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Abstract

Drug discovery seeks to identify new candidate medications that can effectively treat human

diseases with acceptable developability. Traditional computational and machine learning

methods leverage handcrafted domain features for drug screening but suffer from poor

transferability due to the vast chemical search space. In this thesis, we introduce transferable

representation learning, a prominent approach within deep learning, to address different

domain transferability challenges in drug discovery. Specifically, we develop three deep

learning-based frameworks to learn transferable representations that adapt to key drug-related

tasks, improving specific transferability for drug-target interaction prediction and enhancing

generic transferability for molecular property prediction and inverse protein folding.

For drug-target interaction prediction, we first propose a low-bias evaluation strategy

to effectively validate specific transferability. After that, we develop a bilinear attention

network-based framework incorporating domain adaptation to improve performance un-

der both in-domain and cross-domain settings. Furthermore, we design a molecular self-

supervised pre-training framework aimed at improving generic transferability for molecular

property prediction. The pre-trained model fully captures 2D topological and 3D geometric

information of molecules, enabling fine-tuning for different downstream property prediction

tasks. Finally, we design a mask prior-guided denoising diffusion framework that improves

generic transferability for inverse protein folding, which involves iteratively generating feasi-

ble amino acid sequences that can fold into a given protein structure. In this thesis, extensive

experiments are conducted to demonstrate the effectiveness of our proposed frameworks

compared to related state-of-the-art methods. We also identify potential research directions

in this emerging field for future exploration.
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Chapter 1

Introduction

The goal of drug discovery is to identify safe and effective compounds for the treatment of hu-

man diseases. Owing to the enormous chemical space (~1060 active molecules) (Kirkpatrick

and Ellis, 2004) and complex screening process (Kim et al., 2021), traditional drug discovery

has notably high cost and time-consuming development cycle. The average cost of a new

medicine is estimated at 2.6 billion USD, and the whole development cycle takes over 12

years (Chan et al., 2019). To decrease the cost and failure rate of in vitro experiments, many

computational methods, such as quantitative structure-activity relationship (QSAR), were

utilized to accelerate the identification of high-confidence drug candidates (Sliwoski et al.,

2014). However, these methods typically rely on a set of handcrafted features that require

extensive and expert domain knowledge. If the predefined rules lack the right representative

information for the specific task, computational methods will have poor generalization. In

contrast, deep learning (DL)-based methods can adaptively learn data-driven representation

from input data and flexible objectives, allowing to greatly enhance model performance on

drug discovery-related tasks.

With the accumulation of large amounts of biological and chemical data over the last few

decades, considerable effort has been invested to automating and accelerating drug screening

and design through DL. These techniques now play a vital role across multiple stages of the

drug discovery pipeline. For instance, DL-based methods can predict interactions between

drug molecules and target proteins (Lee et al., 2019; Nguyen et al., 2021; Öztürk et al.,
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2018; Huang et al., 2021), enabling biologists and chemists to prioritize the most promising

candidates and identify potential opportunities for drug repurposing at an early stage. By

representing molecules as graphs, researchers have developed deep models for molecular

property prediction using graph representation learning (You et al., 2020; Subramonian,

2021; Stärk et al., 2022; Liu et al., 2022). This enables the prediction of key properties

such as solubility, toxicity and stability, reducing reliance on time-consuming wet-lab assays.

Furthermore, deep generative models are increasingly developed for de novo design tasks,

such as generating novel proteins or small molecules with desired properties (Jumper et al.,

2021; Peng et al., 2022). They are also used for inverse protein folding, which designs feasible

amino acid sequences with specific protein structures and functions (Yi et al., 2024; Zheng

et al., 2023). Consequently, the emergence of DL techniques has progressively transformed

the early stage of drug discovery, leading to the exploration of more efficient, precise and

cost-effective methodologies in relevant applications.

1.1 Motivation and Research Questions

Despite the great success and breakthroughs of DL across multiple fields, most mainstream

DL models are considered to be data-hungry, which require a huge amount of training data

to achieve satisfactory and generalizable performance. However, the cost of data annotation

and collection is quite expensive in drug discovery-related tasks. Although there has been

accumulated considerable big data over many years of chemical research, the data volume

and efficiency are still inadequate in the face of enormous magnitude of chemical space.

Therefore, the learned deep representations always lack transferability to other relevant tasks,

or the same task but with different distributed data (Bengio, 2012).

In the process of real-world drug design and screening, it is crucial to consider transfer-

ability in modelling as the drug molecules to be predicted are often novel and out of learned

distribution. In this thesis, we aim to explore model transferability in drug discovery and de-

velop new DL-based methods. The proposed methods can learn transferable representations

that adapt to multiple prediction tasks, and enhance generalization to out-of-distribution data.
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Fig. 1.1 The two-stage TRL lifecycle in most transferability research of DL. In upstream
pre-training, models mainly focus on learning generic transferability from large-scale la-
beled/unlabeled data. In downstream adaptation, the pre-trained models can be directly
fine-tuned to adapt to the target task if labeled data in the target domain is available. If there
is only unlabeled data in the target domain, additional labeled data from the source domain
will be introduced to improve target performance.

Towards gaining transferability in DL, as shown in Figure 1.1, the whole lifecycle of

transferable representation learning (TRL) can be divided into two stages: upstream pre-

training and downstream adaptation (Jiang et al., 2022). Upstream pre-training utilizes

large-scale labeled/unlabeled data to learn general representations or reusable weights that

can be transferable to diverse downstream tasks. The goal of this stage is to enhance generic

transferability of models. Pre-training strategies have been widely studied in many fields,

including computer vision (CV) (Liu et al., 2021) and natural language processing (NLP)

(Devlin et al., 2019). They have gradually become a paradigm in large-scale industrial

applications, such as foundational models, owing to their decent performance.

Moreover, the stage of downstream adaptation aims to enhance specific transferability to

a target task using downstream data. When labeled data is available from the target domain,

pre-trained models can be directly fine-tuned to adapt to the target task. However, if only

unlabeled data is available in the target domain, additional labeled data from the identical

prediction task but with a different distribution (i.e. source domain data) can be employed

to enhance target performance. This process is known as domain adaptation (Ganin and

Lempitsky, 2014), which is a significant component in TRL. As a result, the majority of DL
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transferability research falls within a specific stage of the TRL lifecycle. Next, I will describe

my TRL research questions in drug discovery and give a brief background about them.

• Many DL-based methods have significantly achieved high accuracies in the field of

drug discovery. However, an obvious performance gap still remains between academic

research and industrial applications, where academic results tend to be over-optimistic

for industrial settings. An essential reason is that the general evaluation framework for

DL assumes that test data follows the same distribution as training data, which rewards

more memorization rather than transferability. To effectively employ the models in

real-world drug discovery, it is crucial to demonstrate their generalization that can

transfer learned knowledge to novel drugs. Therefore, the first research question (Q1)

is: how can we design a low-bias evaluation to fairly measure model transferability

and reduce the gap with real performance in drug discovery?

• In the downstream adaptation of TRL, current deep models perform weak specific

transferability, leading to a significant performance decrease when faced with biological

test data that falls outside the learned distribution. Different from the fields of CV and

NLP, drug discovery typically lacks sufficient labeled data to learn the full distribution

for the target domain. Consequently, the weak specific transferability heavily impedes

the application of deep models in wider scenarios. The second research question (Q2)

is: how can we enhance specific transferability of deep models to novel drugs that are

out of learned distribution?

• In the upstream pre-training of TRL, a well-trained model learns transferable represen-

tations and reusable parameters with generic transferability. This enables the model

to effectively adapt to various discriminative and generative tasks, such as molecular

property prediction and inverse protein folding. In drug discovery, the number of

labeled data is often far from sufficient to obtain a pre-trained model with enough

generic transferability. The third research question (Q3) is: how can we design the

self-supervised learning frameworks that can enhance generic transferability in both

drug-related discriminative and generative tasks?
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Fig. 1.2 The structured relationships of different components in this thesis. The main focus is
exploring transferable representation learning in drug discovery, which is applied to relevant
tasks and transferability patterns.

1.2 Structure and Contributions

This section presents the structure of this thesis and highlights the novel research contributions.

Figure 1.2 illustrates the structured relationships between TRL and drug discovery tasks in

this thesis. Chapter 2 presents a survey of the literature related to the research topics. In

Chapter 3, we propose a low-bias evaluation method to measure the model generalization for

drug-target interaction (DTI), specifically targeting Q1. Chapter 4 answers Q2 by presenting

a new deep model, the bilinear attention network with domain adaptation, to comprehensively

improve DTI prediction. After that, Chapters 5-6 utilize the newly developed pre-training

strategies to enhance the generic transferability of Q3 in molecular property prediction and

protein design, respectively. Chapter 7 summarises the findings of this thesis and presents

the potential future work. The main contents of the following chapters are listed below.

Chapter 2: Background presents a survey of the literature related to the research topics

in this thesis. Since molecules can be naturally viewed as 2D topology graphs, where each

node represents an atom and each edge denotes a chemical bond. Graph representations

can effectively encode structural information in molecules and play a crucial role in the

development of our proposed methods. This chapter first introduces the background knowl-

edge about deep graph learning, including Graph Neural Networks (GNNs) and Graph

Transformer. Then, it provides a fundamental review of TRL, which can be divided into

self-supervised pre-training and domain adaptation. Additionally, this chapter shows a key

generative method: denoising diffusion probabilistic models (DDPMs) that will be used in
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Chapter 6. Finally, three important tasks in drug discovery: drug-target interaction, molecular

property prediction and molecule generation, are introduced as the focus of this thesis.

Chapter 3: Toward Low-Bias Evaluation for Drug-Target Interaction identifies the

common pitfalls that lead to high-bias performance evaluation in drug-target interaction

(DTI) prediction. It then presents two hierarchical-clustering-based split strategies to achieve

low-bias evaluation in realistic settings. We specifically study the data bias in a widely

used DTI dataset, BindingDB, and re-evaluate the prediction performance of three state-of-

the-art deep models using five data split strategies. The experimental results confirm the

overoptimism of the general random and cold splits. Meanwhile, this study reveals that

hierarchical-clustering-based splits are far more challenging and can provide a potentially

more valuable evaluation of model transferability in real-world DTI prediction scenarios.

Contribution 1: We empirically validate the general evaluation bias for deep models

in DTI prediction, and propose two hierarchical-clustering-based splits to solve Q1.

The new split strategies lead to more challenging tasks that can better reward model

transferability (or generalization) rather than memorization. Additionally, we point

out the common pitfalls in the construction of the DTI dataset, which can serve as

guidelines for mitigating data bias. The low-bias evaluation framework provides an

effective transferability comparison of deep models in realistic settings.

Chapter 4: Bilinear Attention Network for Drug-Target Interaction Prediction

presents an interpretable bilinear attention network-based model (DrugBAN) to improve

DTI prediction. It works on 2D drug molecular graphs and 1D target protein sequences to

perform prediction. BAN is employed to learn local pairwise interactions between drugs

and targets, while conditional domain adversarial learning is introduced to align the learned

representations across different distributions for better generalization on novel drug-target

pairs. Experiments on three benchmark datasets under both in-domain and cross-domain

settings show that DrugBAN achieves the best overall performance against other state-of-the-

art models. Moreover, visualizing the learned bilinear attention map provides interpretable

insights from prediction results.
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Contribution 2: We propose DrugBAN, an end-to-end bilinear attention deep model

to address Q2. To enhance the specific transferability to out-of-distribution data,

we have integrated an adversarial domain adaptation module into the cross-domain

modelling. Moreover, we create a quantitative cross-domain scenario by utilizing

a clustering-based split strategy. Distinct from previous methods, DrugBAN can

leverage its bilinear attention map to capture pairwise local interactions between drugs

and targets, resulting in more interpretable insights for prediction results and improved

generalization capability.

Chapter 5: Geometry-aware Line Graph Transformer Pre-training proposes to apply

Graph Transformer to develop a novel molecular self-supervised pre-training framework for

molecular representation learning, and adapt to various downstream molecular property pre-

diction tasks. We first design a geometry-aware line graph transformer (Galformer) backbone

to adaptively encode the 2D topological and 3D geometric line graphs of a molecule. The

designed backbone has a high capacity and can capture critical structural information from

both 2D and 3D modalities. Next, we devise two complementary pre-training tasks, that is

dual-view contrastive learning and masked line node prediction, to achieve comprehensive

understanding at both inter and intra-modality levels. To evaluate the model performance of

Galformer, we compare it against six state-of-the-art baselines on twelve property prediction

benchmarks, using downstream fine-tuning. Experimental results show that Galformer con-

sistently outperforms all baselines on both classification and regression tasks, demonstrating

its effectiveness.
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Contribution 3: We propose a novel molecular self-supervised pre-training frame-

work, Galformer, to address Q3 in the context of molecular property prediction.

Galformer leverages a unified graph transformer architecture to encode the topological

and geometric information of a molecule simultaneously, which fully captures struc-

tural information from different modalities. Furthermore, we build two complementary

pre-training tasks from both inter- and intra-modality levels as self-supervised objec-

tives, allowing the model to understand generic domain knowledge in the learning

process.

Chapter 6: Mask Prior-Guided Denoising Diffusion Improves Inverse Protein Fold-

ing presents a mask prior-guided denoising diffusion (MapDiff) framework that accurately

captures structural and residue information for inverse protein folding. MapDiff is a discrete

diffusion probabilistic model that iteratively generates amino acid sequences with reduced

noise, conditioned on a given protein backbone. Additionally, we develop a two-step denois-

ing network incorporating residue interactions through a mask prior pre-training strategy.

For sampling inference, we combine the denoising diffusion implicity model with Monte-

Carlo dropout to improve the generative process. Experiments on four sequence design

benchmarks demonstrate that MapDiff significantly outperforms existing methods, achieving

state-of-the-art performance. Furthermore, the protein sequences generated by our method

exhibit biological relevance and a high degree of similarity in folding into structures closely

resembling native proteins.
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Contribution 4: We propose MapDiff, a novel discrete denoising diffusion-based

framework to solve Q3 in the context of inverse protein folding. This framework

incorporates a two-step denoising network that adaptively conditions the diffusion

trajectories to produce feasible amino acid sequences from a fixed protein structure.

Particularly, we design a masked sequence designer that explicitly considers residue

interactions through a mask prior pre-training strategy. Furthermore, MapDiff lever-

ages denoising diffusion implicity model with Monte-Carlo dropout to accelerate the

generative process and improve uncertainty estimation.

Chapter 7: Conclusion and Future Work summarises the findings and contributions

involved in this thesis. We then point out the potential directions for future research in the

area, expanding upon the work presented in the prior chapters.

The contents of this thesis are based on the following three publications and one

manuscript on arXiv, for which I am the leading author. The technical contents of Chapter 4

and Chapter 6 have appeared in Nature copyrighted materials, with the permission to preprint

version granted by Nature.

1. Peizhen Bai, Filip Miljković, Yan Ge, Nigel Greene, Bino John, and Haiping Lu. "Hi-

erarchical clustering split for low-bias evaluation of drug-target interaction prediction."

IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 641-644,

2021.

2. Peizhen Bai, Filip Miljković, Bino John, and Haiping Lu. "Interpretable bilinear

attention network with domain adaptation improves drug–target prediction." Nature

Machine Intelligence, 5, 126-136, 2023.

3. Peizhen Bai, Xianyuan Liu, and Haiping Lu. "Geometry-aware Line Graph Trans-

former Pre-training for Molecular Property Prediction." arXiv preprint: 2309.00483,

2023.
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4. Peizhen Bai, Filip Miljković, Xianyuan Liu, Leonardo De Maria, Rebecca Croasdale-

Wood, Owen Rackham, and Haiping Lu. "Mask prior-guided denoising diffusion

improves inverse protein folding." Nature Machine Intelligence, 1-13, 2025.

The following three papers were also co-authored during the period of research, however

do not align with the main narrative of this thesis and therefore have not been included in the

text.

1. Lu, Haiping, Xianyuan Liu, Shuo Zhou, Robert Turner, Peizhen Bai, Raivo E. Koot,

Mustafa Chasmai, Lawrence Schobs, and Hao Xu. "PyKale: Knowledge-aware

machine learning from multiple sources in Python." ACM International Conference on

Information & Knowledge Management (CIKM), 4274-4278. 2022.

2. Xu, Hao, Shengqi Sang, Peizhen Bai, Ruike Li, Laurence Yang, and Haiping Lu.

"GripNet: Graph information propagation on supergraph for heterogeneous graphs."

Pattern Recognition, 133, 108973, 2023.

3. Mu, Yida, Peizhen Bai, Kalina Bontcheva, and Xingyi Song. "Addressing Topic

Granularity and Hallucination in Large Language Models for Topic Modelling." arXiv

preprint:2405.00611, 2024.



Chapter 2

Background

In Chapter 1, we have introduced the importance of transferable representation learning

(TRL) and presented a basic research framework for drug discovery. In this chapter, we will

further provide a more comprehensive background on our research topics. Firstly, we start

with the introduction of TRL methods based on different techniques and gain insights into

their applications to drug discovery. After that, we discuss classical graph-based models

in deep graph learning, which have shown great influence in modeling molecular data.

Then, we introduce a promising class of deep generative methods called denoising diffusion

probabilistic models. Finally, this chapter presents the related work on three application-

specific tasks: drug-target interaction prediction, molecular property prediction, and 3D

molecule generation.

2.1 Transferable Representation Learning

Although deep learning models are widely used across various fields due to their powerful

performance, they typically require large-scale labeled data during training, and thus can

generalize well to test data. However, in drug discovery, there are many specific tasks for

which only unlabeled or limited labeled data is available. The nature of data scarcity restricts

the transferability of deep learning models to unseen data that is out of the learned distribution.

In this condition, pre-training and domain adaptation have become classic paradigms for
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tackling problems with limited data and annotations. These methods can learn transferable

representations from a relevant upstream task or the same downstream task but with different

distributed data. In this section, we will discuss important pre-training and domain adaptation

approaches as background for our study.

2.1.1 Introduction to Pre-training

Pre-training aims to train deep learning models using large-scale upstream data, and transfer

the learned knowledge to specific downstream tasks to improve performance. In recent years,

it has been widely applied to enhance the generic transferability of large and foundational

models (Radford et al., 2018; Devlin et al., 2019; Ouyang et al., 2022). Generally, the

pre-training paradigm is considered to be effective as it enables implicitly learning inductive

bias (Torrey et al., 2010) and reducing intrinsic dimensions (Aghajanyan et al., 2021) from

large amounts of data.

Inductive bias refers to the set of assumptions that a machine learning algorithm makes to

generalize unseen data. For example, in supervised learning, convolutional neural networks

utilize the local connectivity assumption as its strong inductive bias for image recognition.

When training data is scarce, a fixed but strong inductive bias can enhance data efficiency

and improve model generalization. However, it will also limit the model’s hypothesis space,

potentially reducing its transferability and expressiveness to specific tasks (Battaglia et al.,

2018). During pre-training, important inductive bias can be acquired from large-scale data

itself rather than manual definition. This data-driven approach ensures that the learned

inductive bias is more transferable and representative of the underlying data distribution. As

the most commonly used architecture for pre-training, Transformer (Vaswani et al., 2017)

has the least assumptions on the input data structure, thus providing the most expressive

framework for adaptively learning transferable knowledge and inductive bias.

Intrinsic dimension describes the minimum number of parameters required to solve the

optimization problem without significant loss in performance (Li et al., 2018). A pre-trained

model typically contains millions of learnable parameters, but it can generalize well to

downstream tasks using only a few hundred or thousand labeled samples through fine-tuning



2.1 Transferable Representation Learning 13

(Devlin et al., 2019) or low-rank adaptation (Hu et al., 2022). The phenomenon demonstrates

that pre-training can effectively reduce the intrinsic dimension of the model. Aghajanyan et al.

(2021) provides empirical evidence that larger models can have lower intrinsic dimension

after a certain number of pre-training iterations, leading to efficient model compression

and capturing the essential features of the data. Therefore, pre-training can achieve rapid

adaptation and enhance generalization on new tasks by leveraging the low intrinsic dimension

nature.

Pre-training methods can be classified into supervised pre-training and self-supervised

(unsupervised) pre-training, depending on the use of labeled or unlabeled training data. Due

to the scarcity and high annotation cost for the labeled data in the field of drug discovery, this

thesis primarily focuses on the development of self-supervised pre-training. Next, we will

introduce two classic self-supervised learning frameworks based on the types of specifically

designed pre-training tasks: contrastive self-supervised pre-training and generative self-

supervised pre-training (Jiang et al., 2022).

2.1.2 Contrastive Self-supervised Pre-training

𝑥𝑥𝑘𝑘

𝑥𝑥𝑞𝑞 Query 
Encoder

Key 
Encoder

𝑧𝑧𝑞𝑞

𝑧𝑧𝑘𝑘

Query 
Decoder

Key 
Decoder

𝑞𝑞

𝑘𝑘

𝑥𝑥 Contrastive loss

Fig. 2.1 A general pipeline of contrastive learning. Two augmented views xq and xk are
generated from the original input x. xq serves as an anchor, while xk acts as its positive
sample. The two views xq and xk are first encoded to their latent representations zq and zk,
respectively. Then the decoders map the latent representations into metric space to calculate
the contrastive loss. The model is optimized by minimizing the contrastive loss.
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Contrastive learning is a self-supervised pre-training approach that involves discriminative

tasks. It applies an instance-based comparison to group similar samples closer together and

pushes diverse samples farther apart (Jaiswal et al., 2020), as shown in Figure 2.1. For each

input data x, contrastive learning first creates two augmented views xq and xk using domain-

specific augmentation strategies, such as random cropping or color transformation for image

data. In pre-training, one of the augmented view xq acts as an anchor, while another view xk

serves as its positive sample. All other samples in the training set are considered as negative

samples. The encoders embed and map different views into their latent representations, and

the decoders further map the latent representations into common metric space to calculate

specific contrastive loss, such as InforNCE (Oord et al., 2018) or NT-Xent (Chen et al.,

2020b). Despite having different forms, the primary goal of contrastive losses is to maximize

the mutual information between the anchor and positive sample in the metric space. In this

way, contrastive learning creates pseudo labels for self-supervised pre-training and enables

the model to adaptively capture intrinsic and transferable knowledge from data.

There are two key components in contrastive learning: augmentation strategy and con-

trastive framework. The design of the augmentation strategy is highly flexible and relies on

specific types of data. An effective augmentation strategy should have two basic properties:

(1) Generating sufficient diverse variations to enhance model generalization across different

scenarios. (2) Preserving semantic invariance to ensure that positive pairs maintain their

essential features even after augmentation. For image data, many geometric transformations,

such as flipping, random cropping and scaling, are often used as augmentation strategies

to generate anchors and positive samples (Jaiswal et al., 2020). Such methods encourage

generative diversity while keeping semantic invariance in original images. For text data, two

consecutive sentences from the same document can be regarded as natural positive pairs.

Lan et al. (2020) utilize the textual nature to construct sentence-order prediction tasks as

contrastive self-supervised pre-training. In the field of drug discovery, MolCLR (Wang et al.,

2021b) designs three molecular data augmentation strategies (atom masking, bond deletion

and subgraph removal) to develop 2D molecular contrastive learning, improving the model

performance on various downstream tasks for molecular property prediction.
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Fig. 2.2 Three classic contrastive frameworks. (a) SimCLR generates query and key rep-
resentations separately with a large batch size. (b) Memory Bank records various key
representations in a look-up dictionary and the negative data is sampled from previous
recorded representations at each batch training. (c) MoCo maintains a large and consistent
dictionary using a memory bank and momentum update mechanisms. The momentum
encoder is iteratively updated from the query encoder with a small momentum coefficient.

The second key component is the contrastive framework used to propagate information.

Figure 2.2 illustrates three classic contrastive frameworks: SimCLR (Chen et al., 2020b),

Memory Bank (Wu et al., 2018b) and MoCo (He et al., 2020), which are primarily different

from the strategies for negative sample collection. SimCLR proposes a simple end-to-end

contrastive framework, in which query and key encoders individually process input data and

perform the reverse gradient update. During the training phase, SimCLR usually employs

a large batch size to provide more diverse negative samples and make the discriminative

task more challenging. However, in certain scenarios, using a large batch size can exceed

the memory limit of hardware resources and suffer from optimization issues in regular

backpropagation. To solve the issues, Memory Bank introduces a dictionary of negative

samples by accumulating the generated negative representations from a series of previous

batch iterations. It significantly reduces the memory cost in mini-batch training and enhances

the framework scalability in applications. On the basis of Memory Bank, MoCo maintains a
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dynamic dictionary of negative samples through a momentum update. It slowly updates the

momentum encoder from the query encoder using a small momentum coefficient. Meanwhile,

the dynamic dictionary uses a queue mechanism to remove outdated negative representations

regularly. As a result, MoCo can relieve the representation inconsistency problem in the

dictionary of negative samples and improve memory efficiency with small batch training.

In comparison to supervised pre-training, contrastive self-supervised pre-training can

learn more transferable representations with unlabeled data, leading to competitive or even

better performance on a range of downstream tasks. To explain this phenomenon, Zhao et al.

(2021b) reveals that contrastive self-supervised pre-training usually learns low-level and mid-

level representations that can be transferred, while supervised pre-training tends to extract

high-level semantic information to specific properties. In drug discovery, researchers aim to

comprehensively evaluate various properties of a potential drug molecule, such as toxicity,

stability and lipophilicity. If the downstream property prediction is not connected to the labels

in supervised pre-training, the pre-trained models may suffer from overfitting, potentially

limiting their generic transferability. In contrast, contrastive pre-training methods need to

discriminate all instances rather than labels. This makes the model learn more essential

and transferable representations at the low and mid-levels, which enhances transferability to

various downstream tasks.

2.1.3 Generative Self-supervised Pre-training

Generative learning is a self-supervised pre-training approach that learns to approximate

underlying data distribution with generative pre-training tasks. Figure 2.3 illustrates a general

pipeline for generative learning. The perturbed sample xp is first generated from the original

input x. Then it employs an encoder to map xp into a latent representation z, and a decoder

further maps z back to a reconstructed output x̂. The objective of generative pre-training

tasks is to minimize the reconstructed loss between the original input x and the reconstructed

output x̂. After pre-training, the encoder and learned latent representations can be adapted

to downstream tasks. Based on the types of objective functions, most generative learning
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Fig. 2.3 A general pipeline of generative learning. The perturbed sample xp is generated
from the original input x. An encoder is employed to map xp into a latent representation z,
and a decoder further maps z back to a reconstructed output x̂. The objective of generative
pre-training tasks is to minimize the reconstructed loss between the original input x and the
reconstructed output x̂.

methods are classified into two categories: autoregressive pre-training and autoencoding

pre-training.

Autoregressive pre-training learns the data distribution by predicting future information

on the condition of the previous context. For example, language modeling aims to predict

the probability of the next word in a given sequence, depending on the previous contextual

words in a fixed window size. The autoregressive mechanism can facilitate contextual

understanding and capture rich semantics in the face of vast amounts of data. A well-known

autoregressive model is the generative pre-trained transformer (GPT) (Radford et al., 2018;

Brown et al., 2020), which combines the transformer architecture and language modeling

task for autoregressive pre-training. With the expansion of the training corpus and model size,

GPT models have demonstrated impressive transferability across a variety of downstream

NLP tasks, particularly in the breakthroughs of generative tasks.

Autoencoding pre-training learns the data distribution by reconstructing the original input

from the latent representation of the mask sample. The hypothesis of autoencoding models is

that transferable representations should be robust to reconstruct all information from the input

with partial corruption. Recently, He et al. (2022) proposes masked autoencoder (MAE) to

train a vision transformer with unlabeled image data. For data perturbation, MAE randomly

masks over 70% patches of each input image. The model must capture essential and rich

information to reconstruct the entire image with a small fraction of input patches. In the field



18 Background

of drug discovery, Hu et al. (2020) propose autoencoding pre-training strategies for molecular

representation learning. By viewing each molecule as a 2D graph, they randomly mask the

attributes of atoms or chemical bonds, and then employ graph neural networks (GNNs) to

predict them based on local structures. The pre-trained GNNs can capture both structural

information and domain-specific knowledge, thereby enhancing model transferability on

downstream molecular tasks. Due to the great progress of large-scale generative learning

across various domains, there has been an increasing interest in developing relevant pre-

training techniques for molecules within the giant chemical space (Rong et al., 2020; Zhang

et al., 2021; Yang et al., 2022a).

2.1.4 Domain Adaptation

Self-supervised pre-training improves the generic transferability of deep learning models by

utilizing large-scale unlabeled data. The pre-trained models can then be adapted to a target

task with a few labeled data from the target domain. Nevertheless, in many real scenarios,

the data in the target domain is novel and lacks label information, with only some labeled

data from a source domain being available. Due to the distribution gap between the source

and target domains, a well-trained model using the labeled source data often performs poorly

in predicting the target domain. In this situation, domain adaptation techniques have been

proposed to reduce the distribution shift between the source domain and target domain, thus

improving the model performance and specific transferability.

Early domain adaptation methods reweight sample importance or find common feature

subspace in the shallow regime, using labeled data in the source domain and unlabeled

data in the target domain (Sugiyama et al., 2007). In recent years, deep domain adaptation

methods apply the adaptation module into deep neural networks to adaptively learn domain-

invariant features and reduce the distribution gap between the source and target domains

(Gong et al., 2013; Huang et al., 2006). For instance, Long et al. (2018) propose a conditional

domain adversarial network (CDAN) that combines adversarial networks with multilinear

conditioning to learn transferable representation for domain adaptation. By incorporating
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classifier prediction information into adversarial learning, CDAN can effectively align data

distributions across different domains.

Domain adaptation has gained more attention for improving specific transferability in drug

discovery. Abbasi et al. (2019) combine deep domain adaptation with graph convolutional

networks for cross-domain molecule property prediction. For another instance, we develop

a bilinear attention network-based framework for drug-target interaction prediction. In

addition to focusing on in-domain prediction, we have incorporated deep adversarial domain

adaptation into our framework to enhance cross-domain prediction performance. A detailed

description and experimental validation will be presented in Chapter 4.

2.2 Deep Graph Learning

Transferable representation learning provides pre-training and domain adaptation frameworks

for leveraging information across tasks and domains. However, its direct application to drug

discovery requires deep architectures that can capture complex structural relationships. To

address this, deep graph learning has emerged as a robust approach to represent and learn

from graph-structured data such as molecules and proteins. This section introduces the basics

of graphs and explains two main types of architectures: graph neural networks and graph

transformers. As a result, these provide the foundation for applying transfer learning in drug

discovery.

2.2.1 Fundamentals of Graph

Definition 2.2.1. (Graph). A graph with N nodes can be denoted as G= (V,E), where each

node vi ∈ V and each edge (vi,v j) ∈ E for i, j = 1, ...,N. Let X ∈ RN×D represent the node

feature matrix that contains the attributes of the nodes in D dimensions. The adjacency matrix

is represented as P ∈ {0,1}N×N , indicating the connectivity between nodes. For any pair of

nodes vi and v j, Pi j = 1 if there is an edge connecting them, otherwise Pi j = 0

Graphs, such as social networks, recommendation systems, and knowledge graphs, are

ubiquitous and natural data structures that can capture pairwise interactions between a set of
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nodes, as defined in Definition 2.2.1. In the field of life science, graphs are also commonly

used to describe many real-life complex relationships, ranging from molecular structures to

biological systems (Yi et al., 2022). For instance, at the molecular scale, biomolecules can

be represented as graphs that capture the structural and spatial relationships between their

component atoms and chemical bonds. At the biological level, interactomes are viewed as

graphs that capture specific interactions between biomolecular species (e.g. nucleic acids,

metabolites or proteins). Among biological networks, protein-protein interaction graphs with

biologically meaningful associations are the most commonplace (Gaudelet et al., 2021; Han,

2008). The rapid advancement of deep graph learning has led to an increasing interest in

utilizing related graph methods within drug discovery and development.

There are various computational tasks studied on graphs, which can be briefly classified

into two categories: node-focused tasks and graph-focused tasks (Ma and Tang, 2021). In

node-focused tasks, the entire dataset is generally represented in a single graph, with each

node as a data sample. These tasks involve node and link analysis within the graph, such as

node classification, link prediction and community clustering. In graph-focused tasks, the

dataset consists of a set of observed graphs, with each graph as a data sample. These tasks

involve graph analysis and the predictions are made for individual graphs, such as graph

classification, graph matching and graph generation (Zhu et al., 2022b). In this thesis, we

mainly explore graph-focused tasks within drug discovery, which is the most common task

category at the molecular scale. Here, we provide the formal definitions for the two primary

graph-focused tasks, i.e., graph classification and graph generation.

Definition 2.2.2. (Graph Classification). Given a set of labeled graphs D = {Gi,yi}M
i=1,

where Gi is a graph and yi is its corresponding label, the goal of graph classification is to

learn a mapping function F : G → y with the set D. The learned function F can generalize

to predict the labels of new graphs.

Definition 2.2.3. (Graph Generation). Given a set of observed graphs D = {Gi}M
i=1, where

Gi represents a graph, the goal of graph generation is to learn the distribution p(D) from

the set D. The new graphs can be generated by sampling from the learned distribution, i.e.,

Gnew ∼ p(D).
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In the two definitions above, we do not consider potential contexts or conditions associated

with the graphs to ensure clarity. In specific scenarios, a graph can be associated with

additional information that is utilized for graph classification or conditional generation with

desired properties.

2.2.2 Graph Neural Networks

Graph neural networks (GNNs) are a class of deep learning methods that operate deep

neural networks on graph-structured data. The first GNN model was introduced around

two decades ago (Gori et al., 2005), but this area has received considerable attention in

recent years. Modern GNNs can be treated as a process of graph representation learning.

They usually follow a neural message-passing (or neighbour aggregation) framework and

leverage both node features and graph structure in the learning process (Gilmer et al., 2017).

A typical GNN iteratively updates each node representation by aggregating and transforming

node-wise information from its local neighbourhood. By stacking multiple GNN layers, the

updated node representations can capture rich semantic and structural information within

their multi-hop neighbourhoods. Formally, the l-th GNN layer can be defined as:

n(l)
v = Aggregate

({
h(l−1)

u : u ∈N (v)
})

, (2.1)

h(l)
v = Combine

(
h(l−1)

u ,n(l)
v

)
, (2.2)

where h(l)
v ∈ RH denotes the hidden representation of node v at the k-th layer, and N (v)

is a set of neighbour nodes adjacent to v. We initialize the node representation h(0)
v by its

input node feature h(0)
v = xv. The choice of Aggregate(·) and Combine(·) plays a critical

role in the effectiveness of GNNs, and many architectures have been proposed (Kipf and

Welling, 2017; Veličković et al., 2018; Xu et al., 2019; Hamilton et al., 2017) with efficient

Aggregate(·) functions.

For node-focused tasks, the node representation h(L)
v at the final layer can be utilized

for prediction. Specifically, we can extract the individual node representation or concate-

nate any pair of node representations [h(L)
u ,h(L)

v ] with a simple classifier to perform node
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classification or link prediction. For graph-focused tasks, it is common to incorporate a

READOUT(·) function that can aggregate all final node representations to generate the entire

graph representation hG :

hG = Readout
({

h(L)
v |v ∈ G

})
, (2.3)

where Readout(·) can be a simple pooling function that satisfies permutation invariant. Next,

we will introduce some important GNN architectures that have been proposed in recent years.

Graph Convolutional Networks. Convolutional neural networks (CNNs) have shown

powerful expressive ability and led to many breakthroughs in the field of computer vision.

The key point of CNNs is the use of shared and learnable convolutional kernels to detect

local patterns over the input data. However, the traditional convolution operation can only

be applied to data on regular grids. Inspired by this, Kipf and Welling (2017) first proposed

graph convolutional networks (GCN) that generalize the convolution operation on irregular

graph-structured data. Specifically, the receptive field for each node is defined as its one-hop

neighbourhood within a single GCN layer. In the AGGREGATE(·) function, GCN applies a

weighted mean aggregation scheme that utilizes the normalized node degree for assigning

appropriate weights to adjacency nodes:

h(l)
v = ReLU

W l · ∑
u∈Ñ (v)

(Deg(v)Deg(u))−
1
2 h(l−1)

u

 , (2.4)

where W l is a learnable weight matrix at the l-th GCN layer, ReLU(·) is the non-linear

activation function, Deg(v) and Deg(u) represent the degree of node v and u respectively,

and Ñ (v) is a set of self node v and its neighbour nodes, i.e., v∪N (v). The Combine(·)

step is not necessary for GCN, as the target node information has been integrated into the

self-connected Ñ (v) during neighbourhood aggregation.

Graph Isomorphism Networks. Weisfeiler-Lehman (WL) test (Weisfeiler and Lehman,

1968; Shervashidze et al., 2011) is an effective and time-efficient algorithm to distinguish

whether two graphs are topologically identical, known as the graph isomorphism problem.

The one-dimensional form of WL test is similar to the neighbourhood aggregation in GNNs.
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Based on this, Xu et al. (2019) developed graph isomorphism networks (GIN) that achieve

the powerful expressive (or discriminative) ability within the message-passing framework.

The l-th GIN layer updates node representations as:

h(l)
v = MLP(l)

((
1+ ε

(l)
)
·h(l−1)

v + ∑
u∈N (v)

hl−1
u

)
, (2.5)

where ε(l) can be a learnable weight or a fixed scalar, and MLP(l)(·) is a learnable multi-layer

perception with a non-linear activation function. GIN applies a simple summation scheme

for neighbourhood aggregation, but it can achieve maximum expressiveness compared to

other common schemes like mean and max. To preserve distinct adjacency information in

aggregation, the feature transformation is parameterized by an MLP according to the universal

approximation theorem (Hornik et al., 1989). After that, the entire graph representation can

be derived by:

hG = Concat
(

Readout
({

h(l)
v |v ∈ G

})
|l = 0,1, ...,L

)
, (2.6)

where Concat(·) is the concatenation of the graph representations across all GIN layers.

There are many other GNN variants proposed with different aggregation, combination

and pooling schemes. GraphSAGE (Hamilton et al., 2017) designs an inductive aggregation

scheme for large graphs, which updates node representations from the sampled neighbours

at each iteration. It can generate inductive representations for unseen nodes during training.

In addition, graph attention networks (GAT) (Veličković et al., 2018) leverage the attention

mechanism Bahdanau et al. (2015) to dynamically compute the aggregation weights for

different neighbours. The adaptive attention module allows GAT to focus on significant parts

of the graph based on the specific context and attributes of nodes. The proposal of GNNs

has laid the foundations for the rapid development of graph representation learning in many

applications.
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2.2.3 Graph Transformers

Transformer architecture (Vaswani et al., 2017) has achieved significant success in various

fields, such as natural language and computer vision. Recently, there have been many

successful Transformer variants (Ying et al., 2021; Fuchs et al., 2020; Rong et al., 2020)

proposed for adapting graph-structured data, commonly known as Graph Transformers. In

comparison to most GNNs, Graph Transformers demonstrate their great potential to break

through some inherent limitations within the message-passing framework. For instance,

GNNs are known to suffer from the over-squashing problem due to the information distortion

during long-distance interactions, as well as the over-smoothing problem caused by repeated

local aggregation (Topping et al., 2021; Min et al., 2022). Additionally, the expressive power

of popular GNNs is inherently limited by the Weisfeiler-Lehman isomorphism test (Xu

et al., 2019; Maron et al., 2019). A central cause of the above problems is that the fixed

local aggregation in message passing naturally restricts the model’s computation graph and

flexibility. To alleviate these issues, there has been an increasing interest in developing Graph

Transformers that consider graph structural information as a soft inductive bias (Kreuzer

et al., 2021).

A vanilla Transformer architecture is s comprised of stacked Transformer layers, each of

which consists of a multi-head self-attention module followed by a feed-forward network.

Both modules embed layer normalization (Ba et al., 2016) and skip connection (He et al.,

2016) to reduce the internal covariate shift and to avoid the vanishing gradient problem,

respectively. For any graph G, we can first consider the node feature matrix X ∈ RN×D as

the input without other structural information. The self-attention module projects X into

the three representations Q, K and V with the corresponding learnable projection matrices

Wq ∈ RDk×D, Wk ∈ RDk×D and Wv ∈ RDv×D. Next, the attention output is calculated using

the scaled dot-product self-attention mechanism, which can be written as:

Q = XWT
q ,K = XWT

k ,V = XWT
v , (2.7)

A =
QKT
√

dk
, (2.8)
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Attention(Q,K,V) = Softmax(A)V, (2.9)

where A ∈RN×N is an attention weight matrix and each element Ai j indicates the importance

of the j-th position while computing the output representation of the i-th position in Equation

(2.9). Assume there are m attention heads in the multi-head self-attention module, then the

output matrix can be denoted as:

MultiHead(Q,K,V) = Concat(Head1, ...,Headm)Wo,

Headi = Attention(X(Wi
q)

T ,X(Wi
k)

T ,X(Wi
v)

T ),
(2.10)

where Wi
q ∈ RDk×D, Wi

k ∈ RDk×D and Wi
v ∈ RDv×D are the projection matrices of the

i-th head, Wo ∈ RmDv×D is the multi-head output projection matrix and Concat(·) is the

concatenation operation across all heads.

The standard self-attention mechanism in Transformer actually regards the input nodes as

a fully connected graph, ignoring the inherent structures within the actual graph. As a result,

the performance is naturally poor for graph-specific tasks. In this situation, many Graph

Transformers have been proposed to incorporate graph structural information as a necessary

inductive bias into the vanilla Transformer. These methods can be broadly categorized into

three groups (Min et al., 2022): (1) Using GNNs as auxiliary modules for Transformers. (2)

Designing graph structure-aware positional encoding. (3) Improving self-attention matrices

from graphs.

Using GNNs as auxiliary modules for Transformer. An intuitive solution for intro-

ducing structural information is to directly combine the vanilla Transformer architecture

with existing GNNs. The GNN modules are considered as auxiliary modules to learn local

structure representations by neighbourhood aggregation, while the Transformer modules

can further extract global relations by computing pairwise interactions between all nodes.

There are general common combination types as shown in Figure 2.4: (1) Building Trans-

former modules on top of GNN modules (Rong et al., 2020; Wu et al., 2021a; Mialon et al.,

2021). (2) Stacking Transformer and GNN layers as a unified module (Lin et al., 2021). (3)

Parallelizing Transformer modules and GNN modules (Zhang et al., 2020).
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Fig. 2.4 Three general types of using GNNs as auxiliary modules. (a) Building GNNs before
Transformer. (b) Stacking GNNs with Transformer as a unified module. (3) Building GNNs
and Transformer in parallel.

Designing graph-aware positional encoding. Although the auxiliary GNN modules

have demonstrated their effectiveness in introducing graph structures, these methods signifi-

cantly increase model complexity, and present additional challenges in optimization due to

the vast hyper-parameter search space. The second group of methods involves developing

graph-aware positional encoding. Positional encoding is a critical component of the vanilla

Transformer architecture used for modeling sequence data, Specifically, the positional embed-

ding vectors are added to the input tokens prior to being passed into the self-attention module.

Similar to the mechanism, some graph structure-aware positional encodings are proposed

to inject graph inductive bias into Transformer (Cai and Lam, 2020; Kreuzer et al., 2021;

Dwivedi et al., 2023). For example, Ying et al. (2021) leverages the node degree centrality as

structural signals, and adds the centrality encoding of each node to its feature vector as the

model input. Dwivedi et al. (2023) factorizes the graph Laplacian matrix of each graph in the

dataset, and uses the q smallest non-trivial eigenvectors as the positional encoding for Graph

Transformer. Graph Laplacian matrix is defined as the difference between the degree matrix

and the adjacency matrix. its eigenvectors can distinguish the local structures of graph nodes

while preserving long-range dependency.
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Improving self-attention matrices from graphs. Graph-aware positional encoding is an

effective approach to inject graph inductive bias into Transformer. However, different from

sequence data, the compression of complex graph structures into individual node vectors

can lead to information loss, potentially limiting model performance. The third group of

methods aims to incorporate more accurate graph information into the self-attention matrix

computation. Some methods (Yao et al., 2020; Dwivedi and Bresson, 2021) design masked

self-attention mechanism that restricts the scope of global attention to a local domain with a

specific graph structure, which can be defined as:

A = (
QKT
√

dk
)⊙φM(PG), (2.11)

where PG is the adjacency matrix of graph G and φM(·) is a mapping function to determine

the specific mask region. If φM(·) is an identity function, this mask self-attention is similar

to a GNN architecture that considers the one-hop neighbourhood aggregation.

Another line of methods aims to add graph priors as bias terms into the computation of

the self-attention matrix (Ying et al., 2021; Zhao et al., 2021a; Li et al., 2022a). They measure

crucial structural features, such as the shortest path between node pairs, and integrate them as

bias matrices in the self-attention module. Thus, the attention weight matrix can be denoted

as:

A = (
QKT
√

dk
)+

n

∑
i=1

Bi
G , (2.12)

where Bi
G is the i-th bias matrix associated with structural information. Many distinct bias

encodings have been developed to inject graph priors. For instance, Graphormer (Ying et al.,

2021) designs two simple but effective techniques: spatial encoding and edge encoding. In

spatial encoding, they first measure the shortest path distance between any node pairs. If two

nodes are not connected, their distance is set to a specific value, such as -1. After that, each

distance value is assigned a learnable scalar as a bias term in the self-attention module. In

edge encoding, they search the edges on the shortest path of node pairs, and compute the

average of dot-products between edge features and a learnable weight matrix as the second

graph bias term.
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2.3 Denoising Diffusion Probabilistic Models

Diffusion models represent a new state-of-the-art class of deep generative models. They have

shown remarkable potential across diverse domains, including computer vision (Brempong

et al., 2022; Ho et al., 2020), natural language processing (Austin et al., 2021; Yu et al.,

2022b), and molecule generation in drug discovery (Hoogeboom et al., 2022; Jing et al., 2022).

Intuitively, a diffusion model defines the diffusion process that gradually adds random noise

into data, thereby transforming complex data distributions into a simple prior distribution

(Yang et al., 2022b). Then, it learns to reverse the diffusion process to generate new data

by sampling noise from the prior distribution. In this section, we will mainly introduce

denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020; Sohl-Dickstein et al.,

2015; Kingma et al., 2021), a prevalent type of diffusion models. In particular, DDPMs have

been widely used in generative tasks for drug discovery and serve as the foundation of our

subsequent research in molecule generation.

Formally, a DDPM defines two Markov chains to perform the diffusion and denoising

process: a forward diffusion chain that gradually injects Gaussian noise to perturb original

data, and a reverse denoising chain that iteratively removes noise to generate new data. The

forward diffusion process transforms the original data distribution into standard Gaussians

by constant noise schedules, while the reverse denoising process learns the Markov transition

kernels that are parameterized by deep neural networks. Given a data distribution x0 ∼ q(x0)

and a fixed number of diffusion steps T , the joint distribution and transition kernel in the

forward diffusion process can be written as follows (Ho et al., 2020):

q(x1:T | x0) =
T

∏
t=1

q(xt | xt−1), (2.13)

q(xt | xt−1) =N (xt ;
√

1−βtxt−1,βtI), (2.14)

where βt ∈ (0,1) is a pre-defined noise schedule that controls the weight of Gaussian noise

added at the t-th diffusion step. The noise schedules {β1, ...,βT} are incremental and ensure
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that xT can nearly converge to a standard Gaussian distribution, i.e., q(xT ) ≈ N (xT ;0,I).

A remarkable property of the Gaussian transition kernel is that we can easily generate a

sample of xt at an arbitrary diffusion step t when x0 is given (Sohl-Dickstein et al., 2015).

By defining the notations αt := 1−βt and ᾱt := ∏
t
s=0 αs, we have:

q(xt |x0) =N (xt ;
√

ᾱtx0,(1− ᾱt)I) (2.15)

In the reverse denoising process, DDPM begins by sampling a random noise vector from the

prior Gaussian distribution, i.e., p(xT ) =N (xT ;0,I). It then intuitively removes noise by

the reverse denoising Markov chain and its parameterized transition kernel, which can be

defined as:

pθ (x0:T ) = p(xT )
T

∏
t=1

pθ (xt−1 | xt), (2.16)

pθ (xt−1 | xt) =N (xt−1; µθ (xt , t),σ2
t I), (2.17)

where the mean µθ (xt , t) is typically parameterized by deep neural networks, and the variance

σt is a hyperparameter.

As the forward diffusion process q(x1:T | x0) can be regarded as a fixed posterior distribu-

tion, the reverse process is optimized by maximizing the variational lower bound (VLB) on

the log-likelihood of the observed data:

logpθ (x0)
(i)
= logEq(x1:T |x0)

[
pθ (x0:T )

q(x1:T | x0)

]
(ii)
≥ Eq(x1:T |x0)

[
log

pθ (x0:T )

q(x1:T | x0)

]
(iii)
= Eq(x1:T |x0)

[
logp(xT )+ ∑

t≥1
log

pθ (xt−1 | xt)

q(xt | xt−1)

]
,

(2.18)

where (ii) is derived from Jensen’s inequality. The VLB maximization is a typical objective

for the training of probabilistic generative models (Yang et al., 2022b). However, the direct
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estimation of the mean µθ (xt , t) suffers from training instability (Nichol and Dhariwal, 2021).

Instead, DDPMs propose to use a surrogate objective that simply predicts the noise ε added

to each diffusion step for optimization:

LDDPM = Ex0∼q(x0),ε∼N (0,I),t
[
λ (t)||ε− εθ (xt , t)||2

]
, (2.19)

where εθ (xt , t) represents an estimated noise produced by deep neural networks. xt =
√

ᾱtx0 +
√

1− ᾱtε as described in Equation (2.15). λ (t) denotes a positive weighting term.

It is simply set to 1 in practice, which can generally lead to better sample quality. Figure 2.5

illustrates the training flow of DDPM.

Step 1: sample x0 Step 2: sample random noise ε and step t

Data Distribution
q(x0)

Gaussian Distribution
N (0, I)

ε

Step 3: add noise

Noise
Schedule Step t

Step t
Neural

Networks
Predicted noise εθ

Step 4: predict noise by neural networks

Step 5: calculate loss and
optimize model parameters

Fig. 2.5 Illustration of the DPMM training flow.

After training, DDPM can generate new data with εθ by the iterative denoising sampling:

xt−1 =
1
√

αt

(
xt−

1−αt√
1− ᾱt

εθ (xt , t)
)
+σtz, (2.20)

where z∼N (0,I) and the reverse denoising chain starts from the Gaussian prior p(xT ) =

N (xT ;0,I).

DDPM models the generative process as a discrete-time Markov chain that gradually

adds noise to clean data and then learns reverse this process to generate novel samples.

Beyond this discrete-time formulation, subsequent studies have provided a more general
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theoretical framework by formulating diffusion models in continuous time as stochastic

differential equations (SDEs) and their equivalent deterministic probability flow ordinary

differential equations (ODEs). This continuous-time interpretation, developed by Song et al.

(2020), unifies score-based generative modelling and enables exact likelihood computation.

More recently, the flow-matching framework (Lipman et al., 2022) extends these ideas by

directly estimating a transport vector field that deterministically maps data to noise along

more straight trajectories. It provides an alternative to stochastic diffusion-based processes

and has inspired efficient generative models such as latent diffusion models (Rombach et al.,

2022).

2.4 Applications in Drug Discovery

2.4.1 Drug-target Interaction Prediction

The identification of drug-target interaction (DTI) is a fundamental task in drug discovery.

Traditional biomedical methods for measuring DTI are reliable, but they are also costly and

time-consuming due to the requirement of conducting in vitro experiments over enormous

drug compound space. In comparison, computational methods employing in silico techniques

can significantly narrow down the search space at an early stage, and have attracted growing

attention over the past few years.

Owing to the promising advancements in machine learning, many effective computational

methods have been developed for DTI prediction. Similarity-based methods design distance

score schemes that utilize known drug-drug and protein-protein similarities to perform

predictions (Buza and Peka, 2017; Perlman et al., 2011). However, these methods have

limited generalization to structurally dissimilar drug compounds and proteins. Feature-based

methods use classic machine learning models, such as random forest and support vector

machine, on the combination of numerical drug and protein descriptors (Cao et al., 2012;

Geppert et al., 2009; Ning et al., 2009). Network-based methods integrate multiple data

sources of drugs and proteins into a heterogeneous network, and apply graph-based techniques

to identify interactions (Luo et al., 2017; Yu et al., 2022a). Following a chemogenomics
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perspective (Bredel and Jacoby, 2004; Yamanishi et al., 2008), many deep learning-based

methods integrate both chemical and genomic space into a unified end-to-end framework to

make DTI predictions (Tsubaki et al., 2019; Huang et al., 2021; Bai et al., 2023).

2.4.2 Molecular Property Prediction

Recent years have witnessed significant progress in applying deep learning in molecular prop-

erty prediction. As the foundation of deep learning-based property prediction, many studies

have been devoted to improving molecular representation learning. Traditional feature-based

methods depend on hand-crafted representations generated by chemical fingerprints or molec-

ular descriptors, which lack the ability to capture potential structural information and require

extensive feature engineering (Rogers and Hahn, 2010; Cao et al., 2008). Recently, the

emergence of GNNs has allowed for more intuitive and efficient learning of molecular graph

representations. Gilmer et al. (2017) first proposes to use a message-passing framework to

capture atomic interactions in molecular graphs, and then Yang et al. (2019) extends the

framework by considering the directional bond interactions. Xiong et al. (2019) leverages

graph attention networks to learn the data-driven fingerprints in a dense vector space. Never-

theless, these approaches face the challenge of capturing long-range dependencies, which

has led to the exploration of transformer-based architectures to preserve graph structures

and improve the expressiveness of learned molecular representations (Ying et al., 2021;

Pyzer-Knapp et al., 2022; Mialon et al., 2021).

Self-supervised learning has become a fundamental paradigm for developing generaliz-

able molecular representations. This approach typically involves pre-training a deep model on

a large dataset of unlabeled molecules, followed by fine-tuning on downstream property tasks

using limited labeled data. Molecular pre-training tasks are broadly classified into contrastive

methods and generative methods. The objective of contrastive methods is to maximize the

mutual information between the augmented views from the same molecular graph. These

approaches suggest various augmentation strategies, such as atom masking and bond deletion,

to create semantically similar views (You et al., 2020; Sun et al., 2021; Subramonian, 2021).

In contrast, generative methods consider reconstructing the information of a single molecular
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graph at different levels, or creating certain pseudo labels for pre-training tasks (Rong et al.,

2020; Zhang et al., 2021; Li et al., 2022a). For example, Zhang et al. (2021) proposes a

framework to capture molecular information from both node-level and graph-level fragmenta-

tions, which predicts masked atom/bond-based attributes and reconstructs motif-based graph

trees. More recently, a few studies have focused on integrating geometric knowledge into

the pre-training framework to obtain more informative representations. In particular, Liu

et al. (2022) and Stärk et al. (2022) propose to encode the 2D topology and 3D geometry by

different GNN backbone models, and then implicitly inject 3D information into 2D GNN

with a hybrid method.

2.4.3 Inverse Protein Folding

Inverse protein folding (IPF), also known as structure-based protein design, is a fundamental

problem in computational biology and medicine. It aims to generate possible amino acid

(AA) sequences that can fold into a desired 3D backbone structure, enabling the creation

of novel proteins with specific functions. There are enormous applications for IPF in both

academic and industrial scenarios, ranging from therapeutic protein engineering, enzyme

design and targeted drug design.

Traditional physics-based approaches consider IPF as an energy optimization problem

(Alford et al., 2017), which suffers from high computational cost and insufficient accuracy.

In recent years, deep learning has emerged as the preferred paradigm for solving protein

structure problems, due to its robust ability to adaptively learn complex non-linear patterns

from data. There have been many efforts in IPF with deep learning models. Early MLP-based

and CNN-based methods regard each residue in proteins as an isolated unit, or the whole

as point cloud data when modelling, without sufficiently considering structural information

and interactions between residues (Wu et al., 2021b; Li et al., 2014; O’Connell et al., 2018;

Anand et al., 2022). Lately, graph-based methods have emerged that utilize proximity

graphs to represent 3D protein structures, and then apply graph neural networks (GNNs) to

capture residue features while incorporating structural constraints. Owing to the intrinsic
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advantage of GNNs in local information aggregation and exchange within graph-structured

data, graph-based methods have achieved substantial performance improvement in this field.



Chapter 3

Toward Low-Bias Evaluation for

Drug-Target Interaction

3.1 Introduction

Predicting drug-target interaction (DTI) plays an important role in the process of drug

discovery, where drugs are chemical compounds and targets are usually target proteins.

However, as described in Chapter 1, a large performance gap still exists between academic

research and industrial application in drug discovery, where academic results tend to be over-

optimistic for industrial settings. Therefore, this chapter focuses on studying the low-bias

evaluation of machine learning within the context of DTI prediction. Similar to the three

pitfalls in machine learning pointed out by Riley (2019), here we identify three common

pitfalls that cause high-bias DTI performance evaluation:

• Inappropriate data splitting. A common practice in machine learning research

is to split training and test sets at random and evaluate model performance by the

accuracy on the test set (under the assumption that the training and test data have

the same distribution). In the context of drug discovery, such random split tends to

overestimate model performance in real-world settings. One important reason is that

drug compounds in the same series share the same scaffold or large substructure, which

is easy to learn as long as a few molecules of this series are contained in the training set.
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However, in real applications, chemists often need DTI prediction on a new compound

series different from known compounds, which is more challenging and makes random

split inappropriate.

• Low-confidence negative samples. Although many public databases exist for generat-

ing DTI data, researchers often ignore hidden bias during model training. The lack of

highly confident negative samples is one of them. Machine learning is a data-driven

technique and model performance depends heavily on data quality. DTI papers often

randomly generate negative samples from unobserved pairs for training and evaluation,

which leads to low confidence because they may include some unknown true positive

samples.

• Drug-wise pair imbalance. The final important pitfall is the hidden imbalance

between positive and negative pairs for each drug. In public DTI datasets (Gilson et al.,

2016; Wishart et al., 2018; Kim et al., 2019), it is common that most drugs have only

one type of pairs (positive or negative). For these drugs, models can make correct

prediction using only drug information without learning appropriate DTI patterns,

leading to significant drug-wise pair imbalance. Subsequently, the evaluation result is

over-optimistic and the model has poor generalization.

We aim to address the three pitfalls above to reduce bias in training and evaluating

machine learning models. We compare five different DTI data splitting strategies: random

split, cold drug split, scaffold split, single-linkage split, and our newly proposed density-

based hierarchical clustering split. The results demonstrate that the choice of splitting

strategy can significantly impact model performance evaluation. The first three strategies do

not adequately consider real-world scenarios in drug discovery, leading to over-optimistic

performance estimation. In contrast, the two clustering-based splits create more challenging

and realistic tasks that that can better reward model’s generalization rather than memorization.

In addition, we strictly control the hidden data bias in a benchmark dataset and experimentally

validate all negative DTI pairs to ensure both interaction types exist for each drug. This leads
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Fig. 3.1 Bias control in a general DTI prediction workflow.

to a low-bias dataset to encourage learning correct interaction information for better DTI

prediction.

3.2 Methodology

The DTI prediction task can be viewed as a binary classification of whether a drug forms

biological interaction with a target of interest or not. Drugs are commonly encoded as 1D

sequences (SMILES) or 2D molecular graphs, and target proteins are typically represented

as amino acid sequences. Figure 3.1 shows a general DTI prediction workflow and our

bias-controlled evaluation.

3.2.1 Low-Bias Dataset Construction

Most DTI datasets are not originally designed for training machine learning models. They

have hidden data bias and tend to produce over-optimistic results. We propose to reconstruct

the experimental datasets following two bias removal guidelines:
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• High-confidence negative samples should be used. The best option is to select exper-

imentally validated pairs. We can set a safe margin in measured binding affinity to

select negative samples (Gao et al., 2018). We can also employ some similarity-based

DTI negative sampling algorithms (Liu et al., 2015).

• The number of drugs containing only one interaction type should be removed or re-

duced. Many DTI experiments only consider the imbalance between positive and

negative pairs across the whole dataset, e.g., by keeping a fixed ratio without consider-

ing the pair imbalance for individual drugs, leading to prediction based only on drug

features rather than drug-target interaction.

3.2.2 Classic Data Split Strategies

We introduce three classical and one clustering-based data split strategies: random split, cold

drug split, scaffold split and single-linkage split (Mayr et al., 2018).

• Random split is the most popular data split strategy. DTI pairs are randomly split into

train, validation, and test with given ratios.

• Cold drug split first randomly splits drugs into train/validation/test, and then puts all

DTI pairs associated with individual drugs in corresponding sets as the final splits.

• Scaffold split is based on 2D molecular structures that partition drugs into different

bins according to their Murcko scaffolds. These bins are then randomly split into

train/validation/test sets so that all drugs associated with a bin are part of the same set.

Next, all DTI pairs associated with the drugs in a bin are assigned to the corresponding

sets.

• Single-linkage split is a clustering-based strategy to ensure that the distances between

clusters are always larger than a pre-defined threshold. This strategy can cluster drugs

by their chemical fingerprints such as ECFP4 (Rogers and Hahn, 2010) in this study,

and then apply Jaccard distance on binarized ECFP4 to measure the pairwise distance
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between drugs. For single-linkage hierarchical clustering, each cluster of drugs will

only be assigned to one of the train, validation and test sets.

3.2.3 HDBSCAN for Data Split

However, single-linkage split uses a single distance threshold that cannot separate clusters

of different densities, which are common in drug compound series. Therefore, we propose

a Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN)

(McInnes et al., 2017) strategy to split data. HDBSCAN is a hierarchical clustering method

that transforms the original distances between data points to density. It is designed for clusters

of varying densities. We investigate the performance differences between HDBSCAN split

and other split strategies. We review HDBSCAN briefly below:

1. Calculate the mutual reachability distance (MRD). To find clusters, HDBSCAN first

computes the MRD between data points a and b as:

dk(a,b) = max{Corek(a),Corek(b),Distance(a,b)} , (3.1)

where k is a hyperparameter indicating the number of nearest neighbors, Corek(a) is

the core distance between the core a and its k-th nearest neighbor, and Distance(a,b)

is the distance between a and b with the original metric. This MRD metric allows

dense points with low core distance to remain at the same distance from each other

while sparse points with high core distance are pushed away.

2. Build a minimum spanning tree (MST). After getting MRD, an MST is built from a

weighted graph. In this graph, vertices are the data points and the weight of an edge

between any two points is their MRD. Then a tree is built one edge at a time by adding

the edge with the lowest weight. Meanwhile this added edge needs to bridge the current

tree and a vertex that is not in this tree. Given the MST, the next step is to convert

it into cluster hierarchy. HDBSCAN sorts edges in MST by distance with ascending

order and then iterates to create a new merged cluster for each edge.
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3. Condense the cluster tree. a minimum cluster size is introduced as a hyperparameter.

At each hierarchy split, the sizes of newly generated clusters are compared with the

minimum cluster size. If a new cluster has fewer points than the minimum cluster size,

HDBSCAN declares them to be “points falling out of a cluster”. If the size of a new

cluster is equal to or larger than the minimum cluster size, HDBSCAN treats it as a

true cluster split to persist in the tree.

4. Compute the stability and extract clusters. To extract clusters from the condensed

cluster tree, HDBSCAN defines a stability, which aims to choose clusters that persist

and have a longer lifetime. First, for a given cluster in hierarchy, HDBSCAN defines

a measure λ inversely proportional to the distance threshold, so λbirth denotes the λ

when the cluster is split from its parent cluster. Each falling point p in the cluster has a

value λp so that each cluster c has a stability s:

s(c) = ∑
p∈c

(λp−λbirth) . (3.2)

Now traverse the condensed cluster tree from all leaf nodes to root. If the sum of the

stabilities of child clusters is greater than the stability of their parent cluster, the parent

cluster stability is set to be the sum of the child stabilities. Otherwise, the parent cluster

is selected to be one of the final clusters.

3.3 Experiments

3.3.1 Dataset Construction

We construct a low-bias version of binary BindingDB (Gilson et al., 2016) dataset in this

experiment. Following the IC50 threshold used by Gao et al. (2018), we consider a drug-target

pair to be positive if its IC50 is less than 100 nm, and negative if its IC50 is greater than

10,000 nm, which gives a 100-fold difference to reduce class label noise.
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Bias-reducing Preprocessing. Due to the drug-wise pair imbalance, 91% of drugs only

have one type of pairs (positive or negative) in the binary BindingDB dataset. This implies

that we can train a model to make right classification without considering protein information

for DTI pairs associated with the 91% of drugs. Therefore, high classification accuracy

does not indicate successful learning of correct DTI patterns. We further process the data

by removing all DTI pairs of drugs containing only one pair type. This gives us a low-bias

dataset with 29,674 positive samples and 32,752 negative samples. Figure 3.2a shows the

drug probability distribution in terms of log ratios of positive to negative samples in the

dataset, which is calculated as:

lni
ratio = ln

Ni
pos

Ni
neg

, (3.3)

where Ni
pos is the number of positive interactions for drug i, and Ni

neg is the number of

negative interactions. Following the steps above, our constructed dataset addresses common

pitfalls and has three benefits: (1) The number of positive and negative samples is balanced.

(2) All negative samples are experimentally validated and highly confident. (3) The drug-wise

pair imbalance in DTI pairs is removed.

Fig. 3.2 (a) Drug probability distribution in terms of ln(Ni
pos/Ni

neg) in the constructed low-bias
dataset. The red line indicates the mean log ratio for all drugs (mean=-0.07). ln(Ni

pos/Ni
neg) =

0 when the number of positive and negative interactions are equal for drug i. (b) Comparison
of three models using five different split strategies.
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3.3.2 Metrics

We use AUROC, AUPRC, and accuracy as the major metrics to measure model performance.

We also report the sensitivity and specificity metrics at the best F1 score.

3.3.3 Split Strategies

We study five split strategies in model performance evaluation: random split, cold drug split,

scaffold split, single-linkage split, and HDBSCAN split, as detailed in Section II.

We set the distance threshold to 0.5 for single-linkage split and minimum cluster size to

5 for HDBSCAN split. Each split strategy keeps a 7:1:2 ratio for training/validation/test sets.

We conduct five independent runs with different random seeds for each split. We compare

the three algorithms below on the same splits.

3.3.4 Learning Algorithms

Three state-of-the-art deep learning DTI models are selected for performance comparison:

• DeepConv-DTI (Lee et al., 2019) models DTI using convolutional neural network

(CNN) and one global max-pooling layer to learn protein sequence features, and one

fully connected layer to encode drug fingerprints ECFP4.

• DeepDTA (Öztürk et al., 2018) uses CNN on both drug SMILES string and protein

amino acid sequence to extract local residue patterns. As the original DeepDTA is a

regression model to predict binding affinity. A sigmoid function is added after the last

layer of the decoder for binary classification.

• MolTrans (Huang et al., 2021) adapts transformer architectures to encode drug and

protein information, and introduces an interaction map module with a CNN layer to

learn the interaction between molecular substructures.
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Table 3.1 MolTrans performance comparison with five data split strategies (Best, Worst).

Split strategy AUROC AUPRC Accuracy Sensitivity Specificity Test loss

Random 0.946±0.003 0.935±0.004 0.874±0.003 0.838±0.01 0.914±0.007 0.469±0.019
Cold drug 0.921±0.003 0.909±0.006 0.841±0.004 0.798±0.009 0.889±0.005 0.670±0.052
Scaffold 0.893±0.006 0.874±0.004 0.804±0.005 0.736±0.012 0.882±0.014 0.797±0.099
HDBSCAN 0.821±0.024 0.778±0.031 0.724±0.037 0.581±0.091 0.891±0.03 0.936±0.328
Single linkage 0.768±0.024 0.717±0.025 0.676±0.032 0.483±0.077 0.894±0.023 0.959±0.224

3.3.5 Implementation Details

We follow the same model hyper-parameter settings described in the original papers. The

batch size is 64 and each model is allowed to run 100 epochs in each independent training.

The learning rate is set to 1e−5 with the Adam optimizer. The test model is selected at the

epoch giving the best AUROC on the validation set. The selected model is evaluated on the

test set and metrics are reported.

3.3.6 Performance Gap between Different Split Strategies

To investigate whether there is a significant performance gap for the same method with differ-

ent data split strategies, Table 3.1 shows the performance of MolTrans with different metrics

on the test sets generated by different strategies. As expected, random split has significant

information overlap between training and test sets, so it achieves the best performance across

all metrics. However, random split’s good performance on the test set does not imply the

same good performance in real drug discovery, where it is unlikely to have so much prior

information while predicting a novel drug-target interaction pair in reality. The performance

declines differently in other split strategies. Compared with random split, single-linkage split

has the largest performance drop of 18.8% in AUROC and 23.3% in AUPRC.

For other split strategies, the performance drop is also evident. Cold drug split has just a

slight drop since it randomly selects drugs without considering drug similarities. Scaffold

split further divides drugs by their shared scaffold, so it is more challenging than the cold

split. However, as scaffold split considers only well-defined cyclic substructures connected

by the linkers, scaffolds that share the topology may still be considered dissimilar. Thus,

scaffolds proximal in the fingerprint space can cause information leakage and model bias
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if not found in either training or test set. As clustering-based split strategies cluster similar

compounds irrespective of their scaffolds, and as part of the same subset, the potential for

data leakage is reduced.

We further study the influence of data split strategy on performance of different mod-

els. Figure 3.2b plots AUROC of MolTrans, DeepConv-DTI and DeepDTA on the five

split strategies. Although MolTrans always outperforms the other two models, their per-

formance gap gradually decreases with the change of split strategies. Comparing random

and single-linkage split, the improvement of MolTrans over DeepDTA drops from 4.4% to

1.1%. Moreover, DeepConv-DTI outperforms DeepDTA with random split, but DeepDTA

outperforms DeepConv-DTI with HDBSCAN split. This shows that the better performance

on random split strategy is over-optimistic because the test set rewards more memorization

rather than generalization.

3.4 Summary

In this chapter, we study the low-bias evaluation of machine learning models in DTI pre-

diction. Experimental results showed that traditional split strategies tend to overestimate

predictive performance and exaggerate performance gaps between different models. We

constructed a low-bias dataset, and adopted two clustering-based split strategies toward more

realistic evaluation in drug discovery. Clustering-based splits created the most challenging

prediction tasks for evaluating real-world DTI prediction performance.

However, while clustering-based splits can reduce bias in performance evaluation, they

potentially increase the variance of evaluation results due to the inclusion of more diverse test

samples. Therefore, when adopting low-bias evaluation protocols, researchers should also

consider the potential increase in variance and aim to balance both aspects to ensure reliable

results. For example, strategies such as repeated cross-validation and robust performance

averaging can mitigate high-variance effects and improve the reliability of DTI model

evaluation in realistic scenarios.



Chapter 4

Bilinear Attention Network with Domain

Adaptation improves Drug-Target

Prediction

4.1 Introduction

Recently, deep learning (DL) has rapidly progressed for computational DTI prediction due

to its successes in various areas, enabling large-scale validation in a relatively short time

(Gao et al., 2018). In Chapter 3, we mainly investigate the low-bias DTI evaluation strategies

and show that the predictive performance of existing DL-based methods is overestimated.

In this chapter, we follow the low-bias evaluation principle and develop a bilinear attention

network-inspired framework with domain adaptation for DTI prediction. Our framework

enhances local drug-target modeling and improves specific transferability in both in-domain

and cross-domain scenarios.

As pointed out in Section 2.4.1, many DL-based methods are constructed from a chemoge-

nomics perspective, which integrates the chemical space, genomic space, and interaction

information into a unified end-to-end framework. They treat DTI prediction as a binary

classification task, and make predictions by feeding the inputs into different deep encoding

and decoding modules such as deep neural network (DNN) (Lee et al., 2019; Hinnerichs
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and Hoehndorf, 2021), graph neural network (GNN) (Gao et al., 2018; Nguyen et al., 2021;

Tsubaki et al., 2019; Feng et al., 2018) or transformer architectures (Chen et al., 2020a;

Huang et al., 2021).

Despite these promising developments, two challenges remain in DL-based methods. The

first challenge is explicit learning of interactions between local structures of drug and protein.

DTI is essentially decided by mutual effects between important molecular substructures

in the drug compound and binding sites in the protein sequence (Schenone et al., 2013).

However, many previous studies learn global representations in their separate encoders,

without explicitly learning local interactions (Öztürk et al., 2018; Nguyen et al., 2021;

Öztürk et al., 2019; Zheng et al., 2020; Lee et al., 2019). Consequently, drug and protein

representations are learned for the whole structures first and mutual information is only

implicitly learned in the black-box decoding module. Interactions between drug and target

are particularly related to their crucial substructures, thus separate global representation

learning tends to limit the modeling capacity and prediction performance. Moreover, without

explicit learning of local interactions, the prediction result is hard to interpret, even if the

prediction is accurate.

The second challenge is generalizing prediction performance across domains, i.e. out

of learned distribution. Due to the vast regions of chemical and genomic space, drug-target

pairs that need to be predicted in real-world applications are often unseen and dissimilar to

any pairs in the training data. They have different distributions and thus need cross-domain

modeling (Abbasi et al., 2020; Kao et al., 2021). A robust model should be able to transfer

learned knowledge to a new domain that only has unlabeled data. In this case, we need

to align distributions and improve cross-domain generalization performance by learning

transferable representations, e.g. from "source" to "target". To the best of our knowledge,

this is an underexplored direction in drug discovery (Abbasi et al., 2021).

To address these challenges, we propose an interpretable bilinear attention network-

based model (DrugBAN) for DTI prediction, as shown in Figure 4.1a. DrugBAN is a deep

learning framework with explicit learning of local interactions between drug and target,

and conditional domain adaptation for learning transferable representations across domains.
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Fig. 4.1 Overview of the DrugBAN framework. (a) The input drug molecule and protein
sequence are separately encoded by graph convolutional networks and 1D-convolutional
neural networks. Each row of the encoded drug representation is an aggregated representation
of adjacent atoms in the drug molecule, and each row of the encoded protein representation is
a subsequence representation in the protein sequence. The drug and protein representations
are fed into a bilinear attention network to learn their pairwise local interactions. The
joint representation f is decoded by a fully connected decoder module to predict the DTI
probability p. If the prediction task is cross-domain, the conditional domain adversarial
network (CDAN) module is employed to align learned representations in the source and
target domains. (b) The bilinear attention network architecture. Hd and Hp are encoded drug
and protein representations. In Step 1, the bilinear attention map matrix I is obtained by a
low-rank bilinear interaction modeling via transformation matrices U and V to measure the
substructure-level interaction intensity. Then I is utilized to produce the joint representation
f in Step 2 by bilinear pooling via the shared transformation matrices U and V. (c) CDAN
is a domain adaptation technique to reduce the domain shift between different distributions
of data. We use CDAN to embed joint representation f and softmax logits g for source and
target domains into a joint conditional representation via the discriminator, a two-layer fully
connected network that minimizes the domain classification error to distinguish the target
domain from the source domain.
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Specifically, we first use graph convolutional network (Kipf and Welling, 2017) (GCN)

and convolutional neural network (CNN) to encode local structures in 2D drug molecular

graph and 1D protein sequence, respectively. Then the encoded local representations are

fed into a pairwise interaction module that consists of a bilinear attention network (Yu et al.,

2018; Kim et al., 2018) to learn local interaction representations, as depicted in Figure

4.1b. The local joint interaction representations are decoded by a fully connected layer

to make a DTI prediction. In this way, we can utilize the pairwise bilinear attention map

to visualize the contribution of each substructure to the final predictive result, improving

the interpretability. For cross-domain prediction, we apply conditional domain adversarial

network (CDAN) (Long et al., 2018) to transfer learned knowledge from source domain

to target domain to enhance cross-domain generalization, as illustrated in Figure 4.1c. We

conduct a comprehensive performance comparison against five state-of-the-art DTI prediction

methods on both in-domain and cross-domain settings of drug discovery. The results show

that our method achieves the best overall performance compared to state-of-the-art methods,

while providing interpretable insights for the prediction results.

To summarize, DrugBAN differs from previous works by (i) capturing pairwise local

interactions between drugs and targets via a bilinear attention mechanism, (ii) enhancing

cross-domain generalization with an adversarial domain adaptation approach; and (iii) giving

an interpretable prediction via bilinear attention weights instead of black-box results.

4.2 Methodology

4.2.1 Problem Formulation

In DTI prediction, the task is to determine whether a pair of a drug compound and a target

protein will interact. For target protein, denoting each protein sequence as P = (a1, ...,an),

where each token ai represents one of the 23 amino acids. For drug compound, most existing

deep learning-based methods represent the input by the Simplified Molecular Input Line

Entry System (SMILES) (Weininger, 1988b), which is a 1D sequence describing chemical

atom and bond token information in the drug molecule. The SMILES format allows encoding
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drug information with many classic deep learning architectures. However, since the 1D

sequence is not a natural representation for molecules, some important structural information

of drugs could be lost, degrading model prediction performance. Our model converts input

SMILES into its corresponding 2D molecular graph. Specifically, a drug molecule graph

is defined as G = (V,E), where V is the set of vertices (atoms) and E is the set of edges

(chemical bonds).

Given a protein sequence P and a drug molecular graph G, DTI prediction aims to learn

a modelM to map the joint feature representation space P×G to an interaction probability

score p ∈ [0,1].

4.2.2 Framework Overview

Figure 4.1a shows the proposed DrugBAN framework. Given an input drug-target pair,

firstly, we employ separate graph convolutional network (GCN) and 1D-convolutional neural

network (1D-CNN) blocks to encode molecular graph and protein sequence information,

respectively. Then we use a bilinear attention network module to learn local interactions

between encoded drug and protein representations. The bilinear attention network consists

of a bilinear attention step and a bilinear pooling step to generate a joint representation, as

illustrated in Figure 4.1b. Next, a fully connected classification layer learns a predictive score

indicating the probability of interaction. For improving model generalization performance

on cross-domain drug-target pairs, we further embed CDAN into the framework to adapt

representations for better aligning source and target distributions, as depicted in Figure 4.1c.

4.2.3 Protein Sequence Encoder

The protein feature encoder consists of three consecutive 1D-convolutional layers, which

transforms an input protein sequence to a matrix representation in the latent feature space.

Each row of the matrix denotes a subsequence representation in the protein. Drawing on the

concept of word embedding, we first initialize all amino acids into a learnable embedding

matrix Ep ∈ R23×Dp , where 23 is the number of amino acid types and Dp is the latent
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space dimensionality. By looking up Ep, each protein sequence P can be initialized to

corresponding feature matrix Xp ∈ RΘp×Dp . Here Θp is the maximum allowed length of

a protein sequence, which is set to align different protein lengths and make batch training.

Following previous works (Huang et al., 2021; Öztürk et al., 2018; Tsubaki et al., 2019),

protein sequences with maximum allowed length are cut, and those with smaller length are

padded with zeros.

The CNN-block protein encoder extracts local residue patterns from the protein feature

matrix Xp. Here a protein sequence is considered as an overlapping 3-mer amino acids

such as “METLCL...DSMN” → “MET”, “ETL”, “TLC”,..., “DSM”, “DLK”. The first

convolutional layer is utilized to capture the 3-mer residue-level features with kernel size

= 3. Then the next two layers continue to enlarge the receptive field and learn more abstract

features of local protein fragments. The protein encoder is described as follows:

H(l+1)
p = σ(CNN(W(l)

c ,b(l)
c ,H(l)

p )), (4.1)

where W(l)
c and b(l)

c are the learnable weight matrices (filters) and bias vector in the l-th CNN

layer. H(l)
p is the l-th hidden protein representation and H(0)

p = Xp. σ(·) denotes a non-linear

activation function, with ReLU(·) used in our experiments.

4.2.4 Molecular Graph Encoder

For drug compound, we convert each SMILES string to its 2D molecular graph G. To

represent node information in G, we first initialize each atom node by its chemical properties,

as implemented in the DGL-LifeSci (Li et al., 2021) package. Each atom is represented as

a 74-dimensional integer vector describing eight pieces of information: the atom type, the

atom degree, the number of implicit Hs, formal charge, the number of radical electrons, the

atom hybridization, the number of total Hs and whether the atom is aromatic. Similar to the

maximum allowed length setting in a protein sequence above, we set a maximum allowed

number of nodes Θd . Molecules with less nodes will contain virtual nodes with zero padded.

As a result, each graph’s node feature matrix is denoted as Md ∈ RΘd×74. Moreover, we use
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a simple linear transformation to define Xd = W0M⊤d , leading to a real-valued dense matrix

Xd ∈ RΘd×Dd as the input feature.

We employed a three-layer GCN-block to effectively learn the graph representation

on drug compounds. GCN generalizes the convolutional operator to an irregular domain.

Specifically, we update the atom feature vectors by aggregating their corresponding sets

of neighborhood atoms, connected by chemical bonds. This propagation mechanism auto-

matically captures substructure information of a molecule. We keep the node-level drug

representation for subsequent explicit learning of local interactions with protein fragments.

The drug encoder is written as:

H(l+1)
d = σ(GCN(Ã,W(l)

g ,b(l)
g ,H(l)

p )), (4.2)

where W(l)
g and b(l)

g are the GCN’s layer-specific learnable weight matrix and bias vector, Ã

is the adjacency matrix with added self-connections in molecular graph G, and H(l)
d is the

l-th hidden node representation with H(0)
d = Xd .

4.2.5 Bilinear Attention Network

Bilinear attention network (BAN) was first proposed to solve the problem of visual question

answering (VQA) (Kim et al., 2018). It uses a bilinear attention map to gracefully extend

unitary attention networks for adapting multimodal learning, which considers every pair

of multimodal input channels. Compared to using a unitary attention mechanism directly

on multimodal data, BAN can provide richer joint information but keep the computational

cost at the same scale. Due to the problem similarity between VQA and DTI, we design

a BAN-inspired pairwise interaction module to integrate drug molecule and target protein

encodings. This module consists of two layers: (i) A bilinear interaction map to capture

pairwise attention weights and (ii) a bilinear pooling layer over the interaction map to extract

joint drug-target representation.

Given the third layer’s hidden protein and drug representations H(3)
p = {h1

p,h2
p, ...,hM

p }

and H(3)
d = {h1

d,h
2
d, ...,h

N
d } after separate CNN and GCN encoders, where M and N denote
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the number of encoded substructures in a protein and atoms in a drug. The bilinear interaction

map can obtain a single head pairwise interaction I ∈ RN×M:

I = ((1 ·q⊤)◦σ((H(3)
d )⊤U)) ·σ(V⊤H(3)

p ), (4.3)

where U ∈ RDd×K and V ∈ RDp×K are learnable weight matrices for drug and protein

representations, q ∈ RK is a learnable weight vector, 1 ∈ RN is a fixed all-ones vector, and

◦ denotes Hadamard (element-wise) product. The elements in I indicate the interaction

intensity of respective drug-target sub-structural pairs, with mapping to potential binding

sites and molecular substructures. To intuitively understand bilinear interaction, an element

Ii, j in Equation (4.3) can also be written as:

Ii, j = q⊤(σ(U⊤hi
d)◦σ(V⊤h j

p)), (4.4)

where hi
d is the i-th column of H(3)

d and h j
p is the j-th column of H(3)

p , respectively denoting

the i-th and j-th sub-structural representations of drug and protein. Therefore, we can see a

bilinear interaction as first mapping representations hi
d and h j

p to a common feature space

with weight matrices U and V, then learn an interaction on Hadamard product and the weight

of vector q. In this way, pairwise interactions provide interpretability on the contribution of

sub-structural pairs to the predicted result.

To obtain the joint representation f′ ∈ RK , we introduce a bilinear pooling layer over the

interaction map I. Specifically, the k-th element of f′ is computed as:

f′k = σ((H(3)
d )⊤U)⊤k · I ·σ((H(3)

p )⊤V)k

=
N

∑
i=1

M

∑
j=1

Ii, j(hi
d)
⊤(UkV⊤k )h

j
p,

(4.5)

where Uk and Vk denote the k-th column of weight matrices U and V. Notably, there are no

new learnable parameters at this layer. The weight matrices U and V are shared with the

previous interaction map layer to decrease the number of parameters and alleviate over-fitting.

Moreover, we add a sum pooling on the joint representation vector to obtain a compact
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feature map:

f = Sumpool(f′,s), (4.6)

where the Sumpool(·) function is a one-dimensional and non-overlapped sum pooling opera-

tion with stride s. It reduces the dimensionality of f′ ∈ RK to f ∈ RK/s. Furthermore, we can

extend the single pairwise interaction to a multi-head form by calculating multiple bilinear

interaction maps. The final joint representation vector is a sum of individual heads. As the

weight matrices U and V are shared, each additional head only adds one new weight vector

q, which is parameter-efficient. In our experiments, the multi-head interaction has a better

performance than a single one.

Thus, using the novel bilinear attention mechanism, the model can explicitly learn

pairwise local interactions between drug and protein. To compute the interaction probability,

we feed the joint representation f into the decoder, which is one fully connected classification

layer followed by a sigmoid function:

p = Sigmoid(Wof+bo), (4.7)

where Wo and bo are learnable weight matrix and bias vector.

Finally, we jointly optimize all learnable parameters by backpropagation. The training

objective is to minimize the cross-entropy loss as follows:

L=−∑
i
(yilog(pi)+(1− yi)log(1− pi))+

λ

2
∥Θ∥2

2 , (4.8)

where Θ is the set of all learnable weight matrices and bias vectors above, yi is the ground-

truth label of the i-th drug-target pair, pi is its output probability by the model, and λ is a

hyperparameter for L2 regularization.

4.2.6 Cross-domain Adaptation

Machine learning models tend to perform well on similar data from the same distribution

(i.e. in-domain), but poorer on dissimilar data with different distribution (i.e. cross-domain).
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It is a key challenge to improve model performance on cross-domain DTI prediction. In

our framework, we embed conditional adversarial domain adaptation (CDAN) to enhance

generalization from a source domain with sufficient labeled data to a target domain where

only unlabeled data is available.

Given a source domain Ss = {(xs
i ,y

s
i )}

Ns
i=1 of Ns labeled drug-target pairs and a target

domain St = {xt
i}

Nt
j=1 of Nt unlabeled drug-target pairs, we leverage CDAN to align their

distributions and improve prediction performance across domains. Figure 4.1c shows the

CDAN workflow in our framework, including three key components: the feature extractor

F(·), the decoder G(·), and the domain discriminator D(·). We use F(·) to denote the separate

feature encoders and bilinear attention network together to generate joint representations

of input domain data, i.e., fs
i = F(xs

i ) and ft
j = F(xt

j). Next, we use the fully connected

classification layer mentioned above followed by a softmax function as G(·) to get a classifier

prediction gs
i = G(fs

i )∈R2 and gt
j = G(ft

j)∈R2. Furthermore, we apply a multilinear map to

embed joint representation f and classifier prediction g into a joint conditional representation

h ∈ R2K/s, which is defined as the flattening of the outer product of the two vectors:

h = Flatten(f⊗g), (4.9)

where ⊗ is the outer product.

The multilinear map captures multiplicative interactions between two independent dis-

tributions (Song et al., 2009; Song and Dai, 2013). Following the CDAN mechanism, we

simultaneously align the joint representation and predicted classification distributions of

source and target domains by conditioning the domain discriminator D(·) on the h. The

domain discriminator D(·), consisting of a three-layer fully connected networks, learns to

distinguish whether a joint conditional representation h is derived from the source domain

or the target domain. On the other hand, the feature extractor F(·) and decoder G(·) are

trained to minimize the source domain cross-entropy loss L with source label information,

and simultaneously generate indistinguishable representation h to confuse the discriminator
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D(·). As a result, we can formulate the two losses in the cross-domain modeling:

Ls(F,G) = E(xs
i ,y

s
i )∼SsL(G(F(xs

i )),y
s
i ), (4.10)

Ladv(F,G,D) = Ext
i∼St

log(1−D(ft
i,g

t
i))+Exs

j∼Sslog(D(fs
j,g

s
j)), (4.11)

where Ls is the cross-entropy loss on the labeled source domain and Ladv is the adversarial

loss for domain discrimination. The optimization problem is written as a minimax paradigm:

max
D

min
F,G
Ls(F,G)−ωLadv(F,G,D), (4.12)

where ω > 0 is a hyperparameter to weight Ladv. By introducing the adversarial training

on Ladv, our framework can reduce the data distribution shift between source and target

domains, leading to the improved generalization on cross-domain prediction.

4.3 Experiments

4.3.1 Datasets

We evaluate DrugBAN on three public DTI datasets: BindingDB, BioSNAP and Human.

The BindingDB dataset is a web-accessible database (Gilson et al., 2016) of experimen-

tally validated binding affinities, focusing primarily on the interactions of small drug-like

molecules and proteins. We use a low-bias version of the BindingDB dataset constructed in

Section 3.3.1 using the bias-reducing preprocessing steps. The BioSNAP dataset is created

from the DrugBank database (Wishart et al., 2008) by Marinka Zitnik and Leskovec (2018),

consisting of 4,510 drugs and 2,181 proteins. It is a balanced dataset with validated positive

interactions and an equal number of negative samples randomly obtained from unseen pairs.

The Human dataset is constructed by Liu et al. (2015), including highly credible negative

samples via an in silico screening method. Following previous studies (Chen et al., 2020a;

Tsubaki et al., 2019; Zheng et al., 2020), we also use the balanced version of Human dataset

containing the same number of positive and negative samples. To mitigate the influence of
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the hidden data bias (Chen et al., 2020a), we use additional cold pair split for performance

evaluation on the Human dataset. Table 4.1 shows statistics of the three datasets.

Table 4.1 Experimental dataset statistics

Dataset # Drugs # Proteins # Interactions

BindingDB (Gilson et al., 2016) 14,643 2,623 49,199
BioSNAP (Huang et al., 2021) 4,510 2,181 27,464
Human (Liu et al., 2015) 2,726 2,001 6,728

4.3.2 Evaluation Strategies and Metrics

We use two different split strategies for in-domain and cross-domain settings. For in-domain

evaluation, each experimental dataset is randomly divided into training, validation, and

test sets with a 7:1:2 ratio. For cross-domain evaluation, we propose a clustering-based

pair split strategy to construct cross-domain scenario. We conduct cross-domain evaluation

on the large-scale BindingDB and BioSNAP datasets. For each dataset, we firstly use the

single-linkage algorithm to cluster drugs and proteins by ECFP4 (extended connectivity

fingerprint, up to four bonds) (Rogers and Hahn, 2010) fingerprint and pseudo amino acid

composition (PSC) (Cao et al., 2013), respectively. After that, we randomly select 60% drug

clusters and 60% protein clusters from the clustering result, and consider all drug-target

pairs between the selected drugs and proteins as source domain data. All the pairs between

drugs and proteins in the remaining clusters are considered to be target domain data. Under

the clustering-based pair split strategy, the source and target domains are non-overlapping

with different distributions. Following the general setting of domain adaptation, we use all

labeled source domain data and 80% unlabeled target domain data as the training set, and

the remaining 20% labeled target domain data as the test set. The cross-domain evaluation

is more challenging than in-domain random split but provides a better measure of model

generalization ability in real-world drug discovery.

In the clustering-based pair split, we use the Jaccard distance and cosine distance on

ECFP4 and PSC for accurately measuring the pairwise distance. We set the minimum
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distance threshold γ = 0.5 in both drug and protein clusterings since this choice can prevent

over-large clusters and be ensure separate dissimilar samples. We obtain 2,780 clusters of

drugs and 1,693 clusters of proteins for the BindingDB dataset, and 2,387 clusters of drugs

and 1,978 clusters of proteins for the BioSNAP dataset. Table 4.2 shows the number of

samples in the ten largest clusters of the clustering results. It shows that BindingDB has a

more balanced cluster distribution than BioSNAP in drug clustering. In addition, the protein

clustering result tends to generate many small clusters with only a few proteins in both

datasets, indicating that the average similarity between proteins is lower than that between

drugs. We randomly select 60% drug clusters and 60% protein clusters from clustering result,

and regard all associated drug-target pairs with them as source domain data. The associated

pairs in the remaining clusters are considered to be source domain data. This split strategy

allows quantitatively constructing cross-domain tasks by considering the similarity between

drugs or proteins.

Table 4.2 Size of the ten largest clusters in the BindingDB and BioSNAP datasets generated
by the clustering-based pair split.

Dataset Object # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10

BindingDB Drug 598 460 304 290 253 250 203 202 198 158
BioSNAP Drug 294 267 75 68 36 35 28 26 24 24
BindingDB Protein 17 15 15 12 10 10 10 9 9 8
BioSNAP Protein 8 8 8 6 5 4 4 4 4 4

The AUROC (area under the receiver operating characteristic curve) and AUPRC (area

under the precision-call curve) are used as the major metrics to evaluate model classification

performance. In addition, we also report the accuracy, sensitivity, and specificity at the

threshold of the best F1 score. We conduct five independent runs with different random seeds

for each dataset split. The best performing model is selected to be the one with the best

AUROC on the validation set. The selected model is then evaluated on the test set to report

the performance metrics.
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4.3.3 Baselines

We compare DrugBAN with the following five models on DTI prediction: (1) Two shallow

machine learning methods, support vector machine (SVM) and random forest (RF) applied

on the concatenated fingerprint ECFP4 and PSC features; (2) DeepConv-DTI (Lee et al.,

2019) that uses CNN and one global max-pooling layer to extract local patterns in protein

sequence and a fully connected network to encode drug fingerprint ECFP4; (3) GraphDTA

(Nguyen et al., 2021) that models DTI using graph neural networks to encode drug molecular

graph and CNN to encode protein sequence. The learned drug and protein representation

vectors are combined with a simple concatenation. To adapt GraphDTA from the original

regression task to a binary classification task, we follow the steps in earlier literature (Chen

et al., 2020a; Huang et al., 2021) to add a Sigmoid function in its last fully connected layer,

and then optimize its parameters with a cross-entropy loss. (4) MolTrans (Huang et al.,

2021), a deep learning model adapting transformer architecture to encode drug and protein

information, and a CNN-based interactive module to learn sub-structural interaction. For

the above deep DTI models, we follow the recommended model hyper-parameter settings

described in their original papers.

4.3.4 Implementation Details

DrugBAN is implemented in Python 3.8 and PyTorch 1.7.1 (Paszke et al., 2017), along with

functions from DGL 0.7.1 (Wang et al., 2019), DGLlifeSci 0.2.8 (Li et al., 2021), Scikit-learn

1.0.2 (Pedregosa et al., 2011), Numpy 1.20.2 (Harris et al., 2020) and RDKit 2021.03.2 (Greg

Landrum et al, 2006). The batch size is set to be 64 and the Adam optimizer is used with

a learning rate of 5e-5. We allow the model to run for at most 100 epochs for all datasets.

The best performing model is selected at the epoch giving the best AUROC score on the

validation set, which is then used to evaluate the final performance on the test set. The protein

feature encoder consists of three 1D-CNN layers with the number of filters [128, 128, 128]

and kernel sizes [3, 6, 9]. The drug feature encoder consists of three GCN layers with hidden

dimensions [128, 128, 128]. The maximum allowed sequence length for protein is set to be
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Table 4.3 In-domain performance comparison on the BindingDB and BioSNAP datasets with
random split (Best, Second Best).

Method AUROC AUPRC Accuracy Sensitivity Specificity

BindingDB
SVM (Cortes and Vapnik, 1995) 0.939±0.001 0.928±0.002 0.825±0.004 0.781±0.014 0.886±0.012
RF (Ho, 1995) 0.942±0.011 0.921±0.016 0.880±0.012 0.875±0.023 0.892±0.020
DeepConv-DTI (Lee et al., 2019) 0.945±0.002 0.925±0.005 0.882±0.007 0.873±0.018 0.894±0.009
GraphDTA (Nguyen et al., 2021) 0.951±0.002 0.934±0.002 0.888±0.005 0.882±0.012 0.897±0.008
MolTrans (Huang et al., 2021) 0.952±0.002 0.936±0.001 0.887±0.006 0.877±0.016 0.902±0.009
DrugBAN 0.960±0.001 0.948±0.002 0.904±0.004 0.900±0.008 0.908±0.004

BioSNAP
SVM (Cortes and Vapnik, 1995) 0.862±0.007 0.864±0.004 0.777±0.011 0.711±0.042 0.841±0.028
RF (Ho, 1995) 0.860±0.005 0.886±0.005 0.804±0.005 0.823±0.032 0.786±0.025
DeepConv-DTI (Lee et al., 2019) 0.886±0.006 0.890±0.006 0.805±0.009 0.760±0.029 0.851±0.013
GraphDTA (Nguyen et al., 2021) 0.887±0.008 0.890±0.007 0.800±0.007 0.745±0.032 0.854±0.025
MolTrans (Huang et al., 2021) 0.895±0.004 0.897±0.005 0.825±0.010 0.818±0.031 0.831±0.013
DrugBAN 0.903±0.005 0.902±0.004 0.834±0.008 0.820±0.021 0.847±0.010

1200, and the maximum allowed number of atoms for drug molecule is 290. In the bilinear

attention module, we only employ two attention heads to provide better interpretability. The

latent embedding size k is set to be 768 and the sum pooling window size s is 3. The number

of hidden neurons in the fully connected decoder is 512.

4.3.5 In-domain Performance Comparison

Here we compare DrugBAN with five baselines under the random split setting: support vector

machine (SVM), random forest (RF), DeepConv-DTI, GraphDTA, and MolTrans. This is

the in-domain scenario so we use vanilla DrugBAN without embedding the CDAN module.

Table 4.3 shows the comparison on the BindingDB and BioSNAP datasets. DrugBAN

has consistently outperformed baselines in AUROC, AUPRC, and accuracy, while the

performance in sensitivity and specificity is also competitive. The deep learning-based

methods achieve higher performance than the shallow machine learning methods. The results

indicate that data-driven representation learning can capture more important information

than pre-defined descriptor features in in-domain DTI prediction. Moreover, DrugBAN can

capture interaction patterns via its pairwise interaction module, further improving prediction

performance.

Figure 4.2 shows the in-domain results on the Human dataset. Under the random split,

the deep learning-based models all achieve similar and promising performance (AUROC >
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0.98). However, Chen et al. (2020a) pointed out that the Human dataset had some hidden

ligand bias, resulting in the correct predictions being made only based on the drug features

rather than interaction patterns. The high accuracy could be due to bias and overfitting, not

indicating a model’s real-world performance on prospective prediction. Therefore, we further

use a cold pair split strategy to evaluate models to mitigate the overoptimism of performance

estimation under random split due to the data bias. This cold pair split strategy guarantees

that all test drugs and proteins are not observed during training so that prediction on test data

cannot rely only on the features of known drugs or proteins. We randomly assign 5% and

10% DTI pairs into the validation and test sets respectively, and remove all their associated

drugs and proteins from the training set. Figure 4.2 indicates that all models have a significant

performance drop from random split to cold pair split, especially for SVM and RF. However,

we can see that DrugBAN still achieves the best performance against other state-of-the-art

deep learning baselines.

We also conduct experiments to clarify how the proposed framework performs with high

fraction of missing data on BindingDB and BioSNAP. Following the missing data setting in

MolTrans (Huang et al., 2021), we train DrugBAN and deep learning baselines with only

5%, 10%, 20% and 30% of each dataset, and evaluate predictive performance on the rest of

data (90% as test set and 10% as validation set for determining early stopping). Table 4.4

presents the obtained results, showing DrugBAN has the best performance in all settings. In

particular, the improvement is more significant on the larger dataset, BindingDB.

4.3.6 Cross-domain Performance Comparison

In-domain classification under random split is an easier task and of less practical importance.

Therefore, next, we study more realistic and challenging cross-domain DTI prediction, where

training data and test data have different distributions. To imitate this scenario, the original

data is divided into source and target domains by the clustering-based pair split. We turn on

the CDAN module of DrugBAN to get DrugBANCDAN for studying knowledge transferability

in cross-domain prediction.
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Table 4.4 AUROC Performance comparison on the BindingDB and BioSNAP datasets with
high fraction of missing data (Best, Second Best)

Missing (%) DeepConv-DTI GraphDTA MolTrans DrugBAN

BindingDB
95 0.773±0.005 0.831±0.002 0.846±0.004 0.856±0.003
90 0.840±0.002 0.867±0.002 0.874±0.003 0.887±0.004
80 0.877±0.002 0.897±0.003 0.905±0.001 0.920±0.003
70 0.890±0.005 0.916±0.002 0.923±0.001 0.934±0.001

BioSNAP
95 0.710±0.005 0.768±0.005 0.767±0.006 0.770±0.008
90 0.781±0.003 0.798±0.003 0.800±0.004 0.802±0.003
80 0.816±0.003 0.829±0.003 0.835±0.001 0.836±0.002
70 0.839±0.002 0.851±0.002 0.853±0.002 0.860±0.003

Figure 4.3 presents the performance evaluation on the BindingDB and BioSNAP datasets

with clustering-based pair split. Compared to the previous in-domain prediction results, the

performance of all DTI models drops significantly due to much less information overlap

between training and test data. In this scenario, vanilla DrugBAN still outperforms other

state-of-the-art models on the whole. Specifically, it outperforms MolTrans by 2.9% and 7.4%

in AUROC on the BioSNAP and BindingDB datasets, respectively. The results show that

DrugBAN is a robust method under both in-domain and cross-domain settings. Interestingly,

RF achieves good performance and even consistently outperforms other deep learning

baselines (DeepConv, GraphDTA and MolTrans) on the BindingDB dataset. The results

indicate that deep learning methods are not always superior to shallow machine learning

methods under the cross-domain setting.

Domain adaptation techniques have received increasing attention due to the ability of

transferring knowledge across domains, but they are mainly applied to computer vision

and natural language processing problems. We combine vanilla DrugBAN with CDAN to

tackle cross-domain DTI prediction. As shown in Figure 4.3, DrugBANCDAN has significant

performance improvements with the introduction of a domain adaptation module. On the

BioSNAP dataset, it outperforms vanilla DrugBAN by 4.6% and 16.9% in AUROC and

AUPRC, respectively. By minimizing the distribution discrepancy across domains, CDAN

can effectively enhance DrugBAN generalization ability and provide more reliable results.
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Fig. 4.2 In-domain performance comparison on the Human dataset with random split and
cold pair split over five independent runs. Left: AUROC scores. Right: AUPRC scores. The
vertical bars represent mean, and the black lines are error bars indicating standard deviation.
The dots indicates performance scores in each random run of models.
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Fig. 4.3 Cross-domain performance comparison on the BindingDB and BioSNAP datasets
with clustering-based pair split over five independent runs. Left: AUROC scores. Right:
AUPRC scores. The box plots show the median as the center lines, and the mean as the green
triangles. The minima and lower percentile represent the worst and second-worst scores. The
maxima and upper percentile indicate the best and second-best scores.

These results demonstrate the strength of DrugBAN in generalizing prediction performance

across domains.
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Table 4.5 Ablation study in AUROC on the BindingDB and BioSNAP datasets with random
and clustering-based split strategies. The first four models show the effectiveness of our
bilinear attention module, and the last three models show the strength of DrugBANCDAN on
cross-domain prediction (Best, Second Best).

Ablation tests BindingDBrandom BioSNAPrandom BindingDBcluster BioSNAPcluster

Linear concatenation (Öztürk et al., 2018) 0.949±0.002 0.887±0.007 - -
One-side target attention (Tsubaki et al., 2019) 0.950±0.002 0.890±0.005 - -
One-side drug attention (Tsubaki et al., 2019) 0.953±0.002 0.892±0.004 - -
DrugBAN 0.960±0.001 0.903±0.005 0.575±0.025 0.654±0.023
MolTransCDAN - - 0.575±0.038 0.656±0.028
DrugBANDANN - - 0.592±0.042 0.667±0.030
DrugBANCDAN - - 0.604±0.039 0.684±0.026

4.3.7 Ablation Study

Here we conduct an ablation study to investigate the influences of bilinear attention and

domain adaptation modules on DrugBAN. The results are shown in Table 4.5. To validate

the effectiveness of bilinear attention, we study three variants of DrugBAN that differ in

the joint representation computation between drug and protein: one-side drug attention,

one-side protein attention, and linear concatenation. The one-side attention is equivalent to

the neural attention mechanism introduced by Tsubaki et al. (2019), which is used to capture

the joint representation between a drug vector representation and a protein subsequence

matrix representation. We replace the bilinear attention in DrugBAN with one-side attention

to generate the two variants. Linear concatenation is a simple vector concatenation of drug

and protein vector representations after a max-pooling layer. As shown in the first four rows

of Table 4.5, the results demonstrate that bilinear attention is the most effective method to

capture interaction information for DTI prediction. To examine the effect of CDAN, we study

two variants: DrugBAN with domain-adversarial neural network (DANN) (Ganin et al., 2016)

(i.e. DrugBANDANN) and MolTrans with CDAN (i.e. MolTransCDAN). DANN is another

adversarial domain adaptation technique without considering classification distribution. The

last four rows of Table 4.5 indicate that DrugBANCDAN still achieves the best performance

improvement in cross-domain prediction.
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Fig. 4.4 Importance visualization of ligands and binding pockets. (a) Interpretability of co-
crystalized ligands. The left-hand side of each panel shows the two-dimensional structures of
ligands with highlighted atoms (orange) that were predicted to contribute to protein binding.
All structures were visualized using RDKit (Greg Landrum et al, 2006). In addition, ligand-
protein interaction maps (right-hand side of each panel) from the corresponding crystal
structures of these ligands are provided. At the right bottom, the legend panel for the ligand-
protein interaction maps is displayed. (b) Interpretability of binding pocket structures. The
three-dimensional representations of ligand-protein binding pockets are provided highlighting
the correctly predicted amino acid residues (orange) that surround the corresponding ligands
(cyan). Remaining amino acid residues, secondary structure elements, and surface maps are
colored in grey. All ligand-protein interaction maps and three-dimensional representations
of X-ray structures were visualized using the Molecular Operating Environment (MOE)
software (Molecular Operating Environment (MOE), 2022).

4.3.8 Interpretability with Bilinear Attention Visualization

A further strength of DrugBAN is to enable molecular level insights and interpretation critical

for drug design efforts, utilizing the components of the bilinear attention map to visualize
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the contribution of each substructure to the final predictive result. Here, we examine the top

three predictions (PDB ID: 6QL2, 5W8L and 4N6H) of co-crystalized ligands from Protein

Data Bank (PDB) (Burley et al., 2019). Only X-ray structures with resolution greater than

2.5 Å that corresponded to human protein targets were proceeded for selection. In addition,

co-crystalized ligands were required to have pIC50 ≤ 100 nM and not to be part of the

training set. The visualization results are shown in Figure 4.4a alongside the ligand-protein

interaction maps originating from the corresponding X-ray structures. For each molecule, we

colored its top 20% weighted atoms in bilinear attention map with orange.

For PDB structure 6QL2 (ethoxzolamide complexed with human carbonic anhydrase 2),

our model correctly interpreted sulfonamide region as essential for ligand-protein binding

(in 6QL2: sulfonamide oxygen as a hydrogen bond acceptor to the backbone of Leu198

and Thr199, and amino group as a hydrogen bond donor to the side chains of His94 and

Thr199). On another hand, ethoxy group of ethoxzolamide was incorrectly predicted to

form specific interactions with the protein, although its exposure to the solvent may promote

further binding (blue highlight). In addition, benzothiazole scaffold, which forms an arene-H

interaction with Leu198, is only partly highlighted by our interpretability model. It is worth

mentioning that though top 20% of interacting atoms of ethoxzolamide only corresponded

to three highlighted atoms, all of them indicated different ligand-protein interaction sites

corroborated by the X-ray structure.

In 5W8L structure (9YA ligand bound to human L-lactate dehydrogenase A), the inter-

pretability feature once more highlighted important interaction patterns for ligand-protein

binding. For example, sulfonamide group was once more indicated to form specific interac-

tions with the protein (in 5W8L: amino group as a hydrogen bond donor to the side chains of

Asp140 and Glu191, and sulfonamide oxygen as a hydrogen bond acceptor to the backbone

of Asp140 and Ile141). Similarly, we noted that carboxylic acid group was also partly

highlighted (in 5W8L: carboxylic acid oxygens act as hydrogen bond acceptors to the side

chains of Arg168, His192, and Thr247). Moreover, biphenyl rings were correctly predicted

to participate in ligand-protein binding (in 5W8L: arene-H interaction with Arg105 and

Asn137). Although 9YA (bound to 5W8L) was much larger and complex than ethoxzolamide
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(bound to 6QL2), the model showed good interpretability potential for the majority of the

experimentally confirmed interactions.

In the third example, 4N6H X-ray complex of human delta-type opioid receptor with

EJ4 ligand, main interacting functional groups of EJ4 were once more highlighted correctly.

Here, a hydroxyl group of the aliphatic ring complex and a neighboring tertiary amine (in

4N6H: both as hydrogen bond donors to the side chain of Asp128) were correctly interpreted

to form specific interactions. On the other hand, phenol group was wrongly predicted to

participate in protein binding.

As for the more challenging protein sequence interpretability, the results were overall

weaker than those for the ligand interpretability. Although many amino acid residues that

were predicted to potentially participate in ligand binding were in fact distantly located to

the respective compounds, a number of amino acid residues forming the binding sites were

yet correctly predicted, which is shown in Figure 4.4b. For example, in 6QL2 complex

the following residues were highlighted: His94, His96, Thr200, Pro201, Pro202, Leu203,

Val207, Trp209. Among these, only His94 forms specific interaction with ethoxzolamide. In

5W8L, none of the residues that constitute the ligand-protein binding site were highlighted.

However, in 4N6H structure, there were several correctly predicted residues within the

binding site: Lys214, Val217, Leu300, Cys303, Ile304, Gly307, and Tyr308. Unfortunately,

none of the residues participated in the specific interactions with the ligand. Given these

results, it is expected that protein sequence interpretability would be less confident because

the one-dimensional protein sequence (used as protein information input in our model)

does not necessarily imply the three-dimensional configuration and locality of the binding

pocket. However, the results from the primary protein sequence are encouraging enough to

safely assume that the further incorporation of three-dimensional protein information into

the modeling framework would eventually improve the model interpretability of drug-target

interaction networks.

In addition, as the interpretability provided by DrugBAN is adaptively learned from

DTI data itself, such interpretation has potential to find some hidden knowledge of local
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interactions that has not been explored, and could help drug hunters to improve binding

properties of a given scaffold, or to reduce the off-target liabilities of a compound.

4.4 Summary

In this chapter, we present DrugBAN, an end-to-end bilinear attention deep learning frame-

work for DTI prediction. We have integrated CDAN, an adversarial domain adaptation

network, into the modeling process to enhance cross-domain generalization ability. Com-

pared with other state-of-the-art DTI models and conventional machine learning models,

the experimental results show that DrugBAN consistently achieves improved DTI predic-

tion performance in both in-domain and cross-domain settings. Furthermore, by mapping

attention weights to protein subsequences and drug compound atoms, our model can provide

biological insights for interpreting the nature of interactions. The proposed ideas are general

in nature and can be extended to other interaction prediction problems, such as the prediction

of drug-drug interaction and protein-protein interaction.





Chapter 5

Graph Transformer Pre-training

Improves Molecular Property Prediction

In Chapter 4, we leveraged domain adaptation to improve model’s specific transferability to

novel drug-target pairs that are out of learned distribution. However, this paradigm primarily

enhance model performance for the identical prediction task across different distributions. It

is not intended to improve generic transferability, which involves fine-tuning a pre-trained

model for adapting diverse downstream tasks. In drug discovery, a common challenge

is to predict various properties of a drug-like molecule. Therefore, this chapter focuses

on developing a novel self-supervised learning framework to improve model’s specific

transferability to downstream molecular property tasks.

5.1 Introduction

Predicting molecular properties plays a crucial role in drug discovery and computational

chemistry. However, since only a small fraction of molecules are labeled compared to

the giant chemical space, supervised learning methods are prone to over-fitting and poorly

generalize to dissimilar data and multiple property tasks (Rong et al., 2020; Wang et al.,

2021b). To enhance the generic transferability of molecular representation learning, we

develop a self-supervised learning (SSL) framework for molecular property prediction. By
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utilizing large-scale 2D and 3D molecules, our framework has the potential to generate more

comprehensive molecular representations that can be advantageous for various property

prediction tasks.

With the advancement of deep learning, many recent works exploit the SSL paradigm to

learn generalizable molecular representations (You et al., 2020; Liu et al., 2022; Stärk et al.,

2022; Rong et al., 2020). This involves pre-training a model with unlabeled molecules, and

then fine-tuning it for downstream property predictions using limited labeled data. SSL has

shown its efficacy in capturing molecular information and improving predictive performance.

In recent years, most molecular SSL methods have utilized graph neural networks (GNNs)

for encoding 2D molecular graphs, where atoms are represented as nodes and chemical bonds

as edges. Depending on the message-passing mechanism, GNNs can effectively preserve

topological information in molecules. One line of these works develops graph contrastive

learning-based methods, which adopt data augmentation strategies to generate correlated

graph pairs from the same molecule (You et al., 2020; Suresh et al., 2021). However, these

works have only considered the 2D modality of molecular data, despite its multimodal nature.

More recently, there has been a growing trend towards integrating 3D geometric information

into 2D molecular representation learning, and designing new contrastive methods across

modalities (Stärk et al., 2022; Zhu et al., 2022a; Liu et al., 2022). The incorporation of

3D geometry can provide rich energy knowledge that is vital in determining molecular

functionalities.

Despite the fruitful developments, two challenges remain in 2D-3D molecular SSL:

limited model capacity and incomplete pre-training tasks. Firstly, previous studies primarily

employ existing 2D and 3D GNNs as backbone networks for pre-training, which have

consistently suffered from the over-smoothing problem and expressive power limitation (Xu

et al., 2019). These issues limit the model capacity to capture rich multimodal information

and learn expressive representations from molecular data. Secondly, most dual-modality

molecular pre-training methods only focus on learning inter-modality relation between 2D

and 3D molecular structures, without simultaneous consideration of intra-modality relation.

The intra-modality relation within each modality is complementary to the inter-modality
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Fig. 5.1 Overview of the Galformer pre-training framework. The input 2D topological graph
and 3D geometric graph are derived from the same molecule in the SMILES Weininger
(1988a) format. Galformer provides a dual-modality line graph transformer architecture to
encode both 2D and 3D molecular information. In each modality, the original molecular graph
is first transformed into its line graph. Then the line node feature and positional/distance
encoding are derived. Furthermore, the 2D and 3D encoders learn structural information
by incorporating 2D path length, 2D path node and 3D geometric angle encodings in their
self-attention modules. For pre-training tasks, Galformer creates the inter-modality mask on
line node embedding, and the intra-modality contrast on graph-level embedding.

relation (Gao et al., 2019; Wei et al., 2020). For instance, each 2D molecular representation

should not only obtain geometric knowledge from its associated 3D modality, but also

preserve the topological information within the 2D structure. By considering both inter- and

intra-modality knowledge extraction in a unified molecular SSL framework, we can design

the pre-trained model to be more robust and generalizable to various downstream tasks.

To tackle the two challenges, we propose the Geometry-aware line graph transformer

(Galformer) in this chapter. It is a unified 2D-3D pre-training framework to learn general-

izable molecular representations. Figure 5.1 presents an overview of Galformer. We first

transform the input 2D and 3D molecular graphs into their line graphs (i.e. edge-adjacency

graphs). This transformation preserves the inherent adjacency information in molecules

while emphasizing structural information at finer granularity levels, such as node-pair dis-

tances and edge-pair angles. Subsequently, we design a dual-modality line graph transformer

architecture to model both 2D and 3D molecular information flow simultaneously. To effec-

tively consider the inter- and intra-modality relations in SSL, we design two complementary
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pre-training tasks: masked line node prediction and dual-modality contrastive learning. At

the intra-modality level, we randomly mask a proportion of 2D and 3D line nodes, and

then predict their types from the context embedding within the individual modality. Owing

to the property of the line graph, this strategy considers local atom-pair, bond, and angle

information being masked, thus capturing richer structural patterns in molecules. At the

inter-modality level, we apply contrastive learning to maximize the mutual information

between the graph-level 2D and 3D molecular representations. The contrastive pre-training

task bridges the modality gap and is complementary to inter-modality mask learning. The

pre-trained 2D encoder incorporates rich 3D geometric knowledge to improve downstream

property prediction. Our contributions are three-fold:

• We propose a dual-modality line graph transformer architecture to encode both 2D

topological and 3D geometric information of molecules. By considering molecular

structures as graph inductive bias into the transformer, the designed backbone can

extract discriminative knowledge across modalities.

• We design two complementary pre-training tasks: masked line node prediction at the

inter-modality level and dual-modality contrastive learning at the intra-modality level.

Both contribute to generating more robust and generalizable molecular representations.

• We evaluate Galformer performance on twelve downstream molecular property datasets,

including both classification and regression tasks. The experimental results show its

superiority over six state-of-the-art baselines.

5.2 Methodology

5.2.1 Dual-Modality Molecular Graphs

Definition 5.2.1. (2D Topological Graph) Given a 2D molecule, its topological graph can

be defined as G2d = (V2d,E2d), where each node u ∈ V2d denotes an atom and each edge

(u,v) ∈ E represents a chemical bond between node (atom) u and v. Meanwhile, we initialize



5.2 Methodology 73

the node feature with atom attributes as h2d
u ∈ RΘv and edge feature with chemical bond

attributes as e2d
uv ∈ RΘe , where Θv and Θe denotes the dimensions of initial node and edge

features, respectively.

Definition 5.2.2. (3D Geometric Graph) A geometric graph of 3D molecule can be repre-

sented as G3d = (V3d,E3d,A3d), where (u,v,w) ∈ A denotes the geometric angle between

edge (u,v) and (v,w). Following previous studies (Li et al., 2022b; Fang et al., 2022), we

consider the atomic distance duv > 0 and angle θuvw ∈ [0,π] as invariant spatial features in

G3d , regardless of how the same molecular conformation rotates or translates in 3D space.

To emphasize the geometric information, each 3D node feature is denoted as a one-hot vector

h3d
u ∈ RΘt , where Θt is the number of atomic types without additional topological attributes.

The dual-modality molecular graphs capture high-level topological and geometric re-

lationships, which are significant to the functionality of molecules. For each atom in a

given molecule, we create a 101-dimensional one-hot vector to represent the atom type, and

36-dimensional integer vector to indicate the atom properties. These atom properties includes

formal charge, number of hydrogen atoms, presence of a chiral center, chirality type, number

of radical electrons, hybridization state, bond degree, atomic mass, and aromaticity. We

concatenate the atom type vector and atom property vector to create the initial node feature in

a 2D topological graph. Meanwhile, we utilize the individual atom type vector as the initial

node feature in a 3D geometric graph.

For each bond in a given molecule, we generate a 5-dimensional one-hot vector to encode

the bond type, and a 9-dimensional integer vector to indicate the bond properties, including

ring membership, stereochemistry, and conjugation status. The two vectors are concatenated

as the initial edge feature in a 2D topological graph. For a 3D geometric graph, we calculate

the pairwise atomic distance and represent it as a vector using a Gaussian Basis Kernel

function, which serves as the initial edge feature.
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5.2.2 Problem Formulation

Given a set of unlabeled molecules M = {G2d
i ,G3d

i }
|M|
i=1 , where each molecule Mi ∈M

has its 2D topological graph G2d
i and 3D geometric graph G3d

i . The study aims to pre-train

a dual-modality SSL model that generates discriminative molecular representations and

then adapts to molecular property prediction by fine-tuning. Due to the scarcity of the 3D

conformers in downstream tasks, following the paradigm of previous works (Liu et al., 2022;

Stärk et al., 2022), we regard the knowledge of 3D geometry as privileged information only

used during pre-training. Then, the pre-trained 2D encoder is subsequently fine-tuned for

downstream property prediction tasks, with only 2D topological graphs available.

5.2.3 Framework Overview

Figure 5.1 presents an overview of the Galformer framework, which consists of three

key components: line graph transformation, dual-modality line graph transformer, and

complementary pre-training tasks. In this methodology, we first describe the procedure for

transforming 2D and 3D molecular graphs into their corresponding line graphs. Then we

elaborate on the design of dual-modality line graph transformers that can effectively encode

both topological and geometric information. Finally, we introduce the pre-training tasks that

enable learning of inter-modality and intra-modality relations.

5.2.4 Molecular Line Graphs

Topological Line Graph. Given a 2D topological graph G2d = (V2d,E2d), we can transform

it into a topological line graph Ĝ2d = (V̂2d, Ê2d) following the two steps. (i) For each edge in

G2d , create a node in Ĝ2d . This step involves mapping the edges in the original graph to nodes

in the line graph. (ii) For every pair of edges in G2d that share a common node, create an edge

between their corresponding nodes in Ĝ2d . This step involves making connections between

the nodes in the line graph based on the common nodes in the original graph. After the

transformation, we can initialize each node feature in Ĝ2d with the atom and bond attributes
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as follows:

n2d
uv = Concat(Wgh2d

u +Wgh2d
v ,Wee2d

uv ), (5.1)

where Wg ∈R
Θv̂
2 ×Θv and We ∈R

Θv̂
2 ×Θe are learnable projection matrices. To avoid ambiguity

and simplify notations, we denote V̂2d = {v̂i}|V̂
2d |

i=1 as the set of nodes in topological line

graph Ĝ2d , where |V̂ 2d| is equivalent to the number of edges |E2d| in G2d by the definition of

line graph.

Geometric Line Graph. A geometric line graph Ĝ3d = (V̂3d, Ê3d) can be derived from

its corresponding 3D geometric graph G3d by the similar transformation steps above. In

contrast, we emphasize integrating the invariant spatial features (i.e., atomic distance and

angle) within the line graph framework. As the atomic distance duv and angle θuvw are

continuous scalar variables, it is difficult to directly incorporate them into the subsequent

deep architecture. Therefore, we use Gaussian Basis Kernel function (Scholkopf et al., 1997)

to map the atomic distance and angle into high-dimensional vectors, which can be written as:

duv =
M
⌢

m=1

(
− 1√

2π|σm
d |

exp

(
−1

2

(
α t

dduv +β t
d−µm

d
|σm

d |

)2
))

, (5.2)

θuvw =
M
⌢

m=1
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2π|σm
θ
|
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θ
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)2
))

, (5.3)

where ⌢ denotes the concatenation operator over multiple scalars and M is the number of

Gaussian Basis Kernels, that is, the dimension of the mapped vectors. (σm
d , µm

d ) and (σm
θ

,

µm
θ

) are the k-th learnable kernel center and scaling factor for the atomic distance and angle,

respectively. (α t
d , β t

d) and (α t
θ

, β t
θ

) are also learnable scalars but indexed by the type of

atomic pair in (u,v) and edge pair in (u,v,w), respectively. The mapped pair-wise encodings

can preserve invariant spatial features and adapt to further deep modeling. Next, the node

and edge features in geometric line graph Ĝ3d are defined as follows:

n3d
uv = Concat(Wlh3d

u +Wlh3d
v ,Wdduv), (5.4)

e3d
uvw = Wpθuvw, (5.5)
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Fig. 5.2 An illustration of transforming a molecular graph to its line graph. This transforma-
tion preserves the inherent adjacency information in the original graph while emphasizing
structural information at finer granularity levels.

where Wl ∈ R
Θv̂
2 ×Θt , Wd ∈ R

Θv̂
2 ×M and Wp ∈ RΘê×M are learnable projection matrices. By

definition, the edges in the line graph represent the pairs of edges in the original graph

sharing a common node (i.e. adjacent edges). The relationship derives that each line edge

corresponds to a unique angle in the original graph. Therefore, we can adopt the projected

angle vector e3d
uvw as edge feature in Ĝ3d . Finally, we can define V̂3d = {v̂i}|V̂

3d |
i=1 as the set

of nodes and Ê3d = {êi j}i, j∈[1,|V̂3d |] as the set of edges in Ĝ3d . Figure 5.2 illustrates the line

graph transformation.

5.2.5 Dual-modality Line Graph Transformers

Although transformer architecture has demonstrated remarkable performance in various

tasks involving sequence data, its direct application to graph-structured data still remains

challenging. The primary obstacle lies in the fact that the self-attention and feed-forward

network modules are order-agnostic to the input features, and the classic positional encoding

(Vaswani et al., 2017) fails to capture graph structural information. To handle this problem, we

develop dual-modality line graph transformers, which introduce efficient structural encoding

methods to incorporate the topological and geometric structures, respectively.

2D Line Graph Transformer. We introduce three distinct structural encoding methods:

eigenvector positional encoding, path length encoding, and path node encoding, thus inte-
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Fig. 5.3 An illustration of the dual-modality line graph transformer architecture. The blue
part is the 3D line graph transformer capturing the geometric structural information, and
the orange part is the 2D line graph transformer incorporating the topological structural
information. Both of them are derived from the vanilla transformer backbone.

grating the topological information of 2D line graphs into transformer architecture. These

encoding methods serve as the inductive bias to convey structural information, leading to

more robust and discriminative graph representations.

Eigenvector Positional Encoding. For the topological line graph, we use the eigenvectors

of its normalized Laplacian matrix as positional encoding. Laplacian matrix is defined as the

difference between the degree matrix and the adjacency matrix, representing the topology of a

graph. Furthermore, Laplacian eigenvectors can distinguish the local position information of

different nodes, while preserving the global topology structure (Dwivedi et al., 2023; Belkin

and Niyogi, 2003). For each node in the topology line graph, its corresponding eigenvector

is viewed as a node positional encoding and added to the node feature for position-aware
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feature input:

x2d
i = n2d

i +Wvv2d
i , (5.6)

where v2d
i ∈ RK is the K smallest non-trivial eigenvectors for the i-th node in the topological

line graph, and Wv ∈RΘv̂×K denotes a learnable projection matrix. The eigenvector positional

encoding for graph-structured data can be regarded as a natural generalization of the sine-

cosine positional encoding for sequence-structured data. By adding it to the input node

features, the transformer can effectively capture their positional information in the graph.

Path Length Encoding. Different from general structured data in Euclidean space, e.g.,

texts and images, graphs do not have a canonical order and can only lie in a non-Euclidean

space connected by edges. To model full structural information, the spatial relations between

nodes should be measured. Following previous studies (Ying et al., 2021; Li et al., 2022a),

we derive the shortest path between each pair of nodes, and then leverage the path length and

the node features along the path to capture spatial information. For the path length encoding,

we assign a learnable embedding vector for each length scalar, then project it as a bias term

in the self-attention module. Given a node pair (v̂i, v̂ j) in the topological line graph, the path

length encoding can be written as:

pi j = Spl(v̂i, v̂ j),

bi j = pT
i jwp,

(5.7)

where Spl(·) denotes an embedding function that determines a learnable embedding vector

pi j ∈ Rp indexed by the length of the shortest path between node v̂i and v̂ j, and wp ∈ Rp is a

learnable projection vector.

Path Node Encoding. As the different nodes along the shortest path can distinguish spatial

relations in graphs, we encode the path node features as additional structural information into

modeling. For each node pair (v̂i, v̂ j), we compute an average bias term of the dot-products

of the node feature and a learnable projection vector along the path, which is defined as:

ci j =
1

Ni j

Ni j

∑
n=1

(x2d
n )T wn, (5.8)
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where Ni j is the shortest path length between node v̂i and v̂ j, x2d
n is the n-th 2D node feature

along the path, and wn ∈ RΘv̂ denotes the n-th learnable projection vector indexed by the

path position.

Topological Bias in 2D Attention. We incorporate the proposed three structural encodings

into the transformer architecture, which captures full structural information in the topological

line graph. Specifically, the eigenvector positional encoding is added to the original node

feature as the input feature. The path length and path node encodings are viewed as two

structural bias terms to the self-attention module. We can compute each element (i, j) in the

attention matrix as follows:

A2d
i j =

(W2d
q x2d

i )T (W2d
k x2d

j )
√

dk
+bi j + ci j, (5.9)

where W2d
q ∈ Rdk×Θv̂ and W2d

k ∈ Rdk×Θv̂ are learnable projection matrices. Similar to the

vanilla transformer, we augment the self-attention module by extending to the multi-head

mechanism. Note that the structural bias terms bi j and ci j should also be computed by

separate projection vectors within different heads. Then, we adapt the feed-forward network

with layer normalization (Ba et al., 2016) and skip connection operations (He et al., 2016)

over the output of the self-attention module.

3D Line Graph Transformer. To incorporate the geometric graph information into

transformer architecture, we consider two novel structural encoding methods: atomic distance

encoding and geometric angle encoding. By leveraging the constructed geometric line

graph, the atomic distance and geometric angle can be embedded into the node and edge

representations in a natural manner. For the atomic distance encoding, we concatenate

the atomic feature embedding and pair-wise distance embedding in Equation (5.4), which

provides a relative position encoding as the input feature to the following modeling, that is,

x3d
i = h3d

uv .

Geometric Angle Encoding. As an invariant spatial feature, the geometric angle be-

tween the adjacent bonds plays an important role in determining the spatial structure of 3D

molecules. Similarly, we derive the shortest path between any two nodes in the geometric
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line graph. Since the angle embedding is viewed as the line edge feature by Equation (5.5),

we can encode the edge features along the path as the structural information. Given a node

pair (v̂i, v̂ j), an average bias term is computed by taking the dot-product of the edge feature

and a learnable projection vector along the shortest path:

gi j =
1

Ni j−1

Ni j−1

∑
m=1

(e3d
m )T wm, (5.10)

where Ni j is the shortest path length, e3d
m is the m-th 3D edge feature along the path, and

wm ∈ RΘê denotes the m-th learnable projection vector indexed by the path position.

Geometric Bias in 3D Attention. Next, we introduce the pair-wise distance and angle

encodings into transformer architecture, capturing the geometric structural information. For

each element (i, j) in the attention matrix of 3D line graph transformer, we have:

A3d
i j =

(W3d
q x3d

i )T (W3d
k x3d

j )
√

dk
+gi j, (5.11)

where W3d
q ∈ Rdk×Θv̂ and W3d

k ∈ Rdk×Θv̂ are learnable projection matrices. As with the 2D

line graph transformer, we leverage the multi-head attention mechanism to enhance the self-

attention module, then feed the output into a feed-forward network with layer normalization

and skip connection operations.

Architecture Advantages. Here we discuss two advantages of the designed dual-

modality architecture: (i) Both 2D and 3D line graph transformers are derived from the

vanilla transformer backbone but encode different topological and geometric information,

respectively. The consistent backbone across two modalities ensures that the encoded repre-

sentations are directly comparable, and the knowledge can be transferred in the subsequent

inter-modality learning. (ii) By transforming original molecular graphs into line graphs, the

structural information is preserved in the node and edge features. This transformation ensures

that graph structures can be more effectively captured by most graph-based machine learning

methods. Despite different terminologies, the concept of molecular line graph has already

been applied in previous studies. However, they separate the line graph into atom-bond and
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bond-angle two graphs (Fang et al., 2022; Li et al., 2022b), or consider the transformation

only on 2D molecules (Li et al., 2022a)

5.2.6 Pre-training Task Construction

The efficiency of the pre-training framework significantly depends on the construction of pre-

training tasks. In this work, we design two complementary tasks from both intra-modality and

inter-modality levels: masked line node prediction and dual-modality contrastive learning.

Masked Line Node Prediction. For the pre-training at the intra-modality level, we

leverage node masking to let the model learn the regularities of the atom/bond attributes.

Following the “masked language model (MLM)” training objective in BERT (Devlin et al.,

2019), we randomly sample a proportion of line nodes in the topological and geometric line

graphs, and replace them with the masking procedures: (i) masking 80% of the selected nodes

using a special MASK indicator, (ii) replacing 10% of the selected nodes with other random

nodes, and (iii) keeping the remaining 10% nodes unchanged. Then we apply 2D/3D line

graph transformers to obtain the corresponding line node embeddings. Finally, a multi-layer

perceptron (MLP) is used on top of the masked embeddings to predict the types of the

original nodes with a cross-entropy loss. The mask losses on the 2D and 3D modalities are

denoted as L2d
mask and L3d

mask, respectively.

Dual-modality Contrastive Learning. As the 2D and 3D modalities of the same

molecule are correlated and can provide complementary knowledge to each other, we can

enhance molecular self-supervised learning by designing an inter-modality pre-training

task. Specifically, we leverage contrastive learning to maximize the mutual information

between the 2D and 3D representations of a molecule. In each line graph, we create a virtual

node connected to all other nodes. Its output represents the graph-level embedding and

can be used for inter-modality contrast. For each molecule, we first extract the graph-level

embeddings from the masked topological and geometric line graphs, and then adapt the

individual projection heads to map them into a common representation space, resulting in the

derivation of z2d
i and z3d

i . The 2D-3D latent vectors from the same molecule are regarded as

positive pairs, and negative pairs otherwise. Based on the InfoNCE loss (Oord et al., 2018),
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our dual-modality contrastive learning is written as:

L2d
cl =−

N

∑
i=1

log
exp(Sim(z2d

i ,z3d
i )/τ)

∑
M
j=1 exp(Sim(z2d

i ,z3d
j )/τ)

, (5.12)

L3d
cl =−

N

∑
i=1

log
exp(Sim(z3d

i ,z2d
i )/τ)

∑
M
j=1 exp(Sim(z3d

i ,z2d
j )/τ)

, (5.13)

Lcl =
1
N
(L2d

cl +L
3d
cl ), (5.14)

where z2d
i and z3d

i denotes two latent vectors in 2D and 3D modalities from the same

molecule, τ is a temperature coefficient, Sim(·) measures the dot similarity between two

vectors, M is the batch size, and N is the number of molecules in the dataset. Dual-modality

contrastive learning can simultaneously align the positive pairs of the same molecule and

distinguish them from negative pairs, thereby enabling the 2D/3D representation to extract

complementary information from its 3D/2D counterpart.

Finally, we combine the intra-modality mask losses and inter-modality contrastive loss

into an overall loss function as follows:

Lob j = λ1

(
L2d

mask +L
3d
mask

)
+λ2Lcl, (5.15)

where λ1 and λ2 are weighting coefficients. The training objective is to minimize the overall

lossLob j. As a result, the mask generative losses capture useful semantics of molecules in two

modalities, while the contrastive loss can simultaneously provide complementary information

from each other. Consequently, our SSL framework can produce a robust and discriminative

molecular representation that encodes both topological and geometric information.
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Table 5.1 Statistics of Molecular Property Datasets

Dataset # Molecules # Tasks Source Type

BBBP 2,039 1 MoleculeNet Classification
Sider 1,427 27 MoleculeNet Classification
ClinTox 1,478 2 MoleculeNet Classification
BACE 1,513 1 MoleculeNet Classification
Tox21 7,831 12 MoleculeNet Classification
MUV 93,087 17 MoleculeNet Classification
HIV 41,127 1 MoleculeNet Classification
Estrogen 3,122 2 ChEMBL Classification
MetStab 2,267 2 MetStabOn Classification
ESOL 1,128 1 MoleculeNet Regression
Freesolv 642 1 MoleculeNet Regression
Lipo 4,200 1 MoleculeNet Regression
Malaria 9,999 1 Antimalarial Regression
CEP 29,978 1 Clean Energy Project Regression

5.3 Experiments

5.3.1 Datasets

For pre-training, we use unlabeled GEOM dataset (Axelrod and Gomez-Bombarelli, 2022)

comprising 304k molecules, which contains precise 2D and 3D structures. Most molecules

have multiple 3D conformers, but the conformer with the lowest energy is deemed to

be the most stable and has the highest possibility. Therefore, we take the lowest-energy

conformer of each molecule as its 3D structure. For downstream fine-tuning, we evaluate

model performance on fourteen labeled 2D molecular datasets from MoleculeNet Wu et al.

(2018a) and other public sources (Gaulton et al., 2012; Podlewska and Kafel, 2018; Gamo

et al., 2010; Hachmann et al., 2011), including nine classification tasks and five regression

tasks. These benchmarks have been widely used in previous studies (You et al., 2020; Li

et al., 2022a; Wang et al., 2021b; Liu et al., 2022) and provide comprehensive coverage of

molecular properties in domains, such as physiology, biophysics and physical chemistry.

The statistics of these datasets are summarized in Table 5.1. For detailed descriptions of

molecular properties, please refer to Appendix B.1.
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5.3.2 Evaluation Strategies and Metrics

As described in previous chapters, it is a common practice to divide a dataset into training,

validation and test sets using random split for machine learning tasks. However, this split

strategy fails to distinguish molecules with similar structures. As suggested in Molecu-

leNet (Wu et al., 2018a), we adopt scaffold split to create a more challenging yet realistic

evaluation for molecular property prediction. Each downstream dataset is divided into

training/validation/test with an 8:1:1 ratio.

We use two metrics to evaluate the performance of downstream tasks: the area under

the receiver operating characteristic curve (AUROC) for classification tasks and RMSE for

regression tasks. For classification datasets with multi-binary labels, we calculate the average

AUROC of all independent labels as the final metric. For each downstream task, we conduct

three independent scaffold splitting runs with different random seeds, and report the means

and standard deviations of evaluation metrics.

5.3.3 Baselines

We comprehensively evaluate the performance of Galformer against seven state-of-the-art

self-supervised learning methods on molecules. Among these, GraphCL (You et al., 2020)

and JOAO (You et al., 2021) are 2D contrastive methods that leverage data augmentation

strategies on 2D molecular graphs to facilitate representation learning. GROVER Rong et al.

(2020) and KPGT (Li et al., 2022a) are 2D generative methods that incorporate domain

knowledge for the design of self-supervised learning tasks. DMP (Zhu et al., 2023) effectively

combines the 1D sequence and 2D graph of a molecule to learn dual-modality representations.

3DInformax (Stärk et al., 2022) and GraphMVP (Liu et al., 2022) are 2D-3D pre-training

methods with GNN-based backbones. 3DInformax aims to maximize the mutual information

between the 2D and 3D representations via contrastive learning, while GraphMVP adopts a

hybrid strategy to learn complementary 2D-3D information.
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Table 5.2 Test AUROC performance of different methods on nine downstream classification
datasets (best in bold, second best in underline). A larger value indicates better performance
(marked by ↑). Each experiment is conducted independently three times with different
random seeds for scaffold split.

Classification accuracy (AUROC) ↑
Dataset BBBP Sider ClinTox BACE Tox21 MUV HIV Estrogen MetStab
# Molecules 2,039 1,427 1,478 1,513 7,831 93,087 41,127 3,122 2,267
# Tasks 1 27 2 1 12 17 1 2 2
GraphCL 0.901(0.033) 0.625(0.023) 0.642(0.120) 0.868(0.025) 0.823(0.015) 0.762(0.027) 0.776(0.007) 0.891(0.020) 0.794(0.037)
JOAO 0.900(0.031) 0.629(0.020) 0.707(0.068) 0.866(0.035) 0.825(0.011) 0.766(0.048) 0.769(0.004) 0.869(0.050) 0.814(0.031)
GROVER 0.923(0.029) 0.645(0.010) 0.894(0.032) 0.882(0.030) 0.840(0.016) 0.831(0.035) 0.773(0.014) 0.903(0.030) 0.822(0.039)
3DInfomax 0.905(0.033) 0.634(0.029) 0.724(0.104) 0.862(0.023) 0.819(0.021) 0.803(0.007) 0.750(0.010) 0.871(0.039) 0.811(0.043)
GraphMVP 0.918(0.019) 0.652(0.027) 0.705(0.092) 0.866(0.028) 0.832(0.017) 0.787(0.039) 0.791(0.004) 0.892(0.033) 0.827(0.043)
DMP 0.930(0.031) 0.655(0.025) 0.908(0.032) 0.890(0.033) 0.830(0.022) 0.835(0.020) 0.798(0.015) 0.910(0.025) 0.853(0.046)
KPGT 0.927(0.028) 0.658(0.013) 0.915(0.027) 0.893(0.032) 0.847(0.013) 0.829(0.047) 0.768(0.007) 0.915(0.028) 0.846(0.052)
Galformer 0.933(0.027) 0.681(0.011) 0.910(0.030) 0.897(0.026) 0.852(0.015) 0.841(0.023) 0.796(0.017) 0.936(0.010) 0.875(0.029)

5.3.4 Implementation Details

We implement Galformer mainly in PyTorch (Paszke et al., 2017) and DGL (Wang et al.,

2019), along with useful functions from RDKit (Greg Landrum et al, 2006), DGLlifeSci (Li

et al., 2021) and Scikit-learn (Pedregosa et al., 2011). The Adam optimizer (Kingma and Ba,

2014) with a polynomial decay learning rate scheduler is used for training optimization. We

employ 12-layer 2D and 3D line graph transformers as backbone networks to encode the dual-

modality molecular information. The hidden size is set to 768 and the number of attention

heads is set to 12. We select a batch size of 256 and pre-train the model for 50 epochs. The

peak learning rate is set to 2e−4 and Adam weight decay is set to 1e−6. Additionally, we

set the mask ratio as 0.4 and temperature coefficient τ as 0.1. The multi-task weighting

coefficients λ1 and λ2 are all set to 1 for balanced optimization. After pre-training, we

concatenate the graph-level embedding and averaged line node embedding as the molecular

representation for downstream tasks.

5.3.5 Downstream Task Evaluation

Tables 5.2 and 5.3 present the testing performance of all methods on classification and

regression tasks, respectively. The results provide the following observations: (1) Galformer

consistently achieves the best performance on 11 out of 14 downstream datasets, demon-

strating its effectiveness. Compared to previous SOTA results from baselines, Galformer
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has an overall relative improvement of 1.2% on the classification tasks and 1.8% on the

regression tasks. (2) Among contrastive learning baselines, GraphMVP and 3DInformax,

which leverage both 2D and 3D graphs in pre-training, perform better on the whole aver-

age than GraphCL and JOAO, which only use 2D graphs. It indicates that incorporating

3D geometry can effectively facilitate molecular self-supervised learning. Furthermore,

Galformer achieves more significant improvement compared with the 2D-3D contrastive

baselines. This result can be attributed to our complementary pre-training tasks, which can

adaptively capture both inter-modality and intra-modality information. (3) KPGT, DMP

and GROVER outperform other baselines for most tasks. One potential explanation is that

they both employ transformer-based architectures as backbone networks, leading to higher

model capacity and more expressive power than message passing models. Nevertheless, the

lack of leveraging 3D geometry limits their ability to fully learn molecular representations.

Therefore, Galformer exhibits a notable capability to surpass the inherent limitations in

previous methods, consequently achieving more accurate molecular property prediction.

Table 5.3 Test RMSE Performance of different methods on five downstream regression
datasets (best in bold, second best in underline). A lower value indicates better performance
(marked by ↓). Each experiment is conducted independently three times with different
random seeds for scaffold split.

Regression error (RMSE) ↓
Dataset ESOL Freesolv Lipo Malaria CEP
# Molecules 1,128 642 4,200 9,999 29,978
# Tasks 1 1 1 1 1
GraphCL 1.253(0.023) 2.216(0.117) 0.762(0.029) 1.115(0.127) 1.251(0.029)
JOAO 1.203(0.061) 2.010(0.189) 0.759(0.015) 1.117(0.122) 1.278(0.021)
GROVER 0.928(0.106) 1.998(0.280) 0.703(0.023) 1.092(0.086) 1.064(0.085)
3DInfomax 1.167(0.148) 2.275(0.391) 0.755(0.025) 1.075(0.103) 1.277(0.019)
GraphMVP 0.995(0.113) 1.806(0.164) 0.736(0.051) 1.101(0.107) 1.248(0.010)
DMP 0.815(0.048) 1.335(0.251) 0.658(0.020) 1.095(0.085) 1.128(0.042)
KPGT 0.802(0.096) 1.230(0.231) 0.621(0.018) 1.083(0.082) 1.020(0.100)
Galformer 0.741(0.087) 1.213(0.200) 0.628(0.015) 1.066(0.092) 1.015(0.084)

5.3.6 Ablation Study

We conduct ablation studies to analyze the effectiveness of three critical designs in Galformer.
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Fig. 5.4 Performance variation of Galformer over different mask ratios on four benchmark
datasets.

Impact of Different Mask Ratios. We randomly mask a proportion of nodes in the 2D

and 3D line graphs during pre-training. Figure 5.4 shows the impact of different mask ratios

on four benchmark datasets. We can observe that Galformer has the best overall performance

with a mask ratio of 40%. This ratio is significantly higher than the commonly employed

ratios in previous works (Devlin et al., 2019; Hu et al., 2020; Wang et al., 2021b), which

were typically below 25%. As our additional contrastive learning provides complementary

knowledge from different modalities, Galformer can adapt to challenging tasks with a higher

mask ratio. This shares similarity with the success of masked autoencoders (MAE) (He

et al., 2022) in the vision domain, where a high mask ratio can better capture long-range

dependencies and improve model generalization.

Effect of Pre-training Strategy and Backbone Network. To verify the effectiveness of

our pre-training strategy and backbone network, we study Galformer without pre-training,

and replace 2D line graph transformer backbone with vanilla transformer (Vaswani et al.,

2017) and Graphormer (Ying et al., 2021). Table 5.4 shows the performance comparison. We

can observe that Galformer achieves significant improvement after pre-training. Specifically,

our pre-training strategy yields an average improvement of 5.9% in AUROC and 10.2% in
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Table 5.4 Ablation study with the absence of pre-training and different backbones in av-
eraged AUROC on classification datasets and RMSE on regression datasets (best in bold,
second best in underline)

Backbone
Classification

Avg. AUROC ↑
Regression

Avg. RMSE ↓

No Pre-training 0.810 1.048
Vanilla Transformer 0.825 1.012
Graphormer 0.854 0.951
Galformer 0.858 0.941

Table 5.5 Ablation study of different contrastive losses in averaged AUROC on classification
datasets and RMSE on regression datasets (best in bold, second best in underline).

Contrastive Loss (CL)
Classification

Avg. AUROC ↑
Regression

Avg. RMSE ↓

w/o CL 0.838 0.986
NT-Xent 0.850 0.954
EMB-NCE 0.852 0.956
InfoNCE 0.858 0.941

RMSE. Compared to the other pre-trained variants with different backbones, Galformer still

achieves the best performance. This improvement can be attributed to our well-designed

graph structural encodings in 2D line graph transformer, which can capture key structural

information in molecules.

Choice of Contrastive Loss. For modeling inter-modality relations, Galformer leverages

contrastive learning to bridge the modality gap between 2D and 3D representations. To

validate the effectiveness of our equipped InfoNCE loss, we implement three model variants:

one without contrastive learning, and two others with NT-Xent (Chen et al., 2020b) and

EMB-NCE (Liu et al., 2022) contrastive losses, respectively. As observed from Table 5.5,

applying contrastive loss can result in improved performance on both classification and

regression tasks. It indicates that the incorporation of 3D information during pre-training

can significantly enhance model performance toward downstream tasks. Moreover, InfoNCE

loss consistently outperforms the other variants, which verifies the effectiveness of InfoNCE

on cross-modality contrastive learning.
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Fig. 5.5 Visualization of the pre-trained molecular representations on BBBP and ESOL
datasets via t-SNE. All results are without fine-tuning by ground-truth labels. (a) BBBP
dataset: color represents binary labels for the barrier permeability property. (b) ESOL dataset:
color represents binary labels for water solubility. DB index measures the degree of cluster
separation. The lower the DB index, the better the separation.

5.3.7 Molecular Representation Visualization

To intuitively investigate the impact of pre-trained molecular representations without fine-

tuning, we randomly select 800 molecules from BBBP and ESOL datasets respectively, and

utilize t-SNE (Van der Maaten and Hinton, 2008) to project these representations onto a 2D

embedding space for visualization. On BBBP, each molecule is associated with a binary

class label that indicates its barrier permeability property. On ESOL, the original label is

a continuous variable that denotes the water solubility of the molecule. We simply use the

median 0.057 mols/L in ESOL as a threshold. A molecule is considered to be positive if its

water solubility is more than the threshold, and negative otherwise. Figure 5.5 shows the

visualization results, using the Davies Bouldin (DB) index (Davies and Bouldin, 1979) as a

metric to measure the cluster separation. The lower the DB index, the better the separation.

We can observe that pre-trained GraphMVP and Galformer can better separate the labeled
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molecules than the model without pre-training. In particular, Galformer further decreases the

DB index to 1.96 on BBBP, compared with 3.88 of GraphMVP. Note that this is a zero-shot

learning scenario without fine-tuning. Therefore, Galformer can effectively incorporate

generalizable domain knowledge during pre-training, and thus significantly improve learned

molecular representations.

5.4 Summary

In this chapter, we propose a Geometry-aware line graph transformer (Galformer), a dual-

modality pre-training framework for molecular representation learning. Specifically, we first

transform original 2D and 3D molecular graphs into line graphs, and then design a dual-

modality line graph transformer backbone to fully encode both topological and geometric

information. Furthermore, we build two complementary pre-training tasks as self-supervised

objectives, learning complete knowledge from both intra-modality and inter-modality levels.

Extensive experiments on downstream tasks demonstrate that Galformer has improved over

SOTA baselines.



Chapter 6

Mask Prior-Guided Denoising Diffusion

Improves Inverse Protein Folding

In Chapter 5, we introduced a dual-modality pre-training framework for molecular property

prediction. The pre-trained model can be adapted to downstream discriminative tasks via

supervised fine-tuning. However, we have not yet explored the potential benefits of self-

supervised learning for generative tasks, which are common in drug discovery, such as de

novo protein design and inverse protein folding (IPF). In this chapter, we develop a diffusion-

based generative model for IPF prediction. In particular, we enhance the model’s generic

transferability via mask prior-guided pre-training.

6.1 Introduction

Proteins are complex, three-dimensional (3D) structures folded from linear amino acid

(AA) sequences. They play a critical role in essentially all biological processes, including

metabolism, immune response and cell cycle control. As described in Section 2.4.3, The IPF

problem is a fundamental structure-based protein design problem in computational biology

and medicine. It aims to generate valid AA sequences with the potential to fold into a

desired 3D backbone structure, enabling the creation of novel proteins with specific functions
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(Dauparas et al., 2022). Its enormous applications range from therapeutic protein engineering,

lead compound optimization and antibody design.

Traditional physics-based approaches consider IPF as an energy optimization problem

(Alford et al., 2017), suffering from high computational cost and limited accuracy. In recent

years, deep learning has emerged as the preferred paradigm for solving protein structure

problems due to its strong ability to learn complex non-linear patterns from data adaptively.

In deep learning for IPF, early convolutional neural network-based models view each protein

residue as an isolated unit or the whole as point cloud data, with limited consideration

of structural information and interactions between residues (Wu et al., 2021b; Li et al.,

2014; O’Connell et al., 2018; Anand et al., 2022). Recently, graph-based methods have

represented 3D protein structures as proximity graphs, and then use graph neural networks

(GNNs) to model residue representations and incorporate structural constraints. GNNs can

aggregate and exchange local information within graph-structured data, enabling substantial

performance improvement in graph-based methods.

Despite the advances in graph-based methods, structural information alone cannot de-

termine the residue identities of some challenging regions, such as loops and intrinsically

disordered regions (Towse and Daggett, 2012; Zheng et al., 2023). In such uncertain, low-

confidence cases, interactions with other accurately predicted residues can provide more

reliable guidance for mitigating uncertainty in these regions. Moreover, existing deep

learning-based IPF methods typically employ autoregressive decoding or uniformly random

decoding to generate AA sequences, prone to accumulate prediction errors (Li et al., 2020;

Martínez-González et al., 2021) and limited in capturing global and long-range dependen-

cies in protein evolution Starr and Thornton (2016); Xu et al. (2021). Recently, several

non-autoregressive alternatives have shown the potential to outperform the autoregressive

paradigm in related contexts (Li et al., 2020; Martínez-González et al., 2021; Lyu et al.,

2024). Additionally, protein structure prediction methods, such as the AlphaFold series

(Jumper et al., 2021; Abramson et al., 2024), often take an iterative generation process to

refine non-deterministic structures by integrating well-predicted information. These raise the

question: can combining residue interactions with an iterative refinement and an efficient
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non-autoregressive decoding improve IPF prediction performance to generate more plausible

protein sequences?

Recently, denoising diffusion models, an innovative class of deep generative models, have

gained growing attention in various fields. They learn to generate conditional or unconditional

data by iteratively denoising random samples from a prior distribution. Diffusion-based

models have been adopted for de novo protein design and molecule generation, achieving

state-of-the-art performance. For instance, RFdiffusion (Watson et al., 2023) fine-tunes the

protein structure prediction network RoseTTAFold (Baek et al., 2021) under a denoising

diffusion framework to generate 3D protein backbones, and Torsional Diffusion (Jing et al.,

2022) implements a diffusion process on the space of torsion angles for molecular conformer

generation. In structure-based drug design, DiffSBDD (Schneuing et al., 2022) proposes

an equivariant 3D-conditional diffusion model to generate novel small-molecule binders

conditioned on target protein pockets. While diffusion models have a widespread application

in computational biology, most existing methods primarily focus on generating structures in

continuous 3D space. The potential of diffusion models in inverse folding has not been fully

exploited yet.

In this chapter, we propose a Mask prior-guided denoising Diffusion (MapDiff) frame-

work (Figure 6.1) to accurately capture structure-to-sequence mapping for IPF prediction.

Unlike previous graph-based methods, MapDiff models IPF as a discrete denoising diffusion

problem that iteratively generates less-noisy AA sequences conditioned on a target protein

structure. Due to the property of denoising diffusion, MapDiff can also be viewed as an

iterative refinement that enhances the accuracy of the generated sequences over time. More-

over, we design a novel denoising network with non-autoregressive decoding to adaptively

improve the denoising trajectories using a pre-trained mask prior. Our denoising network

effectively leverages the structural information and residue interactions to reduce prediction

error on low-confidence residue prediction. To further improve uncertainty estimation and

the denoising speed, we combine the denoising diffusion implicit model (DDIM) (Song et al.,

2021) with Monte-Carlo dropout (Gal and Ghahramani, 2016) in the discrete generative pro-

cess. We conduct comprehensive experimental comparisons against state-of-the-art methods
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Fig. 6.1 Mask prior-guided denoising diffusion (MapDiff) for inverse protein folding. (a)
The mask-prior pre-training stage randomly masks residues within the AA sequence and
pre-trains an invariant point attention (IPA) network with the masked sequence and the 3D
backbone structure to learn prior structural and sequence knowledge, using BERT-like masked
language modelling objectives. (b) The mask prior-guided denoising network φθ takes an
input noisy AA sequence Xaa to predict the native AA sequence Xaa

0 via three operations
in every iterative denoising step: it first initializes a structure-based sequence predictor
as an equivariant graph neural network to denoise the noisy sequence Xaa conditioned on
the provided 3D backbone structure. Then, combining an entropy-based mask strategy
with a mask ratio adaptor identifies and masks low-confidence residues in the denoised
sequence in the first step to produce a masked sequence Xaa

m . Next, the pre-trained masked
sequence designer in (a) takes the masked sequence Xaa

m and its 3D backbone information for
refinement (fine-tuning) to better predict the native sequence Xaa

0 . (c) The MapDiff denoising
diffusion framework iteratively alternates between two processes: diffusion and denoising.
The diffusion process progressively adds random discrete noise to the native sequence Xaa

0
according to a transition probability matrix Qt at the diffusion step t so that the real data
distribution can gradually transition to a uniform prior distribution. The denoising process
randomly samples an initial noisy AA sequence Xaa

T from the prior distribution and iteratively
uses the denoising network φθ in (b) to denoise it, learning to predict the native sequence
Xaa

0 from Xaa
t at each denoising step t. The prediction X̂aa

0 facilitates the computation of the
posterior distribution q(Xaa

t−1 | Xaa
t , X̂aa

0 ) for predicting a less noisy sequence Xaa
t−1.
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for IPF prediction, demonstrating the effectiveness of MapDiff across multiple metrics and

benchmarks, outperforming even those incorporating external knowledge. Moreover, when

we use AlphaFold2 (Jumper et al., 2021) to fold the sequences generated by MapDiff back

to 3D structures, such AlphaFold2-folded structures are highly similar to the native protein

templates, even for cases of low sequence recovery rates.

Overall, this chapter shows the high potential of utilizing discrete denoising diffusion

models with mask prior pre-training for IPF prediction. Our main contributions are three-fold:

(i) we propose a discrete denoising diffusion-based framework named MapDiff to explicitly

consider the structural information and residue interactions in the diffusion and denoising

processes; (ii) we design a mask prior-guided denoising network that adaptively denoise the

diffusion trajectories to produce feasible and diverse sequences from a fixed structure; (iii)

MapDiff incorporates discrete DDIM with Monte-Carlo dropout to accelerate the generative

process and improve uncertainty estimation.

6.2 Methodology

6.2.1 Discrete Denoising Diffusion Models

Denoising diffusion models are a class of deep generative models trained to create new

samples by iteratively denoising sampled noise from a prior distribution. The training stage

of a diffusion model consists of a forward diffusion process and a reverse denoising process.

Given an original data distribution q(x0), the forward diffusion process gradually corrupts a

data point x0 ∼ q(x0) into a series of increasingly noisy data points x1:T = x1,x2, · · · ,xT over

T time steps. This process follows a Markov chain, where q(x1:T | x0) = ∏
T
t=1 q(xt | xt−1).

Conversely, the reverse denoising process, denoted as pθ (x0:T ) = p(xT )∏
T
t=1 pθ (xt−1 | xt),

aims to progressively reduce noise towards the original data distribution q(x0) by predicting

xt−1 from xt . The initial noise xT is sampled from a pre-defined prior distribution p(xT ),

and the denoising inference pθ can be parameterized by a learnable neural network. While

the diffusion and denoising processes are agnostic to the data modality, the choice of prior

distributions and Markov transition operators varies between continuous and discrete spaces.
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We follow the settings of the discrete denoising diffusion proposed by Austin et al. (2021)

and Vignac et al. (2022). In contrast to typical Gaussian diffusion models that operate in

continuous state space, discrete denoising diffusion models introduce noise to categorical

data using transition probability matrices in discrete state space. Let xt ∈ {1, · · · ,K} denote

the categorical data with K categories and its one-hot encoding represented as xt ∈ RK . At

time step t, the forward transition probabilities can be denoted by a matrix Qt ∈RK×K , where

[Qt ]i j = q(xt = j | xt−1 = i) is the probability of transitioning from category i to category j.

Therefore, the discrete transition kernel in the diffusion process is defined as:

q(xt | xt−1) = Cat(xt ;p = xt−1Qt), (6.1)

q(xt | x0) = Cat(xt ;p = x0Qt), with Qt = Q1Q2 · · ·Qt , (6.2)

where Cat(x;p) represents a categorical distribution over xt with probabilities determined by

p ∈ RK . As the diffusion process has a Markov chain, the transition matrix from x0 to xt can

be written as a closed form in Equation 6.2 with Qt = Q1Q2 · · ·Qt . This property enables

efficient sampling of xt at arbitrary time steps without recursively applying noise. Following

the Bayesian theorem, the calculation of posterior distribution from time step t to t−1 can

be written as:

q(xt−1 | xt ,x0) ∝ xtQT
t ⊙x0Qt−1, (6.3)

where ⊙ is a Hadamard (element-wise) product. The derivation of Equation 6.3 is detailed in

Appendix A.1. The posterior q(xt−1 | xt ,x0) is equivalent to q(xt−1 | xt) due to its Markov

property. Thus, the clean data x0 is introduced for denoising estimation and can be used as

the target of the neural network pθ . The transition matrix Qt has multiple choices. A simple

yet effective approach is the marginal transition parametrized by Qt = (1−βt)I+βt1KpT ,

where p ∈ R20 denotes the marginal probability distribution of AA types in the training data.

As limt→T βt = 1, q(xt) converges to an independent marginal distribution, regardless of the

initial x0. Consequently, the marginal distribution can serve as the prior distribution for noise

sampling in the generative process.
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6.2.2 Problem Formulation

IPF prediction aims to generate a feasible AA sequence that can fold into a desired backbone

structure. Given a target protein of length L, we present it as a proximity residue graph

G = (X,A,E), where each node denotes an AA residue within the protein. The node features

X = [Xaa,Xpos,Xprop] encodes the AA residue types, 3D spatial coordinates, and geometric

properties. The adjacency matrix A ∈ {0,1}N×N is constructed using the k-nearest neighbor

algorithm. Specifically, each node is connected to a maximum of k other nodes within a

cutoff distance smaller than 30 Å. The edge feature matrix E ∈ RM×93 illustrates the spatial

and sequential relationships between the connected nodes. For sequence generation, we

define a discrete denoising process on the types of noisy AA residues Xaa
t ∈ RN×20 at time

t. Conditioned on the noise graph Gt , this process is subject to iteratively refine noise Xaa
t

towards a clean Xaa
0 = Xaa, which is predicted by our mask prior-guided denoising network.

6.2.3 Residue Graph Feature Construction

The protein is represented as a residue graph G = (X,A,E) to reflect its geometric struc-

ture and topological relationships. The node feature X ∈ RN×42 is decomposed into three

components: Xaa ∈ RN×20,Xpos ∈ RN×3 and Xprop ∈ RN×19. Each row of Xaa represents

the one-hot encoded vector that indicates the amino acid type of a residue. Xpos denotes the

spatial backbone coordinates, specifically represented by the backbone Cα atoms. Following

Yi et al. (2024) and Ganea et al. (2022), we describe the structural and geometric properties of

the residues by Xprop, including the solvent-accessible surface area (SASA), crystallographic

B-factor, surface-aware node features, protein secondary structure and backbone dihedral

angles. Protein secondary structure reflects the local folding patterns of AA residues in

a protein chain. We utilize the DSSP (Kabsch and Sander, 1983) algorithm to calculate

the secondary structures for each residue and represent them by one-hot encoding. We

derive the sin and cos values for the backbone dihedral angles φ and ψ , denoting the spatial

arrangement within the backbone atoms. The surface-aware node features are the weighted
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average distance of each residue node to its one-hop neighbors, defined as follows:

wi,i′,λ =
exp(−||xpos

i −xpos
i′ ||

2/λ )

∑ j∈Ni exp(−||xpos
i −xpos

j ||2/λ )
, (6.4)

ρi(xi;λ ) =
∥∑i′∈Ni wi,i′,λ (x

pos
i −xpos

i′ )∥
∑i′∈Ni wi,i′,λ∥x

pos
i −xpos

i′ ∥
, (6.5)

where λ ∈ {1.,2.,5.,10.,30.}.

The edge feature E ∈ RM×93 describes connections between pairs of residue nodes,

including the relative spatial distances, local spatial positions and relative sequential positions.

The relative spatial distance is defined as the Euclidean distance between the Cα coordinates

of two residues. This distance is then projected into a 15-dimensional kernel space using a

radial basis function (RBF). In addition, a binary contact signal (Ingraham et al., 2019) is

used to indicate if the spatial distance between two residues is less than 8 Å. The local spatial

positions (Ganea et al., 2022) have 12 dimensions and are created from a local coordinate

system. They represent the relative positions and local orientations among the backbone

atoms of residues. Next, the relative sequential position is defined as a 65-dimensional

one-hot feature, based on the difference in the sequential indices along the AA chain.

For the IPA network, we further construct a pairwise distance representation Z = {zi j ∈

R1×dz | 1≤ i≤ N,1≤ j ≤ N} and rigid coordinate frames T = {Ti := (Ri ∈R3×3, ti ∈R3) |

1 ≤ i ≤ N} as geometric features. The representation Z includes the RBF-based spatial

distances between Cα , N, C, and a virtual Cβ (Dauparas et al., 2022) estimated by other

backbone atoms, as well as the relative sequential positions for all pairs of residues. The

rigid coordinate frames (Bryant et al., 2022) are constructed using a Gram-Schmidt process

from the coordinates of Cα , N, and C, ensuring the invariance of IPA with respect to global

Euclidean transformations.

6.2.4 Framework Overview

Overall, the MapDiff framework formulates IPF prediction as a denoising diffusion problem

(Figure 6.1c). The diffusion process progressively adds random discrete noise to the native
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AA sequence according to the transition probability matrices to facilitate the training of a

denoising network. In the denoising process, this denoising network iteratively denoises

a noisy, randomly sampled AA sequence conditioned on the 3D structural information

to predict or reconstruct the native AA sequence. The diffusion and denoising processes

iterate alternately to capture the sampling diversity of native sequences from their complex

distribution and refine the predicted AA sequences.

We propose a novel mask prior-guided denoising network to adaptively adjust the discrete

denoising trajectories towards generating more valid AA sequences via three operations

within each iterative denoising step (Figure 6.1b). Firstly, a structure-based sequence pre-

dictor employs an equivariant graph neural network (EGNN) (Satorras et al., 2021) to

denoise the noisy sequence conditioned on the backbone structure. Secondly, we use an

entropy-based mask strategy (Zhou et al., 2023) and a mask ratio adaptor to identify and

mask low-confidence or uncertain (e.g. structurally undetermined) residues in the denoised

sequence in the first operation to produce a masked sequence. Thirdly, a pre-trained masked

sequence designer network predicts the masked residues to obtain their refined prediction,

leveraging structural information. The pre-training of the masked sequence designer is done

before the diffusion and denoising processes via an invariant point attention (IPA) network

(Jumper et al., 2021) using masked language modelling (Figure 6.1a), incorporating prior

structural and sequence knowledge. Both the structure-based sequence predictor and masked

sequence designer network use non-autoregressive decoding to fully leverage structural infor-

mation and residue interactions to enhance the denoising trajectories. To improve uncertainty

estimation further, we use DDIM (Song et al., 2021) to skip some denoising steps and Monte

Carlo dropout (Gal and Ghahramani, 2016), following common regularization practices.

6.2.5 IPF Denoising Diffusion Process

Discrete diffusion process. In the diffusion process, we incrementally introduce discrete

noise to the clean AA residues over a number of time steps t ∈ {1, · · · ,T}, resulting in

transforming the original data distribution to a simple uniform distribution. Given a clean

AA sequence Xaa
0 = {xi

0 ∈ R1×20 | 1≤ i≤ N}, we utilize a cumulative uniform transition
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matrix Qt to independently add noise to each AA residue at arbitrary step t:

q(xi
t | xi

0) = Cat(xi
t ;p = xi

0Qt),with Qt = Q1Q2 · · ·Qt , (6.6)

q(Xaa
t | Xaa

0 ) = ∏
1≤i≤N

q(xi
t | xi

0), (6.7)

where Qt = (1−βt)I+βt1K1T
K/K, and K denotes the number of native AA types (i.e. 20).

The weight of the noise, βt ∈ [0,1] is determined by a common cosine schedule (Nichol and

Dhariwal, 2021).

Training objective of denoising network. The denoising neural network, denoted as φθ ,

is an essential component to reverse the noise process in diffusion models. In our framework,

the network takes a noise residue graph Gt = (Xt ,A,E) as input and aims to predict the real

AA residues Xaa
0 . Specifically, we design a mask prior-guided denoising network as φθ ,

which effectively captures inherent structural information and learns the underlying data

distribution. To train the learnable network φθ , the objective is to minimize the cross-entropy

loss between the predicted AA probabilities and the real AA types over all nodes.

Reverse denoising process. Once the denoising network has been trained, it can be

utilized to generate new AA sequences through an iterative denoising process. In this study,

we first use the denoising network φθ to estimate the generative distribution p̂θ (x̂i
0|xi

t) for

each AA residue. Then the reverse denoising distribution pθ (xi
t−1|xi

t) is parameterized by

combining the posterior distribution with the marginalized network predictions as follows:

pθ (xi
t−1|xi

t) ∝ ∑
x̂i

0

q(xi
t−1 | xi

t , x̂
i
0)p̂θ (x̂i

0 | xi
t), (6.8)

pθ (Xaa
t−1 | Xaa

t ) = ∏
1≤i≤N

pθ (xi
t−1 | xi

t), (6.9)
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where x̂i
0 represents the predicted probability distribution for the i-th residue xi

0. The posterior

distribution is defined as:

q(xi
t−1 | xi

t , x̂
i
0) =

q(xi
t | xi

t−1, x̂
i
0)q(x

i
t−1 | x̂i

0)

q(xi
t | x̂i

0)
, (6.10)

= Cat(xi
t−1;p =

xi
tQT

t ⊙ x̂i
0Qt−1

x̂i
0Qt(xi

t)
T

). (6.11)

By applying the reverse denoising process, the generation of less noise Xaa
t−1 from Xaa

t is

feasible. The derivation is detailed in Appendix A.1. The denoised result is determined by

the predicted residues from the denoising neural network, as well as the predefined transition

matrices at steps t and t − 1. To generate a new AA sequence, the complete generative

process begins with a random noise from the independent prior distribution p(xT ). The

initial noise is then iteratively denoised at each time step using the reverse denoising process,

gradually converging to a desired sequence conditioned on the given graph G.

DDIM with Monte-Carlo dropout. Although discrete diffusion models have demon-

strated significant generation ability in many fields, the generative process suffers from two

limitations that hinder their success in IPF prediction. Firstly, the generative process is inher-

ently computational inefficiency due to the numerous denoising steps involved, which require

a sequential Markovian forward pass for the iterative generation. Secondly, the categorical

distribution utilized for denoising sampling lacks sufficient uncertainty estimation. Many

studies indicate that the logits produced by deep neural networks do not accurately represent

the true probabilities. Typically, the predictions tend to be overconfident, leading to a discrep-

ancy between the predicted probabilities and actual distribution. As the generative process

iteratively draws samples from the estimated categorical distribution, insufficient uncertainty

estimation will accumulate sampling errors and result in unsatisfactory performance.

To accelerate the generative process and improve uncertainty estimation, we propose a

novel discrete sampling method by combining DDIM (Song et al., 2021) with Monte-Carlo

dropout. DDIM, known as Denoising Diffusion Implicit Model, is a widely used method that

improves the generation efficiency of diffusion models in continuous space. It defines the

generative process as the reverse of a deterministic and non-Markovian diffusion process,
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making it possible to skip certain denoising steps during generation. As discrete diffusion

models possess analogous properties, Yi et al. (2024) extended DDIM into discrete space for

IPF prediction. Similarly, we define the discrete DDIM sampling to the posterior distribution

as follows:

q(xi
t−k | x

i
t , x̂

i
0) = Cat(xi

t−k;p =
xi

tQT
t · · ·QT

t−k⊙ x̂i
0Qt−k

x̂i
0Qt(xi

t)
T

), (6.12)

where k is the number of skipping steps.

Then we introduce the application of Monte-Carlo dropout within the generative process,

a technique designed to enhance prediction uncertainty in neural networks. Specifically, we

utilize dropout not only to prevent overfitting during the training of our denoising network,

but also maintain its activation in the inference stage. By keeping dropout enabled and

running multiple forward passes (Monte-Carlo samples) during inference, we generate a

prediction distribution for each input, as opposed to a single-point estimation. To improve

uncertainty estimation, we aggregate the predictions by taking a mean pooling over all output

logits corresponding to the same input. This operation leads to the predicted logits that

perform reduced estimation bias, and their normalized probabilities can more accurately

reflect the actual distribution. Therefore, we can leverage Monte-Carlo dropout to enhance

the generative process toward more reliable samplings. To clarify the algorithm details of

MapDiff, we provide training and sampling inference implementation in Algorithm 6.1 and

Algorithm 6.2.

As described in Algorithm 6.1, our denoising network follows a two-step approach,

where we utilize the global-aware EGNN and pre-trained IPA network to instantiate the

base sequence predictor hφ and masked sequence designer fθ , respectively. The training

objective aims to minimize the cross-entropy losses Lb and Lm in the two stages, while the

learnable weights φ and θ are jointly optimized through backpropagation. For the sampling

inference procedure in Algorithm 6.2. It is a combination of DDIM with Monte-Carlo

dropout to accelerate the sampling process and improve uncertainty estimation. The DDIM

posterior computation is designed to skip a specific time step k at each denoising sampling.
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Algorithm 6.1 Denoising Training Algorithm of MapDiff
1: Input: residue graph G = (X,A,E), where X = [Xaa

0 ,Xpos,Xprop], pairwise representation Z,
rigid coordinate frames T , denoising time steps T

2: Initial: base sequence predictor hφ , masked sequence designer fθ

3: while φ ,θ have not converged do
4: First step: base sequence prediction
5: Sample time step t ∼ U(1,T ) and noise sequence Xaa

t ∼ q(Xaa
t | Xaa

0 )
6: Predict pb(X̂aa

0 ) = hφ (Xaa
t ,Xpos,Xprop,E, t) {Global-aware EGNN}

7: Compute base cross-entropy loss Lb = LCE(p(X̂aa
0 ),Xaa

0 )
8: Second step: masked sequence refinement
9: Compute base entropy {entb

1 , · · ·entb
N}= E(p(X̂aa

0 ))
10: Compute mask ratio mrt = sin

(
π

2 βt ·σ
)
+m

11: Generate entropy-based masked sequence and residue representations S = [s1,s2, · · · ,sN ]
12: Predict pm({X̂aa

0 }mask) = fθ (S,Z,T ) {IPA network with mask pre-training}
13: Compute mask cross-entropy loss Lm = LCE(p({X̂aa

0 }mask),{Xaa
0 }mask)

14: Compute total loss L = Lb +Lm

15: Update φ ,θ ← optimizer(L,φ ,θ)
16: end while
17: return hφ , fθ

Additionally, by incorporating Monte-Carlo dropout, we can compute the mean probability

prediction by passing multiple stochastic forwards. The experimental results demonstrate

that this novel sampling inference significantly enhances the generative performance.

6.2.6 Mask Prior-Guided Denoising Network

In diffusion model applications, the denoising network significantly influences the generation

performance. We develop a mask prior-guided denoising network, integrating both structural

information and residue interactions for enhanced protein sequence prediction. Our denoising

network architecture encompasses a structure-based sequence predictor, a pre-trained mask

sequence designer, and a mask ratio adapter.

Structure-based sequence predictor. We adopt an equivariant graph neural network

(EGNN) with a global-aware module as the structure-based sequence predictor, which

generates a full AA sequence from the backbone structure. EGNN is a type of graph neural

network that satisfies equivariance operations for the special Euclidean group SE(3). It

preserves geometric and spatial relationships of 3D coordinates within the message-passing
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Algorithm 6.2 Sampling Inference Algorithm of MapDiff
1: Input: residue graph G = (X,A,E), where X = [Xpos,Xprop], pairwise representation Z, rigid

coordinate frames T , denoising time steps T , skipping step k, stochastic forward passes C
2: Initial: base sequence predictor hφ , masked sequence designer fθ

3: Sample noise from a uniform prior Xaa
T ∼ p(XT )

4: Activate dropout for hφ and fθ during inference {Monte-Carlo dropout}
5: for c in {1,2, ...,C} do
6: for t in {T,T − k, ...,0} do
7: Predict p f (X̂aa

0 ) by neural networks hφ , fθ and Xaa
t

8: Compute pc
t (Xaa

t−k|Xaa
t , X̂aa

0 ) {DDIM posterior computation}
9: end for

10: end for
11: Compute mean prediction pm

0 (X
aa
0 ) = 1

C ∑ pc
0(X

aa
0 |Xaa

k , X̂aa
0 ) {Monte-Carlo estimation}

12: return Xaa
0 ∼ pm

0 (X
aa
0 )

framework. Given a noise residue graph , we use H = [h1,h2, · · · ,hN ] to denote the initial

node embeddings, which are derived from the noise AA types and geometric properties. The

coordinates of each node is represented as Xpos = [xpos
1 ,xpos

2 , · · ·xpos
N ], while the edge feature

are denoted as E = [e1,e2, · · ·eM]. In this setting, EGNN consists of a stack of equivariant

graph convolutional layers (EGCL) for the node and edge information propagation, which

are defined as:

e(l+1)
i j = φe(h

(l)
i ,h(l)

j ,∥x(l)i −x(l)j ∥
2,e(l)i j ), (6.13)

ĥ(l+1)
i = φh(h

(l)
i , ∑

j∈N (i)
wi je

(l+1)
i j ), (6.14)

x(l+1)
i = x(l)i +

1
Ni

∑
j∈N (i)

(x(l)i −x(l)j )φx(e
(l+1)
i j ), (6.15)

where l denotes the l-th EGCL layer, x(0)i = xpos
i , and wi j = Sigmoid(φw(e

(l+1)
i j ))) is a

soft estimated weight assigned to the specific edge representation. All components (φe,

φh, φx, φw) are learnable and parametrized by fully connected neural networks. In the

information propagation, EGNN achieves equivariance to translations and rotations on the

node coordinates Xpos, and preserves invariant to group transformations on the node features

H and edge features E.
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However, the vanilla EGNN only considers local neighbour aggregation while neglecting

the global context. Some recent studies (Tan et al., 2023; Gao et al., 2023) have demonstrated

the significance of global information in protein design. Therefore, we introduce a global-

aware module in the EGCL layer, which incorporates the global pooling vector into the

update of node representations:

m(l+1) = Meanpool({ĥ(l+1)
i }i∈G), (6.16)

h(l+1)
i = ĥ(l+1)

i ⊙Sigmoid(φm(m(l+1), ĥ(l+1)
i )), (6.17)

where MeanPool(·) is the mean pooling operation over all nodes within a residue graph.

The global-aware module effectively integrates global context into modelling and only

increases a linear computational cost. To predict the probabilities of residue types, the node

representations from the last EGCL layer are fed into a fully connected classification layer

with softmax function, which is defined as:

lbi = h(L)
i Wo +bo, (6.18)

pb
i = Softmax(lbi ), (6.19)

where Wo ∈ RDh×20 and bo ∈ R1×20 are learnable weight matrix and bias vector.

Low-confidence residue selection and mask ratio adapter. As previously mentioned,

structural information alone can sometimes be insufficient to determine all residue identities.

Certain flexible regions display a weaker correlation with the backbone structure but are

significantly influenced by their sequential context. To enhance the denoising network’s

performance, we introduce a masked sequence designer module. This module refines

the residues identified with low confidence in the base sequence predictor. We adopt an

entropy-based residue selection strategy, as proposed by Zhou et al. (2023), to identify these

low-confidence residues. The entropy for the i-th residue of the probability distribution pb
i is

calculated as:

entb
i =−∑

j
pb

i j log(pb
i j), (6.20)
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Given that entropy quantifies the uncertainty in a probability distribution, it can be utilized to

locate the low-confidence predicted residues. Consequently, residues with the most entropy

are masked, while the rest remain in a sequential context. The masked sequence designer

aims to reconstruct the entire sequence by using the masked partial sequence in combination

with the backbone structure. In addition, to account for the varying noise levels of the

input sequence in diffusion models, we design a simple mask ratio adapter to dynamically

determine the entropy mask percentage at different denoising steps:

mrt = sin
(

π

2
βt ·σ

)
+m, (6.21)

where βt ∈ [0,1] represents the noise weight at step t derived from the noise schedule, and σ

and m are predefined deviation and minimum mask ratio, respectively. With the increase of

βt , the mask ratio is proportional to its time step.

Mask prior pretraining. To incorporate prior knowledge of sequential context, we

pretrain the masked sequence designer by applying the masked language modelling objective

proposed in BERT (Devlin et al., 2019). It is important to clarify that we use the same training

data in the diffusion models for pretraining purposes, in order to avoid any information

leakage from external sources. In this process, we randomly sample a proportion of residues

in the native AA sequences, and replace them with the masking procedures: (i) masking

80% of the selected residues using a special MASK type, (ii) replacing 10% of the selected

residues with other random residue types, and (iii) keeping the remaining 10% residues

unchanged. Subsequently, we input the partially masked sequences, along with structural

information, into the masked sequence designer. The objective of the pretraining stage

is to predict the original residue types from the masked residue representations using a

cross-entropy loss function.

Masked sequence designer. We use an invariant point attention (IPA) network as the

masked sequence designer. IPA is a geometry-aware attention mechanism designed to facili-

tate the fusion of residue representations and spatial relationships, enhancing the structure

generation within AlphaFold2 (Bryant et al., 2022). In this study, we repurpose the IPA
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module to refine low-confidence residues in the base sequence predictor. Given a mask AA

sequence, we denote its residue representation as S = [s1,s2, · · · ,sN ], which is derived from

the residue types and positional encoding. To incorporate geometric information, as with

the IPA implementation in Frame2seq (Akpinaroglu et al., 2023), we construct a pairwise

distance representation Z = {zi j ∈R1×dz | 1≤ i≤ N,1≤ j≤ N} and rigid coordinate frames

T = {Ti := (Ri ∈ R3×3, ti ∈ R3) | 1≤ i≤ N}. The pairwise representation Z is obtained by

calculating inter-residue spatial distances and relative sequence positions. The rigid coordi-

nate frames are constructed from the coordinates of backbone atoms using a Gram-Schmidt

process, ensuring the invariance of IPA with respect to the global Euclidean transformations.

Subsequently, we take the residue representation, pairwise distance representation and rigid

coordinate frames as inputs, and feed them into a stack of IPA layers for representation

learning, which is defined as:

S(l+1),Z(l+1) = IPA(S(l),Z(l),T (l+1)). (6.22)

The IPA network follows the self-attention mechanism. However, it enhances the general

attention queries, keys, and values by incorporating 3D points that are generated in the rigid

coordinate frame of each residue. This operation ensures that the updated residue and pair

representations remain invariant by global rotations and translations.

The algorithm implementation of IPA is provided in Algorithm 6.3. In the original

implementation of IPA, each layer regards the protein as a fully connected graph and only

updates the node residue representations. Following the message passing proposed by Yim

et al. (2023), we also perform an edge update by propagating the updated node information

to pairwise edge representations. Finally, we extract the node representations from the last

IPA layer to predict the masked residue types. For the i-th residue, the predicted probability

distribution and entropy in the masked sequence designer are calculated as:

pm
i = Softmax(lmi ), lmi = h(L)

i Wm +bm, (6.23)
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Algorithm 6.3 Invariant Point Attention (IPA) Layer

1: Input: residue representation S(l) = {si ∈ Rds | 1≤ i≤ N}, pairwise representation Z(l) = {zi j ∈
Rdz | 1≤ i≤N,1≤ j≤N}, rigid coordinate frames T = {Ti := (Ri ∈R3×3, ti ∈R3) | 1≤ i≤N}

2: Parameters: Nhead = 4,c = 32,Nquerypoint = 4,Nvaluepoint = 8
3: qh

i ,kh
i ,vh

i = LinearNoBias(si) qh
i ,kh

i ,vh
i ∈ Rdh ,h ∈ {1, · · · ,Nhead}

4: q⃗hp
i , k⃗hp

i = LinearNoBias(si) qhp
i ,khp

i ∈ R3, p ∈ {1, · · · ,Nquerypoint}
5: v⃗hp

i = LinearNoBias(si) vhp
i ∈ R3, p ∈ {1, · · · ,Nvaluepoint}

6: bh
i j = LinearNoBias(zi j)

7: wC =
√

2
9Nquerypoint

8: wL =
√

1
3

9: ah
i j = softmax

(
wL

(
1√
c qh

i
T kh

j +bh
i j−

τhwC
2 ∑p ∥Ti ◦ q⃗hp

i −Tj ◦ k⃗hp
j ∥2

))
10: õh

i = ∑ j ah
i jzi j

11: oh
i = ∑ j ah

i jv j

12: o⃗hp
i = T−1

i ◦∑ j ah
i j

(
Tj ◦ v⃗hp

j

)
13: s̃i = Linear

(
concath,p(õh

i ,oh
i ,⃗o

hp
i , ∥⃗ohp

i ∥)
)

14: ŝi = Linear(s̃i)
15: z̃i j = Linear(concat(ŝi, ŝ j,zi j))
16: return S(l+1) = {s̃i ∈ Rds | 1≤ i≤ N}, Z(l+1) = {z̃i j ∈ Rdz | 1≤ i≤ N,1≤ j ≤ N}

entm
i =−∑

j
pm

i j log(pm
i j), (6.24)

where Wm ∈ RDs×20 and bm ∈ R1×20 are learnable weight matrix and bias vector. The

training objective is to jointly minimize the cross-entropy losses for both the base sequence

predictor and masked sequence designer. In the inference stage, we calculate the final

predicted probability by weighting the output logits based on their entropy as follows:

lfi =
exp(−entb

i )

exp(−entb
i )+ exp(−entm

i )
lbi +

exp(−entm
i )

exp(−entb
i )+ exp(−entm

i )
lmi . (6.25)

pf
i = Softmax(lfi). (6.26)

By incorporating the mask-prior denoising network into the discrete denoising diffusion pro-

cess, our framework enhances the diffusion trajectories, leading to more accurate predictions

of protein sequences.
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6.3 Experiments

6.3.1 Datasets

We mainly evaluate MapDiff against state-of-the-art baselines on the CATH 4.2 and CATH

4.3 datasets (Orengo et al., 1997). Following previous studies (Ingraham et al., 2019; Hsu

et al., 2022; Gao et al., 2023), the proteins are partitioned based on the CATH topology

classification, resulting in 18,024 structures for training, 608 structures for validation and

1,120 proteins for testing on CATH 4.2. Similarly, we conduct the topology classification

following ESM-IF (Hsu et al., 2022) on CATH 4.3, which assigns 16,630 proteins to training

set, 1,516 proteins to the validation set, and 1,864 proteins to the test set. As a result, there is

no overlap of protein topology codes among the different sets. To study the generative quality

of different proteins, we report evaluations in three specific categories: short proteins (up to

100 residues in length), single-chain proteins (labeled with 1 chain in CATH) and all proteins

within the test sets. The zero-shot generalization is evaluated on TS50 and PDB2022. TS50

(Li et al., 2014) is a commonly used benchmark set in protein sequence design, comprising

50 individual protein chains. PDB2022 includes recently published single-chain structures

from Protein Data Bank (Berman et al., 2000) curated by Zhou et al. (2023), with protein

length ≤ 500 and resolution ≤ 2.5 Å after 2022. It consists of 1,975 protein structures and

has no overlap with other experimental datasets.

6.3.2 Evaluation Strategies and Metrics

We evaluate the accuracy of generated sequences using three metrics: perplexity, recovery rate

and native sequence similarity recovery (NSSR) (Löffler et al., 2017). Perplexity measures

the alignment between a model’s predicted AA probabilities and the native AA types at

each residue position. The recovery rate indicates the proportion of accurately predicted

AAs in the protein sequence. The NSSR evaluates the similarity between the predicted

and native residues via the Blocks Substitution Matrix (BLOSUM) (Henikoff and Henikoff,

1992), where each residue pair contributes to a positive prediction if their BLOSUM score

is greater than zero. We use BLOSUM42, BLOSUM62, BLOSUM80 and BLOSUM90
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to account for AA similarities at four different cut-off levels for NSSR computation. To

evaluate the foldability, i.e., the quality of refolded protein structures, we use five metrics:

predicted local distance difference test (pLDDT), predicted aligned error (PAE), predicted

template modelling (pTM), template modelling score (TM-score) and root mean square

deviation (RMSD), where pLDDT, PAE and pTM measure the confidence and reliability of

residue positions produced by the refolding algorithm, and TM-score and RMSD measure

the discrepancies between the predicted 3D structures and their native counterparts.

6.3.3 Baselines

We compare MapDiff with recent deep graph models for inverse protein folding, including

StructGNN (Ingraham et al., 2019), GraphTrans (Ingraham et al., 2019), GVP (Jing et al.,

2020), AlphaDesign (Gao et al., 2022), ProteinMPNN (Dauparas et al., 2022), PiFold (Gao

et al., 2023), LM-Design (Zheng et al., 2023) and GRADE-IF (Dauparas et al., 2022). To

ensure a reliable and fair comparison, we reproduce the open-source and four most state-

of-the-art baselines (ProteinMPNN, PiFold, LM-Design, and GRADE-IF) under identical

settings in our experiments. ProteinMPNN uses a message-passing neural network to

encode structure features, and a random decoding scheme to generate protein sequences.

PiFold introduces a residue featurizer to extract distance, angle, and direction features.

It proposes a PiGNN encoder to learn expressive residue representations, enabling the

generation of protein sequences in a one-shot manner. LM-Design uses structure-based

models as encoders and incorporates the protein language model ESM as a protein designer to

refine the generated sequences. GRADE-IF employs EGNN to learn residue representations

from protein structures, and adopts the graph denoising diffusion model to iteratively generate

feasible sequences. All baselines are implemented following the default hyperparameter

settings in their original papers.
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6.3.4 Implementation Details

MapDiff is implemented in Python 3.8 and PyTorch 1.13.1 (Paszke et al., 2017), along with

functions from BioPython 1.81 (Cock et al., 2009), PyG 2.4.0 (Fey and Lenssen, 2019),

Scikit-learn 1.0.2 (Pedregosa et al., 2011), NumPy 1.22.3 (Harris et al., 2020), and RDKit

2023.3.3 (Greg Landrum et al, 2006). It consists of two training stages: mask prior pre-

training and denoising diffusion model training, both of which use the same CATH 4.2/4.3

training set. The batch size is set to 8, and the models are trained up to 200 epochs in

pre-training and 100 epochs in denoising training. We employ the Adam optimizer with a

one-cycle scheduler for parameter optimization, setting the peak learning rate to 5e-4. In

the denoising network, the structure-based sequence predictor consists of six global-aware

EGCL layers, each with 128 hidden dimensions. Meanwhile, the masked sequence designer

stacks six layers of IPA, each with 128 hidden dimensions and 4 attention heads. The dropout

rate is set to 0.2 in both EGCL and IPA layers. A cosine schedule is applied to control the

noise weight at each time steps, with a total of 500 time steps. During sampling inference,

the skip steps for DDIM are configured to 100, and the Monte-Carlo forward passes are set to

50. For the mask ratio adaptor, we set the minimum mask ratio to 0.4 and the deviation to 0.2.

All experiments are conducted on a single Tesla A100 GPU. Following the regular evaluation

in deep learning, the best-performing model is selected based on the epoch that provides the

highest recovery on the validation set. Finally, this selected model is subsequently used to

evaluate performance on the test set.

6.3.5 Sequence Recovery Performance Comparison

Firstly, we evaluate the sequence recovery performance of MapDiff against state-of-the-art

baselines on the CATH datasets. Table 6.1 presents the prediction perplexity and median

recovery rate on the full test set, along with short and single-chain subsets. The results

demonstrate that MapDiff achieves the best performance across different metrics and subsets

of data, highlighting its effectiveness in generating valid protein sequences. Specifically, we

can observe that: (1) MapDiff achieves a recovery rate of 60.93% and 60.68% on the full
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Table 6.1 Performance comparison on the CATH 4.2 and CATH 4.3 datasets with topology
classification split. The results include the perplexity and median recovery on the full test
set, as well as on short and single-chain subsets. External knowledge entails the utilization
of additional training data or protein language models. We also quoted partial baseline
results from Gao et al. (2023) and Hsu et al. (2022) for comparative analysis, marked with †.
The best result for each dataset and metric is marked in bold and the second-best result is
underlined.

Models External Total Perplexity (↓) Median Recovery (%, ↑)

Knowledge Params Short Single-chain Full Short Single-chain Full

C
AT

H
4.

2

†StructGNN × 1.4M 8.29 8.74 6.40 29.44 28.26 35.91
†GraphTrans × 1.5M 8.39 8.83 6.63 28.14 28.46 35.82
†GVP × 2.0M 7.09 7.49 6.05 32.62 31.10 37.64
†AlphaDesign ✓ 6.6M 7.32 7.63 6.30 34.16 32.66 41.31

ProteinMPNN × 1.9M 6.90 7.03 4.70 36.45 35.29 48.63
PiFold × 6.6M 5.97 6.13 4.61 39.17 42.43 51.40
LM-Design ✓ 659M 6.86 6.82 4.55 37.66 38.94 53.19
GRADE-IF × 7.0M 5.65 6.46 4.40 45.84 42.73 52.63

MapDiff × 14.7M 3.96 4.41 3.43 54.04 49.34 60.93

C
AT

H
4.

3

†GVP-GNN-Large × 21M 7.68 6.12 6.17 32.60 39.40 39.20
†+ AF2 predicted data ✓ 142M 6.11 4.09 4.08 38.30 50.08 50.08
†GVP-Transformer × 21M 8.18 6.33 6.44 31.30 38.50 38.30
†+ AF2 predicted data ✓ 142M 6.05 4.00 4.01 38.10 51.50 51.60

ProteinMPNN × 1.9M 6.12 6.18 4.63 40.00 39.13 47.66
PiFold × 6.6M 5.52 5.00 4.38 43.06 45.54 51.45
LM-Design ✓ 659M 6.01 5.73 4.47 44.44 45.31 53.66
GRADE-IF × 7.0M 5.30 6.05 4.58 48.21 45.94 52.24

MapDiff × 14.7M 3.90 3.83 3.52 55.56 54.99 60.68

CATH 4.2 and CATH 4.3 test sets, significantly outperforming the state-of-the-art baselines

by 14.5% and 13.1%, respectively. Furthermore, MapDiff shows recovery improvements

of 17.9% and 15.5% on the short and single-chain test sets of CATH 4.2. (2) MapDiff

consistently achieves the lowest perplexity compared to previous methods and produce

high-confidence probability distribution to facilitate accurate predictions. (3) MapDiff is a

highly accurate IPF model that operates independently of external knowledge. In some of the

compared baselines, external knowledge sources, such as additional training data or protein

language models, are utilized to enhance prediction accuracy. Due to its well-designed

architecture and diffusion-based generation mechanism, MapDiff effectively utilizes limited

training data to capture relevant patterns to achieve superior generalizability.
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Fig. 6.2 Model performance comparison and sensitivity analysis across different scenarios on
the CATH datasets. (a) NSSR scores for MapDiff and baseline methods Yi et al. (2024); Gao
et al. (2023); Zheng et al. (2023); Dauparas et al. (2022) on the full test sets and the short and
single-chain protein subsets for four different BLOSUM matrices and no BLOSUM matrix.
(b) The predicted confusion matrix for MapDiff with the native BLOSUM62 matrix, where
darker colors indicate a higher prediction likelihood. (c) Breakdown of the recovery rates into
hydrophilic and hydrophobic residues. (d) Median sequence recovery rates across different
protein lengths. (e) Residue recovery performance across different secondary structures
visualized in two groups for clarity. For example, the coils represent residues without specific
second structures, where MapDiff outperforms the baselines significantly.
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Table 6.2 Zero-shot performance comparison on knowledge transfer from CATH to PDB2022
and TS50 datasets. We report the test results of models trained on CATH 4.2 and CATH 4.3
(in brackets), respectively. The best result for each dataset and metric is marked in bold and
the second-best result is underlined.

Models PDB2022 TS50

Recovery (%) NSSR62 (%) NSSR90 (%) Recovery (%) NSSR62 (%) NSSR90 (%)

ProteinMPNN 56.75 (56.65) 72.50 (72.59) 69.96 (69.95) 52.34 (51.80) 70.31 (70.13) 66.77 (66.80)
PiFold 60.63 (60.26) 75.55 (75.30) 72.96 (72.86) 58.39 (58.90) 73.55 (74.52) 70.33 (71.33)
LM-Design 66.03 (66.20) 79.55 (80.12) 77.60 (78.20) 57.62 (58.27) 73.74 (75.69) 71.22 (73.12)
GRADE-IF 58.09 (58.35) 77.44 (77.51) 74.57 (74.97) 57.74 (59.27) 77.77 (79.11) 74.36 (76.24)
MapDiff 68.03 (68.00) 84.19 (84.30) 82.13 (82.29) 68.76 (69.77) 84.10 (85.27) 81.76 (83.08)

We further conduct model performance and sensitivity analysis across different scenarios.

Figure 6.2a presents the mean NSSR scores for MapDiff and the baselines on the CATH

datasets. MapDiff consistently achieves the best NSSR scores across different test sets. Figure

6.2b compares the confusion matrix of MapDiff on CATH 4.2 with the native BLOSUM62

matrix. The confusion matrix denotes proportions for specific combinations of actual and

predicted amino acid types, with darker cells indicating greater proportion. Non-diagonal

darker cells indicate the alignment between closely related residue pairs according to the

BLOSUM62 matrix. This observation indicates that MapDiff can effectively capture the

practical substitutions between residues. Figures 6.2c and 6.2e show the sequence recovery

performance across different amino acid types, as well as eight secondary structures. Notably,

MapDiff is the only model achieving over 50% recovery rate in predicting hydrophobic

amino acids and significant improvements in recovering α-helix and β -sheet secondary

structures. Figure 6.2d presents a sensitivity analysis of the recovery performance for varying

protein lengths. For short proteins (less than 100 amino acids in length), several baselines

show a significant decrease in performance. For instance, the recovery rate of LM-Design

falls below 40% for the short proteins. This could be due to the protein language model

used in LM-Design being sensitive to protein length. In contrast, MapDiff, which employs

non-autoregressive decoding and an iterative denoising process, consistently outperforms all

baselines and maintains high performance across all protein lengths.

To validate the zero-shot transferability of our method, we compare the model’s perfor-

mance on two independent test datasets, TS50 and PDB2022, which do not overlap with the
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CATH data, as shown in Table 6.2. The results demonstrate that MapDiff achieves the highest

recovery and NSSR scores on both datasets. We can conclude that, even though LM-Design

reaches a high recovery (66%) that is approaching our method on PDB2022, the performance

gap widens on NSSR62 and NSSR90. In contrast, GRADE-IF and MapDiff can generalize

better while considering the possibility of similar residue substitution. This suggests that

diffusion-based models more effectively capture residue similarity in IPF prediction. For the

TS50 dataset, MapDiff significantly improves state-of-the-art methods by 8.1% on NSSR62,

and is the best model, achieving a recovery rate of 68%.

6.3.6 Foldability of Generated Protein Sequences

Table 6.3 Comparison of foldability quality for the generated sequences on the CATH 4.2
test set using AlphaFold2. The results are presented as mean±standard deviation. The best
result for each metric is marked in bold and the second-best result is underlined.

Models pLDDT (↑) PAE (↓) PTM (↑) TM-Score (↑) RMSD (↓)

ProteinMPNN 87.13±9.79 5.85±3.17 77.42±14.96 86.27±16.32 3.08±4.25
PiFold 87.42±9.82 5.81±3.22 77.75±15.03 86.56±16.21 3.10±4.29
LM-Design 88.04±9.00 5.78±3.27 78.00±14.80 85.36±16.98 3.54±5.00
GRADE-IF 85.32±9.27 6.30±3.10 75.63±13.80 85.80±14.93 3.11±3.96
MapDiff 88.63±8.27 5.42±2.76 79.00±13.04 88.77±13.48 2.57±3.50

Foldability is a crucial property that evaluates whether a protein sequence can fold into

the desired structure. In this study, we evaluate the foldability of generated protein sequences

by predicting their structures with AlphaFold2 and comparing the discrepancies against the

native crystal structures. Table 6.3 presents five foldability metrics for the 1,120 structures in

the CATH 4.2 test set. The results indicate that the generated protein sequences by MapDiff

exhibit superior foldability, the highest confidence, and minimal discrepancy compared

to their native structures. Notably, the foldability and sequence recovery results do not

always positively correlate. For instance, while ProteinMPNN performs poorly in sequence

recovery, it achieves the best RMSD among baseline methods. Therefore, it is essential to

comprehensively evaluate IPF models from both sequence and structure perspectives.
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Fig. 6.3 Comparison of three refolded structures (left) and the respective model-designed
sequences (right) for proteins with PDB IDs 1NI8, 2HKY, and 2P0X. (a) Refolded tertiary
structure visualization of the sequences designed by three models MapDiff (red), GRADE-IF
(orange) and LM-Design (blue). The refolded structures are generated by AlphaFold2 and
superposed against the ground-truth structures (purple). For each model and structure, the
recovery rate and RMSD value are indicated for foldability comparison. (b) The alignment
of the three native sequences and the respective model-designed sequences. The results are
shown with secondary structure elements marked below each sequence: α helices are in red,
β strands are in blue, and loops and disordered regions are the rest. The refolded structures
and alignments of the predicted protein sequences were visualized using the Schrödinger
Maestro software (Schrödinger, LLC, 2023).

In Figure 6.3a, we illustrate exemplary 3D structures refolded by AlphaFold2 from IPF-

derived sequences generated by MapDiff, GRADE-IF, and LM-Design for three different

protein folds (PDB ID: 1NI8, 2HKY, 2P0X) with a pre-selected monomer pTM prediction

argument. In addition to estimating the sequence recovery rate and foldability of derived 3D

structures using the RMSD metric, we also inspect the alignment of native and generated

sequences, including the agreement between refolded secondary structures and individual

pairs of amino acids in Fig. 6.3b. The first example is a 46 amino acid-long monomer of

the 1NI8 structure (purple) representing an N-terminal fragment of the H-NS dimerization
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domain, a protein composed of three α helices that is involved in structuring the chromosome

of Gram-negative bacteria, hence acting as a global regulator for the expression of different

genes (Bloch et al., 2003). Two monomers form a homodimer which requires the presence

of K5, R11, R14, R18, and K31 residues to engage in the prokaryotic DNA binding. MapDiff

(red) managed to retrieve two out of the three α helices, with an interhelical turn present at

the same position as in the original structure (A17-R18), whereas GRADE-IF (orange) and

LM-Design (blue) models only consisted of a single continuous α helix. Moreover, MapDiff

and GRADE-IF obtained four out of five (K5, R11, R14, and R18) amino acids required for

DNA binding and LM-Design obtained none. MapDiff and LM-Design generate glutamic

acid (E) and GRADE-IF isoleucine (I) which, in comparison to the corresponding positively

charged K31 in the original structure, are negatively charged and neutral residues, respectively.

The single continuous α helix displayed by GRADE-IF and LM-Design AlphaFold2 models

hence produces much worse RMSD values (14.5 Åand 14.2 Å, respectively) than the MapDiff

model, which retrieved two helices at the right positions (RMSD = 4.6 Å). Consistent with

this, MapDiff obtained a 10% higher recovery rate than GRADE-IF and LM-Design.

The second example is the 2HKY structure of 109 amino-acid long human ubiquitous

ribonuclease 7 (hRNase7) rich in positively charged residues, that possesses antimicrobial

activity (Huang et al., 2007). This α /β mixed protein contains 22 cationic residues (18 K and

4 R) distributed into three surface-exposed clusters which promote binding to the bacterial

membrane, thus rendering it permeable, which consequently elicits membrane disruption and

death. In addition, it contains four disulfide bridges (C24−C82, C38−C92, C56−C107, and

C63−C70) critical for its secondary and tertiary structure, three of which were successfully

retrieved by MapDiff, whereas no cysteines were found in either GRADE-IF or LM-Design

sequences. Furthermore, all secondary structure elements were nearly entirely recovered by

MapDiff, unlike GRADE-IF and LM-Design solutions which contained little resemblance

to the native structure, particularly in the C-terminus half. These structural findings were

reflected in a fair recovery rate of 40.3% and a RMSD value of 5.0 Å for MapDiff, which

was considerably better than in GRADE-IF and LM-Design structures (14.0 Åand 12.6 Å,

respectively).
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A third example displays AlphaFold2 refolded structures obtained from generated se-

quences with relatively low recovery rates that used 2P0X structure of an optimized non-

biological (de novo) ATP-binding protein as a template (Mansy et al., 2007). Here, MapDiff

retrieved all detected secondary structure elements, except for the C-terminus β -strand which

was replaced by a loop. LM-Design was the second best with an α helix substituting the

aforementioned β -strand. Even if nearly all secondary structure elements were retrieved

by both MapDiff and LM-Design AlphaFold2 models, MapDiff model obtained by far the

best RMSD (3.3 Åas opposed to 8.8 Å). Despite having a better recovery rate than LM-

Design, GRADE-IF generated a sequence that folded poorly compared to the experimentally

confirmed structure (15.0 Å).

In these cases, MapDiff achieved low RMSD values to successfully replicate the majority

of secondary structure elements elucidated through experiments, including other structural

features such as the disulfide bonds (2HKY) or positively charged residues that were sus-

pected to participate in protein function (1NI8). In contrast, Grade-IF and LM-Design

predicted sequences that not only had lower recovery rates than MapDiff but also exhibited

partially or entirely absent secondary structure elements, as shown by the experimentally

derived 3D structures, resulting in significantly worse RMSDs. Although the structures

predicted by AlphaFold2 cannot entirely substitute the structural elucidation by experimental

techniques such as X-ray or NMR (nuclear magnetic resonance), they provide the first glance

at the foldability potential of de novo generated protein sequences by IPF models. A natural

next step in future work would be to express the de novo designed protein sequences and

experimentally determine their tertiary structures.

6.3.7 Model Analysis and Ablation Study

We perform a model analysis and ablation study to assess the effectiveness of key components

in MapDiff. We specifically investigate the contributions of edge feature updating, node

coordinate updating, and global context learning within the base sequence predictor (G-

EGNN) to the model performance. Additionally, we examine the impact of the mask

ratio adapter and the pre-trained IPA component in the residue refinement module on the
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Table 6.4 Ablation study of the denoising network modules in MapDiff. We study five model
variants and investigate how much performance decreases when key components are removed.
The results indicate the model performance on CATH 4.2. The best result for each metric is
marked in bold.

Module Component MapDiff Variant 1 Variant 2 Variant 3 Variant 4 Variant 5

G-EGNN
EdgeUpdate ✓ ✓ ✓ ✓ ✓
CoordinateUpdate ✓ ✓ ✓ ✓
GlobalContext ✓ ✓ ✓ ✓ ✓

Refinement
MaskAdapter ✓ ✓ ✓ ✓
IPA ✓ ✓ ✓ ✓ ✓

Results
Recovery (%) 60.93 58.64 59.76 58.38 60.16 56.46
NSSR62 (%) 78.57 76.73 77.32 77.04 77.80 75.69
NSSR90 (%) 75.66 73.52 74.82 74.24 75.02 72.58

Summary Change - ↓↓ ↓↓ ↓↓ ↓ ↓↓↓

predictions. As shown in Table 6.4, we study five variants of MapDiff, each with different

key components removed, and compare their performance on the CATH 4.2 test set. The

results show that each component positively enhances the sequence recovery performance.

For instance, we observe that the IPA-based refinement mechanism (variant 5) achieves the

most significant improvement, increasing recovery by 7.9%. Meanwhile, the global context

learning and coordinate updating (variant 2, 4) in G-EGNN also improve the recovery by

1.2% and 1.9%, respectively.

In Figure 6.4, we analyze the scalability of MapDiff across denoising training and sam-

pling inference modes. Figure 6.4a illustrates the runtimes of model training and inference

against the protein sequence length. For each protein length, we conduct ten independent

runs using a single Tesla A100 GPU. We empirically observe that the runtimes of MapDiff

increase almost linearly with the protein sequence length. For instance, MapDiff takes around

0.13 seconds for a short protein sequence with 100 residues during denoising training, while

the runtime reaches around 0.28 seconds for a long protein sequence with 500 residues.

Figure 6.4b shows the peak GPU memory usage against the protein sequence length. Similar

to the runtime, the memory usage exhibits a linear increase as the sequence length grows.

During sampling inference, MapDiff only requires around 2GB of RAM for a protein se-

quence with 500 residues. The study highlights the scalability of MapDiff in both training

and inference.
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a b

Fig. 6.4 Runtime and GPU memory usage of MapDiff. (a) Analysis of training and sampling
runtimes for different protein sequence lengths, based on ten independent runs for each
length. The sampling inference runtime represents the duration of one Monte-Carlo sample
with DDIM (skipping steps=100) in MapDiff. The shaded area indicates the 95% confidence
interval for the runtime estimation at each protein sequence length. (b) Correlation between
GPU memory usage and protein sequence length during training and sampling modes.

In Figure 6.5, we present a sensitivity analysis of MapDiff with respect to the number of

Monte-Carlo samples and DDIM skipping steps. Figure 6.5a demonstrates that the sequence

recovery and NSSR62 significantly improve as the number of Monte Carlo samples increases.

Notably, the model performance stabilizes and remains high only if the number of samples

reaches 20. This finding indicates that enhancing prediction uncertainty through Monte-Carol

dropout is an effective strategy for improving the diffusion-based generation process. Figure

6.5b illustrates the model performance against the number of DDIM skipping steps. To

isolate the performance gain from Monte-Carlo dropout, we set the number of Monte-Carlo

samples to 2 in this validation. The results show that even as the number of skipping steps

increases, MapDiff achieves higher recovery compared to the model variant without IPA.

This can be attributed to the prior knowledge provided by the pre-trained IPA component,

which guides the diffusion trajectories toward more reliable sampling and consequently leads

to more accurate sequence generation.
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a b

Fig. 6.5 Model sensitivity analysis with different Monte-Carol samples and DDIM skipping
steps on CATH 4.2. (a) Median recovery and NSSR62 score in relation to the number of
Monte Carlo samples. (b) Median recovery and NSSR62 score with respect to the number of
DDIM skipping steps.

6.4 Summary

In this chapter, we present MapDiff, a mask prior-guided denoising diffusion framework

for structure-based protein design. Specifically, we regard IPF prediction as a discrete

denoising diffusion problem, and develop a graph-based denoising network to capture

structural information and residue interactions. At each denoising step, we utilize a G-EGNN

module to generate clean sequences from input structures and a pre-trained IPA module

to refine low-confidence residues, ensuring reliable denoising trajectories. Moreover, we

integrate DDIM with Monte-Carlo dropout to accelerate generative sampling and enhance

uncertainty estimation. Experiments demonstrate that MapDiff consistently outperforms the

state-of-the-art IPF models across multiple benchmarks and scenarios. At the same time, the

generated protein sequences exhibit a high degree of similarity to their native counterparts.

Even in cases where the overall sequence similarity was low, these sequences can often

refold into their native structures, as demonstrated by the AlphaFold2-refolded models. We

also conduct a comprehensive ablation study to analyze the importance of different model

components for the prediction results. MapDiff demonstrates transferability and robustness
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in generating novel protein sequences, even with limited training data. Promising future

directions include verifying the applicability of MapDiff in practical domains such as de novo

antibody design and protein engineering, as well as improving the model interpretability.



Chapter 7

Conclusion and Future Work

In this thesis, we have explored transferable representation learning in the context of drug

discovery. As a result, we summarize the thesis by addressing the three research questions

presented in Chapter 1 and discussing potential work worthy of further investigation in future.

7.1 Conclusion

Here, we aim to answer the proposed three research questions in Chapter 1.

• Q1: How can we design a low-bias evaluation to fairly measure model transfer-

ability and reduce the gap with real performance in drug discovery? As we have

discussed, there always exists a significant gap between the performance reported in

academic papers and that in practical drug discovery settings. The results in academic

research often appear overly optimistic when applied to real-world industrial contexts.

In Chapter 3, we analyze the common pitfalls that cause high-bias evaluations in DTI

prediction. By eliminating hidden data biases and employing appropriate split strate-

gies, we can enhance the distribution divergence between the training and test sets,

thereby constructing a more challenging and realistic task with low-bias evaluation.

We follow the proposed low-bias evaluation principles across different drug discovery

applications. In Chapter 4, we develop a clustering-based pair split strategy to construct

a cross-domain scenario in DTI prediction. Furthermore, scaffold split and topology
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split strategies are employed to augment the distribution gap between training and test

sets in molecular property prediction (in Chapter 5) and inverse protein folding (in

Chapter 6), respectively. Thus, our evaluation methods exhibit low bias and reward

more on model transferability rather than memorization.

• Q2: How can we enhance specific transferability of deep models to novel drugs

that are out of learned distribution? Specific transferability refers to the capability

of a deep model to effectively transfer learned knowledge from a source domain to a

target domain. Due to the vast chemical space and limited drug-target data, enhancing

a model’s specific transferability is crucial for improving DTI prediction. To overcome

this problem, we propose DrugBAN with an adversarial domain adaptation module in

Chapter 4, which enhances generalization performance on out-of-distribution data. Our

framework develops a bilinear attention-inspired network to capture substructure-level

interactions between drug molecules and target proteins. Furthermore, the learned

joint representations can be aligned across different distributions using conditional

domain adversarial learning. Consequently, DrugBAN consistently generates specific

transferable representations and achieves significant prediction performance in both

source and target domain settings.

• Q3: How can we design the self-supervised learning frameworks that can enhance

generic transferability in both drug-related discriminative and generative tasks?

Generic transferability refers to the ability of a pre-trained deep model to apply its

learned knowledge and representations across a wide range of downstream tasks.

This thesis presents two self-supervised learning frameworks designed to improve the

generic transferability of models in molecular property prediction and inverse protein

folding. In Chapter 5, we develop Galformer, a dual-modality self-supervised learning

framework for molecular representation learning. Galformer integrates discriminative

2D and 3D knowledge from large-scale unlabeled molecules, and can effectively

adapt to discriminative molecular property predictions via fine-tuning. In Chapter 6,

we propose MapDiff, a mask prior-guided denoising diffusion model designed for
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inverse protein folding. We first develop a mask prior pre-training strategy to learn

residue interactions and structural information from proteins, and then incorporate

the pre-trained model into a conditional discrete denoising diffusion framework for

structure-based protein sequence generation. Our results demonstrate the effectiveness

in enhancing generic transferability for both discriminative and generative tasks in

drug discovery.

7.2 Future Work

Although this thesis has addressed several fundamental problems of transferable representa-

tion learning in drug discovery, many open challenges still remain to be considered. Here,

we point out three crucial research directions that are worth to be explored in future work.

• 3D structure-based DTI prediction. In Chapter 3 and Chapter 4, we only focus on

chemogenomics-based DTI prediction using a 1D protein sequence and 2D molecu-

lar graph as input. Given that the number of highly accurate 3D structured proteins

accounts for only a small fraction of the known protein sequences, our proposed

framework does not consider modelling with such structural information. Nevertheless,

DeepMind’s AlphaFold (Jumper et al., 2021) is making great progress in protein 3D

structure prediction, recently generating 2 billion protein 3D structure predictions

from 1 million species. Such progress opens doors for utilizing generated 3D struc-

tural information in chemogenomics-based DTI prediction. Following the idea of

pairwise local interaction learning and domain adaptation, we believe that extending

our method further on complex 3D structures can lead to even better performance and

interpretability in future work.

• Lead compound optimization. Lead compound optimization involves refining and

enhancing a lead compound molecule that has shown potential to become a successful

drug candidate, which plays an important role in the early drug discovery and develop-

ment process. The primary objectives of this process are to enhance the potency and
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optimize the drug-like properties of lead compounds, while minimizing any potential

adverse effects. Therefore, computational methods for molecular property prediction

can significantly accelerate the optimization process and reduce high monetary costs. In

Chapter 5, we demonstrate the effectiveness of our self-supervised learning framework

in capturing structural and chemical information from unlabeled molecules. Com-

pared to traditional molecular descriptors, data-driven molecular representations from

self-supervised learning are more informative, and can adapt to different molecule-

related tasks. We propose that one future direction should focus on applying deep

molecular representation learning to the optimization of lead compounds, which could

significantly enhance the identification of successful drug candidates.

• De novo drug design. De novo drug design involves the creation of new pharmaceuti-

cal compounds from scratch, tailored to interact with specific biological targets. This

process is inherently multidisciplinary, integrating critical steps such as target iden-

tification, structure-based design and molecular modeling. In Chapter 6, we validate

the significant performance achieved by denoising diffusion models in the context of

inverse protein folding. Different from traditional biology methods, which usually mod-

ify existing compounds, de novo drug design employing deep generative methods can

more accurately and efficiently explore the vast chemical space, potentially generating

novel structures with the desired biological activity. We believe that incorporating deep

generative methods, particularly the widely used denoising diffusion technique, into

de novo drug design can significantly improve success rates and shorten development

timelines.

• Multi-objective Bayesian Experimental Design. Multi-objective Bayesian Experi-

mental Design (BED) (Rainforth et al., 2024; Chaloner and Verdinelli, 1995) provides

a flexiable strategy to further improve data efficiency and experimental optimization

in molecular and protein design tasks (Lambrinidis and Tsantili-Kakoulidou, 2021).

By integrating the developed models for molecular property prediction or de novo

design, with practical toolkits like NEXTorch (Wang et al., 2021a), multi-objective



7.2 Future Work 127

BED can actively select candidate molecules or protein sequences that balance multiple

criteria, including stability, potency and developability, while maximizing the expected

information gain. This approach can guide iterative experimental validation more

effectively with limited resources and accelerate the process of drug discovery that

meet diverse design requirements.
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Appendix A

Proofs and Algorithms

A.1 Discrete Posterior Distribution

We present the derivations of the discrete posterior distribution in the reverse denoising
process. To clarify the derivation in Equation 6.11, we remove the residue index i and assume
xt = xi

t , as it is not relevant to the theoretical derivation.
Propsition 1. For q(xt−1 | xt ,x0) defined in Equation 6.3, we have:

q(xt−1 | xt ,x0) ∝ xtQT
t ⊙x0Qt−1, (A.1)

Proof. By Bayesian theorem, the distribution can be written as:

q(xt−1 | xt ,x0) ∝ q(xt | xt−1,x0)q(xt−1 | x0). (A.2)

Due to the Markov property, q(xt | xt−1,x0) is equivalent to q(xt | xt−1). Similarly, we have:

q(xt | xt−1) ∝ q(xt−1 | xt)q(xt). (A.3)

Given that q(xt) is an independent distribution, it can be viewed as a normalizing constant.
By the definition of the discrete transition matrix Qt , we can derive:

q(xt−1 | x0) = Cat(xt−1;p = x0Qt−1), (A.4)

q(xt−1 | xt) = Cat(xt−1;p = xtQT
t ). (A.5)

By integrating the above terms, we obtain q(xt−1 | xt ,x0) ∝ xtQT
t ⊙x0Qt−1 as intended.
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Propsition 2. For q(xt−1 | xt , x̂0) defined in Equation 6.11, we have:

q(xt−1 | xt , x̂0) = Cat(xt−1;p =
xtQT

t ⊙ x̂0Qt−1

x̂0QtxT
t

). (A.6)

Proof. By Bayesian theorem, we write the distribution as:

q(xt−1 | xt , x̂0) =
q(xt | xt−1, x̂0)q(xt−1 | x̂0)

q(xt | x̂0)
. (A.7)

According to the definition of the reverse denoising process, both random variables
X0 = xt and Xt = x̂0 are observed. Here, xt represents the discrete noise state at step t, while
x̂0 denotes the predicted clean state by the denoising neural network. Therefore, we can
rewrite Equation A.8 in terms of the observed variables:

q(Xt−1 | Xt = xt ,X0 = x̂0) =
q(Xt = xt | xt−1,X0 = x̂0)q(xt−1 | X0 = x̂0)

q(Xt = xt | X0 = x̂0)
. (A.8)

Due to the Markov property, we have:

q(Xt−1 | Xt = xt ,X0 = x̂0) =
q(Xt = xt | Xt−1)q(xt−1 | X0 = x̂0)

q(Xt = xt | X0 = x̂0)
. (A.9)

Now we can individually define each term in Equation A.9. Regarding the distribution
q(Xt = xt | Xt−1), it is important to note that the value of Xt−1 is not observed. Consequently,
it is unfeasible to compute a determined result for the conditional distribution. Instead, we
need to enumerate all possible xt−1 to compute the probability distribution over xt , defined
as follows:

q(Xt = xt | Xt−1) = xt [IkQt ]
T , (A.10)

= xtQT
t . (A.11)

For the two terms q(xt−1 | X0 = x̂0) and q(Xt = xt | X0 = x̂0), we can extend them following
the definition of the forward diffusion process:

q(xt−1 | X0 = x̂0) = x̂0Qt−1, (A.12)

q(Xt = xt | X0 = x̂0) = x̂0QtxT
t . (A.13)
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By putting them all together, we obtain:

q(xt−1 | xt , x̂0) = Cat(xt−1;p =
xtQT

t ⊙ x̂0Qt−1

x̂0QtxT
t

). (A.14)





Appendix B

Additional Experimental Details

B.1 Molecular Property Datasets

As described in Section 5.3.1, we leverage fourteen labeled molecular property datasets from
MoleculeNet (Wu et al., 2018a) and other public sources (Gaulton et al., 2012; Podlewska
and Kafel, 2018; Gamo et al., 2010; Hachmann et al., 2011) as downstream prediction tasks,
including nine classification datasets and five regression datasets.

• BBBP is a dataset about the blood-brain barrier penetration, and it has binary labels
indicating the permeability property.

• Sider is a collection of marketed drugs and their adverse drug reactions. The drug side-
effects are grouped into 27 system organ classes following MedDRA classifications.

• ClinTox is a dataset containing drugs approved by the FDA but eliminated from clinical
trials owing to their toxicity (Gayvert et al., 2016). It has two classification tasks that
indicate the clinical trial toxicity and the FDA approval status.

• BACE provides qualitative (binary label) binding results for a set of inhibitors targeting
human β -secretase 1 (BACE-1).

• Tox21 is a public database measuring the toxicity of compounds on 12 different targets.

• MUV is the maximum unbiased validation dataset selected from PCBA. It consists of 17
challenging tasks and is exclusively designed to validate of virtual screening techniques.

• HIV is a dataset obtained from the Drug Therapeutics Program AIDS Antiviral screen. It
contains compounds that were tested for their ability to inhibit HIV replication.
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• Estrogen is a dataset derived from ChEMBL (Gaulton et al., 2012) and consists of
molecules with activities towards estrogen receptors.

• MetStab is a collection of molecules that have specific half-life measurements within an
organism (Podlewska and Kafel, 2018).

• ESOL dataset measures the water solubility of molecules.

• Freesolv is a collection of experimental and calculated hydration free energies of small
molecules in water.

• Lipo is a dataset that provides experimental results of the octanol/water distribution
coefficient for molecules.

• Malaria is a dataset measuring the efficacy of drugs against the parasite that causes malaria
(Gamo et al., 2010).

• CEP is a dataset from the Harvard Clean Energy Project (Hachmann et al., 2011) that
measures the organic photovoltaic efficiency of molecules.


	Table of Contents
	List of Figures
	List of Tables
	Symbols and Notations
	Abbreviations
	1 Introduction
	1.1 Motivation and Research Questions
	1.2 Structure and Contributions

	2 Background
	2.1 Transferable Representation Learning
	2.1.1 Introduction to Pre-training
	2.1.2 Contrastive Self-supervised Pre-training
	2.1.3 Generative Self-supervised Pre-training
	2.1.4 Domain Adaptation

	2.2 Deep Graph Learning
	2.2.1 Fundamentals of Graph
	2.2.2 Graph Neural Networks
	2.2.3 Graph Transformers

	2.3 Denoising Diffusion Probabilistic Models
	2.4 Applications in Drug Discovery
	2.4.1 Drug-target Interaction Prediction
	2.4.2 Molecular Property Prediction
	2.4.3 Inverse Protein Folding


	3 Toward Low-Bias Evaluation for Drug-Target Interaction
	3.1 Introduction
	3.2 Methodology
	3.2.1 Low-Bias Dataset Construction
	3.2.2 Classic Data Split Strategies
	3.2.3 HDBSCAN for Data Split

	3.3 Experiments
	3.3.1 Dataset Construction
	3.3.2 Metrics
	3.3.3 Split Strategies
	3.3.4 Learning Algorithms
	3.3.5 Implementation Details
	3.3.6 Performance Gap between Different Split Strategies

	3.4 Summary

	4 Bilinear Attention Network with Domain Adaptation improves Drug-Target Prediction
	4.1 Introduction
	4.2 Methodology
	4.2.1 Problem Formulation
	4.2.2 Framework Overview
	4.2.3 Protein Sequence Encoder
	4.2.4 Molecular Graph Encoder
	4.2.5 Bilinear Attention Network
	4.2.6 Cross-domain Adaptation

	4.3 Experiments
	4.3.1 Datasets
	4.3.2 Evaluation Strategies and Metrics
	4.3.3 Baselines
	4.3.4 Implementation Details
	4.3.5 In-domain Performance Comparison
	4.3.6 Cross-domain Performance Comparison
	4.3.7 Ablation Study
	4.3.8 Interpretability with Bilinear Attention Visualization

	4.4 Summary

	5 Graph Transformer Pre-training Improves Molecular Property Prediction
	5.1 Introduction
	5.2 Methodology
	5.2.1 Dual-Modality Molecular Graphs
	5.2.2 Problem Formulation
	5.2.3 Framework Overview
	5.2.4 Molecular Line Graphs
	5.2.5 Dual-modality Line Graph Transformers
	5.2.6 Pre-training Task Construction

	5.3 Experiments
	5.3.1 Datasets
	5.3.2 Evaluation Strategies and Metrics
	5.3.3 Baselines
	5.3.4 Implementation Details
	5.3.5 Downstream Task Evaluation
	5.3.6 Ablation Study
	5.3.7 Molecular Representation Visualization

	5.4 Summary

	6 Mask Prior-Guided Denoising Diffusion Improves Inverse Protein Folding
	6.1 Introduction
	6.2 Methodology
	6.2.1 Discrete Denoising Diffusion Models
	6.2.2 Problem Formulation
	6.2.3 Residue Graph Feature Construction
	6.2.4 Framework Overview
	6.2.5 IPF Denoising Diffusion Process
	6.2.6 Mask Prior-Guided Denoising Network

	6.3 Experiments
	6.3.1 Datasets
	6.3.2 Evaluation Strategies and Metrics
	6.3.3 Baselines
	6.3.4 Implementation Details
	6.3.5 Sequence Recovery Performance Comparison
	6.3.6 Foldability of Generated Protein Sequences
	6.3.7 Model Analysis and Ablation Study

	6.4 Summary

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	References
	A Proofs and Algorithms
	A.1 Discrete Posterior Distribution

	B Additional Experimental Details
	B.1 Molecular Property Datasets


