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Abstract

We investigate a number of symmetric structures, including spaces of trees, partition complexes,
and operads. In particular, these spaces have natural actions of the symmetric group by
permuting leaf labels, elements, and labels of inputs to operations respectively. These also
share the property that the action of the symmetric group Σn may be extended to an action
of a larger symmetric group Σn+1 on arity n objects. In some cases such as the partition
complex, this action is not obvious, and is realised through its relationship with the tree space
of Robinson and Whitehouse in [RW96]. In the case of operads, the ability to extend the action
in this way gives an extra structure to those for which it is compatible with the operad structure.
Operads for which this is possible are called cyclic operads, a concept introduced by Getzler
and Kapranov in [GK95].

In this thesis we write explicit proofs of equivalences of skeletal and non-skeletal definitions
of cyclic operads and cooperads. We explore extended symmetric group actions in the partition
poset, on collections of finite sets, and on examples of operads and cooperads with cyclic
structure. We give a topological construction using suspensions of tree spaces, that have a
variant of a cyclic structure that we introduce. This leads to an anticyclic structure on the
desuspension of the Lie operad.
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Introduction

In this thesis, we explore symmetric group actions on various spaces, in particular ‘hidden’
actions of Σn+1 that restrict to a Σn action.

There are many topological spaces that admit an obvious Σn action, for example by
permuting elements. In some cases, there is also an action of the symmetric group Σn+1 which
is often not an obvious action, and hence ‘hidden’. This additional action provides a Σn+1

representation that restricts to the Σn representation. An example of a space where both Σn

and Σn+1 have relatively simple actions is a space of trees, as described in [RW96].
The subject of operads, and in particular cyclic operads, relates somewhat naturally to the

concept of hidden symmetric group actions. We may construct operad and cooperad structures
from the spaces that motivated this project, and use such actions to give more structure on
these (co)ooperads.

The topics of this thesis are essentially split into two halves, the first of which is operads
and cooperads, and the second of which is the tree space and partition complex. These are tied
together in the final chapter, where we give our main results. We will give an overview of the
relevant literature, and motivation for each of these.

Operads and cooperads

The term ‘operad’ was first introduced and rigorously defined in 1972 by May in [May72],
although the concept was present in the work of authors including Boardman, Vogt and
Stasheff in the 1960s. Operads encode sets of n-ary operations, with composition and other
nice properties. While they were initially developed with the purpose of studying iterated loop
spaces and algebras, applications now extend to many areas of mathematics. These include
homotopy theory, low dimensional topology, category theory, algebraic geometry and string
theory.

In particular, symmetric operads have a natural action of the symmetric group Σn on each set
of n-ary operations by permuting the inputs, whereas non-symmetric operads do not have such
actions. Symmetric operads are more commonly used, because having the ability to permute
inputs gives useful structure to the operad and its algebras.

Since the main purpose of this thesis is to study actions of symmetric groups, we mainly focus
on symmetric operads. Our proofs of equivalences of definitions apply to symmetric operads,

11



and while we include one or two non-symmetric operad examples for illustrative purposes, the
main operads of importance that we study will be symmetric.

Cyclic operads were introduced by Getzler and Kapranov, defined in [GK95], as a way of
calculating cyclic homology and to generalise the theory of cyclic algebras. In a (symmetric)
cyclic operad, one has an extension of the Σn action on the collection of n-ary operations to
an action of the bigger group Σn+1. This action is subject to compatibility conditions, which
encode equivariance for the extended action. Many well-known operads turn out to have this
property, such as the associative, commutative, and Lie operads.

Cooperads are a dual notion to operads, in particular a cooperad in a symmetric monoidal
category C is an operad in the opposite category Cop. They can also be defined in the same way
as operads, however with a ‘cocomposition’ operation instead of a composition operation. As
operads are an important tool in studying algebras, cooperads are a natural notion in that they
are used to study coalgebras.

It is then natural to define cyclic cooperads in exactly the same way as for operads, and the
cooperads with this property characterise additional structure on certain coalgebras.

The tree space and the partition complex

In [RW96], Robinson and Whitehouse introduce spaces T̃n of n-trees, giving their homotopy
type, and exploring symmetric group action on the spaces. These spaces are given by non-planar
trees with n leaves and labels in {1, 2, . . . , n} as well as a root. The trees are also weighted with
lengths applied to internal edges, and the ability to continuously shrink such edges results in
these spaces being cubical (or simplicial) complexes that are homotopy equivalent to a wedge
of spheres.

There is a natural action of Σn on the spaces of trees by permuting the labels of the leaves,
and Robinson and Whitehouse show that the character of the associated representation of Σn

is that of the Lie representation. In their paper, they define the Tree representation of Σn+1 on
the space Tn of fully grown trees using the natural action of Σn+1 that permutes the leaf labels
of the trees as well as the root label.

These tree spaces are shown by Robinson in [Rob04] to be homeomorphic to the partition
complexes Λn. In particular, the complex Λn is a geometric realisation of the nerve of the poset
of partitions with ordering given by refinement. This partition complex appears in numerous
places in the literature. It is related to the Goodwillie tower of the identity functor, and this
relationship comes from the work of Johnson in [Joh95], and Arone and Mahowald in [AM99].
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Structure of thesis

Chapter 1: Background

The first half of this chapter consists of general background definitions and concepts that will be
referred to throughout the thesis. These include results in areas such as group theory, category
theory and set theory.

The second half of the chapter is dedicated to results in representation theory, with a
particular focus on representations of the symmetric group. Representation theory is an integral
part of this thesis, as it is the tool used to distinguish actions of the symmetric group from one
another, and explore their properties. We use it when discussing explicit actions on spaces of
trees and partitions, and also when discussing the structure of certain operads.

We also set out a number of conventions that will be used throughout the thesis, and
introduce notation.

Chapter 2: Operads

In this chapter we introduce operads, a subject that forms a large portion of this thesis. We give
two main definitions that we compare in detail, with the purpose of extending to settings with
additional structure in the following chapters. In particular, we write a proof of the equivalence
of skeletal and non-skeletal definitions of operads that was first proved by Lukács in [Luk10]
and [Luk13]. Our proof expands on the detail and is structured differently from that of Lukács,
with additional clarification and discussion of technicalities such as the use of the disjoint union,
and the renumbering map.

We set up notation and introduce the necessary tools that we will use to define operads.
This consists of the deleted disjoint union of pointed finite sets, the renumbering map that is
intrinsic to skeletal operad definitions, and the composition of permutations and bijections that
act on operations in an operad.

We then give the skeletal definition followed by the non-skeletal definition of a symmetric
operad, using partial composition operations •i, or in the non-skeletal case ◦x, and define the
categories of such operads.

The main purpose of this chapter is the proof of the equivalence of the skeletal and non-
skeletal definitions. We do this by giving an equivalence of the operad categories, by lifting the
extension and restriction functors between the symmetric groupoid and the category of finite
sets and bijections to the operad categories, as Lukács does. This result is given in Theorem
2.4.2.4.

The remaining sections are dedicated to a brief discussion of non-symmetric operads, some
key running examples of operads that we will refer back to in later chapters, and some useful
structures and properties of operads. The main examples are the associative operad and the Lie
operad, both of which are relevant to operads of trees that are discussed in later chapters. We
also define operad algebras, and operad (co)homology. These are some of the most important
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structures that operads are used to study, and operad homology will be of particular importance
in Chapter 6.

Chapter 3: Cyclic operads

Cyclic operads are a collection of operads that have additional structure given by an extension
of the symmetric group action in the symmetric case, or simply a cyclic group action in the
non-symmetric case. As we did in Chapter 2, we look at the skeletal and non-skeletal definitions
of cyclic operads, and we prove the equivalence of these definitions by checking the same proof
holds for the extra structure of these operads. In particular, we use the definition of Markl in
[Mar99] that is in the form of an operad with additional structure. We note that this definition
has one more cyclic condition than the initial definition by Getzler and Kapranov in [GK95]. It
is thought that this extra condition may follow in some cases from the other, however this has
not been proved in general, and so we include it in our definitions and checks.

The inconvenience of the renumbering map is highlighted in this chapter, and therefore the
advantage of being able to pass between skeletal and non-skeletal settings is clear.

First, we specify conventions regarding base points and the ambient categories. We also
discuss the renumbering map in this setting, as well as conventions for the extension of the
symmetric group action.

We define skeletal cyclic operads using (n + 1)-cycles as in the definitions of Getzler,
Kapranov and Markl, and we define the associated category of skeletal cyclic operads. We then
give an alternative definition that uses transpositions instead, following the idea of Obradović
in [Obr17]. The details of this method are not in the literature, and some care is needed
particularly when dealing with the renumbering map in the skeletal case. The reason for doing
this is so the skeletal definition can be easily compared with the non-skeletal definition, since
the big cycle doesn’t make sense in the case of finite sets where there is no canonical ordering.
We show that the definition of skeletal cyclic operads with transpositions is equivalent to that
with cycles, and finally we define the skeletal cyclic operad category.

This is followed by the non-skeletal definition of cyclic operads, and the category of such
cyclic operads. This definition extends the action of basepoint preserving bijections to bijections
that permute the basepoint, by using generating transpositions of the form (0, x).

We prove the equivalence of the skeletal and non-skeletal definitions, by again showing
that the categories of cyclic operads are equivalent, following the same structure of the proof
for general operads by checking compatibility with the additional action of permutations and
bijections. This is the main result of this chapter and is given in Theorem 3.4.0.2.

We discuss cyclic non-symmetric operads, and give the example of cyclically labelled trees,
that is related to the construction in chapter 6.

The remaining sections are used to consider the uniqueness of cyclic structure, with the
associative operad as a main example, and we give some other examples and non-examples of
cyclic operads. We define anticyclic operads, introduced by Getzler and Kapranov in [GK95],
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which are a modified version of cyclic operads. These will again be relevant in chapter 6.

Chapter 4: Cooperads

In this chapter, we transfer the results from operads and cyclic operads into the opposite setting.
We write definitions of cooperads by defining cocomposition operations and the associated
axioms which are simply the same as in the operad case with some (not all) of the diagram
arrows reversed. While cooperads can be considered as a dual notion to operads, it will be
instructive to see the complete definitions in this form for the examples that we study in other
chapters. That is, we later construct a cooperad and show it has cyclic structure, by checking
its properties against these explicit definitions. Because the definitions are essentially the same
aside from having a cocomposition operation rather than a composition operation, we omit
most of the detail of the proof to save repeating the proofs in the previous chapters.

We give the skeletal definition and define the skeletal cooperad category. The commutative
diagrams of the definition are almost dual to the diagrams in the operad case, however the
direction of permutation arrows is not reversed.

The equivalence for cooperads follows automatically from the same argument as for operads
and is given in Theorem 4.4.0.1.

We give some examples of cooperads, and briefly discuss cooperad coalgebras and
(co)homology. As expected, these are essentially dual to algebras over operads, and operad
(co)homology.

Finally, in the second part of the chapter, we repeat the process for cyclic cooperads. We
write the skeletal and non-skeletal definitions, and the equivalence given in Theorem 4.8.2.1
follows from the same argument as for cyclic operads.

Chapter 5: Trees and partitions

For now, we leave behind operads and cooperads, and turn our attention to some explicit
examples of hidden symmetric group actions in other settings. This chapter is based on the
work of Robinson and Whitehouse on a space of trees, and a hidden symmetric group action on
this space. This action and the associated representations are the main motivation for the work
in this thesis. We define the space, give its important properties, and describe the actions of the
symmetric groups as well as the associated representations. This space reappears in Chapter 6
when we construct a cooperad from it.

Robinson shows in [Rob04] that this tree space is homeomorphic to a poset of partitions of
sets {1, 2, . . . , n}. This means that the action of Σn+1 that is natural in the tree space transfers
to an action on the poset of partitions. In this space, the action is not natural, as we have no
obvious (n+ 1)th object to permute.

We begin the chapter by introducing the tree space, followed by the partition poset, giving
examples and diagrams for low dimensional cases. We also discuss the key results from the two
papers mentioned above regarding the Σn+1 actions on these spaces.
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We then explore in more detail what the transferred action looks like in the poset of
partitions, and focus on the partitions that correspond to vertices in the tree space. We use a
bijection between finite sets and partitions with only one part of size greater than 1 to study
explicitly this action as an action on finite sets. We give the representations of Σn+1 associated
with these actions, and the representations of Σn given by the action that they restrict to in
Propositions 5.6.2.1, 5.7.1.3 and 5.7.1.4 respectively.

This motivates some questions about potential hidden actions on finite sets with a fixed
size, and the remainder of the chapter is spent exploring this. We use representation theory to
show that the various actions of symmetric groups are not equivalent. This result is given in
Proposition 5.8.3.2.

Finally, we revisit the poset of partitions and in particular, explore whether the explicit
hidden action we have found on partitions of a given shape can be extended to an action on the
whole poset. We use the characters of the representations to show that in this case it cannot.

Chapter 6: A cooperad of trees

This chapter contains the main results of the thesis.
We revisit the tree space from Chapter 5 and construct a cooperad structure on suspensions

of this space. The motivation for this is work of Ching in his thesis [Chi05], where he constructs
a cooperad of trees that is closely related to the spectral Lie operad. It is known that the
spectral Lie operad comes from a double suspension of the space of partitions that we define
in Chapter 5, where we also discuss that this is homeomorphic to the tree space defined by
Robinson and Whitehouse in [RW96]. Ching shows that the Spanier-Whitehead dual of his
cooperad of trees gives the Lie operad in spectra, and is also related to the partition complex.

We construct a similar non-counital cooperad denoted T from the spaces Tn of trees directly,
using a suitable quotient to simplify the construction and deal with one of the suspensions. We
then show that after suspension and taking the Spanier-Whitehead dual, the resulting operad
is in fact equivalent to the Lie operad in spectra for n ≥ 2.

The key advantage to this method, is that unlike the cooperad constructed by Ching, the
spaces Tn do not distinguish the root of the trees. This enables one to freely permute the root
label with the other leaf labels, giving an obvious cyclic structure in these spaces. Therefore, by
the properties of the suspension and Spanier-Whitehead dual, we are able to show an explicit
cyclic structure on the resulting operad constructed in this way, and show that this gives a
cyclic structure on the spectral Lie operad.

The cooperad T has a natural extension of the symmetric group action that almost satisfies
the cyclic cooperad conditions, apart from a swap of suspension coordinates. This leads us to
introduce a new variant of cyclic structure that we call ‘twisted cyclic’ structure. This property
is specific to topological operads or cooperads for which all the spaces are themselves suspension
spaces, and is found in Definition 6.4.0.1.

We show that there is a twisted cyclic structure on T in Theorem 6.4.0.3. Then we extend
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the non-unital operad given by the homology of the dual DT to an operad we call T̂ that
includes n = 1, which is introduced in Definition 6.7.0.3. In Theorem 6.7.0.4, we show that our
construction gives an operad that is equivalent to the operadic desuspension of the Lie operad.

Finally, in Theorem 6.8.0.1, we show that there is an anticyclic structure on T̂ . This gives
anticyclic structure on the desuspension of the Lie operad.

Appendix A

The appendix contains two technical case by case proofs from Chapter 5. First is the proof of
Proposition 5.7.0.2. The second is the proof of Proposition 5.8.2.3.

Appendix B: Future work and questions

We discuss some potential questions for future consideration, as well as topics of interest that
were studied in this PhD, but were unable to yield results within the time. This includes some
thoughts on the relationship between the tree space and configuration spaces, as well as related
questions regarding operads constructed from partitions.
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Chapter 1

Background

In this chapter we will briefly cover some key results and definitions from various topics that
will be needed throughout the thesis. Background that is specific to a particular chapter will
be included at the beginning of the relevant chapter. The main areas of interest are groups,
group action (focusing mainly on the symmetric group), sets, and category theory.

The second part of the background chapter will be dedicated to representation theory, which
is a useful tool and a recurring theme throughout the thesis. As we deal a lot with actions of the
symmetric group, we will cover in some detail representations of the symmetric group, which
will be essential in describing and differentiating group actions.

1.1 The symmetric group

The symmetric group is the main object of study in this thesis, where we consider its action on
spaces and other topological objects.

Definition 1.1.0.1 (The symmetric group). The symmetric group Σn on n elements is the
group consisting of the permutations of the elements. The group operation is composition of
permutations.

We sometimes write permutations using cycle notation. For example the permutation

π = (1, 4, 2)(3, 5) = (1, 4)(4, 2)(3, 5)

is the permutation sending 1 7→ 4, 2 7→ 1, 3 7→ 5, 4 7→ 2, 5 7→ 3. We can also write this
permutation using the notation

1 2 3 4 5
4 1 5 2 3

 .
Remark 1.1.0.2. We will often work with the symmetric group Σn+1, which by definition is the
group of permutations of the elements {1, 2, . . . , n + 1}. In this thesis, we will also use the
notation Σn+1 to mean permutations of {0, 1, . . . , n}, or {∗, 1, 2, . . . , n} for some based sets.
These groups are isomorphic.
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We will use the notation n := {1, 2, . . . , n}, and for the based version, n∗ := {0, 1, . . . , n}.

A common presentation of the symmetric group Σn is the one generated by adjacent
transpositions ti := (i, i+ 1), for 1 ≤ i ≤ n− 1,

Σn = ⟨ti : t2i = 1, titi+1ti = ti+1titi+1, titj = tjti for |j − i| > 1⟩.

Definition 1.1.0.3 (The cyclic group). The cyclic group Cn ⊂ Σn is the group generated by
an n-cycle

Cn = ⟨(1, 2, . . . , n)⟩.

Here we give the definition of a group action, which in our case will usually be an action of
some symmetric group.

Definition 1.1.0.4 (Group action). A group action of a group G on a set A is given by a map

G×A→ A

(g, a) 7→ g · a,

such that for g, h ∈ G, and e ∈ G the group identity element,

• e · a = a,

• g · (h · a) = (gh) · a.

The symmetric group has an action on sets by permuting the elements of the set. The
symmetric group Σn acts on subsets of {1, 2, . . . , n} in the obvious way by permuting elements.
It acts on indexed sets A = {ai|i ∈ k, k ≤ n} by permuting indices, that is, π · ai = aπ(i).

Let A be a set with |A| = n. One may also define ΣA as the symmetric group that permutes
elements of A (not necessarily indexed). Then we have a group isomorphism ΣA

∼= Σn given by
a choice of bijection between A and n.

For the action of an element σ ∈ ΣY on a general set X ⊆ Y , we have

σX := {σx|x ∈ X}.

Remark 1.1.0.5. So far we have defined left group action, where the elements act on the left of a
set. When we consider operads in this thesis, we will instead use right actions of the symmetric
group. In this case, we have the right action of π ∈ Σn on A = {a1, a2, . . . ak} with k ≤ n given
by

Aπ := {aπ−1(1), aπ−1(2), . . . , aπ−1(k)}.

If a group G acts on a set A, we may extend linearly to get a group action on the space of
linear combinations Z[A].
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1.2 Category theory

We will rely on categorical language throughout this thesis, so we include a few key examples
and properties here that are used in later chapters. The results quoted in this section can be
found in a number of places, such as [Lei14], [Rie16] and [Lan98].

Most of the categories that we consider in this thesis will be symmetric monoidal categories.
We will assume that any categories we use are concrete, so that we can write elements. We also
assume the axiom of choice.

Definition 1.2.0.1 (Symmetric monoidal category, [Rie16, E.2]). A monoidal category (C,⊗, 1)
is a category C together with a product operation ⊗ that satisfies associativity, unit, and
coherence axioms. A symmetric monoidal category is a monoidal category with a symmetric
product, that is, there is a symmetry isomorphism

t : c⊗ d
∼=7−→ d⊗ c,

for objects c, d ∈ C. This satisfies t2 = id, and the coherence condition that is described in
[Rie16, E.2].

Example 1.2.0.2. The following are some examples of categories that are of interest to us or
referred to in later chapters.

• Set is the category of sets and set functions.

• Σ∗ is the category with objects the based sets n∗ and morphisms basepoint preserving
permutations σ ∈ Σn.

• Bij∗ is the category of finite pointed sets and basepoint-preserving bijections.

• Σ is the category with objects the based sets n∗ and morphisms the permutations
σ ∈ Σn+1. Note that morphisms don’t necessarily preserve the basepoint.

• Bij is the category of pointed finite sets and bijections which aren’t required to preserve
the basepoint.

• Any poset may be viewed as a category by taking the elements of the poset as the objects.
Then, if p ≤ q in the poset, there exists a morphism p→ q in the category.

• Top∗ is the category of based topological spaces and basepoint preserving continuous
maps.

• Top is the category of topological spaces and continuous maps.

• Modk is the category of k-modules and module homomorphisms.

• SW is the Spanier-Whitehead category of finite spectra, which we define in Chapter 6.
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Throughout the later chapters of this thesis, we will work mainly with the categories Σ∗,
Bij∗, Σ and Bij, and rely on the following results about skeletons. Note that the unintuitive
definitions of the categories Bij and Σ is due to the fact we will need distinguished basepoints
when defining cyclic operads in Chapter 3, but also require the ability to permute these.

Definition 1.2.0.3 (Skeleton of a category, [Rie16]). Let C be a category. Then a skeleton
category of C is a full subcategory K ⊂ C that contains one object in each isomorphism class of
objects in C. For any two categories K and K′ that are skeletons of a category C, there is an
isomorphism K ∼= K′.

A category C is skeletal if it has only one element in each isomorphism class. In which case,
C = skel(C).

Proposition 1.2.0.4 ([Rie16]). A category C is equivalent to its skeleton K ⊆ C.

Proof (sketch). We have the inclusion F : K ↪→ C. The functor F is fully faithful and essentially
surjective. Therefore, assuming the axiom of choice, it gives an equivalence of categories.

For each object c ∈ C, we will denote by ιc : c 7→ c the isomorphism to the class representative
c in a skeleton K of C.

Example 1.2.0.5 (Bij∗ ≃ Σ∗). The category Σ∗ is the skeleton of Bij∗. Let
(X,x0), (Y, y0) ∈ Bij∗ and π : (X,x0) 7→ (Y, y0) ∈ Bij∗ a bijection. Let R and E be the
restriction and extension functors as used by Lukács [Luk13]. Note that E is the inclusion as
F is in proposition 1.2.0.4. Then RE = id and we have the following diagram of equivalence
maps.

Bij∗ Σ∗
R

E

(X,x0) n∗

(Y, y0) n∗

π

ι(X,x0)

ι(Y,y0)πι
−1
(X,x0)

ι(Y,y0)

Example 1.2.0.6 (Bij ≃ Σ). The category Σ is the skeleton of Bij. Let X,Y ∈ Bij, and
π : X 7→ Y ∈ Bij be a bijection. Let R and E again be the restriction and extension functors.
We will use the same names R and E for the restriction and extension functors in both the
based and unbased setting, as it will be clear which setting we are working in. Then we have
the diagram below.

Bij Σ
R

E

X n

Y n

π

ιX

ιY πι
−1
X

ιY

The diagram below shows the relationship between the above categories, and we have the
horizontal forgetful functors U that forget the basepoint preserving condition.

22



Bij∗ Bij

Σ∗ Σ

U

R RE

U

E

Definition 1.2.0.7 (Functor category). For categories C,D with D small, the category
Fun(D, C) has as objects functors D F−→ C, and as morphisms, natural transformations.

Proposition 1.2.0.8. The assignment D 7→ Fun(D, C) preserves equivalences.

Proof. For equivalent categories D and D′, we have inverse equivalences F and G,

D D′.
F

G

This induces an equivalence on functor categories as follows

Fun(D, C) Fun(D′, C)
G∗

F ∗

H 7−→ H ◦G

K ◦ F ←− K

Then we have
F ∗G∗(H) = H ◦G ◦ F ∼= H

for any H ∈ Fun(D, C), since GF ∼= idD. Therefore, F ∗G∗ ∼= idFun(D,C). Similarly, we have
G∗F ∗ ∼= idFun(D′,C), and therefore F ∗ and G∗ are inverse equivalences.

Note that the above result could also be proved by the fact that G∗ is a 2-functor, which
preserves equivalences.

Definition 1.2.0.9 (Opposite category). For a category D, we define the opposite category
Dop with the same objects as D, and morphisms f : d→ c for each morphism f : c→ d in D.

Later we will need the fact that taking the opposite also preserves equivalences. That is, for
equivalent categories D ≃ D′,we have Dop ≃ D′op.

1.3 Sets

There are some properties of sets, and structures we can build from finite sets that will be
important in our discussion of partitions and trees.

Definition 1.3.0.1 (Disjoint union). The disjoint union is the coproduct in the category of sets.
Below is a model for disjoint union of finite sets. Let A = {a1, a2, . . . , am}, B = {b1, b2, . . . , bn}
be finite sets. The disjoint union is defined by first indexing the sets A,B:
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A′ = {(a1, 0), (a2, 0), . . . , (am, 0)}, B′ = {(b1, 1), (b2, 1), . . . , (bn, 1)}.

Then
A ⊔B := A′ ∪B′ = {(a1, 0), (a2, 0), . . . , (am, 0), (b1, 1), (b2, 1), . . . , (bn, 1)}.

In general for finite sets {Ai|i ∈ I} for some indexing set I, we denote the indexed sets by
A′
i = {(a, i)|a ∈ Ai}. Then we have the arbitrary disjoint union

⊔
i∈I

Ai =
⋃
i∈I

A′
i.

Since the disjoint union is the categorical coproduct, it is associative up to canonical
isomorphism.

Remark 1.3.0.2. We will use notation {a1, . . . , an} for finite (unordered) sets, and (a1, . . . , an)
for finite ordered sets.

1.4 General representation theory

In this section we will give some relevant background material on representations and in
particularly symmetric group representations. We mainly use the language and descriptions
of Sagan in [Sag01], and another good resource for symmetric group representation theory is
[Jam87].

Representation theory allows one to model structures such as groups and algebras using
matrices or linear transformations.

Definition 1.4.0.1 (Group representation). A matrix representation of a group G is a group
homomorphism Φ : G→ GLd, where GLd is the general linear group (over C) and we call d the
dimension or degree of the representation, deg(Φ).

In terms of modules, a representation of G over C is a complex vector space V together with
a group homomorphism ρ : G → GL(V ). That is, a representation of G over C is given by a
C[G] module.

In general, one can define representations over any base field, but for our purposes we will
always work over C unless stated otherwise.

We may also describe group representations using categorical language. A group
representation is a functor F : G → V ectC from the single object category formed from the
group G, to the category of vector spaces over C.

1.4.1 Reducibility and characters

One of the most important theorems in representation theory is Maschke’s theorem. This says
that representations can be decomposed into a direct sum of irreducible representations.
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Theorem 1.4.1.1 (Maschke’s theorem). For a finite group G, and nonzero G-module V ,

V = W (1) ⊕ · · · ⊕W (k),

for irreducible G-submodules W (i) of G.

Characters contain a lot of information about a representation and can be used to check
reducibility.

Definition 1.4.1.2 (Characters). For a matrix representation X(g) with g ∈ G, the character
of X is defined as

χ(g) := trX(g),

the trace of the matrix.

Proposition 1.4.1.3 ([Sag01, Proposition 1.10.2, Proposition 1.9.2]). The characters of the
irreducible representations of a group G give an orthonormal basis for the space of class functions
of G. The inner product of two characters χ and ψ is given by

⟨χ, ψ⟩ := 1
G

∑
g∈G

χ(g)ψ(g−1).

The characters of all the irreducible representations of a group are often presented in a
character table with rows labelled by the irreducible representations and columns labelled by
representatives of equivalence classes. Then, if we know the characters for a particular reducible
representation of a group, we only need to compare these with the character table for the group
in order to determine the unique decomposition into irreducible representations.

1.4.2 Induced and restricted representations

When we consider actions of subgroups H ⊂ G as restrictions of the action of the bigger group
G, then the associated representations will be restricted representations. Conversely, when an
action of H is extended to an action of the bigger group G, we get induced representations.

Definition 1.4.2.1 (Restricted representation [Sag01, Definition 1.12.1]). For a group G,
subgroup H ⊂ G, and a matrix representation X of G, the restriction X ↓GH or ResGHX of
X to G is defined by the following.

X↓GH (h) := X(h), for all h ∈ H.

Definition 1.4.2.2 (Induced representation). For a group representation V of H where H is
a subgroup H ⊂ G, the induced representation V ↑GH or IndGHV of V is given by the tensor
product

V ↑GH := C[G]⊗C[H] V.
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1.5 Representation theory of the symmetric group

Since this thesis is largely an exploration of actions of the symmetric group, we will specify most
of the background representation theory to this case. There are a number of objects, diagrams
and properties specific to symmetric group representations which make it significantly easier to
study than the representations of general groups.

Example 1.5.0.1 (Examples). Below are some important examples of Σn representations.

• The (left/right) regular representation of a group G is associated to the (left/right) action
of G on itself by multiplication.

• The trivial representation is associated with the action sending every g ∈ G to the identity
matrix.

• For π ∈ Σn, the representation with X(π) = sgn(π) is called the sign representation.

• The defining representation of Σn is the one where each X(π) is the permutation matrix
corresponding to π.

For representation theory of the symmetric group, integer partitions play a large part. We
will introduce notation for these.

Definition 1.5.0.2 (Integer partition of n ∈ N). An integer partition λ = (λ1, λ2, . . . , λk) of
n ∈ N is a collection of positive integers λ1 ≥ λ2 ≥ · · · ≥ λk, such that ∑k

i=1 λi = n. One may
also use the notation λ ⊢ n if λ is a partition of n.

We have orderings on both set partitions and integer partitions. We will talk about the
ordering on set partitions later. An ordering on integer partitions that is important is the
dominance ordering.

Definition 1.5.0.3 (Dominance). We say a partition λ = (λ1, λ2, . . . , λk) dominates a partition
µ = (µ1, µ2, . . . , µl), written λ⊵ µ, if

r∑
i=1

λi ≥
r∑
i=1

µi, for all r ≤ min (k, l).

We illustrate Σn representations using diagrams called Young tableaux. These are indexed
by partitions λ := (λ1, . . . , λr) of n.

Definition 1.5.0.4 (Young tableau [Sag01, Definition 2.1.3]). A Young tableau of shape λ

(often written as λ-tableau) is an array of r rows such that row i contains λi elements, the
order of which doesn’t matter. The tableau is filled with the numbers 1, . . . , n. For example,
the tableau below has shape λ = (4, 3, 2, 2).
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4 6 1 7
2 5 10
8 3
9 11

A tableau is standard if the rows and columns are increasing.

We will also use the term Young diagram for diagrams like Young tableaux in which the
boxes are empty.

Definition 1.5.0.5 (Tabloid [Sag01, Definition 2.1.4]). A λ-tabloid is an equivalence class of
λ-tableaux

{t} = {t1 : t1 ∼ t},

where t1 ∼ t if the corresponding rows of the tableaux contain the same elements.

Definition 1.5.0.6 (Polytabloid [Sag01, Definition 2.3.2]). The column stabiliser Ct is given
by

Ct := ΣC1 × · · · × ΣCk
,

where Ci are the columns of the tableau t. Then a polytabloid et is given by

et = κt{t},

where
κt :=

∑
π∈Ct

sgn(π)π.

The irreducible modules of the symmetric group Σn are called Specht modules. These are
cyclic modules that are generated by Young tableaux.

Definition 1.5.0.7 (Specht modules [Sag01, Theorem 2.5.2]). The Specht module Sλ of shape
λ, where λ ⊢ n is a partition of n and et is a polytabloid, is given by

Sλ := span{et|t a standard λ-tableau}.

For the symmetric group, the Specht modules are the building blocks of any representation,
and we often write representations as direct sums of Specht modules.

Theorem 1.5.0.8 (Irreducible representations of the symmetric group [Sag01, Theorem 2.4.6]).
The irreducible representations of the symmetric group Σn over C are given by the Specht
modules Sλ for λ ⊢ n. Therefore, there is one irreducible representation for each partition
λ of n.

We can use Young diagrams to show restricted and induced representations via the branching
rule.
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Proposition 1.5.0.9 (Branching rule). For a partition λ ⊢ n, the restriction Sλ↓Σn
Σn−1

of the
representation Sλ to Σn−1 is given by the sum of representations associated with the diagrams
resulting from removing a cell in the allowed way. Similarly, the induced representation Sλ↑Σn+1

Σn

is the sum of Σn+1 representations resulting from adding a cell to the Young diagram.
For example, the representation S(3,2,1) has the associated diagram

with restriction to Σ5

⊕ ⊕

and induction to Σ7 as below.

⊕ ⊕ ⊕

The following rules and definitions are useful for doing character calculations and
determining representations.

Definition 1.5.0.10 (Permutation module). The symmetric group Σn acts on the set of
polytabloids by permuting entries. The permutation module Mµ for µ ⊢ n is the Σn-module
spanned by all possible µ-tabloids.

The dimension of a permutation module is given by

dimMµ = n!
µ! .

The permutation modules Mµ can be decomposed into irreducible terms given by the Specht
modules Sλ. For this, we first need to define semi-standard tableaux and the Kostka numbers.

Definition 1.5.0.11 (Semi-standard tableau [Sag01, Definition 2.9.5]). A Young tableau is
called semi-standard if the values in each row are weakly increasing, and the values in each
column are strictly increasing.

Definition 1.5.0.12 (Kostka numbers). The Kostka number κλµ for permutations λ ⊢ n, µ ⊢ n
is given by

κλµ := #{semi-standard λ− tableaux of type µ}.

Proposition 1.5.0.13 (Young’s rule). The permutation module Mµ decomposes as

Mµ ∼=
⊕
λ

κλµS
λ,

where the coefficients κλµ are the Kostka numbers.
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There is a convenient formula for the number fλ of standard λ-tableaux. We first need to
define a hook for a λ-diagram.

Definition 1.5.0.14 (Hook). Each node with coordinates (i, j) in a diagram of shape λ has a
hook

H(i,j) := {(i, j′) : j′ ≥ j} ∪ {(i′, j) : i′ ≥ i}.

Then the hooklength is given by
hi,j = |Hi,j |.

Proposition 1.5.0.15 (Hook formula). The number of standard λ-tableaux is given by

fλ = n!
Π(i,j)∈λhi,j

.

Definition 1.5.0.16 (Skew diagram). A skew diagram is a Young diagram of the type pictured
below.

We say the diagram has shape λ/µ for partitions λ = (λ1, λ2 . . . ), µ = (µ1, µ2, . . . ) such
that µi ≤ λi for all i. Then the skew diagram is the ‘difference’ of the diagrams of λ and µ.

Definition 1.5.0.17 (Border strip). A border strip is a connected subset of a Young diagram,
that does not contain a 2× 2 square. For example the following is a border strip in the above
skew diagram:

There is a formula called the Murnaghan-Nakayama rule that allows us to calculate the
irreducible characters using only information from the Young diagrams. This means we can
construct the character tables for any (small enough to calculate with) value of n. In particular,
it takes information from the border strips of a given Young diagram.

Proposition 1.5.0.18 (Murnaghan-Nakayama rule, [KW20, Theorem 1.1]). For an n-cycle
τ ∈ Σm+n, and permutation π of the remaining m numbers, we have

χλ(πτ) =
∑

(−1)ht(λ/µ)χµ(π),

summing over µ ⊂ λ with |µ| = m, such that λ/µ is a border strip, and ht(λ/µ) is one less
than the number of non-empty rows of the skew diagram of shape λ/µ.
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Chapter 2

Operads

Operads are a structure first defined by May in [May72] for the purpose of studying iterated
loop spaces. They have applications in homotopy theory, algebra, category theory and many
other areas of mathematics and physics.

In this chapter, we will explore a number of different ways to define operads. In particular,
our focus will be on the skeletal and non-skeletal definitions of the form ‘symmetric sequence
(or collection) with partial composition’.

The main aim of the chapter is to discuss in detail the proof by Lukács that the skeletal
and non-skeletal definitions are equivalent. We give this result in Theorem 2.4.2.4. In later
chapters, we will use this method to prove the equivalences of the skeletal and non-skeletal
definitions of cyclic operads, cooperads and cyclic cooperads. We provide a clear set up with
all key functors and necessary constructions defined. In particular, we will briefly discuss the
disjoint union in Set∗ and the fact that this and related operations are not strictly associative
in the set-theoretic sense. Later, we will treat the associativity isomorphisms as identities, as
is standard in a categorical setting.

We will introduce clear notation in order to carefully distinguish the based and unbased
situations, where the unbased setting will be of particular use to us in the next chapter, and
also make clear throughout which categories objects belong to. Where in the literature many of
the axiom checks are left to the reader, we will include a number of these checks in full detail.
In this way, we lay the foundations for the corresponding result for cyclic operads in Chapter 3.

Finally, we will look at some examples and properties. In particular, the associative operad
will be a running example throughout the thesis.

2.1 Background and definitions

In this chapter we will work with the categories Σ∗ and Bij∗. Recall that Σ∗ is the category of
pointed sets n∗ := {0, 1, 2, . . . , n} and permutations in Σn for n ∈ N, and Bij∗ is the category
of finite pointed sets and basepoint preserving bijections. These are equivalent as described in
Example 1.2.0.5.

31



We will need a definition of a kind of deleted disjoint union in order to set up the non-
skeletal definition of an operad. The below definition is a model for this construction in Set∗,
the category of pointed sets. Unlike the usual disjoint union in Set (Definition 1.3.0.1), the
deleted disjoint union is not the coproduct in Set∗.

Definition 2.1.0.1 (Deleted disjoint union). Let (X,x0), (Y, y0) be pointed finite sets where
X \ {x0} ≠ ∅. Then for x ∈ X \ {x0}, define the deleted disjoint union (X⊔xY, (x0, 0)) at x by

X⊔xY := X ⊔ Y \ {(x, 0), (y0, 1)}.

Proposition 2.1.0.2. The operation ⊔x satisfies associativity up to isomorphism:

(X ⊔x Y ) ⊔x′ Z ∼= (X ⊔x′ Z) ⊔x Y for x′ ∈ X

(X ⊔x Y ) ⊔y Z ∼= X ⊔x (Y ⊔y Z) for y ∈ Y,

where (X,x0), (Y, y0) and (Z, z0) are finite pointed sets. The first case is given by composing in
X followed by X again, and the second case is composing in X followed by Y .

Proof. Everything here is up to isomorphism. For example, by our definition of disjoint union,
(X ⊔ Y ) ⊔ Z technically has terms that look like ((x, 0), 0). However, we can simply choose
canonical bijections to the expressions in the proof.

Define the indexed sets X ′ = {(x, 0)|x ∈ X}, Y ′ = {(y, 1)|y ∈ Y }, Z ′ = {(z, 2)|z ∈ Z}.
Then we have the canonical isomorphisms

(X ⊔x Y ) ⊔x′ Z ∼= (X ⊔x′ Z) ⊔x Y ∼= X ′ ∪ Y ′ ∪ Z ′ \ {(x, 0), (y0, 1), (x′, 0), (z0, 2)}.

Similarly, in the other case, we have

(X ⊔x Y ) ⊔y Z ∼= X ⊔x (Y ⊔y Z) ∼= X ′ ∪ Y ′ ∪ Z ′ \ {(x, 0), (y0, 1), (y, 1), (z0, 2)}.

In what follows, we follow standard conventions and will treat these canonical isomorphisms
as identities. We will also abbreviate notation, so, for example, we write x′ ∈ X ⊔x Y rather
than (x′, 0) ∈ X ⊔x Y and so on.

2.1.1 Renumbering map

The following renumbering map plays an essential part in the skeletal definition of an operad,
although it often isn’t mentioned at all in the literature. We will defer most of the discussion
of this map and how it differentiates the skeletal case from the non-skeletal case to Section 2.4.
However, we will define it here, as it appears first in the composition of permutations that we
define below, and these are a large part of the skeletal definition.
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Definition 2.1.1.1 (Renumbering map φi). The renumbering map is the map of sets

φi : m∗ ⊔i n∗ → m+ n− 1∗

given by

φi(k) :=


(k, 0) ∈ m∗ × {0} if k < i,

(k − n+ 1, 0) ∈ m∗ × {0} if k > i+ n− 1,

(k − i+ 1, 1) ∈ n∗ × {1} if i ≤ k ≤ i+ n− 1.

The indexing elements 0 and 1 are a technicality from the deleted disjoint union, and in
practice we will not write these.

2.1.2 Composition of maps

When we consider equivariance of the composition operation, we will need composition of
permutations or bijections in the skeletal and non-skeletal setting respectively. Throughout
the rest of this thesis, we will use the notation • for any type of skeletal composition that
involves the renumbering map, and ◦ for non-skeletal composition that doesn’t involve the
renumbering map.

First we will define the composition of bijections in Bij∗, which is itself a bijection in Bij∗.

Definition 2.1.2.1 (Composition of set bijections [Luk13]). Let ρ : (X,x0) → (X ′, x′
0) and

π : (Y, y0)→ (Y ′, y′
0) ∈ Bij∗ be bijections, and x ∈ X, x ̸= x0. Then we define the composition

ρ ◦x π : (X ⊔x Y, x0)→ (X ′ ⊔ρ(x) Y
′, x′

0)

to be the bijection that restricts as

ρ ◦x π|X\{x} := ρ|X\{x}

ρ ◦x π|Y \{y0} := π|Y \{y0}.

The following composition of permutations is one we don’t see directly in the definition of
a skeletal operad, however it underlies in the structure, and it is necessary when passing to the
non-skeletal case. In fact, it is simply a special case of the non-skeletal composition of bijections
defined above, where the finite sets are the sets m∗, and the bijections those that map m∗ → m∗.

Definition 2.1.2.2 (Composition of permutations in Σ∗ viewed as bijections in Bij∗). Let
σ ∈ Σm, τ ∈ Σn be permutations, and i ∈ m. Then we define the composition σ ◦i τ ∈ Bij∗

σ ◦i τ : m∗ ⊔i n∗ → m∗ ⊔σ(i) n∗

to be the permutation that restricts as

σ ◦i τ |m∗\{i} := σ|m∗\{i}

σ ◦i τ |n := τ |n.
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Finally, we will define the composition of permutations in Σ∗, which is itself a permutation
of a larger set.

Definition 2.1.2.3 (Composition of permutations in Σ∗). Let σ ∈ Σm, τ ∈ Σn be permutations,
and i ∈ m. Then we define the composition σ •i τ ∈ Σm+n−1

σ •i τ : m+ n− 1∗ → m+ n− 1∗

to be the permutation such that the following diagram commutes.

m∗ ⊔i n∗ m+ n− 1∗

m∗ ⊔σ(i) n∗ m+ n− 1∗

φ−1
i

σ◦iτ σ•iτ

φ−1
σ(i)

We will now give the definition of a symmetric sequence. Throughout this chapter, let
(C,⊗,1) be a symmetric monoidal category.

Definition 2.1.2.4 (Symmetric sequence). A symmetric sequence in a symmetric monoidal
category C is a sequence {X(n)}n∈N>0 with a right action of Σn on each X(n). This is
equivalently a functor Σop → C.

Remark 2.1.2.5. A Σ-module in C is functor Σop → C. This is also sometimes referred to in this
context as a collection, and elsewhere in the literature as a species. Note that Σ ≃ Σop, and in
the literature different authors take functors Σ→ C.

2.2 Skeletal operad definitions

The standard definition of an operad given by May in [May72] is skeletal. That is, operads and
their structure are defined in terms of the based sets n∗, for natural numbers n, together with
permutations in the associated symmetric groups Σn.

Definition 2.2.0.1 (Skeletal operad). An operad is a symmetric sequence P in C along with a
unit η : 1→ P (1) and partial composition operations

•i : P (m)⊗ P (n)→ P (n+m− 1), i ∈ n

that satisfy equivariance, associativity and unit axioms. These axioms can be presented in the
form of commutative diagrams.

• (Equivariance) Let σ ∈ Σm, τ ∈ Σn, i ∈ m∗, then the following diagram commutes.

P (m)⊗ P (n) P (m+ n− 1)

P (m)⊗ P (n) P (m+ n− 1)

•σ(i)

σ⊗τ σ•iτ

•i
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• (Associativity) Let 1 ≤ i ≤ l and i ≤ j ≤ i + m − 1, that is, we first compose q ∈ P (m)
with p ∈ P (l) followed by r ∈ P (n) with q ∈ P (m). Then we get the diagram below.

P (l)⊗ P (m)⊗ P (n) P (l +m− 1)⊗ P (n)

P (l)⊗ P (m+ n− 1) P (l +m+ n− 2)

•i⊗id

id⊗•j •j+i−1

•i

Let 1 ≤ i ≤ l and j < i. That is, we compose q ∈ P (m) with p ∈ P (l) followed by
r ∈ P (n) with p ∈ P (l). Let t be the map that swaps the order in the tensor product as
in Definition 1.2.0.1. Then we have the following commutative diagram.

P (l)⊗ P (m)⊗ P (n) P (l +m− 1)⊗ P (n)

P (l)⊗ P (n)⊗ P (m)

P (l + n− 1)⊗ P (m) P (l +m+ n− 2)

•i⊗id

id⊗t

•j

•j⊗id

•n+i−1

If j > i, we have the diagram below.

P (l)⊗ P (m)⊗ P (n) P (l +m− 1)⊗ P (n)

P (l)⊗ P (n)⊗ P (m)

P (l + n− 1)⊗ P (m) P (l +m+ n− 2)

•i⊗id

id⊗t

•j+m−1

•j⊗id

•i

• (Unit) Let 1 ∈ C be the unit object of the underlying category. Then there is a map
η : 1 → P (1) that interacts with the composition operation such that the following
diagrams commute for all i ∈ n.

P (n)⊗ 1 P (n)⊗ P (1)

P (n)

id⊗η

•1

1⊗ P (n) P (1)⊗ P (n)

P (n)

η⊗id

•i

Remark 2.2.0.2. We see that there are three commutative diagrams for the associativity axiom.
This is because when we do two consecutive partial compositions, there are two cases which
depend on which of the first two operations the third is composed with. The second case splits
into two cases in the skeletal setting, depending on whether the second composition is to the
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left or right of the first. This shifts the indexing because of the renumbering map. Using an
example with tree diagrams, the difference between the main two cases is depicted as follows.

p

q

r

(p•1 q)•1 r ∈ P (5)

or p

q r

(p•1 q)•4 r ∈ P (5)

It is convenient to depict n-ary operations as rooted n-trees where the labelled leaves are
the inputs, the vertex is the operation and the root represents the output. Then composition
of operations is analogous to grafting trees.

p

1 32

p ∈ P (3)

•2 q

1 2

q ∈ P (2)

= p

q1

2 3

4

p •2 q ∈ P (4)

Remark 2.2.0.3. Rather than using the partial composition operations •i, the classical skeletal
definition of an operad gives a sequence of sets with symmetric group actions and total
composition operations

P (k)⊗ P (i1)⊗ · · · ⊗ P (ik)→ P (i1 + · · ·+ ik),

where a number k of operations are composed with an operation in P (k), one in each input
position. With tree diagrams this looks like the following.

0

1

2

i1

i1 + 1

i1 + 2
i1 + i2

i1 + · · ·+ ik−1
i1+· · ·+ik−1+1

i1 + · · ·+ ik

p

p1

p2

pk

The formulation with partial composition operations •i is an equivalent, and somewhat easier
to work with, definition. We can obtain the general case from the partial case by successive •i
operations:

(. . . (((p •1 p1) •i1+1 p2) •i1+i2+1 p3) · · · •i1+···+ik−1+1 pk).
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In the other direction, one obtains partial compositions from general compositions by taking
all but the ith inserted operation to be the identity. That is,

p •i q = p(1, . . . , 1, q, 1, . . . , 1).

This is discussed in more detail by Fresse in [Fre17].

Remark 2.2.0.4. An operad P can also be defined as a monoid in the category of symmetric
sequences. That is, the category of symmetric sequences in a suitable pointed symmetric
monoidal category C can be equipped with a monoidal structure using the composition product.
Then a monoid in this category is precisely an operad P in C. The details of this are described
further in [Chi05, Proposition 2.2.9].

There is a natural notion of a map of operads, so we have a category.

Definition 2.2.0.5 (Category of skeletal operads). We denote by OpΣ∗ the category with
objects skeletal operads, and morphisms the maps θ : P → Q for P,Q ∈ OpΣ∗ , where
θn : P (n)→ Q(n). The maps θn are compatible with the Σn action, partial composition
operations and unit. These conditions are encoded by the following commutative diagrams.

• (Compatibility with Σn action)

P (n) Q(n)

P (n) Q(n),

θn

σ σ

θn

where σ : n→ n is a permutation.

• (Compatibility with •i)

P (m)⊗ P (n) Q(m)⊗Q(n)

P (m+ n− 1) Q(m+ n− 1)

θm⊗θn

•i •i

θm+n−1

• (Compatibility with unit)
1 1

P (1) Q(1),

η η

θ1

where η is as in Definition 2.2.0.1
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2.3 Non-skeletal operad definitions

The diagram below shows the labelling of a non-skeletal operad by elements of a finite set
X = {x1, x2, x3} and applying a bijection τ : X → X ′, where X ′ = {x′

1, x
′
2, x

′
3}.

p

x′
1 x′

3x′
2

p ∈ P (X ′, x′
0)

τ−−→ q

x1 x2 x3

q ∈ P (X,x0)

We will give a non-skeletal definition of the same type as the skeletal definition above.

As in the skeletal case, we have a Bij∗-collection given by a functor Bijop∗ → C.

Definition 2.3.0.1 (Non-skeletal operad). An operad is a Bij∗-collection P together with, for
x ∈ X \ {x0}, partial composition maps

◦x : P (X,x0)⊗ P (Y, y0) 7→ P (X ⊔x Y, x0)

that are required to satisfy equivariance, associativity and unit axioms. These are given by
commutativity of the diagrams below. Let (X,x0), (Y, y0), (Z, z0) ∈ Bij∗ be based finite sets,
and x ∈ X \ {x0}, y ∈ Y \ {y0}, z ∈ Z \ {z0}.

• (Equivariance)

P (X ′, x′
0)⊗ P (Y ′, y′

0) P (X ′ ⊔σ(x) Y
′, x′

0)

P (X,x0)⊗ P (Y, y0) P (X ⊔x Y, x0)

◦σ(x)

σ⊗τ σ◦xτ

◦x

• (Associativity) Composing first in position x ∈ X, then in y ∈ Y gives the diagram below

P (X,x0)⊗ P (Y, y0)⊗ P (Z, z0) P (X ⊔x Y, x0)⊗ P (Z, z0)

P (X,x0)⊗ P (Y ⊔y Z, y0) P (X ⊔x Y ⊔y Z, x0).

◦x⊗id

id⊗◦y ◦y

◦x

Composing in x ∈ X followed by x′ ∈ X gives
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P (X,x0)⊗ P (Y, y0)⊗ P (Z, z0) P (X ⊔x Y, x0)⊗ P (Z, z0)

P (X,x0)⊗ P (Z, z0)⊗ P (Y, y0)

P (X ⊔x′ Z, x0)⊗ P (Y, y0) P (X ⊔x Y ⊔x′ Z, x0)

◦x⊗id

id⊗t

◦x′

◦x′ ⊗id

◦x

• (Unit) There exists a map η : 1 → P (W,w0) where (W,w0) = {w,w0}, the set with one
non-basepoint element such that the following diagrams commmute for all x ∈ X.

P (X,x0)⊗ 1 P (X,x0)⊗ P (W,w0)

P (X,x0)

id⊗η

◦w

1⊗ P (X,x0) P (W,w0)⊗ P (X,x0)

P (X,x0)

η⊗id

◦x

The collection of non-skeletal operads also form a category.

Definition 2.3.0.2 (Category of non-skeletal operads). We denote by OpBij∗ the category
with objects Bij∗-operads, and morphisms the maps θ : P → Q for P,Q ∈ OpBij∗ , where
θX : P (X,x0) → Q(X,x0). The maps θX are compatible with the bijections in Bij∗, partial
composition operations and unit. These conditions are encoded by the following commutative
diagrams.

• (Compatibility with bijections)

P (X ′, x′
0) Q(X ′, x′

0)

P (X,x0) Q(X,x0),

θ′
X

ρ ρ

θX

where ρ : X → X ′ is a bijection.

• (Compatibility with ◦x)

P (X,x0)⊗ P (Y, y0) Q(X,x0)⊗Q(Y, x0)

P (X ⊔x Y, x0) Q(X ⊔x Y, x0).

θX⊗θY

◦x ◦x

θX⊔xY
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• (Compatibility with unit)

1 1

P (W,w0) Q(W,w0),

η η

θW

where η is as in Definition 2.3.0.1.

2.4 Equivalence of skeletal and non-skeletal definitions

The equivalence of the skeletal and non-skeletal definitions is proved by Lukács in [Luk13,
Theorem 4.4]. We expand on the proof given by Lukács in order to provide more detail and
clarify notation. In particular, this proof gives an equivalence of categories.

Remark 2.4.0.1. Note that for a permutation σ : n→ n or a bijection τ : X → X ′, we have the
induced maps P (σ) : P (n)→ P (n) and P (τ) : P (X ′, x′

0)→ P (X,x0) respectively. We have so
far in this chapter simply written σ : P (n)→ P (n) and τ : P (X ′, x′

0)→ P (X,x0) to mean the
same thing. Similarly, in this section we will require a bijection α : m∗ → X, and will denote
the induced map P (α) : P (X,x0)→ P (m∗) simply by α.

2.4.1 Skeletal and non-skeletal composition operations

Before we describe the proof of the equivalence of definitions, let us highlight the key difference
between them. The difference is the renumbering that is built into the skeletal partial
composition operations. For p ∈ P (m), q ∈ P (n), in order for p •i q to lie in P (m + n − 1),
there has to be some renumbering of input labels. This is because p ◦i q has inputs with labels
{1, 2, . . . , n} ⊔ {1, 2, . . . ,m} \ {i}, so after composition there would be duplicate labels without
such a map. Recall the renumbering map φ : Σ∗ → Bij∗ given in Definition 2.1.1.1.

Explicitly, the skeletal composition operation is itself the composition •i := φi◦i of
◦i : P (m)⊗ P (n)→ P (m∗ ⊔i n∗) with the renumbering map φi : m+ n− 1∗ → m∗ ⊔i n∗. We
view m∗, n∗ as objects of Bij∗, with i ∈ m. Then we have

◦i : P (m∗)⊗ P (n∗)→ P (m∗ ⊔i n∗)

as structure of a non-skeletal operad. We obtain composition maps •i via the diagram below.

P (m)⊗ P (n) P (m+ n− 1)

P (m∗)⊗ P (n∗) P (m∗ ⊔i n∗).

•i

◦i

φi (2.1)

The left equality is due to the inclusion Σ∗ ↪→ Bij∗.
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Example 2.4.1.1. Here is an example of the renumbering map with trees. Technically the
labels after applying ◦2 are the elements of the set given by

{1, 2, 3} ⊔2 {1, 2} = {(1, 0), (3, 0), (1, 1), (2, 1)},

but we simply write for example 1 for (1, 0) and 1′ for (1, 1) to simplify notation.

p

1 32

p ∈ P (3)

◦2 q

1 2

q ∈ P (2)

= p

q1

1′ 2′

3

p ◦2 q ∈ P (4)

φ2−→ p

q1

2 3

4

p •2 q ∈ P (4)

2.4.2 Proof of equivalence

We will formulate a categorical proof of the equivalence of skeletal and non-skeletal operad
definitions, similarly to that of Lukács in [Luk13].

First, we note that there is an equivalence Bij∗ ≃ Σ∗ as shown in Example 1.2.0.5 by the
fact Σ∗ is the skeleton of the category Bij∗. We have the restriction and extension functions
R : Bij∗ → Σ∗ and E : Σ∗ → Bij∗ respectively, with induced functors

E∗ : Fun(Bijop∗ , C) Fun(Σop
∗ , C) : R∗

on the functor categories of C-collections. The induced functors R∗ and E∗ give an equivalence
of the categories of collections, due to Proposition 1.2.0.8 and the fact that Σop

∗ ≃ Bijop∗ since
the underlying categories are equivalent.

We will restrict these to functors R# and E# on the operad categories OpBij∗ and OpΣ∗ ,

E# : OpBij∗ OpΣ∗ : R#.

Then we will show that the functor E# is an equivalence of categories OpBij∗
∼−→ OpΣ∗ .

Proposition 2.4.2.1. The functors R# : OpΣ∗ → OpBij∗ and E# : OpBij∗ → OpΣ∗ on operads
are well-defined.

Proof. We have functors R# and E# on operads, agreeing with the functors R∗, E∗ on the
underlying collections. This means, we need to check compatibility with the composition
operation, and that the equivariance, associativity and unit properties are preserved in each
direction.

We will check that for both R# and E#, applying the functor to an operad indeed gives
us an operad in the target category. We will do these checks first on objects, and then on
morphisms.
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E# is well-defined on objects

This is due to the inclusion E : Σ∗ ↪→ Bij∗ and the fact that a Σ∗-operad is really a special case
of a Bij∗-operad. Let P : Bijop∗ → C be a Bij∗-operad. Then

E#P (n) = E#(P (n∗)) = P (n∗).

Similarly, for σ ∈ Σn, we have E#(P )(σ) = P (σ), since σ ∈ Mor(Bij∗). Define the partial
composition operations

•i : E#P (m)⊗ E#P (n)→ E#P (m+ n− 1)

by composing the composition ◦i that belongs to OpBij∗ with the renumbering map φi,

P (m∗)⊗ P (n∗) ◦i−→ P (m∗ ⊔i n∗) φi−→ E#P (m+ n− 1).

This gives us the complete operad structure. Finally, the equivariance, associativity and unit
properties are inherited from the category OpBij∗ .

R# is well-defined on objects

Suppose that P is a Σ∗-operad. Then we wish to show that R#P is a Bij∗-operad.
We have the usual composition operations •i in OpΣ∗ , and also the composition operations

◦i = φ−1
i •i in OpBij∗ as discussed earlier. That is,

◦i : P (m)⊗ P (n)→ P (m∗ ⊔i n∗).

We then have the following commutative diagram as a result of equivariance in OpΣ∗ and
properties of the renumbering map. In particular, the outer square is an equivariance condition
for the composition operation for skeletal operads without the renumbering map, which gives
an operad in OpBij∗ rather than OpΣ∗ . For σ ∈ Σm and τ ∈ Σn, we have

P (m)⊗ P (n) P (m+ n− 1) R#P (m∗ ⊔σ(i) n∗)

P (m)⊗ P (n) P (m+ n− 1) R#P (m∗ ⊔i n∗)

◦σ(i)

•σ(i)

σ⊗τ

φ−1
σ(i)

σ•iτ σ◦iτ

◦i

•i φ−1
i

(2.2)

We wish to construct a similar diagram which patches together the diagram above with a
non-skeletal analogue.

Let X,Y be sets in Bij∗, x ∈ X \ {x0} and 1 ≤ i ≤ m. Choose maps α : m∗ → X,
β : n∗ → Y ∈ Bij∗, such that α(i) = x. Then define the non-skeletal composition ◦x by
commutativity of the diagram
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R#P (X,x0)⊗R#P (Y, y0) R#P (X ⊔x Y, x0)

P (m)⊗ P (n) R#P (m∗ ⊔i n∗).

◦x

α⊗β α◦iβ

◦i

(2.3)

Lukács shows that this is well-defined and independent of choice of α and β.
Then it remains to check that the Bij∗-operad R#P satisfies the equivariance, associativity

and unit axioms.
In each case, the check is similar. It involves patching together commutative diagrams and

checking commutativity of the relevant square for the condition we are interested in. Here we
will check the equivariance case, and omit the checks for associativity and unit.

(Equivariance): Let us patch some diagrams together to get the following large diagram.
Then the inner square commuting is the equivariance condition we need.

P (m)⊗ P (n) R#P (m∗ ⊔j n∗)

R#P (X ′, x′
0)⊗ P (Y ′, y′

0) R#P (X ′ ⊔ρ(x) Y
′, x′

0)

R#P (X,x0)⊗ P (Y, y0) R#P (X ⊔x Y, x0)

P (m)⊗ P (n) R#P (m∗ ⊔i n∗).

◦j

(α′)−1ρα⊗(β′)−1πβ (α′)−1ρα◦j(β′)−1πβ

α′⊗β′

◦ρ(x)

ρ⊗π

α′◦jβ
′

ρ◦xπ

α⊗β

◦x

α◦iβ

◦i

We have the maps α : m∗ → (X,x0), β : n∗ → (Y, y0) with α(i) = x. Similarly, we have
maps α′ : m∗ → X ′, β′ : n∗ → Y ′. These are the chosen maps Σ∗ → Bij∗ as in Example 1.2.0.5.
Let π : X → X ′, and τ : Y → Y ′ be bijections. Finally, we define j := (α′)−1(ρ(x)), so that
α′(j) = ρ(x).

All the vertical arrows in the diagram are bijections and hence invertible maps.
Both the top and bottom squares in this diagram commute as they are instances of diagram

(2.3), that is, the definition of the ◦x composition. The left and right vertical maps are by
definition such that the left and right squares commute. Then the outer square is an example
of the equivariance diagram (2.2) for the skeletal operad P without the renumbering map, and
thus commutes as well.

Therefore, the inner square commutes as required.
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Operad maps

Now, we need to show that E# and R# are well-defined on morphisms, that is, operad maps.
In particular, given an operad map θ : P → Q of Bij∗-operads, we may choose a bijection

α : m∗ → (X,x0) as in 1.2.0.5 such that E#θ is defined by the following diagram.

P (X,x0) Q(X,x0)

E#P (m) E#Q(m).

θX

α α

E#θm

(2.4)

Similarly, given a map Φ : P → Q of Σ∗-operads, the map R#Φ is defined by the diagram
below.

R#P (X,x0) R#Q(X,x0)

P (m) Q(m).

R#ΦX

α α

Φm

(2.5)

The operad maps θ and Φ satisfy the conditions shown by the diagrams in 2.3.0.2 and 2.2.0.5
respectively. That is, compatibility with the group action, composition operations, and unit.

E# is well-defined on morphisms

If θ is a map of Bij∗-operads, then E#(θ) can also be viewed as a map of Σ∗ operads via the
inclusion Σ∗ ↪→ Bij∗. Using the fact that E#(θ)n = θn∗

, the commutativity of the diagrams
follow from the commutativity of the non-skeletal analogues.

R# is well-defined on morphisms

If conversely Φ is a map of Σ∗ operads, we assume the diagrams for compatibility with
permutations in Σ∗, composition •i and unit. Then it remains to show that the equivalent
diagrams for R#Φ commute. That is, that we have compatibility with bijections in Bij∗, the
composition operations ◦x, and unit.

• (Compatibility with bijections) The following diagram commutes due to equivariance of
Φ on skeletal operads.

P (m) Q(m)

P (m) Q(m)

Φm

σ σ

Φm
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Then the relevant diagram for R#Φ that we want to commute, for ρ : X → X ′, is

R#P (X ′, x′
0) R#Q(X ′, x′

0)

R#P (X,x0) R#Q(X,x0).

R#ΦX′

ρ ρ

R#ΦX

Therefore, we require that the middle square of the larger diagram below commutes.

P (m) Q(m)

R#P (X ′, x′
0) R#Q(X ′, x′

0)

R#P (X,x0) R#Q(X,x0)

P (m) Q(m).

Φm

αρ(α′)−1 αρ(α′)−1

α′

R#ΦX′

ρ

α′

ρ

α

R#ΦX

α

Φm

The top and bottom squares commute by definition of the map R#, given by diagram
(2.5). The outer square commutes due to compatibility of Φ with permutations in Σ∗,
since Φ is a morphism in OpΣ∗ . The left and right squares commute by construction.
Therefore, the middle square commutes as required.

• (Compatibility with composition) We assume commutativity of the diagram below for Φ
in the skeletal case.

P (m)⊗ P (n) Q(m)⊗Q(n)

R#P (m∗ ⊔i n∗) R#Q(m∗ ⊔i n∗)

P (m+ n− 1) Q(m+ n− 1)

Φm⊗Φn

◦i

•i

◦i

•i

R#Φm∗⊔in∗

φi φi

Φm+n−1

(2.6)

These two squares correspond to the square in Definition 2.2.0.5, with the •i operation
separated into ◦i and the renumbering map φi.

The relevant diagram required to commute in order for R#Φ to be a map of non-skeletal
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operads is

R#P (X,x0)⊗R#P (Y, y0) R#Q(X,x0)⊗R#Q(Y, y0)

R#P (X ⊔x Y, x0) R#Q(X ⊔x Y, x0)

R#ΦX⊗R#ΦY

◦x ◦x

R#ΦX⊔xY

We can patch together these diagrams using maps α : m∗ → (X,x0), β : n∗ → (Y, y0),
then we get the following. The above diagram, which we require to commute in order to
have compatibility with composition in the non-skeletal case, is the outer square in the
following diagram.

R#P (X,x0)⊗R#P (Y, y0) R#Q(X,x0)⊗R#Q(Y, y0)

P (m)⊗ P (n) Q(m)⊗Q(n)

R#P (m∗ ⊔i n∗) R#Q(m∗ ⊔i n∗)

P (m+ n− 1) Q(m+ n− 1)

R#P (X ⊔x Y, x0) R#Q(X ⊔x Y, x0)

R#ΦX⊗R#ΦY

α⊗β

◦x

α⊗β

◦x

Φm⊗Φn

◦i

•i

◦i

•i

R#Φm∗◦in∗

φi φi

Φm+n−1

α◦iβ

R#ΦX⊔xY

α◦iβ

We assume commutativity of the middle two squares, which are simply instances of
diagram (2.6). Then the top and bottom square commute by definition of the map R#Φ
(see diagram (2.5)). The left and right arrows are such that the left and right squares
commute. Therefore, the outer square commutes as required.

The unit check involves a similar process to those above, so we omit that here.
Therefore, we have that R#Φ is indeed a map of Bij∗-operads.

Lemma 2.4.2.2. The functor E# is essentially surjective.

Proof. This is by the inclusion E : Σ∗ ↪→ Bij∗ and the discussion in Proposition 2.4.2.1. For a
skeletal operad P ∈ OpΣ∗ , the operad R#P ∈ OpBij∗ is such that E#R#P = P .
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Lemma 2.4.2.3. The functor E# is fully faithful.

Proof. We show that the functor E∗ : Fun(Bijop, C) → Fun(Σop, C) is fully faithful. We have
that for a morphism Φ of Σ∗-operads, E#R#Φ = Φ, meaning E# is full.

For operad maps θ1, θ2 : P → Q with P and Q objects of OpBij∗ , we have that
E#(θ1)n = (θ1)n∗

and E#(θ2)n = (θ2)n∗
. Therefore, if E#θ1 = E#θ2 then we have θ1 = θ2.

Theorem 2.4.2.4 ([Luk13, Theorem 4.4]). There is an equivalence of categories
E# : OpBij∗ → OpΣ∗.

Proof. By Lemmas 2.4.2.2 and 2.4.2.3, and the well known result [Lei14, Proposition 1.3.18],
E# gives an equivalence of categories E# : OpBij∗

∼−→ OpΣ∗ .

We therefore have the following commutative diagram showing the equivalence of operad
categories, with forgetful functors U to the associated functor categories.

OpBij∗ OpΣ∗

Fun(Bijop∗ , C) Fun(Σop
∗ , C)

U

E#

U

R#

E∗

R∗

Remark 2.4.2.5. One could also obtain the result of Theorem 2.4.2.4 by showing that the
forgetful functor U is faithful, and then the commutativity of the diagram above gives the
necessary properties for E#.

Remark 2.4.2.6. There is additionally a possible proof using the definition of an operad as a
monoid in the category of symmetric sequences, as in Remark 2.2.0.4. This would use the fact
that the categories of skeletal and non-skeletal symmetric sequences are equivalent, therefore
inducing an equivalence on the categories of monoids in such categories. That is, one would
alternatively need to prove that the definition of an operad as a monoid in the category of
symmetric sequences is equivalent to Definition 2.2.0.1.

2.5 Non-symmetric operads

So far in this chapter and throughout the thesis, we mainly consider symmetric operads. That
is, those with an action of the symmetric group Σn on the nth arity of the operad, and the
composition operation satisfying the equivariance axiom.

We may define a non-symmetric operad by removing the equivariance axiom. This
means that any symmetric operad has an underlying non-symmetric operad by forgetting the
symmetric group action, and conversely a non-symmetric operad gives rise to a symmetric
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operad O by taking for each n ≥ 1, the induced representation from the trivial subgroup
O(n) := IndΣn

{e}P (n), together with induced composition operations.

Definition 2.5.0.1 (Non-symmetric operad [MSS02, Definition 1.14]). A non-symmetric
operad in a monoidal category C (not required to be symmetric) is a sequence {P (n)}n>0

together with a unit 1 ∈ P (1) and a partial composition operation

•i : P (m)× P (n)→ P (m+ n− 1)

for m,n > 0 and 1 ≤ i ≤ m, satisfying associativity and unit axioms.

Where rooted trees were used to illustrate the symmetric operad setting, one can similarly
use planar rooted trees to illustrate non-symmetric operads. In fact, the operad of planar rooted
trees gives the free non-symmetric operad, as discussed in [LV12, Section 5.8.6].

Remark 2.5.0.2. We had that a symmetric operad can be viewed as a monoid in the category
of symmetric sequences. Similarly, a non-symmetric operad can be viewed as a monoid in the
category of sequences (that are not required to be symmetric) with composition operations.

2.6 Examples

There are a few fundamental operads which we will mention here as examples. Many other
useful examples are given in [MSS02], [Cha08], and [LV12].

Definition 2.6.0.1 (Topological operad). Topological operads are operads in the category Top
of topological spaces and continuous maps, or the category Top∗ of based topological spaces
and basepoint preserving continuous maps.

Example 2.6.0.2 (The endomorphism operad [LV12, p. 5.2.12]). The endomorphism operad
is one of the most fundamental operads, in particular it is often used to describe algebras over
operads, as mentioned in Remark 2.7.0.2.

For a vector space V over a field k, the endomorphism operad EndV over V is given by

EndV (n) := Hom(V ⊗n, V ).

The symmetric group Σn acts on V ⊗n by permutation, and this induces the right Σn action on
EndV (n). Composition is given by composition of endomorphisms.

Example 2.6.0.3 (The free operad on a binary operation). The free operad P (µ) in Set on
a binary operation µ is the operad where each arity P (µ)(n) consists of the binary trees with
leaves labelled by the set n. This is one of the simplest operads with very little structure.

Example 2.6.0.4 (The commutative operad). The commutative operad is the operad of k-
vector spaces in which the operations are commutative multiplication in k. We have

Comm(n) := k for all n ≥ 0.

The symmetric group Σn acts trivially on Comm(n).
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The associative operad is another fundamental and important operad, where the operations
are simply associative multiplication. This operad is used to study associative algebras. We
will return to this example in later chapters to further explore its structure.

Example 2.6.0.5 (The non-symmetric associative operad). This is the operad for associative
multiplication, that has no Σn action on Ass(n).

The non-symmetric associative operad is defined by

Ass(n) := k, for all n ≥ 1.

We will mainly be interested in the symmetric version of the associative operad in this thesis.

Example 2.6.0.6 (The symmetric associative operad, AssΣ [MSS02]). The symmetric
associative operad can obtained from the non-symmetric associative operad as the induced
representation from the trivial group. That is, we have

AssΣ(n) := IndΣn

{e}Ass(n).

More concretely, the symmetric operad AssΣ in Modk is defined by

AssΣ(n) ∼= k[Σn] = k{µnπ|π ∈ Σn},

with the associative multiplication operation

µn = µ(µ⊗ 1)...(µ⊗ 1⊗ ...⊗ 1),

and action of Σn on AssΣ(n) by permuting the positions in multiplication as follows,

µn(a1, a2, . . . , an)π = µn(aπ−1(1), aπ−1(2), . . . , aπ−1(n)).

We have the associativity condition

µ(µ⊗ id) := µ(id⊗ µ),

which can equivalently be formulated in terms of the partial composition operations •i as

µ •1 µ := µ •2 µ.

This can be depicted using tree diagrams.

=

These are operations in AssΣ(3) as the composition of operations in AssΣ(2). We may define
the associativity condition for elements of AssΣ(2) because this determines associativity of
operations in AssΣ(n) for larger n via the operad composition maps.

The action of the symmetric group Σn on AssΣ(n) is that associated to the regular
representation, given by permutation of inputs.
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Example 2.6.0.7 (The Lie operad). At the nth arity, Lie(n) is given by the k-linear
combinations of all complete bracketings of symbols x1, x2, . . . , xn, with no repetitions. For
example,

[. . . [[xn, xn−1]xn−2] . . . x1] ∈ Lie(n).

One can also generate Lie(n) from the skew symmetric operation in Lie(2):

Lie(2) := [−,−]

where [−,−] is the Lie bracket. Higher operations are generated by composition, where
composition is given by nesting Lie brackets. For example, for p = [x1, x2] ∈ Lie(2),
q = [x1, x2] ∈ Lie(2), we have

p •1 q := [[x1, x2], x3],

subject to the Jacobi relation

[[x1, x2], x3] + [[x2, x3], x1] + [[x3, x1], x2] = 0.

As with the associative operad, we may express the equivalence relations using tree diagrams.
The Jacobi identity is shown diagrammatically below.

x1 x2 x3

+

x2 x3 x1

+

x3 x1 x2

= 0.

Skew symmetry can be depicted similarly:

x1 x2

= −
x2 x1

The Lie operad is the Koszul dual of the commutative operad, as explained in [GK94].

2.7 Operad algebras

One of the main purposes of operads is to study the algebras over them. For example, we obtain
associative, commutative and Lie algebras from their associated operads.

Definition 2.7.0.1 (Operad algebra [KM95, Definition 2.1]). An operad algebra or an algebra
over an operad P is given by a vector space A, together with linear maps γA(n) : P (n)⊗A⊗n → A

for n ≥ 0 that are associative, unital and equivariant. These conditions are shown by the
commutativity of the following diagrams, where j = Σji.
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P (k)⊗ P (j1)⊗ · · · ⊗ P (jk) P (j)⊗A⊗j

A

P (k)⊗ P (j1)⊗A⊗j1 ⊗ · · · ⊗ P (jk)⊗A⊗jk P (k)⊗A⊗k

shuffle

γA(j)

Id⊗γA(k)⊗k

γA(k)

1⊗A A

P (1)⊗A

∼=

η⊗Id
ηA(1)

P (j)⊗A⊗j P (j)⊗A⊗j

A

σ⊗σ−1

The collection of algebras over an operad P forms a category, with morphisms f : A → A′

of algebras A and A′ linear maps such that the following diagram commutes for all n ≥ 1.

P (n)⊗A⊗n A

P (n)⊗A′⊗n A′

γA(n)

idP (n)⊗f⊗n f

γA′ (n)

Remark 2.7.0.2. An algebra over an operad P on a vector space V can also be described as a
morphism P → EndV .

Remark 2.7.0.3. One can also define a coalgebra over an operad.

2.8 Operad (co)homology

Recall from Definition 2.6.0.1 that a topological operad is an operad in the category Top∗ or
Top.

Definition 2.8.0.1 (Homology of a topological operad, [Chi05, Definition 9.3]). For an operad
P in Top or Top∗, the homology H∗P is given by

(H∗P )(n) := H∗(P (n)).

Then H∗P is an operad in Modk, as shown by Ching in [Chi05, Lemma 9.4].
Similarly, one can take the cohomology H∗P of an operad, resulting in a cooperad in Modk.

This is subject to some flatness and finiteness conditions, as explained by Ching in [Chi05,
Remark 9.5].
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2.9 Operadic suspension

Finally, we will give one more property that will be of use in Chapter 6. Operadic suspension
is a type of suspension specific to operads.

For a dg-module M = (Mk, d
M ), we have the suspension

(ΣM)k = Mk−1,

with differential −dM . We denote the n-fold iterated suspension by Σn = ΣΣn−1.

Definition 2.9.0.1 (Operadic (de)suspension, [GK95, Section 2.10]). The suspension of a dg-
operad P is the operad sP defined by

sP (n) := Σn−1sgn⊗ P (n),

where sgn is the sign representation of Σn. Then the desuspension of an operad P is inverse to
the suspension. That is,

s−1P (n) := Σ1−nsgn⊗ P (n).

As we would hope, for an algebra A over P , it is true that ΣA is an algebra over sP .
Note that the operadic suspension and desuspension are sometimes defined the other way

around in the literature.

52



Chapter 3

Cyclic operads

A cyclic operad is an operad that has some extra structure. That extra structure is in the form
of a Σn+1 action on the nth arity P (n) of the operad. What this looks like is being able to
freely permute the output of an operation with the inputs. This may seem unintuitive, but
the concept was introduced by Getzler and Kapranov as a way to generalise the use of cyclic
homology to other algebra structures. Cyclic homology was itself developed for the study of
non-commutative, associative algebras. Cyclic operads also allow one to study the invariant
bilinear forms on algebras over operads.

As with general operads, there are a number of definitions in the literature of a cyclic operad.
One such definition is to view a cyclic operad as an ordinary operad with extra structure. This
is done by extending the action of Σn on P (n) to an action of Σn+1 by giving the explicit action
of a suitable generating permutation.

We will prove the analogous equivalence of skeletal and non-skeletal definitions in this setting,
following the same structure of proof as for operads in Chapter 2. Later in the chapter, we
provide some key examples and non-examples of cyclic operads, as well as discuss briefly some
properties of cyclic operads.

3.1 Background

Throughout this chapter we will work with the category Σ of based sets n∗ and unbased
permutations in Σn+1, and the category Bij of based finite sets and unbased bijections. See
example 1.2.0.6 for the relationship between these categories. We call the root label 0 following
the same convention as Getzler and Kapranov [GK95] and using the bijection Σn+1 → Σn∗

where n∗ := {0, 1, . . . , n}.

We will also use the same deleted disjoint union given by Definition 2.1.0.1. We still work
with based sets here because we require a distinguished root label, since we view cyclic operads
as operads with extra structure.
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3.1.1 Renumbering map

We can view the renumbering maps φi : m∗ ⊔i n∗ → m+ n− 1∗ given in Definition 2.1.1.1 as
maps φi : m ⊔i n→ m+ n− 1 of the unpointed sets, and they behave exactly as in the case of
non-cyclic operads. The extra structure of a cyclic operad involves only the interaction of the
composition operation with the extra action of the symmetric group.

3.1.2 Extending the symmetric group action

In this chapter, we will work with a generating permutation that extends the action of Σn to
Σn+1. Indeed, any permutation in Σn+1 that permutes the extra element 0, will work. Getzler
and Kapranov use the (n+ 1)-cycle (0, 1, . . . , n) in [GK95, Theorem 2.2], however we will show
the definition of a cyclic operad can equivalently be formulated using the transposition (0, 1) as
suggested by Obradović [Obr17]. See section 1.1 for the details.

When permuting the root and composing operations, we sometimes change the order of
composition. Recall from Definition 1.2.0.1 that for P an operad in C, we have the map t

t : P (m)⊗ P (n)→ P (n)⊗ P (m)

p⊗ q 7→ q ⊗ p,

that swaps the order of operations, using the symmetric monoidal structure of C.

3.2 Skeletal cyclic operad definitions

The following definition using (n+1)-cycles is the standard definition of a skeletal cyclic operad
as introduced by Getzler and Kapranov. Recall from Definition 2.2.0.1 that a skeletal operad P
is a collection Σop

∗ → C with composition operations. Since this is a functor from the opposite
category, the product στ of permutations means that σ acts first and then τ .

Definition 3.2.0.1 (Cyclic skeletal operad [MSS02, Definition 5.2]). A skeletal operad P

together with an extension of the symmetric group action on P (n) from Σn to Σn+1, subject
to the below conditions, is a cyclic skeletal operad. For 1 ∈ P (1) the unit of the operad P ,
p ∈ P (m), q ∈ P (n), 2 ≤ i ≤ m, and τk the cycle (0, 1, ..., k) ∈ Σk+1,

1. (1)τ1 = 1,

2. (p •1 q)τm+n−1 = (qτn) •n (pτm),

3. (p •i q)τm+n−1 = (pτm) •i−1 q.

The second and third conditions give equivariance for the extra generating cycle, which can
also be specified with commutative diagrams.
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P (m)⊗ P (n) P (m+ n− 1)

P (m)⊗ P (n)

P (n)⊗ P (m) P (m+ n− 1)

•1

τm⊗τn

τm+n−1

t

•n

P (m)⊗ P (n) P (m+ n− 1)

P (m)⊗ P (n) P (m+ n− 1)

•i

τm⊗id τm+n−1

•i−1

The diagram below is an example of the first diagram above, that is the second cyclic
condition, depicted with trees. The commutativity of the diagram is simply equivariance of the
composition operation in this case.

p

0

1 32

p ∈ P (3)

⊗ q

0

1 2

q ∈ P (2)

p

q

0

3

1 2

4

p •1 q ∈ P (4)

p

3

0 1 2

p ∈ P (3)

⊗ q

2

0 1

q ∈ P (2)

q

2

0 1

q ∈ P (2)

⊗ p

3

0 1 2

p ∈ P (3)

p

q

4

2

0 1

3

q •2 p ∈ P (4)

•1

(0,1,2,3)⊗(0,1,2)
(0,1,2,3,4)

t •2

The associativity and unit axioms are the same as in the non-cyclic case, as they do not
involve action of the symmetric group.

Remark 3.2.0.2. Note that definitions by Markl, Schnider and Stasheff such as in [MSS02],
[Mar99] and [Mar08] have one more condition than the definition in [GK95]. This extra condition
(condition 3 in Definition 3.2.0.1) is the one that specifies what happens when the root label is
permuted but does not swap from p to q, and therefore does not change the order of composition.
It has been commented that this condition may follow automatically in some cases, as suggested
by van der Laan in [Laa04], but this has not been shown to be true in general, so we include it
here.

It will be useful to consider an alternative definition using the transposition (0, 1) instead,
as proposed by Obradović [Obr17]. This is because when it comes to comparing with a non-
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skeletal definition, the (n+ 1)-cycle does not make sense in that setting where we do not have
a canonical ordering of set elements.

Proposition 3.2.0.3. The following definition of a cyclic operad using transpositions instead
of (n+ 1)-cycles is equivalent to Definition 3.2.0.1.

A cyclic operad P is an operad P with an extension of the Σn-action on P (n) to an action
of Σn+1 such that for 1 ∈ P (1) the unit of P , p ∈ P (m), q ∈ P (n),

1. (1)(0, 1) = 1,

2. (p •1 q)(0, 1)ϕ = q(0, 1) •1 p(0, 1),

3. (p •i q)(0, 1) = p(0, 1) •i q.

In the above, ϕ ∈ Σm+n−1 is the permutation given by1 2 3 . . . m m+ 1 . . . m+ n− 1
1 n+ 1 n+ 2 . . . m+ n− 1 2 . . . n

 .
Proof. Note that the unit conditions are the same in the two formulations.

Then for the other two conditions, we will use the fact that

τn := (0, 1, 2, . . . , n) = (0, 1)(1, 2, . . . , n),

and we therefore have

(p •i q)(0, 1) = (p •i q)τm+n−1(1, 2, . . . ,m+ n− 1)−1,

(p •i q)τm+n−1 = (p •i q)(0, 1)(1, 2, . . . ,m+ n− 1).

Cyclic condition 2

First let us assume P satisfies condition 2 in Definition 3.2.0.1. Let p ∈ P (m), q ∈ P (n). Then
we have

q(0, 1) •1 p(0, 1) = qτn(1, 2, . . . , n)−1 •1 pτm(1, 2, . . . ,m)−1

= (qτn •n pτm)((1, 2, . . . , n)−1 •1 (1, 2, . . . ,m)−1)

= (p •1 q)τm+n−1((1, 2, . . . , n)−1 •1 (1, 2, . . . ,m)−1)

= (p •1 q)(0, 1)ϕ.

Here we used the equivariance property of an operad, that is that

(σ ◦i τ)(•i) = (•σ(i))(σ ⊗ τ)

for permutations of inputs σ and τ .
The last equality can be checked, using the fact that

σ •i τ = (φσ(i))−1(σ ◦i τ)(φi),
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where φi, denotes the renumbering map.
Conversely, let us assume that P satisfies condition 2 in the statement of this proposition.

Let p ∈ P (m), q ∈ P (n). Then we have that

pτm •n qτn = p(0, 1)(1, 2, . . . ,m) •n q(0, 1)(1, 2, . . . , n)

= (p(0, 1) •1 q(0, 1))((1, 2, . . . ,m) •m (1, 2, . . . , n))

= (q •1 p)(0, 1)ϕ((1, 2, . . . , n) •n (1, 2, . . . ,m))

= (p •1 p)τm+n−1.

We have again used equivariance of the underlying operad, as well as the fact that

τm+n−1 = (0, 1)ϕ((1, 2, . . . , n) •n (1, 2, . . . ,m)).

Therefore, the second conditions agree.

Cyclic condition 3

First assume condition 3 in the statement of this proposition, and i ̸= 1. We have

(p •i q)(0, 1) = (p •i q)τm+n−1(1, 2, . . . ,m+ n− 1)−1

= ((pτm) •i−1 q)(1, 2, . . . ,m+ n− 1)−1.

Let σ = (1, 2, . . . ,m)−1 and τ = id. Then we have

((pτm) •i−1 q)(1, 2, . . . ,m+ n− 1)−1 = (pτm(1, 2, . . . ,m)−1) •i q

= p(0, 1) •i q.

Conversely, assuming condition 3 in Proposition Skeletal cycle, we have

(p •i q)τm+n−1 = (p •i q)(0, 1)(1, 2, . . . ,m+ n− 1)

= (p(0, 1) •i q)(1, 2, . . . ,m+ n− 1).

Let σ = (1, 2, . . . ,m) and τ = id. Then

(p(0, 1) •i q)(1, 2, . . . ,m+ n− 1) = (p(0, 1)(1, 2, . . . ,m) •i−1 q

= pτm •i−1 q,

and so the third conditions agree.

The transposition versions of the second and third cyclic conditions are shown in the
following commutative diagrams.

P (m)⊗ P (n) P (m+ n− 1)

P (m)⊗ P (n)

P (n)⊗ P (m) P (m+ n− 1)

•1

(0,1)⊗(0,1)

(0,1)ϕ

t

•1

P (m)⊗ P (n) P (m+ n− 1)

P (m)⊗ P (n) P (m+ n− 1)

•i

(0,1)⊗id (0,1)

•i

(3.1)
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Remark 3.2.0.4. Note that the second condition is not really a ‘transposition’ version since
it involves the permutation ϕ. This is an unavoidable effect of the renumbering map, and is
illustrative of why in many cases it is useful to work in a non-skeletal setting.

Definition 3.2.0.5 (Category of cyclic skeletal operads). We denote by CyOpΣ the category
of cyclic skeletal operads. Morphisms are the maps θ : P → Q for P,Q ∈ CyOpΣ, where
θn : P (n)→ Q(n), subject to the same conditions as morphisms inOpΣ∗ , as well as compatibility
with the Σn+1 action by requiring the following diagram to commute.

P (n) Q(n)

P (n) Q(n)

θn

(0,1) (0,1)

θn

3.3 Non-skeletal cyclic operad definitions

Now we define a non-skeletal cyclic operad, formulated using transpositions analogously to the
skeletal one in Proposition 3.2.0.3. Recall that a non-skeletal operad P is a collection Bijop∗ → C
with composition operations as in Definition 2.3.0.1.

Remark 3.3.0.1. Throughout our discussion of non-skeletal operads, we will alternate between
notation x0 as the basepoint in (X,x0), and 0 when we talk about bijections that permute the
output (which is labelled by the basepoint element). We use 0 as the element to permute, for
ease of comparison with the skeletal setting.

Definition 3.3.0.2 (Non-skeletal cyclic operad). A non-skeletal cyclic operad P ∈ CyOpBij is
an operad P ∈ OpBij∗ together with an extension of the action of basepoint preserving bijections
in Bij∗ to all bijections in Bij, generated by the action of the transpositions (0, x) for x ∈ X
viewed as bijections X → X. The compatibility with the composition operation is as follows.
For p ∈ P (X), q ∈ P (Y ), x′ ̸= x ∈ X, and 1 ∈ P ({x}) the unit of P ,

1. (1)(0, x) = 1,

2. (p ◦x q)ψx,y = q(0, y) ◦y p(0, x),

3. (p ◦x q)(0, x′) = p(0, x′) ◦x q,
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where

ψx,y : X ⊔x Y → Y ⊔y X

(0, 0) 7→ (x, 1)

(y, 1) 7→ (0, 0)

(z, 0) 7→ (z, 1)

(z, 1) 7→ (z, 0)

for x ∈ X, y ∈ Y, z ∈ X ∪ Y \ {x, y}.

In the non-skeletal case, we have the transpositions (0, x), (0, y), and the additional bijection
ψx,y which is needed to achieve the same effect as (0, 1)ϕ does in the skeletal case. Note also
that we use the indexing notation (x, 0) for x ∈ X and (y, 1) from the definition of deleted
disjoint union for y ∈ Y in the definition of ψx,y for clarity. We won’t continue to use it though,
to avoid confusion with transpositions (0, x) and (0, y).

We have similar commutative diagrams showing the cyclic conditions in this case.

P (X)⊗ P (Y ) P (X ⊔x Y )

P (X)⊗ P (Y )

P (Y )⊗ P (X) P (Y ⊔y X)

◦x

(0,x)⊗(0,y)

ψx,y

t

◦y

P (X)⊗ P (Y ) P (X ⊔x Y )

P (X)⊗ P (Y ) P (X ⊔x Y )

◦x

(0,x′)⊗id (0,x′)

◦x

Definition 3.3.0.3 (Category of cyclic non-skeletal operads). We denote by CyOpBij the
category of cyclic non-skeletal operads. The morphisms are the maps θ : P → Q for
P,Q ∈ CyOpBij , where θX : P (X) → Q(X), subject to the same conditions as OpBij∗ as well
as the extra compatibility with basepoint permuting bijections by requiring that the diagram
below commutes.

P (X) Q(X)

P (X) Q(X)

θX

(0,x) (0,x)

θX

Remark 3.3.0.4. Often, non-skeletal cyclic operads are defined with no distinguished base point,
and instead with composition operations x◦y for any x ∈ X, y ∈ Y . In [Obr17], this is shown
to be equivalent to the definition with composition operations ◦x.
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3.4 Equivalence of definitions

Recall from Theorem 2.4.2.4 that we have functors E# and R# that give an equivalence of
the underlying categories of operads. We will show that we similarly have functors E#

cy and
R#
cy between the categories CyOpBij and CyOpΣ of cyclic operads, and that these give an

equivalence.
Throughout this section we will simplify notation and write P (0, 1) or simply (0, 1) instead

of P ((0, 1)) for the action of the transposition (0, 1).

Proposition 3.4.0.1. There are functors

E#
cy : CyOpBij CyOpΣ : R#

cy

agreeing with R# and E# on the underlying operads.

Proof. We will check that if an operad is cyclic, the relevant functor indeed gives a cyclic operad
in the target category.

E#
cy is well-defined on objects:

Let P be a cyclic Bij-operad. Then E#
cyP is a Σ∗-operad. It remains to check that E#

cyP satisfies
the skeletal cyclic conditions. Due to the inclusion Σ∗ ↪→ Bij∗, we get that for the transposition
(0, 1) ∈ Σn+1,

E#
cyP (0, 1) = P (0, 1).

Then for x, y = 1, the bijection φx,y which maps 0 7→ x and y 7→ 0 gives the transposition (0, 1)
composed with the switch map t, and we get the skeletal cyclic conditions from the non-skeletal
ones.

R#
cy is well-defined on objects:

(Cyclic condition 2):
Suppose P ∈ CyOpΣ. Then the cyclic condition for P is given by the left commutative

diagram of (3.1). This can be patched together with a version of diagram (2.1) to give the
following commutative diagram.

P (m)⊗ P (n) P (m+ n− 1) R#
cyP (m ⊔1 n)

P (m)⊗ P (n)

P (n)⊗ P (m) P (m+ n− 1) R#
cyP (n ⊔1 m)

◦1

•1

(0,1)⊗(0,1)

(0,1)ϕ

φ−1
1

(0,1)

t

◦1

•1 φ−1
1
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We also have the commutative diagram below, for maps α : m∗ → (X,x0), β : n∗ → (Y, y0)
such that α(1) = x. This is the same as diagram (2.3) in the non-cyclic case and commutes for
the same reason.

R#
cyP (X)⊗R#

cyP (Y ) R#
cyP (X ⊔x Y )

P (m)⊗ P (n) R#
cyP (m ⊔1 n)

◦x

α⊗β α◦1β

◦1

(3.2)

By patching the above diagrams together we get a larger diagram. The inner ‘square’ gives
the cyclic condition for R#

cyP , which is exactly what we want.

P (m)⊗ P (n) R#
cyP (m ⊔1 n)

R#
cyP (X)⊗R#

cyP (Y ) R#
cyP (X ⊔x Y, x0)

R#
cyP (X)⊗R#

cyP (Y )

R#
cyP (Y )⊗R#

cyP (X) R#
cyP (Y ⊔y X, y0)

P (n)⊗ P (m) R#
cyP (n ⊔1 m)

◦1

◦x

α⊗β

(0,x)⊗(0,y)

α◦1β

ψx,y

t

β⊗α

◦y

β◦1α

◦1

Here we have maps α : m∗ → (X,x0), β : n∗ → (Y, y0) such that α(1) = x and β(1) = y.
The top and bottom squares commute as they are equivalent to diagram (3.2). The outer left
arrow is given by

(β ⊗ α)t((0, x)⊗ (0, y))(α⊗ β)−1 = t((0, 1)⊗ (0, 1)),

due to the canonical choice of maps α and β and inclusion Σ∗ ↪→ Bij∗. Similarly, the outer
right arrow is given by

(β ◦1 α)φ(α ◦1 β)−1 = (0, 1),

and the left and right ‘squares’ commute by definition.
Then the large outer square commutes since P is a cyclic skeletal operad. Therefore, the

inner square commutes.
(Cyclic condition 3):
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The second cyclic condition for P is given by the right commutative diagram in (3.1). This
can also be patched together with a version of diagram (2.1) to give the following commutative
diagram.

P (m)⊗ P (n) P (m+ n− 1) R#
cyP (m ⊔i n)

P (m)⊗ P (n) P (m+ n− 1) R#
cyP (m ⊔i n)

◦i

•i

(0,1)⊗id (0,1)

φ−1
i

(0,1)

◦i

•i φ−1
i

By again patching with diagram (3.2) we get a similar large diagram for x ̸= x′ ∈ X, and
maps α, β ∈ Bij such that α(1) = x and α(i) = x′.

P (m)⊗ P (n) R#
cyP (m ⊔i n)

R#
cyP (X)⊗R#

cyP (Y ) R#
cyP (X ⊔x Y, x0)

R#
cyP (X)⊗R#

cyP (Y ) R#
cyP (X ⊔x Y, x0)

P (m)⊗ P (n) R#
cyP (m ⊔i n)

◦i

◦x

α⊗β

(0,x′)⊗id

α◦iβ

(0,x′)

α⊗β

◦x

α◦iβ

◦i

Then the outer labels are given by

(α⊗ β)((0, x′)⊗ id)(α⊗ β)−1 = (0, 1)⊗ id,

(α ◦i β)(0, x′)(α ◦i β)−1 = (0, 1),

and therefore the outer squares commute. Then, the inner square commutes by exactly the
same reasoning as for the first cyclic condition.

E#
cy is well-defined on morphisms:

If θ : P → Q a map of cyclic Bij operads, then E#(θ)n = θn as in the non-cyclic case.

R#
cy is well-defined on morphisms:

This involves equivalent diagrams and checks to the non-cyclic case, and follows from the same
reasoning as for objects.
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Theorem 3.4.0.2. There is an equivalence of categories E#
cy : CyOpBij → CyOpΣ.

Proof. The functor E#
cy is an equivalence of categories, by exactly the same argument as for

general operads in Theorem 2.4.2.4 and using Proposition 3.4.0.1. We have that E#
cyR

#
cy = id,

and it follows that E#
cy is full and essentially surjective.

The functor E∗ : Fun(Bijop, C) → Fun(Σop, C) is fully faithful. For cyclic operad
maps θ1, θ2 : P → Q with P and Q objects of CyOpBij , we have that E#

cy(θ1)n = (θ1)n∗
and

E#
cy(θ2)n = (θ2)n∗

. Therefore, if E#
cyθ1 = E#

cyθ2 then we must have θ1 = θ2.

We therefore have the following commutative diagram showing the equivalence of cyclic
operad categories, with forgetful functors U ′ and U to the associated operad categories and
functor categories.

CyOpBij CyOpΣ

OpBij∗ OpΣ∗

Fun(Bijop∗ , C) Fun(Σop
∗ , C)

U ′

E#
cy

U ′

R#
cy

U

E#

R#

U

E∗

R∗

Remark 3.4.0.3. Analogously to Remark 2.4.2.5 one could check the properties of the forgetful
functor U ′, to see that E#

cy is fully faithful and essentially surjective.

3.5 Cyclic non-symmetric operads

We can have both cyclic symmetric operads, such as AssΣ, and cyclic non-symmetric operads,
such as Ass. In the case of the latter, this means that we do not have the usual action of Σn

on P (n), but we do have a cyclic action of Cn+1 on P (n). Therefore, the extra action is not an
extension of the action of a smaller group.

Definition 3.5.0.1 (Cyclic non-symmetric operad). A non-symmetric cyclic operad is a non-
symmetric operad P with an action of the cyclic group Cn+1 on P (n) ∈ P , such that for
p ∈ P (m), q ∈ P (n), the following compatibility conditions hold:

1. (1)τ1 = 1,

2. (p •1 q)τm+n−1 = (qτn) •n (pτm),

3. (p •i q)τm+n−1 = (pτm) •i−1 (qτn).

63



This definition appears exactly the same as the symmetric version, only in this case the cycles
τk are generators for the cyclic group action of Ck+1, which is not the extension of a Σk action.
Note that this also means one cannot write a version of this definition using transpositions in
this case.

Example 3.5.0.2 (Cyclically labelled trees). The collection of all cyclically labelled trees gives
a non-symmetric cyclic operad as described in [RW02]. There is no symmetric group action as
this would not preserve the cyclic order of the labels, however one could create a symmetric
cyclic operad by taking the product with the symmetric group.

We require that the composition of two cyclically labelled trees is itself a cyclically labelled
tree in order for this to give a well-defined operad. This is clearly true, as the renumbering map
just block shifts labels, while preserving the order of leaf labels within each tree. The following
diagram is an example of this.

p

2 13

0
p ∈ P (3)

•2 q

1 2

0
q ∈ P (2)

= p

q 4

2 3

1

0
p •2 q ∈ P (4)

There is an obvious action of the cyclic group Cn+1 on P (n) that permutes the labels
including the root cyclically. This action on any given tree gives another cyclically labelled tree.
It is easy to check that the cyclic conditions hold.

3.6 Uniqueness of the cyclic structure

A natural question to ask is whether or when the cyclic structure satisfied by a cyclic operad is
unique. As we have seen, an action of the symmetric group gives a group representation. For a
given Σn representation, there are often multiple Σn+1 representations that restrict to it. This
means there is no representation theoretic reason why the cyclic structure on a cyclic operad
should be unique.

Example 3.6.0.1 (An operad with two cyclic structures [HRY19, Example 8.9]). An example
of an operad admitting two distinct cyclic structures is given by Hackney, Robertson and Yau.
For the group

Z/2× Z/2 = {0, 1} × {0, 1},

we have an operad in Set given by

P (n) :=

{(0, 0), (0, 1), (1, 0), (1, 1)} if n = 1,

∅ if n ̸= 1,
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together with the group operation.
Then we have a cyclic action of Σ2 on P (1) by transposing the elements (0, 1) and (1, 0). We

also have the action that fixes all the elements. These two cyclic structures are not isomorphic.
This is an example of a general result for an abelian group A. With the group elements in

arity 1 as above, we have the operad PA given by

PA(n) =

A if n = 1,

∅ if n ̸= 1.

Composition is given by the group operation

PA(1)⊗ PA(1) •1−→ PA(1)

A×A 7→ A.

This satisfies associativity as the group operation is associative, and equivariance is satisfied as
we have trivial Σ1 action at arity 1.

Then the cyclic structures on PA are in bijection with the identity and order 2 automorphisms
of A.

3.7 Examples

We will mention a number of interesting examples, as well as non-examples where any cyclic
structure isn’t compatible with the underlying operad structure. In particular, we will look at
the associative operad and the Lie operad in more detail. There are a number of examples of
cyclic operads given by Getzler and Kapranov in [GK95] and [Get95].

Example 3.7.0.1 (The framed little disks operad). The framed little disks operad is a cyclic
operad. The proof of this is given by Budney in [Bud08].

We now focus on a key example that we defined in Chapter 2. The associative operad can
be defined as either a symmetric or non-symmetric operad. It is a quadratic operad and in both
the symmetric and non-symmetric case, it is cyclic. Here we work in the category (Modk,⊗, k),
where k is a field.

Example 3.7.0.2 (The symmetric associative operad). We describe a cyclic structure on AssΣ

by first writing the action of Σ3 on AssΣ(2). The structure for n > 2 is determined by the
composition maps and compatibility conditions.

First note that AssΣ(1) = k{Id}. The cyclic Σ2 action on this is the one giving the trivial
representation. This has no implications for higher actions since composing any p ∈ AssΣ(k)
with an element of AssΣ(1) gives us back an element of AssΣ(k).

We have that
Ass(2) = kΣ2[µ] = k{µ, µ(12)}.

The Σ2 action on Ass(2) has the regular representation, with Young diagrams as below.
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⊕

Then we have the following two possible Σ3 representations that restrict to the regular
representation of Σ2.

⊕ or

The first is the regular representation, and the second is the standard (or defining)
representation of Σ3. Both are two-dimensional representations.

If we choose the regular representation to describe the extra action of Σ3 on Ass(2), then
this gives us the action associated with the representation IndΣn+1

Cn+1
1 of Σn+1 on Ass(n), which

does indeed restrict to the regular representation of Σn. This is because for a subgroup H < G,
we have a kG action on the induced representation

IndGHV = V ⊗kH kG.

Therefore, we have
Ind

Σn+1
Cn+1

1 = k ⊗kCn+1 kΣn+1

with the basis any set of coset representatives for Cn+1 in Σn+1. We can choose {π|π ∈ Σn}, so
it restricts to the regular representation of Σn.

We will see what this looks like explicitly for n = 3. We have

Ass(3) = kΣ3[µ(1⊗ µ)] = kΣ3[µ(µ⊗ 1)],

where the second equality is simply associativity. As usual, Σ3 acts on Ass(3) with the regular
representation. Then we get the Σ4 representation S(4) ⊕ S(2,1,1) ⊕ S(2,2) with Young diagrams
below.

⊕ ⊕

This can be shown by character calculations.
We will show by direct calculation that the other possible representation of Σ3 on AssΣ(2)

is not possible, and that therefore the cyclic structure is unique in this example.

Proposition 3.7.0.3. The cyclic structure on AssΣ generated by the regular representation of
Σ3 on AssΣ(2) is unique.

Proof. The only alternative Σ3 action on the level AssΣ(2) is the one that gives the standard
representation of Σ3. The standard representation is given by the action of Σ3 on the two-
dimensional vector space

{(x1, x2, x3)|x1 + x2 + x3 = 0}
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with basis {x3 − x1, x3 − x2}. The permutation of indices by Σ3 give an action on the vector
space.

Then, if we make the allocation

µ = x0 − x1

µ(12) = x0 − x2,

we have that (1, 2) switches the two operations as required. Then we consider the action of the
extra transposition (0, 1). We have

µ(0, 1) = x1 − x0 = −µ

µ(1, 2)(0, 1) = x1 − x2 = µ(1, 2)− µ.

We will check if the associativity condition is compatible with this action. Recall from the
example in Section 2.6.0.6 that this means

µ(µ⊗ id) = µ(id⊗ µ).

This holds for multiplication operations in AssΣ(2), so for both µ and µ(1, 2). We need this
to be compatible with the extra action of Σ3, and so require that it also holds for µ(0, 1) and
µ(1, 2)(0, 1).

Indeed, we have that

µ(0, 1)(µ(0, 1)⊗ id) = µ(0, 1)(id⊗ µ(0, 1)).

For the action of (0, 1) on µ(1, 2) we need that

((µ(1, 2))(0, 1)⊗ 1)(µ(1, 2))(0, 1) = (1⊗ (µ(1, 2))(0, 1))(µ(1, 2))(0, 1).

The left-hand side gives

(µ(1, 2)− µ)(id⊗ (µ(1, 2)− µ))

=(µ(1, 2)− µ)(id⊗ µ(1, 2)− id⊗ µ)

=µ(1, 2)(id⊗ µ(1, 2))− µ(id⊗ µ(1, 2))− µ(1, 2)(id⊗ µ) + µ(id⊗ µ).

On the right-hand side, we have

(µ(1, 2)− µ)((µ(1, 2)− µ)⊗ id)

=(µ(1, 2)− µ)(µ(1, 2)⊗ id− µ⊗ id)

=µ(1, 2)(µ(1, 2)⊗ id)− µ(µ(1, 2)⊗ id)− µ(1, 2)(µ⊗ id) + µ(id⊗ µ).

We have that
µ(1, 2)(id⊗ µ(1, 2) = µ(1, 2)(µ(1, 2)⊗ id)

by definition of AssΣ. So it remains to check whether the expressions

µ(id⊗ µ(1, 2)) + µ(1, 2)(id⊗ µ) and µ(µ(1, 2)⊗ id) + µ(1, 2)(µ⊗ id)
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are equal or not.
The left can be depicted with trees as follows.

µ

µ(1, 2)

cba

acb

+ µ(1, 2)

µ

cba

bca

For the right-hand side, we have

µ

µ(1, 2)

a b c

bac

+ µ(1, 2)

µ

a b c

cab

Then we see that these are not equal, and therefore this does not give a cyclic structure on
AssΣ.

Example 3.7.0.4 (The non-symmetric associative operad). Recall the non-symmetric
associative operad Ass from Example 2.6.0.5. This is a non-symmetric cyclic operad, which
means we do not have a Σn action on Ass(n), only a Cn+1 action.

Example 3.7.0.5 (The Lie operad). Recall the algebraic Lie operad from Example 2.6.0.7.
This is also a cyclic operad, and Kontsevich gives a Σn+1 action on Lie(n) in [Kon93] that gives
a cyclic structure.

3.7.1 Examples of non-cyclic operads

We have seen that many fundamental and well-known operads are indeed cyclic. Below we give
some examples of non-cyclic operads.

Example 3.7.1.1 (The little disks operad). The (unframed) little disks operad is not cyclic.
This can be shown by the fact its homology is not cyclic, as shown in [GK95, Proposition 3.18].

Example 3.7.1.2 (The braid operad). The Braid operad is another example described by
Getzler and Kapranov [GK95, p. 3.17] that is not cyclic.

3.8 Anticyclic operads

Finally, we will briefly discuss a variant of cyclic structure that will be useful to us later. This
modification of cyclic structure on an operad, is called anticyclic structure, which is essentially
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the property that an operad is cyclic up to a twist by sign. Getzler and Kapranov introduced
anticyclic operads, and they are of particular importance when taking the operadic suspension
or desuspension of a cyclic operad, which we defined in Section 2.9.

Definition 3.8.0.1 (Anticyclic operad, [MSS02, Definition 5.9]). A symmetric operad P is
anticyclic if the following conditions hold for 1 ∈ P (1) the unit of the operad P , p ∈ P (m),
q ∈ P (n), 2 ≤ i ≤ m, and τk the cycle (0, 1, ..., k) ∈ Σk+1,

1. (1)τ1 = −1,

2. (p •1 q)τm+n−1 = −(qτn) •n (pτm),

3. (p •i q)τm+n−1 = (pτm) •i−1 q.

Note that this means that the commutative diagrams corresponding to cyclic conditions 1
and 2 commute up to a sign of −1, and the diagram for condition 3 commutes as in the cyclic
case.

Then as described by Getzler and Kapranov, the resulting operad after suspension of a cyclic
operad is not cyclic, but anticyclic.
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Chapter 4

Cooperads

Cooperads are a dual notion to operads, used to study coalgebras in the same way operads
encode algebras. In many of these cases, it is simpler to work directly with cooperad structures,
rather than operads.

In this chapter we will define skeletal and non-skeletal cooperads, and prove the equivalence
of these definitions in Theorem 4.4.0.1. As this is essentially dual to the procedure we have seen
for operads, we will omit a lot of the detail here.

Then, we will define cyclic cooperads and again show the equivalence of the skeletal and
non-skeletal definitions in Theorem 4.8.2.1. The explicit cyclic cooperad descriptions are of
particular importance to us, because in Chapter 6 we will give an explicit construction of a
cooperad in this way. It will be useful to compare directly with the diagrams in these definitions
when checking that the necessary conditions are satisfied.

4.1 Notation for cocomposition maps

In the operad setting, we had skeletal composition maps •i and non-skeletal composition maps
◦x, where in the skeletal setting the renumbering map φi defined in Definition 2.1.1.1 was built
in. We have the same in the cooperad case, and we will use similar notation to differentiate
between the two settings and for easy comparison with the operad case. We define the skeletal
and non-skeletal cocomposition operations respectively. For (X,x0), (Y, y0) ∈ Bij∗, x ∈ X, and
i ∈ m, these are written as follows

•i : P (m+ n− 1)→ P (m)⊗ P (n),

◦x : P (X ⊔x Y, x0)→ P (X,x0)⊗ P (Y, y0).

Note that we still use the notation •i and ◦x, as in Section 2.1.2, to write compositions of
permutations and bijections that act on the larger sets.

Let (C,⊗,1) be a symmetric monoidal category.
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4.2 Skeletal cooperads

Definition 4.2.0.1 (Skeletal cooperad). A skeletal cooperad in C is a collection P : Σop
∗ → C

along with cocomposition operations

•i : P (m+ n− 1)→ P (m)⊗ P (n),

for all 1 ≤ i ≤ m, such that coassociativity, equivariance and counit axioms are all satisfied.
The commutative diagrams for the equivariance and coassociativity are as follows.

• (Equivariance)

P (m)⊗ P (n) P (m+ n− 1)

P (m)⊗ P (n) P (m+ n− 1)

σ⊗τ σ◦iτ

•σ(i)

•i

• (Coassociativity) There are two cases. Firstly, let 1 ≤ i ≤ l and i ≤ j ≤ i+m− 1. Then
if we cocompose once at an input to p ∈ P (l), and once at an input of q ∈ P (m), we have

P (l)⊗ P (m)⊗ P (n) P (l +m− 1)⊗ P (n)

P (l)⊗ P (m+ n− 1) P (l +m+ n− 2)

•i⊗id

id⊗•j •j+i−1

•i

Secondly, let 1 ≤ i ≤ l and j < i. That is, we cocompose twice at inputs to p ∈ P (l).
Then we have

P (l)⊗ P (m)⊗ P (n) P (l +m− 1)⊗ P (n)

P (l)⊗ P (n)⊗ P (m)

P (l + n− 1)⊗ P (m) P (l +m+ n− 2).

•i⊗id

id⊗t

•j⊗id

•i

•j

If j > i, we have the diagram below.

P (l)⊗ P (m)⊗ P (n) P (l +m− 1)⊗ P (n)

P (l)⊗ P (n)⊗ P (m)

P (l + n− 1)⊗ P (m) P (l +m+ n− 2)

•i⊗id

id⊗t

•j⊗id

•i

•j+m−1
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• (Counit) Let 1 ∈ C be the counit object of the underlying category. Then there is a
map η : P (1) → 1 that interacts with the composition operation such that the following
diagrams commute for all i ∈ n.

P (n)⊗ 1 P (n)⊗ P (1)

P (n)

id⊗η

•1

1⊗ P (n) P (1)⊗ P (n)

P (n)

η⊗id

•i

As with skeletal operads, the renumbering map is built into the cocomposition operation in
order for the resulting operations to be Σ∗-operads. We have that

•i = ◦iφ−1
i .

Remark 4.2.0.2. As in the operad case, we are using partial cocomposition operations here. One
can also define cooperads with a general cocomposition

P (n)→ P (k)⊗ P (i1)⊗ · · · ⊗ P (ik),

analogously to the composition in Remark 2.2.0.3.

Remark 4.2.0.3. Where we could think of operations in an operad as trees and composition as
grafting trees, we can similarly think of cocomposition in a cooperad as the ‘ungrafting’ of trees.
Below is a picture with trees of the cocomposition operation.

p

q1

2 3

4

p •2 q ∈ P (4)

•27−→ p

1 32

p ∈ P (3)

⊗ q

1 2

q ∈ P (2)

Remark 4.2.0.4. Recall from Remark 2.2.0.4 that an operad may be viewed as a monoid in
the category of symmetric sequences with composition operations. An alternative approach is
to define a cooperad in a symmetric monoidal category C as a comonoid in the category of
symmetric sequences in C with cocomposition operations.

However, there are some complications in the comonoid case. A cooperad can also be viewed
as an operad in the category Cop, and therefore a monoid in the category of symmetric sequences
in Cop with composition. The composition operation is the monoidal product in the category
of symmetric sequences, and in order for this to commute with colimits, we require that the
symmetric monoidal structure on C is closed. In the case where this is true for a category C,
it often isn’t the case for the dual category Cop. This is discussed further by Ching in [Chi12a]
and [Chi05].

The collection of skeletal cooperads and cooperad maps forms a category.
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Definition 4.2.0.5 (Category of skeletal cooperads). We denote by CoopΣ∗ the category of
skeletal cooperads and cooperad maps. The maps must commute with the cocomposition
operation, the action of permutations, and counit maps. These conditions are given by
commutative diagrams. For the compatibility with cocomposition we have

P (m)⊗ P (n) Q(m)⊗Q(n)

P (m+ n− 1) Q(m+ n− 1).

θm⊗θn

θm+n−1

•i •i

The other diagrams correspond exactly to those in Definition 2.2.0.5 for the operad case, so we
omit them here.

4.3 Non-skeletal cooperads

Now we give the definition of a non-skeletal cooperad.

Definition 4.3.0.1 (Non-skeletal cooperad). A non-skeletal cooperad in C is a collection
P : Bijop∗ → C along with cocomposition operations

◦x : P (X ⊔x Y, x0)→ P (X,x0)⊗ P (Y, y0),

for all (X,x0), (Y, y0) ∈ Bij∗, such that coassociativity, equivariance and counit axioms are
satisfied.

The equivariance and coassociativity axioms are given by the following commutative
diagrams.

• (Equivariance)

P (X ′, x′
0)⊗ P (Y ′, y′

0) P (X ′ ⊔σ(x) Y
′, x′

0)

P (X,x0)⊗ P (Y, y0) P (X ⊔x Y, x0)

σ⊗τ σ◦xτ

◦σ(x)

◦x

• (Coassociativity) There are two cases. Firstly, if we can write (W,w0) as the union
(X ⊔x Y ⊔y Z, x0) with x ∈ X, y ∈ Y , we have the diagram below.

P (X,x0)⊗ P (Y, y0)⊗ P (Z, z0) P (X ⊔x Y, x0)⊗ P (Z, z0)

P (X,x0)⊗ P (Y ⊔y Z, y0) P (X ⊔x Y ⊔y Z, x0) = P (W,w0)

◦x⊗id

id⊗◦y ◦y

◦x

If we can write (W,w0) as the union (X ⊔x Y ⊔x′ Z, x0) with x, x′ ∈ X, we have the
following diagram.
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P (X,x0)⊗ P (Y, y0)⊗ P (Z, z0) P (X ⊔x Y, x0)⊗ P (Z, z0)

P (X,x0)⊗ P (Z, z0)⊗ P (Y, y0)

P (X ⊔x′ Z, x0)⊗ P (Y, y0) P (X ⊔x Y ⊔x′ Z, x0) = P (W,w0)

◦x⊗id

id⊗t

◦y⊗id

◦x

◦y

• (Counit) There exists a map η : P (W,w0)→ 1 where (W,w0) = {w,w0}, the set with one
non-basepoint element such that the following diagrams commute for any x ∈ X.

P (X,x0)⊗ 1 P (X,x0)⊗ P (W,w0)

P (X,x0)

id⊗η

◦w

1⊗ P (X,x0) P (W,w0)⊗ P (X,x0)

P (X,x0)

η⊗id

◦x

We have a category of non-skeletal cooperads and cooperad maps.

Definition 4.3.0.2 (Category of non-skeletal cooperads). We denote by CoopBij∗ the category
of non-skeletal cooperads and cooperad maps. The maps must commute with the cocomposition
operation, with the action of bijections, and with counit maps. These conditions are given by
commutative diagrams. For the compatibility with cocomposition we have

P (X,x0)⊗ P (Y, y0) Q(X,x0)⊗Q(Y, y0)

P (X ⊔x Y, x0) Q(X ⊔x Y, x0).

θX⊗θY

θX⊔xY

◦x ◦x

The other diagrams correspond exactly to those in Definition 2.3.0.2 for the operad case, so
we omit them here.

4.4 Equivalence of definitions

The functors E∗, R∗ give rise to functors

E#
co : CoopΣ∗ CoopBij∗ : R#

co

on the cooperad categories.

Theorem 4.4.0.1. There is an equivalence of categories E#
co : CoopBij∗ → CoopΣ∗.

Proof. All the diagrams in the proof of Theorem 2.4.2.4 with the composition arrows replaced
by cocomposition and their direction swapped apply in this proof. Therefore, we can simply
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dualise the argument to get that the functors E#
co and R#

co are well-defined on the cooperad
categories CoopΣ∗ and CoopBij∗ , and that E#

coR
#
co = id. The functor E#

co is essentially surjective
and fully faithful, therefore giving the equivalence.

Remark 4.4.0.2. We can also obtain an equivalence of skeletal and non-skeletal cooperad
definitions in a category C with the necessary properties since we have that a cooperad is
an operad in Cop and using the equivalence of operad categories in Theorem 2.4.2.4. One would
first need to show that the category of skeletal (or non-skeletal) cooperads in C is equivalent to
category of skeletal (or non-skeletal) operads in Cop.

We therefore have the following commutative diagram showing the equivalence of cooperad
categories, with forgetful functors V to the associated functor categories.

CoopBij∗ CoopΣ∗

Fun(Bijop∗ , C) Fun(Σop
∗ , C)

V

E#
co

V

R#
co

E∗

R∗

(4.1)

4.5 Cooperad coalgebras

As with operads, we can define a coalgebra over a cooperad similarly.
A coalgebra C over a cooperad P is a vector space C and maps

∆C(n) : C → P (n)⊗ C⊗n

for n ≥ 0, that are coassociative, counital and equivariant. These properties are given by taking
duals of the diagrams in Definition 2.7.0.1.

Remark 4.5.0.1. One can also define an algebra over a cooperad.

4.6 Examples

• The coassociative cooperad is the cooperad whose coalgebras are coassociative coalgebras.

• The cocommutative cooperad is the cooperad whose coalgebras are cocommutative
coalgebras.

4.7 Cooperad (co)homology

Analogously to operad homology, the homology of a topological cooperad gives a cooperad in
Modk. The cohomology of a cooperad in based spaces gives an operad in Modk.
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For cooperads, we need in both cases that the (co)homology gives flat k-modules, and for
the cohomology, we need that H∗(P ) is finitely generated. This is discussed by Ching in [Chi05,
p. 9.1].

4.8 Cyclic cooperads

As we did in Chapter 3, we extend in the same way the proof of equivalence of the skeletal
and non-skeletal definitions to the cyclic case. Much of this is dual, and the equivalence is a
straightforward consequence of the result for cyclic operads.

4.8.1 Cyclic cooperad definitions

First, recall the map t from Definition 1.2.0.1 and Section 3.1.2 that swaps the order of two
operations. We also recall from Definition 3.2.0.1 the notation τn := (0, 1, . . . , n) for the cyclic
permutation of n+ 1 elements.

Definition 4.8.1.1 (Skeletal cyclic cooperad). A skeletal cyclic cooperad P is a skeletal
cooperad with an action of Σn+1 on P (n) such that (1)τ1 = 1 for 1 ∈ P (1) the counit of
P , and such that the following diagrams commute.

P (m)⊗ P (n) P (m+ n− 1)

P (m)⊗ P (n)

P (n)⊗ P (m) P (m+ n− 1)

τm⊗τn

•n

τm+n−1

t

•1

P (m)⊗ P (n) P (m+ n− 1)

P (m)⊗ P (n) P (m+ n− 1)

τm⊗id

•i

τm+n−1

•i−1

(4.2)

Proposition 4.8.1.2. Definition 4.8.1.1 can equivalently be formulated with the condition that
the following diagrams commute, instead of the diagrams in (4.2). That is, with the extra action
of Σn+1 generated by the transposition (0, 1) rather than by cycles. The counit condition is the
same.

P (m)⊗ P (n) P (m+ n− 1)

P (m)⊗ P (n)

P (n)⊗ P (m) P (m+ n− 1)

(0,1)⊗(0,1)

•1

(0,1)ϕ

t

•1

P (m)⊗ P (n) P (m+ n− 1)

P (m)⊗ P (n) P (m+ n− 1)

(0,1)⊗id

•1

(0,1)

•1
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Recall that ϕ is the permutation from Proposition 3.2.0.3,

1 2 3 . . . m m+ 1 . . . m+ n− 1
1 n+ 1 n+ 2 . . . m+ n− 1 2 . . . n

 .

Definition 4.8.1.3 (Category of skeletal cyclic cooperads). We denote by CyCoopΣ the
category of skeletal cyclic cooperads and cooperad maps that commute with the actions of
permutations, cocomposition and counits.

We now give the non-skeletal definition, before moving on to the proof of the equivalence of
the two definitions.

Definition 4.8.1.4 (Non-skeletal cyclic cooperad). A non-skeletal cyclic cooperad P is a non-
skeletal cooperad together with an extension of the action of basepoint preserving bijections
in Bij∗ to all bijections in Bij, generated by the action of the transpositions (0, x) for x ∈ X
viewed as bijections X → X, such that (1)(0, x) = 1 for 1 ∈ P ({x}) the unit of P , and such
that the following diagrams commute.

P (X)⊗ P (Y ) P (X ⊔x Y )

P (X)⊗ P (Y )

P (Y )⊗ P (X) P (Y ⊔y X)

(0,x)⊗(0,y)

◦x

ψx,y

t

◦y

P (X)⊗ P (Y ) P (X ⊔x Y )

P (X)⊗ P (Y ) P (X ⊔x Y )

(0,x′)⊗id

◦x

(0,x′)

◦y

(4.3)

Definition 4.8.1.5 (Category of non-skeletal cyclic cooperads). We denote by CyCoopBij the
category of non-skeletal cyclic cooperads and cooperad maps that commute with the actions of
bijections, cocomposition and counits.

4.8.2 Equivalence of definitions

We have functors E#
cyco and R#

cyco on the cooperad categories.

E#
cyco : CyCoopΣ CyCoopBij : R#

cyco

Theorem 4.8.2.1. There is an equivalence of categories CyCoopBij → CyCoopΣ.

Proof. The proof is dual to the proof of Theorem 3.4.0.2 for cyclic operads.

Remark 4.8.2.2. We may also obtain an equivalence of the skeletal cyclic and non-skeletal cyclic
cooperad definitions by the fact a cyclic cooperad in a category C is a cyclic operad in Cop.
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We therefore have an extension of diagram (4.1) to include the equivalence for cyclic
cooperads. In the diagram, all vertical arrows are forgetful functors and horizontal arrows
are equivalences.

CyCoopBij CyCoopΣ

CoopBij∗ CoopΣ∗

Fun(Bijop∗ , C) Fun(Σop
∗ , C)

V ′

R#
cyco

V ′

R#
cyco

V

E#
co

R#
co

V

E∗

R∗

4.8.3 Examples

• The coassociative cooperad is cyclic.

• The cocommutative cooperad is cyclic.
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Chapter 5

Trees and partitions

In this chapter, we explore a number of examples of ‘hidden’ symmetric group actions on trees,
partitions and finite sets. The motivation for this comes from the action of Σn+1 on a space
of trees studied by Robinson and Whitehouse in [RW96]. In this paper, they show that the
representation of Σn+1 corresponding to the natural action on their space of fully grown n-trees
is related to the Lie representation.

In [Rob04], it is shown that these results in the tree space correspond to similar results for
partitions due to a Σn-equivariant homeomorphism of spaces. This result leads to the question
of what the Σn+1 action looks like in the poset of partitions. The additional action is not
obvious in this case, however there is a simpler action of Σn+1 on a subset of partitions, giving
a representation that can be decomposed into irreducibles. We explore this example of a hidden
action and use representation theory to study its properties.

Following this, we explore a couple of similar hidden actions, on collections of finite ordered
sets of fixed size.

5.1 Background

We will begin by covering some relevant background material that we will need for this chapter.

5.1.1 Partitions

In this chapter we will be referring to both partitions of finite sets, and partitions of integers.
We will set out notation for both in this section in order to avoid confusion.

Recall from Definition 1.5.0.2 that we denote an integer partition of n by λ = (λ1, λ2, . . . , λk).
We denote by n the set {1, 2, . . . , n}, for n ∈ N.

Definition 5.1.1.1 (Partition of n). A partition of the set n is a collection of nonempty disjoint
subsets Ui of n such that ⋃i Ui = n.

Then the shape of such a partition is the collection of sizes of the subsets Ui, written in the
form (#Ui,#U2, ...).
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5.1.2 Simplicial sets

A particularly useful construction that allows one to pass between sets and topological spaces
is geometric realisation. We will later see a topological space built from set partitions in this
way.

Definition 5.1.2.1 (Simplicial set [Fri12, Definition 3.2]). A simplicial set X is a sequence
of sets X1, X2, . . . along with, for each n ≥ 0, a collection of functions di : Xn 7→ Xn−1 and
si : Xn+1 7→ Xn for 0 ≤ i ≤ n. We call the si face maps and the di degeneracy maps. These
maps are subject to the relations

didj = dj−1di if i < j,

sisj = sj+1si if i ≤ j,

disj = sj−1di if i < j,

djsj = dj+1sj = id,

disj = sjdi−1 if i > j + 1.

Remark 5.1.2.2. A simplicial set can also be defined as a contravariant functor X : ∆ → Set,
where ∆ is the category with objects finite ordered sets {0, 1, . . . , n}, and morphisms order
preserving functions {0, 1, . . . ,m} → {0, 1, . . . , n}. The details of this can be found in [Fri12].

Definition 5.1.2.3 (Geometric realisation, [Fri12, Definition 4.1]). Let X be a simplicial set
such that each Xn is given the discrete topology, and |∆n| the n-simplex with its standard
topology. Then the geometric realisation |X| of X is defined by

|X| :=
∞∐
n=0

Xn × |∆n|/ ∼,

where the equivalence relation ∼ is generated by

(x,Di(p)) ∼ (di(x), p) for x ∈ Xn+1 and p ∈ |∆n|,

(x, Si(p)) ∼ (si(x), p) for x ∈ Xn−1 and p ∈ |∆n|,

with Di and Si the face inclusions and collapses. That is, the geometric
maps induced on simplicies from the maps Di : {0, 1, . . . , n} → {0, 1, . . . , n+ 1} and
Si : {0, 1, . . . , n+ 1} → {0, 1, . . . , n} in the category ∆, where

Di{0, 1, . . . , n} = {0, 1, . . . , î, . . . , n+ 1}

Si{0, 1, . . . , n+ 1} = {0, 1, . . . , i, i, . . . , n}.

Note that |X| is a CW complex and has one n-cell for every (non-degenerate) n-simplex of
X.
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Definition 5.1.2.4 (Nerve). The nerve N(C) of a category C is a simplicial set such that N(C)k
is given by the k-tuples

C0
f1−−→ C1

f2−−→ C2 −→ · · ·
fk−−→ Ck

of composable morphisms in C. Then we define the face maps di : N(C)k → N(C)k−1 to be the
map that takes

C0
f1−−→ · · · fi−1−−→ Ci−1

fi−−→ Ci
fi+1−−→ Ci+1

fi+2−−→ · · · fk−−→ Ck

to the (k − 1)-tuple that composes fi and fi+1 into a morphism Ci−1 → Ci+1:

C0
f1−−→ · · · fi−1−−→ Ci−1 −→ Ci+1

fi+2−−→ · · · fk−−→ Ck.

If i = 0 or i = k, the face map di is given by omitting the morphism f1 or fk respectively.
Similarly, the degeneracy maps si : N(C)k → N(C)n+1 inserts the identity morphism in the

ith position of a k-tuple to get a (k + 1)-tuple.

Then we may take the geometric realisation of a nerve N(C), giving a topological space.

5.2 The space of fully grown n-trees, Tn

Robinson and Whitehouse [RW96] introduce the space of fully grown n-trees and the associated
Σn+1 representation on its reduced homology. We summarise some of these results, in which
some terminology is from [Boa71].

A tree is a contractible graph. We will refer to both the vertices with degree one and their
connecting edges as leaves, and all other vertices are sometimes referred to as nodes, or internal
vertices. An edge connecting two nodes is called an internal edge. Define an n-tree to be a tree
with n+1 leaves labelled 0, 1, . . . , n, where the leaf labelled 0 is called the root. We parametrise
these trees with edge lengths 0 < l(α) ≤ 1 for internal edge α, and leaves have fixed length 1.

Let T̃n denote the space of isomorphism classes of n-trees, which is a cubical complex. Define
a tree to be fully grown if it has at least one internal edge of maximal length 1. We consider
the space Tn of fully grown n-trees. Then Tn is a subspace of T̃n, and in fact T̃n is a cone with
base Tn. This can be seen by shrinking continuously and linearly all the internal edges in a fully
grown tree. The vertices of Tn are the trees with just one internal edge of length 1.

One can triangulate Tn as a simplicial complex of pure dimension n− 3, where each (n− 4)-
simplex is a face of exactly three (n− 3)-simplices.

Remark 5.2.0.1. An alternative formulation of the space Tn is one where the sum of lengths of
internal edges is 1, instead of having at least one internal edge of length 1. In this case, there
can only be at most one internal edge of length 1. This gives Tn the structure of a simplicial
complex, rather than a cubical complex.

Proposition 5.2.0.2 ([RW96, Theorem 1.5]). The space of fully grown n-trees is homotopy
equivalent to a wedge of spheres. That is,

Tn ≃
∨

(n−1)!
Sn−3.
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Therefore, the reduced (co)homology is concentrated in dimension n− 3.

Example 5.2.0.3 (n = 4). We have that

T4 ≃
∨
6
S1.

The space is the wedge of six circles, and can in fact be depicted by the diagram below. That is,
the one-skeleton of a tetrahedron, with opposite midpoints of edges connected by three further
edges. This has ten vertices as expected, as there are ten fully grown 4-trees.

Then we can view one copy of S1 in this picture as a loop with five vertices such as the
below diagram.

0

2
1

4

3

0

1
3

4

2

0

3
1

4

2

0

3
2

4

1

1

2
0

3

4

The 0-simplies are given by trees with one internal edge of length 1, and can be viewed as
having had all other internal edge lengths collapsed to 0. The points along each edge represent
trees where an internal edge is lengthened to pass between the two vertex trees. For example,
see the edge below. An edge in Tn has length 1, and at a point of distance α along the edge, we
have a tree with one internal edge grown from length 0 to length α, and the other with distance
that has shrunk from length 1 to length 1−α. In this way, the leaf labelled 2 ‘travels’ from one
end to the other of the vertex trees.
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0 21

3 4

1

0 1

2

3 4

α

1− α

0 1

2 43

1

5.3 Symmetric group action in Tn

The symmetric group Σn+1 acts on Tn by permuting the labels of all the leaves as well as
the root, whereas the symmetric groups Σn and Σn−1 permute the labels {1, 2, . . . , n} and
{1, 2, . . . , n− 1} respectively. Therefore, it is clear that the Σn+1 action restricts to the actions
of the smaller symmetric groups by fixing the extra one or two leaf labels.

Proposition 5.3.0.1 ([RW96, Theorem 3.1]). The representation of Σn+1 on the reduced
homology group H̃n−3(Tn) has character given by

sgn · (IndΣn+1
Σn

Lien − Lien+1),

and is a dimension (n − 1)! representation. Robinson and Whitehouse call this the tree
representation. Here, Lien gives the character of the Lie representation defined in [RW96],
and sgn is the alternating character.

This representation is determined by considering fixed point sets of the Σn+1 action, and
calculating the Euler characteristics of these sets. Then the characters of the representation
can be determined from the Euler characteristics, and these coincide with the characters of
sgn · (IndΣn+1

Σn
Lien − Lien+1).

The restriction of the tree representation to Σn−1 is isomorphic to the regular representation,
and the restriction of the tree representation to Σn has character sgn · Lien.

5.4 The poset of non-trivial partitions Λn

In [Rob04], Robinson proves a relationship between the tree space and the poset of non-trivial
partitions of n := {1, 2, . . . , n}, and results regarding symmetric group representations on the
(co)homology of this space. We explore these results in order to understand the hidden action
of Σn+1 in the setting of partitions of n.

Partitions of n form a poset ordered by refinement. The whole set n and the partition
{1}{2} . . . {n} of singletons are defined as trivial partitions. Then, we will consider the poset
Λn of non-trivial partitions of the set n. This poset has the ordering that for partitions p and
p′, p ≤ p′ if p is finer than p′. That is, if each block in p is a subset of a block in p′.

Example 5.4.0.1 (n = 4).
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• {1, 2}{3}{4} < {1, 2, 3}{4}

• {1, 3}{2, 4} < {1, 2, 3, 4}, however {1, 2, 3, 4} is a trivial partition and therefore does not
belong to Λ4

• Neither of {1, 2, 3}{4} and {1}{2, 3, 4} is finer.

Note that if we were to include the trivial partitions, we would then have the structure of
a complete lattice [BS81, Theorem 4.11], as every subset now has its greatest lower bound and
least upper bound included in the poset.

5.5 Relationship between Tn and Λn

There is a Σn-equivariant homeomorphism between the space Tn and the nerve of the poset Λn,
described in more detail in [Rob04, Proposition 2.7]. Here, as in [Rob04], we use the notation Λn
to mean both the poset of partitions and the nerve of this poset, which is a simplicial complex.

Roughly speaking, given a tree in Tn, the homeomorphism is as follows. We define a family of
maps {γi(t)|1 ≤ i ≤ n} to be the paths in the tree starting at the root and ending at the vertex
labelled i. The paths are unique since trees do not contain any loops. When t is sufficiently
small, all γi(t) are equal, and for t sufficiently large all γi(t) will be different, since the paths
diverge. Then for any t ∈ [0, 1] we define the partition pt to be the partition of n with

i ∼ j ⇐⇒ γi(t) = γj(t),

and i ∼ j if and only if i and j are contained in the same block of the partition. This can
be extended to the whole of Λn by considering a particular parametrisation of γi(t) and using
barycentric coordinates.

Example 5.5.0.1. The tree pictured below is a fully grown 6-tree. Recall that leaves are
always given length 1. Then this tree corresponds to the sequence of non-trivial partitions
{1, 2, 3, 4, 5}{6} > {1, 2, 3}{4, 5}{6} > {1, 2, 3}{4}{5}{6} > {1, 2}{3}{4}{5}{6}.

1

2

3

0

6

4

5
0.5 1

0.75

0.5
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5.6 Σn action on partitions

There is an obvious Σn action on the set of partitions of n by simply permuting elements.
Since there is a homeomorphism between the tree space Tn and Λn, the Σn+1 action on Tn

described in [RW96] carries over to the partition space. In particular, this action restricts to
an action on the set of vertices of the tree complex, but it is not an action directly on the set
of partitions of n, only on the nerve of the poset as a whole. This is because some partitions
in Λn correspond to barycentres of simplices in the triangulation of the tree space, rather than
vertices. These partitions are mapped to other midpoints by the Σn+1 action, and thus not
to a single partition, but to a sequence of partitions. Therefore, we will instead consider the
symmetric group action on an appropriate subset of partitions of n that correspond with the
vertices of the space Tn. That is, trees with one internal edge as shown by the below diagram.

(5.1)

5.6.1 Σn action in Λn

We will introduce the following notation for subsets of fixed size, where n ≥ 1 and 1 ≤ m ≤ n,

Snm := {A ⊂ n : |A| = m}.

We will also use the following notation for partitions of n of a particular shape,

Pnm := {partitions with shape (m, 1n−m)}.

Then, there is a bijection σ

Snm ←→Pnm
σ : A 7−→A{b1} . . . {bn−m},

where {b1, . . . , bn−m} = A := n \A.
Furthermore, we also have a bijection between Snm and Snn−m:

A←→ A

τ : A{b1} . . . {bn−m} 7→ {b1, b2, . . . , bn−m}{a1} . . . {am},

where {a1, . . . , am} = A.

Proposition 5.6.1.1. The bijections σ and τ defined above are Σn-equivariant.
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Proof. The first of these bijections is clearly Σn-equivariant since for π ∈ Σn,
πA = πA, and therefore

π(σA) = {πA}{π(b1)} . . . {π(bn−m)} = {πA}{b̃1} . . . {b̃n−m} = σ(πA),

where b̃i ∈ πA.
The second is Σn-equivariant because for π ∈ Σn,

π(τ(A{b1} . . . {bn−m})) = π({b1, . . . , bn−m}{a1} . . . {am})

= {π(b1), . . . , π(bn−m)}{π(a1)} . . . {π(am)}

= τ(π(A{b1} . . . {bn−m})).

Definition 5.6.1.2. We define the notation

Sn :=
⋃

2≤m≤n−1
Snm,

Pn :=
⋃

2≤m≤n−1
Pnm.

Then Pn is the set of partitions that correspond to the collection of sets Sn. These are precisely
the partitions that correspond to the vertices in the tree space Tn.

5.6.2 The Σn representation

We will now give the representation of Σn given by the permutation action on Pnm, both as an
induced representation and explicitly in terms of Specht modules. The key components of the
below proposition and its proof, in particular the decomposition into irreducibles, are discussed
by Wildon in [Wil14]. The representation theory notation used is included in Chapter 1.

Proposition 5.6.2.1 (The Σn representation). The representation of Σn associated with
the permutation action on Pnm is the induced representation of the trivial representation on
Σm × Σn−m. That is,

CPnm ∼= 1 ↑Σn
Σm×Σn−m

∼= M (m,n−m),

with decomposition into irreducible representations

S(m,n−m) ⊕ S(m+1,n−m−1) ⊕ · · · ⊕ S(n−1,1) ⊕ S(n).

Outline of proof. It is a result [Sag01] that if there is a non-zero homomorphism θ : Sλ → Mµ

of CΣn-modules that extends to a homomorphism θ̃ : Mλ →Mµ, then λ ⊵ µ.
This implies that the permutation module Mµ is a direct sum of Specht modules for

partitions λ with λ ⊵ µ. Thus,

M (m,n−m) ∼= S(m,n−m) ⊕ S(m+1,n−m−1) ⊕ · · · ⊕ S(n−1,1) ⊕ S(n)
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for any m with 2m ≥ n.
Furthermore, if λ = (m,n−m), by ignoring the second row of each (m,n−m)-tabloid, we

get a bijection from the m-subsets of n and λ-tabloids. Thus, M (m,n−m) is isomorphic to the
CΣn-permutation module of the action of Σn on subsets of n of size m. This is exactly the
representation we are interested in, for the action of Σn on the partitions of shapes (m, 1n−m),
as was shown by our bijection to the sets Snm.

The dimension of the above Σn representation is
(n
m

)
. This can be calculated using the

formula for the dimension of a permutation module given in Definition 1.5.0.10, or by the fact
that the dimension of a representation associated with a group action on a vector space is simply
the dimension of the vector space (see Definition 1.4.0.1).

dimM (m,n−m) = n!
m!(n−m)! =

(
n

m

)
= #Pnm.

Example 5.6.2.2 (n = 5, m = 2). In this case the dimension of the representation is
(5

2
)

= 10.
The decomposition into irreducible representations is

S(3,2) ⊕ S(4,1) ⊕ S(5).

5.7 Σn+1 action on partitions

The action of Σn+1 on Pn can be described as follows. The elements of Pn are of the form

{a1, a2, . . . , am}{b1}{b2} . . . {bn−m},

with shape (m, 1n−m) for any 2 ≤ m ≤ n− 1.
We will explicitly describe a Σn+1 action on Sn which transfers to Pn via the bijection

Pn ↔
⋃

2≤m≤n−1
Snm = Sn.

This restricts to the natural Σn action from the previous section, and we will check directly
that it is well-defined.

Definition 5.7.0.1. We extend the natural Σn action to an action of the symmetric group
Σn+1 on Sn as follows. Let π ∈ Σn+1 be any permutation of elements of {0, 1, . . . , n} and A ⊂ n
a set in Sn. Then

π : A 7→

πA if π ∈ Σn+1 \ Σn, π−1(0) /∈ A,

πA ∪ {π(0)} if π ∈ Σn+1 \ Σn, π−1(0) ∈ A,

where A = n \A.
This is the action of Σn+1 on the n-trees with one interal edge, as in diagram (5.1). The

set A labels the leaves on the side not containing the root, and the complement A labels the
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leaves that are on the same side as the root. Notice that the two cases are then given by the
case where the root is permuted to the other side, and the case where it remains on the same
side.

Proposition 5.7.0.2. The Σn+1 action in definition 5.7.0.1 is well-defined.

Proof. This is a case by case check, which can be found in Appendix A.

Example 5.7.0.3 (n = 5,m = 3). Let A = {1, 3, 4}. Then

(3, 5)A = {1, 5, 4}

(0, 1, 2)A = {2, 3, 4}

(1, 2)(3, 0)A = {1, 5, 3}.

Remark 5.7.0.4. Note there is a pairing between the shapes associated with Snm and Snn−m+1.
That is, elements of Snm are mapped to either elements of Snm or of Snn−m+1 by the Σn+1 action,
and the same for elements of Snn−m+1. Therefore, the sets Snm ∪ Snn−m+1 are Σn+1-invariant.

5.7.1 The Σn+1 representation

Proposition 5.7.1.1 (Representation dimension). The dimension of the representation given
by the Σn+1 action on Pn is

#Pn = 2n − (n+ 2).

Proof. There are n − 2 possible shapes of partition of the relevant kind, corresponding to the
number m of singletons in the partition. For each of these there are

(n
m

)
partitions, and therefore

we have

#Pn =
n−1∑
m=2

(
n

m

)

= 2n −
(
n

n

)
−
(
n

1

)
−
(
n

0

)
= 2n − (n+ 2).

In the proposition below, we give the unique Σn+1 representation that restricts to the Σn

representation on Pnm which is that associated to the restriction of the Σn action on Pn to Pnm.

Remark 5.7.1.2. We have seen that the action of Σn+1 is on pairs Pnm and Pnn−m+1. However,
the irreducible decomposition of the Σn+1 representation does indeed split according to value
of m. We see this by noticing that the Σn representations for fixed m are each the restriction
of a single unique Σn+1 representation.
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Proposition 5.7.1.3 (The Σn+1 representation). For the Pnm with 2m ≥ n, but not for
odd n ≥ 5 with m = n+1

2 or m = n−1
2 , the Σn representation on Pnm is the restriction of a

representation of Σn+1, uniquely and with decomposition

k≤ n−m
2⊕

k=0
S(m+1+2k,n−m−2k)

= S(m+1,n−m) ⊕ S(m+3,n−m−2) ⊕ . . .

where Sλ denotes the Specht module associated with shape λ.

Outline of proof. Recall from Proposition 5.6.2.1 that Pnm has the Σn representation

M (m,n−m) ∼= S(m,n−m) ⊕ S(m+1,n−m−1) ⊕ · · · ⊕ S(n−1,1) ⊕ S(n).

If we assume that 2m ≥ n then we have only one choice for the Σn+1 representation this is a
restriction of. It is clear that any potential modules must be associated to Young diagrams of
no more than two rows, otherwise their restriction will include those with more than two rows
which do not appear here.

Taking S(m,n−m) we see that possible modules containing this in their restriction are those
associated to the partitions (m + 1, n − m) or (m,n − m + 1). The latter would give an
additional summand on the restriction of S(m−1,n−m+1) which we do not want, and so it must
be the first. This also gives us the second term in the sum, so we next consider the third,
namely S(m+2,n−m−2). This process continues until we reach one of S(n+1) or S(n,1) as the final
module in the decomposition. Therefore, everything is uniquely determined.

Proposition 5.7.1.4 (The outstanding cases with non-unique extension to Σn+1). If n is of
the form 4l + 1 for some l ∈ N, and m = n+1

2 , then the Σn+1 representation on Pnm is given by

k≤ n−m
2⊕

k=0
S(m+1+2k,n−m−2k). (5.2)

If n is of the form 4l+1 and m = n−1
2 , or if n is of the form 4l+3 for some l ∈ N and m = n+1

2

or m = n−1
2 , then the representation is of the form

k<n−m
2⊕

k=0
S(m+2+2k,n−m−(2k+1)). (5.3)

Note that in the cases n = 4l + 1, the representations for m = n+1
2 and m = n−1

2 are the
same.

Proof. First, note that by considering which Young diagrams restrict to the required diagrams
for the Σn representation, (5.2) and (5.3) are the only possible Σn+1 representations.

We may choose one suitable (one with a different character under (5.2) and (5.3)) generating
permutation to calculate the characters in order to determine which of (5.2) or (5.3) is correct.
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Such a permutation is the (n + 1)-cycle (1, 2, . . . , n, n + 1). By using the Murnaghan-
Nakayama rule, we see that in the decompositions of (5.2) and (5.3), the only terms that will
contribute something non-zero to the character for an (n + 1)-cycle are the last terms. These
correspond to Young diagram with either one or two rows, and a diagram with one row gives a
character of +1, whereas a diagram of two rows gives a character of −1. In (5.2), the character
is +1 for odd m and is −1 for even m. In (5.3) the character is +1 for even m and is −1 for
odd m. Since the symmetric group action is isomorphic to an action that permutes the vertices
of trees, we need a representation with no negative characters.

We deal with the possible values for n and m separately. We first consider the cases where
m = n+1

2 since for any n this shape of partition pairs with itself because n−m+ 1 = m and so
the Σn+1 action is internal. When n = 4l+1 we have that m = n+1

2 is odd, so that the character
for (5.2) is +1 and therefore this is the correct representation. Similarly, when n = 4l + 3, we
have that m = n+1

2 is even, so that the character for (5.3) is +1 and so (5.3) is the correct
representation.

Next we consider the case n = 4l+ 1 and m = n−1
2 . The symmetric group Σn+1 acts on the

pair Pnm and Pnn−m+1. For n = 4l + 1, m = n−1
2 is even, and so is n−m+ 1. Furthermore, we

know from earlier that Pnn−m+1 has the unique representation of (5.2) and so gives a character
of −1. Therefore, to get a non-negative character overall we need character +1 for Pnm and so
the corresponding representation must be (5.3).

Finally, we have n = 4l + 3, m = n−1
2 . Here, m is odd, and hence n −m + 1 is odd. The

representation of Pnn−m+1 therefore has character +1 and so the possible overall characters are
0 or +2. But we know from the lack of symmetry in the trees associated with these shapes of
partition that none are fixed by an (n+1)-cycle and so the character for Pnm must be −1. Thus,
the correct representation is (5.3).

Example 5.7.1.5. Here are some decompositions for different values of m and n.

• Case 1: n = 6,m = 3. The Σn representation decomposes as S(4,3) ⊕ S(6,1).

• Case 2: n = 5,m = 3. The Σn representation decomposes as S(4,2) ⊕ S(6).

• Case 3: n = 5,m = 2. The Σn representation decomposes as S(4,2) ⊕ S(6).

Remark 5.7.1.6. Note that the Σn+1 representation for Pnm with 2m ≥ n is the same as for
Pnn−m due to the symmetry in the Σn representation and uniqueness of associated induced Σn+1

representation.

5.8 Symmetric group action on ordered subsets

As we have previously seen, the action of Σn+1 on certain partitions is equivalent to an action
on subsets of n. Also, we see from the decomposition into irreducible representations that the
Σn+1 representation does indeed split according to each value of m. Therefore, we are led to
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believe that there may exist an action on m-sets of fixed size which gives the same Σn and
Σn+1 representations as was given by the action on trees and partitions. However, when trying
to construct such an action, we instead found a Σn action on fixed sized ordered sets with a
hidden Σn+1 action that gives a representation of the symmetric group different to the one we
have seen previously.

5.8.1 Σn action

In this section, we will work with Z-linear combinations of equivalence classes of ordered sets.
This is because the symmetric group action introduces signed ordered sets and sums of these.

Define by

Onm := {ordered A ⊂ n : |A| = m},

the collection of ordered subsets of n with fixed size m, and extend linearly to the module
Z[Onm].

We say an ordered set of natural numbers A is in its natural order if A = (a1, a2, . . . , am),
where a1 < a2 < · · · < am. Then for any given ordered set A = (a1, . . . , am) not necessarily in
the natural order, there is a unique permutation πA ∈ ΣA where ΣA = {bijections A → A},
such that πAA is in the natural order. That is, πAa1 < πAa2 < · · · < πAam.

Note that ΣA ⊂ Σn, and we may view permutations in ΣA as permutations in Σn by
extending with the identity on the complement A in n.

Definition 5.8.1.1. We define an equivalence relation on Z[Onm] by

A ∼ (sgnπA)πAA

and extending to linear combinations. We write [A] for the equivalence class of A ∈ Onm.

Proposition 5.8.1.2. The above equivalence relation is well-defined.

Proof. If we equivalently formulate the equivalence relation as

A ∼ B if and only if (sgnπA)πAA = (sgnπB)πBB,

then we can see that it is reflexive, symmetric and transitive.

The symmetric group Σn acts on Onm by permutation of elements. That is, for any ordered
set A ∈ Onm,

σ ·A = σ(a1, a2, . . . , am) = (σa1, σa2, . . . , σam),

and this extends linearly to Z[Onm].

Proposition 5.8.1.3. The symmetric group Σn action on Z[Onm]/∼ given by permutation of
set elements and extending Z-linearly is a well-defined action.
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Proof. We have the obvious action Σn on Z[Onm] by permutation of set elements mentioned
above. It remains to check that this extends to Z[Onm]/∼ by checking that the action is well-
defined on equivalence classes. In particular, we need that for all permutations τ ∈ Σn,

τA ∼ τ(sgnπA)πAA, (5.4)

or equivalently
[(τa1, τa2, . . . , τam)]

q
[(sgnπτA)πτAτA] = [(sgnπA)τπAA].

On the left-hand side, we have that the elements τai ∈ πτAτA are in natural order. To get
elements in their natural order in the equivalence class on the right, let us rewrite the right-hand
side as

[(sgnπA)τπAA] = [(sgnπA)(sgnπτπAA)πτπAAτπAA].

Now note that πτπAAτπAA = πτAτA. Therefore, it remains to check that

sgnπτA = (sgnπA)(sgnπτπAA).

The permutation πτA sorts the ordered set τA into its natural order, and similarly πτπAA is the
permutation sorting the ordered set τπAA into natural order.

We have the following diagram.

A τA πτAτA

πAA τπAA πτπAAτπAA

πA

τ πτA

τ πτπA

This diagram commutes, since applying τ and then sorting gives the same ordered set as
sorting first and then applying τ and sorting again. Then we have that

πτA = πτπAAτπAτ
−1,

and therefore we get

sgnπτA = (sgnπτπAA)(sgnτ)(sgnπA)(sgnτ−1)

= (sgnπτπAA)(sgnπA)

as required.

5.8.2 Σn+1 action

To show that we have a Σn+1 action on these sets, we can show that we have an extension of the
Σn action. Using the fact that the symmetric group can be generated by adjacent transpositions
ti, we only need to consider the extra transposition tn and check that the relevant relations hold.

We denote by Ana the ordered set where the element a ∈ A is replaced by n for n /∈ A.
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Definition 5.8.2.1. The additional transposition that extends the Σn action on Z[Onm] to an
action of Σn+1 acts as follows,

tn : [A] 7→


−[A] if n ∈ A,

[A]− ∑
a∈A

[Ana ] if n /∈ A.

Example 5.8.2.2 (n = 4,m = |A| = 3). We have the action of the transposition t4 = (4, 5):

t4[(1, 2, 3)] = [(1, 2, 3)]− [(4, 2, 3)]− [(1, 4, 3)]− [(1, 2, 4)]

= [(1, 2, 3)]− [(2, 3, 4)] + [(1, 3, 4)]− [(1, 2, 4)].

Proposition 5.8.2.3. The above is a well-defined action of Σn+1 on Z[Onm]/∼.

Proof. This is a case by case analysis and can be found in Appendix A

Proposition 5.8.2.4 (Representation dimension).

dimZ[Onm]/∼ =
(
n

m

)
= #Pnm

Note that the representation given by the Σn+1 action on Z[Onm]/∼ is not isomorphic to
that given by the Σn+1 action on Pnm.

5.8.3 The Σn and Σn+1 representations

We show by determining the representation given by the action on Z[Onm]/∼ that it is indeed a
different hidden action to the one on Pn.

Example 5.8.3.1 (The case n = 4). The non-trivial cases to consider are m = 3, m = 2. We
determine the representation by considering the matrices of generating adjacent transpositions
acting on the relevant sets of size m.

For m = 3, there is a Z-basis

{[(a1, a2, a3)], [(a1, a2, a4)], [(a1, a3, a4)], [(a2, a3, a4)]}

of equivalence classes of ordered sets.
The generating matrices are as follows.

(12) :


−1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0

 (23) :


−1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1



(34) :


0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

 (45) :


1 0 0 0
−1 −1 0 0
1 0 −1 0
−1 0 0 −1
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Recall from Definition 1.4.1.2 that the character χ is given by the trace of the relevant
matrix. Then these all give a character of −2.

By multiplying the relevant matrices, we get the characters for all cycle types of
permutations:

e (12) (12)(34) (123) (123)(45) (1234) (12345)
4 −2 0 1 1 0 −1

Hence, by comparison with the Σ4 character table, the Σ4 representation for the action on
Z[O4

3]/∼ is S(2,1,1) ⊕ sgn, and the Σ5 representation is S(2,1,1,1).
By the same process, for m = 2 we get the characters

e (12) (12)(34) (123) (123)(45) (1234) (12345)
6 0 −2 0 0 0 1

Therefore, the Σ4 representation Z[O4
2]/∼ is given by S(3,1) ⊕ S(2,1,1) and the Σ5

representation is S(3,1,1).

This example and a few similar calculations for different n, gave an indication of the general
form of the representations associated to the action.

Proposition 5.8.3.2. The decompositions of the representations given by the Σn and extended
Σn+1 action on Z[Onm]/∼ into Specht modules are

Σn : S(n−m+1,1,1,...,1) ⊕ S(n−m,1,1,...,1),

Σn+1 : S(n−m+1,1,1,...,1).

The Σn and Σn+1 representations above have dimension

dim
(
S(n−m+1,1,1,...,1) ⊕ S(n−m,1,1,...,1)

)
=
(
n− 1
m− 1

)
+
(
n− 1
m

)
=
(
n

m

)

dim
(
S(n−m+1,1,1,...,1)

)
=
(
n

m

)
.

Proof. The Young diagrams for the decompositions are below.

Σn :

. . .

...m− 1

n−m+ 1

⊕
. . .

...
m

n−m

Σn+1 :

. . .

...
m

n−m+ 1
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First note that the Σn+1 representation is the unique representation that restricts to the Σn

representation. Therefore, it is enough to prove that one of the above decompositions gives the
correct representation.

If we focus on the Σn+1 diagram, then the basis of standard tableaux of this shape are
those with entries in {1, 2, . . . , n + 1} which are increasing across rows and down columns. In
particular, this is in bijection with the set of size m subsets of {2, 3, . . . , n+ 1}. This is because
the top left entry is required to be 1, meaning that the remaining entries are determined by the
m-sized subset of {2, . . . , n+ 1} that fills the first column.

We re-index such that i 7→ i− 1 for all i ∈ {1, 2, . . . , n+ 1}, that is, we now consider entries
{0, 1, . . . , n}. Then, if we denote by T a standard tableau of the above form, we have the
bijection θ between such T and Snm.

T
θ7→ {entries in column 1} \ {0} (assigned its natural order).

Then we define the Z-linear bijection

θ̃ : Z
[
reindexed std tableaux of
shape (n−m+ 1, 1m)

]
→ Z[Onm]/∼

by
T 7→ [θ(T )]

and extending Z-linearly.
We claim that this is Σn-equivariant.
We have that for a partition λ of n, the Specht module Sλ has basis

{et : t is a standard λ-tableau},

as in [Sag01, Theorem 2.5.2]. Here, et is a polytabloid. Then, it is also a result [Sag01, Chapter
2] that for σ ∈ Ct, where Ct is the column stabiliser of t, and for τ ∈ Rt with Rt the row
stabiliser of t,

σet = (sgn σ)et, (5.5)

τet = et. (5.6)

That is, elements of the column stabiliser act with sign, and elements of the row stabiliser act
trivially on polytabloids.

For σ ∈ Σn we require the diagram below to commute.

et [A]

σet = eσt sgn(πσA)[σA].

θ

σ σ

θ
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The right column is by definition of the Σn action in Proposition 5.8.1.3. The left column
is a standard result, for example see [Sag01, Lemma 2.3.3]. The top map is simply applying
the bijection θ̃. Then it remains to check the bottom map, that is, that applying θ̃ to eσt does
indeed give sgn(πσA)[σA].

The bijection θ̃ maps standard tableaux to finite sets, and the tableau σt is not necessarily
standard. We may order the elements of the first row of σt with a permutation τ ∈ R1.
Similarly, we may order the elements of the first column of σt with a permutation π ∈ C1. We
note that the elements of the first column of σt in order are given by the set σA. Therefore, the
permutation π ∈ C1 that orders the elements of the first column, is precisely the permutation
πσA. Then, by (5.6), we have that

τeσt = eσt

and by (5.5), we have
πσAeσt = sgn(πσA)eσt.

Therefore, the diagram commutes as required.
We have a Σn action on the basis of tableaux of the Σn+1 representation, isomorphic to the

action on Z[Onm]. This shows that the given decomposition for the Σn+1 representation does
indeed restrict to the correct Σn action.

5.8.4 Extension to Λn

Finally, we explore an interesting question that arises from the action on sets. That is, the
possibility of extending this action to an action analogous to the symmetric group action on the
whole poset Λn of non-trivial partitions, not just the subset of partitions we have considered.

This is not as straightforward due to the different shapes of partitions. Before, we only
considered the shapes that were in bijection with sets, allowing us to work with actions on sets
in the natural way. When we extend to all partitions of n, we have partitions with multiple
nontrivial parts, which look like some kind of concatenation of sets by our previous comparison.

Difficulties arise when trying to write down a comparable symmetric group action in this
setting, such as the issue of ordering. We were previously dealing with ordered sets and some
equivalence relation on these, whereas now we have the potential to have both ordered sets,
and the order in which the sets appear in the concatenation. We consider here an action on
unordered strings of the equivalence classes of ordered sets in Z[Onm]/∼, where the action of Σn

is exactly the same as that in Proposition 5.8.1.3 on each set in the collection. This makes sense
from the point of view that there is no natural order on the parts within a partition.

We only need to go as far as considering an example for small n to see that there is no
obvious extension of the action in this case. We immediately see this via the representation
theory of the symmetric group.

Example 5.8.4.1 (The case n = 4). We consider the action on sets for the case where n = 4
and m = 2 on partitions of shape (2, 2), as this is the only remaining non-trivial partition shape
that is not of the form previously considered.
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The matrices of the Σ4 action on the partitions {a1, a2}{a3, a4}, {a1, a3}{a2, a4},
{a1, a4}{a2, a3} are the following.

(12) :


−1 0 0
0 0 1
0 1 0

 (23) :


0 1 0
1 0 0
0 0 −1

 (34) :


−1 0 0
0 0 1
0 1 0



These have character −1, and by taking the necessary products, and comparing the
characters with the Σ4 character table, we get that the representation is S(2,2) ⊕ S(1,1,1,1).
This is not a restriction of any Σ5 representation, so the action does not extend to a hidden
action on general partitions in this way.
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Chapter 6

A cooperad of trees

In this chapter we will give a construction of a cooperad with cyclic structure that relates to
topics covered in the other chapters of the thesis. In particular, the key ingredient of this
cooperad will be the tree space from Chapter 5. This is closely related to a similar construction
of Ching [Chi05], using weighted trees to give an operad equivalent to the Lie operad in the
category of spectra.

It is known that the spectral Lie operad L is related to the Spanier-Whitehead dual of
suitable suspensions of the partition complex Λn from section 5.4. This is a result of Arone and
Mahowald in [AM99], and is also discussed by Heuts in [Heu20]. We know from Chapter 5 that
Λn is homeomorphic to the tree space Tn. This motivates the construction of an operad using
suspensions of the tree spaces Tn, in order to exploit the cyclic Σn+1 action on these spaces to
give an explicit cyclic structure on a suspension of the Lie operad in spectra.

Throughout this chapter, we will use both the non-skeletal and skeletal versions of the
construction where one is more convenient than the other. We make use of the equivalences of
definitions from chapters 3 and 4 to be able to do this.

The main results of this chapter are the introduction of twisted cyclic structure in Definition
6.4.0.1, the equivalence of the operad T̂ we construct with a desuspension of the Lie operad in
Theorem 6.7.0.4, and the anticyclic structure of T̂ given in Theorem 6.8.0.1.

6.1 Background

We will need some definitions and properties of spectra and a category of spectra, before defining
the Spanier-Whitehead dual. These results are quoted and can be found in more detail in
[Mar83], [Spa56] and [HSS00].

Definition 6.1.0.1 (Smash product). For X,Y based topological spaces, we define the smash
product X ∧ Y as

X ∧ Y := X × Y/(X ∨ Y ).

This is commutative, and associative so long as we work in a convenient category of based
topological spaces. Throughout this chapter, by Top∗ we mean such a convenient category.
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Throughout this chapter, we will work with spectra in a suitable category. For our purposes,
we only require finite spectra, and the Spanier-Whitehead category will suffice.

Definition 6.1.0.2 (Spectrum). A spectrum is a sequence {Xn}n∈N of based topological spaces
Xn ∈ Top∗, with structure maps

σ : S1 ∧Xn → Xn+1, for all n ≥ 0.

We note that there is a homeomorphism S1 ∧Xn
∼= ΣXn between the above smash product

and the reduced suspension of Xn.
We will now define the Spanier-Whitehead category, using the definition in [Mar83] that is

also discussed in [Str20].

Definition 6.1.0.3 (Spanier-Whitehead category [Mar83, Part I]). We denote by (SW,∧, S0)
where ∧ is the smash product and S0 the unit, the category with objects Σ∞+nX for n an
integer, and morphisms maps f ,

[Σ∞+nX,Σ∞+mY ] := lim
N→∞

[ΣN+nX,ΣN+mY ],

where we use the notation [−,−] to mean based homotopy classes of maps.

The category SW is a symmetric monoidal category with the smash product ∧.
We will also use the Spanier-Whitehead dual of an operad, and need a couple of its properties

relating to homology and cyclic structure.

Definition 6.1.0.4 (Spanier-Whitehead dual). Let X be a finite CW-complex. Then the
Spanier-Whitehead dual D : SW → SW is given by the map

DX := F (X,S0).

For P a symmetric sequence in SW, we have

(DP )(I) = D(P (I)).

Then DP is the Spanier-Whitehead dual of P .

We have that for a cooperad P , the Spanier-Whitehead dual DP is an operad. We will
use some properties of the Spanier-Whitehead dual including the interaction with the smash
product and homology.

Lemma 6.1.0.5. For X,Y ∈ SW, we have

[X ∧ Y, S0] = [X,F (Y, S0)].

Lemma 6.1.0.6. For X ∈ SW, then

H̃−k(X) ∼= H̃k(DX).
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6.2 Suspensions of the tree space

Recall the tree space T̃n from Chapter 5. That is, the space of isomorphism classes of n-trees
with leaves labelled by elements of n and internal edge lengths between 0 and 1.

Recall also the space Tn of fully grown n-trees, that is the subspace of T̃n where at least one
internal edge has length 1. As we discussed in Chapter 5, the space Tn is homotopy equivalent
to a wedge of spheres,

Tn ≃
∨

(n−1)!
Sn−3.

We then have that the following quotient gives a suspension space,

T̃n/Tn ∼= STn.

This is because the space T̃n is the cone on Tn, and so we can view the above quotient
space as collapsing Tn to a point to give the unreduced suspension. The cone point in T̃n is the
corolla, that is, the tree with no internal edges, and we view this as [(t, 1)] for t ∈ Tn. Here we
are using [−] to denote equivalence classes in the quotient space. We view Tn as the subspace
Tn × {0} of T̃n, and quotient by this to obtain STn = T̃n/Tn. Therefore, this is a based space,
with basepoint [t] for t any fully grown tree.

We will use the notation S to mean unreduced suspension, and Σ to mean reduced
suspension. In our example it will be useful to think of the reduced suspension ΣX for a
based space X as the smash product X ∧ S1 of the space with the circle.

Remark 6.2.0.1. For the construction that follows, we will switch to working with the non-
skeletal tree spaces T̃A for simplicity, mainly due to avoiding the complications added by the
renumbering map in the skeletal case. We know by the equivalences of definitions in Chapters
2, 3 and 4 that we can do this.

Example 6.2.0.2 (TA and ΣSTA for the based set (A, a0) = {a0, a1, a2}). For the space with
two non-basepoint points, there is only one tree tA in T̃A, which is the corolla, with no internal
edges.

a0

a1 a2

Since this tree is not fully grown, because it has no internal edges, the space TA is empty.
Therefore, we have the suspension STA = S∅ = S0. This coincides with the quotient space
T̃A/TA, which is the quotient of a one point space by the empty set. This gives the disjoint
union of the set {tA} with a basepoint.

Then taking the reduced suspension gives the space ΣSTA. We view this as the smash
product S1 ∧ STA = S1 ∧ S0 = S1. The points in this space are equivalence classes [(s, tA)]
where 0 ≤ s ≤ 1, with the identification [(0, tA)] = [(1, tA)].
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6.3 Cooperad structure

We will give an explicit cooperad structure on the collection of spaces {ΣSTn} by defining
cocomposition maps.

For this construction we will work with finite sets as labels for convenience and therefore
define a non-skeletal cooperad, despite the tree space being defined skeletally. Due to the
equivalences of skeletal and non-skeletal definitions in earlier chapters, we are able to do this.
Therefore, we will work with spaces TA of A-labelled trees.

We now define the main ingredient of the cooperad structure, namely the cocomposition
map. Following this, we check that this is well-defined, continuous, and satisfies the required
axioms for cooperad cocomposition.

Definition 6.3.0.1. Let C = A ⊔a B for finite sets A,B,C ∈ Bij∗ with |A|, |B|, |C| ≥ 2 and
a ∈ A. Let t ∈ TC be a tree with leaves labelled by the elements of C, and let t′ be any tree in
TA, and t′′ any tree in TB. We denote by α both the name and the length of the internal edge
of t that we cut when carrying out the following ungrafting operation.

We define a cocomposition map

◦A⊔aB : ΣSTC → ΣSTA ∧ ΣSTB,

by

◦A⊔aB : [(s, t)] 7→

[(s, t′, α, t′′)] if t splits at edge α as t′ and t′′,

∗ else.

In the set of coordinates [(s, t′, α, t′′)], s and α are the reduced suspension coordinates that
we view as the coordinate in a copy of S1. Notice that α is the length of an internal edge in
the tree t which means by definition that 0 ≤ α ≤ 1. Then we are at the basepoint when either
of these coordinates is 0 or 1.

Remark 6.3.0.2. Notice that we use the notation ◦A⊔aB for the cocomposition map, rather than
◦a as we have in earlier definitions. This is for clarity, and for ease of tracking the labelling sets
of the different trees when ungrafting.

Example 6.3.0.3. Consider [(s, t)] with t = tA⊔aB⊔bC the following tree. We will ungraft by
cutting the edges α and β.

t =
β

α

Ungrafting at edge β, we get [(s, tA ◦a tB, β, tC)] with the trees as depicted below.
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tA ◦a tB = α , tC =

Ungrafting at edge α, we get [(s, tA, α, tB ◦b tC)] with the trees as follows.

tA = , tB ◦b tC =
β

Ungrafting the above tree tB ◦b tC at edge β, we get [(s, tA, α, tB, β, tC)]. We can see that
we also obtain this by ungrafting first at edge β, and then the tree tA ◦a tB at edge α. The
resulting trees are as follows.

tA = , tB = , tC =

Proposition 6.3.0.4. The cocomposition map

◦A⊔aB : ΣSTC → ΣSTA ∧ ΣSTB

is well-defined and continuous.

Proof. Well-defined

Let [(s, t)] ∈ ΣSTC , where C = A ⊔a B. We will check that if [(s, t)] = ∗, then

◦A⊔aB : [(s, t)] 7→ ∗.

Recall that we have [(s, t)] = ∗ if either the tree t is fully grown, or if the suspension coordinate
s is either 0 or 1. In the case where s is 0 or 1, the map ◦A⊔aB maps [(s, t)] maps to [(s, t′, α, t′′)]
which also contains the coordinate s, and so the basepoint in ΣSTA ∧ ΣSTB.

Then it remains to check that we also map fully grown trees to the basepoint. Fully grown
trees are those with at least one internal edge of length 1. Then in cocomposing we either cut
through a length 1 edge or an edge of length less than 1.

• If we cut through a length 1 internal edge, we have the coordinate α = 1 in the reduced
suspension coordinate S1, which forces the right-hand side to be the basepoint.
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• Finally, if we cut an internal edge that isn’t length 1, again since the original tree is fully
grown, at least one internal edge of length 1 remains in one of the resulting trees, so again
we have the basepoint.

There is no other way for either tree t′ or t′′ to be fully grown, or for α to be either 0 or 1.
Therefore, the map is well-defined.

Continuous

To check that it is continuous we consider continuous changes to the lengths of internal edges
of t ∈ TC .

• As an internal edge of t shrinks and its length approaches 0, if it is not the edge we cut
then the corresponding edge in either t′ or t′′ also shrinks and so ◦ behaves continuously
with respect to such changes.

• If the edge we cut through shrinks and its length approaches 0, then the coordinate α
approaches 0 which is the basepoint on the right-hand side. This is what we want, since
the tree t is approaching a tree that no longer splits into trees t′ and t′′ and therefore
maps to basepoint by definition.

• If an internal edge approaches 1 in a tree that is already fully grown, then we were already
at the basepoint and mapping to the basepoint, so nothing changes.

• If t was not fully grown and the edge with length approaching 1 is not the one we cut
then t is becoming fully grown and therefore the basepoint in ΣSTC . This means an edge
in t′ or t′′ approaches length 1, giving a fully grown tree in either TA or TB which gives
the basepoint as required.

• If t is not fully grown, and α is approaching 1, then this approaches the basepoint on the
right, and t is approaching a fully grown tree which also gives the basepoint on the left.

• Any small change to an internal edge length in t other than this will result in either a
small change in an internal edge of t′ or t′′, or a small change in α not resulting in anything
being mapped to the basepoint.

Therefore, the map ◦A⊔aB is continuous.

Remark 6.3.0.5. In order to have a counital cooperad structure, one would need a counit. The
tree space is only defined for |A| ≥ 2, and so TW is empty. One could define STW as the one
point space given by {w}, and the space ΣSTW to be S0, given by {w} ⊔ ∗.

w0

w
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We could view cocomposition at this arity as ungrafting the tree tw pictured above from a leaf
of a tree t in ΣSTA, leaving t unchanged.

This would give a counit, and since S0 is the unit of the category Top∗, would result in a
reduced cooperad. Ching does a similar thing in his construction, however, we won’t include
this in ours because it doesn’t give the correct sign when we consider cyclic action.

Theorem 6.3.0.6. The cocomposition maps ◦ are coassociative and equivariant. Therefore,
this gives a non-skeletal non-counital cooperad structure in Top∗ on the collection {ΣSTA}.

Proof. Coassociativity

For coassociativity we need that the diagrams for coassociativity from Definition 4.3.0.1
commute. Let A, B, C ∈ Bij∗ be finite sets and let a, a′ ∈ A, b ∈ B.

First, we have the case where we cut an edge α that separates t into trees in TA and
TB⊔bC , and the edge β separates t into trees in TA⊔aB and TC . This case is also depicted
diagrammatically in Example 6.3.0.3.

ΣSTA ∧ ΣSTB ∧ ΣSTC ΣSTA⊔aB ∧ ΣSTC

ΣSTA ⊗ ΣSTB⊔bC ΣSTA⊔aB⊔bC

◦A⊔aB⊗id

id⊗◦B⊔bC ◦(A⊔aB)⊔bC

◦A⊔a(B⊔bC)

The other case is where we cut at an edge α ∈ t that splits t into trees in TA⊔a′C and TB,
and also at an edge α′ that separates t into trees in TA⊔aB and TC .

ΣSTA ∧ ΣSTB ∧ ΣSTC ΣSTA⊔aB ∧ ΣSTC

ΣSTA ∧ TC ∧ ΣSTB

ΣSTA⊔a′C ∧ ΣSTB ΣSTA⊔aB⊔a′C

◦A⊔aB⊗id

id⊗t

◦A⊔a′ C⊗id

◦(A⊔a′ C)⊔aB

◦(A⊔aB)⊔a′ C

Let t ∈ TA⊔aB⊔bC be a tree that splits into trees tA ∈ TA, tB ∈ TB, tC ∈ TC by cutting
edges α and β. The first case is the one where cutting α separates tA from t, and cutting at β
separates tC from t. We wish to show that cutting the edge α and then the edge β is the same
as cutting β first and then α. We have

[(s, t)] cut α7→ [(s, tA, α, tB ◦b tC)]
cut β7→ [(s, tA, α, tB, β, tC)].
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Alternatively, cutting at edge β first, we have

[(s, t)] cut β7→ [(s, tA ◦a tB, β, tC)]
cut α7→ [(s, tA, α, tB, β, tC)].

Therefore, the first of the diagrams commutes. The second case is a similar check, which we
omit here.

Equivariance

Let σ : A→ A′, τ : B → B′ be bijections of finite sets A,A′, B,B′ ∈ Bij∗.
Then we need the following diagram to commute.

ΣSTA′ ∧ ΣSTB′ ΣSTA′⊔σ(a)B′

ΣSTA ∧ ΣSTB ΣSTA⊔aB

σ⊗τ σ◦aτ

◦A′⊔σ(a)B′

◦A⊔aB

This clearly commutes since the operation ◦ doesn’t change the existing tree labels. When
ungrafting a tree with labels A ⊔a B, one new label a is introduced to the tree in TA. This is
mapped by σ to σ(a), which we expect from the diagram.

Therefore, we have a non-counital cooperad of trees, which we will denote by T .

6.4 Twisted cyclic structure on T

The properties of the tree space T̃n and the Σn+1 action on it are essential in proving the
following result. We can easily permute the root label along with the other leaf labels, since
our construction does not distinguish the root in the same way that other constructions do. We
will briefly discuss the relationship with other constructions later.

We now introduce a modified version of a cyclic (co)operad called a twisted cyclic (co)operad.
This is specifically for topological operads that are defined in based topological spaces with each
space a suspension space.

This is because our cooperad T naturally has this structure. While we expect a cyclic
structure due to the extended action of Σn+1 on T̃n, the action on the suspension introduces a
swap of suspension coordinates. This means the cooperad does not satisfy the conditions for a
cyclic cooperad, but a special case that is very close.

In particular, this definition makes sense as a type of cyclic structure, because when we pass
to the homology, the twist in suspension coordinates introduces signs. This gives precisely the
conditions for an anticyclic operad in that case.
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Definition 6.4.0.1 (Twisted cyclic operad). Let P be a non-unital operad in Top∗ such that
each space P (A) is a suspension (ΣX)A of a pointed topological space. Then P has a twisted
cyclic structure if for ΣX, ΣY ∈ Top∗, x ∈ X, y ∈ Y , we have

1. ((s1, p) ◦x (s2, q))ψx,y = (s1, q(0, y)) ◦y (s2, p(0, x)),

2. ((s1, p) ◦x (s2, q))(0, x′) = (s1, p(0, x′)) ◦x (s2, q)).

That is, in the first case, where the root swaps between the two trees resulting from ungrafting,
the suspension coordinates are swapped.

Remark 6.4.0.2. For a cooperadQ, the structure is defined analogously by reversing the direction
of composition arrows in the diagrams to give cocomposition. The modified condition 2 is shown
by the commutative diagram below. Let ΣX, ΣY be based spaces, x ∈ X, y ∈ Y .

ΣX ∧ ΣY Σ(X ⊔x Y )

ΣX ∧ ΣY Σ(Y ⊔y X)

ΣY ∧ ΣX ΣY ∧ ΣX

(0,x)⊗(0,y)

◦X⊔xY

ψx,y

t ◦Y ⊔yX

swap

Theorem 6.4.0.3. There is a twisted cyclic structure on the cooperad T .

Proof. In the tree space Tn, there is an action of Σn+1 that permutes the leaf labels and root
label as described in Section 5.3. This action is what gives a cyclic structure on the cooperad
defined above.

We need to check that the cyclic conditions in Definition 4.3.0.1 for a cyclic cooperad are
satisfied. Let [(s, t)] ∈ ΣSTX⊔xY .

Twisted cyclic condition 1

The diagram for the second twisted cyclic condition is the following.

ΣSTX ∧ ΣSTY ΣSTX⊔xY

ΣSTX ∧ ΣSTY ΣSTY ⊔yX

ΣSTY ∧ ΣSTX ΣSTY ∧ ΣSTX

(0,x)⊗(0,y)

◦X⊔xY

ψx,y

t ◦Y ⊔yX

swap

(6.1)

109



We have

[(s, t)] ◦X⊔xY7−−−−→ [(s, tX , α, tY )]
(0,x)⊗(0,y)7−−−−−−−→ [(s, tX(0, x), α, tY (0, y))]
t7−→ [(α, tY (0, y), s, tX(0, x))].

If instead we apply the map ψx,y and then cocomposition, we have

[(s, t)] ψx,y7−−−→ [(s, tψx,y)]
◦Y ⊔yX7−−−−→ [(s, tY (0, y), α, tX(0, x))]
swap7−−−→ [(α, tY (0, y), s, tX(0, x))].

Therefore, diagram (6.1) commutes, and the second cyclic condition is satisfied.

Twisted cyclic condition 2

Finally, the diagram we require to commute for the third condition is the following.

ΣSTX ∧ ΣSTY ΣSTX⊔xY

ΣSTX ∧ ΣSTY ΣSTX⊔xY

(0,x′)⊗id

◦X⊔xY

(0,x′)

◦X⊔xY

(6.2)

We have

[(s, t)] ◦X⊔xY7−−−−→ [(s, tX , α, tY )]
(0,x′)⊗id7−−−−−→ [(s, tX(0, x′), α, tY )].

Applying the transposition (0, x′) first, we have

[(s, t)] (0,x′)7−−−→ [(s, t(0, x′))]
◦Y ⊔yX7−−−−→ [(s, tX(0, x′), α, tY )].

Therefore, diagram (6.2) commutes and the third twisted cyclic condition is satisfied. The
cooperad given by Definition 6.3.0.1 does indeed have a twisted cyclic structure.

6.5 Spanier-Whitehead dual of T

We will now consider the Spanier-Whitehead dual of the cooperad T . We will also pass back
to the skeletal setting from this point, and work with the skeletal version of the operad DT ,
which we know is equivalent from previous chapters. This is because it is easier to describe the
homology in the skeletal setting and also the relationship of this operad with the Lie operad.
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The Spanier-Whitehead dual of T is an operad DT in the Spanier-Whitehead category SW
given in Definition 6.1.0.3. We have

DT := F (T , S0),

with

(DT )(n) = D(T (n)).

6.6 Twisted cyclic structure on DT

We wish to carry the twisted cyclic structure from T to the Spanier-Whitehead dual DT in
spectra. The following Lemma tells us that DT is indeed twisted cyclic.

Lemma 6.6.0.1. Let P be a twisted cyclic cooperad in C. Then DP is a twisted cyclic operad
in SW.

Proof. Let σ : P (n)→ P (n) be the permutation in Σn+1 given by the cyclic action of Σn+1 on
P (n). Then we have in the operad DP = {DP (n)}, the map σ∗ ∈ Σn+1

DP (n) σ∗
←− DP (n),

due to the fact that

[DX2,DX1] = [X1, X2].

Therefore, there is an action of Σn+1 on DP (n) for all n, and the commutative diagrams defining
the cyclic conditions for DP will be dual with the permutations inverted. These commute since
Σ ≃ Σop.

Corollary 6.6.0.2. The operad DT in SW has a twisted cyclic operad structure.

6.7 Homology of T and DT

We know from Chapter 5 that the reduced (co)homology of the tree space is concentrated in
dimension n− 3, as it is a wedge of (n− 3)-dimensional spheres. We have the following result
of Robinson regarding cohomology of the tree space.

Proposition 6.7.0.1 ([Rob04, Theorem 4.1]). There are isomorphisms of Σn-modules given by

H̃∗(Tn,Z) ∼= sgn⊗ Lie(n).

This can be seen by the natural correspondence between binary trees and Lie bracketings,
for example the tree in the diagram below. These trees have three edges connected to each
vertex, and correspond to the top dimensional simplices in the tree space.
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0

1 2

3

4

←→ [[[x1, x2]x3]x4].

We have the cycle [cn] ∈ H̃n−3(Tn) in cohomology given by the cyclically labelled trees, as
discussed in Example 3.5.0.2. Then we have a basis

{cnπ|π ∈ Σn−1}.

Recall from section 2.6.0.7 the left bracketings αn ∈ Lie(n) of symbols x1, x2, . . . , xn without
repetition given by

αn := [. . . [[xn, xn−1]xn−2] . . . x1].

Then Lie(n) has a basis in cohomology

{αnπ|π ∈ Σn−1}.

This is discussed in more detail by Robinson in the proof of the above proposition, and by
Whitehouse in [Whi94].

Theorem 6.7.0.2. The homology of the operad DT is the Lie operad in the category ModZ up
to sign, for n ≥ 2. That is,

{H̃∗DT } = {sgn⊗ Lie(n)}.

Proof. Let us consider the cohomology of the cooperad T . The cohomology of the double
suspension ΣSTn is concentrated in dimension n− 1. We have

H̃∗(T ) = {H̃∗(ΣSTn)} = sgn⊗ Lie(n)

as Σn-modules.
After taking the dual, we have by Lemma 6.1.0.6 that the homology

H̃∗(DT ) = sgn⊗ Lie(n)

is concentrated in degree 1− n.
Recall from section 4.7 that the cohomology of a topological cooperad is a cooperad in the

category ModZ. Then {H̃∗(DT )} has the structure of an operad. Composition is given by
nesting Lie brackets.

We have the commutative diagram below.
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sgn · Lie(m)⊗ sgn · Lie(n) sgn · Lie(m+ n− 1)

H̃1−m(DΣSTm)⊗ H̃1−n(DΣSTn) H̃2−m−n(DΣSTm+n−1),

•i

∼=

•i

∼=

Therefore, the two are equivalent as operads.

Since we started with a non-unital cooperad, the above operad is also non-unital. We will
define an operad T̂ as follows.

Definition 6.7.0.3. We define the operad T̂ by

T̂ (n) :=

H̃1−n(DT ) for n ≥ 2,

sgn2 for n = 1,

where sgn2 is the sign representation of Σ2. Then we have a graded Σn+1-module concentrated

in degree 1− n.

Theorem 6.7.0.4. The operad T̂ is the operadic desuspension of the Lie operad. That is,

{T̂ (n)}n≥1 ∼= {s−1Lie(n)}n≥1.

Proof. This is automatic by comparing the result of Theorem 6.7.0.2 and the definition of T̂ (1)
with the definition of operadic desuspension given in Definition 2.9.0.1.

6.8 Anticyclic structure on T̂

Recall the result of Robinson and Whitehouse in [RW96], that was stated in Proposition 5.3.0.1,
that the symmetric group Σn+1 acts on the reduced homology groups H̃n−3(Tn) with character

sgn · (IndΣn+1
Σn

Lie(n)− Lie(n+ 1)),

where sgn is the alternating character (the character of the sign representation). We also know
that the restriction of this to the Σn action on H̃n−3(Tn) has character sgn · Lien.

Recall from Definition 3.8.0.1 the anticyclic structure on an operad. Then we have the
following result for the algebraic operad given by the homology.

Theorem 6.8.0.1. The operad T̂ has an anticyclic structure.

Proof. The first anticyclic condition is true by definition of the operad T̂ (1).
The diagram below results from taking the Spanier-Whitehead dual, and then homology of

diagram (6.1). Therefore, this commutes and gives the second anticyclic condition.
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H̃1−m(DΣSTX)⊗ H̃1−n(DΣSTY ) H̃2−m−n(DΣSTX⊔xY )

H̃1−m(DΣSTX)⊗ H̃1−n(DΣSTY )

H̃1−n(DΣSTY )⊗ H̃1−m(DΣSTX) H̃2−m−n(DΣSTY ⊔yX)

◦X⊔xY

(0,x)⊗(0,y)

−ψx,y

t

◦Y ⊔yX

That is, the non-skeletal version of the second condition below, given in Definition 3.8.0.1.

(p •1 q)τm+n−1 = −(qτn) •n (pτm).

The swap in the suspension coordinates that occurs in the diagram (6.1) for DT results in
the sign on the right-hand side after taking homology. This is equivalent to replacing the action
of ψx,y with −ψx,y in the homology diagram.

The third condition is satisfied automatically by simply taking the dual and homology of
diagram (6.2).

Remark 6.8.0.2. We have a topological construction in SW that gives an anticyclic structure on
the operad sgn⊗ Lie. This is the desuspension of the Lie operad. We know from Getzler and
Kapranov that taking operadic suspension of a cyclic operad gives an anticyclic operad, and so
our construction shows that the spectral Lie operad has a cyclic structure.

6.9 Similar constructions

Finally, we will discuss some similar and related constructions elsewhere in the literature, and
how they differ from the one here.

Operads and cooperads of trees are very common and occur in a number of different settings.
There are also some examples of topological operads coming from spaces of trees similarly to
this one. That is, trees with edges weighted by length, and with continuous shrinking of edges
to pass between different trees in the space. We will discuss two of these examples here, namely
the cooperad constructed by Ching in [Chi05], and the W-construction of Boardman and Vogt
in [BV73]. In particular, Ching’s construction is very closely related.

6.9.1 Boardman and Vogt’s W-construction

Boardman and Vogt’s W-construction [BV73] is similar to a bar construction on operads. It
shares many similarities with what we do here, in particular it deals with a space of trees with
weighted edges, and continuous shrinking of edges in the same way as we have in Tn. It is
different because it gives weightings to both edges and vertices of the trees.
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This construction produces an operad instead of a cooperad. This is the case elsewhere in the
literature as well. Similar tree spaces are often used to construct operads, and indeed we could
have constructed an operad with the tree spaces and grafting maps. However, if one starts with
an operad, then the degrees in homology do not lead to the Lie operad. That is, the homology
of the tree spaces is concentrated in the wrong degrees for it to give the operad composition
structure of Lie. This is why we begin with a cooperad and take the Spanier-Whitehead dual
with suitable suspensions in this case.

6.9.2 Ching’s trees

Ching’s weightings on trees build in the homeomorphism from the tree space to partition space
to his construction. In particular, weightings are given by distances to the root of the tree.

Ching talks about a reduced cooperad in Cat+ formed from the categories T (A)+. In
this cooperad, the cocomposition maps are given by the ungrafting of trees. After taking the
Spanier-Whitehead dual, the homology of the resulting operad is equivalent to the desuspension
of the Lie operad.

Due to the nature of the weightings on the edges of the trees in this construction, it isn’t
possible to see a cyclic structure as it is in our construction.

6.9.3 Goodwillie derivatives of the identity

It is known that the spectral Lie operad arises in Goodwillie calculus, where it corresponds to
the Goodwillie derivatives of the identity functor. This topic has been studied by Fresse, Ching
and Arone in [Fre04], [AC11] and [Chi12b]. Ching shows that it does indeed share the same
homology up to sign, and it is true that the operad structure gives that of the Lie operad.

Proposition 6.9.3.1 ([Chi05, Example 5.6.8]). The homology of the Goodwillie derivatives of
the identity functor is given by

H̃∗(∂nI) =

Lie(n)⊗ sgnn if ∗ = 1− n,

0 otherwise.

It has been shown that the Goodwillie derivatives of the identity correspond to the posets
of partitions Λn, which are homeomorphic to the tree spaces as we discussed in Chapter 5.
Therefore, the anticyclic structure we have constructed gives an anticyclic structure on homology
of the Goodwillie derivatives of the identity.
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Appendix A

A.1 Proof of Proposition 5.7.0.2

Proposition 5.7.0.2 The Σn+1 action in definition 5.7.0.1 is well-defined.

First, we will prove the following claims.

Lemma A.1.0.1. In the following equalities, all complements are in n. Then we have

1. σA = σA \ {0} ∪ {σ(0)} for σ−1(0) /∈ A,

2. σA = σA \ {0} ∪ {σ(0)} for σ−1(0) ∈ A.

Proof. 1. σA = σA \ {σ(0)} ∪ {0}, since 0 ∈ σA but 0 /∈ σA. Also, σ(0) ∈ σA because
σ−1(0) /∈ A, and σ(0) /∈ σA since 0 /∈ A.

2. 0 /∈ σA again because 0 /∈ n. Also, σ(0) /∈ σA but σ(0) ∈ σA since 0 /∈ A and therefore
σ(0) /∈ σA.

Proof of Proposition 5.7.0.2. We need to check the identity and associativity conditions for a
group action given in Definition 5.7.0.1.

The first of these is clear, whereas the second requires a case by case analysis. This is
because the action is dependent on whether π−1(0) is in the m element subset of the partition.
Let π, σ ∈ Σn+1.

Now, we start by considering (πσ) •A.

• If (πσ)−1(0) /∈ A ⇐⇒ π−1(0) /∈ σA, then

(πσ) •A = πσA.

• If (πσ)−1(0) ∈ A ⇐⇒ π−1(0) ∈ σA, then

(πσ) •A = πσA ∪ {πσ(0)}.

Now, we consider π · (σ •A).

1. If σ−1(0) /∈ A, then σ •A = σA. Then we have the two following cases.
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• If π−1(0) /∈ σA, then (πσ)−1(0) /∈ A, and we have the first case.

π • (σ •A) = πσA.

• If π−1(0) ∈ σA, then (πσ)−1(0) ∈ A, and this should agree with the second case.

π • (σ •A) = πσA ∪ {π(0)}

= π(σA \ {0} ∪ {σ(0)}) ∪ {π(0)}

= πσA ∪ {πσ(0)}.

2. If σ−1(0) ∈ A, then σ •A = σA ∪ {σ(0)}. Then there are two further cases.

• If π−1(0) /∈ σA∪ {σ(0)}, then (πσ)−1(0) /∈ A∪ {0} and therefore (πσ)−1(0) ∈ A and
this should agree with the second case above.

π • (σ •A) = πσA ∪ {πσ(0)}

• If π−1(0) ∈ σA ∪ {σ(0)}, then (πσ)−1(0) /∈ A, and this is the same as the first case
above.

π • (σ •A) = πσA ∪ {σ(0)} ∪ {π(0)}

= π(σA ∩ {σ(0)}) ∪ {π(0)}

= π(σA \ {0}) ∪ {π(0)}

= πσA.

In all cases, the required associativity holds.

A.2 Proof of Proposition 5.8.2.3

Proposition 5.8.2.3 The action of Σn+1 on Z[Onm]/∼ in Definition 5.8.3.2 is well-defined.

Proof. The following braid relations need to be checked again:

t2n = id

tn−1tntn−1 = tntn−1tn

tnti = titn, for 1 ≤ i ≤ n− 2.

Again, this proof requires a case by case approach, this time depending on whether n− 1, n, i,
or i+ 1 are in [A].

The first relation is clear in the case where n ∈ A. For n /∈ A we have

t2n[A] = tn([A]−
∑
a∈A

[Ana ])

= ([A]−
∑
a∈A

[Ana ])−
∑
a∈A
−[Ana ] = [A],

so the first of the relations holds. The second relation is again a case by case analysis. We
will first state the following Lemma that will be needed in case 1.
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Lemma A.2.0.1. ∑
a∈A

∑
a′∈An−1

a

[(An−1
a )na′ ] =

∑
a∈A

[Ana ].

Proof. We have that

∑
a∈A

[Ana ] =
∑
a∈A

[(An−1
a )nn−1] ⊂

∑
a∈A

∑
a′∈An−1

a

[(An−1
a )na′ ],

So it remains to show that all other terms cancel.
In all the other terms we have the set A with two elements omitted, and replaced by n− 1

and n. For each pair of elements in A, there is a set in the expansion for each way to substitute
n − 1 and n, and these pairs have opposite signs due to the equivalence relation. Therefore,
they cancel as required.

Then we have the following cases.
Case 1: n, n− 1 /∈ A.

tn−1tntn−1[A] = tn−1

(
[A]−

∑
a∈A

[Ana ]
)

= [A]−
∑
a∈A

[An−1
a ]

tntn−1tn[A] = tntn−1

(
[A]−

∑
a∈A

[Ana ]
)

= tn

(
[A]−

∑
a∈A

[An−1
a ]

)

= [A]−
∑
a∈A

[Ana ]−
∑
a∈A

[An−1
a ]−

∑
a′∈An−1

a

[(An−1
a )na′ ]


= [A]−

∑
a∈A

[Ana ]−
∑
a∈A

[An−1
a ] +

∑
a∈A

∑
a′∈An−1

a

[(An−1
a )na′ ]

= [A]−
∑
a∈A

[An−1
a ]

where the last equality is due to cancellation of terms in the sums.
Case 2: n /∈ A,n− 1 ∈ A.

tn−1tntn−1[A] = tn−1tn[Ann−1]

= −tn−1[Ann−1] = −[A]

tntn−1tn[A] = tntn−1

(
[A]−

∑
a∈A

[Ana ]
)

= tn

(
[Ann−1] +

∑
a∈A

[Ana ]− [Ann−1]− [A]
)

= −
∑
a∈A

[Ana ]− [A] +
∑
a∈A

[Ana ] = −[A].
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Case 3: n ∈ A,n− 1 /∈ A.

tn−1tntn−1[A] = tn−1tn[An−1
n ]

= tn−1

[An−1
n ]−

∑
a∈An−1

n

[(An−1
n )na ]


= [A] +

∑
a∈An−1

n

[(An−1
n )na ]− [(An−1

n )nn−1]− [An−1
n ]

=
∑

a∈An−1
n

[(An−1
n )na ]− [An−1

n ]

tntn−1tn[A] = −tn[An−1
n ]

= −[An−1
n ] +

∑
a∈An−1

n

[(An−1
n )na ].

Case 4: n, n− 1 ∈ A.

tn−1tntn−1[A] = tn−1[A] = −[A]

tntn−1tn[A] = tn[A] = −[A]

For the final relation, we have 23 = 8 cases, depending on whether each of i, i + 1, n are
in the set A. In the cases where i, i + 1 /∈ A, the transposition ti acts trivially, and clearly
commutes with tn. This leaves 6 cases remaining to check.

Case 1: i ∈ A; i+ 1, n /∈ A

titn[A] = ti(−[A]) = −[Ai+1
i ]

tnti[A] = tn[Ai+1
i ] = −[Ai+1

i ].

Case 2: i+ 1 ∈ A; i, n /∈ A (This is equivalent to Case 1)

titn[A] = tnti[A] = −[Aii+1].

Case 3: i, n ∈ A; i+ 1 /∈ A

titn[A] = ti([A]−
∑
a∈A

[Ana ]) = [Ai+1
i ]−

∑
a∈A

[(Ana)i+1
i ]

= [Ai+1
i ]−

∑
a∈Ai+1

i

[(Ai+1
i )na ]

tnti[A] = tn[Ai+1
i ] = [Ai+1

i ]−
∑

a∈Ai+1
i

[(Ai+1
i )na ].

Case 4: i+ 1, n ∈ A; i /∈ A (This is equivalent to Case 3)

titn[A] = tnti[A] = [Aii+1]−
∑

a∈Ai
i+1

[(Aii+1)na ].
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Case 5: i, i+ 1 ∈ A;n /∈ A

titn[A] = ti([A]−
∑
a∈A

[Anj ])

= −[A] +
∑
a∈A

[Ana ]− [Ani ]− [Ani+1]− [(Ani )ii+1]− [(Ani+1)i+1
i ]

= −[A] +
∑
a∈A

[Ana ]− [Ani ]− [Ani+1] + [Ani ] + [Ani+1] = −[A] +
∑
a∈A

[Ana ]

tnti[A] = tn(−[A]) = −[A] +
∑
a∈A

[Ana ].

Case 6: i, i+ 1, n ∈ A

titn[A] = ti(−[A]) = [A]

tnti[A] = tn(−[A]) = [A].

So the relation holds in every case.
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Appendix B

Future work and questions

Configuration spaces

Another example of a hidden Σn+1 action restricting to Σn action is the one that occurs in
configuration spaces and is in fact related to the tree representation. Early and Reiner define
this action in [ER19]. It can be described in terms of the Eulerian idempotents discussed in
[Whi97], and it turns out that the Σn+1 action on the top level of the graded cohomology ring
corresponds to the tree representation.

As a topological space, Conf n(X) is the complement of the fat diagonal in the product
space Xn, and carries the subspace topology as a subspace of a cartesian product Xn with the
product topology.

The extra Σn+1 action can be seen by passing from configurations in R3 to configurations
in a suitable quotient space of SU2. That is, the extra point comes from adding a point at
infinity to R3, to get a space homeomorphic to the sphere S3. References for relevant results
and properties of configuration spaces include [FH01], [Coh95] and [Knu18].

On the other hand, the Eulerian representations described in [Whi97] have lifts from Σn to
Σn+1, which turns out to give the same representation as the one associated to the action in
configuration spaces.

Question:

Can an explicit map from the tree spaces to configuration spaces (or vice versa) be constructed
that illustrates how the extended symmetric group actions in the spaces are related and indeed
give the same group representations?

Partition operads

A number of operads built from set partitions exist in the literature, for example those described
in [Ebr+20]. This includes a non-symmetric operad via gap-insertion, and a coloured symmetric
operad with block-substitution.
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Additionally, we have seen in this thesis the relationship between trees and partitions. There
are many well-known operads of trees, some that are known to have cyclic structure.

Questions:

• Can one of the extended symmetric group actions that we explored in Chapter 5 be used
to show that a related operad is cyclic?

• Can we construct an operad or cooperad of partitions from the operads that are built
from trees, and therefore get a cyclic structure in this way?
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