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ABSTRACT

The field of structural dynamics is essential for predicting how systems respond to
external excitations. This is crucial for optimizing performance, mitigating damage,
and guiding maintenance and operational decisions. As engineering projects grow
increasingly ambitious, the complexity of these systems intensifies, resulting in more
pronounced nonlinear and non-stationary behaviours, as well as greater uncertainty
in the physical understanding of these structures. This compounding of factors ne-
cessitates the integration of data-driven, uncertainty-aware approaches with physical
models to effectively capture the dynamic behaviour. This thesis seeks to addresses
these challenges by developing new Bayesian methodologies towards system identi-

fication, prediction, and input estimation in nonlinear dynamic systems.

Input identification plays a critical role in structural dynamics, involving the re-
covery of external forces from output-only measurements. This process is essential
for characterising latent forces, providing insight into operational loads, and aiding
prognosis through direct fatigue load analysis. The Gaussian process latent force
model (GPLFM) has emerged as a powerful tool for input identification, allowing
for the recovery of distributions over temporal latent forcing functions in the pres-
ence of measurement uncertainty. However, the application of GPLFM faces several

significant challenges.

Existing approaches for joint input and state identification using GPLFM have been
effective when system nonlinearities are static; however, they have not yet been
applied to systems with dynamic nonlinearities. These systems not only introduce
complex, time-varying nonlinearities into the system’s transition function but also
necessitate additional hidden states, which are not simply derivatives or integrals

of other states. To address these challenges, this thesis investigates the used of the
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GPLFM for joint input-state identification in systems with hysteretic nonlinearities.

Furthermore, a limitation of the standard GPLFM is the assumption that the esti-
mated force can be modelled a prior: as a stationary process. This assumption can
become inadequate when dealing with non-stationary forces, such as those encoun-
tered in operational loads such as wind, wave, traffic, or seismic loads. To address
this, a new hierarchical state-space formulation of the GPLFM is developed, de-

signed to effectively capture smooth, non-stationary forcing functions.

The identification of nonlinearities in dynamic systems remains a challenge across
engineering disciplines, serving to uncover governing physical phenomena and pre-
dict system responses to new inputs. To meet these objectives, the GPLFM can
also be applied to the identification of latent restoring forces. Latent restoring force
identification provides a pathway to infer critical, often nonlinear, internal mecha-
nisms that restore equilibrium. Assuming input-output measurements are available,
existing methods for latent restoring force identification have been shown to be ef-
fective. However, for many structural applications, access to input-output data is
not feasible. Therefore, this work presents a new methodology to perform latent
restoring force identification using output-only measurements. By combining the
GPLFM latent restoring force framework with novel post-processing techniques, it
is demonstrated that it is possible to jointly recover the temporal functions of the
latent states, the latent restoring force, and the latent input force, as well as a GP

representation of the underlying restoring force surface.

In addition to latent force identification, this thesis explores the under-exploited
interface of probabilistic numerics and Bayesian (parametric) system identification.
In engineering, accurately modelling nonlinear dynamic systems from data contam-
inated by noise is both essential and complex. Established Sequential Monte Carlo
(SMC) methods, used for the Bayesian identification of these systems, facilitate the
quantification of measurement uncertainty in the parameter identification process.
However, these methods require numerical integration of nonlinear continuous-time
ordinary differential equations (ODEs) to align theoretical models with discretely
sampled data. For most nonlinear systems, the absence of closed-form solutions
necessitates numerical approximations for this step, which introduces numerical un-
certainty into the parameter evaluation process. This thesis develops a new method-
ology to efficiently identify latent states and system parameters from noisy measure-
ments while simultaneously incorporating probabilistic solutions to ODEs into the

identification process.
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By addressing these challenges, this thesis bridges critical gaps in Bayesian sys-
tem identification prediction, and input estimation, advancing both the theoretical
foundations and practical applications of uncertainty-aware tools for the structural

dynamicist.
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Chapter 1

INTRODUCTION

From wind turbines and milling machines to buildings and bridges, all structures
move. This motion may be integral to their primary function, such as the rotation
of a wind turbine blade that generates electricity, or it may be an excitation that
the design seeks to mitigate, such as a resonance that causes fatigue of the blade.
In both cases, the field of structural dynamics is essential for understanding how
structures move, which in turn aids in optimising performance, mitigating damage,
targeting maintenance, and informing operational decisions. In pursuit of these
goals, the aims of a structural dynamicist can be viewed through three fundamental

tasks:

e System Identification: the construction of a mathematical model that rep-

resents the essential features and behaviours of a system.

e Output Identification/Prediction/Simulation: The evaluation of a
structure’s response using a mathematical model, from inputs and initial

conditions.

e Input Identification: the inference of the inputs to a structure from an

observed dynamic response.
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1.1 System identification

A system can be loosely defined as any set of interrelated components that work
together to achieve a specific function or behaviour. In the context of structural
dynamics, a system is typically understood as a temporal function that relates in-
puts (forces) to outputs (structural responses). System identification is the task of
learning a mathematical model that represents this input-output relationship as a

functional map.

Models are essential in structural dynamics as they enable the prediction and analy-
sis of structural responses under various loading conditions, which is fundamental to
designing safe and efficient structures. They facilitate design optimisation and the
evaluation of potential performance issues, enhancing the understanding of the un-
derlying physical phenomena. Furthermore, models are critical for structural health
monitoring (SHM) [1, 2], allowing online condition assessment, and for digital twins
(DT) [3, 4], which support advanced simulations and predictive maintenance. In
fact, the utility of an accurate and trusted model to an engineer is almost endless.

The challenge lies in building them.

System identification can conventionally be considered to follow two paths: physics-
based (white-box) and data-driven (black-box).

White-box models are derived from fundamental principles and laws of nature—such
as Newton’s first law and Hooke’s law—Ileveraging the engineer’s insight into the

physics of the structure to causally describe the observable behaviours of systems.

When a system exhibits linear behaviour and input-output observations are avail-
able, the task of system identification is well understood. In structural dynamics,
modal analysis (MA) is the standard method for identifying linear dynamics. MA
provides a compact, decoupled representation of the dynamics and offers physical

insight through natural frequencies and modeshapes [5].

However, almost all systems exhibit some degree of nonlinearity, ranging from minor
inconveniences to significant impacts. Unlike linear systems, nonlinear systems do
not obey the principle of superposition and cannot be decoupled by linear trans-
formations, rendering linear modal analysis inapplicable. Standard techniques com-
monly involve linearisation, but this is inadequate when nonlinearity is significant

in the systems dynamics.
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As engineering and technology advance, leading to increasingly ambitious projects
and the use of advanced materials in extreme environments, the prevalence and im-
portance of understanding nonlinearities in structural dynamics are becoming more
pronounced. The ability to model and identify nonlinear systems accurately is thus
becoming crucial. Nonlinearities in structures can manifest in various ways, from
causing amplitude-dependent resonance frequencies to more complex phenomena

such as bifurcations [6], jump phenomena [7], and chaos [§].

Nonlinearities in engineering systems arise from various sources. Material properties,
such as non-homogeneous composites [9] and the nonlinear response of materials
beyond their elastic limit, play a significant role. Hysteresis [10], or the dependence
of a material’s response on its deformation history, results in energy dissipation and
lag between applied forces and displacements. Geometry-induced nonlinearities lead
to complex load-deformation relationships [7]. Interfaces and boundary conditions,
such as friction and contact nonlinearity, including Coulomb friction [11] or slip
regimes in bolted joints [12] and soil-structure interaction [13] further complicate
the behaviour of the system. Moreover, linear analysis cannot adequately address
phenomena such as rocking [14], buckling [15, 16], and structural failure [17], which

are inherently nonlinear.

If the mathematical model of the nonlinear system can be derived from first prin-
ciples, parameter estimation techniques—where specific parameters are tuned using
input-output measurements—can provide a powerful framework for system iden-
tification within a white-box framework. However, constructing accurate models
from first principles is challenging due to the complex dynamics and interactions of

interrelated components, and nonlinearities only further complicate this process.

When systems exhibit unknown dynamics or nonlinearity, the white-box approach—
which employs engineering insights to describe system behaviors from fundamental
principles—can be restrictive. Conversely, black-box models rely solely on empirical
input-output measurements to infer a functional map that reflects observed correla-
tions. However, these models do not inherently ensure that the inferred correlations
correspond to causal relationships, potentially limiting their interpretability and

reliability and undermining an engineer’s trust in the model.

Grey box models combine elements of both white box and black box models. These
models incorporate partial physical knowledge of the system, described from fun-

damental principles, and empirical data-driven components, allowing for improved
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accuracy and interpretability in scenarios where complete physical understanding is

not available.

Each approach — physics-based, data-based, and hybrid — possesses distinct merits
and drawbacks [18], which will be discussed in more detail later. However, a common
requirement for all these approaches is the need for observed data. Data-based
methods rely heavily on measurements to infer correlations, while physics-based
models necessitate data for validation purposes and grey box as a hybrid can require
both.

The acquisition of observational data is inherently fraught with uncertainties due
to limitations in the data acquisition process. A significant source of uncertainty
is incomplete information, also referred to as epistemic uncertainty. Epistemic un-
certainty can arise for several reasons: (1) sparse measurements that fail to provide
a comprehensive depiction of system behaviour; (2) the impracticality of achieving
full state observation; (3) indirect measurements of the variable of interest; and (4)
the lack of comprehensive data on structural behaviours in operational, extreme en-
vironmental, and damage conditions. Obtaining the necessary data to reduce these
uncertainties is often prohibitively expensive or impossible due to physical and safety

constraints.

Another layer of uncertainty is the inherent stochasticity present in the identifica-
tion, referred to as aleatoric uncertainty. Measurement noise is a primary example
of this, as it can obscure the true state of the system, thereby complicating the

modelling process.

Summary

Accurate modelling of nonlinear systems is essential for the continued design, con-
struction, and maintenance of advanced structures in a cost-effective and environ-
mentally sustainable manner. As engineering projects become more ambitious, the
complexity of these systems increases, leading to greater uncertainty in the physical
knowledge of the systems and more pronounced nonlinear behaviours. This increased
uncertainty and nonlinearity necessitate the development of advanced data-based
methods to supplement traditional modelling approaches. Given that data is inher-
ently uncertain, the models constructed from this data must also be uncertain. It

is imperative, therefore, to quantify these uncertainties to inform engineering deci-
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sions. By providing a more comprehensive assessment of uncertainty, engineers can
consider the probabilistic nature of their models, thereby making risk-aware choices

in complex engineering applications.

1.2 Prediction and simulation

In an engineering context, prediction refers to forecasting a system’s behavior one
step ahead, whereas simulation involves forecasting its behavior over an extended
time horizon. While both tasks are crucial in structural dynamics, prediction is
strictly a subset of simulation, with accurate simulation posing a significantly greater

challenge.

Simulation of structural responses to operational loads is an essential aspect of design
optimisation and validation [19, 20]. The foundation of an accurate and reliable
model enables engineers to evaluate structures under diverse conditions, including
scenarios that are impractical or prohibitively expensive to recreate experimentally.
This capability allows for the optimisation of design parameters in a more efficient
and cost-effective manner. In addition, simulation is essential for advanced decision

support and predictive maintenance in DT’s.

Prediction and simulation are also essential to the system identification process
itself. Prediction plays a critical role in system identification, when iterative model
simulations are necessary to evaluate likelihoods. Such as required for parameter
estimation [21, 22], Bayesian filtering and smoothing [23], and Markov Chain Monte
Carlo (MCMC) methods [24, 25].

Simulation plays a crucial role in model validation, where it is used to evaluate
model performance on a validation dataset. This process ensures that the model

adequately captures the system dynamics and generalises well to new data.

Additionally, simulation can be necessary for hyperparameter optimisation. By
evaluating different configurations through performance metrics, simulation helps in
identifying the optimal hyperparameters that enhance model generalisation. This
iterative process of assessing various hyperparameter settings ensures that the model

performs well on unseen data.

A significant challenge in prediction and simulation arises when uncertainty is con-
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sidered. Uncertainty can originate from various sources: the system’s initial con-
ditions may be uncertain, the functional form or parameters of the model may be
imprecisely known, and in cases where closed-form solutions are unavailable, numer-
ical methods must be employed. These methods are inherently approximate [26],

introducing further uncertainty into the integration process.

This uncertainty in numerical integration is particularly pronounced in nonlinear
systems. While solutions to linear models are generally exact and solvable in closed
form, this is rarely the case for nonlinear models. The absence of closed-form so-
lutions in nonlinear systems necessitates the use of numerical methods, which are
inherently approximate and, therefore, introduce uncertainty into simulation and

prediction.

Whether uncertainty arises from initial conditions, the system model, or from ap-
proximations and the inherent uncertainty in numerical integration, it can signif-
icantly affect various critical areas of engineering applications. This uncertainty
propagates through predictions and simulations, impacting the reliability of these
methods. In design optimisation and validation, uncertainties can undermine the
integrity of design assessments. For model validation, uncertainties obscure the true
reliability of models, making it difficult to accurately assess model performance and
evaluate its validity. In system identification, uncertainty directly influences the
evaluation of likelihoods, introducing additional and often unaccounted-for uncer-

tainty into the model identification process.

Summary

Prediction and simulation are essential tasks in structural dynamics. When uncer-
tain initial conditions, uncertain models or numerical solutions are employed in the
prediction or simulation of nonlinear systems, the process inherently introduces un-
certainty, which propagates through both predictions and simulations, influencing
any applications that rely on these methods. Consequently, the accurate quantifi-
cation and management of this combined uncertainty is critical for ensuring the

reliability and robustness of any conclusions drawn from these processes.

In the context of numerical uncertainty, there is no unique solution to the system
identification problem when numerical integration is involved. Instead, the ’optimal’

model identification is influenced by the numerical errors present in the simulation.
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As a result, system identification for nonlinear systems is inherently uncertain, ne-
cessitating a probabilistic approach to properly account for this uncertainty. This
principle underpins the probabilistic perspective on numerical methods, referred to
as Probabilistic Numerics (PN) [27, 28]. By explicitly addressing uncertainty within
the system identification process, a more comprehensive evaluation of overall uncer-

tainty can be achieved.

1.3 Input identification

In the context of structural dynamics, the term input refers to external forces or exci-
tations applied to a structural system that induce a dynamic response. These inputs
can be deterministic—such as harmonic loads or impulsive forces—or stochastic—such
as random vibrations. The task of input identification is concerned with recovering

the inputs from the output only measurements.

Input identification is essential in structural dynamics for robust design. It provides
precise characterisation of forces and excitations, clarifying operational loads. This
understanding enables the development of accurate models, optimises design param-

eters, and ensures structural resilience and performance under extreme conditions.

Moreover, input identification can have applications in SHM [29]. Prognosis is a
primary challenge in SHM [30, 31]. Tt involves predicting future structural con-
ditions and performance based on current health assessments and historical data.
By estimating the remaining useful life and potential failure modes of a structure,
prognosis analyses trends in degradation and damage accumulation. An accurate
prognosis enables timely maintenance and repair, optimising the lifespan and safety

of the structure while minimising downtime and costs.

An approach to the prognosis in SHM is through direct fatigue load analysis, which
relies on the estimation of input loads [32-36]. Latent force modelling can be used
to help identify these loads, providing a potential path to an accurate fatigue load
analysis. Furthermore, by quantifying operational loads and assessing the current
damage state, it becomes possible to predict the expected future damage. This can

facilitate timely maintenance and improve remaining life predictions.

Input identification is similar to system identification and relies heavily on data,

specifically data from structures that contain both epistemic and aleatoric uncer-
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tainty. Inputs identified from uncertain data must also carry inherent uncertainty.

This uncertainty should be quantified to effectively inform engineering decisions.

One model type increasingly recognised within the structural dynamics community
for input identification, or as it is otherwise known, latent force modelling, is the
state-space Gaussian process latent force model (GPLFM). The GPLFM allows for
the recovery of a distribution over the time series of the forcing function, given the
uncertainty in the measurements. This probabilistic approach provides a robust

framework for handling the inherent uncertainties in the identification.

Despite its strengths, which will be discussed in more detail later (Chapter 3), it has
some limitations and drawbacks. For one inference with the GPLFM becomes more
challenging when the system is nonlinear due to the lack of a closed-form solution for
the inference process. Moreover, the state-space GPLFM inherently assumes that
the unknown forces are stationary a priori, a presumption that can hinder accurate
force recovery when the underlying temporal functions are non-stationary. This
is often the case for environmental loads such as wind [37], wave [38], earthquake
[39], and traffic loads [40]. Non-stationary forces require models that can adapt
to changing statistical properties over time to ensure accurate force estimation and

subsequent structural analysis.

Summary

Input identification is a critical process in structural dynamics, involving the recov-
ery of external forces from output-only measurements. This process is essential for
characterising latent forces to clarify operational loads. Moreover, input identifica-
tion can contribute to SHM by aiding prognosis through direct fatigue load analysis.
The state-space GPLFM has emerged as a powerful tool for latent force modelling,
allowing for the recovery of a distribution over the forcing function time series in
the presence of measurement uncertainty. However, the application of GPLFM faces
challenges in nonlinear systems due to the absence of closed-form inference solutions,
and in scenarios with non-stationary forces, such as environmental loads. Working
to reduce these limitations is crucial for further developing the GPLFM and its

application to structural dynamics.
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1.4 Joint identification

One challenge that has been largely undiscussed so far is the effect and interlinkage
of the three fundamental aspects of structural dynamics: system identification, pre-
diction, and input identification. These aspects are intrinsically connected, forming
parts of the same overarching problem — starting from the input, the system model
maps to the outputs. Consequently, solving any one of these challenges convention-

ally requires knowledge of the other two:

e System identification requires inputs and outputs.
e Prediction requires inputs and the system model.

e Input identification requires the system model and outputs.

This interdependency poses a significant problem for both system identification and
input identification, especially when only output measurements are available. More-
over, even when outputs are measured, they often provide an incomplete description
of the states, featuring sparse or indirect measurements of the variables of interest —
acceleration being the most common due to the availability of low-cost piezoelectric

accelerometers [5]. This problem is only further complicated by measurement noise.

Therefore, there is a need to jointly identify both the hidden states and the system
model, or both the hidden states and the system input from noisy output-only
measurements. In the ideal case, one would recover the hidden states, the system
model, and the system input from noisy output-only measurements, which presents
a significantly more challenging task. The difficulty in joint identification arises from
the lack of unique solutions — numerous combinations of states, inputs, and models

can yield the same output.

Summary

Joint identification is essential to ensure that system identification and input identi-
fication techniques can be applied to real-world structural dynamics problems where
only incomplete output measurements are available. However, this can be particu-

larly challenging due to the fundamental unidentifiability of the general problem.
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1.5 Thesis contribution

Throughout this introduction, several challenges arising from the fundamental tasks
of the structural dynamicist — system identification, prediction, and input identifica-
tion — have been discussed. These challenges primarily emerge due to complications
introduced by nonlinearity, uncertainty, and non-stationarity, as well as the diffi-
culties associated with joint identification. As it is well beyond the scope of this
thesis to fully address or completely solve these challenges, a more focused approach
to expand the state-of-the-art must be taken. The primary aim of this thesis has
been to advance Bayesian methods for input, system, and output identification in

nonlinear dynamic systems. Specifically, four core contributions are presented:

1. A new implementation of the GPLFM for nonlinear joint input-state estima-
tion is introduced. This contribution extends the approach to systems with
dynamic nonlinearities, such as those exhibiting hysteresis. These systems
pose a significant challenge as they not only introduce dynamic nonlinearities
into the system’s transition function but also require additional hidden states,

which are not simply time derivatives or integrals of other hidden states.

2. A new methodology to perform latent restoring force identification using
output-only measurements is presented. In this work, the GPLFM latent
restoring force approach is combined with novel post-processing steps within
an Operational Modal Analysis (OMA) framework, by assuming the system
input is a white noise process. From this, it is demonstrated that the temporal
functions of the latent states, latent restoring force, and latent input force
can be recovered, along with a GP representation of the underlying restoring

force surface.

3. The State-Space GPLFM has proven effective in recovering latent input and
restoring forces, as well as uncovering the functional forms of nonlinearity in
dynamic systems. Additionally, it provides a practical approach for jointly
identifying latent forces, system states, and model parameters. One limitation
of the GPLFM is that the estimated force is modeled a priori as a station-
ary process. This limitation is particularly evident when dealing with non-
stationary forces, which display time-varying characteristics that defy simple
modeling techniques. A primary difficulty lies in identifying latent input forces

with evolving spectra and latent restoring forces, where nonlinearity affects
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the system’s stiffness and consequently changes the frequency content of the
restoring force. Recognizing this gap, this contribution addresses these chal-
lenges through the development of a non-stationary GPLFM by introducing a
time-varying length scale into the GPLFM, which is modeled as an additional
GP.

4. The application of a probabilistic numerical method for solving ordinary differ-
ential equations (ODEs) in the joint parameter-state identification of nonlinear
dynamic systems within a sequential Monte Carlo (SMC) framework is pre-
sented. This approach efficiently identifies latent states and system parameters
from noisy measurements, simultaneously incorporating probabilistic solutions
to the ODEs in the identification challenge. The primary advantage of this
methodology lies in its capability to produce posterior distributions over sys-
tem parameters, thereby representing the inherent uncertainties in both the

data and the identification process.






Chapter 2

BACKGROUND

This chapter provides an overview of the background and theoretical foundations
necessary to develop a framework for the research presented in this thesis. A brief
review of some relevant literature is included to establish a context for subsequent
discussions. However, a more thorough and detailed examination of the pertinent
literature-which identifies gaps in the current state of the art and motivates the
research in relation to the four objectives of this thesis—is provided in Chapters 3 to
7.

2.1 System identification

To take any action on a system with intent, an understanding of the system is re-
quired. Intentional action relies on the ability to predict, control, and fundamentally
to understand the dynamics of a system. Systems can be understood through the
construction of models. Models serve as a representation of a system, designed to
capture its essential features and behaviours for the purpose of understanding, pre-
dicting, and controlling it. Examples range from the subconscious—with internal
neural models that allow us to run, walk, and jump by combining sensory inputs
with motor commands [41]—to the grand—with models of celestial mechanics that
enable scientists to predict planetary positions and design trajectories for spacecraft
and satellites [42]. Understanding systems through the lenses of a model is essential

in all areas of life, making the construction of these models equally important.

13
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Models, whether white-box or black-box, can be constructed through two primary
approaches. The first approach involves gathering empirical data by observing and
measuring a system’s interactions with its environment. This data is then used to
develop mathematical formulations that capture the system’s essential features and
behaviours. The second approach involves refining or extending pre-existing models,
based on new data, or combining them to describe more complex systems. In both

cases, the foundation of all models is empirical observation.

This principle applies not only to the foundational elements of mechanics, such as
Newton’s laws of motion [43], which describe the causal effects of forces on the mo-
tion of mass, but also extends to ‘opaque’, high-dimensional models like transformer
neural networks [44], which are widely used in large language models and are often

characterised by a correlational nature.

Observing and measuring the world to build models that can then be used to un-
derstand and influence it is a core pursuit of science. One field that addresses this

challenge directly for dynamic phenomena is system identification.

Due to the variety of approaches to model building across different scientific dis-
ciplines, the lines between system identification, machine learning, statistics, and
other related fields are often blurred [45]. In addition, system identification tech-
niques have been applied in fields ranging from control [46, 47] to machine learning
[48], mechanical engineering [49-51], and biology [52], with the potential for cross-

fertilisation [53] between these areas of research.

This thesis will focus on system identification as it pertains to the learning of math-
ematical representations of structural dynamics systems from both physical insight
and measured data, while also quantifying the inherent uncertainties in the identifi-

cation process. To this end, tools from across the fields of science will be considered.

2.1.1 A spectrum of models for system identification

All models are fundamentally rooted in data, yet their construction varies signif-
icantly. Although the conventional distinction between white-box and black-box
models provides a useful starting point, a more contemporary perspective conceptu-
alises these approaches as the two extremes of a continuous spectrum. This frame-

work acknowledges that the construction of models varies significantly, allowing
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them to be positioned along a continuum based on the degree to which they incor-

porate a priori physical principles versus empirical data.

At one end of this spectrum are the white-box models, or physics-based models,
which are explicitly grounded in fundamental physical principles and laws of nature.
This principled approach in their construction provides a transparency that is es-
pecially valuable in engineering, where understanding the underlying mechanisms
is critical to building trust. Moreover, by capturing causal input-output relation-
ships, these models can enable robust extrapolation beyond the range of observed
data, making them particularly effective in scenarios where predictive accuracy and

interpretability are paramount.

However, the applicability of white-box models can be limited when dealing with
complex, real-world systems. In such cases, the simplifications and assumptions
required to formulate a physics-based model can lead to inaccuracies. Capturing the
full range of behaviours in a complex system might necessitate an unmanageable level
of detail or result in a model that is too computationally expensive to be practical.
Additionally, when the underlying physical processes are not well understood or are
influenced by numerous interacting factors, constructing a white-box model that

accurately reflects reality can be challenging, if not impossible.

On the other hand, black-box or data driven models primarily rely on data to iden-
tify patterns without explicitly incorporating causality or underlying physical laws.
The principal advantage of black-box models is their capacity to recover complex
mappings between inputs and outputs, assuming the availability of sufficient and
high-quality data. When the dataset extensively covers the relevant domain and is
sufficiently informative, black-box models can effectively capture complex dynamics
that are challenging to derive from first principles. This capability is particularly
valuable in contexts where the underlying physical processes are either highly com-
plex, poorly understood, or involve numerous interacting factors, rendering the de-
velopment of a reliable white-box model impractical or infeasible. In such scenarios,

black-box models provide a powerful alternative.

However, the limitations of black-box models are significant. One of the most critical
challenges is that engineering data, while sometimes abundant, often fail to com-
prehensively capture all behaviours of interest. The available data might consist of
indirect measurements of these behaviours, and in many operational settings, the

data may be noisy, corrupted, or incomplete. Such deficiencies in data quality and
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coverage can severely restrict the model’s ability to generalize beyond the training
set, thereby reducing its reliability in predicting unseen scenarios. Furthermore,
black-box models are inherently less interpretable as they do not explicitly encode
physical laws or causal relationships. This lack of transparency can lead to issues
of trust, especially in high-stakes applications where understanding the rationale
behind a model’s predictions is critical. Additionally, the absence of an embed-
ded causal structure often results in poor extrapolation to new, unseen conditions,

making predictions outside the training domain potentially unreliable !.

Between these two extremes lie grey-box models, which combine elements of both
approaches. Grey-box models incorporate physical insights into data-driven frame-
works, balancing the extrapolative power, interpretability, and trust associated with
white-box models with the flexibility and expressive power characteristic of black-
box models. This hybrid approach offers a more nuanced solution in situations

where purely data-driven or physics-based methods might be insufficient.

Understanding the diverse approaches to modelling is crucial to selecting the ap-
propriate method for a given problem. An effective visualisation of the spectrum of
physics-informed models is presented by Cross et al. [55], which illustrates how these
models can be positioned on axes representing the data-driven and physics-based

problem settings.

The choice of modelling approach in system identification often hinges on the balance
between how much of the system can be described by known or modelled physics
(within a given computational budget) versus how much can be characterised by
available data. This relationship can be visualised in Figure 2.1, which maps different

scenarios and the corresponding optimal modelling approaches.

Figure 2.1 depicts a plot divided into five distinct sections. Section A represents a
scenario where a significant amount of the system’s physics is well understood, but
little data is available, or the data that is available is not very informative. In this
context, a white-box approach, which relies heavily on physical laws and principles,

is preferable.

In contrast, Section C illustrates the opposite situation, where there is minimal

knowledge of the underlying physics, but a large quantity of high-quality data is

T Although some correlations may correspond to causal relationships, this is not guaranteed.
Ensuring causality in data-driven models requires causal inference algorithms, which determine
the direction and nature of these relationships. For further details, see [54]
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Physics
represented by physical model

% of behaviour of interest

% of behaviour of interest
captured through data

Data

Figure 2.1: The mapping of problem settings based on the knowledge available from
physical insight and data [55].
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available. Here, black-box approaches, which depend primarily on data to infer

complex relationships, are most effective.

The green area in the figure represents an ideal scenario in which both the physics
of the system is well understood and there is an abundance of high-quality data. In
this region, any method—be it white-box, black-box, or a hybrid—can be applied
effectively.

In the bottom left corner, the section depicts a situation where little is known
about the system, either from a physical or data perspective. In this case, the
system cannot be accurately modelled using existing methods. More research or the
collection of additional data is needed to move out of this region and enable effective

system identification.

Finally, Section B occupies the middle ground. This area represents scenarios where
both physical insight and data are available, but neither is sufficiently complete to
independently identify the system optimally. In Section B, a grey-box approach,
which combines elements of both white-box and black-box models, is most suitable.
By integrating partial physical knowledge with available data, grey-box models can
leverage the strengths of both approaches to achieve better accuracy and reliability

than either method could achieve alone.

To illustrate the practical application of these concepts across different modelling
approaches, Figure 2.2 visualises how various methods within the field of system
identification align with the spectrum of available physical knowledge and data.
Figure 2.2 provides a broad mapping of several widely recognised methods within
the system identification field onto the axes of Figure 2.1. It is important to note
that the position of each method on this spectrum may vary considerably depending

on the specific model type and the context in which it is employed.

2.1.2 Nonlinear system identification

One of the paramount challenges in system identification is the accurate modelling
of nonlinear systems. Nonlinear system identification has emerged as a vibrant area
of research, with methods employed across the spectrum—from white-box to black-
box approaches. This diversity is well documented in several comprehensive review
articles [56-58], which highlight the evolution and breadth of techniques developed
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Analytical models

Numerical models
Surrogate models

Probabilistic numerics

Empirical models

Bias correction

Residual modelling

Manipulation of black-box
inputs/input augmentation

Hybrid models

Constrained machine learners

Physics constrained
optimisation

represented by physical model

% of behaviour of interest

Gaussian process regression
Neural networks

% of behaviour of interest
captured through data

Figure 2.2: A non-exhaustive list of modeling approaches loosely aligned with the
data/physics problem setting, as depicted in Figure 2.1 [55]
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to tackle nonlinear dynamics.

Given the expansive nature of the field, a complete discourse on all existing methods
is beyond the scope of this thesis. Instead, the following sections will delve into

selected works that are particularly relevant to the objectives of this study.

At the lighter end of the spectrum—where gaining a physically meaningful represen-
tation of system dynamics is a priority—the nonlinear system identification process

can often be considered as a progression through three stages [56]:

1. Detection: the determination of whether nonlinearity is present in the struc-

tural behavior.

2. Characterisation: the localization of the nonlinearity, determination of its

type, and selection of an appropriate functional form.

3. Parameter estimation: the estimation of the nonlinearity’s functional pa-

rameters and the evaluation of their uncertainty.

Under this framework detection is the initial step in nonlinear system identification,
with various methods proposed for this purpose [5, 7, 59, 60]. Upon confirmation of

nonlinearity, the process advances to characterisation and parameter estimation.

One classic approach to characterisation involves the use of residual methods. These
methods combine a physical component with an additional data-driven component,
which is employed to compensate for errors in the physical model. A well-known
technique within residual methods is the restoring force surface method introduced
by Masri and Caughey [61], with similar work independently developed under the
name of force-state mapping by Crawley and Aubert [62] and Crawley and O’Donnell
[62].

In the seminal work of Masri and Caughey, the behaviour of a single degree-of-
freedom (SDOF) system was analysed using the restoring force surface method [61].
The ‘restoring force” refers to the internal forces that act to return the system to

equilibrium, governed by an unknown, potentially nonlinear function.

Masri et al. demonstrated that, given the mass, acceleration, and applied external
force of the system - available through experimental data - the equation of motion

can be rearranged to isolate and identify this unknown restoring force. This approach
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aligns with Newton’s first law, ensuring that the internal forces balance the external

forces acting on the system.

To estimate the restoring force, the original study employed Chebyshev orthogonal
polynomials as a modelling tool. By fitting these polynomials to the observed data,
the nonlinear behaviour of the system can be characterised, enabling predictions of
the system’s response to new external forces or providing insight into the physical

nature of the restoring force.

Probabilistic approaches to residual modelling have also been explored [63—65], in-
cluding the use of the Gaussian process nonlinear AutoRegressive model with eXoge-
nous inputs (GP-NARX) [29], which is a dynamic extension of the widely recognised
Gaussian process (GP) regression method [66]. This grey-box approach has been
used to model the discrepancy between measured data and a physics-derived model
[51, 67, 68]. In the finite element modelling community, probabilistic residual mod-

eling using GPs has also been investigated [69, 70].

Building on the concept of the restoring force surface method, GPs have also been
applied to latent input force modelling using the Gaussian process latent force model
(GPLFM) [71]. While the restoring force surface method focusses on identifying the
missing internal forces that act to return the system to equilibrium, latent input force
modelling seeks to determine the missing external forces that produce an observed
system output. State space variants [72, 73] of the GP have also been applied to the
GPLFM for latent force modelling [74-78]. In these works a state-space model of
the system be it linear or nonlinear is derived from first principles, and a state-space

GP is used to infer the latent input.

Further, the GPLFM has been extended to address the latent restoring force problem
[79], providing an alternative probabilistic approach to recovering internal restoring
forces and thus deriving distribution over a functional form of a latent nonlinear

restoring force surface.

In parallel, GP state-space models have found application within a grey-box frame-
work of probabilistic numerics, where the GP is used to capture the uncertain in

numerical integration [27, 28].

If the functional form of a nonlinear system can be characterised or described di-
rectly, the problem of system identification can often be reduced to parameter es-

timation. Parameter estimation is central to nonlinear system identification, where
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the goal is to determine the model parameters that accurately represent the dy-
namic behaviour of a system. This process typically involves optimising the model

to minimise the difference between its output and observed data.

Non-probabilistic techniques, such as evolutionary optimisation, have been effec-
tively applied to parameter estimation in nonlinear systems. Worden et al. have
extensively used these techniques in various nonlinear benchmarks [51], including

the identification of hysteretic systems [80] and experimental structures [81].

More recently, Bayesian methods have gained prominence in the parameter estima-
tion process, as researchers have increasingly recognised the importance of quantify-
ing uncertainties in nonlinear system identification. The Bayesian framework offers

a robust probabilistic approach to this challenge.

Beck and Katafygiotis [82] introduced a Bayesian statistical framework for updating
models and their uncertainties. Muto and Beck [83] further enhanced this framework
by integrating stochastic simulation for Bayesian updating and model class selection,
particularly in the context of hysteretic systems. In parallel, Wills et al. [84] and
Schon et al. [85] explored parameter estimation in nonlinear dynamic systems using

a maximum likelihood framework.

To address the challenges of uncertainty in parameter estimation, Bayesian meth-
ods have been combined with Markov chain Monte Carlo (MCMC) techniques, as
explored by Green and Worden [86], and with Sequential Monte Carlo (SMC) meth-
ods, as demonstrated by Schon et al. [87]. Ebrahimian et al. [88] applied the
Extended Kalman Filter (EKF) for material parameter estimation in nonlinear fi-
nite element models, showcasing the effectiveness of direct differentiation methods
within a Bayesian updating framework. Additionally, particle filters have emerged
as powerful tools for Bayesian state and parameter estimation in uncertain dy-
namical systems. Ching, Beck and Porter [89] used particle filters in this context.
Semi-parametric methods have also been employed in the identification of Wiener
systems, where a Gibbs sampling method was used to recover the distribution over
the parameters and the state of a linear dynamic system, while a non-parametric

GP was used to capture the static nonlinearity in the observation model [90].
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2.2 Ordinary differential equations

Structures in the physical world display dynamic behaviours as their internal energy
states evolve over time. For instance, a suspension bridge subjected to wind and
traffic loads sways and flexes, continually converting kinetic energy into potential
energy and back again. Understanding these dynamic behaviours is crucial for

modelling the response of structures to various external forces.

To achieve this understanding, a mathematical model that accurately describes the
temporal evolution of structures is required. Differential equations, which inherently
express changes in quantities, are particularly well-suited for this purpose. This
section explores the dynamics of structures through the framework of Ordinary
Differential Equations (ODEs).

An ODE [91] is an equation that consists of one or more functions of a single inde-
pendent variable and their derivatives, which provides a means to describe temporal
evolution. The general form of a temporal ODE is expressed as:

d"y(t) dy(t)

+ an_l(t)w + -+ al(t)w + &0<t)y(t) = u(t), (21)

d™y(t)
dtr

where y(t) is the function representing the system’s response over time, a;(t) are the
coefficient functions that may vary with time, and wu(t) represents external forces
or inputs acting on the system. In this context, dt denotes an infinitesimally small

increment in time.

2.2.1 Second-order ODEs in structural dynamics

In structural dynamics, the most common ODEs are second-order, as they natu-
rally arise from Newton’s second law of motion. According to this fundamental
principle, the force u(t) acting on a mass m causes an acceleration §j, which can be
mathematically expressed as:

u(t) = my, (2.2)

where each over-dot indicating a derivative with respect to time. Thus, when a force

is applied, a structure accelerates in the direction of the force.

Structures inherently resist deformation, and this resistance manifests as a restoring
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force that attempts to return the structure to its equilibrium position. For materials

that exhibit linear elasticity, this restoring force is described by Hooke’s law:
u(t) = ky, (2.3)

where k denotes the stiffness of the structure and x is the displacement from the

equilibrium position.

Equating these forces results in a second-order homogeneous equation differential
that describes the dynamics of a simple oscillator. The simple-harmonic equation

of motion is,

my —ky =0 (24)

Under realistic physical conditions where m and k are positive, all non-trivial solu-
tions to this equation are periodic. Consequently, the structure will display oscil-
latory motion during free vibration, with a period defined by the system’s natural

frequency.

Under this framework a structure when excited would oscillate forever. In practical
scenarios, it is essential to consider the mechanisms through which energy is dis-
sipated in a structure. One common model for energy dissipation is linear viscous
damping, where the damping force is proportional to the velocity of the mass. This

damping force can be expressed as,

u(t) = cy (2.5)
where c¢ is the damping coefficient and ¢ is the velocity.

By combining these forces—restorative and damping—with the inertial force, the
equation of motion for a SDOF system subjected to an external force u(t) can be

formulated as:

mij(t) — cj(t) — ky(t) = u(?). (2.6)
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Nonlinear second-order ODEs in structural dynamics

Eq.(2.6) provides the second-order ODE for a linear SDOF system. While linear
second-order ODEs provide a foundation for understanding structural dynamics,
many real-world systems exhibit nonlinear behaviours that cannot be accurately

captured by linear models.

The general form of a nonlinear second-order ODE in structural dynamics can be

expressed as:
mij(t) + cy(t) + ky(t) + £ (i, 9, y) = u(d). (2.7)

where f(i,9,y) is some nonlinear function.

2.2.2 State-space models

Throughout this thesis, second-order ODEs are predominantly considered within the
equivalent state-space representation [92]. This representation projects the second-
order ODE into a set of first-order ODEs by focussing on the evolution of the state
of the system.

In the context of state-space models (SSM), the term state is defined as the complete
set of variables that encapsulate all necessary information to describe the system’s
current situation, thus determining its future behaviour independently of past in-
puts. Correspondingly, the state vector x(t) is a column vector where each element

represents one of the essential state variables,

x1(t)
) = ™
fd.(t)
where z1(t), z2(t), ..., x4(t) represent the state variables and d is the dimension of

the vector.

The first half of the SSM is the transition function, which mathematically char-

acterises how the state of a system evolves over time. The linear time-invariant
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continuous-time transition function is typically expressed as:
x(t) = Ax(t) + Bu(t) (2.8)

where, x(t) represents the derivative of the state vector x(t) with respect to time,
indicating the instantaneous rate of change of the state. The matrix A, known
as the transition matrix, defines the intrinsic dynamics of the system, independent
of any external inputs, while the matrix B determines how the input vector u(t)

influences the evolution of the state.

A significant advantage of the state-space formulation is its ability to incorporate an
observation model, which is crucial in practical scenarios. Typically, when measure-
ments are taken from a structure, not all states of the system are directly measured
or even measurable. The state-space model addresses this by explicitly modelling
the internal states of the system and including an observation model that links
these states to measured quantities. The linear continuous-time observation model
is expressed as:

y(t) = Cx(t) + Du(t) (2.9)

where y(t) denotes the output or observed vector, C is the observation matrix and

D often represents the direct transmission path from input to output.

When dealing with nonlinear systems, the state-space formulation can be generalised
to accommodate the complexities that arise from nonlinearity. In such cases, the
system dynamics and the observation model are described by nonlinear functions.
The general formulation for a nonlinear continuous-time state-space model is given

by the following equations:

X(t) = f(x(t), u(t)) (2.10)

y(t) = g(x(t), u(t)) (2.11)

The function f(x(t),u(t)) describes the nonlinear relationship between the current
state x(¢), the input u(t), and the rate of change of the state. Similarly, the obser-
vation model is given by y(¢) = g(x(t), u(t)) represents the nonlinear mapping from

the state vector and the input to the observed outputs.
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Summary

SSMs will play a foundational role throughout this thesis. They are preferred over
second-order ODEs for several reasons. Firstly, the incorporation of an observa-
tion model, as previously mentioned, allows for a direct connection between the
theoretical model and real-world measurements. Secondly, SSMs facilitate straight-
forward simulation techniques: linear systems can be simulated using the matrix
exponential, while nonlinear systems can be painlessly implemented into numerical
methods. Third, SSMs provide a robust framework for handling uncertainty, both
in the measurements and in the transition model itself. Fourth, the framework sup-
ports optimal estimation techniques, including filtering and smoothing, which are
critical for accurate state estimation in the presence of noise and other uncertainties.
Finally, the modular nature of SSMs allows for simple extensions to multi-degree-
of-freedom (MDOF) systems and other augmentations essential for efficient latent

force modelling. An introduction to these topic will be provided later in the chapter.

2.3 Initial value problems

Prediction and simulation underpin much of structural dynamics, enabling the anal-
ysis of structures and their behaviours under a range of expected operating condi-
tions. Moreover, they are indispensable for system identification, facilitating tech-

niques such as parameter estimation and latent force modelling.

The simulation and analysis of dynamic systems are often rooted in the concept of
Initial Value Problems (IVPs) [93]. An IVP involves solving an ODE with specified
initial conditions, providing a framework for predicting the evolution of a system’s

state over time. Mathematically, an IVP can be expressed as:

v = f(t,v(t), v(t) = vo. (2.12)

Here, f represents a vector-valued function that defines the system’s dynamics,
v(t) € R?is the solution vector and v, denotes the initial state at time t,. Engineers
often extend this framework to dynamic systems under forced excitation. The SSM
transition function Eq.(2.10) can be used to accommodate such scenarios when an

initial state vector is known x(typ) = x¢. This continuous-time equation allows for
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the exact evaluation of the derivatives of the state vector at any instance in time.
Therefore, the solution to the states at any time ¢ is the integral of f(x(t),u(t))

between ty and t:
x(t) = /t Fx(8), ut)) dt, (2.13)

where, dt is the change in time such that dt =t — ¢,

When the underlying dynamic system is linear and time-invariant and under free
vibration such that u(t) = 0 V¢, the solution to this integral is available in closed

form and can be calculated as a matrix exponential:

z(t) = e, (2.14)

where eAdt

is the matrix exponential. This solution provides a direct method to
determine the state of the system at any time ¢. This framework is extended to the

forced case as,

t
x(t) = A, +/ eA(dt)Bu(t) dt, (2.15)

to
here, the integral term accounts for the contribution of the input over the interval

from t, to ¢, and may require numerical approximation.

Moreover, for almost all nonlinear systems, a closed-form solution to the integral in
Equation (2.13) is not available. Solving such IVPs requires numerical methods, as

analytical solutions are typically infeasible.

2.3.1 Numerical methods for solving I'VPs

Many numerical methods have been developed to approximate solutions to IVPs
when no closed-form solution is available [94]. The foundation of many methods is

the Taylor series [95, 96], an infinite sum expressed as:

dx(t) N h? d*x(t) N n? d’x(t) L™ d x(t)
dt 21 dt? 3l dt? n! dt?

x(t+h) =x(t) +h (2.16)

This expansion is fundamental to understanding how numerical methods progress
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the solution of an IVP from time ¢ to ¢t + h and even forms the bias for the matrix

exponential eA" used to solve linear time-invariant systems.

Euler’s method

Euler’s method [97, 98] is one of the simplest numerical methods for solving IVPs.
The relationship between Euler’s method and the Taylor series is direct: Euler’s

method is derived by truncating the Taylor series after the first derivative term,

ot +h) ~ a(t) + h- f(z(t),ult)). (2.17)

Euler’s method has local error proportional to h? and global error proportional to h.
As h approaches zero, the solution of Euler’s method approaches the true solution

of the integral.

Euler’s method can also be seen as the simplest form of the Runge-Kutta family of

methods, specifically as the first-order Runge-Kutta method.

General Runge-Kutta methods

While Euler’s method is a first-order Runge-Kutta method, higher-order Runge-
Kutta [99-102] methods improve accuracy by considering additional evaluations of
the function f(¢,x(¢)) at intermediate points within each time step. Perhaps the
most commonly used is the fourth-order Runge-Kutta method (RK4),

ki = h-£f(t,x(t)),

h k
hy = h£(t+ 2, x(t) + 51),

h k
%:hﬁ@+?qw+§; (2.18)

ky=h-£(t+ h,x(t) + k3),

1
x(t+h) =~ x(t) + é(kl + 2ko + 2k3 + k).
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Limitations of numerical integration methods

Although numerical integration methods provide powerful tools for solving IVPs,

they are not without limitations. Key challenges include:

e Stability: Numerical methods can be unstable, especially for stiff equations,

where small time steps are required to maintain accuracy.

e Computational Cost: Higher-order methods and smaller time steps increase

computational cost.

e Error Accumulation: Truncation errors accumulate over time, potentially

leading to significant deviations from the true solution.

2.4 Probability

Uncertainty is an intrinsic aspect of structural dynamics that profoundly impacts the
design, construction, and maintenance of structures. Uncertainty arises from mul-
tiple sources, each contributing to the unpredictability encountered in engineering

practice.

Uncertainty in data acquisition is a key challenge, as measurement noise can obscure
the true state of a system, and sparse or indirect measurements can provide incom-
plete information about a structure’s behaviour. In almost all practical scenarios,
the full state of a system is not directly observable, further complicating efforts to

accurately capture the dynamics of a structure.

In addition, the variability inherent in physical processes contributes to uncertainty.
Variations in material properties, the effects of construction methods, and inter-
actions between different structural components introduce unpredictability in the
actual behaviour of structures. These factors lead to discrepancies between the pre-
dicted outcomes of the models and the observed performance of the structure in

practice.

The process of representing physical systems through mathematical models also
introduces uncertainty. Simplifications, assumptions, and approximations inherent

in the modelling process can lead to errors in predictions, affecting the reliability of
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these models. As a result, there is often a gap between the theoretical behaviour

predicted by the models and the actual performance of the structure.

Numerical uncertainty in simulations further complicates the predictive accuracy of
models. This type of uncertainty arises from the discretisation of continuous pro-
cesses, the numerical methods employed, and the finite precision of computations.
Numerical errors can propagate through simulations, leading to deviations between
simulated results and real-world behavior, particularly in complex or nonlinear sys-

tems.

To account for these uncertainties, engineers have traditionally employed conserva-
tive design and maintenance principles, which incorporate substantial safety factors.
Although this approach increases safety margins, it often comes at the cost of effi-
ciency and leads to over-engineered structures with higher material costs and greater

environmental impacts.

Bayesian probability offers a powerful framework for addressing uncertainty in struc-
tural dynamics. By systematically updating the likelihood of hypotheses about
structural behaviour using prior knowledge and empirical data, Bayesian meth-
ods enable a more refined and data-driven approach to uncertainty management.
Rooted in Bayes’ theorem [103, 104], this approach allows for the continuous revi-
sion of probabilities as new data becomes available, providing a robust method for

reasoning under uncertainty.

2.4.1 Bayes’ Theorem

At the core of Bayesian methods lies Bayes’ theorem, which states:

p(B | A)p(4)

p(A|B) = (B

(2.19)
where p(A | B) is the posterior probability of event A given event B, p(B | A) is the
likelihood of event B given event A, p(A) is the prior probability of event A, and
p(B) is the marginal likelihood of event B.

The prior probability, p(A), represents the initial belief about the event A before
observing any data. It enables the incorporation of existing knowledge or expert

opinions into the analysis, providing a more comprehensive understanding of the
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problem when data are limited in quality or in coverage over the domain. The like-
lihood, p(B | A), quantifies the probability of observing the data given that event
A is true and facilitates updating of probabilities as new evidence is acquired. The
marginal likelihood, also known as the model evidence, p(B), serves as a normali-
sation constant that ensures that the probabilities sum to one. It is given by the

integral,

p(B) = [ 9B A)p(a)da (2.20)

The posterior probability, p(A | B), is computed by combining the prior and the
likelihood, reflecting an updated belief about the event A after incorporating the
evidence B. This iterative process of updating beliefs is fundamental to Bayesian

inference, enabling continuous refinement as new data become available.

Evaluating p(A | B) however, can be challenging primarily due to the difficulties as-
sociated with calculating the marginal likelihood p(B). One of the main obstacles in
applying Bayes’ theorem is the computation of p(B) (Eq. (2.20)). This calculation
involves integrating the likelihood over the entire prior distribution, which makes
the result sensitive to regions where the likelihood is low but the prior distribution
has significant support. Consequently, accurately estimating p(B) becomes partic-
ularly difficult in complex, high-dimensional spaces. In many cases, this integral is
analytically intractable, necessitating the use of approximation techniques such as

Monte Carlo integration to evaluate the posterior p(A | B).

2.4.2 Monte Carlo

Monte Carlo methods encompass a broad class of computational algorithms that

rely on repeated random sampling to solve numerical integration problems.

Monte Carlo integration is a specific application of Monte Carlo methods aimed at
estimating the expected value of some function of a random variable. Formally, the
expected value E[f(X)] of a function f(X) with respect to a probability distribution

p(z) can be expressed as:

Mﬂxnz/?@mqu (2.21)
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where z € R, f: R" — R, and p(z) is the target distribution of X.

In low-dimensional spaces, numerical integration techniques can be employed to
compute the integral. This process involves discretising the interval into n points.
At each point on the grid, the function f(z) and the probability density p(z) are
evaluated. The products f(z;)p(z;) are then summed and weighted by the grid
spacing, which approximates the expected value E[f(X)]. However, these techniques
do not scale well to higher dimensions. An alternative approach is to draw multiple

random samples, z,, ~ p(z), and then compute,

N,

Blf(o)] ~ 5 D o). (2.99)

n=1

This technique is referred to as Monte Carlo integration. It offers an advantage
over numerical integration methods by concentrating function evaluations in regions
with significant probability, thereby avoiding the necessity of uniformly covering the
entire space. The error in Monte Carlo integration decreases as O(1/y/N;) and is
theoretically independent of the dimensionality of x, based solely on the number of

samples N.

However, a primary challenge in Monte Carlo integration, particularly in high-
dimensional spaces, is the difficulty of obtaining representative samples from the
target distribution p(z). In high-dimensional spaces, the volume of the distribution
may be concentrated in small regions. This concentration makes it difficult to ef-
ficiently sample from the areas that contribute significantly to the integral. As a
result, despite the method’s theoretical robustness, the accuracy and reliability of
the estimation can be adversely affected in practice when sampling is not sufficiently

representative of the target distribution.

2.4.3 Importance sampling

Here m(x) will be considered to be the target distribution. This in the context of
Bayesian methods this if often a conditional distribution or posterior distribution of

the form m(x) = p(z | y).

The fundamental idea of importance sampling is to sample from a different distribu-

tion, known as the proposal distribution ¢(z), which is more convenient to sample
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from than the target m(z) and provides a better representation of the 7(z) in regions
where the integrand has significant contributions. By choosing a proposal distribu-
tion ¢(x) that closely resembles 7(x) or places more weight on regions where f(x)
is large, the variance of the estimator can be significantly reduced. However, it is
crucial to select an appropriate proposal distribution. The poor choice of g(x) can

lead to increased variance and inefficient sampling.

Let g(z) be the proposal distribution from which the samples are drawn. The

expected value E[f(X)] can be reformulated as:

:/f(x) dx_/f % dx (2.23)

Here, ¢(z) must be chosen such that ¢(x) > 0 whenever f(z)m(z) # 0. This re-
formulation allows the use of samples drawn from the proposal distribution ¢(x),

transforming the problem into an estimation of the expected value under ¢(z).

Using Ng samples x,, ~ g(x), the expected value E[f(X)]| can be approximated by:

BUOO)~ 57 (e ) = LS ), (2.21)
NS n=1 Q(l'n) NS i=n
where the importance weights,
B m(x,)
Wy, = () (2.25)

adjust the contributions of the proposal samples z,, ~ ¢(x), ensuring that they

adequately represent the target distribution 7(z).

Self-normalised importance sampling
In situations where the normalisation constant of the target distribution is unknown,
self-normalised importance sampling provides a practical solution. Consider a target

distribution 7(z) known only up to a normalisation constant Z, such that:

m(x) = : (2.26)
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where 7(z) is the unnormalised target distribution and Z = [ 7(z)dz is the un-

known normalisation constant.

The unnormalised weights w, can be normalised by ensuring that the N, samples

sum to 1:

Wy,
Dty
n=1 Wn,

The normalized weights w,, provide an estimate that approximates the true weights

~

Wy, = (2.27)

wy,/Z. The expectation of a function f(z) under the target distribution p(z) can

then estimated by:
N
Elf(x)] = > tbn f(an). (2.28)
n=1

2.5 Stochastic differential equations

This chapter has thus far introduced ODEs as a mathematical tool to describe the
temporal evolution of dynamic systems. Additionally, it has been discussed that the
dynamics of systems and their observations are inherently uncertain. To account
for this uncertainty in the characterisation of dynamic systems, a mathematical
framework is required to describe the stochastic temporal evolution of these systems.
In this section, stochastic differential equations (SDE) [105, 106] are introduced.

SDEs are a class of differential equations that incorporate random processes, al-
lowing for the modelling of systems subject to inherent uncertainties and random
fluctuations. Unlike ODEs, which provide a deterministic description of system dy-
namics, SDEs integrate stochasticity through the inclusion of terms that represent

random perturbations. The general form of an SDE can be expressed as:

x(t) = £(x(t), 1) + L(x(t), )w(t), (2.29)

where x(t) represents the state vector of the system at time ¢, while f(x(¢),t) is
a deterministic function that describes the drift of the system, analogous to the
deterministic component in ordinary differential equations. The function L(x(¢),t)

modulates the intensity of the stochastic effects, and w(t) is a zero mean white noise
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process, representing the stochastic component of the system.

The solution of an SDE provides a probabilistic description of the state of the system
over time. The study of SDEs is essential in fields such as finance [105, 107, 108],
physics [109], biology [110], and engineering [111, 112].

2.5.1 Probabilistic state-space models

Probabilistic State-Space Models (PSSMs) describe dynamical systems where the
true states are not directly observable — also referred to as hidden states — and
only noisy, indirect measurements are available. In continuous time, PSSMs can be
represented by SDEs to model the underlying state dynamics, while the observation
process is typically modeled probabilistically to account for measurement noise. The
probabilistic nature of these models allows for the incorporation of uncertainty in
both the state evolution and the observations. In the case of a linear time-invariant

system, a continuous-time PSSM consists of the following equations:

x(t) = Ax(t) + Bu(t) + q(?) (2.30a)

y(t) = Cx(t) + Du(t) + v(t) (2.30b)

and for a nonlinear system:

x(t) = f(x(t),u(t), q(t)) (2.31a)

y(t) = g(x(t),u(t), v(t)) (2.31b)

where, q(t) represents the process noise, which accounts for the uncertainty in the
evolution of the system’s state due to unmodeled dynamics or external disturbances,
while v(¢) represents the measurement noise, which characterises inaccuracies or

uncertainties in observed data due to sensor errors or environmental influences.

From this point onward, all SSMs discussed will be probabilistic, so the term ‘SSM’
will be used to refer to PSSM.
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2.6 Bayesian filtering and smoothing

Bayesian filtering and smoothing are key techniques for estimating the state of sys-
tems modelled by SSMs. These methods use a Bayesian framework to update prior
distributions over the state vector x(t) evaluated from an uncertain state trans-
fer function (2.31a) and refine the state estimates based on noisy observations y/(t)
through a uncertain measurement model (2.31b) , incorporating both the uncertain
dynamics of the system and the uncertainty inherent in the measurements into an

optimal estimate of state?.

In a Bayesian setting, the SSM equations (2.31) can be equivalently considered in

discrete time as drawing samples from probability distributions:

X0 ~ p(Xo), (2.32a)
Xy ~ p(X¢ | Xpo1,041), (2.32b)
Vi ~ p(ye | X, uy). (2.32¢)

where x; = x(t). The prior distribution p(x,) encapsulates initial knowledge of the
state before any measurements. The transition distribution p(x; | x;_1, u;_1) models
the evolution of the state from x;_; to x; while accounting for system uncertainties.
The measurement model p(y; | x;, u;) represents how the observed data y; manifests

given the underlying state x;. The SSM is shown graphically in Figure 2.6.

SSMs are typically used for three primary tasks: prediction (or simulation), filter-
ing, and smoothing. These tasks involve estimating the distributions of the hidden
states xy.; using different amounts of information about the observations y. The
objective of prediction is to estimate the distribution of future states, in the absence
of measurements p(x; | X;_1,us,). Filtering focusses on determining the state distri-
bution based on observations up to the present time, represented by p(X; | ¥1.4, Ui.)-
Smoothing, on the other hand, involves estimating the state distributions by using
the complete sequence of observations p(x; | y1.7, uy.r), where T is the final time

step.

When the transition and observation distributions are linear functions with addi-

2optimal for linear systems that can be solved with a Kalman filter
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Figure 2.3: A graphical illustration of the dependencies in a state-space model.
The latent states x; evolve over time, influenced by the previous state x;_; and the
current input u;. The observations y; are generated from the current state x; and
potentially the current input wu,.

tive Gaussian noise, solutions for the filtering and smoothing distributions can be
found in closed form. These solutions are provided by the well-known Kalman fil-
ter [113] and the Rauch-Tung-Striebel (RTS) smoother [114] respectively. However,
for nonlinear systems or when the noise is not additive Gaussian, the filtering and

smoothing distributions become analytically intractable.

To handle nonlinear SSMs, various approximation techniques have been proposed.
Notable among these are the Extended Kalman Filter (EKF) [23] and the Unscented
Kalman Filter (UKF) [115]. These methods, along with others [23], approximate the
nonlinear system by presuming a Gaussian distribution at each time step. Although
these techniques can be effective, they may struggle with accurately representing
complex distributions, such as multimodal distributions, in the states. An alterna-
tive method involves using importance sampling, as seen in the Particle Filter (PF)
[116]. This section will introduce these methods, but for further details the excellent

texts by Sarkka [23] and by Doucet and Johansen [116] are recommended.

2.6.1 Kalman filter

The Kalman Filter (KF) is a widely used algorithm for estimating the state of a

linear dynamic system from a series of noisy measurements. It provides an optimal
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solution for linear Gaussian state-space models. The KF' consists of two main steps:

prediction and update.
Prediction step:

X; = At,lxt,l, (233&)
P, =A, P, A [ +3 . (2.33b)

In the prediction step, the state estimate x; and the covariance estimate P, are
calculated based on the previous state x;_; and covariance P;_, the discrete state
transition matrix A;_ 1, and the discrete process noise covariance 3; . The prior

prediction is updated via:

Update step:

v =y — Hix,, (2.34a)
S, =H,P,H +R,, (2.34b)
K, =P;H/S*, (2.34c)
x: =X, + Kyvy, (2.34d)
P, =P; - K;SK/. (2.34e)

The update step involves measurement y;, measurement matrix H;, and measure-
ment noise covariance R;. The Kalman gain K, is calculated, which is then used
to update the state estimate x; and the covariance estimate P, to incorporate the

observation.

2.6.2 Extended Kalman filter

The Extended Kalman Filter (EKF) extends the KF to nonlinear systems by linearis-
ing the state and observation models around the current estimate. The first-order

EKF approximates the nonlinear functions using a first-order Taylor expansion.
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Prediction step:

x, = f(x4-1), (2.35a)
P; = Fx(Xt_1>Pt_1FI(Xt_1) + Et—l' (235b)
Update step:
vi =y — h(x;)x;, (2.36a)
S, = Hy(x; )P, H, (x;) + Ry, (2.36b)
K, =P, H] (x;)S; ", (2.36¢)
X = X; + KtVt, (236(].)
P, =P, - K,SK/. (2.36e)

where f(-) and h(-) are the nonlinear state transition and observation functions,

respectively, and Fy and Hy are the Jacobians of f(-) and h(-), respectively.

2.6.3 Particle filter

The Particle Filter (PF) is an importance sampling-derived Sequential Monte Carlo
(SMC) method used for estimating the state of nonlinear and non-Gaussian dynamic
systems. Unlike filtering methods that rely on linearisation or Gaussian approxi-
mations, the PF approximates the posterior distribution of the state by using a set
of weighted samples, also known as particles. A general framework for the PF is

discussed in four steps:

1. Sample: x\” ~ q(xy)

The target is to evaluate the filtering distribution 7(x;) £ p(x; | y1.¢, u1.). However,
direct sampling from this distribution is not feasible. Instead, a set of N particles
{xii) N | is drawn from a proposal distribution ¢(x;), according to the importance
sampling method. Ideally, the proposal distribution should closely approximate the
target distribution. When this is not easily achievable, samples can be drawn from

)

the prior distribution (state transition model) xgi ~ p(xy | XE?I, u, 1), as it ensures

that g(x;) > 0 whenever p(x; | yi4,u1¢) # 0. This approach is known as the
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Bootstrap Particle Filter.

2. Weight: v = %(xgi))/q(xii))

After propagation, each particle x,S“ is assigned an unnormalised weight @® based on
how well it explains the observation y; at time ¢t. The weight is typically proportional
to the likelihood p(y; | xﬁ"), Ui.).

3. Normalise weight: ) = @ / Z;VZI w")

The weights are then normalised as per Eq.(2.27).

4. Resampling

The Particle Filter is a sequential method in which the same set of particles is
propagated through time using a state transition model. As the algorithm progresses
through the prediction and reweighting steps (by repeating steps 1 to 3), it gathers
more information about the quality of the particles {xf) N . This process often
leads to particle degeneracy, where most particles have negligible weights, and only
a few carry the majority of the weight. To address this imbalance, resampling is
implemented. Resampling duplicates particles with higher weights and discards
those with lower weights, ensuring that the particle set better approximates the
target distribution, independent of the initial weights. After resampling, the weights
{ﬁ)t(i) N | are uniformly reset to 1/N. There after, the particles are propagated

forward in time by repleating steps 1 through 3 untill resmapling is need again.
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Algorithm

These steps are performed sequentially from ¢t = 0 to ¢t =T shown in Algorithm 1.

Algorithm 1 Particle Filter (fori=1,...,N)
1: Initialization (¢t = 0):

(a) Sample x ~ q(xq).

(b) Set initial weights: w(()’) =1
2: fort=1to 71 do
(a) Resample
(b) Propagate: Sample xgi) ~ p(x | X?il)

(c) Weight: Compute ol = p(y: | x\") and normalize:

N
o — i |3l
j=1

2.6.4 RTS smoothing

Rauch-Tung-Striebel (RTS) smoothing is an algorithm for computing the smoothed
state estimates in linear Gaussian state-space models. It complements the Kalman

filter by performing a backward recursion to refine the state estimates.

Backward recursion:

X = Ayxy, (2.37a)
P, =APA +3, (2.37b)
G, =PA] (P,), (2.37¢)
x; =x¢ 4+ Gy (X}, — X114) (2.37d)
P; =P, +G,(P;,, —P;,)G/. (2.37e)

where x7 and P} are the smoothed state estimate and covariance, respectively.
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2.6.5 Extended RTS smoothing

The Extended RT'S Smoother (ERTS) extends RT'S smoothing to nonlinear systems
by linearising the state and observation models. It uses the EKF for the forward

pass and an extended version of the RTS smoother for the backward pass.

Backward recursion:

X = £(x), (2.38a)
P, = Fo(x)P.Fy (x:) + Qi (2.38b)
G; = P,F (x1) (Pt_+1)_1 ) (2.38¢)
x; = x4 Gy (%71 — X10) (2.384)
P; =P, +G; (P{,, —P.,) G, . (2.38¢)

where Fy(x;) is the Jacobian of the state transition function f(-) evaluated at x; .

2.7 Gaussian processes

Throughout this thesis, GPs will be employed predominantly in the equivalent state-
space/SDE formulation. However, before introducing this formulation, it may be

useful to cover some of the foundations of GPs.

GPs serve as a fundamental approach in nonparametric Bayesian regression, en-
abling the encapsulation of uncertainty in input-output mappings through a proba-
bilistic lens [66]. A GP, denoted as p(f) for a prior over functions f, transitions to a
posterior p(f|D) upon incorporating data D, via Bayes’ rule. This framework posits
that each data point, given a specific input, emerges as a sample from a univariate
Gaussian conditioned on that input. Mathematically, a GP is fully specified by its

mean function m(x) and the covariance kernel k(x,z’),

f(x) ~GP(m(x), k(x,x")), (2.39)

where,
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m(x) = E[f(x)], (2.40)
k(x,x') = E[(f(x) = m(x))(f(x) = m(x))], (2.41)

such that E[-] denotes the expectation operator, f(x) is a real-valued function, x and
x" are input vectors, and m(x) and k(x,x’) are the mean and covariance functions,

respectively.

In this work, as is common, it will be assumed that the prior mean function is zero,
leaving the covariance function to encode the assumptions that are to be embedded

a priorvi.

The choice of covariance function, or kernel, is crucial, as it directly influences how
closely the prior aligns with the posterior distribution. By selecting a specific kernel,
practitioners can incorporate assumptions about the smoothness, periodicity, and
other characteristics of the function of interest. Commonly used kernels include
the Radial Basis Function (RBF), the Matérn, and the exponential kernels, each

reflecting different prior beliefs.

One popular set of covariance kernel is the Matern class of covariance kernels given,

FMater (X, X') = ;1(1/) (@”X ; X/”)y K, (@”X;KX/”) , (2.42)

where I'(+) is the gamma function, K, (+) is the modified Bessel function of the second
kind, ||x — x'|| is the Euclidean distance between input vectors x and x’, ¢ and v
are non-negative parameters. More intuitively v can be considered to encode the
prior “roughness” of the GP and /¢ is the length scale which sets the “distance” over
which the function values are correlated. For v = 0.5, the Matérn kernel reduces to

the exponential kernel, and as v — o0, it approaches the RBF kernel.

2.8 Evaluation metrics

In this thesis, two evaluation metrics are employed to assess the performance and
accuracy of the proposed models: Root Mean Square Error (RMSE) and Normalised
Mean Square Error (NMSE). This section will detail these methods for later use.
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2.8.1 Root mean square error

The RMSE is a commonly used metric to evaluate the accuracy of model predic-
tions. The RMSE provides an absolute measure of the difference between predicted
and observed values, with lower values indicating better model performance. Math-

ematically, the RMSE is expressed as:

M
1 2

RMSE = | — i — Ui 2.43

i 2 (yi — i) (2.43)

Here, y; represents the observed value at the i-th point, 1; represents the predicted

value at the i-th point, and M is the total number of observations. The RMSE is

particularly sensitive to large errors, as these are squared during calculation, thus

providing a strong indication of the presence of outliers or significant discrepancies

between the model and the observed data.

2.8.2 Normalized mean square error

The NMSE is a evaluation metric that accounts for the scale of the observed data
by normalising the error. This normalisation facilitates comparison across different
datasets or models by expressing the error relative to the variance of the observed
data. The NMSE is defined as:

100 <

2
May

NMSE = (i — s)° (2.44)

=1

In this context, 05 denotes the variance of the observed data y. The NMSE metric

ranges from zero, representing a perfect model fit, and increases as the fit quality

declines. Anecdotally, the classification of NMSE performance can be considered as:
e Excellent: NMSE < 1%

e Very Good: 1% < NMSE < 5%

e Good: 5% < NMSE < 10%






Chapter 3

STATIONARY LATENT FORCE MODELS

The latent force model (LFM) is a framework that incorporates latent variables —
unobserved or hidden variables — to identify unmodelled forces from observed data.
There are two types of latent force model. The first is the latent input force (LIF)
model, which is essential for recovering unobserved inputs to a system, facilitating
damage assessment, fatigue prediction, and robust design by offering insight into
loading conditions. The second is the latent restoring force (LRF) model that infers
often nonlinear, internal mechanisms that restore equilibrium, crucial for accurately

capturing the dynamics of a system.

One model type that has gained increasing recognition within the structural dy-
namics community for its application in both LIF and LRF identification is the
Gaussian process latent force model (GPLFM). The GPLFM is particularly valued
for its ability to recover not only the latent forces but also to provide a posterior
distribution over these forces, accounting for the uncertainty inherent in the identi-
fication process. The GPLFM has been explored in the literature, with numerous
authors highlighting its effectiveness as a robust framework. However, several sig-

nificant challenges remain unresolved.

The aim of this chapter is to provide a comprehensive introduction to the GPLFM
for joint input-state identification. This will include an overview of the existing
literature on the use of GPLFMs for LIF identification, as well as a derivation of
the state-space GP from the mean and covariance function of a stationary tempo-

ral GP. Moreover, the development of an established formulation of a state-space

47
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GPLFM from a state-space GP will be provided. Finally, an example study will
be presented to illustrate the application of the GPLFM, along with a discussion
on how the selection of observed state variables influences the performance of the
GPLFM in joint input-state estimation. This work will serve as a foundation for
understanding the fundamentals of the GPLFM and will lay the groundwork for the

new advancements introduced later in subsequent chapters: Chapters 4 to 6.

3.1 Related work

Alvarez et al. [71] first introduced the use of a GPLFM as a method to identify
unknown input forces in linear dynamical systems, using a zero-mean temporal GP

with a stationary kernel by formulating the problem,

mi + ct + kx = U(t), (3.1a)
U(t) ~ GP(0, k(t,t)). (3.1b)

and was further extended by Alvarez et al. to encompass Multi-Degree-of-Freedom
(MDOF) systems. A critical challenge highlighted within their approach was the

computational intensity required to solve the model.

GPs are powerful tools for modelling and predicting time-series, due to their flex-
ibility and ability to quantify uncertainty. However, their practical application is
hindered by significant computational challenges, particularly the O(N3D?) com-
plexity, where N is the number of data points and D represents the dimensionality
or degrees of freedom of the system. This high computational cost can be prohibitive
when dealing with large time series datasets such as found in structural dynamics

and latent force modelling.

To mitigate this computational burden, sparse approximations of GPs have been
developed [117, 118]. Alvarez et al [119] demonstrates that the computational load
of a multiple-output GP can be significantly reduced by implementing a partially in-
dependent training conditional (PITC) sparse approximation. This method reduces
the computational complexity from O(N3D?) to O(N?3D), making it more feasible

for high-dimensional applications. However, even with this reduction, the compu-
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tational demands can remain substantial, especially in cases where the number of

data points vastly exceeds the degrees of freedom.

A significant advancement in the efficient computation of GPs with temporal inputs
was introduced by Hartikainen and Séarkkd [72]. They proposed that GPs with
stationary covariance functions can be equivalently expressed as linear time-invariant
(LTT) stochastic differential equations (SDEs). This formulation enables efficient
computation of the posterior via the Kalman filter and RTS smoother. The smoother
provides estimates of the states conditioned on all past and futures observations
(p(x¢|y1.7)), which are necessary to replicate the full posterior inference of a standard

batch GP regression.

The state-space representation of GPs not only maintains the expressive power and
uncertainty quantification inherent in GPs but also dramatically reduces the com-
putational complexity to O(ND?). This reduction is especially beneficial when the
number of data points, IV, is large relative to the state dimension, D. As a result,
this approach provides a practical and efficient means of applying GPs to large-scale
time-series datasets, making it particularly well-suited for applications in latent force

modelling.

This state-space formulation forms the foundation for much of the subsequent work
in GPLFMs and addresses the computational challenges associated with the GPLFM
initially defined by Alvarez et al. [71]. Hartikainen and Sérkka [73] were the first to
implement this approach within a latent force framework, proposing an augmented
SSM that integrates a state-space GP to infer the LIF directly into the SSM gov-

erning the system dynamics.

Recent studies have extended the application of state-space GPLFMs for force iden-
tification across various mechanical systems. These investigations include the use of
GPLFMs for joint input-state estimation in linear multi-degree-of-freedom (MDOF)
systems, with hyperparameters optimized via maximum likelihood estimation [74],
as well as their application in nonlinear systems, such as the Duffing oscillator, where
Particle Gibbs and Markov Chain Monte Carlo (MCMC) methods are employed for
hyperparameter tuning [75].

Further contributions have demonstrated the use of GPLFMs in joint input-state pa-
rameter identification for both linear SDOF and MDOF systems, employing MCMC

to determine distributions over system and hyperparameters [77, 78].
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The adoption of GPLFMs in experimental settings has been increasingly recognised,
with contributions including wind load estimation for long-span suspension bridges
[120], onshore wind turbines [121], and in-situ validation of predicted subsoil strain
responses in offshore wind turbines [122]. This further underscores the versatility

and effectiveness of the model in real-world applications.

The state-space formulation of GPs has become a foundational framework in the
advancement of latent force modeling using GPLFMs. By offering a significant re-
duction in computational complexity—from O(N3D3) in traditional GP approaches
to O(ND?)—it addresses the scalability issues that are critical when working with
large time-series datasets prevalent in structural dynamics. This efficiency gain has
been essential for the practical application and adoption of GPLFMs in recent re-
search. Recognizing its importance, the derivation of the state-space representation

of GPs will be presented in the following section.

3.2 Derivation of state-space Gaussian processes

The starting point for deriving a state-space model from a GP is a linear time-
invariant SDE that governs the behavior of a continuous-time random process f(t).

Such a process can be described by an SDE of order m as follows:

dm f(t) " f(t) df (t)
g +amflw+”'+al 7 +aof(t) = w(t), (3.2)
where the coefficients ag, a1, ..., a,_1 are constants, and w(t) represents a white

noise process with spectral density S, (w) = ¢. The goal is to express this SDE in a

first-order state-space form.

To achieve this transformation, a state vector x(¢) is introduced. This vector en-
capsulates the process f(¢) and its derivatives up to order (m — 1), and is written

as:
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f(t)
df (t)

x()=| @ | (3.3)

£ (1)
L ggm—1

By constructing the state vector in this manner, the original m-th order SDE is

reduced to a system of first-order differential equations,

dx(t
% — Fx(t) + Lw(t), (3.4)
where F is the transition matrix, and L is the input vector that determines how the

noise w(t) enters the system. The matrices are explicitly given by:

[0 0 0 |
0
0 0 1 0 0
F = , L= (3.5)
0 0 0o ... 1
1
—Qp —a; —Qa2 ... —Qmpm-1

The transition matrix F encodes the deterministic dynamics of the process, while

the input vector L introduces stochasticity through the white noise input w(t).

The system described by the SDE in Equation (3.2) can also be understood in the
frequency domain through its transfer function, which is obtained via the Fourier
transform of the system’s differential equation. This transfer function, G(iw), relates
the input w(t) to the output f(¢) in the frequency domain. The transfer function

G(iw) is expressed as:

: bo
Gliw) = (iw)™ + a1 (W)™ + -+ ay(iw) + ag’ (36)

where by is a constant such that ¢ = |by|?, ¢ is the spectral density of the white
noise process, and the denominator is derived from the characteristic polynomial of

the differential operator in Equation (3.2). This transfer function can be used to
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compute the spectral density S(w) of the process f(t), which is given by:

S(w) = |G (iw)]q|G (iw)| ", (3.7)

-
Therefore, by using H = [1 0 ... O} it is possible to extract the first component
of the state vector f(t) from x(t),

£(1) = Hx(t), (3.8)

such that the spectral density of the state-space model can be calculated using the

following expression:

S(w) =H(F +iwl) ' LgLT [(F—iwl)™] HT, (3.9)

where I denotes the identity matrix.

Importantly, it is possible to reverse this approach by starting with a covariance
function for a temporal GP. By determining the spectral density from this, it is
possible to obtain a stable Markov process as long as the covariance of the GP is

stationary.

3.2.1 Matérn kernel as an SDE

Recall the Matérn covariance function introduced in the previous chapter:

k(r) = o—;% (@) K, (@) , (3.10)

In this case, the expression is restricted to the temporal domain, where r = |t — t/|

represents the temporal distance between two points.

The spectral density of a stationary process with a Matérn covariance can be derived
by taking the Fourier transform of the covariance function. The spectral density is

given by:
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227T1/2I‘(1/ + %)

S ="

A (N2 4 w?) TR (3.11)

where A = /2v /0. When v = p + %, where p is a non-negative integer, the spectral

density simplifies to:

S(w) o (A2 4 w?) " (3.12)

This can also be expressed as:

S(w) o< (A =+ iw)” P (A = iw) T (3.13)

From this, the transfer function G(iw) of the corresponding LTI system can be

extracted as:

Gliw) = (A + iw) P (3.14)

and the process can be modeled as driven by white noise with spectral density ¢,

which is given by:

20?7?1/2A(2p+1)F(p +1)

T (3.15)

q:

For instance, when p = 1, the corresponding state-space representation of the process

1S:

dx(t) (0 1 0
= (_v _2A> x(t) + (1> w(t), (3.16)

and with p = 2,

0 1 0
—Z2 =10 0 1 |x®)+]0]w®), (3.17)
—M —3A2 -3\ 1
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It is then possible to solve this this continuous time state-space model with a Kalman
filter and RTS-smoother by first converting the model to discrete time (details seen

later in the chapter).

3.3 A framework for joint input-state estimation

as a latent force problem

The fundamental concept behind the LEM for LIF recovery is that, if the equation
of motion is well-characterised, the parameters are known, and all system states are
measured, the total internal restoring force of the system can be calculated (e.g., the
left-hand side of Eq. (3.1a)). According to Newton’s laws of motion, this restoring
force must be equal to the external force applied to the system (e.g., the right-hand
side of Eq. (3.1a)). When measurement noise introduces uncertainty in the states,
a distribution over the LIF can still be recovered, reflecting the uncertainty in the

identification process.

However, for this approach to be applied without modification, it requires direct
measurements of all internal states of the system. However, this is rarely feasible,
even in controlled laboratory environments, and is even less likely in real-world
engineering scenarios, particularly under operational conditions. Therefore, effective
latent force modeling must be capable of performing reliably, even when only partial
state information is available. This challenge highlights the crucial need for joint

input-state estimation.

This section details the process of augmenting a continuous-time LTI SSM with
a continuous-time LTI state-space GP to form a continuous-time GPLFM. The
augmentation establishes the framework necessary for joint input-state estimation
in latent force problems. Additionally, the discretisation of continuous-time LTI
GPLFMs will be discussed. Once in this form, discrete time Bayesian filtering and
smoothing techniques can be applied. Moreover, this section will explore how the
specific state variable that is observed influences the performance of the GPLFM in

joint input-state estimation.
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3.3.1 Stochastic differential equations for latent force mod-

elling

Previously it has been discussed how a dynamic system can be formulated as a
coninuious time SSM (Section 2.5.1), such that,

x(t) = £(x(t), u(t), v(t)) (3.18a)
y(t) = g(x(t),u(t), w(t)) (3.18Db)

In this work an alternative perspective to the transition function of the SSM is taken
(Eq.(3.18a)). The transition function of a SSM can be equivalently considered as a
special case of an SDE. This alternative view point will prove useful as this work will
draw heavily upon SDE theory to develop and solve both the stationary GPLFM
and, in particular, the non-stationary GPLFM in Chapter 6. A continuous-time LTI

SDE equation can be expressed as:

X(0) ~ N (x(0), P(0)), (3.19a)

X(t) = FX(t) + Lu(t), (3.19)

where x(0) and P(0) are the mean and the covariance that describe the Gaussian
distribution over the initial state X'(0). F is the continuous-time state transition

matrix, L is the diffusion matrix and w(t) is a white noise process.

In this work, the focus will be on the propagation of the statistics of states through
time, that is, the mean x(¢) and covariance P(t), rather than samples from the
distribution specified in Eq(3.19). The linear continuous time derivatives of the

mean and covariance are provided as follows,

x(t) = Fx(t), (3.20a)

P(t) = P(t)F" + FP(¢) + LQL” (3.20b)



56 3.3 A framework for joint input-state estimation as a latent force problem

where P(t) is the state covariance and Q is the noise covariance or white noise

spectral density.

3.3.2 Constructing the GPLFM for a linear SDOF system

The construction of the GPLFM will initially be demonstrated for a linear SDOF

system,

mi + ci + kx = U(t). (3.21)

However, it is feasible to extend this framework to nonlinear and/or MDOF sys-
tems. The construction of the state-space GPLFM for a linear SDOF system begins
with the consideration of the second-order differential equation Eq.(3.21) in state-
space form with the continuous time mean and covariance defined by Eq.(3.20) and

parameterised by the matrices,

0 1
den: [

, Bayn = [?] , (3.22)

0 o2 0
Ldyn = [1] s POdy,, = [ IO(O) 9 ] ) Qdyn =dq (323)
Ti(0)

The subscript dyn indicates that the arrays define the internal dynamic states of
the system. The subscripts x(0) and #(0) denote the variances in displacement and
velocity, respectively, at ¢ = 0. The term ¢ represents the process noise in the system

dynamics.

The next step is to consider the SDE representation of the GP the practitioner has
chosen for the analysis. Here, as introduced in Section 2.7 the Matérn 3/2 kernel is

used. The continuous time mean and covariance are defined by the arrays,

0 1
Fop = , 3.24
e 1) oo
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0 o2 0
Lap = . Py, = | O = 4\%02, 3.25
o H GP [ 0 2”’3(0)] wor ' 529

where, subscript GP indicates that the arrays define the states of the GP, A = v/3 /L,

and ¢ and o2 denote the length scale and variance hyperparameters, respectively.

By adopting the assumption from Eq. (3.1b), which posits that the input to the
dynamic SDE can be modeled by a temporal GP, it becomes possible to augment
the dynamic SSM Eq. (3.22) such that the latent input is treated as an internal
state of the system, modelled by the SDE GP. This allows the transition of the

mean states to be represented as:

i(t) 0o 1 0 0 z(t)
i) _ |- -5 & 0| | 526)
u(t) O 0 0 1 u(t)
ii(t) 0 0 =X =2X| |u(?)

Furthermore, the covariance over the states through time is captured by,

T
00 00
) 1 0ll¢g O 10
P(t) = P(t) Foprrum + FopuenP(t) + 0 0 [() 4)\302] 0 0 (3.27a)
0 1 QcPLFM 01
LGPLFM LEPLFI\/I
0'326(0) 0 0 0
0 o2 0 0
R = £0) 3.27h
OcgpLFM 0 0 03(0) 0 ( )
0 0 0 2)\05(0)

Eq. (3.26) can be visualized as a block matrix system, where the upper-left block
captures the system dynamics, and the lower-right block defines the Gaussian pro-

cess prior. This GP prior models the latent force, while the upper-right block defines
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how the external force affects the internal states, through the term %, ensuring that
the force is appropriately scaled when entering the dynamics via the acceleration
term. The lower-left block, which is zero, ensures that the dynamic states do not

affect the GP input — a reflection of causality in the loading.

The covariance structure of the system is given in Eq. (3.27). The term Py ppy
represents the initial covariance of the system states, with diagonal elements cor-
responding to the variances of displacement, velocity, and GP states. The process
noise covariance, QaprLrMm, reflects the uncertainty in the model in both the system
dynamics and the latent force modelled by the GP.

3.3.3 Discretization for implementation with Bayesian fil-

tering and smoothing

For practical implementation, the continuous-time state-space GPLFM derived in
Eq. (3.26) and Eq. (3.27) must be discretized to allow for the application of recursive

estimation techniques such as the Kalman filter and RTS smoother.

As this system is LTI, the discrete-time transition matrix A(z;_ ;1) is computed us-
ing the matrix exponential exp(F'(x;—1)dt), which benefits from robust numerical
methods.

In contrast, calculating the discrete-time noise covariance ¥(x;_1) is more complex
and numerically demanding. This complexity can be mitigated using matrix frac-
tion decomposition (MFD)! [106], which simplifies the computation of 3(z; ;) to

evaluating a matrix exponential:

A DAT FOLQLT
= eX
0 AT PUlg —pr

lalso known as Van loan discretisation [123]

dt) (3.28)
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Table 3.1: Comparison of NMSE across all states across different observations for
the SDOF multisine example example, relative to simulated data.

Observation: Displacement  Velocity = Acceleration

z (m) 458 x 107  2.80x 1072 9.23 x 10°
i (ms™) 491x 107! 7.18x 1073 1.03 x 107!
i (ms™2) 1.15 x 100 3.38x 107! 2.41 x 1072
U(t) (N) 1.41 x 100 4.20 x 107" 1.83 x 10°

3.4 Example study

To further illustrate this latent force approach, the GPLFM constructed in Section
3.3.2 will be employed in a example study. In this example study, an SDOF system
with parameters m = 1, ¢ = 0.1, and k = 50 is subjected to a random phase

multisine loading defined by:

N
U(t) = Z A; sin(wit + ¢;)
i=1
where A; represents the amplitude, w; denotes the angular frequency, and ¢; is a
random phase uniformly distributed in [0, 27]. Here, A; = 10 Vi, and w; is a vector

ranging from 0.5 Hz to 10.5 Hz in 10 linearly spaced intervals such that N = 10.

To provide data for the analysis the system is discretised and simulated from zero
initial conditions at a sample frequency of 2048Hz. This simulated data set will

form the baseline the performance of the GPLFM can be compared against.

For the example study, three scenarios are presented. In each scenario, a different
state variable is made available as the observation. These measurements are cor-
rupted by artificial noise through the addition of i.i.d. samples from a zero-mean
Gaussian distribution with 5% of the root mean squared (RMS) of the observed sig-
nal, such that the signal-to-noise ratio remains constant regardless of the amplitude

of the actual signal.

The results of the identification are presented in three figures, and the NMSE (see
Section 2.8.2) for all states and the recovered latent force across all three case studies
is summarized in Table 3.1. Overall, the recovery of dynamic states and latent force
varies significantly depending on which state is observed. The latent force is most

accurately recovered when velocity is observed, followed by acceleration, and then
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Figure 3.1: Comparison of ground truth (orange) and GPLFM predictions (black)
for displacement, velocity, acceleration, and latent force when displacement is
observed. The shaded region represents the 3o confidence interval.

displacement.

In the first scenario, displacement is observed, and the results are presented in Figure
3.1. Both displacement and velocity are recovered with high accuracy. However, the
recovery of acceleration and the latent force is less accurate, exhibiting a significant
increase in error as evidenced both visually in Figure 3.1 and numerically in Table
3.1. This is accompanied by increased uncertainty in these states, as shown in Figure
3.1. Despite the elevated errors, the ground truth consistently falls within the 3o

uncertainty bounds, indicating that the uncertainty has been correctly estimated.

Furthermore, it is important to note that acceleration is derived from displacement,
velocity, and the latent force. Since the recovery of the latent force exhibits greater
error and uncertainty compared to displacement and velocity, the errors and uncer-

tainties in acceleration are primarily influenced by the latent force?.

The second scenario examines velocity as the observed variable, with results pre-

sented in Figure 3.2. In this case, the recovery of all latent states and the latent

2For clarity, acceleration is not part of the state vector x(¢) and is instead calculated from
T = u — kx — cx after the identification is completed. Therefore, the error in Z is a sum of the
errors in the latent force v and the states z and .
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Figure 3.2: Comparison of ground truth (orange) and GPLEFM predictions (black)
for displacement, velocity, acceleration, and latent force when velocity is observed.
The shaded region represents the 30 confidence interval.

force is excellent. Notably, when velocity is observed, the latent force is recovered
with the highest accuracy. However, there is a slight increase in the NMSE for
displacement compared to the previous scenario. This increase is attributed to the

fact that displacement is no longer directly observed.

In the third scenario, acceleration is observed, and the results are depicted in Figure
3.3. Compared to the scenario where velocity is observed, there is a slight decrease in
overall performance. Specifically, acceleration and velocity are recovered excellently,
displacement recovery is good, and latent force recovery is very good. This indicates
that while observing acceleration introduces some challenges, the recovery of key

state variables and the latent force remains highly accurate.

However, it can be seen that there is a low-frequency drift in the recovered displace-
ment state. As the displacement begins to drift, the uncertainty bounds widen,
reflecting increasing uncertainty in the displacement estimates. This widening of
uncertainty bounds serves as a strong indicator that the posterior distribution, not
just the mean, is important and essential for fully understanding the system’s be-

havior. This drift phenomenon will be discussed in detail in later.
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Figure 3.3: Comparison of ground truth (orange) and GPLFM predictions (black) for
displacement, velocity, acceleration, and latent force when acceleration is observed.
The shaded region represents the 3¢ confidence interval.

3.4.1 Discussion

The results demonstrated that the GPLFM provides a powerful and effective frame-
work for joint input-state identification. However, the accuracy of the recovery is
highly dependent on which state variable is observed. This observation raises two
primary questions: Why is joint input-state identification possible when there are
multiple latent variables, and why does the observed state variable have such a sig-
nificant effect on the quality of the recovery? This section seeks to address these

two points.

Feasibility of joint-input state estimation

It is reasonable to first question why joint input-state estimation is possible. Even
for this simple SDOF example, when one state variable is measured, it leaves at
least one state variable and the input unobserved. Therefore, it might be expected
that there would be no unique solution to this problem. For instance, if displace-
ment is observed, there exists an infinite set of possible velocities and inputs that

would satisfy the system’s equations of motion. Consequently, without additional
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constraints or information, one would not anticipate being able to uniquely and

accurately recover the unobserved states and input from limited observations.

It might be expected that access to other state variables, beyond the one observed,
could be achieved through numerical differentiation or integration. However, this is
generally not feasible due to the challenges associated with numerical differentiation
and integration on signals corrupted by significant noise, as these processes tend to

amplify noise or induce drift.

Furthermore, Bayesian filtering and smoothing techniques, which leverage proba-
bilistic models to optimally combine prior information with observed data and are
effective at recovering latent states from noisy observations, cannot traditionally be
applied here as they rely on known inputs to propagate the state estimates forward

in time (see Section 2.6).

The problem of joint input-state identification is solved by constructing the GPLFM
using two separate SSM. The first SSM defines the prior over the dynamics of the
system, while the second SSM represents the GP and extends the state-space by
introducing additional dimensions defining a prior over the input. The variation in
the prior over the dimensions of the GPLFM that represents the dynamic states and
the latent forces, encodes sufficient structure to make the problem both separable

and solvable.

In particular, a strong prior is imposed over the latent states, derived from the system
dynamics (Eq.(3.22)), to ensure accurate recovery of the derivative relationships
between the states. This prior enforces the known derivative relationships between
the observed data and the latent states, such that acceleration is the derivative of
velocity and velocity is the derivative of displacement. In the example study, low
variance in this prior is ensured by setting (QQgprLrm,, to zero for the dimensions
associated with the system dynamics, implying no process noise in the dynamics.

This reflects the assumption that the dynamic model is correct?® .

In contrast, the Matérn kernel, used as a prior for the latent force, is more flexible

3Note that variance still enters the dynamic states due to uncertainty in the measurements and
the latent force, and is reflected in the posterior covariance.

4The process noise on the dynamic states does not need to be zero for the GPLFM to correctly
identify the states and latent force. However, the process noise must be sufficiently small. If
the process noise is too large, it weakens the prior, implying little knowledge about the system’s
dynamic structure. As a result, it becomes difficult to separate the contributions of the system
dynamics from those of external inputs.
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but less informative, encoding only that the latent force is a realization of a stochas-
tic process with damped oscillatory components. This allows for a wide range of
possible functions to be modeled. The smoothness of the process is controlled by
the hyperparameter v, the correlation length by ¢, and the variance by o2, providing
a flexible prior. Together, they define the process noise as QgpLrnm,, = 4\302, where
A=+3 /0. As 02 increases and ¢ decreases, the process noise on the Matérn kernel
increases. Here, £ = 0.05 and 02 = 3, resulting in Qgprrm,, = 498831, ensuring that

Qarrrvy, << QGPLFMys-

The contrast in the strength and therefore variance of the priors over the latent
states and latent force ensures that the Matérn GP over the latent force remains
flexible enough to learn a wide range of inputs. At the same time, the stronger prior
with lower variance over the latent states ensures accurate state estimation. This
balance prevents the GP for the latent force from overshadowing the contributions

of the latent states, thereby preserving the integrity of the state representation.

The GPLFM prior can then be updated from noisy observations via Bayesian filter-
ing and smoothing. This process avoids the need for direct numerical differentiation
or integration of the states by providing an optimal estimate of the state variables
(for the linear case), while minimizing the impact of noise. Consequently, it reduces
the noise amplification that differentiation can cause and the drift that integration
might induce during the identification process. This approach is made possible
by modeling the input as a GP, which augments the state-space and allows state

estimates to be propagated forward in time.

Impact of the observed variable on the quality of recovery

The results of the example study demonstrate that the selection of the observed
state variable significantly affects the accuracy of the recovery of both the latent
states and the latent force. Specifically, the most accurate recovery occurs when

velocity is observed, followed by acceleration, and finally displacement.

As previously discussed, it is possible to view the latent force identification problem
as a challenge to recover total internal restoring force of the system, which is defined

by the left-hand side of the equation of motion:

Fi(£) = mi(t) + ci(t) + ka(t) (3.29)
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According to Newton’s laws, the external input force is equal and opposite to the

total internal restoring force, i.e.,

U(t) = Fin(t) (3-30)

Therefore, the observed state that allows for the most accurate recovery of the
internal restoring force will also lead to the most accurate estimation of the latent

input force.

When only one state variable is observed, the quality of the recovery depends fun-
damentally on how well the observed state helps to reconstruct the total internal
restoring force. There are two primary factors to consider in this context, assuming
that it is possible to observe each state and that the signal-to-noise ratio (SNR) of

the observations is equal for each observable state.

Propagation of measurement noise through the system model The first
factor concerns the derivative or integral relationship between the observed variable
and the internal latent states®. When a noisy observation is integrated or differen-
tiated through the observation or state transition matrix as part of the update step
in the filter or smoother, additional uncertainty is introduced on top of the original

uncertainty in the observation.

While the filtering and smoothing steps in the GPLFM framework significantly re-
duce the amplification of high-frequency noise and mitigate drift by incorporating
prior knowledge from the physical model, the presence of noise—and thereby un-
certainty—in the observations means that some information is fundamentally lost.
This loss cannot be completely recovered in a joint input-state identification context,

even with optimal estimation techniques.

For instance, when displacement is observed, estimating velocity and acceleration
requires differentiating the noisy displacement measurements. This differentiation
can lead to inaccuracies in the estimated system state. Low-amplitude but high-

frequency oscillations in velocity—caused by significant accelerations—may have a

®Note that in this context, integration and differentiation refer specifically to the calculation of
the derivative or integral of a state variable, not through numerical techniques, but by passing the
variable through the measurement and system SSM as part of Bayesian filtering and smoothing
techniques.
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minimal effect on the displacement, making them easily obscured by noise. This
discrepancy makes it difficult to accurately capture the system’s acceleration, intro-
ducing further uncertainty in force recovery, particularly affecting the contribution
from the inertia term ma(¢). This phenomenon is illustrated in Figure 3.1. When
displacement is observed in the example study, although velocity recovery is rel-
atively accurate, small errors cause high-frequency components in the recovered

acceleration and latent input force to be either missed or smoothed out.

Conversely, when acceleration is observed, velocity and displacement must be es-
timated by integrating the noisy acceleration measurements. This process can in-
troduce errors into the state estimation. Low-frequency changes in velocity, caused
by small variations in acceleration, are easily masked by noise. The accumulated
errors in velocity can cause substantial drift in the displacement state, affecting the
contribution from the stiffness term kx(t) and introducing significant inaccuracies in
identifying the latent input force. This behavior is illustrated in Figure 3.3. When
acceleration is observed in the example study, although velocity recovery remains
relatively accurate, small errors progressively accumulate, resulting in considerable
drift in the displacement state. This drift, in turn, induces a corresponding and

opposite drift in the recovered latent force.

When velocity is observed, only a single integration or differentiation step is required
to estimate displacement or acceleration, respectively. This reduces the compound-
ing errors seen when two integration or differentiation steps are necessary. In the
case study example where velocity is observed, an excellent recovery of all dynamic

states, as well as the most accurate recovery of the latent input force, is achieved.

It should be noted that improved results across all observed states could be achieved
if the hyperparameters of the GP used to infer the latent force were optimized. In
this example study, the hyperparameters were selected and fixed across the three
scenarios. This was done partly to highlight the effect of the observed state on
identification and partly because the optimal hyperparameters would vary depending

on the observed state. Fixing them allows for a more straightforward comparison.

Contribution to the total internal restoring force The second factor is the
proportion of the total internal restoring force that is contributed by the observed
state. Observing a state directly (even if noisily) is likely to produce the best

estimation of that particular state. Therefore, observing the state that has the
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largest contribution to the total internal restoring force is likely to provide the
best estimate of Fiy(t), assuming noise effects are consistent across observed state

varaibles.

In the context of the linear SDOF system, the contributions of displacement, velocity,
and acceleration to Fi(t) are given by kx(t), ci(t), and mi(t), respectively. The
dominant contributor to the total internal restoring force is primarily determined

by the characteristics of the input force, such as its frequency content.

For instance, in systems subjected to high-frequency inputs (relative to the dynam-
ical properties of the system), the inertial term mi(t) becomes more significant.
Conversely, for low-frequency inputs, the stiffness term kx(¢) may dominate. In the
example study, the input force has significant high-frequency components, making

the acceleration term a larger contributor to Fiu(t).

In the example study, the inertia term mi(t) contributes a larger proportion to the
total internal restoring force than the stiffness term kx(¢). This explains why the
latent force is recovered more accurately when acceleration is observed compared to
when displacement is observed. Although significant drift occurs in the displacement
when acceleration is observed, this has only a limited effect on the accuracy of the
latent force recovery. In contrast, when displacement is observed, high-frequency
content in the acceleration is significantly smoothed, leading to a corresponding
smoothing of high-frequency components in the latent force hindering the latent

force recovery.

Combined effect of both factors The combined effect of these two factors
explains why observing different state variables significantly impacts latent force
recovery. It is important to note that the optimal state to observe depends on the
specific system under consideration. Additionally, these interactions become more
complex when dealing with MDOF systems. However, more importantly, the choice
of which state variable to observe for identification is primarily determined by the
practicalities of measuring physical systems. Due to the widespread availability of
affordable piezo-electric accelerometers, acceleration data is commonly used in most
practical structural dynamics testing [5]. However, this does not undermine the

importance of understanding how the observation interacts with the model.
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3.5 Summary

The chapter presented an introduction to the GPLFM for joint input-state identifi-
cation. Key topics covered include a review of relevant literature on GPLFMs, the
derivation of the GP based on the mean and covariance functions of a stationary
temporal GP, and the formulation of a state-space GPLFM from a state-space GP.
A example study was also discussed to demonstrate the application of the GPLFM,
emphasizing how the choice of observed state variables affects its performance in
joint input-state estimation. This chapter serves as a basis for understanding the
fundamentals of GPLFM, providing the groundwork for the advancements intro-

duced in subsequent chapters.



Chapter 4

STATIONARY NONLINEAR GPLFMSs
FOR INPUT FORCE IDENTIFICATION
FOR HYSTERETIC SYSTEMS

In the previous chapter, the GPLFM was introduced as an effective method for
joint input-state estimation. This method was demonstrated through a linear SDOF
example study, which investigated the influence of different observed variables on the
identification process. It was observed that the derivative and integral relationships
between the uncertain observed variable and the latent states significantly affect the

quality of latent force recovery.

However, a challenge that has not yet been addressed is the scenario where latent
states of the system are not merely the time derivatives or integrals of other hidden
states. Additionally, these hidden states do not correspond to the time derivatives

or integrals of the observed signal.

To address this gap, this chapter aims to explore a challenging case: assessing
whether the joint latent force approach can be used to recover both latent inputs

and latent internal states from noisy observations in nonlinear hysteretic systems.

69



70 4.1 Bouc Wen model of hysteresis

4.1 Bouc Wen model of hysteresis

Hysteresis can be considered a nonlinear memory effect where the state of a sys-
tem depends not only on its current input but also on its history of past inputs.
Hysteresis can be used to model internal friction, deformation of rubber, and shape
memory alloys, to name a few examples. The equation of motion for the Bouc-Wen

model of hysteresis [124] is given as,

mi + ci + kx + z(x, &) = u(t) (4.1a)
iz, &) = ad — B (v]&|[2]" 2 + di]2]") (4.1Db)

where, z is displacement, 2 is velocity, m is mass, c is viscous damping, k is linear
stiffness and z encodes the nonlinear hysteresis memory effect. The rate of change of
z, Z is defined by «, 3, v, 0 and v which are used to tune the shape and smoothness

of the hysteresis loop.

4.2 Nonlinear GPLFMs

In the previous chapter, it was demonstrated that a linear GPLFM can be solved
analytically using a Kalman filter and RTS smoother. However, for latent input
force identification in nonlinear systems, the GPLFM must also become nonlinear.
This extension introduces significant challenges, as Bayesian filtering and smoothing
for nonlinear systems often lack analytical solutions. Additionally, accurately repre-
senting and propagating uncertainty through nonlinear transformations is complex,

as these transformations typically result in non-Gaussian distributions.

Rogers et al. introduced a methodology for nonlinear input-state estimation using a
nonlinear GPLFM [75]. This methodology employs a particle Gibbs with ancestor
sampling (PGAS) [125] inference scheme combined with the GPLFM to produce a
Monte Carlo approximation of the smoothing distribution. It is used to infer both
the latent forces and hidden internal states from noisy acceleration measurements

in a nonlinear Duffing oscillator. The results demonstrate a high accuracy in the
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recovery process.

However, a limitation of this work so far is that it is restricted to systems where
all latent internal states are either integrals or derivatives of the noisy observations.
This constraint limits the applicability of the method to more complex systems

exhibiting nonlinear dynamics that cannot be solely described by such relationships.

In this chapter, an extension of the framework proposed by Rogers et al. [75] is
developed. A nonlinear GPLFM capable of joint input-state estimation for nonlin-
ear systems, including those with latent internal states not restricted to integrals
or derivatives of the noisy observations, is presented. Specifically, the methodol-
ogy is applied to systems that exhibit Bouc Wen hysteresis, a challenging form of

nonlinearity.

The importance of this extension stems from the fact that numerous real-world
systems exhibit intricate nonlinear behaviours. By broadening the applicability of
the GPLFM, this work enables the joint estimation of input forces and internal states

in such systems, thereby enhancing the scope of GPLFM for input identification.

4.3 Constructing a Nonlinear GPLFM

To develop the nonlinear GPLFM for joint input-state identification in systems
exhibiting Bouc-Wen hysteresis, the first step is to define the nonlinear transition

model for the mean state of the system as a set of first-order ODEs:

T z
il = —Lid—Er— Log Tyt (4.2)
Z

ai — B (yE]]z[""2 + 2] 2[")

Then the nonlinear transition model can be augmented such that the input is treated
as an internal state of the system, modelled by a state-space GP. This approach

enables the representation of the transition of the mean states of the nonlinear
GPLFM as follows:
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Furthermore, the covariance over the states is captured by:
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This formulation introduces an additional dimension beyond that seen for the
GPLFM formulation in Eq.(3.26) and Eq.(3.27) to characterise the temporal mean

and covariance of the internal state z.

4.4 Inference

The main challenge in moving from linear GPLFM to nonlinear is in the additional
complications within the inference. Since the system is nonlinear, there is no longer
a closed-form solution to the filtering and smoothing distribution of the GPLFM.

Therefore, approximations need to be employed.

One effective method for recovering the filtering distributions over nonlinear SSM
is the particle filter. The particle filter is employed to approximate distributions
of the kind p(z1.4 | y14). This process involves estimating the entire sequence of
states up to the current time, conditioned on the observations available up to that
point. This is done as a Monte Carlo method where a collection of weighted point
masses (or particles) evolves over time, and through repeated proposals, weighting,
and resampling, they create an importance sampling approximation to the filtering

distribution at each time step. A brief introduction to the particle filter is found in
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Section 2.6.3.

However, in this work, access is needed to the smoothing distribution. The reason is
that the smoothing distribution is essential for correctly replicating the full posterior
of a temporal GP in state-space form. The smoothing distribution estimates the
probability distribution of the state at a given time, conditioned on all observations
collected up to a future point in time. More concretely, smoothing is concerned with
generating samples from the joint distribution p(z1.7 | y1.7) or evaluating marginal

distributions p(x; | y1.7), where t =1,...,T.

One potential approach for accessing the marginals p(x; | y1.7) involves first com-
puting the joint distribution p(z1.7 | y1.) using a particle filter and the marginals
can be obtained by integrating out the variables x1., 1 and x;.1.7. However, this
strategy is typically impractical when the number of particles n is much smaller
than the length of the observation sequence T, as the particle filter tends to suffer
from particle degeneracy and sample impoverishment over long sequences, leading

to inaccurate marginal estimates.

There are a number of methods that can instead be applied to recovering the smooth-
ing distribution. A naive approach to estimate this distribution might be to use a
Markov chain Monte Carlo (MCMC) method. However, this approach has two
main limitations. First, the likelihood of the system is not available in a closed-
form expression. Second, the smoothing distribution is often highly dimensional,
which complicates the construction of efficient proposals within traditional MCMC

techniques, such as the Metropolis-Hastings algorithm [126].

To address these limitations, Lindsten et al. developed a Particle MCMC (PM-
CMC) technique known as Particle Gibbs with Ancestor Sampling (PGAS) [127].
This algorithm builds upon the previously derived PMCMC methods developed by
Andrieu et al. [125]. Andrieu et al. demonstrated that by incorporating a Sequen-
tial Monte Carlo (SMC) scheme within an MCMC framework, it is possible to make
the inference on the high-dimensional distributions found in nonlinear state-space

models more efficient.

The approach by Andrieu et al. leverages the marginal likelihood estimate pro-
vided by SMC, denoted as py(z1.7|y1.7), to provide a valid kernel that can be
used within a Metropolis-Hastings framework. For this SMC Markov kernel to

be valid, it must be ergodic with a unique stationary distribution. To ensure this,
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Andrieu et al. proposed a modification to the standard particle filter where one
particle trajectory is predetermined a priori. This predetermined path, represented
as xp.p = (2,...,2%), functions as a reference trajectory, guiding the simulated
particles towards a specific region of the state space. This gives rise to the Particle
Gibbs (PG) algorithm.

The core of the SMC algorithm of the PG operates similarly to the standard PF and
shares many of the same steps. However, there is a difference in that one particle
trajectory is specified a priori as a reference trajectory =, = (4, ..., 2/). This is
implemented by setting the trajectory of the Nth (final) particle and its ancestry

a” deterministically for all time.

When propagating the particles through time using the move kernel in the PG SMC
algorithm, the particle proposals are conditioned on the retention of the reference
trajectory x!.,, After a complete pass of the SMC algorithm from ¢ = 1to ¢t = T', the
Markov kernel can be defined by the probability distribution P(x}, = 2%.,) o< wh.

Although the addition of a reference trajectory z/., ensures that the kernel is ergodic
with a unique stationary distribution, it has been noted by Lindsten and Schon
[128] and Chopin and Singh [129] that it can lead to significant path degeneracy,
causing poor mixing efficiency of the kernel. To address this problem, Lindsten et
al. introduced an ancestor sampling step, formulating the PGAS algorithm. In this
ancestor sampling step, a new ancestor for the reference trajectory is sampled at
each time step. The process involves determining which particles at time ¢ — 1 could
have generated the reference trajectory observed at time ¢ based on the proposal

probabilities.

The aim of the ancestor sampling step is to, for each time step ¢t > 2 artificially
assign a history to the partial path of the reference trajectory x}, by assigning
its history as one of the particles from the set {z%, ;}¥,. This reassigning of the
historical path of the reference trajectory is facilitated by sampling a new value for
the index variable a)¥ € {1,..., N}, which links z}. to one of the particles. This

selection in made based upon the weights which can be calculated from,

o FN pT((xli:t—lam;:T))
T -t pe1(2h, )

(4.5)

for i = 1,..., N and where, (z},,_;,7}.r) denotes the concatenated particle path
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created by assigning z}., with an alternate path history. The calculation of these

weights then allows for a to be sampled with probability proportional to {Ui_”T.

Algorithm 2 outlines the PGAS procedure. For notational clarity, the algorithm
is presented assuming fixed model parameters, 6, and thus this dependence is sup-
pressed in this work. For instance, the initialization density is written as r(z)
instead of the more complete r1(x1|f). This simplification reflects the study’s focus
on state-only inference. However, the PGAS kernel is naturally suited for joint pa-
rameter and state estimation when used within a Gibbs framework, as illustrated in
the context of GPLFM identification [77, 78].

In Algorithm 2 M, is the proposal kernel,

wit "
M (ay, z) = Nt—ljrt(fﬁt‘xl:tt—ﬂ (4.6)
Zj:l Wi
W, is the weight function for ¢ > 0,
w) = Wilat,) = —— i) (4.7

Yt-1 (xizt—l)rt(x%|$i:t—l)

and ~; is the target density all of a standard SMC sampler (see Section 2.5.1 or [130]

for more).

By constructing the Markov kernel in Algorithm 2, it is possible to draw samples
from the smoothing distribution p(x1.7|y1.7) using Algorithm 3 allowing or a Monte

Carlo approximation of the smoothing distribution.

4.5 Results

For this case study, two distinct loading conditions were investigated. In the first
scenario, the load was defined as a random sample drawn from a GP in time. This
scenario aimed to simulate the response using a sample from the GP prior. In the
second scenario, the system was loaded with a 30 Hz sine wave excitation, which

is not explicitly drawn from the GP prior over the forcing. The decision to use
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Algorithm 2 PGAS Markov kernel

Require: Reference trajectory z}., € X7.
Ensure: Sample x}., ~ PY(z.7,-) from the PGAS Markov kernel.

10:
11:
12:
13:

1
2
3
4
5t
6
7
8
9

: Draw 2t ~ry(zy) fori=1,...,N — 1.

. Set ¥ = ).

. Set wi = Wy(z}) fori=1,...,N.

: fort =2to T do
Draw {a!,z}} ~ My(a,x;) fori=1,...,N — 1.
Set x = 1z},
Compute {w; ., }i¥; according to Eq.(4.5).
Draw a;" with P(a," = i) oc@j_, ;.
Set 2, = (5%, |, ai) fori=1,...,N.
Set wi = Wy(zt,) fori=1,..., N.

end for

Draw k with P(k = 1) oc wh..
return 2%, = 2% ..

Algorithm 3 MCMC smoother

Require: z,.7[0] (Initial state trajectory)
Ensure: z;.7(1],...,z1.7[K] (K samples from the Markov chain)

1

2:

3

:fork=1,...,K do
Run the PGAS (Algorithm 2) conditional on xy.r[k — 1] to obtain z1.7[k].
: end for
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a sine wave was driven by its widespread application in vibrational testing and
its capability to produce distinct and measurable resonant responses in mechanical

systems.

For both case studies, data for the analysis was generated by discretising and sim-
ulating the system from zero initial conditions at a sample frequency of 4096 Hz.
This simulated dataset serves as the baseline for evaluating the performance of the
GPLFM. For identification, only true (non-gravitational) acceleration measurements
were made available. These measurements were corrupted by artificial noise through
the addition of i.i.d. samples from a zero-mean Gaussian distribution with a stan-
dard deviation of 2% of the RMS value of the signal. To recover the latent input
force from the noise-corrupted measurements, it is assumed that the initial condi-
tions, the functional form of the model, and the system parameters are known a

priori.

In each case study, the unknown latent force was modeled using a GP with a Matérn

5/2 kernel, which augments the nonlinear SSM with three additional states.

4.5.1 Loaded with GP

Latent force recovery was performed using the GPLFM and the PGAS Algorithm.
The measured acceleration response to this load is shown in Figure 4.1. The results
of the estimated states from the proposed inference scheme are shown are shown in

Figure 4.2. A enlarged view of the latent force recovery can be seen in Figure 4.3.

In the left panel of Figure 4.2, the paths sampled using MCMC are depicted. The
Markov chain was executed 5000 over iterations. There was a burn-in of an initial
1000 iterations that were discarded to ensure convergence to the target distribution.
This is crucial because, at the start of the chain, the samples may be far from
the typical set of the target distribution, potentially biasing the results. After the
burn-in period, the samples are more representative of the stationary distribution.
After that the samples were thinned by a factor of two. The particle filter was
implemented as a bootstrap filter with 15 particles. Even with this relatively small
number of particles, the smoothing distribution appears to be well approximated.
When constructing a Gaussian approximation of the smoothing distribution from
these samples—as illustrated in the right column of the figure—it can be seen that all

the true states fall within a three-sigma confidence interval.
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Figure 4.1: Acceleration measured from the Bouc-Wen oscillator driven by a random

sample from a Gaussian process with a Matern 5/2 kernel.
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Figure 4.2: Estimated states were inferred using the PGAS sampling of the smooth-
ing distributions. The left column displays samples acquired through the MCMC
scheme, while the right column presents Gaussian approximations to the distribu-
tions, including one, two, and three sigma intervals shaded. The four rows represent
the first four states of the model: displacement, velocity, z(x, ), and the latent
force. In each plot, the ground truth is depicted in red.
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Figure 4.3: Enlarged plot from Figure 4.2 of the estimation of loading of the random
sample drawn from the GP in time for the Bouc-Wen oscillator using a nonlinear
latent force model. The actual ground truth is represented in red. The top section
illustrates various sampled loading signals, while the bottom section shows the mean
estimate in blue accompanied by shaded regions indicating three-sigma intervals
from the approximated Gaussian distribution.
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Table 4.1: NMSE for the recovery of the states and the latent force when the
hysteretic nonlinear system is loaded by a random sample drawn from a Gaussian
process in time.

State NMSE

T 0.38
x 0.33
z(x,z) 025
U 2.18

To provide a quantitative comparison, the NMSE was calculated for the mean of

the samples across all states, including the latent force. A summary of these results
can be found in Table 4.1.

Throughout the plots in Figure 4.2 and the NSMEs in Table 4.1 it is seen that this
GPLFM is able to recover the dynamic states of the system excellently. This is seen

throughout the dynamic states including the hidden state of the hysteresis z(x, Z).

There is an increase in NMSE when considering the forcing that can be attributed
to two primary factors. First, the 2% noise in the measurements obscures high-
frequency, low-amplitude oscillations. Second, the high-frequency components of
the force are averaged out when the mean of the samples is taken. Increasing the
number of particles in the particle filter could alleviate this issue by improving the
resolution of the state distribution, thus enabling a more accurate evaluation of the

expectation over both the dynamic states and the latent force.

Despite the increase in NMSE and the limitations in capturing high frequencies
in the latent force, the estimate of the forcing remains very good (Section 2.8.2).
Furthermore, since the uncertainty in the forcing is also quantified and shown in the
figure, it is evident that the true forcing consistently falls within the three-sigma

confidence interval.

4.5.2 Loaded with Sine Wave

In the last case study, the structure of the latent force model was matched exactly
with the actual forcing signal applied to the system. To examine a more complex
and realistic scenario, the current case study considers a situation in which the
loading signal is not drawn from a GP. Instead, the loading signal is represented as

a deterministic function specifically a sine wave mathematically expressed as:
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Figure 4.4: Acceleration measured from the Bouc-Wen oscillator driven by 30 Hz
sine wave.

u(t) = 120sin(30 - 27 - t). (4.8)

Figure 4.4 illustrates the system’s response to the sinusoidal forcing.

If the functional form of the input was known a prior: to be a sine wave, sim-
pler methods would suffice to recover the signal. However, in most operational
conditions—such as wind or wave loading on offshore structures—the functional
form of the loading remains unknown. To address this uncertainty, the GPLFM is
employed. Consequently, this case study investigates whether the Matérn 5/2 kernel
can appropriately serve as a prior for the loading function in a hysteric system when

its functional form is unknown.

As per the previous case study, the identification was performed using the nonlinear
SSM of the Bouc Wen system. This system was augmented with a state-space
GP with a Matérn 5/2 kernel and the latent force was recovered using the PGAS
algorithm and noisy acceleration measurements. Initially, 5000 samples of the states
were obtained, from which the first 1000 samples were discarded as burn-in. After
that the samples were thinned by a factor of two. 15 particles were used in the

bootstrap particle filter. This sampling procedure enabled the construction of the
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Figure 4.5: Estimated states were inferred using the PGAS sampling of the smooth-
ing distributions. The left column displays samples acquired through the MCMC
scheme, while the right column presents Gaussian approximations to the distribu-
tions, including one, two, and three sigma intervals shaded. The four rows represent
the first four states of the model: displacement, velocity, z(x, ), and the latent
force. In each plot, the ground truth is depicted in red.

results in Figure 4.5.

In Figure 4.5, the left-hand column displays the samples obtained from MCMC in
blue, while the ground truth is represented in red. The right-hand column depicts
Gaussian assumed densities, created by calculating the expectation and variance
of the samples at each time point. The rows of Figure 4.5 correspond to different

states: displacement, velocity, z(z, %), and force.

As per the previous case study the NMSE was also calculated to a quantitative
comparison of the mean of the samples of each state to the ground truth. The

results can be found in Table 4.2.

It can be seen from Table 4.2 that there is a slight increase in prediction error across
all states when compared to the first case study. This is accompanied by a notable
rise in estimated uncertainties for all states, as seen in Figure 4.5. The increased
uncertainty and error can be primarily attributed to the misalignment between the
loading signal and the prior functional form of the GPLFM. Since the prior is less

informative about the underlying latent force, the accuracy of recovery decreases,
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Figure 4.6: Sine wave loading estimation for the Bouc-Wen oscillator using a non-
linear latent force model. The actual ground truth is represented in red. The top
section illustrates various sampled loading signals, while the bottom section shows
the mean estimate in blue accompanied by shaded regions indicating three-sigma
intervals from the approximated Gaussian distribution.

Table 4.2: NMSE for the recovery of the states and the latent force when the
hysteretic nonlinear system is loaded by a sine wave.

State NMSE
T 0.48
T 0.36

z(xz,&)  0.31
U 5.22
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leading to a broader spread in the posterior samples and, hence, greater overall

uncertainty.

For the latent force this can be seen more clearly in the enlarged view in Figure
4.6. The top half of the figure shows the uncertainty represented as a set of Monte
Carlo samples where as the bottom half shows the uncertainty as an approximated
Gaussian of the smoothing distribution. From this it can be seen that forcing state
exhibits the most significant increase in uncertainty, especially when compared to
Figure 4.3 from the previous case study. However, by looking at the expectation of
the samples also in the bottom half of the Figure in blue it can be seen that despite
a increase in NMSE the recovery of the main trend of the sine wave is evident, with

the mean of the sampled states aligning well with the ground truth.

It can be noted that most of the error is in the erroneous addition of high-frequency
content to the recovered signal. It is likely this is caused by the limited number
of particle in the filter. However, it is also possible that a further tuning of the

hyperparameters might help address this issue.

The increase NMSE and uncertainty is not just limited to the latent force, it feeds
through into the dynamic states as well. This is seen particularly in the velocity

state, which, demonstrates a marked increase in uncertainty at the response’s peaks.

However, from Table 4.2 it can be understood that the recovery of the dynamics
states can be considered excellent and the recovery of the latent force can be con-
sidered good verging on very good (Section 2.8.2). This provides strong evidence
that the proposed approach for joint input-state estimation in nonlinear systems
is effective, even in the presence of hysteretic nonlinearities. The additional states
introduced in the model (z and 2) do not lead to significant observability issues, and

the estimates of both the states and the latent force remain highly accurate.

However, the methodology is not without its shortcomings. A significant compu-
tational burden is one major drawback, primarily due to the necessity of running
multiple particle filters, which considerably increases the computation time relative.
To address this limitation, more efficient inference schemes should be investigated

in future work.

Alternatively, employing a different approximation method for the nonlinear sys-
tem’s smoothing distribution, such as a Gaussian smoother that approximates the

nonlinear dynamics, may be beneficial. This approach is expected to be particularly
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advantageous when the system’s nonlinearity is weak. By exploring these alterna-
tives, the computational efficiency of the current methodology can be substantially

improved, facilitating its application to a broader range of practical problems.

4.6 Summary

This chapter investigated the performance of the GPLFM in a joint input-state
identification approach, which was used to recover both latent inputs and latent
internal states from noisy observations. In this investigation, the latent states of
the system were not the time derivatives or integrals of other hidden states or the
observed variables. Specifically, the use of a GPLFM for joint input-state recovery

was examined in nonlinear hysteretic systems.

By employing the nonlinear GPLFM method in conjunction with Particle Gibbs
and Ancestor Sampling to approximate the smoothing distribution over latent states
and input forces, the results indicated highly accurate input-state estimation for this

complex dynamical system.

This analysis illustrates that the effectiveness of the GPLFM is not contingent on
the hidden states being derivatives or integrals of one another or the observed state.
Instead, as long as the GPLFM is constructed such that the transition function
and observation model can adequately map between all states and observations, the

GPLFM remains applicable to such systems.






Chapter 5

STATIONARY GPLFMS FOR
OuTPUT-ONLY RESTORING FORCE
IDENTIFICATION

In the previous chapters, the GPLFM was introduced as an effective method for
joint input-state estimation in both linear and nonlinear systems. However, the

application of the GPLFM is not limited to this form of problem.

The identification and characterisation of nonlinear dynamic systems remains an
ongoing challenge across various engineering disciplines. This process serves two
primary purposes: to gain insight into the physical phenomena governing a sys-
tem’s behavior, and to predict the system’s response to new inputs. To meet these

objectives, the GPLFM can be applied to the identification of latent restoring forces.

Latent restoring force identification provides a pathway to infer, critical, often non-
linear, internal mechanisms that restore equilibrium. This step is crucial to ensure
that a model accurately represents the system’s dynamics, particularly when these
dynamics are not known a priori. By employing the GPLFM in this context, models
can be learned that offer a more accurate representation of complex systems while
also quantifying the uncertainty in the identification process. This enhances both
the understanding of the system and its predictive capability, as well as clarifying

its limitations as a result of the uncertainty in the identification.

Despite significant advancements in latent input force modeling through GPLFMs,

87
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the exploration of GPLFMs for latent restoring force identification remains relatively
underdeveloped. Rogers and Friis [79] made a notable contribution to this area by
developing a GPLFM for nonlinear restoring force estimation. Their work, focusing
on an SDOF Duffing oscillator, demonstrated the capability of the GPLFM in jointly
estimating parameters, states, and restoring forces. Initially, the GP model recov-
ered the time series of the restoring force, followed by a nonlinear restoring force
surface reconstruction through polynomial curve fitting. More recently, Marino and
Cicirello [131] extended this work by developing a switching GPLFM model capable
of capturing non-smooth, non-stationary, nonlinear internal restoring forces, such as

those generated by frictional contact in mechanical systems.

However, both approaches assume access to both input and output observations,
albeit noisy. In controlled laboratory environments, where input-output measure-
ments can be carefully monitored, this assumption holds. Data collection in such
settings can facilitate reliable identification of latent restoring forces using the es-
tablished methods.

When dealing with large-scale infrastructures, however, replicating these controlled
conditions becomes significantly more challenging. Variability in structures, envi-
ronmental influences, and the sheer scale of the systems introduces significant chal-
lenges. As a result, controlled experiments on large-scale infrastructures are often
infeasible due to both physical constraints and financial limitations. As such, access

to direct input measurement is often severely limited.

Therefore, there is a need for latent restoring force identification methods that can be
performed using output-only measurements. This requirement introduces significant
challenges, as it necessitates the joint estimation of input forces, latent restoring
forces, and internal states, thereby substantially increasing the non-identifiability of
the system. The absence of direct input measurements complicates the inference
process, making it difficult to accurately disentangle the contributions of latent

restoring forces from the observed outputs.

To address these challenges, a novel methodology is introduced that combines a
stationary linear GPLFM with additional post-processing steps including Gaussian
process regression to recover a restoring force surface representation of the unknown
nonlinearity. This approach is designed to facilitate accurate latent restoring force
identification and nonlinear restoring surface recovery from output-only data by

leveraging the strengths of the GPLFM framework while mitigating the complexities
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associated with increased non-identifiability.

5.1 Related work

The need for output-only system identification has long been recognized in the field
of structural dynamics and engineering. In many practical situations, especially in
large-scale structures or systems subjected to environmental or operational loads,
direct input measurements are either difficult or impossible to obtain. To address
this challenge, Operational Modal Analysis (OMA) was developed as a field for
identifying the dynamic properties of structures using only output measurements
[132]. Unlike more traditional experimental Modal Analysis, which requires con-
trolled excitation inputs, OMA relies solely on the structure’s response to ambient
or operational forces, making it a widely applicable technique for systems where
input information is unavailable or impractical to measure. By leveraging statisti-
cal methods to extract modal parameters from these outputs, OMA has become an
essential tool for identifying natural frequencies, damping ratios, and mode shapes

in a variety of complex systems.

OMA relies solely on output data, assuming the system is excited by unknown envi-
ronmental forces—commonly modelled as a white noise process due to its stationary,
uncorrelated, flat spectrum nature. While substantial research supports OMA for
linear systems [133, 134], its application to nonlinear systems remains less explored

but promising.

Recent studies have begun to bridge this gap. For instance, Friis et al. [135] have
proposed a method for approximating nonlinear systems as equivalent linear systems
using output-only data. Furthermore, Vesterholm et al. [136] used a random decre-
ment technique combined with principal component analysis to detect nonlinearity.
This work was compared to earlier attempts by Macias et al. [137], which combined
principal component analysis with a finite element model for detection of nonlinear

dynamic behaviour.

Building on these advancements, this chapter introduces a novel approach for iden-
tifying nonlinear dynamic systems when the functional form of the nonlinearity and
the input forces are unknown. The primary objective is to recover a temporal func-

tion of latent input force and a functional representation for the unknown nonlinear
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component of the dynamic system.

5.2 Unifying framework for latent force identifi-

cation

So far it has been seen how the GPLFM can be constructed for latent input force
problems. The aim of this section is to detail the equivalence of solving latent
input force (LIF) and latent restoring force (LRF') problems for mass-spring-damper
dynamical systems in the state-space framework. In doing so, it will be shown how a
state-space formulation of a GP designed to learn temporal functions can be applied

to both problems.

For an SDOF LIF problem characterised by a latent force U(t), the state-space
model (SSM) can be expressed as:

SRS

whereas for an SDOF LRF problem, with a known input force u(t) and a latent
restoring force f(z, ), the SSM is depicted as:

where m is mass, ¢ is the damping coefficient, k stiffness.

In both the LIF and LRF scenarios, the core challenge goes beyond simply inferring
the system’s internal state to learning a latent temporal component that influences
the acceleration #. In the LIF case, this involves a latent force U(t), whereas for
LRF, the focus is on a latent force represented as f(z, ). The critical insight is
that the physical manifestation of the force—whether it originates from within the
system or from an external excitation—does not alter the underlying mathematical
challenge: to learn the missing component of acceleration & at discrete time steps ¢
as a temporal function. Consequently, methods devised for learning the latent forces

within LIF problems are applicable to LRF problems.
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5.3 GPLFM for Output-Only Nonlinear System

Identification

With the equivalence of solving LIF and LRF problems established, it may be useful
to formalise the exact problem that this chapter addresses. Consider the second-

order differential equation for an SDOF system:

mi(t) + ci(t) + ka(t) + f@(t), 2(t)) = u(t), (5.3)

where f(&(t),z(t)) represents a unknown nonlinear function of the states. This
state dependent function can equivalently be considered as a temporal function or

a temporal latent restoring force R(t):

mi(t) + ci(t) + ka(t) + R(t) = U(#), (5.4)

The challenge lies in recovering the temporal functions of the latent input force U (t),

latent restoring force R(t), and recovering a nonlinear mapping for f(z(t), z(t)) from

incomplete noisy observation of the system state.

It can be noted that there exist infinitely many solutions where R(t) 4+ U(t) is equal
to a constant. Consequently, the contributions to the system’s response from the
nonlinear dynamics and the unknown input cannot be separated without additional
constraints on the analysis. In this context, U(t) is assumed to be modelled as a

2 is the variance of the white noise

white noise process, U(t) ~ N(0,0?), where o
process. This assumption is particularly common in OMA [133, 138], where unknown
ambient excitation is often idealised as a broadband stochastic process to enable
system identification from output-only data, without which identification would not
be possible. While this represents a simplification of complex, unmodelled real-
world excitations, it serves as a common and necessary assumption. However, if the
true input deviates significantly from a white noise process, its characteristics could
be erroneously attributed to the nonlinear dynamics (R(t)), potentially biasing the

separated contributions and affecting the overall accuracy of the identification

Under this assumption, a solution to this problem using the GPLFM can be achieved
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by first modelling both the latent input force U(t) and the latent restoring force R(t)
as GPs:

R(t) ~ GP(0,k.(t,t"), U(t) ~GP(0,ky(t,t)), (5.5)

where k,(t,t") is the kernel of the input process U(t) and k,.(¢,t') of the unknown

restoring force R(t).

As the state-space GPLFM is a priori a Markov process meaning that the state
at one time step depends only on the state at the previous time step it will not
be possible to separate U(t) and R(t) in an online fashion. Rather, separation of

contributions to a total resorting force,

R(t) = R(t) — U(%), (5.6)

will have to take place in post processing steps. As such, an advantageous charac-
teristic of the GP is that the addition of two GPs can be expressed in a closed form,
so that,

R(t) = (R(t) — U®)) ~ GP(0, ku(t,) + kv (,)). (5.7)

Given this, the identification of ]:Z(t) can be reformulated to a standard latent input

force identification problem as seen in Chapter 3,

A

mi(t) + ci(t) + ka(t) = —R(t), R(t) ~GP 0,k (t,) + ku(t,t)).  (5.8)

Therefore, it is now possible to augment the dynamic SSM equation such that the
latent input is treated as an internal state of the system, modelled by the state-space

GP. This allows the transition of the mean states to be represented as:
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(t) 0 1 0 0| [=@®
Z(t —k e 1 0 o(t
;( ) = moooomeom A( ) (5.9)
R(t) 0 0 0 1 ||RE
R(t) 0 0 =X —=2\| |R()
—— ~ N~——
x(t) Ferrrm x(t)
Furthermore, the covariance over the states is captured by,
00 o2 0 0 0
10 0 o2 0 0 q 0
L = . P & ’ _
GPLFM 00 0GPLFM 0 0 012% 0 QGPLFM [ 0 AN3o? ]
01 0 0 0 2)\012%
(5.10)

The GPLFM Bayesian filtering and smoothing solution to Eq. (5.8) provides the
posterior distribution p(X1.7 | y1.7) over the internal states x(t), Z(¢), and the total
latent restoring force R(t), given the noisy measurements y;.7. This is achieved de-
spite the incorrect latent force structure in Eq. (5.8) because the GPLFM encodes the
correct derived relationship between the observations and the latent states. How-
ever, the estimates for the total latent force RLT will still contain contributions
from the random excitation Uy.r and the internal restoring force Ri.r, which must

be separated.

First, it will be useful to define an expectation with respect to time, conditioned on

the states, for some general function of time G(t):

B [Gt) [ x(t), (t)] = /G(t)p(G(t) | (), 2(t)) dt. (5.11)

Now consider the expectation of the input which is assumed to be Gaussian with

respect to time, conditioned upon the states:

E, [U(t) | z(t),#(t)] = E, [U(#)] ~ 0. (5.12)

The input to the system is a white noise process so is statistically independent of
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the system states and depends only on the stochastic process itself resulting in an

expectation of zero .

Moreover, expectation of the internal restoring force with respect to time, condi-

tioned upon the states, is determined by the nonlinear function:

B [R(E) | w(t), £(0)] ~ f(x(t), & (t)). (5.13)

Thus, by taking the expectation of the total restoring force with respect to time and

conditioned on the states, it is possible to write:

E,[R(1) | 2(t), 4()| = B [RQ) | 2(0), &) - B UQ) | 2(0), ()] (5.14)
Consequently,
By [R(t) | 2(t),#(0)] = B RE) | (), 3(0)] = f(o(t),a(0),  (515)

implying that the expectation of the total restoring force, with respect to the states,
is simply the nonlinear restoring force surface as the contribution to the expectation

from the external forcing white noise process is zero.

To evaluate the expectation in Eq. (5.15), this work proposes fitting a second GP

in the phase-space in a post-processing step such that:

fla(t), 2(t)) ~ GP (0, k(x(t), x(t)')) (5.16)

This GP performs a regression to learn a mapping from the estimated states (x(¢)
and @(t)) to the total latent force, R(t), all of which are estimated by the GPLEM.
The phase-space GP can be trained using the recovered time series data (x;.r, f{LT),
where the inputs to the GP are the 2-dimensional state vectors x(t) = [z(t), #(t)]

and the outputs are the corresponding total latent force values R(t).

INote the expectation is approximate as the integral must be computed as a Monte Carlo
approximation from discrete samples.
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The expectation of the distribution over the function learned by the GP approxi-
mates f(x(t),#(t)), and the variance corresponds to the uncertainty in the recovery
of the total restoring force as well as the variance in the white noise process input
U(t). Unfortunately, the contributions to the variance are challenging to separate.

This will be discussed in more detail later.

With the representation of the unknown nonlinear restoring force recovered, it be-
comes possible to retrieve the time-series of the internal restoring force R;.; and
the input force Uy.r. Ry.p can be recovered by evaluating the GP representation
of the unknown nonlinear restoring force at the recovered values of x1.7 and ..

Thereafter, U;.r is recovered by computing:

Rip — Rir = Ui (5.17)

5.4 Results

To assess the effectiveness of the proposed approach, this case study will examine

the Duffing oscillator,

mi + ct + kx + ksz® = U(t), (5.18)

where k3 = 1 x 10? denotes the cubic stiffness coefficient. The substantial value of ks
ensures that nonlinearity significantly influences the system at the applied forcing

level. The linear system parameters are defined as m = 1kg, ¢ = 2, and k = 1 x 10%.

For the analysis, the Duffing oscillator was excited with a white noise process mod-
eled as a multisine, including every 0.2 Hz between the ranges of 0.2 Hz to 2000 Hz
2. The system was simulated using a fourth-order Runge-Kutta scheme over T' = 55
with a sampling rate of 4096 Hz. To evaluate the effectiveness of the GPLFM in
identifying the latent restoring force, the functional form of the Duffing oscillator’s

nonlinearity was hidden, resulting in a model of the form:

2This will evalaute the efficacy of the proposed methodology given that the Gaussian input
assumption holds true.
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Table 5.1: NMSE results for the output-only latent restoring force approach
Variable NMSE

x 2.56 x 1071
i 1.56 x 1072
i 1.96 x 1073

Rp(t)  7.32x 10"
Rp(t)  2.03x 1072
R(t)  9.87x 107!
U(t) 1.66

mi + ct + kx + f(z,2) = U(t). (5.19)

Furthermore, to test the GPLFM in the OMA case, the input force U(t) was hidden
but assumed to be a white noise process a priori. Only acceleration measurements,
perturbed by adding independent and identically distributed (i.i.d.) samples from a
zero-mean Gaussian distribution accounting for 1% of the root mean square (RMS)
of the signal, were provided for identification. The states x and & were hidden. Note
it is assumed that the linear system’s functional form, and the system parameters

are known a priori.

The hyperparameters for the GPLFM were set at ¢ = 1 x 1073 and ¢? = 30. The
performance of the model prior to the post processing steps is shown in Figure 5.1
with an enlarged view of the recovered latent force visible in Figure 5.2. The states
and acceleration were recovered excellently, as supported by the NMSE calculations
presented in Table 5.1. However, the recovery of the LRF (R(t)) was poor with
respects to the true R(t) both visually and numerically indicated as Rp(t) in Table
5.1 with a NMSE of 7.32 x 10!, due to contributions from the LIF U(t). However,
the recovery of R(t) with respects to the true R(t) — U(t) was excellent with an

NMSE of 2.03 x 102 indcated in in Table 5.1 as RR(t)‘

With good estimates of z, &, and f?(t) in hand, a map for the nonlinearity was
identified non-parametrically by fitting a GP with a Matérn 5/2 kernel from the
estimated input = and & to the output R(t). The Matérn 5/2 kernel was selected
due to its smoothness properties and flexibility. This makes it a good choice of prior

when the functional form of the nonlinearity is unknown a priori.

To reduce computational burden, the GP was trained on a subset of 2048 sequential

data points taken between 2.5 and 3.0 seconds. This subset was selected due to
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Figure 5.1: State estimates recovered by the smoother before the post processing
step, showing the expected values (in black) against the ground truth (orange) with
the 20 shown in shaded grey.
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Figure 5.2: An enlarged view of the latent restoring force recovered by the RTS
smoother before the post processing step, showing the expected values (in black)
against the ground truth (orange) with the 20 shown in shaded grey.
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the relative prevalence of high displacement data points within this region. This
selection aimed to provide better training around areas of high displacement and
thereby higher restoring force. Figure 5.3 shows the GP fit for the states z and &

against f?(t) The subset of data points used for training is depicted in green.
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Figure 5.3: Recovered restoring force surfaces, the expected restoring force is shown
in black and the true restoring force in orange. All of the data is shown in a light
blue with the training data shown as the green dots.

Examining the displacement latent force plot, it can be seen that the GP mean fits
the true nonlinearity generally well. However, it can be observed that the fit is not
perfect, particularly at the edges of the training data. This misalignment has three
potential sources. First, if the recovery of displacement or the total latent restor-
ing force is incorrect, it would bias the GP. However, as seen from the NMSE, the
recovery in the states and the total latent restoring force is excellent. The second
potential source is the GP prior. A more informative prior would increase the accu-
racy of the identification 3. However, this case study is designed to demonstrate a
scenario when the practitioner has no prior information about the functional form
of the nonlinearity other than it is perhaps a non-infinitely smooth continuous non-
linearity. The third and actual source of the error is based on the number of data

points. The recovery of the nonlinear map is dependent on the expectation of the

3For example if the practitioner is expecting the system to express a polynomial nonlinearity a
polynomial kernel could be chosen to embed this prior knowledge.
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A~

LIF being zero. As the expectation E,; | R(t) | x(t),ﬁv(t)} is calculated as a Monte
Carlo approximation, it requires a sufficient number of samples to converge to the
underlying mean. This is particularly prevalent in high displacement and high LRF
regions of the nonlinear map due to these data points being relatively rare within
the entire dataset due to the tall narrow peaks typical of the restoring force of the
Duffing oscillator at high displacement. Therefore, an increase in the accuracy of
the latent force map could be achieved by increasing the number of time steps used
in the GP as it corresponds to using more Monte Carlo samples when computing

R(t) | z(t), x(t)} However, an increase in computational complexity required for
training the GP needs to be contended with. Whilst, the state-space GPLFM used
to recover x(t), #(t) and R(t) scales linearly with the number of time steps (O(t))
the phase space GP used to learn the restoring force surface scales cubic (O(£?)). To
counteract this, sparse approximations to the GP or alternatives to the regression

methods could be explored.

Outside of the training data, the mean and the ground truth begin to diverge, which
is accompanied by the typical behaviour of the GP: the variance in the estimation
grows when making predictions beyond the observed data. Positively, the long

length scale of the GP helps it make a reasonable extrapolation.

On the right-hand side of Figure 5.3, the relationship between the velocity and the
total latent restoring force is presented. It can be seen that this data presents no
correlation, with the mean of the GP being zero for all displacements 4. Overall, this
correctly identifies that the contribution of the LRF f(z, ) is entirely a function of

the displacement x, which is identified to be approximately cubic.

With the nonlinear map recovered, it is now possible to separate the time series
of the internal LRF and the LIF from the total LRF ]:E(t) This is done by first
evaluating the posterior mean and variance of the GP for the states at each time
step to provide the time series for the internal LRF Ry.p. Secondly, the mean and
variance of the LIF Uj.r are recoverd by removing the LRF R;.r contributions from
ﬁi(t), enabling the recovery of the stochastic input’s time series. Plots for the post
processed LIF and LRF are presented in Figure 5.4, with a zoomed-in view in Figure
5.5. Moreover, the NMSE for the internal LRF and the LIF are presented in Table
5.1.

Overall, Figures 5.4 and 5.5 show that the mean for the LRF and the LIF has

4The distribution of the samples across the states is not uniform
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Figure 5.4: Latent input force and latent restoring force recovered from post pro-

cessing step.
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been recovered well, and their contributions towards R(t) have been successfully
separated. This is confirmed by NMSEs that score as excellent for the LRF R(t)
and very good for the LIF U(t). However, small discrepancies in the time-series can
be observed. This error is a result of the error in the latent restoring force recovery.
This would mostly likely be improved in increasing the number of time steps in the

Monte Carlo approximation.

A notable characteristic of both the recovery of the internal LRF and the LIF is the
high 20 interval, particularly so due to the low 20 of the recovered total LRF R(t)
This is a direct feed-through from the recovered nonlinear map. The variance in the
GP nonlinear map is a combination of the uncertainty in total LRF recovery and
variance in the white noise input force. Since both the uncertainty in the total LRF
recovery and the variance in the white noise input force are Gaussian distributed,
separating the contributions toward the uncertainty in the internal latent force map
and thereby the LRF and the LIF is challenging. Therefore, the total uncertainty in
the GP nonlinear map is propagated through to the recovery of both latent forces

in Figure 5.4.

5.5 Summary

This chapter has presented a novel methodology for latent restoring force iden-
tification using output-only measurements. By integrating a GPLFM with post-
processing techniques within an OMA framework by assuming a white noise input,
the temporal functions of the latent states, latent restoring forces, and latent in-
put forces were successfully reconstructed. Additionally, a GP representation of
the underlying restoring force surface was recovered, providing deeper insight into
the system’s nonlinear dynamics. The accurate estimation of latent states, forces,
and functions is particularly notable given the challenges associated with the non-

identifiability of the system.






Chapter 6

NON-STATIONARY (GAUSSIAN PROCESS
LATENT FORCE MODELS

In the previous chapters, an introduction to GPLFMs based on an SDE formulation
of a GP was provided. The implementation of this framework was demonstrated for
applications in latent input force (LIF) recovery for linear and nonlinear systems.
These methods were also shown to be effective for latent restoring force (LRF)

identification in a output-only nonlinear system identification context.

For practical applications of the GP to latent force modeling, the SDE formulation
is often essential, as it significantly reduces computational complexity from O(N?)
to O(N), here N denotes the number of time steps in a time-series dataset. This
reduction is crucial for handling large time-series datasets common in engineering
applications. However, the SDE formulation of the GP, as derived by Hartikainen
and Sarkka [72], is predicated on the assumption that the GP covariance function
is stationary. This is a necessary condition to express the GP equivalently as a LTI
SDE. Consequently, SDE-based GPs inherently have the assumption embedded that
a unknown latent function is stationary a priori. This creates a fundamental conflict,
as the dynamics of many nonlinear, time-invariant systems result in non-stationary

time series, directly violating the model’s stationarity assumption.

Although a stationary GP can be employed to learn non-stationary temporal func-
tions, its performance is generally suboptimal for capturing the full complexity of

non-stationary dynamics. This limitation becomes particularly evident when deal-

103
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ing with non-stationary forces, which exhibit time-varying characteristics that are
difficult to model with simple techniques. In LIF tasks, non-stationary loads are
commonly encountered in structures subjected to environmental conditions, such as
wind [37], waves [38], earthquakes [39], and traffic loading [40]. Additionally, in the
context of LRF modeling, any nonlinearity—such as large deflections, bifurcations
[6], and hysteresis [10]— introduces state-dependent internal restoring forces. These
nonlinearities can result in significant non-stationarity in the temporal response of
the internal restoring force, further complicating the assumption of stationarity in

latent force identification.

Despite significant research efforts toward the development of non-stationary kernels
[66, 139-142], their application to the formulation of SDE GPs remains unexplored.
Recent work by Marino and Cicirello [131] has made progress in this area through
the development of a switching GPLFM model. This model adeptly captures non-
smooth, non-stationary, and nonlinear internal restoring forces, such as those arising
from frictional contacts in mechanical systems. The approach employs multiple
GPs with distinct length scales, where each GP captures a stationary component
of the LRF. The GPs are dynamically switched depending on the identification

requirements.

However, this switching model is designed for learning discontinuous nonlinearities,
and is therefore not well-suited for capturing the continuous non-stationary LIFs
commonly observed in environmental loads, as well as non-stationary LRFs that
arise in systems with smooth state-dependent dynamics. Therefore, a significant
challenge remains: to develop an SDE formulation for a GPLFM within the state-
space designed to learn smooth, non-stationary functions. This will be achieved
through the development of a novel formulation of a non-stationary GPLFM that
incorporates a time-varying length scale into the SDE GP. The introduction of a
time-varying length scale substantially improves the model’s ability to adapt to the
non-stationarity of the underlying latent functions. Additionally, this length scale
is dynamically learned through a secondary GP, also formulated within the state-
space framework. This new hierarchical or “deep” GP configuration offers a more
flexible and adaptive modeling approach, where the primary GP captures the latent
forces, while the secondary GP adjusts the length scale dynamically to account for

non-stationary behavior.
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6.1 Development of the Non-Stationary GPLFM

To form a foundation for the development of the temporal non-stationary GPLFM
the Matérn class of kernels is selected for latent force recovery due to the classes
flexibility and the feasibility of expressing their SDE formulation in closed form.
Specifically the Matérn kernel with a roughness of 3/2 is selected. Recall, it’s con-

tinuous time mean and covariance formulation is specified by:

x(t) = Fx(t), (6.1a)

P(t) = P()F + FP(¢) + LQL”, (6.1b)

where,

() ) () e
-2 2\ 1 0 2\o?

and where Q = 4)\%0%, A = v/3/¢, and ¢ and o2 denote the length scale and variance

hyperparameters, respectively.

The length scale parameter, denoted as ¢, is a pivotal attribute of kernel functions
in a GP, serving as a measure of “distance” over which the function values are
significantly correlated. Intuitively, it can be thought of as defining the temporal
radius within which observations influence each other. A smaller length scale implies
that function values change rapidly over short distances. In contrast, a larger length
scale suggests that function values are correlated over greater distances. With the
GP in the state-space formulation it is evident that ¢ effects both the mean of the
GP through the transition matrix F' and the covariance through prior covariance

P, and the process noise ().

Adjusting the length scale allows the model to capture the underlying function’s
behaviour more accurately, striking a balancing between over-fitting and over-
smoothing. If the length scale is too short the model will over-fit, capturing noise
as if it were signal. If the length scale is too long, the model will over-smooth and

gloss over essential variations in the signal.
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In the context of non-stationary functions, the challenge is further pronounced. Non-
stationary functions have statistical properties that vary over time. Therefore, fixing
the statistical properties with a fixed length scale, regardless of its value, compels a
compromise: at certain points within the data, it may induce overfitting, interpreting
random fluctuations as meaningful patterns, while at other points, it may lead to
underfitting, missing important dynamics of the signal. This inherent dilemma
underscores that any single length scale, when applied uniformly, is insufficient to

optimally model non-stationary functions.

Remark. For clarity, it is noted that a stationary GP, configured with well-chosen
hyperparameters, can model any functions accurately, including non-stationary ones.
However, this is pivotal on access to a sufficient quantity of high-quality data. The
ability of a stationary GP to adapt to non-stationary functions is attributed to
the fact that, with the accumulation of high-quality data, the posterior distribution
converges away from the prior and towards actual data, thereby lessening the impact
of the prior. A significant challenge in much of Bayesian inference arises in scenarios
where high-quality data is not abundantly available. In such cases, the selection of
an informative prior becomes essential, ensuring that the inference remains robust

and precise, even in the face of scarce or lower-quality data.

Given this backdrop, this work advocates that for non-stationary functions, an opti-
mal length scale, ¢, should inherently be dynamic, adjusting over time to the evolving
characteristics of the latent force. This leads to the advocacy for conceptualizing ¢

not as a static parameter but as a temporal function that can be represented as a
GP,

0~ GP(0, k(t, 1)). (6.3)

To accommodate this dynamic nature of ¢, the GPLFM is expanded to include ¢ as
an augmented hidden state that represents the unknown length scale of the GP that
infers the latent force. As a consequence, the temporal derivative { is also tracked.

The transition function of the non-stationary GP SDE is given as,



6.1 Development of the Non-Stationary GPLFM 107
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This non-stationary GPLFM is constructed of one GP that is parameterised by a
length scale that is a function of a second GP. Such that G(él) is the length scale of
the first GP and \y = v/3¢5 where ¢, defines the length scale of the second GP. The
hyperparameters o2 and o3 are the variance of the first and second GP, respectively.
When incorporated with a dynamic system and measurement data, this framework
enables the simultaneous inference of the latent force’s length scale and the latent

force itself through Bayesian filtering and smoothing techniques.

The function G(+) denotes a nonlinear mapping from R to R, ensuring the positivity
of ¢; such that ¢, = G(él). This mapping is pivotal, as the Matérn 3/2 GP kernel
requires ¢; to be strictly positive. However, bounding ¢; to R is not enough to
ensure numerical stability when practically implementing the model. It can be seen
that Q1 oc (1/G(¢y))? is such that if G(¢;) becomes sufficiently large or small the
numerical solver can become very quickly numerically unstable. Therefore, an upper
and lower bound on ¢ must be enforced. With this in mind, a modified arctan(-)

function is selected!:

!Note, the function G (EAl) is a choice for the practitioner any function can be used so long as it
maps R to RT and is numerically stable for practical implementation.
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(= G(él) = (61 max — €1min) (arctan (f}) + g) + 41 1min (6.6)

for bounds [liin, fmax]. This function is chosen as it is easy to written down its
derivative in a manor that is numerically stable to compute. This will be important

for solving the model which will be discussed later.

In the development of the non-stationary GPLFM, the matrices F(z) and Q(z)
are now nonlinear because they have become a function of the state . However, it
should be expected that some computational convenience would be lost in capturing

this additional complexity.

It should be noted that, despite the GPLFM becoming nonlinear, a matrix repre-
sentation of the model is maintained. This is unconventional as the transition of
states and the update of covariances can no longer be directly computed through a
straightforward discretisation and matrix-vector product (see Section 3.3.3). There-

fore, an alternative approach will be presented in the next section.

Despite this divergence, the representation of the non-stationary GPLFM in matrix
form is intentionally preserved for several reasons. Firstly, it facilitates an easier
comparison with stationary GPLFMs. Secondly, this matrix representation aids
in visualising how latent variables influence the dynamics of the model, offering
intuitive insights into the model’s behaviour. Third, it mirrors the practical imple-
mentation within the coding framework. Lastly, and most importantly, maintaining
this form directly supports the discretisation and linearisation processes essential

for solving the non-stationary GPLFM.

For a latent force problem described by the second-order differential equation,

mi + ct + kx = U(t) (6.7)

where U(t) is non-stationary it is proposed that the full system would be,
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where U(t) is the augmented hidden state which represents the unknown forcing
and 7 is the augmented hidden state which tracks the unknown length scale of the
GP that learns U(t).

6.2 Filtering and Smoothing for Non-Stationary
GPLFMs

For discrete-time linear systems, the Gaussian filtering and smoothing problem can
be solved in closed form [23]. Unfortunately, the model defined in Eq.(6.4) does
not conform to these criteria. This section aims to detail the process of discretising
a linear system and subsequently linearising a nonlinear system. Through this ap-
proach, it will be demonstrated how an approximate discrete linear model can be
derived from a continuous nonlinear system. Consequently, this facilitates the com-
putation of an approximate solution to the filtering and smoothing problem for the

non-stationary GPLFM using Gaussian assumed density filtering and smoothing.

For the reader’s convenience, the Kalman filter equations are repeated below, as
they will be needed as reference throughout this section. Here it is made explicit
that the discrete-time state transition matrix, A(x;_1) and the discrete process noise

covariance X(x;_1) are state-dependent:

Prediction Step:

x; = A(zy_1)m_1, (6.9a)
P = Az )P A1) + S(xyy). (6.9b)
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Update Step:

vy =1y — Hyxy (6.10a)
S, = H,P,H' +R,, (6.10D)
K, =P H!'S ™, (6.10c)
x =z, + Kyvy, (6.10d)
P, =P, — K;S; K[ (6.10e)

The matrices A(z;—1) and 3(z;—1) are derived from the discretisation of linear
continuous-time differential equations. For linear systems, the calculation of A(x; 1)
through matrix exponential exp(F'(x;_1)dt) is straightforward, benefiting from ro-
bust numerical techniques. In contrast, calculating »(x;—1) is more complex and
that is more numerically demanding. This complexity can be mitigated by employ-
ing matrix fraction decomposition (MFD) [106], which simplifies the computation

of ¥(z;_1) to evaluating a matrix exponential:

dt) (6.11)

To implement this discretisation for the nonlinear system, the system must first
be linearised. An approximate solution to a nonlinear SDE can be calculated by
approximately integrating the following continuous-time differential equations from
the initial conditions m(0) = E[z(0)] and P(0) = Cov|[z(0)] to a target time ¢, as

shown below:

dx
= = Fla,t), (6.12a)
Cil_f = PFy(x;)" + Fo(x) P + LQ(xy) L™ (6.12b)

where Fj(x;_1) is the Jacobian of F'(z;_1).

The local linearisation technique used here involves fixing F(z;_1), F.(x;_1), and

Q(zy—1) at t — 1 for the integral between ¢t — 1 and ¢. This enables the discretisation
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of the Eq.(6.12) in a manner analogous to the linear system. Except for this time in
Eq.(6.9) F(x¢_1) is traded out for F,(x;_;) as per Eq.(6.12) such that the prediction

equations for the discrete-time linearised nonlinear system are given as,

;= A(zi_1) w1, (6.13a)
P = Ap(wi )P Ap(z )T + S(221). (6.13b)

Here, A(x;_1) is calculated as exp(F'(x;—1)dt), Az(x¢—1) as the discretised Jacobian
exp(Fy(x¢—1)dt), and X(x;—1) from MFD Eq.(6.11).

These calculations are performed with the matrices evaluated and fixed from ¢t — 1
to t. It is noted that this linearisation is repeated in each timestep, re-evaluating
A(xy_q), As,_,, and X(x;_1) as states transition from z;_; to ;. Given the relatively
slow performance of many numerical matrix exponential implementations for higher-

dimensional matrices, this work proposes the use of the Taylor series approximation:

"1

X ~ k

e NE —k!X (6.14)
k=0

This approximates the matrix exponential as an n ordered Taylor series expansion
such that if n = oo Eq.(6.14) is equal to the true matrix exponential. Here n is
the user determined depending on the nonlinearity of the system and the step size.
Note that if n = 1, then the proposed prediction step is equivalent to the Euler

approximation of the nonlinear system.
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Algorithm 4 Non-stationary GPLFM

1: Initialisation: Set the initial system state xy and covariance F.

2: Initialise Q(z0) as per Eq. (6.5).

3: fort=1to T do

4: Filter Prediction Step:

5: Evaluate F(z;_1), Fy(2:-1), and Q(z¢—1) at t — 1.

6: Discretise F(z;—1) and Q(z;—1) using matrix fraction decomposition Eq.
(6.11).

7: Discretise F.(z;_1) with the matrix exponential.

8: Propose x; and P, using Eq. (6.13) and the discretised matrices A(x;_1),
Ag(xi_q), and X(xy_q).

9: Filter Update Step:

10: Update z; and P, using observations y; via Eq. (6.10).

11: return z;, P,

12: end for

13: for ¢t =7 down to 1 do

14: Smoother Prediction Step:

15: Evaluate F(zy), F,(z¢), and Q(x;) at t.

16: Discretise F'(z;) and Q(x;) using matrix fraction decomposition Eq. (6.11).

17: Discretise F,(z;) with the matrix exponential.

18: Propose z;,, and P, ; using Eq. (6.13) and the discretised matrices A(z;),
A, (), and X(zy).

19: Smoother Update Step:

20: Update x; and P; see Section (2.6.4).

21: return z;, P/

22: end for

23: Output: z{.p, Fip.
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Remark. A potential limitation of the proposed approach arises from the way the
model is discretised and linearised for computation. Specifically, this relates to the
handling of the process noise covariance matrix, 3 (z), which quantifies the intrinsic
uncertainty of the system’s dynamics. In the developed non-stationary model, this
matrix is state-dependent, as its value changes with the estimated length scale, /.
To make the calculations tractable, a “zero-order hold” is employed for this matrix.
This means the value of ¥ is calculated using the state at the beginning of a time-step
(x4_1), after which that value is assumed to remain constant for the entire duration
of the step. The limitation here is that the state, including lh, is changing during the
time step. By holding . constant, the changing in the uncertainty over the time step
in the length scale itself is ignored when the model’s overall state and uncertainty
are updated. In other words, how small variations in ¢, within the interval would
affect the system’s predicted behaviour is not fully accounted for. This means that
the effects of variations in ¢; on ¥ (x4-1), and thus on the posterior distribution over
the states p(z | y), are not included in the filtering and smoothing updates. The
development of a method to fully incorporate these intra-step variations remains an
open challenge for future research. However, it is important to note that despite this
theoretical simplification, excellent recovery of the latent states is demonstrated by

the model in the presented case studies.

Using this discretisation and linearisation, it is possible to implement an RTS
smoother (seen in Section 2.6) using the described prediction Eq.(6.13). The pseudo
code for the proposed non-stationary GPLFM is presented in Algorithm 4 which

outlines the step-by-step computational procedure.

6.3 Case Studies

Identifying non-stationary internal and external forces represents a crucial challenge
in engineering. To evaluate the effectiveness of the non-stationary GPLFM devel-
oped in this research, this section presents two case studies. The first case study
investigates an SDOF system subjected to a sine sweep load, which tests the model’s
ability to model LIFs with non-stationary spectra. The second case study focuses
on a bursting Duffing oscillator, chosen to demonstrate the model’s capability in
handling systems where nonlinearity significantly alters the system dynamics and

LRF spectra. These case studies provide practical insights into the performance and
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applicability of the proposed model. The case studies are performed for both the
non-stationary GPLFM and the stationary GPLFM so that the performance can be

compared.

6.3.1 Sine Sweep

This case study explores an SDOF system subjected to an exponential sine sweep.
The governing equation for the system’s response is represented by the following set

of equations:

mi + ci + kx = U(t), (6.15a)

U(t) = sin (K (e - 1)), L N (6.15b)

1n(§>’ 1n(§)’

where T' = 1.5s represents the duration of the sine sweep, w; = 0.05Hz is the initial
frequency, and wy = 25Hz is the final frequency. The model parameters are set with
m = 0.5 kg, k =20 N/m, and ¢ = 0.1 Ns/m.

To provide data for the analysis the system is discretised and simulated from zero
initial conditions at a sample frequency of 1024Hz. This simulated data set will
form the baseline the stationary and non-stationary GPLFMs performance can be

compared against.

For identification, only velocity measurements are made available. These measure-
ments are corrupted artificial noise through the addition of i.i.d. samples from a

zero mean Gaussian distribution with 1% of the RMS of the signal.

To recover the latent input force from the noise-corrupted measurements, it is as-
sumed that the initial conditions, functional form of the model and the system
parameters are known a priori. Latent force recovery was performed using the non-
stationary GPLFM, as described in Algorithm 4. The hyperparameters used in this
identification are summarised in Table 6.1 and the results are shown in Figure 6.1.
The non-stationary GPLFM demonstrated excellent force recovery capabilities, with

the identified input force closely tracking the true force.

The length scale of the non-stationary GPLFM is learnt during the identification,
starting at a value of 1.87 and finishing at 0.16. This change corresponds to the
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Figure 6.1: Comparison of latent force recovery using stationary and non-stationary
GPLFMs for the sine sweep case study. Top left: Force recovery using a stationary
GPLFM with length scale 1.87. Bottom left: Force recovery using a stationary
GPLFM with length scale 0.16. Top right: Latent force recovery for the non-
stationary GPLFM. Bottom right: Dynamic adaptation of the length scale in the
non-stationary GPLFM.

variation in the input force frequency from 0.05 Hz to 25 Hz, showcasing the model’s
ability to learn the length scale of the underlying latent forces effectively. It is
noteworthy that the initial length scale ¢; of the filter was set at 5; the different
initial length scale observed in the results arises due to the backward recursion of

the smoother.

Despite the high accuracy and low variance in the recovered latent forces, a larger
variance was observed on the length scale. This is an unfortunate side effect of
propagating uncertainty through the nonlinear function described in Eq.(6.6). This
problem could be counter acted with the use of Monte Carlo and SMC methods
to evaluate the smoothing distribution. However, the application of these methods

have to be considered against the additional computational complexity they incur.

To evaluate the performance of the non-stationary GPLFM comprehensively, a
comparison was also performed using a standard stationary GPLFM model (im-
plemented as seen in Chapter 3). The hyperparameters used by the stationary

GPLFMs are summarised in Table 6.2 and the results can be seen in Figure 6.1.

For the stationary GPLFM, the variance o? was set at 10, identical to the first



116 6.3 Case Studies

GP in the non-stationary GPLFM used to learn the latent force. The comparison
revealed that when the stationary GPLFM was configured with a length scale of
1.89 (matching the initial length scale of the non-stationary GPLFM), it performed
adeptly at lower frequencies but failed to accurately recover the input force as the
frequency increased, due to over-smoothing. Conversely, with a shorter length scale
of 0.16 (matching the end configuration of the non-stationary GPLFM), the station-
ary model initially introduced erroneous high-frequency content when the underlying
frequency of the input was low. However, its performance improved as the input

frequency increased.

However, a noticeable discrepancy was observed in the recovered latent forces to-
wards the end of the dataset for both the stationary and non-stationary GPLFMs.
This mismatch can be attributed to the limitations of the smoother, as fewer future
measurements are available for conditioning at later time steps. As a result, as time
t increases, the distribution over the latent force tends to converge more closely to
the filtering distribution, which in turn reduces the accuracy of the force estimates.
It is worth noting that if a longer time series of measurements were provided, such

a significant error at 1.5 s would likely not be observed across all models.

To provide a quantitative comparison, NMSE was calculated for each GPLFM model
across all states, including the latent force. The summary of these results is presented
in Table 6.3. It was observed that the non-stationary GPLFM consistently exhibited
the lowest NMSE across all states.

The NMSE values for the observed state velocity & and its integral displacement x are
low for both models. This reflects the smoothing and filtering algorithms’ ability to
effectively use the structure of the ODE to reduce measurement noise and accurately
integrate/differentiate the observed states. However, since acceleration # cannot be
modelled by an ODE independent of the input force U(t), the identification of these
states is intrinsically linked and the stationary GPLFMs perform significantly worse
than the non-stationary GPLFM. These discrepancies are due to the ability of the
non-stationary GPLFM to adapt to the non-stationary frequency of the load.

6.3.2 Bursting Duffing Oscillator

The Duffing oscillator, characterised by its nonlinear cubic stiffness term, is explored

under conditions that induce the bursting phenomenon. This phenomenon involves
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Table 6.1: Hyperparameters used by the non-stationary GPLFM for the sine sweep
case study.
Sine Sweep: Non-Stationary GPLFM

Hyperparameter Value
Cinin 1x1073

Crnax 11

51 5

o2 10

Uy 2

o3 10

Table 6.2: Hyperparameters used by stationary GPLFM 1 and 2 for the sine sweep
case study.

Sine Sweep: Stationary GPLFM 1 Sine sweep: Stationary GPLFM 2
Hyperparameter Value Hyperparameter Value

l 1.87 l 0.16

o2 10 o? 10

Table 6.3: Comparison of NMSE across all states and models for the sine sweep case
study, relative to simulated data.

GPLFM Model: Non-Stationary Length scale = 0.16 Length scale = 1.87

z (m) 2.00 x 1074 2.05 x 10 2.83 x 1074
i (ms™) 2.11 x 10~ 422 x 1074 2.06 x 1072
i (ms™2) 7.90 x 1072 2.04 x 10~ 3.84
U(t) (N) 1.99 x 10~ 5.11 x 10! 9.65
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rapid transitions between different dynamic states, prompted by changes in external
forces, leading to abrupt, high-amplitude oscillations. The dynamic equation of the

Duffing oscillator is given by:

mi + ct + kx + ksz® = u(t), (6.16)

where k3 represents the cubic stiffness coefficient. As displacement increases, the
system stiffness similarly increases, resulting in a rising natural frequency and a
non-stationary spectrum of the temporal restoring force. This characteristic makes
the bursting Duffing oscillator an excellent challenge for testing the capabilities of
the non-stationary GPLFM.

The system parameters are set with m = 1, ¢ = 0.1, k = 1x10*. For the analysis, the
equation is excited with a white noise process (1 = 0, 0 = 1) scaled by v = 100 and
filtered with a fifth-order Butterworth filter. The Duffing oscillator is simulated using
a fourth-order Runge-Kutta scheme over T' = 20s at a sampling rate of 20480Hz.
However, only displacement measurements, downsampled to 2048Hz and corrupted
by the addition of i.i.d. samples from a zero-mean Gaussian distribution accounting

for 1 percent of the RMS of the signal, are provided for identification.

To evaluate the non-stationary GPLFM’s application to latent restoring force iden-
tification, the functional form of the Duffing oscillator’s nonlinearity is hidden, pro-

viding a model of the form:

mi + ci + kx + f(z, &) = u(t) (6.17)

Identification of the latent restoring force f(x, ) from noise-corrupted measurements
assumes that the initial conditions are known, as well as the functional form of the
linear system, the linear system parameters, and the input u(¢). Given the system’s
excitation by white noise, identification can proceed using an OMA scheme without

knowledge of the input measurements (see Chapter 5 for this extension).

The identification is run for both stationary and non-stationary GPLFMs. The sta-
tionary hyperparameters (those not being estimated by the GP) for these models

were selected using an implementation? of the Self-Adaptive Differential Evolution

Zhttps://github.com/MDCHAMP /FreeLunch
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(SADE) heuristic optimiser [143] with the aim of minimising the approximate negi-

tive marginal likelihood [23],

1 1
i1 (0) = 5 log|2m S, (0)] + §U§F+1(9)5t111(9)vt+1(9) (6.18)

where ¢ denotes the negative log incremental likelihood. The terms S;.;(0) and
v1+1(0) can be calculated using the intermediate steps of the Kalman filter Eq.(6.10a)
and Eq.(6.10b) .

The SADE algorithm was executed six times with default parameters, each with a
group size of 20, over 50 generations. The best set of hyperparameters across all
runs and groups, along with the mean performance for each group, are depicted in

Figure 6.2.
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Figure 6.2: Convergence plots of the hyperparameter optimisation for the Duffing
oscillator using the SADE algorithm. The convergence plot for the best set of
hyperparameters across all runs and groups is present on the left. The Right hand
plot shows the mean performance for each group.

It can be observed that the best set of hyperparameters across all runs and groups
has not fully converged and still exhibits some variance. However, given that both
models have undergone the same number of optimisation runs and the proposed
non-stationary GPLFM has a larger optimisation space with four additional hyper-
parameters, this level of convergence is considered appropriate for comparing the two
models. Despite the larger search space all of the best sets of hyperparameters for
the non-stationary GPLFM consistently show a lower marginal likelihood compared
to those of the stationary GPLFM. This is also true for the mean performance for
each group with the non-stationary GPLFM outperforming the stationary GPLFM.
This provides an initial indication that the non-stationary GPLFM is better suited
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Table 6.4: Optimal hyperparameters for the stationary GPLFM determined using
the SADE algorithm.
Bursting Duffing: Stationary GPLFM

Hyperparameter Value
l 8.566x1073
o? 4.861x10!

Table 6.5: Optimal hyperparameters for the non-stationary GPLFM determined
using the SADE algorithm.
Busting Duffing: Non-Stationary GPLFM

Hyperparameter Value
Cimin 5.000x10~4
Cinax 2.568
2 7.726x1071
o2 1.234x10?
lo 7.652x1072
o3 1.988x10!

to this identification problem.

The optimal hyperparameters for the stationary GPLFM and the non-stationary
GPLFM are presented in Table 6.4 and Table 6.5 respectively. For the non-
stationary GPLFM, the optimal minimum length scale parameter /,,;, was found to
be 5.000 x 10~%. This value represents the lower limit in the optimisation process,

as smaller values often lead to numerical instability.

Figure 6.3 illustrates the identification results for the bursting Duffing oscillator
using both the stationary and non-stationary GPLFMs with hyperparameters opti-
mised during the study.

It is observed that the stationary GPLFM accurately learns the latent force when
the forcing amplitude and frequency are high. However, it encounters difficulties in
capturing the latent force at lower amplitudes and frequencies, introducing signifi-
cant noise to the signal. This phenomenon is more apparent in the zoomed-in view
on the left of Figure 6.3. It is evident that the stationary GPLFM does not ade-
quately adapt to the non-stationarity of this identification task with the provided

measurements.

It can be understood therefore that the optimisation of the hyperparameters has

favoured selecting hyperparameters that learn the latent restoring force well when
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Figure 6.3: Performance comparison of stationary and non-stationary GPLFMs for
latent restoring force recovery for the bursting Duffing case study. Top left: Station-
ary GPLFM showing overall force recovery. Middle left: Non-stationary GPLFM
showing enhanced force recovery. Top right: Zoomed view of force recovery from 9.5
to 12.5 seconds for the stationary GPLFM. Middle right: Corresponding zoomed
view for the non-stationary GPLFM, highlighting reduces noise over stationary
GPLFM. Bottom panels: Length scale dynamics of the non-stationary GPLFM
plotted, illustrating adaptation over time with the non-stationarity of the latent

force.
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Table 6.6: Comparison of NMSE across all states and both models for the bursting
Duffing case study, relative to simulated data.

GPLFM Model: Non-Stationary Stationary

x (m) 498 x 1073 9.56 x 10~

i (ms™") 254 %1072 2.67 x 102

i (ms™2) 9.58 x 1072 1.94 x 10
flx, i) (N) 1.17 2.78

the amplitude and frequency are high, i.e. a shorter length scale and compromised
on the identification when the latent force amplitude and frequency is lower. This
is expected as over-smoothing the higher amplitude content will lead to a greater

error than extra noise in the lower amplitude content.

The performance of the non-stationary GPLFM, as depicted in Figure 6.3, markedly
surpasses that of the stationary model. The non-stationary GPLFM adapts well to
varying frequencies and amplitudes, correctly identifying high-amplitude and fre-
quency components without over-smoothing, and lower-amplitude and frequency
components without introducing non-existent noise. This flexibility is owed to the
second GP that learns that length scale. It is clearly seen that the length scale has
been appropriately learned, with the length scale shortening as the frequency and

amplitude increase and lengthening as both factors decrease.

For a numerical comparison, the NMSE for stationary and non-stationary GPLFMs
were calculated across all states, and the results are presented in Table 6.6. A similar
pattern is observed as in the sine sweep case study. The NMSEs for displacement
x and velocity  are minimal for both models and predominantly influenced by
the observations and their interaction with the linear SSM and the filtering and

smoothing algorithms.

Notably the stationary GPLFM does perform better than the non-stationary
GPLFM for recovering the observed state of displacement. The reasoning for this
is not well understood. However, the NMSE for both of the models is very low and

the recovery of displacement from both models can be considered excellent.

A more significant difference is observed in the acceleration Z and the latent restoring
force f(x, ), where the non-stationary GPLFM shows markedly better performance.
This indicates that the uniform application of a single length scale is insufficient for

optimally modeling non-stationary functions such as the bursting Duffing oscilla-
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tor. Rather, when the temporal latent force exhibits a non-stationary frequency
spectrum, the length scale ¢ of the GP that learns the latent force should not be a
static parameter but should be modeled as a temporal function. This function can
be represented as a GP that dynamically adapts to the non-stationary statistical

properties of the underlying latent force.

6.4 Summary

In this chapter, a new formulation for a non-stationary GPLFM was proposed.
This non-stationary GPLFM was formulated in a hierarchical or “deep” fashion by
introducing a time-varying length scale into the GPLFM, which is modeled as an
additional GP. Moreover, a routine to solve for the Bayesian filtering and smoothing

distribution over the joint latent force-state identification was proposed.

Two case studies were conducted to benchmark the proposed non-stationary
GPLFM against the established stationary GPLFM. The first involved an SDOF
system subjected to a sine sweep load to assess the handling of non-stationary
latent input forces. The second examined a bursting Duffing oscillator to evaluate

performance in recovering non-stationary latent restoring forces.

Comparisons between stationary and non-stationary GPLFMs, through graphical
representations and NMSE calculations, demonstrated that the stationary GPLFM,
with a fixed length scale, either over-fit or over-smoothed, leading to poor latent
force recovery under non-stationary conditions. In contrast, the non-stationary
GPLFM, by learning a dynamic length scale, adeptly adapted to variations in force
frequency, accurately recovering both low- and high-frequency components with-
out over-smoothing or over-fitting. This study demonstrated that a non-stationary
GPLFM prior is a more suitable choice than a stationary GPLFM prior when the

underlying latent force exhibits significant non-stationarity.






Chapter 7

PROBABILISTIC NUMERIC SMC
SAMPLING FOR BAYESIAN
NONLINEAR SYSTEM IDENTIFICATION
IN CONTINUOUS TIME

In the previous chapters, the application of the GPLFM for joint state and latent
force identification was demonstrated. This approach has been applied not only to
recover latent states, input forces, and restoring forces but also provides the dis-
tribution over these variables, accounting for uncertainty in the observations used
for identification. However, the uncertainty in the model, the states, and the ob-
servations is not the only source of uncertainty in systems where the ODE lacks
a closed-form solution such as for most nonlinear systems. In such cases, numer-
ical methods must be employed, which are inherently approximate and introduce

additional uncertainty into the identification process.

In recent years there has been a growing interest in the uncertainty associated with
numerical methods commonly employed across science and engineering. This inter-
est has generated a research area known as probabilistic numerics [27, 28]. It has
been considered how uncertainty in solvers of linear systems arises [130, 144] or how
uncertainty quantification and Bayesian correction can be included in finite element

analysis methods [145].

125
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In this chapter, the currently under-exploited interface of probabilistic numerics
and (Bayesian, parametric) system identification will be investigated and a novel
method for parameter inference respecting the numerical uncertainty in solutions
to intractable ODEs will be developed. This methodology will build up several
existing approaches notably those for probabilistic solutions to initial value problems
of ODEs [146] and sequential Monte Carlo inference for static parameter posteriors
[147]. The combination of these approaches presents a new and powerful framework
for performing inference in dynamic systems where posteriors over parameters of a

continuous but intractable ODE are the objects of interest.

Drawing upon this previous work, a new methodology is introduced to efficiently
identify latent states and system parameters from noisy measurements while simul-
taneously incorporating probabilistic solutions to the ODEs into the identification

process. This holistic approach offers several significant benefits.

First, a proper and full treatment of uncertainty is provided by accounting for all
sources of uncertainty in the model. Posterior distributions over system parameters
are produced, representing both the prior beliefs about the parameters and the

inherent uncertainties in the data and in the solution to intractable ODEs.

Second, the complexities associated with non-Gaussian transition densities for non-
linear systems in filtering problems and SMC methods are avoided. Moreover, a
g + 1-times integrated Wiener process (IWP) is used in the probabilistic integra-
tion process, which extrapolates using polynomial splines of degree g+ 1, seamlessly

allowing for higher-order integration.

Finally, systems learned as part of a system identification process are often embedded
within a pipeline, followed by subsequent analysis — for example to predict the
system’s response to new inputs or as part of anomaly detection in SHM. The new

methodology allows for a propagation of the full uncertainty in identification.

7.1 Introduction

One of the foremost challenges in system identification involves fusion of theoretical
knowledge with measured data to create models that not only embody theoretical
understanding but also correspond with the subtleties of real-world data. When

the mathematical form of a system is known and experimental data is available, a
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practitioner can use parameter estimation as a means to merge these insights into

a calibrated model.

In mechanical engineering, structural dynamic systems are typically modeled by
second-order differential equations derived from Newton’s second law. These can
be readily transformed into first-order ODEs by considering the state-space vector
dynamics, forming a SSM, as outlined in Chapter 2. Here, the general SSM in

continuous time is extended to explicitly show parameter dependence:

x(t) = f(x(t), u(t), 8y), (7.1a)

y(t) = g(x(t),u(t), 8,), (7.1b)

where, f and g govern the transitions of the state x and observation y respectively,
parameterised by 6; and 6,. In the parameter identification setting, it is assumed

that the functional form of f and ¢ are known.

In parametric identification, the parameters 6; and 6, are typically determined
through an optimisation procedure aimed at minimising the discrepancy between
the predicted and observed system states. For linear, time-invariant SSMs, well-
established techniques exist for determining unknown parameters from measured
data, as detailed in [148, 149]. Due to the loss of superposition and challenges in
analytical integration, the difficulty of parameter estimation is significantly increased

for nonlinear systems [56, 58, 150].

Whether the system is linear or nonlinear, a critical challenge in parameter esti-
mation arises from noise in experimental data. Such noise introduces uncertainties
that complicate the optimisation process, potentially leading to biased, overconfi-
dent, or mis-specified models. If these uncertainties are not adequately addressed,
they can degrade the model’s precision and predictive accuracy. Bayesian parame-
ter estimation offers a rigorous framework for probabilistic modelling, incorporating
uncertainty into the estimation process, thereby enhancing model reliability in noisy

environments.

Bayesian parameter estimation is well-established in structural dynamics, where it
is used to quantify uncertainty by identifying probability distributions over model

parameters, given the noise in the measurements. In the Bayesian framework, model
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parameters are treated as random variables. The SSM incorporates these parame-
ters as conditional components, alongside a prior distribution over the parameters
p(@). This prior enables practitioners to incorporate engineering insights into the
identification process. The model can be expressed as the following Hidden Markov

model:

0 ~ p(0), (7.2a)

x1 ~ p(x1]6), (7.2b)
Xp ~ p(Xe|xe-1, ), (7.2¢)
yi ~ p(yi|xt, ). (7.2d)

The ‘full’ Bayesian solution requires computing the joint posterior p(x1.7, € | yy.1),
a task which is almost always intractable. Recursive algorithms offer a viable alter-
native, providing a means to approximate the marginal posterior p(6 | y1.7). When

parameters 0 are held constant, Bayesian recursive filtering yields the distribution:

p(0 | yir) < p(0) [ [ p(y: | y1:4-1,0), (7.3)

t=1

Under this framework, a parameter estimation method was proposed by Chopin
in the form of Iterated Batch Importance Sampling (IBIS) [147]. This approach
involves the sequential sampling and reweighting of @ values, guided by the likelihood
increments p(y:|yi1..—1,0) as defined in Eq.(7.3), with the @-particles being updated
via resampling and MCMC techniques [151]. Chopin extends this methodology to
the sequential Monte Carlo squared (SMC?) algorithm, catering to scenarios where
likelihood increments are intractable in closed form [152]. This method propagates
multiple particle filters within the x-space, in tandem with SMC using MCMC moves
in the f-space. These methods lay the foundation for the parameter estimation

techniques employed in this research.

A critical step in all these methodologies is the evaluation of trial parameters through
the unnormalised posterior likelihood, which involves comparing predicted states,

contingent on the parameters, against observed data. For most nonlinear systems,
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the absence of a closed-form solution necessitates numerical approximation for this
prediction step. Since the numerical solution to the system state prediction must
be approximate, so must be the evaluation of the quality of the parameters made
from the prediction. As a result, any ‘optimal’ parameter set is not truly unique,
but is instead conditional on the specific errors introduced by the chosen numerical
integration method. Hence, the identification of parameters for nonlinear systems
is intrinsically uncertain, necessitating a probabilistic approach to capture this un-
certainty. Viewing numerical approximations to integration as fundamentally prob-

abilistic forms one of the foundations of Probabilistic Numerics (PN) [28].

PN explores the intersection of numerical analysis and probability theory, advocating
for a statistical approach to computational problems. It operates on the premise that
many numerical tasks—such as solving problems in linear algebra [130], quadrature
[153], optimisation [154], ODEs [155], and PDEs [156]—lack exact solutions and
therefore introduce uncertainty. PN addresses this by treating numerical solvers
as agents that can quantify uncertainty with probability measures, allowing for
richer outputs than traditional point estimates. This probabilistic approach enables
smarter, uncertainty-aware decisions within algorithms and allows for the encoding

of less-than-certain expectations into solvers.

Notably, within the field of PN Tronarp et al. [146] developed a method for proba-
bilistic solutions to ODE. In their work, the integration of an ODE is reformulated as
a nonlinear Bayesian filtering and smoothing problem. Here, the proposal p(x;1|x;)
is modelled as an integrated Wiener process, and the likelihood is defined by con-
ditioning on a pseudo-measurement Z, = z(t) 2 0, Vt that captures the derivative
relationship of the ODE. Consequently, the posterior p(x;|y:, Z;) represents the prob-
ability of the state given the noise in the measurements and the uncertainty in the
numerical integration, thus incorporating the integration uncertainty into the state

estimation process.

Despite much work by many authors across the fields of uncertainty quantification in
parameter estimation and numerical methods, little work has been done to combine
these two areas. Schmidt et al [157] developed a probabilistic SSM for joint inference
from ODES and data able to infer the system state and latent function as a temporal
Gaussian Process (GP) given the uncertainty in the data and numerical methods
in a single filer update. Tronarp et al [158] developed the Fenrir algorithm for a
reframing of the state and parameter estimation into a Gauss-Markov process. This

methodology initiates by refining a standard Gauss-Markov prior into a physics-
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informed prior via PN. Subsequently, a posterior distribution is calculated using
Gauss-Markov regression. Parameter estimates for the dynamical system are then
extracted by maximising the marginal likelihood, resulting in a calibrated posterior

distribution.

The aim of this work is to unify Bayesian parameter estimation and PN to estab-
lish a comprehensive probabilistic framework for parameter estimation in nonlinear
systems. By explicitly incorporating the uncertainty in both measurement data
and numerical computations, this unified approach will identify the posterior over
the states given the uncertainty in the measurement and numerical integration as
p(O|y+, Z;) which has not been done before. The framework is designed to facilitate
informed decision-making by providing a more complete assessment of uncertainty,
thereby enabling engineers to consider the probabilistic nature of their models and

to make risk-aware choices in complex engineering applications.

7.2 Probabilistic Solutions to Ordinary Differen-

tial Equations

In this section, a methodology for obtaining probabilistic solutions to ODEs is in-
troduced by formulating the initial value problem (IVP) as a nonlinear Bayesian
filtering problem. Through this approach, a framework is established to recover the
distribution over the states, accounting for the uncertainty inherent in solving the
IVP. It will later be demonstrated how this framework can be used to propagate
the uncertainty in numerical integration into a Bayesian parameter identification

scheme.

7.2.1 From Ordinary to Stochastic Differential Equations

The IVP was introduced in Section 2.3. As discussed earlier, an IVP describes the
evolution of a system governed by a differential equation, where the system’s state
is specified at an initial time. The task is to predict the system’s future behaviour
by solving the differential equation, starting from this known initial condition and
following the dynamics prescribed by the ODE. For a system described by a deter-

ministic ODE, the solution to the state evolution can be expressed as an integral,
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x(t) = / F(x(t). u(t). 8;) dt, (7.4)

However, for almost all nonlinear systems, a closed-form solution to the integral in
Equation (7.4) is not available. Solving such IVPs requires numerical methods, as

analytical solutions are typically infeasible.

One such method is Euler’s method, which discretises time into small increments h

for state progression:

x(t+h) = x(t) + h- f(x(t),u(t), ;). (7.5)

Euler’s method is a first order method with local error proportional to the square
of h and global error linearly proportional to h such that as h approaches zero
the solution to Euler’s method approaches the true solution to the integral [159].
However, due to computational limitations or constraints imposed by the sampled
frequency of u(t) it is not always possible to reduce step size to reduce error to an
negligible levels. Whilst, this can in part be combated by the use of higher order
methods it can sometimes not be enough or too challenging to implement. Under
these circumstances, the resulting drift in state predictions can become significant,

leading to uncertainty about the true solution of the integral Eq.(7.4).

It maybe natural therefore, to consider numerical integration as a linear SDE com-
posed of a linear ODE to represent local linearisation, augmented with a ran-
dom variable accounting for the unknown error in the integration process. The

continuous-time SDE equation is expressed as:

X(1) ~ N(u(1), (1)), (7.6a)

dX(t) = [FX(t) + u(t)]dt + LdB(t), (7.6b)

where p(1) and ¥(1) are the mean and the covariance that describe the Gaussian

distribution over the initial conditions X(1). F is the state transition matrix, u(t)
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the force, L is the diffusion matrix and B3(¢) is defined as a vector of the standard
Wiener processes. X (t) is a vector of X (¢) and ¢+ 1 derivatives such that X"+ (¢)
is the derivative of X'(¢),

XM(t)
X@(t)

X(a+1(¢)

It has been established in Chapter 3 that filtering and smoothing on SDEs of this
nature are equivalent to GP regression, where the SDE effectively forms the GP prior
[106]. In this context, any given realisation of the SDE corresponds to a sample from
the GP prior.

To fit the SDE in a Bayesian filtering framework measurements are required. For
solving IVPs, Tronarp [146] proposes that a measurement can be defined upon the
known derivative relationship between the states i.e. F, u and L must be set such
that X*T(¢) is always be the derivative of X’(¢). This provides the following pseudo-

measurement

X () X 1)
X 3) X (2)

Zit)=| . | =T . =0 (7.8)
X (¢+1) X (@)

In this framework, the SDE is conditioned on the residual relationship, as expressed
in Eq.(7.8), equating to zero. For example, at any moment, the velocity must equal
the derivative (as calculated from the continuous SSM Eq.(7.1)) of displacement.
Any deviation from this relationship indicates an integration error. However, condi-
tioning the process X(t) on z(t) = 0 for t € [1,T] is intractable in continuous time,

necessitating the adoption of a discrete time approach.



7.2 Probabilistic Solutions to Ordinary Differential Equations 133

7.2.2 The Discrete Time Solution

The discrete formulation only attempts to condition the process X(t) on Z(t) =
z(t) 20 at a set of discrete time-points, {t;.7}. Under this Bayesian filtering

framework the inference problem becomes

X1~ N(py, 21), (7.9a
X1 Xe ~ N(A(R)X¢ + &(h), Q(h)), (7.9b
Z,|X; ~ N(CX,; — f(CX;,u(t)),R), (7.9¢

220, t=1,....T (7.9d

where h is the step size and R represents the measurement variance. In this work
and in general when solving Eq.(7.9) with Gaussian filtering R = 0. C is the
observation matrix and C is it’s derivative such that C = [I 0o --- O] and C' =

[O r .- O] That is, CX; = XEI) and CX, = X§2). It is important to observe
that the likelihood model p(Z; | X;) exhibits nonlinearity, which adds complexity
to the filtering solution. Additionally, z; denotes the realisation of Z;, and the state
transition A (h), process noise £(h), and process noise covariance Q(h) are defined

as follows:

A(h) = exp(Fh), (7.10a)
h

&(h) = /1 exp(F(h — 7))udr, (7.10Db)

me:[<mmmh—ﬂﬂLTamFWh—ﬂmr (7.10¢)

7.2.3 Building the Model

A commonly adopted prior for ODE solvers is the IWP. Specifically, the ¢ + 1
times IWP, denoted as IWP(g+1), is used due to its capability to extrapolate using
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polynomial splines of degree ¢+ 1 [28]. This particular choice, IWP(g+1), facilitates

the computation of integrals in Eq.(7.10) in closed form, as follows:

A(h) =AD& 1, (7.11a)
£(h) =0, (7.11b)
Q(h) = QW(h)®T, (7.11c¢)

where ® is the Kronecker product, I € R%? is the identity matrix and I' € R%¥*? is
a hyperparameter that calibrates the covariance in Q(h). AM(h) and QW (h) are

given by
1 W
2q+3—i—j
(1) _ h
Q(h)ij = (7.12b)

(2¢+3—i—5)(g+1—=9)(¢g+1—7)!

where I is the indicator function.

7.2.4 Filtering Solution

Eq.(7.9) defines a Bayesian filtering problem. In Section 2.6, the Kalman filter
and Extended Kalman filter were introduced. Here, the system is linear in the
prediction step and nonlinear in the observation step, which necessitates a slightly

different implementation. The linear prediction step is given by:

i = A +&(h), (7.13a)
S5 =AMEAT(R) + Q(h), (7.13Db)

where boldsymbolul” and I are the first and second filtering moments and p!” and
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> are the first and second predictive moments.

The nonlinear observation model can be approximated using Taylor series methods.
The zeroth order extended Kalman filter (EKF0) used in this work because global
uncertainty quantification can be very changing for higher order methods when the
ODE is multidimensional such that d > 1 (see Section 7.4.1 for an example). The
filter update for the EKFO is given as;

S, ~CxIC’ + R, (7.14a)
K, ~ 2FCrs (7.14b)
2, =~ Cpf — f(Cuf t), (7.14c)
pl ~pl + Kz — 2), (7.14d)
a2l - KSK!. (7.14e)

It is important to note that for enhanced numerical stability, the implementation of
these filters using the square root formulation is recommended. A derivation of the

square root Kalman filter is available in [160].

7.2.5 Calibration

The validity of the posterior distribution over the system states depends not only
on its mean but also crucially on its variance. In the probabilistic ODE solver, this
variance is governed by the hyperparameters of the prior. For the IWP prior used
here, the key hyperparameter is T as it governs the process noise covariance Q(h)
(see Eg.(7.13b)).

The calibration of I" is crucial for producing a reliable posterior. Since I in the EKF0
does not depend on the vector field of the function f(-) of the ODE it is proposed
by Bosch et al. [161] that T' should be a diagonal matrix I' = diag(o?,...,02) so

that the variance o2 can be individually calibrated for each dimension d.

I' can be optimised by maximising the marginal likelihood, which involves selecting

o? that maximise the evidence for the observed data. The marginal likelihood is
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given by:
Y
p(z1.r|0?) Hp Z|Z14-1,07). (7.15)
=2

However, computing this is as costly as solving the ODE, thus necessitating an ap-
proximation. Bosch et al. [161] proposed a quasi-ML estimator for multidimensional
ODEs in the case of the EKF0, expressed as:

R 1 (z),”>
== i 1.....d}. 1
X3 TZ (\S/t b 7’ E{ ) 7d} (7 6)

t=1

where S; = I's; and S; is the innovation covariance matrix from the EKF0 equations
Eq.(7.14). This estimator, while an approximation, offers efficient calibration for the
variance of the posterior and can be easily Incorporated into the EKFO for almost

no additional cost.

7.3 Sequential Monte Carlo for parameter esti-

mation

In the previous section, it was shown how a probabilistic solutions to ODEs can
be formulated to account for the inherent uncertainty arising from the need to
approximate solutions to nonlinear ODEs—where no closed-form solution exists.
However, for a full and proper treatment of uncertainty in parameter identification,
a methodology must be developed that incorporates the numerical uncertainty from
solving the ODE, the prior distribution over the parameters and the uncertainty
in the measurements. To this end, Monte Carlo-based methods can be adapted to

form a holistic identification approach.

Monte Carlo-based methods are numerical techniques that leverage repeated ran-
dom sampling to approximate probability distributions [151]. Among these, the
Iterated Batch Importance Sampling (IBIS) method [147] is designed to estimate
posterior distributions of the form p(@|y1.r). The IBIS algorithm comprises two
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principal stages: firstly, evaluating the efficacy of a set of trial parameters 6., and
secondly, proposing new parameters based on the assessed quality of the previous
set. The innovation in IBIS is to use importance sampling and particle rejuvenation
to explore partial distributions p(@|y;.;) (where t < T') to efficiently explore the pa-
rameter space and evaluate the posterior p(8|y1.7). This section outlines the IBIS
methodology, which evaluates a posterior distribution over parameters given the un-
certain measurements p(@ | y1.7), and demonstrates how it can be used to develop
a new approach that also accounts for the uncertainty in numerical integration to
evaluate posteriors of the form p(@ | y,Z). This approach is outlined in Algorithm
1.

Algorithm 5 Particle System Algorithm
1: Generate a particle system {0,,,w, } that targets the prior distribution p(8,,)
2: fort=1to 7 do
3: for n =1to N do

4: Evaluate p(Xi11,4 | Zt, 0,) according to Eq. (7.9)

5: Compute ¢,(60,,) according to the energy function in Eq. (7.17)

6: Update the particle system weights in {6,,, w,} as per Eq. (7.18)

7 end for

8: if ESS, as in Eq. (7.19), < € then

9: Sample a new particle system {ém, Wy }m=1.n using an Independent
Metropolis Hastings proposal in Eq. (7.20)

10: for s=1tot do

11: for m =1to N do

12: Evaluate p(Xs41.m | Zs, 0,,,) according to Eq. (7.9)

13: Compute ¢,,(0,,) according to the energy function in Eq. (7.17)

14: Update the particle system weights in {6,,, @, } as per Eq. (7.18)

15: end for

16: Accept /reject {0,,} with probability given in Eq. (7.22)

17: end for

18: end if

19: end for

This inference scheme initiates at ¢1, where the parameter distribution is represented
by the prior p(@), as informed by the practitioner’s engineering knowledge. Direct
conditioning of p(@) on yi.r is computationally intractable. Therefore, p(6|y;.7)
will be approximated by conditioning on a discrete set of random samples 0.y ~
p(0) (Algorithm 1.1). Using these sampled particles, initial conditions Xy, 1.n, and
the probabilistic numerical integrator (referenced in Section 7.2), the distribution
over the system states given the prior over the parameters and the uncertainty

in the numerical integration at subsequent time steps (Xyy1 | Z, 0,)n=1.n can be
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determined (Algorithm 1.3).

The quality of the trial parameters can be assessed by sequentially comparing
states at Xy, predicted by f(x(t),u(t),8,) and evaluated by the probabilistic ODE
solver to the noisy measurements y,,; through the state space measurement model
Eq.(7.1b) . The comparison is made by computing the approximate energy function
[23] (Algorithm 1.4),

1 1 _
Pe1(0) = 3 log [27S¢41(0)] + §VtT+1(9)St+11(9)Vt+1(9) (7.17)

where ¢ denotes the negative log incremental likelihood or negative log incremental
weight p(yii1|ye, On, Z). The terms S;1(0) and v,,1(0) can be calculated using the
intermediate steps of the Kalman filter [23]. The energy function encapsulates the
quality of the proposed parameters, considering the integration uncertainties and the
influence of noisy observations. The unnormalised marginal likelihood p(y;+1|6,,Z)

can be approximated from

log wy41(6,) = logw;(6,) — ¢r41(6n) (7.18)

where w is the approximate the unnormalised weight and w;—; = 1/N such that
the update transitions the unnormalised weight from p(y;|0,,,Z;) to p(yi41|0n, Z¢s1)
(Algorithm 1.5) and wy(0,,) x p(y1.7|0n, Z1.7).

The particle system represents p(0|yi., Z1.,) through a weighted set of particles,
rather than directly yielding a set of particles whose distribution intrinsically ap-
proximates p(@|y1., Zi1.) itself. As the algorithm progresses through its prediction
and reweighting steps (as outlined in Algorithms 1.3 to 1.5), it accumulates more in-
formation about the quality of the proposed particles 8,.5. This process causes the
posterior distribution p(8|yi., Z1.;) to diverge from the initial distribution p(@|y;—o).
A common side effect of this process is that the particles become degenerate. This
degeneracy primarily arises because, with each sequential observation, the likelihood

for most particles diminishes significantly compared to a few that align closely with

!Note that the measurement y;,; is not used in the filtering step of the probabilistic ODE
solver as this would impede the ability to test the quality of the parameters 6,, .
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the observed data, resulting in an imbalance where a few particles end up with the
majority of the weight. To counteract this issue, resampling and rejuvenation steps
can be implemented. Resampling effectively duplicates particles with higher weights
and eliminating those with lower weights so that the set of unweighted particles ap-
proximate the distribution p(0|yi.,Z1.) its self. Therefore after resampling each

particle weight wq.y is set to 1/N.

Rejuvenation, in contrast, involves the introduction of a move step to the particles
post-resampling to avert the loss of diversity and facilitate the exploration of the
parameter space. This process entails slightly altering each particle based on a move
kernel. This move is then accepted or rejected according to a criterion that ensures

the overall particle set continues to approximate p(0|y1.;, Z1.) accurately.

Efficiency in rejuvenation is critical as it is often computationally demanding, re-
quiring a complete browsing of all past observations (Algorithm 1.9 to 1.11). Effi-
ciency here comes from two parts. First, only rejuvenating the particles 6.5 when
p(8|y1.4, Z1) is not well represented by the particles. To ensure this a standard

degeneracy criterion in used,

(7.19)

where ESS is the effective sample size. The ESS can be compared to a user de-
termined threshold e (Algorithm 1.6). If the ESS drops below the threshold the
particles are determined to be functionally degenerate and will be resampled and
rejuvenated . Therefore, the threshold needs to be set at some compromise be-
tween propagating particles that can continue to infer useful information about the
proposed parameters and not resampling too often and incurring unnecessary com-

putational costs.

The second factor to consider when managing the computational cost of the al-
gorithm is the efficiency of the move kernel itself. Since a theoretical guarantee of
convergence does not guarantee that particles will explore the search space efficiently

it is key to select a move kernel with this in mind.

For the move kernel to have a good efficiency it is important that the acceptance rate
of new parameters is high. This could be easily achieved artificially via a random

walk where a small perturbation to current particles is applied. However, this fails



140 7.3 Sequential Monte Carlo for parameter estimation

to actually rejuvenate the particles as although particles are distinct they are also
very similar and therefore very highly correlated. This approach leaves degeneracy
high but less detectable.

Therefore, a move kernel should be chosen that only proposes new particles that
weakly depend on the previous values. For this the independent Metropolis Hasting
(IMH) kernel is chosen [152]. This ensures that the acceptance rate becomes better

indicator of rejuvenation.

Since the p(0|yi.4, Z1.4) is approximated by the weighted particles, resampling and
rejuvenation can be performed by sampling from that distribution. A rough approx-
imation of the location of the mass of p(0 | y1.1, Z1.) is given by the expectation E

and variance V of the particle system,

N N - -
. > i1 wﬂj) v > =1 wi{8; —EH{6; — EY (7.20)

N, N, ’
Zjil Wi Z]’:Gl Wj

such that samples can be drawn (Algorithm 1.7),

6~ N(E,V) (7.21)

After new parameters are proposed a complete browsing of observations from the
initial time step up to the current must be performed so that the performance of the
newly proposed parameters can be compared to that of the old parameters (Algo-
rithm 1.9 to 1.11). This involves calculating the distribution over the parameters of
the system given the uncertainty in the measured data and the numerical integration

iteratively from time t; to #;,;.

With the weights of the proposed particles calculated the move is accepted with
probability (Algorithm 1.12),

i (4 POy | 6.Z)
o= (1,p(0 t ) (7.22)
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The employment of the IMH kernel within SMC methods serves a dual purpose:
resampling and rejuvenation of the particle set. This dual functionality stems from
the kernel’s capability to sample from the posterior distribution p(@|yi.Z;.;) as
approximated by the weighted particles. Such sampling not only ensures that the
distribution of particles closely approximates the posterior distribution p(0|y1.¢, Z1.¢)
itself but also facilitates an effective exploration of the parameter space by the
particles. Finally, the newly resampled and rejuvenated particle system is input
back into the outer loop and the particle weights are reset to 1/N so that the
process of evaluation given new observations can continue until rejuvenation is once
again required. This process is repeated for each of the the discrete time steps in
the data set (Algorithm 1.12).

7.4 Case studies

In this section, three case studies are presented to evaluate the effectiveness of the
proposed methodology. The first case study involves a simulation of the Bouc-
Wen model of hysteresis. Here, the parameter estimation by the proposed method
is compared against a known ground truth, facilitating a clear assessment of its

accuracy.

The latter two case studies are based on experimental datasets: the Silver Box and
an Electromechanical System (EMS). These present a greater challenge in quanti-
fying identification accuracy, due to the absence of a predetermined ground truth.
However, these cases can be considered more representative of real-world system
identification challenges. Their inclusion in this study is intended to demonstrate
the practical applicability and adaptability of the proposed methodology in a exper-

imental settings.

7.4.1 Bouc Wen

The Bouc Wen model of hysteresis was intoduced in Section 4.1. As a recap the

equation of motion for the Bouc Wen model of hysteresis [124] is given as,
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Table 7.1: Prior parameter distributions for the Bouc Wen system.

Prior Distribution

~— —

0.93,0.0541)
1.3,0.1056)

p(m)  N(2.1,0.011)
plc)  N(838,6.97)
pk)  N(5.9 x 10%2.18 x 10%)
(@) N(4.4x 10% 1.74 x 10%)
p N (8.6 x 10%,6.66 x 10%)
N(
N(

AEA
=2

g~

mi + ¢t + ky + z(x, &) = u(t) (7.23a)
iz, &) = ad — B (y]&|[2]" 2 + di]2]") (7.23b)

where, z is displacement, & is velocity, m is mass, c¢ is viscous damping, k is linear
stiffness and z encodes the nonlinear hysteresis memory effect. The rate of change of
z, 2 is defined by «, 3, v, 0 and v which are used to tune the shape and smoothness

of the hysteresis loop.

For training data generation, a system based on Eq.(7.23) is simulated using a
fourth-order Runge-Kutta scheme. The parameters for this simulation are detailed
in Table 7.1. A random phase multisine load, with frequencies ranging from 0.5 Hz
to 100 Hz across 2000 uniformly spaced steps, is applied to the system. The load’s
amplitude is initially increased linearly over the first 10% of the simulation time,
and subsequently has maximum amplitude of 208N. The simulation is conducted for
3 seconds at a sampling frequency of 131072 Hz ensuring minimal integration error.
However, the only data that will be used for the identification will be acceleration
measurements down sampled to 4096 Hz to provide 12288 data points. The data is
then corrupted with measurement noise through the addition of i.7.d. samples from
a Gaussian distribution with zero mean and a standard deviation of 5% of the root

mean square of the acceleration.

Using the framework for probabilistic parameter identification outlined in this work
the posterior parameter distribution is identified from a prior distribution over the
parameters, the nonlinear SSM, a known forcing and a noisy measurement of the

acceleration state. Figure 7.1 shows the prior and posterior distributions over the
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Figure 7.1: Prior and posterior histograms and PDFs normalised by the true pa-
rameter values for the Bouc Wen system (denoted by (-)*) .

parameters before and after training. It should be noted that Figure 7.1 shows the
parameters normalised by the ground truth so that the quality of the identification

can be more easily interpreted.

The prior means and variances can be found in Table 7.1. The prior was defined
by perturbing the true values. Large variances are given to each of the parameters

to imitated a scenario where a practitioner has low confidence in the prior values

defined.

Figure 7.1 illustrates a discernible variation in both the accuracy and uncertainty

of the posterior parameter estimates. Specifically, the parameters m, k, and «
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Figure 7.2: Acceleration samples from the filtering distribution, EES and threshold
for time instances 1600 to 3000.

exhibit more precise estimations with lower variance compared to the parameters
¢, B, v, and 0. This disparity is attributed to the differing extents to which each
parameter influences the system’s state. Consequently, it can be inferred that, under
the loading conditions presented in the training data, the parameters m, k, and «
play a more substantial role in governing the system’s dynamics than ¢, 3, v, and

0. A more detailed discussion on this observation is provided later in this section.

Figure 7.2 serves to illustrate the phenomenon of particle degeneracy and the sub-
sequent rejuvenation process. In this figure, the black plots shows samples from the
distribution over the acceleration given the integration uncertainty and the param-
eters. The effective sample size (ESS), depicted in blue, is crucial for monitoring
particle degeneracy. A decline in ESS below a predefined threshold indicates func-

tional degeneracy of parameters, necessitating their resampling.

It is important to note that the figure selectively displays only a fraction of the total
resampling instances, prioritizing readability. However, the omitted data conforms
to the same pattern as that which is shown. As the sampling instances progress,
errors in the proposed parameters become increasingly evident, leading to a reduc-
tion in ESS until the threshold is reached. Upon resampling, the new parameter set
generally exhibits closer tracking of the system’s true states, with a reduced variance

across the sample set. This process repeats until a complete browsing of the training
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Figure 7.3: Samples from the posterior over the states for the Bouc Wen system
plotted with the true states. An enlarge view of each state is shown to the left.
Observations are plotted only for acceleration, as observations for the other states
were not made available during the analysis.

data has been completed and a posterior distribution over the parameters given the

entire data set is reached.

Figure 7.3 presents the true states of the Bouc-Wen system alongside the states gen-
erated from the sampled parameters of the posterior distribution. In the zoomed-in
sections, it is evident that the states resulting from the posterior parameter distri-
bution closely follow the ground truth. Additionally, it is observed that the variance
of the posterior in the acceleration state is markedly lower than that of the noisy
observations. This finding indicates that the posterior distribution over the param-
eters accurately captures the dynamics of the Bouc-Wen system under the specified

training load.
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Parameter estimation is achieved through the assessment of parameter quality as
an ability to predict the state of the system. Therefore, parameters can only be
optimised so long as a change in a parameter has an influence in the accuracy of the
predicted state. This is limited by the ability of the training data to encapsulate
the dynamics of the modelled system. This is limited by the level of noise in the
data, any fundamental uncertainly in the identification process such as integration

uncertainty and the degree to which the data expresses the systems nonlinearity.

To see a significant further reduction in the variance of the posterior distribution
further training data must be provided. This new training data must be such that
a system simulated with parameters sampled from the current posterior would have
a signification increase in variance of the posterior across the states. Simply put,
training data must be provided that forces the states of the system outside of the
current noise floor. Two different approaches may be used to achieve this. The
first it to increase the number of time steps. As the number of time steps increases
small inaccuracies in the parameters are more likely to cause drift in the predicted
states from the true states. The second is to used training data with a greater
forcing amplitude as it will make the nonlinear effect on the system dynamics more
dominant. However, both of these approaches must be balanced against increasing
integration uncertainty. For a fixed time step size increasing the number of time
steps allows for integration error to accumulate and increasing forcing magnitudes
increases the gradients of the states and makes the makes linear approximations

within the integrator less valid.

Here in lies a particular strength of the proposed methodology. When the uncertainly
in the integration is accounted for in the posterior over the parameters it prevents
the estimator from becoming overly confident in parameters that are biased due to

numerical integration errors.

For additional validation of the identified parameters, the identified parameters will
be used in simulation and compared in performance to the ground truth for a bench-
mark testing data set [162]. The benchmark data set contains noise free input and
output measurements for both a sine-sweep and multisine loading condition. The
data is simulated at 15000 Hz and down sampled to 750 Hz and consists of 8192
samples for both loading conditions and is performed using a Newmark integration
method [163]. The sine-sweep data starts with zero initial conditions so is not steady
state. The forcing amplitude is 40 N and the frequency bands rangers from 20 to

50 Hz with a sweep rate of 10 Hz/min. The random phase multi sine dataset is at
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steady state and the frequencies range from 5 - 150 Hz with an RMS input value of

50 N. Note that this testing data set was at no point using in the train process.

To evaluate the performance of the parameter estimation the RMSE was calculated
for each particle for both the sine-sweep and a multisine loading conditions. For the
sine-sweep the maximum RMSE was 6.6416x 1075 the minimum was 4.6313ex 1076
and the mean RMSE of all particles was 5.4017x107%. For the mutisine the maxi-
mum RMSE was 6.2220x10~¢ the minimum was 7.1967x10~" and the mean RMSE
of all particles was 2.4772x1076.

7.4.2 Silverbox

The Silverbox [164] is an electrical circuit designed to emulate the behavior of the
Duffing oscillator, a SDOF mass-spring-damper system characterised by a cubic

spring term. The equation of motion for the Duffing oscillator is expressed as:

mi + ¢t + kx + ksz® = u(t) (7.24)

In this equation, x represents displacement, & denotes velocity, m is the mass, ¢
signifies viscous damping, k is the linear stiffness, k3 the cubic stiffness, and u(t) the
forcing function. While the Silver Box does not perfectly replicate the theoretical

Duffing oscillator, it serves as a highly accurate approximation.

The Silver Box benchmark [165] encompasses two datasets. The dataset predom-
inantly analysed, and the one chosen for analysis in this study, features an input
time signal that resembles an arrow, as shown in Figure 7.4. In the Silver Box, both
input and output are in the form of voltage. The input voltage simulates the Duffing
oscillator’s forcing function, while the output voltage’s response to this input mimics

the displacement response of the Duffing oscillator to a forcing function u(t).

The input voltage shown in Figure 7.4 is comprised of two distinct functions. The
first is a Gaussian white noise of linearly increasing amplitude filtered by a 9" order
Butterworth filter. This forms the head of the arrow and is comprised of 40,000
samples. The remaining samples shows 10 realisations of an odd random phase
multisine samples at fixed amplitude. All data is recorded with a sample frequency
of 610.35 Hz.



148 7.4 Case studies

)
] 2 1 G 8 10 12 11
Time Step <10

Time Step <10

Figure 7.4: Measured input and response of the silver box benchmark.

The model is trained on data from the odd random phase multisine and tested on the
data form the arrow head. Specifically the model is trained on 3072 observations
ranging from data point 49,278 to 52,350. The prior and posterior distributions
over the parameters can be found in Figure 7.5. It can be noted that all samples
of parameters are taken from a log distribution to enforce the prior that all the
parameters as defined in the Duffing equation must be positive for the identification

to be physically meaningful.

Figure 7.5 illustrates the evolution of parameter distributions in the Duffing equa-
tion, transitioning from a broad prior to a more defined posterior distribution. This
transition encapsulates the full extent of uncertainty inherent in the identification
process. Unlike the analogous plot for the Bouc-Wen system, the parameters in this
instance are not normalised against a known ground truth, as no such truth exists
for this experimental system. However, an analysis of the variance ranges in the
posterior distributions allows for the inference that parameters m, ¢, and k exert
a more pronounced influence on the training data compared to the cubic stiffness

parameter ks.

Figure 7.6 displays the observed output voltage alongside the displacement state
derived from parameters sampled from the posterior distribution. The focus is

solely on the displacement state, as no observations for other states are available
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Figure 7.5: Prior and posterior histograms and PDF's for the silver box system.
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for comparison. This plot reveals that the sampled parameters generally align well
with the observed displacement, with most observed data points residing within the
sampled distribution. However, a closer examination, particularly in the zoomed-
in sections, reveals instances where the observed data deviates slightly from the

sampled distribution.

This deviation can be attributed to the primary sources of uncertainty in this param-
eter estimation. Notably, the signal-to-noise ratio for the Silver Box is sufficiently
high, rendering measurement noise negligible. Consequently, during identification,
the measurement noise is set to an order of magnitude around 107%. This leaves
integration uncertainty as the dominant source of error. The observed data’s lack
of smoothness, as evident in Figure 7.6, indicates that integration errors are likely
to contribute significantly to the uncertainty in the states, and consequently, in the

parameter quality assessment.

Now consider how the uncertainty in the integration is calibrated. The uncertainty
in the integration is calibrated using I' a quasi-MLE that approximates the average
uncertainty from t=1 to t=T. This means at some points when the gradient of the
states are small I will be an over estimate and when the gradient of the states are
at their largest I' will be an underestimate of the uncertainty in the integration.
As such, it is not unexpected that at some extreme points the observed state falls
outside the sampled states. However, even considering this it should be noted that
the observed states do always fall comfortably inside 20 of the second moment of
the posterior. The second moment of the posterior is shown in faded gray in Figure
7.6.

Since, no ground truth is available to evaluate the quality of the identified parameters
an alternative method must be used. For this the identified parameters will be used
in simulation and compared to the observations for the arrowhead section of the
dataset. The first 1000 time steps were excluded from this simulation to remove
the transient so that the simulation was run from time step 1000 to 40,000. For
this simulation a RMSE was calculated for each particle. The maximum RMSE was
2.9516x 1072 the minimum was 1.0567x107% and the mean RMSE of all particles
was 1.8249x1073.
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Figure 7.7: Image of the EMPS [166]

7.4.3 Electro-Mechanical Positioning System

The EMPS (Figure 7.7) is a standard configuration of drive system for prismatic
joints of robots or machine tools. It is comprised of a DC motor equipped with
an incremental encoder and a high-precision low-friction ball screw drive position-
ing unit. The EMPS also features an incremental encoder and accelerometer, but
their data is excluded from the benchmark, mirroring the common absence of such
measurements in industrial robots [167]. The nonlinear equation of motion for the
EMPS is given as,

Tiam(t) = MZ(t) + Fyi(t) + Fesign(x(t)) + of fset (7.25)

where T;4,, is the joint torque/force, M is the inertia of the arm, F, is the viscous

friction and F, is the Coulomb friction.

For full details of this benchmark see [166]. The EMPS provides two datasets. The
first is for training and the second is for testing. The training dataset consists of
25s of motor force and motor position measurements sampled at 1000 Hz. When
generating the training data the EMPS was excited with bang-bang accelerations.
Training is performed based on 24576 data points and the prior over the parameters
is shown if Figure 7.8. To ensure that M, F, and F, remain positive new proposals

of these parameters will be sampled in the log space.

Figure 7.8 shows the prior and posterior parameter distribution for the EMPS bench-
mark. It can be seen that the diffuse prior converges to a posterior with a narrow
variance. Excellent convergence is seen across all four identified parameters. Fig-
ure 7.9 shows the observed displacement plotted together with the displacement

state generated from parameters sampled from the posterior distribution. Only the
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Figure 7.9: Samples from the posterior over the Displacement for the EMPS plotted
with the measured output Displacement. An enlarge view of the displacement is
shown beneath.

Table 7.2: Summary of Case Study Results
Case Study: B.W. Sinesweep B.W. Multisine Silver Box EMPs

Unit: RMS (ms~2) RMS (ms~2) RMS (V) RMS (m)

Min Particle 4.631x107° 7.197x10°7 1.057x1072 2.950x10~*
Max Particle  6.642x1076 6.222x1076 2.952%x1073  8.990x10~*
Mean Particle 5.402x1076 2.477x1076 1.825x1072  5.202x107*

displacement states is shown as no observations exist for the other states. The pa-
rameters sampled from the posterior distribution correctly track the measurements

with the measured states always falling within the sampled distribution.

To evaluate the quality of the identified parameters. The identified parameters will
be used in simulation and compared to the observations for the testing dataset. The
testing dataset consists of 25s of motor force and motor position measurements sam-
pled at 1000 Hz. When generating the testing data the EMPS is again excited with
bang-bang accelerations however this time there is an additional pulse component

to the loading.

The identified parameters are evaluated for the for the testing dataset and compared
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against the measurements. For this simulation a RMSE was calculated for each
particle. The maximum RMSE was 8.9900x10~* the minimum was 2.9500x10~* and
the mean RMSE of all particles was 5.2018x1074.

7.5 Summary

This chapter introduced a Bayesian parameter estimation method that unifies SMC
and Probabilistic Numerics to establish a comprehensive probabilistic framework for
parameter estimation in nonlinear systems. Building on existing techniques for prob-
abilistic ODE solutions and SMC-based parameter inference, the proposed approach
efficiently identifies latent states and system parameters from noisy observations. It
provides a comprehensive treatment of uncertainty by generating posterior distribu-
tions that encapsulate prior beliefs and the intrinsic uncertainties of both the data
and the nonlinear ODE solutions. Through 3 case studies, it was demonstrated that
the proposed procedure could be realised effectively. Notable results were achieved

across both simulated and experimental datasets with low RMSE.



Chapter 8

CONCLUSION AND FURTHER WORK

Structural dynamics is essential for understanding how structures respond to ex-
ternal excitation, which is critical for optimising performance, mitigating damage,
targeting maintenance, and informing operational decisions. The aim of this the-
sis was to address fundamental challenges in structural dynamics associated with
nonlinearity, uncertainty, non-stationarity, and joint identification. These challenges
arise in the three fundamental tasks of a structural dynamicist: system identifica-

tion, prediction and simulation, and input identification.

e Chapter 1 introduced some of the core challenges in structural dynamics,
focusing on system identification, prediction, and input identification. It high-
lighted the importance of building accurate models for dynamic systems, par-
ticularly in the context of nonlinearities and uncertainties. The chapter estab-
lished the need for advanced methods to address the limitations of traditional
approaches, laying the motivations for the methodologies developed in this

thesis.

e Chapter 2 presented an overview of the background and theoretical founda-
tions essential for developing the framework used in this thesis. Additionally,
a concise review of relevant literature was included to establish the context for

the later chapters.

e Chapter 3 presented a comprehensive introduction to the Gaussian Process
Latent Force Model (GPLFM) for joint input-state identification. The existing
literature on the application of GPLFMs for latent input force identification
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was reviewed. The derivation of the state-space Gaussian Process (GP) from
the mean and covariance functions of a stationary temporal GP was outlined.
Furthermore, an established formulation of a state-space GPLFM was con-
structed, based on this state-space GP representation. An example study
demonstrated the practical application of the GPLFM, offering insights into
the influence of observed state variable selection on the performance of the

GPLFM in joint input-state estimation.

In Chapter 4, the nonlinear joint input-state estimation methodology was ex-
tended for the first time to accommodate systems with dynamic nonlinearities,
particularly those exhibiting hysteresis. This extension marks a significant ad-
vancement, as such systems introduce complex nonlinearities into the system’s
transition function and necessitate the estimation of additional hidden states

that are not simply derivatives or integrals of observable states.

The proposed methodology successfully addressed these challenges by inferring
both latent forces and hidden internal states from noisy acceleration measure-
ments in a nonlinear oscillator with hysteresis. By applying the nonlinear
GPLFM, solved with Particle Gibbs with Ancestor Sampling (PGAS), highly
accurate input-state estimations were achieved for this challenging system.
State estimation Normalised Mean Squared Errors (NMSE) were consistently

below 1%, even for the additional internal state z(z, ).

Furthermore, the force estimates exhibited low errors, with 2.18% error when
a GP was used as the loading signal, and 5.22% error with sine wave forcing.
In addition to these low error rates, the methodology effectively quantified
the uncertainty in the state estimates, thereby enhancing the reliability of the

system identification process.

In Chapter 5, a new methodology was proposed for using a GPLFM to
identify the latent restoring force surface of a unknown nonlinearity in an
output-only context. This approach was implemented within a operational
Modal Analysis (OMA) framework by modeling the system’s input as a white

noise process.

The methodology demonstrated the capability to jointly recover the temporal
behaviors of latent states, latent restoring forces, and latent input forces, while
also deriving a GP representation of the underlying restoring force function.
The methodology was benchmarked against a Duffing oscillator, which was

excited by a white noise process. In this case study, the functional form of
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the Duffing oscillator’s nonlinearity, the input to the system, and the system’s
displacement and velocity states were all hidden. Only noisy acceleration

observations were available during the analysis.

Although it was assumed that the linear system’s functional form and param-
eters were known a priori, in the general case this problem is highly uniden-
tifiable. However, by assuming the input to the system was a white noise
process, it became possible to recover the latent restoring force surface. This
was achieved by taking the expectation of the recovered total latent force with
respects to time and conditioned upon the states. Once the restoring force
surface was identified, the time series of the latent input force could then be

recovered.

In Chapter 6, to address the challenges of capturing smooth, non-stationary
latent forces, a novel non-stationary state-space formulation of the GPLFM
was developed. This formulation incorporates a time-varying length scale
within the state-space GPLFM framework, enabling the model to adapt
dynamically to the non-stationarity of the latent functions. The time-varying
length scale is learned through a secondary GP, that augments the state-
space structure, establishing a hierarchical or “deep” GP configuration.
This advancement provides an effective approach for modeling complex,

non-stationary behavior in latent force estimation.

Techniques for linearizing and discretizing the model were introduced, allowing
the application of Bayesian filtering and smoothing to solve for the latent
forces. Two case studies were conducted to benchmark the performance of the
proposed non-stationary GPLFM against the stationary GPLFM. The first
case study involved a single degree of freedom (SDOF) system subjected to a
sine sweep load to evaluate its ability to handle non-stationary latent input
forces. The second study examined a bursting Duffing oscillator, aimed at

assessing its effectiveness in recovering non-stationary latent restoring forces.

Comparisons between the stationary and non-stationary GPLFMs, using
graphical analyses and NMSE calculations, revealed that the stationary
GPLFM, with a fixed length scale, either over-fitted or over-smoothed the
data, leading to poor recovery of latent forces under non-stationary condi-
tions. In contrast, the non-stationary GPLFM, by learning a dynamic length
scale, successfully adapted to the varying frequency content, recovering both

low- and high-frequency components accurately without over-smoothing or
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over-fitting.

Finally, Chapter 7 introduced a novel Bayesian parameter estimation tech-
nique that combines Sequential Monte Carlo (SMC) methods with Proba-
bilistic Numerics to create a unified probabilistic framework for parameter

estimation in nonlinear systems.

The authors posited that parameter estimation in nonlinear dynamic systems
can be conceptually divided into three sequential stages. The first stage in-
volves selecting a set of candidate parameters. In the second stage, these trial
parameters, along with the model’s functional form and initial conditions, are
used to solve the initial value problem (IVP), thereby determining the system’s

state at a future time point.

The third stage compares the predicted state from the IVP solution to the
observed measured state at the corresponding time, optimizing the model pa-
rameters by minimizing the discrepancy between the predicted and measured
states. This study employed a comprehensive Bayesian methodology across
all three stages. In the first stage, a prior distribution was assigned over the
parameter space, effectively reducing the search space and enhancing the effi-

ciency of the parameter selection.

During the second stage, a probabilistic ODE solver was used to explicitly ac-
count for the uncertainties inherent in solving the IVP for nonlinear dynamic
systems, incorporating these uncertainties into the identification process. In
the final stage, the posterior distribution over the parameters was evaluated,
incorporating uncertainties from both the numerical integration and the mea-

surements.

Through three case studies, the proposed procedure was effectively demon-
strated, achieving notable results with low Root Mean Square Error (RMSE)

across both simulated and experimental datasets.

8.1 Further Work

Although the developed methodologies represent significant advancements, they also

present certain limitations and challenges. This section highlights these limitations

and outlines potential directions for future research.



8.1 Further Work 159

e In Chapter 4, the PGAS method was used to approximate the smoothing
distribution for the GPLFM. PGAS offers key advantages over Gaussian ap-
proximations by capturing complex, nonlinear relationships through Monte
Carlo techniques, enabling more accurate modeling of non-Gaussian latent

forces.

However, PGAS incurs a significant computational burden due to the need for
multiple particle filters. To reduce this load, a small number of particles was
used in this work. This likely resulted in artifacts in the recovered signals,

compromising the accuracy of latent force estimation.

Future research should investigate the effect of increasing the number of par-
ticles on the smoothing distribution, as this may reduce artifacts and improve
accuracy. Despite the reduced particle count, the computational burden re-
mains high. To address this, more efficient inference methods or alternative
approximations—such as Gaussian filters for weak nonlinearities or variational
inference or SMC2—could be explored to balance computational load and re-

covery accuracy.

e In Chapter 5, an output-only GPLFM was presented for the identification
of a Duffing oscillator, a relatively simple SDOF nonlinearity. Extending this
approach to multi-degree of freedom (MDOF) systems is a potential direction

for further investigation.

Such an extension is straightforward as long as only one nonlinearity is present
and the state-space model (SSM) of the linear component of the MDOF sys-
tem can be formulated. However, when multiple nonlinearities are involved,
separating their contributions presents a significant challenge that warrants

further investigation.

Furthermore, more complex types of nonlinearities, such as hysteresis, could
be explored. In particular, modeling the phase space of a Bouc-Wen hysteretic
system when recovering the restoring force surface using a GP poses substantial
difficulties, especially when it is not known a priori that additional states
are required to represent the nonlinearity. This presents an interesting and

complex problem for future work.

In the current study, it was assumed that the linear parameters of the system
are known. Future work could investigate whether informative priors placed

over the functional form of the nonlinearity could allow for the simultaneous
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recovery of both the nonlinear structure and the linear parameters as part of

the identification process.

Moreover, this work assumes that the unobserved input is a white noise pro-
cess. However, this assumption may not hold when the true underlying input
is narrow-band, as is often the case in offshore structures. It is believed that
both the nonlinear structure and a temporal distribution over the latent input
force could still be recovered, provided the input is modeled as a stationary

function.

Investigating this approach could significantly expand the applicability of the
methodology to more realistic loading conditions, making it a promising di-

rection for further research.

In Chapter 6, a non-stationary GPLFM was developed within the state-space
framework and applied to two SDOF case studies. As with the output-only
GPLFM work in Chapter 5, this methodology could be extended to MDOF

systems.

Such an extension is relatively straightforward when only one latent force is
present and the SSM of the linear component of the MDOF system is available.
However, if multiple latent forces are involved, distinguishing their contribu-

tions presents a significant challenge that warrants further investigation.

It is also likely that the non-stationary GPLFM could be adapted to the
output-only case using the techniques presented in Chapter 5. In this
study, the developed GPLFM was benchmarked against simulated datasets,
which allows for comparison against ground truth data. However, evaluating
the model’s performance against real-world or experimental non-stationary
datasets would provide further validation and highlight its practical applica-
bility.

One identified challenge in this work is the computational burden associated
with re-discretizing the system at each time step. Investigating algebraic meth-
ods for this process could alleviate the need to approximate the matrix expo-

nential at every step, improving computational efficiency.

Additionally, the noise covariance, Q(t), was updated using a zero-order hold
due to the difficulties of higher-order approximations. Exploring higher-order
approximations for the integral of @Q(¢) could enhance the accuracy of the

uncertainty recovery, further refining the model’s performance.
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Furthermore, it is proposed that not only the length scale but also the second
hyperparameter of the Matérn kernel, the variance o2, should be modeled as
a GP. This would allow the non-stationary GPLFM to account for systems

where the latent force exhibits non-stationary amplitude.

For instance, this approach could improve the modeling of seismic forces, cap-
turing the varying amplitudes between primary shocks and aftershocks, or
wind loading, where gusts require precise representation of amplitude fluctua-

tions.

e In Chapter 7, a Bayesian parameter estimation method was introduced, com-
bining Sequential Monte Carlo (SMC) and Probabilistic Numerics to establish
a unified probabilistic framework for parameter estimation in nonlinear sys-

tems.

This approach addresses the challenges posed by numerical integration and
the uncertainty it introduces into system identification. This problem extends
beyond just parameter estimation. Future research should explore how prob-
abilistic techniques for numerical integration can be applied to other system
identification methods, such as GPLFMs.

By accounting for the uncertainty introduced by numerical integration, these
methods can improve the overall accuracy and reliability of system identifica-

tion across a wider range of applications.

8.2 Closing Remarks

The primary aim of this thesis has been to advance Bayesian methods for input,
system, and output identification in nonlinear dynamic systems. As modern en-
gineering projects become increasingly ambitious, the complexity of the systems
involved continues to grow. This escalation necessitates the development of ad-
vanced, data-based approaches to complement traditional techniques for building
models and understanding system inputs. With the growing availability of large
datasets, increased access to computational resources, and significant advancements
in machine learning, the potential for data-driven approaches to better understand
complex systems has never been more promising. However, enthusiasm for these
methods must be tempered by the need to ensure that the models developed are not

only representative of the data but also reflective of the underlying physical reality



162 8.2 Closing Remarks

that the data seeks to describe. In response to this, the work presented in this thesis
has explored the integration of physical principles into data-driven methodologies.
The goal has been to ground these models in real-world physics, enhancing their re-
liability and interpretability. Additionally, considerable attention has been given to
the quantification of uncertainty, ensuring that the outputs of these models provide
not only predictions but also an informed measure of confidence in those predic-
tions. Looking forward, the combination of data-driven approaches with principled,
physics-based modeling holds tremendous potential for further breakthroughs. As
computational power and the sophistication of algorithms continue to grow, the fu-
ture of physics informed system identification and uncertainty quantification is both
exciting and full of promise, offering the potential for more robust and insightful

solutions to the increasingly complex challenges faced by engineers and scientists.
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