometry analysis of Y018 xenograft tumour cells after treatment with 

LLL12. Flow cytometry analysis of Y018 xenograft tumours of vehicle control (n=4), 2.5 mg/kg 

LLL12 (n=6) and 3.75 mg/kg LLL12 (n=3). A. Percentage of dead cells after treatment with 

vehicle control or LLL12, using sytox live/dead stain. B. Representative dot-plots of human Lin-

CD31- cells dual labeled for CD44-FITC (x-axis), which labelled the cells with a basal phenotype 

and CD24-PE (y-axis), which labelled cells with a luminal phenotype. Analysis was performed 

as described in section 5.3.1. The number of cells expressing each marker was set against an 

IgG isotype control or cells only control. C. Quantification of the percentage of cells expressing 

CD24 in the vehicle control group (n=4) 2.5 mg/kg LLL12 group (n=6) and the 3.75 mg/kg 

LLL12 (n=3) group. The error bars represent the standard deviation and a student t-test was 

performed to test for significance between groups, *P<0.05. 
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4.3.2.3. Levels of phosphorylated STAT3 in Y018 xenograft post 

treatment 

 

The levels of phosphorylated STAT3 from Y018 tumours following treatment were 

analysed by Western blot. 9/9 tumours from the vehicle control group, 8/9 from the 2.5 

mg/kg LLL12 treatment group and 8/9 from the 3.75 mg/kg LLL12 treatment group 

were analysed for levels of ρSTAT3.  

 

The results showed that 2/9 tumours from the vehicle control group, 2/8 from the 2.5 

mg/kg LLL12 treatment group and 2/8 from the 3.75 mg/kg LLL12 treatment group had 

detectable levels of ρSTAT3 (Figure 4.10). Although the same number of tumours cells 

(~2 x 105) was used to make cell lysates, the protein concentration loaded onto the 

SDS-PAGE gel was variable as shown by the β-actin loading control. It was therefore 

difficult to draw any conclusion from this analysis. For example, only 3 of the tumours 

analysed In the vehicle control group had detectable levels of pSTAT3, Despite 

treatment, some tumours had detectable levels of ρSTAT3; 3 in the 2.5 mg/kg group 

and 2 in the 3.75 mg/kg group suggesting that in these mice, delivery of the drug was 

not optimal.  
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Figure 4.10. Effect on phosphorylated STAT3 levels after in vivo treatment of Y018 

xenograft tumours. Western blot of Lin-CD31- tumour cell lysate from xenograft Y018 from the 

vehicle control group (n=9), 2.5 mg/kg LLL12 group (n=8) and the 3.75 mg/kg LLL12 treatment 

group (n=8) were loaded onto a SDS-page gel and probed for ρSTAT3, total STAT3 and β-actin 

(loading control).  
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4.3.3. Flow cytometry analysis for levels of phosphorylated STAT3 

in xenograft tumour cells 
 

As shown in Figure 4.10, Western blot analysis was not sensitive enough to detect 

levels of ρSTAT3 in xenograft tumour cells, due to the cell numbers required. Therefore 

it was decided to detect the levels of ρSTAT3 in xenograft tumours by flow cytometry. 

The protocol is as described previously in section 3.4.3.4 and shown to be successful 

for primary prostate cells (Figure 3.22C). Analysis of Y018 xenograft (vehicle control) of 

the previous experiment (section 4.3.2) showed that only 8% of cells expressed 

ρSTAT3 (Figure 4.11A). This appeared to correspond to the results of the initial 

Western blot for the levels of ρSTAT3 in a range of xenografts, shown in Figure 4.2. 

Further analysis was performed, using a different xenograft, H027, in which pSTAT3 

levels were highly expressed as shown previously (Figure 4.2). However, low to 

undetectable pSTAT3 was observed by flow cytometry (Figure 4.11A). It was therefore 

likely that the method used to detect ρSTAT3 by flow cytometry was suboptimal. 

Krutzik et al. showed that staining for phospho-proteins should be carried out using a 

combination of formaldehyde and methanol fixation rather than PFA and saponin as 

used for the initial analysis on YO18 and H027 xenografts (Figure 4.11A) (Krutzik and 

Nolan, 2003). Subsequent analysis using this combination of fixation steps resulted in 

the observation that 96% of YO19 xenograft tumour cells express ρSTAT3 (Figure 

4.11B). Unfortunately this protocol was only optimized after all the tumours from the 

previous experiment (section 4.3.2.) had been analysed. 
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Figure 4.11. Flow cytometry analysis, of xenograft tumour cells, for levels of 

phosphorylated STAT3. Depleted Lin-CD31- human tumour cells from xenografts tumour were 

labelled for phosphorylated-STAT3 (-APC). A. Cells were fixed with 0.5% paraformaldehyde 

and permeabilised with 0.05% freshly made saponin from xenograft samples Y018 and H027. 

B. Cells were fixed with 0.5% formaldehyde and permeabilised with ice-cold methanol from 

xenograft sample Y019. Cells were subsequently labelled with a ρSTAT3-APC antibody (red), 

and analyses were performed to the unlabelled control (black) after dead cells and debris were 

gated out.  
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4.4. Tumour initiation frequency following ex vivo treatment 

of xenograft tumour cells 

4.4.1. Ex vivo treatment of xenograft cells with LLL12 

 
As shown in a previous experiment, Figure 4.6, there was a modest decrease in 

tumour growth following treatment with 2.5 and 3.75 mg/kg LLL12, however this 

decrease was not statistically significant. In that experiment, the effect of LLL12 was 

observed on established tumours. In this series of experiments, the effect on tumour 

initiation was studied.  

 
As the ex vivo treatment of human tumour cells depleted from xenografts was novel, it 

was essential to determine whether the cells were viable following ex vivo treatment. 

Therefore tumour cells were treated with DMSO (vehicle control) or LLL12 (10 nM – 10 

µM) overnight and the cells were counted using trypan blue exclusion, to exclude dead 

cells. The results showed that when cells were left untreated, treated with DMSO or 10 

nM LLL12, 40% of the cells were still viable. However when cells were treated with 100 

nM, 1 µM or 10 µM LLL12 there was a further decrease of 50% in viability to 19, 15 and 

13% respectively, compared to the untreated or vehicle control (Figure 4.12). These 

results were encouraging and the effect of LLL12 on tumour initiation of xenograft cells 

was carried out.  
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Figure 4.12. Effect on the viability of xenograft tumour cells, following ex vivo treatment. 

Lin-CD31- human tumour cells were extracted from a serially transplantable YO19 xenograft, 

treated overnight with 10 nm – 10 µM LLL12, DMSO or left untreated in SCM. After overnight 

(16 hours) treatment at 37°C 5%CO2, the percentage of viable cells was determined using 

trypan blue exclusion.  
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4.4.2. Effect of ex vivo treatment of the STAT3 inhibitor LLL12 on 

tumour initiation of Y019 xenograft.  
 
To determine if xenograft tumour cells were able to establish tumours following ex vivo 

treatment with LLL12, tumour cells were injected at limiting dilutions to determine 

tumour-initiating frequency. The results showed that xenograft tumour cells were still 

able to initiate tumours after treatment with the vehicle control, but tumours were not 

observed when cells were pre-treated with 10 µM LLL12 (Table 6). Moreover, the 

tumour initiating cell frequency of the vehicle control treated cells was very similar to 

those observed from directly engrafting Y019 Lin-/CD31- cells at limiting dilution; 1: 

1:433 (1:124 - 1:1,515) (results obtained with kind permission from Dr. Anne Collins). 

Also, the latency was similar: 37 days for directly engrafted cells and 35 days for ex-

vivo treated cells.  

 

Table 6. Tumour initiation frequency of Y019 xenograft, following ex vivo treatment.

 
 

The difference in tumour initiation became more obvious in the survival curve, the 

effect of ex vivo treatment with LLL12 was clearly significant (P<0.05) compared to the 

vehicle control (Figure 4.13) and also compared to the effect on established tumours 

(Figure 4.7).  

 

4.4.3. Flow cytometry analysis of xenograft tumours initiated 

following ex vivo treatment 
 

As the establishment of the xenograft tumours following ex vivo treatment was a novel 

approach, it was important to determine if there was a change in the content of 

different cells by phenotype. Tumours were analysed by flow cytometry for the 

expression of CD44, CD24 and levels of ρSTAT3 as shown in Figure 4.14. Results 

show that there were 54% CD44 expressing cells and 0.6% CD24 expressing cells. 

The majority of the cells (80%) also expressed ρSTAT3. These levels were similar to 

the levels observed from tumours that were established from directly engrafted Lin-

CD31- human tumour cells (Figure 4.9B, vehicle control). 

  

105 104 103 102 101 Tumour initiation frequency  
(95% confidence interval) 

DMSO control 2/2 2/2 2/2 1/2 0/2 1:161 (1:26 – 1:984) 

10 µM LLL12 0/2 0/2 0/2 0/2 0/2 - 
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Figure 4.13. Survival curve of Y019 xenograft, following ex vivo treatment of tumour cells. 

Xenograft tumours cells were engrafted after overnight treatment with 10 µM LLL12 or DMSO 

as vehicle control, tumour cells were then engrafted into Rag2-/-γC-/- mice at limiting dilutions 

(105 – 101 cells). A. Kaplan-Meier survival rate is shown, with LLL12 treated (green) compared 

to the vehicle control (DMSO) (black). Tumours were followed out to 120 days after 

engraftment. The Log-Rank test was performed for statistical analysis, P<0.05.  
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Figure 4.14. Flow cytometry analysis, of xenograft tumour initiated after overnight ex vivo 

treatment. Depleted Lin-CD31- human tumour cells from Y019 xenograft tumour, which was 

established after overnight treatment with DMSO, were labelled for CD44 (-FITC), CD24 (-PE) 

and phosphorylated STAT3 (-APC). Analysis was performed with debris and dead cells gated 

out, and relative to the unlabelled control. Overlay APC plot shows levels of phosphorylated 

STAT3 (red) relative to unlabelled control (black).  
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5. Discussion 
 

The aim of this study was to determine the importance of the JAK-STAT signalling 

pathway for the maintenance of prostate cancer cells, and more specifically the 

undifferentiated α2β1
hi/CD133+ cells, which are enriched for a more clonogenic and 

possibly tumour-initiating population. It has already been shown that IL-6, the IL-6 

specific receptor gp80 and the activation of the associated JAK-STAT signalling 

pathway is correlated with prostate cancer progression (Twillie et al., 1995; Hobisch et 

al., 2000; Mora et al., 2002). However, these studies were carried out on paraffin 

embedded prostate tissue or prostate cancer cell lines, whilst this study was performed 

on low-passage primary cell cultures, and ‘near-patient’ xenografts of prostate cancer, 

which is likely a better representation of the patient’s tumour compared to long-term 

cultured cell lines and cell line-derived xenografts. Previous work from our laboratory 

showed that IL-6 is overexpressed in the α2β1
hi/CD133+ (stem-like) population (Birnie et 

al., 2008). Therefore, further analysis was required to validate these findings. 

 

5.1. IL-6 is highly expressed by undifferentiated prostate cancer cells 

 

The results of this study have shown that the most undifferentiated cells (stem-like and 

TA cells) from a study of hormone-naïve and CRPC primary cultures expressed more 

IL-6 than the more differentiated CB cells (Figure 3.6). However this difference was 

only observed at the protein level. This may be due to patient variability and more 

consistent results might have been obtained if the same samples had been used for 

both (mRNA and protein) analyses. Due to the limited numbers of passages primary 

prostate cell cultures can undergo, this could not be achieved. It also became apparent 

that there was such variability between different patient’s samples, with the same 

disease status, that more samples need to be analysed to confirm these findings.  

Nonetheless, this analysis has shown that overall IL-6 expression is higher from 

hormone-naïve cultures compared to those from CRPC (Figure 3.2 / Figure 3.6). This 

is in contrast to other studies that show a positive correlation between IL-6 expression 

and Gleason grade (Twillie et al., 1995; Adler et al., 1999; Drachenberg et al., 1999; 

Royuela et al., 2004). However, those studies were immunohistochemical analysis of 

prostate tissue sections, and serum levels of IL-6 in prostate cancer patients. As the 

majority of cells in a primary culture are basal it is perhaps not surprising that these 

results do not correlate. Prostate cancer is characterized as an expansion of luminal 

cells with loss of the basal cells (Nagle et al., 1987). Unfortunately the luminal cells 
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(from both BPH and cancer samples) cannot be maintained in culture as they are non 

clonogenic (Collins et al., 2001). Interestingly, Royuelle and colleagues have shown 

that, in normal prostate tissue, IL-6 staining is mainly observed in the cytoplasm of the 

luminal cells with low intensity staining of the basal cells. This pattern was also 

observed in BPH tissue, where IL-6 was mainly observed on the luminal side of the 

epithelia, suggesting that IL-6 is mainly secreted by the luminal cells (Royuela et al., 

2004). Taken together, IL-6 is likely to be secreted by the majority of prostate cancer 

cells as well as from the inflammatory cells within the microenvironment (Hobisch et al., 

2000; Smith et al., 2001; Hodge et al., 2005; Corn, 2012). However, the rare cancer 

stem-like cells, within the basal population of prostate epithelial cells, also secrete high 

levels of IL-6 compared to the more committed basal cells (Figure 3.6). It has been 

accepted that IL-6 is an important growth factor for prostate cancer epithelial cells and 

IL-6 is clinically significant as elevated levels of IL-6 are associated with poor outcome 

(Giri et al., 2001; Smith et al., 2001). Nonetheless, the rare cancer stem-like cells also 

secrete high levels of IL-6, which might act as a survival factor as well as promoting 

cancer initiation through autocrine signalling. However, as surrounding cancer cells 

and cells from the tumour microenvironment also secrete IL-6, it is also likely that the 

cancer stem-like cells signal through paracrine signalling.  

 

As mentioned above, IL-6 levels correlate with disease progression, with IL-6 elevated 

in serum of patients with (metastatic) prostate cancer (Drachenberg et al., 1999). 

Moreover it has also been shown that the IL-6 concentration, in prostate cancer tissue, 

is increased (18-fold) compared to normal prostatic tissue (Giri et al., 2001). This 

analysis, by Giri and co-workers, was performed on protein extracts prepared from 

frozen sections (and analysed by ELISA) as compared to this study, where the levels 

of secreted IL-6 were analysed from cultured basal cells derived from primary samples. 

Nevertheless, the data shown here confirm that IL-6 is highly expressed in cells 

derived from prostate cancer samples compared to benign disease. 

These data suggest that IL-6 may act as a growth factor for prostate cancer cells, as 

well as facilitating prostate cancer progression to androgen-independent disease, since 

IL-6 is able to activate the AR in the absence of androgens (Lin et al., 2001; Lee et al., 

2003). It may also be involved in bone metastasis, as the levels of IL-6 are elevated in 

patients with evident metastases compared to localized prostate cancer (Adler et al., 

1999). IL-6 is also overexpressed in other types of malignancies, including multiple 

myeloma (Klein et al., 1995), renal cell carcinoma (Aoyagi et al., 1996), Kaposi’s 

sarcoma (Aoki et al., 1999), colorectal cancer (Kinoshita et al., 1999); suggesting that 

IL-6 is involved in basic mechanisms of tumourigenesis. However the molecular and 

cellular mechanisms by which inflammation influences malignancy is not fully 
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understood, which explains why treatment with anti-inflammatory drugs has not been 

fully exploited in prostate cancer (Bardia et al., 2009). This emphasises why further 

detailed investigation is necessary to understand the involvement of IL-6 in prostate 

cancer.  

 

It has also been suggested that IL-6 protects prostate cancer cells from cell death 

induced by certain chemotherapeutic agents, through activation of STAT3 (Lee et al., 

2004). This correlates with the expression levels of IL-6 by the stem-like cells from 

prostate cancer samples, since it is has been shown in other tissues that the CSCs are 

more resistant to chemotherapeutic agents (Murat et al., 2008). 

 

Studies have also shown that IL-6 is important to maintain the “stemness” of adult 

tissue stem cells. It was demonstrated in a transgenic mouse model of IL-6 

overexpression that there was a decrease in proliferation of neuroblasts with enhanced 

NSC self-renewal (Vallieres et al., 2002). Also, IL-6 enhances proliferation and protects 

undifferentiated bone marrow-derived MSCs from serum starvation-induced apoptosis, 

as well as inhibiting differentiation into adipocytes and chondrocytes (Pricola et al., 

2009). It has also been shown that IL-6 is secreted by basal-like breast cancer stem 

cells. As these cells also express high levels of STAT3 this suggests activation of the 

pathway via an autocrine loop (Marotta et al., 2011). Other reports have also shown 

that IL-6 is associated with a cancer stem cell phenotype with activation via an 

autocrine signalling loop (Sansone et al., 2007) or a paracrine feedback loop (Wang et 

al., 2009a).  

 

5.2. IL-6 receptor is expressed in a rare subpopulation of undifferentiated prostate 

cancer cells 

 

Although IL-6 is secreted by prostate cancer epithelial cells, and particularly prostate 

cancer stem-like cells, in order to activate the associated JAK-STAT signalling pathway 

the cells need to express the IL-6 specific receptor (gp80) (Heinrich et al., 2003). 

Initially, the presence of the IL-6 receptor, gp80 was detected in cell lines using 

Western blotting (Figure 3.7). The prostate cancer cell line PC-3 did not express the L-

6 receptor, in contrast to other findings (Santer et al., 2010). However Santer and 

colleagues detected the soluble IL-6 receptor, which might explain the results reported 

here, in which cell lysates were analysed rather than conditioned medium (Santer et 

al., 2010).  
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The IL-6 receptor gp80 was not detected in primary prostate cells when analysed by 

Western blot (Figure 3.7). However it has been shown that the IL-6 receptor is present 

in benign and malignant prostate tissue, by immunohistochemistry (Hobisch et al., 

2000). Therefore it could be that Western blot analysis was not an appropriate method 

to detect the IL-6 receptor in unselected primary prostate cells. In addition, Western 

blot analysis is not sensitive enough to detect protein in the stem-like population, due 

to limited cell numbers.  

 

It has been shown previously that the majority of the samples tested showed that less 

than 10% of the basal cells expressed the IL-6 receptor, whilst in most samples that 

were tested ~50% of the luminal cells expressed the IL-6 receptor. Moreover the IL-6 

receptor was expressed in all the prostate cancer samples that were analysed 

(Hobisch et al., 2000). The results shown in this study confirm these results, as all the 

secretory luminal cells, in benign prostate tissue, expressed the IL-6 receptor. 

However, it was also clear that rare cells within the basal layer also expressed the 

receptor (Figure 3.9C). Although this study shows that in BPH tissue, all the luminal 

cells express the IL-6 receptor, compared to 50% expression observed by Hobisch 

(Hobisch et al., 2000), only one benign tissue sample was analysed and quantification 

of the number of IL-6 receptor positive cells was not performed. Further analysis on 

prostate tissue sections was not performed, as the aim was to determine if the IL-6 

receptor was indeed expressed, and in which cells.  

 

In order to determine which basal cells express the IL-6 receptor, selected cells (from 

primary prostate cell cultures) were stained for the IL-6 receptor. The initial results 

show that the IL-6 receptor was present in >60% of the stem cells from benign 

samples, compared to >90% from a cancer sample (Figure 3.11D). Analysis of more 

samples is necessary to determine if this is a significant difference. These results also 

showed that expression of the IL-6 receptor decreased with differentiation, confirming 

the finding, by IHC, that only rare cells within the basal layer express the IL-6 receptor 

and explaining why detection of the IL-6 receptor by Western blot was unsuccessful.  

 

Flow cytometry was used to quantify the levels of IL-6 receptor expression. Primary 

cells were labelled with CD49b, which binds to the basal population and includes the 

transit amplifying and stem-like cells. The results showed that only a small proportion, 

2.3%, of the CD49b-positive cells expressed the IL-6 receptor, whilst ~20% of the 

CD49b-negative cells, which would include the more differentiated fraction, expressed 

the IL-6 receptor (Figure 3.12). As CD49b binds all basal cells, the finding that only 2% 

of this population expresses the IL-6 receptor backs up the data obtained by direct 
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immunofluorescence staining of selected cells (Figure 3.11). However this does not 

explain why a proportion (~20%) of the CD49b negative population are IL-6 receptor 

positive. One explanation for this discrepancy could be the selection process. For flow 

cytometry, all cells within a primary culture are labelled, whereas for direct 

immunofluorescence, cells were selected by rapid adherence (20 minutes) to collagen-

I. This process would select for stem-like cells and transit amplifying cells only (Collins 

et al., 2001). The remaining fraction would include all cells not adhering after 20 

minutes, but would exclude the cells that had not adhered after 3 hours (when the cells 

are fixed for antibody staining). As the more differentiated fraction does not adhere to 

type I collagen; they have less integrins on their cell surface (Collins et al., 2001) and 

the fraction expressing the IL-6 receptor would not be detected using this method. 

Samples labelled with CD133 and analysed by flow cytometry were difficult to analyse 

due to the rarity of the population. When triple staining this often resulted in ‘quenching’ 

of the CD133 signal. Moreover, autofluorescence in the APC channel was also 

problematic and most likely led to underestimation of the CD133 content. Studies have 

suggested that flow cytometry staining for CD133 expression is accurate, robust and 

specific but there are limitations due to the barely detectable levels compared to sorting 

using microbeads (Clement et al., 2009). Nevertheless, when flow cytometry analysis 

was performed on pre-selected α2β1
hi and α2β1

low cells and dual stained for CD133 and 

the IL-6 receptor, the results confirmed the results observed by immunofluorescence: 

i.e. that all the CD133 expressing cells also expressed the IL-6 receptor (Figure 3.14). 

 

This study is the first to show that rare stem-like cells in prostate cancer express the IL-

6 receptor as well as secreting high levels of IL-6. These data suggest that IL-6 

signalling plays an important role in prostate cancer stem-like cells, possibly via 

autocrine signalling. As the progenitor transit amplifying and more committed basal 

cells also secrete IL-6, although to a less extent, it is also possible that the more 

differentiated cells in prostate cancer support stem-like cell survival via paracrine 

signalling. These results support the evidence in glioblastoma, in which it was shown 

that the IL-6 receptor is elevated in GSCs compared to the non-stem glioma cells 

(Wang et al., 2009a). This study also showed that IL-6 is elevated in the non-stem 

glioma cells compared to the GSC and it was suggested that there was autocrine IL-6 

signalling in GSC as well as paracrine signalling between non-stem glioma cells and 

GSCs.  

 

The JAK-STAT pathway can also be activated through cytokines other than IL-6, such 

as LIF and OSM (Heinrich et al., 2003). It has been shown previously that the LIF 

receptor is exclusively expressed in the epithelium of BPH tissue (Royuela et al., 
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2004), but in that study no distinction was made between the basal and secretory 

luminal cells. Interestingly, their results also showed that the LIF receptor was only 

expressed in low Gleason grade cancer. Our results show that the LIF receptor is 

expressed solely on the secretory luminal cells in the normal gland (Figure 3.10). No 

further analysis was performed on selected populations of prostate cancer cell cultures 

or tissue as no evidence was found that rare basal cells expressed the receptor.  

It has also been shown that the OSM receptor is expressed in prostate (Royuela et al., 

2004). Royuela and colleagues found expression in the stromal and epithelial cells of 

benign prostate tissue by immunohistochemistry (Royuela et al., 2004). However we 

were not able to reproduce these results, despite using a number of different 

antibodies; staining was never observed. The study by Royuela does not distinguish 

between OSM receptor expression in basal or secretory luminal cells. However, as our 

results have shown that the stem-like cells expressed the IL-6 receptor and these cells 

also secreted high levels of IL-6, no further investigation toward the LIF- and OSM 

receptor was preformed.  

 

5.3. STAT3 is constitutively activate in primary prostate cells 

 

As IL-6/IL-6R complex is directly associated with the JAK-STAT signalling pathway, we 

wanted to determine the activation status of this pathway. Binding of IL-6 to the IL-6 

receptor initiates activation of JAK kinase, which phosphorylates and activates STATs 

(Heinrich et al., 2003). There are seven different STAT family members, but IL-6 is only 

able to activate STAT1 and STAT3 (reviewed in (Ihle, 2001)). Several studies have 

shown that STAT3 is constitutively active in a variety of human malignancies, including 

leukaemia (Gouilleux-Gruart et al., 1996), head and neck squamous cell carcinoma 

(Grandis et al., 1998), melanoma (Niu et al., 2002a), glioblastoma (Rahaman et al., 

2002), breast (Garcia et al., 2001), lung (Song et al., 2003), colorectal (Corvinus et al., 

2005) and prostate cancer (Dhir et al., 2002; Mora et al., 2002). It has also been shown 

that STAT3 is constitutively active in lymph node and bone metastases of clinical 

prostate cancers, so it is thought that STAT3 is involved in the progression of prostate 

cancer metastasis (Abdulghani et al., 2008). 

 

It has been shown that STAT3 is constitutively active in human prostate tumours, as 

well as cell lines. Moreover increased levels of activated STAT3 correlates with high 

Gleason grade prostate cancer (Mora et al., 2002). The results in this study confirm 

that STAT3 (Tyr705) is constitutively active in several primary prostate cell cultures 

derived from benign and malignant disease (Figure 3.15). The results also show that 3 

out of 5 cancer samples analysed, have higher levels of ρSTAT3 compared to two 
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benign samples analysed. However, the cancer samples from low Gleason grade (3+3) 

tumours expressed higher levels of ρSTAT3 compared to two samples from higher 

Gleason grade (4+4) tumours, which conflicts with data from Mora and colleagues. 

However in that study, the levels of ρSTAT3 were analysed in prostate cancer tissue 

samples, which mainly consist of luminal cells (Mora et al., 2002), compared to the 

levels of ρSTAT3 in amplified basal cells, shown in our study. Due to variation between 

patients it is likely that many more samples should be analysed before drawing any 

conclusions from this data regarding STAT3 activation and Gleason score in prostate 

cancer.  

 

In addition to its role in tumourigenesis, STAT3 is also an important regulator of stem 

cells. It has been shown that STAT3 activation is important for the self-renewal and 

maintenance of mES cells, although activation is dependent on LIF (Niwa et al., 1998; 

Matsuda et al., 1999). However STAT3 activation is not required to maintain hES in an 

undifferentiated state (Daheron et al., 2004; Humphrey et al., 2004; Ying et al., 2008). 

Furthermore, there is data which suggests that STAT3 activation is important for tissue 

specific stem cells, such as neural stem cells (Gu et al., 2005) and small-intestine crypt 

stem cells (Matthews et al., 2011), and more recent studies show the importance of 

STAT3 activation for cancer stem-like cell populations of glioblastoma (Sherry et al., 

2009), breast cancer (Zhou et al., 2007) and liver cancer (Tang et al., 2008). So far, the 

link between STAT3 activation and prostate cancer stem-like cell maintenance has not 

been shown.  

 

Unfortunately, we have not been able to show activation of STAT3 in enriched stem-

like cells from primary prostate cells. One reason being that Western blot analysis is 

not sensitive enough to detect protein in the rare stem-like population (0.1%). Another 

method that was used to detect the levels of ρSTAT3 and total STAT3 in cells was a 

cell-based ELISA. However, this method required at least 10,000 cells and was not 

sensitive enough to determine the activation status of stem-like cells. Flow cytometry 

and immunofluorescence are able to detect the expression levels of ρSTAT3 at a 

single cell level. However, at the time of analysis, it would not have been 

straightforward to detect the levels of ρSTAT3 relative to total STAT3 at a single cell 

level. Since then, kits have become commercially available (Millipore) that allow the 

monitoring of changes in protein expression and post-translational modification, 

simultaneously, using flow cytometry. As IL-6 and the IL-6 receptor are highly 

expressed by the undifferentiated stem-like cells, and STAT3 is constitutively active in 

whole populations of primary prostate cells it is plausible that the pathway is activated 

in the stem-like population. However, so far this has not been confirmed. 
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5.4. Successful inhibition of STAT3 phosphorylation, using an anti-IL-6 antibody 

and small molecule inhibitor  

 

As STAT3 is constitutively active in prostate cells, in both benign and malignant 

disease, the effect of inhibiting STAT3 phosphorylation on cell fate was determined. A 

widely used inhibitor of the JAK-STAT signalling pathway is P6, which is a reversible 

ATP inhibitor and has been found to inhibit JAKs in the low nanomolar rnage (IC50, 1 -

15 nmol/L) which is 100-fold more effective than previously developed compounds 

(Thompson et al., 2002). It has been shown that P6 is able to inhibit ρSTAT3 in a 

variety of malignancies including, prostate cancer cell lines (Pedranzini et al., 2006; 

Azare et al., 2007; Berishaj et al., 2007; Song et al., 2011). We confirmed that 

treatment of primary prostate cells, with 5 µM P6 for 16 hours, resulted in 98% 

inhibition of STAT3 phosphorylation compared to the vehicle control (Figure 3.16). 

Those results were from whole cell lysates, but we also wanted to determine if P6 was 

able to inhibit nuclear translocation of phosphorylated STAT3. This is important as 

ρSTAT3 in the nucleus activates gene transcription, such as activation of SOCS3. 

SOCS3 is induced via the JAK-STAT signalling pathway and subsequently inhibits 

STAT3-mediated signal transduction; a classical feedback inhibitor (Starr et al., 1997; 

Heinrich et al., 2003). The expression of SOCS3 is increased in prostate cancer, 

suggesting inactivation of JAK-STAT signalling (Puhr et al., 2009), however a patients 

subgroup have been identified with methylated SOCS3 status and correlated absence 

of SOCS3 and these patients have an aggressive cancer phenotype and poor 

prognosis (Pierconti et al., 2011). It has also been shown that another regulator of JAK-

STAT signalling, PIA1, is overexpressed in prostate cancer, which has been suggested 

to act as a regulator of cell proliferation (Hoefer et al., 2012). So even though these 

proteins are known as tumour suppressors in many types of cancer, the function in 

prostate cancer appears to be different.  

Nevertheless, in order to determine if ρSTAT3 is inhibited in the nuclear of primary 

prostate cells, we used the expression of SOCS3 as a control. Our results show that 

SOCS3 is expressed in a primary cancer culture (Gleason 3+3), as SOCS3 was not 

inhibited after 16 hours of treatment with P6, even though inhibition of ρSTAT3 in the 

nucleus was observed. The treatment needed to be extended to 48 hours in order to 

observe inhibition of the SOCS3 target gene (Figure 3.17). Although this was observed 

in one sample, the results could not be reproduced in different samples. This was 

because the staining for the nuclear loading control (TBP) was inconsistent, so the 

results could not be quantified (results not shown). It is important to determine if 

inhibitors are able to prevent STAT3 activation and translocation to the nucleus, as this 

is where it can activate target genes such as SOCS3 but also several proliferating 
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genes, such as c-myc, and cyclin-D, anti-apoptotic genes such as Bcl-xl and survivin, 

or angiogenic genes such as vascular endothelial growth factor (VEGF) (Bromberg et 

al., 1999; Kiuchi et al., 1999; Puthier et al., 1999; Niu et al., 2002b; Gritsko et al., 

2006).  

One approach to targeting STAT3 is through direct inhibition using antisense or siRNA 

molecules, or small molecule inhibitors. Another approach would be to target the 

upstream ligands responsible for STAT3 activation. It has been shown in malignancies, 

including prostate cancer cell lines, that IL-6 is responsible for activation of STAT3 (Lou 

et al., 2000; Gao et al., 2007; Grivennikov et al., 2009), which is perhaps not surprising 

as IL-6 is an inflammatory cytokine and the link between cancer and inflammation has 

been widely accepted (Coussens and Werb, 2002; De Marzo et al., 2007; Maitland and 

Collins, 2008a). Moreover, it has been shown that IL-6 is involved in the growth and 

progression of prostate cancer (Smith and Keller, 2001).  

In this study, commercially available neutralizing antibodies were used to target 

STAT3, but did not result in a significant decrease in ρSTAT3 levels, not even when 

the dose was increased, since the effect of a neutralizing antibody does depend on the 

amount of ligand being expressed. However, compared to the IgG control, which 

showed a non-specific effect, there was no decrease in levels of ρSTAT3 with a higher 

dose of neutralizing antibody (Figure 3.18). Most studies have used an anti-IL-6 

antibody from Centocor, which is a chimeric monoclonal anti-IL-6 antibody with specific 

neutralizing activity (Steiner et al., 2006; Guo et al., 2010; Song et al., 2011). CNTO 

328 has been used in a number of phase I/II clinical trials including CRPC (Trikha et 

al., 2003; Wallner et al., 2006; Fizazi et al., 2012) where it was well tolerated. It was 

confirmed in this study that CNTO 328 was able to decrease ρSTAT3 levels in primary 

prostate cells (Figure 3.20). These results confirmed that STAT3 is activated upon 

stimulation of IL-6 in primary prostate cell cultures. The effect of CNTO 328 treatment 

on prostate cell lines is intriguing. When a subline of LNCaP cells: LNCaP-IL-6+, which 

does not respond to androgen ablation (Hobisch et al., 2001), were treated with 

CNTO328, an increase in ρSTAT3 was observed. However, the growth stimulatory 

effect of IL-6 in this cell line is associated with stimulation of the MAPK or PI3K 

pathway (Chung et al., 2000; Steiner et al., 2003). Treatment of LNCaP-IL-6+ tumours 

with CNTO 328, resulted in a decrease in tumour volume, but significance was not 

achieved. Nonetheless, there was a decrease in the number of Ki67+ cells (Steiner et 

al., 2006). This insignificant decrease in an androgen-independent xenograft, after 

treatment with CNTO 328, does correlate with results shown in a phase II clinical trial 

where patients with CRPC were treated with CNTO 328, but did not show an 

improvement in clinical outcome (Fizazi et al., 2012). It is thought that IL-6 regulates 

the transformation to CRPC, as an increase in IL-6 has been observed, and IL-6 has 
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been shown to activate AR mediated gene expression (Chen et al., 2000). It has also 

been shown that overexpression of IL-6, through activation of STAT3, protects LNCaP 

cells from undergoing apoptosis induced by androgen deprivation therapy (Lee et al., 

2004). However, the underlying molecular mechanisms behind this are poorly 

understood.  

 

When LuCaP-35 cells and androgen-dependent xenografts were treated with CNTO 

328 there was a significant decrease in tumour growth and cell proliferation with an 

associated increase in apoptosis (Wallner et al., 2006). In this study, the primary 

prostate cells that showed a decrease in ρSTAT3 levels with treatment, were derived 

from hormone-naïve samples (Figure 3.20). These, and data from other groups, 

suggest that anti-IL-6 therapy may be beneficial only for a subgroup of prostate cancer 

patients. In this study it was not investigated whether treatment of primary prostate 

cells with CNTO 328 resulted in a decrease in proliferation, using Ki67 staining, or if it 

increased apoptosis. However, there was an effect on the clonogenic ability of 

hormone-naïve as well as CRPC samples following treatment with CNTO 328 (Figure 

3.27). This result confirms other findings in prostate cancer cell lines, in which the 

proliferative ability was affected (Steiner et al., 2006; Wallner et al., 2006). However for 

future experiments, it would be interesting to determine CNTO 328 effects on 

proliferation and apoptosis using primary prostate cancer cells.  

 

As P6 and CNTO 328 are not direct STAT3 inhibitors, a recently developed small 

molecule that directly targets STAT3, was used. LLL12 has been shown to inhibit 

constitutively activated STAT3 in a variety of human cancer cells, including breast (Lin 

et al., 2010) pancreatic cancer (Liu et al., 2011), glioblastoma (Ball et al., 2011) and 

multiple myeloma (Lin et al., 2012). The results of this study are the first to confirm that 

LLL12 is able to decrease ρSTAT3 levels in primary prostate cancer cells (Figure 

3.22). The results also suggest that the cells undergo apoptosis (Figure 3.22A), but this 

has not been confirmed quantitatively. Nonetheless other studies confirmed that 

treatment with LLL12 impaired cell proliferation and viability (Ball et al., 2011; Wei et 

al., 2011; Lin et al., 2012). This is not surprising, as activation of STAT3 plays an 

essential role in preventing apoptosis through activation of anti-apoptotic proteins 

(Catlett-Falcone et al., 1999). 
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5.5. Inhibition of STAT3 phosphorylation resulted in a decrease in the cell survival 

of the undifferentiated stem-like cells from primary cancer samples 

 

The intention of this study was to determine the importance of STAT3 activation on the 

fate of the rare stem-like population. Although treatment with STAT3 inhibitors resulted 

in a significant decrease in ρSTAT3 levels in primary prostate cancer cells, there was 

variability in the effect on colony forming recovery post treatment. There was a distinct 

difference between the CFE of the stem-like and TA/CB population, and the trend 

between the TA and CB population was always similar (Figure 3.24). Therefore the 

selection process was minimized to CD133 selection, resulting in CD133+ (stem-like) 

cells and CD133- (progenitor) cells.  

 

As shown in Figure 3.24A/B, there was a decrease in the colony formation ability of the 

undifferentiated stem-like cells (CD133+) when STAT3 phosphorylation was inhibited 

using P6, with cells derived from high Gleason grade hormone-naïve prostate cancer. 

These results suggest that prostate cancer stem-like cells require STAT3 

phosphorylation for survival. Interestingly, the progenitor (CD133-) cells showed an 

increase in CFE, suggesting that treatment had increased the number of differentiated 

TA/CB cell type. However it would be important to determine if these progenitor cells 

have the properties of cancer stem-like cells, such as tumour initiation and therapy 

resistance (Dean et al., 2005).  

 

It has been shown previously that CD133+ cells from benign prostate undergo fewer 

population doublings than CD133+ cells from primary and metastatic tumours (Collins 

et al., 2005). It was therefore not surprising that the CFE from the different cell 

populations derived from benign disease was lower than those from cancers. It has 

also been shown that the CFE from primary cultures of prostate epithelial cells is very 

variable; 0.9 – 18% from unselected epithelial cells. (Hudson et al., 2000). Our results 

confirm these results, as the stem-like cells, derived from primary cancer samples, 

varied from 0.72 – 20.5 (average 6.4%), when cells were treated with DMSO (control). 

However to improve the CFE of selected primary prostate epithelial cells, a Rho-ROCK 

inhibitor was used as it has been shown to improve the CFE of murine prostate 

stem/progenitor cells (Zhang et al., 2011). As shown in Figure 3.25, treatment with a 

ROCK inhibitor only showed improvement in the CFE of the TA population. These 

results indicate that human prostate progenitor cells, and not stem cells, are 

susceptible to dissociated induced apoptosis.  
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The increase in colony formation, following treatment with P6, was also observed in 

Gleason 7 and CRPC samples, in both populations (CD133+ and CD133-) (Figure 3.24 

/ Figure 3.26). This is in contrast to a study on multiple myeloma that showed growth 

inhibition of cancer cells with P6 treatment (Pedranzini et al., 2006). In the study by 

Pedranzini and colleagues, cell viability decreased by 40% with treatment. There was 

also a lot of variability between patient’s samples, but nonetheless, the results shown 

here are surprising as it is known that STAT3 activation correlates with prostate cancer 

progression, and antisense STAT3 oligonucleotides have been shown (in prostate 

cancer cell lines) to induce growth inhibition and apoptosis (Mora et al., 2002). 

Moreover, activation of STAT3 increased expression of anti-apoptotic genes (Catlett-

Falcone et al., 1999). 

 

In contrast to P6, treatment with either anti-IL-6 antibody or a specific phospho-STAT3 

inhibitor (LLL12) did result in a significant decrease (P<0.05) in colony formation 

efficiency of the stem-like population (Figure 3.27). The differences observed could be 

due to the lower half-life of P6. P6 is rapidly taken up by cells, and has a half-life of at 

least 6 hours (Pedranzini et al., 2006), compared to an average of 17.3 days for CNTO 

328 (Trikha et al., 2003). As the cells are only pre-treated and not maintained in the 

presence of the inhibitor for the colony formation assays, it could be that the cells 

treated with P6 become STAT3 activated again and therefore no significant inhibition of 

colony formation was observed.  

 

Treatment with the anti-IL-6 antibody (CNTO 328) resulted in a decrease in colony 

formation in the stem-like population (Figure 3.27). The progenitor (CD133-) cells 

showed more variability but overall there was no significant difference compared to the 

control. These results are not unexpected as it is thought that the prostate cancer 

stem-like cells are likely to depend more on IL-6 for survival due to the overexpression 

of IL-6 in this cell population. These data confirms that the stem-like cells require 

STAT3 activation, through IL-6, for survival. This is similar to work on Glioma stem 

cells, although this study used a different approach: an IL-6 specific receptor 

knockdown. Nevertheless, the results did show that the GSC knockdown cells had a 

decreased ability to form neurospheres (Wang et al., 2009a).  

 

LLL12 treatment has been shown to inhibit STAT3 activation in breast cancer, 

medulloblastoma and glioblastoma cell lines (Lin et al., 2010; Ball et al., 2011). Most 

studies have shown that LLL12 inhibits growth of (unselected) cancer cells, although 

one study has shown that STAT3 is necessary for the proliferation and survival of 

cancer initiating cells in colon cancer (Lin et al., 2011).  
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5.6. In vivo inhibition of STAT3 phosphorylation, using LLL12, resulted in a 

decrease in tumour growth 

 

For decades, preclinical cancer therapeutics have been based on the use of human 

cancer cell line cultures and of xenografts derived from these cell lines. Neither of 

these models consistently predict efficacy in clinical trials, resulting in two major 

barriers to the successful translation of new cancer therapeutics, (1) drug development 

research is based on these models that ultimately fail in clinical trials and (2) many 

potentially beneficial therapies that might be valuable in humans are discarded 

because they fail to show efficacy in these conventional cell cultures and xenograft 

models (Daniel et al., 2009). Therefore it is important to use a preclinical model that 

has closer characteristics to the patients’ tumour. The unique xenograft model used in 

this study was established by engrafting fresh prostate biopsies into Rag2-/-γC-/- mice. 

The xenografts are i) near patient, ii) established from primary tumours and iii) have 

been derived in NK null mice, which has been shown to result in higher rates of 

engraftment (Shultz et al., 1995; Goldman et al., 1998). The resulting tumours are 

largely of an intermediate phenotype (CD44+/CD24+/AR+). The lack of structure within 

the tumour mass in the xenograft model used in this study is typical of mouse 

xenografts of prostate cancer (Wang et al., 2005; van Weerden et al., 2009). 

Nonetheless, it has already been shown that using a patient-derived human tumour 

tissue xenograft model, more accurately reflects the in vivo situation than cancer cell 

line derived xenografts (Huynh et al., 2006).  

 

With the use of the ‘near patient’ prostate cancer xenograft model, it was shown that 

treatment with LLL12, resulted in a modest growth inhibition compared to the vehicle 

control, however significance was not reached. This was mainly due to the high 

variability observed between mice, despite using ten mice per group. This modest 

inhibition in tumour growth with LLL12 was also observed in a variety of other 

malignancies, including breast cancer, glioblastoma, osteosarcoma and colon cancer 

(Lin et al., 2010; Lin et al., 2011; Onimoe et al., 2012). To our knowledge, this is the 

first data that shows inhibition in tumour growth after treatment with LLL12, in prostate 

cancer xenografts. The results published by other studies, show a growth inhibition of 

2.5 – 5 fold following treatment with LLL12. The growth inhibition shown here was very 

similar; ~2 fold decrease in growth compared to the vehicle control at day 15 (Figure 

4.6). Even though the concentration of LLL12, used in this study, was lower (3.75 – 2.5 

mg/kg) compared to most studies (10 – 5 mg/kg), as the Rag2-/-γC-/- mice did not 

tolerate the drug as well as NUDE or NOD/SCID mice (Lin et al., 2011; Onimoe et al., 

2012). Also, due to the high variability observed, this 2-fold decrease was not 
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significant and highlights one disadvantage of using a model, which is ‘near patient’ as 

these models are less predictable and much harder to synchronise for growth studies 

than conventional cell lines. Nonetheless, they are more likely to reflect the patients’ 

tumour and future studies will have to be carried out with more mice per group to 

reflect this variability. Also, even though the cells were derived from the same 

xenograft and were set up simultaneously, the established tumours did not 

synchronize, which made the treatment with LLL12 more challenging. It also resulted in 

failure of the first two experiments, as only 11/30 and 1/30 mice grew tumours. 

Nonetheless, with the third experiment (reported here) more success was achieved as 

27/30 mice grew tumours. 

 

Due to the low passage of these ‘near patients’ xenografts, the resultant tumour does 

accurately reproduce the heterogeneity of the human cancer. However it also results in 

a model that is somewhat unpredictable in terms of growth incidence and tumour 

latency, which becomes apparent when setting up a large experiment. This will be one 

of the challenges that need to be overcome once this model is regularly used for 

testing preclinical drugs. 

Another challenge was that the tumours were asynchronous, this meant that the 

treatment had to be delayed until enough mice (>5 per group) had measurable 

tumours. Ideally treatment would start when tumours were 5mm, therefore a 

compromise had to be found between enough mice per group in order to get enough 

data, but minimal variation in tumour size. The growth curve was calculated as the 

relative change in tumour growth (percentage between to measurements), to minimize 

this effect.  

The high variability observed, in tumour growth, within the same treatment groups 

made it impossible to determine if LLL12 affected tumour growth. Although 

measurement of tumour size is important in preclinical animal studies when assessing 

drug response, it is known that calculation of tumour size using direct caliper-based 

measurements are often affected by errors due to variability in tumour shape, skin 

thickness and subcutaneous fat layer thickness. It has been shown that microCT 

scanning is more accurate than external caliper measurements and microPET 

scanning (Jensen et al., 2008). Unfortunately this technique was not available to us in 

this study. Therefore, the results were also represented by a Kaplan-Meier survival 

curve (Figure 4.7). These results show that there was a small survival advantage, after 

treatment with LLL12, however again significance was not achieved.  

 

Despite the modest effect of STAT3 inhibition on tumour growth the data correlates 

with results with a number of prostate xenografts: the PC-3 cell line (Smith and Keller, 



 

 183 Discussion 

2001), the LNCaP-IL-6+ cell line (Steiner et al., 2006) and LuCAP 35 xenografts 

(Wallner et al., 2006). Wallner and colleagues have also shown that treatment with 

CNTO 328 prevents conversion of the androgen-dependent phenotype to an 

androgen-independent phenotype. 

 

The variation in tumour growth, within the same treatment group, could also be due to 

the inefficient inhibition of STAT3 phosphorylation. It has been challenging to show the 

status of STAT3 phosphorylation after treatment, as shown in Figure 4.10. Some of the 

mice from the control group had undetectable levels of ρSTAT3, although this could be 

due to limited protein concentration. However, ρSTAT3 was detected in a number of 

tumour lysates from the treatment group, suggesting that there is variability in 

bioavailability of the drug between mice. However there is currently no evidence to 

suggest that this small molecule is unstable or has poor cell permeability. The Western 

blot analysis for levels of ρSTAT3, on a number of tumour cell lysates, after treatment 

with LLL12, showed two bands for ρSTAT3 (Figure 4.10). This might have been 

contaminating mouse cells, reacting with the antibody, however it could also be that it 

represents two STAT3 isoforms: alpha and beta. Whereby the STAT3α is the full-

length isoform and STAT3β is the truncated isoform, which lacks the C-terminal 

activation domain and is generally considered the dominant negative form 

(Caldenhoven et al., 1996). It has also been shown that the STAT3α isoform seems to 

modulate IL-6 signalling (Maritano et al., 2004) and STAT3β has shown to be involved 

in granulocytic differentiation (Hevehan et al., 2002). So each isoform might have its 

specific function. However there is no evidence for the differentiation effect in prostate 

cancer.  

 

STAT3 has also been shown to regulate VEGF expression, which is involved in 

angiogenic signalling and overexpression of VEGF is involved in prostate cancer 

metastasis (Balbay et al., 1999). It has been shown in osteosarcoma that in vivo 

treatment with LLL12 resulted in tumour inhibition but also in decreased expression of 

VEGF (Bid et al., 2012), suggesting that treatment with LLL12 can also decrease the 

angiogenic activity and potentially prevent metastasis. In this study, the effect of 

STAT3 inhibition, using LLL12, on the expression of VEGF has not been investigated. 

However it would be of interest as metastasis is linked to the cells with a stem-like 

phenotype, and moreover metastasis is the predominant cause of lethality in cancer 

patients (Patrawala et al., 2006; Visvader and Lindeman, 2008). This would require 

investigation about the rate of metastasis in our tumour model, which is currently 

unknown.  
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5.7. Treatment of Y018 xenograft with LLL12 resulted in an increase in cells with a 

luminal phenotype  

 

Following treatment with LLL12, there was a significant increase in the number of 

CD24+ cells (Figure 4.9), which is a marker for the luminal cells in prostate tissue. This 

could also explain why there was only a modest inhibition in tumour growth with LLL12 

treatment, as inhibition of STAT3 activation might not result in cell death (in the majority 

of cells) but instead result in differentiation to a more luminal phenotype. As reported 

here and supported by others, CSCs secrete high levels of IL-6, and appear to be 

constitutively active, yet the non-stem cell fraction secrete much lower levels of IL-6 

(Marotta et al., 2011). This suggests that the undifferentiated CD44+CD24- cells require 

high levels of ρSTAT3 for survival and that these cells differentiate into CD44-CD24+ 

cells when the levels of ρSTAT3 are decreased.  

In vitro inhibition of STAT3 has also been shown to reduce the number of CD44+ cells, 

and this was associated with an increase in apoptosis. This decrease in CD44+ was 

also coupled with an improvement in sensitivity to radiotherapy (Chen et al., 2010).  

Therefore CD44 promotes the viability of stem-like cells, in addition to marking them 

(Gotte and Yip, 2006). Our data also shows an increase in cell death after LLL12 

treatment but this effect was not significant. This was shown using the percentage 

dead cells using a live/dead stain. However there was no distinct difference in 

morphology from the H&E tissue sections, such as necrotic areas (Figure 4.8). 

Although this does needs to be confirmed in a quantifiable manner, using apoptotic 

markers. That inhibition of STAT3 resulted in cell death is not unexpected, as IL-

6/STAT3 signalling activates the regulation of several anti-apoptotic genes.  

 

High levels of activated STAT3 are associated with higher Gleason scores (>7), which 

is indicative of more aggressive and poorly differentiated tumours (Mora et al., 2002). 

These poorly differentiated cells express high levels of CD44 (Murant et al., 1997), and 

this cell population is enriched for prostate cancer tumour stem/progenitor cells (Collins 

et al., 2005; Patrawala et al., 2006). Our results confirm that inhibition of STAT3 

activation can lead to an increase in the number of luminal cells, but there was no 

decrease in the number of CD44+ cells. This was puzzling, but it has been reported that 

LLL12 treatment is mostly effective in tumours with high levels of ρSTAT3 (Lin et al., 

2010). Future analysis on tumours with variable levels of ρSTAT3 should address this 

point. It has been shown previously that CD24+ cells express high levels of AR and are 

dependent on AR for their survival (Kyprianou and Isaacs, 1988a; Sar et al., 1990), 

which means that these cells are susceptible to therapies that target the AR. It has 

been hypothesised that AR targeted treatments will eradicate the bulk of the non-
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tumour-initiating  (CD24+) cells, whilst the AR-negative cancer stem-like population will 

be resistant and tumours will regrow (Collins and Maitland, 2006). So therefore it would 

be important to determine if treatment with LLL12, which resulted in an increase in 

CD24+ expressing cells, results in tumours that are more susceptible to conventional 

treatment strategies.  

 

Confirmation that inhibition of STAT3 activation, after in vivo treatment of an 

established xenograft tumour, potentially results in more differentiated luminal cells, 

which are non-tumourigenic, is to carry out secondary tumour formation assays. An 

increase in CD24+ cells would be expected to delay tumour initiation as CD44+ cells are 

able to initiate tumours at low cell numbers compared to CD24+ cells (Hurt et al., 2008; 

Maitland et al., 2011) suggesting that the CD44+ fraction contains the cancer stem cell.  

 

5.8. Ex vivo treatment of xenograft tumour cells with LLL12 resulted in improved 

survival 

 

If STAT3 inhibition does result in differentiation to a non-tumourigenic phenotype, then 

as mentioned above this would result in a reduction in the frequency of tumour 

initiation. Indeed, it was observed that ex vivo treatment with LLL12 resulted in the 

complete inhibition of tumour formation in the mice. This was not due to cell death after 

treatment, as trypan blue exclusion was used to determine the percentage of live cells 

engrafted. The concentration of drug used in this analysis was 10-fold higher to that 

used for the in vitro clonogenic recovery assays, as the initial experiments showed was 

no difference in cell viability at both concentrations (Figure 4.12). As tumour initiation 

was completely abolished there is some uncertainty, thus treating the cells with a lower 

dose is important to determine if this effect can be repeated at a lower dose. The most 

recent data, performed Dr. Anne Collins, also showed complete abolishment of tumour 

initiation when xenograft tumour cells were treated ex vivo with 5 µM LLL12. Tumours 

were only observed from the DMSO-control group and from ex vivo treatment with 0.5 

and 1 µM LLL12. Pairwise tests for differences in tumour frequencies determined that 

treatment with 1 µM LLL12, but not 0.5mM LLL12 significantly reduced the ability to 

initiate tumours (P<0.01). Characterisation of tumours, from ex vivo treatment 1 µM 

LLL12, showed that treatment induced differentiation to a more luminal phenotype as 

the majority of cells expressed CD24. Interestingly only 1% of the cancer cells 

expressed ρSTAT3 following treatment. These data confirm the initial results shown 

here (Figure 4.13) and demonstrate that LLL12 is potent at suppressing tumour 

initiation of human prostate cancer cells in vivo. 
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These results also show that xenograft tumour cells can survive in culture and maintain 

tumorigenic potential. The latency, tumour initiation frequency and cell content of the 

established tumour did not change compared to a tumour that was established from 

directly engrafted Lin-/CD31- cells (Table 6 / Figure 4.14). These results show that 

treatment can be useful for drug/compound testing in cells derived from ‘near patient’ 

xenografts, but it will be important to establish if these xenograft cells can be treated for 

a longer period of time as certain drug/compounds might require this. This could be an 

important tool for screening compounds in a more relevant pre-clinical model (Figure 

5.1). Especially as we are currently unable to culture primary prostate epithelium long 

term in vitro, and re-xenograft efficiently into Rag2-/-γC-/- mice (Maitland et al., 2011).  

The results shown in this study indicate that STAT3 activation is important for prostate 

cancer stem-like cell survival. This became evident when xenograft tumour cells were 

unable to initiate tumour growth, after ex vivo treatment with a STAT3 inhibitor. If 

inhibition of STAT3 only has an effect on the survival of the stem-like population, within 

prostate cancer, it is not surprising that there was no significant inhibition observed on 

tumour growth of an already established tumour, particularly as this stem cell 

population is very rare within the bulk population of the tumour. This data also 

correlates with results shown in phase II clinical trials, whereby patients with CRPC 

were treated with CNTO 328, but unfortunately did not show any improvement in their 

overall survival (Dorff et al., 2010; Fizazi et al., 2012). 

 

It will also be important to investigate if ex vivo treatment with LLL12 affects all the 

different cells types within the tumour mass or if a specific population is more 

susceptible. This can be done by treating unselected cells ex vivo, followed by cell 

sorting and engrafting CD44+ and CD24+ cells. It has been shown that expression of 

CD44 is correlated with radio sensitivity (Chen et al., 2010), again suggesting that 

targeting the CD44+CD24- cells could be potential therapeutic target.  

 

Thus, the ‘near patient’ prostate cancer xenograft model, used in this study, can be 

used to (1) treat established tumours to determine the effect of newly developed 

therapeutics on tumour growth, and (2) to determine the effect of therapeutics on the 

tumour initiation population, which can be done by treating the xenograft tumour cells 

ex vivo prior to engraftment. If there is an effect on the tumour initiation (CSC) 

population, this will become apparent in the (secondary) tumour formation frequency 

(Figure 5.1). 
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Figure 5.1. In vivo pre-clinical model for testing prostate cancer stem cells therapeutics. Serial transplantable ‘near patient’ xenograft tumour are dissociated 

into single cells and depleted for mouse Lin+CD31+ cells. The lin-CD31- human tumour cells can either be treated with newly developed therapeutics overnight or 

directly engrafted back into the Rag2-/-γC-/- mice. Tumour growth will be monitored and treatment starts when the established tumours reaches 5 mm. Once the 

tumour is 15 mm in size, the Lin-CD31- cells will be depleted and analysed for the content of cell phenotypes, re-engrafted for secondary tumour formation, or 

treatment stopped to determine time to relapse.  



 

 188 Discussion 

5.9. Summary  

 

In this study, evidence has been presented which shows that the stem-like cells from 

primary prostate samples (cancer and benign disease) have constitutively active JAK-

STAT signalling, and that this activation is most likely via IL-6 stimulation. Elevated 

levels of IL-6 were observed in the prostate cancer stem-like population, which also 

express the IL-6 receptor, suggest that activation of the JAK-STAT signalling pathway 

in this population is important for cell survival. More evidence for this hypothesis was 

demonstrated when cells were treated with anti-IL-6 and small molecule inhibitors 

against STAT3 (Tyr705), which resulted in a significant reduction in the ability of stem-

like cells to form colonies. Moreover, ex vivo treatment resulted in an abolition of 

tumour initiation. This is the first report on the importance of IL-6/STAT3 in cancer 

stem-like cells in the prostate, and correlates with what has been shown in 

glioblastoma and colon cancer (Wang et al., 2009a; Lin et al., 2011). The autocrine 

loop of IL-6 signalling might also play an important role in the transformation to CRPC, 

as the stem-like cells are protected from undergoing apoptosis during standard of care 

treatment. As IL-6 is able to activate AR gene expression this could lead to an 

androgen-independent cell type, which expands in a castrate-resistant tumour. 

Therefore targeting IL-6 might prevent progression to CRPC as well as eradicating 

targeting the stem-like cells within the tumour.  

 

A model is proposed in which undifferentiated prostate cancer stem-like cells have high 

levels of ρSTAT3 due to elevated levels of IL-6. Activation of STAT3 can occur either 

via an autocrine route or paracrine activation via other cell types, such as the 

progenitor cells or inflammatory cells (Figure 5.2). In this study, the levels of IL-6 or 

activated STAT3 have not been determined in the secretory luminal cells, but has 

previously been shown to express the IL-6 receptor. As these cells are difficult to grow 

in culture and do not engraft, it is impossible to determine their role. Nonetheless, the 

data presented here supports the evidence supporting a functional role for the high 

levels of IL-6 and STAT3 activation that is found in more aggressive and advanced 

prostate tumours.  

 

As STAT3 is activated through an autocrine loop in the undifferentiated stem-like cells, 

it is likely that these cells require this pathway for their survival. When STAT3 activity is 

inhibited, these cells can no longer remain in their undifferentiated state and are 

pushed to differentiate into a more committed cell type. This would mean that treatment 

with an anti-IL-6 antibody would not result in eradication of the tumour if it was applied 

as a mono-therapy, as the bulk of tumour cells might not be affected. However once 
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the undifferentiated stem-like cells are pushed from their tumorigenic phenotype into a 

more differentiated cell, they could be targeted with conventional treatment. 

 

Our study has provided evidence that inhibiting IL-6/STAT3 signalling should be 

considered for further exploitations in therapeutic development for patients with 

prostate cancer. Especially because the outlook for patients with advanced prostate 

cancer remains poor. This is because the current treatment methods are aimed 

towards a homogeneous population of cancer cells. Even though scientific evidence 

has shown that prostate tumours consist of a heterogeneous mass of cells, including a 

small population of rare cancer stem cells, which are thought to be responsible for 

tumour initiation, maintenance and metastasis. This study has shown that targeting IL-

6/STAT3 signalling may results in the elimination of the prostate cancer stem-like cells 

and therefore provides a promising approach for treating patients with advanced 

prostate cancer. Thus, combination treatment strategy might result in a more desirable 

response to current standard of care therapies.  
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Figure 5.2. Proposed model of STAT3 activation in prostate cancer. The CD44+/α2β1
hi/CD133+ stem-like cells have constitutively ρSTAT3 due to the 

overexpression of IL-6. Other cancer cells types, from the basal and possible luminal cells, are sometimes ρSTAT3 activated due to the uptake of IL-6 secreted by 

themselves, neighbouring cells or inflammatory cells. 
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Abbreviations 

 

%  percentage 

°C  degree celcius 

ABM  antibiotic-antimycotic 

ACT  alpha-1-antichymotrypsin 

AML  acute myeloid leukemia 

APC  adenomatous polypopis coli 

APC  allophycocyanin 

APES  3’aminopropyl triehoxysaline 

AR  androgen receptor 

ATCC  American Type Culture Collection 

ATP  adenosine triphosphate 

BCA  bicinchoninic acid 

BER  base excision repair 

BP  base pair 

BPH  benign prostatic hyperplasia 

BSA  bovine serum albumin 

BSF  biological service facility 

BW  body weight 

CB  committed basal 

CD  cluster designation 

CFE  colony formation efficiency 

CK  cytokeratins 

CLC  cardiotrophin-like cytokine 

CNTF  ciliary neutrotrophic factor 

CRPC  castrate resistant prostate cancer 

CSC  cancer stem cells 

CT  cardiotrophin 

DAB  3,3’diaminobenzidine 

DHT  dihydrotestosterone 

DMSO  dimethyl sulfoxide 

DNA  deoxyribonucleic acid 

DRE  digital rectal examination 

DSB  double strand break 

DTT  dithiothreitol 

ECACC European Collection of Animal Cell Culture 

EGF  epidermal growth factor 
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ELISA enzyme-linked immunosorbent assay 

ELISPOT enzyme-linked immunosorbent spot 

ES  embryonic stem 

EtOH  ethanol 

FITC  fluorescein isothiocyanate 

FSC  fetal calf serum 

g  gram 

GAPDH glyceraldehyde 3-phosphate dehydrogenase 

GEMM  genetically engineered mouse model 

GM-CSF granulocyte-macrophage colony-stimulating factor 

GP  glycoprotein 

GSC  glioblastoma stem cell 

Gy   gray 

H   hours 

H&E  hematoxylin and eosin  

HCl  hydrogen chloride 

HeLa  Henrietta Lacks 

HIFU  high-intensity focussed ultrasound 

HPV  human papillomavirus-18 

HR  homologous recombination 

HS  high sensitivity 

hTERT  human telomerase reverse transcriptase 

I.E.   id est 

IL  Interleukin 

INF-γ  interferon gamma 

IP  intraperitoneal 

JAK  janus kinase 

Kg  kilogram 

KSFM  keratinocyte serum-free medium 

LIF  leukemia inhibitory factor 

LPS  Lypopolysaccharide 

LSM  lymphocyte separation medium  

LUTS  lower urinary tract symptoms 

m  marker 

M  molair 

MeOH  methanol 

mg  milligram 

mL  millilitre 
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mm  millimetre 

MMR  mismatch repair 

NBT/BCIP nitro-blue tetrazolium chloride/5-bromo-4-chloro-3’-indolyphosphatase p-

toluidine salt 

NER  nucleotide excision repair 

NF-κB  nuclear factor-kappaB 

ng  nano 

NK  natural killer 

OSM  oncostatin m 

P  P-value 

P6  Pyridone-6 

PAP  prostatic acid phosphatase 

PBS  phosphate buffered saline 

PE  phycoerythrin 

PEG400 poly(ethylene glycol)400 

PFA  paraformaldehyde 

PIA  proliferative inflammatory atrophy 

PIA  protein inhibitor of activated STATs 

PIN  prostate intraepithelial neoplastic 

PSA  prostate specific antigen 

PTEN  phosphatase and tensin homolog 

PTP  protein tyrosine phosphatase 

R  receptor 

RFU  relative fluorescent units 

RNA  ribonucleic acid 

RNA  ribonucleic acid 

ROCK  rho-associated kinase 

RPM  revolutions per minute 

RPMI   roswell park memorial institute-1640 

RT   room temperature 

S  soluble 

SC  stem cells 

SCM  stem cell medium 

SDS  sodium dodecyl sulphate 

SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis 

SEM  standard error of mean 

sh  short hairpin 

SNP  single nucleotide polymorphisms 
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SOCS  suppressor of cytokine signaling 

STAT  signal transducer and activator of transcription 

STO  a continuous line of SIM mouse embryonic fibroblasts 

SV40  simian virus 

TA  transit amplifying 

TAM  tumour associated macrophages 

TBP  tata binding protein 

TBS  tris-buffered saline 

TBS-T  tris-buffered saline / 0.1% tween-20 

TF  technology facility 

TRAMP transgenic adenocarcinoma of the mouse prostate 

TRUS  transrectal ultrasonography 

TURP  transurethral resection of the prostate 

TYK  tyrosine-kinase 

U  unit 

UK  United Kingdom 

UMG  urogenital sinus mesenchyme 

UT  untreated 

V  volt 

v/v  volume to volume 

VEGF  vascular endothelial growth factor 

w/v  weight to volume 

α  alpha 

β  beta 

µ  micro 

ρ  phosphorylated 
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Appendices 

 

Appendix 1. List of Medium 

Name Content 
H7 Ham’s F-12 medium (Lonza) 

7% FSC (PAA) 
2 mM L-glutamine (Invitrogen) 

K2 Keratinocyte Serum-Free Medium (Invitrogen) 
2% FCS  
2mM L-glutamine 
5 ng/mL EGF (Invitrogen) 
50 µg/mL bovine pituitary extract (Invitrogen) 

R5 Roswell Park Memorial Institute 1640 (Invitrogen) 
5% FSC 
2 mM L-glutamine 

R10 Roswell Park Memorial Institute 1640  
10% FCS 
2mM L-glutamine 

SCM Keratincoty Serum-Free Medium 
5 ng/mL EGF  
50 µg/mL bovine pituitary extract 
2 mM L-Glutamine 
2 ng/mL stem cell factor (First Link) 
1 ng/mL GM-CSF (Miltenyi Biotec) 
100 ng/mL cholera toxin (Sigma-Aldrich) 
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Appendix 2. Details of Patients’ samples used in the in vitro experiments 
 

 Patient ID Age Operation Diagnosis 
Figure 13 
Optimisation of RT-PCR analysis 

PEY025/07 68 R Cancer Gleason 8 (4+4) 
PEY028/07 72 T Cancer Gleason 8 (4+4) on hormones 
PEY006/09 82 T Benign 
PEH016/09 - R Cancer Gleason 7 

Figure 14 
Overall levels of IL-6 mRNA,  
by qRT-PCR 

PE690 79 C Benign 
PE693 75 T Benign 

PEY006/09 82 T Benign 
PEY081/06 63 C Benign 
PEY082/06 73 C Benign 

PE434 59 R Cancer Gleason 8/9 
PE525 63 R Cancer Gleason 8 (4+4) 
PE550 65 R Cancer Gleason 8 (4+4) 

PEH016/09 - R Cancer Gleason 7 
PEY025/07 68 R Cancer Gleason 8 (4+4) 

PE704 64 T Cancer Gleason 7 (4+3) on hormones 
PEY091/09 81 T Cancer on hormones 
PEY028/07 72 T Cancer Gleason 8 (4+4) on hormones 

Figure 15 ELISPOT analysis PEY002/08 67 R Cancer Gleason 7 (3+4) 
Figure 16 and 17 
Optimisation of ELISA  

PEY090/09 80 T Cancer on hormones 
PEY035/09 83 T Benign 

PE667 47 R Cancer Gleason 6 (3+3) 
PEY091/09 81 T Cancer on hormones 

Figure 19 
Overall results of IL-6  protein level,  
by ELISA 

PEY030/09 70 T Benign 
PEY035/09 83 T Benign 
PEY047/09 60 T Benign 
PEY088/09 71 T Benign 
PEY006/09 82 T Benign 

PE360 64 R Cancer Gleason 6 (3+3) 
PE519 79 C Cancer Gleason 6 (3+3) 
PE524 56 R Cancer Gleason 6 (3+3) 
PE531 57 R Cancer Gleason 9 (4+5) 
PE667 47 R Cancer Gleason 6 (3+3) 
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PE671 62 R Cancer Gleason 7 (3+4) 
PEH016/09 - R Cancer Gleason 7 
PEY061/06 70 R Cancer Gleason 6 (3+3) 
PEY020/10 54 T Cancer on hormones 
PEY090/09 80 T Cancer on hormones 
PEY091/09 81 T Cancer on hormones 

Figure 19 
Western blot for the IL-6 receptor 

PEY008/08 62 T Benign 
PEY042/08 75 T Benign 

Figure 20 IHC for the IL-6 receptor PEY109/06 70 T Benign 
Figure 21 
IF for CK5 and IL-6R on tissue 

PEY109/09 70 T Benign 

Figure 22 IHC for the LIF receptor PEY109/09 70 T Benign 
Figure 23 
Immunofluorescence for the IL-6 
receptor on selected cells 

PEH030/10 - C Benign 
PE671 62 R Cancer Gleason 7 (3+4) 

PEY025/11 75 T Benign 
Figure 24 - 26 
Flow cytometry for the IL-6 receptor 
and CD133 expressing cells 

PE531 (x2) 57 R Cancer Gleason 9 (4+5) 
PE524 56 R Cancer Gleason 6 (3+3) 
PE569 67 R Cancer Gleason 8 (3+5) 

Figure 27 
Western blot analysis for levels of 
ρSTAT3 in primary prostate cells 

PEY042/08 75 T Benign 
PEY006/09 82 T Benign 
PEY107/06 68 R Cancer Gleason 6 (3+3) 
PEY008/06 59 R Cancer Gleason 6 (3+3) 
PEY025/07 68 R Cancer Gleason 8 (4+4) 
PEY028/07 72 T Cancer Gleason 8 (4+4) on hormones 
PEH008/08 - R Cancer 

Figure 28 
Inhibition of ρSTAT3 with P6 

PEY020/10 54 T Cancer on hormones 
PEH047/11 - R Cancer Gleason 9 (4+5) 
PEH069/11 65 R Cancer Gleason 7 (3+4) 

Figure 29  
Time course treatment with P6 PE524 56 R Cancer Gleason 6 (3+3) 

Figure 30 
Treatment with neutralizing Abs 

PE531 57 R Cancer Gleason 9 (4+5) 
PEH050/11 - T Cancer Gleason 7 (3+4) 

Figure 31 Optimisation of CNTO 328 PEH052/11 - R Cancer Gleason 7 (3+4) 
Figure 32 
Treatment with CNTO 328 

PEH052/11 - R Cancer Gleason 7 (3+4) 
PEH047/11 - R Cancer Gleason 9 (4+5) 
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PEH069/11 65 R Cancer Gleason 7 (3+4) 
Figure 33 Optimisation of LLL12 PEH052/11 - R Cancer Gleason 7 (3+4) 
Figure 34 Western blot and flow 
cytometry after LLL12 treatment 

PEY055/11 76 T Benign 
PEH020/11 58 R Cancer Gleason 6 (3+3) 

Figure 35 Images of cell colonies PE531 57 R Cancer Gleason 9 (4+5) 
Figure 36 
Colony formation assay after 
treatment with P6 

PE531 57 R Cancer Gleason 9 (4+5) 
PE671 62 R Cancer Gleason 7 (3+4) 

PEY006/09 82 T Benign 
Figure 37 Colony formation assay 
with/without rho-ROCK inhibitor PEH035/11 - R Cancer Gleason 7 (3+4) 

Figure 38 
Overall results of colony formation 
assay following treatment with P6, 
relative to DMSO (control) 

PE531 57 R Cancer Gleason 9 (4+5) 
PEH039/11 - R Cancer Gleason 9 (4+5) 
PEH047/11 - R Cancer Gleason 9 (4+5) 

PE671 62 R Cancer Gleason 7 (3+4) 
PEH035/11 - R Cancer Gleason 7 (3+4) 
PEH043/11 - R Cancer Gleason 7 (4+3) 
PEH044/11 - R Cancer Gleason 7 (3+4) 
PEH050/11 - T Cancer Gleason 7 (3+4) 
PEH051/11 - R Cancer Gleason 7 (3+4) 
PEH087/11 68 R Cancer 
PEH116/11 64 R Cancer Gleason 7 (3+4) 
PEY089/09 85 T Cancer on hormones 
PEY062/11 61 T Cancer Gleason 9 (5+4) on hormones 
PEH135/11 56 T Cancer Gleason 9 (5+4) on hormones 
PEH149/11 - R Cancer Gleason 9 (4+5) on hormones 

Figure 39  
Overall results of colony formation 
assay following treatment with CNTO 
328 and LLL12  

PEH046/11 - R Cancer Gleason 8 (3+5) 
PEH47/11 - R Cancer Gleason 9 (4+5) 

PEH149/11 - R Cancer Gleason 9 (4+5) on hormones 
PEY062/11 61 T Cancer Gleason 9 (5+4) on hormones 
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Appendix 3. List of Primers 

 

Table A. PCR primers 

Name Primer sequence 5’ to 3’  
IL-6 F TCT GGA TTC AAT GAG GAG AC 
IL-6 R TGA GAT GAG TTG TCA TGT CC 
GAPDH sense AAG GTG AAG GTC GGA GTC AA 
GAPDH antisense GGA CAC GGA AGG CCA TGC CA 
 

Table B. TaqMan gene expression array  

Target TaqMan® Gene Expression Assay  Dye 
IL-6 Hs00174131_m1 FAM 
RPLP0 Hs99999902_m1 FAM 
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Appendix 4. List of antibodies 

 

Table A. Primary antibodies 

Target Isotype Clone Manufacturer Application Concentration 
β-actin Mouse mAb AC-74 Sigma 

�A5316 
WB 1:10,000 

CD133/2-APC Mouse mAb 293/C3 Miltenyi Biotec FC 1:10 
CD24-PE Mouse mAb 

IgG1 
32D12 Miltenyi Biotec FC 1:10 

CD44-FITC Mouse mAb 
IgG1 

DB105 Miltenyi Biotec FC 1:10 

CD49b-PE IgG1 AK7 AbD serotec 
�MCA743PET 

FC 1:10 

CK5 Mouse mAb 
IgG1 

XM26 Vector 
Laboratories 

VP-C400 

IHC 1:100 

Anti-IL-6 Mouse IgG1 6708 R&D systems 
MAB206 

N 5-50 µg/mL 

IL-6R-FITC Mouse mAb B-R6 Abcam FC 10µL for 106 

cells 
IL-6R Mouse mAb 

IgG1 
17506 R&D systems 

MAB227 
WB 1:500 

IL-6Rα  Rabbit C-20 Santa Cruz 
Biotechnology 

IHC 
IF 
FC 

1:50-1:100 
1:50-1:100 

1:10 
Anti-OSM Mouse 

IgG2a 
17001 R&D systems 

MAB295 
N 5-50 µg/mL 

OSM-R Goat IgG Not 
provided 

Santa Cruz 
biotechnology 

IHC 1:100 – 1:25 

OSM-R Mouse IgG1 469221 R&D systems 
MAB4389 

IHC 1:100 – 1:25 

Anti-LIF Goat IgG Not 
provided 

R&D systems 
AB-250-NA 

N 5-50 µg/mL 

LIF-Rα Goat IgG Not 
provided 

R&D systems 
AF-249-NA 

IHC 1:50 

Pan cytokeratin Mouse mAb mixture Sigma 
C2562 

IHC 1:800 

PhosphoSTAT3 
(Tyr705) 

Mouse mAb 
IgG1 

not 
provided 

Cell signalling 
�9138 

WB 1:500 
 

PhosphoSTAT3 
(Tyr705)  

- alexa 647 

Mouse mAb not 
provided 

BD Pharmingen 
�557815 

FC 20 µL per test 

STAT3 Rabbit not 
provided 

Cell signalling 
�9132 

WB 1:1000 

Tata-binding 
protein 

Mouse mAb 
IgG1 

1TBP18 Abcam 
�Ab818 

WB 1:3000 
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Table B. Negative control antibodies 

Target Isotype Clone Manufacturer Application Concentration 
IgG mouse IgG1 Not 

provided 
DAKO IHC 1:100 

IgG mouse IgG1a 11711 R&D systems 
MAB002 

N 5-50 µg/mL 

IgG mouse IgG2a 20102 R&D systems 
MAB003 

N 5-50 µg/mL 

IgG l rabbit Rabbit IgG not 
provided 

Sigma 
�I5006 

IF 1:2500 

IgG goat Goat Not 
provided 

R&D systems IHC 
N 

1:100 
5-50 µg/mL 

 

Table C. Secondary antibodies 

Reactivity Conjugate Manufacturer Application Concentration 
Sheep anti-

mouse 
POD Sigma 

�5906 
WB 1:5000 

Goat anti-rabbit HRP Cell signalling 
�7074 

WB 1:5000 

Goat anti-rabbit  Biotin DAKO 
�E0432 

IHC 1:100 

Rabbit anti-
mouse  

Biotin DAKO 
�E0464 

IHC 1:100 

Rabbit anti-goat  Biotin DAKO 
�E0466 

IHC 1:100 

Goat anti-mouse  Alexa568 Invitrogen 
�A11031 

IHC 1:200 

Goat anti-rabbit  Alexa568 Invitrogen 
�A11036 

IHC 1:200 

Donkey anti-
goat  

Alexa555 Invitrogen 
�A21432 

IHC 1:200 

Goat anti-mouse  Alexa488 Invitrogen 
�A11001 

IHC 1:200 

Goat anti-rabbit  Alexa488 Invitrogen 
�A11008 

IHC, FC, IF 1:200 
 

Rabbit anti-goat  Alexa488 Invitrogen 
�A11078 

IHC 1:200 

FC=flow cytometry, WB=Western blot, IF=immunofluorescence,  
IHC=immunofluorescence, N=neutralizing 
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Representative images of Immunofluorescence on paraffin embedded benign prostate sections 

stained for IL-6 receptor (-Alexa448) and CK5 (-Alexa538) (A-B) or IL-6 receptor (-Alexa548) 

and CK5 (-Alexa488) (C). Images were taken using a Zeiss LSM 510 meta confocal microscope 

at 63x magnification. 

  

Appendix 5. Supplementary images immunofluorescence IL-6 receptor  



 

 

 

 

 

 

 

 
Appendix 6. Flow cytometry analysis for Y019 xenograft tumour cells post treatment with LLL12. Flow cytometry analysis of Y019 xenograft tumours of vehicle 

control (n=1) (A), 2.5 mg/kg LLL12 (n=5) (B) or 5 mg/kg LLL12 (n=1)(C). Dot plots of human Lin-CD31- tumour cells dual labelled for CD44-FITC (x-axis), which 

labels the basal cells, and CD24-PE (y-axis), which labels the cells with a luminal phenotype. The number of cells expressing each marker were set against an IgG 

control or cells only control. 
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Appendix 6. Flow cytometry analysis of Y019 xenograft post treatment. 
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Appendix 7. Flow cytometry analysis for Y018 xenograft tumour cells post treatment with LLL12. Flow cytometry analysis of Y018 xenograft tumours of vehicle 

control (n=4) (A), 2.5 mg/kg LLL12 (n=6) (B) or 3.75 mg/kg LLL12 (n=3)(C). Dot plots of human Lin-CD31- tumour cells dual labelled for CD44-FITC (x-axis), which 

labels the basal cells, and CD24-PE (y-axis), which labels the cells with a luminal phenotype. The number of cells expressing each marker were set against an IgG 

control or cells only control. 
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Appendix 7. Flow cytometry analysis of Y018 xenograft post treatment. 
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