
 
 

Predicting the tactile properties 
of fabrics 

from vision and touch 

 
 

 
Qinyuan Li 

 
 
 

Submitted in accordance with the requirements for the degree of 
Doctor of Philosophy 

 
 
 

The University of Leeds 
School of Design 

 
April 2025  



 ii 

The candidate confirms that the work submitted is his/her own, except where 

work which has formed part of jointly-authored publications has been included. 

The contribution of the candidate and the other authors to this work has been 

explicitly indicated below. The candidate confirms that appropriate credit has 

been given within the thesis where reference has been made to the work of 

others. 

 

The following publications were produced in the course of this research: 

Li, Q., Xiao, K., & Mao, N. 2024. An investigation of the perceived tactile 

properties using fabric images, videos, and real fabrics. In CEUR Workshop 

Proceedings (CEUR-WS. org). CEUR Workshop Proceedings. Referred to 

Chapter 3 and Chapter 5. 

Li, Q., Xiao, K., Pointer, M., & Mao, N. 2023. The Role of Colour and Texture on 

Fabric Image Preference. In Color and Imaging Conference (Vol. 31, No. 39, pp. 

221-226). Society for Imaging Science & Technology. Referred to Chapter 3. 

Li, Q., Xiao, K., Pointer, M., & Mao, N. 2023. The correlation of tactile properties 

of fabrics between visual and touch. Journal of Vision, 23(9), 5109-5109. 

Referred to Chapter 3 and Chapter 4. 

Li, Q., Xiao, K., Mao, N., & Pointer, M. 2022. Visual judgement of the tactile 

properties of fabrics by altering colours. In: Proceedings of the AIC 15th 

Congress 2022 International Colour Association (AIC). Referred to Chapter 3 

and Chapter 4. 

One work has been submitted to Transactions on Applied Perception and is 

under reviewing by the time of submission: 

Li, Q., Xiao, K., Pointer, M., Mao, N. 2024 November. Perceiving the tactile 

properties of the fabrics using fabric images, fabric videos, and real fabrics. 

Transactions on Applied Perception. Referred to Chapter 3 and Chapter 5.  



 iii 

Acknowledgement 

Firstly, I would like to express my sincere gratitude to my supervisor, Professor 

Kaida Xiao. With his constant support, guidance, and encouragement, I have a 

deeper understanding what is research and what is the appropriate attitude 

towards research. I also would like to thank my co-supervisor Professor Ningtao 

Mao, for his great contribution and guidance in building the database. I feel so 

lucky to be the student of them. 

A special thank goes to Dr Michael Pointer, who endlessly help and encourage 

me since the very start of my research career. His book Measuring Colour, and 

all his lectures greatly helped me build a systematic view of colour science. I am 

always touched and inspired by his patience to younger generation and his 

passion towards colour science. I also would like to appreciate Professor Ming 

Ronnier Luo, who encouraged my study on colour science when I was in 

Zhejiang University. Appreciate also goes to Dr Yan Lu and Dr Ruili He. Their 

attitude in PhD research continuously inspired me during these years. 

I would like to express my deepest appreciate to my parents for their 

unconditional love and support. I am so fortunate to be their daughter and be in 

a lovely family. I also wish both of my grandfathers will be proud of me on the 

other side. 

Lastly, I would like to thank Mr Peifan Xin, for his love, patience, and support. 

Every day I spend with you brings me so much happiness. 

  



 iv 

Abstract 

Fabric is one of the biggest markets in the world, as nearly everyone is a 

consumer of fabrics. Tactile properties of fabrics convey vital information and 

influence consumer decision and satisfaction. With the rapid development of 

online shopping, consumers face new challenges, including predicting the 

tactile properties based on fabric images presented on displays and bridging 

the gap between visual perception and actual tactile perception. Moreover, the 

understanding of the tactile properties remains uncomplete due to the multiple 

tactile properties, the various conditions under which they are assessed, various 

influencing factors, and the limited efforts made on prediction. 

The aim of the present study is to provide a consumer-friendly investigation of 

the perception of fabric tactile properties. A Leeds Fabric Tactile Database was 

developed and used in a series of psychophysical experiments to achieve the 

aim. The database consisted of two parts: Part I included colour-rendered fabric 

images (flat and draped) along with the corresponding real fabrics, and Part II 

included real fabric images (flat and draped), fabric rotation videos, and the 

corresponding real fabrics. 

Experiment Phase I was carried out using Part I, evaluating flexible-stiff, 

smooth-rough, soft-firm, spongy-crisp, and warm-cool under the conditions of 

flat fabric images, draped fabric images, and touching the fabrics without seeing 

them (touch-only). The effect of individual fabrics, colour, and experiment 

conditions was analysed, together with the correlations among experiment 

conditions and among tactile properties. 

Following the experiment Phase I, the experiment Phase II was conducted using 

database Part II. The experiment conditions were expanded to cover all real-life 

scenarios of human-fabric interaction, with newly added conditions including 

fabric rotation videos, viewing the fabrics but not touching them (vision-only 

using real fabrics), and viewing the fabrics while simultaneously touching them 



 v 

(vision+touch). In addition to the analyses of factors and correlations, predictors 

were extracted from fabric images and videos to model the perception of fabric 

tactile properties. 

All the psychophysical experiments in the present study applied the method of 

categorical judgement. The analyses were carried out in alignment with the 

categorical judgement framework, where each score carried a specific 

perceptual meaning. Taken together, the present study demonstrated a 

comprehensive investigation of the perception of fabric tactile properties. By 

using the fabric images and videos, good prediction can be achieved for the 

perception of fabric tactile properties. 
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1.1 Background 

The tactile properties of the fabric are of great importance in the textile industry 

and potentially contribute to the applications of textiles in computer virtual reality, 

3D printing, remote surgery, and product design (Basdogan et al., 2004; Griffiths 

and Kulke, 2002; Rabin and Gordon, 2004). However, given the widespread 

use of smart electronic products, for example, for internet shopping, the 

judgement of the tactile properties of fabrics relies on images rather than actual 

products. Viewing the images of the fabrics may results in a different perception 

than viewing and touching the physical fabrics. When buying online, it is one 

thing to be able to see a fabric on a display, but the visual impression of the 

tactile response is an important influence on a customer’s decision to make a 

purchase. 

Conventional methods to define the tactile properties of fabrics rely on 

instruments or other devices, such as Kawabata Evaluation System for Fabric 

(KES-F system), Fabric Assurance by Simple Testing (FAST system), the Leeds 

University Fabric Handle Evaluation System (LUFHES), and tactile sensors. 

The measured data are calculated to give scores to represent the tactile 

properties. Devices such as tactile sensors give signals reproducing human 

movement when touching the surface, which enhances the understanding of 

the tactile properties and benefits the development of robots (Gao et al., 2016; 

Chu et al., 2013; Luo et al., 2018). However, the notable limitations of such 

instruments are that they are not consumer friendly. The general public normally 

had no access to professional devices, and the generated data are difficult for 

consumers to interpret. Furthermore, such objective measurement results 

cannot represent the subjective human perception of the tactile properties when 

either fabric images or real fabrics are available. 

Apart from the above, psychophysical experiments have been conducted to 

study the subjective human perception of tactile properties. In virtually all 
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experiments, observers were presented either with the real fabric (Baumgartner 

et al., 2013; Wijintjes et al., 2019; Mirjalili et al., 2019) or fabric images and 

videos (Bouman et al., 2013; Winjintjes et al., 2019) or both (Xiao et al., 2016; 

Wijintjes et al., 2019) under the corresponding conditions (vision, touch, or both). 

With a few notable exceptions, these studies generally evaluated the perceived 

tactile properties using a single format of the fabric. The exceptions include a 

study that conducted three separate experiments to evaluate the tactile 

perception using fabric images and videos by means of rating scales; using real 

fabrics when one touched the fabric and the other observed the fabric and the 

process; using both by the means of a match-to-sample task (Wijintjes et al., 

2019). In addition, a study that investigated the correspondence between the 

visual and haptic perception of roughness, and so on, used a rating scale 

method, which showed high correlations between visual and haptic modalities 

(Baumgartner et al., 2013). Drewing et al. (2009) evaluated the softness of 

rubber under haptic-only, vision-only, and visuo-haptic conditions separately by 

means of magnitude estimation and claimed that the perceived softness was 

significantly different. Overall, the methods and fabric formats used in the 

previous studies were mixed, and none considered all the fabric formats in real-

life scenarios and used a consistent method. It remains unknown whether the 

perception of tactile properties is correlated between using images and videos, 

and actual touch and observation of real fabrics. 

Moreover, different tactile properties were evaluated individually or collectively 

in the previous studies. There are similarities and overlap among them. For 

example, stiffness and smoothness were studies in (Pan 2006; Bacci et al., 

2012; Bouman et al., 2013), and their antonyms flexibility and roughness were 

studied in (Baumgartner et al., 2013; Mahar et al., 2013; Mao, 2014). Even so, 

it is not known whether these tactile properties are correlated, particularly under 

the different evaluation conditions due to the various methods applied in 

previous studies. 
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There are also large effects of fabric itself on the perception of tactile properties. 

Almost infinite fabric appearances are available due to the variations of fabric 

structures and colours (Breen and House, 2000). Since consumers rely on the 

fabric appearance to judge the tactile properties when buying online, it is 

important to study the individual effect of fabric structure and colour by 

effectively isolating the two variables. Previous studies used either woven 

fabrics (Rombaldoni et al., 2010; Kawabata, 1984; Chae et al., 2011), knitted 

fabrics (Jeguirim et al., 2010; Mahar et al., 2013; Suzuki and Sukigara, 2013), 

or selected fabrics based on the materials. The differences between fabric 

structures in the perception of tactile properties remain unclear. Moreover, 

colour is less investigated and not satisfactorily evaluated in a scientific colour 

space. 

1.2 Aim and objectives 

The aim of the present study is to investigate the perception of fabric tactile 

properties through images, videos, and actual touch and observation, and 

model the perception for the purpose of benefitting the public consumers in 

practical insights. After conducting a comprehensive literature review, separate 

objectives were set: 

• To investigate the effects of fabric structure, colour, and evaluated 

conditions on the visual-tactile and tactile perception (Chapter 4, Chapter 

6). 

• To investigate the correlations among different conditions and among tactile 

properties for all data (Chapter 4, Chapter 5) and for data collected for 

woven and knitted fabrics separately (Chapter 6). 

• To investigate the differences in tactile perceptual ratings collected between 

images/videos and real fabrics (Chapter 5). 

• To model the visual-tactile and tactile perception through fabric images and 
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videos (Chapter 7). 

To achieve the specific objectives, the first task is to develop a database to be 

used in the experiment. The specific requirements of the database include: 

• It is necessary to introduce variable control in the database, i.e., the same 

fabric in different colours and different fabrics in the same colour. This 

allows for independent investigations into the effects of fabric appearances. 

• The images in the database are supposed to comprehensively represent 

the fabric’s appearance, including flat-state appearance, draped-state 

appearance, and 360-degree appearance in the draped state. 

• The database should allow for the continuous addition of new samples. 

The approach taken in the present study is psychophysical experiment, 

collecting the participants’ responses to evaluate the visual-tactile and tactile 

perception. 

1.3 Outline of the thesis 

The structure of the thesis follows the research process of the present study, as 

shown in Figure 1.1. An overview of the thesis is given below. 
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Figure 1.1 The structure of the thesis. 

The current Chapter 1 describes the research background, aim and objectives, 

and the structure of the thesis. 

Chapter 2 introduces the comprehensive literature review, including the 

perception of tactile properties, the existing fabric database, the fundamental of 

CIE colorimetry, the process of camera and display colour characterisation, 

psychophysical experiments, and data analysis techniques. 

Chapter 3 describes the development of Leeds Fabric Tactile Database, and all 

aspects of experiment preparation. Experiment Phase I was firstly conducted 

using Leeds Fabric Tactile Database Part I, evaluating the perception of flexible-

stiff, smooth-rough, soft-firm, spongy-crisp, and warm-cool using flat fabric 

images, draped fabric images, and under the condition of touch-only. 

Experiment Phase II used Leeds Fabric Tactile Database Part II. In addition to 
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the three experiment conditions in experiment Phase I, three more experiment 

conditions: fabric rotation video, vision-only (using real fabrics), vision+touch 

were added in the experiment Phase II. 

Chapter 4 provides the analysis of data collected in the experiment Phase I. The 

effects of individual fabrics, colours, and experiment conditions were evaluated. 

The correlations of the tactile perceptual ratings were analysed among 

experiment conditions and among tactile properties. 

Chapter 5 focuses on the tactile perceptual ratings averaged from all 

participants in the experiment Phase II. The correlations among experiment 

conditions and among tactile properties were evaluated, and comparisons were 

made between experiment Phase I and Phase II. In addition, the tactile 

perceptual ratings were compared between using images/videos and real 

fabrics. 

Chapter 6 focuses on the effect of fabric structure, colour, and the interaction 

between fabric structures and experiment conditions, using data collected in the 

experiment Phase II. The fabric structures were categorised into woven and 

knitted fabrics. The correlations among experiment conditions and among tactile 

properties were analysed for woven and knitted fabrics separately to further 

compare the two fabrics structures. 

Chapter 7 provides the modelling procedure and model performance for visual-

tactile and tactile perception. Predictors were extracted from flat fabric images, 

draped fabric images, fabric rotation videos, respectively. The predictive 

performance was compared among regression techniques, among conditions, 

and among tactile properties. 

Chapter 8 summarises the major findings in the present study. The contributions 

of the entire study are identified. 
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2.1 Overview 

In this Chapter, the background information and related work was reviewed. 

Here is the outline: 

Section 2.2 provides an overview of the perception of fabric tactile properties. 

The term ‘tactile perception’ and ‘visual-tactile perception’ is identified and 

differentiated for the present study. Previous studies evaluated tactile properties 

using a mix of tactile attributes under a mix of evaluation conditions. The effect 

of the fabric appearance including fabric structure and fabric colour remains 

unclear. 

Section 2.3 reviews the existing fabric databases and demonstrates the 

necessity to develop a Leeds Fabric Tactile Database for a comprehensive 

evaluation of tactile and visual-tactile perception. 

Section 2.4 introduces the CIE colorimetry which is the foundation of colour 

specification. It is the tool for correcting images and specify colours of fabrics in 

the present study. 

Section 2.5 and Section 2.6 introduce the principles and the pipelines to 

characterise the fabric images in the Leeds Fabric Tactile Database, including 

the camera colour characterisation and display colour characterisation. 

Section 2.7 introduces the methods for colour measurement, which is a 

necessary step in colour characterisation and fabric colour specification to 

ensure an accurate reproduction. 

Section 2.8 introduces the psychophysical techniques used in the tactile-

related studies and in the present study. 

Section 2.9 introduces the image processing techniques. In the present study, 

fabric images and videos are processed by these techniques to extract the 

features. Those features are used as predictors in Chapter 7 to model the tactile 

and visual-tactile perception. 
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Section 2.10 introduces the statistical methods and modelling techniques used 

in the present study. 

2.2  The perception of fabric tactile properties 

2.2.1 Tactile perception VS visual-tactile perception 

The textile industry is possibly the largest market in the world, as all humans 

are consumers of garment. As an everyday product, the appearance and the 

tactile properties of fabrics attract consumers’ attention during purchase 

decision. As online shopping continues to expand globally, purchasing decisions 

are made based on not only the real fabric products, but the fabric images 

present on the digital display. To distinguish between tactile perception derived 

from real fabrics and that inferred from visual stimuli such as images and videos 

in the present study, ‘tactile perception’ refers to the perception through direct 

interaction with real fabrics, and ‘visual-tactile perception’ describes the tactile 

impression formed through images and videos. Table 2.1 lists example studies 

that evaluated human visual-tactile and tactile perception using various 

modalities, including image only, video only, touch-only, vision-only (using real 

fabrics), vision+touch, and any combination of these. 

Table 2.1 Studies that evaluating visual-tactile perception and tactile 
perception under different conditions. 

 Conditions References 

Visual-
tactile 

perception 

Images Experiment II from Wijintjes et al. (2019) 
Takahashi and Tan (2019) 
 

Videos Bouman et al. (2013) 
Experiment II from Wijintjes et al. (2019) 

Tactile 
perception 

Touch-only Baumgartner et al. (2013) 
Drewing et al. (2009) 
Fenko et al. (2010) 
 

Vision-only 
(using real 

fabrics) 

Baumgartner et al. (2013) 
Drewing et al. (2009) 
Experiment III from Wijintjes et al. (2019) 
Fenko et al. (2010) 
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Vision+touch Mehta et al. (2024) 

Yenket et al. (2007) 
Drewing et al. (2009) 
Experiment III from Wijintjes et al. (2019) 
Soufflet et al. (2004) 
Rombaldoni et al. (2010) 

 A combination of 
images and real 

fabrics 

Experiment I from Wijintjes et al. (2019) 
Xiao et al. (2016) 

Wijintjes et al. (2019) designed three experiments to evaluate tactile perceptions. 

Experiment I involved a combination of fabric images, videos, and touch-only 

condition, using both real fabrics and visual stimuli to assess tactile matching 

accuracy. Experiment II focused only on fabric images and videos to assess the 

similarities between pairs of fabric samples, representing visual-tactile 

perception. In Experiment III, participants were asked to observe the touching 

interaction performed by another individual and judge the similarity between two 

fabric samples (vision-only using real fabrics). Xiao et al. (2016) adopted a 

similar way to Experiment I from Wijintjes et al. (2019), asking participants to 

match fabric images while touching real fabrics without visual access to the 

samples at the same time. Both of the experiments used fabric images and real 

fabrics at the same time, and thus it was hard to differentiate whether the 

perception originated from images or real fabrics.  

In addition to the combination of experiment conditions, images and real fabrics 

were also used individually. Bouman et al. (2013) presented only fabric videos 

to participants and asked them to judge the fabric stiffness. Real fabrics were 

rated under the touch-only condition and vision-only condition (using real fabrics) 

separately. In the vision-only condition (using real fabrics), participants were 

asked to either observe the fabrics directly (Baumgartner et al., 2013) or 

observe the manipulation process by another participant (Drewing et al., 2009; 

Fenko et al., 2010). Besides, in the vision+touch condition, Yenket et al. (2007) 

focused on rating the tactile perception in which vision and touch were both 
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allowed. Soufflet et al. (2004) conducted three experiments in which participants 

freely sorted the fabrics, described the fabrics, and rated the tactile 

pleasantness, incorporating both touch and vision. Mehta et al. (2024) used 

fabric swatches mounted between two sheets of paper to ensure a fixed position, 

allowing participants to touch and rate the fabrics.  

Overall, previous studies have primarily focused on assessing human tactile 

perception through real fabric samples, while only a limited number of studies 

have explored visual-tactile perception using images or videos. With a few 

notable exceptions, these studies generally evaluated the perceived tactile 

properties under limited conditions. The experiment conditions adopted in these 

studies were mixed, and none considered all possible scenarios in which fabric 

tactile perception occurs. Furthermore, the relationship between visual-tactile 

and tactile perception, and the overall correlations among all possible conditions 

have not been fully investigated. It is unclear whether the results obtained under 

one condition would remain consistent in another. 

2.2.2 Description of fabric tactile properties  

2.2.2.1 Instrument-based description 

Over the years, instruments were developed to define the tactile properties of 

fabrics. Objective measurement serves as a powerful tool for the fabric quality 

control, and the corresponding standards have been widely adopted, enhancing 

communication between fabric manufactures and academics (Hu, 2004). For 

example, the Kawabata Evaluation System for Fabric (KES-F system) and 

Fabric Assurance by Simple Testing (FAST system) measures the low-stress 

mechanical properties of the fabrics (Hu, 2004; Kawabata, 1984; Minazio, 1995). 

Both systems mimic the real deformation process of fabric, while KES-F system 

measures the recovery process from deformation and FAST system measures 

the amount of deformation. Deformation including bending, compression and 

extension/tensile are tested in both systems. Surface friction is assessed from 
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KES-F system, while dimensional stability is only measured by FAST system. 

When using KES-F system to evaluate fabric tactile properties, the results are 

debatable because it was developed to evaluate tactile properties based on the 

results from subjective tactile judgement from a panel of Japanese experts. 

FAST system was developed to measure similar deformation to KES-F, but no 

subjective judgement results were considered in the system. KES-F system is 

much expensive than FAST system, and both systems are time-consuming. 

Considering the above, instruments were further developed to evaluate the 

tactile properties. Comparisons were made between the measurement results 

from KES-F and FAST system, and between the newly developed instruments 

with KES-F and FAST (Yim and Kan, 2014; Strazdiene, 2011; Sun et al., 2018). 

Furthermore, studies have examined how the subjective tactile perception links 

with the objective measurement results (Strazdiene, 2011; Sun et al., 2018, 

Mazzuchetti et al., 2008; Bacci et al., 2012; Rombaldoni et al., 2010). Overall, 

good correlations were found between the subjectively perceived tactile 

attributes and objectively measured results. For example, the perception of 

stiffness was found to be closely correlated with the KES-F and FAST 

measurement results (Sun et al., 2018; Bacci et al., 2012), and the perception 

of softness closely correlated to the mechanical results measured by FAST 

system (Mazzuchetti et al., 2008; Bacci et al., 2012). In addition, stiffness, 

smoothness, and softness were found to be the first three most important 

components to describe the fabric hand assessed by extracting the fabric 

through a nozzle (Pan, 2006). 

More recently, the Leeds University Fabric Handle Evaluation System (LUFHES) 

was developed by Mao (2014). In addition to measuring the displacement of 

deformation, LUFHES measures the energy consumed during fabric 

compression, twisting, and friction (Mao, 2014). The measured data are 

calculated to give scores to represent the tactile properties, including crispness, 

flexibility, sponginess, stiffness, stretchability, firmness, roughness, and 
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smoothness. In addition, devices such as tactile sensors give signals 

reproducing human movement when touching the surface, which enhances the 

understanding of the tactile properties and benefits the development of robots 

(Gao et al., 2016; Chu et al., 2013; Luo et al., 2018; Yuan et al., 2018; Xu et al., 

2024). 

However, the notable limitations of such instruments are that they are not 

available to the general public, and the generated data are difficult for 

consumers to interpret. Furthermore, such objective measurement results 

cannot represent the subjective human perception of the tactile properties when 

either fabric images or real fabrics are available. As the aim of the present study 

is not to explore the connection between objective measurement and subjective 

perception, the objective measurement will not be involved in the present study. 

The review of instruments and related studies in this section provides 

references for the tactile attributes, which are summarised in Table 2.2 in the 

next section (No.1 – 4 for instruments, No. 5 – 11 for studies evaluating specific 

tactile attributes). 

2.2.2.2 Perceptual-based description 

Different tactile attributes were evaluated individually or collectively in the 

previous studies. Guest et al (2011) developed a Touch Perception Task (TPT) 

that contained 26 adjectives by asking participants to rate how much the word 

related to the sense of touch, including warm, cool, soft, rough, smooth, firm, 

etc, together with 14 emotional descriptors. Experiments were conducted to 

identify and exclude descriptors in the sensory and emotional scales. After that, 

the TPT descriptors were adopted in other studies, most of which focused on 

the relationship between sensory and emotional descriptors on different 

materials and different skin sites (Ackerley et al., 2014; Bhatta et al., 2017). The 

results also showed that the TPT performed well in the discrimination of small 

differences in touch sensation (Ackerley et al., 2014). Ratings have also been 

used in studies focusing on different tactile attributes. For example, Fenko et al. 



 15 

(2010) investigated the perception warmth of scarves, demonstrating that both 

scarf materials and colours affected the perceptual warmth. Bouman et al. (2013) 

examined the perception of stiffness and density of fabrics from videos, where 

good correlations were found between human perception and ground truth 

measurement. Additionally, another study rated 10 different attributes across 7 

different materials (e.g., fabric, leather, fur, paper etc), revealing that hardness 

and roughness were the two dominant principal components under both touch-

only and vision-only conditions (using real fabrics) (Baumgartner et al., 2013). 

Mehta et al. (2024) rated eight aspects of tactile properties and found that tactile 

sensitivity, including the frequency of working time with textiles and familiarity of 

textiles, significantly affected the tactile perception. 

In addition to rating the tactile attributes, the methods of open-ended response 

and matching were also adopted in studies. Two tactile attributes, smoothness 

and softness, were recognised as two important factors on texture perception 

of fabrics (Mirjalili and Hardeberg, 2019). Wijintjes et al. (2019) designed a 

match-to sample task in which participants were asked to identify the correct 

fabric by touching in an unseen box, relying only on fabric videos and images. 

The experiment demonstrated the significant advantage of movies over images 

in fabric identification, while no differences were found in matching accuracy 

across different video styles. Similarly, Xiao et al. (2016) prepared flat and 

draped fabric images in RGB format and greyscale format. Participants were 

presented with a pair of images and were instructed to correctly position the two 

fabrics inside an unseen box. The results demonstrated that higher matching 

accuracy was achieved when using RGB images or draped fabric images. 

Mahar et al. (2013) reviewed the tactile evaluation focused on knitted fabrics. 

Bipolar tactile descriptors were identified as important to next-to-skin knitted 

fabrics by five organisations. Even though no information about the 

organisations was provided in the review, the bipolar descriptors are useful 

references for comparisons with tactile attributes in other studies. 
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Considering all the above in Section 2.2.2, the tactile attributes are summarised 

and compared in Table 2.2. Notably, there are different tactile properties that 

were studied in previous work, but there is also similarity and overlap among 

them. For example, stiffness and smoothness were studies in Mao (2014), Yim 

and Kan, (2014), Sun et al. (2018), and Pan (2006), warmth was studied in 

Strazdiene (2011), Guest et al. (2011), Fenko et al. (2010), Baumgartner et al 

(2013), and Mahar et al. (2013), softness was studied in Yim and Kan (2014), 

Mazzuchetti et al. (2008), Bacci et al. (2012), Pan (2006), Guest et al. (2011), 

Mehta et al. (2024) and Mahar et al. (2013), and crispness was studied in Mao 

(2014) and Rombaldoni et al. (2010). The attributes used in different studies 

were mixed, and none of them made effective comparisons among different 

attributes and evaluate their interconnections. It is challenging for consumers to 

find comprehensive and explanatory information across studies investigating 

different tactile attributes that can help them understand the visual-tactile 

perception and tactile perception. Therefore, by reviewing the tactile attributes 

from previous studies, one of the objectives of this study is to choose 

representative tactile attributes and provide a clearer understanding for the 

public. 
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Table 2.2 Summary of the tactile description/attributes in previous studies. 
No. Tactile description/attributes Methods 

1 Tensile and shear, pure bending, 

compression, surface characteristics 

(fabric surface profile and coefficient of 

friction) 

The Kawabata Evaluation System for Fabric 

(KES-F system) (Hu, 2004). 

2 Compression, bending, extension, 

dimensional stability 

Fabric Assurance by Simple Testing (FAST 

system) (Hu, 2004). 

3 Crispness, flexibility, sponginess, 

stiffness, stretchability, firmness, 

roughness, smoothness 

Leeds University Fabric Handle Evaluation 

System (LUFHES) (Mao, 2014). 

4 Signals from tactile sensors  Reading data from tactile sensors (Gao et al., 

2016; Chu et al., 2013; Luo et al., 2018; Yuan et 

al., 2018; Xu et al., 2024). 

5 Smoothness, softness, stiffness Correlation of the objective measurements 

between KES-F and PhabrOmeter system (Yim 

and Kan, 2014). 

6 Falling, cold-warm, supple-rigid, 

responsive, crumple like 

Correlation between sensory evaluation 

attributes and KEF-F results and Griff-Tester 

results (Strazdiene, 2011). 

7 Stiffness, smoothness, fullness, 

formability, total hand 

Correlation between the predicted tactile 

properties through Wool HandleMeter, KES-F 

results, and subjective evaluation on the listed 

attributes (Sun et al., 2018). 

8 Softness Correlation between the perceived softness and 

FAST measurement results (Mazzuchetti et al., 

2008) 

9 Stiffness, softness, force of compression, 

tensile stretch 

Correlation between the perceived tactile 

properties and FAST results (Bacci et al., 2012). 

10 “a feeling coming from a crisp fabric 

surface that gives a cool feeling” 

 

Correlation between the perceived attributes 

and FAST measurement results (Rombaldoni et 

al., 2010) 

11 Stiffness, smoothness, softness The first three most important components to 

describe the fabric hand (Pan, 2006). 

12 Warm, cool, soft, rough, smooth, firm, etc Touch perception task (TPT) (Guest et al., 2011). 

13 Warmth Rate the warmth of materials including 10 

difference scarves (Fenko et al., 2010). 

14 Stiffness, density of fabrics Measured how well observers could perceive 

the stiffness and density of fabrics from videos 

(Bouman et al., 2013). 

15 Glossiness, colourfulness, roughness, 

orderliness, hardness, warmth, elasticity, 

friction, 3-dimentionality, texture. 

Determine the first and second principal 

components for visual modality and haptic 

modality (Baumgartner et al., 2013). 
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16 Rough/smooth, hard/soft, bumpy/flat, 

sticky/slippery, scratch/slick, hairy/shorn, 

uniform/irregular, isotropic/anisotropic 

To assess the tactile impact on tactile perception 

(Mehta et al., 2024) 

17 Smooth, soft, homogeneous, geometric 

variation, random, repeating, regular, 

colour variation, strong, complicated 

Verbal description of the texture of the textiles 

(Mirjalili and Hardeberg, 2019). 

18 • Slippy-sticky 

• Smooth-rough 

• Limp-firm 

• Cool-warm 

• Stretchy-tight 

• Lofty-lean 

• Soft-harsh 

• Clean-hairy 

• Cool-warm 

Reviewed important fabric handle descriptors for 

next-to-skin knitted fabrics from five 

organisations (Mahar et al., 2013).  

• Soft-harsh 

• Smooth/clean 

• Stretch/resilience 

• Fullness/bulk 

• Smooth-rough 

• Cool-warm 

• Textured-clean 

• Stretch-rigid 

• Dry-greasy 

• Soft-rough 

• Resilient-non-

recovery 

• Texture-flat 

• Stretch-non-

stretch 

19 No attributes used Match-to-sample task (Wijintjes et al., 2019; 

Xiao et al., 2016)  

2.2.3 Fabric appearance  

When a fabric is present, it is usually judged from two aspects: what we see and 

what we feel. The former one is related to the appearance of the fabrics, and 

the latter one corresponds to the tactile properties. The last sections reviewed 

related studies evaluating different tactile properties under various conditions. 

This section reviews the appearance of the fabrics from the perspectives of 

structural differences and colour effects. 

2.2.3.1 Structure difference 

There are two major types of fabric structures: woven and knitted. The woven 

fabric has an interlaced structure with perpendicular warp and weft direction. 

The warp and weft intersect at the interlacing points, creating basic woven 

structures such as plain, twill, and satin weave (Breen and House, 2000). The 

weft yarn alternatively passes over and under each warp yarn to form the simple 

plain weave, passes over two warp yarns before going under the next to form 
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the twill weave, or floats over four or more warp yarns and then going under the 

next to form the satin weave. Figure 2.1 illustrates the three woven structures.  

   

Figure 2.1 Left: plain weave. Middle: twill weave. Right: satin weave. Black 
represents the yarn underneath the interlacing structure. White represents the 
yarn above the interlacing structure. Figures are reproduced from Breen and 

House (2000, p.15). 

Compared to the directly interlaced woven structure, knitted fabric has an 

interloop structure, where the loops interlock vertically and horizontally (Breen 

and House, 2000). The vertical direction is called the wale direction, and the 

horizontal direction is called the course direction. The interloping describes how 

the yarns form interconnected loops and create the knitted structure. Figure 2.2 

illustrates the wale and course directions, as well as the interloop structure. 

 
Figure 2.2 The interloped knitted structure. The figure is from Breen and 

House (2000, p.126). 

warp

weft

warp

weft

warp

weft
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Figure 2.3 Examples of woven (top three) and knitted (bottom three) fabrics in 

the present study. 

Figure 2.3 shows examples of the woven and knitted fabric from the Leeds 

Fabric Tactile Database in the present study (the database will be introduced in 

Chapter 3). It clearly illustrates the differences in appearance between woven 

and knitted fabrics, as well as the variations within each fabric structure. From 

the perspective of fabric structure, these differences result from the choice of 

fibre, the yarn weight, and the arrangement of interlacing and interlooping during 

the manufacturing process. There is an almost infinite variety fabric appearance 

designs, depending on the underlying fabric structure.  

Previous studies used woven fabric only (Rombaldoni et al., 2010; Kawabata, 

1984; Chae et al., 2011), knitted fabrics only (Jeguirim et al., 2010; Mahar et al., 

2013; Suzuki and Sukigara, 2013), or a combination of different fabric structures 

(Mehta et al., 2024; Soufflet et al., 2004; Bertaux et al., 2007) to evaluate the 

tactile properties based on either instrument measurement or subjective 

judgement. With a few notable exceptions, these studies generally evaluate the 

tactile properties on the selected samples rather than making comparisons 

between woven and knitted fabrics. The exception includes the study by Bertaux 

et al. (2007), which evaluated the relationship between ground truth 
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measurement of friction and subjectively perceived roughness. It concluded that 

the correlation was found only for knitted fabrics but not for woven fabrics. 

However, it was not to compare the perception differences, and the differences 

in perceived tactile properties between woven and knitted fabrics remain unclear. 

In addition, studies also selected fabric samples based on fabric materials and 

made comparisons among individual fabrics (Jiao et al., 2019; Bouman et al., 

2013; Wijntjes et al., 2019; Baumgartner et al., 2013). To prevent an 

overwhelming number of comparisons between individual fabrics, a limited 

number of fabrics was usually used in these studies. 

2.2.3.2 The effects of colours 

Observations in real life rely on the interplay between light, human eye, and the 

physical object. Colour plays a significant role in visual observation and 

perception. As the term tactile is more related to palm than eyes, the effect of 

colour on tactile perception has not been frequently investigated. Yenket et al. 

(2007) used dyed cotton fabrics to evaluate fabric handle properties including 

bright, soft, firm, warm, rough etc (in total of 24 attributes). Five colours, white 

(undyed), light blue, dark blue, pink, and yellow, were dyed on four cotton fabrics. 

The results showed that there was little difference on the perceptual ratings for 

both consumer panel and expert panel. However, limited colours were used in 

the study, and the number of samples was only 20. The evaluation was not 

perfectly sufficient to define the effect of different colours on tactile perception. 

In addition, Xiao et al. (2016) conducted a matching-to-sample task, matching 

the fabric in an unseen box with the corresponding images in RGB format and 

greyscale format. They found that using RGB images improved the matching 

accuracy between touch and vision. Colour was not well controlled as a variable 

in previous studies, and it remains unknown of the role, particularly the impact 

of different colours on tactile perception. Therefore, in the present study, colours 

were carefully selected to generate images of the same fabrics in different 

colours (see Chapter 3, Section 3.2.1). Additionally, real fabrics were selected 
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with evenly distributed colours (see Chapter 3, Section 3.2.2) to fully investigate 

the role of different colours. 

2.3 Fabric database 

Through the review of previous studies of tactile and visual-tactile perception of 

fabrics, the next step is to select proper stimuli in the present study. This section 

reviews the existing fabric databases used in fabric-related research. 

Fabric databases were developed for various purposes, including texture 

analysis, fabric defects detection and classification, texture perception, and also 

tactile-related purposes. Table 2.3 summarises the objectives for the 

corresponding fabric databases, including the type of images and their 

examples. 

Table 2.3 Summary of fabric databases. 
 References Objectives Database Examples 

1 Kampouris 

et al. (2016) 

Use micro-geometry 

and reflectance of 

fabric surface from 

images for material 

classification. 

Over 2,000 fabric surface 

images with material 

classification labels (THE 

FABRICS DATABASE, 

2016) 

 

2 Silverstre-

Blanes et al. 

(2019) 

Detection and 

classification of 

fabric defects by 

image processing 

methods. 

140 detect-free fabric 

images, 105 images with 

detect (256*256 pixels). 

 

3 Zhang et al. 

(2020) 

Detection of fabric 

defects by machine 

learning and deep 

learning. 

ZJU-Leaper: 98,777 

images of fabrics from 19 

categories 

 

4 Luo et al. 

(2018) 

Use images and 

tactile data collected 

through tactile 

sensor to recognize 

fabric texture 

ViTac: 1,000 camera 

images and images 

recorded by tactile 

sensor  

Camera image
Corresponding 
GelSight image
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5 Yuan et al. 

(2018) 

Use images 

recorded by tactile 

sensor to recognise 

the physical 

properties and 

semantic properties 

153 pieces of cloths 

 

6 Xu et al. 

(2024) 

To build a dataset 

that consists of 

images and 

corresponding tactile 

data for leather. 

743 records, each record 

includes one camera 

image, two tactile 

images, and one defect 

segmentation image 

(620*410 pixels) 

 

7 Takahashi 

and Tan, 

(2019) 

Estimate tactile 

properties to 

enhance the robot 

understanding of 

environment. 

Cropped fabric images  

 

8 Bouman et 

al. (2013) 

Predict the fabric 

stiffness and density 

from fabric videos 

and correlate the 

objective 

measurement results 

with human 

perception results. 

30 fabric videos 

(859*851 pixels). Fabrics 

were hung and exposed 

to winds.  

9 Mirjalili and 

Hardeberg, 

(2019) 

Study the perceptual 

attributes that affects 

the human 

perception of texture 

of fabrics. 

52 real fabrics, no 

images or videos were 

captured and used 

 

10 Sztandera et 

al. (2013) 

Define the tactile 

comfort perception 

through mechanical 

measurement, tactile 

perception, and 

fabric construction 

analysis 

48 real fabrics, no 

images or videos were 

captured and used 

 

All example images were derived from corresponding references.  

Fabric images were frequently used to build the fabric database. Kampouris et 

al. (2016) built a large fabric database containing over 2,000 fabric images, each 

annotated with pre-defined labels specifying the material types. By analysing 

the micro-geometry and the reflectance properties of the fabric, they found that 

Cotton polo Knit jacket
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the material classification accuracy outperformed the methods using only 

texture information. A database was developed to detect fabric defects and 

classify the defection types (Silverstre-Blanes et al., 2019). Moreover, Zhang et 

al. (2020) collected almost 10,000 fabric images to perform defects 

classification by advanced learning methods. 

In addition to fabric images, Luo et al. (2018) collected both fabric images and 

images recorded by a tactile sensor GelSight. The sensor was pressed on the 

surface of the fabric, and the texture was then recorded and captured by 

GelSight. Incorporating both images and tactile data, the study developed a new 

algorithm to recognise fabric textures. Similar to Luo et al.’s study, Yuan et al. 

(2018) also used GelSight to record the cloth images when pressing the sensor 

against the fabrics, aiming to recognise fabric properties such as thickness, 

fuzziness, softness, durability, and so on. In addition, camera and a force sensor 

were used in Xu et al.’s study (2024) to build the relationship between images 

and tactile data for one specific fabric material, Crazy Horse Leather. Moreover, 

Takahashi and Tan (2019) trained a Convolutional Neural Network (CNN) model, 

using fabric images as inputs and signals from tactile sensors as outputs to 

estimate the slipperiness and roughness. All four studies extended human 

tactile perception to robotic systems equipped with tactile sensors, enabling the 

automated recognition of fabric images and interpretation of tactile data. 

Bouman et al. (2013) collected a database of fabric videos where fabrics were 

hung and exposed to winds of three different strength. The stiffness and fabric 

density were predicted by analysing the fabric motion in the video. In addition, 

the ground truth of fabric stiffness and fabric density exhibited an exponential 

dependence on the human perceived stiffness and density. 

Instead of images and videos, studies also developed fabric database using real 

fabrics. Mirjalili and Hardeberg (2019) collected 52 real fabrics and used them 

to find ten frequently used attributes to interpret the texture appearance of 

fabrics, including tactile-related properties (smooth and soft), and appearance-
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related attributes (colour variation and repeating). Sztanderaz et al. (2013) built 

a model for tactile comfort perception predicted from the mechanical 

measurement of KEF-S, the tactile perception, and fabric construction. Three 

attributes, the rate at which sample sponges back to the original shape, fabric 

weight, and amount of small round particles in the surface of the fabrics were 

found to be the most influential attributes for tactile comfort. 

Overall, the fabric databases can be generally divided into the following 

categories, and the limitations are also identified:  

(1) only containing images or videos (e.g., reference 1, 2, 3, and 8 in Table 2.3). 

Such database normally requires a large number of images or videos, especially 

when advanced machine learning and deep learning techniques are used to 

make classification and recognition. However, there are few fabric image and 

video databases specifically developed for studying human visual-tactile 

perception of fabrics. The existing databases are insufficient to fulfil the aim of 

the present study. 

(2) containing images and tactile data recorded by tactile sensor (e.g., reference 

4, 5, 6, and 7 in Table 2.3). Tactile information was taken into consideration in 

previous studies, while such information was recorded by tactile sensors such 

as GelSight and force sensor. Using the tactile sensor can be helpful in research. 

However, in everyday life, a big limitation is that such devices are usually not 

accessible for the public. Reading and understanding the recorded data by 

tactile sensor will be the other big problem for most of consumers to understand 

the tactile properties of the fabric products. 

(3) only containing real fabrics (e.g., reference 9 and 10 in Table 2.3). The first 

limitation of such fabric databases is that the number of real fabrics is usually 

less than the databases of images, due to the time consumed to evaluate fabric 

samples. In addition, using real fabrics cannot to result in good reproducibility. 

Although different studies normally select fabrics based on the fabric type and 
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material, cross-study comparisons remain difficult. 

(4) involving ground truth data from objective measurements (e.g., reference 8 

and 10 in Table 2.3). Similar to (2), devices measuring fabric properties are not 

accessible to the public, and reading and understanding such data requires 

professional training. Additional human perception experiments are required to 

link such results to human perceptual attributes. 

Considering all above, it is necessary to develop a Leeds Fabric Tactile 

Database specifically designed for tactile and visual-tactile perception of fabrics. 

This database is supposed to incorporate both images/videos and real fabrics 

to establish a connection between what humans see and what they feel in terms 

of tactile properties. An important consideration of the database is that all the 

data will be easy to be interpreted to the public including not only researchers 

but the general consumers in the textile market. 

2.4 CIE colorimetry 

After setting the plan to collect a Leeds Fabric Tactile Database, the visual 

stimuli in the database need to be carefully captured and processed. It is 

essential to review the colorimetric information before handling colours in 

images and videos. 

A simplified explanation of colorimetry is that colorimetry is the measurement of 

colour (Fairchild, 2013). The Commission Internationale de l’Éclairage (CIE) is 

responsible for providing standards and recommendations for the application of 

colorimetry. Colour is visually perceived because of three components: light 

source, an object, and an observer, as shown in Figure 2.4. Accordingly, CIE 

made recommendations on the standard illuminants, standard observer data, 

and standard geometric conditions for the triangle of colour, as well as 

colorimetric calculation including tristimulus values, uniform colour space, and 

colour difference formulae (CIE, 2018). This section reviews the CIE standards 

relevant to the present study. The book Measuring colours is used as the 
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general reference (Hunt and Pointer, 2011). 

 
Figure 2.4 Triangle of colour. The image of X-Rite ColorChecker® Classic 

chart was downloaded from X-Rite (2025a). 

2.4.1 CIE standard illuminants 

Light source plays an essential role in observing colour, which is referred to as 

physical emitters of visible energy (Fairchild, 2013). Illuminant, however, is a 

standardised representation of spectral power distribution (SPD) of the light 

source. SPD represents the radiant power per unit area at each wavelength 

across the visible spectrum of a light source. For example, daylight is one of the 

light sources to which humans are exposed daily, and CIE illuminant D65 is a 

standardised representation of daylight. While the SPD of daylight varies, the 

SPD of CIE illuminant D65 has been set to represent the daylight with a 

correlated colour temperature (CCT) of 6504K (Hunt and Pointer, 2011). Other 

CIE standard illuminants include CIE illuminant A with a CCT of 2856K and CIE 

illuminant D50 with a CCT of 5003K. The SPD of CIE standard illuminants are 

available in Hunt and Pointer (2011). 

2.4.2 CIE colour-matching functions and standard observers 

Two types of photoreceptors, cones (𝜌, 𝛾, 𝛽) and rod, work together on the retina 

to give a colour vision of human (Hunt and Pointer, 2011). The three cones and 

the rod have different sensitivities across the visible spectrum as shown in 

Observers
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Figure 2.5. It is essential to use the cone spectral sensitivity data to determine 

how the human visual system perceives colours from a given spectral stimulus. 

However, the spectral sensitivity cannot be precisely measured due to the 

restriction of devices at the time of development. CIE colour-matching functions 

were then developed to replace the cone spectral sensitivities to quantify colour. 

 
Figure 2.5 The spectral sensitivity of cones (solid lines) and rod (broken line). 

The figure is from Hunt and Pointer (2011, p.6). 

Two independent trichromatic colour-matching experiments were conducted by 

John Guild and W. David Wright. The principle of the experiments is shown in 

Figure 2.6. Participants were asked to adjust the amount of R, G, B light source 

until the mixture matched the test colour. The CIE colour-matching functions 

were initially derived from the two experiments’ results and represented as 

𝑟̅(𝜆), 𝑔̅(𝜆), 𝑏3(𝜆). They are the measures of amount of R, G, B needed to match 

a constant equi-energy stimulus, as shown in Figure 2.7. 

 
Figure 2.6 The principle of trichromatic colour matching. The figure is from 
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Hunt and Pointer (2011, p.25). 

 
Figure 2.7 The initial colour-matching functions 𝑟3(𝜆), 𝑔3(𝜆), 𝑏3(𝜆). The figure is 

from Hunt and Pointer (2011, p.30). 

It is noted that each colour-matching function curve is negative in specific parts. 

To eliminate the negativity, CIE recommended new colour-matching functions 

𝑥̅(𝜆), 𝑦3(𝜆), 𝑧̅(𝜆) through linear transformation of 𝑟̅(𝜆), 𝑔̅(𝜆), 𝑏3(𝜆) in Equation 2.1 

(Hunt and Pointer, 2011). The 3*3 matrix in Equation 2.1 were carefully defined 

so that the new colour-matching function curves are always positive across the 

visible spectrum, shown as the solid curves in Figure 2.8. 

4
𝑥̅(𝜆)
𝑦3(𝜆)
𝑧̅(𝜆)

5 = 7
0.49 0.31 0.20

0.17697 0.81240 0.01063
0.00 0.01 0.99

B 4
𝑟̅(𝜆)
𝑔̅(𝜆)
𝑏3(𝜆)

5 

Equation 2.1 

 
 

Figure 2.8 The CIE colour-matching functions 𝑥̅(𝜆), 𝑦3(𝜆), 𝑧̅(𝜆). Solid line: CIE 
2° observer. Broken lines: CIE 10° observer. The figure is from Hunt and 
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Pointer (2011, p.34). 

In the trichromatic experiments, the matching was conducted within a 2° field. 

When a larger field is used, the matching may be no longer consistent. 

Therefore, CIE recommended another set of values of colour-matching 

functions for samples with a field size greater than 4° in 1964, as shown in in 

the broken curves in Figure 2.8. The use of colour-matching functions depends 

on the sample size and is discriminated by subscripts. For a 2° field size, it is 

also referred to as the CIE 1931 Standard Observer. For a 10° field size, the 

colour-matching functions are represented as 𝑥̅(𝜆)!", 𝑦3(𝜆)!", 𝑧̅(𝜆)!" , and are 

referred to as the CIE 1964 Standard Observer. It is essential to specify which 

set of data is used when quantifying colours from colour-matching functions. 

2.4.3 CIE standard geometric condition 

In addition to standard illuminants and standard observer, the final component 

of the triangle of colour is the object being viewed or measured. The colour 

could be perceived differently when different illuminants, observers, and viewing 

angles are applied. CIE recommended four standard geometries of illumination 

and viewing, which are also applied to measurement as shown in Figure 2.9 

(Hunt and Pointer, 2011).  

 
Figure 2.9 Four CIE standard geometries of illumination and 

viewing/measurement. Figure is from Hunt and Pointer (2011, p.104) 
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For 0°:45° geometry, the object is illuminated nearly at the normal incidence and 

the reflection of light is captured at an angle of approximately 45° from the 

normal to the object surface. The 45°:0° geometry is similar to 0°:45°, except 

that the illumination occurs at an angle of approximately 45° and the reflection 

of light is captured nearly at the normal incidence. A strict 0° is usually not 

recommended due to the inter-reflections between the object and the light 

source. ‘d’ represents diffuse, and 8° is the offset angle of light source in the CIE 

8°:d and the offset angle of detecting the light in the CIE d:8° geometries. An 

integrating sphere is used to provide diffuse illumination, and a white-coated 

baffle is usually included in the integrating sphere to prevent the direct light 

between object and measurement spot. A gloss trap is fitted in the integrating 

sphere. If using the gloss trap, it will absorb the light reflected at the specular 

angle relative to the incident light or measurement beams, excluding the 

specularly reflected light (SCE mode). Without using the gloss trap, the specular 

reflection will be included (SCI mode). It is essential to identify which CIE 

geometry is used and whether the specular reflection is included when 

measuring colour. 

2.4.4 CIE tristimulus values XYZ and chromaticity diagram 

In the previous three sections, CIE standard illuminants, standard observers, 

and standard geometric conditions were reviewed. By these three components, 

the CIE tristimulus values CIE XYZ can be calculated and specify colours. Two 

colour stimuli with the same CIE XYZ values will match if they are viewed under 

the same lighting, by an observer whose colour vision is close to CIE Standard 

Observer, and under the same CIE geometry (Hunt and Pointer, 2011). The CIE 

XYZ values are computed from CIE colour-matching functions using Equation 

2.2. 

𝑋 = 𝑘$𝑆(𝜆)𝑅(𝜆)
!

𝑥̅(𝜆)𝑑𝜆  

𝑌 = 𝑘$𝑆(𝜆)𝑅(𝜆)
!

𝑦/(𝜆)𝑑𝜆 Equation 2.2 
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𝑍 = 𝑘$𝑆(𝜆)𝑅(𝜆)
!

𝑧̅(𝜆)𝑑𝜆  

𝑘 = 100/$𝑆(
!

𝜆)𝑦/(𝜆)𝑑𝜆  

where 𝑘 is the constant when Y is set to 100 for the perfect diffuser, 𝑆(𝜆) is 

the SPD of the light source, 𝑅(𝜆) is the spectral reflectance of the measured 

object, 𝜆 is the wavelength across the visible spectrum with an interval of 𝑑𝜆. 

For a perfect diffuser, the Y value is set to 100 as the reflectance factor 𝑅(𝜆) of 

a perfect diffuser is equal to 1 across the visible spectrum, meaning it reflects 

100% of the incident light in all directions (Hunt and Pointer, 2011). Y is therefore 

regarded as the percentage luminance factor and has an approximate 

correlation with the perceptual lightness. 

The tristimulus values X and Z, however, has no correlation with any perceptual 

attributes. Chromaticity coordinates, denoted as 𝑥, 𝑦, 𝑧, were developed to 

correlate CIE XYZ tristimulus values as defined in Equation 2.3. The sum of 𝑥, 

𝑦, 𝑧 is equal to 1. Based on 𝑥 and 𝑦, CIE 𝑥𝑦 chromaticity diagram can be 

plotted in Figure 2.10 and a colour can be usually specified by CIE 𝑥𝑦 together 

with the luminance factor Y. 

𝑥 =
𝑋

𝑋 + 𝑌 + 𝑍
  

𝑦 =
𝑌

𝑋 + 𝑌 + 𝑍
 

Equation 2.3 

𝑧 =
𝑍

𝑋 + 𝑌 + 𝑍
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Figure 2.10 CIE 𝑥𝑦 chromaticity diagram. The figure is from Hunt and Pointer 

(2011, p.48) 

2.4.5 CIE uniform colour space 

2.4.5.1 CIE 𝒖#,𝒗# chromaticity diagram 

A major limitation of the CIE 𝑥𝑦 chromaticity diagram is non-uniformity. The 

short lines in CIE 𝑥𝑦 chromaticity diagram (Figure 2.10) illustrate the perceived 

colour difference between two colours of the same luminance. If the perceived 

colour differences are of the same magnitude, the length of the short lines is 

supposed to be equal, but it is not the fact in Figure 2.10. To uniformly represent 

colour, CIE 1976 uniform chromaticity scale diagram (also known as 𝑢# ,𝑣# 

chromaticity diagram) was developed by deriving 𝑢#  and 𝑣#  chromaticity 

coordinates from CIE XYZ values (Equation 2.4). Figure 2.11 illustrates the 

approximately uniform CIE 𝑢#,𝑣# chromaticity diagram. Compared to the non-

uniform CIE 𝑥𝑦 chromaticity diagram in Figure 2.10, the colour difference of 

the equal magnitude can be uniformly plotted in the CIE 𝑢# ,𝑣#  chromaticity 

diagram. 

𝑢# =
4𝑋

𝑋 + 15𝑌 + 3𝑍
 Equation 2.4 
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𝑣# =
9𝑌

𝑋 + 15𝑌 + 3𝑍
  

 
Figure 2.11 The CIE 𝑢#,𝑣# chromaticity diagram. The figure is from Hunt and 

Pointer (2011, p.49). 

2.4.5.2 CIELAB and CIELUV colour space 

Even though the CIE 𝑢#,𝑣# chromaticity diagram is nearly uniform, it only shows 

the ratio of CIE XYZ values but not the magnitude, and it is only applicable for 

colours of the same luminance (Hunt and Pointer, 2011). Two uniform colour 

spaces, CIELAB and CIELUV colour space, were then developed. CIELAB 

uniform colour space defines three axes, L* (lightness), a* (redness-greenness), 

and b* (yellowness-blueness), defined in Equation 2.5 and illustrated in Figure 

2.12-left. 

  

Figure 2.12 Left: CIELAB uniform colour space. Right: CIELUV uniform colour 
space. The right figure is from Hunt and Pointer (2011, p.54). 

L*=0, black

L*=100, white

Red, +a*

Green, -a*
Blue, -b*

Yellow, +b*
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𝐿 ∗= 116𝑓 O
𝑌
𝑌$
P − 16 

Equation 2.5 
𝑎 ∗= 500[𝑓 O

𝑋
𝑋$
P − 𝑓 O

𝑌
𝑌$
P] 

𝑏 ∗= 200[𝑓 O
𝑌
𝑌$
P − 𝑓 O

𝑍
𝑍$
P] 

𝑓(𝐼) = {𝐼
!/&, 𝑓𝑜𝑟	𝐼 ≥ 0.008865
7.787(𝐼) + 16/116

 

where 𝑋$, 𝑌$, 𝑍$ are the CIE XYZ tristimulus values for the chosen reference 

white. As the CIE tristimulus values are transformed using cube-roots functions 

to the CIE LAB values, the mixture of any two colours will not fall on a straight 

line in the CIELAB colour space, and thus no chromaticity diagram available. 

The saturation is not defined in the CIELAB colour space, but hue-angle (ℎ'() 

and chroma (𝐶'(∗ ) are defined based on a* and b* in Equation 2.6 and Equation 

2.7, respectively. 

ℎ'( = arctan	(
𝑏∗

𝑎∗
) Equation 2.6 

𝐶'(∗ = b𝑎∗* + 𝑏∗* 
Equation 2.7 

CIELUV is another CIE uniform colour space. Similar to CIELAB colour space, 

it also has three orthogonal dimensions as shown in Figure 2.12-right, denoted 

as 𝐿∗  (lightness), 𝑢∗ (the values along red-green dimension), and 𝑣∗ (the 

values along yellow-blue dimension): 

𝐿∗ = 116𝑓 O
𝑌
𝑌$
P − 16 

Equation 2.8 

𝑢∗ = 13𝐿∗(𝑢# − 𝑢$# ) 

𝑣∗ = 13𝐿∗(𝑣# − 𝑣$# ) 

𝑓(𝐼) = {
𝐼!/&, 𝑓𝑜𝑟	𝐼 ≥ 0.008865

O
841
108P

𝐼 +
4
29
, 𝑓𝑜𝑟	𝐼 ≤ 0.008865

 

where 𝑢$#  and 𝑣$#  are the chromaticity coordinates of the chosen reference 

white, transformed from CIE XYZ tristimulus values using Equation 2.4. Hue-
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angle, chroma, and saturation are correlated to CIELUV colour space and 

defined as follows: 

ℎ"# = arctan	(
𝑣∗

𝑢∗) 
Equation 2.9 

𝐶"#∗ = ?𝑢∗% + 𝑣∗% Equation 2.10 

𝑠"# = 𝐶"#∗ /𝐿∗ Equation 2.11 

The lightness L* has the same definition in CIELAB and CIELUV uniform colour 

spaces, while multiplicative normalisation of tristimulus values was adopted for 

a* and b* and the subtractive shift in chromaticity coordinates was adopted for 

u* and v* (Fairchild, 2013). 

2.4.6 Colour difference formulae 

The difference between two colours in a colour space is quantified by using 

colour difference formulae. The calculation can be simply defined as the 

Euclidean distance between the three coordinates of two colours in either 

CIELUV colour space (Equation 2.12) or CIELAB colour space (Equation 2.13), 

generally based on the CIE XYZ tristimulus values. The difference in lightness 

L* between two colours is denoted as ∆𝐿∗, and the same regulation is applied 

to the differences in 𝑢∗, 𝑣∗, 𝑎∗, and 𝑏∗. 

∆𝐸+,∗ = b(∆𝐿∗)* + (∆𝑢∗)* + (∆𝑣∗)* Equation 2.12 

∆𝐸'(∗ = b(∆𝐿∗)* + (∆𝑎∗)* + (∆𝑏∗)* 
Equation 2.13 

Since the development of CIE 1976 L*a*b* and CIE 1976 L*u*v* colour 

difference formulae, efforts were made on proposing new colour difference 

formulae to obtain a more accurate prediction. Examples include CMC(l:c) 

(Clarke et al., 1984), CIE94, and CIEDE2000 colour difference formulae (Luo et 

al., 2001). Currently CIE recommended CIEDE2000 colour difference formula 

in industry applications (CIE, 2018).  
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2.5 Colour characterisation of camera 

To captured high-quality images, Digital Single-Lens Reflex (DSLR) cameras 

are commonly used in both everyday life and research. The light travels through 

the camera lens and reaches the image sensor embedded in the camera. The 

image sensor converts the incoming light into electronic signals, which are then 

processed by the camera’s image signal processor (ISP) to generate image 

data. The different image sensors and algorithms embedded in the image signal 

processors result in device-dependent RGB images. The characterisation 

process is usually achieved by transforming RGB data to device-independent 

coordinates such as CIE XYZ (Hunt and Pointer, 2011). 

2.5.1 Camera settings 

The output RGB image from cameras are highly dependent on ISP. Since there 

is nearly no way to modify the embedded algorithm in ISP, adjusting the camera 

settings to reproduce the scene’s colours as close to the scene as possible is a 

fundamental concept in photography. The camera is usually set to the manual 

model to adjust shutter speed, ISO speed, and aperture. White balance is 

normally customised based on the lightness of the scene to be captured. The 

book Camera Image Quality Benchmarking is used as the general reference in 

this section (Philips and Eliasson, 2018). 

2.5.1.1 Exposure of light 

Shutter speed is the time that the camera captures light, usually measured in 

seconds (Philips and Eliasson, 2018). The slower the shutter speed, the more 

light can be captured by the camera, making the image appears brighter. 

However, excessively long exposure times can also lead to motion blur. 

Common sets of shutter speed can be 1/2, 1/4, 1/8. 

ISO speed represents the sensitivity of camera sensor to incoming light (Philips 

and Eliasson, 2018). A lower ISO speed corresponds to lower sensor sensitivity, 



 38 

making it suitable for well-lit scene. For indoor or low-light scene, a relatively 

higher ISO speed is typically used. Common sets of ISP speed can be ISO 100, 

ISO 200, ISO 400, ISO 800, etc. 

The aperture directly controls the amount of light entering the camera by 

adjusting the diameter of the lens opening, referred to as f-number (Philips and 

Eliasson, 2018). A smaller f-number represents larger diameter that the lens 

opens, and thus more light reaches the camera sensor and results in a brighter 

image. Common sets of f-number can be f2.0, f3.0, f4.0. The aperture also 

affects the depth of field (DOF), where a larger aperture results in a shallow 

DOF and a smaller aperture results in a deep DOF. A shallow DOF produces a 

blurred background, whereas a deep DOF keeps both foreground and 

background in focus. 

Adjusting shutter speed, ISO speed, and aperture jointly affects the resulting 

image. Careful selection of each attribute is essential to avoid overexposure, 

motion blur and other problems. 

2.5.1.2 White balance 

Human adjusts the lightings in different colour temperatures automatically, but 

it is not the fact of camera. The white balance setting adjusts the overall colour 

appearance in a camera shot by compensating for the colour temperature of the 

scene being captured (Adobe, 2024). The adjustment ensures that white objects 

appear white in the image, preserving accurate colour representation across the 

image. Cameras can be set to auto white balance (AWB) mode to compensate 

for the colour temperature of the scene by the built-in light meter. For example, 

under tungsten lighting (around 3200K), AWB compensate for the warm tone by 

boosting the blue channel intensity. In contrast, with higher colour temperature 

lighting (e.g., 7000K), AWB increases the red channel ratio to neutralise the 

bluish tone. However, AWB is not always precise. Customising the white 

balance setting in the camera becomes essential, especially when shooting 



 39 

under a well-controlled lighting. This process is usually achieved by measuring 

the colour temperature of the stable light source and setting it as the custom 

white balance in the camera. 

2.5.2 Characterisation process 

As mentioned at the beginning of Section 2.5, the fundamental principle of 

colour characterisation process is to transform the device-dependent data (e.g., 

RGB) to device-independent data (e.g., CIE XYZ) (Hunt and Pointer, 2013). Two 

methods of the transformation are introduced and compared firstly in this 

section. Practical considerations, including colour measurement and the use of 

colour charts, are introduced later in this section. 

2.5.2.1 Characterisation methods 

Two characterisation methods, spectral sensitivity method and colorimetric 

method, are often used by camera manufacturers, testing laboratories, and 

ordinary users (Hong et al., 2001). For the spectral sensitivity method, the 

camera spectral sensitivity is measured by professional devices, such as 

monochromator and radiance meter, and then mapped to CIE colour-matching 

functions (CMF). For the colorimetric method, RGB and CIE XYZ (or other 

device-independent coordinates) data of a suitable number of test colours are 

collected (Hunt and Pointer, 2013), and the relationship is then decided. 

Compared to colorimetric method, spectral sensitivity method requires: (1) a 

monochromator to produce tuneable monochromatic light source that spans the 

spectrum; (2) the camera to capture RAW images under each single-

wavelength illumination; (3) accurate processing to extract RGB values from 

RAW data. The process is cost and time consuming. On the other hand, 

colorimetric method only requires colour measurement device, a standard 

colour charts, and an image of the colour charts captured by the camera. Most 

studies used colorimetric method to characterise the camera due to its simplicity 

and practicality (Hong et al., 2001; Kikuchi et al., 2020; He et al., 2021). 
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To apply the colorimetric method, the standard colour chart is required to put at 

the same place as the objects to be shot. The stable and uniform lighting 

provided by a professional lighting cabinet is luminated on the colour chart. Any 

shadow or highlight is supposed to be avoided during imaging. The RGB data 

can then be extracted from the image for each colour patch in the chart. In 

addition, two methods can be used to obtain the CIE XYZ values of the colour 

chart: (1) directly measure the spectral power distribution (SPD) of all colour 

patches and compute them to CIE XYZ; and (2) measure the SPD of the lighting 

in the cabinet and measure the spectral reflectance of the physical colour chart 

(Hunt and Pointer, 2013). Methods including linear regression and polynomial 

regression were applied to build the relationship between RGB and CIE XYZ 

values and were compared in previous study (Hong et al., 2001). He et al.’s 

study expanded on this by incorporating lookup tables and neural networks and 

further compared the transformations (He et al., 2021). 

2.5.2.2 Colour charts 

To build a reliable colour characterisation process, a reference colour chart with 

neutral grey colour patches is used in colorimetric method for camera colour 

characterisation. Popular colour charts include X-Rite ColorChecker® Classic 

chart (X-Rite, 2025a), X-Rite ColorChecker® Digital SG chart (X-Rite, 2025b), 

GretagMacbeth ColorChecker® DC (Chromaxion, 2025), and DigiEye 

calibration chart DigiTizer (Verivide, 2025), as shown in Figure 2.13. Neutral 

colours including white, black, and a series of grey colours are included in all 

colour charts. For X-Rite ColorChecker® Classic chart, other 18 colours 

representing different hues are included. Together with 6 neutral colours, the X-

Rite ColorChecker® Classic chart is also included in X-Rite ColorChecker® 

Digital SG chart (area from row 2 column E to row 5 column J). In addition, the 

X-Rite ColorChecker® Digital SG chart provides a wider colour gamut with an 

expanded range of colours beyond those in the classic charts (X-Rite, 2025b). 

The GretagMacbeth ColorChecker® DC chart (DC standing for digital camera) 



 41 

consists of 237 colour patches, including 8 glossy-surfaced patches and 229 

matt-surfaced patches. DigiEye calibration chart DigiTizer is designed for the 

DigiEye colour measurement system, involving a stable lighting cabinet and a 

top-mounted camera captures for consistent imaging conditions. 

 
Figure 2.13 Colour charts. (a) X-Rite ColorChecker® Classic chart, (b) 

ColorChecker® Digital SG chart, (c) GretagMacbeth ColorChecker® DC, and 
(d) DigiEye calibration chart DigiTizer. All charts were captured by Digieye 

colour measurement system. 

In addition to standard colour charts, charts are designed for specific 

applications, and efforts are also made on developing general guides for various 

practical applications. For example, Pantone collected 138 skin tones by 

measuring the full spectrum of real human skin types (Pantone, 2025a), as 

shown in Figure 2.14-left. It can serve as a guide in any skin-related market. 

Due to the characteristics of human skin, skin tone occupies a relatively narrow 

colour gamut. The colours of fabric, on the other hand, span a much wider colour 

gamut than skin tone. More than 2,000 colours were collected by Pantone to 

make the Fashion, Home+Interiors colour guide (Pantone, 2025b), as shown in 

Figure 2.14-right. These two colour guides are usually used in relevant 

industries rather than characterising camera colours. 

(a) (b)

(c) (d)
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Figure 2.14 Left: Pantone skin tone guide (Pantone, 2025a). Right: Pantone 

fashion, home + interiors colour guide (Pantone, 2025b). 

2.6 Colour characterisation of display 

After the process of colour characterisation of camera, images still will be 

present differently across various displays or one display that adopts different 

settings. In the present study, a liquid crystal display (LCD) backlit BenQ display 

was used to present images in the psychophysical studies (see Chapter 3). 

Truly reproduce the images is of vital importance in the visual assessments. The 

works proposed by Berns are used as the general reference in this section 

(Berns, 1996; Berns et al., 1993). 

2.6.1 Calibration, characterisation, and gamma 

Predefining the display setting, including the system gain, system offset, system 

gamma, brightness, contrast, sharpness, peak white with chromaticity 

equivalent to CIE D65, and peak white luminance, is referred as the calibration 

of display (Berns, 1996). Similar to the colour characterisation of camera, the 

characterisation of display is the process of transforming device-dependent 

RGB data to device-independent coordinates (usually CIE XYZ colour space) 

and vice versa. The predefined display settings remained unchanged for one 

characterisation, as the images have to be viewed under the same conditions 

in which the characterisation is performed. Calibration and characterisation are 
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two essential steps to ensure an accurate and consistent colour reproduction. 

Gamma describes the non-linear relationship between the input digital signal 

and the output luminance of each channel (Berns, 1996; Westland et al, 2012). 

Ignoring gain and offset but adjusting gamma will cause errors in dark colours 

(Berns, 1996). 

2.6.2 Gain-Offset-Gamma (GOG) model 

As indicated by its name, the role of GOG model is to optimise the values of 

gain, offset, and gamma to build the relationship between RGB and CIE XYZ. It 

was initially proposed by Berns (1996) for CRT displays. Although CRT displays 

are nearly replaced by new technologies such LCD, the nonlinear relationship 

between the input signal and output luminance was corrected to mimic the CRT 

display (Bala, 2003). The computation process of the GOG model is given in 

Equation 2.14 and Equation 2.15, where 𝑎-, 𝑏-, and 𝛾- 	are the gain, offset, and 

gamma values for R channel (the same for G and B channel but with different 

subscripts) where the sum of gain and offset is set to 1, 𝑑-, 𝑑., 𝑑( are the 

input RGB signals (Westland et al., 2012). 
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In practical, it is necessary to predefine the display settings and warm up the 

display prior to the measurement to ensure a consistent characterisation. 

Developing a GOG model requires measuring a series of neutral colours 

present on the display, as well as a pure red, a pure green, and a pure blue 

(Berns et al., 1993). The values of gain, offset, and gamma are optimised by 
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measuring neutral colours and minimising the colour differences between the 

measured data and the data computed using Equation 2.14, where R, G, B are 

substituted by neutral colours in the equations. Once the coefficients are 

determined, the linearised RGB values can be derived from Equation 2.14 using 

the measurement data of pure red, green, and blue. These linearised RGB 

values are subsequently mapped to CIE XYZ via Equation 2.15, where the 3*3 

matrix is built based on the measured CIE XYZ values of pure red (𝑋-,1'2 , 

𝑌-,1'2 , 𝑍-,1'2 ), pure green (𝑋.,1'2 , 𝑌.,1'2 , 𝑍.,1'2 ), and pure blue (𝑋(,1'2 , 

𝑌(,1'2, 𝑍(,1'2). The 3*3 matrix can be inverted, allowing the CIE XYZ values to 

be mapped back to RGB space. A tele-spectroradiometer is normally used for 

measuring display colours, and information will be given in Section 2.7.1.1. 

2.6.3 Channel independence and spatial independence 

Before performing the display characterisation, the channel independence and 

spatial independence of the display is essential to be tested (Berns et al., 1993). 

Channel independence is the assumption that in a display system, the output of 

each RGB channel is not affected by the others. The sum of CIE XYZ values of 

RGB channels is expected to be equivalent to the display luminance based on 

the Grassmann’s law of additive colour mixing (Berns, 2019). In practical, the 

channel independence is tested by measuring a full screen pure red, a full 

screen pure green, a full screen pure blue, and a full screen peak white. The 

colour difference between the sum of CIE XYZ values of pure RGB and the CIE 

XYZ values of peak white is used to quantify the channel independence. 

Spatial independence is the assumption that the luminance and chromaticity of 

one pixel is not affected by other pixels in the display system (Berns et al., 1993). 

In practical, it is tested by measuring two peak white colour patches: one is a 5-

cm square in the middle of the display, the other is a full screen peak white. The 

colour difference between the peak white square and full screen white is 

calculated and represent the spatial independence. 
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2.7 Colour measurement 

Measuring colour is an essential step in camera colour characterisation and 

display colour characterisation. The measurement of fabric colour is also critical 

in assessing fabric quality. In previous studies, devices-based method 

measured self-luminous colours using tele-spectroradiometer, and non-self-

luminous colours using spectrophotometer with the built-in lighting (Chae, 2024; 

Luo et al., 2016; Cabral et al., 2023; Popa et al., 2021; Much et al.,2021). More 

recently, image-based methods have been developed to measure the colour 

over a larger area than spot measurements or areas with complex shape (Luo 

et al., 2015; Luo et al., 2016). The book Measuring Colour is used as the general 

reference in this section (Hunt and Pointer, 2011). 

2.7.1 Device-based measurement 

2.7.1.1 Tele-spectroradiometer 

The measurement of self-luminous colours is usually conducted by tele-

spectroradiometer, which measures the radiant power (radiometer) by 

analysing the light throughout the spectrum (spectro) in a non-contact way (tele) 

(Hunt and Pointer, 2011). As mentioned in Section 2.5 and Section 2.6, the 

measurements of self-luminous colours involve measuring light source in the 

lighting cabinet and colours present on the display. For measuring light source, 

a standard reflecting white surface is required to be illuminated by the light 

source. The measurement is then performed by aligning the tele-

spectroradiometer with the reflecting surface to capture the reflected light. 

However, for measuring the colour present on the display, if the same procedure 

for measuring light source is adopted, the amount of light reflected by the white 

surface will not be sufficient. The measurement is thus performed by aligning 

the tele-spectroradiometer with the colours on the display directly and capturing 

the light. This procedure has to be performed in a dark environment to prevent 

the effect of external lighting. 
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Non-self-luminous colours can also be measured by tele-spectroradiometer if 

proper illumination is available. However, it is not common in measuring fabric 

colours due to the limited measurement area. An exception is that Chae and 

Lee (2021) measured 203 fabric samples using CS-2000A under 16 different 

light sources and evaluated the colour attributes variation. Moreover, the small 

measurement spot can further lead to inaccurate colour measurements due to 

the influence of fabric structure. 

Common spectroradiometers in laboratories include CS-2000 

spectroradiometer developed by Konica Minolta (Konica Minolta, 2025) and 

specbos 1211-2 spectroradiometer developed by JETI (JETI, 2025). Both 

devices cover a wide spectral range and are capable of measuring a broad 

luminance range. 

2.7.1.2 Spectrophotometer 

The measurement of non-self-luminous colours is usually conducted by 

spectrophotometer. The device must be calibrated prior to measurement to set 

the reference of 100% reflection (by white calibration) and 0% reflection (by 

black calibration). Comparisons are made between the radiant power of the light 

reflected by the objects and by the calibrated working standard throughout the 

spectrum, and thus the results of reflectance factor or transmittance factor are 

usually produced (Hunt and Pointer, 2011). Because of the built-in lighting 

source, the measurement must be performed by contacting the 

spectrophotometer and the object to capture all the reflected light. The colour of 

liquid and irregular shaped objects cannot be measured using 

spectrophotometer. Common spectrophotometer in laboratories includes the 

portable CM-700d developed by Konica Minolta (Konica Minolta, 2025b) and 

benchtop DataColor 200 spectrophotometer developed by DataColor 

(DataColor, 2025). 

Using spectrophotometer to measure the colour of fabrics is popular in previous 
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studies. Chae (2024) measured the colour of 108 100% cotton plain woven 

fabrics using CM-26d spectrophotometer developed by Konica Minolta. 

Samples were also visually assessed under four illuminations (2856k, 6504k, 

100lx, 2000lx) to study the colour tolerance threshold. Luo et al. (2016) 

measured 44 pair of solid-colour yarn-dyed fabrics by DataColor 650 and 

compared the measurement results with their imaging measurement system. In 

addition to colour measurement, studies also used spectrophotometers to 

define the colour fastness after light exposure, washing, and rubbing (Cabral et 

al., 2023; Popa et al., 2021; Much et al.,2021). 

2.7.2 Image-based measurement 

As the measurement area is fixed and small for both tele-spectroradiometer and 

spectrophotometer, measuring the colour of large area of fabrics or fabrics with 

multiple colours requires repeated measurement. The process would be 

complex and time-consuming. Imaging system is becoming popular in colour 

measurement, which normally involving a high-quality camera and a stable 

lighting environment. Digieye colour measurement system is one of the popular 

methods adopted in studies to define the fabric colour, as shown in Figure 2.15. 

Cui et al. (2001) firstly compared the colour measurement results of a large set 

of samples between using Digieye and spectrophotometer. The good 

agreement between device-based method and image-based method supported 

the further development of image-based colour measurement of fabrics. Kumah 

et al. (2019) used Digieye system to measure the digital printed fabrics colour 

by transforming RGB data to CIE LAB coordinated. Li et al. (2014) used both 

spectrophotometer and Digieye system to measure the dope-dyed fabrics and 

test the full-colour effects. Accurate camera characterisation is the key in image-

based measurement system to collect CIE colorimetric information (Cui et al., 

2001). In addition, the colour of fabrics in draped condition cannot be measured 

by image-based methods, as the fold causes highlight and shadow in the image. 

For a draped fabric image, the fabric colour cannot be precisely defined. 
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Figure 2.15 Digieye colour measurement system. Figure was downloaded 

from Verivide (2025). 

2.8 Psychophysical experiment methods 

The evaluation of the perception based on psychophysics, which is a tool to 

assess the relationship between the physical measurement of the stimulus 

intensity and the resulting sensation or perception (Morovic, 1998; Gescheider, 

1997; Fairchild, 2013). Human perception is normally considered as being 

subjective, and a carefully designed and well-analysed perceptual experiment 

can provide an objective perspective to explain the subjective phenomenon. As 

the present study focused on tactile perception through images, videos, and 

actual touch, the experiments designed here are in the field of psychophysics. 

Before conducting the psychophysical experiments, understanding the 

experimental techniques and the property of the resulting scale becomes 

essential. Even though the experiments in the present study included not only 

human visual but the tactile perception, the predictions were conducted for 

visual assessment and for tactile perception based on images and videos (see 

Chapter 7). Therefore, techniques in the application of visual assessment are 

introduced in this section and adopted in the experiment design. The book Color 
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Appearance Models (Fairchild, 2013) is used as a general reference in this 

section. 

Two types of visual assessments are widely adopted: threshold and matching 

experiment which focus on small differences in perceptual magnitude, and 

scaling experiment which values the relationship between physical and 

perceptual magnitude of the stimuli (Fairchild, 2013). The present study adopted 

the latter one, and the former one is widely used in the field of colour science. 

2.8.1 Scaling techniques 

To ensure data interpretability and experiment validity, a careful selection of 

scaling techniques is essential before conducting the visual assessments. Four 

techniques are introduced in this section. 

2.8.1.1 Categorical judgement 

The law of categorical judgement on equal-interval scales, developed by 

Torgerson (1958), is the major scaling method used in the present study. It 

relates to the relative position of stimuli and the category boundaries of the 

cumulative proportions judged by participants (Morovic, 1998; Torgerson, 1958). 

There is no need to set a reference in the experiments, and particularly useful 

when the number of samples is massive. Table 2.4 lists the studies in tactile and 

fabric-related studies using categorical judgement. 

Table 2.4 Previous studies used categorical judgement to assess tactile 
properties. 

No. Objectives and details scale reference 
1 Exp1: To identify 262 sensory words 

describing tactile properties. 
1: completely unrelated with touch 
4: highly related to touch 

4-point categorical 
judgement 

Guest et al. 
(2011) 

2 Exp2: To identify the dissimilarity of 
all possible combinations of 33 
sensory descriptors derived from 
Exp1. 
1: no difference in meaning 

15-point scale Guest et al. 
(2011) 



 50 

15: most different in meaning 
3 Exp3: To test the degree to which the 

descriptors derived from Exp2 were 
descriptive when touching fabrics. 
1: completely not descriptive 
5: very highly descriptive 

5-point categorical 
judgement 

Guest et al. 
(2011) 

4 To study the effect of colour on 19 
tactile attributes 
1: none 
9/15: extremely 

9-point categorical 
judgement for 
consumer panel, 
and 15-point scale 
for expert panel 

Yenket et al. 
(2007) 

5 To rate the tactile perception by 
touch-only and vision-only (using real 
fabrics). 
1: no reflection / monochromatic / 
smooth / irregular / soft / warm / not 
elastic / slippery / flat / uniform 
7: shiny / colourful / rough / regular / 
hard / cold / elastic / friction / 3D 
structure / textured 

7-point categorical 
judgement 

Baumgartner 
et al. (2013) 

6 To evaluate the perception of fabric 
stiffness and weight for a pair of 
fabric video. 
-3: fabric A is stiffer/lighter 
0: fabric A and B is of the same 
stiffness/density 
3: fabric B is stiffer/lighter 

7-point categorical 
judgement 
(together with pair 
comparison) 

Bouman et 
al. (2013) 

7 To rate the similarity of tactile 
properties between vision and touch 
1: completely dissimilar 
9: completely similar 

9-point categorical 
judgement 

Fradin et al. 
(2023) 

8 To rate the tactile perception of 
flooring materials. 
1: more rough / hard / stiff 
9: more smooth / soft / compliant 

9-point categorical 
judgement 

Topliss et al. 
(2023) 

9 To evaluate the tactile properties in 
Virtual Reality. 
1: extremely soft / smooth 
9: extremely hard / rough 

9-point categorical 
judgement 

Feick et al. 
(2023) 

To develop the Touch Perception Task (TPT) lexicon, Guest et al. (2011) 

designed three experiments (No.1 – 3 in Table 2.4) to refine the lexicon from 

262 to 26 sensory descriptors, using a 4-point scale to determine how strongly 
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the word represented the touching experience, a 15-point scale to identify the 

dissimilarity of all pairs of combinations, and a 5-point scale to evaluate how 

accurately each sensory word described the actual touch sensation, 

respectively. The TPT lexicon consists of a comprehensive set of adjectives 

describing tactile properties. In other tactile-related studies, the investigated 

tactile attributes often overlapped with the descriptors in the TPT lexicon. When 

the tactile descriptors and their antonyms are used together for categorical 

judgement, researchers used to adopt a broader range of rating scales to 

enable better distinctions, such as 7-point scale and 9-poing scale. In the 

present study, tactile attributes were evaluated in pairs, with each pair consisting 

of an adjective and its antonym. The 9-point scale was adopted in the 

experiments in the present study to enable a better understanding.  

2.8.1.2 Pair comparison 

A paired comparison method can be applied on a small number of stimuli 

(Fairchild, 2013). All possible pairwise combinations will be presented to 

observers one pair at a time. A third stimulus is sometimes used as a reference. 

Observers will be usually asked to choose one stimulus that outperforms the 

other, and the proportion of one stimulus is selected is normally recorded and 

calculated. The method is based on the law of comparative judgement 

developed by Thurstone (Thurstone, 1927). Compared to categorical judgement, 

pair comparison is not used frequently in the field of fabrics. One exception is 

that Bouman et al. (2013), combined pair comparison and categorical 

judgement, presenting a pair of fabric videos and asking participants to choose 

which one is stiffer/lighter and rate the perception. In the present study, the 

number of stimuli is relatively large (see Chapter 3), resulting in a massive 

number of pairwise assessment and thus a highly complex and time-consuming 

experiment. Therefore, pair comparison was not adopted in the present study. 

2.8.1.3 Magnitude estimation and rank order 

The methods of magnitude estimation and rank order are introduced in this 
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section; however, they were not used in the present study, as only limited 

literature applied them on fabric visual and tactile assessment. Similar to 

categorical judgement, the method of magnitude estimation asks observers to 

assign numbers to the stimuli to represent the relative intensity of the perception 

(Fairchild, 2013). The difference is that there are no assigned categories for 

each score adopted in magnitude estimation. Observers are free to assign any 

score within the designated range, and thus the variation between observers 

can be relatively larger compared to categorical judgement. Rank order, instead 

of assigning scores to the stimuli, asks observers to rank the stimuli in an 

increasing or decreasing magnitudes of perception. As reranking will be needed 

if new stimuli are added in the experiment, ranking is not appropriate for the 

present study, where fabric images and videos collection is an ongoing process. 

2.8.2 Threshold and matching techniques 

Threshold experiments are helpful to detect the sensitivity of the perception. 

Normally observers are asked to report when the stimulus is the just perceptible 

(absolute threshold) and just perceptibly different (difference threshold) 

(Fairchild, 2013). A broader threshold indicates lower sensitivity of the 

perception. There are rarely tactile-related studies applied this method. 

Similar to threshold experiment, matching experiment is used to determine 

when two stimuli are perceived similarly. Participants can be asked to rate the 

similarity of a pair of samples regarding whether they gave a similar tactile 

feeling between vision and touch (Fradin et al., 2023; Xiao et al., 2016). 

2.8.3 Classification of psychophysical scales 

The previous sections introduced visual experimental techniques, and the 

resulting scales collected in those techniques are introduced in this section. 

Nominal scale is unrestricted assignment of numerals, typically represented as 

a label or naming (Stevens, 1946). In Table 2.5, four classes of psychophysical 
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scales are listed, and the number “4” here is the numeral assigned to the 

number of classes. 

Ordinal scale is usually used for rank order assessment. A group of fabrics can 

be ranked by thickness from the thickest to the thinnest (or vice versa), where 

the thickest fabric is assigned a rank of 1 (or the other way around). However, 

the differences between the rank do not correspond to the differences in 

thickness.  

In contrast, equal interval is specified for interval scales, based on the 

assumption that the differences between any two neighbouring points are equal 

in the scale. An example is the Likert scale where each point is assigned to a 

specific meaning. However, the differences between points on a Likert scale can 

also be unequal when using lower number of points (e.g., 3-point Likert scale). 

Careful mathematical manipulations are required when dealing with Likert scale 

based on the number of scales and the underlying assumption. In addition, a 

score of 0 is sometimes set in the interval scales, but it does not imply the 

nonexistence of the perceived attributes. 

Ratio scale is rarely used in visual assessment, as the perception typically lacks 

a true zero point. The fact that a ratio scale has an absolute zero does not mean 

that the attributes must necessarily reach that absolute zero (Stevens, 1946). 

Arithmetic operation such as addition, subtraction, multiplication, and division 

can be applied on ratio scale such as fabric thickness. 

Table 2.5 Four types of psychophysical scales, and their properties and 
examples (Fairchild, 2013; Stevens, 1946). 

Scale Properties Examples 

Nominal Naming, label 
‘4’ classes of psychophysical 

scales in this table 

Ordinal Ordered, unequal interval 
Ranking the thickness of 

fabrics 

Interval Equal interval, arbitrary zero 
Likert scale (in cases of more 

scales) 
Ratio Equal interval, natural zero, The thickness of fabrics 
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arithmetic operation 

2.9 Image processing techniques 

After collecting perceptual ratings through psychophysical experiment, images 

and videos in the Leeds Fabric Tactile Database are processed to obtain the 

predictors to predict the tactile and visual-tactile perception. This section 

reviews various image processing techniques and related studies that have 

adopted these techniques, including grey-level co-occurrence matrix, Fourier 

Transform, Wavelet transform. For each method, the principle is firstly 

introduced, followed by reviewing the related studies. 

2.9.1 Grey Level Co-occurrence Matrix (GLCM) 

GLCM was firstly proposed as a texture feature computation method by Haralick 

in 1973 (Haralick et al., 1973). It was initially developed for image classification 

by computing the spatial statistical distribution of grey levels within the images. 

Figure 2.16 illustrates the concept of generating a GLCM. The example starts 

from a 4*4 greyscale image with grey levels from 0 to 3 (step 1). For each pixel 

in the example image, a maximum of 8 neighbouring pixels, distributed across 

four orientations (0°, 45°, 90°, and 135°) can be defined (step 2). GLCM 

generated for four orientations separately, computing the times that any two 

grey levels have been neighbours (step 3 and 4). For example, for GLCM of 0° 

(step 3 in Figure 2.16), value at the first row and the first column represents the 

times that grey level 0 and grey level 0 have been neighbours in the horizontal 

direction, and values at the first row and the second column represents the times 

that grey level 0 and grey level 1 have been neighbours in the horizontal 

direction. The two neighbouring pixels can be replaced by a pair of pixels with 

a specified distance.  
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Figure 2.16 Example of the procedures to generate GLCM. Figure was 

reproduced from Haralick et al. (1973). 

There were in total 14 GLCM-based features defined by Haralick et al. (1973). 

Five features, which are contrast, correlation, angular second moment (ASM, 

also known as energy), homogeneity, and entropy were widely selected due to 

their effectiveness in recognising fabrics nature (Kuo and Tsai, 2006) and 

evaluating the tactile properties (Wang and Georganas, 2009; Elkharraz et al., 

2013; Hassan et al., 2023; Wang et al., 2023; Zhang et al., 2017). In these 

studies, real fabric samples were used to collect the human subjective ratings 

or structural information, while the corresponding images were analysed to 

extract the GLCM-based features. 

Kuo and Tsai (2006) decomposed 180 fabric images using wavelet transform 

and extracted only the second-level sub-band images to compute GLCM-based 

features. GLCM contrast, correlation, ASM, and entropy features were 

calculated at 0° and 90° orientations with a pixel distance of 1. The feature set 

was used as the input to train a model classifying the fabric structures, 

distinguishing between plain, twill, satin, single knitted, double knitted, and non-

woven. The model performed good with the accuracy of 95%. 

Wang and Georganas (2009) calculated the five features along with dissimilarity, 

variance and mean for eight single-colour fabrics. The calculation of GLCM-
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General form of grey-level co-occurrence matrix of one orientation. (i,j) refers to the 
times that grey levels i and j have been neighbors. The distance between i and j was set 
to 1. For example, (0,0) stands for the times that grey level 0 and grey level 0 have 
been neighbors.  
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based features was performed at four orientations with a pixel distance of 1. 

They concluded that the GLCM features agreed well with human visually 

perceived fabric roughness. Elkharraz et al. (2013) used 3D printed textures in 

a rating experiment to evaluate tactile attributes such as warmth, roughness, 

hardness, and likeness, without allowing participants to see the printed textures. 

They found that the GLCM correlation feature exhibited good correlation with 

the perceived naturalness and simplicity. Hassan et al. (2023) developed a 

haptic texture space consisting of four directions which were rough-smooth, flat-

bumpy, sticky-slippery, and hard-soft. A psychophysical experiment was 

conducted in which participants touched and rated 100 textured materials. A 

feature set containing GLCM features, Local Binary Patterns, and ResNet 50 

was extracted from the images of materials, and used to train a model to predict 

the tactile perceptual ratings. The model achieved good performance with the 

RMSE values ranging from 7.91 to 13.39 points on a 100-point scale. Wang et 

al. (2023) proposed a visual-tactile model trained by GLCM-based features 

through Siamese Network. The model achieved 90.2% accuracy in classifying 

the subjectively perceived roughness and stickiness of fabrics. Zhang et al. 

(2017), analysed the relationship between GLCM-based features, including 

contrast, correlation, energy, and entropy and the friction coefficients of 100 

materials including fabrics, carpet, metal, plastic and so on. Rather than 

collecting the human perceptual ratings of roughness, they calculated the 

friction coefficients from the signals that a pen sliding over the surface of 

materials. Good correlation was observed between the GLCM-based features 

and objective measurement of friction. 

Considering all the above, GLCM exhibited strong effectiveness in correlating 

the image-based features and tactile perception. Real samples were used, and 

the GLCM-based features were computed from the corresponding images, 

which provides valuable references for predicting tactile perception in the 

present study. However, the role of GLCM in predicting visual-tactile perception 



 57 

remains underexplored. Therefore, in this study, the GLCM-based features were 

computed from images and used to predict both visual-tactile and tactile 

perception. 

2.9.2 2D Fast Fourier Transform (2D FFT) 

To understand the 2D Fast Fourier Transform used in the present study, it is 

essential to first understand the concept of Fourier Transform, and then Fast 

Fourier Transform, and finally 2D FFT. This section follows this structure and 

uses the book The Fast Fourier Transform and its application as the general 

reference (Brigham, 1988). 

2.9.2.1 Fourier Transform 

A signal, such as electromagnetic wave, can be represented as a waveform with 

the x-axis indicating time and y-axis indicating amplitude. The nature of Fourier 

Transform is to decompose the waveform into a sum of sinusoids with different 

frequencies. Figure 2.17 illustrates the Fourier Transform in a simple way 

(Brigham, 1998, p.5). The left component in Figure 2.17 is a waveform to be 

decomposed. In the middle component, the waveform is decomposed to two 

sinusoids with different frequencies and different amplitudes. The right 

component illustrates how the Fourier Transform converts a time-domain 

waveform (left component) into a frequency-domain representation, showing 

the amplitude of each frequency component and the corresponding frequency 

values. The higher amplitude, the frequency contributes more to reconstructing 

the original waveform. 
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Figure 2.17 Interpretation of Fourier Transform. The figure is from Brigham 

(1988, p.5) 

The Fourier Transform is typically applied to continuous signals over time, 

however, the pixels in an image represent discrete spatial data rather than a 

continuous signal. In addition, computational systems can only process discrete 

numerical data, so any practical implementation of the Fourier Transform on a 

computer depends on the discrete Fourier Transform (DFT). The difference 

between Fourier Transform (Equation 2.16) and DFT (Equation 2.17) can be 

simply reflected through their formulae. The Fourier Transform calculates an 

integral of a continuous signal over an infinite interval (from −∞ to +∞), while 

the DFT is a finite summation over N discrete samples of a signal. 

𝐹(𝑤) = k 𝑓(𝑡)𝑒3456𝑑𝑡
78

38
 Equation 2.16 

where 𝐹(𝑤) is the frequency spectrum of the continuous signal 𝑓(𝑡), 𝑗 is the 

imaginary unit where 𝑗* = −1, 𝑤 is the angular frequency measured in radians 

per seconds. 

𝐹(𝑘) = o 𝑓(𝑛)𝑒34
*9
: ;$

:3!

$<"

 Equation 2.17 

where 𝐹(𝑘) is the frequency spectrum of the discrete signal 𝑓(𝑛), N is the 

number of discrete samples in the signal representing the total number of time-
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domain points available for transformation, k is the frequency index ranging from 

0 to N-1. 

2.9.2.2 Fast Fourier Transform 

From Equation 2.17, it is clear that the computation of DFT is massive and 

requires a significant number of calculations. Specifically, DFT requires N2 times 

complex multiplications and additions, making it computationally intensive and 

not effective for large datasets (Brigham, 1988). Fast Fourier Transform (FFT) 

is an optimised DFT computation method to solve the issue, reducing the 

computation to N*logN times, and thus becomes effective and highly suitable 

for processing large datasets in practical applications. 

2.9.2.3 2D Fast Fourier Transform (2D FFT) 

Fourier Transform, Discrete Fourier Transform, and Fast Fourier Transform are 

all designed to process one-dimensional signal, such as audio signal and one 

row of pixel values in an image. Two-dimensional discrete signal, such as pixel 

values in an image, is processed by 2D FFT to obtain the frequency spectrum 

(Brigham, 1988). For an image with size M*N, the formulae of 2D FFT is shown 

in Equation 2.18. 

𝐹(𝑢, 𝑣) = oo𝑓(𝑥, 𝑦)𝑒34*9(
+2
>7,?: )

:

?<"

>

2<"

 Equation 2.18 

where 𝐹(𝑢, 𝑣)  is the 2D frequency spectrum, describing the frequency 

characteristics of the 2D signal in the frequency domain, 𝑢 is the horizontal 

frequency and 𝑣 is the vertical frequency. Higher values of 𝑢 and 𝑣 represent 

higher frequencies, which corresponds to areas of rapid variation in the spatial 

domain. When 𝑢 = 0 and 𝑣 = 0, it represents the lowest frequency component 

in the frequency spectrum (also known as DC components), indicating the 

smoothest and most uniform component in the spatial domain. If an image 

contains large uniform or smoothly varying area, the low frequency component 

is typically stronger. Transform an image to the frequency domain contains two 
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sequential steps: apply the FFT to each row in the image and then apply the 

FFT to each column in the image. In this way, the 2D FFT can be regarded as 

the results of two successive one-dimensional FFT operation.  

2.9.2.4 Related studies 

Previous studies used the frequency spectrum to generate a set of features. For 

example, 2D FFT are widely used in fabric defects detection by scanning the 

fabric appearance and analysing the irregular change of frequency (Malek et al., 

2013; Chan et al., 2000; Hu et al., 2015). Wang et al. (2020) applied band filters 

to the frequency spectrum and computed the total spectrum energy within each 

band respectively. The spectrum energy within each band across the full 

spectrum were grouped as the feature set and were used to train a classification 

model of fabric smoothness. Choi et al. (2009) developed a quantitative fabric 

wrinkle grading system based on 2D FFT. The basic idea was increased number 

and intensity of wrinkles is associated with rapid variation in greyscale intensity. 

They applied a set of band filters with different band width and calculated the 

total spectrum energy within each band. A good correlation was found between 

the sub-band total spectrum energy and wrinkle grades. 

In addition to the frequency spectrum, studies also found that the fabric surface 

roughness can be evaluated by fractal dimension calculated by estimating the 

FFT power spectrum (Wang and Georganas, 2009). The FFT features selected 

in the present study are summarised in Chapter 7, Section 7.2.5. 

2.9.3 Wavelet Transform (WT) 

An image can be transformed into the frequency domain by 2D FFT, where the 

frequency and corresponding amplitudes of the image are analysed. However, 

the 2D FFT only provides a global frequency information, and the local spatial 

information of the frequency cannot be analysed. Therefore, wavelet transform 

was developed to analyse the signals in time and frequency domain 

simultaneously, and the formula is shown in Equation 2.19. The nature of 
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wavelet is the small wave with rapid oscillation that decays quickly (Sifuzzaman, 

2009). Similar to Fourier Transform, wavelet transform decomposes a signal 

𝑓(𝑡) to a sum of wavelet functions rather than sinusoids as in Fourier Transform. 

The wavelet functions are generated through a mother function 𝜓(𝑡) by dilation 

and translation, where 𝑎  controls the scale of dilation and 𝑏  controls the 

translation (time position). 𝐶𝑊𝑇(𝑎, 𝑏) are the wavelet coefficients, indicating 

the similarity or correlation between the signal 𝑓(𝑡) and the wavelet functions 

at different scales and positions. Higher wavelet coefficient means stronger 

similarity between the wavelet and the signal at the corresponding scale and 

position. 

𝐶𝑊𝑇(𝑎, 𝑏) =
1

b|𝑎|
k 𝑓(𝑡)𝜓 O

𝑡 − 𝑏
𝑎 P𝑑𝑡

78

38
 Equation 2.19 

The above equation is for implementing wavelet transform on a continuous 

signal. Both 𝑎 and 𝑏 vary continuously to compute the wavelet coefficients, 

generating a large and redundant dataset. In practical application, parameters 

𝑎 and 𝑏 can be discretised to simplify the continuous wavelet transform (CWT) 

to the discrete wavelet transform (DWT), reducing the computational complexity 

and achieving a more efficient transform.  

For a two-dimensional signal 𝑓(𝑥, 𝑦), e.g., an image, the DWT contains two 

steps. The decomposition process is illustrated in Figure 2.18, using the image 

of size M*M as an example (Chang and Kuo, 1993). The first step is to 

decompose each row of pixels to obtain the low frequency component and high 

frequency components. In the second step, the resulting low and high frequency 

components from the first step are further decomposed column-wise. The two 

sequential steps decompose the M*M image into four sub-images: Low-Low 

(LL), Low-High (LH), High-Low (HL), and High-High (HH) components with the 

size of >
*
∗ >
*
. LL sub-image represents the approximation information, LH sub-

image represents the horizontal details, HL sub-image represents the vertical 
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details, and HH sub-image represents the diagonal details. Wavelet transform 

allows an image to be decomposed repeatedly by decomposing the LL sub-

images. Each process reduces the image size to half of those before 

decomposition.  

 
Figure 2.18 Decomposition of an image by 2D WT. The figure is reproduced 
from Chang and Kuo (1993). LL: Low-Low, LH: Low-High, HL: High-Low, HH: 

High-High. 

Similar to Fourier Transform, the wavelet transform is also widely used in fabric 

defect analysis, such as locating the fabric defects (Li et al., 2015; Mahmood et 

al., 2023), classifying the fabric defects (Talu et al., 2022), and detecting fabric 

defects (Kang et al., 2013). Sun (2012) used wavelet transform to decompose 

fabric images five times. The wavelet coefficients at level 4 and level 5 were 

used to compute five features: total energy, wrinkle hardness, wrinkle density, 

wrinkle directionality, and contrast, to classify the fabric wrinkle ratings. The 

results showed that the features were effective in indicating the orientation and 

softness of the wrinkles and agreed with the wrinkle ratings. Similarly, Wang et 

al. (2020) used the same five features, together with features from GLCM and 

2D FFT, to classify the fabric smoothness. The features total energy and 

contrast were adopted in the present study, with the details given in Chapter 7 

Section 7.2.6. 

2.9.4 A case of generating images from videos 

The above subsections introduced three image processing techniques. In the 

present study, visual-tactile perception was evaluated using both fabric images 
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and videos. One way to apply image processing techniques to videos is to 

process each frame individually and then average the results. However, the 

process requires significant computational resources and is highly time-

consuming. In Bouman et al.’s study (2013), they used horizontal space*time 

slice of the video to evaluate the fabric stiffness and density. To generate the 

horizontal space*time slice, one row of each frame in the video was extracted 

and stacked over time, and the non-fabric area was masked out. An example 

from Bouman et al. (2013), is shown in Figure 2.19. A fabric (the left figure in 

Figure 2.19) was hung, and a video was recorded when the fabric was exposed 

to three different strengths of wind. The horizontal space*time slices (the right 

three figures in Figure 2.19) can be generated from the video, and thus further 

process can be performed on the space*time slices, saving the computational 

resources and time. 

 

Figure 2.19 An example of the horizontal space*time slice from Bouman et al. 
(2013, p.1984 & 1985). 

Inspired by the horizontal space*time slice from Bouman et al. (2013), the fabric 

rotation videos in the present study were processed in a similar way first, and 

then processed by different image processing techniques. The details are given 

in Chapter 7, Section 7.2.1, 7.2.2, and 7.2.3. 

2.10 Statistical analysis techniques 

In this section, the statistical analysis techniques used were introduced. All the 

analyses in the present study were conducted using Microsoft Excel, Rstudio, 

and MATLAB.  
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2.10.1 Central tendency and variability 

The measure of central tendency gives a single data to describe a set of data, 

and the measure of variability describes the distribution of a set of data (Aron et 

al., 2013). Mean (or average) and median are two frequently used measures of 

central tendency. The mean of a set of data is usually represented by 𝑋3 , 

calculated by dividing the sum of all data points by the total number of 

observations (N), as given in Equation 2.20. Median is the middle data point 

when sorting the data from lowest to highest. 

𝑋u	= ∑B
:

 Equation 2.20 

Variability of a set of data describes the spread of the data around the mean, 

typically represented by variance or standard deviation (SD), where SD equals 

to the square root of the variance. The formula is given in Equation 2.21. 

𝑆𝐷* =
∑(𝑋 − 𝑋3)*

𝑁
 

Equation 2.21 

2.10.2 z-standardisation  

Using mean or median to describe a set of data can be misleading in the 

presence of outliers. Comparisons between multiple sets of data can also be 

distorted because of different ranges and variance of data sets. A z-score is 

normally computed for each data point in the dataset, by subtracting the mean 

and dividing by the SD, as given in Equation 2.22 (Aron et al., 2013). The data 

pre-processing step is referred to as z-standardisation. In this way, the dataset 

will have a mean value of 0 and a SD of 1, allowing for effective comparisons 

between multiple datasets. 

𝑧 =
𝑋 − 𝑋/
𝑆𝐷  Equation 2.22 

2.10.3 Normal distribution test 

A normally distributed dataset exhibits a bell-shaped curve, which is roughly 

symmetric to the mean (Aron, et al., 2013). Statistical analysis methods usually 
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follow an assumption that the dataset needs to be normally distributed. The bell-

shaped curve is one of the methods to directly to be compared whether the 

distribution of the data follows the shape. Q-Q plot is an alternative to visualise 

the distribution of the data. Figure 2.20 shows examples of a normally 

distributed dataset, illustrated by a histogram and a Q-Q plot. Comparisons can 

be made on whether the data follows the bell-shaped curve in the histogram 

and whether the data follows the diagonal in Q-Q plot. Hypothesis tests are also 

available to test the normality, such as Shapiro-Wilk test and Kolmogorov-

Smirnov test. The null hypothesis states that the data is normally distributed, 

and a rejection of null hypothesis (p<0.05) indicates not normal distribution. 

  
Figure 2.20 Visualisations of a normally distributed dataset. Left: distribution. 

Right: Q-Q plot. 

2.10.4 Pearson Correlation Coefficients 

The relationship between two or more datasets is normally referred to as 

correlation. A scatter diagram directly reveals the correlation between two 

datasets (z-standardisation can be pre-processed if the ranges and variations 

differ significantly), while the interpretation of correlation coefficients can be 

more effective. Pearson Correlation Coefficients, r, can be used on continuous 

data, defined in Equation 2.23 (Howitt and Cramer, 2011). The coefficients 

range from -1 to 1, where -1 represents a perfectly negative correlation, 1 

represents a perfectly positive correlation, and 0 represents nearly no 

correlation. Examples are illustrated in Figure 2.21. 
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𝑟 =
∑(𝑋 − 𝑋/)(𝑌 − 𝑌/)

?∑(𝑋 − 𝑋/)%?(𝑌 − 𝑌/)%
 Equation 2.23 

   

Figure 2.21 Examples of perfectly positive correlation (left), perfectly negative 
correlation (middle), and nearly no correlation (right). 

In addition, the significance of the correlation coefficients become important 

along with the coefficients, indicated by p as defined in Equation 2.24 (Aron, et 

al., 2013). 𝑃(𝑇 > |𝑡|) represents the two-wailed probability of the t-value under 

a t-distribution with N-2 degree of freedom. Normally, the significance level is 

set at p<0.05. Pearson Correlation Coefficients were used in the present study 

to interpret the data. 

𝑡 =
𝑟

?(1 − 𝑟%)/(𝑁 − 2)
  

𝑝 = 2 ∗ 𝑃(𝑇 > |𝑡|) Equation 2.24 

2.10.5 Mann-Whitney U test 

Mann-Whitney U test is a nonparametric test to compare the distribution of two 

independent sets of data (Siegel and Castellan, 1988). The word 

“nonparametric” here means that no assumption is specified for parameters 

(e.g., mean or variance). For parametric test, e.g., t-test, a strong assumption 

has to be ensured that the data is normally distributed, otherwise the result can 

be less effective. Since the raw data collected in the present study do not follow 

normal distribution (see Section 6.3 for experiment Phase II), Mann-Whitney U 

test was selected to compare the distribution of the tactile perceptual ratings 

between woven and knitted fabrics. 
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2.10.6 Cumulative Link Mixed Model (CLMM) 

Cumulative Link Model (CLM) is a regression model for categorical data. 

Cumulative Link Mixed Model (CLMM) is an extension of CLM that allows for 

both fixed effects and random effects to be assessed in one model (Agresti, 

2010). Rather than predicting categories directly, CLMM models the response 

variable through cumulative probability and thresholds using a logit link function, 

defined as Equation 2.25, where 𝛼4 is the intercept for each category 𝑗, 𝛽 is 

a column of vectors of parameters describing the effects of fixed effects 𝑋C, and 

𝑍𝑏 is the random effects. 

𝑙𝑜𝑔𝑖𝑡~𝑃(𝑌 ≤ 𝑗)� = 𝑙𝑜𝑔
𝑃(𝑌 ≤ 𝑗)

1 − 𝑃(𝑌 ≤ 𝑗)
 

= 𝛼4 + 𝛽𝑋C + 𝑍𝑏 

Equation 2.25 

2.10.7 Observer variability test 

In all psychophysical studies, observer variability is essential to be tested prior 

to the data analysis to ensure a consistent understanding of the experiments 

and thus prevent a misleading result and conclusion due to confusion. It 

includes two parts: the variability between observers (inter-observer variability, 

also known as observer accuracy) and within individual observer (intra-observer 

variability, as known as observer repeatability). Root Mean Square (RMS) 

defined in Equation 2.26 was used in the present study to assess the observer 

variability. For each sample, an RMS value can be calculated, indicating the 

difference between two sets of ratings in the original rating scale. Observer 

variability can also be tested in various methods, for example, the mean colour 

difference of the mean (MCDM) has been widely used in studies where colour 

data were obtained from human participants. In the present study, RMS values 

were calculated as a measure of observer variability to directly reveal the 

differences in the 9-point Likert scale. 
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𝑅𝑀𝑆 = �∑ (𝑥C − 𝑥̅)
*

C

𝑁
 

Equation 2.26 

2.10.8 Regression techniques 

Integrating the image processing techniques in Section 2.9 and statistical 

methods in Section 2.10, one of the objectives of the present study is to model 

the visual-tactile and tactile perception using explanatory information extracted 

from fabric images. Different linear regression techniques were used and 

compared, and the following subsections introduced the principle, advantages 

and limitations. 

2.10.8.1 Ordinal Least Square (OLS) 

Ordinal Least Square (OLS) is one of the least square methods applied to linear 

regression (Hastie et al., 2009). Equation 2.27 gives the basic form of a linear 

regression model. The effects of the explanatory variables 𝑋C are interpreted 

through the parameter 𝛽C by minimising the residual sum of squares (RSS). 

Figure 2.22 visualises the minimisation principle, where 𝛽C is adjusted for each 

𝑋C to minimise the sum of the differences between the original data and the 

fitted data. 

𝑦D� = 𝛽" +o𝛽C𝑋C

:

C<!

 Equation 2.27 

 
Figure 2.22 Minimising the residual sum of squares. The figure is from Hastie 

et al. (2009, pp.45). 
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There is no limitation of the number of explanatory variables fitted into an OLS 

model. However, including too many irrelevant variables in an OLS model could 

increase complexity and lead to overfitting. Methods such as forward- and 

backward-stepwise selection can be implemented to reduce the dimension of 

explanatory variables, by either adding or excluding an irrelevant predictor one 

by one from the input (Hastie et al., 2009). A notable limitation is that the 

selection of a subset of data is a discrete process. A predictor can be retained 

in one dataset but excluded in the other, leading to high variance between 

models. Therefore, stepwise selection was not implemented in the present study, 

and more effective shrinkage methods were adopted instead. 

2.10.8.2 Shrinkage techniques 

The regression coefficients 𝛽  are regularised by incorporating L1, L2 or a 

combination of both penalties into the regression models (Hastie et al., 2009). 

Ridge Regression (RR) shrinks coefficients toward but not equal to zero by 

incorporating L2 penalty (Equation 2.28). Least Absolute Shrinkage and 

Selection Operator Regression (LASSO) forces coefficients of irrelevant 

variables towards zero by incorporating L1 penalty to only fit relevant variables 

in the model (Equation 2.29). The Elastic Net (EN) regression incorporates both 

L1 and L2 penalties to balance the shrinkage and selection of variables 

(Equation 2.30). Tuning parameter 𝜆 controls the strength of shrinkage applied 

to parameter. A larger 𝜆 means greater penalty, shrinking the parameter more 

strongly towards zero. Tuning parameter 𝛼 balances the L1 and L2 penalty. 

The three linear regression methods with penalty continuously control the 

parameters and prevent high variance from the model. They are also effective 

for high-dimensional data and dataset with multicollinearity. 

𝛽�EE = 𝑎𝑟𝑔𝑚𝑖𝑛F 	{o(𝑦D� − 𝑦C)*
:

C<!

+ 𝜆o𝛽4*}
G

4<!

 Equation 2.28 
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𝛽�HIJJK = 𝑎𝑟𝑔𝑚𝑖𝑛F 	{o(𝑦D� − 𝑦C)*
:

C<!

+ 𝜆o�𝛽4�
G

4<!

} Equation 2.29 

𝛽�L: = 𝑎𝑟𝑔𝑚𝑖𝑛F 	{∑ (𝑦D� − 𝑦C)*:
C<! + 𝜆[(1 − 𝛼)∑ 𝛽4*

G
4<! +

𝛼∑ �𝛽4�
G
4<! ]} 

Equation 2.30 

 

The tuning process of 𝜆 and 𝛼 is usually achieved by repeated k-fold cross-

validation. The data is randomly split into k folds, where k-1 folds are used to fit 

the model. For RR and LASSO, models with a predefined set of 𝜆 values are 

fitted respectively, and the optimal 𝜆 is decided based on the one that minimise 

the RMSE (or maximise R2) evaluated on the remaining k fold. For EN model, 

the parameter 𝛼 is predefined within the range of 0 and 1, and for each 𝛼, the 

optimal 𝜆 is defined as described above. The final optimal 𝛼 is thus defined 

when the RMSE value is minimized evaluated by the remaining k fold. The 

implementation of RR, LASSO, and EN was carried out using glmnet() R 

package (Friedman et al., 2010) in the present study, where k was set to 10 as 

the default setting of the package. 

2.10.9 Factors comparing model performance 

Multiple models were developed in the present study (See Chapter 7). The 

model performance was compared using Root Mean Square Error (RMSE) and 

Coefficient of Determination (R2). 

2.10.9.1 Root Mean Square Error (RMSE) 

RMSE, defined as Equation 2.31, measures the difference between original 

data (𝑦C ) and predicted data (𝑦D� ) in the original rating scale. Smaller RMSE 

indicates better predictive performance and more effective model. 

𝑅𝑀𝑆𝐸 = R
1
𝑁$(𝑦& − 𝑦'S)%

(

&)*

 Equation 2.31 
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2.10.9.2 Coefficient of Determination (R2) 

The coefficient of determination is usually equals to the square of correlation 

coefficients (Howitt and Cramer, 2011), while the equation is individually shown 

below. It explains to what extent the variance of dependent variable can be 

explained by independent variable. The R2 value ranges from 0 to 1, where 1 

indicates a perfect fitted model. 

𝑅% = 1 −
∑ (𝑦& − 𝑦'S)%(
&)*

∑ (𝑦& − 𝑦/)%(
&)*

 Equation 2.32 

2.11 Summary 

This Chapter reviews the relevant studies, following the structure of the present 

study.  

• The relevant research on tactile and visual-tactile perception were firstly 

reviewed. The following limitations were found: (1) the tactile properties of 

fabrics were evaluated mainly using real fabrics, leading to the concept of 

tactile perception. Images and videos were less used but attracted attention 

to evaluate the what humans see and what humans touch, leading to the 

concept of visual-tactile perception; (2) the tactile properties were 

evaluated under different conditions, such as images only, video only, 

touch-only, vision-only (using real fabrics), and a combination of vision and 

touch. It is unknow whether there is correlation and difference among them; 

(3) studies evaluated various tactile attributes from the perspectives of 

objective measurement and subjective perception. For consumers, 

readings from instruments are hard to interpret, and the results from 

subjective perception are mixed. It remains unclear whether the various 

tactile attributes correlate with each other; (4) the fabric structure and fabric 

colour give infinite appearances of fabrics. The effects of fabric structure 

and colour have not been fully investigated. 

• Given the above limitations, it is necessary to evaluate the tactile properties 
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thoroughly, and the results are supposed to be simple and interpretable for 

consumers. The existing fabric databases were reviewed, and the reasons 

why a new Leeds Fabric Tactile Database was developed by the present 

studies were identified. 

• The CIE colorimetry was reviewed to provide basic concepts in camera 

colour characterisation and display colour characterisation, which are two 

necessary steps to process the images and videos in the Leeds Fabric 

Tactile Database. CIE XYZ values were calculated in the characterisation 

processes, and CIE uniform LAB colour space was adopted in specifying 

fabric colours. 

• To precisely reproduce the fabric appearance, all fabric images and videos 

in the Leeds Fabric Tactile Database were processed by the camera 

characterisation model and display characterisation model. The processes 

were reviewed. 

• Colour measurement methods were reviewed, which was adopted in 

camera and display characterisation and measuring fabric colours. 

• The techniques in psychophysical experiment were reviewed. In the 

present study, categorical judgement was used in all psychophysical 

experiments to rate the tactile and visual-tactile perception. 

• To model the tactile and visual-tactile perception, predictors were extracted 

from fabric images and videos. Image processing techniques were 

reviewed and applied to the present study. 

• The statistical analysis techniques were reviewed at the end of this chapter, 

providing the basic concepts for the analyses in the present study. 
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3.1 Overview 

In this Chapter, the development of Leeds Fabric Tactile Database was 

described (Section 3.2), and the psychophysical experiments for assessing 

fabric visual-tactile perception and tactile perception were conducted using 

categorical judgement methods (Section 3.4 and 3.5). The experiments have 

been carefully prepared by conducting colour characterisation and image 

processing (Section 3.3). The database includes two parts: colour-rendered 

fabric images and real fabric images, together with the corresponding tactile 

ratings. Figure 3.1 describes the use of two parts and the overall experiment 

design. Leeds Fabric Tactile Database Part I was used in experiment Phase I, 

and the experiment Phase II used Leeds Fabric Tactile Database Part II. 

Through the two series of experiments, a comprehensive investigation of fabric 

visual-tactile and tactile perception was provided in the following chapters. 

 
Figure 3.1 Experiments Overview. 

3.2 Leeds Fabric Tactile Database preparation 

Fabric products are the must-buy commodities that humans are exposed to. 

Current fabric image databases were developed mainly for pattern recognition 

and classification. Despite the large number of fabric images available in other 

databases, the inaccessible of the real fabrics make them less suitable for 

Experiments Stimulus Conditions Task Data analysis

Part I

(experiment 

Phase I)

• 240 flat fabric images

• 240 draped fabric images

(15 fabric images*16 colours)

• Flat fabric images

• Draped fabric images

• Touch-only

• Flexible-stiff

• Smooth-rough

• Soft-firm

• Spongy-crisp

• Warm-cool

Chapter 4

Part II 

(experiment 

Phase II)

• 118 flat fabric images

• 354 draped fabric images

• 118 fabric rotation videos

• 118 real fabrics

• Flat fabrics images

• Draped fabric images

• Fabric rotation videos

• Touch-only

• Vision-only

• Vision+touch

• Flexible-stiff

• Smooth-rough

• Soft-firm

• Spongy-crisp

• Warm-cool

Chapter 5, 

Chapter 6, 

Chapter 7
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studying the differences in the perception between images and real fabrics. One 

of the objectives of this work is to build a ready-to-use Leeds Fabric Tactile 

Database, including both fabric visual representations, real fabrics, and the 

corresponding tactile perceptual ratings. 

3.2.1 Part I: colour-rendered fabric images and corresponding 

real fabrics 

3.2.1.1 Real fabrics 

Fifteen fabrics were selected in Part I, twelve of which were purchased due to 

their various appearances and textures from the Whaleys-Bradford online store, 

and three of which were selected in the testing lab in the School of Design, 

University of Leeds. The fabric thickness was measured in millimetres (mm), 

ranging between 0.10 mm and 1.15 mm. Fabrics and their images were used in 

the experiment Phase I in Section 3.4. The information of the fifteen fabrics is 

given in Appendix A. 

3.2.1.2 Image capture 

The fabrics were cut into 20*20 cm pieces. The image capture was conducted 

under the simulated CIE D65 illuminant within the X-Rite Virtual Lighting Booth 

(VLB) without any external lighting. The setup of the capturing environment is 

shown in Figure 3.2. For flat fabric images capturing, the fabric was placed on 

the equilateral triangle stand with the degree of 60°, and the angle of the camera 

was set to 30°, thus the camera can capture fabrics in the vertical direction. For 

draped fabric images capturing, the centre of the fabric was put onto a cylindrical 

stand with a diameter of 6 cm and height of 20 cm, making the fabric drapes in 

a natural condition. A SONY DLSR ILCE-7RM4A camera with a shutter speed 

of 1/200 second, focus of 5.0, ISO 500, and white balance of 6200K was used 

to capture the images. The distance between the lens and the fabric was set to 

approximately 45 cm.  



 76 

 
 

Figure 3.2 The schematic diagram for capturing flat fabric images (left) and 
draped fabric images (right). 

3.2.1.3 Colour rendering 

To generate fabric images in different colours while preserving the same texture, 

four neutral colours that are close to the CIE reference grey, and three levels of 

those four colours that are close to the CIE reference colours (red, yellow, green, 

blue) were selected (Robertson, 1978). The CIE LAB values of the 16 colours 

are listed in Table 3.1.  

Table 3.1 CIE LAB values of the selected 16 colours. 
Colour   L* a* b* 
1  25.7 0.3 -1.5 
2  88.0 -2.1 0.4 
3  43.2 0.3  0.2 
4  72.1 0.4 0.6 
5  65.1 10.5 43.5 
6  82.2 3.7 90.0  
7  53.6 21.6 64.5 
8  61.4 -26.4 -1.8 
9  38.9 -8.4 -34.2 
10  48.8 14.6 -21.8 
11  53.6 32.3 14.3 
12  54.7 64.7 51.3 
13  32.9 48.5 25.4 
14  71.4 -37.6 35.7 
15  43.1 -13.8 43.7 
16  55.5 -52.6 25.3 

The colours gave an average distribution in the CIE LAB colour space, as shown 

in Figure 3.3. 16 images in selected colours were thus generated for each fabric 

and each condition by a colour rendering process in MATLAB. There were 
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15*16=240 images generated for flat and draped fabrics separately. Details of 

image processing was described in Section 3.3.3.  

  
Figure 3.3 The distribution of the selected 16 colours in CIE a*b* (left) and 

CIE C*L* (right) colour space. 

3.2.2 Part II: real fabrics and their visual representations 

3.2.2.1 Real fabrics 

A set of 118 fabrics purchased online were prepared in Part II, including but not 

limited to merino-woollen wool, melton wool, viscose, linen, polyester, silk, and 

cotton. The information of the fabrics is given in Appendix A. The fabrics were 

cut into 30*30 cm pieces. The fabric thickness was measured in millimetres 

(mm), ranging between 0.06 mm and 4.56 mm. The colours were measured 

using Konica Minolta CM-700d spectrophotometer, set to SCI, MAV 

(diameter=8 mm), CIE D65 illuminant. Figure 3.4 shows the reasonable 

distribution of fabric colours in the CIELAB colour space. A total of 48 fabrics 

were semi-transparent, meaning that objects, e.g., a palm, placed behind them 

can still be observed. Fabrics and their images and videos were used in the 

experiment Phase II described in Section 3.5. 
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Figure 3.4 The distribution of fabric colours in CIE a*b* (left) and CIE C*L* 

(right) colour space. 

3.2.2.2 Fabric visual representation (images and videos) 

As the same as in Part I, the flat fabric images in Part II were taken under the 

simulated CIE D65 illuminant within the VLB. There was no other lighting in the 

room where the photography took place. The SONY DLSR ILCE-7RM4A 

camera with a speed of 1/8 second, ISO 2000, focus of 5.0 and white balance 

of 6200K was used to capture the flat fabric images. 118 flat fabric images were 

captured and used in the experiments. 

In addition, the VLB provided a rotation stage with adjustable rotational speed, 

where the fabric was draped freely over a cylindrical stand with a diameter of 6 

cm and a height of 30 cm. The rotation stage was adjusted to rotate clockwise 

at approximately 270 degree per minute, and the same Sony camera was used 

to capture the video in manual mode. The fabric completed a 360-degree 

rotation in each video, with a duration of approximately 80 seconds and a frame 

rate of 25 per second. It is noted that the shadows and highlights caused by 

folds can be different when observed from different angles, leading to different 

fabric appearances. Additionally, it is not feasible to maintain the fabric’s drape 

condition completely consistently through repeated draping. Therefore, three 

frames were extracted from each video at specific frames: (1) at the start of the 

video (drape_0); (2) when the fabric had rotated clockwise by 45 degrees 

(drape_45); (3) and when the fabric had rotated clockwise by 90 degrees 
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(drape_90). Figure 3.5 shows the fabric rotation process during video capture, 

along with representations of three extracted frames. The warp direction of the 

fabric was always at the left side at the beginning of the video (drape_0). 118 

fabric rotation videos were captured, and 354 draped fabric images were 

prepared in the experiments. Details of the image processing were described in 

Section 3.3.3. 

 

Figure 3.5 The top view schematic representation of the rotating fabrics. Left: 
drape_0. Middle: drape_45. Right: drape_90. 

3.3 Experimental preparation 

3.3.1 Camera characterisation 

An image of the GretagMacbeth ColorChecker® DC chart was captured at the 

same position as the fabrics in the VLB, using the same SONY camera with the 

same camera settings. The RGB values of each colour patch were derived from 

the captured DC chart image. The spectral reflectance of each colour patch in 

the DC chart was measured by the Konica Minolta CM-700d spectrophotometer 

(MAV, CIE D65 illuminant), and the CIE XYZ tristimulus values were calculated 

with the CIE 1931 colour matching functions (CMFs) and the measured spectral 

power distribution (SPD) of the CIE D65 illumination in the VLB. Technique of 

third-order polynomial regression was used as the mapping method to train an 

optimized characterisation model between the input (camera RGB) and the 

output (the calculated CIE XYZ tristimulus values) (He et al., 2021). The model 

achieved good prediction of less than 3.0 △E*00 unit averaged from 240 DC 
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colour chart patches as test colours. 

3.3.2 Display characterisation 

The experiment Phase I and Phase II were both conducted on a 24.1-inch BenQ 

colour professional display (LCD backlit, adobe RGB colour space, brightness 

24, contrast 50, sharpness 5). To truly reproduce the appearance of the fabrics, 

the colour characteristics of the display were measured, and a characterisation 

process was conducted. The following colour patches were prepared in 

Microsoft PowerPoint software: 

1. To evaluate the display spatial independence, a white patch (RGB=255, 

5*5 cm) displayed in the centre of the screen with a black surrounding, and 

an identical full-screen white patch were prepared. 

2. To evaluate the display channel independence, a full-screen pure red 

(R=255, G=0, B=0), a full-screen pure green (R=0, G=255, B=0), and a full-

screen pure blue (R=0, G=0, B=255) were prepared. 

3. To conduct the display characterisation, 18 grey patches with RGB values 

ranging from (0, 0, 0) to (255, 255, 255), increasing by 15 at each step were 

prepared in the centre of the screen with a grey background. 

4. To test the display characterisation performance, 30 randomly selected 

colour patches were prepared in the centre of the screen with a grey 

background. 

The BenQ display was placed where the experiments would be conducted and 

warmed up for 30 minutes before the colour characteristics measurements. The 

colour patches were displayed in full-screen mode of Microsoft PowerPoint and 

measured in the dark room. The Konica Minolta CS-2000 spectroradiometer 

was used to measure the CIE XYZ tristimulus values of each colour patch in 

unit of cd/m2. The spectroradiometer was set to 1° field of view and CIE 2 degree 

observer, and the distance between the spectroradiometer and the display was 

set to approximately 0.6 m. 
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The CIEDE2000 colour difference between the white patch with black 

surrounding and the full-screen white patch was calculated as the spatial 

independence. Good spatial independence was achieved for the BenQ display 

with the result of 0.19 △E*00 unit. In addition, a prediction of full-screen white 

was calculated by adding the CIE XYZ tristimulus values of the pure full-screen 

red, pure full-screen green, and pure full-screen blue. The CIEDE2000 colour 

difference between the measured full-screen white and the predicted full-screen 

white was then calculated as the channel independence. Good channel 

independence was achieved for the BenQ display with the result of 1.61 △E*00 

unit. 

The display characterisation was implemented using the gain-offset-gamma 

(GOG) model (Berns, 1996), trained by conducting transformation between the 

pre-defined RGB values of the 18 grey patches and the measured CIE XYZ 

tristimulus values. The developed GOG model achieved a prediction of less 

than 0.2 △E*00 unit averaged from the 18 grey patches as test colours, and less 

than 0.8 △E*00 unit averaged from 30 randomly selected colour patches as test 

colours. The results showed that the BenQ display has been well characterised. 

Details of the GOG model was listed in Table 3.2 in terms of the gain, offset, 

gamma values for RGB channels. 

Table 3.2 GOG model of the BenQ display. 
 Gain Offset Gamma 
R 0.9970 -0.0017 2.2507 
G 1.0152 -0.0081 2.2270 
B 1.0159 -0.0126 2.2234 

3.3.3 Image processing 

Figure 3.6 shows the details of the image processing. For fabric images in Part 

I, the selected 16 colours were transformed from CIELAB values to the CIE XYZ 

tristimulus values using the measured BenQ display white point, and then 

converted to the RGB values based on the BenQ display characterisation GOG 
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model. The fabric RGB images were transformed to greyscale images using the 

rgb2gray function in MATLAB. The greyscale value of each pixel was multiplied 

by the newly converted RGB values respectively to reconstruct the RGB 

channels of the images. Each channel was then adjusted using the 

corresponding mean value. For draped fabric images, the colour rendering 

process was only implemented on the fabric areas. 

For fabric images in Part II, images were processed through the camera 

characterisation model first. The RGB values of each pixel were converted into 

the CIE XYZ tristimulus values, and then transformed back to RGB values 

through the BenQ display characterisation GOG model to generate the final 

images. For fabric videos in Part II, each frame was processed in the same way 

as the images. The image process was implemented using MATLAB. Examples 

of the flat fabric images and draped fabric images in Part I and Part II were 

shown in Figure 3.6. The display was an AdobeRGB-calibrated monitor. While 

sufficient for most colours within the AdobeRGB gamut, it may not fully 

reproduce colours especially those near the boundary. 

 
Figure 3.6 Workflow of the image processing for the Leeds Fabric Tactile 

Database. 
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3.4 Experiment Phase I 

3.4.1 Tactile properties  

Both instrumental and psychophysical aspects were considered in the 

determination of the tactile properties in the experiment Phase I. Table 2.2 in 

Chapter 2 lists the tactile properties used in previous studies. Ten descriptors of 

the tactile properties, soft, smooth, rough, firm, warm, cool, spongy, crisp, 

flexible, and stiff, can be directly or potentially derived from Table 2.2. Based on 

their definition in the widely used Oxford online dictionary (Oxford University 

Press, 2025a), for example, the explanation of “stiff” is “rigid; not flexible or pliant” 

(Oxford University Press, 2025b), the ten descriptors were divided into five pairs 

of scales that had opposite meanings: flexible-stiff, smooth-rough, soft-firm, and 

spongy-crisp, and warm-cool. 

3.4.2 Tactile perception experiments 

Three separate sets of perceived evaluation data for fabric tactile and visual-

tactile properties were collected through the experiment Phase I as follows: 

1. Flat: the 240 flat fabric images were presented on the calibrated BenQ 

display in random order. 

2. Draped: the 240 draped fabric images were presented on the calibrated 

BenQ display in random order. 

3. Touch-only: observers could touch the 15 fabrics without observing them. 

The fabrics were passed to the observers under a desk. 

Experiment 1 and 2 were conducted in a dark room, and the distance between 

the observer and the display was approximately 40 cm. A self-complied 

MATLAB program was used to control the random image presentation. 

Experiment 3 was conducted under room lighting. 20 observers (11 females, 9 

males, average age=28.5±5.4) who passed the Ishihara test participated in the 
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experiment Phase I. In each experiment, observers made categorical 

judgement of flexible-stiff, smooth-rough, soft-firm, spongy-crisp, and warm-

cool separately with no time restrictions. The judgements were made using a 9-

point Likert type scale, and each point represents the following meaning: 

• 1: completely flexible/smooth/soft/spongy/warm 

• 2: very much flexible/smooth/soft/spongy/warm 

• 3: moderately flexible/smooth/soft/spongy/warm 

• 4: slightly flexible/smooth/soft/spongy/warm 

• 5: neither flexible/smooth/soft/spongy/warm nor stiff/rough/firm/crisp/cool 

• 6: slightly stiff/rough/firm/crisp/cool 

• 7: moderately stiff/rough/firm/crisp/cool 

• 8: very much stiff/rough/firm/crisp/cool 

• 9: completely stiff/rough/firm/crisp/cool 

For the tactile description, observers were trained prior to the experiment to 

have a unified understanding: 

• Flexible-stiff: (imagine) the fabric is draping over your hand. If you can 

clearly see the contour of your hand due to the draping fabrics rather than 

the translucency of the fabric, then the fabric is more flexible, otherwise is 

stiffer. 

• Smooth-rough: (imagine) you are touching the surface of the fabric. If you 

feel no hairy and there is limited force stopping your movement, then the 

fabric is smoother, otherwise is rougher. 

• Soft-firm: (imagine) you are crushing the fabric into a ball in your hand. If 

you think it is very easy to crush it into a ball, the fabric is softer, otherwise 

is firmer. 
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• Spongy-crisp: (imagine) you are crushing the fabric into a ball in your hand 

and then opening the palm and check if the fabric bounces back. If it 

bounces back quickly, then the fabric is spongier; if not and crease are 

shown on the surface, then the fabric is crisper. 

• Warm-cool: (imagine) you are putting the fabric over your hand. If you feel 

warmer, then the fabric is warmer; if you feel cooler, then the fabric is cooler. 

For experiment 1 and 2, 20 images were randomly selected to be repeated at 

the end of experiment to test the variability of observers. For experiment 3, the 

15 fabrics were repeated at the end of experiment to test the variability of 

observers. Figure 3.7 shows the experimental interfaces and scene. The fabric 

images were set to an appropriate size so that the fabrics in the images were 

seen at a similar size as seen physically. Images were put in the centre of the 

BenQ display with the grey background (RGB=128).  

 

 

o 1 completely flexible

o 2 very much flexible

o 3 moderately flexible

o 4 slightly flexible

o 5 neither flexible nor stiff

o 6 slightly stiff
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o 8 very much stiff

o 9 completely stiff

prev next
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o 8 very much stiff

o 9 completely stiff

prev next



 86 

 
Figure 3.7 Experiment Phase I: interfaces and scene. First row: experiment 1 

(flat fabric images). Middle row: experiment 2 (draped fabric images). Last 
row: experiment 3 (touch-only). 

3.5 Experiment Phase II 

3.5.1 Tactile properties 

In the experiment Phase I, five pairs of tactile properties were evaluated using 

colour-rendered fabric images: flexible-stiff, smooth-rough, soft-firm, spongy-

crisp, warm-cool. They were also evaluated in the experiment Phase II using 

real fabrics and the corresponding visual representations in the Leeds Fabric 

Tactile Database Part II. 

3.5.2 Tactile perception experiments 

Compared to the experiment Phase I, experiment Phase II was improved to cover 

almost all conditions of fabric tactile properties perception. Six separate sets of 

perceived evaluation data for fabric tactile and visual-tactile properties were 

collected under the following experiment conditions: 

1. Flat: The flat fabric images characterised through camera and display 

characterisation models were presented on the calibrated BenQ display in 

random order. 

2. Draped: The draped fabric images characterised through camera and display 

characterisation models were presented on the calibrated BenQ display in 

random order. 

3. Video: The fabric rotating videos characterised through camera and display 
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characterisation models were presented on the calibrated BenQ display in 

random order. Observers were asked to watch the videos for at least 50 

seconds before providing the tactile response. 

4. Touch-only: Observers could touch the fabric samples without observing them. 

The fabrics were passed to observers under a desk. 

5. Vision-only (using real fabrics): Observers could see the draped fabric samples 

rotating on the rotation stage in the VLB illuminated by the CIE D65 lighting, but 

not touch them. 

6. Vision+touch: Observers could see and touch the fabric samples in the VLB 

illuminated by the CIE D65 lighting. 

The experiments 1, 2, 3, 4, and 6 were conducted in the dark room, and the 

experiment 5 for tactile perception was conducted under room lighting. Eleven 

observers (4 males and 7 females, mean age ± SD=31.18±4.98) who passed 

the Ishihara test participated in the experiments. Nine observers completed all 

the experiments using 118 fabrics. and two completed all the experiments using 

29 fabrics and 89 fabrics, respectively. The distance between the observer and 

the fabric sample (visual representation and real fabrics) was set to 

approximately 40 cm. In each experiment, observers were required to make 

categorical judgement of flexible-stiff, smooth-rough, soft-firm, spongy-crisp, 

and warm-cool using a 9-point Likert scale. Each point represents the same 

meaning as described in the experiment Phase I, and observers were trained 

prior to the experiment Phase II to have the same understanding as in the Phase 

I (see Section 3.4.2). To avoid the memory effect, observers were required to 

follow the experiment order as above. To evaluate the observer variability, 

observers were asked to repeat 2 experiments using random 29 fabrics, one 

from either experiment 1, 2, or 3, and one from either experiment 4, 5, or 6. The 

experimental interfaces for experiment 1, 2, and 3 are the same as in the 

experiment Phase I, except for the images used. Examples of the scene of 

experiment 4, 5, 6 are shown in Figure 3.8. 
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Figure 3.8 Experiment Phase II: scenes when vision was allowed only (first 

figure), and when both touch and vision was allowed (second figure). 

3.6 Summary 

In this chapter, a Leeds Fabric Tactile Database was developed. Experiment 

Phase I and Phase II were conducted using the database. Details of the 

database and the experiments were summarised as following: 

1. Two parts were developed in the Leeds Fabric Tactile Database. Part I:15 

real fabrics and colour-rendered images (240 flat fabric images, 240 draped 

fabric images). Part II: 118 real fabrics, 118 flat fabric images, 354 draped 
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fabric images, and 118 fabric rotation videos. In addition to the images and 

real fabrics, comprehensive tactile perceptual ratings were included in the 

database. 

2. The colours in images and videos were carefully characterised through 

camera characterisation model and the display GOG model. 

3. Experiments Phase I were conducted using Part I, and experiments Phase 

II were conducted using Part II. The perception of fabric tactile and visual-

tactile properties was evaluated in both experiments. 
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Chapter 4  

Experiment Phase I: factors and correlations for 

visual-tactile and tactile perception 
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4.1 Overview 

In this Chapter, the data collected using Leeds Fabric Tactile Database Part I 

were analysed. The experiments Phase I were introduced in Section 3.4. For 

psychophysical experiments, the observer variability was tested within observer 

(intra-observer variability) and between observers (inter-observer variability) to 

ensure a consistent understanding of the experiment among participants 

(Section 4.3). Whether the collected raw data were normally distributed was 

tested, so that analytical methods with appropriate assumption can be selected 

(Section 4.4). Two main analyses were conducted in this Chapter: one focused 

on initially evaluating the factors affected the visual-tactile perceptual ratings 

(Section 4.5), and the other focused on the associations between flat fabric 

images, draped fabric images, and touch-only experiment conditions (Section 

4.6) and the associations among five pairs of tactile properties (Section 4.7). An 

interesting bias was found on the effects of colour on the perceived warm-cool 

between Section 4.5 and Section 4.6. Therefore, a full CLMM model was fitted 

to further understand the effects of colour (Section 4.8). The statistical analysis 

was introduced in Section 4.2. The practical effect of colour was taken into 

account, and the effect of fabric structure was further discussed to support the 

analysis of real fabrics in the following chapters. 

4.2 Statistical analysis 

In Section 4.3, the inter-observer variability and intra-observer variability was 

computed using the Root Mean Square (RMS) values, following studies that 

used the method of categorical judgement (Ou et al., 2006; Lee et a., 2000; Ou 

et al., 2012). RMS indicates how well individuals agreed with the mean scale 

value, where 0 means perfect agreement. The formulae are given in Equation 

4.1 and Equation 4.2. 

𝑅𝑀𝑆C$6M- = �∑ (𝑥C − 𝑥̅)
*

C

𝑁
 

Equation 4.1 
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𝑅𝑀𝑆C$6-' = �∑ (𝑥C − 𝑦C)*C

𝑁
 

Equation 4.2 

 

where N is the number of observations, 𝑥C is one observer’s tactile perceptual 

ratings in one set, 𝑥̅ is the mean tactile perceptual ratings from all observers 

for assessing inter-observer variability, 𝑦C  is the same observer’s tactile 

perceptual ratings in the repeat set for assessing intra-observer variability, 𝑖 is 

the stimulus. 

The raw data were integer values that indicated the tactile perceptual ratings 

evaluated in the experiment Phase I. Whether the raw data of all observers was 

normally distributed was assessed for each pair of tactile properties under all 

experiment conditions by Shapiro-Wilk test in Section 4.4. 

In Section 4.5, Cumulative Link Mixed Models (CLMM) with (full) and without 

(simple) three-way interactions were fitted for each pair of tactile properties, 

setting the fabrics, experiment conditions (flat and draped), and colours that 

were selected to render the fabrics (L*, a*, b*) as the fixed effects, and images 

and observers as the random effects. Full models allow all interactions between 

fabrics, experiment conditions, and colours, while simple models exclude the 

three-way interactions between fabrics, experiment conditions, and colours, but 

remain the two-way interactions of fabrics and experiment conditions. Contrast 

coding was used in all CLMM models to convert fabrics and experiment 

conditions to coded categorical factors. CIELAB values were z-standardised 

before fitting the CLMM models to ensure an evenly distribution. Comparisons 

between simple and full model were made using anova() function from stats R 

package. P values of the fixed effects in CLMM models were computed using 

Likelihood Ratio Test (LRT) with Type III sums of squares, using Anova() 

function from car R package. 

The fitted perceptual ratings of the visual-tactile perception were computed for 

the two-way interaction (fabric:experiment condition). The default CLMM 
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models were fitted on the scale of linear predictor scale using logit link function 

in CLMM models, rather than the original category scales (1-9) (Agresti, 2010). 

Higher linear predictor scales represent higher probabilities of selecting higher 

categories in the original scale. The probability of selecting each scale is defined 

in Equation 4.3, by using the threshold estimates and the results of linear 

predictors from the CLMM models. Threshold estimates define the boundaries 

between the original categories on the linear predictor scale. Linear predictor 

scale reflects the overall influence of the fixed effects and random effects. The 

fitted tactile perceptual ratings for each interaction were computed on the 

original scales using Equation 4.4. 

 𝑃(𝑌 ≤ 𝑗) =
𝑒𝑥𝑝(𝜏4 − 𝜂)

1 + 𝑒𝑥𝑝(𝜏4 − 𝜂)
  

 𝜂 = 𝛽𝑋 + 𝑍𝑏  

 𝑃(𝑌 = 𝑗) = 𝑃(𝑌 ≤ 𝑗) − 𝑃(𝑌 ≤ 𝑗 − 1) Equation 4.3 

 Tℎ𝑒	𝑓𝑖𝑡𝑡𝑒𝑑	𝑡𝑎𝑐𝑡𝑖𝑙𝑒	𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛

=o𝑗 × 𝑃(𝑌 = 𝑗)
N

4<!

 

 

 

Equation 4.4 

where 𝑗  represents the category scale (1-9), 𝜏4  represents the threshold 

estimates of each category scale fitted in the CLMMs, 𝜂 is the linear predictor, 

𝛽𝑋 reflects the fixed effects, 𝑍𝑏 reflects the random effects. Pairwise contrasts 

analyses were conducted with Bonferroni correction to evaluate the significant 

differences between using flat and draped fabric images by contrast() function 

in emmeans R package.  

In Section 4.6 and Section 4.7, the observed scores were averaged across all 

observers to create a score for each image sample and fabric sample under all 

experiment conditions. Overall, a higher score means the fabric was judged as 

stiffer/rougher/firmer/crisper/cooler, and a lower score means the fabric was 

judged as more flexible/smoother/softer/spongier/warmer. Pearson Correlation 

Coefficients (two-tailed) was used to evaluate the correlations of the tactile 

perceptual ratings between vision and touch and between flat and draped fabric 
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images. Since each of the 15 fabrics was rendered in 16 different colours, a 

number of 240 averaged data was obtained from experiment using flat and 

draped fabric images, respectively. In contrast, a number of 15 averaged data 

was obtained from experiment touching the fabrics. The correlation of the tactile 

perceptual ratings between using flat and draped fabric images was computed 

directly from the averaged data. Since the effect of colour was not significant in 

CLMM models (reported in Section 4.5), data from the image-only experiment 

were averaged across 16 colours for each fabric. The correlation of the tactile 

perceptual ratings between viewing images and touching fabrics was thus 

computed. In addition, the correlations among the tactile perceptual ratings 

were computed for flat fabric images, draped fabric images, and touch-only, 

respectively in Section 4.7. 

In Section 4.8, the effects of colours were further analysed for the perceived 

warm-cool by fitting a CLMM model with three-way interaction between fabrics, 

experiment conditions (flat and draped fabric images), and colours (L*, a*, b*). 

The fixed effects were derived from CLMM model using Anova() function from 

car R package. The parameter estimates for L*, a*, and b*were computed within 

each interaction. 

The significant level was fixed to 0.05 in all analyses in this Chapter. In all figures 

and tables, asterisks *** indicate p<0.001, ** indicate p<0.01, * indicate p<0.05. 

4.3 Observer variability 

Table 4.1 lists the inter-observer and intra-observer variability in the experiment 

Phase I, indicated by RMS values. RMS values range from 0.83 to 1.93 points 

within the 9-point Likert scale for inter-observer variability, with averages of 1.74 

points, 1.42 points, and 1.29 points achieved under the experiment conditions 

of flat fabric images, draped fabric images, and touch-only, respectively. For 

intra-observer variability, RMS values range from 0.55 to 1.35 points, with 

averages decreased to 1.03 points, 1.10 points, and 1.21 points compared to 
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inter-observer variability. Compared to the studies using categorical judgement 

(Ou et al., 2006; Lee et a., 2000; Ou et al., 2012), the RMS values shown here 

are reasonable, indicating a consistent understanding from all observers. 

Table 4.1 Observer variability in the experiment Phase I. 
 Conditions Flexible

-stiff 

Smooth

-rough 

Soft-

firm 

Spongy-

crisp 

Warm-

cool 

Mean 

In
te

r-

ob
se

rv
er

 

va
ria

bi
lit

y 
Flat 1.93 1.76 1.86 1.80 1.39 1.74 

Draped 1.22 1.63 1.29 1.54 1.44 1.42 

Touch-only 1.27 1.46 1.24 1.67 0.83 1.29 

In
tra

-

ob
se

rv
er

 

va
ria

bi
lit

y 

Flat 1.35 1.15 1.09 1.00 0.55 1.03 

Draped 1.30 1.29 1.09 1.17 0.67 1.10 

Touch-only 0.99 1.25 1.31 1.56 0.93 1.21 

4.4 Normal distribution 

Whether the raw perceptual ratings of all observers were normally distributed 

was evaluated by Shapiro-Wilk test first. Table 4.2 lists the results of the 

normality for each pair of tactile properties, where a value of w closer to 1 means 

a better match to the normal distribution, and p-value means the rejection or not 

to the null hypothesis. The w values were not very close to 1, and the significant 

p-values indicated the rejection of null hypothesis. The raw perceptual ratings 

for all tactile properties were not normally distributed, and thus the analysis 

methods used in this Chapter were chosen without relying on the assumption 

of normality. 

Table 4.2 The results of Shapiro-Wilk test for the experiment Phase I. 
 Flexible-

stiff 
Smooth-
rough 

Soft-firm Spongy-
crisp 

Warm-cool 

Flat 
w=0.93, 
p<0.001*** 

w=0.94, 
p<0.001*** 

w=0.95, 
p<0.001*** 

w=0.95, 
p<0.001*** 

w=0.96, 
p<0.001*** 

Draped 
w=0.93, 
p<0.001*** 

w=0.95, 
p<0.001*** 

w=0.94, 
p<0.001*** 

w=0.95, 
p<0.001*** 

w=0.96, 
p<0.001*** 

Touch-only 
w=0.87, 
p<0.001*** 

w=0.92, 
p<0.001*** 

w=0.91, 
p<0.001*** 

w=0.94, 
p<0.001*** 

w=0.95 
p<0.001*** 
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4.5 The effect of fabric, colour, and experiment condition on 

visual-tactile perception  

CLMM models with and without interactions were fitted and compared firstly to 

define the models to be evaluated. Equation 4.5 and Equation 4.6 are the fitted 

models with and without three-way interaction, respectively.  

With interactions: Tactile perceptual ratings= 

𝑓𝑎𝑏𝑟𝑖𝑐𝑠 ∗ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 ∗ 𝐿 + 

𝑓𝑎𝑏𝑟𝑖𝑐𝑠 ∗ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 ∗ 𝑎 + 

𝑓𝑎𝑏𝑟𝑖𝑐𝑠 ∗ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 ∗ 𝑏 + 

(1|𝑖𝑚𝑎𝑔𝑒) + (1|𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟) 

Equation 4.5 

Without interaction:  Tactile perceptual ratings= 

𝑓𝑎𝑏𝑟𝑖𝑐𝑠 ∗ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 + L + a + b 

(1|𝑖𝑚𝑎𝑔𝑒) + (1|𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟) 

Equation 4.6 

 

Table 4.3 lists the comparisons of models with and without three-way 

interactions. For models of flexible-stiff, smooth-rough, soft-firm, and spongy-

crisp, model without three-way interactions outperformed model with 

interactions, as indicated by the lower AIC and BIC values and the non-

significant p-values. For models of warm-cool, even though the AIC value and 

p-value preferred the model with three-way interaction, the BIC value strongly 

supported the model without three-way interaction. To ensure the comparability 

and consistency across the five pair of tactile properties, models without 

interactions were reported in the following analyses in this section. 
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Table 4.3 Comparisons between CLMM models with and without three-way 
interactions for the experiment Phase I. 

 no.
par 

AIC BIC logLik 𝜒2 p-values 

Flexible-stiff 
With interactions 129 33129 34054 -16436 59.739 p=0.99 
Without interactions 42 33015 33316 -16466   
Smooth-rough 
With interactions 129 34747 35671 -17245 65.549 p=0.96 
Without interactions 42 34639 34969 -17277   
Soft-firm 
With interactions 129 34038 34962 -16890 30.17 p=0.99 
Without interactions 42 33894 34195 -16905   
Spongy-crisp 
With interactions 129 34865 35789 -17303 26.538 p=0.99 
Without interactions 42 34718 35018 -17317   
Warm-cool 
With interactions 129 34002 34926 -16872 201.71 p<0.001*** 
Without interactions 42 34030 34330 -16973   

Table 4.4 lists the fixed effects of the CLMM models for each pair of tactile 

properties. The fabrics, the experiment conditions, and the interaction between 

fabrics and experiment conditions were significant for all fitted tactile perceptual 

ratings. Among all fixed effects, fabrics had the greatest impact on all tactile 

perceptual ratings, indicated by 𝜒* . 𝜒*  is the statistical value obtained by 

comparing the full model and simple model without the corresponding fixed 

effect. A larger 𝜒*, along with a significant p-value, indicates that the fixed effect 

significantly improves the model fit. The interaction between fabrics and 

experiment conditions also significantly affected visual-tactile perception, 

indicating that the effect of experiment conditions was different among fabrics 

when perceiving visual-tactile properties. Lightness (L*) significantly affected all 

visual-tactile perceptions except for smooth-rough. However, the 𝜒*  are 

relatively small, indicating that the effect was statistically significant while the 

practical impact was weak. Similarly, a* and b* are significant in visually 

perceiving warm-cool, but the effect is limited due to the smaller 𝜒*. Colour 

played no role in flexible-stiff, smooth-rough, soft-firm, and spongy-crisp 
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perception. 

Table 4.4 The fixed effects in all CLMM models and their significance for the 
experiment Phase I. 

 Fixed effects 𝜒2 df p 
Fl

ex
ib

le
-s

tif
f 

Fabrics 4485.96 14 p<0.001*** 
Experiment conditions 170.01 1 p<0.001*** 
L* 24.24 1 p<0.001*** 
a* 0.33 1 p=0.56 
b* 2.73 1 p=0.10 
Fabrics:experiment conditions 1943.08 14 p<0.001*** 

Sm
oo

th
-ro

ug
h 

Fabrics 2698.88 14 p<0.001*** 
Experiment conditions 8.88 1 p=0.003** 
L* 0.35 1 p=0.55 
a* 2.00 1 p=0.16 
b* 0.37 1 p=0.54 
Fabrics:experiment conditions 347.60 14 p<0.001*** 

So
ft-

fir
m

 

Fabrics 4059.45 14 P<0.001*** 
Experiment conditions 162.40 1 P<0.001*** 
L* 5.94 1 P=0.01* 
a* 0.27 1 P=0.61 
b* 1.55 1 P=0.21 
Fabrics:experiment conditions 975.71 14 P<0.001*** 

Sp
on

gy
-c

ris
p 

Fabrics 3175.78 14 p<0.001*** 
Experiment conditions 398.19 1 p<0.001*** 
L* 6.38 1 p=0.01* 
a* 0.00 1 p=0.99 
b* 0.59 1 p=0.44 
Fabrics:experiment conditions 682.890 14 p<0.001*** 

W
ar

m
-c

oo
l 

Fabrics 996.87 14 p<0.001*** 
Experiment conditions 16.62 1 p<0.001*** 
L* 31.06 1 p<0.001*** 
a* 135.15 1 p<0.001*** 
b* 119.4 1 p<0.001*** 
Fabrics:experiment conditions 294.87 14 p<0.001*** 

To further understand the interaction between fabrics and experiment conditions, 

the fitted perceptual ratings of all interactions were computed using Equation 

4.4. Figure 4.1 compares the fitted perceptual ratings of visual-tactile perception 

perceived between using flat fabric images and draped fabric images for each 

fabric. Overall, experiment conditions played different roles across 15 fabrics in 

the Leeds Fabric Tactile Database Part I. For the fitted flexible-stiff and soft-firm 
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models, the effect of experiment conditions was significant on most of the fabrics. 

No significant difference was observed between using flat and draped fabric 

images in perceiving flexible-stiff for fabric 13 and in perceiving soft-firm for 

fabric 4. Among the 15 fabrics, eight, two and five fabrics exhibited similar 

perceptual ratings between flat and draped fabric images for the fitted smooth-

rough, spongy-crisp, and warm-cool, respectively. 

  

  

 

 

Figure 4.1 The fitted perceptual ratings of each fabric for all visual-tactile 
perceptions perceived from flat fabric images and draped fabric images. 

Apart from the significance, the relative magnitude of fitted tactile perceptual 

ratings between flat and draped fabric images was not consistent. Higher 

perceptual ratings represent stiffer, rougher, firmer, crisper, and cooler, and 

lower perceptual ratings represent more flexible, smoother, softer, spongier, and 

warmer. The fitted tactile perceptual ratings perceived from flat and draped 
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fabric images showed mixed results across all fabrics, with no consistent 

tendency in which fabric image type had higher or lower perceptual ratings. For 

example, in Figure 4.1, fabric 1, 2, 6, 7, 8, 12, and 15 were rated with higher 

scores, i.e., stiffer, when perceived from draped fabric images, while the rest 

were perceived as stiffer when perceived from flat fabric images. In addition, 

whether there were significant differences between using flat and draped fabric 

images was independent of the relative magnitude of tactile perceptual ratings. 

A significant difference does not indicate higher or lower tactile perceptual 

ratings using either flat or draped fabric images. Figure 4.2 shows the examples 

of flat and draped fabric images for fabric 1-15, illustrating the individual 

appearance differences. 

 
Figure 4.2 Individual fabrics in Leeds Fabric Tactile Database Part I. 

4.6 The correlations of tactile perceptual ratings among 

experiment conditions. 

The correlations of the average tactile perceptual ratings among experiment 

conditions were listed and compared in Table 4.5.  

Table 4.5 The Pearson Correlation Coefficients of the tactile perceptual ratings 
between vision and touch, and between using flat and draped fabric images. 

 Touch-only vs flat Touch-only vs draped Flat vs draped 
Flexible-stiff 0.51 0.89*** 0.66*** 

Smooth-rough 0.42 0.63* 0.75*** 

Fabric 1 Fabric 2 Fabric 3 Fabric 4 Fabric 5 Fabric 6 Fabric 7 Fabric 8

Fabric 9 Fabric 10 Fabric 11 Fabric 12 Fabric 13 Fabric 14 Fabric 15
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Soft-firm 0.68** 0.90*** 0.74*** 
Spongy-crisp 0.61* 0.83*** 0.72*** 
Warm-cool 0.81*** 0.88*** 0.66*** 

In Table 4.5, overall, tactile perceptual ratings of flexible-stiff and smooth-rough 

obtained by touching the fabrics showed no significant correlation with those 

obtained by viewing flat fabric images (r=0.51, p>0.05 for flexible-stiff; r=0.42, 

p>0.05 for smooth-rough). In contrast, all other correlations were all significant 

and relatively high (r>0.61). 

For each pair of tactile properties, the correlations between draped fabric 

images and touching the fabrics were consistently higher than that between flat 

fabric images and touching the fabrics. Draped fabric images accurately 

conveyed all visual-tactile perception similar to those from actually touching the 

fabrics. However, the perceived warm-cool from flat fabric images also showed 

high and positive correlations with those from touching the fabrics (r=0.81, 

p<0.001***). In addition, tactile perceptual ratings from using flat fabric images 

and draped fabric images showed positive and significant correlations, with r 

ranging from 0.66 to 0.75. 

It is noted that the Pearson Correlation Coefficients for the perceived flexible-

stiff and warm-cool were both equal to 0.66. For the perceived warm-cool, 

correlations between vision and touch were both significant and highly positive, 

however, the correlation between using flat fabric images and touching the 

fabrics for flexible-stiff was not significant. Possible reason can be the data used 

to compute the Pearson Correlation Coefficients. As described in Section 4.2, r 

between vision and touch were computed by the averaged data across 16 

colours for each fabric, resulting in 15 data for each condition. For perceived 

warm-cool, the SD within each fabric across 16 colours was larger than that for 

flexible-stiff, as well as other tactile perception, indicating a wider range of 

variation in perceived warm-cool across different colours (see Figure 4.3). As 

analysed in Section 4.5, the effect of colour was statistically significant but weak 
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on the perceived warm-cool. The larger SD observed here possibly can be the 

evidence that the effect of colour was underestimated before. It also possibly 

explained why the correlation between touch-only and flat fabric images was 

higher than other tactile perceptions. As only CLMM model without interactions 

were reported for the perceived warm-cool, a separate CLMM model with three-

way interactions between colour and fabrics and experiment conditions was 

individually fitted and analysed in Section 4.8. 
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Figure 4.3 The correlations of the average perceptual ratings between touch-
only condition and using flat (blue) and draped fabric images (red). Error bar 
indicates the standard deviation (SD) of the tactile perceptual ratings across 

16 colours for each fabric. 

4.7 The correlations among the tactile perceptual ratings under 

each experiment condition 

The correlations among the tactile perceptual ratings were shown in Figure 4.4. 

Consistent correlations were observed across three experiment conditions. 

Firstly, the perceived flexible-stiff, smooth-rough, soft-firm, and spongy-crisp 

were highly correlated to each other (r>0.51 when using flat fabric images, 

r>0.76 when using draped fabric images, r>0.72 when only touch allowed). A 

fabric perceived as more flexible was often associated with increased 

roughness, firmness, and crispness. In contrast, the perceived warm-cool has 

no correlation with other tactile properties. 
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Figure 4.4 The correlations among tactile perceptual ratings under each 
experiment condition. 

4.8 A further analysis of the effects of colour on the perceived 

warm-cool: CLMM model with three-way interactions 

A separate full CLMM model with the three-way interaction between fabrics, 

experiment conditions, and colours (L*, a*, b*) was fitted. The formula of the 

CLMM model was given in Equation 4.5. Table 4.6 lists all the fixed effects in 

the full CLMM model for warm-cool. There were significant effects of two-way 

and three-way interactions of colour. Significant two-way interactions included 

condition:colour, fabric:L* (p=0.02*), and fabric:a* (p=0.04*), and only the three-

way interaction of fabric:condition:b* was not significant (p=0.70). Based on the 
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CLMM model, colour had different effects on the perceived warm-cool when 

using different fabric images. 

Table 4.6 The fixed effects in warm-cool CLMM models with three-way 
interaction. 

Fixed effects 𝜒2 η² df p 
Fabric 1149.20 0.11 14 p<0.001*** 
Condition 14.53 0.00 1 p<0.001*** 
L* 38.70 0.00 1 p<0.001*** 
a* 173.42 0.02 1 p<0.001*** 
b* 153.24 0.02 1 p<0.001*** 
Fabric:condition 297.23 0.03 14 p<0.001*** 
Fabric:L* 27.25 0.00 14 p=0.02* 
Condition:L* 14.05 0.00 1 p<0.001*** 
Fabric:a* 16.14 0.00 14 p=0.30 
Condition:a* 4.16 0.00 1 p=0.04* 
Fabric:b* 22.82 0.00 14 p=0.06 
Condition:b* 8.11 0.00 1 p=0.004** 
Fabric:condition:L* 64.51 0.01 14 p<0.001*** 
Fabric:condition:a* 27.08 0.00 14 p=0.02* 
Fabric:condition:b* 10.81 0.00 14 p=0.70 

To further reveal the roles of colour in each subgroup of fabric and experiment 

condition, parameter estimates (β) on the original scales and significant levels 

of L*, a*, and b* were computed from the CLMM model. Since there are in total 

30 subgroups of fabrics (15) and experiment conditions (2), reporting all results 

will be redundant. Only significant parameter estimates were listed in Table 4.7.  

Table 4.7 Parameter estimates (β) of L*, a*, b* in the full CLMM model for 
warm-cool. 

 fabric flat draped fabric flat drape 
L* 3 NS β=0.024*** 7 NS β=0.026*** 

4 NS β=0.016** 9 NS β=0.030*** 
5 NS β=-0.014* 10 NS β=0.049*** 

a* 1 β=-0.011*** NS 9 β=-0.013*** β=-0.012** 
2 NS β=-0.015*** 10 β=-0.012*** β=-0.010 ** 
3 β=-0.008** NS 11 β=-0.008** β=-0.011*** 
4 β=-0.008* NS 12 β=-0.010* β=-0.008* 
5 β=-0.011*** β=-0.019*** 13 β=-0.010** β=-0.015*** 
6 β=-0.012*** NS 14 β=-0.008* NS 
7 β=-0.014*** NS 15 β=-0.008** β=-0.006* 
8 β=-0.011*** β=-0.014***    
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b* 1 β=-0.007* NS 8 β=-0.008** β=-0.012*** 
2 β=-0.008* NS 10 β=-0.009** β=-0.007* 
3 β=-0.013*** β=-0.012*** 11 β=-0.008** NS 
4 β=-0.016*** β=-0.010*** 12 β=-0.010** NS 
5 β=-0.010*** β=-0.008* 13 β=-0.016*** β=-0.010** 
6 NS β=-0.006* 14 β=-0.006* NS 
7 β=-0.010** β=-0.009** 15 β=-0.009** β=-0.006* 

NS: Non-significant. 

The effects of colour on the perceived warm-cool were independent between 

using flat and draped fabric images. Significant effects of colours when using 

flat fabric images can be no longer significant when using draped fabric images 

(e.g., fabric 1 βa* and βb*), and vice versa (e.g., fabric 3 βL*, fabric 2 βa*). In 

addition, the effects of colour were statistically significant but still weak in the 

CLMM model with three-way interaction. For example, an increase of one unit 

in L* resulted in a 0.024 unit increase in the perceived warm-cool for fabric 3 

when using draped fabrics; an increase of one unit in a* resulted in a 0.011 unit 

decrease for fabric 1, and an increase of one unit in b* resulted in a 0.007 unit 

decrease for fabric 1 when using flat fabric images. All units of the perceptual 

ratings were based on the 9-point Likert scale. Based on the CLMM model, an 

increase of L* was associated with cooler perception, while an increase of a* 

and b* was associated with warmer perception.  

4.9 Discussion 

4.9.1 The practical effects of colour for warm-cool. 

The effect of colour was statistically significant on the fitted warm-cool 

perception in both simple and full CLMM models. The simple CLMM model 

excluded the three-way interaction between fabrics, experiment conditions, and 

colours, while the full CLMM models included the three-way interaction. It is 

found that the decrease of L* and increase of a* and b* was associated with 

warmer perception. A Higher a* value represents reddish colour and a higher b* 

value represents yellowish colour. This result is consistent with the findings of 
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Atav and Keskin (2024), where red, yellow, and orange cotton fabrics were 

perceived as warmer, and blue, green, and purple cotton fabrics were perceived 

as cooler. Similarly, Fenko et al. (2010) also found that orange and red scarves 

were perceived as warmer, and cyan, green, and blue scarves were perceived 

as cooler, using materials such as silk, wool, and cotton. In both studies (Atav 

and Keskin, 2024; Fenko et al., 2010), the fabric colours were described in terms 

of hue and not quantified within a uniform colour space. In contrast, in the 

present study, the 16 colours were selected because of their average 

distribution in the CIELAB colour space and then rendered on 15 different fabric 

images in a digital way. This approach enabled better control over colour and 

fabric as variables. It also eliminated inconsistencies in colour appearance 

caused by different dyeing performance across fabric materials. Instead of dying 

real fabrics, Ou et al. (2004) used pure colour patches from NCS Color Atlas to 

evaluate warm-cool perception as one of the colour emotion scales. The colours 

of colour patches gave a uniform distribution in the CIELAB colour space. They 

found that reddish colour patches were rated as warmer and bluish colour 

patches were rated as cooler. Overall, a consistent tendency of the role of colour 

in warm-cool perception has been found, observed both in fabric tactile 

perception and in pure colour patches. 

The effects of colour on the perceived warm-cool have been quantified in the 

full CLMM models, indicated by the parameter estimates in Table 4.8. However, 

the effects of colour were limited. For each unit increase in L*, a*, or b*, the 

change in the fitted perceptual warm-cool was small on a 9-point Likert scale, 

with variations less than 0.05 points for L* and less than 0.02 points for a* and 

b*. Nevertheless, it is important to note that this result only reflected a change 

of 1 unit in L*, a*, or b*. In practical, the colour variation between fabrics can be 

larger. L* of the selected colours used to render the fabric images ranged from 

25.7 to 88.0, a* ranged from -52.6 to 64.7, and b* ranged from -34.2 to 90.0 

(see Chapter 3, Table 3.1). For fabrics with small differences in L*, a*, or b*, the 
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effect of colour is expected to be negligible when differentiating warm-cool 

perception. In contrast, for fabrics with significantly larger colour differences, 

one cannot ignore the effect of colour. 

4.9.2 Individual fabrics largely affected the fitted tactile perceptual 

ratings based on CLMM models 

In the simple CLMM models, fabric had the greatest impact on all fitted visual-

tactile perceptual ratings. The variation in visual-tactile perception largely 

depended on the inherent differences among individual fabrics. During 

observing the fabric images, the individual differences were primarily reflected 

in the fabric’s appearance, which is large determined by its structure and colour. 

From a structural perspective, the fabrics can generally be divided into woven 

and knitted fabrics. Woven fabrics have the interlace structure while knitted 

fabrics have the interloop structure, which is the primary difference between 

woven and knitted fabrics. In addition, within each category, the fabric 

appearance also varies largely. In woven fabrics, factors such as the type of 

weave (plain, twill, satin) and yarn count play significant roles. In knitted fabrics, 

factors such as loop length, knitted structure, and yarn thickness contribute to 

the overall appearance. In this chapter, as only 15 fabrics were analysed, 

comparisons were made among individual fabrics and between using flat and 

draped fabric images. Although the differences of visual-tactile perception 

among individual fabrics and between flat and draped fabric images were 

significant, the magnitude of the differences was not consistent. One primary 

reason is of the fabric appearance variation. As the colour had no role in visual-

tactile perception (possibly except for warm-cool), the differences of visual-

tactile perception largely resulted from the structural differences. However, 

given that only 15 fabrics were investigated in this Chapter, the comparisons did 

not effectively reveal the role of fabric structures. A larger set of fabrics were 

investigated in Chapter 6 using real fabric images, and comparisons were made 
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between two broader categories: woven and knitted, to avoid a redundant 

comparison. 

4.10 Summary 

This Chapter, together with the Leeds Fabric Tactile Database Part I, provides 

an initial exploration of visual-tactile and tactile perception by ensuring the 

control over colours and fabrics. A summary of the major findings is listed below: 

• Observers had consistent perception of tactile properties perceived through 

both images and real fabrics. 

• The differences in visual-tactile perception of fabric images were 

predominantly driven by the inherent variations among individual fabrics.  

• Colour had a limited role in the fitted flexible-stiff, smooth-rough, soft-firm, 

and spongy-crisp perception, but it impacted the fitted warm-cool 

perception. 

• Significant differences of the visual-tactile perception were found between 

flat and draped fabric images for most of fabrics. However, there was no 

consistent tendency that whether flat or draped fabric images led to higher 

or lower fitted perceptual ratings. It varied across individual fabrics. 

• For the perception of all tactile properties, the correlations between draped 

fabric images and touching the fabrics were consistently higher than that 

between flat fabric images and touching the fabrics. The perceived flexible-

stiff, smooth-rough, soft-firm, and spongy-crisp were positively correlated 

to each other, while the perceived warm-cool had no association with them. 
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Chapter 5  

Experiment Phase II: correlations for visual-tactile 

and tactile perception 
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5.1 Overview 

In the last Chapter, data collected using colour rendered fabric images were 

initially analysed. In this Chapter, data collected from experiment Phase II were 

investigated, covering comprehensive real-life scenarios involving contact with 

fabrics. Fabrics were presented and evaluated in the form of images (flat and 

draped) and videos (rotation), and real fabrics under the conditions of touch-

only, vision-only, and the combination of both. Observer variability was tested 

firstly to ensure a consistent understanding of the experiments among 

participants (Section 5.3). Whether the tactile perceptual ratings differed among 

different viewing angles from draped fabric images was tested (Section 5.4). 

Separate analyses were conducted to fully investigate the tactile perception of 

real fabric samples, achieved by detailed correlation analyses (Section 5.5 and 

5.6) and comparisons (Section 5.7). In addition, the correlations in this Chapter 

were compared with the correlations in the last Chapter that using rendered 

fabric images and real fabrics. Consistency and differences between using real 

fabric images and rendered fabric images were reported. 

5.2 Statistical analysis 

The data collected in the experiment Phase II was used in this Chapter to 

conduct the following analyses. 

Inter-observer variability and intra-observer variability were assessed using 

RMS values as defined in Equation 4.1 and Equation 4.2, averaged across all 

experiment conditions for each pair of tactile properties. The calculation was the 

same as described in Section 4.2. 

The raw data were integer values that indicated the tactile perceptual ratings 

evaluated in the experiment Phase II. The observed scores were averaged 

across all observers to create a score for each fabric sample under each 

experiment condition. Overall, a higher score means the fabric was judged as 
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stiffer/rougher/firmer/crisper/cooler, and a lower score means the fabric was 

judged as more flexible/smoother/softer/spongier/warmer. 

Three draped fabric images in different viewing angles were prepared for each 

fabric sample in the experiment Phase II. The effects of the viewing angles were 

evaluated by RMS values (Equation 4.1), where 𝑥C  represents the average 

score across all observers for three viewing angles respectively, 𝑥̅ represents 

the average scores across the three viewing angles (Section 5.4). The Pearson 

Correlation Coefficient (two-tailed) was computed to assess the relationships of 

the perception of tactile properties among different experiment conditions 

(Section 5.5), and the relationships among the perception of tactile properties 

under each experiment condition (Section 5.6). The significant level was set to 

0.05. Asterisks *** indicate p<0.001, ** indicate p<0.01, * indicate p<0.05 in all 

analyses. To further investigate the difference of the tactile perception between 

using visual representation and real fabrics (Section 5.7), the tactile responses 

were averaged from flat fabric images, draped fabric images, and fabric rotation 

video to represent the visual representation data. Similarly, the tactile responses 

from vision-only (using real fabrics), touch-only, and vision+touch were 

averaged to represent the real fabric data. 

5.3 Observer variability 

The RMS values were calculated as a measure of both inter-observer variability 

and intra-observer variability for tactile perceptual ratings across observers in 

the experiment Phase II. As shown in Table 5.1, the RMS values range from 

1.17 to 1.63 with a mean value of 1.38 for inter-observer variability, and from 

0.94 to 1.34 with a mean value of 1.25 for intra-observer variability. The observer 

variability for warm-cool was found to be the lowest, with the RMS of 1.17 and 

0.94, and the highest for spongy-crisp with the RMS of 1.63 and 1.34 for inter- 

and intra-observer variability, respectively. Compared to the studies using 

categorical judgement (Ou et al., 2006; Lee et a., 2000; Ou et al., 2012), the 
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RMS values shown here are reasonable, indicating it can achieve observer 

variability within 1.38 points on a 9-point scale within the group, and 1.25 points 

on a 9-point scale within the observer. 

Table 5.1 Observer variability in the experiment Phase II. 
 Flexible-

stiff 

Smooth-

rough 

Soft-firm Spongy-

crisp 

Warm-

cool 

Mean 

Inter-observer 

variability 

1.24 1.44 1.39 1.63 1.17 1.38 

Intra-observer 

variability 

1.26 1.34 1.34 1.34 0.94 1.25 

5.4 The differences of the visual-tactile perception between 

three viewing angles of draped fabric images 

The differences of the visual-tactile perception between the three observing 

angles (drape_0, drape_45, drape_90) from the draped fabric images was 

tested by RMS values defined in Equation 4.1. The RMS values indicated the 

differences between the perceptual ratings at each observing angle and the 

average across the three angles. Overall, there were small differences of the 

tactile perceptual ratings in each pair of tactile properties. The RMS values were 

all lower than 0.33, indicating that a difference between one observing angle 

and the average was within 0.33 points on a 9-point Likert scale. A possible 

reason is that, when observers viewed one draped fabric image, it is likely they 

can imagine what the fabric would look like from different angles. To simplify, 

the tactile perceptual ratings averaged across the three observing angles were 

used in subsequent analyses to represent the tactile perceptual ratings obtained 

from the draped images. 

Table 5.2 RMS values for draped fabric images in three observing angles. 
 Flexible-

stiff 

Smooth-

rough 

Soft-firm Spongy-

crisp 

Warm-cool 

Drape_0 0.32 0.29 0.31 0.30 0.23 

Drape_45 0.29 0.25 0.33 0.33 0.23 

Drape_90 0.33 0.30 0.33 0.27 0.23 
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5.5 The correlations of the tactile perceptual ratings among the 

experiment conditions 

Figure 5.1 shows the Pearson Correlation Coefficients of the perception of 

tactile properties among the six experiment conditions, along with the 

corresponding significance levels.  

  

  

1.00 0.76

1.00

0.72

0.96

1.00

0.64

0.83

0.86

1.00

0.68

0.89

0.92

0.92

1.00

0.65

0.85

0.88

0.97

0.95

1.00

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1fla
t fa

bri
c im

ag
es

dra
pe

d f
ab

ric
 im

ag
es

fab
ric

 ro
tat

ion
 vid

eo
s

tou
ch
−o

nly

vis
ion
−o

nly

vis
ion

+to
uc

h

flat fabric images

draped fabric images

fabric rotation videos

touch−only

vision−only

vision+touch

flexible−stiff

*** ***

***

***

***

***

***

***

***

***

***

***

***

***

***

1.00 0.78

1.00

0.75

0.92

1.00

0.62

0.72

0.71

1.00

0.75

0.87

0.88

0.79

1.00

0.66

0.74

0.72

0.95

0.81

1.00

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1fla
t fa

bri
c im

ag
es

dra
pe

d f
ab

ric
 im

ag
es

fab
ric

 ro
tat

ion
 vid

eo
s

tou
ch
−o

nly

vis
ion
−o

nly

vis
ion

+to
uc

h

flat fabric images

draped fabric images

fabric rotation videos

touch−only

vision−only

vision+touch

smooth−rough

*** ***

***

***

***

***

***

***

***

***

***

***

***

***

***

1.00 0.74

1.00

0.67

0.93

1.00

0.58

0.81

0.81

1.00

0.60

0.88

0.90

0.87

1.00

0.55

0.80

0.80

0.97

0.88

1.00

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1fla
t fa

bri
c im

ag
es

dra
pe

d f
ab

ric
 im

ag
es

fab
ric

 ro
tat

ion
 vid

eo
s

tou
ch
−o

nly

vis
ion
−o

nly

vis
ion

+to
uc

h

flat fabric images

draped fabric images

fabric rotation videos

touch−only

vision−only

vision+touch

soft−firm

*** ***

***

***

***

***

***

***

***

***

***

***

***

***

***

1.00 0.81

1.00

0.77

0.90

1.00

0.44

0.57

0.57

1.00

0.68

0.80

0.80

0.72

1.00

0.41

0.57

0.58

0.86

0.78

1.00

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1fla
t fa

bri
c im

ag
es

dra
pe

d f
ab

ric
 im

ag
es

fab
ric

 ro
tat

ion
 vid

eo
s

tou
ch
−o

nly

vis
ion
−o

nly

vis
ion

+to
uc

h

flat fabric images

draped fabric images

fabric rotation videos

touch−only

vision−only

vision+touch

spongy−crisp

*** ***

***

***

***

***

***

***

***

***

***

***

***

***

***



 115 

 

 

Figure 5.1 The Pearson Correlation Coefficients between each experiment 
condition. 

When comparing the correlations of the visual-tactile perception observed 

through displaying images and videos (red rectangles in Figure 5.1), it is found 

that the correlations between the draped images and fabric rotation videos are 

always very high and significant for the five pairs of tactile properties 

(0.9<r<0.96, p<0.001***). On the other hand, the perception of flexible-stiff, 
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positively correlated with those observed from draped fabric images and videos 
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described above. It is noted that for warm-cool, the visual-tactile perception from 
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spent observing static fabric images. 
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correlate with those from the actual touch and observation (touch-only, vision-

only using real fabrics, vision+touch) of fabrics. Firstly, the visual-tactile 

perception from draped fabric images and rotating videos had similar 

correlations with the tactile perception from actual touch and observation. 

Secondly, the visual-tactile perception from flat fabric images had a lower 

correlation with the actual touch and observation compared to draped fabric 

images and videos, but for warm-cool, the correlations were very similar and 

strongly positive. A previous study found that draped fabric images had better 

matching accuracy than flat images in the match-to-sample task (Xiao et al., 

2016). A possible explanation of this discrepancy about warm-cool is that the 

perception of the tactile properties is a multiscale task (Pan, 2006; Bacci et al., 

2012; Baumgartner et al., 2013; Bouman et al., 2013; Mahar et al., 2013). 

Compared to draped fabric images and videos, flat fabric images lack 

information such as drape, shape, shade, and folds. The presence of such 

information enhanced the understanding of tactile properties in the absence of 

actual touch and observation, but they were less important for perceiving warm-

cool. 

The green rectangles in Figure 5.1 show the correlations of the tactile pereption 

obtained through the actual touch (touch-only), the observation (vision-only 

using real fabrics) and the combination of both (vision+touch). Condition of 

vision+touch provided observers with the most comprehensive perception of the 

real fabrics. Among them, the correlations between the touch-only and 

vision+touch were the highest for flexible-stiff (r=0.97, p<0.001***), smooth-

rough (r=0.95, p<0.001***), soft-firm (r=0.97, p<0.001***), spongy-crisp (r=0.86, 

p<0.001***). For the perception of warm-cool, the correlations were the same 

and the highest between touch-only and vision+touch (r=0.94, p<0.001***) and 

between vision-only (using real fabrics) and vision+touch (r=0.94, p<0.001***). 

In addition, high and significant correlations of tactile perception between vision-

only (using real fabrics) and vision+touch (minimum r=0.78, p<0.001*** for 
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spongy-crisp) were observed. In the absence of either vision or touch, 

consistent tactile perception can be obtained using real fabrics. 

5.5.1 Comparisons with Section 4.6: the consistency and 

discrepancy in using rendered and real fabric images 

In the last Chapter, the correlations of tactile perceptual ratings collected using 

rendered fabric images and the corresponding real fabrics were reported. In this 

Chapter, the correlations of tactile perceptual ratings collected using real fabric 

images and real fabrics were analysed. Comparisons of the Pearson Correlation 

Coefficients (r) of these two correlations revealed the consistencies and 

differences between rendered and real fabric images regarding the visual-tactile 

and tactile perception. As listed in Table 5.3, r values obtained from rendered 

and real fabric images were generally consistent for all tactile properties. The 

exception includes spongy-crisp perceived from draped fabric images and 

touch-only (r=0.83 when using rendered fabric images, r=0.57 when using real 

fabric images), and warm-cool perceived from flat and draped fabric images 

(r=0.66 when using rendered fabric images, r=0.92 when using real fabric 

images). In addition, perception through draped fabric images always correlated 

more closely to the actual touching than that through flat fabric images. 

Table 5.3 Comparison of the Pearson Correlation Coefficients (r) between 
Section 4.6 (left) and Section 5.5 (right). 

 Touch-only vs flat Touch-only vs draped Flat vs draped 
Flexible-stiff 0.51 / 0.64 0.66 / 0.83 0.89 / 0.76 
Smooth-rough 0.42 / 0.62 0.63 / 0.72 0.75 / 0.78 
Soft-firm 0.68 / 0.58 0.90 / 0.81 0.74 / 0.74 
Spongy-crisp 0.61 / 0.44 0.83 / 0.57 0.72 / 0.81 
Warm-cool 0.81 / 0.84 0.88 / 0.86 0.66 / 0.92 

5.6 The correlations among tactile perceptual ratings under 

each experiment condition 

Overall, the tactile perceptual ratings perceived from the experiment conditions 

are positively and significantly correlated. To further understand the perception 
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of tactile properties, the correlations between tactile perceptual ratings under 

each experiment condition were assessed, and the correlation coefficients and 

the corresponding significance levels are shown in Figure 5.2. 
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Figure 5.2 The Pearson Correlation Coefficients between each pair of tactile 

properties under the experiment conditions. 

The correlations between the tactile perceptual ratings demonstrated 

consistency under all conditions, however, notable differences specific to each 

condition were also observed. For the consistency, firstly, the perceived flexible-

stiff had very strong and significant correlations with the perceived soft-firm 

under all conditions (r>0.9, p<0.001***). It is also found that the perceived 

smooth-rough positively correlated with flexible-stiff and soft-firm under all 

conditions, yet the correlations were not as high as 0.9. Basically, a fabric 

perceived as more flexible is highly possible to be perceived as smoother and 

softer, regardless of the experiment conditions under which it was presented. 

Secondly, negative correlations were found between the perceived warm-cool 

and other tactile perceptions except for spongy-crisp under all conditions. A 

fabric perceived as warmer tends to be perceived as stiffer, rougher, and firmer. 

However, when using fabric images and videos, the negative correlations were 

generally weaker than using real fabrics. Besides, it is also noted that the 

negative correlations between warm-cool and flexible-stiff were slightly stronger 

than the correlation between warm-cool and smooth-rough, and also slightly 

stronger than that between warm-cool and soft-firm under all conditions. 

The correlation between spongy-crisp and other tactile perceptions showed 

different patterns across all the experiment conditions. Firstly, when using fabric 
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images and videos, there were no significant correlations between spongy-crisp 

and flexible-stiff. However, with real fabrics, the correlations became significant, 

and increased when touch was allowed (r=0.42, p<0.001*** when only touch 

was allowed, r=0.44, p<0.001*** when both vision and touch were allowed). A 

similar regularity was observed for the correlation between spongy-crisp and 

soft-firm, except that when using flat images, the perception of spongy-crisp and 

soft-firm was slightly positively correlated. Generally, a fabric perceived as 

spongier tends to be more flexible and softer, but it was not the fact when the 

perception came from images or videos. Secondly, the perception of spongy-

crisp weakly negatively correlated to smooth-rough when using draped fabric 

images and fabric rotation videos, while weak but positive correlations between 

them were found when touching the real fabrics was allowed. A fabric perceived 

as spongier through images and videos tends to be rougher, but when observed 

and touched in real life, it tends to be smoother. Thirdly, no significant 

correlations were found between spongy-crisp and warm-cool when touching 

the fabrics was allowed. However, notable positive correlations were observed 

when touching the fabrics was not allowed, whenever through observing the 

fabric images and videos or observing the real fabrics without touching. A fabric 

perceived as spongier tends to be warmer under specific experiment conditions. 

5.6.1 Comparison with Section 4.7: the consistency and 

discrepancy in correlations among tactile properties 

In the last Chapter, the correlations among the perception of all tactile properties 

were reported using data from rendered fabric images and corresponding real 

fabrics in Leeds Fabric Tactile Database Part I (see Figure 4.3, page 102). In 

Section 5.6, the correlations were reported using data from real fabric images 

and corresponding fabrics in Leeds Fabric Tactile Database Part II. 

Comparisons were made between these two correlations and were illustrated 

in Figure 5.3. Firstly, the perceived flexible-stiff, smooth-rough, soft-firm were 

highly and positively correlated, regardless of whether rendered or real fabric 
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images were used. However, the correlations between spongy-crisp and 

flexible-stiff, smooth-rough, soft-firm were significant only when rendered fabric 

images were used. While these correlations remained significant when actually 

touching the fabrics, the correlation coefficients computed for Part II fabrics 

were lower than those for Part I fabrics. The other differences are the 

correlations between warm-cool and other tactile properties. The perceived 

warm-cool has no correlation with other tactile properties for fabrics and images 

in Part I, but had negative correlations with flexible-stiff, smooth-rough, soft-firm 

and positive correlations with spongy-crisp for fabrics and images in Part II. 

  

 

 

Figure 5.3 Comparisons of the correlations of the perception among tactile 
properties. Below diagonal: using rendered fabric images (Section 4.7). Above 

diagonal: using real fabric images (Section 5.6). 
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5.7 The differences of the tactile perceptual ratings between 

using visual representations and real fabrics 

In Section 5.5 and Section 5.6, detailed correlation analyses were provided to 

investigate the correlations of tactile properties between experiment conditions, 

and the correlations between the tactile properties under each experiment 

condition. In Figure 5.1, high and positive correlations were observed between 

the tactile perceptual ratings perceived through flat fabric images, draped fabric 

images, and fabric rotation videos (red rectangles, 0.67<r<0.96, p<0.001***), as 

well as those through vision only, touch only, and vision +touch (green 

rectangles, 0.72<r<0.97, p<0.001***). This section further investigates the 

differences of the tactile perceptual ratings between using visual representation 

and real fabrics. Figure 5.4 compares the differences of the tactile perceptual 

ratings perceived between visual representations and real fabrics. Each red 

point represents a fabric. Blue lines are diagonal lines at a 45-degree angle to 

both x and y axes. Points above blue lines indicate 

stiffer/rougher/firmer/crisper/cooler perception perceived through real fabrics. 

Points below blue lines indicate stiffer/rougher/firmer/crisper/cooler perception 

perceived through visual representations. The x axes represent the tactile 

perceptual ratings from visual representation, and the y axes represent the 

tactile perceptual ratings from real fabrics. 
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Figure 5.4 Comparisons between the tactile perception perceived from visual 
representations (images and videos) and real fabrics. 

Most fabrics, when observed through visual representation, tended to be 

perceived as stiffer compared to when observed through real fabrics. Similar 

trends have also been observed in the perception of smooth-rough and soft-

firm, where fabrics tend to appear rougher and firmer when perceived through 

visual representation compared to real fabrics. This is reasonable as strong and 

positive correlations were found among the perception of flexible-stiff, smooth-

rough, and soft-firm, regardless of whether the fabrics were perceived through 

visual representation or real fabrics (see Figure 5.1). On the other hand, fabrics 

perceived through real fabrics tended to be perceived as cooler compared to 

those perceived through visual representation. The fabrics were conditioned in 

a standard environment of 20 °C ± 2°C and 65% ± 4% relative humidity for 48 

hours prior to the experiment Phase II according to ISO 139:2005 (International 

Organization for Standardization, 2005). The conditioning temperature was 
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lower than the human palm temperature. When perceiving warm-cool through 

direct touch, the lower conditioning temperature may reduce the perception of 

warmth. Besides, it is noticed that approximately half of the fabrics in this study 

were perceived as spongier through real fabrics, while the other half were 

perceived as spongier through visual representation. There was no clear trend 

indicating a consistent difference between real fabrics and visual representation 

regarding the spongy-crisp perception. 

5.8 Discussions 

5.8.1 The similar role of draped fabric images and fabric rotation 

videos in the tactile perception 

In Figure 5.1, it is found that the tactile properties perceived through draped 

fabric images were strongly and positively correlated with those perceived 

through fabric rotation videos (0.90<r<0.96, p<0.001***). This is reasonable 

because the draped fabric images were extracted from the videos. The 

observers, when observing the fabric rotation videos, certainly also observed 

the draped fabric images. 

The tactile properties perceived through draped fabric images were highly 

correlated with those perceive through actual touch and observation (touch-only, 

vision-only using real fabrics and vision+touch). Similarly, the tactile properties 

perceived through fabric rotation videos showed similar correlation coefficients 

to those of draped fabric images. There is no clear trend indicating that the 

correlation between either draped fabric images or fabric rotation videos and 

actual touch and observation was stronger. A previous study compared the 

tactile perception obtained from jean fabric images and videos (Wijintjes et al., 

2019). Unlike findings here, they concluded that videos have a better 

identification performance over images in the match-to-sample task. It is noted 

that these videos included the process of manipulating the fabrics by human 

hand, whereas only fabric itself was featured in the experiment Phase II. In the 
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absence of the experience of hands touching the fabrics in the video, fabric 

images and videos played similar roles in conveying tactile properties. 

5.8.2 Positively and negatively correlated tactile properties 

In the study of Pan (2006), stiffness, smoothness, and softness were evaluated 

as the first three orthogonal features of fabric hand by the fabric extraction 

method. A fabric was pulled out through a designed metal nozzle, and the fabric 

displacement and force figures were recorded. According to their objective 

methods and data analysis strategies, the stiffness, smoothness, and softness 

contributed differently yet complementarily to the fabric hand. However, in the 

present study, the perceptions of flexible-stiff, smooth-rough, soft-firm were 

highly correlated to each other under the conditions of flat images, draped 

images, videos, touch-only, vision-only (using real fabrics), and vision+touch 

(see Figure 5.2). A fabric subjectively perceived as stiffer is highly possible to 

be perceived as rougher and firmer, regardless of the experiment conditions 

under which it is presented. Discrepancies have been found here between the 

objective measurement and subjective judgement. The perceived flexible-stiff, 

smooth-rough, soft-firm were strongly correlated to each other in this study, 

while stiffness, smoothness, and firmness were orthogonal in the objective 

measurement. On the other hand, efforts were made to evaluate the correlation 

between objective measurements and subjective judgement (Bergmann Tiest 

et al., 2006; Bacci et al., 2012; Bouman et al., 2013). Good correlations have 

been found between the perceived fabric stiffness and fabric density with the 

ground truth measurement using fabric videos (Bouman et al., 2013); between 

the perceived softness, stiffness, force of compression, and tensile stretch with 

FAST measurement (Bacci et al., 2012); and between the perceived 

compressibility and roughness with the objective measurement (Bergmann 

Tiest et al., 2006). The inconsistency in stiffness, smoothness, and firmness 

between Pan (2006) and this study, despite other studies reporting good 

correlations of tactile properties between objective measurements and 
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subjective evaluation, suggests that the tactile properties are not fully 

understood by either measurement devices or human perception. Choosing 

measurement methods or subjective judgment approaches based on the aim 

and objectives is the best way to benefit the target audience. 

In Figure 5.1, strong and positive correlations were found for the perception of 

warm-cool among the experiment conditions (r>0.84, p<0.001***). Touch and 

vision, whether using the images/videos or real fabrics, made no difference in 

the perception of warm-cool. Consistent results were observed from Fenco et 

al. (2010), where touch and vision were found to be equally important for the 

perception of warmth in scarf and breakfast tray. Another finding from Fenco et 

al. (2010), is that materials had a significant impact on the perception of warmth 

for scarf, with fleece and wool being rated as the warmest, and viscose and silk 

as the coolest. In this study, it is found that the findings from Fenco et al. (2010), 

applied not only to scarf but also to fabrics with unspecified uses. Fur and fleece 

fabrics were rated the top seven warmest fabrics and viscose fabrics were rated 

the top six coolest fabrics under the condition of vision+touch. 

In Figure 5.2, significant correlations were observed between the perception of 

warm-cool and other tactile properties under each experiment condition. Fabrics 

perceived as warmer were also perceived as stiffer, rougher, and firmer under 

all experiment conditions, and spongier except when touching the fabrics. As 

mentioned above, fabric material significantly affected the perception of warm-

cool, but it cannot explain the correlation between warm-cool and other tactile 

properties. However, it is found that the fabric thickness effectively explained 

the correlations by analysing the correlation between fabric thickness and the 

tactile perception. As shown in Figure 5.5, thicker fabrics were perceived as 

warmer, spongier (negative bars), stiffer, rougher, and firmer (positive bars). 

Fabric material, together with fabric thickness, were considered to affect the 

insulating properties (Havenith, 1999) and thus affect the thermal comfort of the 

clothing (McCullough et al., 2009) which possibly reveals the role of thickness 
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in the perception of warm-cool, flexible-stiff, smooth-rough, soft-firm, and 

spongy-crisp. 

 
Figure 5.5 The correlation between fabric thickness and the perception of 

warm-cool, flexible-stiff, smooth-rough, soft-firm, and spongy-crisp under each 
experiment condition. 

5.8.3 Comparisons of the correlations between fabrics and 

images in Leeds Fabric Tactile Database Part I and Part II 

In Section 5.5 and Section 5.6, the correlations of the tactile properties among 

experiment conditions, and the correlations among tactile properties under each 

experiment condition were reported. Fabrics and images in Leeds Fabric Tactile 

Database Part II were utilised. In addition to that, the correlations were 

compared with those in the last Chapter where rendered fabric images and 

corresponding fabrics in Leeds Fabric Tactile Database Part I were analysed 

(Section 5.5.1 and 5.6.1). Both consistencies and discrepancies were observed 

between samples in Leeds Fabric Tactile Database Part I and Part II. 

Consistencies were mainly observed for the perception of flexible-stiff, smooth-

rough, and soft-firm, while discrepancies were mainly observed for the 

perception of spongy-crisp and warm-cool. Few studies have conducted similar 

comparisons before. The observed consistencies and discrepancies are further 

investigated by taking the differences in the fabrics in Part I and Part II into 

account. 
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As discussed in previous section, fabric thickness affected the perception of 

tactile properties. In Figure 5.6, the fabric thickness was compared for fabrics in 

Part I and Part II. Compared to fabrics in Part I, thicker fabrics were available in 

Part II.  

 
Figure 5.6 Comparison of the fabric thickness between fabrics in Leeds Fabric 

Tactile Database Part I and Part II. 

There were two major consistencies observed in fabrics between Part I and Part 

II: (1) the similar correlations of the perception of tactile properties between 

experiment conditions, and (2) the similar correlations between the perceived 

flexible-stiff, smooth-rough, and soft-firm. Although thicker fabrics were 

available in Part II, the fabric thickness generally did not affect these correlations. 

Instead, these correlations demonstrated a robust consistency, supporting the 

reliability and generalisability of the findings. 

Moreover, fabric thickness can be the possible reason to explain the 

discrepancies of the perceived spongy-crisp and warm-cool. As discussed in 

Section 5.8.2, thicker fabrics were perceived as warmer, stiffer, rougher, and 

firmer, and spongier (except when touching the fabrics). The lack of thicker 

fabrics in Part I may have underestimated the relationship between the 

perceived warm-cool and other tactile properties. It further supports the 

reliability of the correlations observed in fabrics in Part II. 
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5.9 Summary 

In this Chapter, the relationship of the perception of tactile properties was 

investigated. Comparisons were made on the results obtained using Leeds 

Fabric Tactile Database Part I (Chapter 4) and Part II (this Chapter). A summary 

of major findings is listed below: 

• There were no significant differences in visual-tactile perception across 

three viewing angles of the draped fabric images. 

• The visual-tactile perception from draped fabric images were strongly 

correlated to that from fabric rotation videos. Both draped fabric images and 

fabric rotation videos demonstrated similar levels of correlations with the 

tactile perception from actual touch and observation. In the absence of 

either vision or touch, consistent tactile perception can be obtained using 

real fabrics. 

• The perceived flexible-stiff, smooth-rough, and soft-firm had positively 

correlations, regardless of the experiment conditions under which it was 

present. The perceived warm-cool, however, had negative correlations with 

them. A fabric perceived as more flexible is highly possible to be perceived 

as smoother, softer, and cooler. The correlations between spongy-crisp and 

other tactile properties were mixed and specific for experiment conditions. 

• For each sample, two scores were created to represent the tactile 

perceptual ratings obtained from visual representation and real fabric, 

respectively. Most fabrics, when observed through visual representation, 

tended to be perceived as stiffer, rougher, firmer, and warmer compared to 

those observed through real fabrics. No consistent difference between real 

fabrics and visual representation was observed for spongy-crisp perception. 

• Comparisons were made on the tactile perceptual ratings between from 

Leeds Fabric Tactile Database Part I (Chapter 4) and Part II, regarding the 
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correlation analyses. The perceived flexible-stiff, smooth-rough, and soft-

firm had consistent correlations, while discrepancies were observed for 

spongy-crisp and warm-cool. 
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Chapter 6  

Experiment Phase II: factors for visual-tactile and 

tactile perception 
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6.1 Overview 

In this Chapter, the visual-tactile and tactile perceptual ratings collected using 

Leeds Fabric Tactile Database Part II were analysed. Significant effects of fabric 

appearance were found on the visual-tactile perception in Chapter 4, which was 

based on an analysis conducted for each individual fabric. Given the countless 

fabric appearance available due to fabric structure and colour, it is not feasible 

to conduct similar analyses when a larger dataset was used. The fabrics in 

Leeds Fabric Tactile Database Part II were categorised into two groups based 

on the fabric structures: woven and knitted. Normal distribution tests were 

conducted firstly for the tactile perceptual raw data of all observers (Section 6.3). 

Cumulative Link Mixed Models (CLMMs) were fitted for each pair of tactile 

properties to conduct the analyses. Whether the tactile and visual-tactile 

perception differs between woven and knitted fabrics, and the interactive effects 

of fabric structures and experiment conditions were analysed (Section 6.4). The 

effect of fabric colour on the tactile perception was further evaluated (Section 

6.5). Correlation analyses were conducted among experiment conditions and 

tactile perceptual ratings for woven and knitted fabric separately (Section 6.6). 

The analytical methods were introduced in Section 6.2. 

6.2 Statistical analysis 

The raw data collected in the experiment Phase II was used in this Chapter, and 

the following analyses were conducted: 

Before conducting the analysis, whether the collected observations are normally 

distributed was assessed firstly by Shapiro-Wilk test (Section 6.3). To assess 

the effects of fabric structures, the distribution of the tactile perceptual ratings 

for woven and knitted fabrics was visualised firstly using box plot (Section 6.4). 

Mann-Whitney U tests were conducted to compare the distributions of the tactile 

perceptual ratings of woven and knitted fabrics (Section 6.4.1). CLMM models 

with (full models) and without (simple models) interactions were fitted for each 
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pair of tactile properties, setting the fabric structures and experiment conditions 

as the fixed effects, and fabric samples and observers as the random effects 

(Section 6.4.2). Comparisons between simple and full model were made using 

anova() function from stats R package. P values of the fixed effects in CLMM 

models were computed using Likelihood Ratio Test (LRT) with Type III sums of 

squares, using Anova() function from car R package. The fitted perceptual 

ratings of were computed for all interactions using Equation 4.4 (see page 92). 

Pairwise contrasts analyses were conducted with Bonferroni correction across 

experiment conditions to evaluate the significant differences between woven 

and knitted fabrics using contrast() function in emmeans R package (Section 

6.4.3). Whether the tactile and visual-tactile perception differed with fabric 

structures was assessed in a practical sense considering the meaning assigned 

to each point. 

In Chapter 4 the effect of colour on the visual-tactile perception was evaluated 

using rendered fabric images. Here the effect of colour was assessed on the 

tactile perception (Section 6.5). CLMM models were fitted for each pair of tactile 

properties, setting the following fixed effects: the measured lightness (L*), 

redness (a*), and yellowness (b*) as continuous predictors, fabric structures and 

experiment conditions (touch-only, vision-only using real fabrics, vision+touch) 

as categorical predictors. Experiments using fabric visual representations (flat 

fabric images, draped fabric images, fabric rotation videos) were excluded in 

this section, as the colours were measured using real fabrics. Even though 

colours were characterised to reproduce the fabric images and videos, the folds 

and shadows of the draped fabrics cause discrepancies between the visual 

representations and the measured results. Simple models without interactions 

and full models with interactions between fabric colours (measured CIELAB 

values), fabric structures, and experiment conditions were compared. Fabrics 

and observers were set as the random effect. CIELAB values were z-

standardised before fitting the CLMM models to ensure an evenly distribution. 
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The parameter estimates were computed for CIELAB separately for each pair 

of tactile properties. 

To further reveal the difference in the perception of tactile properties between 

woven and knitted fabrics, the observed scores were averaged across all 

observers to create a score for each fabric samples under each experiment 

condition. Detailed correlation analyses were conducted by Pearson Correlation 

Coefficients (two-tailed) for woven fabrics and knitted fabrics, respectively. The 

correlations among experiment conditions for each pair of tactile properties, and 

among tactile perceptual ratings under each experiment condition were 

evaluated. 

The CLMM models were implemented in ordinal R package. The significant 

level was fixed to 0.05 in all analyses. Contrast coding was used in all CLMM 

models to convert fabric structure and experiment conditions to coded 

categorical factors. Asterisks *** indicate p<0.001, ** indicate p<0.01, * indicate 

p<0.05 in all analyses. 

6.3 Normal distribution test 

Shapiro-Wilk tests were conducted first for each experiment condition and each 

pair of tactile properties. The results are listed in Table 6.1. A value of w closer 

to 1 indicates a better match to the normal distribution, and the p-values indicate 

the rejection or not to the null hypothesis. The p-values are all at the significant 

level and reject the null hypothesis. The raw data of the tactile perceptual ratings 

were not normally distributed, and thus the analysis methods in this Chapter do 

not require the assumption of normality. 

Table 6.1 The results of Shapiro-Wilk test for the experiment Phase II. 
 Flexible-

stiff 
Smooth-
rough 

Soft-firm Spongy-
crisp 

Warm-cool 

Flat 
w=0.91, 
p<0.001*** 

w=0.93, 
p<0.001 

w=0.92, 
p<0.001*** 

w=0.93, 
p<0.001*** 

w=0.95, 
p<0.001*** 

Draped 
w=0.90, 
p<0.001*** 

w=0.93, 
p<0.001*** 

w=0.91, 
p<0.001*** 

w=0.91, 
p<0.001*** 

w=0.94, 
p<0.001*** 
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Video 
w=0.93, 
p<0.001*** 

w=0.94, 
p<0.001*** 

w=0.93, 
p<0.001*** 

w=0.94, 
p<0.001*** 

w=0.95, 
p<0.001*** 

Touch-only 
w=0.91, 
p<0.001*** 

w=0.93, 
p<0.001*** 

w=0.92, 
p<0.001*** 

w=0.93, 
p<0.001*** 

w=0.94, 
p<0.001*** 

Vision-only 
(using real 
fabrics) 

w=0.93, 
p<0.001*** 

w=0.93, 
p<0.001*** 

w=0.93, 
p<0.001*** 

w=0.94, 
p<0.001*** 

w=0.94, 
p<0.001*** 

Vision+touch 
w=0.92, 
p<0.001*** 

w=0.94, 
p<0.001*** 

w=0.93, 
p<0.001*** 

w=0.94, 
p<0.001*** 

w=0.95, 
p<0.001*** 

6.4 The effects of fabric structures on visual-tactile perception 

and tactile perception 

6.4.1 The distribution of tactile perceptual ratings for woven and 

knitted fabrics, respectively 

Considering the different appearances between woven and knitted fabrics 

(Breen and House, 2000), the distribution of the tactile perceptual ratings 

collected using woven and knitted fabrics was compared and shown in Figure 

6.1. In each figure, the boxes indicate the interquartile ranges (IQR), white 

points in the horizontal lines indicate the medians, whiskers indicate the 

maximum and minimum observation (within 1.5*IQR), and individual points 

outside the whiskers indicate outliers. Different median values and IQR can be 

observed for most of the tactile perceptual ratings between woven and knitted 

fabrics in Figure 6.1. As the tactile perceptual ratings are not normally distributed, 

a non-parametric test, Mann-Whitney U test was conducted to statistically 

compare the distribution of the tactile perceptual ratings between woven and 

knitted fabrics. The results of each pair of tactile properties and each experiment 

condition are listed in Table 6.2. For the perception of flexible-stiff, smooth-rough, 

soft-firm, and spongy-crisp, there were significant perceptual differences 

between using woven and knitted fabrics under all experiment conditions. For 

the perception of warm-cool, significant differences were only observed when 

touching the real fabrics were allowed (touch-only and vision+touch). 

 



 136 

 

Flexible-stiff 

 

Smooth-rough 

 

Soft-firm 

 

Spongy-crisp 

 

Warm-cool 

 

 

Figure 6.1 The distribution of the raw data for each pair of tactile properties 
under each experiment condition. 

Table 6.2 The results of Mann-Whitney U test. 
 Flexible-

stiff 
Smooth-

rough 
Soft-firm Spongy-

crisp 
Warm-cool 

Flat p<0.001*** p<0.001*** p<0.001*** p<0.001*** p=0.19 
Draped p<0.001*** p=0.0029** p<0.001*** p<0.001*** p=0.28 
Video p<0.001*** p=0.048* p<0.001*** p<0.001*** p=0.43 

Touch-only p<0.001*** p<0.001*** p<0.001*** p<0.001*** p=0.0048** 
Vision-only 
(using real 

p<0.001*** p<0.001*** p<0.001*** p<0.001*** p=0.63 
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fabrics) 
Vision+touch p<0.001*** p<0.001*** p<0.001*** p<0.001*** p=0.017* 

6.4.2 The fixed effects and interaction of fabric structures and 

experiment conditions 

CLMM models with and without interactions were compared. Equation 6.1 and 

Equation 6.2 list the fitting CLMM models with and without interactions. The 

comparison results of models between with and without interactions are shown 

in Table 6.3. For all tactile properties, the CLMM models with interactions 

outperformed the models without interactions. Smaller AIC values were 

observed in all models with interactions. The effect of interactions was 

significant for all tactile properties (p<0.001***), indicating that the effects of 

fabric structures on the tactile perceptual ratings varied with the level of 

experiment conditions, and vice versa. Therefore, only CLMM models with 

interactions were fitted and analysed in Section 6.4. 

With interactions: Tactile perceptual ratings= 

𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 ∗ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + 

(1|𝑓𝑎𝑏𝑟𝑖𝑐𝑠) + (1|𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟) 

Equation 6.1 

Without interaction:  Tactile perceptual ratings= 

𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 + 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + 

(1|𝑓𝑎𝑏𝑟𝑖𝑐𝑠) + (1|𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟) 

Equation 6.2 

 

Table 6.3 Comparisons between CLMM models with and without interactions 
(fabric structures*experiment conditions) for the experiment Phase II. 

 no.par AIC logLik LR.stat p-values 
Flexible-stiff      
With interactions 21 22255 -11106 52.436 p<0.001*** 
Without interactions 16 22297 -11133   
Smooth-rough      
With interactions 21 23434 -11696 43.078 p<0.001*** 
Without interactions 16 23467 -11718   
Soft-firm      
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With interactions 21 23885 -11922 21.286 p<0.001*** 
Without interactions 16 23897 -11932   
Spongy-crisp      
With interactions 21 26233 -13095 24.813 p<0.001*** 
Without interactions 16 26247 -13108   
Warm-cool      
With interactions 21 22622 -11290 41.098 p<0.001*** 
Without interactions 16 22653 -11310   

Table 6.4 lists the fixed effects in the full CLMM models for all tactile properties. 

Rather than simply comparing the distribution of the tactile perceptual ratings in 

Section 6.4.1, the fixed effects reflected the overall effects of fabric structures, 

experiment conditions, and the interaction between structures and experiment 

conditions. For all fitted tactile perceptual ratings, both experiment conditions 

and the interaction had significant effects. The interaction indicated that the 

effect of structures on fitted tactile perceptual ratings was different when 

evaluated under different conditions, while the difference was limited due to the 

relatively lower 𝜒*. In addition, the fitted flexible-stiff, smooth-rough, soft-firm, 

and spongy-crisp were significantly different between woven and knitted fabrics. 

For warm-cool, fabric structure had no significant effects. Detailed analyses of 

the interactions and the quantification of the difference between fabric structures 

and between experiment conditions were described in the next section. 

Table 6.4 The fixed effects in all CLMM models and their significance for the 
experiment Phase II. 

Fixed effects 𝜒2 df p 
Flexible-stiff    
Structures 27.604 1 p<0.001*** 
Experiment conditions 544.259 5 p<0.001*** 
structures:experiment conditions 52.353 5 p<0.001*** 
Smooth-rough    
Structures 5.735 1 p=0.017* 
Experiment conditions 354.002 5 p<0.001*** 
strctures:experiment conditions 42.992 5 p<0.001*** 
Soft-firm    
Structures 36.191 1 p<0.001*** 
Experiment conditions 247.798 5 p<0.001*** 
structures:experiment conditions 21.311 5 p<0.001*** 
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Spongy-crisp    
Structures 24.703 1 p<0.001*** 
Experiment conditions 24.828 5 p<0.001*** 
structures:experiment conditions 24.809 5 p<0.001*** 
Warm-cool    
Structures 0.003 1 p=0.956 
Experiment conditions 233.839 5 p<0.001*** 
structures:experiment conditions 41.011 5 p<0.001*** 

6.4.3 The fitted perceptual ratings for woven and knitted fabrics 

The CLMM models were computed on the linear predictor scale initially and 

converted to original scale using Equation 4.4. Figure 6.2 shows the fitted 

perceptual ratings on the original scale.  

  

  

 

 

Figure 6.2 The comparisons of the fitted tactile perception between fabric 
structures. 
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Fabric structures showed statistically significant effects on the perceptual 

flexible-stiff, soft-firm, and spongy-crisp regarding experiment conditions 

(p<0.001***), which is almost consistent with the non-parametric tests 

comparing the distribution of woven and knitted fabrics in Table 6.2. The only 

differences are the significance levels, which were reduced when assessing 

spongy-crisp under touch-only and vision+touch conditions. In addition, after 

setting the fixed effects and random effects in the CLMM models, the differences 

of the perceptual smooth-rough between using woven and knitted fabrics were 

no longer significant when viewing the draped fabrics (experiment conditions: 

draped fabric images, fabric rotation videos, vision-only using real fabrics). The 

non-significances between using woven and knitted fabrics were observed for 

the perception of warm-cool under all experiment conditions. 

Apart from the significances, Figure 6.2 illustrates the magnitude comparisons 

between fabric structures across experiment conditions. NS means non-

significant. The fitted perceptual ratings of flexible-stiff, smooth-rough, soft-firm, 

and spongy-crisp are always higher when woven fabrics were used. Woven 

fabrics were perceived as stiffer, rougher, firmer, and crisper than knitted fabrics, 

regardless of the experiment conditions. On the other hands, the fitted 

perceptual warm-cool are slightly lower when real woven fabrics were used, but 

slightly higher when visual representations of woven fabrics were used. Real 

woven fabrics were generally perceived as warmer, whereas woven fabric 

images and videos were perceived as cooler. 

Moreover, the fitted perceptual ratings of flexible-stiff, smooth-rough, and soft-

firm were relatively higher under the conditions of images and videos, whereas 

the warm-cool showed comparatively lower ratings under the same conditions. 

Fabrics were fitted as stiffer, rougher, firmer, and warmer under the conditions 

of fabric images and videos, whereas they were more flexible, smoother, softer, 

and cooler when observing and touching the real fabrics. These findings agreed 

with the observers’ perception as described in the last Chapter, Section 5.7. 
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As described above, woven fabrics were fitted to higher scores than knitted 

fabrics under all experiment conditions, except for the perception of warm-cool. 

The differences of the perceptual ratings between woven and knitted fabrics 

were computed and illustrated in Figure 6.3. Positive values indicate higher 

perceptual ratings of woven fabrics, and negative values indicate higher 

perceptual ratings of knitted fabrics.  

 
Figure 6.3 Quantified differences of the fitted perceptual ratings between 
woven and knitted fabrics for all tactile properties under each experiment 

condition. 
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with woven fabrics being fitted 1.63 units higher than knitted fabrics on the 

original scales. Woven fabrics were fitted to 4.29 units, and knitted fabrics were 

fitted to 2.78 units (see Figure 6.2). Given the meaning assigned to each point 

in the 9-points Likert scale (Section 3.4.2), 2 is very much flexible, 3 is 

moderately flexible, and 4 is slightly flexible. Even though significant perceptual 

differences were statistically observed by the pairwise comparison in Figure 6.2, 

whether the significant would remain in a practical sense depends on individuals. 

6.5 The effects of measured fabric colours on the tactile 

perception 

CLMM models with and without interactions were fitted and compared firstly for 

each pair of tactile properties assessed under the conditions of touch-only, 

vision-only (using real fabrics), vision+touch. Equation 6.3 and Equation 6.4 

provide the formulas for the CLMM models, and the comparison results were 

listed in Table 6.5. Models with interactions allow all interactions between fabric 

structures, experiment conditions, and the measured colours, and models 

without interactions excluded the three-way interactions but remain the two-way 

interactions of fabric structures and experiment conditions. For all tactile 

properties, models without interaction outperformed the models with three-way 

interaction, indicated by the lower AIC values and non-significant p-values. The 

non-significant three-way interaction of fabric structures:experiment 

conditions:measured colours (L*, a*, b*) indicated that the effect of fabric 

colours on the fitted perceptual tactile ratings is independent of the subgroups 

of fabric structures and experiment conditions. Therefore, only CLMM models 

without interactions were analysed in this section. 

With interaction Tactile perceptual ratings= 

𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 ∗ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 ∗ 𝐿 + 

𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 ∗ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 ∗ 𝑎 + 

Equation 

6.3 
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𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 ∗ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 ∗ 𝑏 + 

(1|𝑓𝑎𝑏𝑟𝑖𝑐𝑠) + (1|𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟𝑠) 

Without interaction Tactile perceptual ratings= 

𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 ∗ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 + 𝐿 ∗ +𝑎 ∗ +𝑏 ∗ + 

(1|𝑓𝑎𝑏𝑟𝑖𝑐𝑠) + (1|𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑟𝑠) 

Equation 
6.4 

 

Table 6.5 Comparisons between CLMM models with and without three-way 
interactions for the experiment Phase II. 

 no.par AIC logLik LR.stat p-values 
Flexible-stiff 
With interactions 33 10460 -5197.2 18.69 p=0.228 
Without interactions 18 10449 -5206.5   
Smooth-rough 
With interactions 33 11428 -5681.2 21.04 p=0.136 
Without interactions 18 11419 -5691.7   
Soft-firm 
With interactions 33 11576 -5755.1 24.021 p=0.065 
Without interactions 18 11570 -5767.2   
Spongy-crisp-6589 
With interactions 33 13262 -6589.1 7.829 p=0.931 
Without interactions 18 13240 -6602.1   
Warm-cool 
With interactions 33 11137 -5535.6 20.21 p=0.164 
Without interactions 18 11127 -5545.7   

Table 6.6 lists the models’ parameter estimates on the original scales and 

significant levels of L*, a*, and b* for all tactile properties. Only a few showed 

statistically significant effects, for example, for every 1 unit increase in L*, the 

fitted perceptual flexible-stiff decreased by 0.02 units in the 9-point Likert scale. 

However, for all tactile properties, parameter estimates were very close to 0, 

indicating a limited role of colour in tactile perception. 

Table 6.6 CLMM models parameter estimates of the fixed effects L*, a*, and 
b*. 

 L* a* b* 

Flexible-stiff βL*=-0.02, p=0.008** βa*=-0.00, p=0.74 βb*=0.02, p=0.07 

Smooth-rough βL*=-0.01, p=0.07 βa*=-0.02, p=0.02* βb*=0.02, p=0.03* 
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Soft-firm βL*=-0.02, p=0.02* βa*=-0.01, p=0.61 βb*=0.02, p=0.05 

Spongy-crisp βL*=-0.00, p=0.71 βa*=0.01, p=0.21 βb*=0.00, p=0.68 

Warm-cool βL*=0.02, p=0.04* βa*=0.01, p=0.23 βb*=-0.01, p=0.23 

6.6 The different correlations for woven and knitted fabrics 

In previous sections, tactile properties, except for warm-cool, were perceived 

differently between woven and knitted fabrics, and the fitted differences 

between woven and knitted fabrics were provided. Whether the correlations 

among experiment conditions differ between woven and knitted fabrics, and 

whether the correlations among tactile properties differ between woven and 

knitted fabrics are evaluated in this section. 

6.6.1 The correlations of the tactile perception among experiment 

conditions for woven and knitted fabrics, respectively 

Figure 6.4 compares the correlations among experiment conditions between 

woven fabrics (above diagonal) and knitted fabrics (below diagonal). 

Differences were observed for flexible-stiff, soft-firm, and spongy-crisp. 
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Figure 6.4 The correlations among experiment conditions for each pair of 
tactile properties. Above diagonal: woven fabrics. Below diagonal: knitted 

fabrics. 

For the perception of flexible-stiff, positive and significant correlations were 

observed between using flat fabric images and other conditions for woven 

fabrics (r>0.63, p<0.001***), while the correlations were no longer significant for 

knitted fabrics (r<0.30, p>0.05). Similar regularity was observed for the 

perception of soft-firm, where both the Pearson correlation coefficients and 

significance levels between flat fabric images and other experiment conditions 

were notably higher for woven fabrics but showed a clear decrease for knitted 

fabrics. For the perception of spongy-crisp, the correlation of tactile perception 

between using fabric rotation video and using vision-only condition (using real 

fabrics) was highly positive and significant for wove fabrics (r=0.84, p<0.001***). 

The r value was decreased to 0.38 for knitted fabrics and the significance level 
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decreased as well. In addition to the differences, the perceived smooth-rough 

and warm-cool showed similar correlations among experiment conditions 

between woven and knitted fabrics. 

6.6.2 The correlations among tactile perceptions under each 

experiment condition for woven and knitted fabrics, respectively 

Figure 6.5 compares the correlations among tactile perceptions for each 

experiment conditions between woven (above diagonal) and knitted fabrics 

(below diagonal). The correlations were generally consistent between woven 

and knitted fabrics, while discrepancies were also observed under specific 

condition. 
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Figure 6.5 The correlations among tactile properties under each experiment 

condition. Above diagonal: woven fabrics. Below diagonal: knitted fabrics. 

Discrepancies included the correlations between specific tactile properties 

under the condition of flat fabric images, draped fabric images, touch-only, and 

vision+touch. When perceiving through flat fabric images, the correlation 

between spongy-crisp and smooth-rough was weak but significant for woven 

fabrics (r=-0.29**). For knitted flat fabric images, the two pairs of tactile 

properties were nearly uncorrelated (r=-0.07, p>0.05). When perceiving through 

draped fabric images, significant correlation was observed between smooth-

rough and warm-cool for woven fabrics (r=-0.65, p<0.001***), while no such 

correlation was observed for knitted fabrics (r=-0.13, p>0.05). In contrast, the 

correlations between warm-cool and spongy-crisp when only touch (r=0.41**) 

or both vision and touch were allowed (r=0.40*) were significant for knitted 

fabrics, while not for woven fabrics. In addition to the discrepancies, the other 

correlations among tactile properties were consistent between woven and 

knitted fabrics. 

6.7 Discussion 

6.7.1 The different perception of fabric tactile properties in woven 

and knitted fabrics  

In the full CLMM models, significant differences were observed in the fitted 
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perceptual ratings between woven and knitted fabrics. Generally, woven fabrics 

were fitted as stiffer, rougher, firmer, and crisper than knitted fabrics under all 

experiment conditions. By analysing the correlations among experiment 

conditions and among tactile properties, both consistencies and discrepancies 

were observed between woven and knitted fabrics. Possible explanations of the 

discrepancies are the structure differences and the mechanical properties 

between woven and knitted fabrics. The woven fabrics normally exhibited higher 

Young’s Modulus, as well as higher bending and shear moduli than knitted 

fabrics (Ji et al, 2006). Young’s Modulus describes the linear relationship 

between stress and strain, indicating the stiffness of the fabric when exposed to 

stretching or compression. A higher Young’s Modulus means that the fabric is 

resistant to being stretched or compressed. Bending Modulus reflects the 

fabric’s capacity to retain its shape when bent, with higher values reflecting 

greater rigidity. Shear Modulus measures the resistance to deformation when 

exposed to shear force. With a higher value of shear modulus, fabric is more 

resistant to stretching and distortion under shear forces. 

These mechanical properties explain the findings that woven fabrics were fitted 

as stiffer, firmer, and crisper in the present study. As trained prior to the 

experiment, flexible-stiff was rated based on the drapability and soft-firm was 

rated based on squeezing. If the fabric freely draped over the hand and the 

contour of the hand cannot be clearly seen, the fabric was considered as stiffer. 

If the fabric resisted to the force from palm, it was considered as firmer. Woven 

fabrics exhibited Young’s Modulus and higher bending modulus, making them 

more resistant to draping and compression than knitted fabrics. Therefore, it is 

reasonable that woven fabrics were fitted as stiffer and firmer in the CLMM 

model. In addition, a criterion for rating spongy-crisp was that if creases were 

shown after squeezing the fabric, then it was considered as crisper. Knitted 

fabrics, due to their flexibility and lower resistance to compression and bending, 

adapted to external forces by smoothly reshaping without forming creases. In 
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contrast, woven fabrics, which were stiffer, tend to form creases to against the 

external force. 

Moreover, a possible explanation of smooth-rough can be the interlaced 

structure of woven fabrics and interloped structure of knitted fabrics (Breen and 

House, 2000). The criterion for smooth-rough was to touch the fabric surface 

and evaluate the resistance felt during hand movement. In woven fabrics, the 

warp and weft yarns were crimped and perpendicularly interlaced together, 

forming textured elements at the surface. As the palm touching the surface of 

the fabrics, the distinct bumps may enhance the perception of roughness. In 

contrast, knitted fabrics consist of interloped yarns with fewer distinct bumps 

and a rich network of loops. When touching the surface of the fabrics, the hand 

tends to move along the curved loop, contributing to a smoother tactile 

perception. 

6.7.2 The practical effect of colour based on CLMM models on the 

tactile perception 

In Chapter 4, the effect of colour on visual-tactile perception through flat and 

draped fabric images was analysed. Colour played no role in the visually 

perceived flexible-stiff, smooth-rough, soft-firm, and spongy-crisp, but affected 

the perception of warm-cool. In this Chapter, the effect of colour was further 

analysed on the tactile perception through vision-only (using real fabrics), touch-

only, and vision+touch. As discussed in previous chapters, the effect of colour 

on the perception of tactile properties was evaluated using either real fabrics 

(Atav and Keskin, 2024; Fenko et al., 2010; Yenket et al., 2007), or by matching 

fabric images and real fabrics (Xiao et al., 2016). Compared to these studies, 

the present study provided a comprehensive understanding of the effect of 

colour on the perception of tactile properties through both images and real 

fabrics. The effect of colour was firstly quantified in the uniform CIE LAB colour 

space and reflected into the categorical scale. In this way, for two fabric images 
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or two real fabrics, whether colour leads to a difference in tactile perception can 

be simply compared in the 9-point scale. 

6.8 Summary 

In this Chapter, a further exploration of visual-tactile and tactile perception was 

provided by fitting CLMM models. As significant differences were observed in 

the fitted tactile perceptual ratings between woven and knitted fabrics, the 

correlations of tactile perceptual ratings were analysed for woven and knitted 

fabrics, respectively. A summary of the major findings is listed below: 

• The distributions of the tactile perceptual ratings were compared between 

woven and knitted fabrics under all experiment conditions. Significant 

differences were observed for all tactile properties except for warm-cool. 

• Full CLMM models with interaction between fabric structures and 

experiment conditions were fitted. In addition to the differences between 

woven and knitted fabrics, it is found that woven fabrics were generally 

fitted as stiffer, rougher, firmer, and crisper than knitted fabrics under all 

experiment conditions, and as cooler than knitted fabrics only when images 

and videos were used. 

• The effect of fabric colour on tactile perception was quantified in the CLMM 

models. Despite the statistical significance, colour played a very limited role 

in perceiving tactile properties through actual touching and observing. 

• Both consistencies and discrepancies were observed between woven and 

knitted fabrics regarding the correlation analyses. For woven fabrics, 

flexible-stiff and soft-firm perceived from flat fabric images correlated well 

with those from other conditions, while no significant correlations were 

observed for knitted fabrics. The correlations among specific tactile 

perceptual ratings under the condition of flat fabric images, draped fabric 

images, touch-only, and vision+touch were different for woven and knitted 



 151 

fabrics as well. 
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Chapter 7  

Modelling the visual-tactile and tactile perception 
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7.1 Overview 

In this Chapter, efforts were made on modelling the visual-tactile and tactile 

perception through fabric images and videos. Different categories of predictors 

were directly extracted from flat fabric images, draped fabric images, and 

images generated from fabric rotation videos (Section 7.2). The model 

development processes, including the input and output selection, regression 

methods, and training and testing procedures were introduced in Section 7.3. 

Comparisons of the model performance were conducted in Section 7.4, 

focusing on the performance between regression techniques, predictive 

accuracy between target conditions and tactile properties. As both EN and 

LASSO regression techniques involve variable selection during modelling, 

predictors were ranked based on the absolute standardised coefficients to 

evaluate the importance of predictors in Section 7.5. In addition to predictors 

from fabric images and videos, fabric thickness, which was found to be 

associated with tactile properties in previous chapters, was one of the predictors 

to model tactile perception. Comparisons were made between models with and 

without thickness in variables, reported in Section 7.6. 

7.2 Feature extraction 

Four categories of features were extracted from fabric images and videos: fabric 

draped width (Section 7.2.1 and 7.2.2), spatial distribution of grey levels 

(Section 7.2.4), features in frequency domain (Section 7.2.5), and features in 

frequency and time domain (Section 7.2.6). For fabric rotation videos, extracting 

features from all video frames will be time and energy consuming. Horizontal 

space-time slices, inspired by Bouman et al. (2013), were generated for all 

fabric rotation videos and used to extract fabric draped width and (Section 7.2.1). 

Additionally, similar to horizontal space-time slices, time-space slices were also 

generated and used to represent the 3D appearance of the rotating draped 

fabrics to extract other features (Section 7.2.3). 
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7.2.1 Fabric draped width extracted from fabric rotation videos 

When fabrics were draped freely over the stand, different shapes can be 

observed from the camera’s position when recording the fabric rotation videos, 

induced by the fabric folds. Fabrics that draped closely to the stand are typically 

more flexible and softer. Horizontal space*time slices were generated for all the 

fabric rotation videos. The process is shown in Figure 7.1. 

 

Figure 7.1 space*time slice with space on the horizontal axis and time on the 
vertical axis. 

For each frame in the video, a row of pixels located 225 pixels from the top of 

the fabric was extracted. For all the fabric rotation videos in Leeds Fabric Tactile 

Database Part II, to prevent the stand portion being extracted and cover the 

features of folds and shadows, d was set to 225 pixels. The rows of pixels were 

then stacked over time, and thus the number of pixels in the vertical axis of the 

space*time slice are equal to the total number of frames in the videos. The 

space*time slice was generated for each fabric rotation video, representing the 

varying fabric draped width at the specific location over time. 

The fabric area in the space*time slice was masked out using colour thresholds. 

The boundary of the fabric area was shown in green in Figure 7.2. For each row 

in the space*time slices, the number of pixels of the fabric area within the 

boundary were computed, denoted as n1. A separate video was recorded for 

the stand, and the width of the stand was computed by calculating the number 

Selected row in frame 1

The same selected 
row in frame n

The same selected 
row in the final frame

d

d

d

Stack the rows over time

tim
e

Selected row:
• d=225 pixels
• Covers the continuous area (no stand will be shown)
• Covers the featured area (folds, shadow area)

space
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of pixels at the specific location where space*time slices were generated, 

denoted as n2. The ratio between n1 and n2 was computed for all rows in the 

space*time slices. The durations of fabric rotation videos were not perfectly 

equal, so the heights of the space*time slices were not exactly equal. The fabric 

draped width in fabric rotation videos was defined by the average ratio across 

the total number of frames. 

 
Figure 7.2 Computing the fabric draped width in fabric rotation videos. 

7.2.2 Fabric width for draped fabric images 

In Figure 7.2, the fabric width varies in each frame in the fabric rotation videos. 

Draped fabric images (drape_0) were the first frame extracted from fabric 

rotation videos. Therefore, the ratio of n1/n2 of the first row was taken as the 

fabric draped width for draped fabric images. Higher values of fabric width mean 

that the fabric draped farther away from the stand, while lower values mean that 

the fabrics draped closer to the stand. 

7.2.3 Fabric 3D appearance 

In Section 7.2.1, the space*time slices captured limited area of the fabric in the 

videos. Inspired by that, time*space slices were generated where x-axis 

represents time and y-axis represents space, and the process is shown in 

Figure 7.3. One column in the middle of the stand, located 1260 pixels from the 

: the number of pixels of the fabric area in each row 
(n1)

ratio = n1/ n2

Fabric width = sum(ratio) / image height 

the number of pixels of the stand (n2)
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left, was extracted from all frames of the fabric rotation videos. The columns 

were stacked over time, and thus time was set on the horizontal axis, and space 

was set on the vertical axis. The number of pixels in the horizontal axis of the 

time*space slice was equal to the total number of frames of the fabric rotation 

videos. The draped fabric 3D appearances were thus displayed in the 

time*space slices, which were used to extract features to predict the visual-

tactile and tactile perception through fabric rotation videos. 

 
Figure 7.3 time*space slice with time on the horizontal axis and space on the 

vertical axis. 

7.2.4 Grey-level Co-occurrence matrix (GLCM) 

The concept of GLCM has been introduced in Chapter 2, Section 2.9.1. For 

each image, GLCMs were computed in four orientations and set the distance of 

1, and five GLCM-based features (contrast, correlation, energy, homogeneity, 

entropy) were computed from each GLCM. The final values of the five GLCM-

based features were then obtained by averaging the values across four 

orientations, forming the GLCM-based feature set as in Equation 7.1. GLCM is 

computed using graycomatrix function in MATLAB. 

𝐺𝐿𝐶𝑀 − 𝑏𝑎𝑠𝑒𝑑	𝑓𝑒𝑎𝑡𝑢𝑟𝑒	𝑠𝑒𝑡 = { 

𝐺𝐿𝐶𝑀OP$6-'Q6 , 
Equation 7.1 

d

Selected column in frame 1

Selected column in frame n

Selected column in the final frame

Stack the columns 
over time

sp
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e

time

Selected column:
• d=1260 pixels
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		𝐺𝐿𝐶𝑀OP--MR'6CP$, 

		𝐺𝐶𝐿𝑀M$M-.? ,	 

𝐺𝐿𝐶𝑀SP1P.M$MC6? , 

	𝐺𝐿𝐶𝑀M$6-PG?} 

For flat fabric images in Leeds Fabric Tactile Database, the GLCM-based 

features were directly computed by converting the RGB images to greyscale 

images. For fabric rotation videos, it will be time and energy consuming if the 

calculation was carried out for each frame. Time*space slices generated in 

Section 7.2.3, showing the fabric 360-degree draped appearance, were used to 

generate GLCM for each fabric rotation video. Figure 7.4 shows the processes 

to generate GLCM for draped fabric images and time*space slides. To reduce 

the effects of background area on computing GLCM features, masks were 

developed firstly for all draped fabric images and time*space slices by colour 

thresholds, remaining fabric areas while excluding the background (RGB set to 

0). RGB images were then converted to greyscale images with the greyscale 

range set between 0 and 255. The background areas with RGB values of 0 were 

thus had a greyscale value of 0. Before generating GLCM, the fabric areas were 

checked to ensure that no pixel had a greyscale value of 0. The GLCM were 

then generated by computing the spatial distribution of greyscale values from 1 

to 255, excluding the background area and the edge between the background 

and fabric area. 
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Figure 7.4 Computing GLCM features for draped fabric images and 

time*space slices. ‘X’ in red means excluding the grey level 0 in GLCM. 

7.2.5 2D Fast Fourier Transform (2D FFT) 

The image can be transformed from the spatial domain to frequency domain by 

applying 2D FFT. The basic concepts of 2D FFT has been provided in Chapter 

2, Section 2.9.2. The transformation was conducted by fft2 function in MATLAB 

firstly and by fftshift function to move the lowest frequency to the centre of the 

matrix. Two sets of features were computed directly from the frequency 

spectrum: the total spectrum energy across the whole spectrum defined in 

Equation 7.2, and the total spectrum energy of sub-bands by applying band 

filters defined in Equation 7.3 (Wang et al., 2020). 

2𝐷	𝐹𝐹𝑇,-,./01 = $ $𝐹%(𝑢, 𝑣)
(2*

#)3

42*

")3

 
Equation 7.2 

2𝐷	𝐹𝐹𝑇5.167&6,8 = $ $𝐹%(𝑢, 𝑣)
(2*

#)3

∗ ℎ1(𝑢, 𝑣),
42*

")3

 

ℎ1(𝑢, 𝑣) = W0, 𝑤ℎ𝑒𝑛	𝐷1 −
𝑤
2 ≤ 𝐷(𝑢, 𝑣) ≤ 𝐷1 +

𝑤
2

1,
		𝑛 = 1,2, . . 𝑁 

Equation 7.3 

where 𝐹*(𝑢, 𝑣)  calculates the frequency spectrum energy, ℎ$(𝑢, 𝑣)  is the 

band filter, 𝑤 is the band width, 𝑁 is the number of band filters, and 𝐷$ is the 

diameter of the 𝑛6S band filter. Given the image size, the width of band filter 

was decided as 150 in the present study. 

Grey 
level

0 1 2 3

0 (0,0) (0,1) (0,2) (0,3)
1 (1,0) (1,1) (1,2) (1,3)
2 (2,0) (2,1) (2,2) (2,3)
3 (3,0) (3,1) (3,2) (3,3)

Grey-level Co-occurrence matrix

Original Mask Grey scale
(256 grey levels from 0-255)

x

x x x x x
x
x
x
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In addition, another two sets of features were estimated from the frequency 

spectrum: the fractal dimension and the slope. The fractal dimension is a 

parameter to quantify the complexity of irregular textures. The method of power 

spectrum estimation is an accurate method to compute the fractal dimension, 

as defined in Equation 7.4 (Wang and Georganas, 2009). 

𝑝(𝜔) ∝ 𝜔3F 
Equation 7.4 

𝐹𝐷 =
8 − 𝛽
2

 

where 𝑝(𝜔) is the power spectrum of radial frequency 𝜔, indicating a power-

law relationship between the power spectrum and the radial frequency. Inspired 

by that, the slope of the frequency spectrum was calculated to indicate the rate 

at which the spectrum energy declines with the increasing frequency. A higher 

slope means smoother and fewer details in an image, and a lower slope means 

more detailed textures. 

Overall, the 2D FFT feature set is defined Equation 7.5. For flat fabric images 

in the Leeds Fabric Tactile Database, the 2D FFT feature set was computed 

directly, by converting the RGB images to greyscale images. For draped fabric 

images and time*space slices, the background areas were firstly cropped by 

identifying the top, bottom, right, and left boundaries of the fabric area, ensuring 

a maximum removal of background. The 2D FFT was then applied to the 

cropped draped fabric images and time*space slices to compute the feature set. 

2𝐷	𝐹𝐹𝑇	𝑓𝑒𝑎𝑡𝑢𝑟𝑒	𝑠𝑒𝑡

= {2𝐷	𝐹𝐹𝑇6P6'RL$, 2𝐷	𝐹𝐹𝑇('$T5CT6S , 2𝐷	𝐹𝐹𝑇UV , 2𝐷	𝐹𝐹𝑇QRPGM} 

Equation 7.5 

7.2.6 Wavelet transform (WT) 

Wavelet transform captures the frequency and time information of an image. In 

Chapter 2, 2.9.3, the principle of image WT decomposition was described. 

Figure 7.5 visualised one draped fabric image in the Leeds Fabric Tactile 

Database Part II during WT decomposition using the haar mother wavelet, 
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which was processed by wavedec2 function in MATLAB. Wavelet coefficients of 

each direction and each level were computed using detcoef2 function in MALAB. 

The correlations between wavelet coefficients and the tactile perceptual ratings 

were significant from level 1 to level 6, which are described in Section 7.3.2 and 

shown in Figure 7.6. Therefore, all images were decomposed to level 6, and no 

further decomposition was performed.  

 
Figure 7.5 An example of the draped fabric image after WT decomposition up 

to level 6. 

Inspired by Sun (2012), two features were computed as the WT based 

predictors: energy (En) and contrast (Cn). For each direction, the energy and 

contrast were computed as defined in Equation 7.6 and Equation 7.7. The 

energy and contrast for each level were the sum of values in each direction, 

generating the wavelet transform based feature set as defined in Equation 7.8. 

The computations were conducted in MATLAB. 

Approximation Level 1 Horizontal Detail Level 1 Vertical Detail Level 1 Diagonal Detail Level 1

Approximation Level 2 Horizontal Detail Level 2 Vertical Detail Level 2 Diagonal Detail Level 2

Approximation Level 3 Horizontal Detail Level 3 Vertical Detail Level 3 Diagonal Detail Level 3

Approximation Level 4 Horizontal Detail Level 4 Vertical Detail Level 4 Diagonal Detail Level 4

Approximation Level 5 Horizontal Detail Level 5 Vertical Detail Level 5 Diagonal Detail Level 5

Approximation Level 6 Horizontal Detail Level 6 Vertical Detail Level 6 Diagonal Detail Level 6
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𝐸1(𝑑) =
1

𝑀 × 𝑁$ $ 𝐶/6(𝑖, 𝑗)%
(

9)*

4

&)*
  

𝐿/_𝐸1 = 𝐸1(𝐻/) + 𝐸1(𝑉/) + 𝐸1(𝐶/) Equation 7.6 

𝐶1(𝑑) =
1

𝑀 × 𝑁$ $ |𝐶/6(𝑖, 𝑗) − 𝑀𝑒𝑎𝑛(𝑙𝑑)|
(

9)*

4

&)*
  

𝐿/_𝐶1 = 𝐶1(𝐻/) + 𝐶1(𝑉/) + 𝐶1(𝐶/) Equation 7.7 

where	 𝑀 × 𝑁 is the size of greyscale image to be decomposed, 𝑙 represents 

level, 𝑑  represents the direction (H: horizontal, V: vertical, or C: diagonal), 

𝐶𝑙𝑑(𝑖, 𝑗) are the wavelet coefficients of decomposed images, 𝑀𝑒𝑎𝑛(𝑙𝑑) is the 

average coefficients at level 𝑙	and direction 𝑑. 

WT based feature set= {𝑊𝑇_𝐿*_𝐸1, 𝑊𝑇_𝐿*_𝐶1,……𝑊𝑇_𝐿:_𝐸1, 

𝑊𝑇_𝐿:_𝐶1} 
Equation 7.8 

For flat fabric images in the database, the WT based features can be directly 

computed by converting the RGB images to greyscale images. For draped 

fabric images and time*space slices, the background areas were firstly cropped 

by identifying the top, bottom, right, and left boundaries of the fabric area, 

ensuring a maximum removal of background. The cropped draped fabric 

images and time*space slices were then decomposed, and the corresponding 

WT based features were computed. 

7.3 Modelling procedure 

7.3.1 Dependent variables and the corresponding predictors 

Table 7.1 lists the models developed for predicting the visual-tactile and tactile 

perception under several conditions and the corresponding predictors. Models 

were built for flexible-stiff, smooth-rough, soft-firm, spongy-crisp, and warm-cool 

perceived under the conditions of flat fabric images (model 1), draped fabric 

images (model 2), fabric rotation videos (model 3), and vision+touch (model 4, 

5, and 6), respectively. Image features from flat fabric images were used as 

predictors predicting visual-tactile perception under flat fabric images condition, 

and the same applied to draped fabric images and fabric rotation videos. For 
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predicting the tactile perception perceived through both vision and touch, 

predictors from flat fabric images, draped fabric images, and fabric rotation 

videos were used separately (model 4, 5, 6). The tactile perceptual ratings 

collected in the experiment Phase II were averaged across all observers and 

used as the dependent variables. Despite the GLCM feature set, 2D FFT feature 

set, and WT feature set, fabric draped width extracted from draped fabric 

images was used as one of the predictors of model 2 and 5, fabric draped width 

extracted from fabric rotation videos was used as one of the predictors of model 

3 and 6, and fabric thickness was used as one of the predictors of model 4, 5, 

and 6. All predictors were z-standardised before training the model. 

Table 7.1 Models predicting the tactile perception under the corresponding 
conditions, and the corresponding predictors. 

 Target condition Predictors No. 
Predictors 

Vi
su

al
-ta

ct
ile

 p
er

ce
pt

io
n 

pr
ed

ic
tio

n  

1. Flat fabric 
images 

• GLCM based features 
• 2D FFT features 
• WT features 
 

31 

2. Draped fabric 
images 

• Fabric width extracted from 
draped fabric images 

• GLCM based features 
• 2D FFT features 
• WT features 
 

27 

3. Fabric rotation 
videos 

• Fabric width extracted from 
videos 

• GLCM based features 
• 2D FFT features 
• WT features 
 

29 

Ta
ct

ile
 p

er
ce

pt
io

n 
pr

ed
ic

tio
n 

4. Vision+touch 
(predicted by 
flat fabric 
images) 

• Fabric thickness 
• Predictors of model 1 
 

32 

5. Vision+touch 
(predicted by 
draped fabric 
images) 

• Fabric thickness 
• Predictors of model 2 
 

28 
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6. Vision+touch 
(predicted by 
fabric rotation 
videos) 

• Fabric thickness 
• Predictors of model 3 

30 

7.3.2 Correlations between dependent variables and predictors 

and interrelationships of predictors 

The correlations between dependent variables and predictors, as well as the 

correlations between all predictors were shown in Figure 7.6. The predictors 

were extracted from flat fabric images (Figure 7.6-A), draped fabric images 

together with fabric width (Figure 7.6-B), and fabric rotation videos together with 

fabric width (Figure 7.6-C). The relationships between thickness and dependent 

variables were also included in each figure. All dependent variables were 

followed by the conditions under which the data were collected. 

(A) 

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

fle
xib

le
−s

tif
f (

vis
io

n+
to

uc
h)

sm
oo

th
−r

ou
gh

 (f
la

t f
ab

ric
 im

ag
es

)

sm
oo

th
−r

ou
gh

 (v
isi

on
+t

ou
ch

)

so
ft−

fir
m

 (f
la

t f
ab

ric
 im

ag
es

)

so
ft−

fir
m

 (v
isi

on
+t

ou
ch

)

sp
on

gy
−c

ris
p 

(fl
at

 fa
br

ic 
im

ag
es

)

sp
on

gy
−c

ris
p 

(v
isi

on
+t

ou
ch

)

wa
rm
−c

oo
l (

fla
t f

ab
ric

 im
ag

es
)

wa
rm
−c

oo
l (

vis
io

n+
to

uc
h)

th
ick

ne
ss

G
LC

M
_c

on
tra

st
G

LC
M

_c
or

re
la

tio
n

G
LC

M
_e

ne
rg

y
G

LC
M

_h
om

og
en

ei
ty

G
LC

M
_e

nt
ro

py
2D

 F
FT

_F
D

2D
 F

FT
_s

lo
pe

2D
 F

FT
_t

ot
al

En
ge

rg
y

2D
 F

FT
_0
−1

50
2D

 F
FT

_1
50
−3

00
2D

 F
FT

_3
00
−4

50
2D

 F
FT

_4
50
−6

00
2D

 F
FT

_6
00
−7

50
2D

 F
FT

_7
50
−9

00
2D

 F
FT

_9
00
−1

05
0

2D
 F

FT
_1

05
0−

12
00

2D
 F

FT
_1

20
0−

13
50

2D
 F

FT
_1

35
0−

15
00

2D
 F

FT
_1

50
0−

17
50

W
T_

L1
_E

n
W

T_
L1

_C
n

W
T_

L2
_E

n
W

T_
L2

_C
n

W
T_

L3
_E

n
W

T_
L3

_C
n

W
T_

L4
_E

n
W

T_
L4

_C
n

W
T_

L5
_E

n
W

T_
L5

_C
n

W
T_

L6
_E

n
W

T_
L6

_C
n

flexible−stiff (flat fabric images)
flexible−stiff (vision+touch)

smooth−rough (flat fabric images)
smooth−rough (vision+touch)

soft−firm (flat fabric images)
soft−firm (vision+touch)

spongy−crisp (flat fabric images)
spongy−crisp (vision+touch)
warm−cool (flat fabric images)

warm−cool (vision+touch)
thickness

GLCM_contrast
GLCM_correlation

GLCM_energy
GLCM_homogeneity

GLCM_entropy
2D FFT_FD
2D FFT_slope

2D FFT_totalEngergy
2D FFT_0−150
2D FFT_150−300

2D FFT_300−450
2D FFT_450−600

2D FFT_600−750
2D FFT_750−900
2D FFT_900−1050
2D FFT_1050−1200

2D FFT_1200−1350
2D FFT_1350−1500

2D FFT_1500−1750
WT_L1_En

WT_L1_Cn
WT_L2_En

WT_L2_Cn
WT_L3_En

WT_L3_Cn
WT_L4_En

WT_L4_Cn
WT_L5_En

WT_L5_Cn
WT_L6_En

predictors from
flat fabric images



 164 

(B) 

(C) 

Figure 7.6 The correlations between tactile perceptual ratings and 
corresponding predictors, and interrelationships among predictors. 

The correlations between dependent variables and predictors were mixed. 

Predictors which were significantly correlated with one dependent variable may 

be insignificantly correlated with another. For example, fabric draped width 

extracted from draped fabric images significantly correlated to most of the tactile 

perception, except for spongy-crisp (Figure 7.6-B). For each model, it is possible 

to remove irrelevant predictors based on the significant levels of the correlations 
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between dependent variables and predictors. However, inconsistencies in the 

predictors used for modelling could result from removal. Inconsistencies include 

the number of predictors used for modelling, and differences in the specific 

predictors selected. Either of the inconsistencies would compromise the 

comparability of the models. Therefore, all predictors were included initially to 

train the models. 

The numbers of predictors ranged from 27 to 32, which lead to high-dimensional 

datasets. In Figure 7.6, multicollinearities were observed among some of 

predictors, which may affect the models’ interpretability. Given that no predictors 

would be initially removed, regularisation regression techniques which remove 

or shrink less affected predictors were implemented, with details described in 

Section 7.3.3.1, 7.3.3.2, and 7.3.3.3. 

7.3.3 Regression techniques 

7.3.3.1 Ridge Regression (RR) 

RR models implemented L2 penalty to shrink the coefficients of less affected 

predictors approaching but not to zero. The implementation was conducted using 

cv.glmnet() function under glmnet package in R. Parameter α was set to 0, and 

parameter λ was optimised by ten-fold cross-validation. A set of 100 λ was 

generated and tested during the training process, and the optimal λ was defined as 

the value giving minimum mean cross-validated error. Greater value of λ would 

strongly shrink the coefficients towards but not to zero. 

7.3.3.2 Least Absolute Shrinkage and Selection Operator Regression 

(LASSO) technique 

LASSO models implemented L1 penalty to shrink the coefficients of less affected 

predictors to zero, and thus the predictor selection can be achieved. The 

implementation process and the determination of optimal λ was the same as RR, 

while parameter α was set to 1. Greater value of λ would force the coefficients of 

irrelevant predictors to zero. 
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7.3.3.3 The Elastic Net Regression (EN) 

EN models implemented both L1 and L2 penalty, and thus both optimal λ and α 

were defined during the training process. Parameter α was pre-defined as a 

sequence from 0 to 1 with 0.1 intervals. For each α, a ten-fold cross-validation was 

implemented, and the optimal α was defined as the value giving minimum cross-

validated error. For the optimal α, a set of 100 λ values were generated and tested, 

and the optimal λ value was determined when cross-validated error was minimised. 

The combination of optimal α and λ was then used in the EN training process, where 

optimal α controls the balance of L1 and L2 penalties and optimal λ controls the 

degree of regularisation. 

7.3.3.4 Ordinary Least Squares Regression (OLS) 

All predictors were initially fitted into models to predict visual-tactile perception 

and tactile perception. Regularisation regression techniques were implemented 

to shrink and remove irrelevant predictors during the training processes by 

tuning α and λ as needed. Ordinary Least Square Regression (OLS) technique 

which includes all predictors was implemented for all models as comparisons. 

The implementation was conducted using lm() function under the olsrr package 

in R, without parameters tuning and predictors selection. 

7.3.4 Training and testing datasets 

Even though woven fabrics differed with knitted fabrics in terms of tactile 

perception (in Section 6.4), the statistically fitted differences between woven 

and knitted fabrics were small, being less than 1.63 unit on a 9-point Likert scale. 

Here, for all tactile properties, models were built using both groups. Tactile 

perceptual ratings collected using real fabric samples from Leeds Fabric Tactile 

Database Part II, were used to model the visual-tactile and tactile perception. A 

technique 4-fold cross-validation (repeated 50 times) from machine learning 

was implemented. The dataset was randomly split into two groups, with 75% 

used as training dataset and 25% used as testing dataset. The model would 
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always be tested by a new testing dataset to prevent the overfitting. The random 

splitting process was repeated 50 times, with a different training dataset 

generated each time, and the model was evaluated by a different testing dataset. 

Predictors listed in Table 7.1 were fitted to the corresponding dependent 

variables by different regression techniques given in Section 7.3.3. Root Mean 

Square Error (RMSE) and R2 were used to assess the model performance. 

RMSE reflects the average differences between the observed data and 

predicted data on the original scale. R2 reflects the goodness of fitting of the 

model. Lower value of RMSE and higher value of R2 are preferred for a good 

prediction model. For each model, the average RMSE and R2 from the 50 times 

random data splits were adopted, reducing the negative effects of unbalanced 

data split. 

7.4 Model performance and comparisons 

In Section 7.4.1, comparisons were made between the regression techniques. 

Models trained by EN were further analysed in the following subsections. In 

Section 7.4.2, comparisons of the visual-tactile perception model performance 

were made between flat fabric images, draped fabric images, and fabric rotation 

videos. Through the three different fabric visual representations, tactile 

perception predicted by predictors extracted from corresponding visual 

representations are compared. In Section 7.4.3, the predictive power was 

compared among five pairs of tactile properties. 

7.4.1 Comparisons between regression techniques 

Table 7.2 lists RMSE and R2 values averaged from 50 repeats for all models 

predicting tactile properties. Models trained by OLS technique had higher RMSE 

values and lower R2 values, despite the dependent variables and target 

conditions. Compared to that, regularisation regression techniques performed 

better than OLS, with lower RMSE values and high R2 values. 
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The results of comparisons between RR, LASSO, and EN were mixed. Overall, 

models trained by the three regularisation techniques were performed similarly. 

For example, for the flexible-stiff attributes, the RMSE values of the visual-tactile 

perception model using flat fabric images were 1.28 points across RR, LASSO, 

and EN methods. Similarly, the tactile perception model using flat fabric images 

showed RMSE values of 1.41, 1.44, 1.49 points for RR, LASSO, and EN, 

respectively. The comparison among RR, LASSO, and EN methods did not 

consistently indicate which method provided better predictive performance. The 

EN models were further analysed in Section 7.4.2 and 7.4.3 to compare the 

model performance between target conditions, due to its ability to shrink and 

select predictors simultaneously to achieve more efficient models. 

Table 7.2 Comparisons of OLS, RR, LASSO, EN for predicting visual-tactile 
and tactile perception, based on the average RMSE and R2 values. 

Flexible-stiff  OSL RR LASSO EN 

Flat fabric images 
RMSE 1.55±0.38 1.28±0.26 1.28±0.29 1.28±0.28 

R2 0.26±0.14 0.30±0.12 0.29±0.11 0.28±0.12 

Draped fabric images 
RMSE 1.00±0.22 0.78±0.08 0.75±0.08 0.75±0.08 

R2 0.74±0.10 0.83±0.03 0.84±0.04 0.84±0.04 

Fabric rotation videos 
RMSE 0.92±0.15 0.74±0.08 0.69±0.08 0.69±0.10 

R2 0.74±0.07 0.82±0.04 0.85±0.04 0.85±0.04 

Vision+touch (flat) 
RMSE 2.05±0.49 1.41±0.13 1.44±0.11 1.49±0.19 

R2 0.16±0.11 0.27±0.14 0.27±0.12 0.23±0.12 

Vision+touch (drape) 
RMSE 1.25±0.15 1.05±0.12 1.04±0.11 1.04±0.12 

R2 0.49±0.10 0.59±0.09 0.61±0.09 0.61±0.10 

Vision+touch (video) 
RMSE 1.23±0.27 0.90±0.08 0.82±0.08 0.92±0.11 

R2 0.55±0.12 0.71±0.06 0.72±0.06 0.70±0.08 

Smooth-rough  OSL RR LASSO EN 

Flat fabric images 
RMSE 1.30±0.30 0.93±0.10 0.94±0.11 0.95±0.10 

R2 0.24±0.15 0.40±0.12 0.40±0.11 0.39±0.12 

Draped fabric images 
RMSE 1.09±0.17 0.93±0.11 0.89±0.10 0.96±0.11 

R2 0.40±0.13 0.50±0.11 0.54±0.11 0.47±0.12 

Fabric rotation videos 
RMSE 0.82±0.13 0.68±0.10 0.71±0.09 0.70±0.10 

R2 0.53±0.13 0.66±0.09 0.63±0.09 0.63±0.09 

Vision+touch (flat) 
RMSE 1.79±0.45 1.27±0.13 1.25±0.12 1.30±0.18 

R2 0.16±0.12 0.30±0.15 0.32±0.15 0.29±0.16 

Vision+touch (drape) 
RMSE 1.29±0.18 1.05±0.14 1.12±0.15 1.09±0.13 

R2 0.38±0.12 0.50±0.15 0.44±0.15 0.46±0.16 

Vision+touch (video) RMSE 1.46±0.32 1.06±0.12 1.14±0.15 1.12±0.14 
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R2 0.29±0.15 0.50±0.14 0.43±0.14 0.44±0.13 

Soft-firm  OSL RR LASSO EN 

Flat fabric images 
RMSE 1.57±0.41 1.17±0.10 1.20±0.09 1.22±0.10 

R2 0.14±0.11 0.18±0.10 0.17±0.09 0.15±0.11 

Draped fabric images 
RMSE 1.05±0.16 0.78±0.11 0.85±0.11 0.79±0.10 

R2 0.57±0.11 0.74±0.08 0.69±0.08 0.73±0.08 

Fabric rotation videos 
RMSE 1.00±0.17 0.83±0.09 0.82±0.08 0.81±0.11 

R2 0.61±0.10 0.71±0.08 0.71±0.06 0.70±0.08 

Vision+touch (flat) 
RMSE 2.07±0.45 1.57±0.12 1.59±0.12 1.57±0.14 

R2 0.09±0.08 0.17±0.12 0.16±0.12 0.16±0.10 

Vision+touch (drape) 
RMSE 1.41±0.27 1.18±0.12 1.18±0.13 1.18±0.14 

R2 0.42±0.13 0.51±0.11 0.51±0.10 0.52±0.11 

Vision+touch (video) 
RMSE 1.47±0.34 1.06±0.13 1.04±0.12 1.04±0.12 

R2 0.43±0.12 0.60±0.10 0.62±0.10 0.62±011 

Spongy-crisp  OSL RR LASSO EN 

Flat fabric images 
RMSE 1.07±0.22 0.83±0.10 0.84±0.11 0.86±0.10 

R2 0.24±0.16 0.30±0.12 0.32±0.16 0.30±0.14 

Draped fabric images 
RMSE 0.99±0.14 0.82±0.14 0.84±0.11 0.85±0.14 

R2 0.24±0.14 0.38±0.13 0.35±0.11 0.32±0.13 

Fabric rotation videos 
RMSE 1.09±0.18 0.86±0.09 0.82±0.08 0.81±0.07 

R2 0.13±0.10 0.20±0.11 0.31±0.10 0.26±0.09 

Vision+touch (flat) 
RMSE 1.26±0.24 0.96±0.12 0.96±.12 0.93±0.10 

R2 0.05±0.04 0.04±0.03 0.04±0.03 0.05±0.03 

Vision+touch (drape) 
RMSE 1.02±0.17 0.88±0.10 0.89±0.09 0.85±0.09 

R2 0.18±0.10 0.18±0.13 0.21±0.13 0.20±0.11 

Vision+touch (video) 
RMSE 1.07±0.19 0.85±0.10 0.84±0.09 0.83±0.10 

R2 0.15±0.10 0.23±0.11 0.28±0.13 0.24±0.11 

Warm-cool  OSL RR LASSO EN 

Flat fabric images 
RMSE 1.12±0.30 0.83±0.10 0.85±0.12 0.86±0.13 

R2 0.40±0.16 0.51±0.11 0.48±0.13 0.48±0.14 

Draped fabric images 
RMSE 1.28±0.25 0.95±0.10 0.99±0.10 0.99±0.20 

R2 0.36±0.15 0.56±0.08 0.51±0.09 0.52±0.13 

Fabric rotation videos 
RMSE 1.16±0.20 0.92±0.10 0.91±0.11 0.93±0.12 

R2 0.43±0.12 0.54±0.09 0.56±0.10 0.54±0.11 

Vision+touch (flat) 
RMSE 0.80±0.16 0.61±0.07 0.60±0.09 0.62±0.08 

R2 0.66±0.11 0.76±0.06 0.77±0.07 0.75±.06 

Vision+touch (drape) 
RMSE 0.66±0.12 0.58±0.07 0.54±0.07 0.56±0.07 

R2 0.72±0.09 0.78±0.07 0.81±0.07 0.79±0.07 

Vision+touch (video) 
RMSE 0.68±0.11 0.57±0.07 0.53±0.06 0.56±0.06 

R2 0.71±0.07 0.78±0.06 0.82±0.04 0.79±0.05 

7.4.2 Comparisons of predictive power among target conditions 

Figure 7.7 compares the model performance on predicting the visual-tactile 
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perception (left three boxes in blue in each figure) and tactile perception (right 

three boxes in red in each figure), trained by EN. Each box indicates the 

distribution of the RMSE or R2 values over the 50 repeated cross-validation 

during model training. 
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Figure 7.7 EN model performance assessed by RMSE (left) and R2 (right). 
Comparisons focused on differences among target conditions. Black lines 

indicate the median values from the 50 repeats. Boxes indicate IQR. 

For visual-tactile perception prediction, higher RMSE and lower R2 values were 

observed when predictors extracted from flat fabric images were used to predict 

flexible-stiff and soft-firm perceived from these images. The average differences 

between predicted scores and rated scores were 1.28 and 1.22 units in the 9-

points Likert scale for flexible-stiff and soft-firm, respectively. The models only 

explained 28% of the variance for flexible-stiff and 15% for soft-firm. Compared 

to models using draped fabric images predictors and time*space slices 

predictors, predictors from flat fabric images demonstrated relatively lower 

predictive power in visual-tactile perception. However, for spongy-crisp and 

warm-cool, predictors from flat fabric images, draped fabric images, and 

time*space slices had similar predictive power. The average RMSE ranges were 

from 0.81 to 0.86 for spongy-crisp, and 0.86 to 0.99 for warm-cool, with each 

range reflected results from three models using different image categories. The 
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best model for predicting spongy-crisp was based on draped fabric images, 

explaining 32% of the variance. The best model for predicting warm-cool was 

based on flat fabric images, with average RMSE values of 0.86. In addition, for 

smooth-rough, models using predictors from space*time slices performed better, 

with average RMSE value of 0.70 and R2 value of 63%. Higher RMSE and lower 

R2 values were obtained for models predicting smooth-rough perceived from flat 

fabric images and draped fabric images. 

For tactile perception prediction, models using predictors from flat fabric images 

achieved poor performance for all tactile properties, compared to that using 

predictors from draped fabric images and time*space slices. It is reasonable 

since better correlations were observed between draped fabric images/fabric 

rotation videos and vision+touch, described in Section 5.5. For predicting 

flexible-stiff, soft-firm, spongy-crisp, and warm-cool perceived through vision 

and touch, model including predictors from time*space slices achieved the best 

performance. The average differences between predicted perception and rated 

perception from observers were 0.92, 1.04, 0.83, and 0.56 units for flexible-stiff, 

soft-firm, spongy-crisp, and warm-cool respectively. 70%, 62%, 24%, and 79% 

of the variance were explained in the corresponding models. On the other hand, 

models including predictors from draped fabric images achieved the best 

performance to predict smooth-rough perceived through vision and touch. The 

average RMSE values were of 1.09 units. Models explained 46% of the variance. 

7.4.3 Comparisons of the predictive power among tactile 

properties 

In Figure 7.7, the predictive power was compared among target conditions for 

each pair of tactile properties. Figure 7.8 was revised from Figure 7.7, clearly 

showing the comparisons among tactile properties. Top two figures in Figure 7.8 

show models performance predicting visual-tactile perception and bottom two 

figures show models performance predicting tactile perception. Overall, models 
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predicting flexible-stiff and warm-cool outperformed those predicting other pairs 

of tactile properties under specific target condition. 

  

  
Figure 7.8 EN model performance assessed by RMSE (left) and R2 (right). 

Comparisons focused on the differences among tactile properties. Black 
horizontal lines indicate the median values from the 50 repeats. Boxes 

indicate IQR. 

When using predictors from draped fabric images to predict flexible-stiff 

perceived under this condition, the model achieved good accuracy of average 

RMSE=0.75 and average R2=84%. For other tactile properties prediction under 

the same target condition, models demonstrated slightly lower accuracy. The 

average RMSE ranged from 0.79 (soft-firm) to 0.99 (warm-cool), and the 

average R2 ranged from 32% (spongy-crisp) to 73% (soft-firm). Similarly, when 

using predictors from fabric rotation videos to predict flexible-stiff perceived 

under this condition, the difference between predicted scores and rated scores 

was 0.69, and up to 85% of the variance can be explained. Model predicting 

soft-firm performed nearly identical to that predicting flexible-stiff, with RMSE 

value of 0.70 and R2 value of 85%. 

Notable irregularities have been found on models using predictors from draped 
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fabric images and fabric rotation videos to predict spongy-crisp perceived using 

corresponding images and videos. For a good prediction model, both lower 

RMSE and higher R2 values are normally expected. While models achieved 

RMSE values of 0.85 and 0.81 points on a 9-point Likert scale, they explained 

only 32% and 26% of the variance for perception using draped fabric images 

and fabric rotation videos, respectively. 

Models predicting warm-cool achieved better accuracies than those predicting 

other pairs of tactile properties under four target conditions: (1) using flat fabric 

images predictors for perception from flat fabric images (RMSE=0.86, R2=48%); 

(2) using flat fabric images predictors for perception from vision+touch 

(RMSE=0.62, R2=75%); (3) using draped fabric images predictor for perception 

from vision+touch (RMSE=0.56, R2=79%); (4) using fabric rotation videos 

predictors for perception from vision+touch (RMSE=0.56, R2=79%). A possible 

reason for the strong predictive power in cases (2)-(4) could be the inclusion of 

thickness as one of the predictors in the models. The role of thickness is further 

analysed in Section 7.6. 

Table 7.3 summarised models that achieved the best performance for each pair 

of tactile properties. Overall, using predictors from draped fabric images and 

fabric rotation videos contributed to the prediction of all visual-tactile and tactile 

perception. One exception is that predictors from flat fabric images performed 

better on predicting warm-cool. In addition, all models predicting spongy-crisp 

performed ineffectively. Using predictors from fabric draped width, GLCM, 2D 

FFT, and WT extracted from images cannot effectively predict the perception of 

spongy-crisp. 

Table 7.3 The best model trained by EN for all tactile properties, including 
predictors from the corresponding image category, assessed by RMSE and 

R2. 
 Visual-tactile perception 

prediction 
Tactile perception prediction 
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Flexible-stiff Fabric rotation video 
RMSE=0.69±0.10 
R2=0.85±0.04 

Fabric rotation video 
RMSE=0.92±0.11 
R2=0.70±0.08 
 

Smooth-rough Fabric rotation video 
RMSE=0.70±0.10 
R2=0.63±0.09 

Draped fabric images 
RMSE=1.09±0.13 
R2=0.46±0.12 
 

Soft-firm Draped fabric images 
RMSE=0.79±0.10 
R2=0.73±0.08 

Fabric rotation video 
RMSE=1.04±0.12 
R2=0.62±0.11 
 

Spongy-crisp Draped fabric images 
RMSE=0.85±0.14 
R2=0.32±0.13 

Fabric rotation video 
RMSE=0.83±0.10 
R2=0.24±0.11 
 

Warm-cool Flat fabric images 
RMSE=0.86±0.13 
R2=0.48±0.14 

Fabric rotation videos 
RMSE=0.56±0.0.07 
R2=0.79±0.07 

7.5 Ranking of predictors by EN and LASSO 

The coefficients of the irrelevant predictors were shrunk to zero during the EN 

and LASSO training processes. As the predictors were z-standardised prior to 

the model training, the considerate variations in the scale of initial predictors no 

longer affected the models. Ranking the absolute standardised coefficients 

would reveal the relative importance of predictors. Table 7.4 listed the top 10 

important predictors in each visual-tactile perception prediction model and in the 

best models predicting tactile perception through EN, followed by the ranking of 

predictors by LASSO lists in brackets. 

Table 7.4 Rank of top 10 predictors for visual-tactile perception models and 
the best models for tactile perception in Table 7.3.  

Flexible-stiff 

 Flat fabric images Draped fabric images Fabric rotation videos Vision+touch (by fabric 

rotation videos) 

1 WT_L3_Cn (2) width_drape (1) width_video (1) width_video (1) 

2 WT_L3_En (4) FFT_750-900 (2) GLCM_entropy (2) GLCM_entropy (3) 

3 FFT_0-150 (1) GLCM_correlation (6) FFT_1050-1200 (3) thickness (2) 

4 FFT_150-300 (5) GLCM_entropy (4) FFT_totalEngergy (4) WT_L6_Cn (7) 
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5 WT_L4_Cn (17) FFT_FD (3) WT_L4_En (7) GLCM_contrast (7) 

6 FFT_1350-1500 (12) WT_L1_En (7) GLCM_correlation (8) FFT_1050-1200 (5) 

7 FFT_FD (15) GLCM_contrast (12) WT_L6_Cn (10) FFT_totalEngergy (4) 

8 FFT_totalEngergy 

(3) 
FFT_slope (5) WT_L6_En (9) WT_L2_Cn (9) 

9 WT_L6_Cn (6) FFT_300-450 (8) WT_L4_Cn (11) WT_L3_Cn (9) 

10 WT_L2_Cn (9) WT_L6_Cn (12) FFT_600-750 (14) WT_L1_En (9) 

Smooth-rough 

 Flat fabric images Draped fabric images Fabric rotation videos Vision+touch (by 

draped fabric images) 

1 FFT_0-150 (1) FFT_0-150 (1) FFT_0-150 (1) width_drape (1) 

2 WT_L3_Cn (4) WT_L4_En (4) WT_L6_En (4) FFT_FD (9) 

3 FFT_totalEngergy 

(2) 
width_drape (2) GLCM_entropy (5) GLCM_entropy (5) 

4 WT_L5_En (5) FFT_450-600 (8) GLCM_homo (2) FFT_0-150 (4) 

5 GLCM_homo (3) FFT_150-300 (7) width_video (3) FFT_slope (2) 

6 WT_L3_En (11) FFT_slope (3) FFT_150-300 (9) thickness (3) 

7 FFT_1500-1750 (7) WT_L6_Cn (13) WT_L6_Cn (11) WT_L4_En (9) 

8 FFT_1350-1500 (16) GLCM_homo (6) FFT_750-900 (12) WT_L3_Cn (5) 

9 WT_L2_Cn (10) FFT_FD (17) WT_L4_En (12) WT_L6_Cn (9) 

10 WT_L4_Cn (13) GLCM_entropy (5) FFT_slope (6) WT_L1_Cn (9) 

Soft-firm 

 Flat fabric images Draped fabric images Fabric rotation videos Vision+touch (by fabric 

rotation videos) 

1 FFT_0-150 (4) width_drape (1) width_video (1) width_video (1) 

2 FFT_totalEngergy 

(1) 
FFT_750-900 (2) GLCM_correlation (8) GLCM_entropy (2) 

3 WT_L6_Cn (6) GLCM_correlation (3) WT_L6_Cn (4) GLCM_contrast (4) 

4 WT_L3_En (13) WT_L1_En (6) FFT_600-750 (11) WT_L3_Cn (5) 

5 WT_L3_Cn (13) FFT_FD (10) WT_L3_Cn (3) WT_L6_Cn (7) 

6 FFT_300-450 (10) WT_L5_Cn (13) GLCM_entropy (5) FFT_1050-1200 (7) 

7 WT_L4_Cn (5) GLCM_homo (9) FFT_1050-1200 (9) WT_L2_Cn (7) 

8 GLCM_contrast (3) WT_L4_En (13) FFT_slope (12) WT_L1_Cn (7) 

9 WT_L6_En (2) FFT_slope (5) FFT_totalEngergy (2) FFT_0-150 (7) 

10 FFT_150-300 (13) FFT_150-300 (13) FFT_450-600 (14) thickness (7) 

Spongy-crisp 

 Flat fabric images Draped fabric images Fabric rotation videos Vision+touch (by fabric 

rotation videos) 

1 WT_L3_Cn (3) FFT_0-150 (5) FFT_0-150 (1) thickness (1) 

2 GLCM_homo (2) FFT_FD (3) FFT_FD (2) Width_video (2) 

3 FFT_slope (4) WT_L5_Cn (1) FFT_totalEngergy (10) GLCM_contrast (17) 

4 
WT_L5_Cn (12) GLCM_energy (6) GLCM_energy (10) 

GLCM_correlation 

(17) 

5 FFT_300-450 (12) FFT_750-900 (4) WT_L5_En (5) GLCM_energy (5) 



 177 

6 WT_L1_En (8) WT_L6_Cn (9) WT_L4_En (7) GLCM_homo (14) 

7 WT_L4_Cn (7) WT_L2_Cn (13) FFT_slope (3) GLCM_entropy (7) 

8 WT_L6_Cn (1) WT_L1_Cn (9) WT_L6_Cn (9) FFT_FD (17) 

9 FFT_150-300 (12) GLCM_homo (13) GLCM_contrast (10) FFT_slope (9) 

10 GLCM_energy (8) FFT_slope (2) WT_L6_En (7) FFT_totalEngergy (7) 

Warm-cool 

 Flat fabric images Draped fabric images Fabric rotation videos Vision+touch (by fabric 

rotation videos) 

1 FFT_150-300 (5) width_drape (2) width_video (1) thickness (1) 

2 WT_L2_Cn (12) WT_L5_Cn (6) FFT_0-150 (3) width_video (2) 

3 FFT_0-150 (2) FFT_0-150 (3) FFT_FD (2) GLCM_entropy (3) 

4 FFT_1500-1750 (15) FFT_FD (1) FFT_totalEngergy (4) FFT_totalEngergy (4) 

5 WT_L6_Cn (4) GLCM_correlation (5) WT_L5_Cn (7) FFT_slope (6) 

6 FFT_300-450 (6) WT_L2_Cn (15) WT_L4_En (13) FFT_FD (5) 

7 WT_L3_En (10) WT_L4_En (8) GLCM_entropy (5) WT_L5_En (10) 

8 FFT_1200-1350 (18) WT_L6_Cn (7) WT_L1_En (12) WT_L4_En (10) 

9 FFT_600-750 (21) GLCM_contrast (10) GLCM_energy (8) WT_L1_En (10) 

10 WT_L3_Cn (1) FFT_450-600 (12) FFT_slope (6) GLCM_homo (10) 

Homo: homogeneity 

In Table 7.4, a clear observation is that fabric draped width was ranked as the 

most affected predictor in several models. Models including: (1) predicting 

flexible-stiff and soft-firm perceived from draped fabric images, fabric rotation 

videos, and vision+touch; (2) predicting smooth-rough perceived from 

vision+touch; (3) predicting warm-cool perceived from draped fabric images and 

fabric rotation videos. However, fabric draped width was less important in 

predicting spongy-crisp. Given the relative higher predictive accuracy described 

in previous sections, the contribution of fabric draped width in predicting visual-

tactile perception and tactile perception has been confirmed by ranking the 

predictors in models, except for the perception using flat fabric images. 

Another clear observation is that both fabric draped width and thickness of 

fabrics were ranked as very important predictors in all tactile perception models 

(the right column in Table 7.4). Fabric draped width, GLCM based features, 2D 

FFT based features, and WT based features were the predictors computed from 

corresponding images, while thickness was the physical property of real fabrics. 

Despite the importance of thickness, in practical applications, the absence or 
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inaccessibility of physical property may cause challenges in remaining the good 

performance of tactile perception prediction models. Therefore, new models 

predicting tactile perception without thickness as one of the predictors were 

fitted to assess the model performance using only image-based predictors, 

which is described in Section 7.6. 

The importance of predictors computed from GLCM, 2D FFT, and WT were 

mixed in all models, and thus the role of each predictor category cannot be 

clearly defined and compared. Certain predictors were found to be important 

across models for each pair of tactile properties. For flexible-stiff, 

GLCM_entropy and WT_L6_Cn were found to have relatively higher absolute 

coefficients in models of draped fabric images, fabric rotation videos, and 

vision+touch. These two predictors, together with WT_L4_En, FFT_0-150, 

played important roles in predicting smooth-rough perceived from draped fabric 

images, fabric rotation videos and vision+touch. GLCM_homogeneity exhibited 

relatively higher absolute standardised coefficients in visual-tactile models of 

smooth-rough. For soft-firm, WT_L6_Cn was an important predictor across all 

models except for draped fabric images. For spongy-crisp, only GLCM_energy 

was found important for all models, but it was excluded in the models for flat 

fabric images. For warm-cool, FFT_FD and WT_L4_En were found important 

for all models except for flat fabric images. 

7.6 Models excluding thickness as a predictor 

Same modelling procedures were conducted on models without thickness as 

the predictor. Predictors from fabric rotation videos were used for flexible-stiff, 

soft-firm, spongy-crisp, and warm-cool, and predictors from draped fabric 

images were used for smooth-rough, as provided in Table 7.3. Figure 7.9 

compares the models predicting tactile perception through vision and touch 

between excluding thickness and including thickness. Models excluding 

thickness as the predictor indicated that the prediction was carried out based 



 179 

on images only. Overall, excluding thickness slightly reduced the models’ 

accuracies, which was indicated by the increased RMSE values and decreased 

R2 values as shown in Figure 7.9. The prediction of flexible-stiff, smooth-rough, 

soft-firm, and warm-cool perceived through vision and touch remained 

reasonably good, while spongy-crisp cannot be accurately predicted by image-

based predictors only.  

Among all models, the exclusion of thickness had the largest effect on the 

prediction of warm-cool. The average RMSE increased from 0.56 (±0.07) to 

0.82 (±0.09), and the average R2 decreased from 0.79 (±0.07) to 0.54(±0.09) by 

excluding thickness in the predictors. On the other hand, model of smooth-rough 

was almost not affected by thickness. The average RMSE (1.09±0.13) and R2 

(0.46) were identical before and after excluding thickness, while the SD varied 

in R2. 

 

  
Figure 7.9 Comparison of tactile perception EN models between excluding 

and including thickness, assessed by RMSE (left) and R2 (right) from 50 
repeats. Black lines indicate the median values. Boxes indicate IQR. 

7.7 Discussion 

7.7.1 Flat fabric images in visual-tactile and tactile perception and 

prediction 

In Chapter 5 Section 5.5, the tactile perceptual ratings obtained using flat fabric 
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images were compared with those under the condition of actual touch and 

observation. The results found that the perception from flat fabric images had 

lower correlations with the actual touch and observation compared to draped 

fabric images and fabric rotation videos. An exception included the perception 

of warm-cool, where the tactile perceptual ratings were highly correlated across 

all experiment conditions. In this Chapter, these findings were extended to 

predictive modelling, demonstrating that models trained with predictors from flat 

fabric images performed poorly in predicting visual-tactile perception and tactile 

perception. Both Chapters revealed the ineffectiveness of flat fabric images in 

perceiving and predicting visual-tactile and tactile perception. 

From the perspective of perception, a previous study compared the flat and 

draped fabric images in tactile perception. Observers were asked to view the 

fabric images and match the fabric position by touching the corresponding 

fabrics without seeing them (Xiao et al., 2016). The results showed that a better 

matching accuracy was achieved when draped fabric images were used. 

Beyond the study of Xiao et al. (2016), few studies have utilised flat fabric 

images in evaluating the visual-tactile perception. One possible reason is that 

the flat fabric images lack critical 3D characteristics of fabrics, such as drape 

and surface contour. This limitation is also reflected in real-world online 

shopping practices. When purchasing fabric products online, the products are 

typically displayed in a natural 3D form to provide a better sense of tactile 

properties. 

From the perspective of prediction, predictors extracted from flat fabric images 

were less effective in predicting the visual-tactile and tactile perception. The 

features from GLCM, 2D FFT, and WT were used to model the perception of 

tactile properties perceived from flat fabric images. GLCM focused on the spatial 

distribution of grey levels, while 2D FFT and WT focused on variations between 

grey levels in the frequency and time-frequency domain. In the flat fabric images, 

the distribution and variation of grey levels reflected the micro-structure of the 
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fabrics, referring to the yarn and fibre arrangement (Haleem et al., 2019), the 

tiny bumps or grooves on the fabric surface (Leung and Malik, 1999), and the 

fabric density and porosity due to the tight or loose weave and knit structure 

(Zhang et al., 2013). Such micro-structure information present in the flat fabric 

images made little contribution to the prediction of visual-tactile and tactile 

perception. 

7.7.2 Relatively lower RMSE and R2 in the models of spongy-crisp 

An effective prediction model is expected to demonstrate a lower RMSE, 

representing smaller prediction errors, and a higher R2 values, indicating a well-

fitted model. However, in Section 7.4, the models of spongy-crisp exhibited 

lower RMSE and lower R2 values at the same time, suggesting the good 

accurate predictions yet a poor model fit. To explore the reason of the 

discrepancy and further evaluate the effectiveness of models predicting spongy-

crisp, the range of original tactile perceptual ratings were compared among five 

pairs of tactile properties, as shown in Figure 7.10. 

 
Figure 7.10 The range of original tactile perceptual ratings averaged across 
all observers. Black lines indicate the median values. Boxes indicate IQR. 

As shown in Figure 7.10, the tactile perceptual ratings of spongy-crisp exhibited 

a narrower range compared to flexible-stiff, smooth-rough, soft-firm, and warm-

cool. Across the 118 fabrics in Leeds Fabric Tactile Database Part II, few 
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participants provided ratings above 7 or below 2 on the 9-point Likert scale for 

spongy-crisp. During training the predictive model for spongy-crisp, the 

predicted scores were also constrained within the narrower range of 2-7 point. 

Consequently, the RMSE, which reflects the difference between predicted 

scores and original scores, may underestimate the actual prediction error, 

misleading the assessment of the model’s performance. The use of R2 provided 

a more reliable measure of the model’s fitness and predictive accuracy. For 

models of spongy-crisp, R2 were smaller than 30% in predicting visual-tactile 

and tactile perception, indicating that the models predicting spongy-crisp are 

less effective. Neither the spongy-crisp perceived from images and videos nor 

that from actual vision and touch could be accurately predicted. 

7.7.3 The role of fabric draped width in prediction 

From Table 7.4, it was found that fabric draped width was ranked as the most 

important predictor in models for predicting flexible-stiff and soft-firm perception 

through draped fabric images, fabric rotation videos, and actual touch and 

observation. The characteristics of fabric drape is normally measured using the 

drape meter shown in Figure 7.11 (left). Basically, the fabric was cut into circular 

shape and placed between two circular plates (Cusick, 1968; Chu et al., 1950; 

Sanad and Cassidy, 2015). The fabric drapes naturally over the plate, with a 

light source placed below to cast a shadow of the draped fabrics. The fabric 

drape is then measured by the drape ratio which related to the shadow area and 

fabric area. 
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Figure 7.11 Left: The test apparatus of fabric drape. Figure is from British 
Standards Institution (1973, p.3). Right: the calculation of drape ratio: (A-

B)/(C-B)*100%, reproduced from Carrera-Gallissa et al. (2017). 

During preparing the Leeds Fabric Tactile Database, the fabrics draped on a 

cylindrical stand, and images and videos were recorded. The fabrics exhibited 

a draping behaviour similar to that in the drape tester. However, the drape ratio 

calculated based on the shadow area was not robust. Two fabrics with the same 

value of drape ratio could drape significantly different. A variety of drape 

indicator was developed by Carrera-Gallissa et al. (2017) based on the top-view 

and side-view images of draped fabrics, and efforts were made on analysing 

the 3D structure of fabric shape to provide better measurement (Kenkare et al., 

2008; Glombikova and Kus, 2014; Mei et al., 2015). The fabric draped width 

used in the present study was extracted from the side-view of draped fabric 

images and fabric rotation videos. Although fabric drape was not rated in the 

experiment, the ratings of flexible-stiff were based on how the fabric draped over 

hand. The use of fabric draped width significantly contributed to modelling the 

visual-tactile and tactile perception, highlighting its potential as a parameter for 

fabric drape assessment. 

7.7.4 Limitations of the models and corresponding solutions 

applied 

A good model should meet two key criteria: good predictive performance and 

A

B

C
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interpretability. Three limitations were taken into consideration before training 

models: (1) high-dimensional data and multicollinearities, (2) lack of an 

independent test data, and (3) small sample size. This section will discuss the 

limitations, and the approaches adopted to minimise their impact. 

In the modelling process, the number of predictors varied from 27 to 32, leading 

to a high-dimensional dataset compared to the 118 samples available under 

each condition. Multicollinearities were also observed among predictors. Under 

such circumstances, the model faced the risks of overfitting and reducing 

coefficient interpretability. Overfitting represents a good performance on training 

dataset but a poor prediction on testing dataset, as the model may capture noise 

rather than the informative pattern in the predictors. Multicollinearity occurs 

when two or more predictors are highly correlated. During the training process, 

the effect of correlated predictors may be mixed, leading to unstable coefficient 

estimates where a key predictor may have a smaller coefficient than expected. 

Given these issues, three regularisation regression techniques were applied: 

RR, LASSO, and EN. RR reduces the effect of multicollinearity by shrinking the 

coefficient toward but not to zero, thereby preventing extreme variations of 

predictor coefficients. However, all predictors are included in the model, and 

thus the issue of high-dimensional data still remained, leading to the limited 

interpretation of predictors. LASSO applies strong selection by identifying a 

subset of predictors in the model, eliminating the irrelevant predictors and 

simplifying the model structure. However, for correlated predictors, LASSO 

selects one predictor randomly and shrinks the others to zero. The informative 

predictors may be eliminated, reducing the interpretability of the model. In 

contrast, EN achieves a balance between coefficient shrinkage of RR and 

predictor elimination of LASSO by adding a tuning parameter. The impact of 

both high-dimensional data and multicollinearities was reduced, which is the key 

reason that the results of EN were mainly reported in Section 7.4.2, 7.4.3, and 

7.6. 
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To test the model performance, an independent testing dataset is required. 

Compared to the training dataset, the testing dataset can differ in several ways 

in the present study, such as being evaluated on entirely different samples and 

using different displays. As both images and real fabrics were included in the 

Leeds Fabric Tactile Database, the total number of samples was not extremely 

large. Even so, participants spent a very long time to complete the entire 

experiments, and no additional displays were used for visual-tactile evaluation. 

Therefore, 4-fold cross-validation was used to randomly split the dataset into a 

training dataset (75% of the entire data) and a testing dataset (25% of the entire 

data). The cross-validation ensured that the testing dataset was distinct from 

the training dataset, allowing for independent model validation. This process 

was repeated 50 times with different random split of the data, enhancing the 

robustness of the model performance evaluation. 

As mentioned above, the total number of samples in the Leeds Fabric Tactile 

Database was not extremely large as real fabrics were required not only to 

evaluate tactile perception but also to compare it with the visual-tactile 

perception obtained from images and videos. This necessity limits the current 

database size, and thus advanced modelling techniques such as deep learning, 

neural network, and AI are not applicable in the present study. Therefore, the 

psychophysical experiments were designed to let participants rate the 

perception of tactile properties. This approach allows the database to be 

continuously expanded, with newly added images and real fabrics evaluated 

individually and seamlessly integrated into the existing database. 

7.8 Summary 

In this Chapter, predictors were extracted from flat fabric images, draped fabric 

images, and fabric rotation videos. Models were developed to predict the visual-

tactile and tactile perception using the corresponding predictors. A summary of 

the major findings is listed below: 



 186 

• By applying different regularisation techniques, including L1 penalty 

(LASSO), L2 penalty (RR), and a combination of L1 and L2 penalty (EN) in 

the modelling process, the predictive performance was improved compared 

to using traditional OLS regression technique. In addition, models trained 

by the three regularisation techniques were performed similarly. 

• Models trained through EN regression technique were reported and 

compared. Comparisons were made among the target conditions and 

among tactile properties. 

• Fabric draped width and thickness played important roles in predicting 

visual-tactile and tactile perception. Compared to other predictors, 

thickness is the predictor related to the real fabrics rather than fabric 

images and videos. Separate models were trained excluding thickness as 

the predictor. The results showed that tactile perception models of flexible-

stiff, soft-firm, spongy-crisp, and warm-cool were affected by the exclusion 

of fabric thickness. 
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8.1 Overview 

This research aims to better understand the perception of tactile properties of 

fabrics through images, videos, and actual touch and observations. A Leeds 

Fabric Tactile Database was developed in the present study to provide a useful 

tool to fully evaluate the perception of tactile properties. 

Two parts were separately prepared in the Leeds Fabric Tactile Database. Part 

I consisted of flat fabric images, draped fabric images, and the corresponding 

real fabrics. Images were rendered with different colour to achieve controlled 

variables, allowing for comparisons of the same fabric in different colours and 

different fabrics in the same colour. The perception flexible-stiff, smooth-rough, 

soft-firm, spongy-crisp, and warm-cool was rated using Part I in the experiment 

Phase I. The tactile properties were evaluated under three experiment 

conditions: observing flat fabric images, observing draped fabric images, and 

touching the real fabrics without seeing them. 

Based on the experiment Phase I, the experiment Phase II was improved from 

two perspectives using Leeds Fabric Tactile Database Part II. The first 

improvement is that more fabrics were involved in the experiment Phase II, up 

to 118 real fabrics were prepared and captured using a digital camera. The 

second improvement is that the tactile properties were rated under six different 

experiment conditions, covering almost all real-life scenarios where tactile 

properties evaluation might be required. The six experiment conditions included 

flat fabric images, draped fabric images, fabric rotation videos, using real fabrics 

but only allowing vision (vision-only using real fabrics), using real fabrics but 

only allowing touch (touch-only), using real fabrics and allowing both vision and 

touch (vision+touch). 

Both experiment Phase I and Phase II were well prepared. The colours in fabric 

images and videos were carefully characterised to ensure an accurate 

reproduction. Based on the experiments, the research work was achieved by 
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the following analyses. Chapter 4 analysed the data collected in the experiment 

Phase I, evaluating the effect of individual fabric, colour, and experiment 

condition on the visual-tactile perception. The correlations of the tactile 

perceptual ratings were achieved among experiment conditions and among 

different tactile properties. Based on that, Chapter 5 and Chapter 6 analysed 

the data collected in the experiment Phase II. Chapter 5 focused on the 

averaged tactile perceptual ratings across all observers, including the 

correlations among experiment conditions and among tactile properties, and the 

differences in the tactile perceptual ratings between using images/videos and 

real fabrics. Chapter 6 focused on the effect of fabric structure on the visual-

tactile and tactile perception, the effect of fabric colour on the tactile perception, 

and the different correlations between woven and knitted fabrics. In Chapter 7, 

efforts were made on modelling the visual-tactile and tactile perception using 

flat fabric images, draped fabric images, and fabric rotation videos. A summary 

of the major findings and the contribution of the work is given in the following 

sections. 

8.2 The effect of individual fabrics and fabric structures 

The effect of individual fabrics was evaluated in the experiment Phase I, Chapter 

4 Section 4.5. By fitting CLMM models, the results showed that fabrics were the 

strongest factor affecting the visual-tactile perception. The individual differences 

were primarily reflected in the fabric’s appearance, which is large determined 

by its structure and colour. Despite having the same fabric structure, the 

appearance of fabrics can differ significantly due to variations in yarn, fibre types, 

finishing techniques, and additional surface treatment. When a larger number 

of fabrics are involved, comparing individual fabrics becomes impractical. 

Therefore, the effect of fabric structures was categorised into woven and knitted 

structures, and further evaluated in the experiment Phase II, Chapter 6, Section 

6.4. The differences in the perception of tactile properties between woven and 

knitted were evaluated not only by comparing the distribution of participant 
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ratings, but also through fitted CLMM models, where structures were included 

as one of the fixed effects. The results showed that woven fabrics were typically 

perceived as stiffer, rougher, firmer, crisper than knitted fabrics under all 

experiment conditions, and as warmer than knitted fabrics when touching or 

observing the real fabrics. 

8.3 The effect of rendered colour and measured colour of 

fabrics 

Colour was a controlled variable in the experiment Phase I. By rendering the 

fabric images, the effect of rendered colour was evaluated on visual-tactile 

perception in the experiment Phase I. Meanwhile, the colours of fabrics in the 

experiment Phase II were measured, and the effect of fabric colour was 

evaluated on the tactile perception. Both analyses quantified the effect of colour 

in the CIELAB colour space. The results showed that colour played a limited 

role in visual-tactile and tactile perception. While a change of one unit in L*, a*, 

and b* led to the variations in the tactile perceptual ratings, these variations 

were relatively minor on the 9-point Likert scale. 

8.4 The correlations among experiment conditions and among 

tactile properties 

The correlations were assessed from three perspectives: (1) data collected in 

the experiment Phase I (Chapter 4, Section 4.6 and 4.7), (2) data collected in 

the experiment Phase II (Chapter 5, Section 5.5 and 5.6), and (3) data from the 

experiment Phase II categorised by woven and knitted fabric structures 

(Chapter 6, Section 6.6). 

As for the correlations among experiment conditions, several consistencies 

were observed across the three perspectives. Notably, draped fabric images 

and fabric rotation videos showed stronger correlations with actual touch and 

observation compared to flat fabric images. Strong and positive correlations 
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were observed between draped fabric images and fabric rotation videos, as well 

as among touch-only, vision-only (using real fabrics), and vision+touch. 

Regarding the correlations among tactile properties, the perception of flexible-

stiff, smooth-rough, and soft-firm remained consistently positively correlated. 

However, discrepancies were observed in the perceived spongy-crisp and 

warm-cool. In the experiment Phase I, the perception of spongy-crisp positively 

correlated with the perception of flexible-stiff, smooth-rough, and soft-firm, and 

the perception of warm-cool showed no significant correlation with other tactile 

properties. In contrast, data in the experiment Phase II revealed mixed 

correlations for the perception of spongy-crisp across different experiment 

conditions. The correlation between warm-cool and other tactile properties 

became significant. 

8.5 The differences in the perception of tactile properties 

across different conditions 

The differences in the perception of tactile properties were assessed from three 

perspectives: (1) between flat and draped fabric images in the experiment 

Phase I in Chapter 4 Section 4.5, (2) between visual representations (averaged 

from flat, draped fabric images and videos) and real fabrics (averaged from 

touch-only, vision-only using real fabrics, vision+touch) in the experiment Phase 

II in Chapter 5, Section 5.7, and (3) among the six experiment conditions 

evaluated using CLMM models in the experiment Phase II in Chapter 6, Section 

6.4.3.  

In the experiment Phase I, comparisons between flat and draped fabric images 

were made on individual fabrics, revealing mixed results across different fabrics. 

In contrast, most of fabrics were perceived as stiffer, rougher, firmer, and warmer 

through visual representations in the experiment Phase II. This trend was 

observed not only in the tactile perceptual ratings collected from participants, 

but also in the fitted tactile perceptual ratings from the CLMM models, indicating 
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robust consistency between the direct ratings and model predictions. 

8.6 Model performance 

In Chapter 7, models were developed to predict the visual-tactile perception and 

tactile perception through predictors from three categories: flat fabric images, 

draped fabric images, and fabric rotation videos. In addition to simple linear 

regression, three regularisation techniques (RR, LASSO, EN) were adopted to 

simplify the models by shrinking or eliminating irrelevant predictors. The results 

showed that the regularisation regressions outperformed the classical OLS 

linear regression, but the comparisons among RR, LASSO, and EN were mixed 

across tactile properties. For the models of flexible-stiff, smooth-rough, and soft-

firm, predictors from draped fabric images or fabric rotation videos consistently 

outperformed those from flat fabric images in visual-tactile and tactile perception 

prediction. In contrast, models for warm-cool showed comparable performance 

across predictors from the three categories. However, despite the overall 

success of regularisation regression, the prediction of spongy-crisp remained a 

challenge, demonstrating poor performance across predictors from the three 

categories. By ranking the predictors based on the absolute standardised 

coefficients, fabric draped width emerged as a key predictor in visual-tactile 

perception and tactile-perception models, while fabric thickness was 

consistently identified as important in all tactile perception models. To further 

evaluate the image-irrelevant predictor, fabric thickness, additional models were 

developed for tactile perception by excluding thickness. The results showed that 

excluding thickness led to a slight reduction in model performance, except for 

smooth-rough. In addition, predictors extracted by GLCM, 2D FFT, and WT 

played different but important roles in all models. 

8.7 Summary and contributions 

The present study demonstrated a comprehensive evaluation of the perception 

of tactile properties of fabrics and developed predictive models to quantify 
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human tactile responses. The main contributions of the research were 

summarised below: 

• A new Leeds Fabric Tactile Database was developed, and works were 

conducted using the database to evaluate the visual-tactile perception and 

tactile perception. Fabric images, fabric videos, real fabrics, and a set of 

tactile perceptual rating data were involved in the database. 

• Compared to other fabric databases, the Leeds Fabric Tactile Database 

provided not only images and videos of real fabrics, but also digitally 

rendered images with controlled fabric material and colour variables. This 

approach allows for systematic investigation of different colours within the 

same fabric and different fabrics in the same colour. The use of digital 

rendering eliminates issues related to uneven dying and colour 

inconsistencies that often arise during the physical dyeing process of real 

fabrics. 

• The psychophysical experiments conducted using the Leeds Fabric Tactile 

Database applied the method of categorical judgement. Participants were 

asked to rate the samples on a 9-point Likert scale. This approach allows 

the database to be continuously expanded, with newly added images and 

real fabrics evaluated individually and seamlessly integrated into the 

existing database. With more data, the prediction of visual-tactile and tactile 

perception will be possibly improved. 

• The database holds the potential for applications in various research fields. 

For example, the high-resolution flat fabric images in the database may 

enable the development of algorithms for the efficient and accurate analysis 

of woven and knitted fabric structures. Moreover, the flat fabric images can 

be considered as colour patches with added texture, making the database 

a valuable resource for studying textured colour perception. The draped 

fabric images and fabric rotation videos also support the investigations into 
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the perception of colour on 3D objects. The effect of texture and shape will 

be possibly investigated using the database. 

• Analyses across the Chapters in the thesis were interconnected and 

compared, providing a cohesive and comprehensive evaluation of the 

findings. 

• The analyses were demonstrated in an interpretable way. Since the 

evaluation was conducted on a 9-point Likert scale, the effects of fabric 

structure, colour, and experiment conditions on tactile perceptual ratings 

were quantified within the 9-point range. Additionally, model performance 

was also presented in the same scale. Each point on the 9-point scale 

corresponded to specific description, making the whole study particularly 

consumer-friendly. The results can be easily translated into understandable 

information about tactile perception, helping consumers make informed 

decisions about fabric choices based on clear, descriptive ratings, 

regarding the background of consumers in the market. 

8.8 Future work 

The present study used five pairs of tactile descriptors: flexible-stiff, smooth-

rough, soft-firm, spongy-crisp, and warm-cool, in the psychophysical 

experiments. The selection of tactile descriptors is based on the use in previous 

studies listed in Table 2.2. However, the description of fabric tactile properties is 

more than the 5 pairs. Tactile properties such as stretchiness (Mahar et al., 

2013), fullness (Mahar et al., 2013; Sun et al., 2018), and sticky/slippery, 

uniform/regular (Mehta et al., 2014) etc., have not been evaluated under the 

comprehensive experiment conditions designed in the present study. The 

evaluation of such tactile properties can be studied in the future. 

As discussed in Chapter 7, one of the limitations of the database is that the 

number of real fabrics is not very large. 15 and 118 real fabrics were included 

in database Part I and Part II, respectively. The correlation analyses and model 
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development were conducted based on the current database. Models predicting 

the visual-tactile and tactile perception achieved good results by adopting 

regression methods. The future study could involve more real fabrics and 

corresponding images and videos. With a larger-scale psychophysical 

experiment to collect more observation data, the models could be more robust 

by using a larger training dataset and independent testing dataset. Advanced 

modelling techniques, such as neural network, deep learning, and AI could be 

adopted to improve the predictive performance. 

The effect of individual fabrics and fabric structures has been investigated in the 

fabric visual-tactile and tactile perception. Significant differences were found 

among individual fabrics and between woven and knitted fabrics. Given that 

fabrics can be used on multiple categories of products, such as sofa, garment, 

curtain, and carpet, the future study could involve one or more specific 

categories of fabric products, investigating the effect of fabric products and the 

interactive effect between fabric products and fabrics. A more targeted and 

comprehensive understanding of visual-tactile and tactile perception could be 

achieved by focusing on specific categories of fabric products. 

The effect of colour on visual-tactile and tactile perception has been investigated 

in the present study. Even though colour showed a limited effect, the present 

study only included fabrics in a single colour, without involving multicoloured or 

patterned fabrics. Human perception of the aesthetics of fabric appearance is 

inherently complicated, suggesting that the future study could benefit from the 

inclusion of fabrics in multiple colours and various patterns. 
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List of Abbreviations 

2D FFT 2-Dimensional Fast Fourier Transform 

AIC Akaike Information Criterion 

AWB Auto White Balance 

BIC Bayesian Information Criterion 

CIE  

 

Commission Internationale de L’ Éclairage (International 

Commission on Illumination) 

CIELAB  CIE 1976 (L∗a∗b∗) Colour Space 

CLM Cumulative Link Model 

CLMM Cumulative Link Mixed Model 

CMFs Colour matching functions 

CNN Convolutional Neural Network 

CWT Continuous Wavelet Transform 

DFT Discrete Fourier Transform 

DOF Depth Of Field 

DSLR Digital Single-Lens Reflex camera 

DWT Discrete Wavelet Transform 

EMMs Estimated Marginal Means 

EN The Elastic Net Regression 

FAST Fabric Assurance by Simple Testing 

FFT Fast Fourier Tranform 

GLCM Grey-level Co-occurrence Matrix 

GOG Gain-Offset-Gamma 

IQR Interquartile Range 

ISP Image Signal Processor 

KES-F Kawabata Evaluation System for Fabric 

LASSO Least Absolute Shrinkage and Selection Operator Regression 

LCD Liquid Crystal Display 

LRT Likelihood Ratio Test 
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LUFHES Leeds University Fabric Handle Evaluation System 

OLS Ordinary Lease Squares Regression (OLS) 

RMS Root Mean Squares 

RMSE Root Mean Square Error 

RR The Ridge Regression 

RSS Residual sum of squares 

SCE Specular excluded 

SCI Specular included 

SD Standard Deviation 

SPD Spectral power distribution 

TPT Touch Perception Task 

VLB X-Rite® Virtual Lighting Booth 

WT Wavelet Transform 
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Appendix A: the fabric materials in Leeds Fabric 

Tactile Database  

Part I 

Fabric 1 Coated cotton duck PK44 white 

Fabric 2 Polyester crepe back satin white 

Fabric 3 Kova wool sateen white 

Fabric 4 Cotton satin medium white 

Fabric 5 Milk till white 

Fabric 6 Coated cotton twill SG78 white 

Fabric 7 Coated twill silk heavy (PL80) white 

Fabric 8 Plain cotton white 

Fabric 9 Polyester voile white 

Fabric 10 Fusible H616 polyester white 

Fabric 11 Polyester jersey troon white 

Fabric 12 Viscos/cotton rib Siberia natural 

Fabric 13 Fabric collected in Testing lab in Schol of Design, University of 

leeds 

Fabric 14 Fabric collected in Testing lab in Schol of Design, University of 

leeds 

Fabric 15 Fabric collected in Testing lab in Schol of Design, University of 

leeds 

 

Part II 

Fabric 1 92% Merino 8% Nylon 

Fabric 2 100% Merino 

Fabric 3 100% Merino 

Fabric 4 100% Merino 

Fabric 5 55% Poly/45% Wool 
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Fabric 6 100% Merino 

Fabric 7 95% Merino 5% Nylon 

Fabric 8 85% Merino 15% Other Fibres 

Fabric 9 100% Merino 

Fabric 10 100% Merino 

Fabric 11 100% Merino 

Fabric 12 100% Merino 

Fabric 13 100% Merino 

Fabric 14 100% Merino 

Fabric 15 100% Merino 

Fabric 16 95% Merino / 5% Nylon 

Fabric 17 85 lambswool/ 15% cashmere 

Fabric 18 100% Merino 

Fabric 19 100% Merino 

Fabric 20 100% Merino 

Fabric 21 70% Viscose, 30% Linen 

Fabric 22 100% Viscose 

Fabric 23 100% Viscose 

Fabric 24 52% Polyester, 48% Viscose 

Fabric 25 87% Cotton, 13% Polyester 

Fabric 26 45% Viscose, 55% Linen 

Fabric 27 100% Linen 

Fabric 28 100% Linen 

Fabric 29 50% Polyester, 47% Viscose, 3% Spandex 

Fabric 30 60% Cotton, 40% Polyester 

Fabric 31 100% Organic cotton 

Fabric 32 96% Viscose, 4% Spandex 

Fabric 33 100% Cotton 

Fabric 34 90% Polyester, 10% Spandex 
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Fabric 35 85% Polyester, 12% metal-coated polyester, 3% Spandex 

Fabric 36 100% Cotton 

Fabric 37 80% Polyester, 16% Viscose, 4% Spandex 

Fabric 38 100% Viscose 

Fabric 39 75% Viscose, 25% Linen 

Fabric 40 Cosy hand, light, fleecy, Horizontal Stretch, soft 

Fabric 41 100% Polyester 

Fabric 42 92% Polyester, 8% Polyamide 

Fabric 43 70% Polyacrylic, 30% Polyester 

Fabric 44 100% Polyester 

Fabric 45 100% Organic cotton 

Fabric 46 77% Viscose, 20% Polyester, 3% Spandex 

Fabric 47 80% Viscose, 18% Nylon, 2% Spandex 

Fabric 48 100% Cotton 

Fabric 49 55% Cotton, 40% Polyester, 5% Spandex 

Fabric 50 96% Cotton, 4% Spandex 

Fabric 51 65% Cotton, 35% Polyester 

Fabric 52 50% Polyester, 48% Cotton, 2% Spandex 

Fabric 53 100% Organic cotton 

Fabric 54 100% Cotton 

Fabric 55 92% Merino 8% Nylon 

Fabric 56 100% Merino 

Fabric 57 100% Merino 

Fabric 58 100% Merino 

Fabric 59 55% Poly/45% Wool 

Fabric 60 100% Merino 

Fabric 61 95% Merino 5% Nylon 

Fabric 62 85% Merino 15% Other Fibres 

Fabric 63 100% Merino 
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Fabric 64 100% Merino 

Fabric 65 100% Merino 

Fabric 66 100% Merino 

Fabric 67 100% Merino 

Fabric 68 100% Merino 

Fabric 69 100% Merino 

Fabric 70 95% Merino / 5% Nylon 

Fabric 71 85 lambswool/ 15% cashmere 

Fabric 72 100% Merino 

Fabric 73 100% Merino 

Fabric 74 100% Merino 

Fabric 75 70% Viscose, 30% Linen 

Fabric 76 100% Viscose 

Fabric 77 100% Viscose 

Fabric 78 52% Polyester, 48% Viscose 

Fabric 79 87% Cotton, 13% Polyester 

Fabric 80 45% Viscose, 55% Linen 

Fabric 81 100% Linen 

Fabric 82 100% Linen 

Fabric 83 50% Polyester, 47% Viscose, 3% Spandex 

Fabric 84 60% Cotton, 40% Polyester 

Fabric 85 100% Organic cotton 

Fabric 86 96% Viscose, 4% Spandex 

Fabric 87 100% Cotton 

Fabric 88 90% Polyester, 10% Spandex 

Fabric 89 85% Polyester, 12% metal-coated polyester, 3% Spandex 

Fabric 90 100% Cotton 

Fabric 91 80% Polyester, 16% Viscose, 4% Spandex 

Fabric 92 100% Viscose 
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Fabric 93 75% Viscose, 25% Linen 

Fabric 94 Cosy hand, light, fleecy, Horizontal Stretch, soft 

Fabric 95 100% Polyester 

Fabric 96 92% Polyester, 8% Polyamide 

Fabric 97 70% Polyacrylic, 30% Polyester 

Fabric 98 100% Polyester 

Fabric 99 100% Organic cotton 

Fabric 100 77% Viscose, 20% Polyester, 3% Spandex 

Fabric 101 80% Viscose, 18% Nylon, 2% Spandex 

Fabric 102 100% Cotton 

Fabric 103 55% Cotton, 40% Polyester, 5% Spandex 

Fabric 104 96% Cotton, 4% Spandex 

Fabric 105 65% Cotton, 35% Polyester 

Fabric 106 50% Polyester, 48% Cotton, 2% Spandex 

Fabric 107 100% Organic cotton 

Fabric 108 100% Cotton 

Fabric 109 92% Merino 8% Nylon 

Fabric 110 100% Merino 

Fabric 111 100% Merino 

Fabric 112 100% Merino 

Fabric 113 55% Poly/45% Wool 

Fabric 114 100% Merino 

Fabric 115 95% Merino 5% Nylon 

Fabric 116 85% Merino 15% Other Fibres 

Fabric 117 100% Merino 

Fabric 118 100% Merino 
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Appendix B: Ethical approval for the experiment 

Phase I and Phase II. 

Phase I: 

 
Phase II: 

 


