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ABSTRACT

Rare earth ferromagnets are an important region of study due to their importance in

electric motors, low maintenance magnetic resonance imaging scanners, and hard drive

actuators, with Neodymium based magnets being of frequent use. Rare earth ferromagnets

sharing the structure of Nd2Fe14B have been previously parameterised for atomistic

models manually taking many researcher hours for the parameterisation of one aspect

of one alloy. This work provides a framework for evaluating atomistic parameters pro-

grammatically, using Python and numerical optimisation methods to automate and vastly

speed up the parameterisation process.

Several Curie Temperature Measurement Protocols were implemented and evaluated

for their reliability and consistency in calculating Curie temperatures in rare earth alloys

from VAMPIRE atomistic model simulation data.

The atomistic spin exchange constants for the Iron–Iron interaction, and the Iron–Rare

earth interaction have been parameterised using the Nelder-Mead and Brent-Dekker

numerical optimisation methods, using the calculated Curie temperature of the simulation

as the optimising objective function. The exchanges parameterised yield a calculated Curie

temperature of within 4 Kelvin for the +3 oxidation state rare earths.

The higher order anisotropy constants for Nd2Fe14B were evaluated in a single-spin

and multi-spin model and comparisons were made to prior empirical and theoretical work.

The First Order Magnetic Phase Transition present at low temperatures and high (> 15

Tesla) magnetic field was reproduced qualitatively, but quantitatively the spin direction

simulated differs as much as 30% from the empirical behaviour.
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‘It’s still magic even if you know how it’s done.’

Terry Pratchett

iv of 142



CONTENTS

Page

Abstract i

Acknowledgments ii

Author’s declaration iii

Quote iv

Table of Contents v

List of Tables viii

List of Figures ix

List of Source Codes xi

1 Introduction 1
1.1 Magnetism for Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Methods of Modelling of Magnets . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Programmatic analysis of data . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Parameterisation of magnetic materials . . . . . . . . . . . . . . . . . 8

2 Methodology 10
2.1 Atomistic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Heisenberg model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Metropolis Hastings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 LLG and Dynamics of systems . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Structure of Nd2Fe14B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Exchange optimisation 21
3.1 Fixed and variable parameters in body-centred-cubic Iron . . . . . . . . . . . 22

3.2 Optimisation path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

v of 142



Table of Contents

3.3 Optimisation software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Low temperature rescaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Optimising Iron-Iron exchange in bcc-Fe . . . . . . . . . . . . . . . . . . . . . 29

3.6 Curie Temperature Measurement Protocols . . . . . . . . . . . . . . . . . . . 31

3.6.1 Measuring magnetisation with VAMPIRE . . . . . . . . . . . . . . . . 32

3.6.2 Fitting Ms(T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6.3 Moskowitz extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6.4 Grommé’s 2 tangent method . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.5 Tauxe differential method . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6.6 Measuring peaks in other macroscopic parameters . . . . . . . . . . 37

3.6.7 Quality of methods listed . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6.8 Linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6.9 VAMPIRE Curie temperature simulation . . . . . . . . . . . . . . . . 40

3.6.10 Additional methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6.11 Results in context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 Rare earth ferromagnet exchange parameters . . . . . . . . . . . . . . . . . . 41

3.7.1 Low temperature rescaling . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7.2 Limitation of the optimiser . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7.3 Optimising rare earth-Iron exchange in Lanthanum based La2Fe14B 43

3.8 Optimisation methods:Nelder-Mead and Brent-Dekker . . . . . . . . . . . . 43

3.8.1 Nelder Mead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8.2 Optimisation Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.8.3 Brent’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.8.4 Rare earth Iron exchange . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Optimisation paths for Exchange Parameters of RE2TM14B alloys 53
4.1 Temperature residuals along the optimisation paths for Rare earth ferro-

magnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.1 Error in Exchange estimate . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.2 Results in context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Magnetic Anisotropy in RE2TM14B alloys 72
5.1 Empirical results and work by Cadogan et al. . . . . . . . . . . . . . . . . . . 73

5.2 Replicating empirical anisotropy with spin models . . . . . . . . . . . . . . . 73

5.2.1 Single spin model of anisotropy in Nd2Fe14B . . . . . . . . . . . . . . 78

5.2.2 Multi-spin model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.3 Conversion between VAMPIRE and spherical harmonics . . . . . . . 89

5.3 Multi-spin model of anisotropy, in comparison to Cadogan et al. . . . . . . . 90

vi of 142



Table of Contents

5.3.1 Yamada et. al: Crystal electric field calculations as a method to

calculate anisotropy constants . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 Measuring anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 Results in context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Conclusion 96
6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A Appendix A 99
A.1 VAMPIRE - input files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.1.1 Curie temperature monte carlo simulation . . . . . . . . . . . . . . . 99

A.2 Wyckoff Positions for 2:14:1 type ferromagnets . . . . . . . . . . . . . . . . . . 101

A.2.1 Implementation of CTMP methods . . . . . . . . . . . . . . . . . . . . 103

A.3 VAMPIRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.3.1 Implementation of VAMPIRE statistics methods . . . . . . . . . . . . 113

Glossary of Terms 117

Bibliography 123

vii of 142



LIST OF TABLES

TABLE Page

3.1 Parameters for modelling body-centred-cubic Iron atomistically with VAMPIRE. 25

3.2 Optimisation route for La2Fe14B Fe-Fe exchange . . . . . . . . . . . . . . . . . . 46

3.3 Lattice constants of rare earth compound unit cells . . . . . . . . . . . . . . . . . 51

4.1 Rare earth-transition metal exchanges . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Sm range in used CTMPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Sm range in used CTMPs Hirosawa et al. Digitised . . . . . . . . . . . . . . . . . 69

4.4 Curie Temperature range by method for rare earths . . . . . . . . . . . . . . . . 70

4.5 Linear estimation of exchange for error purposes . . . . . . . . . . . . . . . . . . 70

5.1 Legendre polynomial expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Spherical harmonic expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Table of factors for converting anisotropy constants to VAMPIRE inputs . . . . 90

5.4 Table of CEF coefficients from Yamada et al. . . . . . . . . . . . . . . . . . . . . . 93

A.1 Crystallographic positions of Nd2Fe14B . . . . . . . . . . . . . . . . . . . . . . . . 102

viii of 142



LIST OF FIGURES

FIGURE Page

2.1 Unit cell of Nd2Fe14B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Temperature dependent cubic anisotropy scaling in bcc-Fe . . . . . . . . . . . . . 23

3.2 Grommeé’s Curie temperature method illustrated . . . . . . . . . . . . . . . . . . 35

3.3 Susceptibility of Neodymium Iron Boron . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 The peak in the susceptibility at the Curie temperature for Nd2Fe14B. . . . . 38

3.5 Specific heat capacity of Neodymium Iron Boron . . . . . . . . . . . . . . . . . . . 39

3.6 The peak in the specific heat capacity at the Curie temperature for Nd2Fe14B. 39

3.7 Curie Temperature Measurement Protocol, (CTMP) calculated Curie tempera-

ture against temperature resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.8 Fe-Fe exchange versus Curie Temperature . . . . . . . . . . . . . . . . . . . . . . 41

3.9 Exchange optimisation method flow chart . . . . . . . . . . . . . . . . . . . . . . . 45

3.10 Dekker’s method flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Magnetisation curve for Sm2Fe14B with a system size of (6nm)3 . . . . . . . . 56

4.2 Magnetisation of Nd2Fe14B with an exchange scaled to account for finite size

effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Magnetisation curve for Nd2Fe14B at 4nm and 6nm . . . . . . . . . . . . . . . . 59

4.4 Optimisation route for Pr- and Nd-Fe exchange . . . . . . . . . . . . . . . . . . . 60

4.5 Optimisation route for Tm- and Yb-Fe exchange . . . . . . . . . . . . . . . . . . . 61

4.6 The result of the objective function, or Curie temperature residuals, for Sm-

and Gd-FeB during the optimisation of their exchange. . . . . . . . . . . . . . . . 62

4.7 The result of the objective function, or Curie temperature residuals, for Tb- and

Dy-FeB during the optimisation of their exchange. . . . . . . . . . . . . . . . . . 63

4.8 The result of the objective function, or Curie temperature residuals, for LuFeB

during the optimisation of its exchange. . . . . . . . . . . . . . . . . . . . . . . . . 64

4.9 Curie temperature and exchange of rare earth compounds . . . . . . . . . . . . . 67

5.1 Computed magnetisation curves from Cadogan et al. [72] . . . . . . . . . . . . . 74

5.2 Example canting and high field behaviour for an anisotropy constant set . . . . 82

ix of 142



Table of Contents

5.3 Canting angle simulation of Nd2Fe14B . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Anisotropic behaviour of a single spin model of Nd2Fe14B . . . . . . . . . . . . . 84

5.5 Forms of anisotropy curves in the spherical harmonic basis . . . . . . . . . . . . 86

5.6 Energy contribution to spins due to external field . . . . . . . . . . . . . . . . . . 87

5.7 Reproduction of Nd2Fe14B anisotropic behaviour using VAMPIRE, varying k4
6. 88

5.8 Reproduction of Nd2Fe14B anisotropic behaviour using VAMPIRE. . . . . . . . 94

x of 142



LIST OF SOURCE CODES

1 Curie simulation input file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

2 Moskowitz’ CTMP, impl Andrew Naden . . . . . . . . . . . . . . . . . . . . . . 103

3 Grommé’s CTMP, impl Andrew Naden . . . . . . . . . . . . . . . . . . . . . . . 104

4 Linear regreesion CTMP, impl Andrew Naden . . . . . . . . . . . . . . . . . . 105

5 Bloch’s law CTMP, impl Andrew Naden . . . . . . . . . . . . . . . . . . . . . . 105

6 Tauxe’s CTMP, impl Andrew Naden . . . . . . . . . . . . . . . . . . . . . . . . . 106

7 SciPy linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8 VAMPIRE magnetisation calculation . . . . . . . . . . . . . . . . . . . . . . . . 114

9 VAMPIRE magnetic susceptibility calculation . . . . . . . . . . . . . . . . . . 115

10 VAMPIRE specific heat calculation . . . . . . . . . . . . . . . . . . . . . . . . . 116

xi of 142



C
H

A
P

T
E

R

1
INTRODUCTION

Magnetic materials have been examined for thousands of years with naturally occurring

permanent magnets such as magnetite (Fe3O4) being regarded as ’magic’ for its ability to

gather other iron particles [1]. Rare earth ferromagnets are an important area of study,

due in part to their application in electric motors, medical magnetic resonance imaging,

and data storage, with Neodymium based magnets of frequent use due to their high

magnetocrystalline anisotropy. Research in this area is aimed at better understanding

characteristic behaviours of the magnets, often to create stronger, less massive magnets

with more tunable magnetic properties. A range of techniques are used to experimentally

examine, mathematically model and computationally simulate both current and novel

magnetic materials. These can include density functional theory; atomistic modelling;

mean field theory; x-ray crystallography; transmission electron microscopy and others.

Each of these methodologies has significant advantages and drawbacks, and so a com-

bination of methods are used collaboratively to examine prospective materials for use.

Similarly data driven approaches can be employed to evaluate trends across materials.

This work focuses on the atomistic modelling methodology; a computational technique

for modelling larger cell structures with lower computational complexity compared to

electron based approximations. This domain of research is limited by the parameterisation

of the simulations; currently relying on computationally expensive ab initio calculations,

or manual trial and error performed by researcher.

Reducing the time spent on evaluating these parameters through programmatic

methods is the main subject of this work. More directly, in relation to the RE2Fe14B type

rare earth ferromagnets.
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1. INTRODUCTION

1.1 Magnetism for Motors

Permanent magnets are the class of magnetic materials with a persistent magnetic

field. This permanent field is macroscopic, generated by the quantum scale electronic

behaviour of the material. The permanent magnetic field is caused by the alignment

of magnetic moments of the constituent electrons that make up the material. These

magnetic moments correspond to the spin and orbital momentum of the electrons, which

are quantum mechanical properties[2]. The total magnetic moment is related via angular

momentum coupling to the sum of the individual orbital’s angular momenta (related to the

allowed orbitals for each electron’s energy levels), and the sum of the individual electron’s

momenta (spin) which are confined to ±1/2. The energetic preference for these magnetic

moments to align is termed the exchange interaction.

The exchange interaction is a quantum mechanical effect of the Pauli exclusion prin-

ciple and Coulomb interactions[3]. The Pauli exclusion principle states that fermions

(particles with half integer spin, such as electrons) must not have the same set of 4

quantum numbers; referring each to the electron shell, the subshell, the orbital and the

spin. This is due to the requirement for a quantum system to be antisymmetric under

exchange of two fermions. This results in electrons being required to enter higher energy

states/orbitals under compression in space. For example, in an electron gas, the exchange

symmetry causes a hole in the vicinity of an electron which other electrons with the same

spin avoid due to the Pauli exclusion principle. The Coulomb interaction states that same

charged bodies experience a repulsive force. As a result of this hole local to the electron,

there is an energetic preference (by reduction in the Coulomb force) for particles with the

same spin, as they are at a greater distance. This can be demonstrated by establishing the

wave function in one dimension for two identical particles at positions x1, x2 in two states

ψa,ψb:

ψa(x1)ψb(x2)±ψa(x2)ψb(x1) (1.1)

Under exchanging the positions (swapping x1 and x2) either a symmetric combination of

states or an antisymmetric combination is recovered.

The requirement for half integer spin particles (such as electrons) to behave as

Fermions, with wave functions that are antisymmetric under exchange of two particles,

is formed from the Spin Statistics theorem[4, 5]. The different recovered combinations

yield different physical behaviour, with the expectation value of distance squared given by

Griffiths and Schroeter[6]:
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1. INTRODUCTION

〈(x1 − x2)2〉± = 〈x2〉a +〈x2〉b −2〈x〉a〈x〉b ∓2|〈x〉ab|2 (1.2)

With the final term increasing the expected distance for Fermions (and comparatively

decreasing for Boson). This assertion of antisymmetry must still hold when the spin term is

included. The possible spin states for a two electron system are given by one of four states,

three triplet states with total spin 1, and one singlet state with total spin 0. The triplet

states are symmetric under exchange and therefore require an asymmetric positional

wave function, while the singlet state is asymmetric under exchange and requires a

symmetric positional wave function. As a result the Pauli exclusion principle allows two

electrons in the same position state, provided their spin state is different. This recovers the

expected energetic preference for the same spin configuration. This results in an energetic

preference for spins to align in a simple electronic gas. This equation clearly does not

explain the whole set of nanoscale magnetic effects and so increasing abstractions are

required.

This quantum mechanical effect can be approximated with a scalar exchange con-

stant[7]. This interaction and the associated Heisenberg model represent the culmination

of a large body of work describing magnetism and magnetic materials, with a history

of magnetic materials presented in as early as the year 1600 by Gilbert [8, translation]

[referenced in 9]. Subsequent examinations of the nature of magnetic materials include

the investigation of the earth’s magnetism by Carl Friedrich Gauss in 1839 [10] an early

quantitative measurement of natural magnetic phenomena. The quantitative study of the

inverse square law for the electromagnetic force by Charles Coulomb in 1785 [11] and the

theoretical unification of magnetism and electricity by James Clerk Maxwell in 1865 [12]

allow for the creation of motors and generators, fundamental to the modern world. Modern

advances in the theory of magnetism involve smaller and smaller scales. In the early 20th

century, the theory of ferromagnetism was developed by Pierre Weiss [13] in collaboration

with Pierre Curie [14]. Curie examined the critical temperature of a magnet, now called

the Curie temperature, defined as the temperature at which a permanent magnet loses

its cohesive magnetic ordering. The thermal excitation of the spins is large enough to

overcome the ordering of the magnetic moments in the material, leaving a disordered

"paramagnetic" state. Weiss developed the theory of a molecular field, a precursor to

mean field theory, which drives the magnetic behaviour of magnetic materials, to describe

the ordering behaviour of the magnetic moments. Following this work, Ernest Ising and

Werner Heisenberg formed the present day understanding of magnetic materials, through

examination of the Ising model [15], and its extension into three dimensions; the Classical

and Quantum Heisenberg models. These models lay the foundation for the examination of

macroscopic properties of complicated material structures. These models underpin the
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1. INTRODUCTION

simulation-based description of thermal behaviour in magnets by defining the exchange

interaction between magnetic sites [2].

Magnetic materials experience a reduction in coercivity, the ability for a magnetic

material to resist an external demagnetising field, at non-zero temperatures. This is

due to the reduced alignment of the magnetic moments of the material due to thermal

excitation. Thermal excitation overcomes the energy barrier to switch the magnetic field

direction of the activation volume of the material[16, 17, 18]. The temperature dependent

properties of magnetic materials is an important factor in their construction, as the

working temperature of many magnets is sufficient to greatly reduce their magnetic

performance. The design and modelling of current and novel magnetic structures is

important to increase their efficiency at working temperatures. In addition, the anisotropic

properties of a magnet are reduced at temperature, further reducing the capacity for work

a given permanent magnet has.

Rare earth magnets are permanent magnets formed from alloys containing rare-

earth elements (in addition to other metallic and non-metallic elements). The rare earth

elements comprise the 15 lanthanides (or lanthanoids), elements with atomic numbers 57-

71, and Yttrium and Scandium, elements adjacent to the lanthanides. Historically and by

convention Yttrium and Scandium are included due to their similar electronic properties

[19]. Early research into the magnetic properties of these rare earth elements began after

the discovery of the high anisotropy alloy Y Co5 in 1966 by K. J. Strnat and G. Hoffer [20],

and in 1984 the Neodymium based rare earth ferromagnet Nd2Fe14B was independently

discovered by 2 industrial research teams [21, 22]. These Neodymium based magnets have

the greatest magnetisation under typical working temperatures due to the 3-d transition

metal content, and exhibit large magnetocrystalline anisotropy due to the rare earth[23],

making them ideal candidates for electric motor applications. The critical nature of the

rare earths in these materials, whether the prototypical neodymium or a substituted

dysprosium, requires a directed modelling approach. This is doubly important due to

the large effect on the macroscopic magnetic properties and the small proportion of the

material they comprise. With respect to rare earth magnets, Nd2Fe14B type ferromagnets

and their macroscopic properties have been modelled with first principles approaches[24,

25] as well as using machine learning based [26] and phenomenological approaches. These

approaches have varying accuracy for varying properties and computation times[23], and

often a balanced approach with a multiscale model is required. The materials have a large

irreducible unit cell, making atomistic scale modelling a good choice for examining their

behaviour and prototyping new magnets.[27, 7]

With global electric vehicles sales reaching 10 million in 2022 [28] and global electric
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1. INTRODUCTION

motor sales projected to reach 982 Million units by 2023 [29], efficiency of motor design,

and the efficiency of permanent magnets encompassed within the motor is of paramount

importance as global electricity demand increases the demand for fossil fuels [30]. The

International Energy Agency (IEA) has made policy recommendations regarding the

increased usage of high efficiency motors [31, 32] demonstrating the importance of these

materials on a global scale. Due to their importance for the efficiency of motors and usage

in electric and hybrid-electric vehicles, it is increasingly important to effectively estimate

the performance of novel magnetic materials and structures, without engaging a complete

manufacturing pipeline, thereby avoiding the increased lag time in the prototyping cycle.

1.2 Methods of Modelling of Magnets

The selection of modelling methods revolves primarily around the scale of the simulation

and its computation time. Beginning at a small scale, Density Functional Theory is a

computational quantum mechanical modelling method used for investigating the electronic

and nuclear structure of many-electron systems. The principle of Density Functional

theory was first formalised by Walter Kohn and Pierre Hohenberg in 1964 [33], where the

two Hohenberg-Kohn theorems demonstrated that the ground state of a many electron

system can be described using a density functional dependent on only 3 spatial coordinates,

instead of the 3N coordinates of the N electrons, and that this is definitionally the electronic

ground state.

Density functional theory has historically been used for the approximation and ex-

ploration of electronic ground states in atoms, molecules and solid materials, although

time dependence has allowed for the studying of excited states. By definition the model is

only exact when the functional describing the electronic density of the system is known.

The approximate nature of the model comes from the fact that density functionals are

not known exactly (excluding the free electron gas case), but are approximated from

assumptions about the electronic state. These assumptions are only viable for certain

electronic structures and are expensive to evaluate.

In 1987 similar theorems were presented for systems in arbitrarily strong magnetic

fields [34]. The Kohn-Shan extension to this work changes the framework, using an

exchange-correlation term, to represent the interaction with the external potential and

the Coulomb interaction between electrons. There are many approximations to this term,

varying in complexity, and in viability for different materials, but this approximation is

often the most computationally expensive part of this methodology [35]. Specifically in

regard to the 4-f electrons present in rare earth materials, Self-Interaction Corrected

(SIC) Local Spin Density Approximation (LSDA-SIC) Functionals have been used. In order
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1. INTRODUCTION

to evaluate macroscopic properties from this approach however, requires an additional

approximation to account for temperature, often Mean Field Theory (which overestimates

Curie temperature) or Disordered Local Moment approach, creating another separation

from macroscopic empirical results.[36]

Density Functional Theory can be prohibitively expensive for larger systems, especially

regarding larger magnetic systems, with 3000 atom systems requiring approximately 106

core-seconds (seconds on a single core) to complete [37]. Rare earth metal alloys have on the

order of 71 atoms per cubic nanometre and larger magnetocrystalline anisotropy energy

driven effects, such as the large star shaped domains in NdFeB which have ordering on

the scale of 1000nm, make DFT prohibitively expensive for modelling certain phenomena

[38].

Increasing in scale from the electronic level to the atomic level yields atomistic mod-

elling. The classical atomistic spin model, in contrast to the quantum Density Functional

Theory, is an extension of the Classical Heisenberg model, to include anisotropy constant

with orbital quantum number n, and magnetic quantum number m effects. Magnetic

anisotropy refers to the energetic preference for a magnetic moment to align in a partic-

ular direction. Usually there are four types of anisotropy: shape anisotropy, caused by

the shape of the grain of magnetic material; magnetoelastic or stress anisotropy, caused

by tension applied to the material’s structure; exchange anisotropy or exchange bias,

caused by the interaction between antiferro- and ferro-magnetic materials; and magne-

tocrystalline anisotropy [39]. Magnetocrystalline anisotropy energy is the expression for

the energetic preference for a materials magnetic moment to align along certain crys-

tallographic directions. Simply put, the system requires more energy to magnetise in

certain directions when compared with others due to the shape and composition of the

unit cell of the material. This magnetocrystalline anisotropy energy usually relates to high

coercivity of a material, and the high magnetic performance of 2:14:1 type (Nd2Fe14B)

rare earth ferromagnet rare earth is attributed to the high anisotropy it exhibits [40]. It is

important therefore to accurately model the anisotropic behaviours of this class of rare

earth. The model occupies the nanoscale regime, with individual treatment of atomic sites

in a fixed lattice, but no treatment of individual electrons and their orbitals. The magnetic

moment of a site is an aggregate magnetic moment for all the electrons’ magnetic moment

associated with that atom. The model is one of the few models with the ability to evaluate

magnetic behaviours of complex unit cell structures while still being computationally

efficient enough to model them in bulk materials [7]. VAMPIRE [7] is the implementation

of the model used throughout this work, as a parallel compute enabled flexible open source

codebase.
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Increasing in scale again, from the atomic to the microscale yields the micromagnetic

approach [41]. Similar to the atomistic model, micromagnetic modelling examines the

behaviour of aggregate magnetic moments, but, instead of the aggregate relating to a

particular atomic site on a fixed lattice, the aggregate is over a larger volume in the mate-

rial. This volume is sufficiently large to not treat the underlying atomic structure of the

material directly (using the continuum approximation). While computationally efficient,

this is an extra approximation that must be parameterised to compare to empirical results.

This relates the underlying structure to the micromagnetic domain, and cannot always

reliably examine complex structures (i.e. non-cubic materials).

In order to effectively manage different models at different scales, and to use the

data they create effectively, automated exploration of parameter spaces is not only more

efficient for researchers, it is required for effective large scale research.

1.2.1 Programmatic analysis of data

As the quantity of data produced daily increases exponentially, reaching 64.2 zettabytes in

2020 [42], it is becoming increasingly important to evaluate experimental and simulation

data automatically, and in a programmatic manner where possible. Currently, much

data analysis of raw magnetisation data and parameterisation of material simulations is

performed manually creating a lag time between experiment or simulation and results

driving subsequent experiments or manufacturing. Current atomistic parameterisation

of magnetic materials involves computationally expensive ab initio calculations at zero

temperature [43], or guided manual trial and error by a researcher. A systematic approach

to this parameterisation lends itself to the increased compute power available to modern

researchers.

Mathematical optimisation has roots in the work of Pierre de Fermat [44], introducing

methods for finding maxima and minima analogous to calculus (which could be considered

an unknown in 1629 in the West, 14 years prior to Isaac Newton’s birth), methods which are

still relevant in physics today. Similarly relevant, was the work of Dantzig [45], introducing

simplex methods of optimisation and linear programming. The sum of these and other

works forms the field of mathematical optimisation, provide methods for finding the best

available values of an objective. The field of mathematical optimisation is ubiquitous

in physics, computer science and engineering, as it allows for the automation of guided

parameterisation, increasing the rate of the experimental cycle, and freeing researchers

to work on less rote tasks. Mathematical Optimisation therefore provides for a convenient

and automatic approach to estimating parameters of a system. Using the macroscopic

output information of the simulation (in our case, the magnetisation), and transforming
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1. INTRODUCTION

the data to examine a value related to the input parameter (in our case, the Curie

temperature, as detailed in section 3.6) an optimiser can iterate the input parameter until

a desired accuracy of output parameter is reached. This methodology allows parameters

that would take many researcher-hours to be achieved with one optimisation program,

freeing researchers to examine other information.

Future work in the field will likely lean even more heavily on Machine Learning and

Neural Networks. These are similar to mathematical optimisation, except the researcher

is required to provide less initial information regarding the relationship between input and

output data. Neural networks and other data driven machine learning models requires

a lot of data to compensate. For example, SciKit Learn [46], (a free software machine

learning library for the Python programming language, and the fifth most imported

package for machine learning projects on GitHub in 2019 [47]), illustrates the quantity of

data required, with the order of one hundred thousand samples suggested for regression

between data sets. Mathematical optimisation however, due to the strength of coupling

between the input parameters and output data, can allow a researcher with knowledge

of the domain to select optimisation variables to reduce the amount of data required to

become effective.

1.2.2 Parameterisation of magnetic materials

The focus of this work was driven by the need for a robust parameterisation of the atomistic

modelling of magnetic materials and rare earths as they relate to high performance motor

applications. In order to yield appropriate macroscopic behaviour using the atomistic

model, the atomistic parameters, such as exchange and anisotropy constants must be

carefully selected. This work is an attempt to characterise a permanent magnet’s atomistic

parameters programmatically, using numerical optimisation methods to establish these

parameters, and subsequently compare the macroscopic equilibrium behaviour of the

magnets to experimental work. In order to increase the rate of novel material development,

the automated numerical optimisation of these parameters becomes a more viable option,

when compared with individual researchers’ manual work. For example, to appropriately

characterise a magnetic alloy’s Curie temperature, the exchange constants, the measure

of energetic preference for spins to align, between constituent atoms must be known. In

simple systems, the relationship is trivial with exchange constant J is proportional to the

Curie temperature TC:

J ∝ TC (1.3)
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1. INTRODUCTION

For complicated systems however, this relationship is not easily extracted, and numer-

ical optimisation can more rapidly evaluate the appropriate exchange for a given system

and Curie temperature.
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METHODOLOGY

In this chapter the atomistic model will be introduced as a methodology for simulating

magnetic structures, both statically and dynamically. In order to computationally model a

permanent magnetic structure of significant size, certain approximations must be estab-

lished, and parameters must be set. For the atomistic model, the core assumption is that

the magnetic moments of individual atoms are located at crystal sites occupied by the mag-

netic atoms in the material. The significant parameter set contains: the crystallographic

structure (which can be established through means such as x-ray crystallography); the

exchange constant between spin sites, the anisotropic angular energy dependence of the

spin sites and the computational factors, such as interaction cut-off distances. Throughout

this chapter the atomistic model is explored mathematically, and its implementation in

VAMPIRE is detailed.

2.1 Atomistic Model

The atomistic spin model, as detailed in [7], is a classical model for modelling nanoscale

magnetic interactions and structures in solids. The atomistic model, and other adjusted

classical Heisenberg models, have been used for the evaluation of both a breadth and

depth of magnetic phenomena. The thermal response of permanent magnets has been

examined in relation to their spontaneous magnetisation and their anisotropy constants,

using Monte Carlo methods to establish equilibrium properties [7, 48, 49]. Similar work

by Gong et al. [50], and related to the materials examined in this thesis, uses ab initio

parameters to inform the choice of parameters in 2:14:1 type rare earth ferromagnet

[50] examining many microscopic parameters such as exchange stiffness. Domain wall
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2. METHODOLOGY

movement (regions separating magnetic domains in crystals) in 2:14:1 type rare earth

ferromagnet type rare earth has been examined by Nishino et al. [51] using parameters

calculated using the first principles Korringa-Kohn-Rostoker (KKR) method [52] and

statistical properties of magnets used for energy transfer, such as remanence coercivity,

have been examined in model magnets by Evans et al. [7] and in a rare earth ferromagnet

by Toga et al. [27]. Complex magnetic structures, such as the vortex-like skyrmions [53, 54]

have had properties such as lifetime and thermal response exposed by atomistic modelling

[55], important for any experimental application of the structures. Dynamic properties

used in Heat Assisted Magnetic Recording, and induced magnetic switching have been

established areas of examination for atomistic modelling [56, 57, 58].

The vast array of empirical work that has been replicated using this scheme of models

proves the associated adjusted Heisenberg models a reliable choice for the simulation

of magnetic behaviour of complicated crystal structures, with significant atomic scale

magnetic interactions.

In relation to the work presented in this thesis the atomistic model is used for the

evaluation of macroscopic equilibrium properties (including the Curie temperature and the

magnetocrystalline anisotropy energy) via the estimation of the atomistic parameters of

the simulation, the magnetic exchanges and all relevant orders of anisotropy constants km
n .

These constants are non-trivially linked to the macroscopic and experimentally verifiable

behaviours of a magnetic system, and this linkage means that it isn’t readily possible to

establish the sub-nano-scale parameters by means of a simple mathematical formula or

transformation. The core assumption of the atomistic spin model is that the spin moment

of any atom is localised to its magnetic site [7]. This assumption dictates the scale of the

simulation, sitting between the electron focused ab initio methods, and Density Functional

Theory, and the larger aggregated models of micromagnetics. The atomistic model can be

used within a multiscale model, with some parameters provided by ab initio calculations,

and subsequently providing parameters to larger scale micromagnetics simulations [59].

By treating each atomic site independently, complex magnetic structures can be exam-

ined without treatment of individual electrons, vastly reducing the computational effort

required to evaluate the magnetostatics and magnetodynamics of the material [7].

The assumption of atomistic spin locality is rooted in the Ising model proposed by

Wilhelm Lenz in 1920 and solved analytically in one dimensions in 1924 by Ising [15] and

in two dimensions in 1944 by Onsager [60].

The Ising model is a translationally invariant, ferromagnetic model with magnetic

spin states confined to plus or minus one at each spin site. Each magnetic spin state

is confined to a fixed lattice, analogous to the position of atoms in a unit cell and the
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resultant atomistic model’s fixed atomic sites. The Ising model has an analytical solution

in two dimensions only in the case of a square lattice in zero external magnetic field

[60]. However, the equilibrium of the system can be relatively easily evaluated using the

Metropolis Monte-Carlo method, allowing for the examination of equilibrium properties.

The Ising model Hamiltonian is given by

H =− ∑
〈i, j〉

Ji jσiσ j −µ
∑

j
h jσ j (2.1)

where 〈i, j〉 is the pairs neighbouring spins; Ji j is the exchange constant between i and

j, σi is the spin at site i; fixed to +1 or -1, σ j is its neighbouring spin; µ is the magnetic

moment of the site; and h j is the externally applied magnetic field.

While this incredibly simply Ising system reproduces some interesting magnetic

phenomena, including being one of the simplest models to demonstrate a phase transition

[61], it is markedly separate from a functional model of real world materials. The model

cannot replicate spin waves (as the binary nature of the model prevents the smoothing of

a disturbance in a spin over a range of spins), and the magnetisation of the system as a

function of temperature doesn’t replicate real world systems.

2.2 Heisenberg model

In order to more appropriately model real world materials, the Ising model can be extended

to allow the spin moments at each site to point in any direction on the unit sphere.[62,

63] This extension forms the basis of the classical Heisenberg model. As observed by

Stanley [64], the classical Heisenberg model is the n=3 case of the n-vector model, used for

statistical modelling of ferromagnetism. In this n-vector model, classical unit-length spins

si are placed at each vertex, v of a d-dimensional lattice. In specific relation to atomic

structures, and in the atomistic model, these spins are placed at vertices at the atomic

positions of the unit cell.

The spins in the classical Heisenberg model are a set of spins placed at each lattice

vertex and fulfil: −→
S i ∈R, |−→S i| = 1 (2.2)

The model’s Hamiltonian is defined:

H =−Ji j
∑
〈i, j〉

−→
S i ·−→S j −H

∑
i
µi
−→
S i (2.3)

(2.4)
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where

Ji j =
J, if i and j are neighbours,

0, otherwise
(2.5)

where

Ji j is the exchange constant, energies due to the exchange between spins;
−→
S is the

normalised atomic spin vector; 〈i, j〉 is the pairs neighbouring spins; H is the applied

magnetic field strength; µi is the magnetic moment of spin i. Fundamentally this is similar

to the Ising model presented above, without a binary fixed spin direction of +1 or -1

in the direction out of the lattice structure. This model more accurately approximates

the freedom of rotation for spin moments in magnetic systems and can replicate spin

wave behaviour, but the model has previously been shown to be incapable of spontaneous

magnetisation at temperature in two infinite dimensions, via the Mermin-Wagner theorem

[65], although for finite size systems the theorem does not apply [66]. As in the Ising model,

the magnetostatics of the system are investigated via the Monte-Carlo family of methods.

In order to evaluate the dynamics of this class of fixed magnetic moment site systems

however, the Landau-Lifshitz-Gilbert (LLG) and Landau-Lifshitz-Bloch (LLB) equations,

which describe precession of magnetic moments in solids, with intrinsic damping of the

material, and neglecting and approximating appropriate thermal noise respectively are

employed, see section 2.2.2.

The atomistic model is a further extension to the Heisenberg model. Fundamentally,

the model is extended via the Hamiltonian. The exchange constant J as described in

section 2.2 extends to more than the immediate neighbours of a spin site and additional

terms are added to the Hamiltonian related to magnetocrystalline anisotropy energy. The

description of an individual spin remains the same as the Heisenberg model, but the spins

are explicitly localised to atomic sites. The introduction of a non-scalar exchange constant

reflects the complex atomic structure of crystalline solids, with many spin moments able to

interact at different ranges and across different atom types. In this context, the exchange

constant becomes a matrix of interaction distances and atom types, with each referring

to a different J. The exchange can be further complicated with anisotropic exchange

(including 2-ion anisotropy [67]) and antisymmetric exchange (Dzyaloshinskii-Moriya

interaction [68, 69]) via the replacement of J with an exchange tensor, Ji j.

Ji j =


Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

 (2.6)
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Throughout this work, this exchange tensor is a diagonal tensor, with off diagonal

terms being zero. These terms relate to additional antisymmetric exchange terms [7,

70]. This extra asymmetric exchange is typically very weak, with measurements on Nd

doped crystals giving exchange constants of approximately 4-5 orders of magnitude less

than a symmetric exchange constant (2.24×10−25J for the asymmetric exchange in Nd
doped Y VO4 crystals, versus 5×10−21Jfor the symmetric exchange in Nd2Fe14B) [71].

This also means that the exchange between atomic sites is symmetric, it depends only

on their relative orientation (the dot product of spins), and not on their crystallographic

orientations. The single ion anisotropy in 2:14:1 type rare earth ferromagnet is accounted

for in the magnetocrystalline anisotropy energy terms forming the anisotropy Hamiltonian,

Hani, relevant to chapter 5.

Combining these extensions, the atomistic model’s Hamiltonian is given by,

H = Hexch +Hani +Happ (2.7)

Composed of the components

Hexch =− ∑
〈i, j〉

Ji j
−→
S i ·−→S j

Hani =−∑
i

[
k0

2 sin2θ+ (
k0

4 +k4
4 cos4φ

)
sin4θ+ (

k0
6 +k4

6 cos4φ
)
sin6θ− . . .

]
Happ =−∑

i
µs

−→
S i ·H

(2.8)

where:
Hexch = energy from the exchange interaction between spins

Hani =magnetic anisotropy in the spherical harmonics basis set

Happ =Energy from the applied magnetic field

Bapp =Applied magnetic field strength from external fields

i, j = neighbouring atomic sites

Ji, j = exchange constant between atomic sites i and j (tensor component)

Si =The spin on site i

θ = the polar angle (from the z-axis) of the spin

φ = the azimuthal angle (from the x-axis in the x-y plane) of the spin

k0
2,4,6 = the easy axis anisotropy constants of second, fourth and sixth order

k4
2,4,6 = the rotational anisotropy constants of second, fourth and sixth order;

in this instance chosen to match the tetragonal symmetry of Nd2Fe14B.

Note that the anisotropy Hamiltonian can be formed by any

orthonormal basis set, but the spherical harmonics

presented are chosen to match the symmetries in the materials examined.
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The atomistic model formalism treats the unit cell of the required material as the

minimum repeating unit, as opposed to the single atom in the Ising Model. The spin sites

are placed at the atomic positions, these are then translated along the unit vectors of

the crystal, left, right, up, down, and into and out of the page. This translation can be

extended infinitely, dependent on compute resources. Within the atomistic class of models,

two atoms labelled A and B, while distinct from each other, would be characterised the

same regardless of their cell’s position in the larger structure. It is possible instead to

generate a much larger "macro-cell" with individual characteristics for each site, and this

way of decomposing the material becomes more relevant in the work done by Cadogan

et al. [72] detailed in section 5.1. For macroscopic properties, the finite larger crystal

structure is treated as an infinite bulk crystal through the use of periodic boundary

conditions. Here the material’s edges are treated as wrapping around to the opposite face,

essentially preventing any section of the material being on the "surface". Care must be

taken in this instance to ensure that the finite structure which is repeated via periodic

boundary conditions is of sufficient size to prevent finite size effects from dominating the

performance of the magnet. Traditionally this systematic effect is countered by repeated

iterations of the same material at larger and larger (or inversely, smaller and smaller)

system sizes until any trend in macroscopic property is removed.

The atomistic Hamiltonian is broadly similar to the classical Heisenberg model, with

each spin localised to atomic sites subsequently dictating the lattice of the model. The

addition of magnetocrystalline anisotropy energy to the model allows for examination of

more empirical effects than is possible with a fully isotropic system. The atomistic model

also allows for the introduction of different exchange constants for different interactions,

with each element in the material comprising its own sublattice, with its own magnetic

inter and intra sub-lattice interaction.

Given that Ji j is the exchange constant between atoms i and j, an isotropic calculation

of the spin exchange energy is given by:

Hexch =− ∑
〈i, j〉

Ji j
−→
S i ·−→S j

=− ∑
〈i, j〉

[
S i

x S i
y S i

z

]
Ji j 0 0

0 Ji j 0

0 0 Ji j




S j
x

S j
y

S j
z


=−∑

i

∑
j<i

Ji j
−→
S i ·−→S j

=−∑
i

∑
j<i

Ji j

(
S i

x,S i
y,S i

z

)
·
(
S j

x,S j
y,S j

z

)
(2.9)

The classical 3d-Heisenberg model has been used successfully to model materials
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which fit into the so-called Heisenberg universality class. Experimental measurements of

the specific heat, spontaneous magnetisation at temperature, isothermal susceptibility

and coordination length can be used to assign materials to this universality class (with

similar classes for the Ising model and 2 dimensional XY model). Antiferromagnets

which the Heisenberg model produces good agreement for include KMnF3, KNiF3 and

RbMnF3 while the similar KCoF3 is less well modelled[73, 74, 75], with anisotropy

causing deviations and spin orbit coupling causing larger deviation still. Rare earth

materials have been held to be good candidates for this style of model, when compared with

metals with more itinerant d-electrons[76]. Other materials do not exhibit good agreement

with this model at all however, when compared with the flexibility of the atomistic model,

especially in its description of magnetic anisotropy, paradoxically extremely relevant for

the RE2Fe14B type materials. The Heisenberg model allows for examination of tertiary

magnetic effects, such as second order phase order transitions.

The atomistic model has historically created good agreement with experimental data

for macroscopic properties, albeit with some phenomenological scaling performed[7, 77],

and due to the flexible nature of the anisotropy implementation, anisotropic effects can be

matched more readily to experiment.

2.2.1 Metropolis Hastings

The aims for this work were to replicate equilibrium measurements of the rare earth

ferromagnets and as such the Metropolis Hastings Monte Carlo method was used to

"evolve" the system to an equilibrium state. The Metropolis-Hastings algorithm is tra-

ditionally used to numerically solve the Ising model [78] and has been used repeatedly

in applying the atomistic model to magnetostatics or equilibrium measurements. The

Metropolis-Hastings algorithm is a Markov Chain Monte Carlo method.

Markov Monte Carlo methods are a collection of algorithms designed for sampling

from a probability distribution when uniformly sampling the entire distribution would

be prohibitively difficult; being both computationally and empirically expensive [79]. The

principle of these methods, is that by separating the system into a Markov chain, and

sampling the steps in this chain sufficiently, the overall distribution, or in our case the

static behaviour of the magnet can be established [7, 80]. The requirement for a Markov

chain is that it is composed of stochastic states that can undergo a series of probabilistic

state changes, where the probability is dependent only on the previous state. That is it

satisfies the Markov property, akin to "memorylessness" of the system [79]. In the atomistic

model of a magnetic system, the energy of the system at any state is only dependent on the

current state, and the probability of movement between states is only dependent on the
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energy difference in states, satisfying the Markov property [81, 82]. For this model, the

chain is also countably infinite, and dependent on discrete rather than continuous time

steps. Throughout this work, the stopping time of the Monte Carlo method, is a fixed rule,

counting a number of "time-steps", rather than evaluating any set of criteria of the system.

While a stopping time could be evaluated using derivatives of simulation properties, this

reduction in total computation time could be counteracted by the increase in calculations

made.

It should be noted that this approach only allows examination of the statics of the

system, as magnetic systems can exhibit a memory in their dynamics (e.g. hysteresis)

and this memory means that any dynamical effects are only recovered in a system that

does not satisfy the Markov property. Static systems however (those at equilibrium) are

memory-less and can be evaluated using the method. The steps in this chain yield the

Monte Carlo "time" steps in our simulation using VAMPIRE.

The Metropolis algorithm is presented as follows:

1. Given the current state of the system m, select a new possible state n using selection

probability f(m,n)

2. Evaluate the acceptance probability of this change in system a(m,n)

3. Accept the new state and repeat with n as the current state, or

4. Reject the new state and repeat with m as the current state

By imposing a restriction on the number of spin flips allowed to change between states

to one, the energy change between systems is limited by the coordination number and the

exchange constant. This energy change is assumed to be smaller in magnitude than the

thermal energy for fluctuation in the system (of the order kBT). For the Ising model, the

selection probability is simply uniform. The selection probability for any site to flip is 1/L
where L is the number of lattice sites. The acceptance probability is more complicated.

Given a spin flip changing the system from state m to state n the acceptance probability is

given by

g (m,n)=
e−β(Hn−Hm), if Hn −Hm > 0

1, otherwise
(2.10)
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Where the probability e−β(Hn−Hm) is enforced to preserve detailed balance [78]. Detailed

balance requires that in kinetic systems with elementary steps, at equilibrium each process

is in equilibrium with its inverse.

That is that, in the case of a Markov chain, any closed loop of the chain must have

the same probability in either direction. This holds in our case, as any combination of

individual spin flips can return to the initial state, and the sum of probabilities will hold.

The acceptance probability for the atomistic model during a Monte-Carlo simulation is

similarly defined.

g (m,n)=

e

(
−(

Enew−Eold
)
µs

µB

)
·RT

, if Enew −Eold > 0

1, otherwise
(2.11)

where:
Enew,Eold = calculated energies after and before the spin state changes

µs =Atomic magnetic moment

µB Bohr magneton

RT =Temperature rescaling constant (detailed in [7, 77])

2.2.2 LLG and Dynamics of systems

The Metropolis Monte Carlo methods established in section 2.2.1 are relatively rapid

methods for establishing the equilibrium magnetic state of an atomistic model, but they

are incapable of calculating appropriate dynamic information, as the "time steps" in

VAMPIRE’s Monte Carlo methods are metaphorical, they refer to the steps through the

Markov Chain of the system. Advancement through this chain does not advance through

time, but rather, advances in aggregate towards the equilibrium of the system. In order

to calculate dynamic properties of a material either a series of Monte Carlo simulations

can be carried out in sequence, with small changes to the conditions of the system before

allowing to re-equilibrate, or a dynamical method can be used. The common dynamical

method for evaluating spin systems is the Landau-Lifshitz Gilbert equation [83, 84]. The

Landau-Lifshitz equation was first presented in 1935 [83].

dM
dT

=−γM×He f f −λM× (
M×He f f

)
(2.12)

18 of 142



2. METHODOLOGY

where:
M = the magnetisation

γ = the electron gyromagnetic ratio

,→ (1.76085963023±0.00000000053 ·1011s−1T−1 [85])

He f f = the effective field accounting for applied magnetic field,

the demagnetising field (magnetic field due to the magnetisation)

formed by taking the variation in the Gibbs free energy with

with respect to the magnetisation, [86]

λ = A phenomenological damping ratio, inherent to the material defined as(
λ=α∗ γ

Ms

)
where α is a dimensionless material damping factor,

γ is the electron gyromagnetic ratio and

Ms is the saturation magnetisation.

λ=α · γ

Ms
(2.13)

2.2.2.1 Integrators

The LLG and LLB equations are first order differential equations, and they can be

approximately solved numerically using a numerical integration scheme. The integrator

most often used in VAMPIRE is Heun’s method, a variant on Euler’s explicit trapezium rule

method, similar to a two stage Runge-Kutta method [87]. Heun’s method is a numerical

method for solving an ordinary differential equation with a given initial value.

The algorithm is as follows: For an initial value problem y′(t)= f (t, y(t)), y(t0)= y0, the

two stage method is given here as,

1. Calculate an intermediate point, ai+1 = yi +hf (ti, yi)

2. Calculate the next approximated point, yi+1 = yi + h
2 [ f (ti, yi)+ f (ti+1,ai+1]

where ti +1= ti +h, and ai+1 is an approximate solution for yi+1.

VAMPIRE is an open-source atomistic magnetic modelling package developed primarily

at the University of York [7, 88]. The package provides ready-made implementations of the

LLG and Monte-Carlo methods of evaluating the magnetic behaviour of magnetic models.

The atomistic model is explained in section 2.1. Example input files for the simulations

provided are in the appendix appendix A.3.
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2.3 Structure of Nd2Fe14B

The prototypical Nd2Fe14B has the space group (P42/mnm) [89]. This is primarily rel-

evant as a computational concern, its relative irreducibility meaning better ab initio

methods are prohibitively expensive; and in relation to the tetragonal symmetries that

can be employed in the selection of anisotropic basis vectors to describe the anisotropic

behaviours of Nd2Fe14B. The full space group’s Wyckoff positions are presented in ta-

ble A.1. Throughout this work, the cut-off radius for exchange interaction is fixed to 5Å,

this radius is large enough to include the largest inter atom distances within the unit

cell of Nd2Fe14B[89] whilst not being prohibitively expensive. In energetic terms, the

exchange coupling as calculated by Matsumoto and Akai [90] is reduced by one order

of magnitude at a distance of 5Å comparatively. Longer cut-off radii for the exchange

interaction is a focus of future simulations.

Nd Fe B

Figure 2.1: The unit cell of Nd2Fe14B displaying only the magnetic atoms (Boron has
been removed). This leaves 64 magnetic atoms with 1932 inter-atom interactions with
a 5 angstrom cut-off radius, this radius is large enough to include the largest inter
atom distances within the unit cell of Nd2Fe14B[89]. There are 11 Wyckoff sites with
multiplicity ranging from 2 to 16 [91], see table A.1 Generated using Jmol [92] and Povray
[93] and provided by Richard Evans.
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EXCHANGE OPTIMISATION

The atomistic parameters for different magnetic materials are not readily known, and are

not always easily derivable from analytic expressions. Previously, parameterisation of the

atomistic model has been performed manually, involving many cycles of parameter tweaks

and manual examination of simulation properties. Using methods such as parameter

sweeps to explore the state space of parameters is expensive due to the large parameter

space. In order to accelerate this process, automatic mathematical optimisation of these

parameters can be employed. This automation is demonstrated for the atomistic software

VAMPIRE for single atom ferromagnets, before it can be extended for more complex

systems in later chapters. As a prototypical example, the iron to iron exchange constant,

XFe−Fe, in body-centred-cubic iron was to be optimised. This would lay a foundation for

the implementation of a general optimiser for more complex systems, such as the 2:14:1

type rare earth ferromagnet rare earth ferromagnets.

This chapter details the parameterisation of the exchange constant in body-centred-

cubic iron. The parameterisation requires an accurate and reliable method of measuring

the Curie temperature of a simulated magnetic material, and several Curie Temperature

Measurement Protocols are examined and evaluated. These protocols are used as feed-

back for a numerical optimiser as it estimates the exchange constant by minimising the

difference in empirical and simulated Curie temperature.
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3.1 Fixed and variable parameters in
body-centred-cubic Iron

The modelling parameter set for body-centred-cubic iron is presented in Table 3.1. The

simulated material is generated as a body-centred-cubic crystal structure, which yields

a coordination number (the number of atoms adjacent and linked directly to each atom)

of 8, similarly this corresponds to 8 equidistant nearest neighbours. Additionally, the

system is wholly isotropic with respect to the crystal structure, with each of the system’s

lattice constants equal at a = 2.866Å and all internal angles of the unit cell set at 90deg.

Each atomic site (where an iron is located) is place at one of these crystal sites. The

magnetic "atom" at each atomic site has the same magnetic parameters (magnetic moment,

anisotropy constant, exchange constant) as every other atom, with only position changed.

This "atom" is the approximation to the effective local magnetic moment at this site. The

nearest neighbour approximation to exchange is employed, and as such the exchange

parameter between any two nearest neighbour atoms is the same scalar measured in

Joules per link. This exchange parameter is the optimisation target, that is, the value

we iterate towards. The system is defined with periodic boundary conditions, with each

edge of the system interacting with the opposite edge. For example, the limit of the system

in the positive x-direction interacts with the atomic sites on the limit in the negative

x-direction. The system size was chosen to be 10nm in an attempt to minimise finite size

effects in the magnetic behaviour, as used in similar atomistic simulations performed

using VAMPIRE[94]. The magnetic "atoms" have a local moment of 2.22µB, and only

cubic anisotropy, kc(S4
x +S4

y+S4
z)1, with three easy axes (each of x, y, and z). The magneto-

crystalline-anisotropy therefore cubic in nature and is weak in bcc-Fe, especially compared

to exchange interaction. Given the literature value of 48kJ/m3[95], each unit cell has

1.131×10−24 joules of energy contributed from the cubic anisotropy, when compared with

approximately 4×10−20 joules due to the first nearest neighbour exchange interaction

(assuming 5×10−21J exchange constant). The anisotropy is dependent on lattice expansion

due to temperature, with the scaling constant at temperature presented in fig. 3.1. This

has a negligible effect on calculated Curie temperature in comparison to exchange, as the

energy due to exchange is significantly larger (of the order of 10000 times larger). Higher

order anisotropy terms are similarly neglected, as the energy due to the next component

of cubic anisotropy. No external field is applied.

The Hamiltonian used for calculating the energy for a given system state in this

configuration is (as given in equation 2.7):

1Equivalent to kc

[(
cosφsinθ

)2 (
sinφsinθ

)2 + (
sinφsinθ

)2 (cosθ)2 + (cosθ)2
(
cosφsinθ

)2
]

in polar coordi-
nates
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Figure 3.1: Cubic anisotropy scaling for bcc-Fe due to lattice expansion at temperature.
This value is multiplied by the cubic anisotropy constant specified in VAMPIRE. Despite
the factor of 2.5 at temperatures greater than 250K, the anisotropy energy is still of the
order 10000 times smaller than the energy due to exchange interaction.

H = Hexch +Hani +Happ (3.1)

Composed of the components

Hexch =− ∑
〈i, j〉

Ji j
−→
S i ·−→S j

Hani =−∑
i

[
kc(S4

x +S4
y +S4

z)
]

Happ =−∑
i
µs

−→
S i ·H

(3.2)

In addition, the nearest neighbour approximation yields a simplified exchange term:

Hexch =− J
∑
〈i, j〉

−→
S i ·−→S j

given that Ji j is a constant J for each of 8 Fe-Fe interactions.
(3.3)

Given that no field is applied in the measurement of Curie temperature, rendering

the applied term zero (Happ = 0), and that the anisotropy is much less than the exchange

energy (Hani ¿ Hexch) the full Hamiltonian is given by:

23 of 142



3. EXCHANGE OPTIMISATION

H =− J
∑

i

8∑
j=1

−→
S i ·−→S j (3.4)

where; J is the exchange constant between iron atoms, Si is the spin at site i, and j refers

to each of 8 neighbouring spins.

Parameter Description Value

Unit cell Structure body centered cubic "bcc"

Unit cell size The length of the unit cell in

Ångströms, the same constant value

in x, y and z due to the cubic nature

of the unit cell.

2.866Å

System size (x,y,z) The total size of the system in x, y

and z. Where this parameter would

cut a unit cell in half, the system is

rounded up to a full multiple of the

unit cell size.

10nm

Coordination number The number of atoms directly ad-

jacent to an atom. Equivalent in

the nearest neighbour approxima-

tion to the number of atoms in the

neighbour-list.

8

Exchange The energy of the exchange inter-

action between each iron atom, in

Joules per link. This is the param-

eter that was varied to fit the sim-

ulation to the experimental Curie

temperature.

e.g. 7.0e−21J/l ink

Simulation type The simulation program which is

evaluated. The Curie temperature

program built in to VAMPIRE was

used. This program equilibrates the

system at a start temperature (the

minimum temperature by default)

then calculates statistics such as

magnetisation over an averaging pe-

riod of loop-time-steps, before in-

crementing the temperature by a

temperature-increment.

curie-temperature
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Minimum temperature The start temperature of the Curie

program simulation.

400K

Maximum temperature The end temperature of the Curie

program simulation.

1600K

Temperature increment The step size for the change in tem-

perature at each step.

2K

Equilibration time steps The number of Monte Carlo steps

that the simulation steps through

at the start temperature before be-

ginning statistics accumulation and

averaging.

25000

Loop time steps The number of Monte Carlo steps

the statistics at each temperature

are averaged over.

5000

Boundary conditions The system was generated with pe-

riodic boundaries in x, y and z direc-

tions. This treats the unit cells on

one extreme of the system as con-

nected to the other side directly.

Periodic

Atomistic spin moment The magnetic moment per atom. As

this is a single atom type system

and the system is integrated stati-

cally using the Monte Carlo method

this value is unused. This parame-

ter would be used during examina-

tion of magneto dynamics, and in

multi-atom systems as it is different

for each magnetic atom type.

2.22µB

Table 3.1: Parameters for modelling body-centred-cubic Iron atomistically with VAMPIRE.

3.2 Optimisation path

Given the initial system configuration above, the system’s equilibrium state at a given

temperature is modelled using the Metropolis Hastings Monte Carlo method. The dynam-

ical methods of magnet simulation (such as the Landau-Lifshitz-Gilbert equation) are

not employed during the optimisation process, as the magnetostatics of the system at

equilibrium are the properties being optimised for. The Metropolis Monte-Carlo method
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was therefore employed throughout this work, as detailed previously in section 2.2.1.

The equilibrium spin configuration at a specific temperature value can then be ascer-

tained. Repeating this process for a series of values, ranging from well below the expected

Curie temperature to above it, the spontaneous magnetisation as a function of tempera-

ture can be ascertained. Using the CTMPs referenced in section 3.6 the Curie temperature

can be evaluated, and this can be used to alter the following estimate for the exchange

constant. Given the positive relationship between exchange and Curie temperature in

ferromagnets, if the Curie temperature is lower than experiment, then the exchange is

increased. Similarly, the reverse is true.

3.3 Optimisation software

To prevent the additional complexity of designing a bespoke piece of atomistic modelling

software, an external program used to control the behaviour of VAMPIRE was developed.

This program, tentatively entitled vampire_opt, generates appropriate input files for

VAMPIRE, at each stage of the exchange optimisation process, before running VAMPIRE

on those input files; and then performing the Curie temperature analysis on the output

data from the VAMPIRE simulation. The program is implemented in Python 3.6, a

language chosen for its flexibility, compatibility and its readily available scientific libraries.

In particular the libraries in use are:

• SciPy [96], for analysis methods and optimisers,

• numpy [97], for data structures used in the storage of simulation data,

and the additional built-in libraries,

• shutil, for file handling when copying templated input files,

• os, multi-platform filesystem access,

• subprocess, for running VAMPIRE programmatically,

• random, for pseudo random number generation.

The final four libraries are included in the Lib section of Python installs.

The program stores the input exchange and output Curie temperature values from

previous iterations in an optimisation sequence. This allows the program to be stopped

and restarted, reusing earlier optimisation steps and preventing the repeat of expensive

VAMPIRE simulations, reading the optimisation output data file. Future improvements to
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this lookup could include Bayesian methods to bias towards less well explored regions of

the parameter space as the optimisation unfolds[23]. Although this increases the amount

of state stored for each optimisation step, the number of additional variables would be

minimal.

The program repository, located at https://github.com/a-naden/vampire_opt
[98] uses the curie_calc repository [99] as a submodule. This submodule contains the

implementations of the CTMPs outlined in sections 3.6.1 to 3.6.6 and 3.6.8 and listed in

listings 2 to 7. This submodule is required for the functioning of vampire_opt, with each

version of the program using a fixed commit of the submodule, ensuring reproducibility

despite any upstream changes made to the CTMPs repository. This allows for parallel

future development of the two code bases.

Python as a language is well suited for controlling another program’s behaviours due

to its flexible "duck" typing (typing of variables by the methods that can be applied to

them, rather than an explicit declaration) and powerful interpreter. As an interpreted

language, program state can be easily examined while the program is running. In future

this should allow for a permanent "worker" program that controls VAMPIRE externally,

vampy, with work progressing in this area. As the computation of the atomistic model

is orders of magnitude more computationally expensive than the text based operations

on input files, any reduction in speed compared to a lower level language is rendered

moot in comparison to the prototyping speed, and the additional reach in the scientific

community a Python script has. The program operated exclusively on input and output

files for two reasons: firstly, the state of the optimiser could be readily examined without

running VAMPIRE and additionally every state contains the input for a valid VAMPIRE

simulation, and the corresponding output allowing for the decoupling of the computational

work from the optimiser in the case of hardware failure requiring additional simulations.

Many changes will be required for this program to be reliable and robust for any

exchange problem. The program is currently brittle software, making use of some hard

coded parameters in relation to the specific materials examined in this thesis. In addition,

the total program state is not always transparent, with optimisation data being converted

to text and reinterpreted at a later date. In addition, with more resources, the program

would have a simple setup script, as well as a collection of material examples from across

magnetism.

Initially, only one dimensional optimisation was intended, and vampire_opt was writ-

ten for assuming only a one dimensional optimisation problem such as demonstrated for

bcc-Fe in fig. 3.8. The program has been developed to enable parallel multidimensional

optimisation subsequently, however, due to the dimensionality reduction enabled through
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the use of a prototypical element (see section 3.7.3), this is not fully evaluated at the

time of writing. While this 1-d optimisation of exchange is well suited for similar ma-

terials, different materials, such as ferro- and ferri-magnets rare earths have different

phenomenological low temperature rescaling behaviour due to their different quantum

stiffness behaviour. Work by Christopher Venn (BSc) [100] in his Dissertation, with sup-

port provided by the author, during his time at York, illustrates the range of values an

exchange constant can take, with different low-temperature quantum rescaling constants

(see section 3.4) vastly changing the interactions between sublattices, as they effectively

experience a different quantum thermostatic heat bath. This results in different magneti-

sation behaviour, in addition to a different Curie temperature, for elements in a structure

which do not behave similarly.

3.4 Low temperature rescaling

The classical spins of the Heisenberg and atomistic models do not have the same ther-

mal behaviour as the quantum behaviour of the physical electrons due to their lack of

quantisation. This causes a discrepancy in the low temperature behaviour of the mag-

netisation, and this is addressed using the low temperature rescaling detailed in [49,

77]. This rescaling uses a single parameter to map the magnetisation behaviour of the

classical simulation, to the calculated behaviour in the quantum regime. As detailed by

Evans, Atxitia, and Chantrell [49], the Curie-Bloch equation, relating temperature and

magnetisation can be defined as:

m(τ)= (1−τα)β (3.5)

Kuzmin [101] however presents an alternative description of the magnetisation:

m(τ)=
[
1− sτ3/2 − (1− s)τp

]β
(3.6)

where τ is defined as T
TC

, or the fraction of the Curie Temperature, and s and p are

fitting parameters.

By relating these equations, and fixing β= 0.34, the simulation temperature can be

related to an experimental temperature using:

Tsim

TC
=

(Texp

TC

)α
(3.7)
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This allows for the low temperature magnetisation to match empirical values and was

evaluated for single-exchange systems [49]. Each magnetisation sublattice in a multi-atom

system however, can have a different rescaling constant α.

It is important to note that the scaling constants are material specific, and that each

sublattice in a multi sublattice system can be scaled differently. The automatic scaling of

exchange presented in [49] does not preserve the relative behaviour of different sublattices,

introducing an additional parameter that must be fitted for perfect empirical agreement.

3.5 Optimising Iron-Iron exchange in bcc-Fe

To establish the appropriateness of using a numerical optimisation method to find the

atomistic exchange of a magnetic material, a simple test used was to calculate the Fe-Fe

exchange for bcc-Iron. This material is modelled using only a single atomistic exchange

constant [7] while reproducing the temperature dependence on the magnetisation and cru-

cially, the Curie temperature. The single exchange value yields a simple one-dimensional

optimisation problem, with the figure of merit, the Curie temperature of the material

dependent on only one input variable and on the method of calculation. The Curie Tem-

perature TC is therefore given by

TC = f (XFe) (3.8)

where f is a function describing running the atomistic simulation with VAMPIRE, using

the input of the function as the exchange constant, and then evaluating the Curie temper-

ature of the simulation using the Curie methods detailed in 3.6. X refers to the exchange

constant estimated by the optimiser.

The function f is exposed to the optimiser but is composed of the sub procedures

g and h, where g is the calculation of the Curie temperature from output data, and

h is the VAMPIRE Heisenberg model Monte-Carlo simulation. These functions must

remain coupled throughout the optimisation, as they contain parameters invisible to

the optimiser. For example, g contains parameters dictating the calculation of Curie

temperature, including the subset of methods used, and h contains VAMPIRE input

parameters, such as the size of the system simulated. If these parameters are changed in

a manner invisible to the optimiser (i.e. by altering system size mid-optimisation) then

the optimiser may fail.

The objective function of an optimiser is the function that maps the input variable

to an associated variable which quantifies some "cost" associated with the system state.

With the Curie temperature being the value we wish to iterate the optimiser towards,

the objective function’s associated cost is the numerical difference between the calculated
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Curie temperature and the empirically evaluated Curie temperature. This is therefore the

value we wish to minimise. Explicitly, given an empirical value of the Curie temperature of

the material, TFe = 1043K [20], a calculated Curie temperature, TC and an input exchange

value of XFe; the objective function of the optimisation problem is:

min (|Tc −TFe|)
min (| f (XFe)−TFe|) (3.9)

min (|g (h (XFe))−TFe|)

where f is a fixed function consisting of; the calculation of magnetisation curves using

VAMPIRE (h) and Calculating the Curie temperature based on that curve (g).

The methods used to calculate the Curie temperature of a material have been collec-

tively labelled as Curie Temperature Measurement Protocols, (CTMPs). As these methods

can vary substantially under differing conditions, the methods required some examination.
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3.6 Curie Temperature Measurement Protocols

The evaluation of Curie temperature has often been established on a case by case basis,

with several methods, presented in sections 3.6.2 to 3.6.6, providing less insight into

complex materials[102, 103]. Comparisons of methods have been made for Iron-based

compounds, but fewer evaluations have been made for complex ferromagnetic structures,

such as the 2:14:1 type rare earth ferromagnets, or on the stability of these methods when

applied to incomplete or noisy datasets. Additional complications in the determination

of the Curie temperature, such as the inhomogeneity of the temperature of a sample

material, can cause changes in the evaluated Curie temperature, and can smooth the

phase transition over a temperature range [102]. Some first principles methods exist for

the evaluation of simpler materials, such as bcc-Fe[43], but methods often over-report the

empirical Curie temperature [104, 105, 106].

In order to reliably estimate the relationship between exchange and Curie temperature

the Curie temperature must be evaluated at runtime of the optimiser. CTMP are defined

here for the numerical estimation of the Curie temperature of a ferromagnetic material.

Each CTMP operates on either the:

• |
−→
M (T) |, Magnetisation as a function of temperature curve;

• χ (T), Susceptibility as a function of temperature; or

• c (T), the specific heat capacity as a function of temperature.

Each of these parameters is readily available from the output file of a Monte-Carlo

VAMPIRE Curie temperature simulation, input referenced in at the VAMPIRE website[88,

107]appendix A.1.1, and methods referenced in section 3.6.9. Specifically, the commands

output:mean-magnetisation,
output:mean-susceptibility,
output:mean-specific-heat

return these values explicitly, as calculated in sections 3.6.1 and 3.6.6 and with VAM-

PIRE’s source listed in listings 8 to 10. This simulation involves a systematic raising of

the temperature of the system, followed by an equilibration time, and then the calculation

of the desired properties averaged over the "time" steps of the simulation. Prior to using a

CTMP for the systematic evaluation of atomistic exchange constants, the CTMPs must

be evaluated to find an acceptably consistent series of CTMPs to use throughout the
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optimisation process. In practice and in theory it would be preferable to use the same

CTMP by which the Curie temperature is calculated in any particular academic exper-

imental reference, in literature however, the specific methods are not always listed in

an appropriate manner for extraction, or at all. As "Big Data" becomes more practical in

materials science this is likely to change, with selection of individual CTMPs catered to

match simulation to specific experimental results becoming the norm.

In addition, measurements of magnetic materials differ from optimal systems gen-

erated for simulation. The grain size of domains can alter the magnetic properties of a

material, with saturation magnetisation and coercivity dependent on grain size and ori-

entation[108, 109]. In addition experimental apparatus cannot fully remove the external

fields from a material or reduce its temperature to absolute zero as in simulation. As a

result, the properties of the magnet in these conditions are extrapolated via a series of

measurements above these values. It should be noted however, that with the increased

interest in low-field and low-temperature measurements, sub femtotesla magnetometers

have been demonstrated[110, 111, 112] for the use in Zero or Ultra Low Field Nuclear

Magnetic Resonance measurements.

Future work in this area should include an appropriate examination on the reliability

of a method given the type and quality of data to be analysed. By, for example, measuring

the smoothness, resolution, and range of the magnetisation data, the method that has

been most accurate historically for that data type could be chosen. This would involve a

much more comprehensive and multi-dimensional analysis of the quality of the methods

outlined here, beyond the scope of this work. This could be a viable region for the use of

machine learning, specifically data driven neural networks, due to the ease of creation

of input data via VAMPIRE simulation and the high dimensionality of the state space to

be explored. The methods in use throughout this work, by taking their arithmetic mean

at each instance, are: the Bloch protocol, section 3.6.2[113]; Moskowitz’s extrapolation

method, section 3.6.3[114]; Tauxe’s method, section 3.6.5[115]; the Specific Heat Capacity

protocol, section 3.6.6; the Susceptibility protocol, section 3.6.6.

A brief outline of each method is available below, but greater detail on implementation

and methodology is available in appendices A.2.1.

3.6.1 Measuring magnetisation with VAMPIRE

Throughout the work forming this thesis, magnetisation is measured directly in VAMPIRE

simulations as
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−→
M =∑

i

−→
S i · µi∑

nµn
(3.10)

where:
−→
M is the normalised magnetisation vector;

−→
S is the normalised atomic spin

vector; i is iterating through the spin sites n and µi is the magnetic moment of spin i.

3.6.2 Fitting Ms(T)

Fitting a curve to the magnetisation data can be used to estimate the Curie temperature

in ferromagnets[116]. Bloch’s law can be used to relate the spontaneous magnetisation of

a material (the magnetisation measured in absence of an external field) and temperature

the material is equilibrated to. At low temperature the Bloch law was established as

explicitly,

|−→M(T)| = M(0) ·
(
1−

(
T
Tc

)3/2
)

(3.11)

where M(T) is the magnetisation at zero external field at temperature T; M(0) is the

magnetisation at zero external field and at zero temperature; T is the temperature and

Tc is the Curie temperature[113]. In real magnets, close to the Curie temperature the

following proportional relationship holds,

|−→M(T)|∝
(
1−

(
T
Tc

))β
(3.12)

The limits of each of these equations can be interpolated for systems with only one large

phase transition, from ferro- to para-magnetic:

|−→M(T)| = M(0) ·
(
1−

(
T
Tc

)α)β
(3.13)

where β is a critical exponent of the system, and the other symbols are unchanged from

3.11. This is fitted using the Trust Region Reflective least squares algorithm implemented

for the Python language as part of SciPy[117, 118, 119], with all of the parameters fixed by

system type except for the Curie temperature. Finding the curve with the least difference

from the data therefore yields the Curie temperature. This method has been adapted to

account for system shapes, sizes and structures[103], but was originally developed for

bulk materials[120].

3.6.3 Moskowitz extrapolation

While the full derivation is available in Moskowitz’s 1981 work[114], the physical de-

scription is similar to Bloch’s law, but the method is restricted to a temperature range of
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T/Tc > 0.8. The rearranging of 3.12, assuming some starting temperature T0, is given by,

[Ms(T)/Ms(T0)]2 = Tc

Tc −T0
− T

Tc −T0
(3.14)

With symbols as defined in 3.11 and in addition taking T0 to be some Temperature

greater than approximately 80% of the expected Curie temperature, and Ms(T0) being the

corresponding magnetisation. Note that T0 does not indicate a temperature of 0 Kelvin.

Explicitly, the Curie temperature is calculated by taking the linear regression of the

line formed by [Ms(T)/Ms(T0)]2 and T over the range just below the Curie temperature.

The gradient, m, of this line is then related to the Curie temperature via,

Tc = −1
m

+T0 (3.15)

Given the similar physical approach that Moskowitz extrapolation and Bloch’s law

take, it was expected that there would be good agreement in their Curie temperature

estimations, but the separation in these methods could still be in the 3K range, see fig. 3.7.

3.6.4 Grommé’s 2 tangent method

This method has often been used for Iron rich compounds, such as titanomaghemites and

basalts [114]. This method is highly dependent on the choice of tangent position, and in this

work, a similar method, using a linear regression of above and below the Curie temperature

is also presented. While no physical basis for this method was presented by Grommé et

al. it has been used with good agreement with the other methods previously[102], but

is highly susceptible to noise in the magnetisation curve.The implementation covered

in listing 3 uses a region from 0.1
−→
Ms to 0.4

−→
Ms for the calculation of the tangents to

the magnetisation. The tangent to the curve below the Curie temperature is calculated

over the range (0.1
−→
Ms,T0) to (0.4

−→
Ms,Tu) and the tangent to the curve for T > TC is from

2∗Tu −T0 to the end of the data set. Two tangents are taken to the magnetisation curve,

above and below the Curie temperature, and the temperature value at which they intersect

is the calculated Curie temperature, see fig. 3.2. The tangents are calculated using the

Central Difference Method at a point midway through the each of region 1 and 2. These

gradients were than used to solve for the intercept, and as such, the two linear equations

are formed. These are then treated as simultaneous equations, with their crossing point

being at the Curie temperature.

For each region in the magnetisation as a function of temperature curve, with midpoint

in the data set mid.

m = (M [mid+δ]−M [mid−δ]) / (T [mid+δ]−T [mid−δ]) (3.16)

a = M [mid]−mT [mid] (3.17)
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Figure 3.2: The tangents to the Magnetisation curve calculated for Grommé’s method,
the first range is bounded in this implementation from the data points closest to a
magnetisation of 0.1MS < M < 0.4MS. This bound is selected based on the magnetisation
to ensure proximity to the Curie temperature while remaining below it. The second
range is bounded in this implementation by the end of the dataset and the total range of
temperature values encompassed by range one, above the upper bound of range one. That
is for the 1st range defined as (T0.4,0.4MS)−> (T0.1,0.1MS) the second range is defined
by T0.1 + (T0.1 −T0.4)− > EOD. The second range begins at the temperature one range
above the higher bound of the first range, and extends to the end of the data set.
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where M[mid] refers to the element in the Magnetisation data set at the index "mid", δ is

a small integer, m is the slope of the tangent, and a is the intercept.

Following this, given the two tangents C1,C2 with slopes and intercepts m1,m2 and

a1,a2 respectively the Curie temperature can be found by solving the set of simultaneous

equations:

M1 = m1T1 +a1 (3.18)

M2 = m2T2 +a2 (3.19)

The Curie temperature is thus calculated as:

TC,Grommé = (m1 −m2)
(a2 −a1)

(3.20)

While using the central difference method at one point in the magnetisation curve is

an inherently unstable method of generating a tangent, due to its reliance on a single

data point, the method was not developed further due to problems with the behaviour

of the method, with respect to its performance in noisy scenarios (e.g. with poor quality

simulations), and with its performance with reduced resolution. In addition, it is the

only method which requires a large region beyond the Curie temperature in the data

set, otherwise, the method underestimates the Curie temperature by estimating a more

negative gradient in the second region. The range parameters were chosen to maintain a

guaranteed range above and below the Curie temperature, without moving away from the

Critical region which the method is defined for.

While the method has an inherent reliance on the resolution of the data set (as δ is

an integer, the smallest difference in the Central Difference Method is governed by the

resolution), the solution to the two simultaneous equations is not fixed to the data set. It

can be seen in fig. 3.7 that the method does not become significantly less reliable over the

decrease in resolution, but it is substantially less consistent at all resolutions. Above 30K

temperature steps it can calculate two tangents which do not have a common solution

within the Temperature Domain.

The similar linear regression based method, created for this work, is more consistent,

with overestimation fairly consistent across the resolution scale. While not useful as a

CTMP in itself, it could be useful as a bounding method for other methods.

3.6.5 Tauxe differential method

The Tauxe differential method[115] seeks the greatest second differential of the magneti-

sation curve. By differentiating the Ms(T) curve numerically this is readily found as the
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peak in the magnitude of |d2M/dT2|. The differential thermal analysis has been shown to

give an error in Curie temperature of rare earth ferromagnets of approximately 1%[121].

The implementation created for this work is listed in listing 6. The default operation

does not perform any interpolation to find the data point with the greatest magnitude

second derivative, that is, TC is guaranteed to be a point in the data set, inherently

limiting the Curie temperature by the resolution. If interpolation is enabled, as it will be

throughout the rest of this work, the list of second gradients is interpolated cubically in 1

dimension. This interpolated function is then optimised to calculate the Curie temperature.

3.6.6 Measuring peaks in other macroscopic parameters

Both the susceptibility of the material and the specific heat capacity of the material,

as functions of temperature, can be used to evaluate the Curie temperature[122, 123].

In both cases, there is a sharp peak at the Curie temperature as the material loses

the spontaneous magnetisation present at low temperatures. The peak in specific heat

capacity occurs as the thermal energy introduced to the system is used to break down the

ferromagnetic order, and not to directly raise the temperature, analogous to a solid-liquid

phase transition[124][125]. This peak is not symmetric. The peak in susceptibility [126]

can be directly related to the Curie-Weiss Law for paramagnetic materials eq. (3.21) but

has a similar peak (Hopkinson effect [127]) just prior to the Curie temperature as in the

specific heat capacity. It has been shown that applying Grommé’s two tangent method

to the susceptibility curves yields erroneous results[128], but throughout this work no

extrapolation on the susceptibility curve was performed.

χ= C
T −TC

(3.21)

where C is given as

C = µ0µ
2
B

3kB
N g2J (J+1) (3.22)

where: kB is the Boltzmann constant; N is the number of atoms per unit volume; g is the

Landé’s g-factor; µB is the Bohr magneton and Ji j is the exchange constant, energies due

to the exchange between spins. Given that C is a material specific constant, it can be seen

that the susceptibility will tend to infinity as T approaches TC. This law is only applicable

in the paramagnetic regime of the M(T) (magnetisation as a function of temperature curve)

and becomes ill defined around the Curie temperature and below, but it can be seen in

section 3.6.6 that the expected peak at T = TC is still present.

The susceptibility peak relates to the greatest rate of change of magnetisation in

the simulation, similar to the Tauxe differential method section 3.6.5, but is calculated
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Figure 3.3: The peak in the susceptibility
at the Curie temperature for Nd2Fe14B.
The red box surrounds the expanded im-
age to the right.

Figure 3.4: The peak in the susceptibility
at the Curie temperature for Nd2Fe14B.

directly at runtime, rather than post processing the magnetisation curve. Similarly to the

Moskowitz/Bloch parallels above, the expectation would be for these two methods to have

good agreement, but again, even at high temperature resolutions, the disagreement can

be as much as 3K between these methods, see fig. 3.7. The susceptibility is calculated as,

−→χ =∑
i

µi

kBT
(〈m2

l 〉−〈ml〉2) (3.23)

where: χ is the susceptibility of the system; T is the Temperature in Kelvin; µi is the

magnetic moment of spin i; kB is the Boltzmann constant; and ml is the length of mag-

netisation vector and the angle brackets denote a mean over the counter i. The length of

magnetisation vector is given by,

ml =
∑

iµi ·Si∑
iµi

(3.24)

where symbols are defined as above. The specific heat is calculated as:

c = 〈E2〉−〈E〉2

kBT2 (3.25)

where: c is the specific heat of the system; E is the magnetic energy of the system; kB is

the Boltzmann constant; T is the Temperature in Kelvin and the angle brackets refer to

an average over the atomic sites.

These methods are both implemented without any additional fitting or extrapolation,

limiting the resolution of their calculated Curie temperature to that of the input data set.

3.6.7 Quality of methods listed

The range of CTMPs presented yield a range of Curie temperatures of approximately 60K .

The most reliable methods, providing a Curie temperature both close to the empirical
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Figure 3.5: The peak in the specific heat
capacity at the Curie temperature for
Nd2Fe14B. The red box surrounds the
expanded image to the right.

Figure 3.6: The peak in the specific heat
capacity at the Curie temperature for
Nd2Fe14B.
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Figure 3.7: Variability of the different CTMPs with respect to resolution of an example
bcc-Fe VAMPIRE[88] simulation. The expectation that the CTMPs based on the Bloch
Law (e.g. Fitting Ms(T) and Moskowitz’ method or Tauxe’s method and Measuring peak
susceptibility) would be similar is mostly borne out, but the variance between similar
CTMPs even at high temperature resolution is still several Kelvin.
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value and consistently doing so for non-ideal data sets, are visible as the tight cluster of

the Moskowitz, Tauxe, Bloch and Susceptibility methods in fig. 3.7. These methods present

a range of 10K . This is considered an acceptable level of error, given the imprecise nature

of measuring the Curie temperature in complex systems. Due to the similar computation

time for each of these methods, and the domination of compute being in the VAMPIRE

atomistic spin simulation, these methods were chosen for an arithmetic mean to use as

the canonical Curie temperature for the purposes of this optimisation work.

3.6.8 Linear regression

The linear regression method follows the same range finding protocol as Grommé’s two

tangent CTMP. The linear regression (using least squares regression) is used to calculate

the pair of lines which meet near the Curie temperature, instead of a pair of calculated

tangents. There is no physical basis for this method presented, and it was explored due

to the ready availability of the required simulation data, and the similarity between

tangents and least squares linearly regressed lines in the critical region around the Curie

temperature.

3.6.9 VAMPIRE Curie temperature simulation

The methods were tested on a simple body centred cubic iron (bcc-Fe) one-exchange

systemat varying temperature resolutions, and for varying numbers of total simulation

"time" steps. The system was defined with the following parameters

Exchange Cutoff radius 5Å

System size (cubic) 64nm3

This methodology was designed to evaluate the consistency of the CTMPs on a range

of possible simulation data sets, so as to give the most consistent information to the

optimisation method.

3.6.10 Additional methods

Many additional estimators for the Curie temperature have been established[128] but

were not considered in addition to the CTMPs presented in this thesis.

3.6.11 Results in context

The exploration of methods for calculating Curie temperature is poorly explored in the

literature, with much of the examination of materials presented without detail as the the
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methodology used to calculate this value. This becomes especially relevant when the Curie

temperature is to be examined programmatically, as in the following chapters, and direct

reference to literature data is required. The selection of methods presented here have not

been directly compared on the same data set prior to this work. This work introduced a

comparison of the methods and detailed their consistency when examining simple cubic

systems. This comparison and the highlighting of the poor reporting practices in the

literature are required to generate meaningful material data sets for parameterisation,

machine learning and reproduceability moving forward.

Figure 3.8: Linear relationship between the Fe-Fe exchange in bcc-Iron and the resultant
calculated Curie temperature evaluated from the output of a VAMPIRE monte carlo
simulation.

3.7 Rare earth ferromagnet exchange parameters

3.7.1 Low temperature rescaling

VAMPIRE uses a low temperature rescaling to compensate for quantum spin effects which

are not treated directly in VAMPIRE. Within VAMPIRE, the spin’s orientation is not

quantised as it is in Quantum Mechanics [49], but the quantitative low temperature
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behaviour is recovered using a single-parameter rescaling. A more detailed explanation

is presented in section 3.4. This requires the Curie temperature of a simulation to be

provided in advance of the simulation itself. This presents a problem when the Curie

temperature is to be considered an output of the simulation. In order to estimate the

Curie temperature in advance, a linear regression is performed on previous iterations

of the optimiser. This line is then used to estimate the Curie temperature of the next

simulation. It is possible that this isn’t necessary, as the low temperature rescaling of the

magnetisation does not affect magnetisation when T ∼ TC, and this is where the majority

of the CTMPs operate. This additional estimation of the Curie temperature allows for

the estimation of exchange to more quickly reach a more accurate magnetisation curve.

However, the optimiser is blind to this additional variable, and as a result, 2 simulations

at the same exchange input value, but at different times, and therefore different estimated

input TCs will yield different results. This can mean that the final iteration of the optimiser

was not at the minima of the objective function. This forms a trade-off between improved

CTMP performance earlier in the optimisation cycle, and improved locating of the final

minima. Currently, the optimiser implements this method, as the expected runtime of

these optimisations was high. As the runtime has been substantially shorter than expected

(the optimisation methods are quicker than expected due to the broadly monotonically

increasing relationship between Curie temperature and exchange) it is not necessarily a

requirement going forward, and removing this additional hidden parameter could make

the work easier for less simulation minded researchers, especially as the area of interest

is near the Curie temperature, where the rescaling is lowest.

3.7.2 Limitation of the optimiser

As an early implementation of an exploratory piece of research software, the current

version of vampire_opt has several limitations that will affect computational perfor-

mance, generalisability to different materials and use cases; and, ultimately its adoption

by researchers independent of this work. Limitations include:

• The optimiser has no preference for a ferro or ferri-magnetic final state, and as

the Curie temperature can often be achieved via either regime, this can result in

incorrect final system behaviour

• The optimiser doesn’t account for any fluctuation in simulation results, the same

exchange will not be re-verified, which can result in failure to optimise if the quality

of the individual iterations’ simulations (in terms of number of equilibration and

averaging time steps) is not high enough.
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• Restricted to a 2:14:1 type rare earth ferromagnet system, the optimiser is brittle

in respect to changes in system type, number of exchanges and material type; and

would need generalising to other materials.

3.7.3 Optimising rare earth-Iron exchange in Lanthanum based
La2Fe14B

In order to reduce the dimensional complexity involved in approximating the exchange

constants between Iron atoms (Fe-Fe), and between Iron and Rare earth atoms (Re-Fe),

initially the Fe-Fe exchange was chosen as the optimisation goal. In order to remove the

Re-Fe exchange as a parameter, to reduce the problem to one dimension, Lanthanum was

chosen as the base rare earth La2Fe14B. Lanthanum has no outer 4f electron, resulting in

very weak paramagnetism in comparison to Iron or the other rare earths studied [20, 129].

As a result, it is assumed that the Re-Fe exchange constant in La2Fe14B can be neglected.

This allows for the one dimensional optimisation of the Fe-Fe exchange in the material

with the Curie temperature of the material used as the figure of merit for the objective

function eq. (3.26)

ob j (X )= |TC (X )−TLa| (3.26)

where X is the exchange constant between Iron and Lanthanum; TC is the ; and TLa is

the empirical Curie temperature of La2Fe14B.

3.8 Optimisation methods:Nelder-Mead and
Brent-Dekker

3.8.1 Nelder Mead

The Nelder Mead Simplex method is a numerical method for finding the minimum or

the maximum of an objective function [130]. This method was the first implemented to

optimise exchange constants for single constant systems (such as bcc-Fe). The method

belongs to a class of methods known as direct search methods which do not require an

explicit calculation of the gradient of the objective function [131, 132]. This allows for

fewer function evaluations at each step in the optimisation process, but can be slower

than methods incorporating a calculated gradient. Given that the bottleneck for the

optimisation is the number of runs that can be parallelized in batch, the usage of a

gradient method could greatly increase the rate of optimisation. As you calculate x Curie

temps for each estimated exchange value to increase the accuracy of the next estimate

and these would be batch parallelisable (i.e. these simulations could be run concurrently).

In practice, however, the rate of finding exchanges is so high in comparison to other
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manual methods, and only needs to be done once for each material exchange, this was

never implemented. The overall optimisation procedure was implemented with the goal

of being indifferent to the underlying optimisation algorithm, to allow for comparison

and, in future, choice of optimiser to suit the system type. While the Nelder-Mead method

successfully optimised bcc-Fe, it was replaced with the Brent-Dekker method (or Brent’s

method) prior to optimisation of the set of rare earth alloys. This method is detailed in

section 3.8.3.

3.8.2 Optimisation Flow Chart

The flow of the optimisation process is presented in fig. 3.9. Note that the calculation of

Curie temperature and the atomistic simulation using VAMPIRE are separate, but must

occur in sequence. This separation was a conscious decision driven by the aim to allow for

the CTMPs to be used on empirical data in addition to simulation data. By definition the

CTMPs do not use any internal state of the simulation, but only the data outputted by the

program, in order to match the available data sets for empirical work.
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Optimisation
method

XFe−Fe, TFe,
Vampire
Input files

VAMPIRE
Simulation

calculate
TC using
CTMP’s

CTMPs:

TC within
tolerance?

Iterate
optimiser,
calculate
XFe from
optimiser

Done

no

yes

See

Brent’s

method

flowchart

Figure 3.9: Optimisation flowchart, where: XFe−Fe is the exchange constant between iron
spins, multiplies the exchange function 3.37; TFe is the empirical Curie temperature of
bcc-Fe, TC is the calculated Curie temperature of bcc-Fe. Dekkers’s method (the precursor
to Brent’s method) is detailed in the flowchart in fig. 3.10.
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Trial Exchange, J/link Calculated Curie Exponent Residual
Temperature, K abs

(
T−TC,emp

TC,emp

)
1.5e-21 356.262523053 0.350194817481 0.327806560278
3.5e-21 476.336658947 0.333663541736 0.101251586893
5.5e-21 586.721588862 0.324122416497 0.107021865777

2.736068e-21 376.212192436 0.385948312101 0.290165674649
4.263932e-21 486.352851904 0.356795993042 0.0823531096152

3.96688262326e-21 458.420524366 0.320044094433 0.135055614404
4.73606794969e-21 516.410766374 0.36176056842 0.0256400634445
5.02786401922e-21 536.468580409 0.35831234485 0.0122048686961

...
...

...
...

4.99180207763e-21 526.488093462 0.331498915834 0.00662623875185
4.99183603874e-21 526.458857826 0.332773772765 0.0066814003288

Table 3.2: The route for the optimisation of La2Fe14B’s Fe-Fe exchange, with La-Fe ex-
change fixed at 0. The rows represent the output from the vampire_opt optimisation
program, the Curie temperature’s calculated using the CTMPs above, and TC,emp repre-
senting the empirical Curie temperature from Herbst and Croat [133]. Optimisation was
performed with the Nelder Mead simplex algorithm.

3.8.3 Brent’s method

Brent’s method, or commonly the Brent-Dekker method, is a hybrid root-finding algorithm,

combining two root finding algorithms; the bisection method, which repeatedly bisects the

previous interval around a root to create a new interval [134]; and interpolation (either

linear interpolation, or the secant method, which uses successively generated pairs of

points to form secants to the curve [135] or inverse quadratic interpolation, which uses

the Lagrange interpolation formula for quadratic interpolation of the inverse of the curve

[136]).

Each of these methods are employed at different points in the overall Brent’s method

algorithm [137], and the core of the method is in the selection of either the bisection

method or interpolation method at each iteration point, as published by Dekker [138]

in 1969. The bisection method is a more reliable root finder, but the secant and inverse

quadratic interpolation methods are potentially much faster.

At each stage of the Dekker’s method three points are labelled at each iteration n:

• bn is the current estimate for the root

• an is the current contrapoint, a point such that an and bn have opposite sign, and

such that f (bn) is closer to zero
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• bn−1 is the previous estimate (with an initial estimate of a0 for n = 1).

The subsequent point is conditionally one of two values, s and m, given by the secant

method, and the bisection method respectively:

bn+1 =
s = bn − bn−bn−1

f (bn)− f (bn−1) f (bn) , i f ( f (bn) 6= f (bn−1) & s is between bn and m)

m = an+bn
2 , else

(3.27)

Decker’s method can perform very well when the function to optimise is well-behaved

(that is, the function is smooth and finite in the optimisation region), but can repeatedly

use the secant method in certain situations involving less well-behaved functions. This

can be unnecessarily slow, necessitating an improvement to the method.

Brent [137] built on this algorithm making two improvements. Firstly, the secant

linear interpolation method was replaced with the inverse quadratic interpolation method.

This redefines section 3.8.3 as

bn+1 =
s = q, i f ( f (bn) 6= f (bn−1) & s is between (3an +bn) /4 and bn)

m = an+bn
2 , else

(3.28)

where q is the result of the inverse quadratic interpolation recurrence relation:

q = fn−1 fn

( fn−2 − fn−1)( fn−2 − fn)
xn−2 + fn−2 fn

( fn−1 − fn−2)( fn−1 − fn)
xn−1

+ fn−2 fn−1

( fn − fn−2)( fn − fn−1)
xn

(3.29)

where for brevity fn ≡ f (bn). This interpolation method requires 3 starting bracket points,

instead of the two of linear interpolation, but has the potential to be substantially faster

than linear interpolation.

Secondly, two sets of inequalities to be satisfied were added to prevent the repeated

interpolation method problem. The first set contains a pair of numerical tolerance inequal-

ities. If the previous step used the bisection method, then the change in estimate must

remain below a certain numerical tolerance δ for inverse quadratic interpolation to be

47 of 142



3. EXCHANGE OPTIMISATION

used:

|δ| < |bn −bn−1| (3.30)

If the previous step used interpolation, then the change in the previous iteration’s start

and end estimates must be below the numerical tolerance δ to perform interpolation at

the next step:

|δ| < |bn−1 −bn−2| (3.31)

This requires a small amount of additional data to be held between optimisation steps.

The second set contains a pair of inequalities regarding the interpolation method’s

values. If the previous step uses bisection then the inequality,

|s−bn| < 1
2
|bn −bn−1| (3.32)

must hold to allow for interpolation at the next step. Similarly, if the previous step used

interpolation then

|s−bn| < 1
2
|bn−1 −bn−2| (3.33)

must hold to allow for interpolation. These conditions enforces a bisection step at most

every 2log2 (|bn−1 −bn−2|/δ) iterations, preventing an endless series of interpolation steps.

Brent’s method [137] was used as a faster alternative to the Nelder-Mead method.

Prior to trialling this method, a gradient descent method was considered, but Brent’s

method proved sufficiently fast and simple enough to easily implement in Python.The

implementation of Brent’s method used throughout this work was from SciPy, a scientific

Python library [96, 139].

3.8.3.1 Dekker’s method flowchart

The control flow for Dekker’s method [138] is presented in flow chart form in fig. 3.10. Note

that at each iteration only one additional function evaluation is required (as the previous

iteration has already calculated f (bk−1)).

The sign function presented in the flowchart is defined as:

sgn (x) :=


−1, x < 0

0, x = 0

1, x = 0

(3.34)

and is used in Dekker’s method, see fig. 3.10.

The Brent-Dekker’s method has a similar control flow, with additional inequality tests

as outlined in section 3.8.3 and as such is not repeated here.
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Brent’s
method

a0, b0, f
bk = b0
bk−1 = a0
ak = a0

sgn(a) = −sgn(b),
f (bk) < f (ak)

calculate s (ak, bk, bk−1) s =

{
bk − bk−bk−1

f(bk)−f(bk−1)
f (bk) , f (bk) ̸= f (bk−1)

m = ak+bk
2 , else

s between
bk and m ?

bk+1 = m

bk+1 = s

sgn (f (bk+1)) =
−sgn (f (ak))?

ak+1 = bk Intermediate value theorem

ak+1 = ak

f (bk) within
tolerance?

increment k

Done

yes

no

yes

no

no

yes

Figure 3.10: Dekker’s method algorithm flowchart, symbols in yellow are conditions, a0,b0
are the input bracket on the objective function f , which is to be optimised to 0. sgn is the
sign function, defined in eq. (3.34).
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3.8.4 Rare earth Iron exchange

Lanthanum was the first rare earth examined, using La2Fe14B as the prototype for other

rare earth alloys due to the reduced magnetic properties of Lanthanum, but maintaining

the same electronic structure as other rare earths. Using La2Fe14B as the prototype for

the Fe-Fe exchange, the other rare-earth elements can be substituted. The Fe-Fe Exchange

is kept constant throughout, but the interatomic distances change as there is a 7% change

in unit cell volume throughout the lanthanide series due to Lanthanide contraction [90].

Matsumoto and Akai [90] demonstrate the change in trend for Curie temperature when

the lattice contraction across the lanthanide series is not taken into account2. As a result,

the Curie temperature for the materials simulated is only dependent on the Rare earth-

iron exchange, and can be optimised similarly using a one dimensional optimiser. As

noted in Matsumoto and Akai [90] Cerium has an exceptional 4+ state and corresponding

reduction in lattice size. They demonstrate that this is responsible for the reduction in

Curie temperature for this material by demonstrating the removal of the drop in TC by

enforcing a 3+ state on Cerium in their simulation and fixing the lattice size to that of

Nd2Fe14B. The unit cell experimental lattice constants are presented in table 3.3 and are

in use throughout this work.

Pajda et al. [140] demonstrated a methodology for evaluating the exchange curve

functional for body centred cubic materials. Pajda et al. use the first principles tight

binding linear muffin tin orbital method (TB-LMFTO[141]) to evaluate the symmetric

exchange between iron atoms in bcc-Fe. The proportional relationship between inter

atomic distance and exchange in bcc-Fe is presented in eq. (3.35) by evaluating the energy

potentials for weak ferromagnets such as iron:

Ex(s)∝
sin

[(
k↑

F +k↓
F

)
·Ri j +φ↑+φ↓

]
R3

i j

(3.35)

Where k↑,↓
F corresponds to the Fermi wavevector for the up (↑) and down (↓) spin electrons,

φ↑,↓ corresponds to a phase factor for the up (↑) and down (↓) spin electrons and Ri j is the

distance between the two electrons i and j.

For a strong ferromagnet, or materials approaching strong ferromagnetism (no itiner-

ant magnet is a strong ferromagnet due to sp-d hybridization [140]), one wave vector is

imaginary, and as such there is an exponential term in the exchange function.

Ex(s)∝
sin

[
k↓

F ·Ri j +φ↑+φ↓
]

exp
[
−κ↑F ·Ri j

]
R3

i j

(3.36)

2La2Fe14B has the largest volume at 959.958Å3, and Lh2Fe14B the lowest at 896.926Å3
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Compounds a / Å c / Å Volume / Å3

La2Fe14B 8.82 12.34 959.958

Ce2Fe14B 8.76 12.11 929.292

Pr2Fe14B 8.8 12.23 947.091

Nd2Fe14B 8.8 12.2 944.768

Sm2Fe14B 8.8 12.15 940.896

Gd2Fe14B 8.79 12.09 934.123

Tb2Fe14B 8.77 12.05 926.800

D y2Fe14B 8.76 12.01 921.619

Ho2Fe14B 8.75 11.99 917.984

Er2Fe14B 8.73 11.95 910.744

Tm2Fe14B 8.73 11.93 909.220

Y b2Fe14B 8.71 11.92 904.300

Lu2Fe14B 8.7 11.85 896.926

Y2Fe14B 8.76 12 920.851

Th2Fe14B 8.8 12.17 942.445

Table 3.3: The lattice constants of the Rare earth compounds unit cells [133]. c is the lattice
constant in the easy axis direction, while a is the constant for the other two directions.

This approach has given accurate descriptions of magnetic systems previously[142,

143, 144]. This interatomic Fe-Fe exchange is used as an approximate basis for the shape of

the exchange function in La2Fe14B for VAMPIRE. The inter atomic exchange is converted

to Joules from Rydberg energies, and the distance is measured in Angstrom’s within

VAMPIRE, and as such there are two conversion factors present. In addition, the Curie

temperature estimation using the mean field approximation by Pajda et al. overestimates

the Curie temperature (1414K compared to 1043K). There is a small discrepancy in the

ratio in use by VAMPIRE and this ratio ( 0.5%). This corresponds to a 6K difference in

the Curie temperature reported in Pajda et al. and the value used for compensation in

this work. The ratio in VAMPIRE is used for consistency with other exchange calculations.

The exchange energy curve as a function of inter-atomic distance for Fe-Fe exchange

interaction in 2:14:1 type rare earth ferromagnet is given by eq. (3.37)

Ex(s)∝ 2 ·2.179872 ·10−21 · (A exp{−Bs}+C ·Feratio) (3.37)

where: A=36.9434; B=1.25094;C=-0.229572; Feratio=0.78444232559. Here, 2.1798782 is

the Rydberg energy e4me
8ε2

0h2 where e is the elementary charge of an electron; me is the

mass of an electron, ε0 is the permittivity of free space; and h is Planck’s constant. These
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constants were evaluated by manual fitting of the exponential portion of eq. (3.36) with

the phenomenological behaviours of La2Fe14B. The sinusoidal portion of the exchange

function was neglected as a longer range effect under the assumption that the exchange

modelling of the material would remain under 5Å. The factor of 2 appears as the exchange

energy calculation in VAMPIRE uses a factor of one half to reduce the summation required.

The Feratio is a scaling factor which reduces the Curie temperature calculated by Pajda

et al. using the mean field approximation and this exchange functional.

This curve is then multiplied by the exchange constant presented throughout this

work to parameterise the exchange for RE2Fe14B.

• Feratio is a scaling factor which reduces the Curie temperature calculated by Pajda

et al. using the mean field approximation and this exchange functional.

[140]. This curve is multiplied by the parameterised exchange value in calculating the

total exchange interaction in the atomistic model.
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4
OPTIMISATION PATHS FOR EXCHANGE PARAMETERS OF

RE2TM14B ALLOYS

Using the optimisation method detailed above, the rare-earth iron exchange for a series

of 2:14:1 type rare earth ferromagnet rare earth was established. The empirical Curie

temperature and lattice constants for each magnet were taken from Herbst and Croat [133].

The structure of each magnet was fixed as that of Nd2Fe14B but scaled by the appropriate

lattice constants from Herbst and Croat [133]. No additional structural optimisation (for

example via molecular dynamics) was performed for each unit cell.

It is important to note that large single crystal structures are very uncommon in 2:14:1

type rare earth ferromagnets. Instead, the total materials structure consists of multiple

grains, of the order of 1− 3µm in diameter. These grains are situated near each other

but are not necessarily aligned creating instability in the crystal structure, and gaps for

other phases to form. Typically, tertiary phases that fail the gaps between grains are

formed from interfacial phases, with gradual deviations from the crystal structure, other

rare earth ferromagnet phases and α-Iron (bcc-Iron). These phases are formed during the

quenching process in the production of rare earth. While the evaluation of these phases

would be beneficial for the simulation of complete empirical samples, the micrometer scale

of the structures mean they are prohibitively computationally expensive for any sort of
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iterative searching pattern with the atomistic model. As a result, properties for a pure

crystal, or the inside of a grain, are evaluated first. These parameters can be used to

guide micromagnetic simulations of grains, and, with a similar methodology, interfacial

phases and α-Iron could be similarly evaluated with sufficient empirical data with respect

to the interface structures. This forms the basis for a multiscale model involving atomistic

parameters and micromagnetic simulations. Future iterations of the optimisation method

of parameter evaluation presented in this work could make use of such a multiscale model,

with separate atomistic simulations for the different regions; grain internal, interface, and

α-Iron, being combined in a micromagnetic simulation with the macroscopic output of the

micromagnetic simulation being used as the objective function for optimising the atomistic

parameters.

The structure examined initially during the optimisation phase was a (4×4×4)nm3

cell with periodic boundary conditions. This value was chosen as a compromise for the

optimisation cycle, as smaller systems modelled atomistically have been found to greatly

affect Curie temperature due to finite size effects with a grain size below 3.5nm [94]. Finite

size effects are a class of systematic errors introduced in reducing the size of a simulation. In

magnetic structures this is often manifested by reduced Curie temperature when compared

to bulk materials. After the optimisation process, the final calculated exchange values can

be used to calculate a large system’s properties, with a high temperature resolution to

measure the effects of optimising for a smaller system size. An example curve is given below,

fig. 4.3. To confirm the validity of the 3.5nm threshold, the (4nm)3 was compared with a

larger (6nm)3 system. Both were simulated with the final exchange value of Nd2Fe14B.

The magnetisation as a function of temperature behaviour of the two systems is displayed

in fig. 4.3 alongside empirical results from Hirosawa et al. [145] at 1T for a single domain

inside a larger material. Hirosawa et al. grew crystals with size of order several millimetres

rendering a full size comparison to the work performed unfeasible due to the theoretical

computational expense. As demonstrated in figs. 4.1 and 4.3 the initial system size was

not sufficient to remove finite size effects. The Curie temperature of the system falls as

the system size is increased to (6×6×6)nm3. This indicated that using the bulk Curie

temperature (which is reduced compared with finite size systems) results in a reduced

optimised exchange. An increase of 5% results in the 6nm system giving an appropriate

Curie temperature (and subsequently, increasing the Curie temperature of the 4nm system).
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The calculated discrepancy in the Curie temperature due to finite size effects does not

account for the discrepancy in shape of the empirical curve. The two sublattice model of the

RE2Fe14B alloys relies on two parameters for calculating the low temperature rescaling

present in section 3.4. The rounder shape of the magnetisation curve in fig. 4.3 suggests that

one or both rescaling exponents were too great, and subsequently, that the exponent must be

separately optimised. Fortunately, at the Curie temperature is by definition unaffected by

the exponent, the exchange constants calculated should remain fixed during this subsequent

optimisation. The additional spin reorientation, the kink in the empirical curve of fig. 4.3

can be described by anisotropic effects, but at this stage, the temperature dependence of the

anisotropic constants in Nd2Fe14B have not been fully parameterised.

Hirosawa et al. [145] measured the single crystal in a 1T external applied magnetic field.

Using the same CTMPs which pertain to magnetisation as in the optimisation method (i.e.

Bloch law fitting section 3.6.2 [113]; Moskowitz’s extrapolation method, section 3.6.3 [114];

Tauxe’s method, section 3.6.5 [115]; but not the Specific Heat Capacity protocol, section 3.6.6

or the Susceptibility protocol, section 3.6.6 due to a lack of measurements of susceptibility

and heat capacity presented) results in an average effective TC under this applied field of

603.4K for the empirical curve. This is approximately 3% larger than the zero field Curie

temperature from literature, and calculated in this thesis. The CTMP is not detailed by

Hirosawa et al. [145], but it is expected that the Curie temperature at field would be higher

than the temperature at zero field, as there is an additional energetic incentive to align.

These discrepancies suggest a need for greater transparency in the calculation of physical

parameters such as the Curie temperature, as it is possible that the methods presented here

are overly sensitive to changes near the Curie temperature when compared with regions

further from TC.

While the Curie Temperature is in good agreement with empirical work [133], the

combination of critical exponents of the two sub-lattices do not produce the appropriate

shape of the curve [145]. Similarly, as this work was undertaken prior to the establishment

of higher order anisotropy constants in Nd2Fe14B, the spin reorientation temperature is not

visible in the calculated curve, where empirically there is a small bump in the magnetisation

in the 120K region, no such increase is present in the calculated curve. At a nominal working

temperature of a motor, 450K, there is a discrepancy of approximately 15% between the
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Figure 4.1: Magnetisation curve for Sm2Fe14B with a system size of (6nm)3 with a Sm-
Fe exchange of 1.215×10−21. Compared with the literature empirical curve measured by
Hirosawa et al. [145] at 1T applied external field [145, digitized from print].
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tester
Figure 4.2: Magnetisation curve for Nd2Fe14B with a system size of (6nm)3 with a Nd-
Fe exchange of 0.9×10−21 in zero external field and at 1T in the easy axis (z) direction.
Compared with the literature empirical curve measured by Hirosawa et al., digitized from
print at 1T applied external field [145]. This exchange value is 5% greater than the optimised
value, to compensate for finite size effects in the (4nm)3 optimised system.
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empirical and calculated data. Similar comparisons are made for Sm2Fe14B in fig. 4.1.

The calculated Curie temperatures did not include: La2Fe14B as it was the prototypical

system, with iron-lanthanum exchanged fixed at zero; Ce2Fe14B due to its additional +4

oxidation state and Y b2Fe14B due to its +2 oxidation state. These additional states are

available due to their different electronic structure. Elemental Cerium has an electronic

structure of [Xe] 4 f 1 5d1 6s2, with the 4f electron’s energy level being very comparable to

the delocalised 5-d electrons. This is due to its early position in the series, and the relative

stability of an empty 4-f shell, when compared to the other lanthanides, yielding a low

enough nuclear charge [146]. Ytterbium similarly has a uniquely stable +2 state due to its

penultimate position in the lanthanide series. Its base [Xe] 4 f 14 6s2 electronic structure has

a relatively stable +2 state due to the stability of the full f-orbital when the 6-s electrons

are removed. The change in electronic state of these two elements creates a large change

in their magnetic properties when compared to the other rare earth, causing La2Fe14B to

no longer be a good prototype for Ce2Fe14B and Y b2Fe14B. Depicted below are the rare

earth iron exchange values calculated at each iteration of the optimisation process. As stated

in section 3.8 the optimiser in question is using Brent’s method [137] to iterate through

possible input exchange values. In general the iterator needs fewer than 10 iterations to

be within the error margin of the Curie Temperature Measurement Protocols, (CTMPs),

however, as can be noted in the graphs of temperature residual as a function of iteration

number, the optimiser rarely exits at the lowest residual iteration. For example, in fig. 4.6,

the Gd2Fe14B optimisation path continues into a false minimum despite the temperature

residual being much lower in the first 10 iterations. This is caused by the estimation in Curie

temperature required as input for the low temperature rescaling, detailed in section 3.4. As

the small error in the estimation of the Curie temperature can be larger than the change

due to the optimiser altering the exchange in earlier iterations, the optimiser can explore

the wrong region of the state space. Some optimisations coincidentally reach an exchange

within the tolerance to exit very early, but this cannot be relied upon to happen in practice.

The optimiser frequently missed the earliest within tolerance exchange constant, due in

part to the Curie temperature estimation being performed to prime the low temperature

rescaling at each step. As stated above it is likely that this rescaling could be ignored until

post-exchange optimisation, as the rescaling tends to zero as the temperature tends to the

Curie temperature. The simulation quality was kept low for improved computation time,
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Figure 4.3: Magnetisation curve for Nd2Fe14B at 4nm and 6nm simulation size with a Nd-Fe
exchange of 0.85x10−21. The finite size of the smaller system results in a 1.7% difference to
the calculated Curie temperature. Compared with the literature empirical curve measured
by Hirosawa et al. [145].
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with a relatively small number of equilibration and temperature increment steps. This

was mitigated for as the optimiser performed multiple similar simulations as the optimiser

advanced, increasing the amount of sampling in the Monte-Carlo algorithm.

,

Figure 4.4: Optimisation route for Pr- and Nd-Fe exchange. Final calculated exchange:
Pr = 1.19E−21J/l ink, Nd = 0.850E−21J/l ink
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,

Figure 4.5: Optimisation route for Tm- and Yb-Fe exchange. Final calculated exchange:
Tm =−0.343E−21J/l ink,Y b =−0.2475E−21J/l ink. Note that Ytterbium was not calcu-
lated using this method, as noted in section 3.8, due to its lower Curie temperature than
Lanthanum in the 2:14:1 type rare earth ferromagnetic phase.
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4.1 Temperature residuals along the optimisation paths
for Rare earth ferromagnets

During the optimisation process, the objective function yields the residual of the calculated

Curie temperature and the empirical. Using Brent’s method [137]. As shown here, the

simulation often passed the lowest Curie temperature residual, before circling another local

minima. It is suggested that this is caused by the naive rescaling estimation performed

at each optimiser step in concert with numerical noise from the simulation translating to

slightly inconsistent Curie temperature measurements.

,

Figure 4.6: The result of the objective function, or Curie temperature residuals, for Sm-
and Gd-FeB during the optimisation of their exchange. Final calculated exchange: Sm =
1.215E−21J/l ink,Gd = 1.57E−21J/l ink
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,

Figure 4.7: The result of the objective function, or Curie temperature residuals, for Tb-
and Dy-FeB during the optimisation of their exchange. Final calculated exchange: Tb =
−1.208E−21J/l ink,D y=−0.63E−21J/l ink
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,

Figure 4.8: The result of the objective function, or Curie temperature residuals, for LuFeB
during the optimisation of its exchange. Final calculated exchange: Lu = 0.0E−21J/l ink
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The resultant exchanges are presented in table 4.1, as are the calculated Curie temper-

atures from the resultant VAMPIRE simulation, the smooth
−→
M (T) curves are presented

below. The systematic optimisation method provided Curie temperature values within

4 Kelvin of the empirical values recorded by Herbst and Croat [133].As expected, the

rare earths (except for Cerium) have an increased Curie temperature compared to the

prototypical Lanthanum compound. An increase in Curie temperature between materials

causes an increase in the magnitude of the rare-earth-iron exchange calculated, with

some exception. Lu2Fe14B has a smaller unit cell size than La2Fe14B, which means that

the magnetic sites are closer together. Given this, the iron-iron exchange in Lu2Fe14B
is larger than in La2Fe14B and as such the Curie temperature is increased without a

corresponding increase in the rare-earth-iron exchange constant.

4.1.1 Error in Exchange estimate

Given that the calculation of Curie temperature can be performed with a variety of

methods, without consensus in the literature as to the most appropriate, there is a large

margin of error in the estimated Curie temperature. The range of Curie temperature’s

calculated using CTMPs is presented for a simple cubic Iron simulation in fig. 3.7. As

is apparent, the range of Curie temperature’s calculated exceeds 60K across all the

implemented methods, and exceeds 5K for the 4 CTMPs selected for averaging (the Bloch

protocol, section 3.6.2[113]; Moskowitz’s extrapolation method, section 3.6.3[114]; Tauxe’s

method, section 3.6.5[115]; and the Susceptibility protocol, section 3.6.6). This error range

directly relates to an error range in the optimised exchange constants. This error is

compounded with the error as a result of simulation quality, due to for example finite size

effects and homogeneity of sample grain structure, but can be evaluated by calculating

the range in exchange constants that yield a similar range in Curie temperatures. For

each optimisation result from the average of the CTMPs results, there is an optimisation

result for each CTMP separately. This relates a range in the exchange to the range in

Curie temperatures that the set of CTMP calculates.

Given that the CTMPs produce different estimates of the Curie temperature, and

that the Curie temperature used as the objective function is the arithmetic mean of the

four CTMPs in use, the error in the calculated exchange is related to both the distance

that the final simulation’s Curie temperature is from the empirical temperature, and

the spread of these methods. Fortunately, when examining the individual CTMPs which

form components of the Curie temperature calculation the range of estimates is low. For

example, for the 6nm Sm2Fe14B simulation whose magnetisation curve is presented in

fig. 4.1, the range in exchange calculated is only 0.96K , detail in table 4.2. By assuming a

linear relationship between exchange and Curie temperature, and taking the gradient of
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Compound Tc (K) [133] 4nm
Re-TM Exchange (×10−21J/l ink) Calculated Tc(K)

La2Fe14B 530 01 530±1
Ce2Fe14B 424 Uncalc. Uncalc.
Pr2Fe14B 565 1.19±0.020 566±0.88∗

Nd2Fe14B 583 0.850±0.0215 584±1.635
Sm2Fe14B 616 1.215±0.0085 614.3±0.48
Gd2Fe14B 661 −1.57±0.01 657±1.27∗

Tb2Fe14B 620 −1.208±0.018 620.6±1.24∗

D y2Fe14B 598 −0.63±0.12 (±0.012) 599±8.55 (±0.855)
Ho2Fe14B 573 −0.343±0.21 574.4±14.3
Er2Fe14B 554 −0.2475±0.32 555.4±12.1
Tm2Fe14B 541 −0.0554±08.5 540.7±6.08
Y b2Fe14B 524 Uncalc. Uncalc.
Lu2Fe14B 535 0±0.01 533±0.3

Table 4.1: Rare earth transition metal exchanges, calculated using the numerical optimisa-
tion set out in section 3.8, Iron-Iron (Fe-Fe) exchange was fixed at 5.005E-21, following the
optimisation of LaFeB with respect to its Curie temperature. A double rule separates the
rare-earth elements traditionally grouped with Cerium and those traditionally grouped
with Yttrium. Europium and Promethium are excluded due to their inability to form in
the 2:14:1 type structure. [133]. Both Cerium and Ytterbium are left uncalculated using
Lanthanum as the base rare earth, as they present with lower Curie temperatures than
the Lanthanum base. This is a result of the additional stable electronic states that the
Cerium and Ytterbium can occupy. Specifically Cerium has a +4 oxidation state, and
Ytterbium has a +2 oxidation state in addition to the expected +3 state of the other
metals in the lanthanide series. The Ytterbium +2 oxidation state is due to its position
in the penultimate column of the lanthanide series, and similarly, Cerium’s +4 oxidation
state is due to its occupation of the fourth column of the periodic table. The Ytterbium
compound has a much closer Curie temperature to the Lanthanum compound due to the
preference for the +3 oxidation state. The difference in calculated Curie temperature for
the Lutetium and Lanthanum compounds despite the same exchange constant is due to
the smaller unit cell of the Lutetium compound. Error values are calculated using the
range in CTMP results for a given simulation. The approximate proportional relationship
between exchange and Curie temperature is calculated using a linear regression on the
TC (XC) data. This proportionality is applied to the spread in CTMP values as a measure
of the spread in possible exchange values. For low resolution simulations the specific heat
and susceptibility measurements are fixed at multiples of the Temperature interval. To
estimate the spread in CTMP results including the susceptibility method, the spread in
Curie curves is estimated at double the spread excluding the susceptibility value in these
low resolution simulations. These error estimates are asterisked (∗). For comparison the
spread in CTMP for Nd2Fe14B including the susceptibility data is approximately 30%
greater than without, and for Sm2Fe14B the difference is close to 1%. Dysprosium had an
unusually high spread of CTMP values, entirely as a result of the Tauxe method under-
estimating the TC by 20K compared with the other methods. This is likely a numerical
issue, as the second derivative is similar at the position the other CTMPs estimate the
Curie temperature. Excluding this value yields the error estimates in brackets.
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Figure 4.9: Graph form of table 4.1. The expected trend of increasing exchange corre-
sponding to a matching increase in Curie temperature is recovered. The large decrease
from Pr to Nd does not correspond to a significant change in the unit cell volume. Notably
Nd2Fe14B has much larger anisotropy than Pr which may account for a reduction in
Curie exchange energy for a given Curie temperature.

67 of 142



4. OPTIMISATION PATHS FOR EXCHANGE PARAMETERS OF RE2TM14B ALLOYS

the subsequent curve formed by the linear regression of the data generated during the

optimisation (equal to 0.01781080807×10−21J/K) the estimated range in exchange can be

calculated via

∆T ·
(
∆E
δT

)
=∆E (4.1)

0.96K ·0.01781080807×10−21J/K = 0.01709837574×10−21J (4.2)

(4.3)

with the differing digits underlined for emphasis. This places the error due to spread in

methods at approximately 1.25% of the optimised exchange. This is substantially less

than the error estimated due to experimental factors for the reference data, as presented

in table 4.3. Taking the gradient over only the region local to the final Curie temperature

further reduces this error value to 0.32%.

With respect to the difference between simulated behaviour and experiment on the

Curie temperature, using the same CTMP methodology on the digitised empirical data

from Hirosawa et al. [145] yields a deviance of 50K . This discrepancy is much larger

than the spread in CTMPs when calculating the Curie temperature, suggesting a more

fundamental separation in the definition of the Curie temperature theoretically, and

the actual measurable quantity presented empirically. For comparison, using the linear

regression method as above to estimate the affect a 50K discrepancy would have on the

exchange constant for Sm2Fe14B, the gradient yields a percentage error of 65% in the

calculated exchange.

With respect to simulation quality, repeating the same simulation with different

random seeds and using the CTMP average to calculate Curie temperature results in

a range of approximately 0.05K at a Temperature resolution of 2K for the temperature

sweep. This is sufficiently small that the deviation from linearity demonstrated in the

exchange-Curie temperature relationship would lead to a larger deviation in the calculated

exchange and as such this error is not included in the exchange error estimate.

The range of Curie temperature’s calculated by each CTMP in the final iteration of

the optimisation of each rare earth is presented in table 4.4. As a measure of fitness of

the linear estimation, the Curie temperatures in table 4.5 were all converted to exchange

values using the straight line estimation presented above for estimating the error in

exchange. Presented in table 4.5 are the ranges in optimised RE-Fe exchange constant

calculated by reversing the range in calculated Curie temperature of the CTMP’s selected

for the optimisation average, as detailed above. The exchanges estimated differ some-

what in magnitude from the final calculated exchange used as input for each VAMPIRE

simulation. This discrepancy is due to the non-linearity of the exchange-temperature
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CTMP Calculated Curie temperature estimate (K)
Moskowitz’ extrapolation method3.6.3 614.96
Fitted Ms method3.6.2 614.06
Tauxe’s differential method3.6.5 614.00
Susceptibility peak3.6.6 614.00
Avg 614.25
Empirical [133] 620

Table 4.2: The four different CTMPs used to calculate the Curie Temperature estimate
for Sm2Fe14B in a 6nm system with periodic boundary conditions at zero field, with an
Sm−Fe exchange of 1.36×10−21J per link. The Empirical Curie temperature 620K.

CTMP Calculated Curie temperature estimate (K)
Moskowitz’ extrapolation method3.6.3 668.28
Fitted Ms method3.6.2 666.21
Tauxe’s differential method3.6.5 650.10
Avg 661.53
Empirical [133][145] 620

Table 4.3: The difference in CTMPs when applied to the digitised data from Hirosawa et al.
[145]. The methods all overestimate the digitised data suggesting a consistent difference
in the methods for describing the Curie temperature computationally and experimentally.
This discrepancy is between 1 and 2 orders of magnitude higher than the difference
between CTMPs when applied to the simulated material.

behaviour, and due to the large error in estimating the intercept of the line used. This

error ranges from 0.01 to 0.25×10−21J. At the worst case, this could suggest a larger

error in exchange than estimated above, but still substantially less than the discrepancy

with experimental results presented in table 4.3. The largest source of error, and limiting

factor, when examining the programmatic optimisation of exchange in these materials is

related to the experimental data gathered and the reporting of methodologies at wide in

the literature.
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Compound Curie temperature(K) Temperature range (K)
Bloch Moskowitz’s Tauxe’s Susceptibility

protocol[113] extrapolation [114] method [115] protocol
Pr2Fe14B 570.13±0.1 570.88±0.1 570.0±0.1 560.0±1 0.75±1
Nd2Fe14B 584.20±0.1 585.26±0.1 582.5±0.1 582.0±1 0.54±1
Sm2Fe14B 614.05±0.1 614.96±0.1 614.0±0.1 614.0±1 0.96±1
Gd2Fe14B 631.27±0.1 631.15±0.1 630.0±0.1 620.0±1 11.27±1
Tb2Fe14B 621.24±0.1 621.02±0.1 620.0±0.1 610.0±1 11.24±1
D y2Fe14B 596.25±0.1 597.17±0.1 580.1±0.1 584.0±1 17.17±1
Ho2Fe14B 598.60±0.1 593.50±0.1 570.0±0.1 560.0±1 38.60±1
Er2Fe14B 574.09±0.1 572.19±0.1 550.0±0.1 540.0±1 34.09±1
Tm2Fe14B 552.15±0.1 551.90±0.1 540.0±0.1 530.0±1 22.12±1
Lu2Fe14B 541.65±0.1 541.81±0.1 530.0±0.1 530.0±1 11.65±1

Table 4.4: The range in Curie temperatures calculated using each of the four CTMPs on
the VAMPIRE simulation data from the final iteration of the optimisation process. This is
used to generate the exchange error values in table 4.5. Methods from A)the Bloch protocol,
section 3.6.2[113]; B) Moskowitz’s extrapolation method, section 3.6.3[114]; C) Tauxe’s
method, section 3.6.5[115]; and D) the Susceptibility protocol, section 3.6.6). Errors in
these measurements are presented based on the methods implemented resolution at a
temperature sweep resolution of 2K for the susceptibility method, and the range over
several different random seed iterations for the other methods.

Compound Exchange 10−21J
Linear estimationa Input Variableb

Pr2Fe14B 1.10 1.19
Nd2Fe14B 0.81 0.85
Sm2Fe14B 1.15 1.215
Gd2Fe14B -1.22 -1.57
Tb2Fe14B -1.20 -1.208
D y2Fe14B -0.55 -0.63
Ho2Fe14B -0.34 -0.343
Er2Fe14B -0.25 -0.2475
Tm2Fe14B -0.10 -0.0554
Lu2Fe14B -0.05 0

Table 4.5: a)Exchange calculated by linear estimation of the relationship between exchange
and Curie temperature from the optimisation data evaluated at the Curie temperature
and b)the input variable provided to VAMPIRE at the Curie temperature. The deviation
from linear behaviour is apparent, with the average exchange calculated via estimating a
linear relationship between exchange and Curie temperatures calculated with each CTMP
differing significantly from the variable provided to the VAMPIRE simulation.
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4.1.2 Results in context

These results present first attempts to characterise the complicated microscopic magnetic

exchange of the Nd2Fe14B type rare earth ferromagnets using a macroscopic variable

as a mathematical optimisation goal. These materials have complex non-cubic unit cell

structures, but it has been demonstrated that macroscopic simulation properties such

as the Curie temperature can be used to numerically optimise the microscopic exchange

parameters without researcher intervention. This methodology uses relatively little com-

putation and experimental data when compared with alternative avenues, including

machine learning approaches using neural networks.

The treatment of exchange interaction as an energy dependent only on atom type

and inter atomic distance has reduced the optimisation space substantially, by highly

reducing dimensionality from an individual pairwise treatment of electronic or atomic

magnetic moments. Chaining this reduction with the usage of a prototypical Lanthanum

based compound, allowed the optimisation process to proceed linearly, first by optimising

the iron-iron exchange in La2Fe14B and subsequently the Rare earth-iron exchange in

the other materials. This is an approach not examined elsewhere in the literature, and

should spur greater examination of other weakly magnetic materials in an effort to better

characterise similar systems such as the SmCo5 and NdFe12 groups.

The exchange constant results in themselves present an expected relationship with the

Curie temperature of the compound and there is relatively good agreement with literature

Curie temperature values with larger discrepancies present due to disagreements from

Curie temperature methods.

This methodology therefore provides a framework for parameterising other ferromag-

netic materials of complex structure using macroscopic optimisation targets which can be

readily supplied by the literature. This further allows for much more rapid examination of

these materials, without many researcher hours devoted to manual parameterisation.

71 of 142



C
H

A
P

T
E

R

5
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Throughout this thesis the anisotropy is restricted to magnetocrystalline anisotropy

energy due to a series of factors prohibiting the examination of the other subtypes of

magnetic anisotropy. Shape anisotropy is dependent on the shape of the material, so

requires a separate parameterisation after the parameterisation of the more fundamental

magnetocrystalline anisotropy energy constants, forming a basis for future work in the

field. Spin models are well suited to the examination of magnetocrystalline anisotropy,

but fixed lattice models are incapable of examining tension in a crystal, prohibiting any

examination of magnetoelastic anisotropy.

As a result, the restriction to the examination of magnetocrystalline anisotropy energy

only is chosen due to the direct relation to the performance of atomistic models and the

aim to generalise the results to all structures of Nd2Fe14B.

Numerous mathematical evaluations of this magnetocrystalline anisotropy energy

exist, generally one can choose the basis which best suits the symmetry in the material.

For example, for cubic anisotropy, one can treat the anisotropy as a series of multiplied

polynomials [147], for uniaxial anisotropy as a series of Legendre polynomials [7] and as

extended for this work for systems with in plane anisotropy, as a series of spherical har-

monics in two dimensions, section 5.2. The constants which describe the strength of each

element in these series are termed anisotropy constants. The importance of the symmetry

of the system relates to the number of parameters required to describe the anisotropy.

With careful choice of the basis for the anisotropy, fewer anisotropy constants can in theory

describe the anisotropic effect. The anisotropy constants are the parameterised values in

the description of the total magnetocrystalline anisotropy energy.
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5.1 Empirical results and work by Cadogan et al.

Neodymium Iron Boron, Nd2Fe14B, has a complex magnetocrystalline anisotropy energy.

The material exhibits not just easy axis anisotropy, with preference for spins to align in

a single axis, but instead a complex three-dimensional anisotropy, containing easy axis

terms, easy plane terms and azimuthal preferences. The anisotropy is largely based at

the Neodymium sites in the material, due to the 4f electrons’ large unbalanced orbitals’

strong spin orbit coupling [148], but the contribution of the numerous iron atoms cannot

be overlooked. Empirical results are presented in Cadogan et al. [72] [taken from 89] in

comparison, but it should be noted that at 4.2 Kelvin, the experimental results agree

comprehensively with Cadogan et al.’s work.

In [72], Cadogan et al. presented a novel analysis method for the estimation of the

anisotropy of rare earth transition metal compounds, notably applicable to the 2:14:1 type

rare earth ferromagnet Nd2Fe14B. Cadogan et al. replicated empirical low-temperature

high magnetic field behaviour in Nd2Fe14B crystals. The method employed involved the

calculation of anisotropic exchange constants via calculation of the energy due to a set of

n particular directions of the 3 dimensional magnetisation, and systematically altering

the anisotropy constants until agreement with experiment. The method revolves around

the expansion of empirically determined anisotropy constants, with comparison made

to empirical magnetisation curves to create a fitting of the constants. These anisotropy

constants relate the magnetocrystalline anisotropy of the material to an energy surface at

each crystallographic site. This is fundamentally similar to the methodology presented in

this thesis. In the VAMPIRE simulation however, each atom type is treated with a unique

set of anisotropy exchange constants, whereas in the method presented by Cadogan et al.

[72], each Neodymium crystallographic site is treated individually. The work presented

in Cadogan et al. [72] has a much higher dimensional complexity, with 14 anisotropy

constants, contrasted with only 5 constants evaluated for the single spin model presented

in section 5.2.1, and 6 evaluated for the atomistic model in section 5.2.2.

5.2 Replicating empirical anisotropy with spin models

Using an atomistic basis for the anisotropy calculation should allow for the implicit

calculation of temperature dependence of anisotropy constants, as opposed to the explicit

scaling presented in Cadogan et al. The aim was therefore to replicate the empirical

anisotropic effects, without increasing the dimensional complexity, and its associated

computational cost. To achieve this, the number of anisotropy constants used to describe

the Neodymium sites in Nd2Fe14B need to be increased, to give sufficient degrees of

freedom in the expression of the anisotropy.
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Figure 5.1: Computed magnetisation curves from Cadogan et al. [72]. The x-axis is the
magnetic field in Tesla, in the direction of the measurement. e.g. the [001] curve is
measured in a magnetic field along the [001] direction. Temperatures for each graph are
a)4.2K, b)100K, c)150K, d)275K. For the final graph, calculated values were reduced by
15% to agree with experiment, without a proposed physical interpretation.

74 of 142
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Spherical harmonics, and specifically the Laplace spherical harmonics, are chosen as

the basis for the anisotropy energy of each atom, detailed in table 5.2. The Laplacian

spherical harmonics are chosen as they form an orthonormal basis, facilitating the sep-

aration of different anisotropic components. In addition, the spherical harmonics have

symmetries which correspond to symmetries around crystallographic axes, which results

in many of the possible anisotropic constants reducing to zero. This is an extension to the

Legendre polynomials previously used in atomistic modelling. The extension Ym
l

(
θ,φ

)
is

related explicitly to the Legendre polynomials, P l
m via,

Y m
l (θ,φ)= NeimφPm

l (cosθ) (5.1)

where Ym
l

(
θ,φ

)
is the Lagrange’s spherical harmonic; Pm

l are the associated Legendre

polynomials including the Condon-Shortley phase (−1)m; θ is the polar angle; φ is the

azimuthal angle; l is the orbital quantum number; and m is the magnetic quantum

number.

The associated Legendre polynomials were the standard anisotropy basis in VAMPIRE

prior to this work and additional implementation work performed by Jack Collings1. The

polynomials are defined as,

Pm
l (x)= (−1)m(1− x2)m/2 dm

dxm (Pl(x)) , (5.2)

where Pl is the generator of Legendre Polynomials, given by,

Pl(x)= 1
2l l!

dl

dxl (x2 −1)l . (5.3)

and with other definitions as above. The absolute value of the orbital quantum number,

|l|, is used in this generator. The mapping to Cartesian space treats x as the easy axis

of the material, and by definition, there is no azimuthal component to the anisotropy,

precluding the examination of the material Nd2Fe14B, which is approximately tetrago-

nally symmetric about the easy axis. This level of symmetry was chosen to best replicate

the work of Cadogan et al. [72] who also assumed a four-fold symmetry in the plane

orthogonal to the easy axis. It is possible an improved approximation would assume only a

two-fold symmetry in this plane and would therefore expect the addition of the A2
2, A2

4, A2
6

terms to the anisotropy calculation. The first 3 even and non-zero orders of the associated

Legendre polynomials are presented in table 5.1. The highlighted terms comprised the

total anisotropy description available in VAMPIRE.
1Computational Magnetism Group, University of York
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Polynomial Expansion

P2 3(z2 −1)

P4
1
8 (35z4 −30z2 +3)

P6
1
16 (231z6 −315z4 +105z2 −5)

Table 5.1: Legendre polynomial expansion (n.b. not the associated polynomials) to 6th
order in magnetic quantum number with 0th order in orbital quantum number. The first
two rows (highlighted) were the only anisotropy terms available in VAMPIRE at the
commencement of this thesis, with z corresponding to the easy axis of the material.

To form the anisotropic interaction, the polynomials are calculated for each spin

whereas usual z is the easy axis direction. The value z can be replaced with cos(θ) as a

result of the normalisation of the magnetic spin, as shown here in the conversion from

spherical to Cartesian coordinates:

Given that :

θ = arccos

(
z√

x2 + y2 + z2

)
, (5.4)

x2 + y2 + z2 = 1

cos(θ) can be related as:

cos(θ)= z√
x2 + y2 + z2

cos(θ)= zp
1

(5.5)

cos(θ)= z

Care must be taken in this conversion, as there are differing conventions with regard

to the azimuthal and polar angles. Throughout this work, as is convention in Physics,

the polar angle, θ, is the angle from the z-axis, and the azimuthal angle, φ, is the angle

around the z-axis from the x-axis.

While multiple anisotropy types, such as cubic and easy-plane anisotropy, can be created

using the summation of multiple sets of these polynomials along each axis, they cannot

accommodate a rotational preference in the x-y plane. This necessitates the use of a more

complex anisotropy Hamiltonian. The spherical harmonics made a simple choice, due to

their appropriate symmetries around the axes of a crystal. The anisotropic terms used to

model Nd2Fe14B are given in table 5.2. Note that the highlighted rows are effectively a

set of rescalings of the expansions given in table 5.1, with x = cos(θ).

Prior to this work, in simulations performed with VAMPIRE the material’s higher order

anisotropic properties, the azimuthal fourth order, and higher order polar anisotropies
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Anisotropy Constant and Expansion
Term spherical harmonic

A0
2 k0

2
(
Y 0

2
)

k0
2 · 1

4

√
5
π
· (3 cos2(θ)

)
A0

4 k0
4
(
Y 0

4
)

k0
4 · 3

16

√
1
π
· (35 cos4(θ)−30 cos2(θ)+3)

A4
4 k4

4
(
Y 4

4 +Y−4
4

)
k4

4 · 3
16

√
35
2π · (2 cos(4φ) · sin4(θ))

A0
6 k0

6
(
Y 0

6
)

k0
6 · 1

32

√
13
π

· (231 cos6(θ)−315 cos4(θ)+105 cos2(θ)−5)

A4
6 k4

6
(
Y 4

6 +Y−4
6

)
k4

6 · 3
16

√
91
2π · cos(4φ) · sin4(θ) · (11 cos2(θ)−1)

Table 5.2: Spherical harmonic expansions of anisotropy terms to 6th order in magnetic
quantum number with 0th and 4th order in orbital quantum number, where: θ is the
polar angle; φ is the azimuthal angle; Ym

l
(
θ,φ

)
is the Lagrange’s spherical harmonic; km

n is
the magnetocrystalline anisotropy energy constant with orbital quantum number, n, and
magnetic quantum number, m. Spherical harmonics not presented were treated with an
exchange constant of zero, under the assumption that higher order terms would produce a
sufficiently small contribution to be negligible and that the four-fold tetragonal symmetry
was sufficient to characterise the azimuthal anisotropy of the system.

have been unexplored in the atomistic context. Experimental work by Cadogan et al. [72],

using a Bitter electromagnet to induce a large magnetic field (up to 19T) in a single crystal

of Nd2Fe14B, demonstrated a First Order Magnetic Phase Transition, (FOMP) at 17T
that was not reproducible with anisotropy constants up to second order.

The FOMP presents as a rapid reorientation of the total magnetic moment of Nd2Fe14B
when a sufficiently large magnetic field is applied in the [100] direction of the crystal. This

direction is equivalent to the x-direction in the xyz basis, with z the easy axis. The material

presents a non-zero canting angle from the z-axis when no field is applied, and as the

field strength in the [100] direction increases to 17T the spins gradually align more with

the x-axis. The magnetisation in the x-direction increases from ∼ 37% to ∼ 60% gradually

over an increase in Applied magnetic field of approximately 17T. At this critical point the

spins reorient to saturation in the x-direction over as little as 0.5T. This reorientation

isn’t appropriately described by only fourth and second order uniaxial and easy plane

anisotropy.

This reorientation is a result of a low gradient region in the energy surface at the

17T at low Temperatures. This saddle point of the critical point is rapidly overcome by a

small increase in the magnetic field at this external field strength, resulting in the almost

discontinuous reorientation and subsequent saturation of the material’s moment in the
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x-direction.

This reorientation is an empirically validated measurement of the complex anisotropy

of Nd2Fe14B. It is important therefore to replicate this behaviour using the atomistic

model, in order to accurately demonstrate larger scale anisotropic effects, such as the star

shaped domains present in the material at low temperatures, on the 0.1 micrometer scale.

In order to reduce the complexity of the task, the number of anisotropy constants,

when compared to the number employed by Cadogan et al., was reduced. The Neodymium

sites therefore were treated as one anisotropic type, with up to sixth order in the orbital

quantum number and fourth order in the magnetic quantum number. The Iron anisotropy

was only considered to second order, in line with other iron based compounds, which are

characterised by a single exchange constants [149]. This mirrors the methodology for

examining exchange in RE2Fe14B alloys, as the RE sites are treated with one exchange

constant throughout.

5.2.1 Single spin model of anisotropy in Nd2Fe14B

Initially a single spin model with anisotropy aggregated over an entire unit cell was

developed. This approximation reduces the complexity of the anisotropy Hamiltonian Eani

and removes the exchange Hamiltonian completely. The total energy of the single spin

system was therefore only composed of magnetocrystalline anisotropy energy:

E = 7AFe + ANd (5.6)

where:

ANd = A0
2 + A0

4 + A4
4 + A0

6 + A4
6 (5.7)

and the Applied magnetic field interaction energy.

E =−→
h d ·

−→
S (5.8)

Forming a complete Hamiltonian

H =−→
h d ·

−→
S +7AFe + ANd (5.9)

with symbols defined as above.

The anisotropic terms are formed from the multiplication of an anisotropic constant

with a spherical harmonic. It was assumed for the work presented in this thesis that, due

to the approximate tetragonal symmetry in the magnetocrystalline anisotropy energy
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corresponding to the orbital quantum number, only the terms with 4th and 0th order

orbital quantum number are non-zero. The table of terms to 6th order in polar angle and

4th order in azimuthal angle is presented in table 5.2.

The single spin model is composed of a single spin whose energy is only dependent

on its direction, and its relation to the externally applied magnetic field. In order to

evaluate the behaviour of the model, and as an initial stage of the parameter search for

the atomistic anisotropy constants, the system was subject to a 0−20T applied field in

each of the directions used in Cadogan et al.’s work, [72], the x-, z- and xy-directions, see

fig. 5.4. Initially, the minimum energy direction was found with a naive 2-D sweep over

half of the unit sphere. This sweep consists of evaluating the energy at each direction

composed of the angle pair (θ,φ) for 0deg≤ θ,φ< 180deg with a step resolution of 0.45deg.

This was functional but computationally expensive and slow. To increase computational

efficiency, simplicial homology global optimization was used to minimise the energy of the

system with respect to each of the angle azimuthal angle and polar angle followed by a

small sweep in the region of the SHGO result to increase the resolution. This optimisation

reduced the runtime for this simulation from minutes to seconds. Simple homology global

optimization is implemented in SciPy [150] and is detailed in work by Endres, Sandrock,

and Focke. SHGO presents a possible improvement to the automated parameterisation

detailed above (chapter 3), due to its ability to avoid local minima.

Critically the saddle point at 17T in the energy surface suggests that the ∂2E
∂φ∂θ

= 0. A

small increase in the applied magnetic field then results in a large change in the spin

orientation, as the energy difference between the pre-FOMP direction, and post-FOMP

direction is low. Given that the anisotropy is only dependent on the spin’s angle in this

single-spin regime, this condition is trivially calculable. The derivatives of the anisotropy

with respect to θ and φ should simultaneously be 0 at stationary points of the anisotropy.

The derivative of the anisotropy with respect to polar angle:

∂A2

∂θ
= k0

2
1
4

√
5
π

(−6 sin(θ) cos(θ))

∂A4

∂θ
= k0

4
3

16

√
1
π

(−140 sin(θ) cos3(θ)+60 sin(θ) cos(θ))

∂A4
4

∂θ
= k4

4
3

16

√
35
2π

(8 cos(4φ)sin3(θ) cos(θ))

∂A6

∂θ
= k0

6
1

32

√
13
π

(−1386 sin5(θ) cos(θ)+1512 sin3(θ) cos(θ)−336 sin(θ) cos(θ))

∂A4
6

∂θ
= k4

6
3

16

√
91
2π

cos(4φ) sin3(θ) cos(θ)(66 cos2(θ)−26)

(5.10)
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Derivative with respect to azimuthal angle:

∂A4
4

∂φ
= k4

4
3

16

√
35
2π

(−8sin(4φ)sin4(θ))

∂A4
6

∂φ
= k4

6
3

16

√
91
2π

(−4sin(4φ)sin4(θ)(11cos2(θ)−1))

(5.11)

Additionally, the second order derivatives can be used to confirm the stationary point

in the energy surface is a minima. Second order derivatives, with respect to θ2

∂2A0
2

∂θ2 = k0
2

1
4

√
5
π

(6−12cos2(θ))

∂2A0
4

∂θ2 = k0
4

3
16

√
1
π

(−60sin2(θ)−140cos4(θ)+60cos2(θ)+420sin2(θ)cos2(θ))

∂2A4
4

∂θ2 = k4
4

3
16

√
35
2π

(12cos(4φ)sin2(θ)cos2(θ)−4cos(4φ)sin4(θ))

∂2A0
6

∂θ2 = k0
6

1
32

√
13
π

(−8316cos6(θ)+11970cos4(θ)−4200cos2(θ)+210)

∂2A4
6

∂θ2 = k4
6

3
16

√
91
2π

2cos(4φ)sin2(θ)(11sin4(θ)+2sin2(θ)+66cos4(θ)−6cos2(θ)−121sin2(θ)cos2(θ))

(5.12)

Second order derivatives with respect to φ2

∂2A4
4

∂φ2 = k4
4

3
16

√
35

(2π)
(−32cos(4φ)sin4(θ))

∂2A4
6

∂φ2 = k4
6

3
16

√
91

(2π)
(−16cos(4φ)sin4(θ)(11cos2(θ)−1))

(5.13)

Second order derivatives with respect to θφ

∂2A4
4

∂θ∂φ
= k4

4
3

16

√
35

(2π)
(24cos(4φ)sin2(θ)cos2(θ)−8cos(4φ)sin4(θ))

∂2A4
6

∂θ∂φ
= k4

6
3

16

√
91

(2π)
(−8sin(4φ)sin3(θ)cos(θ)(−11sin2(θ)+22cos2(θ)−2))

(5.14)

In addition, the derivative of the field interaction is required. For brevity, only the

x-direction field case is presented as the applied field H is directed along the x-axis to

produce the FOMP in the literature [72, 89]:

E t = ~H ·~S
= |H||S| (1,0,0) · (Sx,Sy,Sz

)
= |H||S|Sx

= |H||S|sin(θ)cos(φ)

(5.15)
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The subsequent derivatives of the field interaction are given here:

∂E t

∂θ
= |H||S|cos(θ)cos(φ) (5.16)

∂E t

∂φ
=−|H||S|sin(θ)sin(φ) (5.17)

∂2E t

∂θ2 =−|H||S|sin(θ)cos(φ) (5.18)

∂2E t

∂φ2 =−|H||S|sin(θ)cos(φ) (5.19)

∂2E t

∂θ∂φ
=−|H||S|cos(θ)sin(φ) (5.20)

Evaluating these derivatives at specific spin orientations which are known to be

minima allow for the creation of a conditional for the anisotropy constants (n,m)th-order

anisotropy constant.

For example, the minimum energy direction for the Neodymium spins at zero field is

known to be at a polar angle of 28.5deg and an azimuthal angle of 45deg [72]. Similarly,

at high field in the x-direction, the system is magnetically saturated, meaning that the

minimum energy direction is at a polar angle of 90deg and an azimuthal angle of 0deg.

The values for evaluating these derivatives are selected from known spin orientations

presented in [72].

Using a subset of these values does not reliably produce appropriate magnetisation

curves, as visible in fig. 5.2. Despite appropriate canting angle (the total magnetisation

has an energetic minima at zero field in the expected direction) the total behaviour of the

system is not wholly similar to the empirical results.

Similarly, correct behaviour in one dimension does not result in correct behaviour in

all dimensions, for example, despite appropriate location of the FOMP in the x-direction,

there is an unwanted FOMP in the xy-direction in fig. 5.3.

Using Python 3.6, rapid iteration of different anisotropy constant sets kset, stored as

dictionaries, were trialled in the simple single spin model. The differential condition above,

in addition to conditions on non-zero canting angle and FOMP position allow for forming

sets from an incomplete set of anisotropy constants. Using the optimisation above, the set

of angle pairs as a function of applied magnetic field is calculated, giving spin orientation.

While this methodology produces qualitatively good results, see fig. 5.4, the lack of

an exchange between the Nd and Fe sites results in a moderate disagreement with the

published literature [89, 72], as much as 30% just before the FOMP in the first sub-figure.

81 of 142



5. MAGNETIC ANISOTROPY IN RE2TM14B ALLOYS

Figure 5.2: Example canting and high field behaviour for an anisotropy constant set.
Individual characteristics, such as the canting angle, cannot reliably produce the required
physical phenomena at high field. Here, the canting angle at zero field of the single spin
model’s spin is within 2deg of the experimental result from Cadogan et al. in both θ and
φ, but this does not reproduce the appropriate high-field behaviour.
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Figure 5.3: Individual characteristics, such as the canting angle, cannot reliably produce
the required physical phenomena at high field. The first order magnetic phase transition
occurs both in the x-direction and the xy-direction for the given anisotropy parameters in
the single spin model.
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Figure 5.4: Single spin model of Nd2Fe14B anisotropy. The applied field H, is applied in the
direction that the magnetisation is plotted for. The FOMP demonstrated in references[72,
89] at the 17T in the x-direction is qualitatively reproduced, but the pre-FOMP region is
under saturated.
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5.2.2 Multi-spin model

The single spin model by definition contains no exchange coupling between spins. This

removal of exchange coupling results in a reduction in the degrees of freedom of the

system, due to the equivalence of the kFe and k0
2 : Nd, and the lack of relaxation provided

by the exchange coupling. The single spin model however gave qualitatively good results,

measuring a non-zero canting angle at zero field, and generating a FOMP at high field. The

atomistic model obviously allows for the introduction of the exchange coupling, and the

separation of the Iron and Neodymium sites. Using the kset calculated for the single spin

model, and adjusting the k0
2:Nd : k0

2:Fe ratio of anisotropy constants, allowed for greater

control of the FOMP’s position. This increased control however necessitates a greater

computational cost. The element wise Hamiltonian for the single spin case is replaced

with the pairwise Hamiltonian common to all atomistic simulations eq. (2.7).

The addition of exchange coupling also renders the differential conditionals for the

single spin incomplete, so the finer adjustment of the kset was performed by hand, using

the relationship between anisotropic energy terms at the critical field. The form of each of

the anisotropy terms is presented in fig. 5.5, and was used to manually tweak anisotropy

constants to encourage a first order magnetic phase transition at the required critical field

17T. For instance, allowing the change of one anisotropic term to be balanced by a change

in another at several field strengths.

85 of 142



5. MAGNETIC ANISOTROPY IN RE2TM14B ALLOYS

Figure 5.5: Forms of anisotropy curves in the spherical harmonic basis. Example graph of
the form of each of the anisotropy terms, k0

2,k0
4,k4

4,k0
6,k4

6,kFe, for a single spin model (i.e. 7
iron atoms worth of anisotropy per Neodymium atom in the average spin). The knowledge
of form allows for the selective increasing and decreasing of anisotropy values, to create
magnetisation curves with an appropriately positioned FOMP.
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Figure 5.6: Example graph of the form of the energy contributions for an increasing
external magnetic field applied in the xy- ([1,1,0]) direction, magnetisation strengths
H = ..., for a single spin model (i.e. 7 iron atoms worth of anisotropy per Neodymium
atom in the average spin). The knowledge of form allows for the selective increasing and
decreasing of anisotropy values, to create magnetisation curves with an appropriately
positioned FOMP.
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Figure 5.7: Reproduction of Cadogan et al. using VAMPIRE. A multi-spin model of
Nd2Fe14B anisotropy2 at 0 Kelvin, compared to 4.2 Kelvin in the experimental case.
The applied field H, is applied in the x-direction. As in the single spin example, varying
one constant can greatly change the macroscopic behaviour, and this can be used to tune
the anisotropic behaviour to match experiment. Here, the k4

6 constant is being varied, from
0.1 times the single spin value, to 3 times. This tuning is still predominantly a manual
process, and demonstrates the possibility of a large gain in future automation.
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5.2.3 Conversion between VAMPIRE and spherical harmonics

VAMPIRE was initially built only to use a normalised series of Legendre polynomials. As

a result, to recover the same physical description of energy, anisotropy constants must

use a factor for conversion related to the fractional part of the spherical harmonic basis.

Similarly, as the single spin model was treated as an aggregate of 8 atoms (1 Nd and 7 Fe),

the constants are divided the total magnetic moment over that range (18.6µB, in units of

µB). The conversions for the relevant terms for this work are presented in table 5.3, and

the general equation is presented in section 5.2.3.

KV =− f int fsh f leg
k

18.6
(5.21)

with

fsh =
√

2n+1
4π

(n−m)!
(n+m)!

(5.22)

and

f leg = (−1)m(1−n2)m/2 dm

dnm (5.23)

where n and m are the polar and azimuthal degree, fsh and f leg are the Legendre

factor and Spherical Harmonic factor presented in table 5.3 and f int is the normalisation

factor introduced into VAMPIRE, again listed in table 5.3.

For instance, to convert from the standard spherical harmonic constant k0
2 to the

constant that VAMPIRE uses to generate the same anisotropic energy K2V for one atom;

keeping the energy constant, and given that the VAMPIRE internal factor, the spherical

harmonic factor, and the associated Legendre polynomial factor are:

f int = 3

fsh = 1
2

√
5
π

f leg =
1
2

(5.24)
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The relationship between constants for all anisotropic orders is therefore:

E =k0
2
(
Y 0

2
) =−K2V cos2(θ)

Const =k0
2 ·

1
4

√
5
π

(
3cos2(θ)−1

) =−K2V cos2(θ)

Const =k0
2 ·3

1
4

√
5
π

=−K2V

Const =−k0
2 · f int fsh f leg = K2V

(5.25)

Constant Legendre factor Spherical Harmonic Factor Internal Factor
f leg fsh f int

k0
2

1
2

1
2

√
5
π

3

k0
4

1
8

1
2

√
9
π

35

k4
4 105 1

16

√
1

70π
1
2

k0
6

1
16

1
2

√
13
π

231

k4
6

945
2

1
720

√
13

14π −11
2

Table 5.3: Note that k4
6 contains a negative internal factor, for consistency with VAMPIRE’s

representation in src/anisotropy/rotational_order_6_4.cpp in the VAMPIRE repository
[152].

5.3 Multi-spin model of anisotropy, in comparison to
Cadogan et al.

The multi-spin model detailed above was used to simulate the behaviour of the Nd2Fe14B
system in gradually increasing magnetic fields, in each of the x-, xy- and z-directions

independently. The response of the magnet, the resultant spin direction exhibited, is

displayed in fig. 5.8 The multi-spin anisotropy constants, evaluated for the use with

VAMPIRE in J per spin site, which yield the curves presented in fig. 5.8 were:

• Fe-k0
2 = 4.505623e−23J/site

• k0
2 = 5.365319e−22J/site

• k0
4 = 3.669052e−22J/site
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• k0
6 =−3.288575e−21J/site

• k4
4 =−1.461785e−22J/site

• k4
6 = 3.521930e−21J/site

The anisotropy constants obtained through this methodology have been selected nu-

merically to produce atomistic simulations which have similar macroscopic properties to

experimental data from and references in Cadogan et al. [72]. However, different constants

are provided in the literature which produce similar macroscopic results using different

methodologies. Many of these methodologies have suggested physical interpretations,

but macroscopically produce similar results to the constants presented here. In order

to differentiate these sets of constants therefore, an additional physical property must

be examined from experiment to select the appropriate parameter set from the range of

options.

Given the large number of experimental data points in the input data set (approx one

order of magnitude above the number of constants fitted, considered a reasonable rule

of thumb for regression modelling[153, 154]), the risk of over-fitting is lowered. Given

the lack of first principles justification for these anisotropic constants, there is no explicit

justification for their correctness at the nano-scale, but the macroscopic agreement with

experiment has implications for the understanding of the number of parameters, and

complexity of model, required to effectively model macroscopic behaviour in complex

magnetic materials. Given the difficulty in experimentally measuring the nanoscale

anisotropic behaviour, the only consistent comparison that can be made is to theoretical

ab initio models, such as those employed by Yamada et al. [155].

No demonstration has thus far been made as to the uniqueness of these anisotropy

constants, and similar, or identical results to those presented in fig. 5.8, could be achieved

with a different set.

5.3.1 Yamada et. al: Crystal electric field calculations as a method
to calculate anisotropy constants

Yamada et al. present anisotropy coefficients calculated using the crystal electric field

(or crystalline-electric-field) approximation in RE2Fe14B magnets[155]. The results are

presented in units of Ka−n where K is Kelvin, a0 is the Bohr radius, and m is the magnetic

quantum number.
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The anisotropy coefficients are presented in comparison with this work in table 5.4.

Conversion from the units used by Yamada et al. to Joules is performed using eq. (5.26)

and presented in table 5.4.

km
n = X · Am

n
kban

0 < rn >
f m
sh,n

(5.26)

X =


α= −7

33·33 , for n = 2

β= −8·17
11·11·13·297 , for n = 4

γ= −17·19·5
132·113·33·7 , for n = 6

(5.27)

< rn >=


1.001, for n = 2

2.401 for n = 4

12.396, for n = 6

(5.28)

where X is a numerical factor specified by Stevens[156] for each order of anisotropy, A

is the crystal field coefficient, kb is Boltzmann’s constant, < rn > is the expectation value

of the 4f orbital, fsh is the spherical harmonic coefficient.

< rn > is taken from the literature[157], but it is stated that it is very sensitive to

choice of density functional and this may cause inaccuracies in the stated value. For

comparison with previous work by Yamada [155] the value is taken as presented.

The First order magnetic phase transition in Nd2Fe14B is reproduced by Yamada et al.

but the total number of Neodymium anisotropy constants used to generate this data is 18,

split across two Neodymium crystal sites, compared with only 5 constants in the presented

work. The model presented in this work produced results which show qualitatively similar

characteristics with the calculations from Yamada et al. with oversaturated magnetisation

at higher field strengths when compared with experiment. Quantitatively the modelling

in this work presents a greater deviation across the entire external field range, with less

sharp magnetic phase transitions and larger error values across the range. In principle,

it is possible to increase the degrees of freedom in the anisotropy constants for our

model. The two neodymium sites could be independently treated, and additional spherical

harmonics can be used for the calculation of the anisotropy energy, in order to match

the number of parameters presented in the work by Yamada et al. This would be result

in prohibitively expensive programmatic evaluation of anisotropy constants due to the

increased parameter space however, suggesting the need for a more considered approach

in constant evaluation.
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Numerically, the anisotropy constants presented in this work are between two and four

orders of magnitude larger than equivalent crystal electric field parameters (after unit

conversion). This can only be reconciled with additional calculations and comparison to

experiment at temperature, or with greater measurement of the directionality of individual

spins, as the average spin direction would be similar while ratios remain consistent.

Similarly, Yamada et al. use Y2Fe14B as a prototype to inform information about the

Iron sublattice in the other rare earths, as La2Fe14B is used in this work.

Anisotropy CEF[155] VAMPIRE representation This work
order Ka−n in J/ fsh J/ fsh

k0
2 2.95×102 4.03×10−23 −1.03×10−21

k−2
2 −4.54×10−2 −2.62×10−23 0.0∗

k0
4 −1.84×10 1.20×10−26 4.07×10−22

k4
4 0.0∗ 0.0∗ 3.00×10−22

k0
6 −1.84×10 1.20×10−26 4.07×10−22

k−2
6 9.80×10 −6.37×10−26 0.0∗

k4
6 −1.59×10+01 1.03×10−25 −8.15×10−22

Table 5.4: Crystal electric field coefficients used for anisotropy calculations by Yamada et
al. in Nd2Fe14B and their equivalent values in the same unit system used by VAMPIRE
(Joules per spherical harmonic coefficient).[155]. Equivalent to Herbst[133] via eq. (5.26)
without the Boltzmann factor for conversion to Joules. Asterisked (∗) values are not
included in the basis representation for that anisotropy constant set.

The resultant high field behaviour is in some aspects very similar to the experimental

work available in Cadogan et al. [72] [taken from 89]. The location of the rapid change

in alignment, at 17T when the field is applied in the x-direction, is clearly visible but is

overestimated, with the transition occurring at approximately 18.5 Tesla instead. The

nature of the rapid alignment change is different however, with a slightly more continuous

transition region, although this could be due to the resolution of the figure in the original

work by Cadogan et al. There is also a consistent increase in the expected magnetisation

at all field strengths, suggesting the Anisotropy constant series could be better optimised

with the addition of future work. The large overestimation in the xy-direction (the right

subfigure of fig. 5.8) suggests an overestimation of the planar anisotropy terms when

compared with the polar uniaxial terms and this should be examined at a future date.
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Figure 5.8: Reproduction of Cadogan et al. using VAMPIRE. A multi-spin model of
Nd2Fe14B anisotropy at 0 Kelvin, compared to 4.2 Kelvin in the experimental case.
The applied field H, is applied in the direction that the magnetisation is plotted for. The
FOMP demonstrated in [72, 89] at the 17T in the x-direction is only qualitatively repro-
duced, especially when compared to the model by Cadogan et al. and the single spin model.
The multi-spin model in use is VAMPIRE, with anisotropy constants a factor of 2.66 larger
than those for the single spin model. The FOMP in the x-direction graph is appropriately
reproduced, although the introduction of "relaxation" of the directional nature of the
anisotropy, due to the exchange between spin sites, causes the large increase required in
the constants, as well as the smoothness of the phase transition when compared to the
single-spin model in fig. 5.4.

Cadogan et al. presented a system that does not fully saturate in the x-direction at

the highest field examined, consistent with the slight temperature increase compared to

fig. 5.8.

Similar crystal electric field coefficients are presented in Herbst [158] with each

presented of a similar order of magnitude. The set of constants varies however, with

several sets including differing magnitudes for the two f and g Nd atoms[159, 72] further

increasing the complexity of the parameterisation.

5.4 Measuring anisotropy

Experimentally, atomic scale magnetic order can be probed via inelastic neutron scattering.

The scattering of a neutron from an atomic system is dependent on the strong nuclear

force, but the scattering of a neutron due to the electromagnetic force is dependent on the
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internal magnetic structure of the material being probed.[160].

Scattering has been used to differentiate between measurements of single and 2 ion

anisotropy, and can provide insight into bulk and surface magnetic ordering at high

resolution[161]. In addition, Nd2Fe14B is being examined using neutron scattering for

larger scale samples[162] and spin reorientation of individual atomic sites has been

observed in Nd2Fe14B and Er2Fe14B[163]. Magnetic small angle neutron scattering

(Magnetic SANS) allows for examination of magnetic structures of order 1-300nm[164],

however the anisotropy measured will relate to the sum of the magnetic anisotropy in

a local area, rather than the components which form the spherical harmonic basis set

presented in [155] and this work.

Additionally anisotropy can be inferred from measurements of the anisotropy of mag-

netic susceptibility of a material (AMS), anisotropy in remanence, and in hysteresis at

larger scales, without sufficient resolution for nanoscale examination[165].

There is scope for additional experimental measurements of anisotropic behaviour

of several of these rare earth ferromagnets, especially with respect to large single crys-

tal measurements which are most able to be compared to the bulk simulations most

addressable via the atomistic model.

5.4.1 Results in context

The anisotropic constants presented herein yield a considerable amount of fidelity to the

macroscopic high field behaviour experienced empirically and through other theoretical

approaches. This fidelity is despite the substantial reduction in the number of charac-

terised constants used in the simulation. The current approach to examining anisotropic

constants, first with simpler models and eventually using results from atomistic simula-

tions, has generated a set of anisotropic constants that behave macroscopically similar

to those presented in the literature, without any additional first principles calculations.

This phenomenological approach will allow for an increasing number of complex materi-

als to be simulated which are currently prohibitively expensive. The greater saturation

magnetisation demonstrates that the high field behaviour of this parameterisation and

model is over saturated when compared with literature requiring more examination of the

parameter set at high temperature. The parameterisation allows for the atomistic model

to provide temperature dependent anisotropic behaviour moving forward, instead of the

manual adjustments made in prior work[72], providing an avenue for evaluating the form

of the temperature dependence of the anisotropy constants.
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Curie Temperature Measurement Protocols were compared to consistently calculate the

Curie temperature programmatically without researcher input. The selection of Tauxe’s

method, Moskowitz’s extrapolation method, the Bloch protocol and the Specific Heat

and Susceptibility protocols was made due to their consistency across datasets enabling

repeated evaluation of the Curie Temperature. Automatic parameterisation of small body-

centered-cubic Iron (bcc-Fe) and 2:14:1 type rare earth ferromagnet alloys was demon-

strated, using the Nelder-Mead and Brent-Dekker method’s to perform numerical opti-

misation of the atomistic exchange constants required to describe the alloys. The Nelder-

Mead method was used to demonstrate the viability of the approach on bcc-Fe. The single

atomistic exchange constant in bcc-Fe, the iron to iron exchange, was evaluated, and the re-

sultant Curie temperature was calculated and compared with literature values. The 2:14:1

type rare earth ferromagnet (RE2Fe14B) compounds magnetic properties were parame-

terised for small system sizes. The atomistic exchange constant between iron atoms, and be-

tween iron and rare earth atoms in each of La2Fe14B, Pr2Fe14B, Nd2Fe14B, Sm2Fe14B,

Gd2Fe14B, Tb2Fe14B, D y2Fe14B, Ho2Fe14B, Er2Fe14B, Tm2Fe14B, Lu2Fe14B was op-

timised using Brent’s method, by minimising the absolute difference between Curie

temperature calculated using the atomistic modelling software VAMPIRE, and the ac-

cepted empirical value [133]. The optimisation evaluates exchanges to within the range

of Curie Temperature values produced by a range of CTMPs on the order of several

Kelvin. The optimisation rate is in the order of <20 system evaluations, which is far

less than the complete examination of the parameter space for this level of precision.

The automatic parameterisation method is applicable to other magnetic alloys reducing

the time commitment for future parameterisation and allowing for a bank of material
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parameters to be more readily created. A set of anisotropy constants to replicate the high

field First Order Magnetic Phase Transition in Nd2Fe14B reported by Cadogan et al. was

evaluated using a spherical harmonic basis, using the application of a single-spin model

and cross-examination of average spin angle with the accepted experimental results. The

phase transition was partially replicated using the single-spin and atomistic models, and

comparisons between the models were made.

6.1 Future work

The prospective field of future research into the automatic parameterisation of atomistic

models is large. As demonstrated, the parameter space for appropriate characterisation

of a range of even similar alloys is a significant barrier to accurate simulation of these

materials. This confirms the use case of optimisation methods for calculating atomistic

parameters. Initially, specific improvements to the methodology for evaluation 2:14:1 type

rare earth ferromagnets should allow for more accurate macroscopic behaviour in atomistic

simulations. For example, generating systems more closely related to manufactured rare

earth systems, by simulated annealing and sintering of larger system sizes, would allow

for better comparison to real life magnet usage. Currently, comparisons are only made

to relatively pure, well-formed rare earth crystals grown in a lab environment [89]. This

could cause a large increase in the number of parameters to effectively describe a system

however, as interfacial atoms can behave differently to atoms in the bulk, increasing the

computational cost for appropriate characterisation. Similarly, simultaneous multidimen-

sional optimisation of exchange constants and low temperature rescaling exponents would

allow for more accurate reproduction of sub-Curie temperature behaviour, at a cost to the

model’s complexity. This multidimensional optimisation should make use of the entire

magnetisation curve, via a regression algorithm (such as least squares), instead of just

using the Curie temperature to define the direction of the optimiser. This improvement

would allow for the low temperature rescaling exponents, and possibly anisotropy driven

spin reorientations to be replicated during the same optimisation phase.

Using performance improvements in VAMPIRE that better take advantage of parallel

computation on cluster machines, and heterogeneous Graphics Processing Unit (GPU)

compute platforms, will also allow for larger systems to be sufficiently explorable to be used

as optimisation systems in future. Any increase in simulation and optimisation efficiency

will reduce the total computational cost for evaluating a new larger system. These systems

will more closely relate to experimental data, and could contain multiple phases including

grain boundaries and interstitial phases. Improving the range of systems that can be

simulated increases the amount of viable comparisons for currently examined materials,
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and increases the number of materials that can be examined, by connecting the literature’s

experimental data more stringently to the simulation. Following the improvements to the

method for Nd2Fe14B-like rare earth alloys, other magnetic materials of interest will be

explored, with a view to generating and examining novel magnetic alloys. For example,

similar parameterisation work can be performed on the NdFe12 and SmCo5 families

of magnetic alloys. The next major step in generating and evaluating novel structures

will involve examination of combination alloys. These materials can be thought of as a

traditional rare earth ferromagnet doped with another metal, often with concentration of

the dopant varying in space. These alloys have the potential to improve Curie temperatures

and coercivity of permanent magnets when compared to "pure" rare earth ferromagnets.

With an increase in the number of materials examined, the generated data may reach a

quantity that enables the use of machine learning optimisation. For instance, an artificial

neural network could be trained with a range of similar ferromagnets (using parameters

estimated with numerical optimisation), and then tasked with evaluating the parameters

for an unknown material or combination of materials. Finer examination of the quantity

of materials evaluated versus the reliability of such a machine learning model would be

required, but it would be possible to estimate a very large number of atomistic parameters

for a large range of magnetic materials as a result. The separation of the training phase

and the parameterisation phase could substantially reduce the computational burden for

researchers to parameterise materials of interest, but would increase the computational

cost for the model trainer.
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A.1 VAMPIRE - input files

A.1.1 Curie temperature monte carlo simulation
1 #–––––––––––––––––––––
2 # Creation attributes:
3 #–––––––––––––––––––––
4 create:periodic-boundaries-x
5 create:periodic-boundaries-y
6 create:periodic-boundaries-z
7

8 #–––––––––––––––––––––
9 # System Dimensions:

10 #–––––––––––––––––––––
11 dimensions:system-size-x = 4 !nm
12 dimensions:system-size-y = 4 !nm
13 dimensions:system-size-z = 4 !nm
14

15 #–––––––––––––––––––––
16 # Material Files:
17 #–––––––––––––––––––––
18 material:file=NdFeB.mat
19 material:unit-cell-file=NdFeB.ucf
20 #–––––––––––––––––––––
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21 # Simulation attributes:
22 #–––––––––––––––––––––
23 sim:minimum-temperature=200.0
24 sim:maximum-temperature=800.0
25 #sim:equilibration-temperature=0.0
26 sim:temperature-increment=10.0
27 sim:equilibration-time-steps=20000
28 sim:time-steps-increment=1
29 #sim:total-time-steps=10000
30 sim:loop-time-steps=20000
31

32 #––––––––––––––––
33 # Program and integrator details
34 #––––––––––––––––
35 sim:program=curie-temperature
36 sim:integrator=monte-carlo
37 sim:integrator-random-seed=
38

39 # data output
40 output:temperature
41 output:mean-magnetisation-length
42 output:mean-susceptibility
43 output:mean-specific-heat
44 output:real-time
45 output:temperature
46 output:material-magnetisation
47 output:material-mean-magnetisation-length
48 output:material-mean-susceptibility
49

50 screen:temperature
51 screen:mean-magnetisation-length

Listing 1: The input file for a Curie temperature Monte-Carlo simulation for use with the

vampire_opt exchange optimisation program. The random number seed is intentionally

left blank, as it is generated by the optimising program.
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A.2 Wyckoff Positions for 2:14:1 type ferromagnets

101 of 142



A. APPENDIX A

Multiplicity Wyckoff letter Site symmetry Coordinates
16 k 1 (x,y,z) (-x,-y,z) (-y+1/2,x+1/2,z+1/2)

(y+1/2,-x+1/2,z+1/2) (-x+1/2,y+1/2,-z+1/2)
(x+1/2,-y+1/2,-z+1/2) (y,x,-z) (-y,-x,-z)
(-x,-y,-z) (x,y,-z) (y+1/2,-x+1/2,-z+1/2)
(-y+1/2,x+1/2,-z+1/2) (x+1/2,-y+1/2,z+1/2)
(-x+1/2,y+1/2,z+1/2) (-y,-x,z) (y,x,z)

8 j ..m (x,x,z) (-x,-x,z) (-x+1/2,x+1/2,z+1/2)
(x+1/2,-x+1/2,z+1/2) (-x+1/2,x+1/2,-z+1/2)
(x+1/2,-x+1/2,-z+1/2) (x,x,-z) (-x,-x,-z)

8 i m.. (x,y,0) (-x,-y,0) (-y+1/2,x+1/2,1/2)
(y+1/2,-x+1/2,1/2) (-x+1/2,y+1/2,1/2)
(x+1/2,-y+1/2,1/2) (y,x,0) (-y,-x,0)

8 h 2.. (0,1/2,z) (0,1/2,z+1/2) (1/2,0,-z+1/2) (1/2,0,-z)
(0,1/2,-z) (0,1/2,-z+1/2) (1/2,0,z+1/2) (1/2,0,z)

4 g m.2 m (x,-x,0) (-x,x,0) (x+1/2,x+1/2,1/2)
(-x+1/2,-x+1/2,1/2)

4 f m.2 m (x,x,0) (-x,-x,0) (-x+1/2,x+1/2,1/2)
(x+1/2,-x+1/2,1/2)

4 e 2.m m (0,0,z) (1/2,1/2,z+1/2) (1/2,1/2,-z+1/2) (0,0,-z)
4 d -4.. (0,1/2,1/4) (0,1/2,3/4) (1/2,0,1/4) (1/2,0,3/4)
4 c 2/m.. (0,1/2,0) (0,1/2,1/2) (1/2,0,1/2) (1/2,0,0)
2 b m.m m (0,0,1/2) (1/2,1/2,0)
2 a m.m m (0,0,0) (1/2,1/2,1/2)

Table A.1: The crystallographic positions of atoms in the space group of Nd2Fe14B, P42/mnm, No.
136. Table retrieved from https://cryst2.ehu.eus/cgi-bin/cryst/programs/nph-wp-list [91].
The Neodymium sites are at f and g, with the remaining sites Iron, the Boron would be at site f
with centrosymmetry, and the sites «fixme»
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1 # Calculating the Curie temperature using Moskowitz's extrapolation method
2 # + Temperature Array –-|
3 # | + Magnetisation array–– Both over extrapolation range
4 # | | + Magnetisation at T=0
5 # | | | + initial guess for Curie temperature
6 # | | | |
7 def mosk(T,M,M0,T0):
8 # Moskowitz's approximation
9 # calculate [J(T)/J0]^2 until flattening of M(T) curve, from T0_start -> T0

10 J_sq = (M/M0)**2.0
11 # Linear regression of this curve
12 slope, intercept, r_value, p_value, std_err = linregress(T,J_sq)
13 # slope = -1/(Tc-T0) -> Tc=-1/slope - T0
14 Tc = -1/slope + T0
15 return Tc
16

Listing 2: Python 3.6: Moskowitz’ extrapolation method CTMP, implemented by Andrew Naden in [99].
The function linregress refers to the scipy.stats.linregress function [166].

A.2.1 Implementation of CTMP methods

Presented here are the Python implementations of the CTMP’s referenced in sections 3.6.2 to 3.6.6

and 3.6.8. listing 2
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1 # Calculating the Curie temperature using the two tangent method
2 # + Temperature in range below curie temperature
3 # | + Magnetisation in range below curie temperature
4 # | | + Temperature in range above curie temperature
5 # | | | + Magnetisation in range above curie temperature
6 # | | | |
7 def two_tan(T_below,M_below,T_above,M_above): # This uses too many magic numbers,
8 # they need to be defined better.
9 min_len = 18

10 # choose midpoint of data set
11 if len(T_below) < min_len:
12 mid = len(T_below)//2
13 ran = len(T_below)//2 - 1
14 else:
15 mid = len(T_below)-(min_len/2) # not an actual mid point,
16 # is closer to the estimated curie temperature
17 ran = min_len//4 # may need tweaking to ensure that it's always to the below
18 # the curie temperature, but that should probably be handled a layer up.
19 # first tangent curve : central difference method
20 slope = (M_below[mid+ran] - M_below[mid-ran])/(T_below[mid+ran] - T_below[mid-ran])
21 #intercept = slope*(T_below - T_below[mid]) + M_below[mid]
22 intercept = M_below[mid-ran] - slope*T_below[mid-ran]
23 curve1 = [slope,intercept]
24

25 # choose midpoint of data set
26 if len(T_above) < 12:
27 mid = len(T_above)//2
28 ran = len(T_above)//2 - 1
29 else:
30 mid = len(T_above)-6 # not an actual mid point, is closer to the estimated curie

temperature,→
31 ran = 3 # may need tweaking to ensure that it's always to the above
32 # the curie temperature, but that should probably be handled a layer
33 # up.
34 # second tangent curve : central difference method
35 slope = (M_above[mid+ran] - M_above[mid-ran])/(T_above[mid+ran] - T_above[mid-ran])
36 intercept = M_above[mid] - slope*T_above[mid]
37 curve2 = [slope,intercept]
38 # linear equation solver, break into separate function?
39 solution=[]
40 solution.append(curve1[0]-curve2[0])
41 solution.append(curve1[1]-curve2[1])
42 Tc=solution[1]/-solution[0]
43 return Tc,curve1,curve2

Listing 3: Python 3.6: Grommé’s two tangent method CTMP, implemented by Andrew Naden in [99]
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1 # Calculating the Curie temperature using the two line linear regression method
2 # + Temperature in range below curie temperature
3 # | + Magnetisation in range below curie temperature
4 # | | + Temperature in range above curie temperature
5 # | | | + Magnetisation in range above curie temperature
6 # | | | |
7 def two_lin(T_below,M_below,T_above,M_above):
8 # first lienar regression curve
9 slope, intercept, r_value, p_value, std_err = linregress(T_below,M_below)

10 curve1 = [slope,intercept]
11 # second linear regression curve
12 slope, intercept, r_value, p_value, std_err = linregress(T_above,M_above)
13 curve2 = [slope,intercept]
14 # linear equation solver, break into separate function?
15 solution=[]
16 solution.append(curve1[0]-curve2[0])
17 solution.append(curve1[1]-curve2[1])
18 Tc=solution[1]/-solution[0]
19 return Tc,curve1,curve2
20

Listing 4: Python 3.6: Linear regression CTMP, implemented by Andrew Naden in [99]

1 # Calculating the Curie temperature by fitting Ms(T)
2 # + temperature in range below Tc
3 # | + magnetisation in range below Tc
4 # | | + Optional initial guess for Tc
5 # | | | + optional initial guess for exponent
6 # | | | |
7 def fit_Ms(T, M, T0=700, b0=0.5):
8 # currently only for mag_calc = (1.0 - (T/Tc))**b, no internal exponent
9 params,

pcurve_fit(f=mag_calc,xdata=T,ydata=M,p0=[T0,b0],bounds=([max(T),-np.inf],[np.inf,np.inf])),→
10 return params[0],params[1]
11

Listing 5: Python 3.6: Fitting to Bloch’s Law CTMP, implemented by Andrew Naden in [99]
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1 # Tauxe method, maximum derivative of M wrt T
2 # + temperature in range below Curie temperature
3 # | + magnetisation in range below Curie temperature
4 # | | + optional extrapolation of gradient
5 # | | |
6 def tauxe(T,M,ext=False):
7 G = np.gradient(M,T)
8 G = np.gradient(G,T)
9

10 # non interpolated, can only return a T present in T
11 Tc = T[np.where(abs(G)==max(abs(G)))[0]][0]
12 # if extrapolation between points is required
13 if ext:
14 # perform 1-d interpolation of -abs(G) wrt T, allowing for minimisation in next step
15 # this gives largest magnitude of G as the minimum
16 f = interp1d(T,-abs(G),kind='cubic')
17 # minimize to find T for highest gradient
18 Tc = minimize(f,x0=Tc,bounds=((min(T),max(T)),))
19

20 ## visualize the interpolation
21 #x = np.linspace(T[0],T[-1],1000)
22 #for i in x:
23 # print(i,f(i))
24 return float(Tc.x[0])
25 else:
26 return Tc
27

Listing 6: Python 3.6: Tauxe’s method CTMP, implemented by Andrew Naden in [99]
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The implementation of linear regression in SciPy.

1

2

3 def linregress(x, y=None, alternative='two-sided'):
4 """
5 Calculate a linear least-squares regression for two sets of measurements.
6

7 Parameters
8 –––––
9 x, y : array_like

10 Two sets of measurements. Both arrays should have the same length. If
11 only `x` is given (and ``y=None``), then it must be a two-dimensional
12 array where one dimension has length 2. The two sets of measurements
13 are then found by splitting the array along the length-2 dimension. In
14 the case where ``y=None`` and `x` is a 2x2 array, ``linregress(x)`` is
15 equivalent to ``linregress(x[0], x[1])``.
16 alternative : {'two-sided', 'less', 'greater'}, optional
17 Defines the alternative hypothesis. Default is 'two-sided'.
18 The following options are available:
19

20 * 'two-sided': the slope of the regression line is nonzero
21 * 'less': the slope of the regression line is less than zero
22 * 'greater': the slope of the regression line is greater than zero
23

24 .. versionadded:: 1.7.0
25

26 Returns
27 –––-
28 result : ``LinregressResult`` instance
29 The return value is an object with the following attributes:
30

31 slope : float
32 Slope of the regression line.
33 intercept : float
34 Intercept of the regression line.
35 rvalue : float
36 The Pearson correlation coefficient. The square of ``rvalue``
37 is equal to the coefficient of determination.
38 pvalue : float
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39 The p-value for a hypothesis test whose null hypothesis is
40 that the slope is zero, using Wald Test with t-distribution of
41 the test statistic. See `alternative` above for alternative
42 hypotheses.
43 stderr : float
44 Standard error of the estimated slope (gradient), under the
45 assumption of residual normality.
46 intercept_stderr : float
47 Standard error of the estimated intercept, under the assumption
48 of residual normality.
49

50 See Also
51 ––––
52 scipy.optimize.curve_fit :
53 Use non-linear least squares to fit a function to data.
54 scipy.optimize.leastsq :
55 Minimize the sum of squares of a set of equations.
56

57 Notes
58 ––-
59 Missing values are considered pair-wise: if a value is missing in `x`,
60 the corresponding value in `y` is masked.
61

62 For compatibility with older versions of SciPy, the return value acts
63 like a ``namedtuple`` of length 5, with fields ``slope``, ``intercept``,
64 ``rvalue``, ``pvalue`` and ``stderr``, so one can continue to write::
65

66 slope, intercept, r, p, se = linregress(x, y)
67

68 With that style, however, the standard error of the intercept is not
69 available. To have access to all the computed values, including the
70 standard error of the intercept, use the return value as an object
71 with attributes, e.g.::
72

73 result = linregress(x, y)
74 print(result.intercept, result.intercept_stderr)
75

76 Examples
77 ––––
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78 »> import numpy as np
79 »> import matplotlib.pyplot as plt
80 »> from scipy import stats
81 »> rng = np.random.default_rng()
82

83 Generate some data:
84

85 »> x = rng.random(10)
86 »> y = 1.6*x + rng.random(10)
87

88 Perform the linear regression:
89

90 »> res = stats.linregress(x, y)
91

92 Coefficient of determination (R-squared):
93

94 »> print(f"R-squared: {res.rvalue**2:.6f}")
95 R-squared: 0.717533
96

97 Plot the data along with the fitted line:
98

99 »> plt.plot(x, y, 'o', label='original data')
100 »> plt.plot(x, res.intercept + res.slope*x, 'r', label='fitted line')
101 »> plt.legend()
102 »> plt.show()
103

104 Calculate 95% confidence interval on slope and intercept:
105

106 »> # Two-sided inverse Students t-distribution
107 »> # p - probability, df - degrees of freedom
108 »> from scipy.stats import t
109 »> tinv = lambda p, df: abs(t.ppf(p/2, df))
110

111 »> ts = tinv(0.05, len(x)-2)
112 »> print(f"slope (95%): {res.slope:.6f} +/- {ts*res.stderr:.6f}")
113 slope (95%): 1.453392 +/- 0.743465
114 »> print(f"intercept (95%): {res.intercept:.6f}"
115 ... f" +/- {ts*res.intercept_stderr:.6f}")
116 intercept (95%): 0.616950 +/- 0.544475
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117

118 """
119 TINY = 1.0e-20
120 if y is None: # x is a (2, N) or (N, 2) shaped array_like
121 x = np.asarray(x)
122 if x.shape[0] == 2:
123 x, y = x
124 elif x.shape[1] == 2:
125 x, y = x.T
126 else:
127 raise ValueError("If only `x` is given as input, it has to "
128 "be of shape (2, N) or (N, 2); provided shape "
129 f"was {x.shape}.")
130 else:
131 x = np.asarray(x)
132 y = np.asarray(y)
133

134 if x.size == 0 or y.size == 0:
135 raise ValueError("Inputs must not be empty.")
136

137 if np.amax(x) == np.amin(x) and len(x) > 1:
138 raise ValueError("Cannot calculate a linear regression "
139 "if all x values are identical")
140

141 n = len(x)
142 xmean = np.mean(x, None)
143 ymean = np.mean(y, None)
144

145 # Average sums of square differences from the mean
146 # ssxm = mean( (x-mean(x))^2 )
147 # ssxym = mean( (x-mean(x)) * (y-mean(y)) )
148 ssxm, ssxym, _, ssym = np.cov(x, y, bias=1).flat
149

150 # R-value
151 # r = ssxym / sqrt( ssxm * ssym )
152 if ssxm == 0.0 or ssym == 0.0:
153 # If the denominator was going to be 0
154 r = 0.0
155 else:
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156 r = ssxym / np.sqrt(ssxm * ssym)
157 # Test for numerical error propagation (make sure -1 < r < 1)
158 if r > 1.0:
159 r = 1.0
160 elif r < -1.0:
161 r = -1.0
162

163 slope = ssxym / ssxm
164 intercept = ymean - slope*xmean
165 if n == 2:
166 # handle case when only two points are passed in
167 if y[0] == y[1]:
168 prob = 1.0
169 else:
170 prob = 0.0
171 slope_stderr = 0.0
172 intercept_stderr = 0.0
173 else:
174 df = n - 2 # Number of degrees of freedom
175 # n-2 degrees of freedom because 2 has been used up
176 # to estimate the mean and standard deviation
177 t = r * np.sqrt(df / ((1.0 - r + TINY)*(1.0 + r + TINY)))
178 t, prob = scipy.stats._stats_py._ttest_finish(df, t, alternative)
179

180 slope_stderr = np.sqrt((1 - r**2) * ssym / ssxm / df)
181

182 # Also calculate the standard error of the intercept
183 # The following relationship is used:
184 # ssxm = mean( (x-mean(x))^2 )
185 # = ssx - sx*sx
186 # = mean( x^2 ) - mean(x)^2
187 intercept_stderr = slope_stderr * np.sqrt(ssxm + xmean**2)
188

189 return LinregressResult(slope=slope, intercept=intercept, rvalue=r,
190 pvalue=prob, stderr=slope_stderr,
191 intercept_stderr=intercept_stderr)
192

193

194
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195

196

197

198

199

200

201

Listing 7: Python 3.6: The function scipy.stats.linregress [166]
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A.3 VAMPIRE

A.3.1 Implementation of VAMPIRE statistics methods

Presented here are the C++ implementations of the statistics VAMPIRE calculates referenced in

sections 3.6.1 and 3.6.6.

1 //–––––––––––––––––––––––––––––––––––––––––––––––––––
2 // Function to calculate magnetisation of spins given a mask and place result in a magnetization

array,→
3 //–––––––––––––––––––––––––––––––––––––––––––––––––––
4 void magnetization_statistic_t::calculate_magnetization(const std::vector<double>& sx, // spin

unit vector,→
5 const std::vector<double>& sy,
6 const std::vector<double>& sz,
7 const std::vector<double>& mm){
8

9 // initialise magnetization to zero [.end() seems to be optimised away by the compiler...]
10 std::fill(magnetization.begin(),magnetization.end(),0.0);
11

12 // calculate contributions of spins to each magetization category
13 for(int atom=0; atom<num_atoms; ++atom){
14 const int mask_id = mask[atom]; // get mask id
15 magnetization[4*mask_id + 0] += sx[atom]*mm[atom];
16 magnetization[4*mask_id + 1] += sy[atom]*mm[atom];
17 magnetization[4*mask_id + 2] += sz[atom]*mm[atom];
18 magnetization[4*mask_id + 3] += mm[atom];
19 }
20

21 // Reduce on all CPUS
22 #ifdef MPICF
23 MPI_Allreduce(MPI_IN_PLACE, &magnetization[0], 4*mask_size, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);,→
24 #endif
25

26 // Calculate magnetisation length and normalize
27 for(int mask_id=0; mask_id<mask_size; ++mask_id){
28 double msat = magnetization[4*mask_id + 3];
29 double magm = sqrt(magnetization[4*mask_id + 0]*magnetization[4*mask_id + 0] +
30 magnetization[4*mask_id + 1]*magnetization[4*mask_id + 1] +
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31 magnetization[4*mask_id + 2]*magnetization[4*mask_id + 2]);
32

33 // normalize to msat // this is what we want std_dev of in time - AJN
34 magnetization[3*mask_id + 0] = magnetization[4*mask_id + 0]/magm; // unit vector // x - AJN
35 magnetization[4*mask_id + 1] = magnetization[4*mask_id + 1]/magm; // y
36 magnetization[4*mask_id + 2] = magnetization[4*mask_id + 2]/magm; // z
37 magnetization[4*mask_id + 3] = magm/msat; // m/m_s // m
38 }
39

40 // Zero empty mask id's
41 for(unsigned int id=0; id<zero_list.size(); ++id) magnetization[zero_list[id]]=0.0;
42

43 // Add magnetisation to mean
44 const int msize = magnetization.size();
45 for(int idx=0; idx<msize; ++idx) mean_magnetization[idx] += magnetization[idx];
46 mean_counter+=1.0;
47

48 return;
49

50 }

Listing 8: C++: Implementation of the calculation of the magnetisation of a system in cpp in VAM-

PIRE[152] by Richard Evans, Oscar Arbeláez-Echeverri, and Andrew Naden

1 // determine inverse temperature mu_B/(kB T) (flushing to zero for very low temperatures)
2 const double itemp = temperature < 1.e-300 ? 0.0 : 9.274e-24/(1.3806503e-23*temperature);
3

4 // determine inverse mean counter and its square
5 const double imean_counter = 1.0/mean_counter;
6 const double imean_counter_sq = 1.0/(mean_counter*mean_counter);
7

8 // loop over all elements
9 for(int id=0; id< num_elements - 1; ++id){ // ignore last element as always contains

non-magnetic atoms,→
10

11 const double prefactor = itemp*saturation[id]; // in mu_B
12 const double sus_x = prefactor*(mean_susceptibility_squared[4*id +

0]*imean_counter-mean_susceptibility[4*id + 0]*mean_susceptibility[4*id + 0]*imean_counter_sq);,→
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13 const double sus_y = prefactor*(mean_susceptibility_squared[4*id +
1]*imean_counter-mean_susceptibility[4*id + 1]*mean_susceptibility[4*id + 1]*imean_counter_sq);,→

14 const double sus_z = prefactor*(mean_susceptibility_squared[4*id +
2]*imean_counter-mean_susceptibility[4*id + 2]*mean_susceptibility[4*id + 2]*imean_counter_sq);,→

15 const double sus_m = prefactor*(mean_susceptibility_squared[4*id +
3]*imean_counter-mean_susceptibility[4*id + 3]*mean_susceptibility[4*id + 3]*imean_counter_sq);,→

16

17 result « sus_x « sus_y « sus_z « sus_m;
18

Listing 9: C++: Implementation of the calculation of the magnetic susceptibility of a system in cpp in

VAMPIRE[152] by Richard Evans and Andrew Naden

1 //–––––––––––––––––––––––––––––––––––––––––––––––––––
2 // Function to calculate specific heat of the system and retain the mean value
3 //
4 // C_v = ( <E^2> - <E>^2 )
5 // –––––––––-
6 // k_B T^2
7 //
8 //–––––––––––––––––––––––––––––––––––––––––––––––––––-
9 void specific_heat_statistic_t::calculate(const std::vector<double>& energy){

10

11 // loop over all elements
12 for(int id=0; id< num_elements; ++id){
13

14 // copy energy
15 const double E = energy[id];
16

17 mean_specific_heat[id] += E;
18 mean_specific_heat_squared[id] += E*E;
19

20 }
21

22 mean_counter += 1.0;
23

24 return;
25

26 }
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27

28

Listing 10: C++: Implementation of the calculation of the specific heat capacity of a system in cpp in

VAMPIRE[152] by Richard Evans and Andrew Naden
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GLOSSARY OF TERMS

Term Symbol Description

(n,m)th-order

anisotropy

constant

km
n magnetocrystalline anisotropy energy constant with

orbital quantum number n and magnetic quantum

number m, the constant that multiplies the spherical

harmonic Y m=m
l=n

2:14:1 type rare

earth ferromag-

net

Nd2Fe14B rare earth ferromagnet with the same structure as the

prototypical Neodymium Iron Boron.

anti-ferromagnet A material with characteristic magnetic ordering.

Each spin has an energetic preference to align along

the opposite direction as neighbouring spins. Negative

exchange constant. Contrast with ferromagnet.

Applied mag-

netic field

−→
h d Applied magnetic field vector, with direction j

applied mag-

netic field

strength

H the applied magnetic field strength, in Tesla unless

otherwise stated.

atomistic spin

model

An approximation used for magnetic materials mod-

elling. Instead of treating individual electrons’ spins

as interacting, the estimated total magnetic moment

is localised to a fixed atomic site. This total moment

interacts with other atomic sites via an exchange in-

teraction, and with applied magnetic fields. The mag-

netocrystalline anisotropy energy experienced by each

magnetic site is formed by a sum of spherical harmon-

ics.

azimuthal angle φ The azimuthal angle, angle from the x- axis anticlock-

wise around the z-/easy axis..
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Term Symbol Description

Bohr magneton µB The natural unit for the magnetic moment of an elec-

tron caused by it’s spin. µB = e~
2me

= 9.2740100783(28)×
10−24JT−1 see elementary charge of an electron, re-

duced Planck constant, mass of an electron

Bohr magneton µ the natural unit of magnetic moment of an electron,

caused by it’s spin and orbital momentum. In SI, it is

defined as µ= e~
2me

where e is the elementary charge,

~ is the reduced Planck constant, and me is the mass

of an electron.

Boltzmann con-

stant

kB Boltzmann constant, relating energy and temperature,

in SI units 1.380649×10−23JK−1

Brent’s method Brent A numerical method for the optimisation of an objec-

tive function

C++ C++ The C++ programming language.

canting angle θ The angle from the z-axis. Especially relevant for zero

field simulations, equivalent to the polar angle.

CTMP Curie Temperature Measurement Protocol, a method

for estimating the Curie temperature of a material

from empirical or simulated data.

Curie tempera-

ture

TC The temperature of a ferromagnetic material at which

the thermal fluctuations of the spin are greater than

the exchange energy, resulting in a complete loss of

magnetic ordering. Above the Curie Temperature the

material behaves as a paramagnet.

elementary

charge of an

electron

e The elementary charge of an electron in SI units,

−1.602176634×10−19C

energy E The magnetic and thermal energy of the system, ig-

nores strain in the crystal etc

exchange Exc The energy associated with a preference for adjacent

spins to align. A positive exchange constant corre-

sponds to ferromagnets, while a negative echange

constant corresponds to preference to anti-align, an

anti-ferromagnet.
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Term Symbol Description

exchange con-

stant tensor

Ji j The tensor of constant energies associated with a pref-

erence for adjacent spins to align. A positive exchange

constant corresponds to ferromagnets, while a nega-

tive exchange constant corresponds to preference to

anti-align, an anti-ferromagnet.

ferromagnet A material with characteristic magnetic ordering.

Each spin has an energetic preference to align along

the same direction as neighbouring spins. Positive

exchange constant. Contrast with paramagnet.

figure of merit The parameter that an optimisation problem is using

as a performance metric. Often this parameter is max-

imised, minimised, or optimised towards an expected

empirical value. see objective function

FOMP A First Order Magnetic Phase transition, a magnetic

phase transition where the first derivative wrt the

Free energy of the system is discontinuous.

Hamiltonian H The quantum mechanical operator that corresponds

to the total energy of the system, can be decomposed

into different energy sources such as Hamiltonian of

applied magnetic field and Hamiltonian of the spin

exchange

Hamiltonian of

applied mag-

netic field

Happ Applied magnetic field Hamiltonian

Hamiltonian

of the spin

exchange

Hexch Exchange component of Hamiltonian, corresponds to

the energy of the spin exchange between atomic sites

Landé’s g-factor g A dimensionless factor relating the electron’s quantum

numbers to its magnetic moment.

Laplace’s set

of spherical

harmonics

The set of spherical harmonics that solve Laplace’s

equation.

magnetic mo-

ment of spin

i

µi The magnetic moment of the spin i
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Term Symbol Description

magnetic quan-

tum number

m l is the quantum number of an atomic orbital separat-

ing individual orbitals within one subshell. Defined

as the integers between −l and +l including zero, or

l < m < l. Integer.

magnetisation
−→
M The magnetisation of the of a system, normalised to

between ±1.

magnetisation

length

ml The length of the magnetisation vector

magne-

tocrystalline

anisotropy

energy

Eani Energy due to the relationshop between a spin and it’s

neighbouring crystal environment. This anisotropy

causes directional preferences for spins to align

along that are related to the magnet’s crystal struc-

ture. There are several orders of magnetocrystalline

anisotropy energy constants used throughout this

work, (n,m)th-order anisotropy constant are defined

via a spherical harmonic basis set.

mass of an elec-

tron

me The mass of an electron in SI units,

9.1093837015(28)×10−31kg

normalised

atomic spin

vector

−→
S a single spin’s magnetisation as a spin vector,A single

atomic sites spin, the subscript (i) denotes the spin

objective func-

tion

obj The function that an optimisation method aims to

minimise or maximise. see figure of merit

orbital quantum

number

l Also known as the azimuthal quantum number, l is

the quantum number of an atomic orbital describing

it’s total angular momentum and subsequent shape.

Integer.

orthonormal ba-

sis set

A basis set through which the basis vectors inner prod-

ucts is zero, and the basis vectors magnitudes is equal

to one.

Pairs of neigh-

bouring spins

〈i, j〉 Set of pairs of neighbouring spins, i and j

paramagnet A material without long range magnetic ordering,

where the thermal fluctuations in the spins randomise

their direction without na externally applied magnetic

field. Contrast with ferromagnet.
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Term Symbol Description

polar angle θ The polar angle, angle from the z-/easy axis.

Python 3.6 Python 3.6 The Python Programming language, version 3.6

rare earth RE A rare earth metal is one of 17 elements including the

lanthanide series of the periodic table, and often in-

cluding yttrium and scandium due to similar chemical

and physical properties.

reduced Planck

constant

~ The reduce Planck constant in SI units 6.582119569×
10−16eV · s

saturation mag-

netisation

−→
Ms The magnetisation of a material at 0 Kelvin

SciPy SciPy Open source scientific computing library for python

[96]

specific heat ca-

pacity

c The specific heat capacity of the system is the amount

of heat energy applied required to raise the system by

one unit temperature, per unit mass. The specific heat

capacity relates to the energy absorbed to overcome

the exchange interaction and anisotropy.

spherical har-

monic

Ym
l

(
θ,φ

)
Special functions defined on the surface of a sphere.

The functions form an orthonormal basis set. The spe-

cific set of Laplace’s set of spherical harmonicss is used

throughout this work for defining the estimated mag-

netocrystalline anisotropy energy. The harmonics are

defined in terms of the orbital quantum number, mag-

netic quantum number, polar angle and azimuthal

angle.

spin exchange

constant

Ji j The constant energies associated with a preference

for adjacent spins to align. A positive exchange con-

stant corresponds to ferromagnets, while a negative

exchange constant corresponds to preference to anti-

align, an anti-ferromagnet.

susceptibility χ The magnetic susceptibility of the system, the mea-

sure of ease with which a material magnetises. Re-

lated to Applied magnetic field and magnetisation and

given by the ratio M−→
H

temperature T Temperature of the system in Kelvin
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Term Symbol Description

VAMPIRE VAMPIRE Atomistic spin modellling software developed at the

Computational magnetism group in York.
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