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Abstract

Solar activity acts as the primary driver of space weather, encompassing phe-

nomena such as flares, coronal mass ejections, and solar energetic particles,

which originate from distinct regions like sunspots, faculae, and granules. Pre-

dicting space weather is essential due to its significant impact on planetary

atmospheres and human activities both in space and on Earth, including

communication and navigation systems, power grids, spacecraft operations,

astronaut safety, and aviation at high altitudes and latitudes. Sunspots, in

particular, harbour intense magnetic fields that can trigger powerful solar erup-

tions and therefore require continuous monitoring. In recent years, automated

identification methods have become increasingly common as the vast amounts

of data from both ground- and space-based observatories can no longer be

handled manually.

In this thesis, we developed mathematical morphology algorithms for auto-

matic sunspot detection. Our results, compared with those obtained through

manual methods, demonstrate comparable accuracy, enabling the extension

of this approach to other solar features and image datasets. For instance, we

applied a modified version of these algorithms to simulation-generated maps

to identify magnetic flux rope structures in two active regions, capturing their

distinct dynamics and, in one case, an eruption corroborated by Solar Dynamics

Observatory (SDO) observations.

Mathematical morphology was further applied to extensive datasets to

identify all coronal off-limb structures visible in SDO/Atmospheric Imaging

Assembly (AIA) 304 Å images throughout nearly the entire Solar Cycle 24

(June 2010–December 2021). Statistical analysis of the properties of these

features revealed significant trends, including distinct behaviours between

high- and low-intensity coronal structures in terms of latitudinal distribution.

Additionally, evidence was found for the existence of active longitudes, with
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coronal off-limb structures exhibiting a preferred longitudinal distribution

pattern. These findings deepen our understanding of coronal activity and open

new avenues for improving space weather forecasting.

Keywords: Sun; Solar activity; Mathematical morphology; Sunspots; Coro-

nal off-limb structures; Magnetic flux ropes; Active longitudes
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Resumo

A atividade solar, manifesta-se de variadas formas – manchas solares, fáculas,

fulgurações, ejeções de massa coronal, dinâmicas do vento solar e mais – sendo

o principal condutor dos fenómenos da meteorologia espacial. Prever a meteo-

rologia espacial é essencial devido ao seu significativo impacto nas atmosferas

planetárias e nas atividades humanas e económicas tanto no espaço quanto na

Terra. Tal inclui sistemas de comunicação e navegação, satélites, aviação, redes

elétricas, entre outros. As manchas solares, em particular, abrigam campos

magnéticos intensos que podem desencadear erupções solares poderosas, sendo

necessário monitorizá-las continuamente. Nos últimos anos, a enorme quanti-

dade de dados provenientes de observatórios terrestres e espaciais dificulta a

sua manipulação visualmente, pelo que os métodos automáticos de identificação

tornaram-se ferramentas cruciais para processar esta valiosa informação.

Nesta tese, foram desenvolvidos algoritmos de morfologia matemática para a

deteção automática de manchas solares. Comparámos os resultados obtidos com

resultados obtidos por métodos manuais tendo sido encontrada uma precisão

comparável, que permitiu extrapolar esta abordagem a outras caracteŕısticas

solares. Por exemplo, foi aplicada uma versão alterada desses algoritmos a

mapas criados por simulação para identificar estruturas de cordas de fluxo

magnético em duas regiões ativas. Esta abordagem permitiu capturar dinâmicas

distintas e, num caso de estudo, identificar uma erupção que também foi viśıvel

nas observações do SDO.

A morfologia matemática encontra aplicações a conjuntos de dados mais

vastos. Assim, esta teoria foi utilizada para identificar todas as estruturas

coronais viśıveis em imagens SDO/AIA 304 Å ao longo de quase todo o Ciclo

Solar 24, desde junho de 2010 a dezembro de 2021. Realizou-se uma análise

estat́ıstica das propriedades dessas caracteŕısticas, como sendo área, intensidade

e distribuição espacial. Este estudo revelou tendências interessantes, tais como
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comportamentos distintos entre estruturas coronais de alta e baixa intensi-

dade, relativamente à sua distribuição latitudinal, bem como evidências da

existência de longitudes ativas, sugerindo um padrão preferencial na distribuição

longitudinal das estruturas coronais.

Palavras-chave: Sol; Atividade solar; Morfologia matemática; Manchas

solares; Estruturas coronais; Cordas de fluxo magnético; Longitudes ativas
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Chapter 1

Introduction

1.1 What is space weather?

Space Weather (SW) refers to the solar-driven conditions in space that affect

not only Earth but also the atmospheres and magnetospheres of other planets.

SW has significant impacts on various aspects of Earth, particularly through

the initiation of geomagnetic storms, which cause fluctuations in Earth’s mag-

netic field. These storms induce electric currents in the ionosphere that can

propagate along power transmission lines, potentially leading to damage to

power grids. SW also produces radiation storms, characterised by heightened

fluxes of energetic particles, which pose risks to satellite electronics, astronauts,

and passengers and crew on high-altitude and -latitude flights (Jones et al.

2005; Iucci et al. 2005; Eastwood et al. 2017; Bain et al. 2023). Additionally, SW

creates ionospheric disturbances that alter electron density, thereby impacting

radio wave propagation, satellite communication, and Global Navigation Satel-

lite System (GNSS) signals, along with other satellite-based navigation systems.

Satellites orbiting Earth are also affected by charging from low-energy particles,

outages, orbital decay, and increased drag due to atmospheric density changes

from incoming solar particles. Terrestrial conductors are impacted by electro-

magnetic induction from SW events, which can generate large electric currents

known as Geomagneticallly Induced Currents (GICs). These GICs can cause

various issues at ground level, such as the saturation of power transformers

and corrosion in pipelines.

The Sun is dynamic, continuously emitting particles into interplanetary

space in an ongoing flow known as the solar wind, initially inferred from
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observations of comet tails (Biermann 1951; Biermann et al. 1967). Parker

1958 was the first to theoretically describe the expansion of the solar corona

as the solar wind. The solar wind is generally categorised into two types:

slow and fast. The slow solar wind moves along magnetic field lines extending

from the Sun’s equatorial regions, travelling at speeds equal to or less than

500 km/s and at relatively lower temperatures and densities compared to

the fast solar wind. The fast solar wind, on the other hand, originates from

open magnetic field lines in the solar corona, such as coronal holes. When it

catches up with and compresses the slower solar wind, it creates regions of

enhanced density and magnetic field strength known as Stream Interaction

Regions (SIRs). If these SIRs persist over at least one solar cycle following the

Sun’s rotation, they form Co-rotating Interaction Regions (CIRs). Slow and

fast solar winds, and especially SIRs and CIRs, significantly impact SW by

causing recurrent high-speed streams in the solar wind that can interact with

Earth’s magnetosphere.

In addition to this continuous background of solar wind, the Sun also

sporadically ejects transients, including solar flares, Coronal Mass Ejections

(CMEs), and Solar Energetic Particles (SEPs). Predicting these stochastic

events — their onset, duration, intensity, and arrival time at Earth — is crucial

for effective SW monitoring, and each will be detailed in the following section.

These solar phenomena originate in different layers of the highly strati-

fied solar atmosphere, where physical parameters such as temperature and

density vary significantly over relatively short distances. The first layer is the

photosphere, the visible surface of the Sun, extending approximately 600 km

in height. It has a temperature of around 5000–6000 K and a high density of

1023 m−3, which allows for direct observations of the magnetic field. Above the

photosphere lies the chromosphere, extending from 600 km to around 2000 km

in height. This layer has a lower density of 1019 m−3, and temperatures increase

sharply, reaching about 10, 000 K at the top. At approximately 2 Mm (2, 000

km) in height is the transition region, where temperatures rise from 50, 000

to 100, 000 K, and the density decreases to 1016 m−3. The outermost layer of

the solar atmosphere, the corona, extends from the transition region outward

into space. The corona has a very low density, compared to the photosphere,

around 1015 m−3, while temperatures soar to over 1, 000, 000 K.

The coronal heating paradox, which also reflects a chromospheric heating

problem, exemplifies this stratification. While the temperature in the pho-

2



tosphere is around 6000 K, it increases drastically and unexpectedly in the

chromosphere and transition region, reaching temperatures of 1–3 million K in

the corona (Aschwanden 2004; Aschwanden et al. 2007). The solar atmosphere

is also highly complex and dynamic, displaying a wide variety of features that

evolve over different timescales, from seconds to days or even months, each

requiring different physical models for accurate description.

A key parameter used to evaluate whether plasma or magnetic field domi-

nates in the solar atmosphere is the plasma-beta, defined as the ratio of gas to

magnetic pressure. The plasma-beta is high in the lower atmosphere, such as at

the photospheric level in granules, where gas pressure dominates due to higher

plasma density. In contrast, in sunspots or in the solar corona, the plasma

beta is very low, indicating that the magnetic field dominates. In this case,

magnetic pressure confines plasma along magnetic field lines, while magnetic

tension stabilises magnetic structures against disturbances, resisting bending.

During eruptive events, however, these magnetic forces are overcome, leading

to the release of stored energy.

1.2 Main precursors of space weather

The Sun hosts a wide range of features and phenomena that contribute to SW.

This section highlights the most significant features, focusing particularly on

those relevant to the different projects discussed in this PhD thesis, as detailed

in Chapters 3, 4, and 5.

1.2.1 Coronal mass ejections

CMEs are massive eruptions of magnetised plasma expelled from the Sun,

consisting of electrons, protons, and heavier ions, all carrying embedded complex

magnetic field structures. These events can release up to 1015 − 1016 grams of

plasma into interplanetary space, with speeds ranging from tens of km/s to

over 3, 000 km/s (Green et al. 2018). Webb et al. 2012 reported an average

CME speed of approximately 490 km/s. CMEs usually originate from active

regions with intense, complex magnetic fields and are often associated with

prominence eruptions (Subramanian et al. 2001).

The origin of CMEs is closely linked to magnetic reconnection, a phe-

nomenon in which oppositely directed magnetic fields realign, changing the
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magnetic field topology from a high-energy to a lower-energy configuration.

This process rapidly releases stored magnetic energy, triggering various eruptive

solar events (Priest et al. 2000; Srivastava et al. 2019). Historically, CMEs

were observable only during solar eclipses, but significant advancements in

CME study followed Bernard Lyot’s invention of the coronagraph in 1929

(Lyot 1939; Koutchmy 1988). This instrument blocks out the bright light of the

Sun’s photosphere, enabling observation of the fainter corona and its dynamic

phenomena. CMEs frequently exhibit a three-part structure consisting of a

bright core within a dark cavity beneath a bright frontal loop (Illing et al. 1985;

see Figure 4.1), though not all CMEs display such a clear flux rope expansion.

The most geoeffective CMEs are halo CMEs, which propagate in all directions,

including toward Earth (Howard et al. 1982).

CMEs that travel faster than the ambient solar wind can generate inter-

planetary shocks at their leading edges, which may trigger gradual SEP events

(see Subsection 1.2.3). As they propagate through the heliosphere and interact

with the background solar wind, CMEs evolve into Interplanetary Coronal

Mass Ejections (ICMEs), with changes in shape, speed, and internal structure.

ICMEs are detectable through in-situ measurements from spacecraft such as

National Aeronautics and Space Administration (NASA)’s Advanced Compo-

sition Explorer (ACE). These structures display identifiable characteristics,

including enhanced magnetic field strength and a low plasma beta indicating

that the ICME plasma is tightly confined by the magnetic field.

1.2.2 Solar flares

Solar flares are sudden bursts of electromagnetic radiation spanning the entire

spectrum, including gamma rays, X-rays, ultraviolet (UV) light, visible light,

and radio waves, with the strongest emissions typically observed in X-ray, UV,

and extreme ultraviolet (EUV) wavelengths. Flares are classified based on their

peak X-ray flux into A, B, C, M, and X classes, with X-class flares being the

most intense. Flares not accompanied by CMEs are termed confined flares,

while those accompanied by CMEs are known as eruptive flares and can be

highly geoeffective. Indeed, flares associated with CMEs are often observed

to be longer-lasting or more intense (Green et al. 2002). Youssef 2012 found

a strong correlation between flare flux and the energy of associated CMEs,

particularly during periods of heightened solar activity. During a flare, the
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released energy can accelerate particles to nearly the speed of light, contributing

to impulsive SEP events (see Subsection 1.2.3).

Unlike CMEs, which can originate from both active regions and the quiet

Sun, major solar flares originate exclusively in active regions (Campi et al.

2019). They result from the rapid release of stored magnetic energy, heating

the surrounding plasma and unleashing up to 1032 − 1033 erg, as seen in the

Carrington event of 1859 (see Section 1.4). The most powerful flares, known as

superflares, have been observed on nearby Sun-like stars, releasing up to 1000

times more energy than the Carrington event (Schaefer 2012; Maehara et al.

2012). Maehara et al. 2017 demonstrated that the mechanisms of magnetic

activity underlying superflares on solar-type stars are similar to those occurring

on the Sun. According to Shibata et al. 2013, superflares with an energy of

1034 erg could occur on the Sun approximately once every 800 years, while

those reaching 1035 erg might take place roughly once every 5000 years. If such

superflares were to materialise on the Sun, their effects could jeopardise not

only technological systems but also Earth’s environment.

1.2.3 Solar energetic particles

SEPs are high-energy particles ejected by the Sun, consisting of protons,

electrons, and heavier ions. Their energies span a wide range, from the order

of keV to GeV, with many accelerated to near-relativistic speeds (Whitman

et al. 2023). SEPs are typically categorised into two types based on their origin:

impulsive and gradual SEP events (Reames 2013).

Impulsive SEP events are associated with solar flares and occur near the

flare sites, where magnetic field lines reconnect (Shea et al. 1990). These events

have smaller spatial extent and are characterised by a rapid onset and decay,

closely coinciding with the timing of the associated flare. Impulsive SEP events

are dominated by lower-energy electrons and ions, and they are relatively

short-lived, lasting from a few minutes to several hours.

Gradual SEP events, by contrast, are accelerated by CME-driven shock

waves (Reames 2004). These events are long-lasting, with durations ranging

from several hours to days, and are distinguished by a prolonged decline due to

the passage of the CME shock front. While gradual SEP events also accelerate

electrons and ions, they are predominantly dominated by high-energy protons,

often with energies in the MeV to GeV range. This gives rise to their nickname
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”big proton events” (Reames 2021). These high-energy proton events are a

primary concern for radiation hazards to astronauts, satellites, and high-altitude

flights, particularly in polar regions.

1.2.4 Sunspots

The photosphere displays a granulation pattern formed by large convection

cells, called granules, which are in perpetual motion. Within the narrow, dark

lanes between granules lie magnetic bright points — small-scale, dynamic

features of concentrated magnetic fields with strengths in the kilogauss range

(Keys et al. 2020). Plasma rises through the centres of granules and descends

back into the solar interior at their edges, creating a dynamic behaviour that

characterises the quiet Sun.

In contrast, the Sun also hosts active regions with stronger and more complex

magnetic fields, particularly in sunspots, where magnetic fields strengths can

reach several thousand Gauss. Most clearly seen in the photosphere, sunspots

appear as dark, Earth-sized patches in continuum images. They are cooler

than their neighbouring regions due to the intense magnetic fields hampering

convection, thereby lowering the local temperature. Typically, sunspots have

lifetimes of several days, diameters exceeding 20 Mm, and magnetic field

strengths above 2000 G. Sunspots are composed of a dark central region, the

umbra, and a brighter surrounding area, the penumbra (Rempel et al. 2009).

Smaller sunspots consisting only of an umbra are referred to as pores. Studying

sunspots is essential, as they are primary sources of solar eruptions, such as

flares and CMEs, which have substantial impacts on SW.

1.2.5 Facular regions

In active regions surrounding sunspots, large bright areas often appear in white-

light images. These regions exhibit enhanced magnetic fields, although less

intense than those found within sunspots, and thus they typically develop both

before and after sunspot formation. The concentrated magnetic fields in faculae

generate heat, causing these areas to appear brighter. In the photosphere,

these bright features are referred to as faculae, while in the chromosphere,

they are known as solar plages. Faculae and plages are key indicators of solar

cycle activity, playing a significant role in locating active regions and tracking

sunspot evolution. Although faculae and plages account for only a small fraction
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of the observed photospheric luminosity, they contribute to the total solar

irradiance (TSI) — the total energy per square meter received on Earth from

the Sun across all wavelengths (from X-rays to radio waves). During periods

of heightened solar activity, the increased luminosity from faculae and plages

offsets the reduction caused by sunspots, raising the TSI by approximately

0.1% compared to periods of lower solar activity (Solov’ev et al. 2018).

1.2.6 Filaments and prominences

Solar filaments are dense plasma structures suspended in the Sun’s atmosphere

by magnetic fields. These formations are composed of relatively cool plasma,

with temperatures ranging between 104 and 105 K, which contrasts sharply

with the much hotter surrounding corona (Parenti 2014; Jenkins et al. 2022).

Filaments appear as dark, elongated structures when viewed against the bright

solar disk (e.g., in H-alpha observations) as a result of their lower temperatures

and higher densities compared to the ambient plasma. They serve as valuable

tracers of magnetic field lines in the solar atmosphere, providing insights into

the Sun’s magnetic topology.

At the solar limb, these structures are referred to as prominences and

appear as bright, arch-like features set against the dark background of space.

Despite their visual brightness, prominences remain cooler and denser than the

surrounding coronal plasma. Quiescent filaments and prominences are generally

stable, persisting for days to months, and are often associated with regions of

relatively weak magnetic fields. In contrast, eruptive filaments and prominences

are highly dynamic and unstable, typically forming in areas with more complex

and stronger magnetic field configurations. These eruptive events are key drivers

of CMEs and are therefore crucial for understanding solar activity and its

impacts on SW.

1.2.7 Solar jets

Solar jets are long, thin, beam-like plasma structures that rise and fall back

onto the Sun, though some may escape into the solar wind, carrying strong

magnetic fields along. Coronal jets, as their name suggests, are observable in

the corona, where they reach high temperatures on the order of a million K,

which makes them visible in X-ray and EUV wavelength observations (Shibata

et al. 1992; Innes et al. 2016; Raouafi et al. 2016). They are commonly observed
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in active regions and exhibit velocities between 30–300 km/s, corresponding to

kinetic energies ranging from 1025 to 1028 erg (Shibata et al. 1992). Coronal

jets typically have sizes between 1–100 Mm, though some may extend over 100

Mm, and they last for several minutes to hours.

In contrast, spicules are jets that occur in the chromosphere (Secchi 1878;

Roberts 1945; Beckers 1972). They are smaller structures, reaching heights of

up to 10–20 Mm with widths under 1 Mm, and have shorter lifespans, often

lasting less than 10 minutes. Due to their chromospheric origin, spicules are

cooler, with typical temperatures around 10,000 K and generally below 50,000

K, making them observable in chromospheric spectral lines such as H-alpha

and Ca II. Numerical modelling, particularly magnetohydrodynamic (MHD)

simulations, is widely used to reproduce and better understand the propagation

of spicules through the lower solar atmosphere (Mart́ınez-Sykora et al. 2017;

Mackenzie Dover et al. 2021).

Both spicules and coronal jets are classified into various types based on

their characteristics and origin mechanisms. Solar jets can be triggered by

processes such as magnetic reconnection (Innes et al. 2016; Skirvin et al. 2023),

wave-driven mechanisms like slow and fast magnetoacoustic waves or Alfvén

waves (De Pontieu et al. 2004; Liu et al. 2019; Stangalini et al. 2021), magnetic

tension release combined with ambipolar diffusion (which induces a drift motion

between the neutral and ionised components of a partially-ionised plasma, such

as the chromosphere, e.g., see Mart́ınez-Sykora et al. 2017; Mart́ınez-Sykora

et al. 2018), and granular buffeting.

For example, Roberts 1979 proposed that spicules result from resonance-

induced, high-speed flow buildup within a magnetic flux tube, which is contin-

ually buffeted by granular motions in the photosphere. When this buffeting

reaches a resonant frequency, it drives a strong axial plasma flow along the

magnetic field lines, producing a visible spicule as the plasma rises into the

chromosphere. This theory underscores the critical role of photospheric turbu-

lence and resonance in the development of spicules. As pointed out by Liu et al.

2023, although solar jets are small-scale, localised events, they are governed by

the solar cycle, which influences not only their latitudinal but also longitudinal

behaviour (see Chapter 5). The interplay between local dynamo processes

(which influence jet formation) and the global solar dynamo in the emergence

and evolution of solar jets, including spicules, remains an open question.
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1.2.8 Coronal loops

Coronal loops are prominent arch-like structures in the solar corona, often

expanding over 100 Mm in length, with temperatures that can exceed 600,000

K and lifetimes lasting several hours. They consist of relatively dense plasma

confined by magnetic fields (Reale 2010). The footpoints of coronal loops are

anchored in the photosphere, where they connect regions of opposite magnetic

polarity, creating a bridge that reveals the structure of the magnetic field

extending into the corona. Coronal loops are of particular importance for

tracking and studying magnetic field dynamics, as well as for understanding

energy transport and heating mechanisms in the corona.

1.3 Observations and Sun monitoring

Monitoring and predicting SW events is essential to protect both space-based

and terrestrial systems; however, forecasting remains challenging due to the

wide range of temporal and spatial scales involved. For instance, photons

reach Earth in about 8 minutes, SEPs can take from 10 minutes to several

days, and CMEs typically arrive within 1 to 6 days. Each layer of the solar

atmosphere provides unique insights into eruptive solar features, though each

presents its own challenges. For example, the corona’s magnetic field cannot

be directly measured due to its low density, necessitating extrapolations from

the photospheric magnetic field, e.g., as applied by Korsós et al. 2020 for solar

flare forecasting. Another major challenge is determining the geoeffectiveness

of SW events, which depends on factors such as the type of solar structures

impacting Earth and, critically, the strength and direction of the magnetic field

embedded in these structures. A powerful eruptive event might have limited

geoeffectiveness, whereas a smaller-scale event with a dominant southward

magnetic field component could cause severe damage on Earth.

Accurate forecasting of SW events requires continuous monitoring of solar

activity through both ground-based and space-borne observatories, as each

provides unique data that, when combined, enable a more comprehensive

analysis. Ground-based observatories cannot detect EUV wavelengths, which are

absorbed by Earth’s atmosphere; thus, satellite observations are indispensable

for studying the Sun’s hottest atmospheric regions. Besides, newly developed

instruments on space observatories now offer significantly higher spatial and
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temporal resolutions. For instance, since its launch in 2018, the Parker Solar

Probe has captured the closest images of the Sun to date, while the Solar

Orbiter provides an unprecedented viewing angle of the Sun, particularly

around the solar poles.

1.4 Notable space weather episodes

Many significant space weather events have been documented through visual

observations or direct measurements, with the most famous being the Carring-

ton Event of 1859. Carrington 1859 and Hodgson 1859 made one of the earliest

recorded observations of an exceptionally intense solar flare, estimated to be

around X45 in terms of X-ray intensity, corresponding to an energy release of

approximately 5 × 1032 erg (Cliver et al. 2013). This flare was accompanied by

a CME that travelled rapidly, reaching Earth in just 17.6 hours. The resulting

geomagnetic storm produced auroras visible at very low latitudes, extending

as far south as Panama. At the same time, GICs from the solar magnetic field

embedded in the CME disrupted telegraph systems, with some even catching

fire. Remarkably, a telegraph conversation was sustained for two hours without

any battery power, relying solely on GICs. The Carrington Event marks the

first clear recognition of the solar-terrestrial connection, when Carrington linked

the solar flare effect, observed in a magnetometer at the Kew Observatory, to

the geomagnetic storm that followed the next day. Notably, other significant

space weather events were recorded prior to the Carrington Event, such as

the one in February 1730, documented through historical aurora records in

East Asia (Hayakawa et al. 2018). Similarly, East Asian records from March

1582 describe powerful auroras lasting for at least three days (Hattori et al.

2019), which were even observed in the skies of Portugal despite the full moon

(Carrasco et al. 2020), underscoring the exceptional brightness of the auroras

produced by the geomagnetic storm at that time.

In September 1770, bright red auroras were recorded in Japan and China,

with additional observations in South-East Asia by Captain James Cook’s

expedition en route to Australia. This marks the first documented instance of

simultaneous auroral sightings in both hemispheres (Willis et al. 1996). These

auroras were visible in low-latitude areas for nine days, suggesting that the

geomagnetic storm lasted even longer (Hayakawa et al. 2017). The storm was

particularly intense; the recorded sunspot group associated with the geoeffective
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eruption covered an area approximately twice the size of that linked to the

Carrington Event. In 1872, another significant space weather event, known

as the Chapman-Silverman Event, was documented in East Asia. This event

disrupted telegraph systems, causing widespread communication failures across

long distances, including the interruption of the British-Indian submarine

cable in the Indian Ocean for several hours (Uberoi 2011). Comparable to

the Carrington Event in terms of magnetic intensity, the Chapman-Silverman

Event similarly highlights the vulnerability of contemporary technology to

solar activity. It is particularly notable for its strong geoeffectiveness, despite

being linked to a medium-sized, but highly complex active region with strong

magnetic flux (Hayakawa et al. 2023).

In November 1882, a large sunspot group triggered another space weather

event that disrupted telephone and telegraph systems (Love 2018). In October

1903, a fast CME, travelling at roughly 1500 km/s, instigated a strong geomag-

netic storm. Uncommonly, this occurred during a solar minimum, demonstrating

that intense space weather events can arise even during periods of low solar

activity (Hayakawa et al. 2020). Later, in May 1921, the so-called New York

Railroad Storm, caused by a series of ICMEs (Love et al. 2019), became no-

torious for the damage it inflicted on technological infrastructure. The storm

led to fires in several facilities worldwide, including a control tower near New

York’s Grand Central Terminal and a telephone exchange in Sweden (Odenwald

2007). Additionally, the event produced powerful ionospheric disturbances that

interfered with radio communication, causing either disruptions or, in some

cases, unexpectedly enhancing long-distance radio propagation.

A few months before the outbreak of World War II, in January 1938, the

Fátima storm occurred, marked by large auroral displays visible at low latitudes,

including Fátima, Portugal. The event was named for its coincidence with

the Fátima prophecy, which foretold that God would send a great sign in the

sky as a warning of the impending war. The Fátima storm caused widespread

electrical outages and disruptions, with some train lines in England becoming

inoperable. Radio interference also disrupted communications, even affecting

airline operations. The storm was triggered by several rapidly launched CMEs

erupting from a large and complex active region, a characteristic often associated

with the most powerful space weather events ever recorded (Hayakawa et al.

2021).

In September 1941, the so-called Geomagnetic Blitz struck, wreaking havoc
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on the new technologies developed during the war. The nighttime auroral

glow exposed an Allied convoy, leaving it vulnerable to German assaults (Love

et al. 2016). Similarly, in May 1967, a powerful solar flare erupted during the

Cold War, emitting electromagnetic radiation across a wide spectrum, from

radio waves to X-rays, and was accompanied by solar radio bursts that caused

significant ionospheric disturbances (Knipp et al. 2016). This event nearly

led to a nuclear attack by the U.S. government on the Soviet Union, as the

disruption of military high-frequency (HF) radio communications and polar

surveillance radar was mistakenly attributed to Soviet interference. Fortunately,

space weather forecasters from the Air Weather Service (AWS) issued a timely

warning that the disturbances were due to solar activity. This was incredibly

fortunate, given that space weather forecasting operations had only begun in

the late 1950s, with the terminology itself being coined in 1957 (Cade III et al.

2015). The 1967 storm holds particular significance in the field of heliophysics,

as it underscored the critical importance of understanding and monitoring

solar activity, spurring the rapid development of space weather forecasting

capabilities.

In August 1972, another solar storm caused significant technological distur-

bances in North America, marked by long-duration and intense solar flares. One

of these flares was estimated to be an X20-class event, with emissions persisting

for more than 16 hours above background levels (Knipp et al. 2018). This storm

also produced extremely hazardous SEP events, which could have posed fatal

risks to astronauts had they been on the Moon at the time. Additionally, it

recorded the fastest CME transit time to date: only 14.6 hours, with the CME

travelling at an extraordinary velocity of 2850 km/s (Vaisberg et al. 1976). In

the context of the Vietnam War, this event reportedly caused the premature

detonation of U.S. magnetic-influence sea mines, an outcome attributed by

the U.S. Navy to the storm’s effects, inadvertently saving Vietnamese vessels.

One of the most extreme storms of the Space Age occurred in March 1989,

plunging Quebec, Canada, into darkness. The storm also impacted satellites

in space, with anomalies reported in NASA’s Tracking and Data Relay Satel-

lite (TDRS)-1 and a sensor aboard Space Shuttle Discovery due to high-energy

particles infiltrating their electronics. A few months later, in August 1989,

another geomagnetic storm, accompanied by a powerful X20-class solar flare,

disrupted microchips and halted trading on Toronto’s stock market (Talib et al.

2011).
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Between 2000 and 2003, during the peak of Solar Cycle 23, several intense

geomagnetic storms were recorded. Notable events include the storms in April

2000 and April 2001 (Huttunen et al. 2002; Sun et al. 2002), the latter being

associated with a strong X20-class solar flare and marking the first storm of the

Space Age to saturate space-borne observatories. In between, the Bastille Day

solar storm of July 2000 (Andrews 2001) caused disturbances to power systems

and spacecraft, while the November 2001 storm (Mishin et al. 2007) produced

auroras visible in the southernmost regions of the U.S. This period culminated

in the infamous Halloween solar storms of October 2003 (Dryer et al. 2004). A

powerful solar flare, directed away from Earth, was estimated to be X45-class,

making it one of the most intense ever recorded. Approximately half of the

Earth-orbiting spacecraft experienced varying levels of disruption, affecting

satellite radio communications and television broadcasts. The Advanced Earth

Observing Satellite (ADEOS)-II was lost, while deep-space missions, including

the Martian Radiation Environment Experiment aboard NASA’s Mars Odyssey,

were severely impacted. Other missions were forced into safe mode. These

storms disrupted diverse sectors, including communications for airline flights

and Antarctic science missions, as well as Global Positioning System (GPS)

technologies used for land drilling, monitoring, and other applications.

During Solar Cycle 24, the strongest geomagnetic storm was the Saint

Patrick’s Day solar storm of 2015 (Jacobsen et al. 2016; Wu et al. 2016).

However, a significant near-miss occurred in July 2012, when a powerful CME

travelling at a speed of 3, 050± 260 km/s near the Sun narrowly avoided Earth

(Baker et al. 2013). Had it struck, it could have triggered a geomagnetic storm

even more intense than the Carrington Event, with potentially catastrophic

consequences for modern technology. This event underscores that even relatively

mild solar cycles, such as Solar Cycle 24, can still produce exceptionally strong

solar storms. In September 2017, another notable solar storm coincided with

Hurricane Irma, compounding challenges for emergency response efforts. The

storm disrupted high-frequency radio communications critical to aviation,

maritime operations, and emergency services (Redmon et al. 2018). In February

2022, although the geomagnetic storm was relatively minor, it led to the

unexpected failure of 38 Starlink satellites in low Earth orbit — i.e., at lower

altitudes than geosynchronous satellites — due to increased atmospheric drag.

The CME responsible for this event was relatively minor but inadequately

predicted due to its poorly understood structure, highlighting the need to

13



study weaker CME structures in greater detail for improving space weather

forecasting (Kataoka et al. 2022).

All these events demonstrate that strong solar storms are more likely during

periods of heightened solar activity. However, such storms can also occur during

solar minima or cycles of moderate activity. Weaker solar storms, too, have

the potential to cause significant damage, especially if their structures are

complex or predictions are untimely. A recurring pattern observed in many

strong solar storms is the successive occurrence of CMEs (Liu et al. 2014). The

passage of an initial CME often paves the way for a subsequent one to surge

through rapidly, leading to CME-CME interactions. These interactions are a

key characteristic of many intense solar storms, though they do not account

for all such events. Further research is essential to uncover why some storms

are more geoeffective than others, particularly as modern society becomes

increasingly reliant on vulnerable technologies.

1.5 Thesis structure

This thesis is organised as follows. Chapter 2 explains the mathematical

morphology methodology applied across the different projects in this thesis,

with a particular focus on the operations used, its application to diverse fields —

particularly space weather —, and its comparison with other image processing

methods.

Chapter 3 evaluates the performance of this methodology in detecting

sunspots from satellite data, specifically comparing the resulting sunspot area

measurements with those from established sunspot databases and validating

the findings.

Chapter 4 explores another application of mathematical morphology: the

extraction of magnetic flux ropes from simulation data. This demonstrates

the method’s versatility, as it can be applied not only to solar observations

but also to modelling data. The results show improvements over a previous

method used in the literature, providing a more robust flux rope extraction

scheme. This is crucial for accurately analysing the morphological properties

of magnetic flux rope structures, as well as their propagation and orientation.

Finally, Chapter 5 describes the compilation of an extensive dataset of

coronal off-limb structures observed during Solar Cycle 24 using mathematical

morphology. This dataset enables statistical studies of the properties of these
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features, such as their intensity and spatial behaviour, revealing notable trends

like active latitudes and North-South asymmetry. It also provides further

evidence for the existence of active longitude belts on the Sun, highlighting

longitudinal preferences in coronal activity and suggesting new approaches to

understanding and forecasting solar phenomena.
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Chapter 2

Methodology and applications

of mathematical morphology

2.1 Roots and definition

Mathematical morphology (MM) is a theory for image processing and analysis,

developed in the early 1960s by French mathematicians Matheron 1967 and

Serra et al. 1969. The primary motivation behind MM is to deliberately deform

an image and, through these deformations, quantify the properties of the

objects within it. Its theoretical foundation draws from topology, geometry, set

theory, and lattice theory, which makes it highly effective for describing the

structural shapes of objects in images (Haas et al. 1967; Serra 1982; Jeulin

1989; Heijmans 1995; Matheron et al. 2001; Serra 2020). Initially applied to

the study and characterisation of porous media, MM has become a powerful

tool in various fields that require image processing, including segmentation,

feature extraction, noise removal, and other filtering processes (see Subsection

2.5). Although its application to space weather research is relatively recent

(see Subsection 2.6), it has already proven valuable in this domain as well.

2.2 The role of the structuring element

Mathematical morphology relies on a fundamental component known as the

structuring element (SE) to perform operations on images. The SE defines

the local environment around each pixel during MM operations. Typically,

it consists of a small binary shape selected to be simpler and smaller than
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the features of interest in the image. The simplicity of the SE allows for easy

interpretation of how morphological operations affect the image. Users can

customise the shape of the SE based on the specific application and type

of MM transformation being applied. Options range from basic shapes like

squares, circles, lines, and crosses to any custom shape tailored for specialised

operations. Additionally, users can specify the directionality of the SE, which

aids in identifying features with preferred orientations (e.g., vertical, horizontal,

diagonal, etc.) The careful selection of the SE — its size, shape, and orienta-

tion — is crucial as it directly impacts the image processing outcomes. This

choice is influenced by the specific requirements of the desired application (for

example, noise reduction versus feature detection, which necessitates different

SE configurations), as well as by the characteristics of the objects under study

in the image (i.e., sunspots, facular regions, solar jets, and filaments, among

other features of interest in solar images).

Serra 1982 introduced the concepts of convexity and isotropy in SEs. Con-

vexity pertains to the shape of the SE and whether it includes all line segments

between any two points within it. For example, circular and square SEs are

convex and generally produce more stable and predictable results, while non-

convex SEs can lead to more complex and irregular changes in an image.

Isotropy, on the other hand, refers to the uniformity of the SE in all direc-

tions, implying rotational symmetry and resulting in consistent effects across

orientations. Circular and square SEs are both isotropic (in addition to being

convex), whereas anisotropic SEs, such as linear or rectangular shapes, em-

phasise specific orientations. In the applications discussed in this PhD thesis

— sunspot identification in Chapter 3, flux rope extraction in Chapter 4, and

coronal off-limb structure detection in Chapter 5 — the SEs are selected to be

both isotropic and convex, specifically with a circular shape.

2.3 Key operations

This section introduces two fundamental morphological operations: erosion

and dilation (Matheron 1967). These operations are based on standard set

operations such as intersection, union, and complementation. For grayscale

images, the concepts of infimum and supremum are used instead. Additionally,

the section explores advanced transformations that build upon erosion and

dilation, including opening, closing, morphological gradient, and top-hat.
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2.3.1 Erosion

Erosion can be defined in multiple contexts, including 3D images using graph

theory. In this work, we focus on two specific definitions: the first in set

theory, which also applies to binary images, and the second in grayscale

image processing. In set theory, erosion represents the set of points where the

structuring element is fully contained within the original set. Specifically, it

includes all vector points x such that, when the SE is centered at x, the entire

SE belongs to the original set (see Equation 2.1, Soille 1999). This is also often

denoted as X ⊖S, where X is the original set and S is the structuring element.

In other words, erosion is the set of all points x for which the structuring

element S translated by x (denoted Sx in Equation 2.1) fits entirely within X.

ϵS(X) =
⋂
s∈S

X−s = {x|Sx ⊆ X}. (2.1)

ϵS(f) =
∧
s∈S

f−s =⇒ ∀x, [ϵS(f)](x) = min
s∈S

f(x + s). (2.2)

For grayscale images, erosion operates on pixel intensity, recognising that a

grayscale image can be represented as a function mapping each pixel coordinate

to its intensity value. The erosion of a grayscale image f by a structuring

element S generates a new image where each pixel’s intensity is determined by

the minimum value within the neighbourhood defined by the SE centered at

that pixel. This process reduces pixel intensities using a minimum operator,

darkening regions where the SE overlaps with higher-intensity values (see

Equation 2.2, Soille 1999). Thus, the erosion transform is a valuable tool in

morphological image processing for enhancing the darkest regions, known as

valleys, and reducing the intensity of the brightest regions, known as peaks, in

an image.

2.3.2 Dilation

In addition to erosion, the dilation operation is another essential transformation

underpinning mathematical morphology. In set theory, dilation refers to the

set of points where the structuring element overlaps with at least one point of

the original set. As described in Equation 2.3 (Soille 1999), and often denoted

as X ⊕ S (where X is the original set and S is the structuring element), it
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consists of all points x such that the intersection Sx of S translated by x with

X is non-empty. Dilation thus increases the foreground of the original set while

decreasing its background.

δS(X) =
⋃
s∈S

X−s = {x|Sx ∩X ̸= ∅} (2.3)

δS(f) =
∨
s∈S

f−s =⇒ ∀x, [δS(f)](x) = max
s∈S

f(x + s) (2.4)

In grayscale images, dilation, akin to erosion, modifies the intensity of each

pixel by sliding the SE across the image. However, in this case, the pixel’s

intensity is replaced by the maximum value within a defined neighborhood (i.e.,

the SE centered at that pixel), as shown in Equation 2.4 (Soille 1999). This

results in brightening regions where the SE overlaps with lower-intensity areas.

Therefore, the dilation operator is used to widen peaks and reduce valleys in

images.

In summary, erosion and dilation are fundamental morphological transforms.

Dilation is both commutative and associative, and it can be considered as an

extensive filter if and only if the structuring element contains its origin. This

implies that the dilated image will not be smaller than the original, provided

that the origin is within the structuring element. Conversely, erosion acts as

an anti-extensive filter, if and only if the origin is included in the structuring

element, ensuring that the eroded image cannot be larger than the original.

These properties are detailed in Equation 2.5, where 0 represents the origin

vector of the structuring element S, and Id denotes the identity function.

0 ∈ S ⇐⇒ ϵS ≤ Id ≤ δS (2.5)

Both operations exhibit translation invariance and increasingness. Increas-

ingness maintains the ordering relation during the operation, whether it be

the inclusion relation in sets or binary images, or the ≤ relation in grayscale

images (refer below to Equations 2.6 and 2.7, respectively).
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A ⊆ B =⇒ ϵS(A) ⊆ ϵS(B) and δS(A) ⊆ δS(B) (2.6)

f ≤ g =⇒ ϵS(f) ≤ ϵS(g) and δS(f) ≤ δS(g) (2.7)

We recall in Equations 2.8–2.11 the characteristics of an ordering relation for

two sets, A and B (left side), and two images, f and g (right side). Equations 2.8–

2.10 describe the properties of a partial ordering relation: reflexivity (Equation

2.8), anti-symmetry (Equation 2.9), and transitivity (Equation 2.10). A total

ordering relation additionally satisfies the trichotomy property, as shown in

Equation 2.11. Erosion and dilation both preserve partial order for sets and

binary images, and total order for grayscale images through the operations of

infimum and supremum, respectively (thus ensuring that the minimum and

maximum grayscale values used in these transformations are defined in a unique

way, Soille 1999). However, they preserve this order differently, with erosion

being anti-extensive and dilation being extensive (contingent upon whether

the structuring element includes its origin, see Equation 2.5).

A ⊆ A

A ⊆ B and B ⊆ A ⇐⇒ A = B

A ⊆ B and B ⊆ C =⇒ A ⊆ C

A ⊂ B or B ⊂ A or A ∩B = ∅

f ≤ f (2.8)

f ≤ g and g ≤ f ⇐⇒ f = g (2.9)

f ≤ g and g ≤ h =⇒ f ≤ h (2.10)

f < g or g < f or f = g (2.11)

Erosion and dilation are not inverse transformations but are duals with

respect to complementation. Each can be derived by taking the complement of

the other. Specifically, the complement of the dilation of an image f equals

the erosion of the complement of this image by the same structuring element

S (Equation 2.12), and vice versa (Equation 2.13).

[δS(f)]c = ϵS(f c) (2.12)

[ϵS(f)]c = δS(f c) (2.13)

These two primary operations, erosion and dilation, are then combined

to develop more complex operators, such as opening, closing, morphological
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gradient, and top-hat transforms, which are presented in the next subsections.

2.3.3 Opening

The opening of a set X using a structuring element S is defined in Equation

2.14 (Soille 1999), and often denoted as X ◦S = (X ⊖S)⊕S. This operation is

achieved by eroding the original set X using each possible translation Sx of the

structuring element S by x, where Sx fits entirely within X. The union of all

these eroded sets contained within X forms the final outcome of the opening

operation.

γS(X) =
⋃
x

{Sx|Sx ⊆ X} (2.14)

γS(f) = δŠ(ϵS(f)) where Š = {−s|s ∈ S} (2.15)

In simpler terms, opening consists of an erosion operation with a structuring

element S, followed by a dilation performed on the resulting eroded image

using the reflected structuring element Š (Soille 1999, see Equation 2.15, where

f represents the original image). The reflected structuring element Š is used

during the dilation operation as it allows translations in the opposite direction

of those applied with S in the erosion operation, thereby aiding in the recovery

of the image. However, due to the irreversible nature of erosion, the original fine

details of the image cannot be fully restored. This makes opening effective for

smoothing object boundaries and removing protrusions or noise from foreground

regions smaller than the structuring element — which reaffirms the critical

importance of selecting the SE and its size appropriately. As depicted in Figure

2.1, the opening operation maintains the general shape of objects in images

due to the subsequent dilation step. In grayscale images, opening reduces the

intensity of smaller peaks or isolated noisy regions while preserving the overall

intensity distribution of larger structures. It can also help separate connected

objects with narrow connections between them. Moreover, employing opening

as a pre-processing step can simplify the image and improve the efficiency of

subsequent processing stages.

γ
(S)
R (f) = Rδ

f [ϵ(S)(f)] (2.16)
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Figure 2.1: Two-step opening operation (erosion followed by dilation) on a binary
image. The original image is processed, eliminating small white noise using erosion
with a disk-shaped structuring element that is smaller than the structures of interest
(large white circles) but larger than the noise (small white dots). The main structures
are then restored through subsequent dilation using the same disk-shaped and similarly
sized but reflected structuring element. Source: Matsumoto et al. 2017.

For a more refined approach with minimal impact on the overall image

structures, one might consider applying an opening by reconstruction operation,

as defined in Equation 2.16 (Soille 1999). This transform, as its name implies,

integrates a reconstruction step into the dilation process. Initially, the original

image is eroded using a carefully chosen structuring element to create a marker

image. This marker image forms the seeds for reconstruction by highlighting

the structures to be preserved (i.e., those containing the structuring element)

while removing other elements. In contrast to standard opening, the subsequent

dilation in the opening by reconstruction operation respects the connectivity

of the marker image. This means that dilation only occurs in areas where the

marker image was originally eroded by the SE, without altering other regions left

untouched by the erosion. The image is then reconstructed by iteratively dilating

it and intersecting the result with the original image, used as a reconstruction

mask, until convergence is reached. By enforcing a connectivity constraint not

present in standard opening, the opening by reconstruction operation allows

for more precise and targeted processing, effectively reconstructing important

features based on the marker image.
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2.3.4 Closing

Closing is defined in Equation 2.17 as the complement of the union of all

structuring elements fitting within the complement of the set or binary image

(Soille 1999). It is often denoted as X • S = (X ⊕ S) ⊖ S. Contrary to opening,

the morphological closing first involves dilating the foreground objects in the

original image using an SE, then eroding the resulting image with the reflected

SE (see Equation 2.18). This process helps the dilated structures regain their

original shapes while filling in gaps and holes. Closing can serve a similar

purpose to opening in terms of removing noise — black background noise in

binary images, as opposed to white foreground noise eliminated by opening —

and smoothing contours. Additionally, closing can connect disjointed structures

by filling gaps between them. In grayscale images, closing brightens dark areas,

contributing to a general enhancement of the image, although this effect is

less pronounced compared to the enhancement achieved through dilation alone

with a similar SE.

ϕS(X) = [
⋃
x

{Sx|Sx ⊆ Xc}] c (2.17)

ϕS(f) = ϵŠ(δS(f)) (2.18)

Similar to the opening by reconstruction operation, a closing by recon-

struction can also be performed using an iterative process. In this case, the

marker image (the dilated image) is iteratively reconstructed through erosion,

constrained by a mask (the original image) to preserve the connectivity of

the structures within the mask. The iterations continue until stabilisation is

achieved — that is, when the output image remains unchanged with further

iterations (see Equation 2.19, Soille 1999).

ϕ
(S)
R (f) = Rϵ

f [δ(S)(f)] (2.19)

Closing and opening, like dilation and erosion, are increasing and dual

operations with respect to complementation, as illustrated in Equations 2.20

and 2.21, respectively (with f and g representing images). Closing is an extensive

morphological filter, so that the foreground in the dilated image is equal to or
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greater than that in the original image, whereas opening is anti-extensive (see

Equation 2.22). Both operations are idempotent transformations, which means

stability is achieved after a single iteration: performing the same operation

again (either opening on an opened image or closing on a closed image) will

not further alter the result. Thus, applying opening (or closing) to an image

that has already been opened (or closed) with the same structuring element

returns the original opened (or closed) image, as shown in Equation 2.23.

f ≤ g =⇒ ϕS(f) ≤ ϕS(g) and γS(f) ≤ γS(g) (2.20)

[ϕS(f)]c = γS(f c) and [γS(f)]c = ϕS(f c) (2.21)

γS(f) ≤ f and f ≤ ϕS(f) (2.22)

γS [γS(f)] = γS(f) and ϕS [ϕS(f)] = ϕS(f) (2.23)

2.3.5 Morphological gradient

The morphological gradient is another valuable operator derived from the

fundamental operations of erosion and dilation. Defined by Beucher 1990, it is

calculated as the difference between dilation and erosion (see Equation 2.24),

and is thus also known as the Beucher gradient. This operator is particularly

effective at highlighting object boundaries in images by identifying regions with

significant variations in grey levels (or transitions between black and white

areas in binary images). However, because the gradient can also emphasise

noise, it is advisable to clean and filter the image before applying it in order to

reduce unwanted artifacts. Typically, the morphological gradient is two pixels

wide, though it can be larger. In such cases, it is referred to as a thick gradient

when the SE exceeds a size of one pixel. Alternatively, half-gradients can be

used to achieve a contour width of one pixel. The half-gradient by erosion is an

internal gradient that detects the inner borders of an object (Equation 2.25),

while the half-gradient by dilation enhances the external edges (Equation 2.26).

These two half-gradients are complements, and their sum produces the Beucher
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gradient (see Equation 2.27).

ρS = δS − ϵS (2.24)

ρ−S = Id − ϵS (2.25)

ρ+S = δS − Id (2.26)

ρ−S = (ρ+S )c, ρ+S = (ρ−S )c and ρ+S + ρ−S = ρS . (2.27)

In this thesis, significant use is made of the morphological gradient, es-

pecially its external variation. For the extraction of magnetic flux ropes (see

Chapter 4), a multi-scale gradient was also applied. The concept of a multi-scale

gradient involves computing gradients at different scales to effectively capture

the variations in object edges within an image. By using SEs of varying sizes,

the multi-scale gradient can detect both fine details and larger structures.

In Chapter 4, we employed this approach to capture the boundaries of

magnetic flux ropes across multiple scales using different SE sizes. Specifically,

we utilised a two-scale morphological gradient, incorporating both a small and

a larger SE, which enhances features that might otherwise be missed with

a single-scale gradient. The gradient is computed at each scale (in this case,

two), and the combination of these gradients — using the union for sets and

binary images, and the maximum function for grayscale images — results in the

output of the multi-scale gradient. Thus, the multi-scale gradient is powerful

for enhancing edge detection by capturing object boundaries at different levels

of detail, providing a more comprehensive extraction of the features of interest.

2.3.6 Top-hat

The top-hat transform, introduced by Meyer 1979, is a useful operator for

isolating small peaks and valleys in an image. It works metaphorically like

a top-hat (upright and inverted), retaining only the features that protrude

through the hat (peaks and valleys) while erasing the background corresponding

to the brim. Specifically, the white top-hat (or top-hat by opening) is calculated

by subtracting the opened image from the original image (see Equation 2.28).

The opening operation removes small bright features from the input image,

while the white top-hat recovers and enhances these features by taking the

difference between the original and opened images, effectively isolating them

from the larger background structures.
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WTH(f) = f − γ(f) (2.28)

BTH(f) = ϕ(f) − f (2.29)

An application of the white top-hat transformation is demonstrated below

in Figure 2.2, with three images taken on the same date, July 21, 2015. These

images were processed using the same algorithms, including the white top-

hat, though with slightly different SE values, to construct the contours of

solar plages in these chromospheric images. Two of the images were captured

by ground-based observatories: one from the Geophysical and Astrophysical

Observatory of the University of Coimbra (OGAUC) in Figure 2.2(a) and

another from the Astrophysical Observatory of Catania (CAO) in Figure 2.2(b)),

both with similar pixel resolutions of 1–2 arcseconds per pixel. In contrast,

Figure 2.2(c) presents a higher-resolution image from the AIA instrument

aboard the SDO in the 1600 Å channel, with a resolution of 0.6 arcseconds per

pixel. Given that solar plages appear bright against a darker background in

these images, the white top-hat operation is particularly well-suited for their

identification. It demonstrates its effectiveness across different image types,

from high-resolution satellite images to less sharp ground-based observations,

even when the spectroheliogram from OGAUC appears blurred on this date,

underscoring the robustness of the white top-hat operation.
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(a) Ca II K3 image from the OGAUC showing the chro-
mospheric region of the Sun on 21/07/2015. Although
the spectroheliogram is blurred on this date, chromo-
spheric features such as solar plages are clearly visible
and identified using the white top-hat transform.

(b) Hα image from the CAO on 21/07/2015,
where solar plages are identified using the
white top-hat. Elongated filaments, appear-
ing dark, are also visible and could be identi-
fied using the black top-hat operation.

(c) SDO/ AIA 1600 Å (far ultraviolet) image
from 21/07/2015, showing active regions, ul-
traviolet bright points, and sunspots. Solar
plages are identified using the white top-hat
transform.

Figure 2.2: Detection of solar plages using MM algorithms, including the white top-hat
transform, across different types and resolutions of solar images: ground-based images
in panels 2.2(a) and 2.2(b) and space-borne observations in panel 2.2(c). Solar plages
are outlined in red on the original images.
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Similarly, the black top-hat (or bottom-hat or top-hat by closing) is defined

as the difference between the closed and original images, as shown in Equation

2.29. This operator first eliminates small dark features smaller than the SE

through the closing operation, then recovers these features by subtracting the

original image. For example, it could be used to highlight the darker borders

between bright granules on the photospheric surface of the Sun. Figure 2.3 illus-

trates the application of the black top-hat transform for sunspot identification

across three images: Figures 2.3(a) and 2.3(b) are H-alpha continuum images

from the OGAUC and the CAO, respectively, whereas Figure 2.3(c) is an

intensity image from the HMI instrument aboard the SDO spacecraft. Figures

2.3(a) and 2.3(c) were captured on the same date (June 21, 2015), while Figure

2.3(b) was taken the following day due to a lack of observations from the CAO

on June 21. Since sunspots are very dark and sharply contrasted against the

background in these images, the black top-hat operation effectively delineates

the sunspot boundaries across all three images. However, slight variations in the

identification of sunspot groups, particularly those located on the right-hand

side of each image, are observed. In the high-resolution SDO image (Figure

2.3(c)), the black top-hat transform captures the sunspot boundaries with a

high level of detail.

Black and white top-hats are complementary, and their sum ϕ − γ high-

lights both peaks and valleys simultaneously. However, in practice, as with

the morphological gradient, noise in the image can compromise the top-hat

transform’s effectiveness if the image is not pre-filtered. Typically, one may use

a closing operation to remove small valleys and smooth out the background

before applying a white top-hat, while conversely, an opening operation can be

used to remove small peaks before applying a black top-hat to the image. These

both transformations are widely used, particularly for contrast enhancement

and correction of uneven illumination, as they can smooth and fade the image

background while enhancing structures of interest.
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(a) H-alpha continuum image from the OGAUC show-
ing the photospheric region of the Sun on 21/06/2015.
Sunspots are identified using the black top-hat trans-
form. Although two small sunspots on the right-hand
side of the image are missed, the detection is effective
despite suboptimal meteorological conditions, as indi-
cated by the long stripes suggesting the presence of
clouds.

(b) Continuum image from the CAO on
22/06/2015.

(c) SDO/HMI intensity image on
21/06/2015.

Figure 2.3: Sunspot identification using the black top-hat transform. Sunspot regions
are outlined in red in ground-based observatory images from the OGAUC (panel
2.3(a)) on 21/06/2015 and the CAO (panel 2.3(b)) on 22/06/2015, as well as in a
high-resolution image from the SDO satellite on 21/06/2015 (panel 2.3(c)).
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2.4 Comparing MM with other image processing

techniques

We will now discuss the strengths (Subsection 2.4.1) and limitations (Subsection

2.4.2) of the MM method, particularly in comparison to other techniques.

Special emphasis will be placed on comparing MM with machine learning

methods in Subsection 2.4.3.

2.4.1 Strengths of MM

The foundational concepts and operators of MM, discussed in previous sections,

reveal numerous advantages of this theory. MM is versatile and can be applied to

both binary and grayscale images (Matheron 1967; Serra et al. 1969; Iwanowski

et al. 1997). Unlike linear image processing methods that primarily focus

on intensity, MM is shape-oriented and excels in extracting geometric and

topological information from complex structures using structuring elements. SEs

can be tailored to different image types, geometric features, and applications,

providing MM with great adaptability.

MM also demonstrates strong robustness, particularly in maintaining con-

nectivity (Soille 1999). For example, opening and closing operations can remove

noise while preserving connectivity, whereas other filtering techniques might

distort structures of interest. Gaussian filters, for instance, can blur edges and

essential details during noise reduction. This robustness is evident in morpholog-

ical reconstruction operations, like opening or closing by reconstruction, which

keep key features intact, making MM highly effective for noise reduction tasks

(Wang et al. 2014). Additionally, MM is precise in edge extraction, focusing on

the shape of object boundaries rather than merely on intensity gradients, unlike

methods such as the Canny edge detector (Zhang et al. 2010; Xu et al. 2019).

Moreover, MM supports multi-scale analysis using different SEs in multi-scale

gradient operations, effectively handling images with features of varying sizes

(Lirui et al. 1991).

MM is not constrained by linearity, which gives it several advantages over

traditional linear image processing techniques such as Gaussian filtering, the

Fourier transform, or convolutions. These linear methods are often simpler to

use and understand because their output is a direct consequence of the input

through the principles of superposition and homogeneity. However, they do not
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account for the shapes and geometry in images. Linear techniques typically

rely on pixel intensity values, providing uniform noise reduction, which can

make it challenging to preserve shapes and edges that are at the same intensity

level as the noise. Linear operators that are proficient at enhancing edges, like

the Laplacian of Gaussian, risk amplifying noise. In contrast, MM is powerful

because it operates locally and considers the spatial relationship between pixels

in addition to their intensity. For example, the top-hat transform highlights

peaks or valleys in an image based on their relative intensity value, rather than

their absolute value, by considering the surrounding neighbourhood defined by

the SE (Meyer 1979; Bright et al. 1987). This local approach explains why MM

outperforms traditional thresholding techniques, which are more susceptible to

intensity variations and can yield poor results in cases of uneven brightness.

Finally, MM is non-parametric, requiring no predefined parameters to de-

scribe the data distribution. Although MM does involve empirical tuning of

the structuring elements to match image features, it applies transformations

directly to the image without the need for model fitting. Consequently, MM

sidesteps the complex mathematical assumptions inherent in parametric meth-

ods, such as polynomial fitting, which often rely on optimisation techniques.

This non-parametric nature allows MM to be versatile across various contexts,

whereas parametric methods may struggle with unpredictable data or diverse

image types and conditions. While parametric techniques can be highly effective

when solid model assumptions are met, they are typically confined to specific

data and applications.

MM thus combines the benefits of non-parametric and nonlinear meth-

ods while offering greater flexibility and/or accessibility compared to many

other nonlinear techniques, such as median, min, max, and bilateral filters.

For instance, median filtering is fast and straightforward but less versatile in

handling different sizes and shapes of noise. In contrast, bilateral filtering effec-

tively reduces noise and preserves edges but is computationally demanding and

requires careful parameter tuning. MM, however, provides intuitive and direct

control over image structure geometry and adapts well to various applications.

The selection of the appropriate method, therefore, depends on the specific

needs and tasks at hand, requiring a compromise between the model-based

advantages of parametric techniques, the predictability and global perspective

of linear methods, and the unique qualities of MM mentioned above. The MM

approach is particularly well-suited for this PhD research and is specifically
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employed due to its exceptional capability in extracting features of interest

from solar image data. This capability can be further enhanced when combined

with other methods, such as neural networks (refer to Section 2.4.3 for a

more detailed description and references) or more traditional image analysis

techniques, where it can serve as a pre- or post-processing step for thresholding

(Shih et al. 2003), region growing (Aschwanden 2009), Sobel (Zhang et al. 2015;

Han et al. 2020) and Canny (Zhang et al. 2010; Liu et al. 2011; Xu et al. 2019)

edge detectors, among others.

2.4.2 Limitations of MM

MM also has some weaknesses, many of which are the inverse of its advantages;

however, these can be mitigated when the tool is applied to appropriate

applications. As noted in the previous subsection, while MM is effective for

analysing localised and detailed features, it is less suited for evaluating global

image properties compared to linear processing techniques. This limitation

arises because MM operations primarily focus on the local relationships between

pixels within an environment defined by the SE, making it challenging to capture

broader image patterns that require a more global perspective. Although

MM is robust against certain types of noise by taking into account the local

environment, it can still be vulnerable to noise within the SE’s neighbourhood

itself. For instance, in the case of an erosion operation, even a few noisy pixels

within the SE can significantly alter the result, as these outlier pixels might be

treated as actual image features, leading to over-eroded or distorted outputs.

This sensitivity can limit MM’s effectiveness in handling high levels of random

noise unless it is combined with pre-processing noise-reduction techniques.

The nonlinear nature of MM might also complicate the interpretation and

analysis of results; therefore, a simple-shaped SE is preferable to facilitate

understanding of how MM transforms operate on and modify images.

Additionally, applying MM to colour images or multi-dimensional data

can be more complex, as it requires advanced vector-based operations or

separate processing of each colour channel independently (Samir et al. 2024).

In this PhD thesis, the MM algorithms developed for solar feature extraction are

straightforward and utilise the basic operators described in the previous section;

hence, they require little computational resources. However, more complex MM

transforms, particularly iterative ones like morphological reconstruction (Karas
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2011) or those involving large-sized SEs, can be computationally intensive

compared to simpler processing methods.

MM may also be less suitable for signal processing tasks that require

frequency-domain operations, where techniques like Fourier transforms are

more appropriate. Indeed, MM excels at extracting shapes and geometrical

properties of features in the time and spatial domains, making it ideal for tasks

where the temporal pattern or structural characteristics of features are more

critical than their frequency content. However, MM does not directly handle

the frequency domain or extract the frequency components of a signal (e.g.,

audio signals), although some promising studies have applied MM techniques

to music signal analysis (Romero-Garćıa 2023). In contrast, Fourier transforms

are specifically designed to decompose a signal into its sinusoidal components,

revealing periodicities, oscillatory patterns, and harmonics within the data.

Nonetheless, Fourier analysis techniques are less suited for non-stationary

signals and can distort geometric features, limiting their ability to extract shape

information (Maragos 2009). Integrating MM with frequency-domain methods

like the Short-Time Fourier Transform (STFT) leverages the strengths of both

approaches (Luo et al. 2007; Rivest 2011). This combination benefits from the

global frequency information provided by Fourier analysis while incorporating

the local shape details captured by MM, making it a comprehensive tool for

signal analysis.

Moreover, one of the most significant challenges with MM is its sensitivity to

parameter (i.e., SE) selection, which can make it a refined but time-consuming

approach (Shen et al. 2019). The process of manually selecting parameters can

be excessively laborious and complex, especially when dealing with intricate

images or advanced tasks. The SE must be customised to fit the specific context

and characteristics of the image, making automation difficult and necessitating

meticulous tuning for each image or new application.

2.4.3 MM versus Machine Learning

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) focused on

developing algorithms that emulate human learning processes. These algorithms

are designed to automatically improve their performance over time by analysing

and learning from large datasets (Géron 2017).

According to Aschwanden 2009 and Camporeale 2019, the application of
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ML techniques in the field of space weather is experiencing rapid growth due to

three primary factors. First, there is now unprecedented access to vast amounts

of data — on the order of petabytes (Chamberlin et al. 2012) — which continues

to expand. Second, recent advancements in hardware, particularly in Graphics

Processing Units (GPUs), have significantly enhanced the capabilities for

training ML algorithms. Third, the widespread adoption of open-source software,

driven by substantial investments from major Information Technology (IT)

companies such as Google, has further facilitated the use of ML techniques.

Consequently, ML is now employed across a wide range of sectors, and its

application is particularly well-suited to space weather, where the volume and

complexity of data are continually increasing. ML appears to be a promising

tool for developing real-time space weather forecasting models, leveraging

the vast amounts of available space- and ground-based data. For example,

Georgoulis et al. 2021 introduced the Flare Likelihood and Region Eruption

Forecasting (FLARECAST) project, which employs various ML techniques

to predict the occurrence and likelihood of solar flares. However, challenges

remain, as the space weather community generally places greater trust in

physics-based models over ML algorithms, which are often criticised for their

lack of transparency and interpretability, a concern commonly referred to as

the black box problem (Camporeale 2019).

Among machine learning techniques, Neural Networks (NNs) are partic-

ularly widely used. Modeled after the structure of human biological neural

networks, NNs operate within the framework of supervised learning. In su-

pervised learning, a function maps inputs to outputs based on examples of

input-output pairs, which serve as training data. An NN comprises an input

layer, an output layer, and one or more hidden layers, each consisting of neurons

with associated weights. A neuron is activated when its output surpasses a

threshold, after which it transmits data to the subsequent layer. The term Deep

Learning (DL) is used when an NN includes multiple hidden layers. DL has

been extensively applied in solar physics, with examples including solar event

detection (Baek et al. 2021), active region identification (Quan et al. 2021),

solar filament recognition (Peng et al. 2013), solar image classification and

EUV prominence detection (Armstrong et al. 2019), flare forecasting (Huang

et al. 2018), sunspot extraction and classification (Chola et al. 2022), and

handwritten character recognition in sunspot drawings (Zheng et al. 2016),

among others.
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Compared to ML models, MM algorithms are generally simpler and offer

more interpretable operators. ML models, on the other hand, are more com-

putationally demanding and require large quantities of high-quality data for

training. However, ML models are more flexible and adaptable to complex tasks,

as they automatically learn and adjust their parameters through processes like

backpropagation. In comparison, SEs in MM must be manually configured.

Thus, MM and ML techniques are complementary; when effectively combined,

they can achieve high performance, interpretability, and automation in tasks

such as solar feature identification.

For instance, Mondal et al. 2020 integrated these two methods into a

Morphological Neural Network (MNN) combining multiple erosion and dilation

layers. Similar to a convolutional layer in a Convolutional Neural Network

(CNN), a dilation (or erosion) layer in an MNN applies a learnable filter (an

SE rather than a kernel) to probe and analyse the image. In a traditional

convolutional layer, the filter slides across the input image, performing element-

wise multiplication with the local region of the image and summing the results

to produce a single value in the output feature map. Conversely, in a dilation

(or erosion) layer, the SE slides across the image and applies a maximum

(or minimum) operator to the local region defined by the SE. In the MNN

developed by Mondal et al. 2020, the SEs in each morphological layer are initially

randomly initialised and then optimised during training using backpropagation

to minimise the loss function, similar to how kernels are optimised in CNNs.

Mondal et al. 2020 achieved excellent qualitative results for removing both rain

and haze from images. Metric evaluations, including the Structural Similarity

Index Measure (SSIM) and the Peak Signal-to-Noise Ratio (PSNR), indicate

that the MNN performs comparably to a traditional CNN with a U-Net

architecture, while dramatically reducing the number of parameters and thus

the computational cost.

MNNs were first introduced by Davidson et al. 1990 and Ritter et al. 1996,

who described how these networks induce non-linearity prior to thresholding, in

contrast to traditional NNs where non-linearity is applied after thresholding via

a nonlinear activation function. These early studies were further expanded by

Shen et al. 2019 and Hirata et al. 2021, who provided detailed applications and

insights into the functioning of MNNs. Building on this foundation, Nogueira

et al. 2019 developed a DL network called DeepMorphNet, which employs MM

operations instead of traditional linear convolutions. Similarly, Roy et al. 2021
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built MorphConvHyperNet, a network combining morphological erosion and

dilation operations within a CNN framework. MorphConvHyperNet demon-

strates superior performance compared to traditional CNNs in processing

remote sensing hyperspectral image data, effectively extracting both spatial

and spectral information. This success highlights the advantages of leveraging

the inherent non-linearity of MM operations and their suitability for handling

the complexity of hyperspectral images.

Derivaux et al. 2007 explored the advantages of integrating machine learn-

ing with mathematical morphology, specifically the watershed transform,

in a segmentation algorithm applied to interpret multispectral very high-

resolution (VHR) images. In this approach, the MM watershed transform is

informed by machine learning. The image undergoes pixel classification using

a supervised fuzzy method instead of the traditional gradient-based approach.

This classified image is then processed by the watershed operation, leading

to improved outcomes compared to the gradient-based pre-processing. Fur-

thermore, Derivaux et al. 2007 tackle the common issue of oversegmentation

associated with the watershed transform by incorporating a genetic algorithm

to automatically tune the MM watershed parameters. Additionally, Franchi

et al. 2020 demonstrated the effectiveness of incorporating MM layers into

deep NNs for image denoising, showing that these layers can outperform convo-

lutional layers, particularly in removing salt-and-pepper noise. Moreover, they

highlighted the benefits of combining MM layers with convolutional layers for

enhanced edge detection.

MNNs thus represent a recent and emerging architecture within the field of

image processing. To date, MNNs have primarily incorporated basic operations

such as erosion and dilation, but the introduction of more complex mor-

phological operations could potentially enhance the network’s expressiveness.

Systematic evaluation and comparison with other neural network architectures

trained on identical datasets are necessary to fully understand the capabilities

and limitations of MNNs. It would be particularly valuable to further explore

hybrid networks that integrate both convolutional and morphological layers.

Additionally, other neural network architectures, such as recurrent networks,

could be combined with morphological operations — for example, in tasks

requiring thinning transforms, which are typically achieved through iterative

erosion operations. Moreover, MNNs might offer a solution to the black box

problem by providing geometrical and topological insights into the network’s
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functioning. Since the learned weights determine the size and shape of the

SEs, they can reveal how the network processes images through geometrical

operations, thereby enhancing interpretability.

Building on the integration of ML and MM, recent work submitted to

A&A (see list of publications, Chierichini et al.) has explored this approach.

Specifically, a ML algorithm — the Random Forest model — was trained

on a large dataset generated through morphological operations (see Chapter

5). This dataset comprises coronal off-limb structures and their properties

spanning Solar Cycle 24. Within this dataset, jets were labelled using the jet

catalogue developed by Liu et al. 2023; Soós et al. 2024; Liu et al. 2024. The

trained algorithm was then employed to identify coronal jets in unlabelled

data, with the results being visually verified using video sequences. Of the

3452 candidates, the algorithm successfully identified 3268 true positives (with

184 false positives), demonstrating both the effectiveness of the model and the

promising potential of combining ML with MM.

2.5 Applications of MM in diverse fields

Morphological image processing has been applied across various sectors, in-

cluding the medical field (Prêteux 1992; Kimori 2011; Zhao et al. 2012). In

medical imaging, MM is utilised to enhance images such as X-rays, Computed

Tomography (CT) scans, and Magnetic Resonance Imaging (MRI) (Firoz et al.

2016). Indeed, medical images are often subject to noise and poor contrast

due to technical constraints of the imaging devices, emergency situations, or

patient-specific conditions and movements during the imaging process, all of

which can degrade image quality. MM’s ability to smooth noisy and blurred

images, as well as address non-uniform backgrounds containing irrelevant med-

ical structures, allows for enhanced visualisation of objects of interest. This

capability facilitates early detection of potentially serious diseases through

improved image clarity and user interaction (SE fine-tuning).

For instance, MM can aid in diagnosing tumours at an early stage using

MRI images. Devkota et al. 2018 implemented morphological reconstruction in

the segmentation process of brain tumours of various types and sizes. Their

approach achieved better accuracy and computational efficiency compared to

other methods like the Fuzzy C-Means method, which was prone to image

intensity effects. This advancement assists in determining whether a tumour is
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benign or malignant. Similarly, Chaturvedi et al. 2019 evaluated the influence

of the SE on the shape, size, and edges of identified tumours in brain CT

scan images. They employed simple MM operations to enhance image contrast,

thereby improving the visual distinction between different organs and body

structures, which are often intertwined and difficult to differentiate from

cancerous cells.

In medical imaging, MM is also used to detect organ edges while simultane-

ously removing noise at a preliminary stage before segmentation. Yu-Qian et al.

2005 demonstrated that an appropriate combination of opening, closing, and

dilation operations yields better results in identifying lung edges in CT images

compared to a simple morphological gradient, highlighting the importance of

choosing an adequate sequence of MM operators to achieve the desired outcome.

They also showed that this method outperforms other edge-detection methods

such as the Laplacian of Gaussian and the Sobel detector. Hassan et al. 2015

employed MM operations as a pre-processing step to smooth retinal images

for blood vessel segmentation using K-means clustering, facilitating the early

detection and diagnosis of diseases like diabetic retinopathy. MM is essential in

this context as vessel structures are complex, requiring consideration of their

shape, diameter, and tortuosity for accurate identification. Hassan et al. 2015

utilised various SEs in 12 different directions to fit and identify all vessels.

Sohini et al. 2015 applied MM for enhancing fundus images with morpho-

logical reconstruction. Kaiqiong et al. 2011 used morphological multi-scale

enhancement and top-hat transforms on angiograms to extract the vascular tree,

employing varying-sized linear rotating SEs to adapt to the vessel structure,

before recovering the vessel boundaries with morphological watershed. The

multiscale operator is particularly helpful as it aids the anti-extensive opening

operation in dealing with intensity discontinuities and local noise by using SEs

of varying sizes. The application of operators employing multi-scale SEs has

been extensively explored in eye imaging, yielding effective vessel extraction

(e.g., see Miri et al. 2011; Hou 2014). This approach has also proven beneficial in

other medical imaging domains, such as enhancing radiography images of bones

and ribs (e.g., see Gaona et al. 2023). Other applications of MM in the medical

sector include morphological cell analysis (Chen et al. 2012), vessel detection

(Zana et al. 2001), and the counting, shape analysis, and segmentation of red

blood cells (Anoraganingrum 1999; Ma et al. 2002; Angulo 2008; Maji et al.

2015).
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MM techniques have been extended to various domains beyond the medical

sector, particularly in processing remote sensing data (Dong 1997). For instance,

MM has been utilised in urban planning and disaster management with auto-

matic building extraction from high-resolution satellite images (Gavankar et al.

2018). It is also effective in land classification and environmental monitoring,

such as forest classification (Üstüner et al. 2019) and biodiversity conserva-

tion (Matsumoto et al. 2017). Additionally, MM techniques are employed to

track beach erosion by extracting coastlines from satellite data (Rishikeshan

et al. 2017). Puissant et al. 2008 further demonstrated successful shoreline

extraction by applying different MM algorithms and parameters tailored to

the type of coastline, achieving excellent results in identifying sandy beaches,

dunes, wetlands, and cliffs in multispectral VHR images. MM is also widely

used in agriculture for soil analysis, landscape preservation, early detection of

plant diseases, and crop monitoring. For example, Pina et al. 2006 used high-

resolution satellite data for olive tree pattern segmentation and recognition.

Moreover, MM has applications in geology (Beucher 1999), oceanography for

detecting and studying mesoscale ocean structures such as warm-core eddies

(Lea et al. 1993), and hydrogeology to better understand pollutant transport

in hydrogeological systems (Pina et al. 2001).

Due to its shape-based approach, MM is obviously well-suited for computer

vision tasks (Haralick 1988; Roerdink 1996) such as object detection and

recognition in images and videos. It is also employed in biometrics, including

fingerprint identification (Humbe et al. 2007), face feature extraction (Upraity

et al. 2014), and iris identification (Mira Jr et al. 2013). Moreover, MM has

been applied in military contexts, such as determining coastal water depth (Lea

et al. 1996) and improving sea-sky-line detection in low-visibility conditions

(Wenqi et al. 2018). Wenqi et al. 2018 showed that MM outperforms other

image processing techniques, like simple Gaussian filtering, in sea-sky-line

detection. Additionally, MM is particularly useful in industrial inspection for

defect detection. For instance, Muslim et al. 2020 used MM to track potholes

in roads from videos, ensuring user safety. MM also proves beneficial in the

field of engineering materials (Coster et al. 2001), where it can be used for

assessing damage and planning material replacements, as well as in cultural

heritage preservation, particularly in artifact restoration and art conservation

(Dramdahl 2014).

MM is further applied in the astrophysical domain, notably for celestial
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object characterisation (Candéas et al. 1997). It addresses the star/galaxy

discrimination problem encountered in astronomical image data, where distant

galaxies can appear as point-like stars due to limitations in the resolution of

observational instruments and blurring effects of the Earth’s atmosphere in

ground-based observations. MM is also used to detect and analyse the structure

and dynamics of galaxies. For example, Aptoula et al. 2006 performed the

MM watershed transform for galaxy segmentation on multispectral images

and then classified galaxies into spiral and elliptical types using the top-hat

operation (described in Subsection 2.3.6). Moore et al. 2006 demonstrated that

MM performs comparably to traditional classification techniques in galaxy

morphology classification.

2.6 Applications for solar physics research

As discussed in the previous section, MM has been extensively used in med-

ical imaging, industrial inspection, and remote sensing for land cover and

environmental monitoring on Earth. Its application has also extended to the

astrophysical domain, particularly for celestial object detection and galaxy

classification. More recently, MM has been applied to space weather and solar

physics. One of the earliest implementations of MM algorithms on solar images

to uncover solar features focused on detecting sunspots. Indeed, several studies

have utilised MM for identifying sunspots (Zharkov et al. 2005; Curto et al.

2008; Zhao et al. 2016; Ling et al. 2020; Carvalho et al. 2020; Bourgeois et al.

2024a; see Chapter 3 for more references on the use of MM in sunspot detection)

and active regions (see Benkhalil et al. 2006; Yan-mei et al. 2021). Additionally,

MM has been applied to the extraction of solar plages in chromospheric images.

For example, Barata et al. 2018 performed MM operations on Ca II K3 full-disk

spectroheliograms from the OGAUC during Solar Cycle 24, achieving effective

solar plage extraction.

MM has also been applied to filament recognition. For instance, Fuller

et al. 2005 employed MM operators like morphological closing, thinning, and

pruning on Hα images from the Meudon Observatory to obtain the skeleton

structure of filaments and retrieve their main properties, such as length and

curvature. Al-Omari et al. 2007 also used MM techniques on Hα images from

the same observatory to filter out noise, thereby improving the performance of

the subsequent filament recognition method developed by Qahwaji et al. 2005.
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Meanwhile, Shih et al. 2003 utilised an intersection of closings with eight linear

SEs oriented in different directions to accommodate different filament shapes

and orientations, followed by an additional closing operation with a circular

SE to eliminate residual noise around the filaments. This method yielded

excellent results, particularly in detecting large filaments in Hα full-disk images

from the Big Bear Solar Observatory (BBSO), enabling effective tracking of

their evolution. Qu et al. 2005 further refined this approach on Hα images

from the BBSO by automatically retrieving not only filaments but also their

spines and footpoints, thereby providing an effective means of studying filament

disappearances. Koch et al. 2015 developed the FILFINDER method, which

integrates various processing techniques, including MM operations, for filament

extraction from astronomical data, namely, the Herschel Gould Belt Survey

data (André et al. 2010) and the California Molecular Cloud data (Harvey et al.

2013). FILFINDER can successfully detect both large filaments in star-forming

molecular cloud regions and fainter filamentary structures, termed striations,

located near these molecular clouds. It thus allows for a detailed investigation

of the width, stability, orientation, and brightness of these structures. Scholl

et al. 2008 focused on detecting both solar filaments and coronal holes using

an automated method that incorporates MM operations, such as erosion.

Their approach combines EUV images from the Extreme ultraviolet Imaging

Telescope (EIT) instrument (Fe IX/X 171 Å, Fe XII 195 Å, and He II 304 Å

lines) with magnetograms from the Michelson Doppler Imager (MDI) aboard

the Solar and Heliospheric Observatory (SoHO) (Scherrer et al. 1995).

In this PhD thesis, MM is initially employed for sunspot detection in the

next chapter to validate its robustness. Subsequently, in Chapter 4, MM is

applied to simulation-generated data to extract magnetic flux rope structures

within two distinct active regions. In Chapter 5, MM is further utilised on

space-borne observations to detect coronal off-limb structures and analyse their

statistical properties over an entire solar cycle.
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Chapter 3

Sunspot identification using

SDO/HMI full-disk intensity

images

In this chapter, we present the sunspot detection method developed in Bourgeois

et al. 2024a, which enables precise and automated measurements of sunspot

areas. As discussed in Section 1.2.4, sunspots serve as a key indicator of solar

activity, reflecting concentrations of magnetic flux on the photosphere. Assess-

ing solar activity through sunspot counting is highly valuable, as it has been in

use for centuries, providing a long-term record of solar activity over multiple

solar cycles. Evaluating solar activity based on sunspot numbers and areas,

both historically and currently, allows for the prediction of future space weather

events such as CMEs (see Section 1.2.1) and solar flares (see Section 1.2.2),

which primarily originate from complex sunspot configurations with strong

and intricate magnetic fields. For instance, in the Mount Wilson classification,

delta-sunspots are complex sunspot formations containing several umbrae of

opposite polarities within the same penumbra. The Mount Wilson classification

categorises sunspot groups based on their magnetic field topology and com-

plexity, ranging from the simplest unipolar forms to more complex multipolar

configurations (e.g., alpha, beta, gamma, delta, and combinations of these

classes; see Nikbakhsh et al. 2019). Among these categories, delta-sunspots are

the most unstable, with opposite magnetic polarities in close proximity. These

closely situated opposite polarities are indeed prone to magnetic interactions,
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such as reconnection, potentially leading to solar flares. Notably, delta-sunspot

configurations are highly correlated with the most powerful flares, specifically

those classified as X-class in the Geostationary Operational Environmental

Satellite (GOES) X-ray flux classification (Patty et al. 1986; Shi et al. 1993,

1994). Moreover, Korsós et al. 2014, 2015a,b, 2018, 2019 and Erdélyi et al. 2022

demonstrated that specific patterns in the horizontal gradient of the magnetic

field around the polarity inversion line between two opposite polarities in delta-

sunspots are strongly linked to the eruption of X-class solar flares. Therefore,

detecting and classifying sunspots is essential for better understanding and

predicting solar eruptions.

3.1 Manual vs. automated approaches

Robust methods for sunspot detection and classification are indispensable for

space weather forecasting. While manual methods were needed and useful

(e.g., the hand-drawn sunspot catalogue from the Debrecen Heliophysical

Observatory (DHO) used in this study), they are no longer viable. This is

due to the increasing volume of data from both ground-based observatories

and space instruments, which are becoming more numerous and complex to

process with higher spatial and temporal resolution. Automated detection

methods enhance efficiency and reduce human error, bias, and subjectivity,

as sunspot counting can be data-dependent and vary significantly between

observers. Indeed, even with automated methods — and because these methods

are not yet standardised nor synchronised —, significant differences may arise

between sunspot records due to variations in facilities and recording devices,

observational methods, seeing conditions, image processing techniques, etc.

However, automated methods are more easily adaptable to different data

sources and can sometimes be applied to both ground-based and space-borne

image data without further processing (e.g., MM algorithms, as illustrated by

the applications of the white and black top-hat operations in Figures 2.2 and

2.3).

Recently, many studies have employed ML techniques for the automatic

detection and classification of sunspots. For example, Santos et al. 2023 used

a CNN to identify sunspots in spectroheliograms from the OGAUC. Chola

et al. 2022 applied a DL approach to detect and classify sunspots in images

from SDO/HMI and SoHO/MDI. Yang et al. 2018 implemented the simulated
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annealing genetic method to segment the umbra and penumbra in SDO/HMI

intensity images. Similar to this PhD work, they also compared their results

with the HMI Debrecen sunspot Data (HMIDD) database from the DHO.

Hanaoka 2022 developed an adaptive thresholding method using three different

sources of white-light images and compared the resulting sunspot detections

against manual records, finding similar levels of performance.

MM, in particular, is well-suited for sunspot extraction because it relies

on simple yet efficient shape-oriented algorithms, as opposed to traditional

intensity-oriented methods. The MM method’s adaptability is enhanced through

user interaction and parameter tuning, allowing it to handle various image

types, resolutions, and stages of the solar activity cycle (from solar minimum to

solar maximum), despite the significant impact of solar activity on intensity and

sunspot area variations. MM can produce superior results compared to simple

threshold-based detection techniques, as it considers the local environment

and is less affected by uneven intensity variations. Additionally, MM offers a

favourable balance between accuracy and efficiency. While techniques like DL

may achieve higher accuracy or comparable performance, they are often more

complex to implement. Once MM parameters are finely tuned, the method can

effectively process images in an automated manner (see Section 2.4.1 for further

advantages of MM over other image extraction techniques). Since the early

2000s, MM algorithms for automatic sunspot detection in full-disk continuum

images have undergone significant improvements (e.g., Zharkov et al. 2005;

Curto et al. 2008; Ling et al. 2020; Carvalho et al. 2020). For example, Stenning

et al. 2013 leveraged MM algorithms for sunspot classification following the

Mount Wilson Observatory criteria, while Hou et al. 2022 utilised MM for

umbra/penumbra segmentation on manually drawn sunspot images.

3.2 Data description

In this chapter, we aimed to apply the MM algorithms introduced in Section 2.3

to photospheric observations for detecting sunspot contours. Our goal was to

validate these algorithms through both qualitative and quantitative approaches.

Qualitatively, we assessed the resulting contours through visual inspection.

Quantitatively, we evaluated the accuracy of the MM method by comparing

the detected sunspot areas with reference values.
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3.2.1 Sunspot catalogues

Two reference sunspot catalogues were employed to compare and validate

the results obtained from the MM method: the DHO and Mandal et al. 2020

catalogues.

DHO catalogue

The DHO database comprises a compilation of various solar catalogues that

provide detailed information on the area and position of sunspots (Baranyi

et al. 2016; Győri et al. 2017). These catalogues include data from ground-based

observatories, such as the Debrecen Photoheliographic Data (DPD), which

primarily comes from the Gyula and Debrecen observatories but also includes

contributions from other observatories worldwide. The DPD is an extension

of the Greenwich Photoheliographic Results (GPR) catalogue from the Royal

Greenwich Observatory (RGO), which documented sunspot information from

1874 to 1976. Additionally, the DHO database includes data from space-

borne observatories, such as the SDO/HMIDD and the SoHO/MDI Debrecen

Data (SDD), which gather magnetic and white-light images from SDO/HMI and

SoHO/MDI, respectively. In this study, we compared sunspot area values from

the HMIDD database with those obtained using the MM sunspot contouring

method. We also used the contrast-enhanced SDO/HMI images provided by

the DHO to compare their manual detection method with the MM approach

on identical data.

Mandal et al. 2020 catalogue

Another sunspot database compiled by Mandal et al. 2020 was used to further

compare our sunspot area measurements. The Mandal et al. 2020 catalogue

records sunspot data, including both projected and corrected sunspot areas as

well as sunspot group areas, covering the period from 1874 to 2019. They cross-

calibrated data from various observatories, extensively using data from the

RGO as a basis, similar to the DHO catalogue, along with data from the DHO.

Additionally, they incorporated data from seven other observatories: Kislovodsk,

Pulkovo, Kodaikanal, the Solar Optical Observing Network (SOON), Rome,

Catania, and Yunnan. This extensive cross-calibration allowed them to track

systematic differences among these sunspot records and to inter-calibrate them,
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providing a more reliable catalogue based on multiple databases.

3.2.2 Photospheric observations

Launched by NASA in February 2010, SDO is part of the ”Living with a Star”

mission (Pesnell et al. 2012). This mission aims to study the Sun’s atmosphere

and magnetic field, as well as its impact on space weather and the Earth’s

environment. Positioned in a geosynchronous orbit around Earth, SDO is

equipped with three key instruments: AIA, HMI, and the Extreme ultraviolet

Variability Experiment (EVE). AIA captures multi-wavelength images in the

UV and EUV channels, covering the chromospheric and coronal regions with a

10-second cadence (Lemen et al. 2012). EVE measures the EUV flux across

several spectral bands and provides solar irradiance data. Additionally, HMI

delivers photospheric velocity measurements (dopplergrams) and data on the

intensity and direction of the magnetic field through line-of-sight and vector

magnetograms (Schou et al. 2012; Couvidat et al. 2016).

In this work, we utilised full-disk continuum intensity images from SDO/HMI

(4096 × 4096 pixels) as they are well-suited for examining the detailed photo-

spheric structure. Indeed, sunspots are prominently visible in these images as

dark patches against the relatively smoother granulation network. To compare

our sunspot area measurements with those from the DHO, we used contrast-

enhanced versions of these images processed by the DHO. An example of such

a contrast-enhanced SDO/HMI image, pre-processed by the DHO, is shown in

Figure 3.1. These images cover the period from January 2012 to July 2014 with

a 15-day cadence, capturing the peak of solar activity during Solar Cycle 24.

This timeframe allowed us to track sunspot area variations during the rising

phase and maximum of solar activity, when sunspot areas are at their largest.

In total, MM operations were applied to 61 images, captured on the 1st and

15th of each month.

3.3 Algorithms

Once the dataset is gathered, the images must be prepared before apply-

ing the sunspot detection algorithms to ensure effective implementation and

standardisation of the procedure.
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Figure 3.1: Full-disk continuum image captured by the HMI instrument aboard the
SDO on January 1, 2014, and contrast-enhanced by the DHO. Source: Bourgeois et al.
2024a.

3.3.1 Preliminary data preparation

First, the image dimensions are reduced to 1024 × 1024 pixels to facilitate

processing and to make them easily comparable to other images (e.g., from

ground-based observatories). The resized images are then intensity-normalised,

with pixel intensities adjusted so that the mean is set to 0 and the standard

deviation to 1. However, the images are not yet ready for further processing.

Some contrast-enhanced images exhibit surface imperfections at the solar limb,

necessitating additional smoothing around the solar boundaries (see Figure

3.2(a)). To address this, a threshold of 10−4 is applied, followed by a fill-hole

transformation to erase sunspots and achieve a fully white solar disk against

the black background. This process ensures that the disk’s edges will be evened

out without altering the sunspot structures within. Next, an opening operation

is performed using a disk-shaped structuring element with a size of 300 pixels.

The disk shape is chosen to avoid distorting the solar disk. In all subsequent
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(a) Asperities at the solar limb may appear in
the contrast-enhanced SDO/HMI continuum
images, as shown in this example (note the
irregularities on the left and right edges of the
Sun). These irregularities can hinder the per-
formance of the subsequent MM algorithms,
as these algorithms are very sensitive to sharp
edges and discontinuities in shape.

(b) Label of the Sun after pre-processing Fig-
ure 3.2(a), which includes edge smoothing
through opening and erosion operations with
a disk-shaped structuring element. The image
is also resized, normalised, and the solar ra-
dius is set to a reference value to standardise
the application of MM algorithms for sunspot
detection.

Figure 3.2: Pre-processing of the original images to even out the borders at the solar
limb, ensuring the effective application of following detection algorithms. Source:
Bourgeois et al. 2024a.

MM operations carried out in this chapter, a disk-shaped SE is used because

sunspots are isotropic features and thus are best captured with an isotropic

SE. Following the opening, an erosion transform is applied with a disk-shaped

SE of 5 pixels. These two operations smooth out the borders (see Figure

3.2(b)). Finally, the solar radius is adjusted to a reference value of 450 pixels,

as was done in Barata et al. 2018. This value, proven effective in their study,

was deemed suitable for standardising the images and applying the sunspot

detection algorithms used in this work.

3.3.2 Processing and identification

The sunspot extraction algorithm can now be applied to the photospheric

images that were pre-processed as described in the previous subsection. The

first step involves enhancing the sunspots against the background to facilitate

their extraction (see Figure 3.3(a)). This is achieved using the black top-hat
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(d) External gradient.

Figure 3.3: The different steps of the MM sunspot detection algorithm applied to the
pre-processed SDO/HMI full-disk image displayed in Figure 3.1. Source: Bourgeois
et al. 2024a.

operation, which is ideal for extracting small dark features smaller than the

SE (refer to Section 2.3.6 for a detailed explanation of this operator). In this

case, an SE size of 70 pixels is chosen. If the SE is too small, the black top-hat

operation will not fully recover larger sunspots. Conversely, an excessively large

SE would merge sunspots with darker granules around them, although this

effect is mitigated by applying a fixed threshold in the subsequent step. The

threshold is set to 0.33, resulting in the binary image shown in Figure 3.3(b).
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Next, an opening by reconstruction with an SE size of 2.00001 is performed

on the thresholded image (Figure 3.3(c)) to remove small noise while preserving

the main structures, i.e., the sunspots (see Subsection 2.3.3 for a description of

this operator). Finally, the contours of the sunspots are recovered by applying

the external gradient to the opened image (see Subsection 2.3.5), as shown in

Figure 3.3(d). The external gradient is preferred over the classic morphological

gradient to thin the contours and obtain the outer edges of the sunspots. For

illustration, Figure 3.4 shows the sunspot contours outlined in red on the

original contrast-enhanced image from Figure 3.1. The algorithm successfully

delineates the penumbrae boundaries of the sunspots. All resulting sunspot-

contoured images were visually inspected and validated, providing satisfactory

qualitative detection.
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Figure 3.4: Sunspot contours obtained using the MM algorithm described in Figure
3.3, overlaid in red on the original image shown in Figure 3.1. Source: Bourgeois et al.
2024a.
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3.4 Evaluation against manual methods

After delineating the sunspot contours using the MM algorithms described in

Section 3.3, we measured the areas within each sunspot and summed them

across each image in the dataset. We recall that the dataset spans two and

a half years, from January 2012 to July 2014, with a 15-day cadence. The

resulting total sunspot areas are the projected areas, calculated directly from

the sunspot surfaces observed in the images. However, these images are subject

to the foreshortening effect, which distorts solar features near the limb. Indeed,

some sunspots may appear compressed, elongated, or smaller around the solar

limb due to the viewing angle of the SDO satellite. Additionally, sunspots

near the limb are less distinct because of the increased length of the light

path through the solar atmosphere at this angle, which may lead to more light

scattering and absorption, reducing brightness at the Sun’s edges. To account

for this effect, the corrected sunspot areas were calculated by considering the

Sun’s curvature and the angle of observation. In this study, we compared both

the projected and corrected sunspot area values with those found in the sunspot

catalogues mentioned above (see Subsection 3.2.1).

3.4.1 Projected sunspot area measurements

Before evaluating the impact of the foreshortening effect on the performance

of the MM sunspot detection method, we first compare the projected sunspot

areas obtained with this method to the manual data collected by the DHO and

Mandal et al. 2020. Figure 3.5 displays the total summed sunspot area per day

over the study period, as provided by the DHO (blue triangles), Mandal et al.

2020 (green dots), and the MM method (red crosses). Notably, the Mandal

et al. 2020 data often show larger sunspot areas, likely due to their rigorous

cross-calibration of data from various observatories, which minimises errors

and reduces the likelihood of missing small sunspot areas.

As the solar cycle progresses towards its maximum (reached in April 2014),

the total sunspot area increases significantly, which is expected. However,

this growth includes not only the expansion of large sunspots but also the

appearance of numerous smaller spots around them. While Mandal et al. 2020

reports the projected areas of these smaller spots with high precision, the

DHO and MM methods tend to slightly underestimate the total sunspot area.
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Figure 3.5: Projected total sunspot area per day between 01/01/2012 and 01/07/2014,
recorded with a 15-day cadence by the DHO (blue triangles), Mandal et al. 2020
(green dots), and using the labels obtained with the MM method (red crosses). Source:
Bourgeois et al. 2024a.

Correlation coefficient Corrected areas Projected areas
MM/DHO 0.91 0.95

MM/Mandal et al. 0.88 0.96
DHO/Mandal et al. 0.93 0.97

Table 3.1: Comparison of correlation coefficients between the MM, DHO, and Mandal
et al. 2020 datasets for projected and corrected sunspot areas.

The MM method, in particular, often reports smaller sunspot areas due to

the inherent design of the MM algorithms, which prioritise the extraction

of medium- and large-sized sunspots and may exclude very small spots or

pores that could be mistaken for dark noise on the solar disk. Despite these

minor discrepancies, all three catalogues exhibit a similar overall trend, with

only slight and nearly systematic variations. These differences are anticipated

given the different recording conditions and objectives: the DHO aims for

consistent long-term data, Mandal et al. 2020 focuses on precision through

inter-calibration, and the MM approach emphasises efficiency and automation.
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(a) Correlation of projected sunspot areas between the DHO catalogue and the MM
approach.
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(b) Correlation of projected sunspot areas between the Mandal et al. 2020 catalogue and
the MM approach.
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(c) Correlation of projected sunspot areas between the two reference catalogues: DHO
and Mandal et al. 2020.

Figure 3.6: Correlation of the total projected sunspot area per day from January 1,
2012, to July 1, 2014 (with a 15-day cadence) as recorded in the DHO and Mandal et al.
2020 catalogues, compared with values obtained using the MM sunspot contouring
method. Source: Bourgeois et al. 2024a.

To compare the methods more accurately, we present linear fits in Figure

3.6. Panel 3.6(a) illustrates the linear fit between the DHO and MM data,

panel 3.6(b) shows the fit between the Mandal et al. 2020 and MM data, and

panel 3.6(c) depicts the fit between the DHO and Mandal et al. 2020 data.

The correlation coefficients for these fits are summarised in the last column

of Table 3.1. The strongest correlation is observed between the two reference

datasets, DHO and Mandal et al. 2020, with a coefficient of 0.97. The linear

fits between MM and DHO data, as well as those between MM and Mandal

et al. 2020 data, also show very good correlations, with coefficients of 0.95 and

0.96, respectively. Notably, panel 3.6(b) reveals a larger dispersion between the

MM and Mandal et al. 2020 data at wider sunspot area values (above 1000

millionths of the solar hemisphere), although the overall correlation remains

high.

3.4.2 Corrected sunspot area measurements

As discussed in the introduction of this section, the foreshortening effect can

significantly impact solar features near the limb, particularly in the measure-
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ment of their areas, which may be distorted and underestimated. We now

aim to correct this effect and examine its consequences on the performance of

the MM algorithms used for sunspot detection. The sunspot areas corrected

for the foreshortening effect (Acorr) are calculated by dividing the projected

sunspot areas (Aproj) by a correction factor d, as described in Equation 3.1:

Acorr = Aproj/d. The correction factor d corresponds to the cosine of the

angular distance between the solar centre and the sunspots.

d = sin(B0) × sin(B) + cos(B0) × cos(B) × cos(L0 − L). (3.1)

This correction factor requires the heliographic latitude (B0) and longitude

(L0) of the solar centre (provided by the DHO database), as well as the sunspots’

centre coordinates in heliographic coordinates (latitude B and longitude L).

The values of B and L are calculated using Equations 3.2 and 3.3, respectively,

based on the pixel coordinates of the sunspots’ centroids (xs and ys) and the

pixel coordinates of the solar centre (xc and yc). Here, P represents the solar

north pole angle (also provided by the DHO database; for example, P = 0.07◦

on 01/01/2014), while ρ and θ are given by Equations 3.4 and 3.5.

B = arcsin[sin(B0) × cos(ρ) + cos(B0) × sin(ρ) × cos(P − θ)] (3.2)

L = arcsin[
1

cos(B)
× sin(ρ) × sin(P − θ)] (3.3)

In Equation 3.4 (calculation of ρ), R is the distance between the solar

centre and the sunspots’ centroids in pixels (Equation 3.6), Rsun is the solar

radius in pixels (Rsun = 450), and dapp is the apparent diameter of the Sun,

which varies slightly during the year due to the elliptical orbit of the Earth

around the Sun, but is fixed here to its average value of 0.5◦ for simplicity.

ρ = arcsin(
R

Rsun
) − dapp

2
× R

Rsun
(3.4)

θ = arctan
xs − xc
ys − yc

(3.5)

R =
√

(xs − xc)2 + (ys − yc)2 (3.6)

The corrected sunspot areas are then compared with values recorded by
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the two reference catalogues, DHO and Mandal et al. 2020, and are displayed

with red crosses in Figure 3.7. For comparison, the corrected sunspot areas

from the DHO and Mandal et al. 2020 catalogues are shown in blue and

green, respectively. Similar to the projected areas, the MM approach slightly

underestimates the corrected sunspot areas on some days compared to the

reference catalogues, but overall, all three sunspot records exhibit a similar

trend.
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Figure 3.7: Corrected total sunspot area per day (adjusted for the foreshortening
effect) from 01/01/2012 to 01/07/2014, recorded with a 15-day cadence by the DHO
(blue triangles), Mandal et al. 2020 (green dots), and using the labels obtained with
the MM method (red crosses). Source: Bourgeois et al. 2024a.

To evaluate the correlation between methods more precisely, linear fits are

provided in Figure 3.8. The correlation coefficients for these fits are summarised

in the middle column of Table 3.1, showing generally lower correlations for

corrected sunspot areas compared to projected areas. Specifically, the correla-

tion coefficient between the DHO and Mandal et al. 2020 catalogues is 0.93 for

corrected sunspot areas, compared to 0.97 for projected areas. This discrepancy

arises from differences in how each catalogue performs the correction.
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(a) Correlation of corrected sunspot areas between the DHO catalogue and the MM
approach.
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(b) Correlation of corrected sunspot areas between the Mandal et al. 2020 catalogue and
the MM approach.
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(c) Correlation of corrected sunspot areas between the two reference catalogues: DHO
and Mandal et al. 2020.

Figure 3.8: Correlation of the total corrected sunspot area per day from January 1,
2012, to July 1, 2014 (with a 15-day cadence) as recorded in the DHO and Mandal et al.
2020 catalogues, compared with values obtained using the MM sunspot contouring
method. Source: Bourgeois et al. 2024a.

The correlation coefficient for the linear fit between the DHO and MM

data is 0.91, while the fit between Mandal et al. 2020 and MM data shows

the lowest correlation, at 0.88. This slight dispersion appears in Figure 3.8(b),

where discrepancies between the MM sunspot areas and the Mandal et al.

2020 catalogue are more visible. Notably, both panels 3.8(a) and 3.8(b) show

aligned vertical points around 900 millionths of the solar hemisphere (MH),

indicating that the MM method significantly underestimates corrected sunspot

areas on these dates compared to both reference catalogues. This pattern does

not appear in panel 3.8(c), which compares the two reference catalogues, nor

in panels 3.6(a) and 3.6(b), which display projected areas. This suggests that

the MM method is likely missing a few sunspot areas near the solar limb.

Although the MM method is less affected by the limb darkening effect

compared to simpler thresholding methods, it remains susceptible to local

intensity variations on scales smaller than the structuring element used in the

black top-hat operation. As a result, some small and faint sunspots near the

solar limb may be missed by the MM sunspot detection algorithm. While the

MM parameters were fine-tuned to align with visual inspection expectations,
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some small spots might still be overlooked visually and, therefore, by the

algorithm. This suggests that further visual checking and refinement of the

structuring elements could improve the detection of such sunspots. However, it

is important to note that perfectly fine-tuning the parameters of an algorithm

designed for automatic application across a vast dataset, while ensuring accurate

sunspot detection, remains a challenging task.

Nevertheless, the correlation coefficients and curves presented in Figure

3.8 demonstrate a strong agreement among all methods, including the MM

results and the cross-calibrated data from Mandal et al. 2020, with respect to

corrected sunspot areas.

3.5 Conclusion

In this study, we validated the MM algorithms used for sunspot detection

both qualitatively, through visual inspection, and quantitatively, by comparing

the measured sunspot areas with those from two reference catalogues. Despite

some minor differences in the corrected sunspot area records — including

between the two reference catalogues — the overall correlation among all

three methods is high. This strong correlation underscores the effectiveness

of the MM method for sunspot detection, which proves particularly valuable

for automatically processing extensive volumes of satellite image data, thereby

aiding in long-term solar activity monitoring and forecasting. Furthermore,

these algorithms can be adapted to other contexts, such as extracting more

complex features like magnetic flux ropes (discussed in Chapter 4) and coronal

off-limb structures (discussed in Chapter 5), as well as for applications involving

different resolutions and image types, including simulation data (see Chapter

4).
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Chapter 4

Simulation data-based

magnetic flux rope extraction

This chapter outlines the analysis and extraction method for magnetic flux

ropes (MFRs) as detailed in Wagner et al. 2023b and applied in Wagner et al.

2024a; Wagner et al. 2024b. MFRs are coherent structures in the Sun’s corona

characterised by magnetic field lines that twist around a central axis, forming

a rope-like configuration. This distinguishes them from simple magnetic flux

tubes, which feature straight, parallel field lines. The field lines in MFRs are

typically anchored at both ends, preserving the structure’s integrity and the

plasma contained within it. MFRs form through processes such as shearing

motions and magnetic reconnection, where magnetic field lines break, twist,

and reconnect. While these structures can remain stable for extended periods,

they may eventually lose stability and trigger eruptions. MFRs are closely

associated with the development of filaments and prominences, particularly

when filled with dense plasma, and they play a key role in CMEs (Vourlidas

et al. 2013; Green et al. 2018). When MFRs become unstable, they can erupt,

contributing to a CME that extends into interplanetary space. In coronagraph

images, MFRs are often observed as the bright core of a three-part CME

morphology, surrounded by a dark cavity and a leading edge (see Figure 4.1).

Understanding the behaviour of MFRs, from their formation to their eventual

eruption, is therefore fundamental for accurate space weather forecasting.

However, directly observing MFR structures and the magnetic field in

the coronal region is challenging (Kilpua et al. 2019). The corona is a highly

dynamic and complex environment, significantly hotter and less dense than the
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Figure 4.1: CME exhibiting a three-part morphology, consisting of a bright leading
front surrounding a cavity and a bright core, which is often associated with an MFR
configuration. This white-light image was recorded by the Solar and Heliospheric Ob-
servatory (SoHO)/Large Angle and Spectrometric Coronagraph (LASCO) on February
27, 2000. Source: Riley et al. 2008.

photosphere. Due to thermal effects, coronal spectral lines are often too faint

for effective measurement. In contrast, absorption lines in the photosphere

are generally stronger and well-defined, allowing for direct magnetic field

measurements through the Zeeman effect, where the magnetic field causes the

splitting of atomic energy levels. Analysing these split lines, such as those of

iron, is an efficient way to map the magnetic field’s direction and intensity at

the photospheric level. The magnetic field in the corona is typically calculated

through data-driven modelling, using extrapolation from photospheric magnetic

data (Mackay et al. 2011; Cheung et al. 2012; Pomoell et al. 2019; Price et al.

2019; Wagner et al. 2023a; Wagner et al. 2023b). In this chapter, a coronal

model is utilised to generate twist number maps that outline the cross-sections

of MFRs and allow their evolution to be tracked over time. We then use MM

algorithms to extract these structures, improving upon the previous extraction

method developed by Wagner et al. 2023a. This approach facilitates a detailed

study of MFR evolution, including their propagation, cross-sectional circularity,

and insights into their eventual eruption (or failed eruption).
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4.1 Data acquisition

The MFRs of two active regions (ARs) are studied: AR 12473 and AR 11176.

AR 12473 is examined over a period from 22 December 2015, 23:36 UT to

2 January 2016, 12:36 UT, and AR 11176 from 25 March 2011, 04:00 UT

to 1 April 2011, 18:00 UT, both with a six-hour cadence. This time span is

chosen to ensure that the two active regions of interest are located close to

the solar centre, minimising projection effects. For these two ARs, a time-

dependent data-driven magnetofrictional model (TMFM) is used to produce

twist number maps from electric field maps derived from SDO/HMI vector

magnetogram observations (Lumme et al. 2017; Pomoell et al. 2019). The

twist number, as defined by Berger et al. 2006 and Liu et al. 2016, measures

how many times two infinitesimally close field lines within the MFR wind

around each other. The twist number maps capture the twist within the MFR

cross-sections, corresponding to the two-dimensional vertical slices of the ARs

near their polarity inversion line (PIL) during the simulation. These maps

have a resolution of 0.36 Mm per pixel. The twist number maps for AR 12473

and AR 11176 are provided in Figures 4.2 and 4.3, respectively. Equation 4.1

describes the principle underlying the TMFM, namely, that the plasma velocity

v is proportional to the Lorentz force J×B and inversely proportional to the

magnetofrictional coefficient ν (Yang et al. 1986; Pomoell et al. 2019). µ0 is

the magnetic permeability of vacuum.

v =
1

ν

µ0J×B

B2
(4.1)
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Figure 4.2: Twist number maps for AR 12473 at frame 7 (top row), frame 17 (mid-
dle row), and frame 27 (bottom row), representing early, middle, and final stages,
respectively. Higher twist values are indicated by more intense colours, with positive
twist numbers in red and negative in blue. The thin black outline traces the MFR
cross-section in each frame, illustrating its evolution over time. Source: Wagner et al.
2023b.
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Figure 4.3: Twist number maps for AR 11176 at frame 8 (top row), frame 18 (middle
row), and frame 28 (bottom row), representing early, middle, and final stages, respec-
tively. As in Figure 4.2, higher twist values are indicated by more intense colours, with
positive twist numbers in red and negative in blue, while the thin black outline traces
the MFR contours in each frame. Source: Wagner et al. 2023b.
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4.2 Extraction technique

For both AR 12473 and AR 11176, the MFR structure is identified across all

frames in the time series using an improved methodology that expands on the

one developed by Wagner et al. 2023a, employing mathematical morphology

operations. The method in Wagner et al. 2023a required several parameters,

e.g., based on the gradient within the twist number maps and the extent of

twisted magnetic field lines overlying but not part of the MFR structure. It

also assumed that the MFR cross-sections in the twist maps were perfectly

circular — a limitation that can be problematic, as will be discussed in Sections

4.3.1 and 4.4. The new method presented in Wagner et al. 2023b, however,

does not rely on such parameters or assumptions. Instead, a morphological

gradient is directly applied to the twist number maps. This gradient is multi-

scale, utilising two structuring elements: one to detect smaller and localised

boundaries between highly twisted and less twisted regions, and another for

broader transitions. The SEs are selected to be circular, corresponding to the

roughly circular shape of the MFR structures, with sizes between 4 and 10

pixels. Clear visual outcomes are achieved by employing a smaller SE of size 5

and a larger one of size 10.

The output images resulting from the gradient operation are then combined

with the original twist number maps. A fixed threshold is applied, producing

binary masks that highlight the MFR structures in the foreground. The prior

application of the multi-scale gradient allows the thresholding process to

effectively capture the highly twisted MFR regions while avoiding low-twist

areas and minimising the extraction of artifacts or high-twist regions that do

not belong to the MFR structure. If necessary, post-processing may be carried

out using a morphological opening operation. During visual inspection, any

remaining structures in the masks that are not part of the flux rope (despite

being highly twisted) must be removed. This post-processing is selectively

applied to specific frames. In those requiring it, openings with small SEs may

be applied to the entire image, while larger SEs are employed more selectively

on certain parts of the image to avoid distorting the overall MFR shape, as

larger SEs can smooth edges and disconnect structures (as discussed in Section

2.3.3). To preserve the integrity of the MFR structure, small SEs are initially

used, with their size gradually increased if needed.

In this opening operation, the SEs are again selected to be circular to
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prevent distortion of the flux rope structures, with their size adjusted according

to the simulation stage and the scale and nature of the structures to be removed

(e.g., small noise versus large connected structures). For instance, in AR 12473,

the SE for the morphological opening operation ranges from 10 to 50 pixels in

the early stages of the simulation, whereas in the later stages, sizes exceeding

100 pixels are used to remove larger structures. An example is illustrated

in Figure 4.8: panel b) shows the original twist number map of frame 16

(corresponding to the middle stage of the simulation), panels d) and f) display

the combination of this twist map with the multi-scale gradient operation using

larger and smaller SEs, respectively, and panel g) presents the binary mask

after thresholding at a value of 0.8. Panel h) demonstrates the post-processing

applied to the binary mask from panel g): initially, an opening operation with

a small SE is performed across the entire frame, removing small connections at

the bottom of the MFR structure around [y, z] = [0 Mm, 10 Mm]. Subsequently,

a second opening operation with a larger SE is conducted to remove a highly

twisted filamentary structure connected to the MFR shape at approximately [y,

z] = [75 Mm, 50 Mm]. In the case of AR 11176, SE sizes are typically chosen

around 10 pixels, as the flux rope in this active region is more stable and is

initially well-captured by the gradient operation due to its clearly defined twist

boundaries.

The MFR extraction resulting from this post-processing is verified through

visual inspection. If the results are deemed satisfactory, a tracking procedure,

as described by Wagner et al. 2023a, is implemented to extract the MFR in

each frame. Following tracking, additional erosion or dilation operations may

be applied to further refine the shape. Specifically, dilation can be used to fill

any gaps within the extracted MFR structures, though this extra step is often

unnecessary. The source points of the structures are then computed with a

uniform distribution and input into visualisation software (e.g., VisIt) to track

the evolution of the magnetic field lines and footpoints of the MFRs. The right

panel of Figure 4.4 displays three examples of the magnetic field lines resulting

from the flux rope MM-based extraction technique for AR 12473 at frames 7,

17, and 27. In contrast, the left panel shows the MFR field lines obtained using

the previous method developed by Wagner et al. 2023a. This figure illustrates

the evolution of the MFR structure from an early stage to a stage near the

end of the simulation. It demonstrates how the MFR lifts and spreads through

the simulation domain, highlighting two main sub-structures represented by
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Figure 4.4: Visualisation of the MFR field lines in AR 12473 at frames 7, 17, and
27. The magnetic polarities at the MFR footpoints are indicated in black (negative
polarity) and white (positive polarity). The left panel shows the magnetic field lines
obtained from the MFR extraction using twist number maps, as performed in Wagner
et al. 2023a. The right panel presents the magnetic field lines resulting from the MFR
extraction procedure described in Section 4.2, which applies MM algorithms such as
the morphological gradient and opening to the same twist number maps. The MFR
structure appears highly dynamic and rises rapidly over time within the simulation
domain, suggesting that this MFR may be eruptive. Source: Wagner et al. 2023b.

the red/beige and blue lines. Figure 4.4 contrasts the MM method with the

previous approach, particularly in terms of bulkiness and consistency, which

will be further examined in Section 4.4.
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Figure 4.5: Visualisation of the MFR field lines in AR 11176 at frames 8, 18, and 28.
The field lines are derived from MFR extraction based on twist number maps using
the MM approach (see Section 4.2). As in Figure 4.4, black on the magnetogram at the
MFR footpoints represents negative magnetic polarity, while white indicates positive
polarity. The MFR is clearly composed of a tightly twisted core and a surrounding
larger, less-twisted envelope. The MFR’s expansion appears consistent and regular,
with its overall shape remaining stable over time, suggesting that this MFR is unlikely
to erupt. Source: Wagner et al. 2023b.
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Similarly to Figure 4.4, Figure 4.5 depicts the evolution of the MFR field

lines extracted using the MM-based methodology for AR 11176 at frames

8, 18, and 28. The MFR structure consists of two main sub-structures that

expand over time: a twisted core of toroidal field lines at lower coronal heights

(around 10 Mm) and a large, less-twisted envelope that extends up to 200

Mm in the final stages (as shown in the bottom frame of Figure 4.5). The

magnetic field lines forming this envelope, while anchored to the same MFR

footpoints as the core sub-structure, resemble poloidal field lines. Figures 4.4

and Figure 4.5 illustrate the significant differences in how the MFR structures

develop throughout the simulation domain in both active regions. The MFR in

AR 11176 (Figure 4.5) emerges at higher heights (around 100 Mm), is more

stable, and expands rather than rising quickly. In contrast, the MFR in AR

12473 (Figure 4.4) appears at lower heights (around 50 Mm), is more dynamic,

and ascends more rapidly. Building on these visual observations across the

entire time series for both AR 12473 and AR 11176, we will further analyse

the cross-sectional circularity and propagation of the MFRs in the following

section.

4.3 Flux ropes properties

The extracted MFR field lines from the simulation-generated twist number

maps in both ARs were compared against observations. We recall that the

simulation for AR 12473 spans the period from 22 December 2015, 23:36 UT,

to 2 January 2016, 12:36 UT, with a cadence of six hours. During this period,

a M1.9 solar flare, recorded by GOES, erupted on 28 December 2015 (see

Wagner et al. 2023a), which aligns with the dynamics of the modelled MFR,

suggesting it is an eruptive structure. For AR 11176, the simulation covers the

period from 25 March 2011, 04:00 UT, to 1 April 2011, 18:00 UT. Although an

eruption occurred near this period, it took place after the simulation ended, on

3 April 2011. This eruption was not modelled because the AR was approaching

the solar limb, which had to be avoided to correctly apply the TMFM based

on magnetogram data. However, a large solar filament was visible on the same

period and later appeared as a suspended prominence at the solar limb against

the dark outer space on 5 April 2011. It is notable that this filament, which

converted into a prominence during the Sun’s rotation, elevated in the corona

by around 10 Mm, roughly corresponding to the height of the twisted core
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sub-structure forming the extracted MFR in AR 11176. Thus, both modelled

outcomes appear to correspond well with the observed phenomena, including

a powerful eruption with an M1.9 flare in AR 12473 and a large, confined

filament/prominence structure near the PIL in AR 11176. These observations

corroborate the assumptions derived from the analysis of the modelled MFR

evolution, suggesting an eruptive nature for the MFR in AR 12473 and a

confined nature for the MFR in AR 11176. The MFRs indeed exhibit distinct

behaviours, as will be discussed in Section 4.3.2.

4.3.1 Cross-sectional circularity

The circularity parameter is computed to assess more quantitatively the dif-

ferences from the methodology used in Wagner et al. 2023a. Circularity is

defined as the ratio between the standard deviation of the MFR radius and

its mean radius. This parameter helps estimate the variations in the MFR

radius, with a circularity of 0 indicating a perfect circular cross-section. It is

crucial for verifying the previous method developed by Wagner et al. 2023a,

which assumed that the flux rope cross-section is always circular. Figure 4.6

illustrates the circularity of the MFR cross-sections in both AR 12473 (orange

curve) and AR 11176 (blue curve). The dotted lines represent the circularity of

the MFR structures without post-processing (i.e., without the application of a

morphological opening to the binary masks). The vertical dashed lines mark the

physical time windows: before these lines, the MFR is not fully formed; after

them, the MFR may deform as it reaches the top boundary of the simulation

domain. The very early and late stages of the simulation are thus excluded

from consideration.

For both active regions, the MFRs become more circular as they ascend

and develop through the simulation domain, indicating that while the previous

method was not unfounded, it was less suitable for the initial and final stages

of the simulation. In the middle frames, the MFR cross-section is notably

more circular, particularly for AR 11176, demonstrating that the previous

approach becomes more reliable in this scenario. The solid lines correspond

to the circularity of the MFR cross-sections after post-processing (which, we

recall, includes applying a morphological opening operation to remove noise or

unwanted structures). When compared to the dotted lines, they show that the

post-processing can significantly influence the shape of the MFR cross-sections
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Figure 4.6: Circularity of the MFR cross-sections per frame for both MFRs in AR
12473 (solid orange curve) and AR 11176 (solid blue curve). The dotted curves also
represent the circularity of the MFR cross-sections, but without post-processing (i.e.,
without the application of morphological opening). For example, at frame 16 in AR
12473, the circularity value indicated by the dotted orange curve corresponds to the
MFR cross-section in panel (g) of Figure 4.8, while the value shown by the solid orange
curve corresponds to the MFR cross-section in panel (h) of Figure 4.8, where the
connected channel has been detached from the MFR structure. The dashed vertical
lines mark the physical start and end of the simulation (blue for AR 11176 and orange
for AR 12473). Before these lines, the MFR is not yet fully established, while after
them, the MFR has risen so high that it can interact with the upper boundary of
the simulation domain, potentially introducing significant bias. Source: Wagner et al.
2023b.

in some frames. This post-processing step improves the capture of the MFR

morphology, making the cross-sections appear more circular. For example, at

frame 11 in AR 12473, the post-processing eliminates a significant peak in

the circularity distribution, resulting in a more circular MFR cross-section
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by separating an elongated structure that does not belong to the MFR (as

seen in the middle panel of Figure 4.2 or in the bottom panel of Figure 4.8

around y = 75 Mm and z = 50 Mm). Hence, employing the morphological

gradient-based extraction method (combined with post-processing refinement

through morphological opening) enables a more accurate representation of the

intrinsic morphology of MFR structures.

4.3.2 Propagation and deflection

While the circularity parameter demonstrates the effectiveness of the MM

method for MFR extraction, the trajectory and speed of the MFRs in each

active region are crucial indicators of their dynamics and potential to erupt.

The propagation and orientation of the MFRs in AR 12473 and AR 11176

differ, as shown in Figure 4.7. The top-left panel of Figure 4.7 compares the

height of the MFR apex over time (frame number) for both active regions

and, consequently, their expansion speed within the simulation box. The MFR

in AR 11176 forms at a higher initial height (around 100 Mm) and rises to

approximately 200 Mm, indicating an upward movement of about 100 Mm

within the physical time window for this AR (as indicated in Figure 4.6, where

frame 0 in Figure 4.7 corresponds to frame 10 in Figure 4.6, and frame 20 in

Figure 4.7 corresponds to frame 30 in Figure 4.6). In contrast, the MFR in AR

12473 emerges much closer to the photosphere (around 0 Mm) and rises to

about 150 Mm in the corona, covering a distance of over 150 Mm within the

physical time window for this AR (with frame 0 in Figure 4.7 corresponding to

frame 6 in Figure 4.6, and frame 20 in Figure 4.7 corresponding to frame 26

in Figure 4.6). This comparison shows that the MFR in AR 12473 rises more

rapidly through the solar atmosphere than that in AR 11176.
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Figure 4.7: Propagation and orientation of the MFRs in AR 12473 and AR 11176. The
top left panel shows the height of the extracted MFR structures per frame in each
active region across 21 frames, with a cadence of 6 hours between frames. The first
frame (frame 0) represents the physical start of the simulation (corresponding to frame
6 for AR 12473 and frame 10 for AR 11176 in Figure 4.6), while frame 20 represents
the physical end of the simulation (corresponding to frame 26 for AR 12473 and frame
30 for AR 11176 in Figure 4.6). The top right panel displays the evolution of the
horizontal x (dotted lines) and y (dashed lines) coordinates of the MFR structures in
both ARs. The bottom left panel illustrates the 3D trajectory followed by both MFRs.
The bottom right panel shows the angle of propagation of the MFRs as a function of
the frame number. In all panels, orange represents the MFR in AR 12473, and blue
represents the MFR in AR 11176. Source: Wagner et al. 2023b.
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The bottom-right panel of Figure 4.7 shows the angle of propagation of the

MFRs as a function of frame number. Here, the angle of propagation is defined

at each frame as the angle between the vertical z-axis and the vector connecting

the initial and current locations of the MFR apex. Once again, the MFRs in

both active regions exhibit distinct behaviours. In AR 12473, the MFR begins

with a high angle of propagation of 60°, indicating a rapid deviation from

radial expansion at the outset. This angle then steadily decreases over time,

eventually returning almost to the initial x and y coordinates, as shown by the

black dots at the extremities of the orange curve in the bottom-left panel of

Figure 4.7, which represent the MFR apex location at the beginning and end

of the simulation. In contrast, the MFR in AR 11176 follows a more stable

trajectory (see bottom-left panel of Figure 4.7), with angles of propagation

that do not exceed 40° throughout the simulation (see bottom-right panel

of Figure 4.7). This observation is further supported by the top-right panel

of Figure 4.7, where the evolution of the x-coordinate of the MFR apex in

AR 11176 (dotted blue line) and the y-coordinate (dashed blue line) appears

steadier compared to the corresponding x- and y-coordinates of the MFR apex

in AR 12473 (dotted and dashed orange lines, respectively). In particular, the

y-coordinate of the MFR apex in AR 12473 undergoes a significant variation

of approximately 40 Mm, ultimately returning to near its initial position by

the end of the simulation (as displayed in the bottom-left panel of Figure 4.7).

Although the MFRs in the two ARs exhibit markedly different dynamics and

evolution, the extraction technique employing MM transformations accurately

tracks both trajectories over their respective time series.

4.4 Benefits of the method over the previous

assumption-based approach of perfect circularity

The MM-based approach described in Section 4.2 offers several advantages over

the previous methodology used by Wagner et al. 2023a for MFR extraction

from the TMFM-generated twist number maps. First, this approach is simpler,

as it does not require prior assumptions or parameters. Although the SEs used

in MM operations must be tested and validated through visual inspection — a

process that can be somewhat time-consuming — this step allows for greater

user control and the possibility of automation once optimal SEs are identified.
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Notably, the post-processing with morphological opening grants substantial

user control and helps customise the extraction process.

The same applies to the multi-scale morphological gradient, which enhances

the boundaries between low- and highly-twisted regions in the twist number

maps. Here again, the choice of SEs plays a crucial role, as it can yield

significantly different outcomes. This is evident when comparing panels (c)

and (e) of Figure 4.8, where the gradient applied to the twist map with large

SEs (panel (c)) differ from that using smaller ones (panel (e)). Similarly,

the difference is noticeable in panels (d) and (f) of Figure 4.8, where the

morphological gradient is combined with the original twist number map. The

MFR structure appears fainter in panel (f) due to the use of smaller SEs in the

gradient operation. Consequently, larger SEs were chosen to provide a clearer

definition of the MFR shape in the maps, as shown in panels (c) and (d).

Additionally, the MM approach is less computationally demanding com-

pared to the previous methodology in Wagner et al. 2023a; all operations

complete in seconds on a standard computer due to the straightforward na-

ture of the MM operations employed in this extraction process and the use

of sufficiently small SEs. Moreover, the MM approach yields more accurate

results. This is illustrated in Figure 4.4, which compares the magnetic field

lines computed from the MFR structure extracted at three specific frames

(7, 17, and 27) in AR 12473 using the method of Wagner et al. 2023a (left

panel) and the MM method (right panel). Although both methods capture the

overall morphology of the MFR well at these frames, the MM approach clearly

captures a greater number of field lines, resulting in a more consistent and

robust MFR morphology, even at earlier stages when the MFR is just emerging

from the photosphere. The MM method thus identifies more pertinent field

lines while effectively excluding non-twisted lines that might overlap with the

MFR structures. Additionally, in frame 17 (middle frame) of the right panel, a

set of field lines connects to the positive polarity of the AR (shown in white on

the right side of the magnetogram used as the lower boundary of the simulation

domain). The Wagner et al. 2023a method (left panel) does not reveal this

set of field lines in the corresponding frame. However, this structure reappears

in later stages, specifically at frame 27 (bottom panel of the figure), in both

methods, indicating that it is indeed part of the MFR. The MM approach was

able to recognise these field lines as components of the flux rope at earlier stages

than the Wagner et al. 2023a method, demonstrating its superior accuracy.
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Figure 4.8: Visualisation of the MFR structure at frame 16 for AR 12473. Panel (a)
presents the squashing factor map, while panel (b) shows the corresponding twist
number map. Panel (c) displays the multi-scale gradient operation applied to the twist
number map from panel b) using large structuring elements with sizes 5 and 10, and
panel (d) combines the twist number map from panel (b) with the gradient from panel
(c). Panel (e) also shows the multi-scale gradient, but with smaller SEs, and panel (f)
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combines the twist number map from panel (b) with this gradient using smaller param-
eters. Panel (g) depicts the resulting binary mask after thresholding the combination of
the twist number map and the gradient from panel (d). The threshold is fixed at 0.8 for
this frame and remains constant across the entire time series, enabling effective MFR
extraction. Panel (h) displays the MFR mask from panel (g) after post-processing,
where a morphological opening with a small SE was applied to the entire image to
remove small connections at the bottom of the MFR structure. A second opening with
a larger SE was selectively applied to a sub-region of the frame around [y, z] = [75
Mm, 50 Mm] to remove the connected twisted channel appearing in panel g) that does
not belong to the MFR structure. Source: Wagner et al. 2023b.

The MM method is also preferable to the previous approach because it

does not necessitate the assumption of perfectly circular flux rope cross-section

to be effective. As discussed in Section 4.6, the Wagner et al. 2023a technique

may lack reliability, particularly when the MFR cross-section deviates from a

circular shape, which is the case in the early and late stages of the simulation.

Other methods could also be considered for effective MFR extraction, such

as using squashing factor maps instead of twist number maps (see panel (a)

of Figure 4.8). The squashing factor (Démoulin et al. 1996; Titov et al. 2002)

inherently emphasises edges and variations in twist number, potentially making

the application of the morphological gradient unnecessary. This factor is a met-

ric used to analyse the complexity and topology of magnetic field lines; a high

squashing factor indicates regions where magnetic field lines are significantly

distorted – stretched or compressed – often associated with magnetic recon-

nection sites and dynamic environments. Conversely, a low squashing factor

reveals a more uniform field. While useful for identifying twisted structures,

the squashing factor method can sometimes produce contours that do not close

entirely, complicating the subsequent application of a threshold. Additionally,

it lacks the flexibility and tunability of the MM gradient, which can be adjusted

through the use of different SEs. On the other hand, the combination of the

MM gradient with twist number maps allows for the application of a consistent

threshold throughout the entire time series, automating the extraction process

and mitigating the influence of noise or artifacts.

4.5 Concluding remarks

In summary, the MM method used in this study, which employs a multi-scale

gradient to enhance edges in twist number maps from TMFM simulations and
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incorporates morphological opening during post-processing, proves effective

in capturing the cross-sectional shapes of MFRs across the time series of two

active regions. The series cover the period around 28 December 2015 for AR

12473 and around 3 April 2011 for AR 11176, corresponding to solar eruptions

in these regions. The method successfully tracks the evolution of the MFRs

into well-defined twisted structures. Although the modelled MFR field lines

do not capture the eruption in AR 11176 due to the simulation ending before

this event, they accurately represent the magnetic environment associated with

a large suspended prominence observed in this AR. Analysis reveals a more

gradual and uniform expansion with a consistently compact and circular shape

for this MFR. In contrast, the MFR in AR 12473, as delineated by the MM

method, exhibits more dynamic behaviour, characterised by rapid ascent and

two significant deflections: an initial deviation from the radial direction and a

later return to the original horizontal plane location. Thus, the MM method

effectively captures the contrasting dynamics and behaviours of these two MFRs:

one likely eruptive (consistent with the M1.9 solar flare on 28 December 2015

in AR 12473) and the other non-eruptive (matching the suspended prominence

rather than the later eruption in AR 11176). This is particularly valuable given

that there are currently limited automated methods available for detecting

MFRs, such as the approach developed by Lowder et al. 2017, which involves

thresholding magnetic field line helicity maps. Advancing these automated

detection techniques is essential for improving coronal modelling and gaining

deeper insights into solar eruptions in the Sun’s upper atmosphere.
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Chapter 5

Detection and statistical

analysis of coronal off-limb

structure properties

Up to this point, this thesis has focused on the analysis and detection of faculae

in chromospheric images (see Chapter 2), sunspots in photospheric observations

(see Chapter 3), and magnetic flux ropes in simulation-generated data from the

low corona (see Chapter 4). However, the higher corona, and the corona as a

whole, hosts various solar structures that play crucial roles in triggering space

weather phenomena. This chapter introduces the dataset of coronal structures

derived by Bourgeois et al. 2024b and examines their properties as detailed in

that study. These coronal structures include loops, prominences, and coronal

jets, which are larger and longer-lived than their chromospheric counterparts,

spicules (Secchi 1878).

Coronal jets, in particular, are crucial to study as they share dynamic

properties with larger solar eruptions, such as CMEs, which are driven by

magnetic activity, though their effects are more localised (Raouafi et al. 2016).

These elongated plasma ejections are visible across various wavelengths —

for example, chromospheric channels highlight shorter jets (up to 10 Mm),

known as spicules. Understanding the mechanisms behind their formation and

eruption — including Alfvén waves and pulses, MHD shocks, granular buffeting,

magnetic reconnection, and instabilities — is key to interpreting solar wind

acceleration and addressing the long-standing problem of atmospheric heating
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(i.e, in the chromosphere and corona), which manifests as sudden temperature

rises exceeding one million Kelvins far from the solar surface.

Alfvén waves and pulses, in particular, have been extensively studied.

Barnes 1969 proposed a model for solar wind heating through the damping of

hydromagnetic waves. More recently, Grant et al. 2018 provided observational

evidence of chromospheric heating in a sunspot umbra via Alfvén wave dissi-

pation. Van Doorsselaere et al. 2020 reproduced high coronal temperatures

using a 3D MHD model incorporating Alfvén waves. Additionally, Alazraki

et al. 1971 and Belcher 1971 demonstrated how coronal Alfvén waves affect

solar wind properties, accelerating the solar wind. Wedemeyer-Böhm et al.

2012 suggested that vortex flows might generate Alfvén waves and transport

energy from the lower to the upper atmosphere. Other studies (Liu et al. 2019;

González-Avilés et al. 2019; Oxley et al. 2020; Scalisi et al. 2021) proposed

that shear (e.g., torsional) solar motions could be responsible for generating

Alfvén waves and associated jets.

Coronal jets also contribute to the acceleration of coronal streamers (Satya

Narayanan et al. 1985; Usmanov et al. 2000) and the heating of prominences

(Soler et al. 2016), coronal loops (Halberstadt et al. 1995; Ballegooijen et al.

2017), and coronal plumes (Wu et al. 2003). Despite significant progress, the

physics underlying the dynamics of these coronal structures — such as jets,

loops, prominences, streamers, and plumes — remains not fully understood.

However, gaining a better understanding of these phenomena is crucial for

interpreting eruptive events in the near-Sun environment and assessing their

impact on Earth.

Previous studies have focused on specific types of coronal structures, such as

jets, prominences, coronal loops, and streamer-associated CMEs. For instance,

Liu et al. 2023 analysed 1, 215 coronal jets, with Soós et al. 2024 later extending

this work to include a total of 2, 704 jets observed throughout SC 24. Similarly,

Zhang et al. 2024 examined 50, 456 prominences during approximately the

same period (2010–2020). Research on coronal loops includes Li et al. 2023’s

study of 111 loops observed in Solar Orbiter (SolO)/Extreme Ultraviolet

Imager (EUI) 174 Å images, focusing on a particular active region, while

Shrivastav et al. 2024 analysed 42 oscillations in small-scale coronal loops, also

using SolO/EUI 174 Å. Zimovets et al. 2015 investigated 58 kink oscillations

in coronal loops using SDO/AIA 171 Å data from 2010 to 2014. In addition,

Moon et al. 2006 examined streamer-associated CMEs and found that about a
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quarter of the 3,810 CMEs they inspected, recorded by SoHO/LASCO, were

streamer-associated, highlighting the significant role of coronal streamers in

space weather phenomena.

In this chapter, we examine all coronal off-limb structures visible in our

dataset, detected using a simple yet efficient mathematical morphology algo-

rithm described in Section 5.2. This approach enhances the statistical analysis

of coronal structure properties and provides insights into the overall evolution

of the corona. The corona presents many complexities and challenges, including

understanding coronal heating (which originates in the chromosphere), solar

wind acceleration into interplanetary space, and eruptive behaviours. Observing

the magnetic field dynamics in the corona through these structures is key to

deciphering the underlying physics, both in terms of broad solar cycle evolution

and localised effects.

5.1 Data collection for Solar Cycle 24

We sought to identify coronal off-limb structures using SDO/AIA 304 Å images

spanning Solar Cycle 24, from June 2010 to December 2021. Initially, Liu

et al. 2023 pre-processed these images, which were selected at 6-hour intervals:

00:00:00, 06:00:00, 12:00:00, and 18:00:00 UT daily. Soós et al. 2024 later

refined the dataset by introducing additional times at 03:00:00, 09:00:00,

15:00:00, and 21:00:28 UT, resulting in a 3-hour interval dataset. The pre-

processing procedure described by Liu et al. 2023 involved downsizing image

dimensions from 4096 × 4096 to 512 × 512 for better data management and

computational efficiency, normalisation to ensure consistency in pixel values

across all images, binarisation, and enhancing coronal features by masking

chromospheric elements up to 14 Mm above the solar radius. This last step

removes unwanted chromospheric features, while the choice of the observation

wavelength in the 304 Å channel facilitates the identification of coronal off-limb

structures. An example of a pre-processed image according to the methodology

of Liu et al. 2023 is shown in Figure 5.1. The inverted image is displayed for

visualisation purposes, meaning that the bright coronal off-limb structures and

surrounding noise appear in black against the white solar disk and background

of outer space. In this image (as well as in all the images within the dataset),

we aim to eliminate pepper noise and focus exclusively on the coronal off-limb

structures bursting around the solar disk. The two red arrows in Figure 5.1
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indicate the locations of two visually checked coronal jets.

Figure 5.1: Pre-processed image from SDO/AIA in the 304 Å channel, observed on
06/06/2010 15:00:00 UT, created following the methodology outlined by Liu et al. 2023,
which includes downsizing, normalisation, and masking of the solar disk to a height of
14 Mm above the solar radius. For improved visualisation, the image is inverted so that
coronal features are displayed in black against the white background. The red arrows
highlight coronal jets that have been manually verified through visual inspection of
1-hour video sequences (see Soós et al. 2024 for reference). Source: Bourgeois et al.
2024b.

5.2 MM algorithm

Once all the images were pre-processed following the methodology described by

Liu et al. 2023 as shown in Figure 5.1, the dataset was ready for MM operations

to remove noise and extract the features of interest — namely, the coronal

off-limb structures around the solar disk. As in previous chapters of this thesis,

the DIPlib library was used as a powerful tool for quantitative image analysis.
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Figure 5.2: Key steps of the extraction algorithm utilised for the image depicted in
Figure 5.1. Note that the images are inverted for enhanced visualisation. Panel A:
Application of the white top-hat operation: this process isolates small, bright features
in the image (highlighted here in black) that are smaller than the SE size of 200
pixels. Panel B: Implementation of a fixed threshold. Panel C: Small object removal
function: noise smaller than the SE size of 5 pixels is removed, allowing only the
relevant structures to remain. Panel D: Labelling: each coronal off-limb structure is
uniquely identified. Source: Bourgeois et al. 2024b.

The MM algorithm applied to the images in the dataset is outlined in

Figure 5.2. The first and most critical step — as it allows for the identification

of coronal off-limb structures as peaks in the image — is to apply a white

top-hat operation. As shown in panel A of Figure 5.2, this operation indeed

extracts small, bright features that are smaller than the SE size used in this

process (200 pixels; see Table 5.1). As detailed in Section 2.3.6, this operation

subtracts the result of the morphological opening from the original image. The

opening step isolates relatively small coronal off-limb structures (compared
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Table 5.1: Parameter values applied in the top-hat, small object removal function, and
thresholding operation.

Top-hat Threshold Object removal

200 135 5

to the size of the solar disk), while the white top-hat operation, through

subtraction, restores and emphasises these features.

Next, the second step, shown in panel B of Figure 5.2, involves applying

a threshold operation with a cut-off value of 135 (see Table 5.1) to discard

background noise with lower pixel intensity values. Despite this thresholding

step, some residual noise persists around the solar disk, necessitating the use of

a small object removal function, which, as its name suggests, removes objects

smaller than a certain size in a binary image (refer to the DIPlib library). As

shown in panel C of Figure 5.2, applying this small object removal function

with a value of 5 pixels (see Table 5.1) helps eliminate the remaining noise,

resulting in a cleaner image where the desired coronal off-limb structures are

more clearly identified. While we used this small removal function as provided

in DIPlib, similar results could also have been achieved using the morphological

opening operation. Subsequently, these structures are uniquely labelled, as

illustrated in panel D of Figure 5.2, with each colour and number representing

a distinct coronal off-limb structure. In this example, 53 individual coronal

off-limb structures are extracted.

Finally, a morphological half-gradient by dilation was applied, enabling the

detection of the external contours of the labelled structures. An example of these

identified contours is shown in Figure 5.3, where the contouring resulting from

the external gradient operation is superimposed in red onto the original image

from Figure 5.1. To enhance the visualisation of the identified structures, the

image is inverted, displaying the bright coronal features in black. Additionally,

the large red contours generated by the gradient transform were eroded using

an erosion operation with an SE size of 2.5 pixels to improve the clarity of the

identified structures.

5.3 Data filtering

The resulting dataset containing all the processed images with identified con-

tours of the coronal off-limb structures required further filtering, as many SDO

84



Figure 5.3: Identified coronal off-limb structures in the image presented in Figure 5.1,
recorded on 06/06/2010 at 15:00:00 UT. For enhanced visualisation, the image has
been inverted, causing the coronal off-limb structures to appear in black against the
white background. The external contours of these structures are highlighted in red,
following the application of the morphological half-gradient operation by dilation.
This process emphasises the boundaries of the coronal structures, aiding in their
identification and analysis. Source: Bourgeois et al. 2024b.

images were too noisy or had misaligned solar disk. First, we visually inspected

half of the dataset to manually remove poor-quality images, aiming to create

a cleaner dataset and reduce false identifications. Although this process was

thorough, it was also highly time-consuming. To expedite the process for the

second half of the dataset, we adopted a more efficient approach by eliminating

images that were statistical outliers in terms of structure density. In noisy or

misaligned images, the MM algorithm often mistakenly identified each noise

artifact as a coronal structure, resulting in an unusually high density of de-

tected features. By discarding these high-density outlier images, we significantly
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improved the dataset’s quality.

Additionally, to deal with the noise inherent in the original data, we applied

a threshold value of 685 Mm, which sets a minimum distance between the

bottom pixel coordinates of the detected coronal off-limb structures and the

solar centre coordinates. This step was necessary because, in noisy images,

the MM algorithm tends to detect noise artifacts within the solar disk and

identifies them as coronal structures. Consequently, images with identified

coronal structures located inside the solar disk are indicative of noise. The

threshold effectively filtered out these poor-quality images without requiring

visual checks. As a result of all these filtering steps, we obtained a cleaner

dataset with a significantly reduced rate of false identifications. In total, the

dataset contains 32, 985 cleaned images and identifies a large number of 877, 843

coronal off-limb structures.

5.4 Validation

For validation, results from the Semiautomated Jet Identification Algorithm

(SAJIA) developed by Liu et al. 2023 were compared against those obtained

from the MM method. The dataset of 1, 215 coronal jets provided by SAJIA

was visually verified and later expanded to 2, 704 jets by Soós et al. 2024.

The SAJIA was subsequently upgraded to the Automated Jet Identification

Algorithm (AJIA) by Liu et al. 2024 to enhance the algorithm’s capacity

to identify true jets. The coronal jets detected by both SAJIA and AJIA

were manually checked using video sequences (Soós et al. 2024), resulting

in a large jet dataset that includes true jets, false identifications, unknown

jets, and uncertain jets — the latter being defined as cases where there is

insufficient video data before or after jet detection to confirm the validity of

the identification.

Visual checks confirmed that the MM algorithm successfully extracted the

coronal jets (both true and false) identified by Liu et al. 2023; Soós et al.

2024; Liu et al. 2024. The spatial distribution (latitude, longitude, and position

angle), as well as area and intensity, were compared between the SAJIA-detected

coronal jets and the structures identified using the MM method, revealing

similar results. This validation process not only confirms the effectiveness of

the MM method employed in this work but also categorises several structures

in the MM-produced dataset: 2, 688 true jets, 5, 118 false jets (which resemble
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straight-like jets in static images but do not behave as jets when their dynamic

behaviour is checked on video), 42 unknown jets, and 39 uncertain jets. All

other structures are labelled as ”MM U” in the dataset, indicating unknown

MM-detected coronal structures.

5.5 Major characteristics of coronal off-limb struc-

tures

In the cleaned dataset, several properties of the coronal off-limb structures are

recorded at each time step (every three hours) between June 2010 and December

2021. These structures encompass a broad range of coronal features, from

prominences and coronal loops to coronal jets and other coronal phenomena.

It is important to note that the dataset does not distinguish these different

features into separate categories. Additionally, if a coronal off-limb structure

persists for more than three hours, it is classified as a new structure at the next

time step. This approach may introduce some bias, as two entries with differing

properties in the dataset could actually correspond to the same physical feature.

With this in mind, the dataset includes the following properties: the obser-

vation day and time (recorded in UT), the perimeter and area of the structures

(measured in Mm and pixels, and in Mm2 and pixels2, respectively), and the

intensity of the structures recorded in digital numbers (DN). The intensity

values are corrected for the degradation of the charge-coupled device (CCD)

onboard SDO/AIA using the aia package (Barnes et al. 2020). The dataset

also includes the skewness and kurtosis of the intensity distribution, which

provide information about the horizontal spread (skewness) and the vertical

spread (kurtosis) of the intensity values.

Additionally, the length and width of the structures were measured using

the Feret diameter tool provided by the DIPlib library. The Feret diameter

represents the distances between any two parallel tangents to the object’s

outline; consequently, the length corresponds to the maximum Feret diameter,

while the width corresponds to the minimum Feret diameter. The dataset also

includes the ratio of length to width, as well as the Aspect Ratio Feret, which

differs from the length-to-width ratio. The Aspect Ratio Feret is defined as the

ratio between the width and the perpendicular diameter to the width, which

indeed does not necessarily equal the length.
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The dataset further contains spatial information on the central coordinates

of the structures (in pixels) and their position angle (PA), which indicates

the angle of the structure’s centroid from the solar north pole, measured

counterclockwise. The latitude and longitude of the coronal features’ centroids

are also included, along with their latitude and longitude values corrected for

the B0 angle using the sunpy package (Community et al. 2020). The B0 angle

is the heliographic latitude of the solar disk centre, which varies sinusoidally

between −7.23◦ and +7.23◦ as seen from Earth. However, this B0 correction

introduced unintended sinusoidal trends at the solar poles in our analysis of

latitudinal distributions. Therefore, we opted to use the uncorrected latitude

and longitude values in the subsequent analysis presented in this chapter.

Some morphological and shape descriptors were also incorporated into

the dataset, including the Podczeck shape descriptors. These five descriptors

evaluate the elongation of an object (Equation 5.1) and its similarity to shapes

such as a square (Equation 5.2), a circle (Equation 5.3), a triangle (Equation

5.4), and an ellipse (Equation 5.5). In Equations 5.1–5.5, A denotes the area

of the structures defined inside the contours detected by the MM method,

P represents the perimeter, w is the width, l is the length, and h refers to

the structure’s diameter perpendicular to the width (which, we recall, is not

necessarily equal to the length).

Pelongation =
P

l
(5.1)

Psquare =
A

wh
(5.2)

Pcircle =
4A

πh2
(5.3)

Ptriangle =
2A

wh
(5.4)

Pellipse =
4A

πhw
(5.5)

The dataset also includes measures of circularity and roundness. Circularity

is defined as the ratio between the mean radius and the standard deviation of

the radius, reflecting variations in the radius; a circularity value of 0 represents

no variations, indicating a perfectly circular-shaped structure. Roundness, a

similar metric, assesses the circularity of the structure using its perimeter and

area (see Equation 5.6), where a roundness value of 1 denotes a fully circular
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shape.

R =
4πA

P 2
(5.6)

Additional descriptors, such as bending energy, eccentricity, solidity, and

convexity, are also recorded in the dataset. Bending energy quantifies the

deformation of the structures’ contours, while eccentricity again measures how

much a structure deviates from a circular shape, based on the aspect ratio of

its best-fit ellipse. Solidity and convexity provide insights into the convexity

of the structures. Convexity is defined as the ratio between the perimeter of

the convex hull and the perimeter of the structure, where the convex hull

represents the smallest convex boundary enclosing the structure (a convex

set being one that includes any line segment connecting two of its points).

Solidity also measures convexity but in a higher dimension, as it calculates the

ratio between the area of the structure and the area of its convex hull. Both

measurements range from 0 to 1, with a value of 1 indicating a fully convex

shape with no protrusions.

Other attributes included in the dataset are the maximum radius, minimum

radius, mean radius, and standard deviation of the radius for each structure.

The dataset also records the top and bottom pixel coordinates of each structure,

along with the distances (in both pixels and Mm) from these coordinates to

the solar centre.

Finally, as discussed in Section 5.4, most structures in the dataset are

categorised as unknown structures, while the remaining ones are classified as

true jets, false jets, unknown jets, and uncertain jets, using the labelled jet

dataset developed by Liu et al. 2023; Soós et al. 2024; Liu et al. 2024. The full

property dataset is available at the following link on the University of Sheffield

Online Research Data (ORDA) repository: DOI: 10.15131/shef.data.27130590.

5.6 Strengths and limitations of the dataset

The developed dataset, which includes numerous properties of coronal off-limb

structures (as described in the previous section), is a significant asset. The

extensive collection of 877,843 recorded coronal off-limb structures spanning a

solar cycle facilitates in-depth analysis of the solar corona and its long-term

evolution. This wealth of data allows for the identification of patterns and
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trends that may not be apparent in smaller datasets. Furthermore, the variety

of recorded properties — particularly those that are critical for correlating these

coronal features with space weather phenomena, such as latitude, longitude,

area, and intensity — enables thorough statistical analyses. As such, this

dataset provides a robust foundation for advancing our understanding of coronal

behaviour, their relationship with space weather events, and the subsequent

impacts on the heliosphere and Earth.

However, several important limitations should be noted. First, long-lived

structures are not recorded as such; any structure lasting longer than three

hours is classified as a new structure. The detection method also does not

distinguish between different types of coronal structures, except for coronal jets,

which have been labelled by Liu et al. 2023; Soós et al. 2024; Liu et al. 2024.

Furthermore, it does not provide information about the stage of a structure

(i.e., whether it is in the beginning, intermediate, or late stage of evolution).

Another limitation pertains to the measurement of length and width of

the structures as recorded in the dataset. As explained in Section 5.5, these

properties are calculated using the Feret diameter, where the length corresponds

to the maximum Feret diameter and the width to the minimum. However,

depending on the orientation of the structure in the image (for example, in the

case of a highly inclined feature on the solar disk), the maximum Feret diameter

may actually represent the width, while the minimum Feret diameter may

represent the length. This interchangeability, influenced by the orientation of

the structure, can render these measurements unreliable for statistical analysis.

Thirdly, the size of the SE used in the white top-hat transform to extract

coronal off-limb structures from the dataset images was determined through

visual inspection. The SE size of 200 pixels (see Section 5.2) was selected

to retain the largest coronal structures of interest while minimising noise.

Nonetheless, this approach might have inadvertently filtered out some smaller

but significant coronal structures or misclassified larger noise artifacts as actual

coronal features. However, this effect is considered negligible due to the vast

number of identified coronal structures and the fact that half of the dataset

underwent visual verification.

Finally, it is crucial to consider the degradation of the CCD sensor on

the AIA instrument, which can introduce significant bias into the intensity

measurements. As illustrated in Figure 5.4, the sensitivity of the AIA’s CCD has

been declining at an alarming rate across all wavelength channels, particularly
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Figure 5.4: Evolution of the AIA’s CCD sensitivity degradation over time across
all seven AIA EUV wavelength channels: 94 Å, 131 Å, 171 Å, 193 Å, 211 Å, 304
Å, and 335 Å. The degradation is particularly severe in the 335 Å channel and
even more pronounced in the 304 Å channel, which experiences the most significant
decline. Although the remaining channels are less affected, they still display alarming
degradation factors, ranging from 0.6 to 0.8 by 2020, indicating a substantial loss in
sensitivity over time. Source: Zwaard et al. 2021.

in the 335 Å and 304 Å channels, with the latter being exclusively used in

this study. Figure 5.4 shows that this sensitivity degradation began almost

immediately after the SDO was launched and started operations. Within two

years, the 304 Å channel experienced a significant drop in sensitivity, reaching

a degradation factor of approximately 0.2. By 2020, this had further declined to

nearly 0.0, making it the most affected channel. Even the less affected channels

(94 Å , 131 Å , 171 Å , 193 Å , and 211 Å) have not been immune to this

issue, with their degradation factors ranging between 0.6 and 0.8 by 2020. This

decline in CCD sensitivity is an important factor to take into account, as it
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can heavily impact our analysis of the intensity of coronal off-limb structures

observed in the 304 Å channel. This is illustrated in Figure 5.5, which shows the

monthly number of coronal off-limb structures and their average intensity over

time from 2011 to 2021. The colour and size of the data points represent the

intensity of the structures (corrected for CCD deterioration, as noted in Section

5.5), with larger and darker markers indicating higher-intensity features, and

smaller, lighter markers indicating lower-intensity features.

Figure 5.5: Number of detected coronal off-limb structures and their average intensity
per month, from January 1, 2011, 00:00:00 UT to December 31, 2021, 21:00:28 UT
(recorded at three-hour intervals). The intensity is represented by the size and colour of
the markers in digital numbers (DN). Both intensity and the number of structures show
a correlation, with peaks in 2011 (just a few months after SDO began observations)
and in 2013 (before solar maximum). This is followed by a very sharp decrease, and
a slight increase around 2020, indicating the onset of Solar Cycle (SC) 25. Source:
Bourgeois et al. 2024b.

Figure 5.5 reveals a higher number of structures and stronger intensities

between 2011 and 2014, followed by a drastic decrease in both intensity and

density. Notably, the highest number of detected structures occurred in 2011,

with a rapid decline observed thereafter, interrupted by a brief increase between

2012 and 2013. At the beginning of Solar Cycle (SC) 25 around 2020, there is a

slight resurgence in both the density and intensity of the features. While these

observations generally align with the expected evolution of the solar cycle, the

steep decline after 2011 and 2013 may not be solely due to the solar cycle
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itself; it could also be influenced by the degradation of the CCD, which began

shortly after the SDO’s launch in 2010 (Ahmadzadeh et al. 2019; Zwaard et al.

2021; Soós et al. 2024) and continues to affect the results despite the corrective

measures provided by the aia package (Barnes et al. 2020). Therefore, it is

crucial to interpret the statistical information regarding the intensity of coronal

off-limb structures in the subsequent figures with caution (e.g., in Figures 5.8,

5.9, 5.10), keeping the CCD’s significant deterioration in mind.

5.7 Latitudinal activity and North-South asymme-

try

Having presented the dataset, we will now explore its properties, beginning with

the latitude distribution of the 877, 843 recorded coronal off-limb structures.

This analysis aims to understand how these coronal features evolve latitudinally

throughout the solar cycle and to determine whether they exhibit behaviour

similar to that of their photospheric (e.g., sunspots) and chromospheric (e.g.,

faculae, filaments) counterparts, following the classical pattern known as the

butterfly diagram. In the butterfly diagram, solar activity begins at mid-

latitudes, around 20◦ to 30◦ in both hemispheres, during solar minimum. Then,

as solar activity intensifies, it progressively shifts closer to the equator, forming

the so-called wings of the butterfly diagram. This cycle repeats as solar activity

reemerges at mid-latitudes with the onset of the next solar cycle (Schwabe

et al. 1844; Maunder 1904; Hathaway 2010).

The latitudinal distribution of all detected coronal off-limb structures is

shown in Figure 5.6, which displays the probability density function (PDF)

of the latitude — representing the likelihood of coronal structures appearing

at specific latitudes. To avoid edge effects at the distribution boundaries (at

−90◦ and 90◦ latitude), the data has been ”rolled up”, meaning it has been

extended continuously on both ends to smooth out the edges. The probability

density is lowest near the solar poles, where coronal activity is less pronounced.

A local minimum is also observed near the equator, indicating that although

coronal activity tends to migrate closer to the equator as it intensifies, it does

not reach the equator itself, which is in accordance with the pattern seen in the

butterfly diagram. The highest probability density is observed in two notable

peaks: around 20◦ to 30◦ in the Northern hemisphere and −30◦ to −20◦ in the
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Figure 5.6: Probability density function of the latitude of coronal off-limb structures
spanning SC 24. Two peaks at approximately 20◦/30◦ and −30◦/− 20◦ indicate the
active latitude belts, similar to the butterfly diagram, with a slight difference between
these peaks suggesting the North-South (N-S) asymmetry. Source: Bourgeois et al.
2024b.

Southern hemisphere, corresponding to the active latitude bands seen in other

solar features. There is a slight gap between these two peaks: the Northern

peak has a probability density of 3, 17 × 10−3, while the Southern peak is

slightly lower at 2, 91 × 10−3.

This difference points to the so-called North-South (N-S) asymmetry, an

imbalance in the distribution of solar activity between the Northern and South-

ern hemispheres (Babcock 1959; Svalgaard et al. 2013; Janardhan et al. 2018).

Although the underlying cause of this asymmetry is not yet fully understood,

studies highlight its connection to differential rotation, near-equatorial merid-

ional circulation (Blanter et al. 2021), and the dynamo mechanisms driving

solar activity. As demonstrated by Kitchatinov et al. 2021, the N-S asymmetry

may arise from the interaction between a dominant dipolar magnetic field

and a weaker quadrupolar magnetic field. Specifically, when these fields are

synchronised (i.e., in locking phase), the interaction can lead to a Northern-
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dominant asymmetry when in phase or to a Southern-dominant asymmetry

when in antiphase. This process is influenced by fluctuations in dynamo effects,

such as the alpha effect, which twists and converts toroidal magnetic fields into

poloidal fields through turbulent convection in the convection zone. When the

alpha effect undergoes symmetric changes across the equator, it can enhance or

even trigger quadrupolar excitation by the dipolar field. Moreover, Kitchatinov

et al. 2021 show that during Grand Minima, magnetic quenching — where the

efficiency of the alpha effect is reduced — becomes less effective at stabilis-

ing the dipolar and quadrupolar fields, thereby leading to more pronounced

asymmetries.

The N-S asymmetry is further highlighted in Figure 5.7(a), which displays

the PDF distribution of the latitude of coronal off-limb structures across the

years from 2010 to 2021. The first row includes only six months of data, starting

in June 2010, while all other rows represent complete years. This distribution

is obtained by applying kernel density estimation (KDE), a non-parametric

method that uses a kernel function (in this case, a Gaussian function) to treat

and smooth each data point by approximating it with this function, resulting

in a continuous probability density curve. A bandwidth of 0.5 is used to avoid

over-fitting or over-smoothing. As in Figure 5.6, the KDE distribution has

been ”rolled up” to prevent edge effects. In Figures 5.7(a) and 5.7(b), the KDE

distribution is not normalised, so the height of the rows (representing time,

with years in Figure 5.7(a) and months in Figure 5.7(b)) can be evaluated

qualitatively but not compared quantitatively. This applies to all subsequent

PDF distributions of this chapter generated by applying KDE (Figures 5.11,

5.12, 5.13). The bandwidth value of 0.5 is also consistently applied across all

these figures.

In Figure 5.7(a), coronal activity is predominantly observed in the Northern

hemisphere during SC 24, except for the periods 2013-2014 and 2020-2021.

This observation aligns with the findings of Zhang et al. 2024 on active regions,

which also indicate a predominance of activity in the Northern hemisphere,

with the exception of the years 2012-2015 and 2020. Coronal activity is modu-

lated by the solar cycle evolution, with its latitudinal behaviour following the

characteristic butterfly diagram pattern, featuring regions of increased activity

around 20◦/30◦ and −30◦/ − 20◦ that shift over time. These regions move

towards the equator during the ascending phase of the solar cycle and towards

higher latitudes during the descending phase. Coronal activity in the Northern
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(a) Yearly distribution of coronal off-limb
structures per latitude (row 1 corresponds to
the year 2010; row 12 corresponds to the year
2021). The first row (year 2010) includes only
half of the data, starting from June, while all
other rows represent complete years. This dis-
tribution clearly shows the evolution of the
solar cycle, showing two distinct peaks in the
latitudinal distribution of coronal features
in both hemispheres that gradually move to-
ward the equator as SC 24 progresses. At
the onset of SC 25, these peaks shift back to
higher latitudes in both hemispheres.

(b) Monthly distribution of coronal off-limb
structures per latitude throughout the year
2018 (row 1 represents January; row 12
represents December). The peak heights of
preferred latitudes fluctuate between hemi-
spheres, revealing the N-S asymmetry. At
first, there is a predominance of coronal
activity in the Southern hemisphere, fol-
lowed by a shift to the Northern hemisphere,
with nearly symmetrical activity between
the hemispheres by the end of the year.

Figure 5.7: Yearly (covering SC 24) and monthly (for the year 2018) distributions
of coronal off-limb structures per latitude. The distributions align with the butterfly
diagram and highlight the N-S asymmetry.

hemisphere is particularly pronounced in the years 2016 and 2017, correspond-

ing to the declining phase of SC 24, where the distribution shows almost a

single peak concentrated in the Northern hemisphere. Around the minimum

of SC 25, between 2018 and 2021, active latitudes reappear at mid-latitudes,
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and the peaks in both hemispheres become more widely separated, located at

approximately 40◦ and −40◦. During this period, the N-S asymmetry shifts

from Northern predominance in 2019 to near symmetry in 2020, and then to

Southern predominance in 2021, illustrating the N-S asymmetry on annual

scale.

In addition to these yearly observations, we also examine monthly variations

in the KDE distribution of the latitude of coronal off-limb structures for the

year 2018, as shown in Figure 5.7(b). It is notable that the N-S asymmetry

also fluctuates throughout the months within a single year. Initially, during the

first four months, activity predominates in the Southern hemisphere, before

shifting to the Northern hemisphere in the following four months. By the final

four months of 2018, this N-S asymmetry nearly vanishes, as the maxima of

activity in both hemispheres reach similar levels. This four-month alternating

period has also been observed in other years (see Bourgeois et al. 2024b for

details on the monthly distribution of coronal off-limb structures throughout

2021). It appears to align closely with the Rieger period of approximately 158

days, which has been observed in various solar phenomena, such as solar flares

and sunspots (Rieger et al. 1984). The Rieger period indicates the presence of

medium-term periodicities in solar activity that are not accounted for by the

broader solar cycle of approximately 11 years. The global solar dynamo and

the modulation of magnetic fields within the convection zone by Rossby waves

— these large-scale waves induced by the Coriolis effect and influenced by

differential rotation — are believed to play a significant role in this periodicity

(Dimitropoulou et al. 2008), which, in turn, seems to manifest in the N-S

asymmetry within the latitudinal distribution of coronal off-limb structures.

The monthly distributions of other years during SC 24 exhibit a similar

trend but with varying asymmetries. Some years may display a more pro-

nounced Northern-dominance or Southern-dominance asymmetry; for instance,

2021 clearly shows a predominance of coronal activity in the Southern hemi-

sphere, interrupted by a brief period of slight Northern predominance (see

Bourgeois et al. 2024a). These month-to-month fluctuations are notable. They

illustrate the intricate short-term distribution of coronal off-limb structures

across hemispheres and are thus important for understanding and forecasting

coronal behaviour. When one hemisphere experiences higher activity, solar

eruptions are more likely to occur in that area, which can differentially affect

space weather conditions on Earth and for satellites in orbit.
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The N-S asymmetry is well documented in the literature, though interpre-

tations can sometimes be conflicting. For instance, while Figure 5.6 suggests a

Northern-dominant asymmetry in the distribution of coronal features during

SC 24 — a pattern supported by similar findings in daily sunspot numbers

(Chandra et al. 2022) — other studies present a more Southern-dominant asym-

metry, such as in the distribution of coronal jets during SC 24 (Liu et al. 2023).

Contradictions also arise in observations of other solar cycles. For example,

Hao et al. 2015 reported a Southern-dominant asymmetry during SC 22 and a

Northern-dominant asymmetry during SC 23 in filament activity, while Chan-

dra et al. 2022 observed a predominance of sunspot activity in the Southern

hemisphere for both SCs 22 and 23. Li et al. 2009 and Chandra Joshi et al. 2009

also found a Southern dominance in sunspot and prominence activity for SC 23.

These inconsistencies stem, in part, from the different approaches and methods

applied in each study. In our study, for instance, long-lived coronal structures

(lasting more than three hours) can be counted multiple times, a limitation

also noted in Hao et al. 2015’s analysis of filaments. This can introduce biases,

especially when compared with studies that account for each feature separately,

such as Liu et al. 2023’s algorithm for identifying coronal jets. Furthermore,

these studies focus on distinct solar features, observed at various scales and in

different layers of the solar atmosphere, which may behave differently in terms

of N-S asymmetry due to localised effects. The N-S asymmetry shown in Figures

5.6 and 5.7 should therefore be interpreted with caution, as it also depends on

the parameters used in this study. Assessing the statistical significance of the

N-S asymmetry remains challenging, as noted by Carbonell et al. 2007.

5.8 Intensity trends

In this section, we explore the intensity trends of coronal off-limb structures as

they evolve across both latitude and time. Analysing these intensity patterns is

essential for understanding how coronal features develop and change throughout

the solar cycle. However, it is important to consider here the potential impact

of CCD deterioration (see Section 5.6), as it may affect the accuracy of the

recorded intensities over time.

The intensity distribution of coronal off-limb structures is displayed in

Figure 5.8, where the intensity of each feature is indicated by the colour bar,

ranging from 103 to 106 DN on a logarithmic scale. This scaling helps to
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Figure 5.8: Latitude of coronal off-limb structures distributed as a function of time
over SC 24. The intensity of the structures is represented by the colour bar based
on a logarithmic scale, enhancing the visualisation of the intensity distribution. The
colour gradient ranges from blue for lower intensities to red for higher intensities.
Structures appearing red (approximately 105/106 DN) clearly reveal the butterfly
diagram pattern. Those appearing green (around 104.5 DN) illustrate the ”rush-to-the-
poles” phenomenon observed between 2010 and 2015. During this period, the Northern
hemisphere experienced several surges, with the first surge beginning earlier than that
in the Southern hemisphere. Source: Bourgeois et al. 2024b.

highlight trends among features with a wide range of intensity levels. The high-

intensity coronal off limb structures (∼ 106 DN), shown in red, clearly trace the

wings of the butterfly diagram. Indeed, these features migrate from latitudes

of approximately 20◦/30◦ downwards and −30◦/ − 20◦ upwards toward the

equator as the solar cycle approaches its peak, reached in 2014, and then nearly

vanish during the declining phase. They begin to reemerge slightly around the

mid-latitudes at the start of the next cycle, aligning with the butterfly diagram

pattern.

In contrast, lower-intensity coronal structures do not show this migration

pattern as distinctly, presenting a more complex and intriguing distribution.

Low-intensity (∼ 103 DN) and medium-intensity structures (∼ 104.5 DN)

continue to appear significantly throughout the descending phase of SC 24.

These lower-intensity structures also tend to emerge at higher latitudes and

nearer the solar poles, particularly during the rising phase, suggesting that

different dynamics or formation mechanisms may be at play compared to their
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higher-intensity counterparts — unless this pattern is primarily driven by the

effects of CCD degradation.

The medium-intensity coronal off-limb structures, shown in green, indicate

the migration of elongated structures from high-latitude regions toward the

solar poles in both hemispheres prior to the magnetic field reversal around

the solar maximum. This phenomenon, commonly referred to as the “rush-to-

the-poles” (Lockyer 1931; Hyder 1965; Diercke et al. 2024), is clearly visible

in Figure 5.8. It has also been observed in the latitudinal distributions of

solar filaments (Diercke et al. 2024), prominences (Zhang et al. 2024), and

even in simulation data with the distribution of flux ropes (Yeates 2013). It is

noteworthy that the “rush-to-the-poles” is observable in coronal structures of

moderate intensity, rather than in those with higher intensity.

The ”rush-to-the-poles” phenomenon also reflects the N-S asymmetry.

Indeed, in the Southern hemisphere, the “rush-to-the-poles” begins later, in

2012, compared to 2010 in the Northern hemisphere, revealing a two-year offset

between hemispheres. This hemispheric difference is consistent with Zhang

et al. 2024’s study on active regions and prominences, which found that the

peak number of these structures occurred two years earlier in the Northern

hemisphere (2011) than in the Southern hemisphere (2013). Additionally, the

“rush-to-the-poles” in the Northern hemisphere experiences multiple surges,

unlike the smoother progression observed in the Southern hemisphere. This

pattern was also noted by Gopalswamy et al. 2016, who identified several surges

in the Northern hemisphere’s latitudinal distribution of prominences.

A closer examination of the distribution of coronal off-limb structures

across latitudes, when categorised by intensity, is provided in Figure 5.9 with

a histogram using 11 bins. Coronal structures are grouped into three intensity

categories, as indicated in the legend: blue represents structures with intensities

below 20, 000 DN (388, 936 structures), orange represents those between 20, 000

and 55, 000 DN (280, 513 structures), and green represents structures with

intensities above 55, 000 DN (208, 394 structures). Once again, the active

latitude belts are obvious, consistent with the butterfly diagram pattern around

20◦ and −20◦ latitude. All intensity categories follow this trend, forming a

double-peaked Gaussian-like distribution. However, lower-intensity structures

(blue) display a broader Gaussian distribution, with a higher concentration of

these structures at latitudes above 50◦ and below −50◦, particularly near the

poles, when compared to the higher-intensity categories (orange and green).
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Figure 5.9: Number of coronal off-limb structures observed over SC 24, distributed by
latitude in 11 bins. The structures are categorised based on their intensity values: those
with an intensity lower than 20, 000 DN are represented in blue (388, 936 structures),
those with intensities between 20, 000 and 55, 000 DN are displayed in orange (280, 513
structures), and those with intensities exceeding 55, 000 DN are shown in green
(208, 394 structures). Source: Bourgeois et al. 2024b.

Similar findings were reported by Soós et al. 2024 for polar jets. They found

that polar jets tend to be smaller, less intense, but more numerous than those

at lower latitudes. Likewise, small-scale coronal events may follow this pattern

of high density and low intensity in polar and high-latitude regions, although

this behaviour could also be influenced by CCD degradation.

Indeed, the impact of CCD deterioration is noticeable in Figure 5.10,

which presents a histogram showing the time distribution of coronal off-limb

structures, grouped by the same intensity categories as in Figure 5.9 (blue for

lower-intensity structures, orange for medium-intensity, and green for high-

intensity). Notably, a peculiar and pronounced peak in the number of lower-

intensity features stands out in 2010, likely a result of CCD degradation. In

that year, the SDO spacecraft had just begun operations and was still able to

capture fainter features. Figure 5.10 also highlights the differing trends between

lower-intensity and higher-intensity structures. While the declining phase of
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Figure 5.10: Number of coronal off-limb structures observed over SC 24, distributed
over time in 11 bins. Similar to Figure 5.9, the structures are categorised into three
intensity categories: blue for intensities less than 20, 000 DN, orange for intensities
between 20, 000 and 55, 000 DN, and green for intensities greater than 55, 000 DN.
Source: Bourgeois et al. 2024b.

SC 24 (approximately from 2015 to 2019) is marked by the expected decrease

in medium- and high-intensity features, the number of low-intensity structures

unexpectedly rises significantly after 2015 and remains stable, as also seen in

Figure 5.8.

This unusual increase in certain solar structures based on properties such

as intensity or area during the descending phase of the solar cycle has been

documented in previous studies. For instance, Zhang et al. 2024 observed this

trend in prominences: while the number of large-area prominences (with a

projected area larger than 4.103 Mm2) decreased during the decaying phase

of SC 24, the number of smaller-area prominences increased during the same

period. In contrast, we did not observe similar trends in area for coronal off-limb

structures. Since only the intensity behaviour of these structures differs, it
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may be attributed to CCD degradation. This complicates interpretation —

especially given our lack of detailed knowledge about the types of structures

and their evolutionary stages within each intensity group.

5.9 Longitudinal activity

In the following section, we explore the longitudinal distribution of coronal off-

limb structures in order to gather evidence supporting the existence of active

longitudes. This investigation raises several important questions: Does the

longitudinal distribution of these structures mirror their latitudinal distribution,

which features a broad zone of intensified activity (between 0◦ and 30◦ latitude)

evolving with the variations of the solar cycle? What are the characteristics

of these active longitudes in terms of their number, location, and lifespan?

Furthermore, do we observe the “flip-flop” effect, which manifests as a shift in

dominant activity between active longitudes every few years? This effect was

initially detected in the longitudinal distribution of starspots on other stars

(Jetsu et al. 1991; Elstner et al. 2005).

Previous studies have indeed identified inhomogeneities in the longitudinal

distributions of solar features, often observed in two preferred clusters located

roughly 180° apart, commonly referred to as ”active longitudes” or ”activity

nests” in the literature (Chidambara Aiyar 1932; Dodson et al. 1968; Bogart

1982; Bai 1987; Jetsu et al. 1993, 1997; Bumba et al. 2000; Mordvinov et al.

2004; Vernova et al. 2004). Active longitude belts have been detected not only

on the Sun but also on other stars (Berdyugina et al. 2002; Lanza et al. 2009).

These belts tend to remain relatively stable, typically located within a range of

20◦ to 60◦ over the span of 10 to 15 Carrington rotations (Bumba et al. 1969;

Castenmiller et al. 1986; Toma et al. 2000; Gyenge et al. 2016; Kostyuchenko

et al. 2024). For example, Plyusnina 2010 reported a positional dispersion of

26◦ from one cycle to the next across 10 solar cycles.

However, beyond this period of 10 to 15 Carrington rotations, active

longitudes may become less detectable or disappear altogether, raising questions

about their long-term existence. For instance, Pelt et al. 2005 challenged

the bimodal pattern in the longitudinal distribution of sunspots found by

Berdyugina et al. 2003, attributing it to potential biases in data processing.

Despite such debates, the existence of active longitudes is generally accepted

within the solar community, though their underlying causes and observable
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characteristics (e.g., number, location, lifespan) remain contested (Berdyugina

et al. 2003). Active longitudes may persist for several months or even years

(typically around 10 to 15 Carrington rotations) before disappearing and

reappearing after variable periods of time, sometimes in different locations,

which hinders their accurate detection and analysis.

Active longitudes have been detected across the longitudinal distributions

of various solar phenomena, including sunspots (Berdyugina et al. 2003), active

regions (Gyenge et al. 2012), CMEs (Skirgiello 2005; Gyenge et al. 2017), solar

flares (Bumba et al. 1969; Heras et al. 1990; Mordvinov et al. 2002; Zhang et al.

2007; Zhang et al. 2008; Gyenge et al. 2016), the interplanetary magnetic field

(Neugebauer et al. 2000), and coronal streamers (Li 2011). In this section, we

specifically analyse the longitudinal distribution of coronal off-limb structures,

aiming to uncover patterns and behaviours associated with active longitudes.

Given the substantial amount of data in our dataset, we set to examine the

longitudinal distribution of coronal off-limb structures on a monthly basis rather

than annually. Analysing yearly data, coupled with the effects of differential

rotation, would obscure the distribution trends. Figure 5.11(a) displays the

monthly distribution of the longitude of coronal off-limb structures (measured

at their central coordinates) in 2018, i.e., at the end of the decaying phase of

SC 24, one year before the onset of the next cycle. Each row corresponds to one

month, with row 1 representing January and row 12 representing December

2018.

Distinct peaks are visible for almost every month, frequently separated by

180◦, a pattern also noted in other studies (Chidambara Aiyar 1932; Bogart

1982; Bai 1987; Heras et al. 1990; Berdyugina et al. 2003; Zhang et al. 2007;

Plyusnina 2010; Gyenge et al. 2012; Liu et al. 2023). For example, in January

2018 (row 1), there are two peaks around 80◦ and 260◦; in March (row 3),

around 180◦ and 360◦; in April (row 4), around 160◦ and 340◦; in May (row 5),

around 90◦ and 280◦; in June (row 6), around 45◦ and 225◦; in August (row 8),

around 160◦ and 340◦; in September (row 9), around 90◦ and 270◦; in October

(row 10), around 40◦ and 250◦; in November (row 11), at 0◦, 180◦, and 360◦;

and in December (row 12), around 160◦ and 340◦. Perhaps the most notable

instance is in July (row 7), with peaks around 0◦, 180◦, and 360◦.

In parallel to the N-S asymmetry noted in the latitudinal distribution of

coronal off-limb structures (see Figure 5.7), we also observe an East-West (E-W)

asymmetry in their longitudinal distribution. In some months, peaks appear
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(a) Monthly distribution of coronal off-limb
structures per longitude throughout the year
2018 (row 1 represents January; row 12 rep-
resents December). Each month, one to three
peaks in preferred longitudes are observed, of-
ten spaced about 180◦ apart. Interestingly, these
peaks gradually shift from month to month.

(b) 27-day distribution of coronal off-limb
structures per longitude throughout the
year 2018 (for example, row 1 represents
the first 27 days of the year). This 27-day
period corresponds to Bartels’ rotation,
reflecting the Sun’s apparent rotation as
observed from Earth. Longitudinal peaks
and troughs are evident, indicating pre-
ferred and disfavoured longitudinal zones
of coronal features; however, these peaks
are less regular and well-defined than
those in Figure 5.11(a) due to the ab-
sence of bias introduced by the monthly
partitioning.

Figure 5.11: Monthly and 27-day (in 2018) distributions of coronal off-limb structures
per longitude. These distributions reveal distinct patterns, highlighting the bias
introduced by the monthly distribution compared to the 27-day period distribution.

at markedly different height levels at opposite heliographic longitudes. For

example, in March (row 3), the peak at 180◦ is higher than that at 360◦; in
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April (row 4), the peak at 160◦ is smaller than the one at 340◦; in May (row

5), the peak at 100◦ is significantly higher than the peak at 280◦; in August

(row 8), the peak at 160◦ is significantly smaller than that at 340◦; and in

September (row 9), the peak at 90◦ is smaller than the one at 270◦.

Figure 5.11(a) also shows longitudinal shifts of the peaks over the months.

For instance, a clear progressive displacement of the peak location is evident

when following the peak in row 1 at 260◦ moving to approximately 200◦ in

row 2, then to 180◦ in row 3, 160◦ in row 4, around 100◦ in row 5, 45◦ in

row 6, and finally to 0◦ in row 7 (and possibly row 8). Another diagonal shift

is visible, transitioning from 360◦ in row 3 to 180◦ in row 7, and a further

shift from 360◦ in rows 6–7 to 160◦ in row 12. The gradual movement of these

peaks suggests that they shift at an almost constant rate, indicating that

this monthly distribution is also skewed. Given that the Carrington rotation

occurs approximately every 27 days, certain longitudinal zones are counted

twice within a single month. This bias progressively propagates over time,

producing recurring peaks that shift almost consistently from month to month.

In an ideal scenario with a uniform distribution, the shift would be perfectly

consistent; however, in this case, the distribution is not uniform, introducing

slight variations in the shifting pattern.

Hence, we opted to examine the longitudinal behaviour of coronal off-limb

structures over a 27-day timeframe, as shown in Figure 5.11(b), which aligns

with Bartels’ rotation — accounting for the Sun’s apparent rotation as seen

from Earth. The resulting distribution in Figure 5.11(b) reveals significant

differences compared to Figure 5.11(a). The peaks observed in the monthly

distribution of coronal off-limb structures in Figure 5.11(a) differ in the 27-day

distribution, particularly with the 180◦ separation between active longitudes

becoming less distinct in Figure 5.11(b). However, while the peaks appear more

sporadically in Figure 5.11(b), they are still present — albeit at distances that

may be closer together or farther apart than the expected 180◦. For instance,

in rows 6 and 7, peaks occur at 0◦, 180◦, and 340◦, with the latter two peaks

closer together and farther from the first. In row 9, peaks are observed at 20◦,

180◦, and 290◦, again showing a smaller separation than 180◦. Meanwhile, row

8 shows two widely spaced peaks at 0◦ and 340◦, while rows 0, 1, and 2 display

two peaks located very close to each other. Thus, although the 180◦ separation

between peaks is not evident in Figure 5.11(b), clear peaks and troughs in

the longitudinal distribution of coronal off-limb structures still suggest the
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(a) 27-day longitudinal dis-
tribution of coronal off-
limb structures at both lat-
itude belts of 35◦/45◦ and
−45◦/− 35◦.

(b) 27-day longitudinal dis-
tribution of coronal off-limb
structures at the latitude
belt of 35◦/45◦ (Northern
hemisphere).

(c) 27-day longitudinal dis-
tribution of coronal off-limb
structures at the latitude
belt of −45◦/− 35◦ (South-
ern hemisphere).

Figure 5.12: 27-day distribution of coronal off-limb structures per longitude in 2018 at
different latitude belts corresponding to this 27-day rotation period. Panel a) shows the
longitudinal distribution centred on 40◦ latitude in the Northern hemisphere and −40◦

in the Southern hemisphere, within a 10◦ range. Panel b) focuses on the longitudinal
distribution in the Northern hemisphere only (+40◦ ± 5◦), while panel c) examines
the longitudinal distribution in the Southern hemisphere (−40◦ ± 5◦). These latitude
belts are specifically selected as they rotate at approximately a 27-day period, unlike
higher latitude belts, which rotate more slowly, or lower latitude belts, which rotate
more quickly.

existence of preferred longitudinal belts and quieter regions with lower coronal

activity.

The lack of a consistent 180◦ separation can be attributed to the effects of

differential rotation and fluctuations in solar activity across different latitude

bands (Usoskin et al. 2007). When investigating the longitudinal distribution

of coronal structures, it is important to account for the varying rotation rates

of different latitude bands, which should align with the selected period for the

distribution. For example, latitudinal regions around −40◦ in the Southern

hemisphere and +40◦ in the Northern hemisphere follow the Carrington rotation
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period of approximately 27 days. In contrast, the equatorial zone rotates with a

25-day period, while the solar poles rotate at around 35 days. This differential

rotation may cause a displacement of the same active longitudes across these

different latitude bands.

To account for this, Figure 5.12 presents the 27-day distribution of the

longitude of coronal off-limb structures in 2018, focusing on latitude bands that

rotate at roughly a 27-day period. Figure 5.12(a) shows the distribution for a

10◦ band centred around ±40◦. Figure 5.12(b) focuses on a 10◦ band centred

around +40◦ in the Northern hemisphere, while a 10◦ band centred around

−40◦ in the Southern hemisphere is used in Figure 5.12(c). We chose to plot the

longitudinal distribution separately for each hemisphere in Figures 5.12(b) and

5.12(c), as this allows us to observe the effects of the N-S asymmetry on the

distribution. Moreover, we noticed that using latitude belts with widths ranging

from 5◦ to 10◦ does not significantly alter the longitudinal characteristics of the

distribution. As an example, we present here the results using a 10◦ latitude

belt.

In Figure 5.12, active longitudes are distinctly visible, often displaying two

or three peaks that migrate over time. These peaks are frequently separated by

approximately 180◦, as seen in rows 6, 7, 12, and 13, where prominent peaks

occur around 0◦, 180◦, and 360◦; in row 9, with peaks at 90◦ and 270◦; and in

row 11, where peaks are observed around 70◦ and 250◦. In other rows, some

peaks are either farther apart, as in rows 3, 5, and 10, or closer together, as in

rows 0 and 4. Compared to Figure 5.11(b), active (and quiet) longitude belts

are now much more discernible when considering latitude bands that rotate at

the distribution period. While some longitudinal peaks shift over time, others

remain stable across several periods. For instance, a peak consistently appears

around 0◦ and 360◦ from row 3 to row 13, while other peaks persist for only

one or two rotations, such as the peak at 180◦ in rows 6 and 7, which reappears

later around 180◦ in rows 11 to 13. Notably, these peaks are not always of equal

height, indicating an E-W asymmetry: some active longitudes tend to display

more coronal activity than their counterparts located 180◦ apart. For example,

in rows 6 and 7, the peaks at 0◦ and 360◦ are higher than the middle peak at

180◦; this is contrary to row 12, where the middle peak at 180◦ is the highest.

Such predominance of coronal activity in one active longitude compared to

its counterpart at 180◦ illustrates the ”flip-flop” phenomenon, where leading

activity nests oscillate between active longitude belts. This dynamic behaviour
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reflects the intricate nature of coronal off-limb structures and their underlying

magnetic processes.

It is noteworthy that coronal activity in both hemispheres from Figures

5.12(b) and 5.12(c) is complementary, jointly contributing to the distribution

seen in Figure 5.12(a). However, this contribution is not always equal across

hemispheres and varies over time, influenced by the N-S asymmetry observed in

Figure 5.7(b). In Figure 5.7(b), we saw that coronal activity predominates in the

Southern hemisphere early in the year, shifts toward the Northern hemisphere

mid-year, and becomes more balanced toward year’s end. Observing this N-

S asymmetry in the distribution of active longitudes, as also reported by

Mordvinov et al. 2004; Berdyugina et al. 2006; Zhang et al. 2011, may provide

insights into the mechanisms behind their formation. In particular, Dikpati

et al. 2005, 2018, 2020 emphasised the role of (quasi-) stationary Rossby waves

in generating active longitudes. These waves, coupled with toroidal fields in

the tahocline and subject to differential rotation-induced instabilities, could

lead to magnetic flux emergence in favoured longitudinal zones (Gaizauskas

et al. 1983).

The origin of active longitudes indeed appears to be linked to modulations

of the global mean magnetic field by a non-axisymmetric background field

interacting with axisymmetric dynamo modes (Mordvinov et al. 2002; Kitchati-

nov et al. 2005; Jiang et al. 2007; Olemskoy et al. 2009; Raphaldini et al. 2023).

Further evidence of this dynamo connection is presented by Canfield et al. 1998;

Pevtsov et al. 1999; Pevtsov et al. 2003, who found that magnetic structures

in active longitude belts often contradict the hemispheric helicity rule. This

rule typically holds that active regions in the Northern hemisphere display

left-handed (negative) helicity (i.e., magnetic field lines twist counterclockwise),

while those in the Southern hemisphere show right-handed (positive) helic-

ity (i.e., field lines twist clockwise). However, active longitudes may contain

structures with reversed helicity — right-handed in the Northern hemisphere

and left-handed in the Southern hemisphere — leading to interactions between

structures of opposite helicity within localised areas. These interactions can

result in magnetic reconnection and shearing, which may create a conducive

environment for solar eruptions, such as flares and CMEs. Active longitudes

are thus characterised as highly dynamic sites of concentrated flux, perpetually

moving and stirring, with considerable magnetic complexity.

Interestingly, Figures 5.12(b) and 5.12(c) reveal opposite locations for
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active longitudes in their respective hemispheres. For instance, in rows 0 to

5, active longitudes in the Northern hemisphere are found between 0◦ and

180◦, while in the Southern hemisphere, longitudinal peaks are located between

180◦ and 360◦. In rows 12 and 13, there are two clear peaks at 0◦ and 360◦

longitude in the Southern hemisphere (at the −40◦ latitude belt), whereas a

peak is observed around 180◦ longitude in the Northern hemisphere (at the

40◦ latitude belt). This configuration results in three peaks appearing in rows

12 and 13 of Figure 5.12(a) at these longitudes. Further interesting patterns

emerge in row 10, where Figure 5.12(b) shows a peak around 340◦ longitude

in the Northern hemisphere, while Figure 5.12(c) indicates a peak around 70◦

longitude in the Southern hemisphere. This leads to the presence of two peaks

at these longitudes in row 10 of Figure 5.12(a). Similarly, in row 11 of Figure

5.12(b), a peak appears around 45◦ longitude in the Northern hemisphere,

while a peak occurs around 250◦ longitude in the Southern hemisphere (Figure

5.12(c)), resulting in two peaks at these longitudes in row 11 of Figure 5.12(a).

These observations suggest that an increase in coronal off-limb structures at

a specific longitude band in one hemisphere may correspond to a decrease in

the opposite hemisphere along the same longitude band. This is particularly

intriguing, as it implies that opposing active longitudes can manifest in different

hemispheres, potentially explaining the ”flip-flop” effect as a consequence of

the N-S asymmetry. As discussed in Section 5.7, the N-S asymmetry can vary

over solar cycles, as well as on annual and monthly timescales, causing the

active longitude in the more active hemisphere to dominate over that of the

less active hemisphere.

To draw a comparison, we plotted the distribution of the longitude of

coronal off-limb structures in the equatorial zone in Figure 5.13, using a 25-day

period corresponding to the rotation rate of this zone. Figure 5.13(a) showcases

this 25-day distribution over a 10◦ latitude band centred around the equator

at 0◦. Figure 5.13(b) highlights the latitude belt between 0◦ and 5◦ in the

Northern hemisphere, while Figure 5.13(c) depicts the longitudinal distribution

within the latitude belt spanning from −5◦ to 0◦ in the Southern hemisphere.

With the distribution confined to a small range around the equator, the N-S

asymmetry is much less apparent compared to Figure 5.12. Consequently,

Figures 5.13(a), 5.13(b), and 5.13(c) appear very similar, with prominent peaks

occurring at approximately the same locations in each distribution; for example,

a notable peak around 340◦ is visible from rows 3 to 9 in all three figures.
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(a) 25-day longitudinal dis-
tribution of coronal off-limb
structures at the latitude
belt of ±5◦.

(b) 25-day longitudinal dis-
tribution of coronal off-limb
structures at the latitude belt
of 0◦/5◦.

(c) 25-day longitudinal dis-
tribution of coronal off-limb
structures at the latitude belt
of −5◦/0◦.

Figure 5.13: 25-day distribution of coronal off-limb structures per longitude in 2018 at
different latitude belts corresponding to this 25-day rotation period. Panel a) shows the
longitudinal distribution centred at 0◦ latitude, within a 10◦ range; panel b) focuses
on the Northern hemisphere only (0◦ to 5◦), and panel c) on the Southern hemisphere
(−5◦ to 0◦). These latitude belts are selected because they rotate at approximately a
25-day period, in contrast to Figure 5.12, where mid-latitude bands centred around
40◦ and −40◦ rotate with a 27-day period.

A significant displacement of the active longitudes is observed. One peak

emerges at approximately 0◦ in row 0, then rapidly migrates along the following

rows, reaching row 4, where it settles between 270◦ and 360◦ and remains

until row 9. Another shift occurs from rows 10 to 12, as the main peak

appears at longitudes between 90◦ and 180◦, before ultimately shifting to

around 270◦ in rows 13 and 14. Although the 180◦ separation between peaks is

less visible here (except in certain rows, such as row 4), the active longitude

bands stand out, marked by high peaks. This pattern provides evidence of

longitudinal inhomogeneities in coronal activity and supports the existence of

active longitudes.
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5.10 Concluding remarks

The identification of coronal off-limb structures using MM algorithms applied

to SDO/AIA 304 Å images during SC 24 enabled detailed statistical analyses

of their properties. This study not only confirmed expected latitudinal concen-

trations but also uncovered longitudinal patterns, revealing the existence of

favoured longitude belts, termed active longitudes. After analysing monthly and

27-day distributions across the entire dataset, it became clear that differential

rotation across latitudes must be accounted for when examining longitudinal

distributions.

Specifically, plotting the 27-day longitudinal distribution centred around

+40◦ and −40◦ within a 10◦ latitude band, as well as the 25-day distribution

centred around the equator, confirmed the presence of active longitudes. These

active longitudes migrate over time and often appear approximately 180◦ apart.

When latitude bands farther from the equator were studied independently for

the Northern and Southern hemispheres (e.g., the +40◦ and −40◦ latitude

bands), a clear North-South asymmetry emerged, evident in the alternating

occurrence of active longitudes between hemispheres. This phenomenon may

also contribute to explaining the East-West asymmetry, or ”flip-flop” effect.

These findings thus reveal a longitudinal pattern akin to the butterfly

diagram for latitudinal distribution, offering significant implications for space

weather forecasting. Identifying longitudinal regions of heightened coronal

activity could enhance prediction accuracy. The dataset could also be used to

correlate the properties of coronal off-limb structures with the characteristics

of space weather phenomena, such as their frequency and magnitude, as well

as to compare these results with studies from previous solar cycles for deeper

historical insights. Furthermore, enriching the dataset by classifying structures

through cross-referencing with other datasets of specific coronal features (e.g.,

coronal loops or prominences) could further advance its utility for space weather

forecasting.
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Chapter 6

Conclusion and Outlook

Space weather forecasting is becoming increasingly critical as society grows more

reliant on technological systems that are vulnerable to solar eruptions. Strong

solar storms have already impacted various technologies, but the potential for

even larger events, akin to or exceeding those observed in the past — before

the advent of modern infrastructure — poses a significant risk. Such events

could disrupt numerous sectors and, in extreme cases, threaten the structure

of modern society.

To predict and understand space weather, it is crucial to identify precursors

of solar activity, which manifest as diverse features across the different layers

of the Sun’s atmosphere. Capturing these features requires a combination of

instruments operating from both ground-based and space-based platforms,

spanning a wide range of wavelengths. The vast and ever-growing volume

of data generated by these instruments, particularly by spacecraft, has now

outpaced the capacity for manual analysis, necessitating the use of automated

processing techniques to fully exploit these datasets.

In this context, the MM approach developed and applied in this thesis (see

Chapter 2) has proven to be particularly effective. It offers a robust and efficient

means of processing large-scale solar data, enabling more precise analysis of

solar activity and its implications for space weather forecasting.

This thesis first explored the application of MM to sunspot detection

using satellite images from SDO, demonstrating high robustness by delivering

results comparable to those obtained through manual methods, which are more

subjective and time-intensive (see Chapter 3). This achievement is significant,

as sunspots are essential indicators of solar activity. In particular, accurate
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and automated measurements of sunspot areas and configurations are needed,

given that the magnitude of solar eruptions is strongly correlated with the size

and complexity of these features.

In addition to high-resolution SDO data, the MM algorithms successfully

detected sunspots in lower-resolution images from ground-based observatories,

including OGAUC and CAO. They also identified solar faculae in chromospheric

images from both ground-based and space-borne observatories (see Chapter

2), features that are crucial for characterising active regions on the Sun. This

highlights the versatility of the MM approach, which can adapt to a variety of

datasets and image resolutions.

Beyond observational data, MM algorithms were also applied to simulation

outputs, specifically twist number maps derived from the TMFM (see Chapter

4). This led to improvements over the methodology previously used by Wagner

et al. 2023a for extracting magnetic flux rope structures, offering enhanced

characterisation of their morphology and propagation. Since magnetic flux

ropes are frequently embedded in CMEs and often serve as precursors to these

eruptions, their early identification provides a valuable tool for predicting

CMEs with greater lead time, a critical step toward improving space weather

preparedness.

Finally, the application of MM algorithms to SDO/AIA 304 Å images over

SC 24 enabled the identification of coronal off-limb structures and the creation

of a large dataset documenting these features and their properties (see Chapter

5). This dataset provides valuable insights into the spatial distribution of

coronal structures, uncovering patterns such as the butterfly diagram for higher-

intensity coronal off-limb structures in terms of their latitudinal distribution.

Furthermore, it offers new evidence supporting the existence of active longitude

belts — longitudinal regions where coronal activity tends to concentrate,

influenced by latitude and differential rotation. The observed N-S asymmetry

highlights hemispheric differences in the longitudinal distribution of coronal

activity, with offset behaviour between the hemispheres and alternating zones

of localised activity within each. This dataset, therefore, opens pathways for

enhancing understanding of coronal activity behaviour by identifying regions

of heightened solar activity.

The MM approach has proven to be a highly effective tool for solar feature

characterisation across all layers of the solar atmosphere. It has been success-

fully applied to the photosphere with sunspot identification, the chromosphere
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with solar faculae detection, the low corona through magnetic flux rope extrac-

tion, and the broader corona via the detection of coronal off-limb structures.

Although the method operates automatically once parameters are implemented,

determining the optimal parameters can be challenging. Incorporating ML

techniques to automatically fine-tune these parameters, as suggested by recent

studies (see Chapter 2), could provide a valuable complementary approach.

Beyond methodological advancements, access to high-resolution solar data

is indispensable for improving the identification and analysis of solar features.

Recently launched missions like the Parker Solar Probe or Solar Orbiter offer

promising opportunities in this regard. Equally important is the expansion

of ground-based observatories, which are more cost-effective and accessible,

enabling continuous monitoring of solar activity. Ground-based facilities are par-

ticularly valuable for studying the chromosphere, a critical layer in addressing

the long-standing mystery of atmospheric heating.

Together, advancements in both methodology and data acquisition are

crucial for unravelling the complexities of solar eruptions, which remain one of

the great enigmas of solar physics. These efforts will also play a pivotal role in

developing more accurate space weather forecasting systems, addressing the

growing societal need to mitigate the risks posed by solar storms and their

impact on modern technology.

Building on the advancements made in this PhD thesis, future work will

focus on further developing and refining MM algorithms and extending their

application to other solar features, such as filaments and solar jets. For instance,

incorporating more complex transforms, such as the watershed transform,

could enable effective segmentation of these features. Identifying solar jets,

in particular, may benefit from a dynamic MM approach that tracks their

evolution over time, as their rising and falling motion in the Sun’s atmosphere

makes them difficult to distinguish using static images alone. Automating jet

detection, which is currently performed manually (Soós et al. 2024), would

significantly reduce time demands, and MM appears well-suited for this task

as it can also process video data.

Regarding sunspot detection, the work developed in Chapter 3 of this thesis

can be extended to include the segmentation of umbra and penumbra within

sunspots and the classification of sunspots, particularly delta-sunspots, which

are strongly associated with intense solar eruptions.

The extraction of magnetic flux ropes, as discussed in Chapter 4, could be
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enhanced by employing other techniques in combination with MM, such as

machine learning. Such a combination could enable the automatic fine-tuning

of parameters, allowing for more robust application to diverse MFR structures

across different active regions.

For the identification of coronal off-limb structures, future directions out-

lined in Chapter 5 include expanding the analysis to data from earlier and future

solar cycles, applying the MM detection method across different SDO/AIA

wavelengths, and leveraging the dataset developed in this thesis to classify

specific features in conjunction with existing datasets from the literature.

By addressing these directions, future research can build upon the foun-

dational work presented in this thesis, contributing to the broader goal of

advancing solar physics and deepening our understanding of space weather

phenomena.
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Veronig (Feb. 2018). “The Origin, Early Evolution and Predictability of

Solar Eruptions”. In: Space Science Reviews 214.1, 46, p. 46. doi: 10.1007/

s11214-017-0462-5. arXiv: 1801.04608 [astro-ph.SR].

Gyenge, N., T. Baranyi, and A. Ludmány (Jan. 2012). “Distribution of ac-
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namic Precursors of Flares in Active Region NOAA 10486”. In: Journal

of Astrophysics and Astronomy 36.1, pp. 111–121. doi: 10.1007/s12036-

015-9329-x. arXiv: 1501.07257 [astro-ph.SR].
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mathématique de Fontainebleau. url: https://books.google.fr/books?

id=5dNcPgAACAAJ.

Serra, Jean (1982). Image analysis and mathematical morphology. Vol. 1. Lon-

don: Academic Press.

— (2020). “Mathematical morphology”. In: Encyclopedia of Mathematical

Geosciences. Ed. by B. S. Daya Sagar, Qiuming Cheng, Jennifer McKinley,

and Frits Agterberg. Cham: Springer International Publishing, pp. 1–16.

isbn: 978-3-030-26050-7. doi: 10.1007/978-3-030-26050-7_22-2.

Shea, M. A. and D. F. Smart (June 1990). “A Summary of Major Solar Proton

Events”. In: Solar Physics 127.2, pp. 297–320. doi: 10.1007/BF00152170.

Shen, Yucong, Xin Zhong, and Frank Y. Shih (2019). Deep Morphological

Neural Networks. doi: 10.48550/ARXIV.1909.01532. url: https://

arxiv.org/abs/1909.01532.

Shi, Zhongxian and Jingxiu Wang (1993). “Delta-Sunspots and X-Class Flares

in Solar Cycle 22”. In: International Astronomical Union Colloquium 141,

pp. 71–74. doi: 10.1017/S0252921100028815.

— (July 1994). “Delta-sunspots and X-class flares”. In: Solar Physics 149,

pp. 105–118. doi: 10.1007/BF00645181.

Shibata, Kazunari, Yoshinori Ishido, Loren W. Acton, Keith T. Strong, Tadashi

Hirayama, Yutaka Uchida, Alan H. McAllister, Ryoji Matsumoto, Saku

Tsuneta, Toshifumi Shimizu, Hirohisa Hara, Takashi Sakurai, Kiyoshi

Ichimoto, Yohei Nishino, and Yoshiaki Ogawara (Oct. 1992). “Observations

of X-Ray Jets with the YOHKOH Soft X-Ray Telescope”. In: Publications

of the Astronomical Society of Japan 44, pp. L173–L179.

Shibata, Kazunari, Hiroaki Isobe, Andrew Hillier, Arnab Rai Choudhuri, Hi-

royuki Maehara, Takako T. Ishii, Takuya Shibayama, Shota Notsu, Yuta

Notsu, Takashi Nagao, Satoshi Honda, and Daisaku Nogami (June 2013).

“Can Superflares Occur on Our Sun?” In: Publications of the Astronomical

Society of Japan 65.3, p. 49. issn: 0004-6264. doi: 10.1093/pasj/65.3.49.

150

https://books.google.pt/books?id=yLSBiVUZwKwC
https://books.google.pt/books?id=yLSBiVUZwKwC
https://books.google.fr/books?id=5dNcPgAACAAJ
https://books.google.fr/books?id=5dNcPgAACAAJ
https://doi.org/10.1007/978-3-030-26050-7_22-2
https://doi.org/10.1007/BF00152170
https://doi.org/10.48550/ARXIV.1909.01532
https://arxiv.org/abs/1909.01532
https://arxiv.org/abs/1909.01532
https://doi.org/10.1017/S0252921100028815
https://doi.org/10.1007/BF00645181
https://doi.org/10.1093/pasj/65.3.49


eprint: https://academic.oup.com/pasj/article- pdf/65/3/49/

60460001/pasj\_65\_3\_49.pdf.

Shih, Frank Y. and Artur J. Kowalski (Dec. 2003). “Automatic Extraction of

Filaments in Hα Solar Images”. In: Solar Physics 218.1, pp. 99–122. doi:

10.1023/B:SOLA.0000013052.34180.58.

Shrivastav, Arpit Kumar, Vaibhav Pant, David Berghmans, Andrei N. Zhukov,

Tom Van Doorsselaere, Elena Petrova, Dipankar Banerjee, Daye Lim, and

Cis Verbeeck (2024). “Statistical investigation of decayless oscillations in

small-scale coronal loops observed by Solar Orbiter/EUI”. In: Astronomy

& Astrophysics 685, A36. doi: 10.1051/0004- 6361/202346670. url:

https://doi.org/10.1051/0004-6361/202346670.

Skirgiello, M. (2005). “The east-west asymmetry in Coronal Mass Ejections:

evidence for active longitudes”. In: Annales Geophysicae 23.9, pp. 3139–3147.

doi: 10.5194/angeo-23-3139-2005. url: https://angeo.copernicus.

org/articles/23/3139/2005/.
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