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Abstract

The analysis of dynamic systems is of fundamental importance to countless engineer-

ing applications. The default way to analyse linear structural dynamic systems is

through a methodology known as modal analysis. Since its introduction over 50 years

ago, experimental modal analysis (EMA) has presented engineers with a principled

way of recovering the modal properties of dynamic systems from observations of

the excitation and structural response. However, the task of EMA becomes difficult

when access to, or generation of, a controlled input force is limited. This is often the

case for large engineering structures or structures in hard-to-replicate environments.

To solve this problem, engineers have developed a new suite of methods known

collectively as operational modal analysis (OMA), that rely on the natural excitation

of a structure to obtain the modal properties. Over the last 20 years, a broad range of

OMA algorithms have become available to the dynamicist, with Stochastic Subspace

Identification (SSI) emerging as one of the leading methods across industry and

academia owing to its unrivalled performance in many scenarios.

Despite their success, several research challenges remain in the field of OMA. Of

these challenges, the handling of uncertainty is of key interest. It is well understood

that measured data contain uncertainties that obscure the underlying signal one

intends to measure. The effect of these uncertainties on the identification process in

OMA algorithms are seldom considered, nay quantified, but are known to result in

variations in the modal properties. Variations in recovered modal information that

arise from uncertainty can pose a significant risk; modal information is frequently

used to inform safety-critical decision-making in areas such as Structural Health

Monitoring (SHM).

One way to address this challenge is to develop OMA methodologies capable of

quantifying the uncertainty over the modal properties. Access to the uncertainty
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provides a level of insight into the variability of the parameters given the available

data and chosen methodology. In general Bayesian methods are a popular form of

uncertainty quantification that combine a description of ones prior belief, with the

likelihood of observed data, to obtain an estimate for the uncertainty as a posterior

distribution. Despite some existing approaches to uncertainty quantification for

OMA, no Bayesian formulation of the SSI algorithm currently exists in the literature,

where posterior distributions over the modal properties are obtainable. In light of

this fact, the current thesis aims to address this shortcoming.

At the centre of this work lies a novel probabilistic interpretation of the SSI algorithm.

This form is achieved through the direct replacement of the identification mechanism

at the core of SSI — canonical correlation analysis (CCA) — with its probabilistic

equivalent. This now probabilistic algorithm unlocks the ability to apply Bayesian

hierarchical modelling techniques that can better represent noise in the identification

process and incorporate prior information. In this work three unique algorithms

are presented. The first is a statistically robust SSI algorithm capable of robust

identification of the modal parameters when faced with atypical observations in the

measured time series. The second is a Bayesian approach to the SSI algorithm. By

incorporating weakly informative proper prior information over the identification

mechanism (forming Bayesian CCA), posterior distributions over the modal properties

can be recovered. The last algorithm is an efficient form of the Bayesian SSI

algorithm, achieved using stochastic approximation techniques, known to speed up

the computation by reducing the number of operations over the entire dataset.

The algorithms and results contained within this thesis take positive steps towards

viewing OMA as a problem in probabilistic and Bayesian inference; one where un-

certainty can be principally considered and quantified, to provide a more informed

description of a dynamic system’s behaviour from observed data. Such descrip-

tions provide additional information about a system and its measurement that can

ultimately facilitate more-informed and confident decision-making where modal

information is to be considered.
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1
Introduction

1.1 Why are engineers interested in dynamics?

All structures move; they are (often despite our best efforts) dynamic. Understanding

and describing what is known as the dynamic behaviour of these structures can

provide one of the most useful and powerful tools in modern engineering. A lack

of awareness or understanding of this behaviour can lead to serious consequences;

perhaps history can speak for itself.

The most commonly used (some may say overused) example of extreme dynamic

failure taught in undergraduate engineering courses across the globe, is that of the

Tacoma Narrows bridge. In July 1940, the Tacoma Narrows bridge in Washington

USA disastrously, and arguably quite spectacularly, tore itself apart after demon-

strating extreme dynamic behaviour as a result of interactions with severe winds [1].

Large aerodynamic forces interacting with the bridge deck led to the excitation of a

previously unseen torsional (twisting) mode which, when left to resonate uncontrol-

1



2 1.1 Why are engineers interested in dynamics?

lably1, ultimately led to the bridge’s untimely demise. The photographs in Figure

1.1 show the torsional motion during (1.1a) and the destruction in the immediate

aftermath (1.1b) of the disaster.

(a) (b)

Figure 1.1: The Tacoma Narrows bridge, Washington, US. Photographs from Wash-
ington Department for Transport [1]

Access to a description of the dynamic behaviour is therefore, an incredibly useful

asset; whether one intends to mitigate (or generate) dynamic behaviour. Across a

broad spectrum of engineering disciplines including aerospace, mechanical, civil, and

energy, the dynamics of systems play a crucial role in the design, maintenance and

continued performance of critical engineering infrastructure.

System identification is the field of engineering concerned with the recovery of a

mathematical description of a system’s dynamics, from observed data [2, 3]. These

mathematical descriptions act as a form of functional mapping that describe how

a system will respond to a given input. Originating2 in the control community in

the 1960s as a way of understanding, describing and implementing active control

strategies for dynamic systems, the mathematics and methods thereof have since

been used to explore other dynamic problems in fluid mechanics, thermodynamics

and structural dynamics. In the realm of structural dynamics (for linear systems),

1The resonant behaviour was attributed to a phenomenon known as torsional flutter, where the
motion of the bridge with the aerodynamic forces led to self-induced forcing behaviour.

2Arguably, system identification has existed for a very long time, in some form or another, and
has always been of interest to humans. Be it Gauss’ work on parameter estimation in the 1800s,
Galileo’s study of planetary orbits in the late 1500s or even the primitive caveman deciding if
dropping a big rock off a cliff will hit the woolly mammoth below; system identification has played
a crucial role throughout history in aiding humans’ understanding of the world.
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the most common representation is the modal decomposition, which is parameterised

by the modal properties; namely the natural frequencies, damping ratios and mode

shapes. The modal properties provide a unique and interpretable way of describing

the dynamic motion of a structure using the principle of superposition to provide

a compact, decoupled representation of the dynamics. Furthermore, the modal

properties are also related to the underlying system properties of mass, stiffness

and damping. The many techniques engineers have developed to recover the modal

properties from observed data, fall under a branch of system identification known as

modal analysis.

1.2 Modal analysis

Modal analysis is not a new discipline, having been well-studied over the last half a

century. To date, there are a plethora of algorithms available to the modern engineer

to apply modal analysis to measured data to recover the modal properties [4]. When

observed data are available for both the input and output responses, this data-driven

inverse problem is known as experimental modal analysis (EMA). Common types of

input-output testing for EMA include: roving-hammer, fixed-shaker and shaker-table

tests [5]. The process of performing experimental modal testing and subsequent

modal identification are now very well-understood and adopted by many.

However, the identification of modal properties becomes a difficult task when access

to or generation of measured input information is limited [6]. This is often the case

for large-scale structures or for structures in hard-to-replicate environments with

complex loading conditions; typical of aerospace, civil and offshore structures. For

this reason, recent attention has been focused towards a suite of methods known as

operational modal analysis (OMA).

1.2.1 Operational modal analysis

OMA is the subset of modal analysis methods concerned with the recovery of

modal characteristics in the absence of measured input information; using only

measurements of the output response. OMA is sometimes referred to as output-only

analysis or in-situ monitoring given its application. The general premise of OMA is

to take advantage of the natural excitation of a structure, that arises from ambient
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forcing and operational loads (e.g. waves, wind, turbulence, ground-vibration, human-

induced vibration), to replace artificially-induced excitation. This assumption not

only removes the costly expense of controlled artificial excitation but also ensures the

recovered modal properties are more representative of the actual operating conditions.

Consequently, OMA has gained increased popularity and is an active research field3.

This is predominantly due to OMA being the only viable testing method for many

engineering applications [7], which is especially the case for high-value large-scale

assets such as bridges, buildings and offshore structures. Some specific applications

of OMA will be covered in Chapter 2.

1.2.2 Applications of operational modal analysis

It is important to note that the dynamic properties recovered through EMA and

OMA are seldom used in isolation. Instead, they typically exist as part of wider

engineering frameworks that are designed to make decisions. The simplest example is

in the design of machines and structures. Consider a modern automobile. During the

design phase, it is useful for engineers to understand the dynamic properties of both

the individual components and the full assembly to purposefully avoid excitation

at natural frequencies; thus reducing the risk of resonant behaviour during normal

operation. There are several other applications that employ modal properties for

decision-making tasks, these include the fields of: structural health monitoring (SHM)

[8, 9], digital twins [10] and control strategies for dynamic systems [11, 12], amongst

others.

1.2.3 Current challenges

Despite the widespread success of OMA algorithms and the application of modal

information across a range of fields, significant active research challenges remain.

These include topics such as:

– Model order selection — Most EMA and OMA algorithms rely on overfitting

and the appropriate selection of the true modes based on some chosen criteria.

3OMA is not strictly a new discipline either; it has been present since the early days of modal
analysis as ‘ambient testing’, although the development of new powerful identification techniques
has brought OMA back into the spotlight as methods become more reliable [7].
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Selecting the right number of modes is a complex challenge, and is often

addressed in combination with the problem of manual selection.

– Manual identification — To provide more consistent identification results,

engineers are now seeking automatic identification procedures that remove any

dependency on manual analysis, common in existing methods, which can often

lead to variable results [13–17].

– Non-linearity — All dynamic systems are non-linear, however, many sys-

tems can be treated as linear under certain operating conditions. The greater

presence of non-linearity in a dynamic system can make the process of system

identification a more challenging task. The reliance on the principle of superpo-

sition in traditional modal analysis, means alternative approaches are needed

to identify the parameters of the system and the non-linearity [18].

– Non-physical solutions — Many existing modal analysis methods can result

in the identification of modal properties that are not physically meaningful

in the context of real systems. An example here would be negative damping

ratios, corresponding to unstable behaviour, of what may be expected to be a

stable system.

– Close modes — When modes are close in frequency, they are often difficult

to distinguish. This poses a significant challenge as key information on the

dynamics of a system is not being identified. Researchers are now seeking new

methods for identifying systems with close modes [19–21].

– Sensor placement — Sensor placement is the problem of choosing where on

a structure measurements should be taken. This is important task, as one ob-

viously intends to maximise the amount of useful information contained within

any observed data. When considering a dynamic system, if several sensors

are placed in locations corresponding to regions of minimal displacement at

certain resonance frequencies, these modes will be harder to identify. Therefore,

optimising sensor locations is of particular interest [19, 22–24].

– Outliers and robustness — Experimentally obtained data can often contain

atypical observations and unwanted outliers in the measured time series. Due

to the construction of some EMA and OMA algorithms, these outliers cannot

be removed before analysis in the usual way. Therefore, researchers desire

new methods that maintain statistical robustness and avoid biasing in the
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identification procedure. Robust approaches to OMA are discussed in more

depth in Chapter 5.

– Uncertainty and noise — Response measurements in OMA typically have

low signal-to-noise ratios [6]. This is a direct result of their reliance on ambient

forcing; the magnitudes of excitation seen in OMA are typically much lower

than that of EMA testing schemes. This makes the process of identification a

more challenging task, with variability frequently seen in the recovered modal

properties. Consequently, many seek to quantify the associated uncertainty of

the modal parameters to better understand this variation. Current uncertainty

quantification methods for OMA are discussed in more depth in Section 2.4.

As it is well beyond the scope of this thesis to address all of these research challenges,

a more focused approach is taken; where only the problems of uncertainty quantifi-

cation and noise are considered. However, as will be shown later in Chapter 5, by

directly addressing the problem of uncertainty, the challenge of performing robust

identification can also be addressed.

1.3 Data and uncertainty

Observed data are incredibly useful; they inherently encapsulate all the complexities

and nuance of physical systems; containing complex features and information one

may struggle to embed within existing models. Many methods (like OMA) rely on

measured data to infer correlations, uncover underlying patterns and extract valuable

insight.

Nevertheless, observed data are imperfect; they provide a distorted view of a desired

output as noise and other unwanted features obscure the otherwise ‘perfect’ output of

the system. In the case of structural dynamics, these features arise from limitations

in data acquisition or in the experiment. The data are, therefore, known to contain

uncertainties.

Sources of uncertainty can often be classified as either being: Epistemic or Aleatoric4

[25]. Epistemic uncertainty refers to the uncertainties associated with the model and

4Epistemic and Aleatoric uncertainty are not rigid terminologies and can depend on the context
of the model and problem.
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are the result of incomplete information or missing data. Such uncertainties can

arise from: sparse measurements that fail to comprehensively describe a system’s

behaviour; indirect measurements of quantities of interest; and the impracticality

of observing all the necessary parts of a system. Often the tools and mechanisms

required to reduce this uncertainty are highly uneconomical or impractical, given

physical constraints.

Aleatoric uncertainty describes uncertainties associated with the inherent stochasticity

of the identification process; an example of this is measurement noise, which can

obscure the true state of a system. This type of uncertainty is considered irreducible

because it is a fundamental aspect of the system’s behaviour or the data, meaning

no amount of additional data or knowledge can fully eliminate it. In contrast, one

can try to work around epistemic uncertainty; for instance, it can be reduced with

access to more data, or with an improved model.

Considering the dependency of data-based methods on measured data, and that data

are inherently uncertain, any models constructed from data must also be uncertain.

It is, therefore, of critical importance that any uncertainties are quantified to inform

and assist engineering decisions; thus, allowing for a more confident and risk-based

approach [26].

1.4 Summary

Evidently, there is still a need for the engineering community to accurately obtain and

use modal information; this need is especially true in the context of operational testing

of structures and in decision-making tasks like SHM. However, significant research

challenges remain in OMA. Of the challenges presented previously, the quantification

of uncertainty is of key interest. Given that observed data are inherently uncertain,

the identified models and parameters of said models must also be uncertain. In

the context of OMA, uncertainty in observed data can result in variability in the

identified modal parameters. Therefore, it is vital engineers begin to quantify any

associated uncertainties; to enable more-informed and confident decision-making

when using modal information.

While the quantification of uncertainty has been previously considered in modal

analysis, as will be discussed in Chapter 2, this thesis will attempt to address
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the problem for OMA using a new model; one where probabilistic and Bayesian

understanding is embedded within the definition of an OMA algorithm. Probabilistic

and specifically Bayesian methodologies have the advantage of providing a natural

and principled way of combining prior knowledge with observed data, to consider and

quantify uncertainty [27]. An introduction to Bayesian uncertainty will be provided

in Chapter 3.2. Moreover, the author hypothesises that, by thinking in a Bayesian

sense, one can not only consider and quantify uncertainty in OMA, but that doing

so may also unlock the capability for solving some of the other current research

challenges. This will be discussed in future work.

1.4.1 Aim

Considering the many applications of OMA and the identified research challenge

introduced in this chapter, a general aim for this work can be defined. This body of

work aims to:

Develop robust, operational modal analysis algorithms, combining existing methods

with probabilistic and Bayesian techniques, to extend current capabilities and improve

models of dynamic systems, all whilst accounting for uncertainty.

1.4.2 Thesis contributions

In an effort to address the aim outlined above, this thesis presents several novel

contributions. These include:

1. A probabilistic stochastic subspace identification (SSI) algorithm,

derived using the theory of probabilistic canonical correlations, to reformulate

the classic algorithm using a latent variable model. The maximum likelihood

result of this model is shown to be mathematically equivalent to that of standard

SSI. This definition principally leaves the results of SSI unchanged, but provides

the necessary mathematical foundation to introduce other probabilistic or

hierarchical extensions.

2. A robust probabilistic formulation of the SSI algorithm. Using the

probabilistic formulation of SSI, this thesis introduces a statistically robust

form of SSI by replacing the standard Gaussian noise model with that of a
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Student’s t-distribution; one better equipped to handle atypical observations

(outliers) in data. This new methodology is shown to have similar identification

performance to classic SSI when no outliers or atypical observations are present,

and improved identification performance in the presence of such measurements.

This is demonstrated for a variety of case studies exploring different types of

atypical observation including: clipping, random dropout, periodic dropout

and multi-channel dropout.

3. A Bayesian formulation of the SSI algorithm. Through the addition

of prior distributions over the model parameters in probabilistic SSI, this

thesis introduces a new Bayesian methodology; one capable of quantifying the

uncertainty over the modal properties as posterior distributions. The solution

to the Bayesian inference problem is presented using two different schemes:

Gibbs sampling, and variational inference. This new methodology is shown to

accurately recover the posterior distribution over the modal properties at fixed

model orders, with mean values that correspond to the results of traditional

SSI. The performance of this method is also shown for multiple model orders

using a stabilisation diagram, where the mean values of distributions with low

variance correspond to the expected natural frequencies; the distributions with

mean values far from the expected values for natural frequency display much

larger variance.

4. An efficient implementation of the Bayesian SSI algorithm. It is

important when presenting new methodologies to consider any possible barriers

to their adoption; this is particularly true of the Bayesian SSI algorithm.

Performing Bayesian inference typically requires higher computational demand

than standard deterministic processes. In order to address this problem, this

thesis presents a computationally efficient form of Bayesian SSI, employing

mini-batch stochastic variational inference [28] as a principled way of reducing

the number of operations on the complete dataset before reaching convergence

at a local optimum.
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1.4.3 Thesis structure

For the reader’s convenience, a brief summary of the chapters is included here.

Chapter 2: This chapter provides context to the problem identified and presents

a review and summary of the relevant literature. A range of topics are covered,

including: a general introduction to modal analysis, OMA, uncertainty quantification

for OMA, and Bayesian approaches to uncertainty quantification for OMA. The

chapter concludes with some observations, and definition of the specific research

objectives of this work.

Chapter 3: Introduces relevant theory necessary for understanding many of the

methods presented in this thesis. These include state space models, probability and

statistical methods, Bayesian statistics and inference, canonical correlation analysis

(CCA), and the theory of stochastic subspace identification (SSI).

Chapter 4: This chapter presents a novel probabilistic formulation of the SSI

algorithm, using the theory of probabilistic projections. By replacing the identification

mechanism at the core of SSI, namely CCA, with its probabilistic equivalent, the

problem of SSI can instead be considered one of probabilistic inference. This unique

perspective lays the necessary mathematical foundation to enable a new suite of SSI-

based OMA algorithms, constructed using sophisticated probabilistic and hierarchical

techniques. These are explored in the later chapters.

Chapter 5: Using the probabilistic formulation defined in Chapter 4, this chapter

introduces a statistically robust formulation of SSI, capable of robust modal identifi-

cation when presented with atypical observations in the measured time series. Such

an approach is only achievable using the new probabilistic viewpoint of SSI. This

new method is compared using several simulated case studies containing different

types of outlying data, and using data obtained from an in-service structure.

Chapter 6: This chapter is principally concerned with the main objective of

performing Bayesian uncertainty quantification over the modal properties. By

incorporating a prior structure over the parameters of the probabilistic SSI model, a

new Bayesian formulation of SSI is formed. The proposed algorithm is capable of

recovering posterior estimates over the modal properties, with Bayesian inference

shown using two schemes: Gibbs sampling and variational inference. The uncertainty

quantification performance of this algorithm is demonstrated on simulated data and
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data from an in-service structure.

Chapter 7: Acknowledges the computational limitations of Bayesian methodologies,

and presents one possible solution to making Bayesian SSI a more attractive choice

for Bayesian UQ. Here an efficient implementation of Bayesian SSI, using stochastic

optimisation techniques, is introduced. Expressions for performing Bayesian SSI using

stochastic variational inference are defined, and applied to a simulated dataset. It is

demonstrated how application of this stochastic methodology achieves a reduction in

the number of mathematical operations using the entire dataset.

Chapter 8: Some concluding statements are offered as well as a summary of the novel

contributions of this thesis. Finally, some limitations, challenges and opportunities

following the work in this thesis are discussed, with possible avenues for future

research identified.





2
Literature Review and Context

2.1 Introduction

This chapter provides context and a review of the current literature and existing

approaches to: modal analysis, OMA, the adoption of uncertainty quantification

(UQ) in OMA, and Bayesian approaches to UQ for OMA. This is followed by a

summary on general observations in relation to the aim of this thesis (as defined

in Section 1.4.1) and the chosen direction of this work. Any further literature is

reviewed and discussed in the relevant chapters as and when required.

2.2 Modal analysis

Early forms of EMA for structural applications were first applied around the late

1940s in search of a better understanding of aircraft [29]. Subsequent developments

in modal analysis were slow until the early 1970s when the commercial availability of

Fast-Fourier Transform (FFT) spectral analysers and the rapid evolution of modern

13
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computing, meant extracting this information became less of an arduous task. Since,

modal testing equipment and data acquisition has greatly improved, with significant

development into a comprehensive suite of algorithms designed to deal with a range

of scenarios [6, 30–34]. Consequently, experimental modal testing and analysis has

become standard practice in many engineering disciplines.

2.3 Operational modal analysis

Despite their effectiveness in a variety of scenarios, EMA algorithms have certain

limitations; most notably their reliance on controlled, measured input information.

When considering large-scale infrastructure or structures in hard-to-replicate environ-

ments, obtaining accurate input data is not always possible. The size of a structure

or the type of loading it may experience, make lab-based testing infeasible. Instead,

practitioners have turned to operational modal analysis (OMA) to analyse these

types of structures.

OMA relies on the ambient excitation of a structure under normal operating conditions

to replace artificial excitation. Such forcing arises from operational loads such as:

wave loading on offshore structures, turbulent airflow over an aircraft, and human- or

vehicle-induced vibration over a bridge. This alternative way of testing a structure

not only removes the costly expense of producing controlled artificial excitation but

also ensures the recovered modal properties are representative of the system in its

intended environment.

Given the absence of input data, in OMA the input must instead be inferred based

on a set of sensible assumptions. In most cases, the ambient excitation is assumed

to be modelled by a stochastic quantity with unknown parameters but with known

behavior, e.g. stationary white noise with zero mean and unknown covariance [6].

A white noise assumption means there are equal amounts of energy input into the

system at all frequencies, i.e. a plot of the spectrum would show a horizontal line

with equal magnitude at all frequencies. This assumption is particularly useful.

Consider the frequency representation of a structural dynamic system [32],

Y (ω) = H(ω)X(ω) (2.1)

X(ω) and Y (ω) are the input and output spectra, respectively, and H(ω) is a
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matrix of frequency response functions (FRFs) that relate to the underlying system

dynamics. Therefore, if X(ω) is a white noise input of magnitude 1, then the output

spectra Y (ω) are directly equal to H(ω) and thus representative of the underlying

dynamics. However, this assumption is highly idealistic; no dynamic system in a real

environment will ever truly experience white noise excitation. Therefore, the system

learnt by OMA1 is that described in Figure 2.1. A limitation of this pseudo-system

is that the mass distribution of the true structural system is more difficult to retrieve

as OMA does not return mass-normalised mode shapes [33]. Nevertheless, the

modal properties identified through OMA provide sufficient information for many

identification and decision-making tasks.

Structural System

Pseudo-Structural System (Identified by OMA)

White Noise Measured
Unknown

Loads
Loading Filter

Excitation Response

Figure 2.1: Structural system learnt by performing OMA under white noise excitation
assumption. Adapted from [6].

Consequently, there have been many successful applications of OMA, including:

modal testing of spacecraft [35], in-flight modal analysis of aircraft [36, 37], analysis

of floating wind turbines [38], and the in-service modal assessment of a polar research

vessel [39]. In particular, OMA has become the primary form of modal testing in

the civil engineering community. This is reflected in the abundant literature and

case studies on: bridges [40–44], footbridges [45], silos [46], masonry towers [47–49],

lighthouses [21], high-rise buildings [50], stadiums [51–53] and dams [15, 54], amongst

many others.

2.3.1 Methods

There are many established methods for performing OMA; this section briefly

introduces the current landscape, although extensive review papers and textbooks

are also available, see [6, 7, 33, 55].

1The pseudo-system introduced in Figure 2.1 is the simplest form. Often the measurement
system makes up its own dynamic system and the disturbances it generates may not be perfectly
white noise. If non-white measurement noise is modelled as white, the coloured noise is modelled as
part of the identified system [33].
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OMA (and EMA) methods are usually distinguished by the domain in which they

operate numerically2: time-domain or frequency-domain [30–32]. Time-domain

methods are based on the analysis of time-history responses or correlation functions,

whilst frequency domain methods are based on the relation between input and

output spectra. Generally, all measured data are obtained in the time-domain and,

when required, transformed into the frequency-domain using the Fourier Transform

[56, 57] or other appropriate algorithm or estimator [58, 59]. Each domain has its

own associated merits and limitations (see e.g. [6]), although the main goal of modal

analysis (the recovery of the modal properties) is achievable in both. Given the broad

nature of OMA methods, this thesis focuses on the development of a time-domain

OMA methodology to narrow the scope. Nevertheless, frequency methods are also

mentioned here for the reader’s benefit.

Frequency-domain

The most common frequency-domain methods in OMA include: peak-picking [31],

Frequency-Domain Decomposition (FDD) [60], enhanced-FDD [61] and spatial-FDD

[62]. A range of EMA methods can also be suitably adapted for OMA given the

assumption of a white noise input such as the Maximum Likelihood Modal Method

(MLMM) [63], Poly-reference Least-Squares Complex Frequency-domain (poly-LSCF)

[64] or PolyMAX3 [65, 66] algorithm, amongst others [67]. For a more comprehensive

introduction to frequency-domain methods for system identification and OMA, the

reader is directed towards [58] and [6].

Time-domain

There is also a comprehensive suite of time-domain approaches to OMA, the most

notable methods are introduced here. The natural excitation technique (NExT) [68]

is a time-domain method that exploits the auto- and cross- correlation functions

of the output responses in time history. Although originally for EMA, NExT was

naturally extended to OMA for structures under ambient excitation. In [68], it was

shown that the correlation functions can be expressed as a sum of decaying sinusoids.

Each sinusoid has its own frequency and damping ratio, equivalent to a corresponding

structural mode, that can be identified. Therefore, when NExT is combined with an

existing time-domain modal analysis algorithm like the subspace-based eigensystem

realisation algorithm (ERA) [69], poly-reference least-squares complex exponential

(poly-LSCE) [70], or extended Ibrahim time-domain method (EITD) [71], the resulting

2Early algorithms were also distinguished by the number of inputs and outputs they were able to
analyse [31], although many of the algorithms used today allow multi-input multi-output analysis.

3LMS PolyMAX is a trademark of Siemens LMS Ltd.
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algorithms can be considered OMA methods. Whilst NExT can be used for modal

parameter estimation in OMA, it is important to note that the nature of data in

OMA is stochastic while NExT-based methods operate in a deterministic framework

[72].

Autoregressive moving average (ARMA) [73, 74] or autoregressive moving average

vector (ARMAV) [75] procedures in the case of multiple observations and time-

varying ARMA [76] for non-stationary systems, predict the current value of a time

signal based on past values and some prediction error. These methods are usually

linked with another system identification method like the prediction error method

[77] or instrument variable method [78] amongst others [79]. ARMA methods are

typically computationally intensive due to their iterative nature.

Blind source separation (BSS) techniques [80–82] originally emerged in the 1980s as

signal processing tools for extracting individual audio sources from recordings, but

have recently found their place in structural dynamics as non-parametric OMA meth-

ods. In signal separation problems, unknown signals (sources) and their contributions

in the resulting mixtures (mixing matrix) are recovered as individual components.

Although not initially recognised in earlier works [83–85], this method draws direct

parallels with the theory of modal decomposition, where the sources are the modal

responses and the mixing matrix the mode shape matrix [81, 86]. Once identified,

the natural frequencies and damping ratios can be extracted from the independent

components using classic single degree-of-freedom (SDOF) identification techniques.

Several BSS techniques now exist in the literature including second-order blind iden-

tification (SOBI) [87], sparse component analysis (SCA) [88], time-frequency BSS

[89] and AI-driven BSS [90]. A major advantage of BSS methods is their simplicity

given their non-parametric form [91].

The analytical signal method (ASM) is a hybrid (time-frequency) method of OMA

[92]. Using mono-component correlation functions, obtained through the inverse

Fourier transform of the power spectral density (PSD), it is possible to estimate the

natural frequencies and damping ratios, but not the mode shapes. A time-domain

analytical signal method (TD-ASM) was recently introduced [93], removing the

dependency on frequency, although similar limitations with recovering the mode

shapes remain.
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2.3.2 Stochastic subspace identification

Of the many time-domain algorithms, the most popular is the stochastic subspace

identification (SSI) algorithm. The SSI algorithm was first introduced in the 1990’s

by Van Overschee and De Moor [94, 95] as a way of solving the stochastic realisation

problem i.e. the identification of an effective stochastic state space model directly

from measured data. A theoretical introduction to the state space representation and

the stochastic realisation problem is provided later in Section 3.7.2. Principally, SSI

recovers the parameters of a stochastic state space model by analysing the projection

of shifted output sequences (a block Hankel matrix) onto itself, assuming stationary

signals and white noise excitation4. This projection, when viewed as the conditional

mean of the “future” observations (the bottom half of the block Hankel) given the

“past” (the upper half), can be described in terms of covariances and solved for

the parameters of the state space using the singular value decomposition (SVD).

Although adopted as a new methodology, many people say the SSI algorithm draws

similarities with the Ibrahim method and ERA algorithm.

Owing to its effectiveness in many cases, SSI rapidly gained popularity in the control

systems community, drawing the attention of researchers in Belgium, Scandinavia

and the Netherlands. In the late 1990s, SSI was then picked up in the physical

engineering community, in particular structural dynamics, as a principled way of

analysing mechanical and civil engineering structures [55, 96–98]. Since then, SSI

has become the go-to-algorithm and industry standard for performing time-series

OMA in mechanical, aerospace, offshore and civil engineering and is seen as a very

reliable method of OMA.

The prominence of SSI is reflected by the abundance of available literature employing

SSI to a broad range of problems and in a wide range of scenarios. For example, in

[99] SSI was used to accurately estimate the machine-tool dynamics from random

cutting excitation in rotary systems. In [100], OMA of an aircraft wing excited by

transonic flow was performed using SSI and demonstrated superior identification

capabilities over FDD in the case of non-white, non-stationary forcing contaminated

by transonic disturbances. A new automated OMA algorithm was developed in [15]

and applied to data from concrete dams, combining SSI with SOBI to leverage the

4Note that subspace methods like SSI typically do not require stationarity of the noise for
consistency, as these methods primarily rely on the structure of the data rather than specific noise
properties. However, stationary noise is often assumed for uncertainty quantification to ensure
reliable statistical modeling and error estimation.
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useful properties of SSI in the analysis. In [101], OMA of a monopole communications

tower was conducted, with the SSI results acting as the reference to verify results

obtained through other methods. And in [102], SSI was shown to be applicable to

data obtained from an offshore floating wind turbine, despite several assumptions

for time-series OMA being violated.

In general, there are two main SSI algorithms: covariance-driven SSI (SSI-Cov), and

data-driven SSI (SSI-Data) [95, 103]. The SSI-Cov algorithm proceeds by analysing

the output cross-covariance matrix of the block Hankel, which can be decomposed

in two ways: as the product of the observability matrix and controllability matrix,

and through the singular value decomposition (SVD). Using this information, it is

possible to recover an estimate for the state matrix from the observability matrix

and thus the modal properties through an eigenvalue decomposition. Alternatively,

SSI-Data avoids the computation of the covariances by using the QR-decomposition

of the block Hankel matrix to project the future output onto the past output. The

SVD of the resultant projection can then be used to identify the modal properties in

a similar way.

Several variants of SSI exist in the literature. They primarily differ in the weightings

of the block Hankel matrix before applying the SVD. The primary weightings are: (1)

canonical correlation or canonical variate analysis (CVA); (2) principle component

(PC); and (3) unweighted principle component (UPC) [95]. Each weighting determines

the state-space basis in which the model will be identified; although no significant

accuracy difference has been seen between the CVA, PC and UPC implementations

[55, 104]. Such weightings can be applied to both SSI-Cov and SSI-Data. The

derivation of the CVA-weighted SSI-Cov algorithm is introduced later in Section

3.7.2 and forms the basis for much of the work contained within this thesis.

There have also been several extensions to SSI to aid its applicability in a wider range

of scenarios and in an attempt to address some of the research challenges highlighted

in Chapter 1. In 1999, Peeters and De Roeck [105] introduced a referenced-based SSI

(SSI-Cov/Ref) algorithm that enabled the analysis of larger structures in multiple

stages, using reference sensors across the structure to obtain global mode shape

estimates, thus reducing the computational effort. This is achieved through the

inclusion of reference sensor data in the Hankel matrix construction. Others have

looked to improve the robustness of SSI to noisy or corrupted data by providing

alternative models that seek to minimise their effects on the identification procedure

[20, 106]. In [107], the computational efficiency of SSI for larger datasets is considered,
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with randomised matrix algebra suggested as a possible way to address this challenge.

In the interest of continuous online monitoring, a range of authors have presented

possible recursive SSI algorithms [108–110]. One other key challenge some authors

have sought to address is the handling and quantification of uncertainty. This has

led to the development of new techniques for performing uncertainty quantification

for SSI; these methods will be discussed in more depth in the context of the next

section.

2.4 Uncertainty quantification for OMA

As highlighted in the introduction, one of the key challenges in OMA is noise and

uncertainty. Multiple sources of uncertainty present in observed data can result in the

variability of the recovered modal parameters and the models used to defined them.

The impacts of uncertainty on operationally obtained modal identification have been

studied in depth [111], whilst a comprehensive list of the associated uncertainties

specifically for subspace methods like SSI have been explored by Reynders in [112].

The dependency of other structural dynamics applications on recovered modal

information, such as structural health monitoring (SHM), for the purpose of decision-

making, necessitates better understanding and assessment of uncertainty in OMA.

Consequently, new and alternative approaches to incorporating uncertainty and

performing UQ for OMA are of particular value.

Before exploring existing UQ approaches to OMA, it is worth briefly mentioning

how different people may choose to represent uncertainty and what forms it can take.

Across different texts (in engineering literature and further afield), the representation

of ‘uncertainty’ can differ; it can take many forms not limited to: bounds, confidence

intervals, fiducial intervals, variance estimates, and distributions. There is no explicit

definition for the “correct” type of uncertainty in any case, however the overall

objective of UQ is the same: To obtain a measure of uncertainty to better understand

the variability of a given result. The author’s preference is to operate within

a Bayesian framework where the recovery of posterior distributions is ultimately

desired, hence the focus of this thesis. An introduction to Bayes theorem and the

benefits of posterior uncertainty are introduced later in Section 3.2.

UQ methods for OMA have been studied from both Bayesian and frequentist or non-

Bayesian perspectives. Frequentist approaches assume that there exists some true
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values for the parameters, but can through statistical analysis recover an estimate

for the uncertainty; often referring to the variability arising from the data. Whereas

in Bayesian approaches, modal identification is viewed as an inference problem,

where prior information and data are combined to determine a probability of the

plausibility of many outcomes i.e. a posterior. This section will first introduce

existing probabilistic approaches to UQ for OMA, with a specific focus on methods

centred around SSI, followed by an exploration of the current Bayesian UQ methods

for OMA. Both time- and frequency- domain methods are discussed.

2.4.1 Frequentist uncertainty quantification for OMA

There are several noteworthy contributions present in the literature for frequentist UQ

for OMA. One of the earliest examples is the frequency-domain MLMM algorithm

[63], which provides an estimate of the modal parameter variance based on an

estimated variance of the FRFs. The variance on the modal parameters is computed

from a linearization of the Cramèr-Rao lower bound and theoretically achieved by

maximum likelihood estimation. This method, although originally a method of UQ

for EMA, can be suitably adjusted for output-only identification using PSDs instead

of FRFs.

In [113, 114] an alternative approach to obtaining the variance on FRFs was used.

This variance was obtained through two different procedures, Monte Carlo and

bootstrapping. The Monte Carlo method involves repeated simulation of randomly

perturbed datasets based on the statistics of measured FRF data and some assumed

variability. Statistical analysis is then performed to obtain statistical distributions

over the modal properties. The bootstrap procedure relies on multiple sets of

measured FRFs obtained from the same structure. The premise of the algorithm

is to randomly sample the FRFs with replacement, forming an ensemble average

FRF from which the modal properties can be recovered. Repeating this process,

statistical confidence intervals on the modal properties can be estimated. However,

in both cases, neither method can account for any bias introduced from the initial

FRF estimation.

Since the 1990s, several works explored the asymptotic normality of estimates from

subspace algorithms [115–118] and demonstrated their ability to converge to the

expected value under the central limit theorem. The theoretical basis shown in these
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works has led to a number of subsequent methods for UQ, exploiting these results.

In 2007, Pintelon et al. [119] proposed a combination of first-order sensitivity and

perturbation techniques on the parameters of a rational polynomial representation

of a transfer function to obtain variances on the modal parameters. This was swiftly

followed by application to the time-domain method SSI-Cov/Ref by Reynders et al.

[112]. The methodologies outlined in [112, 119] estimate a variance or random error,

rather than systematic error (bias), of measurements based on the sensitivity of the

modal estimates to perturbations in the observed responses. Although presented

for SSI, this methodology is also generally applicable for other correlation-based

methods such as ERA [120].

Since [112], there have been significant developments in improving and extending

perturbation-based UQ for SSI. This is partly because of the existing praised perfor-

mance of traditional SSI methods in many OMA settings, consistently demonstrating

good estimation accuracy and computational robustness. In 2013, Döhler et al.

[121] efficiently optimised the method from [112] through rederivation, reducing the

computational burden when producing the stabilisation diagram. Moreover, this

method was later extended to include multiple-setup measurements [122], input-

output analysis [123, 124], UQ for Data-driven SSI [125] and frequency-domain SSI

[126]. Consequently, this method has seen application to several practical scenarios,

e.g. bridges [42, 127, 128], and has resulted in many other extensions and relevant

case studies [129–132]. The outputs of perturbation-based UQ methods for SSI have

already proven particularly fruitful, with researchers exploring the use of this uncer-

tainty to address other research challenges such as automated modal identification

[17, 129] and model order selection [133].

Other approaches using sensitivity and perturbation techniques have also been

presented. In [134, 135], a fast two-step approach to determining the variances on

the modal properties using the frequency-domain method PolyMAX was proposed.

This approach is based on the linearisation of the sensitivity of the modal parameters

to the noise variance, although the noise variance (either explicitly or as a coherence)

must be known a priori. Similarly, El-Kafafy et al. [136, 137] introduced a fast

MLMM identification technique, using the same approach.

Carden and Mita [138] note that one of the shortcomings of some of these algorithms

is the assumption of Gaussian noise on the modal properties or summary of the

uncertainty by only the first one or two statistical moments. It has previously been

shown that the uncertainty over the modal parameters may exhibit non-normal
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distributions [139] specifically when using shorter time-series or analysing systems

with lower natural frequencies. It is suggested that variance estimates alone are

at times insufficient to describe the uncertainty over the modal parameters and

that other techniques may be needed if one was to require greater insight on the

underlying distributions. Nevertheless, in the opposing case, with longer time series

and higher frequencies, this approximation is generally applicable as the number of

observations approaches the infinite limit.

Generally, these frequentist approaches to UQ do not recover a global probability

distribution over the parameter/s in question, often only a maximum likelihood

estimate and some interpretation of variance; the uncertainty recovered typically

describes the ensemble variation in the data, not that arising from the model itself. In

contrast, a Bayesian SSI methodology would provide a framework for incorporating

prior knowledge or permitting hierarchical structures whilst also recovering a global

picture of the uncertainty as posterior distributions. Bayesian approaches can

quantify not only the experimental uncertainties, but also any model uncertainty

due to inaccuracies in the mathematical definition, describing the entire probability

distribution over the parameters in question and offering richer information about

the uncertainty. Furthermore, Bayesian methods do not rely on any asymptotic

assumptions and performs well with limited data. Consequently, researchers have

also looked to address the problem of uncertainty in OMA from a Bayesian viewpoint

– these methods will now be explored.

2.4.2 Bayesian uncertainty quantification for OMA

This section introduces the current state of the art Bayesian approaches to OMA (in

both time- and frequency- domain), highlighting the associated merits and limitations

of existing methods. The major waypoints here include the popular frequency-domain

method BAYOMA [140] and more recent alternative approaches, these include: a

variational scheme in the time-domain; and two Gibbs sampling approaches (one in

the time- and other in the frequency-domain).

Bayesian approaches to output-only system identification have been developed as

early as the 1980s [141] but the topic continues to be of significant interest to the

engineering community [142–147]. The first approaches labelled Bayesian OMA are

much more recent, with the earliest works appearing in the late 2000s. The most cited
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Bayesian approach to OMA follows from the work of Au, whose development of a fast

Bayesian Fast Fourier transform algorithm (fast-BFFTA) for modal identification

[148, 149] removed the computational limitations of the original Bayesian Fast Fourier

transform algorithm [150, 151] and subsequently led to a body of work known broadly

as Bayesian OMA or ‘BAYOMA’ [19, 140, 152–154]. BAYOMA can be perceived

as the coupling of the fast-BFFTA with a frequency-domain OMA technique, such

as FDD [60]. This coupling can be used to recover modal estimates in the form

of a most-probable value and a representation of the uncertainty known as the

coefficient of variation. These estimates originate from Laplacian approximations

of the uncertainty which are used to obtain assumed Gaussian distributions. Since

the initial definition of BAYOMA, several extensions have emerged in the literature

providing a more general framework to use this methodology, including work on the

identification of closely-spaced modes [155–158].

BAYOMA appears to divide some of the research community in its Bayesian definition.

In the construction of the algorithm, a flat improper prior is used (see later in Section

3.2.2). Under this assumption, some argue (see [127]) and this author agrees, that the

problem fundamentally reduces to a maximum likelihood approach as the prior is not

truly valid throughout its entire range. This results in a posterior that is essentially

the standardised likelihood, removing the many benefits of a Bayesian formulation.

Nevertheless, some in the field adopt BAYOMA as their preferred UQ method

of choice [21, 159–161]. Undoubtedly, however your persuasion, BAYOMA does

provides a computationally effective way to perform one form of UQ on structures of

interest but is seemingly limited in its approximation of the posterior using improper

priors.

A few alternative Bayesian OMA approaches have been published in recent years that

do employ proper priors. Li and Der Kiureghian [162] proposed a variational Bayes

methodology for OMA applied directly to stochastic state space models (SSMs), where

joint distributions over the state-transition and observation matrices, and the process

noise and measurement error, are calculated analytically. The analytical solutions

are then coupled with a first-order Taylor series expansion to recover Gaussian

approximations to the distributions over the modal properties. This is necessary

given the intractability of the posteriors over the modal properties because of the

eigenvalue decomposition involved in their recovery. Alternative assumptions made

in their model, distinguish this methodology from much earlier work on variational

methods for the identification of SSMs in [163, 164].
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Another Bayesian approach was also presented by Li et.al [165]. Their contribution

focused on a new form of Bayesian OMA for civil structures under small or mod-

erate seismic excitation. A probabilistic model is first defined, taking advantage

of the stochastic state space representation of the equations of motion, with some

unmeasured base motion included in the model as a stochastic process. Proper and

broadly uninformative priors are then introduced into the model, with the Bayesian

inference problem solved using a forward-filtering-backward-sampling algorithm (a

Gibbs sampler) to obtain approximate distributions over the modal properties by

generated samples.

Yang and Lam [146] recently introduced a time-domain autoregressive (AR) model for

performing Bayesian OMA to MDOF systems. From their Bayesian AR model, the

most-probable values and variance of the errors over the AR model parameters are

obtained. A covariance over the parameters can then be obtained through Laplacian

approximation, with the posterior variance over the modal properties estimated as

approximately Gaussian through first-order Taylor series expansion.

In 2020, Sedehi et al. [166] presented a hierarchical Bayesian modelling framework for

frequency-domain UQ in OMA using hyper-probability distributions. After defining

a re-parameterised model of a dynamic system, separating dynamic and non-dynamic

parameters, the hyper-distribution over the dynamic properties can be learned. In

their paper, this inference is solved through MCMC and shown using Dual Laplacian

approximation to recover posterior estimates over the modal properties.

In [167, 168], a new Bayesian OMA method based on modal-component-sampling

(Bayes-Mode-ID) was introduced. The method is based on the idea of the modal

identification method (Mode-ID) developed by Beck [169–171]. In the paper, a

Bayesian posterior probability density function (PDF) over the modal properties,

conditioned on the cross-correlations of the observed data, is formed. Bayesian UQ

is then conducted by generating samples of the modal parameters in the important

regions in the posterior PDF, considering one mode or component at a time. The

sampling process is then iterated considering different modal components until

convergence. Unlike other methods, the posterior on the modal properties can

be obtained without approximating the posterior PDF to be Gaussian in the first

instance.

Finally, the most recent algorithm presented was a fast-collapsed Gibbs sampling

approach to frequency-domain OMA introduced in 2022 by Dollon et al. [172]. This



26 2.5 Observations and summary

alternative proposal performs inference by first defining a hierarchical structure

over the modal decomposition of an SDOF linear system. The uncertainty over the

parameters of the modal decomposition can then be established using fast Gibbs

sampling techniques and the PSD of a system with well-separated modes. Although

for SDOF systems, this methodology can be extended to MDOF by analysing each

mode separately. Their analysis results in posterior distributions generated from

samples that are characterised by a mean and covariance, rather than a most-probable

value and coefficient of variation.

2.5 Observations and summary

Considering the existing approaches to UQ for OMA highlighted in this chapter, it

is evident there is considerable and continued interest in performing UQ for OMA

and developing new reliable methods for doing so. UQ for SSI has seen particular

attention, given its existing adoption and many successes in civil and mechanical

applications, whilst Bayesian methods are of growing interest, given their inherent

ability to encapsulate uncertainties from data and models.

Upon reflection, it appears (as far as this author is aware) that almost all existing

approaches to UQ for OMA predominantly perform quantification without changing

the underlying OMA algorithm being applied. That is to say any frequentist or

Bayesian techniques are applied to the inputs-to or outputs-of OMA algorithms —

rather than embedding knowledge of uncertainty within the identification procedure.

For example, estimates of uncertainty are found through the statistical analysis or

sensitivity of identified parameters, or in the case of BAYOMA, through Bayesian

analysis on the inputs, which are propagated through an existing OMA algorithm.

There are some recent approaches that are beginning to incorporate knowledge of

uncertainty within a model’s definition (e.g. [162]). However, these techniques either

rely on the modal uncertainty being approximated as Gaussian in their construction

or are frequency-domain only techniques.

Based on the literature reviewed in this chapter, there is a motivation for the

development of new techniques that can embed knowledge of uncertainty within an

algorithms construction and identification mechanism. This author hypothesises that

OMA algorithms constructed from a probabilistic viewpoint can provide the necessary

framework to better consider noise in data, and more importantly facilitate a Bayesian
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form; one where posterior distributions over modal properties are obtainable and

hierarchical extensions possible.

Despite the success of SSI as one of the main time-domain OMA algorithms, and

the attention it has received in frequentist UQ for OMA, at the time of writing, the

author is unaware of any Bayesian formulation of SSI in the literature. As such, this

thesis aims to address this gap by introducing a novel probabilistic form of the SSI

algorithm, one that can be conveniently extended using hierarchical methods to a

statistically robust form and ultimately a Bayesian one.





3
Theory

This chapter introduces key mathematical and technical concepts beneficial for

understanding the new methodologies presented in this thesis. Topics include: the

dynamics of systems, the stochastic realisation problem, a brief introduction to

probability theory, Bayes’ rule, and Bayesian inference. For the more familiar

reader, the author suggests specifically reviewing the sections on Bayesian inference

techniques (Section 3.3), canonical correlation analysis (Section 3.4) and stochastic

subspace identification (Section 3.7.2) in the interest of the later Chapters.

29
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3.1 Probability

A brief overview of the basics of probability theory is provided to assist the reader

with concepts presented later in the thesis; for further detail, the reader is referred

to the following text-books [173–175].

The expression P (A) denotes the probability that a given event A is true. A given

probability requires that 0 ≤ P (A) ≤ 1, such that P (A) = 0 implies an event will

almost surely not happen, and P (A) = 1 implies an event will almost surely

happen, except at measure zero.

Considering the case of non-binary events (more states other than true or false), one

can use random variables. A discrete random variable, X, can take any value from

a finite (or countably infinite) set X̃ ; whilst continuous random variables can take

any value within a given feature-space X . In the context of this thesis, almost all

random variables are considered to be continuous. A continuous random variable

is associated with a continuous probability density function (pdf) (denoted by a

lower-case p). The pdf of a random variable X in the interval a < X ≤ b is,

P (a < X ≤ b) =

∫ b

a

p(xi)dxi (3.1)

such that p(xi) ≥ 0, and
∫
X p(xi)dxi = 1.

3.1.1 Some brief probability theory

The probability of the union of two events, the probability of A or B occurring, is

P (A ∪B) = P (A) + P (B) − P (A ∩B) (3.2)

= P (A) + P (B) (i.f.f A and B are mutually exclusive) (3.3)

The probability of the joint occurrence of two events A and B, is
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P (A,B) = P (A ∩B) = P (A|B)P (B) (3.4)

where P (A|B) is the conditional probability of an event A happening, given that

B has already occurred. It is said that event A has been conditioned on B (see

Equation 3.8). Equation 3.4 is also known as the product rule.

Given a joint distribution, P (A,B), specific variables can be marginalised out by

summing or integrating over all possible states of that variable. This gives the rule

of marginalisation,

P (A) =
∑
b

P (A,B) =
∑
b

P (A|B = b)P (B = b) (discrete) (3.5)

p(A) =

∫ ∞

∞
p(A|B)p(B)dB (continuous) (3.6)

This method is often called the total rule of probability or marginalisation rule. The

same method can also be applied to find p(B).

The product rule can be applied multiple times (to continuous or discrete variables)

to yield the chain rule of probability,

p(X1:D) = p(X1)p(X2|X1)P (X3|X2, X1) . . . p(XD|X1:D−1) (3.7)

where X1:D ≜ X1, X2, X3, . . . , XD

Also from the product rule, the conditional probability of A, given that B has

occurred, can be defined as

p(A|B) =
p(A,B)

p(B)
(3.8)
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3.2 Bayesian statistics

The aim of this thesis is to develop Bayesian UQ methods for OMA applications.

This section will introduce the reader to Bayes’ Rule (or Bayes’ Theorem) and briefly

introduce the concept of Bayesian statistics. For a more comprehensive introduction

to the topic, the reader is directed towards [175] and [176].

Bayesian statistics is a framework of statistical inference where probability is inter-

preted as a degree of belief or subjective uncertainty about some unknown quantity.

It is grounded in Bayes’ Theorem, which provides a formal mechanism for updating

probability distributions as new data become available. Unlike frequentist approaches

to uncertainty, which interpret probability as the limiting frequency of an event over

many instances and typically describe aleatoric uncertainty, Bayesian methods incor-

porate prior knowledge and observed data under a chosen model to give probability

as a measure of epistemic and aleatoric uncertainty.

3.2.1 Bayes’ rule

Bayes’ theorem, aptly named after Reverend Thomas Bayes1, describes the probability

of an event occurring given some prior knowledge about the conditions of that event.

It plays a central role in some modern day machine learning algorithms [173] and

forms the basis for a large proportion of the work presented in this thesis.

Bayes’ theorem is simple to derive using two key identities from probability theory;

those already introduced as the chain rule, which describes the relationship between

joint and conditional probabilities,

p(A,B) = p(A|B)p(B) (3.9a)

p(B,A) = p(B|A)p(A) (3.9b)

and the law of marginalisation,

p(A) =

∫
p(A|B)p(B)dB (3.10)

1Reverend Thomas Bayes (1702-1761) was an English mathematician and Presbyterian minister,
whose solution to the problem of inverse probability was published posthumously.
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As the chain rule for probabilities can be applied in either order, the derivation of

Bayes’ rule becomes trivial,

p(A,B) = p(B,A) (3.11)

p(B|A)p(A) = p(A|B)p(B) (3.12)

p(B|A) =
p(A|B)p(B)

p(A)
(3.13)

This is a sensible point to introduce common terminology for the components of Bayes’

rule. By convention, p(B|A) is known as the posterior ; p(A|B) as the likelihood ;

p(B) as the prior ; and p(A) as the evidence or the marginal.

Bayes’ theorem is often combined with the law of marginalisation to aid with

interpretation (and also computation) to give,

p(B|A) =
p(A|B)p(B)∫
p(A|B)p(B)dB

(3.14)

3.2.2 The prior

The prior probability distribution, often simply called the prior, of an uncertain

quantity is the probability distribution that encodes ones initial belief or knowledge

of a variable, before any data has been observed. The prior is a fundamental part of

Bayes’ rule and is used to keep the posterior distribution ‘in check’. Under limited

data, the shape and location of the posterior is predominantly driven by the prior and

less by the data. This is logical as, given little data, one would be cautious to deviate

from ones prior belief without seeing sufficient evidence to update their model. As

the amount of observed data increases, the prior becomes less important and has less

influence on the shape and location of the posterior; there is now sufficient evidence

to suggest a different model choice than that of the prior.

Figure 3.1 shows an example prior2 and subsequent posterior distributions for a

simple case study with known variance and unknown mean. It is evident from the

figure that, as the number of data increase, the posterior hones in on the true value

and relies less on the prior.

2Note that this would traditionally be classified as a poor prior because of its limited coverage.
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Figure 3.1: An example prior and set of posteriors,given a varying number of data in
the likelihood.

In many applications of probabilistic inference, ones prior knowledge can be conve-

niently expressed through the prior distribution. These are known as informative

priors and may include distributions such as the Wishart, Gaussian, Beta and

Gamma. In some cases, however, there may be little useful information to confidently

decide what form the prior distribution should take. Instead, a set of priors known

as uninformative, flat, or diffuse priors can be used which are intended to have

as little effect on the posterior probability as possible. Example priors include the:

Jeffreys [177], Box and Tao [178], and Bernardo and Smith [179]. Depending on

how well a distribution describes our initial belief, sometimes a prior is said to be

weakly informative. A weakly informative prior expresses partial information about

a variable, informing the analysis towards possible solutions that align with existing

knowledge, but without over constraining the model.

It is also necessary for later chapters to make the distinction between proper and

improper priors. A proper prior is defined as a prior whose pdf (over the entire

sample space) integrates to 1. A concept basic to the definition of a probability

density (see Section 3.1).

∫ ∞

−∞
p(θ)dθ = 1
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Conversely, the pdf of an improper prior does not integrate to 1,

∫ ∞

−∞
p(θ)dθ = ∞

An example of an improper prior is the uniform distribution on an infinite interval.

Despite an improper prior, the right choice and combination of priors with an ordinary

likelihood can still result in a posterior which is proper. A uniform distribution

combined with a normal likelihood would give a standardised likelihood as the

posterior; one in which the posterior is dominated by the likelihood. An improper

density such as this can be thought of as been valid over some large range of values,

but not truly valid throughout its entire range. In the case the prior describes some

variable to be constant over a very long interval, with it never being large outside

that range, then the posterior is very close to the standardised likelihood; equivalent

to the posterior resulting from taking an improper prior over the whole real line

[176].

There is often discourse regarding the choice of a uninformative, improper prior

in recovering a Bayesian posterior. Problems of this nature essentially reduce

to a maximum likelihood approach, as the whole posterior is dominated by the

standardised likelihood. In this case, the maximum a-posteriori (MAP) estimate is

equivalent to the frequentist MLE 3.

3.2.3 Conjugate priors

The marginal integral (the denominator of Bayes’ theorem 3.14) can often be difficult

to compute directly [27], so it is common to choose from a restricted class of priors,

Π, that ensure the marginal integral exists in closed form; this is usually a prior

belonging to the exponential family. This is often done purely for convenience but

also ensures the posterior distribution has the same functional form as the prior.

Using a closed-form solution of the marginal and therefore the posterior, for a given

likelihood, can generally lead to faster computation. These types of priors are

conjugate to the likelihood and are aptly named conjugate priors. Unfortunately,

the available set of conjugate priors is very limited.

3This is the reasoning given by some who believe BAYOMA is not a “fully” Bayesian approach.
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3.2.4 Posterior

The posterior distribution, as the combination of prior knowledge and evidence,

provides a complete representation of the uncertainty about the parameters, after

observing data. Unlike point estimates (i.e. the frequentist approach), a Bayesian

posterior gives a full probability distribution, offering greater insights into:

• The most likely values (the peak of the posterior distribution)

• The uncertainty or spread of possible values (the variance)

• The shape of the distribution (indicating skewness, multimodality, etc.).

Bayesian methods are also particularly flexible; they can handle complex and chal-

lenging problems where traditional methods may struggle. Bayesian methods can

easily incorporate:

• Non-linear relationships

• Hierarchical structures (multi-level)

• Missing Data

• Complicated likelihood functions

This makes posterior distributions particularly useful in the field of engineering,

where often these problems are encountered. This is also true of the models presented

later in this thesis.
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3.2.5 Probabilistic graphical models and Bayesian networks

Problems in probability theory with complex joint distributions can be elegantly

captured by probabilistic graphical models (PGMs) [173, 180]. Fundamentally, PGMs

provide a simple graphical representation of more complex joint distributions, exploit-

ing inherent structure to describe them more compactly, in a way that feels intuitive

and therefore more easily communicated. In this thesis, only a subset PGMs, known

as Bayesian networks, are used. Bayesian networks are specifically directed acyclic

graphs, where nodes represent random variables, shaded nodes represent known

quantities (i.e. observed data) and edges imply some form of conditional dependency

between these variables. An example Bayesian network is shown in Figure 3.2.

θ

X

Figure 3.2: Example PGM with some random variable X and random parameters θ.

The joint probability of the model above can be written as,

p(X,θ) = p(X|θ)p(θ) (3.15)

In the situation above, θ is the parent node of X and X is the child node of θ such

that there is direction to their relationship. A node may have multiple children, or

multiple parents.

If multiple random variables share the same probabilistic model or set of attributes,

then it is represented via a plate model. In plate representation, a template for the

repeated structure and shared parameters is encoded into the PGM by drawing the

relevant nodes and edges and enclosing them in a box. The box represents an entire

stack of identical plates, with a specified range R. An example model is shown in

Figure 3.3.

The associated joint in this case can be written as

p(X,θ) = p(θX)
R∏

r=1

p(Xr|θX) (3.16)
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θX

Xr

R

Figure 3.3: Example PGM with some random variable Xr inside a plate with range
R and random parameters outside the plate θ.

One could also envisage a scenario where the variable θ is inside the plate, encoding

a relationship specific for each plate. Furthermore, one could also consider the case

where multiple nodes of different types, existing within or outside the plate, are

required to define a model.

PGMs can also be used to show hidden or latent variables and their relation to some

observed variables. This will be the case with models shown later in this thesis. An

example model with this architecture is that of probabilistic principal component

analysis (PPCA) [181]. This model is shown in Figure 3.4.

zn

xn

N

Figure 3.4: PGM describing PPCA

where zn is a latent variable and xn is an observed variable conditioned on zn by

the relationship xn|zn ∼ N (Wzn + µ , σ2I) for N observations. In this case, the

parameters θ = {W,µ, σ} are not random, but are to be determined4. The joint of

the model shown above can be written as,

p(x, z) =
N∏

n=1

p(zn)p(xn|zn) (3.17)

4The parameters in θ could be considered random variables themselves, extending this model
further. This type of model will be considered later in Chapter 6.
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In many problems represented by PGMs, the form of the joint restricts the ability to

obtain a closed form maximum likelihood solution, particularly when considering

multiple nodes and their conditionals. Therefore, alternative methods of inference

can be used to obtain these estimates.

3.3 Estimation and inference

Solving complex problems in probabilistic or Bayesian inference, where exact inference

is not possible, requires algorithms capable of estimating parameters or posterior

uncertainty. In probabilistic problems this is known as parameter estimation or in a

Bayesian sense, known as inference. The choice and performance of different methods

depends on multiple factors, including the model, computational expense, and either

a desire for approximate posteriors or more exact solutions. Three methods of

estimation and inference used in this thesis are introduced in this section.

3.3.1 Expectation-maximisation

Computing the maximum likelihood estimate (MLE) of parameters of interest in

many machine learning and statistical models is a rather trivial task when all the

values of all the relevant random variables, are observed i.e., in the presence of

complete data. However, if data are missing or latent (hidden) variables are to be

learned, then computing a closed form solution for the MLE becomes completely

inaccessible [173]. One way to approach this problem is to use a method called the

expectation-maximisation (EM) algorithm [182].

The premise of the EM algorithm is to alternate between estimating missing values

or latent variables in an expectation step (E step), and then computing the MLE of

the parameters using this ‘filled in’ data in a maximisation step (M step); exploiting

the simple fact that if data were fully observed, then finding the MLE would be easy

to compute. As the expected values depend on the parameters, and the parameters

depend on the expected values, this algorithm is iterated until convergence at the

global (or local) maximum [183]. The EM algorithm generally proceeds as follows:
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Goal: Find an updated set of parameters θ̂ such that

θ̂ = arg max
θ

log

(∑
z

p(x, z|θ)

)

E Step: Compute the expected complete log likelihood,

Ez|x,θ(t)
[
log p(x, z|θ(t))

]
=
∑
z

log p(x, z|θ(t))p(z|x, θ(t))

M Step: Solve the maximisation,

θ(t+1) = arg max
θ

∑
z

log p(x, z(t)|θ)p(z(t)|x, θ)

3.3.2 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are a powerful class of algorithms used

to sample from complex, high-dimensional probability distributions, particularly in

Bayesian statistics. When direct sampling is intractable because of the complexity

of a posterior distribution, MCMC provides a practical alternative. The premise

of MCMC algorithms is to construct a Markov chain whose stationary distribution

converges towards a target probability distribution (or density) from which you want

to sample i.e. a posterior. After running the algorithm for a sufficient number of

iterations (allowing the Markov chain to mix or “forget” its starting point), the

states visited by the Markov chain approximate the target distribution. The more

steps in the Markov chain, the more closely the approximated distribution will match

the desired target distribution [173]. The most prominent MCMC methods are

Metropolis-Hastings and a special case of the algorithm, Gibbs sampling.

3.3.3 Metropolis-Hastings

The Metropolis-Hastings algorithm is an MCMC technique that generates a sample

by proposing a new state based on a proposal distribution, and accepting or rejecting

that sample given a probability that ensures the Markov chain converges to the

target. Specifically, for a current state θ, a new state θ′ is proposed according to
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some proposal distribution q(θ′|θ). The acceptance probability is defined as:

α = min

(
1,
π(θ′)q(θ|θ′)
π(θ)q(θ′|x)

)
(3.18)

where π(θ) represents the target distribution under data up to a constant. If the

proposed state is accepted, then the chain can move to θ′; otherwise it remains at

θ. This algorithm ensures that the chain explores the space in a way that samples

the target distribution properly over time. A key feature of the Metropolis-Hastings

algorithm is its flexibility, as the proposal distribution can be chosen in a variety of

ways; although this must be done carefully to balance exploration of the relevant

space with computational efficiency.

3.3.4 Gibbs sampling

Gibbs sampling is considered a special case of the Metropolis-Hastings algorithm

(where α = 1) that is particularly useful when trying to sample from high-dimensional

probability distributions where direct sampling from the joint distribution is difficult,

but sampling from the conditional distributions is more practical. Gibbs sampling is

commonly used as a means of Bayesian inference as it is well-adapted to sampling

from the posterior distribution of large Bayesian models [173]. Instead of proposing

a new state for all the parameters at once, Gibbs sampling updates each parameter

in turn, conditioning on the current values of the other parameters. For a target

distribution, π(θ1, θ2, . . . , θn), Gibbs sampling iteratively updates each parameter

θi by sampling from the full conditional distribution π(θi|θi) where θ
i

represents

all the other variables. Since any proposals are always accepted (α = 1), Gibbs

sampling can be much more efficient than the Metropolis-Hastings algorithm when

the conditional distributions can be easily sampled.

The general implementation of Gibbs sampling is described in Algorithm 1.

When applying the algorithm, the order of the sampling procedure does not matter

as long as all variables have been updated to the new state τ + 1, before updating to

the state τ + 2. Following successful application of Gibbs sampling, the following

hold true (also true of all MCMC methods):

• The samples approximate the joint distribution of all the variables.
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Algorithm 1 Gibbs Sampling

initialise: z(0) = z
(0)
1 , . . . , z

(0)
m for p(z

(τ)
1 , z

(τ)
2 , . . . , z

(τ)
m )

for τ = 1 → k samples do
Sample z

(τ+1)
1 ∼ p(z1|z(τ)2 , z

(τ)
3 , . . . , z

(τ)
m )

Sample z
(τ+1)
2 ∼ p(z2|z(τ+1)

1 , z
(τ)
3 , . . . , z

(τ)
m )

...
Sample z

(τ+1)
j ∼ p(zj|z(τ+1)

1 , z
(τ+1)
2 , . . . , z

(τ+1)
j−1 , z

(τ)
j+1, . . . , z

(τ)
m )

...
Sample z

(τ+1)
m ∼ p(zm|z(τ+1)

1 , z
(τ+1)
2 , . . . , z

(τ+1)
m−1 )

end for
return z

• The marginal distribution of any given subset of variables can be approximated

by considering only the samples for that subset of variables; ignoring the rest.

• The expected value of any given variable can be approximated by averaging

over all the samples for that variable.

As with other MCMC algorithms, Gibbs sampling generates a Markov chain of

samples, each of which have some small amount of correlation with its nearby

samples. Consequently, care must be taken when observing the posterior distribution.

MCMC is started from an arbitrary initial state, yet only when the chain has

‘forgotten’ where it started, can the resulting distribution reflect the stationary

distribution of the chain. Therefore, samples from the beginning of the Markov

chain that do not reflect the stationary distribution are instead ‘thrown away’ and

discarded. This process is known as burn-in and is applied before analysing the

samples [173].

Gibbs sampling can suffer from poor rates of convergence when there is correlation

in the posterior. If the joint distribution over the parameters is highly correlated,

the algorithm may sometimes struggle to move away from the current state or

will do so very slowly, requiring a large number of samples to eventually explore

all possible states. There are techniques available to reduce these effects, such as

blocking, although this is seen as an inherent limitation of Gibbs sampling methods

[173]. Alternatively, there are other forms of inference that avoid sampling entirely,

and assume a posterior form to make inference computationally more efficient —

these include variational methods.
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3.3.5 Variational inference

Variational inference (VI) is a powerful form of Bayesian inference and common

alternative to MCMC, used to approximate intractable posterior distributions with

analytical approximations (see e.g. [27, 173]). The general premise of VI is to

approximate the true (intractable) posterior with a simpler, tractable surrogate

distribution, chosen from a tractable family of distributions. This task is usually

achieved by minimising the Kullback-Liebler (KL) divergence, a measure of how one

probability distribution diverges from another, from the surrogate distribution q(θ)

to the true distribution5 p(θ|D). The KL divergence is defined as:

KL(q||p) =

∫
q(θ) log

q(θ)

p(θ|D)
dθ (3.19)

Minimising this divergence effectively finds the distribution, within the chosen family,

that is closest to the target posterior. Direct computation of the KL divergence is

challenging because the true posterior p(θ|D) is intractable. However, VI circumvents

this by maximising something known as the evidence lower bound (ELBO), an

alternative objective function that indirectly minimises the KL divergence [173]. The

ELBO can be defined as follows.

The marginal likelihood (or evidence) of the data can be written as:

log p(D) = log

∫
p(D, θ)dθ (3.20)

Using Jensen’s inequality (see e.g. [173]), the log of marginal likelihood is lower-

bounded by the ELBO:

log p(D) ≥ Eq(θ) [log p(D|θ)] −KL(q(θ)||p(θ)) (3.21)

≥ Eq(θ) [log p(D, θ)] − Eq(θ) [log q(θ)] = ELBO (3.22)

Maximising this ELBO can then be achieved by adjusting the parameters of the

5The KL divergence is a type of statistical measure of how different one probability distribution,
p, differs from another distribution, q. It is important to note that KL(p||q) ̸= KL(q||p) [173]
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approximating distribution q(θ), to balance the two terms in Equation 3.22:

1. The expected log likelihood of the data under the approximate posterior

Eq(θ) [log p(D, θ)], thus encouraging q(θ) to assign a high probability to values

of θ that explain the observed data D.

2. The entropy Eq(θ) [log q(θ)] of the surrogate distribution. This term prevents

q(θ) from collapsing too narrowly around a specific value and helps avoid

overfitting.

Assuming the surrogate posterior is determined by some set of free parameters ϕ,

then the problem of VI reduces to a more familiar optimisation problem which, for

certain cases, can be solved using coordinate-ascent and conducted efficiently in a

manner similar to the EM algorithm [173]. Compared to MCMC, VI is often more

computationally efficient. However, these improvements in efficiency come with a

sacrifice: the family of surrogate distributions q(θ) are often restricted to simpler and

more convenient forms (e.g. Gaussian distributions), which might not fully capture

the complexity or multimodality of the true posterior. Nevertheless, this simpler

form of the posterior makes inference a simpler task.

One of the most popular forms of VI is the mean-field approximation [184]. In

this approach, the approximate posterior is assumed to be fully factorised over its

components, assuming independence between the variables, in the form:

q(θ) =
J∏

j=1

qj(θj) (3.23)

While this assumption simplifies optimisation significantly, it can sometimes limit the

quality of the approximation for specific models where strong correlations between

parameters exist and are of interest.

The general implementation of coordinate-ascent VI (CAVI) is described in Algorithm

2.



3.4 Canonical correlation analysis 45

Algorithm 2 Coordinate Ascent Variational Inference (CAVI)

Input: A model p(D, z) with data D and latent variables z

Output: A variational density q(z) =
∏m

j=1 qj(zj)

Initialise: Variational factors qj(zj)

while the evidence lower bound (ELBO) has not converged do

for j ∈ {1, . . . ,m} do

Set qj(zj) ∝ exp{E
j

[
logP (zj|zj

,x)
]
}

end for

Compute ELBO(q) = E [ln p(D, z)] + E [ln q(z)]

end while

return

When latent variables and the parameters of a model are desired, as will be the case

later in Chapter 6, then this form of VI is known as variational Bayes (VB). The

inclusion of a set of unknown parameters into Algorithm 2 is considered trivial for

the VB case.

3.4 Canonical correlation analysis

Canonical correlation analysis (CCA) is a well-established methodology in multivari-

ate statistical analysis; it was first introduced to the linear algebra community in

1875 by Jordan [185] and later to the statistical community by Hotelling in 1936 [186].

The task of CCA is to analyse the mutual dependency between two multivariate

datasets x and y, which can be evaluated by finding an appropriate set of orthogonal

basis vectors, a and b, such that the projected variables aTx and bTy, are maximally

correlated [173]. This correlation, ρ, can be expressed as

ρ =
cov{aTx,bTy}√

cov{aTx}
√

cov{bTy}
=

aTΣxyb√
(aTΣxxa)(bTΣyyb)

(3.24)

One then seeks several pairs of basis vectors that meet the above condition, subject to

the constraint that the pairs of transformed variables are themselves independent and

uncorrelated from one another. Given two co-occurring zero mean multidimensional
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random variables, x ∈ Rd1 , y ∈ Rd2 , with sample covariance Σ̃ =

[
Σ̃xx Σ̃xy

Σ̃yx Σ̃yy

]
, then

this task can be achieved through the following maximisation:

(a′,b′) = arg max
a,b

corr(aTx,bTy) = arg max
a,b

aTΣ̃xyb√
aTΣ̃xxab

TΣ̃yyb
T

(3.25)

where Σ̃xy is the cross covariance between x and y, with Σ̃xy = Σ̃
T

yx, and Σ̃xx

and Σ̃yy are auto covariances. One intuitive explanation of CCA is that it is

equivalent to performing principal component analysis (PCA) on two datasets

whilst simultaneously maximising the correlation between the two sets of principal

components. This maximisation can be computed by solving the following generalised

eigenvalue problem:

(
0 Σ̃xy

Σ̃yx 0

)(
a

b

)
= λ

(
Σ̃xx 0

0 Σ̃yy

)(
a

b

)
(3.26)

where a and b are the eigenvectors or canonical directions, and λ is the eigenvalue or

canonical correlation. In practice, pairs of eigenvalue and eigenvectors are computed

from the following singular value decomposition (SVD),

Σ̃
− 1

2

xx Σ̃xyΣ̃
−T

2

yy = V1ΛVT
2 . (3.27)

where V1 and V2 are the left and right singular vectors respectively and Λ is the

diagonal matrix of singular values (the canonical correlations).
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3.5 Dynamics of systems

Before exploring new UQ methods for OMA, it is useful to briefly revise the way in

which mechanical systems are described and the foundations of linear modal analysis.

This theory is well-covered in many undergraduate textbooks (e.g. [5, 31, 32]) but

reproduced here in the interest of the reader.

3.5.1 Multiple degrees-of-freedom

A real dynamic system like a wing or bridge, is spatially distributed ; its motion can

be represented by a set of coupled partial differential equations (PDEs). However,

the solutions to these equations are difficult if not impossible to obtain. Therefore, it

is often assumed that a system can be spatially discretised; the system can instead

be truncated into a finite number of lumped masses (with mass mi) connected by

sets of massless springs (with stiffness ki) and dampers (with damping coefficient

ci) in some suitable configuration. An example of an nd-degree of freedom (DOF)

linear, viscously damped, forced dynamic system is shown in Figure 3.5.

k1

c1

m1

f1(t)

x1(t)

k2

c2

m2

f2(t)

x2(t)

mnd−1

fnd−1(t)

xnd−1(t)

knd

cnd

mnd

fnd
(t)

xnd
(t)

Figure 3.5: Generic forced nd–DOF linear dynamic system, represented by a lumped
set of masses each connected by massless springs and dampers.

Once spatially discretised, this nd-DOF linear structural dynamic system can, without

loss in generality, be entirely represented by a set of coupled heterogeneous linear

ODEs of the form

Mẍ + Cẋ + Kx = f (3.28)

where M,C,K are the nd × nd mass, damping and stiffness matrices, respectively, x
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is a vector of the system displacements, and f is a vector of the system excitations.

To solve this set of coupled ODEs, without requiring a complete set of initial states,

a convenient way is to decouple them. This can be achieved through the principal of

superposition and the modal decomposition of linear dynamic systems.

3.5.2 Modal decomposition

The modal decomposition or modal expansion theorem of structural dynamic systems

provides dynamicists with a convenient way of decoupling the equations of motion

(Equation 3.28) to nd independent (virtual) single DOF systems – these are called

the modes. The theorem proposes that, for any given motion, the total response

of a dynamic system, x(t), can be represented as a superposition of the individual

responses of the modes of the system. In the general case of an nd-DOF system,

there will be nd linearly independent modes such that,

x(t) = ϕ(1)q1(t) + ϕ(2)q2(t) + ϕ(3)q3(t) + · · · + ϕ(nd)qnd
(t) (3.29)

or more compactly,

x(t) =
[
ϕ(1) . . . ϕ(nd)

]
q1(t)

...

qnd
(t)

 (3.30)

where ϕ(i) is the ith modal vector or mode shape, and qi(t) is the ith natural coordinate

or modal coordinate.

To derive these properties, one initially considers the undamped, homogenous case

of Equation 3.28 (C = 0, f = 0),

Mẍ + Kx = 0 (3.31)

The equation above is now a homogenous linear ODE with the nontrivial solution,

x = ϕ cos(ωt) (3.32)
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where ϕ is a mode shape vector. Substituting into Equation 3.31 gives,

−ω2Mϕ cos(ωt) + Kϕ cos(ωt) = 0 (3.33)

which when rearranged and simplified becomes,

M−1Kϕ = ω2ϕ (3.34)

which is now recognisable as a standard eigenvalue problem6. The non-zero solution

to this problem results in nd pairs of eigenvalues and eigenvectors (i.e. the modes),

where the ith mode is characterised by a natural frequency ωi and mode shape ϕ(i).

A key feature of this eigen-decomposition is that the eigenvectors have the useful

property of being weighted orthogonal. It is this property that will allow the equations

of motion to be decoupled, by performing a change of basis in the space of Rn.

Let the vector of generalised coordinates, x, be considered as coming from some

modal space x = Φq, where Φ is the matrix of mode shape vectors and q is the vector

of modal coordinates. Substituting this coordinate system into the (un-damped)

heterogeneous equation of motion gives,

MΦq̈ + KΦq = f (3.35)

After pre-multiplying by ΦT, one obtains

ΦTMΦq̈ + ΦTKΦq = ΦTf (3.36)

where ΦTf is the modal force. Given the weighted orthogonality property of the

mode shapes,

ϕ(s)TMϕ(r) =

0, s ̸= r

Mrr s = r
(3.37)

6Note that this is true for well-defined structural systems where the mass matrix can be assumed
to be invertible, otherwise this would result in a generalised eigenvalue problem of the form
Kϕ = ω2Mϕ
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ϕ(s)TKϕ(r) =

0, s ̸= r

Krr s = r
(3.38)

It becomes apparent that pre- and post- multiplication of the mode shape matrix

diagonalises the parameter matrices such that

ΦTMΦ =

[
⧹

Mi

⧹

]
, ΦTKΦ =

[
⧹

Ki

⧹

]
(3.39)

where

[
⧹

Mi

⧹

]
denotes a diagonal matrix.

In the case of proportional (Rayleigh) damping, the damping matrix C can be

expressed as a linear combination of the mass and stiffness matrices C = αM + βK

and thus, diagonalised in the same way. The general equation of motion for a forced,

damped MDOF system can now be expressed as,

[
⧹

Mi

⧹

]
q̈ +

[
⧹

Ci

⧹

]
q̇ +

[
⧹

Ki

⧹

]
q = ΦTf (3.40)

The equations of motion are now, through a change of basis, fully decoupled into nd

independent single DOF systems.

Moreover, when Equation 3.40 is pre-multiplied by the inverse of the diagonalised

mass matrix, the system can also be represented in terms of its modal properties:

The natural frequencies ωi, damping ratios ζi, and mass normalised mode shapes Φ̃,

I q̈ +

[
⧹

2ωiζi
⧹

]
q̇ +

[
⧹

ω2
i

⧹

]
q = Φ̃

T
f (3.41)

where I is the identity matrix.

This form is perhaps more useful to the engineer as the modal properties afford

significant physical intuition. The natural frequencies describe the frequency locations

at which a system will experience resonant behaviour; the damping ratios provide

insight into how quickly a system will dissipate energy close to resonance; and the

mode shapes describe the synchronous motion of the entire system when excited
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at each natural frequency. This definition forms the foundation of all linear modal

analysis algorithms [31]. If one intends to identify a system from observed data,

as is the case in OMA, modal decomposition is assumed to hold true, providing a

convenient and interpretable representation of the dynamics that can be more easily

recovered. This representation is, of course, only an approximation of a system’s true

behaviour. Nevertheless, this is generally a very good assumption when considering

close to linear systems.
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3.6 State space representation

Sets of coupled ODEs can also be conveniently written in an alternative form known

as the state-space representation; whereby a dynamic system is specified using a set

of input, output, and internal variables; related by first-order differential equations.

The internal variables are known as state variables and evolve in time. A system’s

current states describe its internal condition at any given time and can be used along

with a system’s inputs to predict future behaviour, without needing a past history

explicitly. States often represent real-world quantities like temperature, price, charge

etc. In the case of dynamic systems, the states are the displacement and velocity.

The state-space representation of a system provides a convenient and compact way

to model and analyse linear systems with multiple inputs and/or outputs; a useful

tool when considering large structural dynamic systems with such requirements.

The reader is directed towards the following text books for a more comprehensive

introduction to state space methods if required [103, 187]. The following subsection

briefly introduces the continuous and discrete forms of the output-only state space

model given its relevance and repeated reference throughout this thesis.

3.6.1 Continuous, time-invariant, output-only state space

The continuous state-space representation of a stochastic linear dynamic system of

model order r, with l outputs and d state variables takes the following form,

ẋ(t) = Ax(t) + w(t) (3.42)

y(t) = Cx(t) + v(t) (3.43)

where, x(t) is the state vector x(t) ∈ Rd;

ẋ(t) is the derivative of the state vector x(t) ∈ Rd;

y(t) is the output vector y(t) ∈ Rl;

w(t) is the process noise, w(t) ∈ Rd;

v(t) is the measurement noise, v(t) ∈ Rl;

A is the continuous state matrix A ∈ Rd×d;

C is the output matrix, C ∈ Rl×d;
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with noise covariance

E

[[
w(t)

v(t)

] [
wT(t) vT(t)

]]
=

[
Q S

ST R

]
δ(t− s) (3.44)

where E[·] denotes the expectation, Q,R,S represent spectral densities of the noise,

and δ(t− s) is the delta function for any two points in continuous time.

For a multi-degree of freedom structural dynamic system where displacement is

observed, the state vector, state matrix and output matrix take the following form,

x =

[
ẋ

x

]
(3.45)

A =

[
0 I

−M−1K −M−1C

]
(3.46)

C =
[
0 1

]
(3.47)

where 0 is a zero matrix, I is the identity matrix, and M,C,K are matrices of the

system parameters as in Equation (3.28). Here x is a vector of displacements and ẋ

a vector of velocities, distinguishing them from the state vector7.

Although useful for theoretical or mathematical applications, in practical engineering

applications it is common to work with the discrete form of the state space, as

observations are obtained in discrete time.

7It is perhaps evident that notational conventions here conflict with the notation used in Section
3.5.1. Here the variable x represents the set of internal states and not the displacement as in 3.5.1.
However, the displacement and its derivatives are the internal states of a dynamic system. Hence,
the use of x and ẋ to make this distinction.
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3.6.2 Discrete, time-invariant, output-only state space

Alternatively, the model in (3.42)-(3.43) can be written in discrete time, such that

the system evolves in steps with sampling time ∆t, such that

xk+1 = Adxk + wk (3.48)

yk = Cxk + vk (3.49)

where at a given point in a sequence k∆t the parameters of the model are defined as

follows: xk is the state vector, xk ∈ Rd;

yk is the output vector, yk ∈ Rl;

Ad is the discrete state matrix, Ad ∈ Rd×d;

C is the output matrix, C ∈ Rl×d;

wk is the process noise, wk ∈ Rd;

vk is the measurement noise, vk ∈ Rl;

with a noise covariance of the form,

E

[[
wq

vq

] [
wT

s vTs

]]
=

[
Q S

ST R

]
δqs (3.50)

where E[·] denotes the expectation and δqs is the Kronecker delta for any two samples

in time q and s.

The discrete time state matrix Ad is related to the continuous state matrix by the

following expression,

Ad = expm(A∆t) (3.51)

where expm is the matrix exponential and ∆t is the sampling time.
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3.6.3 Observability

The observability of a system is a measure of how well the internal states of that

system can be inferred given knowledge of the external outputs and is obtained using

discrete observations from a system [95]. A system is defined as observable i.f.f. the

extended observability matrix, for a state dimension of d,

O =



C

CAd

CA2
d

...

CAd−1
d


(3.52)

has a rank of d. Given the availability of the observability matrix, the discrete state

matrix Ad and output matrix C can be recovered (see e.g. [95] or [103]).

3.6.4 Recovery of the modal properties from the state matrix

The (continuous) state matrix A encapsulates the core dynamics of a system and

details how the current states (displacement and velocity) will influence the evolution

of the states. Using this matrix, the modal parameters of the system can be recovered.

If in possession of the discrete time state matrix Ad, the continuous state matrix is

related by the expression in 3.51.

From the state matrix, the modal properties of the dynamic system can be obtained

by solving the following eigenvalue decomposition,

Aψ = λψ (3.53)

to recover sets of eigenvalues λ and corresponding eigenvectors ψ.

Given the discrete nature of the state space model, the respective eigenvalues

correspond to a set of discrete time system poles; however, the continuous system

poles can be recovered easily through,
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µ =
log(Λ)

∆t
(3.54)

where Λ is a diagonal matrix containing the set of complex eigenvalues {λi}di=1. Once

recovered, the poles can be used to calculate the natural frequencies in Hz,

ωi =
|µi|
2π

(3.55)

where ∆t is the sample time, and the damping ratios using,

ζi =
−Re{µi}

|µi|
(3.56)

where Re the real part of the complex variable.

Finally, the mode shape matrix Φ can also be recovered using the recovered output

matrix C and the eigenvectors Ψ, such that

Φ = CΨ (3.57)

In the context of OMA, it is important to note that a state matrix recovered from

data does not necessarily take the structure shown in Equation (3.46). However, the

eigenmodes of the recovered state matrix are known to relate to the modes of the

system in the same way. This is also true of the eigenvalues and the other modal

properties. The matrix is said to be ‘similar‘ in a linear algebra sense.

3.7 Stochastic subspace methods

Stochastic subspace methods of system identification have become common place in

many control and mechanical settings, as described in Chapter 2. Given the context

of this thesis for operational identification from discrete output measurements, only

the theory for a stochastic output-only case is considered here.
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3.7.1 Output-only stochastic realisation problem

The general stochastic realisation or identification problem, as defined in [95], proceeds

as follows. Given N measurements of an output yk ∈ Rl, generated by the unknown

stochastic system described by the rth order state space model from Equations (3.48)

- (3.49),

xk+1 = Adxk + wk

yk = Cxk + vk

one intends to determine:

• The order r of the unknown system

• The system matrices Ad and C

3.7.2 Stochastic subspace identification

The most familiar subspace method for solving this problem in structural dynamics

is the stochastic subspace identification (SSI) algorithm [95]. As discussed in Section

2.3.2, SSI analyses the projection of shifted output sequences onto itself, assuming

white noise excitation and stationarity in the data, but not necessarily the noise.

Although stationary noise is assumed when performing uncertainty quantification.

This projection, when viewed as the conditional mean of the “future” observations

given the “past”, can be described in terms of covariances and solved for the

parameters of the state space using the singular value decomposition (SVD). This

methodology can be used to identify both input-output and output-only systems.

In the output-only case, two common methods are available: covariance-driven

SSI (SSI-Cov) and data-driven SSI (SSI-Data). This thesis will focus on SSI-Cov,

specifically the CVA weighted form. The general derivation of CVA weighted SSI-Cov

is given later in this section, however, first some definitions are required.
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3.7.3 Definitions

Toeplitz matrices

A Toeplitz matrix is a special type of matrix whose entries are constant along each

descending diagonal [188]. A matrix T ∈ Rn×n is Toeplitz if T(i,j) = T(k,l) ∀ k−i = l−j
such that,

T =


τ1 τ2 τ3

. . .

τ4 τ1 τ2
. . .

τ5 τ4 τ1
. . .

. . . . . . . . . . . .

 (3.58)

By extension, a block Toeplitz matrix is one whose block entries follow the structure

above.

Hankel matrices

A Hankel matrix is a special type of matrix whose entries are constant along each

ascending skew-diagonal from left to right. A matrix H ∈ Rn×n is Hankel if

H(i,j) = H(k,l) ∀ k + l = k + j such that,

H =


h1 h2 h3

...

h2 h3 h4
...

h3 h4 h5
...

... ... ... ...

 (3.59)

Similarly, by extension a block Hankel matrix is one whose block entries follow the

structure shown above.
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3.7.4 Covariance-driven stochastic subspace identification

This section provides a concise overview of the theory underpinning the canonical-

variate weighted form of the SSI-Cov algorithm for an output-only case. This

derivation follows the description given in Katayama [103]. The reader is directed

towards the aforementioned text for a fuller derivation and for specifics.

Recalling the state space theory introduced in Section 3.6 and with a continuation of

notation, consider an rth order discrete state space model of a linear dynamic system,

equivalent to a mechanical system with nd degrees of freedom, such that r = 2nd.

Output measurements from this process, based on l measurement channels, can be

represented by the vector {yk, k = 0, 1, . . . , N ′} where N ′ = N + 2j− 2 and arranged

into a block Hankel matrix of the form,

Y0|2j−1 =



y0 y1 . . . yN−1

y1 y2 . . . yN
...

...
...

yj−1 yj . . . yN+j−2

yj yj+1 . . . yN+j−1

yj+1 yj+2 . . . yN+j
...

...
...

y2j−1 y2j . . . yN+2j−2


=

[
Y0|j−1

Yj|2j−1

]
=

[
Yp

Yf

]
(3.60)

The Hankel matrix contains 2j block rows and N columns, with every block consisting

of l rows and where j > 0 and N is sufficiently large (i.e much larger than 2lj) and

where j > r (target model order) and the number of columns of block matrices is N .

The resultant cross-covariance matrix of the future Yf with the past Yp is therefore

given by

Σ̃ =
1

N

[
Yp

Yf

] [
YT

p YT
f

]
=

[
Σpp Σpf

Σfp Σff

]
(3.61)

where Σpf and Σfp are finite block cross-covariance matrices, and Σff , Σpp are

finite block auto-covariance matrices respectively. The canonical correlations Λ =

diag(λ1, · · · , λr) between the future and past are the singular values [103], obtained
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through the SVD of the following weighted matrix

Σ
−1/2
ff ΣfpΣ

−T/2
pp = V1ΛVT

2 ⋍ V̆1Λ̆V̆
T

2 (3.62)

where Σ
1/2
ff Σ

T/2
ff = Σff , such that,

Σfp ⋍ Σ
1/2
ff V̆1Λ̆V̆

T

2Σ
T/2
pp (3.63)

where V1 and V2 are the left and right singular vectors, respectively and Λ̆ neglects

sufficiently small singular values (canonical correlations) in Λ such that the resultant

state vector has the dimension d = dim(Λ̆); the supposed model order of the

system. The cross-covariance matrix, Σfp, can be decomposed into the product

of the extended observability (O) and controllability (C) matrices [95], using the

relation Σfp = OC, such that

O = Σ
1/2
ff V̆1Λ̆

1/2
, C = Λ̆

1/2
V̆

T

2Σ
T/2
pp (3.64)

with rank(O) = rank(C) = d. The extended observability matrix can then be used

to recover the state Ad and output C matrices8 through,

Ad = O†O, C = O(1 : q, :) (3.65)

where O is the extended observability matrix minus the last block row, O is the

extended observability minus the first block row, O(1 : q, :) is the first block row

of the extended observability matrix and ·† represents the pseudo inverse. Once in

possession of A and C, the modal properties can be duly recovered in the usual way

for OMA (see Section 3.6 or [112] and [5]).

8The method described here for recovering the system matrices is one of many. See Stochastic
Balanced Realisation Algorithm A, Chapter 8 in Katayama [103]



3.7 Stochastic subspace methods 61

3.7.5 Stabilisation diagrams

In all modal analysis algorithms, including SSI, the true model order is seldom known

a priori; one must instead choose an appropriate model order based on evidence.

This becomes a difficult task as spurious (non-physical) modes typically appear

in estimated models. Therefore, this problem is addressed by using an empirical

multi-order process, where a system is identified at multiple (over-specified) model

orders and a stabilisation diagram9 is used to distinguish between the true (structural)

modes and spurious modes [55]. Typically, the eigenvalues of the eigen decomposition

in SSI (or the solutions to the denominator polynomial in frequency-domain rational

curve-fitting tasks) are referred to as the poles of the system.

In a stabilisation diagram, complex poles that correspond to true structural modes

are assumed to be present across increasing models orders — there is sufficient

evidence at all model orders that the pole in question accurately describes the

dynamics. Therefore, using some pre-defined heuristic criteria on the acceptable

stability of these poles across multiple model orders, the true modes can be manually

separated from the spurious ones. Surprisingly, this manual process is still the

current industry standard. However, the automatic identification of these modes

is an active research field [13, 16, 189], with a range of approaches being taken

including clustering [190] and uncertainty-based methods [17]. Throughout this

thesis, stabilisation diagrams are used to explore the effects of increasing model order

on the identification procedure. Moreover, later in Chapter 5, modern clustering

techniques are also used to automate the analysis of multiple diagrams with ease.

9The author believes this choice of terminology often leads to confusion with the stability of
system poles referenced in control theory and that the term stabilisation diagram should be replaced
with a suitable alternative. Nevertheless, the term stabilisation is used throughout this thesis as
not to cause confusion for the familiar dynamicist. Some alternative naming has been suggested
[189]; e.g. ‘consistency’ diagram. However, this also conflicts with other mathematical concepts.
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Probabilistic Stochastic Subspace

Identification

In Chapter 2, the reader was provided with some wider context to the problem of

OMA, with a specific focus on OMA methods and in particular: stochastic subspace

identification (SSI). Relevant literature surrounding existing approaches to frequentist

and Bayesian UQ for OMA was also explored. After reviewing the literature, a gap in

the research was identified; specifically the lack of a Bayesian formulation of the SSI

algorithm capable of UQ. Consequently, this chapter presents the first step towards

achieving this goal — namely the necessary mathematical framework that will later

enable a Bayesian approach.

This chapter introduces a novel probabilistic formulation of the (CVA weighted)

SSI-Cov algorithm; this form is made possible through the direct replacement of

the identification mechanism — canonical correlation analysis (CCA) — with its

probabilistic equivalent. It will be demonstrated how the maximum likelihood

estimates from this reformulated algorithm are equivalent to that of the original

SSI-Cov algorithm, principally leaving the outputs of the algorithm unchanged.
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Although seemingly trivial, this now probabilistic representation will ultimately

prove advantageous in the pursuit of other probabilistic and Bayesian SSI algorithms;

as will be explored in the later chapters.

Earlier in this thesis, existing approaches to UQ for OMA were explored. In both fre-

quentist and Bayesian approaches, current methods predominantly perform statistical

or Bayesian analysis on the inputs or outputs of OMA algorithms to determine some

form of uncertainty, rather than embedding uncertainty within the identification

mechanism. In pursuit of new probabilistic and Bayesian approaches to OMA, it is

useful to consider new types of OMA algorithms that embed probabilistic and/or

Bayesian understanding in their definition to assist UQ.

One of the key challenges associated with developing probabilistic methodologies is in

constructing suitable models that can achieve a desired task or operation; considering

factors such as model complexity, model assumptions, or model selection [180]. These

challenges make the development of new probabilistic or Bayesian OMA algorithms a

non-trivial task. Nevertheless, one can avoid reinventing the proverbial ‘OMA wheel’,

by first considering whether existing approaches can be reimagined probabilistically,

given existing knowledge.

Of the many available OMA algorithms, the reader was previously introduced to the

SSI-Cov algorithm in Section 3.7.4. The method’s familiarity and frequent usage

across industry and academia stands as a testament to its reliable identification

performance and broad applicability. These benefits make it an attractive candidate

when considering which OMA algorithms one may want to adapt to include UQ.

However, the defining question is: Does SSI have the potential to incorporate

probabilistic and/or Bayesian understanding? And if not, what could be done to

enable this?

It is widely known that many stochastic realisation problems (including SSI-Cov)

ultimately amount to performing CCA between two datasets that are (assumed to

be) doubly infinite; infinite in both rows and columns [95, 103]. Following careful

analysis, the problem can be reduced to a semi-infinite matrix problem; where only

the number of columns need be very large, whilst the number of block rows sufficiently

small. In the case of SSI, the datasets in question are the block Hankel matrices

of the future and the past, constructed from the time history responses. This may

sound familiar to the reader; recall the description of SSI using canonical correlations

in Section 3.7.4.



4.1 Probabilistic canonical correlation analysis 65

In 2005, Bach and Jordan presented a probabilistic interpretation of CCA (PCCA)

[191], employing the use of a latent variable model1 to recast the problem of CCA as

probabilistic. Given the methods equivalence to the classic formulation of CCA, one

can begin to consider whether redefining SSI-Cov using PCCA, could provide the

probabilistic OMA algorithm necessary to meet the aims of this work.

In this chapter, the reader will be introduced to a novel probabilistic formulation of

the SSI-Cov algorithm, made possible through the direct replacement of CCA with

its probabilistic equivalent. The theory of PCCA will be introduced and related to

SSI-Cov, helping to define a probabilistic SSI algorithm.

4.1 Probabilistic canonical correlation analysis

At the core of PCCA lies a lower dimensional, unobserved latent space described by

the variable zn ∈ Rd for n = 1, ...., N observations2. In the context of state space

models, this latent variable can be considered related to the internal states, in the same

way that classical SSI can be used to project estimates of the states from the observed

data [103]. This latent variable can be transformed through two independent linear

mappings W(1) and W(2) — note the transformations defined by Bach and Jordan

transform variables from the latent space to the data space — and offset with means

µ(1) and µ(2), to produce a pair of observed variables x
(1)
n ∈ RD1 and x

(2)
n ∈ RD2 .

Crucially, as the observed variables are assumed to be generated from a shared latent

space, the two datasets can be considered correlated. The full set of observed samples

are given by matrices X(m) = [x
(m)
1 , . . . ,x

(m)
N ] ∈ RDm×N where m = 1, 2 and N is

the total number of observations. To simplify notation, xn = [x
(1)
n ;x

(2)
n ] ∈ RD and

X = [X(1);X(2)] ∈ RD×N is the feature-wise row concatenation of the two random

variables, where D = D1 + D2. PCCA is parameterised by the model parameters

θ = {W,Σ,µ,Z} where the latent variables are denoted by Z = [z1, . . . , zN ], one

for each pair of observed samples, and the remaining variables are the independent

model parameters.

1This model is similar to that applied by Tipping and Bishop [181] in their earlier development
of probabilistic principal component analysis.

2Note a distinction between the notation used here to represent the data x and latent variables
z, and that introduced in 3.6 for the output y and internal states x. This is somewhat purposeful,
to stay true to the machine learning and PGM notation, whilst also keeping the definition of the
statistical method of probabilistic (and later Bayesian) CCA distinct. For added clarity, when the
subscript k will refer to the state space, and subscript n to the data space.
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Given this list of assumptions, Bach and Jordan defined the following probabilistic

model, shown graphically in Figure 4.1 and given mathematically through Equations

(4.1) - (4.3).

zn

x
(1)
n x

(2)
n

N

Figure 4.1: Graphical model for the probabilistic interpretation of CCA (PCCA)

zn ∼ N (0, I) (4.1)

x(m)
n |zn ∼ N (W(m)zn + µ(m),Σ(m)) (4.2)

xn|zn ∼ N (Wzn + µ,Σ) (4.3)

where N (µ ,Σ) corresponds to a Gaussian distribution characterised by mean and

covariance, W = [W(1);W(2)], µ = [µ(1);µ(2)] and Σ is a block-diagonal covariance

matrix with Σ(1) and Σ(2) along the diagonal. An isotropic noise model is assumed in

the latent space, which enforces independence between the variables whilst imposing

a maximum correlation condition. Intuitively, when performing CCA, it is possible

to imagine that one is searching for a set of latent variables, from which the observed

datasets are linear transformations. Enforcing a shared latent space between two

datasets with isotropic covariance imposes the maximum correlation condition from

CCA. This condition is seen in the probabilistic model formulation by observing

that each dataset is an affine transformation on the latent variables. For further

discussion on the equivalence of CCA and this latent variable model the reader is

directed to [191].

4.1.1 Maximum likelihood estimates

Using this model, the equivalence between probabilistic CCA and traditional CCA

was demonstrated by proving that the MLE for the parameters in Equation (4.2) lead

to the results of classical CCA and therefore, contain all the necessary information

traditionally obtained through the SVD. The MLE (denoted by ·̂) of the two weights
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are given by,

Ŵ
(1)

= Σ̃
1/2

11 V1M1 (4.4)

Ŵ
(2)

= Σ̃
1/2

22 V2M2 (4.5)

where Σ̃• are components of the sample variance Σ̃ =

[
Σ̃11 Σ̃12

Σ̃21 Σ̃22

]
, V1 and V2

are the left and right singular vectors of Σ̃
−1/2

11 Σ̃12Σ̃
−T/2

22 respectively, M1M
T
2 = Pd

where Pd is a diagonal matrix of the largest d canonical correlations. The MLE of

the mean µ̂ is simply,

µ̂ = µ̃ (4.6)

where µ̃ is the sample mean. Prior to analysis, the data can be adjusted to reflect a

zero mean dataset, simplifying the problem somewhat, although this is not necessary.

As noted by Bach and Jordan [191], amongst all possible solutions, the solution that

maximises the conditional entropy of the data given the latent variables occurs when

M1 = M2 = M is the square root of Pd i.e. M = P
1/2
d R, where R is an arbitrary

rotation matrix of size d× d. Accounting for this rotation, Equation (4.5) becomes,

Ŵ
(1)

= Σ̃
1/2

11 V1Λ
1/2R (4.7)

Ŵ
(2)

= Σ̃
1/2

22 V2Λ
1/2R (4.8)

However, this arbitrary rotation is often ignored as its omission still results in data

being transformed into the relevant subspace, i.e. WRR−1Z = WZ, but it can be

recovered through a simple post-processing step if required. The method for the

recovery of R is described in the Appendix errata of [192] but is also repeated in

Appendix A.4 for completeness.
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4.1.2 Expectation-maximisation

A convenient property of latent variable models is that model parameter estimates

can also be recovered iteratively using the EM algorithm; recall Section 3.3.1 on the

EM algorithm. Despite fully tractable MLE solutions, the EM update equations for

PCCA are also available [191] and are given by,

W′ = Σ̃Σ−1WM(M + MWTΣ−1Σ̃Σ−1WM)−1 (4.9a)

Σ′ =

[
(Σ̃− Σ̃Σ−1WMW′T)11 0

0 (Σ̃− Σ̃Σ−1WMW′T)22

]
(4.9b)

where M = (I + WTΣ−1W)−1, (·)′ denotes the update parameter and if not stated,

the current parameter estimate is used.

Repeated iteration of these equations will result in the convergence of the EM

algorithm to a local maxima; at a point very close to or at the MLE result. The

availability of EM update equations for this model, facilitates the complete removal of

the SVD from the SSI algorithm. This could have certain computational or analytical

advantages. The most interesting of which would be an online recursive form of SSI

using the theory of online EM [193]. Although not covered in this thesis, this will be

discussed and pursued in future work (see Chapter 8.2).

4.2 Probabilistic SSI

Upon closer inspection of the MLE of the weights from PCCA, and the definition of

the extended observability and extended controllability in the context of SSI first

introduced in Section 3.7.4, one can begin to draw parallels between the two results;

this is of course expected for the CVA weighted form of SSI-Cov.

Unsurprisingly, through substitution of CCA with PCCA in the SSI algorithm,

it can be shown that the MLE estimates for the weights Ŵ
(1)

and Ŵ
(2)

, given

that the two datasets X(1) = [x
(1)
1 , . . . ,x

(1)
N ] and X(2) = [x

(2)
1 , . . . ,x

(2)
N ] are Hankel

matrices of the future Yf and past Yp respectively, are equivalent to the extended

observability matrix and extended controllability matrix transposed respectively,

with some arbitrary rotation.
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Ŵ
(1)

= Σ
1/2
ff V1Λ

1/2R = OR (4.10)

Ŵ
(2)

= Σ1/2
pp V2Λ

1/2R = CTR (4.11)

The equivalence of these two methods, although perhaps trivial at first glance, is

particularly profound. This now probabilistic SSI algorithm (Prob-SSI) possesses

the potential to enable other hierarchical approaches, including a Bayesian SSI

algorithm. Before exploring these other methods, however, it is important to address

the rotational ambiguity present in the equations above.

Interestingly, in the context of SSI, the rotation does not need to be recovered when

considering the maximum chosen model order because the method of recovering the

state matrix from the observability matrix removes the rotational effects. Recall

Equation 3.65:

Ad = O†O

Rewriting the above to include the arbitrary rotation, and the pseudo inverse in full

form, gives

(OR)†OR = ((OR)TOR)−1(OR)TOR (4.12)

Expanding terms,

(OR)†OR = R−1(OTO)−1R−TRTOTOR (4.13)

Given that R−TRT = I,

(OR)†OR = R−1(OTO)−1OTOR (4.14)

= R−1O†OR (4.15)

= R−1AdR (4.16)
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The transformation R−1AdR is as a similarity transform. Although this transfor-

mation does not necessarily return Ad to its original form, it represents a change of

basis for Ad which preserves the eigenvalues and transforms the eigenvectors into

the new basis. Consequently, this transformed Ad matrix can still be used to obtain

the modal properties in the usual way.

4.3 Results

To verify that both the MLE and EM forms of the Prob-SSI algorithm are consistent

with the classic SSI-Cov result, each method was used to analyse data simulated

from a simple four degree-of-freedom linear dynamic system. Estimates for the modal

properties were then obtained. Assuming a model order equal to the number of

degrees-of-freedom. The recovered values for natural frequency and damping ratio

from each method are provided in tables 4.1 and 4.2, respectively. The EM procedure

was run for 500 iterations, ensuring adequate convergence of the algorithm.

Table 4.1: A comparison of the natural frequencies obtained using SSI-Cov, Prob-SSI
(MLE) and Prob-SSI (EM). The values in the table were obtained using the correct
model order (a model order of 4).

Natural Frequency (Hz)

1 2 3 4

Truth 2.76369658 7.95774715 12.19197598 14.95567256
SSI-Cov 2.76578389 7.95521844 12.20072807 14.98244897

Prob-SSI (MLE) 2.76578389 7.95521844 12.20072807 14.98244897
Prob-SSI (EM) 2.76578384 7.95521938 12.20072861 14.98244332

Table 4.2: A comparison of the damping ratios obtained using SSI-Cov, Prob-SSI
(MLE) and Prob-SSI (EM). The values in the table were obtained using the correct
model order (a model order of 4).

Damping Ratio

1 2 3 4

Truth 0.00868241 0.02500000 0.03830222 0.04698463
SSI-Cov 0.00884471 0.02341360 0.04204111 0.05184653

Prob-SSI (MLE) 0.00884471 0.02341360 0.04204111 0.05184653
Prob-SSI (EM) 0.00884468 0.02341346 0.04204116 0.05184743
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As expected from the theory, the values for frequency and damping obtained using

Prob-SSI (MLE) and standard SSI-Cov are identical, given use of the SVD in both

cases to recover the estimates. In the case of Prob-SSI (EM), after 500 iterations

of the algorithm, the estimates for frequency and damping can also be seen to be

identical to the classic SSI-Cov estimates, up to 6 decimal places. Some minor

variation is expected given the nature of the EM algorithm, however the precision

observed in this case is sufficient.

4.4 Summary

This chapter presented a new formulation of the SSI-Cov algorithm, redefining it

as a problem in probabilistic inference. This new approach was made possible

through close alignment of the CVA-weighted SSI-Cov algorithm with the theory

of probabilistic projections (i.e. PCCA). The mathematical equivalence between

the MLE of the weights (linear transformations of the latent variables), and the

observability matrix and controllability transposed, was established.

This unique perspective conveniently lays the necessary mathematical foundation to

enable a suite of new SSI-based OMA algorithms, constructed using sophisticated

probabilistic and hierarchical techniques, as will be explored in the later Chapters.





5
Robust Probabilistic Stochastic Subspace

Identification

In the last chapter, the reader was introduced to a new probabilistic formulation of

SSI-Cov, made possible by direct augmentation of the underlying algorithm; redefining

the core mathematical construction of SSI-Cov as a latent variable model. This

alternative definition leaves the output of SSI-Cov unchanged, but crucially provides

the necessary form upon which new probabilistic methods can be constructed. Before

exploring a Bayesian formulation, it is worth considering whether any extensions

to the Prob-SSI model can be made to address some of the research challenges

highlighted in Chapter 1.

Despite the success of OMA algorithms, a typical weakness lies in their handling of

atypical observations. In practice, in-situ monitoring can often produce imperfect data

containing unwanted features that may present a problem to OMA algorithms; which

can severely bias parameter estimates and inevitably leading to the misidentification

of a system. These features can arise because of low level excitation, the stochastic

nature of the forcing (often not pure white noise) or from unpredicted events that
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are often independent of the system being measured. In the case of OMA, these

‘events’ refer to practically encountered scenarios in testing such as sensor drop-out

or sensor clipping.

This misidentification problem is also true of SSI-Cov. Unlike classical approaches to

data analysis, where data may be pre-processed to remove outliers and ‘cleaned’ prior

to use, such an approach cannot easily be applied when using SSI-Cov because of its

dependence on sequential data, required for the formation of the Hankel matrix. This

poses a significant dilemma. During application of SSI, any outliers present remain

during the analysis, distorting the measurement of the response and ultimately

affecting the identification procedure. Despite this discernible predicament, no simple

mechanism currently exists capable of dealing with such anomalies in SSI.

Addressing this challenge, this chapter introduces the first of many new algorithms

constructed using the probabilistic formulation of SSI — a statistically-robust SSI

algorithm (robust Prob-SSI) — capable of providing a principled and automatic

way of handling atypical observations in multi-output time series responses. As

will be demonstrated, when confronted with ‘corrupted’ data, this new approach to

modal identification outperforms traditional SSI in a number of scenarios, exhibiting

improved pole stability and increased confidence; attributes reflected in the subsequent

stabilisation diagrams. Further investigation and application to the well-documented

Z24 bridge benchmark is also conducted, with results highlighting similar benefits to

identification performance.
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5.1 Related work

Although many alternative approaches to OMA have been presented, with an increase

in probabilistic identification techniques (see Chapter 2), few directly attempt to

formulate statistically robust algorithms capable of handling atypical observations.

Most OMA algorithms possess some level of inherent robustness given their depen-

dency on certain mathematical operations, such as the SVD, but in specific cases

these algorithms are incapable of dealing with a considerable number of outliers and

ensuring statistical robustness, as will be shown for SSI.

Some ‘robust’ approaches to OMA do exist in literature, however, the term ‘robust’

is often used to loosely refer to methods capable of reliable performance, rather

than statistical robustness. The majority of these methods achieve the stability of

the modes over multiple model orders through automated process; using optimised

metrics or machine learning [194], often with the inclusion of uncertainty in techniques

such as clustering [17]. In contrast, this work achieves statistical robustness through

direct augmentation of the underlying algorithm. Furthermore, upon closer inspection

of the literature, only a small selection of papers appear to directly address the

problem of outliers, including recently developed robust algorithms by Liu et al.

on correlation signal subset-based SSI (CoS-SSI) [20] and Goursat et al. [106] on

Crystal-Clear SSI (CC-SSI); both concerned with addressing non-stationary and

noisy signals.

5.2 Robust probabilistic SSI

Standard probabilistic models can be converted to a more ‘robust’ form through

the replacement of a Gaussian noise model on the data and latent variables to that

of a Student’s t-distribution [27]. An introduction to the Student’s t-distribution

is provided in Appendix A.2. Building on the probabilistic interpretation of CCA,

Archambeau, Delannay and Verleysen [192] used this alternative noise model to

define a statistically robust equivalent of PCCA. This robust model is founded upon

two key assumptions. The first is that the observed and latent variables can both

be modelled by a Student’s t-distribution S(µ,Σ, ν) with mean µ, covariance Σ

and degrees of freedom ν. Recall that the Student’s’ t-distribution has heavier tails

than a typical Gaussian, which are determined by ν. The presence of heavier tails
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is preferable as it makes the t-distribution better equipped to handle outliers; it is

more likely to capture them within the existing distribution. The second assumption

is that an outlier in the feature space must manifest as an outlier in the latent

space. Given this set of assumptions, Archambeau et al. presented the following

probabilistic model (note a continuation of notation from Section 4.1)

zn ∼ S(0, Id, ν) (5.1)

x(m)
n |zn ∼ S(W(m)zn + µ(m),Σ(m), ν) (5.2)

Making the set of latent variables (ν and zn) explicit, the model can also be written

in the following form,

un ∼ G
(ν

2
,
ν

2

)
(5.3)

zn|un ∼ N
(
0 , u−1

n Id
)

(5.4)

x(m)
n |zn, un ∼ N

(
W(m)zn + µ(m) , u−1

n Σ(m)
)

(5.5)

xn|zn, un ∼ N
(
Wzn + µ , u−1

n Σ
)

(5.6)

where G (α , β) represents a Gamma distribution, un is an additional latent variable

and W, µ, Σ and ν are as previously defined. This alternative representation of the

Student’s t is common and arises as result of the t-distribution being viewed as a

normal distribution with a covariance weighted by the Gamma distribution. This

form is particularly useful, as the benefits of operating with Gaussian distributions

is maintained, whilst also providing the necessary randomness in the covariance

[27, 173, 175]. The corresponding graphical model to this alternative form is shown

in Figure 5.1.

zn

x
(1)
n x

(2)
n

un

N

Figure 5.1: Graphical model for robust probabilistic canonical correlation analysis
(robust-PCCA)

The same consideration in the model as previously shown (with CCA having a latent
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variable model representation) allows for this robust extension to be achieved. The

notable difference from which the robustness is generated comes from the inclusion

of a data point dependent noise scaling. This inclusion allows inference over the

influence of each datapoint on the total model. The mapping from the shared latent

space is as before in PCCA, except for this modification to the noise process. The

inclusion of Student’s t- (or equivalently hierarchical Gamma) noise structures into

probabilistic models allows inference on the ‘importance’ of datapoint, where outlying

points can effectively be disregarded when un becomes large.

5.2.1 Expectation-maximisation

In contrast to PCCA, direct maximisation of the incomplete data log-likelihood∑
n log p(xn, zn) with respect to the parameters is intractable. However, using

Equations (5.3) - (5.6) estimates for the variables can be recovered through an iterative

scheme. Archambeau et al. employ an EM approach (recall the EM algorithm

introduced in Section 3.3.1), maximising the expected complete-log-likelihood [192].

ℓ(θ|xn, zn, un) =
N∑

n=1

ln p(xn, zn, un|θ) (5.7)

where θ = (µ,W,Σ, ν).

The necessary update equations for the E-step (expectation) and M-step (maximisa-

tion) of robust PCCA are given by the Equations (5.8) - (5.15).

The reader may notice certain equations differ from those in the original robust

projections manuscript. There appear to be some typographical errors in the original

paper, most notably in the definition of the covariance matrix update equation

(Equation (37) in [192]). Consequently, the robust PCCA algorithm has been re-

derived in A.3 for completeness.



78 5.2 Robust probabilistic SSI

E-Step

ūn =
D + ν

un(xn − µ)TA−1(xn − µ) + ν
(5.8)

ln ũn = ψ

(
D + ν

2

)
− ln

(
un(xn − µ)TA−1(xn − µ) + ν

2

)
(5.9)

z̄n = B−1WTΣ−1(xn − µ) (5.10)

S̄n = B−1 + ūnz̄nz̄
T
n (5.11)

where A =
(
Σ + WWT

)
, B = WTΣ−1W + Id, ūn = E [un], ln(ũn) = E [ln(un)],

z̄n = E [zn], S̄n = E
[
unznz

T
n

]
and ψ(·) denotes the digamma function.

Subsequently, the update equations for the parameters in the M-step are given by

M-Step

Σ′ =
1

N

N∑
n=1

[
ūn(xn − µ)(xn − µ)T − ūn(xn − µ)(Wz̄n)T

− ūn(Wz̄n)(xn − µ)T + ūnWS̄nW
T

] (5.12)

W′ =

∑N
n=1 ūn(xn − µ)z̄Tn

N∑
S̄n

(5.13)

µ′ =

∑N
n=1 ūn(xn −Wz̄n)∑N

n=1 ūn
(5.14)

0 = 1 + ln
(ν

2

)
− 2 ψ

(ν
2

)
+

1

N

N∑
n=1

[
ln(ũn) − ūn

]
(5.15)

where (·)′ denotes an updated parameter and ν ′ can be found by solving Equation

(5.15) through a suitable line search. The convergence of the EM algorithm was

monitored using the Q-function, derived using standard theory [27, 183].

It is important to note that despite the presence of heavier tails, in the case of no

outliers, it is expected that the mean of the Students’ t-distribution will converge to

the PCCA maximum likelihood result.
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After successful convergence of the EM algorithm, final estimates for the weights

can be obtained. These weights, as described by the model, are considered to be

the statistically robust transformations from the latent space to the observation

space. The commonality between the weights recovered by PCCA and robust PCCA,

based on their ability to transform the data to the relevant subspace, grant a similar

replacement of CCA in the SSI procedure, now for robust PCCA.

W(1) = OR (5.16)

W(2) = CTR (5.17)

As noted by Archambeau et al., the weights recovered through EM do not account

for the rotational ambiguity. Nevertheless, this rotation is irrelevant in the state

matrix recovery when analysing the maximum model order, as previously shown in

Section 4.1.1.

However, in the specific case of multi-order analysis for robust Prob-SSI, recovery of

the rotation matrix is required to formulate the stabilisation diagram in the usual

way for SSI-Cov, i.e. truncating the singular values from the maximum chosen model

order rather than repeating analysis at multiple model orders. This is required

because of the rotational invariance of the recovered observability matrix. The

recovery and inclusion of the rotation matrix R, as shown in Equation (5.16) ensures

that removing columns from O is directly equivalent to truncating the singular values

in the traditional case. The procedure for recovering R is shown in A.4.
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5.3 Results and discussion

With a mathematical framework for conducting system identification in a statistically

robust probabilistic way now established, attention can be directed towards robust

identification of modal parameters using experimental data. Three separate case

studies are used to demonstrate, evaluate and compare the identification performance

of robust Prob-SSI to SSI-Cov. The first study (Section 5.3.1) uses data from a

simulated linear MDOF to benchmark the general performance of robust Prob-SSI to

standard SSI-Cov under ideal conditions. The variance exhibited by both methods

due to different random input forcing is also briefly explored. The second case study

(Section 5.3.2) exploits the same simulated MDOF system but now introduces artificial

outliers into the measured timeseries. This study is used to test the robustness of

identification to outliers under known conditions. A series of smaller case studies

are also provided using the same simulated system, demonstrating the effectiveness

of robust Prob-SSI to a range of possible outlier scenarios. The final case study

(Section 5.3.4) uses data collected from the Z24 bridge benchmark. This study is

used to investigate the method’s overall applicability to measured data and evaluate

its performance against SSI-Cov.

In all tests, robust Prob-SSI was directly compared to SSI-Cov to highlight differences

in identification performance. The reader will notice the omission of results from

Prob-SSI. As has been shown, the MLE estimates obtained through Prob-SSI are

equivalent to those found through SSI-Cov and so their addition was redundant.
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5.3.1 Benchmark: Simulated MDOF linear dynamic system

To evaluate the identification performance of robust Prob-SSI, a suitable benchmark

was created. Response data was generated using a generic three degree-of-freedom

(DOF) linear dynamic system with proportional damping; shown in Figure 5.2 and

described by the model parameters in Equation 5.18. The system was subsequently

excited using broadband forcing, of order 10−2 with a standard deviation of 1,

mimicking ambient excitation. The system was simulated at a sample rate of 1× 103

Hz and generated 8192 samples. The Hankel matrix was constructed using 20 lags;

i.e. 10 “past” and 10 “future”.
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Figure 5.2: Simulated MDOF System
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 , K =

2k −k 0

−k 4k −0.5k

0 −0.5k k

 , C = K× 10−4 (5.18)

where,

k = k1 = k2 = 2k3 =
2

3
k4 = 2k5, k = 1 × 104 (N/m), m = 10 (kg)

Before application of robust Prob-SSI, suitable initial conditions are required for

the EM algorithm. A small perturbation to the CCA (PCCA maximum likelihood)

result was chosen as the initial estimate of the full weight matrix, providing a

sensible initialisation point that, one would expect, converges to a solution sooner
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and therefore reduces computational expense. The initial estimates for the covariance

matrices were randomly sampled from an inverse Wishart distribution W−1(K, ν)

where ν = D + 2 and K = ID given D is first dimension of Hankel matrix.

Following analysis of the data, stabilisation diagrams were generated for both methods

using standard techniques. These are shown in Figure 5.3. To ensure fair comparison,

fixed definitions for the stability criteria were applied to both methods. This ensured

that any discrepancies in identified stability arose solely from the method and not

through independent changes to specific criteria. The chosen criteria were: a 2%

relative change in frequency, a 5% absolute change in damping ratio, and a 98%

relative correspondence in the MAC value.

Figure 5.3: Stabilisation diagrams for the 3DOF system, recovered using SSI-Cov
(top) and robust Prob-SSI (bottom).

As evident from Figure 5.3, the found stabilisation diagram for Robust Prob-SSI

is highly comparable with that of SSI-Cov. Clear columns of fully stable poles are

easily identifiable and, as shown in Table 5.1, the estimated values for the natural

frequencies and damping ratios, obtained by taking the value at the correct model

order, comfortably lie within an acceptable tolerance of the ground truth. The

normalised mode shapes, also obtained at the correct model order, are presented in

Figure 5.4 with both methodologies being in good agreement with the true modes.
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Table 5.1: A comparison of the natural frequencies and damping ratios obtained in
the benchmark study. The values in the table were obtained at the correct model
order (a model order of 3).

Natural Frequency (Hz) Damping Ratio

1 2 3 1 2 3

Truth 4.74 6.44 10.65 0.0033 0.0020 0.0015
SSI-Cov 4.74 6.46 10.66 0.0026 0.0052 0.0131

Robust Prob-SSI 4.74 6.45 10.67 0.0031 0.0047 0.0104

Figure 5.4: Mode shapes obtained using SSI-Cov and robust Prob-SSI compared
against the true mode shape, when observed at the correct model order.

Due to stochastic variation in the excitation and, in the case of Robust Prob-SSI, the

initialisation of the EM algorithm, the inherent variance shown by both methods was

also explored. Assuming the correct number of DOF, both methods were applied

to 100 datasets whereby the underlying system dynamics remain unchanged but

the random seed needed to generate the random forcing varied between tests. The

estimates of the natural frequencies from these tests are shown in Figure 5.5.

As expected, due to the complex nature of the system poles, the recovered estimates

exist in conjugate pairs. This is evident from the clear matching of results seen in

both tests between poles 1 and 2, poles 3 and 4, and poles 5 and 6. The variance

exhibited by robust Prob-SSI is highly similar to that of SSI-Cov for all the recovered

poles, when the correct number of degrees of freedom is assumed. Overall, this result

demonstrates that robust Prob-SSI is capable of accurately replicating the results of

SSI-Cov.
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Figure 5.5: Box plots demonstrating the variance seen in the natural frequency
estimates obtained using SSI-Cov and robust Prob-SSI for 500 datasets based on the
same 3DOF dynamic system but different realisations of the random input forcing.
(This is a standard boxplot, whereby the red line — indicates the mean, the limits of
the blue box □ indicate the upper and lower quartiles and the red dots • represent
datapoints further than 1.5x the inter quartile range away from the mean.)

5.3.2 Corrupted: Simulated MDOF linear dynamic system

Having established that robust Prob-SSI is capable of replicating the results of

SSI-Cov for a simulated, ‘clean’ case, we now turn our attention to the proposed

robustness of this method to corrupted datasets. In the context of this work, a

‘corrupted’ dataset will refer to any dataset containing either artificially generated or

naturally occurring, atypical observations (outliers). It is worth briefly noting the

definition of outliers in this case. Archambeau et al. assume that an outlier in the

latent space will manifest as an outlier in the dataspace. This is a relatively sensible

assumption given the linear transformation on the data. However, recall that SSI-Cov

relies on components of the cross-covariance matrix and not the exact timeseries.

Therefore, if the cross-covariance is insensitive to atypical observations present in

the timeseries, there will be no discernible effect on the identification procedure. In

the simulated case, this can be explored, but for real datasets, the ‘clean’ case is

unobtainable. Furthermore, the terms ‘atypical observations’ and ‘outliers’ will be

used interchangeably.

The corrupted dataset used in this study is based on the same linear dynamic MDOF

system used in the benchmarking case but now with the inclusion of artificial outliers

of a chosen type and dispersion. In the example shown here, outliers were introduced
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at random locations in each sensor channel and set to a specified value, plus some

small amount of noise. This was intended to mimic random sensor dropout where the

measured value is pinned to the lower supply rail of the DAQ unit plus some noise.

As one might expect, there are many different types and patterns of outliers that

could manifest in experimental data and it would be extremely difficult to generate

and analyse all such cases. Nevertheless, for completeness, a selection of corrupted

datasets with varying outlier types were also generated and analysed. The results of

this series of tests are presented in Section 5.3.3.

In the case shown, the number of outliers was set to 0.1% per channel which, for a

dataset with 3 sensor channels and 8192 data points, equated to approximately 24

outliers in total. The response data and outliers are shown in Figure 5.6. To ensure

a fair comparison of the two approaches, definitions for the stability criteria were

once again fixed. The stabilisation diagrams recovered from this scenario are shown

in Figure 5.7.

Figure 5.6: Response data from a simulated 3DOF ‘corrupted’ dataset, containing
0.1% artificially introduced, random outliers in each signal channel. The value of
the outliers was set to a specified value plus some small amount of noise, intended
to mimic random sensor dropout where the measured value is pinned to the lower
supply rail of the DAQ unit with some noise

It is immediately apparent that robust Prob-SSI displays a significant improvement in

identification performance over SSI-Cov when confronted with the corrupted dataset.

Whilst robust Prob-SSI comfortably identifies all three correct natural frequencies of
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Figure 5.7: Stabilisation diagrams recovered using SSI-Cov (top) and robust Prob-SSI
(bottom) using response data from a simulated 3DOF ‘corrupted’ dataset, containing
0.1% artificially introduced, randomly located outliers (in each channel), set to a
specified value, plus some small amount of noise.

the system, traditional SSI-Cov fails to find the first, struggles to accurately identify

the second and only successfully identifies the third natural frequency. This failure

in identification can be clearly observed as the lack of a column of fully stable poles

in the upper frame of Figure 5.7 and in the plot of the normalised mode shapes, see

Figure 5.8.

However, it is expected that there will be several instances where, despite the

presence of outliers, SSI will continue to perform as expected. Similarly, there

will also be cases where robust Prob-SSI will also fail to identify the system. The

replacement of SSI with robust Prob-SSI is not a straightforward one. In Section

5.3.3, it is illustrated how increasing the percentage of outliers inevitably leads to a

deterioration in performance for both methods. Clearly, although robust Prob-SSI

offers some protection to corrupted responses, in the presence of many outliers it

will be impossible to identify the dynamics.

As with the benchmark case, the variance of the estimates from both tests was also
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Figure 5.8: Mode shapes obtained using SSI-Cov and robust Prob-SSI, compared
against the true mode shape, when observed at the correct model order.

explored, assuming the correct number of DOF. The variance in the resulting natural

frequency estimates are shown in Figure 5.9. Traditionally, if a pole has no conjugate,

then it can be ignored when calculating the corresponding frequencies and so often

only three plots are required. However, here non conjugate poles are retained as

they represent an instance of poor identification performance on a given dataset. As

clearly shown, the variance in the frequency estimates from SSI-Cov is significantly

greater than that of robust Prob-SSI when analysing data containing outliers.

Figure 5.9: A demonstration of the variance seen in the natural frequency estimates
when using SSI-Cov and robust Prob-SSI to analyse response data from 100 datasets
of the same 3DOF dynamic system with varying input forcing but with artificially
induced random outliers (0.1% per channel).(This is a standard boxplot, whereby
the red line — indicates the mean, the limits of the blue box □ indicate the upper
and lower quartiles and the red dots • represent datapoints further than 1.5x the
inter quartile range away from the mean.)
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5.3.3 Corrupted: Alternative studies

Employing the same underlying linear dynamic system used in the previous section,

a range of alternative outlier cases are also explored. This extended selection of

case studies is designed to assess the effects of varying outlier type on identification

performance for SSI-Cov and verify the applicability of robust Prob-SSI to other

challenging cases.

Periodic block dropout

In this example, the outliers are designed to mimic periodic dropout of a single sensor

channel to an ‘electrical noise floor’, repeating in regular blocks with a duration of

0.01 seconds. The response data with outliers is shown in Figure 5.10. The resulting

stabilisation diagrams for SSI-Cov and robust Prob-SSI are shown in Figure 5.11.

80 

60 

40 

(l.) 20 

f
.-<:::: 

0 

< 

-20 

-40

-60

0 1 2 3 4 
Time (s) 

5 

--- Output Response 1 

--- Output Response 2 

--- Output Response 3 

6 

x Outliers 

7 8 

Figure 5.10: Response data from a simulated 3DOF ‘corrupted’ dataset, containing
0.1% of artificially introduced, periodic blocks of outliers in one channel. The value
of the outliers was set to a specified value, plus some small amount of noise.
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Figure 5.11: Stabilisation diagrams recovered using SSI-Cov (top) and robust Prob-
SSI (bottom) for the periodic block dropout case.

The performance of robust Prob-SSI in this case appears to demonstrate a significant

improvement over the SSI-Cov result, with greater stability in the identified poles

and better identification of the natural frequencies.

Clipping

In this example, data are introduced designed to mimic the clipping of all sensor

channels to 80% of the maximum amplitude of the individual signals. Although

not strictly outliers, clipping represents an alternative generating mechanism that

produces observation not consistent with the physics. The output response and these

adjusted observations are shown in Figure 5.12, whilst the stabilisation diagrams for

SSI-Cov and robust Prob-SSI are shown in Figure 5.13.

Although demonstrating slightly less stability in the identified modes, particularly

at the first natural frequency, robust Prob-SSI can be seen to correctly identify the

location of first natural frequency. In comparison, the traditional SSI-Cov algorithm

completely misidentifies the first natural frequency, displaying significant stability of

the poles but at the wrong frequency location.
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Figure 5.12: Response data from a simulated 3DOF ‘corrupted’ dataset, where all
channels were clipped to 80% of the maximum value of each channel.

Figure 5.13: Stabilisation diagrams recovered using (a) SSI-Cov and (b) robust
Prob-SSI using response data from a simulated 3DOF ‘corrupted’ dataset, where all
channels are clipped to 80% of the maximum value of each channel.
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Block dropout to zero

The outliers in this example are designed to mimic the block dropout of a single

sensor channel to zero. The dropout starts at 3 seconds and has a duration of 1

second. The corrupted responses are shown in Figure 5.14, whilst the stabilisation

diagrams for SSI-Cov and robust Prob-SSI are shown in Figure 5.15.

Figure 5.14: Response data from a simulated 3DOF ‘corrupted’ dataset, where values
in a single channel were set to zero amplitude for a 1000 point block in the 8192
point long data series.

In this example, SSI-Cov completely misidentifies the first two natural frequencies,

displaying estimates with good stability but at values much higher than the true

values. In contrast, robust Prob-SSI displays much better identification performance,

with similar stability but with estimated frequencies much closer to the truth.
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Figure 5.15: Stabilisation diagrams recovered using (a) SSI-Cov and (b) robust
Prob-SSI using response data from a simulated 3DOF ‘corrupted’ dataset, where
values in a single channel were set to zero amplitude for a 1000 point block in the
8192 point long data series.

Percentage outlier study

In this study, the effect of changing the percentage of outliers on identification

performance is also explored. Using the same outlier scenario from Section 5.3.2, the

response data were subjected to an increase of 0.5% random outliers in each channel.

The resulting stabilisation diagrams for SSI-Cov and robust Prob-SSI are shown in

Figure 5.16.

As can be seen from Figure 5.16, SSI-Cov completely fails to identify the first two

natural frequencies of the system, displaying no stable poles around the natural

frequencies. In comparison, robust SSI-Cov still manages to correctly identify the

first two natural frequencies, producing clear regions of stable poles. The identified

poles are not as ‘stable’ when compared to the 0.1% outlier case shown in Figure

5.7, however this is to be expected.
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Figure 5.16: Stabilisation diagrams recovered using (a) SSI-Cov and (b) robust
Prob-SSI using response data from a simulated 3DOF ‘corrupted’ dataset, containing
0.5% artificially introduced, randomly located outliers (in each channel), set to a
specified value, plus some small amount of noise.

5.3.4 Case study: Z24 bridge

This final study is used to investigate and evaluate the performance of robust Prob-SSI

when confronted with a real world example; a subset of the ever dependable Z24 bridge

dataset. The Z24 is a (now demolished) post-tensioned concrete two-cell box-girder

bridge once located between Bern and Zurich, Switzerland. For more information

on the Z24 bridge, access to the dataset and references to the original work, the

reader is directed towards the following resources (bwk.kuleuven.be/bwm/z24/z24)

[40, 195]. Data collected from the Z24 bridge is often employed for new SHM

tasks concerned with temporal changes to the modal properties, induced by damage

and/or temperature. Its frequent application across structural dynamic research for

benchmarking new system identification approaches to large scale structures, make

it a sensible choice for this study.

It is unknown if the Z24 data features any outlying observations or signal corruption.

However, multiple output acceleration signals, across multiple tests in the initial

stages of testing, appear to demonstrate clipping (see Figure 5.17). It is undetermined
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in previous literature if this clipping affects the identification and fundamentally this

will remain unknown. However, this interesting feature of the Z24 data makes it

highly suitable for our investigation into robust Prob-SSI as a robust alternative to

SSI given possible a-typical observations.

Figure 5.17: A sample of output time series acceleration measurements (the first 8192
points) taken from the Z24 bridge dataset 10G10 (corresponding to data recorded on
‘17-Jan-1998’ at ‘10:00:00’), that appear to demonstrate over-ranging of the sensors
and therefore clipping of the measured signals.

A subset of the Z24 dataset, specifically data folder 07E01 containing acceleration

measurements observed on the ‘06-Dec-1997’ at ‘10:00:00’, prior to the induced

damage, was initially selected at random for processing. Only the initial segment,

the first 8192 points, was used in the analysis. The resulting stabilisation diagrams

generated using both SSI methods are shown in Figure 5.18. The frequency range is

limited to show the first 4 natural frequencies, as identified in the original works, as

these are often the main frequencies used when analysing this dataset.

The first two identified modes are easily observable in both diagrams, given the

presence of highly stable poles. The same can also be said of the third and fourth

modes, with robust Prob-SSI demonstrating better stability when compared to SSI-

Cov over increasing model order. Across all the identified modes, one could argue

that robust Prob-SSI identifies stable poles at all of these modes at lower model

orders than SSI-Cov and thus, would provide more confidence to the practitioner.

There is some speculation in the literature and wider SHM community regarding

the existence of a mode at ∼ 7 Hz. Interestingly, the robust approach appears to

largely ignore the presence of this mode suggesting it may be the result of noise, aptly

accounted for in this case by the Student’s t-noise model. It is unclear, solely from
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Figure 5.18: Stabilisation diagrams generated using results from SSI-Cov (top) and
robust Prob-SSI (bottom) after application to a single subset of the Z24 bridge
dataset (07E01); corresponding to data recorded on ‘06-Dec-1997’ at ‘01:00:00’

the results based on these datasets, whether anything further can be said regarding

this potential mode as a result of the robust SSI approach presented here.

This promising initial evidence suggests that robust Prob-SSI exhibits comparatively

better identification performance over SSI-Cov. However, a single dataset alone

is insufficient to make such a claim. To better assess the overall identification

performance to a larger range of cases, SSI-Cov and robust Prob-SSI were applied to

the first segment (first 8192 points) of multiple Z24 datafiles, specifically those dated

21st November 1997 14:00:00 through to 25th April 1998 14:00:00, and the resultant

poles extracted.

Rather than manually selecting stable poles in each stabilisation diagram, a very time

consuming activity, automatic selection of the stable poles was achieved using an

implementation of the clustering algorithm DBSCAN. The application of DBSCAN

(or derivative thereof, OPTICS) to pole selection in stabilisation diagrams is not a

novel one, existing work by Boroschek and Bilbao can be found here [196]. As the

performance of any given clustering technique was not the focus of this study, the

decision to use DBSCAN clustering over another was arbitrary, however as a very
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common mode of clustering and one frequently cited in literature, it may seem the

most sensible. For information on the theory and implementation of DBSCAN, the

reader is directed here [197].

Akin to the approach used by Boroschek and Bilbao, the distance metric in DBSCAN

was chosen to have the following form:

dist(pi, pj) =
|ωi − ωj|

max(ωi, ωj)
+ (1 − MAC(ϕi, ϕj)) (5.19)

where the natural frequencies ωi, ωj and mode shapes ϕi, ϕj correspond to poles pi

and pj respectively, and the MAC is the modal assurance criterion. The reachability

distance was chosen to be 0.005%, with the minimum number of objects set to 25.

Following application of DBSCAN to the Z24 data, centres of the recovered pole

clusters were plotted against the corresponding date and time of collection. Figure

5.19 displays the temporal changes to the natural frequency estimates obtained

using SSI-Cov and robust Prob-SSI. The first noticeable difference between the two

plots in Figure 5.19 is variation in the number of stable poles situated around 7

Hz, corresponding to the supposedly illusive mode. Congruent to the assessment of

the single stabilisation diagram, robust Prob-SSI (bottom) appears to find a lower

number of stable poles at this frequency across the full range of tests, when compared

to SSI-Cov (top). Again, this is likely due to any noise generating this nuisance

mode, being accounted for by the Student’s t noise model of robust Prob-SSI.

Turning attention to the first two modes, much lower variance is observed in the

frequency estimates recovered using robust Prob-SSI across the entire test series

compared to SSI-Cov. This reinforces preliminary conclusions drawn from Figure

5.18 regarding the increased stability of recovered poles using robust Prob-SSI. This

reduction in variance is also apparent, albeit less obviously, in modes three and four,

suggesting robust Prob-SSI is capable of recovering less noisy pole estimates than

SSI-Cov. This has several benefits, not least in providing the experienced practioner

with more confidence when selecting suitable poles from the stabilisation diagram.

This new technique may also prove to be a preferred method of modal parameter

recovery for SHM schemes tasked with accurately monitoring temporal changes

to modal properties and inferring possible damage. Reducing variance in modal

property estimates is of value, in the SHM setting, as it offers a route to reducing

false positives and increasing sensitivity in anomaly detection.
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Figure 5.19: Temporal changes to the natural frequency estimates of the Z24 bridge,
identified using SSI-Cov (top) and robust Prob-SSI (below). DBSCAN clustering
was used to extract the non-spurious, stable poles from each individual dataset. Both
methods were applied to the first segment (first 8192 points) of all datafiles ranging
from 21st November 1997 14:00:00 to 25th April 1998 14:00:00.

5.4 Summary

In this chapter, the probabilistic SSI algorithm established in Chapter 4 has been

extended to a statistically-robust form (robust Prob-SSI), capable of providing a

principled and automatic way of handling atypical observations in multi-output

time-series responses. One of the key research challenges in OMA identified in the

introduction.

This algorithm was constructed by replacing the Gaussian noise model over the data

to that of a Student’s t-distribution. The inclusion of a Student’s t-distributed noise

model principally forms robust CCA [192] which, when considered in context of the

SSI-Cov algorithm, provides a statistically-robust mechanism for performing system

identification.
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To investigate the proposed algorithm, the performance was evaluated against a

range of case studies. The first study benchmarked robust Prob-SSI against the

conventional SSI-Cov algorithm using simulated data for a MDOF linear system.

The modal properties identified from both algorithms displayed highly comparable

results, with similar variance in the estimates from multiple instances of the random

noise. This reinforces the idea that, when presented with data containing no outliers,

the two methodologies should provide highly similar results.

The second study evaluated the ability of both methods to resist misidentifica-

tion when presented with atypical observations in the measured time series. The

algorithms were exposed to a series of ‘corrupted’ datasets containing artificially

introduced outliers; designed to mimic a typical forms of anomalous data observed

in experimental testing. Subsequent analysis showed robust Prob-SSI outperform

conventional SSI in all cases, with the former exhibiting better modal identification

performance and higher confidence (greater stability) in the recovered poles over

multiple model orders.

The final study in this chapter investigated the application of robust Prob-SSI to data

from the Z24 bridge dataset, chosen to better demonstrate identification performance

on data indicative of a real system. Analysis was conducted on a single dataset,

producing stabilisation diagrams for SSI-Cov and robust Prob-SSI. Results from this

analysis showed that robust Prob-SSI was able to locate the natural frequencies and

form stable columns of poles at lower model orders than SSI-Cov.

Analysis was also conducted on multiple datasets, obtained periodically for continued

monitoring of the Z24. The poles from the resulting stabilisation diagrams were

clustered to find the centre of the stable columns of poles, and then plotted in time.

From these results, it was shown that robust Prob-SSI shows less variance in the

recovered natural frequencies when compared to SSI-Cov, affirming the ability of the

robust Prob-SSI to form less noisy estimates of the recovered poles. A reduction in

the variance over modal estimates has significant benefits, not limited to assisting

SHM strategies that rely on accurate modal information for decision-making tasks.

One potential limitation of this algorithm is that the algorithm is iterative in nature

and therefore slower than the traditional SVD-based SSI algorithm. Nevertheless,

this can be improved with alternative computation schemes or code optimisation.
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Crucially, the work introduced in this chapter has highlighted the first of several new

formulations of SSI, made possible through viewing SSI as a problem in probabilistic

inference. In the wider context of this thesis, the next logical model choice would be

a Bayesian formulation, one where uncertainty quantification is possible. Such an

approach is explored in the next chapter.





6
Bayesian Stochastic Subspace Identification

In the last chapter, the reader was introduced to a statistically robust SSI algorithm;

a method shown to maintain better identification performance than traditional SSI

when presented with atypical observations in time-series responses. This algorithm

was the first of many possible extensions to the SSI algorithm, made possible through

the novel probabilistic form of SSI (Prob-SSI) introduced in Chapter 4. Although not

addressing the problem of uncertainty quantification (UQ), it was demonstrated how

this new probabilistic form of SSI allowed for an effective consideration of atypical

observations in or distortion of data — a key challenge in OMA — offering a novel

approach to robust identification. Linking back to UQ, this chapter addresses the

key aim of this thesis: the development of a new Bayesian OMA algorithm, capable

of recovering posterior distributions over modal properties.

One of the benefits to the probabilistic form of SSI introduced in Chapter 4, is in its

ability to admit an arbitrary prior structure; one that enables the natural extension

to a Bayesian formulation. The inclusion of prior distributions over the parameters

of the latent variable CCA model extend the problem into one of Bayesian inference,

where posterior distributions are obtainable. This model is known as Bayesian

101
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CCA [198, 199]. Through the inclusion of Bayesian CCA in the SSI algorithm, this

Chapter will present a new algorithm called Bayesian SSI and demonstrate how

the posterior over the observability matrix can be recovered through two different

inference schemes: Gibbs sampling and Variational Inference (VI). The identification

and UQ performance of Bayesian SSI is then assessed using two case studies. The

first is a benchmark study, using data simulated from a linear multi degree-of-freedom

system, and the second applies the algorithm to measured data from an in-service

structure, specifically the Z24 bridge.

6.1 Bayesian SSI

Following the introduction of probabilistic CCA (PCCA), Wang [198] and Klami and

Kaski [199] presented the natural hierarchical extension to the PCCA model and

introduced Bayesian CCA. Their model incorporated priors over the model parameters

θ = {W,Σ,µ} and introduced a sparsity inducing prior over the columns of the

transformation matrix. This model was later extended for inter-battery factor analysis

to include local and global latent variables in [200] and for a mixture of robust CCA

models in [201]. The sparsity inducing prior is not included in the Bayesian CCA

model described in this paper, nor is it included in later derivations. This alternative

model, coupled with the desire for a generalisation of the prior structure (not present

in the original works [198, 199]), motivated the need to redefine the model of CCA

in this work. The graphical model for the Bayesian CCA problem is shown in Figure

6.1. With a continuation of notation from Chapter 4, the general probabilistic from

Equations (4.1) and (4.3) are recalled for the readers benefit, whilst Equations (6.1)

- (6.4) define the priors placed over the model parameters.
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Figure 6.1: Graphical model for the Bayesian interpretation of CCA

zn ∼ N (0, I)

xn|zn ∼ N (Wzn + µ,Σ)

wi ∼ N
(
µwi

,Σwi

)
(6.1)

W ∼
d∏

i=1

p(wi) (6.2)

µ ∼ N
(
µµ ,Σµ

)
(6.3)

Σ ∼ IW (K0 , ν0) (6.4)

where wi denotes an individual column of W where, following on from earlier notation,

wi = [w
(1)
i ;w

(2)
i ]. The notation p(·) refers to the probability density function in

vector or matrix form dependent on the parameters, and IW (K , ν) corresponds to

an inverse Wishart distribution with scale K and ν degrees of freedom. The precision

Ψ = Σ−1 can also be defined as the Wishart distribution W
(
K−1 , ν

)
. The prior

over W is constructed assuming independent priors over the columns.

Considering the model above, the full joint likelihood can be expressed as

p(x, z,W,Σ,µ) = p(x|z,W,Σ,µ)p(z)p(Σ)p(µ)p(W) (6.5)

Accounting for the independent columns of W, such that p(wi) describes each column,
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Equation (6.5) becomes

p(x, z,W,Σ,µ) = p(x|z,W,Σ,µ)p(z)p(Σ)p(µ)
d∏

i=1

p(wi) (6.6)

Given the commonality between the desired weights in PCCA and the desired weights

in Bayesian CCA, based on their ability to transform data to the relevant subspace,

it is sensible to assume the posterior distributions over those weights also corresponds

to posterior distributions over the observability and controllability matrices in the

context of SSI.

W(1) = OR (6.7)

W(2) = CTR (6.8)

Unlike the previous definition in Equations (5.16) - (5.17), the observability and

controllability matrices are now distributional quantities that describe posterior

distributions. The next section describes how these posterior distributions can be

estimated. Once obtained, this posterior uncertainty can then be propagated through

a variety of techniques to obtain estimates of the posterior on the modal properties.

6.1.1 Priors

It is useful to consider the meaning behind the priors on µ, Σ and W with a view

to later selecting these in the context of Bayesian SSI. The mean µ refers to the

offset of the lagged versions of each channel. For a stationary signal, the mean of the

output E [y] should be constant as N → ∞. Unlike traditional SSI, which requires

the data to first be zero mean, the proposed Bayesian approach is capable of learning

this mean.

The block covariance of the data, Σ, describes ones prior belief about the measurement

noise on the different columns of the Hankel matrix. One typically expects this to be

small in many engineering settings. Access to this prior also allows the practitioner
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to consider known coloured noise or correlated noise between the sensor channels or,

in the absence of better information, isotropic white noise which matches that seen

in regular (maximum likelihood equivalent) SSI.

Finally, the prior over the columns of the weight matrix describes ones belief about

the correlation between the parameters in the projection matrix W = [W(1);W(2)].

In this case, setting a diagonal covariance structure over the columns of W is

effectively an L2 regularisation on the parameters, i.e. it penalises very large values

and variance in each column of W. This prior would also imply that our initial

belief is that all columns of W have a very similar scale of values. In practice one

could use a variety of options for choosing this prior, including a normal zero mean

prior with identity covariance or an empirical prior based on the observability and

controllability obtained from finite element analysis, models or traditional SSI. The

authors would note that while the prior chosen in this paper coincides with that from

standard (maximum likelihood) SSI, exploring a more informative prior structure

going forward is an interesting avenue of research.

6.1.2 Inference schemes

A key aspect of any Bayesian methodology is the recovery of the posterior distri-

butions over the quantities of interest, in this particular case the modal properties

of a structural system. However, as is commonly the case, these distributions are

not available in closed form given the form of the model presented above. This

intractability of the model arises from inability to compute the integral which defines

the normalising constant of the posterior, i.e. the marginal likelihood. Therefore,

to solve Bayesian inference problems one must turn to approximate or sampling

inference schemes.

Earlier in this thesis, the reader was introduced to two potential solutions to this

problem. The first solution is to approximate the posterior distribution using MCMC

methods to form an empirical representation of the posterior using samples (see

Section 3.3.2). Another solution is to use a variational scheme to approximate the

posterior using a surrogate distribution, optimising the parameters of said distribution

to minimise the KL divergence between the surrogate and the target posterior (see

Section 3.3.5).

Within each of these families, a range of possible approaches exist. For the MCMC

problem, a Gibbs sampling approach (see Section 3.3.4) is adopted given direct access
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to the full conditionals. For the variational scheme, a coordinate-ascent approach

variational Bayes (VB) method is used [173].

Both inference schemes have their own set of advantages and disadvantages. Gibbs

sampling has the very useful property of converging to the true posterior in the

limit of increasing number of samples. However, the computational expense of

sampling techniques can be significant when considering large and complex joint

distributions, making it unsuitable for some tasks. Alternatively, variational methods

only provide an approximation to the posterior but can demonstrate considerably

better computational performance. Hence, both inference approaches are shown in

this paper with the results compared.

Gibbs sampling

Adopting the Gibbs sampling methodology introduced in Section 3.3.4, the parameter

update equations were derived and are provided in Equations (6.9) - (6.12), with

the overall algorithm summarised in Algorithm 3. For the interested reader, the

full derivation of these updates is provided in Appendix A.5, with the omission of

the sparsity inducing prior present in [199] and with the addition of generic mean

and covariance priors. The required Gibbs sampling updates for the parameters of

the model described in Figure 6.1, are given below. The updated parameters below

are written in block formation following previously defined notation. This allows

both sets of parameters to be updated in one step. The superscript ·new refers to the

updated sample of each parameter given the updated distribution parameters, where

·old would refer to the current parameters. To improve clarity, ·old is omitted. The

updated statistical moments are denoted by ·̆, with the prior statistical moments

denoted without.

Σ update

Σnew ∼ IW (K0 + K , ν0 +N) (6.9)

where,

K =
N∑

n=1

(xn − µ−Wzn)(xn − µ−Wzn)T



6.1 Bayesian SSI 107

µ update

µnew ∼ N
(
µ̆µ , Σ̆µ

)
(6.10)

where,

Σ̆µ = (NΣ−1 + Σ−1
µ )−1

and,

µ̆µ = Σ̆µ

(
Σ−1

N∑
n=1

(xn −Wzn) + Σ−1
µ µµ

)

wi update

wnew
i ∼ N

(
µ̆wi

, Σ̆wi

)
(6.11)

where,

Σ̆wi
=

(
N∑

n=1

z2i,nΣ
−1 + Σ−1

wi

)−1

and,

µ̆wi
= Σ̆wi

(Σ−1
N∑

n=1

zi,nx̃n + Σ−1
wi
µwi

)

given,

x̃n = xn − µ−w iz i,n

such that w i corresponds to all columns except the ith column of interest and z i,n

corresponds to all rows of zn except the ith row.

z update

znewn ∼ N
(
µ̆z , Σ̆z

)
(6.12)

where,

Σ̆z = (WTΣ−1W + I)−1

and,

µ̆z = Σ̆zW
TΣ−1xn
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Algorithm 3 Bayesian CCA - Gibbs Sampling (MCMC)

initialise: Σ,µ,W, z using the priors given appropriately chosen hyperparameters

for τ = 1 . . . , T do

1. Sample Σnew using Equation (6.9)

2. Sample µnew using Equation (6.10)

for i = 1 . . . , d do

3. Sample wnew
i using Equation (6.11)

end for

4. Sample znewn using Equation (6.12)

end for

return Samples of Σ,µ,W, z

Following application of Algorithm 3 for a desired number of samples, the resulting

samples of W(1) (i.e. the observability matrix) can be propagated to obtain samples

of the state transition matrix and subsequently propagated further onto the modal

properties (see Section 3.6.4), obtaining posteriors as sampled distributional estimates.

Variational Bayes

Owing to limitations with sampling-based approaches, practitioners often turn to

approximating algorithms that enable significant computational advantages over

sampling methods. In this case Variational Bayes (VB).

An important step in VB is defining the form of the surrogate posterior. Here

the mean-field approximation is chosen (see Equation 3.23). Adopting the mean

field approximation, the surrogate posterior for Bayesian CCA is chosen to take the

following factorised form,

q(z,µ,Ψ,W) =
N∏

n=1

q(zn)
d∏

i=1

q(wi)q(µ)q(Ψ) (6.13)

where,
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q(zn) ∼ N (zn|µz ,Σz) (6.14)

q(Ψ) ∼ W
(
Ψ|K−1 , ν

)
(6.15)

q(wi) ∼ N
(
wi|µwi

,Σwi

)
(6.16)

q(µ) ∼ N
(
µ|µµ ,Σµ

)
(6.17)

given µz,Σz,K
−1, ν,µwi

,Σwi
,µµ,Σµ are the statistical moments of the surrogate

distributions.

Following a VB approach, the update equations for the model parameters were

derived and are given in Equations (6.18)-(6.21). The complete VB algorithm is

summarised in Algorithm 4, whilst the full derivation of these updates is also provided

in Appendix A.6, with the omission of the sparsity inducing prior present in [198]

and with generic mean and covariance priors.

The variational update equations for the parameters of the model described in Figure

6.1, are given below. In all equations, ⟨·⟩ represents the expected value E [·] of that

variable or combination of variables with respect to all the other parameters. Here

q⋆(·) refers to the updated surrogate distribution. The updated statistical moments

are denoted by ·̆, with the prior statistical moments denoted without.

zn update

q⋆(zn) ∼ N
(
µ̆z , Σ̆z

)
(6.18)

where

Σ̆z =
(
⟨WTΨW⟩ + I

)−1

and

µ̆z = Σ̆z⟨W⟩T⟨Ψ⟩(xn − ⟨µ⟩)

wi update

q⋆(wi) ∼ N
(
µ̆wi

, Σ̆wi

)
(6.19)
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where

Σ̆wi
=

(
N∑

n=1

⟨zi,nzi,n⟩⟨Ψ⟩ + Σ−1
wi

)−1

and

µ̆wi
= Σ̆wi

(
⟨Ψ⟩

N∑
n=1

x̃n⟨zTn,i⟩ + Σ−1
wi
µwi

)
given

x̃n = xn − ⟨µ⟩ − ⟨w i⟩⟨z i,n⟩

such that w i corresponds to all columns except the ith column of interest and z i,n

corresponds to all entries of zn except the ith entry.

Ψ update

q⋆(Ψ) ∼ W
(
K̆

−1
, ν̆
)

(6.20)

where1

K̆ = K0 +
N∑

n=1

〈
(xn − µ−Wzn)(xn − µ−Wzn)T

〉
and

ν̆ = ν0 +N

µ update

q⋆(µ) ∼ N
(
µ̆µ , Σ̆µ

)
(6.21)

where

Σ̆µ = (N⟨Ψ⟩ + Σ−1
µ )−1

and

µ̆µ = Σ̆µ

(
⟨Ψ⟩

N∑
n=1

(xn − ⟨W⟩⟨zn⟩) + Σ−1
µ µµ

)

1Note the need to expand this expectation in implementation, including all the necessary terms
using the total law of variance.
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Algorithm 4 Bayesian CCA - Coordinate Ascent Variational Inference (CAVI)

initialise: Variational factors q(z,µ,Ψ,W)

while the ELBO has not converged do

Update local variational parameters:

1. Update moments of q⋆(zn) using Equation (6.18)

Update global variational parameters:

for i = 1, . . . , d do

2. Update moments of q⋆(wi) using Equation (6.19)

end for

3. Update moments of q⋆(Ψ) using Equation (6.20)

4. Update moments of q⋆(µ) using Equation (6.21)

Compute the ELBO for convergence:

5. Compute ELBO(q) = E [ln p(x, z,θ)] + E [ln q(z,θ)]

end while

return Surrogate posterior distributions of Σ,µ,W, z

6.1.3 Overall methodology

Having explored two different forms of inference for the recovery of the posteriors in

Bayesian CCA, it is perhaps useful to summarise the general procedure in the context

of Bayesian SSI. The following summary gives an overview of the steps needed to

conduct Bayesian SSI to a desired dataset.

Given response data, y ∈ Rl×N ′
, with l sensors and data length N ′ = N + 2j − 1:

Step 1. Construct block Hankel matrices of the future, Yf ∈ Rlj×N , and the past,

Yp ∈ Rlj×N , recalling that 2j is the number of block row lags in the Hankel matrix

and l is the number of output channels (the reader is referred back to Section 3.7.4).
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Step 2. Apply Algorithm 1 or Algorithm 2 with the inputs x(1) = Yf and

x(2) = Yp, given appropriately chosen priors and convergence criteria2 to obtain the

posteriors over the model parameters.

Step 3. If Algorithm 1 has been applied, remove a proportion of the initial samples

as burn in and continue to Step 4. If Algorithm 2 has been applied, draw Monte

Carlo samples from the posterior distributions over the columns of the weight matrix

and reconstruct the full weight matrix to produce a sample of the observability, i.e.

W(1).

Step 4. Using the samples of the observability matrix, calculate the state transition

matrix A and output matrix C (see Section 3.6), and the modal properties in the

usual way for state space models (see Section 3.6.4), for each sample. Considering

all the samples, this provides an approximate posterior distribution over each modal

property3.

2The convergence criteria, or desired number of samples, in both algorithms must be selected.
The choice and specification of these criteria constitutes its own research field and is therefore not
explored in depth.

3Note that this is not the only way to approximate the posterior uncertainty over the modal
properties. There are a range of techniques for approximating the uncertainty, often assuming a
Gaussian form.
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6.2 Simulated case study

6.2.1 Benchmarking the proposed algorithm

The performance of the proposed Bayesian SSI algorithm, outlined in Section 6.1.3, is

benchmarked here by application to simulated data obtained using a numerical model

of the four degree-of-freedom shear frame illustrated in Figure 6.2. This structure is

identical to that described by Reynders in [125], although a new simulation is used.

Using a mass-spring-damper model to represent the dynamics of the system, the

mass ma assigned to each floor is 2 kg and the stiffness ka applied to the individual

columns (springs) on each floor is 2500 N/m, where a = 1, 2, 3, 4. The damping

in each column is proportional to the associated stiffness, such that ca = ka/1000.

Horizontal forces are assumed to apply to each floor as the inputs ua(t), whilst the

horizontal acceleration of each floor are the corresponding outputs ya(t).

The equations of motion of the shear frame in continuous time can be defined as the

ordinary differential equation

Mẍ + Cẋ + Kx = f (6.22)

In this example, the forcing f is assumed to be represented by a white noise process

in continuous time acting on each floor, formally the derivative of a Brownian

motion. This definition results in a linear stochastic differential equation which can

be discretised exactly using Van Loan discretisation [202] The forcing white noise

process is chosen with a spectral density of 5 × 10−5 (m s−2)2 Hz−1 whilst some

Gaussian measurement noise is added to each channel output ya(t), sampling from a

zero-mean normal distribution with a standard deviation of 0.05 m s−2. Data are

then simulated using a sampling frequency of 50 Hz with length N = 216.
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Figure 6.2: Four-story shear building model used to simulate responses given a white
noise input on each floor

Based on the model described in Figure 6.2, the matrix coefficients of Equation

(6.22) are,

M =


m1 0 0 0

0 m2 0 0

0 0 m3 0

0 0 0 m4

 , K = 2


k1 + k2 −k2 0 0

−k2 k2 + k3 −k3 0

0 −k3 k3 + k4 −k4
0 0 −k4 k4

 , C = K/1000
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Priors

Before performing inference, attention must first be paid towards establishing sensible

priors for the model. Given the chosen structural model presented in Section 6.2.1,

the following prior structure was chosen

w
(m)
i ∼ N (0 , σwi

I) (6.23)

µ(m) ∼ N (0 , σµI) (6.24)

Σ(m) ∼ IW (K0 , ν0) (6.25)

where the independent columns wi share the same prior definition. Although it has

been shown in the literature that the columns of the observability matrix (the singular

vectors) are not strictly independent [203] a posteriori, independent priors on the

columns does not necessarily restrict the columns of the posterior to be independent.

The remaining hyperparameters, σµ = σwi
= 1, K0 = 1 × 102, ν0 = D + 2, were

chosen to be weakly informative and proper, to provide sufficient flexibility to the

model. Samples from the chosen prior over the weight matrices were then used to

generate samples of the observability matrix and subsequently propagated through

an eigenvalue decomposition to obtain estimates for the posterior distributions over

the modal properties. The prior distributions over the modal properties are presented

in Figure 6.3.

It is useful to briefly discuss the general shape of the priors on the modal parameters.

Despite Gaussian assumptions in the model, specifically on the weight prior, the

propagated uncertainty results in distributions that are a mix of what appear to

be non-Gaussian and even multimodal in nature. The authors believe this is likely

caused by the size of the prior variance coupled with the non-linear transformation

in the eigenvalue decomposition, which is most evident when considering larger

variances.
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Figure 6.3: Prior distributions over the natural frequencies (a), damping ratios (b)
and mode shapes (c), obtained using propagated Monte Carlo samples of the priors
as defined by Equations 6.23 - 6.4.



6.2 Simulated case study 117

Posteriors

Assuming the correct number of modes (four modes – corresponding to a state space

dimension of eight) and 40 time lags in the construction of the Hankel matrix, the

Gibbs sampling implementation of Bayesian SSI (Algorithm 3) was used to recover

posterior distributions over the modal properties of the simulated structure. 5000

samples were drawn, with the first 20% removed as ‘burn in’ to remove transients in

the Markov chain [173]. The posteriors over the modal properties are shown in Figure

6.4. Similar to the Gibbs sampling case, assuming the correct number of modes, data

were analysed using the VI implementation of Bayesian SSI (Algorithm 4). After

the recovery of the closed form posterior over the observability, 4000 samples were

drawn and propagated. The resulting posteriors over the modal properties are also

presented in Figure 6.4.

On interpreting Figure 6.4, one can conclude that the surrogate posteriors over the

modal parameters obtained using VB closely align with the true posteriors obtained

through Gibbs sampling. This closeness is evident from the aligned expected values

and the shape of the posteriors, which correspond well. Furthermore, the posterior

estimates of both schemes converge toward the SSI-Cov result. This convergence

is largely expected as, given the use of weakly informative priors and enough data,

the maximum-a-posteriori (MAP) will be close to the MLE, i.e. SSI-Cov. Some

minor differences can be seen. The first is in the mean estimates of first and second

damping ratios compared to the SSI-Cov result. This misalignment is a consequence

of the priors, which cause slight bias in the posterior, more so than the damping ratio

estimates for the third and fourth modes. The second difference can be seen in the

variance of the third mode shape in Figure 6.4c. A non-Gaussian posterior recovered

from the Gibbs scheme explains this difference. This phenomenon originates from

application of the eigenvalue decomposition to obtain the mode shapes. However, this

difference is more likely a result of an underprediction of the variance using VI. Under

or overprediction of the variance is a common characteristic of VI schemes which can

occur when some conditional distributions are factorised out of the model during its

construction [173]. The omission of these conditionals is a result of the independence

assumptions in the surrogate posterior definition. Possible misalignment of the

variance is one of several trade-offs that needs to be considered when prioritising

the computational efficiency of variational methods over convergence to the true

posterior guaranteed by MCMC sampling.
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Figure 6.4: Identified posterior distributions over the recovered natural frequencies
(a), damping ratios (b) and mode shapes (c), obtained using the Gibbs sampling and
VB implementations of Bayesian SSI to response data simulated from a 4DOF linear
dynamic system (see Figure 6.23).
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6.2.2 Influence of data length on variance

The influence of data length on the variance of the modal posteriors is also investigated.

Using the same system parameters and priors described in the Section 6.2.1, the

data length was varied from 217 − 212 in decreasing powers of two, with the range

selected solely for demonstrative purposes. The results for the natural frequencies

and the damping ratios are displayed in Figures 6.5a and 6.5b, respectively. As is

perhaps expected, the variance of the posterior estimates of both frequency and

damping ratio reduce given increasing amounts of data, meanwhile the means of the

distributions also converge towards the true values from the model. The influence of

data length and perhaps other factors (lags in the Hankel matrix) on the recovered

uncertainty has interesting implications and could be used to reduce the amount

of data collection and storage required in OMA, for a desired level of confidence.

This poses an interesting question on choosing the right amount of data for a given

decision-making task, which will be considered in future work.
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Figure 6.5: Identified posterior distributions over the natural frequencies (a) and
damping ratio (b) estimates for each mode, obtained using Bayesian SSI with varying
data length N. The true values are represented by - -
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6.2.3 Posterior variance vs sample variance

In this section, the posterior variance over the natural frequencies recovered using

Bayesian SSI on a single dataset is compared to the variance from multiple SSI

estimates across the same data. Multiple subsets of the larger dataset in the form

of a sliding window, were analysed with SSI to provide some indication as to the

variance in the data. Using an original dataset of length N = 214, 5000 smaller

datasets were generated using a sliding window, moving one timestep at a time, such

that each smaller dataset were N = 214 − 5000 in length. The number of lags was

chosen to be 40 with all other hyperparameters reflecting those shown in Section

6.2.1. Figure 6.6 shows the Bayesian posterior from Bayesian SSI, and the sample

distribution of the 5000 SSI tests, over the normalised natural frequencies for all four

modes.

0.9975 1.0000 1.0025 1.0050
Normalised Frequency

0

200

400

600

P
ro

b
ab

il
it

y

mode 1

0.996 0.998 1.000
Normalised Frequency

0

500

1000

mode 2

0.9975 1.0000 1.0025
Normalised Frequency

0

200

400

600

mode 3

0.995 1.000
Normalised Frequency

0

200

400

mode 4

SSI (sliding window) Bayesian SSI posterior Truth SSI (full dataset)

Figure 6.6: Plot of the posterior distribution obtained using Bayesian SSI on a
single dataset, presented as a histogram of samples and the SSI result for the same
dataset. Also plotted is the sample distribution of results obtained by applying SSI
to 5000 subsets of the data, obtained by applying a one timestep sliding window.
The resulting distribution is also represented by a histogram of the samples.

The results shown in Figure 6.6 suggest that the variance found through multiple

SSI analyses is broadly similar to that of the Bayesian posterior although not

identical, displaying slightly inflated variances. This is largely expected due to the

fundamentally different assumptions about the uncertainty. Furthermore, the mean

of the posteriors align with the SSI estimates obtained from the full available data.
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6.2.4 Variability study

In this section, the posterior means of the natural frequencies recovered using Bayesian

SSI are compared to estimates recovered using SSI for multiple data generated with

different realisations of the noise to study the variability of each algorithm. Each

dataset was chosen to have length N = 214 and similarly, the number of lags was

chosen to be 40 with all other hyperparameters reflecting those in Section 6.2.1,

with the exception of σ2
wi

= 102. Figure 6.7 shows the posterior means obtained

on 500 datasets using Bayesian SSI, and the equivalent estimates from SSI, for the

normalised natural frequencies at all four modes.
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Figure 6.7: Scatter plot of the posterior means obtained using Bayesian SSI, and the
corresponding SSI estimates, for 500 datasets with different realisations of the noise.
Also plotted are the sample means from both cases.

Inspecting the results in Figure 6.7, it appears that the performance of Bayesian SSI

(under weakly informative priors) is very close to that of classic SSI under sufficient

data, with the mean from multiple realisations of the noise averaging the truth, and

with comparable sample variances in each case. In the case of low data regimes or

lower prior variance, however, one may expect the mean of the estimates to align

closer to the prior, as is the case in Bayesian methods.
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6.3 Case study: Z24 bridge

To demonstrate applicability to real world systems, the proposed Bayesian SSI

algorithm was used to analyse vibration data obtained from the Z24 bridge, first

introduced in Chapter 5. The Z24-Bridge has become a standard and familiar

benchmark when demonstrating vibration-based damage diagnosis methods, new

system identification techniques, and increasingly for UQ tasks in structural dynamics.

This familiarity also makes it a sensible choice for this study. As noted in Chapter

5, more information on the Z24 dataset can be found at the following resources

(bwk.kuleuven.be/bwm/z24) [195, 204].

This purpose of this case study was to evaluate the behaviour of the new Bayesian

SSI algorithm when confronted with measured data. Analysis is only conducted

using the variational approach, since the high computation time of Gibbs sampler

was deemed impractical. Results at two different single model orders are shown,

followed by a stabilisation diagram to assess the convergence of the modal properties

at different model orders.

Data, corresponding to acceleration measurements obtained on the 24th December

1997, were used for processing. This dataset comes from the long-term continuous

monitoring test set, and in this case comprises data from seven accelerometers

corresponding to one side of the Z24 bridge. The first segment of the data (8192

data points at fs = 100 Hz) was formulated into a Hankel matrix with 40 lags

(corresponding to 20 past lags and 20 future lags). The priors of the Bayesian SSI

model were left unchanged from those used in the previous numerical simulation (see

Section 6.2.1) except for the precision hyperparameter K0, which was changed to

the identity providing some additional flexibility to the model.

6.3.1 Single model order

Conducting analysis at model orders of 10 and 30, chosen solely for demonstrative

purposes, the posterior distributions of the modal characteristics were obtained using

the variational implementation of Bayesian SSI. The posteriors over the natural

frequencies, represented by histograms of the samples and overlaid over the sum of

the singular valued spectrum spectra from each channel, are shown in Figures 6.8

and 6.9.
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Figure 6.8: The first singular spectrum of the Z24 data overlaid with the posteriors of
the natural frequencies, represented by histograms of the natural frequency samples
recovered using Bayesian SSI at a model order of 10 is given in (a). Regions of
interest are shown in (b) and (c), with axes limits chosen to highlight the differences
in the mean and variance of the histograms in different regions.

It is evident from both Figure 6.8a and Figure 6.9a that histograms with means

centred around the apparent natural frequencies (peaks in the singular spectrum)

demonstrate significantly lower variance than histograms corresponding to frequencies

likely more spurious in nature. This lower variance can be seen more clearly in the

enhanced Figures 6.8b, 6.8c, 6.9b and 6.9c and is most noticeable around 4 Hz, 5 Hz,

10-11 Hz.

In contrast, larger variances are observed in regions where there is typically less



124 6.3 Case study: Z24 bridge

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Frequency [Hz]

10−12

10−11

10−10

10−9

10−8

10−7

10−6

A
m

p
li
tu

d
e

[-
]

0

10

20

30

40

50

60

P
ro

b
ab

il
it

y
[-

]

Singular Valued Spectra Posterior Samples SSI-Cov

(a)

3.5 4.0 4.5 5.0 5.5 6.0
Frequency [Hz]

10−12

10−11

10−10

10−9

10−8

10−7

10−6

A
m

p
li

tu
d

e
[-

]

10 11 12
Frequency [Hz]

10−12

10−11

10−10

10−9

10−8

10−7

10−6

A
m

p
li

tu
d

e
[-

]

0

10

20

30

40

50

60

P
ro

b
ab

il
it

y
[-

]

0

10

20

30

40

50

60

P
ro

b
ab

il
it

y
[-

]

(b)

3.5 4.0 4.5 5.0 5.5 6.0
Frequency [Hz]

10−12

10−11

10−10

10−9

10−8

10−7

10−6

A
m

p
li

tu
d

e
[-

]

10 11 12
Frequency [Hz]

10−12

10−11

10−10

10−9

10−8

10−7

10−6

A
m

p
li

tu
d

e
[-

]

0

10

20

30

40

50

60

P
ro

b
ab

il
it

y
[-

]

0

10

20

30

40

50

60

P
ro

b
ab

il
it

y
[-

]

(c)

Figure 6.9: The first singular spectrum of the Z24 data overlaid with the posteriors of
the natural frequencies, represented by histograms of the natural frequency samples
recovered by Bayesian SSI at a model order of 30, is given in (a). Regions of interest
are shown in (b) and (c), with axes limits chosen to highlight the differences in the
mean and variance of the histograms in different regions.

evidence of a natural frequency. Focusing specifically on the case where the model

order is 30, larger variances can be seen at 4.5 Hz, 9.75 Hz and 11.75 Hz. This

obvious variability in the variance for each identified frequency suggests that there is

a higher probability or belief in some frequencies to describe the data over others.
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6.3.2 Stabilisation diagram

As the true number of modes is unknown, it is standard practice in OMA to construct

a stabilisation diagram (see Section 3.7.5). Stabilisation diagrams are a tool used

by the practitioner to determine the “physical” poles of a system, helping to decide

the nature of the identified complex eigenvalues i.e. spurious or real in a physical

context. The decision of which is often governed by some heuristic criteria on the

stability or consistency of the modal parameters across a range of model orders.

After conducting Bayesian SSI at multiple model orders, the resulting stabilisation

diagram for the Z24 is shown in Figure 6.10. The samples are plotted with trans-

parency such that darker regions indicate areas with a higher density of samples.

A second stabilisation diagram is also provided in Figure 6.11, using kernel density

estimation (KDE) fits over the samples to visualise the uncertainty. This provides a

plot similar to the histogram representations of the posteriors in Figures 6.8 and 6.9,

but at multiple model orders. The inclusion of uncertainty in stabilisation diagrams

is not an entirely new concept, having already been represented, and proven beneficial

in assisting model order selection [17], although no agreed form has yet been defined.

In this plot, non-conjugate poles have been removed, however no stability metrics

have been defined, purely to observe the raw form of the stabilisation diagram.

Figure 6.10: Stabilisation diagram of the Z24 bridge, constructed using the natural
frequency samples obtained using Bayesian SSI at a range of model orders. Also
shown is the first singular spectrum.
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Figure 6.11: Stabilisation diagram of the Z24 bridge, constructed using the natural
frequency samples obtained using Bayesian SSI at a range of model orders. The
kernel density estimation (KDE) of the samples is shown, where each KDE is fitted
using samples for that model order and order of identified mode.

Considering the distributions of the posteriors in Figure 6.10, one can clearly see that

peaks in the singular spectrum, typically indicative of a natural frequency, coincide

with the posterior means and are consistent across multiple model orders. This

is true for multiple peaks, most distinctly around 4 Hz, 5 Hz and 10-11 Hz. The

variance of the distributions in these areas is also low across a broad range of model

orders, especially when compared to more spurious frequency estimates away from

natural frequencies. Thus indicating a higher level of confidence in the ability of

certain frequencies to describe the dynamics. Another conspicuous observation is the

general increase in variance at higher model orders, particularly in the more spurious

estimates, as moving to higher model orders grant greater flexibility with numerous

ways for the model to explain the data.
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6.4 Summary

In this chapter, it has been demonstrated how the probabilistic SSI algorithm

introduced in Chapter 4 can be transformed from the classical maximum likelihood

approach to one of Bayesian inference through the inclusion of an arbitrary prior

structure; principally forming Bayesian CCA. Specifically, it has been shown how the

inclusion of priors over the parameters of the latent variable model in the context of

SSI enables the posterior over the observability matrix, and by extension the modal

properties, to be obtained.

This new approach was presented with two possible means of performing Bayesian

inference: Markov chain Monte Carlo (MCMC) and variational Bayes (VB). The

two solutions for Bayesian SSI were then benchmarked using simulated data from a

MDOF linear dynamic system. The prior distributions over the modal parameters

were shown to be proper and weakly informative, but with sufficient flexibility to the

model. Then followed the recovered posteriors, which demonstrated good agreement

with each another and convergence of the posterior mean towards the conventional

SSI result. The effects of data length on the recovered posteriors was also explored.

It was shown that, in the case of increasing data length, the posterior mean trends

toward the truth whilst the variance of the posterior decreases. A result largely

expected given the theory of SSI and Bayes’ rule. Finally, the practicality and

applicability of the algorithm was then illustrated using data obtained from an in-

service structure, the Z24 bridge. Recovery of the modal parameters and associated

posterior uncertainty was then shown at two different model orders, with poles likely

referring to physical natural frequencies demonstrating lower variance than that of

spurious estimates. Recovered modal information was then also analysed across

multiple model orders, forming a stabilisation diagram. The results of this diagram

showed that posteriors with means centred around the apparent natural frequencies

display much lower variance across all model orders when compared to more spurious

frequency estimates.

Access to the posterior uncertainty over the modal parameters via this algorithm

has significant benefits. The availability of this uncertainty information means it can

be propagated further to assist other important research challenges in OMA, such as

model order selection, automatic OMA and sensor placement. In SHM frameworks,

one could foresee the inclusion of modal posterior uncertainties as a valuable addition
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to damage assessment and decision-making; providing new information one could

envisage altering decision boundaries and classification models.

There are some potential limitations to this approach. Despite a successful implemen-

tation using variational Bayes (VB), there are many more computations required than

the traditional SVD-based SSI, lending itself to higher computational requirements.

This is important consideration for practitioners and could effect its adoption into

the wider field of OMA. Nevertheless, there are techniques one can use to address

this problem, with one possible solution introduced in the following Chapter.



7
Efficient Bayesian Stochastic Subspace

Identification

Despite their many advantages, there is often a reluctance to adopt Bayesian method-

ologies1, with one factor being their higher computational requirements particularly

for high dimensional data. In the case of the Bayesian SSI algorithm introduced

in Chapter 6, this problem is even more relevant given the comparatively higher

speed of the singular value decomposition (SVD) in the classic SSI algorithm (in

practice) when compared to that of Gibbs sampling or variational inference (VI).

Computational efficiency is therefore important when considering the application of

Bayesian SSI as a suitable alternative to traditional techniques and as a competitive

choice for uncertainty quantification. This Chapter presents one possible solution

to this problem — a batch stochastic variational inference [28] (SVI) form of CCA.

The derivations and preliminary results shown here present results from the confer-

ence paper entitled “On improving the efficiency of Bayesian stochastic subspace

identification” [206] written by the author.

1The author recommends reading the April fools blog-turned-article: ‘Objections to Bayesian
Statistics’ by Andrew Gelman [205]

129
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7.1 Introduction

A recurring problem in machine learning and optimisation tasks is that large amounts

of data are necessary for good generalisation of models, but large datasets are more

computationally expensive, in memory or in number of mathematical operations

[207]. In gradient-based optimisation methods for example, such as gradient descent

(GD), the entire dataset must evaluated in each step before the parameters of a

model are updated. For very large datasets, the associated computation time of such

processes can make certain methods unfeasible for their intended application.

A very popular approach to addressing these computational challenges is to process

data in batches. Batch or mini-batch computation works by partitioning a larger

dataset into a series of smaller batches, comprised of uniformly drawn samples.

Parameters are then updated after processing each individual batch, rather than

after seeing all the data. Such techniques rely on the assumption that traditional

methods can be considered an expectation. Therefore, this expectation can be

approximately estimated using a smaller set of samples in a stochastic way [207].

These techniques are very popular in deep learning applications. The mechanism of

mini-batch processing can be visualised in a convenient way when thinking about

GD.

There are three types of GD: (1) batch GD; (2) stochastic GD; and (3) mini-batch

GD. In batch GD, there is only a single batch, which comprises of all the data. This

is equivalent to the traditional GD algorithm in that all the data is analysed before

an update can be made. An example of the convergence of batch GD is shown in

Figure 7.1a. In contrast, a single batch in stochastic GD consists of just a single

datapoint. An example convergence path for stochastic GD is shown in Figure 7.1b.

Stochastic GD is much quicker than batch GD, but provides a rougher estimate of

the gradient.

In mini-batch GD, a single batch contains multiple (uniformly drawn) samples of the

data, which are then used to update the parameters. An example convergence path

for mini-batch GD is shown in Figure 7.1c. Mini-batch GD is less direct in achieving

the desired optimisation than batch GD, but retains the computational advantages

of a more stochastic approach.
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(a) Batch gradient descent (b) Stochastic gradient descent

(c) Mini-batch gradient descent

Figure 7.1: Example convergence paths for different batch forms of gradient descent.

In the context of Bayesian SSI and co-ordinate ascent variational inference (CAVI),

a very similar mini-batch processing methodology can be applied to reduce the

computational limitations of Bayesian methodologies. Before formally introducing

this method, it is useful to briefly recall aspects of variational Bayes (VB) from

Section 3.3.5 and the VB approach to Bayesian SSI introduced in Chapter 6, with a

continuation of the notation into this chapter.

7.2 Recap: Bayesian SSI

Recall that the task of VB is to approximate intractable posterior distributions with

surrogate posterior distribution. This is achieved by minimising the Kullback-Leibler

(KL) divergence from the surrogate to the true posterior distribution: Maximising

the evidence lower bound (ELBO). The ELBO (L) is defined as the sum of the

expected log of the joint and the entropy of the variational distribution,

L(ϕ, λ) =
N∑

n=1

Eq(zn,θ) [log p(xn, zn,θ) − log qϕ,λ(zn,θ)] (7.1)

where ϕ are known as the local variational parameters (parameters that describe the
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distribution over z), λ are global variational parameters (parameters that describe

the distributions over θ) and N is the number of observations.

Using the mean-field approximation, in which each latent variable is independent and

governed by their own set of parameters, the surrogate posteriors take the following

factorised form2, first introduced in Equation 6.13:

q(z,µ,Ψ,W) =
N∏

n=1

q(zn)
d∏

i=1

q(wi)q(µ)q(Ψ)

with the following chosen surrogate posteriors

q(zn) = N
(
zn|µ̆zn , Σ̆zn

)
(7.2)

q(Ψ) = W
(
Ψ|K̆ , ν̆

)
(7.3)

q(wi) = N
(
wi|µ̆wi

, Σ̆wi

)
(7.4)

q(µ) = N
(
µ|µ̆µ , Σ̆µ

)
(7.5)

where ϕn = {µ̆zn , Σ̆zn} are the local variational parameters and λ = {µ̆wi
, Σ̆wi

, µ̆µ,

Σ̆µ, K̆
−1
, ν̆} are the global variational parameters.

The mean field approximation allows the local and global parameters of the surrogate

posteriors to be determined which, for VB, is achieved using coordinate ascent on

the gradient of the ELBO. The VB algorithm first optimises the local parameters

given all the datapoints, and then re-estimates the global parameters, iterating until

convergence of the ELBO.

2Note the equation recalled here is written in terms of precision, Ψ
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7.3 Stochastic variational inference

One challenge with traditional VI and VB methods is that the optimisation requires

the ELBO be computed after considering the entire dataset, which can be computa-

tionally expensive for large data. Consider the problem of Bayesian CCA for data

with N observations and recall the form of the ELBO as:

L(ϕ, λ) = Eq(z,θ) [log p(x, z,θ) − log q(z,θ)] (7.6)

It is clear that, to compute the ELBO, the expectation term must be taken over all

the data, which becomes prohibitive as N grows sufficiently large. One possible way

to address this problem is to use a method known as Stochastic Variational Inference

(SVI) [28]. SVI uses stochastic approximation techniques to replace the full-data

ELBO optimisation with a stochastic approximation. Instead of computing the

expectation over all data at once, SVI uniformly subsamples the data and computes

the expectation, making it much more computationally feasible. The computation of

the ELBO now becomes:

L(ϕ, λ) =
1

N

N∑
n=1

Eq(zn,θ) [log p(xn, zn,θ) − log q(zn,θ)] (7.7)

In this case, the batch provides a noisy estimate for the ELBO, which allows

the optimisation of the variational parameters to be performed efficiently through

stochastic gradient ascent.

To perform the optimisation, SVI uses stochastic gradient ascent to form noisy

estimates of the natural gradients of the ELBO. The term ‘natural’ here refers to an

alternative canonical form of the exponential family of distributions that can be used

to simplify computation. An introduction to the natural representation, including

natural parameters η, and sufficient statistics, can be found in e.g. [173]. SVI first

proceeds by finding the local variational parameters ϕ for a single datapoint. A set

of intermediate global parameters λ̂ are then computed from the natural gradient

of the ELBO as though that datapoint were repeated N times. These intermediate

parameters are then used to update the current estimate of the global parameters

λ(t−1) according to,
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λ(t) = (1 − ρt)λ
(t−1) + ρtλ̂ (7.8)

where ρ is a decreasing step size [28]. It can be seen that this approach is equivalent

to a stochastic optimisation scheme for λ. These steps are then repeated, sampling

the dataset multiple times until the desired convergence.

Hoffman [28] also showed that SVI can be extended to a ‘mini-batch’ algorithm,

in a similar way to stochastic GD, to improve the algorithm’s stability and reduce

the variance in the estimates of λ̂. In the mini-batch case, batches of S uniformly

random points are subsampled from the dataset and considered in each step. The

local variational parameters are once again computed for each of the data points in

the batch, and the intermediate global parameters λ̂s are computed in the same way.

However, before updating the global parameters, the intermediate global estimates

are averaged over the batch, such that

λ(t) = (1 − ρt)λ
(t−1) +

ρt
S

S∑
s=1

λ̂s (7.9)

Using this type of approach has significant benefits, such as amortising any compu-

tational expense associated with updating the global parameters using all the data

at once (as is true in the case of Bayesian SSI, incurring this cost less frequently)

and helping the algorithm find a better variational posterior.

While SVI offers substantial advantages, there are some limitations that need to be

considered. In particular, the reliance on noisy updates can sometimes lead to slower

convergence compared to traditional VI methods. Particular care needs to be taken

when tuning the step size to ensure stability and efficient convergence.
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7.4 Stochastic variational inference for Bayesian

SSI

Using the theory of mini-batch SVI, the following natural parameter updates were

derived from the equations in Chapter 6 for the specific task of performing Bayesian

CCA for SSI. The updates for the local and global variational parameters are given

below and used in conjunction with Equation (7.9) and the methodology in [28] to

find the moments of the surrogate distributions for W, Ψ, µ and z.

Local variational parameters

Update z

ηz =

[
⟨W⟩T⟨Ψ⟩(xn − ⟨µ⟩)

−1
2
Σ̆

−1

z

]
(7.10)

where Σ̆
−1

z = ⟨WTΨW⟩ + I

Global variational parameters

Update Ψ

ηΨ =

[
−1

2
K̆

−1

ν0+N−D−1
2

]
(7.11)

where K̆
−1

= K−1
0 +N

〈
(xn − µ−Wzn)(xn − µ−Wzn)T

〉

Update µ

ηz =

[
N⟨Ψ⟩(xn − ⟨W⟩⟨zn⟩) + Σ−1

µ µµ

−1
2
Σ̆

−1

µ

]
(7.12)

where Σ̆
−1

µ = N⟨Ψ⟩ + Σ−1
µ
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Update wi

ηwi
=

[
N⟨zn⟩⟨Ψ⟩(xn − ⟨µ⟩)

−1
2
Σ̆

−1

wi

]
(7.13)

where Σ̆
−1

wi
= N⟨zi,nzi,n⟩⟨Ψ⟩ + Σ−1

wi
and x̃n = xn − ⟨µ⟩ − ⟨w i⟩⟨z i,n⟩ such that w i

corresponds to all columns except the ith column of interest and z i,n corresponds to

all rows of zn except the ith row.

7.5 Results and discussion

To compare the performance of the VI and SVI inference schemes for Bayesian SSI,

response data from a generic three-degree of freedom linear dynamic system, described

by the modal properties ω = {10.54, 16.35, 24.34} and ζ = {0.0051, 0.0076, 0.0033},

were generated given a simple white noise excitation. The system was simulated at a

sample rate of 1000 Hz, generating 16 384 datapoints. SSI-Cov, Bayesian SSI (VI)

and Bayesian SSI (mini-batch SVI) were then applied assuming a larger than true

model order of 20 (10 unique modes) and a lag size of 40. A simulated system was

used to allow comparison to a known ground truth.

The following weakly informative, proper priors were chosen, wi ∼ N (0 , I), µ ∼
N (0 , I× 10−3), Ψ ∼ W (I× 101 , D + 1), providing the model with sufficient flexi-

bility. The priors on the mean and variance were lightly constrained given assumed

prior knowledge of a zero mean and low measurement noise. Histograms of the prior

modal properties, using samples drawn and propagated from the prior observability

matrix, are presented in Figure 7.2.

Given the implementations of both algorithms have yet to be optimised for a fair

wall-time comparison, the required number of necessary repeats (i.e. the number of

times the entire dataset was analysed) to reach convergence of the evidence lower-

bound (ELBO) was instead used as an initial indicator of performance. For the batch

SVI analysis, a batch size of S = 1024 was chosen, equivalent to 16 batches, with

the common step size function ρ = s−k where s is the current batch number and k is

the forgetting rate, chosen as k = 0.95. Both methods were then applied, with VI

converging after 5 iterations (5 full sweeps of the data) and batch SVI converging

after 48 batches, equivalent to 3 full sweeps of the data.
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Figure 7.2: Approximate prior distributions over the modal properties as histograms,
propagated from samples of the prior distribution over the observability matrix. (top
to bottom: natural frequency, damping ratio, normalised mode shape)

As can be seen from Figure 7.3, the approximate posteriors of both algorithms are

in relatively good agreement with one another, and with the results from SSI-Cov.

This is expected as the posterior mean should converge to the maximum-a-posteriori

estimate. Furthermore, the posteriors from batch SVI demonstrate lower overall

variance, despite two fewer full sweeps of the data. This is believed to be a result of

the stochastic nature of batch SVI, which is often hypothesised to reduce possible

stagnation at saddle points.
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Figure 7.3: Posterior distributions over the modal properties as histograms, made
up of samples drawn from the closed form surrogate posterior over the observability
matrix found using CAVI and mini-batch SVI. These samples are then propagated
onto the modal properties. (top to bottom: natural frequency, damping ratio,
normalised mode shape)

7.6 Summary

Given the higher computational requirements associated with Bayesian methods,

a problem also true of the Bayesian SSI algorithm introduced in Chapter 6, this

chapter introduced an alternative implementation of the Bayesian SSI algorithm,

using stochastic approximation techniques, as one possible solution to this challenge.

In this new algorithm, the classic variational inference (VI) approach to Bayesian CCA

is replaced with that of mini-batch stochastic variational inference (SVI), derived in

this Chapter for the CCA problem for the first time. This SVI scheme benefits from

the properties of stochastic optimisation, reducing the number operations on the full

dataset before reaching convergence.

To assess the identification performance of the VI and mini-batch SVI implemen-

tations of Bayesian SSI, analysis was performed on data simulated from a simple

MDOF linear system. The results of this test showed that mini-batch SVI was able

to successfully reach convergence to a reasonable posterior, very comparable to that

of VI, in fewer operations on the full dataset (3 repeats or epochs) than traditional
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VI (5 epochs). Although this demonstrative mathematical improvement to computa-

tional performance is promising, in practice the compute time or “wall-time” of both

algorithms in their current research implementation remained very similar. Neverthe-

less, mathematically speaking, the stochastic formulation is known to decrease the

computational expense and it is believed with further code optimisation and efficient

matrix operations, the SVI implementation can be greatly improved to achieve a

much lower compute time.

As well as addressing the implementation, there are some other important factors

to consider in completing this body of work. These include studying the effects of

the hyperparameters, i.e. the batch size and forgetting rate, on the performance of

the algorithm, the effects of too short a batch size on the underlying assumptions of

SSI, and alternative prior elicitation in an effort to significantly reduce the time to

convergence.





8
Conclusions

The field of operational modal analysis (OMA) continues to mature and develop. Its

growth can be attributed to an increasing desire for access to modal information

of operational structures in hard-to-replicate environments. Modal properties are

frequently used as key features in safety-critical or cost-sensitive decision-making

tasks; this is true of adjacent fields like structural health monitoring (SHM) and

digital twins; thus making accurate modal information an important commodity.

Consequently, the ability to confidently and reliably recover modal information is of

critical value.

Despite frequent use across industry and academia, existing approaches to OMA are

not without their limitations and challenges. In the introduction to this thesis, the

reader was introduced to a range of key research challenges present in the field of

OMA. One may recall these as:
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• Model order selection

• Manual identification

• Non-linearity

• Non-physical solutions

• Close modes

• Sensor placement

• Outliers and robustness

• Uncertainty and noise.

Of all the above challenges, the quantification of uncertainty was identified as being

of particular interest. It is widely accepted that measured data contain uncertainties

that can obscure the underlying signal one intends to measure. The reliance of

OMA on sequences of observed data, known to be inherently uncertain, therefore

implies any identified models using said data must also be uncertain. The effects

of uncertainty on the identification process have been shown to result in variations

in the recovered modal properties. However, uncertainty is seldom considered nor

quantified. This possible oversight is concerning. Variations in modal information

that arise from uncertainty or misidentification can pose a significant risk i.e. the

misidentification of damage in SHM. Therefore, access to a measure of the uncertainty

can provide a practitioner with additional useful information regarding the identified

parameters, enabling more informed and confident decision-making. OMA algorithms

capable of providing this information are, therefore, highly sought; hence the aim of

this work.

The current thesis aimed to develop new probabilistic OMA algorithms that ex-

pand our current understanding and capabilities, expanding the increasing list of

uncertainty quantification methods in OMA. The present author also prefaced that

perhaps, by thinking probabilistically, it may be possible to address the problem

of uncertainty whilst also providing a necessary framework to tackle some of the

remaining research challenges.
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8.1 Summary

This section summarises the Chapters of this thesis and highlights the major contri-

butions of this work.

• In Chapter 2 the reader was provided with some preliminary context to help

frame the problem of OMA. A range of methodologies were briefly introduced,

with emphasis on the stochastic subspace identification (SSI) algorithm. This

was followed by a review and summary of relevant literature, discussing the

current approaches to uncertainty quantification in OMA, and Bayesian ap-

proaches to uncertainty quantification in OMA. This chapter concluded by

presenting the lack of a Bayesian approach to SSI in the literature, with the

view to address this problem in this thesis.

• Following a comprehensive review of the literature, Chapter 3 introduced

relevant theory for mathematical concepts and techniques referenced throughout

this thesis. This included: the theory of modal analysis and OMA, some brief

probability theory, an introduction to Bayes’ rule, parameter estimation and

inference, and the theory of SSI.

• Chapter 4 introduced a novel probabilistic formulation of the SSI-Cov algorithm.

It was shown that canonical correlation analysis (CCA) acts as the core

identification mechanism at the heart of the canonical-variate weighted form

of the SSI-Cov algorithm. By replacing this mechanism with the probabilistic

model of CCA, the SSI-Cov algorithm was principally reformulated into a

probabilistic one. The maximum likelihood estimates of this alternate form

were demonstrated to mathematically match that of the traditional SVD-based

algorithm. Although the results of the algorithm remain unchanged, the ability

to consider SSI probabilistically presented a unique opportunity to consider

hierarchical extensions that may address other challenges in OMA.

• Using the probabilistic form of SSI, Chapter 5 introduced a statistically robust

form of the SSI algorithm (robust Prob-SSI), by considering the data being

modelled with Student’s t-distributed noise model, known to be statistically

robust to outliers. The inclusion of this noise model formally defined the existing

problem of robust CCA, which when considered in the context of SSI, provides

a statistically robust identification mechanism needed for performing robust
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OMA. This new robust algorithm was first benchmarked against traditional

SSI using data from a simulated study, demonstrating similar performance

over a number of repeated tests. The robustness of this algorithm was then

demonstrated on a series of case studies using data simulated with varying types

of artificially-induced outliers. In all cases, robust Prob-SSI demonstrated an

improvement in identification performance over SSI-Cov, with stable columns

of poles in the stabilisation diagrams. The proposed algorithm was then tested

using data obtained from an in-service structure; the Z24 bridge. Results from

this test reflected that of the simulated case, with robust Prob-SSI displaying

more stable identification than SSI-Cov in a single stabilisation diagram and

over a range of datasets.

• In Chapter 6, the probabilistic SSI model introduced in Chapter 4 was ex-

tended to one of Bayesian inference through the inclusion of an arbitrary prior

structure; principally changing the identification mechanism from CCA to that

of Bayesian CCA. It was shown how the inclusion of priors over the parameters

of the latent variable model in the context of SSI enables the posterior over the

observability matrix, and by extension the modal properties, to be obtained.

This new approach was presented with two methods of performing the inference:

Markov chain Monte Carlo (MCMC) and variational inference (VI). Both forms

of Bayesian SSI were benchmarked using simulated data from a MDOF linear

dynamic system and displayed comparable identification performance, whilst

the posterior mean converged to the SSI result. It was shown how the uncer-

tainty quantified over the natural frequencies, represented as histograms, have

lower variance near the natural frequencies and larger variance at more spurious

estimates. Similar variance estimates were also obtained following analysis

of the Z24 bridge dataset, with columns of stable poles in the stabilisation

diagram displaying much lower variance across multiple model orders when

compared to more spurious estimates.

• Acknowledging the computational limitations of the proposed Bayesian method-

ology, Chapter 7 introduced an efficient form of Bayesian SSI using stochastic

approximation; employing the use of mini-batch stochastic variational inference

(SVI). The SVI scheme benefits from the properties of stochastic optimisation

methods, reducing the number of operations on the full dataset before achieving

convergence. The performance of the proposed algorithm was assessed and

compared to that of the VI form of Bayesian SSI using data simulated from a
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MDOF linear system. Results showed that mini-batch SVI was able to suc-

cessfully achieve convergence to a reasonable posterior in fewer mathematical

operations on the entire dataset. Despite a mathematical improvement, in

practice the “wall-time” of both implementations remained similar. However,

it was noted that with further code optimisation, the SVI implementation can

be improved to achieve a lower compute time.

8.2 Limitations, challenges and future research

Several limitations, challenges and opportunities for research have been identified

from the work and methodologies introduced in this thesis. These are identified

herein and discussed openly in the interest of transparency and in the context of

future research.

Enhanced modal identification

The ability to formulate SSI as a probabilistic model is invaluable. This new

formulation permits hierarchical extensions that have the potential to enhance the

identification capabilities of the SSI algorithm; the reader was introduced to two of

these extensions in Chapters 5 and 6. Beyond these two approaches, one can perhaps

envisage a collection of new SSI algorithms, each constructed using a hierarchical

model designed to achieve a specific task. One fitting example, and perhaps the next

logical algorithm in progression, would be an SSI algorithm that combines the work

of Chapters 5 and 6. The resulting probabilistic graphical model for this algorithm

is shown in Figure 8.1.

The author hypothesises that an SSI algorithm constructed using such a model would

be capable of jointly providing robust modal identification and Bayesian uncertainty

quantification over the modal parameters. Another possible avenue for future work,

taking inspiration from the work of population-based SHM [9], is the extension of

Bayesian SSI to perform OMA on multiple homogenous structures simultaneously.

Such an approach could provide a population-based approach to OMA, allowing useful

information to be transferred between structures during identification. Evidently,

there is sufficient scope to explore different hierarchical extensions and their effects

on the identification mechanism, to solve other research challenges.
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Figure 8.1: A probabilistic graphical model for robust Bayesian CCA.

Priors

One limitation identified of the Bayesian methodology introduced in Chapter 6 arises

directly as a result of its dependence on the theory of SSI. When determining the

modal properties from data, the classic SVD-based SSI algorithm can result in modal

estimates that are not physically meaningful given the context, i.e. negative damping

ratios consistent with non-physical attributes to a supposedly stable dynamic system.

Mathematically, the construction of the original SSI algorithm does not enforce any

restriction that damping ratios be positive. Considering the Bayesian form of SSI

is principally constructed using the theory of SSI, Bayesian SSI (under the current

choice of priors) also suffers from this same limitation. Consequently, posterior

densities over the damping ratios can include negative estimates; this is suboptimal.

Nevertheless, one major advantage of a Bayesian methodology is in the ability to

choose and appropriately specify the priors to reflect ones initial belief and embed

existing knowledge. In the case of the Bayesian SSI algorithm introduced in this thesis,

prior distributions are placed over the columns of the weights (the observability and

controllability). This choice of prior follows from the initial definition of Bayesian CCA

but is perhaps not the most suitable; under these assumptions the aforementioned

limitation still holds. However, one could imagine there being a set of priors that

can provide the necessary constraints to guarantee physically meaningful estimates.
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The ability to alter and extend the prior structure as described above has an

exhaustive list of possibilities; full scope of which is left to the creativity of the

reader. However, the present author believes automatic identification and model

order selection could also be achieved from an appropriate prior structure.

Computationally efficient implementations

Another important consideration is the computational requirements of the proposed

Bayesian and probabilistic SSI methodologies. The ability to carry out OMA quickly

and effectively is highly desirable; any computational bottlenecks could limit the

adoption of Bayesian SSI (and any extensions thereof) in application. Whilst the

results from Chapter 7 were particularly promising, there are many ways to address

computational burden. One alternative approach to be explored would be to consider

the use of an empirical prior. Initialising the optimisation closer to a solution would

significantly reduce the time to reach convergence. In this case of Bayesian or robust

Prob-SSI, the SSI result may be an appropriate choice.

Another possible avenue for future work would be to take advantage of the iterative

nature of the probabilistic, robust and Bayesian implementations introduced in this

thesis. Although perhaps seen as a key limitation in contrast to the SVD-based SSI

algorithm, EM and VI inference schemes have the ability to update the parameters

using batches of new data, without needing to recompute the solution with the entire

dataset. Whilst possibly providing a way to reduce the computational burden, it

is believed such an approach may provide a natural way to perform the proposed

algorithms in an online recursive way, as new data is observed.

Uncertainty-based metrics

One final consideration, and one of significant interest as new uncertainty-based

OMA algorithms are developed, is how uncertain modal parameters are compared.

Standard metrics, such as the modal assurance criterion, may not be the most suitable

for assessing modal parameters with posterior uncertainty. A new set of metrics may

need to be defined that can appropriately describe the similarity of uncertain modes

or stability of poles in a stabilisation diagram. Some work has already begun on this

topic (see e.g. Gres et. al. [208]), however there is scope for new metrics that utilise

the Bayesian posterior form of the uncertainty. Finally, as different methodologies for
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uncertainty quantification quantify different types of uncertainty, questions remain

unanswered regarding how structures with parameters obtained through different

uncertainty quantification methods can be principally compared.

8.2.1 Concluding remarks

To quote the words of Rune Brincker, from his 2006 article in the magazine of

Sound and Vibration [209], OMA is not another “flash in the pan”; the study of

OMA continues to be of great importance and is still an active research field with

several open research challenges. The key contribution of this thesis has been the

introduction of novel probabilistic and Bayesian approaches, focussed on the SSI

methodology, to OMA for the purpose of uncertainty quantification and robust

modal identification. These contributions, and the identified avenues for future work,

highlight a strong potential for further powerful extensions to the probabilistic and

Bayesian interpretation of SSI presented here. The author hopes that focus and

attention on OMA research will continue long into the future and that the work

contained within this thesis will provide part of the foundation for new probabilistic

and Bayesian approaches. In short, this thesis is only the beginning of a much wider

exploration of OMA and specifically SSI as a probabilistic latent variable problem.



A
Appendices

A.1 Gaussian distribution

Univariate

The Gaussian or Normal distribution is a type of continuous probability distribution

for a real-valued random variable and is part of the exponential family of distributions.

If a random variable, X, is distributed according to a univariate Gaussian distribution,

the following notation is used:

X ∼ N
(
µ , σ2

)
(A.1)

where µ is a scalar describing the mean or the expectation of the distribution,

µ ≜ E [X] (A.2)
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where E [·] denotes the expectation, and σ2 is the variance or “spread” of the

distribution

σ2 = V[X] ≜ E
[
(X − µ)2

]
= E

[
X2
]
− µ2 (A.3)

The standard deviation, σ is the defined as

σ = std[X] ≜
√

V[X] (A.4)

which is useful as it shares the same units as X itself.

The general form of the pdf for a univariate Gaussian is

f(x) =
1√

2πσ2
exp

{
−(x− µ)2

2σ2

}
(A.5)

Figure A.1 presents multiple examples of Gaussian pdfs, each with varying values

for mean and variance.

Figure A.1: Gaussian probability density functions
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Multivariate

The univariate Gaussian can be generalised for vector-valued random variables to

give the multivariate Gaussian (normal) distribution.

The multivariate distribution of a k-dimensional random vector X = [X1, . . . , Xk]T

is written as:

X ∼ N (µ ,Σ) (A.6)

where µ is the k-dimensional mean vector

µ = E [X] = [E [X1] , . . . ,E [Xk]]T (A.7)

and Σ is the k × k covariance matrix such that

Σi,j = E
[
(Xi − µi)(Xj − µj)

T
]

= Cov[Xi, Xj] (A.8)

where i, j = 1 . . . k. The inverse of the covariance matrix is called the precision and

is denoted by Ψ = Σ−1.

The general form of the pdf for a multivariate Gaussian distribution is described by

f(x) = (2π)−k/2|Σ|−1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(A.9)

A plot of an example bivariate Gaussian joint density is shown in Figure A.2.

It is also useful to define the log-form of the Gaussian, given its convenience when

considering the joint of multiple exponential distributions.

log(f(x)) = −k
2

log(2π) − 1

2
log |Σ| − 1

2
(x− µ)TΣ−1(x− µ) (A.10)
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Figure A.2: Bivariate Gaussian probability density function

A.2 Student’s t-distribution

One downside of the Gaussian distribution is that it can be quite sensitive to outliers.

A statistically robust alternative to the Gaussian is the Student’s t-distribution1. The

Student’s t-distribution is a continuous probability distribution that generalises the

Gaussian distribution. Unlike the Gaussian distribution, a Student’s t-distribution

has heavier tails, where the amount of probability mass in said tails is controlled by

a parameter ν (see Figure A.3a). This extra probability mass allows the Student’s t

to represent outliers in the distribution, with less effect on the mean and variance of

the distribution.

In the case where ν = 1, the t-distribution becomes the standard Cauchy distribution,

which has very large tails. In the opposing case, when ν → ∞, it becomes the standard

normal distribution, with very thin tails. This is shown more clearly in Figure A.3b.

1The distribution gets its name from a 1908 paper in Biometrika written by William Sealy
Gosset, who published under the pseudonym “Student” [210] to remain anonymous at the bequest
of his employer. Gosset worked at the Guinness brewery in Dublin, Ireland and was interested
in the problem of small sample sizes. This is not something the author can relate to, as many
‘samples’ of Guinness were consumed throughout their PhD.
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(a) An example of Gaussian and Student’s
t-distributions

(b) Student t-distributions with varying de-
grees of freedom (ν)

The Student’s t-distribution is typically represented with the following notation

S(µ,Σ, ν) (A.11)

where µ and Σ represent mean and covariance (similar to a Gaussian) and the

parameter ν is known as the degrees of freedom.

The general form of the pdf for a univariate Student’s t-distribution is

f(x) =
Γ
(
ν+1
2

)
√
πν Γ(ν

2
)

(
1 +

x2

ν

)− ν+1
2

(A.12)

where Γ(·) is the Gamma function. For the multivariate case, the pdf is

f(x) =
Γ
(
ν+k
2

)
Γ(ν

2
)νk/2πk/2Σ1/2

(
1 +

1

ν
(x− µ)TΣ−1(x− µ)

)− ν+k
2

(A.13)
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A.3 Robust probabilistic CCA derivation

Given the model definition of the original problem in Section 4.1 and the extended

robust probabilistic CCA problem in Section 5.2, this Appendix contains the deriva-

tion for the EM update equations for robust probabilistic CCA. These are provided

because of typographical errors in the original manuscript for the algorithm [192].

In the original robust projections paper, the normal distributions are defined using

the precision matrix, rather than covariance matrix. Note that here only covariance

matrices are used.

To derive the necessary update equations for the model parameters and an appropriate

Q-function needed to monitor convergence of the EM algorithm, the log-likelihood

function must first be defined:

ℓ(θ) =
N∑

n=1

ln p(xn, zn, un|θ) (A.14)

where θ = (µ,W,Σ, ν).

Writing the log-likelihood in full,

ℓ(θ) =
1

N

N∑
n=1

[
−D

2
ln (2π) − 1

2
ln |u−1

n Id| −
1

2
(zn − 0)T(u−1

n Id)−1(zn − 0)

+
ν

2
ln
(ν

2

)
− ln

(
Γ
(ν

2

))
+
ν

2
ln(un) − ν

2
un −

D

2
ln (2π)

− 1

2
ln |u−1

n Σ| − 1

2

(
xn − (Wzn + µ)

)T
(u−1

n Σ)−1
(
xn − (Wzn + µ)

)]
(A.15)
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The log matrix identity ln|aX| = D ln(a) + ln|X| can be used to expand and simplify

the terms ln |(unId)| and ln |unΣ−1|, resulting in the form

ℓ(θ) =
1

N

N∑
n=1

[
−D ln (2π) +D ln(un) − 1

2
unz

T
nzn +

ν

2
ln
(ν

2

)
− ln

(
Γ
(ν

2

))
+
ν

2
ln(un) − ν

2
un −

1

2
ln |Σ|

− 1

2
un(xn − µ)TΣ−1(xn − µ) +

1

2
un(xn − µ)TΣ−1(Wzn)

+
1

2
un(Wzn)TΣ−1(xn − µ) − 1

2
un(Wzn)TΣ−1(Wzn)

]
(A.16)

Q function derivation

Given the definition of the log likelihood in Equation A.16, the Q-function [173],

useful for monitoring convergence, and subsequently the EM update equations, can

be derived.

Q =
1

N

N∑
n=1

[
−D ln (2π) +DE [ln(un)] − 1

2
E [un]E

[
zTnzn

]
+
ν

2
ln
(ν

2

)
− ln

(
Γ
(ν

2

))
+
ν

2
E [ln(un)] − ν

2
E [un] − 1

2
ln |Σ|

− 1

2
E [un] (xn − µ)TΣ−1(xn − µ) +

1

2
E [un] (xn − µ)TΣ−1(WE [zn])

+
1

2
E [un] (WE [zn])TΣ−1(xn − µ) − 1

2
E
[
un(Wzn)TΣ−1(Wzn)

]]
(A.17)

Let the expectations of the latent parameters be denoted by

E [un] = ūn (A.18)

E [ln(un)] = ln ũn (A.19)

E [zn] = z̄n (A.20)

E
[
unznz

T
n

]
= S̄n (A.21)
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Using the joint posterior distributions of the latent scale variables and the latent

vectors, exact solutions for the expectations in Equations (A.18) - (A.21) can be

recovered.

If

p(xn|un) =

∫
p(xn|zn, un)p(zn|un)dz (A.22)

= N
(
µ , u−1

n

(
Σ + WWT

))
(A.23)

where A =
(
Σ + WWT

)
, and

p(un|xn) ∝ p(xn|un)p(un) (A.24)

then

p(un|xn) = G
(
un

∣∣∣∣D + ν

2
,
un(xn − µ)TA−1(xn − µ)

2
+
ν

2

)
(A.25)

The equivalent E [un] of the Gamma distribution gives

ūn =
α

β
=

D + ν

un(xn − µ)TA−1(xn − µ) + ν
(A.26)

whilst

ln ũn = ψ

(
D + ν

2

)
− ln

(
un(xn − µ)TA−1(xn − µ) + ν

2

)
(A.27)

is the equivalent expectation of the log Gamma distribution.

In a similar way,

p(zn|xn, un) =∝ p(xn|zn, un)p(zn|un) (A.28)

= N
(
B−1WTΣ−1(xn − µ) , (unB)−1

)
(A.29)
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z̄n = B−1WTΣ−1(xn − µ) (A.30)

where B = WTΣ−1W + Id

S̄n = B−1 + ūnz̄nz̄
T
n (A.31)

The EM update equations can be recovered by taking the derivative of the Q-function,

with respect to the various parameters θ, and setting the resulting equations to zero

and solving for the parameter in question.

Covariance Update

∂Q
∂Σ−1 =

1

N

N∑
n=1

[
1

2
ΣT − 1

2
ūn(xn − µ)(xn − µ)T +

1

2
ūn(xn − µ)(Wz̄n)T

+
1

2
ūn(Wz̄n)(xn − µ)T +

1

2
ūnWS̄nW

T

] (A.32)

setting
∂Q
∂Σ−1 = 0 and rearranging, note that due to the symmetry of Σ, ΣT = Σ,

the following update equation for the covariance can be defined.

Σ =
1

N

N∑
n=1

[
ūn(xn − µ)(xn − µ)T − ūn(xn − µ)(Wz̄n)T

− ūn(Wz̄n)(xn − µ)T + ūnWS̄nW
T

] (A.33)

Weight Update

∂Q
∂W

=
1

N

N∑
n=1

[
ūnΣ

−1(xn − µ)z̄Tn −Σ−1WS̄n

]
(A.34)

letting
∂Q
∂W

= 0 and rearranging,
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W = (
N∑

n=1

ūn(xn − µ)z̄Tn)(
N∑

n=1

S̄n)−1 (A.35)

Mean Update

∂Q
∂µ

=
1

N

N∑
n=1

[
ūnΣ

−1(xn − µ) − ūnΣ
−1Wz̄n

]
(A.36)

letting
∂Q
∂µ

= 0 and expanding,

N∑
n=1

[
ūnΣ

−1µ

]
=

N∑
n=1

[
ūnΣ

−1xn − ūnΣ
−1Wz̄n

]
(A.37)

premultiplying by Σ and rearranging for µ gives

N∑
n=1

[
ūnµ

]
=

N∑
n=1

[
ūn(xn −Wz̄n)

]
(A.38)

µ =

∑N
n=1 ūn(xn −Wz̄n)∑N

n=1 ūn
(A.39)

ν Update

∂Q
∂ν

=
1

N

N∑
n=1

[
1

2
+

1

2
ln
(ν

2

)
− ψ

(ν
2

)
+

1

2
ln(ũn) − 1

2
ūn

]
(A.40)

letting
∂Q
∂ν

= 0 and rearranging,
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0 = 1 + ln
(ν

2

)
− 2 ψ

(ν
2

)
+

1

N

N∑
n=1

[
ln(ũn) − ūn

]
(A.41)

The maximum likelihood solution of ν can be found through solving the above

equation using line search.
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A.4 Recovery of rotation matrix R

The following theory for the recovery of the rotation matrix in robust PCCA sum-

marises the work presented by Archambeau et al. in Appendix A of [192] and the

accompanying errata of Appendix A. for the same paper.

Having defined

B1 = W̆
(1)T

Σ(1)−1
W̆

(1)
+ Id (A.42)

B2 = W̆
(2)T

Σ(2)−1
W̆

(2)
+ Id (A.43)

The matrix R1 contains the eigenvectors of

J1 =
(
Id −B−1

1

) 1
2
(
Id −B−1

2

)(
Id −B−1

1

) 1
2 (A.44)

with Υ̃2 corresponding eigenvalues. Similarly R2 contains the eigenvectors of

J2 =
(
Id −B−1

2

) 1
2
(
Id −B−1

1

)(
Id −B−1

2

) 1
2 (A.45)

with the same eigenvalues Υ̃2.

Given the above, it can finally be shown that the canonical directions are

U
(1)
d = Σ−1

11 W̆
(1)(

Id −B−1
1

)− 1
2R1 (A.46)

U
(2)
d = Σ−1

22 W̆
(2)(

Id −B−1
2

)− 1
2R2 (A.47)
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A.5 Bayesian CCA: Gibbs sampler derivation

This appendix provides a full derivation for the update equations provided in Algo-

rithm 3, aligning with the Bayesian CCA formulation presented in Klami and Kaski

[199] but without the sparsity prior and with the inclusion of generic priors.

Given the model defined in Figure 6.1, the joint can be written as

J = p(x, z,W,Σ,µ) = p(x|z,W,Σ,µ)p(z)p(Σ)p(µ)p(W) (A.48)

Assuming independent columns of W, the joint can also be defined as

J = p(x|z,W,Σ,µ)p(z)p(Σ)p(µ)
d∏

i=1

p(wi) (A.49)

Taking the natural log of the joint, the individual components of the expression are

thus given by

lnJp(x|z,W,Σ,µ) ∝ −N
2

ln |Σ|− 1

2

N∑
n=1

(xn−(Wzn+µ))TΣ−1(xn−(Wzn+µ)) (A.50)

lnJp(z) ∝ −N
2

ln |I| − 1

2

N∑
n=1

(zn − 0)TI−1(zn − 0) = −1

2

N∑
n=1

zTnzn (A.51)

lnJp(Σ) ∝
ν0
2

ln |K0| −
ν0D

2
ln(2)− ln

(
Γ
(ν0

2

))
− ν0 +D + 1

2
ln |Σ| − 1

2
Tr
(
K0Σ

−1
)

(A.52)

lnJp(µ) ∝ −1

2
ln |Σµ| −

1

2

N∑
n=1

(µ− µµ)TΣ−1
µ (µ− µµ) (A.53)
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lnJp(wi) ∝ −1

2
ln |Σwi

| − 1

2

N∑
n=1

(wi − µwi
)TΣ−1

wi
(wi − µwi

) (A.54)

where
d∏

i=1

p(wi) = exp

{
d∑

i=1

ln p(wi)

}
(A.55)

Using the standard theory of Gibbs MCMC sampling the update equations for the

model parameters can be constructed. The premise of Gibbs sampling is to sample

each variable in turn, conditioned on the values of the other variables in the joint

distribution to obtain a sample from the conditional distribution that is sought. This

can be achieved by considering the log of the joint with respect to the parameter of

interest, establishing the new conditional distribution, and evaluating that function

given the current estimates for all the necessary model parameters.

The following subsections summarise the derivation of the individual updates. Even

though a specified order is given in Algorithm 3, the nature of Gibbs sampling

means that sampling from the conditionals can be conducted in any order. As such,

the equations here are written without specifying which parameters are current or

previous estimates, to simplify notation for clarity.

Sample Σ

Collecting the terms of the log joint pertaining to Σ

ln p(Σnew) ∝ −N
2

ln |Σ| − 1

2

N∑
n=1

(xn − (Wzn + µ))TΣ−1(xn − (Wzn + µ))

− ν0 +D + 1

2
ln |Σ| − 1

2
Tr
(
K0Σ

−1
)

(A.56)

Using xTAx = trace(AxxT),

ln p(Σnew) ∝ −N
2

ln |Σ| − 1

2
Tr

(
Σ−1

N∑
n=1

(xn − µ−Wzn)(xn − µ−Wzn)T

)
− ν0 +D + 1

2
ln |Σ| − 1

2
Tr
(
K0Σ

−1
)

(A.57)
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Combining terms, the familiar inverse Wishart form can be obtained

ln p(Σnew) ∝ −ν0 +N +D + 1

2
ln |Σ|

− 1

2
Tr

((
K0 +

N∑
n=1

(xn − µ−Wzn)(xn − µ−Wzn)T

)
Σ−1

)
(A.58)

Therefore, a new sample of Σ can be drawn from the found conditional distribution

Σnew ∼ IW (K0 + K , ν0 +N) (A.59)

where

K =
N∑

n=1

(xn − µ−Wzn)(xn − µ−Wzn)T (A.60)

Sample µ

Collecting the terms of the log joint pertaining to µ

ln p(µnew) ∝ −1

2

N∑
n=1

{
(xn − (Wzn + µ))TΣ−1(xn − (Wzn + µ))

}
− 1

2
(µ− µµ)TΣ−1

µ (µ− µµ) (A.61)

Expanding and ignoring terms not containing µ,

ln p(µnew) ∝ −1

2

N∑
n=1

{
µTΣ−1µ− µTΣ−1(xn −Wzn) − (xn −Wzn)TΣ−1µ

}
− 1

2
(µTΣ−1

µ µ− µT
µΣ

−1
µ µ− µTΣ−1

µ µµ) (A.62)
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Setting Σ̂
−1

µ = NΣ−1 + Σ−1
µ , and in the knowledge that I = Σ̂

−1

µ Σ̂µ, the log form of

a Gaussian can be reached

ln p(µnew) ∝ −1

2

{
µTΣ̂

−1

µ µ− µTΣ̂
−1

µ Σ̂µ(Σ−1
N∑

n=1

(xn −Wzn) + Σ−1
µ µµ)

−

(
N∑

n=1

(xn −Wzn)TΣ−1 + µµΣ
−1
µ

)
µT

}
(A.63)

Therefore, a new sample of µ can be drawn from the conditional distribution defined

by

µnew ∼ N
(
µ̂µ , Σ̂µ

)
(A.64)

where

Σ̂µ = (NΣ−1 + Σ−1
µ )−1 (A.65)

and

µ̂µ = Σ̂µ(Σ−1
N∑

n=1

(xn −Wzn) + Σ−1
µ µµ) (A.66)

Sample wi

Collecting the terms of the log joint pertaining to W

ln p(wnew
i ) ∝ −1

2

N∑
n=1

{
(xn − (Wzn + µ))TΣ−1(xn − (Wzn + µ))

}
− 1

2

d∑
i=1

{
(wi − µwi

)TΣ−1
wi

(wi − µwi
)
}

(A.67)

As the intention is to update only one column of W at a time, i.e the independent

column wi, the above equation can be separated as follows
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ln p(wnew
i ) ∝ −1

2

N∑
n=1

{
(xn − µ−w iz i,n −wizi,n)TΣ−1(xn − µ−w iz i,n −wizi,n)

}
− 1

2
(wi − µwi

)TΣ−1
wi

(wi − µwi
) (A.68)

where the negative indices notation, · i, refers to every column/row of except the one

specified. Letting x̃n = xn − µ−w iz i,n, this equation can be simplified to

ln p(wnew
i ) ∝ −1

2

N∑
n=1

{
(x̃n −wizi,n)TΣ−1(x̃n −wizi,n)

}
−1

2
(wi−µwi

)TΣ−1
wi

(wi−µwi
)

(A.69)

and expanded to give

ln p(wnew
i ) ∝ −1

2

N∑
n=1

{
x̃T
nΣ

−1x̃n − (wizi,n)TΣ−1x̃n − x̃T
nΣ

−1wizi,n

+(wizi,n)TΣ−1wizi,n
}
− 1

2

(
wT

i Σ
−1
wi
wi −wT

i Σ
−1
wi
µwi

−µT
wi
Σ−1

wi
wi + µT

wi
Σ−1

wi
µwi

)
(A.70)

As zi,n is a scalar, it can be manipulated as such, rearranging to give

ln p(wnew
i ) ∝ −1

2

{
N∑

n=1

{zi,nzi,n}wT
i Σ

−1wi −wT
i Σ

−1
wi
wi −

N∑
n=1

zi,nw
T
i Σ

−1x̃n

−
N∑

n=1

zi,nx̃
T
nΣ

−1wi −wT
i Σ

−1
wi
µwi

− µT
wi
Σ−1

wi
wi

}
(A.71)

setting Σ̂
−1

wi
=
∑N

n=1{zi,nzi,n}Σ
−1 −Σ−1

wi
, and in the knowledge that I = Σ̂

−1

wi
Σ̂wi

,

the following log normal form can be reached

ln p(wnew
i ) ∝ −1

2

{
wT

i Σ̂
−1

wi
−wT

i Σ̂
−1

wi
Σ̂wi

(
N∑

n=1

zi,nΣ
−1x̃n + Σ−1

wi
µwi

)

−

(
N∑

n=1

zi,nx̃
T
nΣ

−1 + µT
wi
Σ−1

wi

)
Σ̂wi

Σ̂
−1

wi
wi

}
(A.72)
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Therefore, a new sample of wi can be drawn from the conditional distribution defined

by

wnew
i ∝ N

(
µ̂wi

, Σ̂wi

)
(A.73)

where

Σ̂wi
=

(
N∑

n=1

{zi,nzi,n}Σ−1 + Σ−1
wi

)−1

(A.74)

and

µ̂wi
= Σ̂wi

(Σ−1
N∑

n=1

zi,nx̃n + Σ−1
wi
µwi

) (A.75)

Since each column of W is sampled independently, two methods of sampling can be

used. Either: new columns are used in the following column updates, or the columns

of the weight matrix are all sampled using the previous value for W before finally

updating the full matrix.

Sample z

Collecting the terms of the log joint pertaining to z

ln p(znewn ) ∝ −1

2

N∑
n=1

{
(xn − (Wzn + µ))TΣ−1(xn − (Wzn + µ))

}
− 1

2

N∑
n=1

zTnzn

(A.76)

which can be written as

ln p(znewn ) ∝ −1

2

N∑
n=1

{
(xn − µ−Wzn)TΣ−1(xn − µ−Wzn) + zTnIzn

}
(A.77)

Expanding and ignoring any terms not containing zn,

ln p(znewn ) ∝ −1

2

N∑
n=1

{
−xT

nΣ
−1Wzn + µTΣ−1Wzn − zTnW

TΣ−1xn

+zTnW
TΣ−1µ+ zTnW

TΣ−1Wzn + zTnIzn
}

(A.78)

letting Σ̂
−1

z = (WTΣ−1W + I), and in the knowledge that I = Σ̂
−1

z Σ̂z, the log form
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of a Gaussian can be reached

ln p(znewn ) ∝ −1

2

N∑
n=1

{
zTnΣ̂

−1

z zn − (xn − µ)TΣ−1WΣ̂zΣ̂
−1

z zn

−zTnΣ̂
−1

z Σ̂zW
TΣ−1(xn − µ)

}
(A.79)

Therefore, a new sample of z can be drawn from the conditional distribution defined

by

znewn ∼ N
(
µ̂z , Σ̂z

)
(A.80)

where

Σ̂z = (WTΣ−1W + I)−1 (A.81)

and

µ̂z = Σ̂zW
TΣ−1xn (A.82)
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A.6 Bayesian CCA: Variational Bayes derivation

This appendix provides a full derivation for the update equations provided in Algo-

rithm 4. These update equations differ with those presented by Wang [198] in that

these equations assume independent columns of W, matching the definition in [199],

rather than independent rows. Either definition (row or column) is suitable however

one common approach was chosen here. Unlike [198], this derivation also includes

generic priors on the model parameters.

Given the model defined in Figure 6.1, the joint for Bayesian CCA can be defined as

p(x, z,W,Σ,µ) = p(x|z,W,Σ,µ)p(z)p(Σ)p(µ)p(W) (A.83)

Assuming independent columns of W, as stated in the model, and using precision Ψ,

the joint can be written as:

p(x|z,W,Ψ,µ)p(z)p(Ψ)p(µ)
d∏

i=1

p(wi) (A.84)

with the same components of the log joint as shown in the A.5 derivation.

The general premise of VI is to select a suitable approximation from a tractable family

of distributions and try to make the approximation as close to the true (intractable)

posterior as possible, usually by minimising the KL divergence. Assuming the

surrogate posterior is determined by some free parameters, this problem reduces the

inference to an optimisation problem.

The following subsections summarise the derivation of the individual parameter

updates needed to perform this optimisation. Even though a specified order is given

in Algorithm 4, the VI scheme means updating the parameters can be conducted in

any order, as long as the order remains fixed.

Using a mean field approximation, the surrogate posterior is assumed to take the

following factorised form

q(z,W,Ψ,µ) = q(z)q(Ψ)q(µ)
d∏

i=1

q(wi) (A.85)



A.6 Bayesian CCA: Variational Bayes derivation 169

where

q(zn) ∼ N
(
zn|µ̆z , Σ̆z

)
(A.86)

q(Ψ) ∼ W
(
Ψ|K̆

−1
, ν̆
)

(A.87)

q(wi) ∼ N
(
wi|µ̆wi

, Σ̆wi

)
(A.88)

q(µ) ∼ N
(
µ|µ̆µ , Σ̆µ

)
(A.89)

Given this factorised form, coordinate ascent VI (CAVI) [173] updates for the

parameters of the model can be found using

q⋆(ϕk) = Eϕ [J ] = Eϕ [p(x, z,θ)] (A.90)

where ϕ = {z,θ}, θ = {Ψ,µ,W}, ϕ denotes all elements of ϕ except the kth

element being updated and q⋆(ϕk) refers to the updated surrogate posterior.

Working with the log of the joint, this can also be expressed as

ln q⋆(ϕk) = Eϕ [ln p(x, z,θ)] + const (A.91)

Update z

Collecting the terms of the log joint pertaining to z and substituting into Equation

(A.91),

ln q⋆(zn) ∝ Eϕ

[
−1

2

N∑
n=1

{
(xn − (Wzn + µ))TΨ(xn − (Wzn + µ))

}
− 1

2

N∑
n=1

zTnzn

]
(A.92)
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The expectation Eϕ [•] is rewritten using ⟨•⟩ϕ , such that

ln q⋆(zn) ∝

〈
−1

2

N∑
n=1

{
(xn − (Wzn + µ))TΨ(xn − (Wzn + µ)) + zTnzn

}〉
W, µ, Ψ

(A.93)

The subscript notation for the expectation is written once at the start of each update

derivation with the relevant parameters and then omitted for clarity.

Expanding and ignoring terms not containing zn, similar to the Gibbs sampling

derivation, this reduces to

ln q⋆(zn) ∝

〈
−1

2

N∑
n=1

{
zTn
(
WTΨW + I

)
zn − (xn − µ)TΨWzn

−zTnW
TΨ(xn − µ)

}〉
(A.94)

Setting Σ̆
−1

z = ⟨WTΨW⟩ + I, and given I = Σ̆
−1

z Σ̆z, the log form of a Gaussian can

be reached

ln q⋆(zn) ∝ −1

2

N∑
n=1

{
zTnΣ̆

−1

z zn − (xn − ⟨µ⟩)T⟨Ψ⟩⟨W⟩Σ̆zΣ̆
−1

z zn

−zTnΣ̆
−1

z Σ̆z⟨W⟩T⟨Ψ⟩(xn − ⟨µ⟩)
}

(A.95)

Exponentiating, the surrogate posterior of z therefore has the following Gaussian

form

q⋆(zn) ∼ N
(
µ̆z , Σ̆z

)
(A.96)

where

Σ̆z =
(
⟨WTΨW⟩ + I

)−1
(A.97)

and

µ̆z = Σ̆z⟨W⟩T⟨Ψ⟩(xn − ⟨µ⟩) (A.98)
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Update Ψ

Collecting the terms of the log joint pertaining to Ψ and substituting into Equation

(A.91),

ln q⋆(Ψ) ∝

〈
−1

2

N∑
n=1

{
ln(|Ψ|−1) + (x− (Wzn + µ))TΨ(x− (Wzn + µ))

}
+
ν0 −D + 1

2
ln |Ψ| − 1

2
tr(ΨK0)

〉
W, µ, zn

(A.99)

Simplifying and rearranging terms, a log Wishart form can be reached such that

ln q⋆(Ψ) ∝ −1

2
tr

(
Ψ

[
K0 +

N∑
n=1

〈
(x− (Wzn + µ))(x− (Wzn + µ))T

〉])
+
ν0 −D + 1 +N

2
ln |Ψ| (A.100)

Exponentiating, the surrogate posterior of Ψ is then defined by,

q⋆(Ψ) ∼ W
(
K̆

−1
, ν̆
)

(A.101)

where

K̆ = K0 +
N∑

n=1

〈
(xn − µ−Wzn)(xn − µ−Wzn)T

〉
(A.102)

and

ν̆ = ν0 +N (A.103)
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Update µ

Collecting the terms of the log joint pertaining to µ and substituting into Equation

(A.91),

ln q⋆(µ) ∝

〈
−1

2

N∑
n=1

{
(x− (Wzn + µ))TΨ(x− (Wzn + µ))

}
− 1

2
µTΣ−1

µ µ

−1

2
µT

µΣ
−1
µ µ− 1

2
µTΣ−1

µ µµ

〉
W, zn, Ψ

(A.104)

Simplifying,

ln q⋆(µ) ∝ −1

2

{
µT(N ⟨Ψ⟩ + Σ−1

µ )µ− µT
N∑

n=1

⟨Ψ⟩ (xn − ⟨W⟩ ⟨zn⟩)

−
N∑

n=1

(xn − ⟨W⟩ ⟨zn⟩)T ⟨Ψ⟩µ+ µT
µΣ

−1
µ µ+ µTΣ−1

µ µµ

}
(A.105)

letting Σ̆
−1

µ = N ⟨Ψ⟩ + Σ−1
µ , and given I = Σ̆

−1

µ Σ̆µ,

ln q⋆(µ) ∝ −1

2

{
µTΣ̆

−1

µ µ− µTΣ̆
−1

µ Σ̆µ

(
N∑

n=1

⟨Ψ⟩ (xn − ⟨W⟩ ⟨zn⟩) + Σ−1
µ µµ

)

−

(
N∑

n=1

(xn − ⟨W⟩ ⟨zn⟩)T ⟨Ψ⟩ + µT
µΣ

−1
µ

)
Σ̆µΣ̆

−1

µ µ

}
(A.106)

Exponentiating, the surrogate posterior of µ thus has the following form

q⋆(µ) ∼ N
(
µ̆µ , Σ̆µ

)
(A.107)

where

Σ̆µ = (N⟨Ψ⟩ + Σ−1
µ )−1 (A.108)
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and

µ̆µ = Σ̆µ

(
⟨Ψ⟩

N∑
n=1

(xn − ⟨W⟩⟨zn⟩) + Σ−1
µ µµ

)
(A.109)

Update wi

Collecting the terms of the log joint pertaining to wi and substituting into Equation

(A.91),

ln q⋆(wi) ∝

〈
−1

2

N∑
n=1

{
(x− (Wzn + µ))TΨ(x− (Wzn + µ))

}
− 1

2
wT

i Σ
−1
wi
wi

−1

2
µT

wi
Σ−1

wi
wi −

1

2
wT

i Σ
−1
wi
µwi

〉
µ, zn, Ψ

(A.110)

To construct the update for a single column, the full weight matrix must be separated

into the column of interest and the remaining columns. This is achieved by defining

x̃n = xn − µ−w iz i,n (A.111)

where w i corresponds to all columns except the ith column of interest and z i,n

corresponds to all rows of zn except the ith row. Using this definition, Equation

A.110 becomes

ln q⋆(wi) ∝

〈
−1

2

N∑
n=1

{
(x̃n −wizi,n)TΨ(x̃n −wizi,n)

}
− 1

2
wT

i Σ
−1
wi
wi

−1

2
µT

wi
Σ−1

wi
wi −

1

2
wT

i Σ
−1
wi
µwi

〉
(A.112)

As zi,n is scalar, it can be manipulated as one. Rearranging and combining terms,
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this gives

ln q⋆(wi) ∝ −1

2

〈
wT

i

(
Σ−1

wi
+

N∑
n=1

zi,nzi,nΨ

)
wi −wT

i

(
N∑

n=1

zi,nΨx̃n + Σ−1
wi
µwi

)

−

(
N∑

n=1

x̃T
nΨzi,n + µT

wi
Σ−1

wi

)
wi

〉
(A.113)

Considering the expectations,

ln q⋆(wi) ∝ −1

2

{
wT

i

(
Σ−1

wi
+

N∑
n=1

⟨zi,nzi,n⟩ ⟨Ψ⟩

)
wi −wT

i

(
N∑

n=1

⟨zi,n⟩ ⟨Ψ⟩ x̃n + Σ−1
wi
µwi

)

−

(
N∑

n=1

x̃T
n ⟨Ψ⟩ ⟨zi,n⟩ + µT

wi
Σ−1

wi

)
wi

}
(A.114)

letting Σ̆
−1

wi
=
(
Σ−1

wi
+
∑N

n=1 ⟨zi,nzi,n⟩ ⟨Ψ⟩
)

, and as I = Σ̆
−1

wi
Σ̆wi

,

q⋆(wi) ∼ N
(
µ̆wi

, Σ̆wi

)
(A.115)

where

Σ̆wi
= (

N∑
n=1

⟨zi,nzi,n⟩⟨Ψ⟩ + Σ−1
wi

)−1 (A.116)

and

µ̆wi
= Σ̆wi

(
⟨Ψ⟩

N∑
n=1

x̃n⟨zTn,i⟩) + Σ−1
wi
µwi

)
(A.117)
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driven blind source separation for fast operational modal analysis of structures.

Mechanical Systems and Signal Processing, 211:111267, 2024.

[91] A Sadhu, S Narasimhan, and J Antoni. A review of output-only structural mode

identification literature employing blind source separation methods. Mechanical

Systems and Signal Processing, 94:415–431, 2017.

[92] A Di. Matteo, C Masnata, S Russotto, C Bilello, and A Pirrotta. A novel

identification procedure from ambient vibration data. Meccanica, 56(4):797–812,

2021.



184 BIBLIOGRAPHY

[93] S Russotto, A Di Matteo, C Masnata, and A Pirrotta. OMA: From research to

engineering applications. In C Rainieri, G Fabbrocino, N Caterino, F Ceroni,

and M. A Notarangelo, editors, Civil Structural Health Monitoring, volume

156, pages 903–920. Springer International Publishing, Cham, 2021.

[94] P Van Overschee and B De Moor. Subspace algorithms for the stochastic

identification problem. Automatica, 29(3):649–660, 1993.

[95] P Van Overschee and B De Moor. Subspace Identification for Linear Systems.

Springer, Boston, MA, USA, 1996.

[96] P Kirkegaard and P Andersen. State space identification of civil engineering

structures from output measurements. In Proceedings of the 15th International

Modal Analysis Conference (IMAC-XV), volume 1, pages 889–895, Florida,

USA, 1997. Society for Experimental Mechanics.

[97] B Peeters and G De Roeck. Stochastic subspace system identification of a

steel transmitter mast. In Proceedings of the International Modal Analysis

Conference - IMAC, volume 1, pages 130–136, California, US., 1998.

[98] L Hermans and H Van Der Auweraer. Modal testing and analysis of structures

under operational conditions: Industrial applications. Mechanical Systems and

Signal Processing, 13(2):193–216, 1999.

[99] B Li, H Cai, X Mao, J Huang, and B Luo. Estimation of CNC machine–tool

dynamic parameters based on random cutting excitation through operational

modal analysis. International Journal of Machine Tools and Manufacture, 71:

26–40, 2013.

[100] E Neu, F Janser, A. A Khatibi, C Braun, and A. C Orifici. Operational modal

analysis of a wing excited by transonic flow. Aerospace Science and Technology,

49:73–79, 2016.

[101] J. A Jimenez Capilla, S.-K Au, J. M. W Brownjohn, and E Hudson. Ambi-

ent vibration testing and operational modal analysis of monopole telecoms

structures. Journal of Civil Structural Health Monitoring, 11(4):1077–1091,

2021.
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[121] M Döhler and L Mevel. Efficient multi-order uncertainty computation for

stochastic subspace identification. Mechanical Systems and Signal Processing,

38(2):346–366, 2013.
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Mathématique de France, 2:103–174, 1875.

[186] H Hotelling. Relations between two sets of variates. Biometrika, 28(3/4):

321–375, 1936.

[187] B Friedland. Control System Design: An Introduction to State-Space Meth-

ods. Dover Publications, Inc, Mineola, New York, dover edition, unabridged

republication ed., 2005.

[188] G. H Golub and C. F Van Loan. Matrix computations. Johns Hopkins studies

in the mathematical sciences. The Johns Hopkins University Press, Baltimore,

fourth edition ed., 2013.

[189] R. J Allemang, D. L Brown, and A. W Phillips. Survey of modal tech-

niques applicable to autonomous/semi-autonomous parameter identification.

In Proceedings of ISMA2010 International Conference on Noise and Vibration

Engineering, Leuven, Belgium, 2010.

[190] R Sbarra and G Coppotelli. DBSCAN-Based Approach for the Automatic

Estimate of the Modal Parameters. In C Rainieri, C Gentile, and M Aen-
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Post-Credit Scene

q(z,µ,Ψ,W,u) =
N∏

n=1

q(zn)q(un)
d∏

i=1

q(wi)q(µ)q(Ψ)

Bayesian SSI will return . . .

Disney, please don’t sue me.
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