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1 PREFACE

1.1 Abstract

Leishmania mexicana is a parasitic protozoan, and one of the causative agents of cutaneous
leishmaniasis — a skin infection causing large lesions. Leishmania spp. have some unusual
biological features, due to their early evolutionary split from other eukaryotes. One is their
unique kinetochore complex — the protein complex responsible for binding the
chromosomes to microtubules during mitosis. To evaluate the role of specific
phosphorylation sites on essential kinetochore proteins, a selection-free precision editing
strategy using the CRISPR-Cas9 system was investigated in promastigotes. Genomic DNA
was targeted with 120 nt single-stranded oligonucleotide repair DNA to generate 10 unique
amino acid substitutions to create phosphosite mutants from kinetochore proteins KKT1,
KKT2, KKT4 and KKT7 but was only successful in 2.0% of clones. Comparatively, using 160
bp double-stranded repair DNA targeting 6 phosphosites between KKT2, KKT4 and KKT7
generated phosphodeficient, phosphomimetic and synonymous mutants at each target
site tested. Across 18 unique transfections, PCR screening detected integration of the
repair template in 24.6% of clones screened. Surprisingly, following Sanger sequencing, it
was found that 29.2% of clones screened were in fact edited. Mutant clones were
predominantly homozygous (21.7% of clones), including at least one clone per transfection.
Kinetochore phosphosite mutant clones were assessed for growth changes and cell cycle
dysregulation, but no apparent phenotypes were detected. Lastly, to pave the way for
higher-throughput precision editing using this method, a Python script was developed to
replicate the design process used to create the 160 bp repair templates. The script uses a
FASTA file, codon usage table and a simple Excel spreadsheet configuration file to design
the desired repair template with a single nonsynonymous mutation, and additional
synonymous mutations for screening purposes. It also generates a corresponding
synonymous-mutation only repair template, as well as screening primers and primers to

produce the repair templates for a ready-to-go approach.
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2 CHAPTER ONE - INTRODUCTION

2.1 Leishmaniasis Disease and the Leishmania Lifecycle
Leishmania mexicana is a protozoan parasite and one of the causative agents for cutaneous

leishmaniasis (CL) (Burza, Croft and Boelaert, 2018). CL causes lesions on the skin, which in
some instances can be self-healing, but many often leave disfiguring scars. Leishmania spp.
are transmitted by female sandflies, which bite mammals and feed on their blood. When a
sandfly feeds on infected blood, it can propagate the infection to the next animal it feeds
on, spreading the infection (Burza, Croft and Boelaert, 2018). As such, Leishmania spp.
require a complex digenetic lifecycle to survive inside the different hosts, experiencing

different temperatures, pHs and nutrient availabilities.

Whilst carried by the sandfly, the parasites differentiate into the replicative promastigote
form, as they live inside the midgut where nutrient availability is good. Once the number
of cells has expanded, the promastigotes prepare for reinfection of a mammalian host, and
differentiate into metacyclic promastigotes. In doing so, they move up into the stomodeal
valve of the sandfly and block it with a gel plug (Sacks, 1989; Rogers, Chance and Bates,
2002). The gel plug aids the parasite by affecting the way the sandfly feeds to increase its
chances of infecting the next host. During feeding, the metacyclic promastigotes are
injected into the host, where they interact with macrophages and are phagocytosed. For
many infectious organisms, this would mean death, but Leishmania spp. have evolved to
live in this environment. Once inside the macrophage, the parasite differentiates into the
amastigote form, which are adapted to the acidic pH of the phagosome and the reduced
nutrient availability (McConville and Naderer, 2011). They also change morphology, taking
on a more round cell body shape, with a reduced flagellum that does not protrude from
the cell body (Burza, Croft and Boelaert, 2018). However, amastigotes do not just survive
inside the phagosome, they are able to replicate there, leading to the macrophage bursting,
releasing the amastigotes. From there, amastigotes can re-infect macrophages, until either
a sandfly takes up the blood meal from this host or the host clears the infection. If a sandfly
takes up the infected blood meal, the amastigotes differentiate back into promastigotes,

starting the cycle again.
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There is a need to investigate the biology of Leishmania species, as there are around 1
million new cases of leishmaniasis worldwide each year (Burza, Croft and Boelaert, 2018).
Current treatments are largely chemotherapeutic, toxic, and can often be ineffective
(Madusanka, Silva and Karunaweera, 2022). Understanding the unique biology of these
parasites can help to find new drug targets and treatment approaches to reduce the burden
of this disease. Additionally, since L. mexicana causes one of the least severe forms of
leishmaniasis and grows well in vitro, L. mexicana has become a model for understanding

the biology of Leishmania spp.

2.2 Gene Editing and CRIPSR-Cas9

One way to investigate the biology of Leishmania spp. is through gene editing. Gene editing
can be used to elucidate the function of specific genes and the proteins encoded by them.
Gene editing in Leishmania began using homologous recombination-based strategies from
donor DNA containing large homologous sequences (Cruz and Beverley, 1990). Whilst this
strategy was generally effective, the discovery of the bacterial CRISPR-Cas9 system has

allowed gene editing to become quicker, easier and more efficient than before.

In the CRISPR-Cas9 system, Cas9 is an endonuclease that can make double-stranded DNA
(dsDNA) breaks at a specific sequence of DNA, as directed by a single-guide RNA (sgRNA)
(Gasiunas et al.,, 2012). In bacteria, CRISPR (Clustered, regularly interspaced, short
palindromic repeats) are a stored library of reference sequences from viral invaders. When
a reference sequence is transcribed into an sgRNA, it directs the Cas9 endonuclease to
cleave the sequence, hence removing viral sequences present in its genome and avoiding
damage from viral replication. The cleavage of the DNA from Cas9 always takes place 3
nucleotides away from a short motif called the Protospacer Adjacent Motif (PAM), which,
in the most commonly used S. thermophilus Cas9, is an NGG motif (Gasiunas et al., 2012).
By providing an sgRNA made in vitro, it is possible to “hijack” the Cas9 endonuclease activity
to make a dsDNA break in any known DNA sequence ending with an NGG. Whilst Cas9 has
very high specificity, some mismatches within the sequence can enable the dsDNA break
to proceed, which can lead to off-target breaks elsewhere in the genome (Hsu et al., 2013).
That being said, the precision and specificity of the CRISPR-Cas9 system is so versatile that

it is indispensable in modern molecular biological research.
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The CRISPR-Cas9 system was first tested in Leishmania in 2015 by Sollelis et al. This first
approach used episomal expression of Cas9, with transfection of linearised plasmid
containing sgRNA under a U6 RNA polymerase Il promoter, and an antibiotic selection
marker flanked with two ~1 kb homology regions to replace the target locus. This was able
to successfully generate null mutants in a single round of transfection, which prior to Cas9
would have required two rounds to remove both alleles (Sollelis et al., 2015). Whilst this
approach was effective, generation of repair templates with such large homology regions
is cumbersome. To attempt to tackle this issue, Beneke et al. (2017) investigated whether
smaller homology regions would remain effective. They showed that homology regions of
just 30 bp were equally as efficient when Cas9-directed breaks were made. Additionally,
Beneke et al. (2017) used Cas9 integrated into the genome, and a T7 RNA polymerase (T7
RNAP). Stable integration of Cas9 helped reduce some of the concerns over variable Cas9
expression that Sollelis et al. (2015) experienced with episomal expression. Changing the
sgRNA promoter to a T7 promoter also simplified the process. Using a T7 RNAP allowed
transfection of DNA constructs containing a T7 promoter, which are then transcribed into
the sgRNA in cellulo. In this cell line, the T7 RNAP gene was also integrated in the genome.
From this, Beneke et al. developed a toolkit to make deleting and tagging genes easier than
before (Beneke et al., 2017). This toolkit provides template sequences for either gene
deletion or gene tagging which are contained on plasmids, and can be amplified with
primers containing a 20 nt annealing sequence and 30 nt homology arm sequences. These
repair templates contain an antibiotic resistance gene, to act as a positive selection marker
for cells that have been edited, and to remove untransfected cells from the population.
This method was demonstrated through the knock-out of flagellum genes in L. mexicana,
L. major and T. brucei (Beneke et al., 2017). Because of the simplicity and versatility of such
an approach, large-scale projects have used this system to generate mutants at scale. One
example of this was the deletion and tagging of every kinase in the genome by Baker et al.
(2021). However, this toolkit is limited to mutations at a whole gene scale due to the
inclusion of the antibiotic resistance marker, which can only be incorporated at either end
of, or in place of a gene. In order to generate mutations at a sub-gene scale (e.g. single

nucleotide changes), an alternate approach is required: precision editing.
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Presently, to make precision mutations that target a single amino acid of a protein,
constructs have to be created for each gene - cloning the gene of interest into a plasmid
and then editing it in vitro, before replacing the endogenous gene with the mutant version
(Figure 1A). This method can be effective and has been used before, such as by Nerusheva
and Akiyoshi in 2016 to generate mutants of interest in trypanosomes to investigate how
KKT2 localises to the kinetochore. Similarly, Saldivia et al. (2020) generated a mutant
version of CLK1/KKT10 on a plasmid, which was then inserted into the tubulin locus.
Subsequently, RNA interference (RNAi) was used to prevent expression of the WT allele
(Figure 1C). However, this process of cloning, editing and reintegrating is time consuming
and laborious for what may be only a handful of nucleotide changes on one gene. Hence,
it is not scalable to evaluate larger numbers of sites of interest, such as in a library screen.
It also still relies on incorporation of a positive selection marker, which is a relatively large-

scale change, which may not be suitable for all applications.

Smaller constructs have been used as repair templates for CRISPR-directed mutants in a
range of kinetoplastids, typically in the form of oligonucleotide repair templates (Figure
1B). Zhang and Matlashewski (2015) used single-stranded oligonucleotide repair templates
with 25 nt homology arms to modify the miltefosine transporter gene, to incorporate
premature stop codons into L. donovani (Pal and Dam, 2022). Rico et al. (2018) also used
oligonucleotide repair templates with 50 nt homology arms to modify the aquaglyceroporin
gene in T. brucei. Also in T. brucei, 68 nt oligonucleotides have been used as repair
templates to generate enzymatic mutations to the CPSF3 gene, mutating only 8 nucleotides
in total (Wall et al., 2018). Medeiros et al. (2017) used oligonucleotides as repair templates
to introduce premature stop codons in fluorescent reporter genes in T. cruzi, using
recombinantly produced Cas9 ribonucleoprotein complexes rather than endogenous Cas9
expression (Lander and Chiurillo, 2019). Interestingly, small oligonucleotide-derived repair
templates have also been effective at generating precision edited mutants without the use
of CRISPR-Cas9 system to generate drug resistant cell lines in T. brucei (Altmann et al.,
2022). Outside of kinetoplastids but within the realm of parasitology, similar protocols have
been used to modify Plasmodium falciparum using 200 nt oligonucleotide repair templates
(Crawford et al., 2017) and either 50 bp and 125 bp double-stranded oligonucleotide or 125

bp PCR generated repair templates in Trichomonas vaginalis (Janssen et al., 2018).
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Figure 1. Current site-directed mutagenesis technologies for kinetoplastids. A)
Mutagenesis through whole gene replacement of a gene of interest (GOI). The GOI is
amplified from genomic DNA and cloned into a vector. In vitro mutagenesis approaches are
used to generate the mutation of interest in the vector. The mutated vector is linearised
(either by PCR amplification or restriction digest) to retrieve the mutated gene, and is
transfected into a CRISPR-Cas9 cell line with sgRNAs targeting either end of the gene of
interest. Following the double-stranded DNA (dsDNA) break by Cas9, homology-directed
repair (HDR) leads to integration of the repair template. In some instances, a positive-
selection marker may also be included in the repair template to select for mutant cells. B)
Oligonucleotide/single-stranded DNA (ssDNA) precision editing approaches used by other
groups in the literature (Zhang and Matlashewski, 2015; Medeiros et al., 2017; Rico et al.,
2018; Wall et al., 2018; Pal and Dam, 2022). A repair template is designed containing
homology arms and the mutation(s) of interest. This is synthesized as an oligonucleotide
and transfected into CRISPR-Cas9 competent cells with one or two sgRNAs targeting the
region adjacent to the mutation of interest. The dsDNA break leads to HDR and integration
of the repair template, though efficiency of this approach is typically low due to no
selection for transfected cells. C) RNA-interference (RNAI) for expression of mutant GOI
(not possible in most Leishmania species, but present in Trypanosoma brucei). A cell line is
generated containing the construct indicated on the left to enable expression of a double-
stranded RNA (dsRNA) corresponding to a GOI. This construct uses bi-directional T7
promoters to generate a self-complementary RNA sequence and is controlled by a
tetracycline (Tet) inducible operon to enable controlled induction of expression. This
dsRNA is generated from a region of sequence corresponding to the mRNA of the GOI. The
cell’s internal machinery processes the dsRNA to small-interfering or micro-RNA (siRNA or
miRNA). This leads to recruitment of the RISC complex which enables recognition of mRNA
from the GOl and eventually degradation of this mRNA, generating a knock-down effect on
gene expression. If a mutant GOI is present in the cell line that has altered sequence
sufficient to prevent binding of the WT-specific SiRNA/miRNA, then expression of the
mutant copy can take place whilst the WT GOl is knocked-down. This approach can allow
for mutant gene expression of essential genes without requiring removal of the WT copy

of the GOI.
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One thing that remains apparent is that there is large variation in the design of small, often
oligonucleotide-derived, repair templates between different groups. Whilst adjustments
may be necessary between species, given that the protocols used as part of the CRISPR-
Cas9 editing toolkit are transferable between the TriTryps (Leishmania, T. brucei and T.
cruzi) (Beneke et al., 2017), it stands to reason that the same repair template designs will
work similarly across these species. This would suggest that development of an optimised

method for one of these species could have benefits for them all.

2.3 The Kinetochore Complex

2.3.1 VERTEBRATES AND HIGHER EUKARYOTES
The kinetochore is a protein complex responsible for connecting microtubules to DNA

during mitotic (and meiotic) division (Musacchio and Desai, 2017). This complex is
composed of two major parts — the inner and outer kinetochore. The inner kinetochore is
the direct linker to the genomic DNA, whilst the outer kinetochore links the inner

kinetochore to the microtubule spindle.

In vertebrates, the inner kinetochore contains an unusual centromere-specific histone H3
variant CENP-A (CENtromere Protein A) and 16 other proteins which make up the
constitutive centromere associated network (CCAN) — see Figure 2A for schematic (Sridhar
and Fukagawa, 2022). Whilst CENP-A is not present in all species, in those that retain it, it
forms the basis for the kinetochore, replacing typical histone H3 at the centromere. CENP-
A then recruits CENP-C and CENP-N (both part of the CCAN) to form a centromeric
nucleosome (Sridhar and Fukagawa, 2022). The other members of the CCAN interact with
each other in discrete sub-complexes, and help tightly trap the DNA in order to transmit

the forces of the mitotic spindle.

In species lacking CENP-A, CENP-T provides an alternate DNA-binding starting point for the
kinetochore. Interestingly, CENP-T is also present in many species containing CENP-A
genes, providing an alternate, often favoured, method of DNA attachment (Sridhar and
Fukagawa, 2022). CENP-T proteins are less well conserved than CENP-A proteins between
eukaryotes. When CENP-T binds DNA, it forms its own complex, made up of sub-complexes

typically containing CENP-T and -W, and CENP-S and —X (Sridhar and Fukagawa, 2022).
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Similarly to CENP-A, they form a nucleosome-like structure on the chromatin, but
preferentially bind to linker DNA rather than nucleosome-bound DNA. When CENP-A is also
present, the CENP-T complex forms between two CENP-A nucleosomes, as is the case in
humans. CENP-T also interacts with the outer kinetochore, via its long unstructured N-

terminal region, and is regulated by phosphorylation by CDK1.

The inner kinetochore is linked to the mitotic spindle via the outer kinetochore. The outer
kinetochore is composed of a 10-member protein network called the KMN network. The
KMN network is subsequently composed of several sub-complexes which give it its name —
Knl1C, Mis12C and Ndc80C (Sridhar and Fukagawa, 2022). The Ndc80C complex forms the
primary microtubule binding site, and is helped to localise to the kinetochore through
members of the Mis12C complex, which can be disrupted by phosphorylation from Aurora
B kinase. As well as interacting with the Ndc80C complex, the Mis12C complex also
facilitates interactions with the Knl1C complex. Knl1C complex in turn facilitates further
protein-protein interactions, which allows it to make contact with proteins involved in
regulation of the kinetochore, error correction, and activation and silencing of the Spindle
Assembly Checkpoint (SAC) (Sridhar and Fukagawa, 2022). The outer kinetochore also has
several other accessory proteins which form other complexes, namely the Dam1 complex

and the Ska complex, which are found variably across species.

As already alluded to, the full complement of these proteins are not present in all
eukaryotic species. Overall, the inner kinetochore has shown a wider diversity in
components than the outer kinetochore (Sridhar and Fukagawa, 2022), although examples

exist of systems with a wide range of absent inner and outer kinetochore components.

2.3.2  KINETOPLASTIDS

Many of the components of the kinetochore are conserved across numerous eukaryotic
species, but kinetoplastids are an unusual exception, in that their kinetochore proteins lack
homology to almost all of the canonical components (Akiyoshi and Gull, 2014). To date, 25
unique proteins have been identified in the trypanosomatid inner kinetochore (Akiyoshi

and Gull, 2014; Nerusheva and Akiyoshi, 2016; Nerusheva, Ludzia and Akiyoshi, 2019;
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Figure 2. Kinetochore complex schematic diagrams from eukaryotic organisms. A) Human
(left) and budding yeast (S. cerevisiae, right) kinetochores, adapted from Sridhar and
Fukagawa (2022). Homologous complexes between humans and yeast have been indicated
in the same colours and kinetochore homologs have been shown in the corresponding
positions. B and C) Current understanding of the Trypanosoma brucei kinetochore adapted
from B: D’Archivio and Wickstead (2017), and C: Brusini et al. (2021). Both studies used pull
downs of various kinetochore components and RNAi depletion to develop this model. kMT
— kinetochore microtubule. In C, the KOK (kinetoplastid outer kinetochore) complex
contains KKIP2-4, 6, 8-12. N and C indicate the positions of the respective termini of KKIP1.
D) Current understanding of the Leishmania mexicana kinetochore adapted from
Geoghegan et al. (2022). Data based on proximity of proteins and phospho-proteins

relative to KKT3 (inner kinetochore).

Geoghegan et al., 2022). These proteins have been systematically named Kinetoplastid
Kinetochore proteins (KKT) 1-26 (excluding KKT21 due to renaming). As well as these
components, there are also 12 KKT-interacting proteins (KKIPs), identified in Trypanosoma
brucei, which make up the outer kinetochore — see Figure 2B for schematic (D’Archivio and
Wickstead, 2017; Brusini et al., 2021). Only KKIP1, which has been identified to be a highly
divergent Ndc80/Nuf2 homologue (D’Archivio and Wickstead, 2017), and KKT14 and KKT15
which have been identified as divergent Bub1 and Bub3 proteins (Ballmer et al., 2024), have
homology to canonical kinetochore components. None of the other KKT or KKIP proteins
share sequence similarity nor known structural similarity, with canonical kinetochore
proteins, and are not found outside kinetoplastids. However, within kinetoplastids, there
is high conservation with the KKT proteins, and some conservation of KKIPs (Akiyoshi and
Gull, 2014; Brusini et al., 2021). Whilst some of the functions of specific KKTs and KKIPs are
beginning to be understood, many of these proteins are still of unknown function with no

known protein domains.

Of the KKT proteins that have had more detailed investigation, it is understood that KKT4

has microtubule-binding properties, but is unusually found in the inner kinetochore (Llaurd
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et al., 2018). Additionally, the inner kinetochore contains four protein kinases (KKT2, KKT3,
KKT10 (CLK1) and KKT19 (CLK2)), of which KKT2 and KKT3 are known to have centromere
localisation domains. KKT2 and KKT3 are thought to make up the foundation of the
kinetochore by binding to the DNA using their divergent POLO box domains, allowing other
kinetochore proteins to localise to them (Nerusheva and Akiyoshi, 2016; Marciano et al.,
2021; Ishii et al., 2022). KKT10/CLK1 is known to phosphorylate KKT2, but little is known
about the substrates of KKT2’s and KKT3’s kinase domains (Saldivia et al., 2021). KKT10 and
KKT19 were identified first as being cdc2-like kinases (CLKs) in T. brucei (Altmann et al.,
2013), and subsequently as members of the kinetochore (Akiyoshi and Gull, 2014).
KKT10/CLK1 has been shown to be important for kinetochore formation, causing KKT2 to
improperly localise on KKT10/CLK1 inhibition, as well as regulation to kinetochore assembly
(Saldivia et al., 2020, 2021). Recently, KKT14 and KKT15 have been identified as divergent
Bubl and Bub3 proteins, which are involved in the spindle checkpoint of other organisms,
and are needed for accurate chromosome segregation in T. brucei (Ballmer et al., 2024).
KKIP1 has been shown to provide a linker between the inner and outer kinetochores
(Brusini et al., 2021) (Figure 2B and C). As previously mentioned KKIP1 is a highly divergent
Ncd80/Nuf2 homologue, which occupies a similar niche, bridging the inner and outer
kinetochore (Brusini et al., 2021). KKIP2-4, 6, and 8-12 form a stable complex that is part of
the outer kinetochore in T. brucei, and have been found to interact with many proteins
thought to be involved in RNA-processing (Nerusheva, Ludzia and Akiyoshi, 2019; Brusini
et al.,, 2021). However, it should be noted that no homologs have been identified for KKIP3,
4,6,9, 11 or 12 in L. mexicana, so whether the outer kinetochore has the same structure

in Leishmania is not known (Brusini et al., 2021).

Having a core role in cell division, many components of the kinetochore have been
identified as essential in Leishmania promastigotes. Of these, KKT2 and KKT3 are essential,
as well as one of either KKT10 or KKT19 being necessary for survival (but not both) (Baker
et al., 2021). Additionally, KKT7, KKT9, KKT11 and KKT12 are also necessary for consistent
chromosomal segregation in trypanosomes, with growth defects quickly developing
following RNAi knockdown (Akiyoshi and Gull, 2014). Similar fitness defects have been seen

following RNAi knockdown of all KKT proteins in trypanosomes (Horn, 2022).
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Given the presence of protein kinases playing a core role in the kinetochore, the role of
phosphorylation has been investigated in the L. mexicana kinetochore throughout the cell
cycle by Geoghegan et al. (2022) — see Figure 2D for schematic. Phosphorylation was shown
to be a dynamic process in the cell cycle, with a peak in phosphorylated proteins during S-
phase, in many cases, independent of protein levels. In particular, they identified several
peptides which changed phosphorylation state disproportionately to their protein levels
throughout the cell cycle. These peptides included phosphorylation sites S493 and S530 on
KKT2; and T120-S144, S300, T318-5328 and T421-T430 on KKT4. Specific phosphorylation
sites were unable to be derived from all phospho-peptides due to the presence of several
serine and threonine residues within some peptides. KKT7 S304 also showed a strong
decrease in phosphorylation following AB1 treatment (which blocks KKT10/CLK1 and
KKT19/CLK2 mediated phosphorylation). This suggested that phosphorylation plays a key
role in the control of the kinetochore complex during the cell cycle. However, to date, very
little is known about the effect of individual phosphorylation events on kinetochore

function, and which kinases are responsible.

As the kinetochore of trypanosomatids such as L. mexicana is so unique, they pose
interesting questions on both the unique evolutionary biology of these organisms, and their
propensity to be drug targets. As such, this project aims to investigate the kinetochore

complex of L. mexicana through precision editing with the CRISPR-Cas9 system.

This project has several aims. The first aim is to investigate the biology of the kinetochore
in L. mexicana using mutants generated with this precision editing methodology, initially
starting with phosphorylation sites identified in the kinetochore by Geoghegan et al.
(2022). The second aim is to investigate improvements to the efficiency of this
methodology. The final aim is to investigate ways to scale-up this precision editing through

computer-aided design.
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3 CHAPTER TWO - METHODOLOGIES
3.1 Cell Culture

T7Cas9 Leishmania mexicana promastigotes (Beneke et al., 2017) were grown in HOMEM
media with 10% Fetal Bovine Serum (FBS) and 1% penicillin-streptomycin (henceforth
called 10% FBS HOMEM). T7Cas9 cells were also kept under continual selection with 50
pug/ml hygromycin and 75 pg/ml nourseothricin at 25°C in non-vented TC coated flasks.
Cells were passaged 1 in 1000 weekly until passage 20, when cells were replaced with lower

passage cells from cryo-storage.

3.2 Single-stranded Oligonucleotide Repair Template Design

To attempt to generate mutations of interest, single-stranded DNA (ssDNA) repair
templates were designed using strategies adapted from unpublished work by Juliana
Carnielli and similar approaches in the literature (Zhang and Matlashewski, 2015; Medeiros
et al., 2017; Rico et al., 2018; Wall et al., 2018; Pal and Dam, 2022). Genomic sequences for
genes of interest were retrieved from TriTrypDB.org from the Leishmania
mexicana MHOM/GT/2001/U1103 genome. Target site was identified, and ~60 nt either
side was selected to create a region of a total of 120 nt (Figure 3). Genomic sequences for

this region were used for sgRNA design on EuPaGDT (http://grna.ctegd.uga.edu/). The

highest ranking two guides in as close proximity to the target site as possible were chosen
— with one making a break before, and the other after the target site. The first 30 nt and
final 30 nt of the 120 nt region were kept as the native sequence (homology arms).
Sequences corresponding to the protospacer motifs and PAM sequences were recoded
using an alternate codon with the highest frequency of usage from Leishmania infantum

(from https://www.kazusa.or.jp/codon/) - see Appendix 7.2.4.1 for a copy of the table. The

L. infantum dataset was used as a reference rather than L. mexicana because the L.
mexicana dataset was calculated from only 93 CDS sequences. The total L. mexicana
genome contains 9,169 genes (Fiebig, Kelly and Gluenz, 2015), and as such this data set
only represents about 1% of the genome which was deemed unlikely to be representative.
The Leishmania species with the highest coverage of the genome was L. infantum, covering
8,139 CDS sequences out of their total 8,241 predicted protein coding genes (Rogers et al.,

2011), so this dataset was used instead. The codon sequence for the target mutation was
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Figure 3. Single-stranded repair template design process as described in Methods 3.2.
First, the target codon (yellow) was identified in the genomic sequence. Next, a region of
approximately 60 nt either side of the target codon, to a final length of exactly 120 nt was
selected. sgRNA guides (orange arrows) were designed in the centre of this sequence
(editing region), such that one break site was either side of the target (orange dashed line).

The 30 nt at each end of this region were left as the native sequence to allow homologous
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recombination (homology arms). Lastly, the sgRNA protospacer and PAM sequences were
recoded (dark blue), and the target mutation was incorporated (purple). Note that sgRNA
protospacer sequences could be on either strand, but synonymous recoding of the plus
strand was still employed when sgRNA protospacer sequences were on the minus strand,
but in the complementary positions. The synonymous recoding also either added a new

restriction site or removed an existing one for screening purposes (white line). Not to scale.

taken as the highest frequency usage codon for the desired amino acid. The exception to
this recoding strategy was when generating a change in the restriction digestion pattern,
where alternate codons were chosen to either add or remove a restriction site to the

sequence. This design process is also shown in Figure 3.

3.3 sgRNA Production

Method as per Beneke et al. (2017). Briefly, protospacer sequences were incorporated into
the following template primer, in place of the N’s: 5’-
gaaattaatacgactcactataggNNNNNNNNNNNNNNNNNNNNgttttagagctagaaatagc (Merck) —
see Appendix 7.2.5.1 for primer sequences. This primer contains a T7 promoter sequence
and an annealing region to bind to the primer OL6137 (GO0 from Beneke et al., 2017). An
annealing and amplification reaction was completed with 100 uM target specific sgRNA
primer and OL6137. Annealing and amplification took place with Q5 polymerase (NEB), as
per manufacturer’s instructions and with the following cycling conditions: 98°C for 30
seconds (1 cycle); 98°C for 10 seconds, 60°C for 30 seconds and 72°C for 15 seconds (35
cycles); 72°C for 10 minutes (1 cycle). Resulting reactions were examined on an agarose gel
to check for expected products, and stored at -20°C between production and use in
downstream applications. The final construct contains a T7 RNA polymerase promoter
sequence, the protospacer sequence and the CRISPR RNA backbone in DNA form, which is

transcribed endogenously into RNA by T7 polymerase.
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3.4 DNA Preparation for Transfection
sgRNA PCR products were purified using a PCR purification kit (Qiagen) as per the

manufacturer’s instructions, except eluting in 10 ul of sterile distilled water.
Oligonucleotides for repair templates (Merck) were ordered dry, and resuspended at 2
pg/ul. 5 pl of each of the sgRNA purified PCR product (approximately 2.5 pg) and the repair

template (10 pg) were combined.

3.5 Transfection and Cloning
T7Cas9 promastigote cells were grown until mid-log phase. 5 x 10° cells were pelleted at

1000 x g for 10 minutes, washed once in Phosphate Buffered Saline (PBS), and pelleted
again. Cells were resuspended in 100 pul P3 Primary Cell Nucleofector® Solution (Lonza) and
10 pl of sgRNA-repair DNA mix. Cells were electroporated using a Lonza 4D Nucleofector®
Unit using programme FI115, and promptly transferred to pre-warmed HOMEM media
containing 20% FBS and 1% penicillin-streptomycin (henceforth called 20% FBS HOMEM),
but without addition of other antibiotics. Cells were recovered overnight at 25°C. The
following morning, cells were counted, and plated out into 96-well plates at a density of
0.5 cells/well, in 20% FBS HOMEM. Clones were left to grow in the 96-well plates at 25°C
for an additional 2 weeks. Clones were then chosen at random and passaged into 12-well

plates of 10% FBS HOMEM for subsequent growth.

3.6 Single-Stranded Screening
3.6.1 SCREENING OF CLONES

Genotyping of selected clones was completed through a restriction digest strategy.
Stationary phase cells were pelleted at 1000 x g for 10 minutes, and washed once in PBS.
Pellets were frozen dry at -20°C. After thawing, genomic DNA was extracted using Rapid
Extract PCR Kit (PCR Biosystems), as per manufacturer’s instructions, except skipping the

addition of water and final centrifugation step. DNA was stored at -20°C between uses.

2 ul of DNA was used for a screening PCR with VeriFi polymerase mix (PCR Biosystems) on
DNA collected from transfected clones and a T7Cas9 parental cell line as a WT control. This

PCR spanned the entire region where the repair template was expected to integrate, as

26



well as some of the surrounding genomic sequence. See Appendix 7.2.6 for details of
specific primers and cycling conditions. PCR products were confirmed on an agarose gel.
Successful PCR products were purified using a PCR Purification Kit (Qiagen) as per
manufacturer’s instructions. Purified PCR products were quantified using a nanodrop and

adjusted to the same concentration using the elution buffer.

Due to the inclusion of a restriction site change in the repair template, the genotype could
be determined by digesting the previous PCR. To do so, 500 ng of purified PCR product from
each clone and the parental T7Cas9 cell line (WT) was digested with the corresponding
enzyme listed in Appendix 7.2.6. The reaction was incubated for 1 hour at the appropriate
temperature, and then frozen at -20°C to halt the reaction. Undigested input DNA and
digested DNA were run out on agarose gels to determine genotype. Undigested DNA from
the parental cells and clones indicating a mutant genotype were sent for Sanger Sequencing

(Eurofins) with the primers indicated in Appendix 7.2.5.3.

3.7 Single-Stranded Pooled Experiment
3.7.1 DESIGN OF REPAIR TEMPLATES

In order to assess the effect of the possible silent mutations, a small library of repair
templates were designed to assess integration of each design, targeting either KKT2 S493
or KKT2 S530. Repair templates were designed mostly as before, except with changes in
strategy for the synonymous recoding. Five recoding strategies were used to generate 5
unique repair templates for each target site. Each design had a different subset of possible
synonymous mutations to choose from, which restricted both starting genomic sequences
that could be mutated and what they could be mutated to. Strategies were devised based
on the different levels of efficacy of mutations in single-stranded repair templates used in
this report, as well as other data from the lab (Hannah Jones and Juliana Carnielli,
unpublished data). In short, mutations were categorised based on the number of known
instances of integration of each possible silent mutation across all precision editing
attempts within these datasets. Subsequently, each design was constrained to use only
mutations of a similar level of demonstrated integration (e.g. mutations which were only
found in successful repair templates or mutations which had only been selected in failed

transfections). For more details on the criteria to choose acceptable mutations for each
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Figure 4. Example pooled repair template transfection screening primer design process.
In order to specifically detect each of the five repair templates in each pooled transfection,
an iterative primer design process was used to design screening primers for each repair
template. The process aimed to identify primers which were least likely to cross-react with
other repair templates. An initial primer set were designed on the WT gene sequence, with
one primer outside the repair template region (not shown), and another falling across a
region of recoding in the repair templates (black outline). Primers binding to each other
template were designed manually (one example shown in pink outline). Primers were
designed to have reasonable annealing temperatures to pair with the external primer and
ideally a unique 3’ base. Once a potential primer sequence was determined, the sequence
was compared to the other templates in the same pool (i.e. non-synonymous or
synonymous templates, and WT sequence) at the corresponding location (dotted outlines).
Final primers used have the lowest identity possible with other templates, preferably less
than 85%. Primers that do not have less than 85% identity with another template are

highlighted with dark outlines in the comparison table.

design, see Results 4.2, with the acceptable codon changes lists in Appendix 7.2.8.
Synonymous repair templates were the same as the serine to alanine designs, except
choosing the serine codon from the appropriate list for that design. An alignment of the

recoded regions of these designs is shown in Table 1.

3.7.2 DNA PREPARATION, TRANSFECTION AND GENOMIC DNA EXTRACTION

sgRNA guides were made and prepared as before. Instead of using one repair template,
five different repair templates were mixed in equal proportions (2 pg/ul stock), and 5 pul of
the mixed repair templates were used for each transfection. These repair templates and
the combinations of the pools they were mixed in are listed in Appendix 7.2.4.3.1, with
sequences of each design in Appendix 7.2.4.3. Transfection was otherwise as before, except

cells were not cloned out and were left as populations.
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After one week of recovery, half of the culture was pelleted and washed as before. DNA
was extracted using a genomic DNA extraction kit (ENZA) as per the manufacturer’s

instructions. DNA was also collected from the parental T7Cas9 cell line in the same way.

3.7.3 SCREENING PCR FOR REPAIR TEMPLATE INTEGRATION FROM POOLED
TRANSFECTIONS

A PCR strategy was used to detect the correct integration of each repair template in the
pooled transfection. This strategy involved the use of one shared primer outside of the
repair template region, and one primer inside the repair template in a region unique to
that repair template. The screening primer design process to detect integration of specific
repair templates is shown in Figure 4. Briefly, primers were designed manually to ensure
the binding region was as unique to the specific design as possible. Ideally, each primer had
<85% identity against other repair templates in the same transfection, and where possible
with a unique 3’ base, to reduce the chances of amplification against other repair
templates. Screening primer sequences and cycling conditions using Q5 polymerase (NEB)
can be found in Appendix 7.2.7. To clarify, one mastermix was set up per transfection
containing the genomic DNA to ensure that any absence of a band was not due to the

absence of template DNA. Resulting PCR products were assessed on an agarose gel.

3.8 Repair Template Design — Double-Stranded
3.8.1 DESIGN

To assess whether double-stranded DNA was more efficient at generating precision
mutants, repair template designs targeting KKT2 S493A, KKT2 S530A (1 guide design), and
KKT2 S923A were reused. The only change to the design was that the homology arms were
extended outwards from the mutagenized site by 20 bp to a final length of 160 bp repair
template. Additionally, repair templates were designed to generate KKT2 S25 mutants to
either alanine, glutamic acid or synonymous serines. The repair template was designed as
per the pooled design 2 recoding methodology (see Methods 3.7.1 and Appendix 7.2.4.4

for details), except extending the length (as with the other targets) and reducing the
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emphasis on the inclusion of a restriction site (as PCR-based screening was to be used). For
new targets, sgRNAs were preferentially chosen to leave a gap between each protospacer
sequence, and recoding focussed on incorporating more A’s and T’s, to aid screening primer
design. For targets attempted with single-stranded repair templates, the same sgRNAs and
recoding were used, just with the extension to the homology arms of the repair template
and modifying repair templates to include glutamic acid and synonymous mutations as

well. Designs and full sequences can be found in Appendices 7.2.4.4 and 7.2.5.5.

3.8.2 PRODUCTION OF REPAIR TEMPLATES
For double stranded repair templates, the design was split into roughly half, with an

overlapping region of 18-20 bp (Figure 8). Oligonucleotides (Merck) for each half were
annealed and amplified as in the method described to produce sgRNA (Methods 3.3),
except adjusting the annealing temperature to each reaction. Resulting reactions were run
out on an agarose gel to check for correct product formation. Products were purified with
a PCR purification kit (Qiagen) as per the manufacturer’s instructions, except eluted in 10

ul of water.

3.8.3 DNA PREPARATION, TRANSFECTION AND GENOMIC DNA EXTRACTION

sgRNA was prepared as before — primer sequences can be found in Appendix 7.2.5.1. Repair
templates and sgRNA guides were cleaned up using a PCR Purification Kit (Qiagen), as per
the manufacturer’s instructions, except eluting in 10 ul of sterile distilled water. 5 ul of this
was used for each transfection as before (Methods 3.5). This was approximately 5 pg of
repair template per transfection, reduced from 10 ug used in the single-stranded DNA
(ssDNA) transfections, as well as doubling the quantity of sgRNA compared to previous
ssDNA transfections (approximately 5 pug sgRNA DNA). Transfected cells were recovered in
20% FBS HOMEM containing 10 uM 6-biopterin (Merck) both before and during cloning, as
6-biopterin has been shown to improve growth of Leishmania (Trager, 1969). Clones were
expanded following 1 week of recovery. On expansion, all cells were transferred to 10%
FBS HOMEM without 6-biopterin. Cell pellets were collected from populations and clones

as before.
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3.8.4 SCREENING PCRS

5 ul of the extracted genomic DNA was used for each screening PCR with VeriFi polymerase
mix (PCR Biosystems) — see Appendix 7.2.5.6 for specific primer and cycling details. WT and
mutant PCRs were set up independently, so an absence of a band in either reaction was
considered to be a failure, but technical error was not controlled for due to the large

guantities of reactions. PCR products were run out on agarose gels to determine genotype.

3.8.5 SEQUENCING
Clones indicating a positive result in the mutant PCR reaction were taken forward for

Sanger sequencing. 5 ul of genomic DNA was used for an additional PCR that covered the
whole repair template with Q5 polymerase (NEB) — see Appendix 7.2.5.7 for primers. PCR
products were checked on an agarose gel, and then purified with a PCR purification kit
(Qiagen) as per manufacturer’s instructions. PCR products were sent for Sanger Sequencing

(Genewiz) with the same primers used for amplification.

3.9 Alamar Blue Growth Assay

Where possible, two homozygous clones of each kinetochore phosphosite mutation were
selected at random. Where two were not available, either an additional clone with a
different genotype was chosen, or only one clone was used. When a non-homozygous
clone was used due to a lack of homozygous clones, where possible, it was chosen to have
the target mutation on both alleles, and with as much of the repair template integrated
into both alleles as possible. l.e. a “complex” mutant homozygous for the target was
favoured over fully heterozygous mutants due to concerns of replacement of the target
mutation with the WT allele. But a heterozygous mutant was used if no other mutants were
available. Cultures were grown to mid-log phase in 10% FBS HOMEM. Dilutions of each
culture were prepared to 2500 cells/ml in the same media and were seeded onto 96-well
plates in triplicate such that 500 cells were seeded per well. A medium only control was
also included, and empty wells were filled to the same volume with PBS. 96-well plates

were prepared in duplicate (one for use as a day O plate, one for use as a day 5 plate). The
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day O plate was immediately supplemented with 40 pl 0.0125% (w/v) resazurin (Alamar
blue) in PBS into each well (except those containing PBS) and left to incubate in the dark at
25°C for 4-6 hours. The day 5 plate, was returned to the incubator for 5 days, then
supplemented with Alamar blue in the same way. After incubation with the Alamar blue,
the fluorescence at emissions of 590 nm was measured with a BMG Labtech CLARIOstar®
microplate reader. The readings of the wells containing cells were corrected to the media-
only wells (blank). The mean of the triplicate wells was normalised to the parental T7Cas9

control to calculate the percentage growth.

3.10 Flow Cytometry

As the mutations generated all targeted the kinetochore complex, it was expected that
these mutations would lead to a cell cycle progression phenotype such as an accumulation
in one phase of the cell cycle. To assess this, the quantity of DNA content per cell was
assessed through propidium-iodide flow cytometry. The same clones as per the Alamar
Blue assay were grown in 10% FBS HOMEM media, and 1 x 10’ mid-log phase cells were
pelleted at 1000 x g for 10 minutes. Cells were washed once in PBS with 5 mM EDTA (PBS-
EDTA), and the pellet was resuspended in PBS with PBS-EDTA. Cold methanol was added
slowly to a final concentration of 70% (v/v) and were left at 4°C to fix overnight. After
fixation, samples were diluted to 36.8% methanol (v/v) by adding PBS-EDTA and cells were
pelleted as before. The pellet was washed once in PBS-EDTA and was resuspended in PBS-
EDTA with 10 pg/ml propidium iodide and 10 pg/ml RNaseA. Samples were incubated in
the dark at 4°C overnight, gently resuspended and transferred to a 96-well plate, splitting
the sample between three wells per cell line. Samples were analysed on a CytoFLEX LX355,
gating for parasite cells, followed by single cells (singles). Each well was set to record 20,000
events in singles, measuring the propidium iodide, as well as forward and side scatter. FCS
Express 7 was used to analyse the results. The gating used to collect the data was replicated
for analysis, and the number of cells was plotted against the propidium iodide intensity.
The proportion of cells under each peak was assessed using the built-in DNA content
analysis (Multicycle) to fit 1 cycle using model 5. The percentages of cells in each cell cycle

stage (G1, S and G2/M) were collated for the triplicate wells, which was then averaged. The
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replicates were the averaged and plotted, with the exception of KKT2 S530E clone 21 and

KKT2 S25E clone 11 - see Results section 4.6 for further details.

3.11 Statistical Analyses

Statistical analyses were performed using GraphPad Prism version 8.3.0. For the Alamar
blue growth assay, a one-way ANOVA test with Dunnett’s multiple comparisons was

performed, comparing the means of each cell line with the parental T7Cas9.

For the cell cycle flow cytometry, a 2-way ANOVA test with Dunnett’s multiple comparisons
test was performed, set to compare the mean of each cell cycle stage for each cell line
against the corresponding mean of the T7Cas9 parental cell cycle stage. Even though the
percentages are linked (i.e. if G1 is higher, S + G2/M must be lower), each cell cycle stage

was assessed independently to simplify the analysis.

36



4 CHAPTER THREE - RESULTS
4.1 Single-Stranded Repair Templates

To investigate the impact of phosphorylation on kinetochore proteins in Leishmania
mexicana, a CRISPR-Cas9 precision editing strategy was used to attempt to ablate
phosphosites of interest on kinetochore proteins. These sites were chosen based on data
from Geoghegan et al. (2022), which indicated importance in the cell cycle. In order to
generate the chosen mutations, the workflow shown in Figure 5 was used. Briefly, a repair
template was designed and synthesised as a 120 nt oligonucleotide. This method was
adapted from unpublished work by Juliana Carnielli, which had used a similar approach
previously, to investigate the kinase domain of KKT2 by mutating the gate-keeper residue
of the ATP-binding domain. Similar use of single-stranded oligonucleotide repair templates
has also shown to be effective in kinetoplastids in the literature - Figure 1B (Zhang and
Matlashewski, 2015; Medeiros et al., 2017; Rico et al., 2018; Wall et al., 2018; Pal and Dam,
2022).

Following transfections, up to 40 clones were screened using a restriction digest strategy
to look for the presence of mutant alleles (Figure 5, see Appendix 7.2.6 for further details).
If present, the clone was sequenced with Sanger sequencing. In addition to
nonsynonymous mutations to ablate the phosphosite, a non-phosphosite positive control
targeting KKT2 M146G (the gate-keeper residue of the kinase domain), and synonymous
mutations for KKT7 S304 (KKT7 S304S) and KKT4 S300 (KKT4 S300S) were tested as

additional positive controls. A summary of the results can be found in Table 2.

Of the 16 different transfections, only 3 showed incorporation of the mutation — one of
which was the positive control (KKT2 M146G) and had been produced previously (Juliana
Carnielli, unpublished work). Other than KKT2 M146G, integration of the repair template
was detected in 3 clones in KKT2 S493A and 2 clones in KKT4 S300A (Figure 6). Homozygous
integration of the repair template was detected in all three transfections, but heterozygous

integration was only detected in KKT2 M146G (Table 2).

In addition to these clones, one clone from each of the KKT2 S493A and KKT4 S300A
transfections indicated an unexpected genotype (KKT2 S493A Clone 37 and KKT4 S300A

Clone 16, Figure 6A and B). Sanger sequencing revealed that these clones incorporated the
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Figure 5. Schematic of the single-stranded DNA precision editing workflow. Repair
template is designed to: mutate the target site codon, remove Cas9 break sites and change
(add or remove) a restriction site. The repair template was synthesised as a 120 nt single-
stranded oligonucleotide (adapted from Juliana Carnielli, unpublished work). Cells were
transfected with the repair template and sgRNA corresponding to the Cas9 break sites
which were removed in the repair template. Following transfection, cells were cloned and
allowed to recover to integrate the repair template. To screen clones, a PCR was completed
with primers A and B to cover the entire repair template region. The PCR product was then
digested with the appropriate restriction enzyme (as per the modified site in the design) to
assess the genotype of the clone. Clones indicating a homozygous or heterozygous

incorporation of the repair template were confirmed with Sanger sequencing.

repair template differently on each allele. Each of these repair templates had two regions
of synonymous mutations (corresponding to the two protospacer targeting sequences)
with a gap in between, such that the synonymous mutations were effectively separated in
two (Figure 6A and B). In these clones, sequencing revealed that one of the regions of
recoding was integrated in a homozygous manner, whilst the other showed a heterozygous
incorporation. This suggested that recombination occurred at different places on each
allele. It is likely that the short break in synonymous mutations (11 bp on KKT2 S493A, 21
bp on KKT4 S300A) was used for recombination instead of the intended homology arms.
Luckily, the target codons were part of the region which was mutated on both alleles in
each of these clones. As these clones had a mix of homozygosity and heterozygosity, their

genotype has been designated as “complex”.

Surprisingly, no mutant clones were detected when using synonymous mutation only
repair templates (Table 2). These repair templates were intended to act as a positive
control, given that the coding sequence was unaltered. More strikingly, from the five
synonymous repair templates tested, one of the corresponding non-synonymous
mutations was successfully generated (KKT4 S300A) - Figure 6. Both KKT4 S300A and KKT4

S300S transfections were completed in parallel, suggesting that the lack of detected KKT4
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Table 2. Genotyping results for transfections using single-stranded oligonucleotide
repair template, following detection by restriction digest and Sanger sequencing.

. No. of Complex Percentage of
Mutation Clones Homozygotes Heterozygotes Mutants (all
Screened Genotypes genotypes)

KKT1 S1449A 7 0 0 0 -

KKT2 M146G 40 2 1 0 7.5%
KKT2 S493A 41 2 0 1 7.3%
KKT2 S505A 39 0 0 0 -

KKT2 S505S 40 0 0 0 -

KKT2 S505A+S506A 23 0 0 0 -

KKT2 S5055+S506S 20 0 0 0 -

KKT2 S530A 21 0 0 0 -

KKT2 S530A 1 guide 24 0 0 0 -

KKT2 S530S 1 guide 16 0 0 0 -

KKT2 S923A 21 0 0 0 -

KKT4 S300A 33 1 0 1 6.0%
KKT4 S300S 40 0 0 0 -

KKT4 S422A 15 0 0 0 -

KKT7 S304A 20 0 0 0 -

KKT7 S304S 10 0 0 0 -
TOTAL 402 5 1 2 2.0%
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WT KKT2 Sequence CCCCTCGCACGTCTCGATCAGTGCGTCGTAGCGTCAGCTTAACGGAGCAGGAGCGGGGC]

T7Cas9 CCCCTCGCACGTCTCGATCAGTGCGTCGTAGCGTCAGCTTAACGGAGCAGGAGCGGGG(C

SMTASWW

Clone 24 CGCCACGGACCTCACGTTCTGTCCGTCGTAGCGTAGCGCTAACCGAACAAGAACGTGGC

A/A

Cnone 35 CGCCACGGACCTCACGTTCTGTCCGTCGTAGCGTAGCGCTAACCGAACAAGAACGGGGC

A/A

(Hone 37 CCCCACGGACGTCACGTTCAGTCCGTCGTAGCGTAGCGCTAACCGAACAAGAACGTGGC
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Figure 6. Single-stranded oligonucleotide repair template precision editing results.
Sequencing results for mutant clones from KKT2 S493A transfection (A), and KKT4 S300A
transfection (B). Genotype, represented by the single-letter amino acid code that the target
codon translates to is indicated below the cell line name, with superscript “WT” indicating
that the codon shares the same DNA sequence as the reference sequence for identical
encoded amino acids (WT DNA sequences - KKT2 S493: AGC; KKT4 S300A: AGC). Red arrows
indicate protospacer sequences in WT sequences and equivalent position in repair
templates; blue arrows indicate PAM sites in WT sequences and equivalent position in
repair templates; yellow arrows indicate target site in WT sequences and mutated sites in
repair templates. The translation is shown below each DNA sequence, with black text
indicating the same protein and DNA sequence as the reference sequence, orange text
indicating the same protein sequence but a different DNA sequence to the reference, and
red indicating a difference in the protein sequence and hence DNA sequence. Sequencing
results are cropped to show only the synonymously recoded region. (C) Summary
genotyped results from KKT2 S493A and KKT4 S300A transfections. Total number of clones
screened is represented by the n value, with the number of clones represented by each

slice adjacent to the slice.

S300S mutant clones was unlikely to be caused by a technical failure. In addition, the repair
template for KKT4 S300A had all the same synonymous recoding as KKT4 S300S,
demonstrating that the other mutations were tolerated. This led to the conclusion that the

efficiency of this transfection was likely very poor.
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4.2 Pooled Repair Templates

To investigate whether the design of the oligonucleotide repair template was the cause of
the low efficiency, five different oligonucleotide repair templates were designed targeting
KKT2 S493 (positive control) and KKT2 S530, to generate both serine to alanine mutants,
and serine to serine synonymous mutants. Each design used different criteria for selecting
synonymous mutations to incorporate, based on analysis of oligonucleotide repair
templates which had shown to work previously (analysis not shown - in addition to data in
this report, data also came from Juliana Carnielli and Hannah Jones, unpublished work).
From the previous data, all possible synonymous mutations were categorised as either: (A)
the specific codon change had worked every time it was tried; (B) the specific codon change
had appeared in both transfections which did generate mutants, and also in others that did
not successfully generate mutants; (C) the specific codon change had not worked any time
it was tried; or (D) the specific codon change was untested. These lists formed the basis of
each design criteria. Design 1 utilised the previously generated repair templates to have as
a comparator. Design 2 used recoding which met the criteria of (A). However, this list was
very short, and so design 2 also had access to list (B) to ensure sufficient coverage of
different target sequences to be able to remove PAM sites. Design 3 exclusively used codon
changes from list (B). Design 4 primarily used list (B), except that for the three amino acids
encoded by 6 triplet codes (serine, arginine and leucine), mutations were only chosen from
codons that had altered the first base. Lastly, design five combined lists (C) and (D). As none
of these lists contained the full complement of genomic codons, not all codons within the
editing region could be mutated in every design. As such, this created varied spacing
between synonymous mutations in the different designs (Table 1). Full lists can be found in

Appendix 7.2.8, with full repair template sequences available in Appendix 7.2.4.3.

Each of the five oligonucleotide repair templates for each of the four mutations (KKT2
S493A, KKT2 S493S, KKT2 S530A and KKT2 S530S) were mixed in equal proportion
respectively, and this mix was transfected into cells with sgRNA common to that target site
(Figure 7A). Whilst there was the possibility that any given cell could take up more than one
oligonucleotide repair template, given the low efficiency previously seen, it was thought
that this was unlikely. Additionally, as the aim of this experiment was to assess the effect

of the repair template design on integration, cells were not cloned but left as a population.
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DNA was collected from the population of cells after one week of recovery, to minimise
loss of cells with a lethal phenotype. This DNA was assessed for the presence of WT alleles,
and for each of the five different oligonucleotide repair templates mixed in each
transfection using specific primers for each potential allele i.e. WT allele and each
oligonucleotide repair template design (Figure 7B). Across all four transfections using this
method, strikingly, integration of 18 of the 20 unique oligonucleotide repair template
designs were detected by PCR (Figure 7C and D). One of the two not detected (KKT2 S530A
design 2) was unclear whether it was present due to the primers also amplifying WT DNA.
The other (KKT2 S530S design 5) was the only reaction that did not produce a clear PCR
product with either WT or transfected KKT2 S530S population DNA. Given that the
equivalent nonsynonymous design for design 5 was detected, it is unlikely that it was
something inherent about the design that caused the integration of this repair template to
be undetected. But the exact reason design 5 of the S530S transfection was not detected

was not explored further.

It should be noted that whilst screening primers were carefully designed to distinguish each
repair template by requiring the primer to have less than 85% identity with another design
than its target, due to the small region to choose from, some screening primers shared the
3’ base with another oligonucleotide repair template other than its target (Figure 4).
Hypothetically, this could allow amplification to occur in the absence of its intended target
repair template, but in the presence of another sharing the same 3’ base. As such, it is not
entirely possible to rule out that for example, the primer that recognises design 2 of a
transfection was amplifying from DNA which had integrated design 3. However, it is clear
that all of the KKT2 S493A/S and KKT2 S530S primers did not amplify when tested with WT
DNA, and that all except one of the KKT2 S530A primers also did not react with WT DNA.
As such, it is safe to conclude that mutant cells from one or more of the designs were
present in the population, suggesting that the recoding strategy used in the design of the

oligonucleotide repair template did not appear to have a bias with regards to integration.
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Figure 7. Single-stranded pooled repair template results. (A) Workflow of the transfection.

Five repair templates targeting the same codon were combined in equal proportion and

transfected into T7Cas9 cells. Cells were grown as a population following transfection. (B)

Screening PCRs schematic. Orange primer corresponds to a design specific primer for either

S493A or S493S. Yellow primer corresponds to a design specific primer for either S530A or

S530S. Primer sequences can be found in Appendix 7.2.5.4. (C and D) Agarose gels of

genotyping PCRs as described in B for S493A and synonymous pools (C), or S530A and

synonymous pools (D). WT input DNA indicates parental T7Cas9 DNA, S->A indicates input

DNA was from the serine to alanine mutant pool for that target site, and Syn indicates input

DNA from the synonymous mutant pool for that target site.
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4.3 KKT2 Synonymous Mutations Using Double-Stranded

Repair Templates
From the pooled repair template experiment (Figure 7), it was apparent that

nonsynonymous mutations were possible in KKT2, but were not generated at high enough
efficiency to be detected at a clonal level with the current methodology (Figure 6). To
separate the effect of the methodology from the potential impact of a nonsynonymous
mutation, a new methodology using double-stranded DNA repair templates was tested
using repair templates that would only produce synonymous mutations. If successful, the

method would then be tested on nonsynonymous mutations.

As such, double-stranded repair templates for synonymous equivalent designs of KKT2
S$493S, S530S and S923S were created, as well as a repair template for KKT2 S25S using the
same strategy as before. Whilst the recoding was generally the same as the single-stranded
repair templates, the homology arms were increased to 50 bp for a final repair template
length of 160 bp. The repair templates were produced using a PCR reaction, by annealing

and extending two primers, as shown in Figure 8.

12 clones from each transfection were screened by PCR for integration of the repair
template (see Appendix 7.2.2.2 for all agarose gel images). Of these clones, several of them
indicated the presence of a mutant allele (Table 3). Positive clones by PCR were sent for
Sanger sequencing — example sequencing results can be found in Figure 9. Homozygous

mutants were confirmed in all four transfections (Figure 9 and Table 3).

As previously described, the repair templates used in this experiment shared the same
synonymous recoding designs as some oligonucleotide repair templates tested previously,
with the exception of the codon corresponding to the target serine. Sequencing revealed
that in some mutated KKT2 S923S clones, the cells did not take up the necessary recoding
to generate the restriction site change, but did integrate other parts of the repair template

(Figure 9D — clone 11). In this design, a single base change at the 5’ end of the repair
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Figure 8. Production of double-stranded repair template using oligonucleotide primers.
Each design was split into a forward and reverse primer that encompassed about half of
the total repair template, with an overlapping annealing region (yellow). Primers were
annealed together in a PCR reaction and extended to complete the entire repair template,
and the product was checked by gel electrophoresis. For sequences, see Appendix 7.2.4.4

and 7.2.5.5. Diagram not to scale.

Table 3. Genotyping results of synonymous mutant clones from transfections using
double-stranded repair templates when screening 12 clones.

Transfection Homozygous Mutants Heterozygous Mutants
KKT2 S25S 5 (4) 2 (0)
KKT2 S493S 0* (2) 3* (0)
KKT2 S530S 1(1) 0 (0)
KKT2 S923S 1(1) 3(2)
TOTAL 7 (8) 8 (2)

Numbers inside brackets indicate results confirmed by sequencing.

*Genotyping PCR was unclear.
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Figure 9. Example sequencing results for mutant clones from transfections using double-
stranded repair templates. (A) Example homozygous mutant clone from KKT2 S25S
transfection. (B) Example homozygous mutant clone from KKT2 S493S transfection. (C)
Example homozygous mutant clone from KKT2 S530S transfection. (D) Example
homozygous and heterozygous mutant clones from KKT2 S923S transfection. In all panels,
genotype, represented by the single-letter amino acid code encoded, is indicated below
the cell line name. Superscript “WT” indicates the codon sequence for that residue is the
same as the WT reference sequence, and superscript “mut” indicates the synonymously
mutated sequence (KKT2 S493: WT — AGC, mutant — TCT; KKT2 S530: WT — TCG, mutant —
AGT; KKT2 S25: WT — TCG, mutant — AGT; KKT2 S923: WT —TCC, mutant — AGT). Red arrows
indicate protospacer sequences in WT sequences and equivalent position in repair
templates; blue arrows indicate PAM sites in WT sequences and equivalent position in
repair templates; yellow arrows indicate target site in WT sequences and mutated sites in
repair templates. The translation is shown below each DNA sequence, with black text
indicating the same protein and DNA sequence as the reference sequence, orange text
indicating the same protein sequence but a different DNA sequence to the reference, and

red indicating a difference in the protein sequence and hence DNA sequence.

template removes the restriction site. However, this change is isolated from the other
mutations. In fact, there is another ~30 bp of homologous DNA between this base change
and the remaining recoded sequence, so it is plausible that the cells used this region for
recombination instead of the intended homology arms upstream of this base. This was not
surprising, following previous results which showed recombination could occur with
shorter stretches of homologous sequence (11 bp - Figure 6A and B). However, this result
suggests that screening strategies should be designed to recognise larger regions of
continuous sequence recoding, as single isolated base changes are not consistently
integrated, and could lead to false negative results. It is plausible, that this was happening
in the single-stranded oligonucleotide repair template transfections targeting KKT2 S923A
and thus mutant clones were misidentified as WT because alternate homologous

recombination had occurred that did not remove the expected restriction site.
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4.4 Kinetochore Phosphosite Mutations Using Double-

Stranded DNA Repair Templates
Phosphosites on kinetochore proteins (KKT2: S25, S493, S530 and S923; KKT4 S422; and

KKT7 S304) were targeted for mutation to either alanine, glutamic acid or a synonymous
alternate serine codon using 160 bp dsDNA repair templates. Following transfection,
initially 12 clones were screened for integration of the repair template by PCR, followed by
a further 12 clones if none were detected in the first batch (see Appendix 7.2.2 for agarose
gel images). If PCR screening indicated a potential integration event of the repair template,
a second PCR which amplified over the entire template region was completed, and this PCR
product was sent for Sanger sequencing. Due to the transfection being selection-free, it
was expected that clones could either be homozygous mutants (i.e. the repair template
integrated successfully on both alleles), heterozygous mutants (i.e. the repair template only
integrated on one allele, leaving the other with the WT/native sequence), or homozygous
WT (i.e. the repair template failed to integrate on either allele leaving both alleles with the
native sequence). Following the ssDNA transfections, it was also possible to find “complex”

mutants but it was unclear how likely this would be.

Of the 18 different transfections, at least one homozygous mutant clone was identified in
each transfection following Sanger sequencing, except for KKT2 $923S. This result in of itself
suggests that this methodology has a vast improvement in efficiency in comparison to the
other methods investigated in this project. One mutant clone within 12 suggests a
minimum efficiency of 8.3%, compared to the less than 2% efficiency when using single-

stranded DNA (Figure 6).

From these 18 transfections, 29.2% of clones screened showed integration of the repair
template (Table 4). Overall, 21.7% of clones screened were homozygous mutants, with the
remaining 7.5% of mutant clones being either heterozygous or complex mutants. These
percentages were calculated using the repeat KKT2 $923S transfection where no mutant
clones could be detected. As previous data suggested that is possible to generate this
mutation, using the data from the previous transfection (Table 3) for this site instead
increases the editing efficiency to 30.4% - 22.1% homozygous, 6.3% heterozygous and 2.1%

complex. Either way, the overall editing efficiency was around 30%, with just over 20% of
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cells becoming homozygous mutants. This efficiency is an notable improvement over the

use of single-stranded DNA repair templates, improving by over 10-fold.

Efficiency varied between transfections, ranging from 1 homozygous mutant within 12
clones (KKT7 S304A, S304E and S304S) — 8.3% integration —to 7 homozygous mutants and
1 heterozygous mutant within 12 clones (KKT2 S493A) — 66.6% integration. Results for each
repair template by both PCR and sequencing are in Figure 10. By PCR, KKT2 S25A had the
highest percentage of mutations (66.6%). The largest number of mutants detected by PCR
was 9 in KKT2 S923E, but as 24 clones were screened, this was equivalent to an editing
percentage of 37.5%. In comparison, only one mutant was confirmed by Sanger sequencing

in KKT2 S923A, KKT7 S304A, KKT7 S304E and KKT7 S304S.

PCR screening was not clearly able to identify mutants in the transfections for KKT2 S923A,
KKT7 S304A, KKT7 S304E and KKT7 S304S. For KKT2 S923A, 2 clones exhibited a single PCR
product with high intensity in the mutant PCR and several PCR products of varying intensity
in the WT PCR at unexpected product sizes (clones 4 and 11 — Supplementary data in
Appendix 7.2.2.2). The other two clones that were unclear had an intense single PCR
product in the WT PCR reaction but a lower intensity single PCR product in the mutant PCR
reaction (clones 6 and 12). Clones 4 and 11 were both identified by sequencing to be
homozygous mutants, suggesting the banding pattern seen in the WT PCR was non-specific
amplification of an unknown locus. Clones 6 and 12 were identified by sequencing to be
WT, potentially suggesting some non-specific amplification of the WT locus. Similar to
clones 6 and 12, a low intensity PCR product was present in the parental reaction when
amplified with the mutant PCR primers. But it is unclear why this product was more
prominent in these samples than the other WT clones. For the KKT7 mutations, the banding
pattern of all the clones, except the parental, showed two PCR products in the WT reaction.
Most clones also showed several PCR products in the mutant PCR reactions. These products
generally appeared non-specific, but did not correlate with the non-specific products seen
in the parental reaction with the same primer pair. However, one clone in each mutation
had a PCR product at the same size as the most intense WT PCR product (at the expected
size). These clones, as well as one clone with the nonspecific PCR product pattern in the

mutant PCR reaction, were sent for sequencing. Only those with the correct size PCR
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Figure 10. Screening results of phosphosite mutant clones transfected with dsDNA repair
templates. A) KKT2 PCR screening results. B) KKT2 Sanger sequencing results. C) KKT4 S422
and KKT7 S304 PCR screening results. D) KKT4 S422 and KKT7 S304 Sanger sequencing
results. Target site is indicated on the left with the target mutation indicated at the top.
Number of clones screened is indicated by the n number below each pie chart, with number
of clones represented by each slice around the outside, adjacent to their slice. Genotypes
in A and C: WT — PCR product was detected in the WT primer set reaction and not in the
mutant set reaction; heterozygous — PCR product was detected in both WT and mutant
primer set reactions with approximately equivalent intensity; homozygous — PCR product
was only detected in mutant primer set reaction; Unclear — PCR product was detected in
both WT and mutant primer sets with either differing intensity in each or additional
unknown products; Fail — no PCR product was detected in either reaction. Genotypes in B
and D: WT —both alleles match the reference sequence; heterozygous — one allele matched
the reference sequence, one allele matched the repair template sequence (identified by
dual peaks of similar height in the chromatogram); homozygous — both alleles match the
repair template sequence; complex — evidence of integration of the repair template either
to different extents on each allele, or with unexpected mutations (see main body for more
details); Fail — the sequence was unable to align with either the reference sequence or the

repair template sequence.

product were mutated (S304A clone 9, S304E clone 12 and S304S clone 5 — Appendix
7.2.2.2).

It was unexpected that KKT2 S923S did not yield a mutant clone within 24 clones when
previous work had shown this was possible with the same repair sequence and sgRNA
sequences (Figure 9D). It is likely that this result was caused by a technical issue with this
transfection and/or screening process. Out of the 24 clones screened, 13 did not generate
a PCR product in either the WT or mutant PCR reactions, suggesting a general issue with
the collection of DNA, as the WT PCR on the parental DNA (which was from a different DNA

extraction) worked as expected and all the reactions shared the same PCR mastermix.
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In addition to the expected genotypes of homozygous and heterozygous incorporation,
sequencing revealed that 5 clones had integrated the repair template in an unexpected
way and have been called “complex”. These were one clone in KKT2 S493E, KKT2 S530E,
and KKT2 S923E transfections; as well as 2 clones in the KKT4 S422S transfection. KKT2
S493E clone 9 showed homozygous incorporation of the entire repair template, except it
had complete loss of the codon encoding E496, which is in the middle of a recoding region.
KKT2 S530E clone 19 seemed to show homozygous incorporation of the entire repair
template, except the target codon which showed secondary peaks. The secondary peaks
were not as high as the main peaks of the chromatogram, but notably higher than
background. In addition, a few other mutated residues also seemed to have background
peaks corresponding to the WT bases. This could either be indicative of the presence of a
WT copy as well as two mutated copies, or could be suggestive that the cell line was not
clonal. KKT2 S923E clone 22 incorporated the entire repair template in a homozygous
manner, except the first base of H927 which was heterozygous. This led to a C->G
transformation on one allele, causing a mutation to aspartic acid. KKT4 S422S clones 7 and
12 showed an identical genotype, incorporating the repair template in a homozygous
manner for the 3’ region of recoding (where the target S422 is) but a heterozygous

incorporation of the repair template in the 5’ recoded region.

On the assumption that the editing efficiency of this method is around 30%, when all
mutant genotypes are taken into consideration, it is possible to predict the likelihoods of
detecting a given number of mutant clones in the future. A binomial distribution can show
the probabilities of detecting x number of mutant clones when screening 12 clones, to
determine if 12 is a suitable number of clones to screen. The binomial distributions for a
range of editing efficiencies are shown in Figure 11A. For an editing efficiency of 30%, the
most likely scenario is that 3 or 4 mutant clones are detected, but it is much less likely that
7 or more mutant clones are detected. By using the cumulative frequency of these
probabilities (Figure 11B), it is possible to infer that at 30% editing efficiency, there is a 90%
probability that up to 5 mutant clones are detected when screening 12 clones. When
compared with the in vitro data (Figure 11C), it is apparent that the detection of larger
numbers of clones is not very likely at this editing efficiency, but is more likely at a higher

editing efficiency of 40%. In comparison, the large number of transfections with only 1

57



Instances
N

0.30

0.25

0.20

Probability
o
=
w

Efficiency
— 20% Editing
30% Editing
— 40% Editing
—— 50% Editing

0.10
0.05
0.00
0 2 4 6 8 10 12
Number of Mutant Clones (All Genotypes)
in 12 Random Clones
1.0
0.8
)
f
3
0.6
o
[T
[]
=
% 0.4
£
jum
O
0.2
0.0 T T
0 2 4 6 8 10 12
Number of Mutant Clones {All Genotypes)
in 12 Random Clones
70% _
60%
[ o)
c 50% 1
QL
- - 2 40% A
LY
[
a0 30% 1 X
=
=
£ 20%-
[
10% -
T T T T T T T T T T T T 1 0%
0123456 7 8 9101112

Number of Mutant Clones

Detected within 12

58



Figure 11. Mathematical analysis of precision editing efficiencies. A) Binomial distribution
of the theoretical probabilities of identifying several mutant clones within 12 randomly
selected clones for all mutant genotypes combined at a range of editing efficiencies. The
theoretical proportion of mutant cells is given in the legend (right). This editing efficiency
is a sum of all homozygous, heterozygous and complex mutants. 30% editing efficiency is
shaded for clarity, given that the calculated editing efficiency in vitro was around 30%.
Whilst the probability of finding 8 or more clones appears to be 0 under some conditions,
it is never truly O but as low as 4 x 10 for the 20% mutants line (red). B) The cumulative
frequency distributions for the same editing efficiencies as in part A. The dotted line
indicates the point at which there is a 90% chance for detecting the respective number of
clones (approximately 5) or fewer mutant clones with a 30% editing efficiency. This area is
highlighted with orange shading. C) A histogram of the frequencies at which several
kinetochore mutant clones (all genotypes) were detected when 12 clones were screened.
Transfections where 24 clones were screened were omitted. D) Box and whisker plot of the
editing efficiencies of all the kinetochore mutations (all genotypes). The mean is indicated

with a cross.

detected mutation is more similar to the trend seen when there is only a 20% editing
efficiency. This sample size is very small, so drawing conclusions is challenging, but it does
appear that there is a split, with some transfections fitting a 20% editing efficiency and
some fitting a 40% efficiency (Figure 11C). If a transfection had a high editing efficiency, its
sister transfections (i.e. the alternate amino acid replacement but the same target codon)
had similarly high efficiency. The same is true of the inverse, i.e. that if one design had poor
efficiency then its sister designs also had poor efficiency. For example, KKT2 S25A detected
a total of 7 mutant clones within the 12 screened, and S25E and S25S had 5 and 3
respectively. Only one mutant clone was detected in KKT7 S304A, and similarly in S304E
and S304S. This would suggest that there is something inherent about either the

synonymous recoding in the repair template or sgRNA design that is impacting the
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integration, as these features are shared between them. Further analysis into the repair
template and sgRNA designs is needed to identify the trends, and a larger sample size is

needed to infer the “true” editing efficiency with more confidence.

4.5 Growth Analysis of Kinetochore Phosphosite Mutants

As the kinetochore phosphosite mutant clones did not appear to exhibit any visual
morphological defects during normal passage and growth, it was hypothesised that the
growth rate could be impacted by the phosphosite mutations generated. To assess this,
kinetochore phosphosite mutants were grown to mid-log phase, and then 500 cells were
loaded into a well of a 96-well plate. After 5 days, the growth of the culture was measured
by Alamar blue assay using the fluorescence. A control plate (a duplicate of the 5-day plate
to control for inaccurate loading of the small number of cells) was also set up and measured
in the same way on day 0, but most of the data points when adjusted for the background
were below zero, so this data has not been shown. Two clones were selected at random
from the homozygous mutant clones. When two clones were not available, but other non-
homozygous clones were available, a second clone was chosen from the available clones.
These were KKT2 S530E clone 10 which had a heterozygous genotype at the point of
cryostorage (although genotype was not reassessed after thawing), and KKT2 S923E clone

22 which had a heterozygous H927D mutation as well as homozygous S923E.

KKT7 S304A clone 9 was the only cell line to show a significantly different rate of growth,
when normalised to T7Cas9. KKT7 S304A clone 9 grew faster than the parental, with a mean

growth of 176.3% growth at day 5 compared to the parental - Figure 12.

Whilst no other mutants showed significantly different growth, some clones showed
increased growth. Most of the clones that showed an increased growth rate were
synonymous mutant clones. The largest of these were KKT2 S530S clone 7, KKT2 $923S
clone 10, KKT2 S422S clone 4 which had mean growths of 130.0%, 155.5% and 149.7%
respectively. In contrast, the clones that showed a non-significant decrease in growth were
mostly KKT2 S25 mutants. KKT2 S25A clone 5, KKT2 S25S clone 5 and KKT2 S25S clone 10
showed decreased growth rates of 83.0%, 83.3% and 79.3% respectively. In addition, KKT2
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S493A clone 10 and KKT2 S493E clone 6 also showed reduced growths of 84.0% and 83.3%

respectively.

Whilst only KKT7 S304A clone 9 showed a statistically significant growth change, it is
apparent that growth rates between clones of the same genotype did not appear to grow
similarly. This could be caused by other unknown genetic differences between the clones
such as off-target effects or pre-existing genetic diversity from the parental population.

However, further investigation is required to assess these differences.

250% =1
200% =
150%

100% = g {-T- T

Percentage Growth
Normalised to T7Cas9

50%=

Cell line/Clone

Mutant Residue

Target site KKT2 $25 KKT2 5493 KKT2 8530 KKT2 $923 KKT4 $422  KKT7 S304

Figure 12. Alamar blue growth assay of kinetochore phosphosite mutants following 5
days of growth. CL = clone. Colours of bars indicate target site groupings. KKT2 S530E clone
10 is a heterozygote for the S530E mutation, indicated by S/E. KKT2 S923E clone 22 had a
heterozygous H927D mutation and is indicated by §. Error bars indicate the standard
deviation. * is p <0.05. n = 3 for all cell lines except KKT2 S493 and KKT2 S530 mutants which

were n =4,
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4.6 Cell Cycle Analysis of Kinetochore Phosphosite Mutants

To assess whether phosphosite mutations influenced cell cycle progression, the quantity of
DNA in each cell was measured using propidium iodide flow cytometry in mid-log phase
cultures. The proportion of cells in each cell cycle stage was assessed, as well as looking for

anomalies in DNA content.

When assessing each cell cycle stage independently, most mutants were not significantly
different to the parental T7Cas9 cell line (Figure 13A). Only KKT2 S25S clone 5 showed a
significant increase in the number of cells in G1 compared to T7Cas9, but neither S-phase
nor G2/M cells showed a significant difference in proportion (Figure 13A). The other KKT2
S25S clone (clone 10) did not mirror this difference. However, it should be noted that only
one of the three replicates showed a notable difference in the percentage of G1 cells of

66.5%, whereas the other two were 45.0% and 41.1% respectively.

KKT2 S25E clone 11 and KKT2 S530E clone 21 had to be omitted from this analysis because
of the presence of an additional peak with a greater fluorescence than the G2/M peak
which the DNA content model fitting was unable to process (Figure 14A). For KKT2 S25E
clone 11, this peak was consistent throughout all the replicates, and represented about 4%
of the cells using the rough gating shown in Figure 14A. For KKT2 S530E clone 21, this peak
grew in proportion with each replicate and passage. Initially, it started similarly to KKT2
S25E clone 11 at around 4.8% but continuously grew in proportion, containing around
13.7% of the cells after several passages. In addition, the apparent G1 peak dropped in
proportion with this high intensity peak’s increase, starting at around 41% of cells and
dropping to 4.6% of cells in the final replicate. Based on the intensity of these additional
peaks in both cases, they likely represent a proportion of cells which have become triploid

rather than tetraploid.

Following identification of the triploid population in KKT2 S530E clone 21, a fresh batch of
cells were thawed from cryostorage, and spit into 4 subpopulations which were grown
independently. The flow cytometry analysis was repeated on each subpopulation as before,
but the phenotype was not replicated, and showed a normal cell cycle distribution across
all replicates (Figure 14B). On receiving this result, it was concluded that repeating KKT2

S25E clone 11 was likely to yield the same result, so was not repeated.
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Figure 13. Cell cycle analysis of mid-log phase cultures of kinetochore phosphosite
mutants. A) KKT2 S25 and KKT2 S493 mutants, n = 3. B) KKT2 S530 and KKT2 S923 mutants,
n= 4. KKT2 S530E clone 10 is a heterozygote for the S530E mutation, indicated by S/E. KKT2
S923E clone 22 had a heterozygous H927D mutation and is indicated by §. C) KKT4 S422
and KKT7 S304 mutants, n =2. * is p < 0.05. Error bars indicate the standard deviation in all

panels. CL = clone in all panels.
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Figure 14. Cell cycle analysis of KKT2 S530E clone 21 and KKT2 S25E clone 11. A)
Histograms of propidium iodide intensity for each cell line. In each biological replicate
(indicated on the left), three technical replicates are plotted as individual lines. Gates used
are identical in width but have been repositioned to fit the exact intensity of the peaks for
each biological replicate. Percentages correspond to one representative technical
replicate. B) Cell cycle analysis of KKT2 S530E clone 21 repeat when split into four

subpopulations (A to D). Error bars indicate the standard deviation.
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4.7 Discussion

It is clear from these results that precision editing is possible in Leishmania mexicana, but
that the methodology used plays a large factor in the success of generating mutants.
Broadly speaking, two approaches were investigated in this project — the use of single-
stranded DNA (ssDNA) repair templates and double-stranded DNA (dsDNA) repair
templates. Single-stranded repair templates were inconsistent in the generation of
mutants, and efficiency seemed to be low. The presence of the integrated repair template
was demonstrated in populations (Figure 7), but not in clones in most cases (Table 2 and
Figure 6). In contrast, double-stranded repair templates were far more consistent in the
generation of mutations (Table 4, Table 5, Figure 9, and Figure 10). Based on the frequency
that mutated clones were identified, double-stranded repair templates generated a higher
proportion of mutant cells within a given population than the single-stranded
oligonucleotide repair templates. Other than the “stranded-ness” of the repair templates,
the only major differences between the methods were the increases in the length of the
homology arms, the inclusion of 6-biopterin in the recovery media, and the larger quantity
of sgRNA in the transfection. Whilst it cannot be ruled out that these factors were of more
or equal importance than whether the repair template was single- or double-stranded, it
seems suggestive that the change in “stranded-ness” is a key factor (Table 5). Whilst the

experiments completed in this project are not able to determine why the type of DNA had

Table 5. Comparison of the success of transfections using single-stranded or double-

stranded repair templates.

Successful Mutant Generation Out of Total
Independent Attempts to Generate Mutants

Repair Template Type

Clones Population
Single-stranded 3/16 (18.8%) 18/20 (90.0%)
Double-stranded 21/22 (95.5%) -
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such an impact, perhaps it is suggestive that the initiation of the DNA damage response is
different between single- and double-stranded repair templates. Further investigation into

this process in Leishmania may enable even greater improvements in editing efficiency.

Whilst the type of DNA was evidently crucial in generating the desired mutations, it was
interesting to reveal that the recoding strategy had little effect on the outcome. The
variability in the success of transfections using the ssDNA repair templates was initially
attributed to some aspect of the design. To investigate that hypothesis, two targets were
chosen, and five repair templates were designed for each of them. These repair templates
had a range of different recoding strategies such as using different codons, differences in
spacing and quantity of mutations (Table 1). Unexpectedly, almost all the repair templates
designed were detected by PCR (Figure 7). It should be noted that the sequences of these
PCR products were not determined. However, on the assumption that each PCR exclusively
detected the intended repair template, and with the additional data from the dsDNA repair
transfections which used the same recoding as some of the ssDNA repair transfections, it
is clear that the success of the transfection is not primarily linked to the recoding strategy
used in the repair template design. This suggests that there is scope to recode the sequence
in ways which enhance usability such as making screening simpler. That being said, this
finding should be taken with caution because each of the repair templates tested here only
induced ~10-15 SNPs in regions of about 60 bp of one gene in any given cell. Whilst studies
in the literature indicate that translation rate is constant between sequences from across
the whole genomes of higher eukaryotes, which inevitably vary in composition (Burchmore
and Landfear, 1998; Brittingham et al., 2001; Villa et al., 2003; Beetham, Donelson and
Dahlin, 2003), there is evidence to suggest that translation rate is dependent on the codons
used in trypanosomes (Jeacock, Faria and Horn, 2018; Nascimento et al., 2018). Whilst the
repair templates used here were small, it is likely that for larger scale recoding such as
whole genes, there will be more consequences on the translation rate and hence health of
the cell for diverging from the native sequences. As such, it is advisable to generate
synonymous mutant control lines to help distinguish fitness effects caused by the recoding
from those caused by the target-mutation, and to choose similarly used codons where

possible.
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When used cautiously, having the flexibility to choose any synonymous codon has great
benefits for designing suitable screening approaches. The Leishmania genome has a high
GC content of around 59% (lvens et al., 2005; Peacock et al., 2007; Rogers et al., 2011;
Chauhan, Vidyarthi and Poddar, 2011) compared to humans which has an average of
around 41% (Lander et al., 2001). This can make primer design extremely challenging in the
small regions of interest for precision editing, which can have even higher local GC content.
Whilst there are approaches that can be used to amplify high GC content templates,
increasing the chance of successful screening on the first attempt has several benefits.
Failure to screen on the first attempt can lead to repeated passaging of the cells which can
reduce the virulence, as well as requiring more media and consumables which increases
the costs. To improve this technique in the future, it may be beneficial to intentionally
recode regions with high GC content to increase the AT content (i.e. lower GC content),
since editing efficiency does not appear to be impacted. Reducing GC content where the
screening primer binds will lower the annealing temperature required during screening
PCRs which could reduce instances of unclear genotyping from unexpected PCR results.
Additionally, reducing the necessary melting temperature of the screening primer allows a
wider range of annealing temperatures to be tested, should initial screening lead to unclear
results. As such, repair template design and screening-primer design should be completed
in parallel, to ensure annealing temperatures for primers are convenient for use. In
addition, ensuring the 3’ base of the screening primer differs between WT and mutant
sequence for that region can help to ensure specificity. In the KKT7 S304 PCR screening
reactions, the 3’ base of the WT-specific primer was shared between the WT sequence and
all the repair templates. The KKT7 S304 transfections had the most uncertain PCR products,
with between 5/12 and 8/12 clones generating unclear PCR products each. It is plausible
that the WT-specific primer was able to bind sufficiently to both WT and mutant DNA and
allow amplification to occur, creating the unclear results. In these PCR reactions, most
clones (but not parental DNA) produced two bands in the WT-specific PCR reaction, both
of which were close to the expected product size (Appendix 7.2.2.2). This made
interpretation of the results harder, as only one clone in each transfection had a single PCR
product. Sequencing of clones with single-PCR products revealed they were homozygous
mutants, indicating the product that was absent in their reactions was the real WT PCR

product. Situations like this demonstrate that it is helpful to incorporate a back-up
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screening approach into the design such as incorporating a change in common restriction

site in the region of interest.

Using a restriction digest strategy as the primary form of screening method was also tested
in this project. In most cases, restriction digest tended to be more predictive of the
genotype of the clone being assessed than PCR screening, following sequencing. This is with
the caveat that this was only true when restriction sites were located in the same
continuous stretch of recoded sequence as the mutation of interest. Restriction sites that
were located further away from the target site, particularly in cases where there was a
break in the recoding, were not good at predicting genotype. This was demonstrated by
the presence of clones with a complex genotype, where the repair template was not always
integrated in its entirety. A continuous region of recoding tended to be incorporated
together, with only occasional failure to incorporate mutations at the end of a series of
synonymous mutations. As such, it is highly plausible that clones with partial repair
template integration were misidentified as WT if the sequence conferring the restriction
site change was not integrated. Primers recognise a much longer sequence in most cases,
so had higher chances of detecting a partial integration of the repair template than
restriction enzymes which often only recognise a 6 bp long sequence. However, screening
by PCR tended to be less accurate and dependent on how specifically the primer bound to
either the WT or the mutant sequence. Several clones transfected with dsDNA indicated
the presence of a mutant allele by PCR but were identified as WT by Sanger sequencing
(5.0%). However, PCR screening was more convenient, and cheaper too. A 5.0% false-
positive rate was acceptable to have, since true positive results were also detected.
However, it should be considered that of this 5.0% of clones, some PCR results were more
suggestive of a particular genotype than others. 17.1% of clones screened by PCR that were
transfected with dsDNA had an uncertain genotype following PCR screening (Appendix
7.2.2.3). These included situations where both WT and mutant PCRs had bands but of
unequal intensity, or the banding pattern in one or both PCRs were not as expected. As
such, some of these PCRs seemed more likely to suggest that the clone was WT and had
not integrated the repair template but the result left enough doubt to warrant sequencing.
As such, it is not necessarily fair to say that all of these were strict false positives and

suggests that the rate of misidentifying WT cells as a mutant genotype is likely less than
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5.0%. However, there were instances where PCR screening misidentified mutant
genotypes, such as misidentifying a homozygous mutant as a heterozygote. So taking 5.0%

as an overall inaccuracy rate of PCR detection is reasonable.

Both in the use of ssDNA and dsDNA, integration of the repair template was not always
complete or perfectly faithfully on both alleles. These clones have been designated as
“complex” genotypes. Most frequently, “complex” clones showed faithful inclusion of
about half of the repair template, typically when there was a break in the recoding in the
centre of the repair template. It is likely that in these cells, the WT sequence in the centre
of the repair template was used for recombination rather than the intended homology
arms. The smallest breaks in recoding were only 11 nt long. At this length of homology, it
is more likely that the microhomology-mediated end joining pathway is activated, which
can use regions of 5-25 nt in length for double-stranded DNA break repair (Zhang and
Matlashewski, 2019). Alternatively, it is possible that this genotype was caused by a failure
to induce both double-stranded breaks on one allele by the Cas9 nuclease. In all the repair
templates tested, the editing range was only 60 bp. The Cas9 nuclease is 160 kDa,
approximately 10 nm x 10 nm x 5 nm in size (Josephs et al., 2015). Cas9 recognises and
binds a region of 20 bp (the protospacer), but given its size, it is probable that in some (if
not all) of the designs tested here, two Cas9 molecules would not be able to bind to the
genomic DNA at the same time to make both breaks due to their proximity. Even though
two Cas9 molecules would be unable to make both breaks simultaneously, it is still
beneficial to have both sgRNAs. For example, one sgRNA may have better activity than the
other, the different break sites may stimulate different repair responses from the cell, or
the second may be broken after the first. In some cells, it is plausible that only one dsDNA
break occurred, which increased the probability of recombination happening at a recoding
break in the repair template. Little is known about the specific factors involved in
homologous recombination in Leishmania species (Kelso et al., 2017), despite its presence
having been demonstrated around 30 years ago (Tobin, Laban and Wirth, 1991). RAD51 (a
recombinase that is active during mitosis to repair DNA damage faithfully) is present in
Leishmania and has been shown to respond to DNA damage (Kelso et al., 2017), as well as
having roles in DNA replication (Damasceno et al., 2020). BRAC2 is also present and similar

to other organismes, is responsible for localisation and loading of RAD51 onto sites of DNA
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damage (Kelso et al., 2017). Further research into the other factors involved will hopefully

shed light on the most effective way to stimulate the desired form of integration.

Additionally, there were “complex” clones which contained an unexpected change to the
amino acid sequence. It is apparent that these nonsynonymous mutations are unlikely to
be compensatory, as at least one clone was identified in each transfection with the
designed repair template faithfully integrated on both alleles. It is possible that these
mutations help the cell manage the induced mutation, but they are clearly not required to
survive. It is more likely that these events either stem from unfaithful DNA repair by the
cell, or unfaithful production of the repair template (either during oligonucleotide
production or during PCR amplification by the polymerase). Unfortunately, with the

present data, it is not possible to determine the cause of these mutations.

Of the attempts to use double-stranded repair template that failed to generate mutants,
only the repeat of KKT2 $923S failed to identify mutant clones (Figure 10A and B). As this
mutation was previously generated in this project (Figure 9D), this result is suggestive that
there was a technical issue with this transfection and/or screening process. Whilst there is
some evidence to suggest there were technical issue with the DNA extraction or PCR
screening step, an alternate hypothesis is that the transfection efficiency dropped because
of varying quality and quantity of DNA used. For the second replicate of KKT2 S923S using
dsDNA, DNA was prepared in parallel to DNA for other KKT2 transfections in a single PCR
plate, but S923 was the last to be used from this. As such, the plate was carefully opened,
thawed and re-frozen several times prior to transfection. Doing so left the volumes in these
wells to be slightly lower than expected when preparing them for transfection (likely due
to evaporation), and perhaps caused some amount of DNA degradation. This could explain
why the efficiency, which was 25% when only testing synonymous mutants with freshly

made DNA, dropped to 0%.

Whilst synonymous controls do not directly indicate whether a non-synonymous mutation
is possible, it is clear from this report that their incorporation as a control in parallel is of
great help in determining the reasons for failure to isolate the mutation of interest.
Additionally, synonymous mutations are useful as controls in experiments that investigate
the effect of the mutation of interest. Clones with synonymous mutations in this context

can help to separate the effect of the non-synonymous mutation of interest from any

71



effects caused by the recoding used for screening purposes, as well as off-target effects
from the guides used. If the recoded sequence affects things like translation speed, it will
be apparent in both clones with synonymous only and non-synonymous mutations.
Without the presence of synonymous mutation controls, this may be misidentified as a

phenotypic difference between non-synonymous mutation and the parental line.

Unfortunately, the mutants generated here did not appear to have a distinct phenotype.
No mutation indicated a significant drop in growth rate, as was hypothesised for cell cycle-
dependent proteins. The only significant difference identified was KKT7 S304A clone 9,
which grew faster than the parental when assessed by Alamar blue growth assay (Figure
12). Without a second clone showing the same phenotype, it is hard to draw conclusions
with certainty that this growth change is directly caused by the mutation in KKT7, or
whether it is the result another genetic difference in this clone. Whilst no other mutant
clones in this assay showed significant growth changes, it is quite apparent that other pairs
of clones with the same mutation did not always grow at a consistent rate. It is not clear
why some clones with identical mutations grew at differing rates but is most likely caused
by the genetic diversity within the parental cell line. In addition, further validation of this
phenotype is needed by a more accurate growth curve, as variance between replicates was
high in all cell lines. On the whole, the lack of significantly different growth rates indicates
that the phosphosite mutants generated here do not have notable changes to the rate of
progression through the cell cycle such that their duplication time is affected, suggesting

that none of the phosphosites mutated here have overarching control of the cell cycle.

Additionally, most mutant clones did not exhibit a cell cycle defect. The only identified
changes to the cell cycle were KKT2 S25E clone 11 and KKT2 S530E clone 21, which indicated
apparent triploid cells (Figure 14A), and a slight increase in the proportion of G1 cells in
KKT2 S25S clone 5 (Figure 13A). The triploid phenotype was not replicated when a fresh
sample of cells were used (Figure 14B), suggesting this was a random event that was
selected for when passaging the cells. It was hence presumed that KKT2 S25E clone 11
shared a similar random event, as the other clone with this mutation lacked this phenotype
so was not investigated further. Whether this mutation increases the likelihood of such

random events remains to be seen.
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Identifying several clones that have integrated the mutation of interest in a homozygous
manner has been key to evaluating whether a phenotype is directly caused by the mutation
of interest. It is plausible that differences seen between clones are the result of off-target
mutations, compensatory mutations, or natural diversity in the parental population. But as
none of the full genomes of these mutants have been sequenced, it is not possible to say
which is the case with certainty. In the case of some of the mutations, only one clone was
identified with the desired genotype. With only one clone it is difficult to be confident that
differences seen are the result of the induced mutation alone. Having several clones with
the mutation of interest can allow for reasonable scepticism that a phenotypic difference

is caused by the mutation, if not all clones exhibit the same phenotype.

The lack of phenotype from the phosphosite mutations generated in this project is not
completely unsurprising. Other studies looking at the effect of both ablation of
phosphorylation sites and phosphomimetic studies have found little to no phenotypic
effect in cell lines with several mutated phosphosites (Hofejsi et al., 2010; Yang et al., 2013;
Marchand et al., 2022). Whilst these examples are not from kinetoplastids, they
demonstrate that it is common for phosphorylation to play a subtle role in controlling
protein function. In contrast, there are cases where a single phosphorylation site has
significant impact on the cell (Xu et al., 2011; Canton et al., 2012; Keder et al., 2015).
However, in the latter case, none of the mutations caused a lethal phenotype. As the
kinetochore proteins investigated here are essential genes, complete dysregulation would
likely be lethal. As such, it is unsurprising that there was no apparent effect from the loss

of individual phosphosites.

It should be noted that in many cases, the phosphosites that were mutated were in
proximity to other serine or threonine residues in the primary protein sequence. For
example, in KKT2 when looking at the 25 amino acid residues either side of S493, there are
10 other serine or threonine residues. As the kinase that phosphorylates this site is not
known, it is unclear whether it would be possible for this particular kinase to phosphorylate
a nearby serine or threonine instead. If this upstream kinase is promiscuous enough to be
able to phosphorylate alternate residues nearby, the phosphorylation state would likely be
the same as a WT KKT2 protein, allowing function to proceed as normal. It has been shown

in T. brucei that CLK1 can phosphorylate KKT2 at S508, which is thought to be equivalent of
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S485 or S487 in L. mexicana (Saldivia et al., 2021; Geoghegan et al., 2022). However, CLK1
has not been shown to phosphorylate alternate sites to date. Promiscuous phosphorylation
is one potential explanation as to why the mutations generated here had little to no
phenotype. Promiscuous kinases such as casein kinase Il (Borgo et al., 2021) are known to
phosphorylate various parts of the cell cycle machinery in humans (Schweighofer et al.,
2024), so it is highly plausible the same could be true for kinetoplastids. However, the
phosphorylation status of the mutant proteins generated here was not investigated. Nor is
it known whether the phosphorylation state is more or less important than the location of

the added phosphate at particular residues.

There have been more phosphorylation sites identified on these kinetochore proteins than
were targeted for mutation here (Geoghegan et al., 2022). It is plausible that
phosphorylation of several sites has a cumulative effect, and so removal of one
phosphorylated residue has minimal impact. But loss of phosphorylation at several sites
could cause a noticeable phenotype. Taking the example of KKT2 again, a double mutant
was attempted targeting KKT2 S505 and S506 using the ssDNA approach, but no mutant
cells were recovered. This is most likely due to the ssDNA method used, so repeating this
target with the dsDNA approach would be enlightening. Further study is necessary to
determine whether the phosphosites on KKT2, KKT4 and KKT7 have a cumulative effect, or
whether phosphorylation plays a different currently unknown role. To determine if this is
the case, protein-based approaches would be best to initiate investigation, to assess the
range of potential phosphorylation states each kinetochore protein has, before moving to
genetic modification to edit those sites. One way would be to use a phospho-protein mass
spectrometry approach to identify the different phosphorylation states of each
kinetochore protein. This approach could assess whether there are discrete
phosphorylation states of high importance or a wider array of potential phosphorylation
states with little indication of preference. In the former case, it is more likely that loss of a
number of key sites would have an impact on fitness more so than in the latter, which could

require loss of most or all phosphorylation sites to have an impact on function.

It should be emphasised that the genes that were precisely edited here were essential. All
three kinetochore genes in which the dsDNA method was tested are essential (Akiyoshi and

Gull, 2014). The method developed here is likely to be widely applicable for use across the
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genome, given that it works on essential genes which are most likely to be challenging to
manipulate. Of course, not all mutations will be possible. For example, removing catalytic
activity of an essential enzyme would likely be impossible to generate in an otherwise WT
strain, even if other biochemically similar mutations are tolerated. The mutations induced
here were only predicted to play a role on protein regulation, which given the lack of
phenotype identified, is either multi-factorial or phosphorylation plays an alternative role.
But this method opens up the possibility to unpick different aspects of essential genes that
have previously been too technically challenging to investigate, as well as allowing more
detailed study into non-essential genes. For example, this method could be used to modify
motifs needed for other post-translational modifications, such as removing lysine residues
of potential ubiquitination sites, or could be used to disrupt protein-protein interactions. It

could also be used to manipulate trafficking signals or to influence drug-sensitivity.

Whilst there are already examples in the literature of precision editing (Zhang and
Matlashewski, 2015; Zhang, Lypaczewski and Matlashewski, 2017; Rico et al., 2018;
Vasquez et al., 2018; Vergnes et al., 2019), there is little standardisation as to the approach
being used (Yagoubat et al., 2020). As such, it is likely that time and resources amongst
members of the field are wasted, due to failure to compare approaches. The method
presented here is simple and consistent, which has the potential to become the standard
in the field. Currently, the method presented here is not suitable for use en masse
simultaneously. But it is otherwise quite flexible and could be used on any gene of interest,
even beyond Leishmania species such as in trypanosomes. If there is desire to generate
libraries of precisely edited mutants, this method has the potential to enable that, so long

as mutants are generated in manageable batches for culturing and screening.

Further research is still needed to adapt this method to become scalable in vitro at the
point of transfection. To begin to increase the through-put of this method, an automated
in silico approach to the design has been investigated and is presented in Chapter Four —
Python Script. In order to complete the transfections and screening steps necessary to do
a large number of precision mutants, it is first necessary to design the repair templates and
oligonucleotide primers to create and screen them. Websites such as

http://www.leishgedit.net/ (Beneke et al., 2017) have shown that automated design

processes can aid in scale-up of mutant generation to allow large-scale projects, such as
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whole kinome assessment by Baker et al. (2021) to exist. Creating such tools also has the
additional benefit of standardisation. Whilst efforts have been made to describe in detail
how and when one codon sequence was chosen over another in this report, it is at the end
of the day the individual’s choice as to which they use. Using a computer programme to
execute this process ensures that the design will always follow the same decision making
choices, independent of the researcher designing them. As long as the programme is coded
to make design choices that have been shown to work in vitro, all non-lethal mutations
should be possible to generate. However, the “rate-limiting step” of this precision editing
method is the culturing and screening of clones on a transfection-by-transfection basis.
Further work is needed to reduce this workload, as this will have the most impact at a high-

throughput scale.

In conclusion, a methodology has been developed for consistent precision editing in
Leishmania mexicana and has been shown to be effective on essential genes. Mutants were
successfully generated on KKT2, KKT4 and KKT7, which included phosphomimetic mutants,
phosphosite-deficient mutants, and synonymous mutants. Whilst efficiency of the editing
varied by transfection, at least one homozygous mutant was recovered in each transfection
and overall, 29.2% of mutants screened showed integration of the repair template. None
of the mutants generated here showed growth defects or repeatable cell-cycle anomalies,

suggesting that these mutations did not have significant impact on the cell cycle.
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5 CHAPTER FOUR — PYTHON SCRIPT

5.1 Introduction
Python is an object-oriented high-level programming language with dynamic semantics and

intuitive syntax (Python Institute, n.d.). It was created by Guido van Rossum in 1991, a
Dutch programmer (Munro, 2024). Whilst Rossum made the first versions, Python has since
been worked on by a large community of programmers from around the world, with the
newest version (Python 3.0) being released in 2008 (Munro, 2024). This combination of
Python being a human-friendly high-level language with intuitive syntax has increased its

popularity and has led to significant development in the available packages.

Some packages are used in a wide variety of programmes created for diverse purposes.
Examples of these are NumPy (Numerical Python) which is a package designed around
mathematical manipulations and handling of arrays of data (Harris et al., 2020); and Pandas
(panel data) which can be used for statistical analysis of data and allows information to be
represented in a table-like format called a DataFrame (Mckinney, 2010). These DataFrames
can be used to store data, but equally they can be used to manipulate or search through
data. Both packages allow organisation and manipulation of data, which is useful in many
different programmes to perform the necessary calculations to derive the appropriate

output.

In contrast, some packages are highly specific to their uses. Biopython is a package
designed for molecular biology and bioinformatics (Cock et al., 2009). Biopython's features
include (but are not limited to) translation of DNA and RNA to protein, calculating the
complement and reverse complement of DNA sequences, and being able to produce and
read sequence alignments. Some of the more advanced aspects of Biopython include
analysis of large data sets such as handling Next Generation Sequencing reads. Reads can
be taken through quality filtering, trimming, assembly into a full genome or analysis against
a reference genome to assess gene expression and finally calculating Principal Component
Analysis of differentially expressed genes. Development of Python scripts to complete tasks
like these also ensure identical analysis of each dataset, allowing consistency between

experimental conditions, or even across organisms. As the current version of Biopython has
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many varied features, the creators have organised its capabilities into groups of smaller
packages which can be imported individually. This approach minimises the memory
required to run each respective script and keeps the syntax clear. But conveniently, there

is cross-compatibility between all sub-packages.

Another Python package for molecular biology is Primer3 (Koressaar and Remm, 2007;
Untergasser et al., 2012). Primer3 is a package that can design PCR primers against an input
DNA sequence, but can also analyse primer sequences for common features. Primer3 has
a wide array of customisable input variables such as desired melting temperatures or GC
content of the output primers, and selection or exclusion of certain sequences within the
template sequence. It can generate several primer pairs, along with all the associated
information such as PCR product length. Originally, Primer3 was developed for command
line usage, but has since been adapted into a Python module in 2014 due to its popularity.
One consideration when using Primer3 is that it only uses the input sequence for primer
design and does not complete any form of cross-reactivity analysis with other parts of the
given sequence, nor does it consider the wider genome for similar sequences. As such,
caution should be used when designing primers with Primer3 on small reference sequences
to ensure specificity. This is particularly important on genes with known homologs of high
sequence similarity as primers designed by Primer3 could lack specificity to the intended

target.

In this chapter, | will describe and discuss how | created a Python script that can design a
repair template in a similar manner to those that were designed and used in the previous
chapters. The script is instructed by a simple Excel Spreadsheet “form” (that works as a
configuration file), a user-provided a codon usage table, and a FASTA file of their gene.
Following execution, two repair template sequences are produced. One repair template
contains only synonymous mutations, and the other contains the desired nonsynonymous
mutation. Both repair templates have additional identical synonymous mutations needed
for screening. In addition, the script designs screening primers to detect the integration of
the repair template, and long oligonucleotide primers to produce the respective repair
templates. Lastly, the script also provides pairwise sequence alignments and some useful

information about the repair templates and primers. All of these outputs are contained in
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a single text document. This format allows visualisation of the alignments and creates a

store for the information the script has calculated.

5.2 Development
A Python script was created using Python 3.10.9, as well as several other packages listed in

Table 6, in particular the Biopython package (also known as Bio), Pandas and Primer3

(Koressaar and Remm, 2007; Cock et al., 2009; Mckinney, 2010; Untergasser et al., 2012).

In order to make the script more readable, avoid duplication, and to make it more flexible
to modifications in future versions, several files were created which are interlinked. Each
file contains a subset of the required code. Apart from the main file, each of the other files
creates a series of functions that can be called by other files to execute that portion of code,
so act like packages. Comparatively, the main file puts all of these other functions together

in succession to achieve all the necessary steps. The file names, their purposes, the

Table 6. Python package versions used in the creation of the Python repair template

generating script.

Package Version
Python 3.10.9
pandas 1.5.3

Biopython (Bio)

Bio - SeqlO

1.81
Bio - Seq
Bio - Align
NumPy 1.23.5
io N/A
random N/A
Primer3

2.0.1

Primer3.bindings
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shortened name used in the main file, and the appropriate appendices for the full code can

be found in Table 7.

One of Biopython’s features is that it has inbuilt codon tables, including variant codon

usage tables. However, the inbuilt codon table in Biopython did not have capacity to

retrieve every possible codon sequence for each amino acid — only one codon sequence

was retrieved when Biopython was asked to provide the codons for any amino acid. As

such, custom functions were created to call all the codon sequences that code for a given

amino acid, with or without the associated frequency usage data for every codon. All the

codon sequence and amino acid pairs use the standard genetic code.

Table 7. Repair generator constituent files and purposes.

Filename

Appendix
Containing the
Code

Main Purposes/Theme

Imported

as

main.py

reading_input_file.py

codon_dictionaries.py

7.2.10

7.2.11

7.2.12

To call each of the other
functions in succession to
perform the necessary steps
to generate the repair
template, screening primers
and production primers, as
well as reading the input
Excel spreadsheet
configuration file and
producing a user-friendly
output containing useful
information.

Interpretation of the input
codon usage table and
conversion to a Pandas
DataFrame.

To separate out each codon
from the input sequence
into identifiable pieces and

rif

cdict
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store them in dictionaries for
retrieval and manipulation.

codon_dataframes.py 7.2.13 To separate out each codon cdf

from the input sequence and
associate that codon with
frequency usage data to
allow selection of alternate
codons based on usage
frequency. These are stored
in Pandas DataFrames inside
dictionaries.

formatting_functions.py 7.2.14 To create more readable formats
versions of some of the
outputs for the output file.

stitching_functions.py 7.2.15 To break an input sequence stitch
into constituent parts and
put DNA sequences together
to form new sequences.

validator.py 7.2.16 To confirm the inputs given val
are consistent with each
other e.g. that the specified
codon codes for the amino
acid listed.

primer_functions.py 7.2.17 To design screening and primers
repair template primers with
consistent settings that work
with a range of target
sequences.

Biopython and Pandas packages in particular were used in conjunction to create a script
that uses a series of dictionaries to identify the sequence to mutate from a larger DNA
sequence, break the sequence down into constituent codon sequences, and then exchange
those codon sequences with the replacement codon sequence as dictated by the recoding

methodology chosen. Using dictionaries allowed nonsynonymous mutations to be created
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by removing the key-value pair associated with the target codon’s wild-type sequence and
replacing it with a new key-value pair corresponding to the desired mutation. Whilst
dictionaries do not store data in a guaranteed order, using numbers as part of (or the
entirety of) the key ensured codons were retrieved in the order they were in the original
input sequence when it was time to recreate a continuous DNA sequence. This ensured
that the protein sequence was maintained (except for the target nonsynonymous
mutation) and ensured that the chosen synonymous recoding method had actually been
applied to each codon, rather than effectively random triplet codes being chosen for each

codon regardless of the recoding method selected.

5.2.1 RECODING METHODOLOGIES

One of the main benefits to the script is the automated recoding. Recoding a sequence
manually is very time consuming and laborious. The script offers several recoding
methodologies to generate both the synonymous recoding (used for screening purposes)
and a nonsynonymous target mutation. There are four types of recoding the script can
perform. The “matched” setting can only be applied to synonymous mutations, but the
other three (“random”, “highest” and “lowest”) can be applied to both synonymous and

nonsynonymous mutations.

When the chosen recoding method is applied to nonsynonymous mutations, all codon
sequences for the respective amino acid are considered in the selection process. However,
when the recoding method is applied to synonymous mutations, the WT codon sequence
is removed from the available codons to choose from to ensure a mutation occurs. The
exceptions to this are the codons for methionine and tryptophan, which only have one
codon each in the standard genetic code, so they will always be “replaced” with the same
sequence as the WT codon. Similarly, for amino acids that are only encoded by two codons
and are being synonymously mutated, the choice after removing the WT codon from the
selection leaves only one possible replacement codon sequence. So, these codons will
always be recoded predictably to the non-WT codon sequence, regardless of recoding

methodology used.
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“Random” is as the name suggests, a random unbiased selection of possible codons for the
desired amino acid using the random Python package. Unlike the other recoding methods,
“random” will cause a different output repair sequence on each execution of the code,
when given the same inputs (excluding the exceptions already discussed). If little is known
about the impact of different sequence compositions on the target gene or species, or if
targeted approaches have been unsuccessful, this method provides a way to generate a
repair template without bias in the design to explore options that might not have previously

been considered.

“Highest” and “lowest” settings are in reference to the frequency usage of the codon
sequences. The user supplies a codon usage table as part of the required inputs (see Figure
17B for an example). The codon usage table provided will dictate which codon is selected
for each amino acid, with “highest” referring to the most used codon, and “lowest” the
least used codon (see Figure 15, part 2 for more details). These allow the user to bias their

recoding to use more common or rarer codon sequences, as desired.

“Matched” is essentially a harmonized codon selection - choosing the codon that is most
similarly used to the input codon, and is the most similar to the design strategy used in the
previous chapter. To determine which codon is the “matched” codon, a simple subtraction
is performed using the values in the “Fraction” column from the supplied codon usage table

from https://www.kazusa.or.jp/codon/ (Figure 17C). However, using this approach means

that ties can occur fairly frequently. In these instances, the data from the “Number” column
(i.e. a count of instances in the selected genome) is used as a tiebreaker, taking the higher
of the two. That being said, as this script currently stands, there is the possibility that a tie
could persist and if that is the case, the script will output a text based error in the console,

and will likely fail to complete.

In all recoding methods, each codon is evaluated independently from other codons
encoding the same amino acid. To achieve this, for “matched”, “highest” and “lowest”
recoding, frequency usage data is copied from a reference for each codon, and then
calculations are performed only on the copy. Similarly in the “random” setting, the list of
codon sequences for a given amino acid is copied from a reference list, before adjusting to
remove the WT sequence for synonymous mutations. This approach ensures that even in

instances where the same amino acid is represented several times, the replacement
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Figure 15. Python repair template generator script workflow (part 1). 1A) The script
requires 3 supplemental files (a FASTA file, a codon usage table and the configuration
spreadsheet — see Figure 17 for more detailed versions). The configuration spreadsheet is
used to determine the location of the CDS (bold underlined) within the supplied FASTA file,
and to identify: the target codon, surrounding region to recode (1B), and homology arms
(1C). Generally, the recoding region is equally split to have the same number of recoded
codons either side of the target codon (however, one side will contain one extra codon in
instances where this is not possible). However, the recoding region is adjusted to stay
within the CDS if the target codon is in close proximity to the start or end of the CDS (1B).
2A) Each codon from the recoding region is identified and evaluated individually to select
a suitable replacement sequence (2B), dictated by the chosen recoding strategy specified
in the configuration spreadsheet (1A). The replacement codon will never be the same as
the WT sequence, except for methionine and tryptophan codons. 2C) When using the
matched recoding setting, the difference in usage of the alternate codons are compared
with the WT codon sequence, and the most similarly used codon (either more or less
frequently used) is chosen. 3A) For the nonsynonymous mutation, the codon sequence is
chosen from any possible codon sequence for that amino acid. The chosen sequence is
determined by the recoding method chosen in the configuration spreadsheet (1A). 3C)
Lastly, the individual mutated codons are concatenated into the final repair template

sequence, with the homology arms added at either end.
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Figure 16. Python repair template generator script workflow (part 2). 4A) To design the
primers needed to make the repair template, first an artificial gene sequence is created
containing the recoded sequence (dark blue/orange) in place of the WT recoding region.
This sequence will also include UTRs if provided. 4B) The sequence is split into 3 parts:
upstream of the repair template, the repair template, and downstream of the repair
template. 4C) In order to determine a suitable annealing sequence, a primer pair is
designed such that the forward primer is within the recoded region/mutated target site of
the repair template, and the reverse primer is constrained to the downstream region. The
forward primer is used as the annealing sequence but the reverse primer is not used —
single primers cannot be designed with Primer3 in this way. 4D) The forward primer
sequence is used as the annealing region for the long primers needed to generate the repair
template. To complete the long primers, the sequences are extended back to the full length
of the repair template on each strand to create primers 1 and 2. Primers 1 and 2 must be
less than 120 nt each, otherwise they are redesigned with an alternate annealing region
(see Figure 19A for more details). 5A) To design screening primers, the WT sequence is split
into 3 parts, similarly to the artificial sequence. 5B) The WT screening primer pair
(red/purple) is generated by constraining the forward primer to the upstream region, and
constraining the reverse primer to the recoding region (cyan/yellow). 5C) The mutant
screening primer pair is designed using the forward primer (red) from the WT screening
primer pair, and constraining the reverse primer (magenta) to the recoding region (dark

blue/orange) of the artificial sequence containing the repair template generated in part 4A.
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AUC I 0.63 19.1 ( 94755) ACC T 0.29 17.5 ( 86625) AAC N 0.79 21.1 (104327) AGC 8 0.29 25.3 (125511)
AUA I 0.09 2.8 ( 13730) AcA T 0.17 10.1 ( 49979) AAA K 0.17 5.8 ( 28498) AGA R 0.04 2.7 ( 13523)
AUG M 1.00 22.8 (113035) ACG T 0.42 24.9 (123050) AAG K 0.83 28.6 (141622) AGG R 0.08 5.5 ( 27170)
GUU Vv 0.12 8.7 ( 42923) GCU A 0.15 18.2 ( 903€6) GAU D 0.30 14.7 ( 73013) GGU G 0.19 12.1 ( 59837)
GUC V 0.27 19.5 ( 96651) GCC A 0.31 36.8 (182020) GAC D 0.70 34.2 (169136) GGC G 0.53 34.3 (170081)
GUA V 0.08 5.5 ( 27330) GCA A 0.17 20.3 (100314) GAA E 0.20 11.7 ( S8159) GGA G 0.10 6.6 ( 32881)
GUG V 0.53 37.3 (184912) GCG A 0.37 44.4 (220138) GAG E 0.80 48.3 (239092) GGG G 0.18 11.7 ( S8128)
Ln1,Col1 100%  Windows (CRLF) UTF-8
Leishmania infantum [gbinv]: 8139 CDS's (4952524 codons)
fields: [triplet] [amino acid] [fraction] [freq v: per th d] ([number])
UU F ©.35 18.6 ( 52317) UCU S ©.12 10.1 ( 49998) UAU Y 0.17 4.1 ( 20192) UGU C @0.21 4.0 ( 19923)
buc F ©.65 19.3 ( 95738) UCC S @.19 16.4 ( 81198) UAC Y 0.83 20.2 (100139) UGC C 0.79 14.7 ( 72980)
Jua L @.02 1.7 ( 8226) UCA S 0.8 7.4 ( 36530) UAA * 0.21 0.3 ( 1675) UGA * 0.43 0.7 ( 3507)
UG L ©.12 11.0 ( 54287) UCG S .24 21.0 (104031) UAG * 0.36 0.6 ( 2958) UGG W 1.00 10.8 ( 53398)
UU L ©.12 11.4 ( 56281) CCU P ©.15 8.9 ( 44052) CAU H ©.25 6.6 ( 32829) CGU R 0.14 10.4 ( 51646)
UC L ©.27 25.1 (124189) CCC P ©.22 12.4 ( 61358) CAC H ©.75 20.3 (100341) CGC R 0.45 32.3 (159735)
UA L .05 4.7 ( 23324) CCA P ©.18 10.5 ( 51760) CAA Q ©.19 7.7 ( 38242) CGA R @.1@ 7.5 ( 37057)
UG L ©.41 37.7 (186757) CCG P ©.45 25.8 (127867) CAG Q ©.81 33.2 (164619) CGG R ©.19 13.7 ( 67860)
fUU T ©.28 8.6 ( 42717) ACU T @.12 7.0 ( 34618) AAU N 0.21 5.6 ( 27605) AGU S 0.8 7.2 ( 35724)
UC I ©.63 19.1 ( 94755) ACC T ©.29 17.5 ( 86625) AAC N ©.79 21.1 (104327) AGC S 0.29 25.3 (125511)
UA I .09 2.8 ( 13730) ACA T ©.17 10.1 ( 49979) AAA K 0.17 5.8 ( 28498) AGA R 0.4 2.7 ( 13523)
UG M 1.00 22.8 (113035) ACG T ©.42 24.9 (123090) AAG K .83 28.6 (141622) AGG R @.98 5.5 ( 27170)
UU V ©.12 8.7 ( 42923) GCU A ©.15 18.2 ( 90366) GAU D ©.30 14.7 ( 73013) GGU G ©.19 12.1 ( 59837)
pUC V ©.27 19.5 ( 96651) GCC A ©.31 36.8 (182020) GAC D ©.70 34.2 (169136) GGC G @.53 34.3 (170081)
BUA Vv ©.08 5.5 ( 27330) GCA A ©.17 20.3 (100314) GAA E 0.20 11.7 ( 58159) GGA G ©.1@0 6.6 ( 32881)
UG V ©.53 37.3 (184912) GCG A ©.37 44.4 (220138) GAG E 0.80 48.3 (239092) GGG G ©.18 11.7 ( 58128)

Coding GC 62.32% 1st letter GC 63.26% 2nd letter GC 49.12% 3rd letter GC 74.58%
Genetic code 1: Standard
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Figure 17. Additional input files needed to execute the Python script repair template
generator. A) An example of the configuration Excel spreadsheet used to instruct the
Python script. Some cells have data validation activated to provide dropdown menus (cells:
B3, B5, B6 and B7). Sheet 2 (not shown) has the corresponding data for the validation. The
lengths of the recoding regions and homology arms must be a multiple of three (see main
body text for more details). As shown in the example, the word “end” (all lowercase) can
be specified instead of the base pair number to signify the end of the CDS is the end of the
FASTA file. When an alternating synonymous recoding methodology is selected, the
“Alternating every nth residue” cell (B14) must also be filled with an integer value greater
than zero. B) An example  codon usage  table collected  from

https://www.kazusa.or.jp/codon for L. infantum. After choosing the table on

https://www.kazusa.or.jp/codon, a genetic code table is also chosen to reveal the

translation column and the fraction column (columns 3 and 4 of each group). The filename
also corresponds to the one specified in A. C) A screenshot of the codon table from

https://www.kazusa.or.jp/codon, after selecting the desired genetic code to use. The red

box highlights the data that the user is directed to copy and paste into the text document

shown in B.

sequence is chosen in relation to the codon sequence for that residue in the reference

sequence, rather than a global change for all codons that code for the same amino acid.

5.2.2 ALTERNATING RECODING

In addition to recoding methods previously described, this script also offers the user the
choice to design a repair template that alternates between recoded codons and WT
codons. Alternating recoding in this way reduces the number of mutations added to the
daughter cell line, whilst retaining a large region of altered sequence for screening
purposes. The alternating recoding methods are available in all of the available
synonymous recoding strategies and are designated by “alternating” in their name,

followed by the type of recoding which the alternation will be.
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If an “alternating” method is chosen, the user must also specify the interval (n). The first
codon for any “alternating” method is always recoded, followed by the (n+1)™ codon until
the end of the repair template (Figure 18). The exception to this is that the target codon
will always be mutated even if it would normally fall on a codon that is not recoded by the
n value. In this situation, the pattern for the synonymous recoding will ignore the target
codon, leaving the pattern unaffected (Figure 18, n=2 example). When an alternating
recoding method is chosen, the alternating pattern (n value) chosen by the user will also

be displayed in the output file.

If no n value is provided or the provided value is 0, the script will prompt the user to rectify
the mistake, or else the execution will be cancelled. The user will also be prompted if the
script identifies that the user has put in an n value greater than half of the number of

codons being recoded. E.g. if the recoding region was 10 codons long and n was setto 7. In

Sequence to Recode

I I
wr CJUOICDIEIEIEIE] | ke
Continuous / n=1 . . :l . . . . . |:| WT codon
n=2 . . :I . : . |:| . . Recoded codon
L]

- B00ECOBO0 [0 e

Figure 18. Alternating recoding example. Each rectangle represents a codon. Colours
indicate whether the codon is WT sequence (grey), synonymously recoded (blue) or the
target codon which is both synonymously and nonsynonymously recoded depending on
the repair template (orange). The alternating n value is given for each example. The target
codon is always mutated regardless as to whether it would align with a synonymously
mutated codon (as in the example of n=3, illustrated by half orange and half blue) or

whether it falls between mutated codons (as in the example of n=2).
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this instance, only the first codon, the target codon and one other codon would be
mutated, which is unlikely to be desired. But if the user confirms that that is what is desired,

the repair template will be designed with those settings.

In order to create the “alternating” methods, the codons are initially sorted into two
dictionaries — one to recode, and one to remain as the input sequence. The recoding
method of choice is applied to the dictionary of the codons that fall within the recoding
dictionary, and after mutating, the two dictionaries are recombined into one for

reassembly into the final sequence.

5.2.3 FINAL REPAIR SEQUENCE ASSEMBLY

Once the recoding has completed, the new codon sequences are called from their
dictionary in order and concatenated to form the recoded region sequences. Then, a check
is run to confirm that the target codon translates into the expected amino acid for that
repair template. If all is correct, the homology arms are added to the recoded region to
complete the repair template. The homology arms are identified by using the co-ordinates
of the recoded region in the WT sequence and adjusting them with the length of the
homology arms specified by the user (see Figure 15 part 1C and 3B). Lastly, the homology

arms and the recoded sequence are concatenated to form each repair template sequence.

5.2.4 PRIMER DESIGN

Once the repair sequences have been created, the script designs oligonucleotide primers
to screen for integration and to generate the repair template itself. Both of these tasks use
a similar method to design them, by constraining the Primer3 package to design the primers

in specific locations of the DNA (Koressaar and Remm, 2007; Untergasser et al., 2012).

For the screening primer design, one primer is always in the region outside of the repair
template, with the other inside (Figure 16 part 5). Due to the constraints of the Primer3
package, the primer outside of the repair template is always the forward primer and so is
placed upstream of the repair region. As such, the primer design process may become
limited if short reference sequences are provided upstream of the target codon. The

reverse primer is designed to recognise either the WT sequence in the recoding region or
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the mutated region of the repair template. It should be noted that the process including
the WT primer pair design is completed independently for each repair template
(synonymous and nonsynonymous), which can lead to two different WT screening primer
sets in some instances. This situation is very rare, as the design process is using the same
settings and same input sequence for the WT screening primer pair. However, when it does

occur, it is up to the user to evaluate the primers and determine which they wish to use.

To design long oligonucleotides for repair template generation, the forward primer is
constrained against the recoded region of the repair template sequence, with the reverse
primer downstream of the repair template (Figure 16 part 4). The reverse primer is not
required, but Primer3 is only able to complete the design if both regions are specified. Using
the downstream DNA rather than a dummy piece of DNA was chosen so that the sequence
has more similar properties to that of the region the forward primer is designed against
e.g. GC content. The forward primer is used as the annealing sequence for Primer 1 and its
reverse-complement for Primer 2 (Figure 16 part 4C and D). The final primer sequences are
completed by recounting the sequence from the annealing regions to the ends of the repair

template (sense sequence for Primer 1, reverse complement sequence for Primer 2).

Once completed, both Primer 1 and 2’s lengths are evaluated. Most commercial suppliers
have a price cut-off for oligonucleotide sequences at 120 nt, and have a notable price
increase for those over 120 nt. As such, this script will only accept repair primer sequences
where both Primers 1 and 2 are less than or equal to 120 nt long. If this criteria is not met
by one or both primers, up to two alternate annealing regions are assessed instead (Figure
19A). This means that successful execution of the script will only be possible for repair
templates < 220 bp with a 20 bp annealing region. Generally, the region that can be used
to create an annealing region is quite small, and so the settings for Primer3 have been
somewhat relaxed compared to the screening primers, to ensure success. That being said,
in some tests on the longest repair templates, it was not always possible to design a suitable
annealing region, which led to the script failing to complete its execution. Usually, adjusting
the design settings will allow repair templates to be generated in this instance. Primers 1
and 2 are included in the output, both given as 5’ to 3’ sequences, such that they are ready
to purchase (Figure 20 green section). A suggested melting temperature is also provided in

the output document, as calculated by the Primer3 package.
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5.2.5 ALIGNMENT

In the output document, there are two sections containing alignments of the respective
sequences (see Figure 20). Firstly, there is a sham alignment nearer the top, which displays
the DNA and protein sequences of the WT “repair” sequence, and both repair sequences.
This is not a true multiple sequence alignment (MSA), but rather just an alignment of the
text characters using spaces and tab characters such that the relevant residues appear in
line with each other in the appropriate coding frame. This format is user friendly and serves
the same purpose as a MSA in this instance. Because this alignment relies on spacing using
text characters, the user is recommended to use a font that has a standard character size
such as Courier New, as the alignment of characters will be incorrect when viewed with
fonts with variable character sizes such as Calibri or Times New Roman. Biopython does not
have the capacity to generate MSAs, although it can interpret them, but it does have the
capacity to generate pairwise-sequence alignments (PSAs). Other packages such as
ClustalW for Python can create MSAs but ClustalW is not compatible with running on
Windows, limiting which devices would be able to run this script. As such, the output also
includes PSAs for WT-synonymous repair template and WT-nonsynonymous repair
template pairs. As it is expected that every base in both sequences will align without gaps,
the open gap and extension gap penalties were set to -10 (from the default suggested of -

1) to prevent alignments generating which did not have real biological relevance.

The purpose of including the PSA as well as the sham-MSA is to more clearly highlight where
the mutations are to the user and how they are spaced. Providing a PSA allows the user to
clearly see which bases are mutated through the symbols. In comparison, reading through
the sham-MSA is much harder to spot individual character differences across several lines
of text. This format is also more accessible than the use of colours to indicate the
differences for those with colour-blindness, which is also not usually possible to include in

a text document file.

Additionally, the script provides a count of the number of different bases between each
repair template and the WT sequence as well. This function simply compares the nth
character from each of the sequences being evaluated and counts the numbers of non-

identities (Figure 19B).
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Iteration 1
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18 bp Primer 2
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110 bp
B
WT sequence: ClG|C|A|C|G o e A|IT|ICIA|G|T|G|C|G|T|[C|G|T
Repair sequence: clel|e clajclclalg|Gg|a|G|T|G|T|C|c|c|a|c|G|a
Mutations: 00 O E b EAE U0 00 0030 04d

¥ mutations 12

Figure 19. Schematics of the repair primer annealing region design process and the
calculation of the number of mutations per repair template. A) The repair primer design
analysis iteration. To generate the repair template, two primers are designed which have
an overlapping annealing region (black) - see main body section 5.2.4 for more details. The
length of these primers are evaluated. If one or both primers are too long, an alternate
annealing sequence is evaluated and the primers are redesigned to fit the new annealing
sequence. If one or both of the second set of primers are too long, a third and final
annealing region is evaluated as before. B) Mutation counter example. The first base of

each sequence is compared. If they are not identical (red text), 1 is added to a counter. If
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they are identical (black text), nothing is added. The second base of each sequence is then
compared in the same way, and so on and so forth. The total number of mutations is then

reported in the output file.

5.2.6 COMPLETING THE EXECUTION OF THE CODE AND THE OUTPUT
DOCUMENT

As mentioned in previous sections, the results of the executed script are put into a single
file, which is saved as a text document with the job name from the configuration
spreadsheet as the filename. Saving the results helps the user organise different designs,
and is clearer for reading than displaying the results in the console window of the Python
interpreter running the script. However, it should be noted that the script will overwrite

any file that has the same name, which could overwrite previous files.

The output document (Figure 20) comprises several sections that each contain different
components needed to create precision mutants. Briefly, the output document contains
the settings used (for record keeping); the repair template sequences (both with and
without coding-frame spacing); screening primer sequences with PCR product sizes, repair
primer sequences in a ready-to-purchase 5’ to 3’ format; and pairwise alignments (to

visualise the mutations).

On completing the execution of the script, the console also displays a text message to
inform the user that it was successful and provides the filename of their output file. Whilst
a text document is limited in what information and formatting can be incorporated, this
document provides a ready-to-go package of all the sequences and primers needed to

generate and screen for precise mutants.
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Figure 20. Example output file generated by the Python script. Colours (left) indicate the
different sections. Red — job details specified by the user. Orange — Sham multiple sequence
alignment of the WT sequence, and both repair templates, as well as counts of the number
of mutations each repair template has. The end of the sequences have been cropped of for
legibility. Yellow — Screening primers and corresponding information. Green — Primer
sequences to generate the repair template sequences. Cyan — The WT and both repair
sequences without any spaces or additional characters. The end of the sequences have
been cropped of for legibility. Magenta — Pairwise sequence alignments of the WT
sequence with each of the repair templates (| indicates identity, ¢ indicates non-identity).
All DNA sequences are in the 5’ to 3’ orientation. A copy of the text in this file is available

in a larger font size in Appendix 7.2.9.

5.3 Results

The script created and described here is able to generate recoded repair templates up to
220 bp long for continuous coding sequences (i.e. no introns). It has been tested on DNA
sequences from both Leishmania mexicana and Trypanosoma brucei, and was successfully
able to design them within a matter of seconds (although results will vary with different
computer’s memory availability). The script is instructed by a configuration Excel
spreadsheet and exports the results into a text document, both of which increase
accessibility for non-programmers. Additionally, all the required software and packages are

freely available.

The script has also been designed to take away tedious jobs from the user, so it is able to

manipulate codon tables provided by https://www.kazusa.or.jp/codon/, which are given

as RNA sequences, and reformats them into DNA sequences. This only requires the user to
go to the website, retrieve the codon usage table for their organism, and then copy, paste
and save the data (Figure 17B and C). This reduces the burden on the user, so that fewer
mistakes are made. Additionally, once prepared, the codon table is reusable to apply to any
target gene in the same organism. Other tedious tasks that the script completes include

recoding each triplet code in the desired sequence, visualising each point mutation, and
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assessing annealing sequences for primers to generate the repair template. Having
personally created many repair templates manually, these tasks can take hours in total,
especially when including checking for human errors. However, this script is able to

perform each of these tasks consistently and far quicker than any human.

The script is (somewhat) able to understand which part of a DNA sequence is coding and
which is not, as guided by the user. This allows the user to prepare a single FASTA file for
an entire gene sequence, including 5’ and 3’ untranslated regions (UTRs), to generate repair
templates for as many sites as they wish in that gene by just providing the target amino
acid residue and amino acid number. Whilst it would have been possible only require the
amino acid number without the corresponding amino acid identity, requiring the user to
provide the identity was intentionally chosen to provide opportunity for the user to identify
mistakes, as prompted by the script’s checking mechanisms. If the DNA sequence of the
given residue number does not correspond to the input amino acid residue, it will output a
text-based error message in the console. In this instance, the script will continue to run,
unless it encounters further issues. Likewise, the script will check that the user has correctly
specified a coding sequence that is in frame i.e. the coding sequence length is a multiple of
three. Currently, the script does not recognise coding sequences by the presence of start
and stop codons. This has the benefit that a user can provide only a partial gene sequence,
as long as it is in-frame. In this case, the script will treat the specified start and end as the

III

“real” start and end, and will act in accordance with the special cases in Figure 15 part 1B,

so it is not recommended to do this. Additionally, if the user supplies a sequence that is a

III

multiple of three base pairs long, but from a nonsense frame, the script will still “recode”
in the +1 frame. Hopefully it will be apparent to the user that the protein sequence they
expected is not correct in the output, even if the code has not detected a difference in the

expected amino acid residue and number.

5.4 Limitations and Future Directions
A key next step for this script is testing the designs it produces in vitro. Whilst the script

generates sequences that seem sensible, those sequences are only useful if they have real
world tractability. As such, designs using a variety of the settings should be tested on

targets that have already been shown to be possible to mutate. Using a previously mutated
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site and the same sgRNAs will ensure that a failure to mutate the site is because of some
aspect of the repair template design, rather than leading to questions about its essentiality.
Additionally, this experiment could also assess whether one of the design strategies is
favoured for incorporation over the others, and whether different sequence compositions

have different effects on the cell.

Any computer programme is limited to what its programming tells it to do. In the modern
era, we are all familiar with words such as “glitch” and “bug” in reference to programmes
not performing the expected task, caused by mistakes in a piece of software’s code. Whilst
this script has been tested on a variety of different inputs to remove as many issues as
possible, there are still issues with this version of the script. Most of the known issues,
regard features that are lacking or imperfect from a biologist’s perspective. However, from
a programmer’s perspective, the main issue with the script at present is that it lacks proper
error catching mechanisms. Currently, unless an issue arises that means the script is unable
to perform a task, the script will continue to completion. The current “error catching” is
only simple if clauses which when activated print out error related text. This text can be
easy to miss in the console of the user’s Python interpreter and the presence of an output
file may lead a user to believe the script has performed the task as expected, when it has
not done so. In future versions of this script, it would be prudent to incorporate proper
error catching mechanisms into it, which will cancel or stall the script if there are issues
with the inputs or with the calculations. These errors are also harder for users to miss, as
they involve brightly coloured text and error codes, which the user can use to investigate

further.

As for the biological issues with the code, the most major set of issues is with how this
script interprets what is a coding sequence, how it should be translated and hence what
DNA sequences should or should not be translated. This script does not use coding
sequence detection methods to identify which part of the DNA sequence are coding and
which are not. Instead, the user specifies where the coding sequence starts and ends, and
the script verifies that this specified region has a length that is a multiple of three,
corresponding to complete triplet codes. As such, this script interprets any string of A’s, C’s,
G’s and T’s that has a length which is divisible by three to be suitable DNA for recoding.

Technically, other letter characters may also be translated if they are used to represent
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combinations of bases such as R for purines and Y for pyrimidines, either yielding “X” or a
real amino acid if the character is in the wobble base position. Even if the sequence
provided includes several stop codons, which are obvious to any biologist as being either
nonsense or out of frame, the script will try to recode it. It only treats a stop codon
differently for the specified end of the gene. However, this stop codon will still be recoded
to an alternate one, if it is included in the recoding region (see Figure 15 part 1B for this
special case). The script is able to detect incorrect target site translations, so it would be
expected that in most of these instances, the desired residue to mutate would not match
the input target residue. But, there is a possibility that there is a combination of DNA bases
that match the target amino acid in the correct position, and hence the code completes. At
present, it is hoped that the user will be able to identify an issue has occurred from the
displayed coding sequence in the output file being noticeably wrong. Going forwards, it
would be best to add an error catching mechanism that halts the progression of the code
if the entire recoding region’s translation does not match the input. Alternatively, or in
conjunction to that, adding coding sequence detection may prevent some of these errors

going unnoticed.

On a related note, if the DNA sequence provided is not a multiple of three, text-based error
messages are displayed. In some tests, it was noticed that if the repair template’s length
was not a multiple of three, the code would still continue to completion because the
current error catching mechanisms do not prevent the code from completing. In these
instances, the last codon of the repair template (i.e. in the homology arm) was presumed
to be missing a base and so was not translated. On the assumption that it was in fact the
last codon which was missing a base, this response is acceptable and is similar to how most
commercially available programs would interpret the sequence. However, if in fact the base
was missing from the start of the repair template, the script identifies the codons from the
start of the sequence, so in effect “causes” a frame shift before calculating the translation.
Going forwards, it would be good to add a feature that can handle repair template lengths
that are not a multiple of three, perhaps by extracting the additional bases from the

reference sequence, that are removed in the output.

As eluded to, because the present version of the script can only correctly recode in-frame

DNA, the user is limited to selecting homology arm lengths and recoding region lengths
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that are multiples of three to avoid these issues. This is not inherently problematic, but
does restrict flexibility and creates opportunities for mistakes that cause the script to fail
to complete or produce nonsensical results. So in future versions, it would be good to either
restrict the inputs that the user can pick from to being values that are multiples of three,

or to find workarounds for the situations when they are not.

An additional restriction the user has on their input DNA sequence is that this script can
only handle continuous coding sequences. As such, the script is unable to provide repair
templates for non-coding regions (although it can use non-coding DNA for homology arms
if the target is in proximity to the start or end of a gene), and it cannot recode coding
sequences that contain introns. As this script was designed for use in Leishmania species
and other kinetoplastids, this is generally not a problem. Few genes in these species contain
introns. However, it does mean that this script could not be used for higher eukaryotes that
have much more complex gene structures, although it may work in some prokaryotic
species (currently untested). Likewise, this script was designed to generate mutations in
coding sequences, so it being unable to mutate untranslated sequences is not inherently a
problem, but it does restrict its use-case somewhat. It may be possible to design a similar
script to modify non-coding DNA sequences, but most likely, this would have to be on a
case by case basis, as it is unlikely that mutations of interest for non-coding RNAs would be
transferable to splicing signals, centromere sequences, or promoter sequences for

example.

Similarly, the script can only recode one continuous block of sequence. As discussed
already, it can recode alternating codons from within a continuous block. But at present, it
is not possible to design a repair template which has a stretch of recoding, followed by a
break in recoding, followed by another region of continuous recoding, as was used for some
repair templates tested in this project (for example KKT2 S493 repair templates). During
some transfections, certain clones showed evidence of recombination at extended breaks
in recoding (211 bp of continuous WT sequence) — these have been labelled as “complex”.
To minimise chances of this happening, it seems advisable to avoid incorporation of such
large blocks of WT sequence (even though the use of the alternating settings when n>3
could produce this). As such, this feature was not developed for this script. However, if

there is demand for such a feature from the field, it would be reasonably straightforward
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to incorporate, using a similar strategy to the alternating recoding options that this script

already includes.

As this script was designed for coding sequences, the translations of each triplet code have
been manually written into this code. As discussed previously, Biopython does include a
range of codon tables, but it does not have full two-way directionality. When requesting
the translation for any triplet code, it was able to recall the amino acid. However, when
requesting the codons that correspond to an amino acid, it would only produce one of the
triplet codes, regardless of how many there are (which could be up to six). So two functions
were created to ensure that all triplet codes were recalled — one with, and one without
frequency usage data. However, because this was manually coded into the script, this
version of the script only recalls codons corresponding to the standard codon table, and
does not know how to call abnormal codon usage sequences. In a future version, it would
be possible to recreate these functions for all known codon usage tables, and require the
user to select which table to translate from, although this is not necessary for

kinetoplastids.

Whilst the script is designed for coding mutations, it has been designed to only induce a
single nonsynonymous mutation. There are instances where a pair or small number of
coding mutations may be necessary in a single repair template, such as was trialled with
KKT2 S505 and S506 double mutants using ssDNA in this project. As the main version of the
code presented here did not allow for multiple mutations (so would have to be adjusted
manually, which also impacts all of the primer designs), a first draft of a modified version
of the code which can generate multiple mutations has been created. This version allows
up to 5 mutations per repair template and is available in Appendix 7.2.19. This version
requires the user to specify the number of mutations up to 5 (so can be used for a single
mutation if desired), as well as the amino acid residue and number for each of them. It also
has some more complex assessments of how to distribute the recoding region such that all
target sites are incorporated if they are unevenly spaced. In short, if the target sites are
evenly spaced, the recoding region will be centred around the middle of those sites. But if
one target site is distant from the others, the recoding region will be adjusted to ensure
that all target mutations are within the coding region, and any additional codons to record

are spread as evenly as possible, flanking the target sites. However, this version has not
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been tested as thoroughly as the main version presented, so may contain some currently

unknown bugs.

At present, this script does not automate the entire process of designing a repair template.
The largest missing feature is the capacity to design sgRNAs for the target of interest. For
this current version of the script, the user has to complete this step themselves, and then
inputs the region to be recoded to cover the sgRNAs they have chosen, if they wish to
replicate the methods used here. This step is a key part of creating the repair template, so

will definitely be investigated for incorporation into future versions.

In order to incorporate sgRNA design into the script, the script also needs to be able to
complete BLAST searches of the entire genome to ensure the sgRNA sequence is unique.
Primer design would also be improved if BLAST searching were incorporated as part of the
design quality checking process, to reduce the possibility of off-target primer binding during
the screening PCR. The current screening primers are designed only in reference to the
input sequence. This could mean that the screening primers generated are not consistently
specific enough to recognise only the target gene, especially if the target gene has very
similar homologs in the genome. The Biopython package does offer BLAST searching
capabilities using the NCBI (National Center for Biotechnology Information) servers via an
internet connection or locally on the computer running the search. There are pros and cons
to both local and remote BLAST searching. The script at present runs entirely locally,
meaning it can be used without connection to the internet (after initial installation of the
relevant packages), so local installation would maintain that aspect of the initial code. In
some cases, it may also be faster to run locally as the user is not “competing” with other
users for the server memory to complete the search. Additionally, local running retains
confidentiality of the sequences (Cock et al., 2009). However, local BLAST searching
requires a lot more set up, which would have to be completed on each user’s device to
achieve, and that user would also require a database of the genomes to BLAST against on
their device too. As such, it is most likely that future versions of this script will use online
BLAST searching, to minimise the set up required by the user of the script (Cock et al.,
2009). This could have the benefit that the user will be able to access newer versions of

genomes when they are published, with minimal extra steps to use.
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Another design feature that would be beneficial to have in the script would be either the
inclusion of a restriction site change in the sequence or at least an assessment of the new
sequence for restriction site changes. Based on the practical experiments completed in this
project, restriction enzymes seemed to be more accurate predictors of the genotype than
PCRs when restriction sites were in close proximity to the target site. However, the results
were sometimes less clear to interpret. In addition, when the designed primers conferred
poor specificity at distinguishing WT from mutant sequence, restriction enzymes served as
a useful backup. It was generally more laborious to screen by restriction digest, and comes
with potentially higher costs (depending on the enzyme). But if the user has this
information at the point of design, they can make informed choices about which way they
wish to screen their mutants. Alternatively, they may choose a different design that better
suits the reagents they have on-hand. It should be noted that the additional labour to
screen by restriction digest largely comes from requiring a PCR amplification step to
generate the DNA to be digested on all clones being screened. Therefore, if a user intends
to use restriction site analysis, an additional primer set would be required. As such, primer
design for this should be added to the script also. Alternatively, a separate script could be
developed to allow the user to provide the repair template sequences and primer
sequences that they have on-hand to suggest a restriction digest strategy, should the user

have issues with PCR-based analysis.

To further expand this script into a high-throughput tool, it would be beneficial to add batch
job capacity. To tackle this problem, another version of the script was developed with batch
capabilities and is available in Appendix 7.2.18. In short, this version uses a for-loop to
iterate over the script several times, with each iteration corresponding to a column in a
modified version of the Excel configuration form, where each column is a different job to
execute. Surprisingly, execution of this script with 7 input columns did not take much longer
to run. However, further testing of this version is required to determine the limitations and

potential bugs that may exist in the new parts of the code.

Lastly, it would greatly improve accessibility of this script if the script could be hosted on a
website. There are already web-based tools for designing sgRNAs

(http://grna.ctegd.uga.edu/), and for designing CRISPR-Cas9 edits

(http://www.leishgedit.net/Home.html) which have been crucial in the field for much of
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the recent work involving gene editing. Being web-based allows potentially global access
to the script developed here, which could have the effect of standardising this methodology
across the field. It would also allow improvement to the user-interface. At present, the use
of an Excel spreadsheet “form” was chosen to make using the script less intimidating for
non-programmers. However, setting up the script on the user’s device and executing the
code still requires users to interact with a programming software, which can be quite
intimidating. All of this could be hidden from the user on a website, only requiring them to
fill in a more user-friendly form. A website may also allow visualisation options to be
created to show the input sequence, its translation, and how the repair templates and

primers designed fit in with that.

5.5 Summary and Conclusion
Overall, the script created here completes the tasks it was programmed to do successfully,

which can help the user design repair templates and screening primers quickly. It has been
tested on DNA sequences from both L. mexicana and T. brucei. The script does not
complete every task necessary to complete this precision editing methodology from
scratch, but none of the missing features are untenable, and much of the labour load is
reduced for the user when using this script in its current version. The missing features are
hoped to be included in future versions to further improve on the work completed here,
especially improving accessibility to use this script through hosting it on a website. At
present, as long as the user understands the limitations of the script discussed here, it can
be used effectively. Further testing is needed to assess whether the repair templates and

screening primers designed with this tool are effective in vitro.
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6 CHAPTER FIVE — GENERAL DISCUSSION

6.1 Discussion
This project set out to establish an efficient precision editing methodology for Leishmania

mexicana in order to generate kinetochore phosphosite mutants. Two methods were
trialled to engineer the desired amino acid substitutions: using 120 nt single-stranded DNA
(ssDNA) repair templates and 160 bp double-stranded DNA (dsDNA) repair templates
targeting the genomic DNA. Whilst both methods were able to generate some precision
edited mutants, there was a stark contrast in the efficiency between them. dsDNA repair

templates were about 15-fold more efficient on average than ssDNA repair templates.

Successful generation of a range of kinetochore phosphosite mutants allowed for
investigation into the effects of these mutations. Most mutations did not result in a
statistically significant change in growth rate or cell cycle progression (Figure 12).
Additionally, the kinetochore phosphosite mutants were assessed for cell cycle defects,
which largely showed no change compared to WT. However, two clones with mutations in
KKT2 showed an apparent triploid DNA content following continual passage (Figure 14),
although the secondary clone for each of these cell lines failed to show the same
phenotype. Additionally, the phenotype was not replicated when the experiment was
repeated using a fresh sample of cells taken from cryo-storage. Leishmania are renowned
for ploidy changes due to their high genome plasticity, especially in response to stress. The
underlying mechanisms as to the drivers of these ploidy changes are not currently known,
but reports of such events are common under a wide array of circumstances (Black et al.,
2023). Given that the phenotype was not seen in both clones assessed and that it was not
repeatable, it suggests that these were likely random events. Whether the mutations
induced in KKT2 lead to an increased probability of these events happening remains to be

seen.

To enable expansion of the technique developed here into higher throughput systems, a
Python script was developed to automate the design process. Not only does the script
design the repair template, but also generates PCR screening primers and long primers to
generate the repair templates it has designed. The script has several customisation options
concerning how the recoding is completed, to allow users to both mimic the strategy used

here, but also to try alternate designs should the former approach not work. Whilst this
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programme is currently lacking a few desired features to complete the entire repair
template design process, namely protospacer identification and sgRNA design, in its
current version, it is already a functional tool. Two other versions of the tool have also
been drafted. The first includes batch design of several repair templates from a single
execution of the script (Appendix 7.2.18) and the second generates repair templates

containing up to five nonsynonymous mutations in close proximity (Appendix 7.2.19).

The purpose of creating a precision editing methodology that is efficient and convenient
was largely to allow investigation into essential genes, without complete loss of the target
protein. Currently in Leishmania, essential genes can be investigated through inducible
deletion such as the DiCre LoxP system (Duncan, Jones and Mottram, 2017), episomal
expression prior to genomic deletion, or using ex vivo/in vitro approaches such as
recombinant protein expression. In the case of using DiCre recombinase, so called “leaky”
expression can still be a problem, whereby a small proportion of cells escape deletion of
the target locus. It is also a complex process to set up a cell line, typically requiring several
rounds of transfection and screening of suitable clones. Whilst other kinetoplastids have
RNAi machinery that can be used for inducible deletion, most Leishmania species lack RNAI
machinery, including L. mexicana (Ullu, Tschudi and Chakraborty, 2004). Episomal
expression of either WT or mutant versions of a target protein can often have the effect of
dysregulated expression, typically in the form of over expression of the target protein,
which can have cytotoxic effects. Recombinant expression can allow study of the target
protein but takes it out of the cellular context of that protein. Additionally, some proteins
are far more challenging to express and purify than others, and there is no way to
determine this in advance, especially as many of the kinetochore proteins do not have
identifiable protein domains. Moreover, interactors or substrate proteins may need to be
expressed to gain any functional insights, only adding work to an already labour-intensive

process.

The benefits of precision editing have not gone unnoticed by the community, with
examples of targeted editing using small selection-free constructs being used by a wide
array of groups (Zhang and Matlashewski, 2015; Crawford et al., 2017; Medeiros et al.,
2017; Janssen et al., 2018; Rico et al., 2018; Wall et al., 2018; Lander and Chiurillo, 2019;

Pal and Dam, 2022). However, the similarities end there, with each group using different
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construct lengths, with different homology arm lengths, and some using ssDNA whilst
others use dsDNA. Clearly all the methods used were able to generate the desired
mutations but with varying levels of success. Broadly speaking the methodology was not
the focus for these previous groups’ work, but was a means to investigate something of
greater interest. Standardising the process could help to reduce time and money wasted in
the community, as has been the case through the introduction of tools such as the CRISPR-
Cas9 toolkit developed by Beneke et al. (2017). It would also open up the methodology to
groups who may have been put off by the laboriousness of the previously published

methods which may not even generate the desired mutations.

Uses for the precision editing cover a wide array of different biological questions. As well
as investigation into post-translational modifications, as was explored here, precision
editing could also be used to explore organelle targeting motifs, catalytic residues of
enzymes, protein-protein and protein-non-protein interface interactions, processing
signals of pro-proteins, and even potentially the effects of specific residues on protein
structure and stability. All of these events require specific amino acid residues in specific
locations of the protein, and so modifying those residues allows understanding into why
these proteins have evolved to have the sequences and structures that are observed. Doing
so in the most native context possible is important to ensure that interpretation of the
results is accurate and not due to an artificial situation. For example, an in vitro expression
of a mutant version of an enzyme could still detect catalytic activity at low levels when the
substrates are provided in excess. But that same enzyme could be effectively non-
functional in a cellular setting where substrates exist in lower concentrations with temporal
control. Or indeed the opposite could be true that in a cellular setting, additional post-
translational modifications could increase catalytic activity, which were absent in the
recombinantly produced protein e.g. glycosylation is absent if the recombinant protein is
made using Escherichia coli. Thus, it is important to supplement such in vitro experiments

with studies in cellulo.

Other potential uses of precision editing could include adding small protein tags in a
selection free manner, modifying antibody-binding epitopes to enable use of non-
kinetoplastid commercial antibodies in molecular biological techniques, or generating a live

attenuated vaccine. This project has not attempted to add sequence such as a protein tag

109



into the genome. Given that a 3xHA tag is only 24 amino acids long, equating to 72 bp of
DNA sequence, it is not much larger than the constructs used here (editing window of 60
bp, equivalent to 20 amino acids). The difference in size of the construct could affect the
editing efficiency, but it stands to reason that this is within the realm of possible, so could
offer selection-free tagging for cell lines that already contain larger numbers of antibiotic
resistance genes. Especially as similar approaches have already been successful in T. brucei
(Kovarova et al., 2022). Adding such tags is frequently necessary for techniques such as
western blotting and immunofluorescence microscopy in kinetoplastids as most
commercial antibodies are against protein epitopes that are not present in the
kinetoplastid orthologs of the target proteins. This can become problematic if the gene of
interest does not respond well to the addition of an epitope tag, particularly with large
disruptions to UTRs from the insertion of antibiotic resistance makers. As such, an alternate
approach could be to modify the target protein to become humanised or equivalent so that
commercial antibodies could be used against it. This would not be applicable to the most
divergent genes in Leishmania, but might increase the diversity of usable commercial
antibodies. Antibody recognition of proteins is a key defence for the host immune response
to a Leishmania infection. Since Leishmania do not rely on antigenic variation like their
Trypanosoma cousins, any exposed surface proteins are likely to remain constant
throughout infection. This suggests there is an opportunity to create a mutant cell line that
could be attenuated during infection for the purposes of vaccine development. Surface
proteins are one possible target, but since the majority of the mammalian host infection is
intracellular, the immune system has limited opportunity to develop antibodies against
metacyclic promastigotes or extracellular amastigotes before they are phagocytosed.
Attenuating the parasite’s ability to invade immune cells could allow the immune system
to have the time to activate the adaptive immune system to generate antibodies against
the Leishmania cell. Alternatively, modifying the amastigote’s capacity to manipulate the
host macrophage could allow the macrophage to process and present antigens to activate
an immune pathway that is less reliant on antibody generation, which may be able to clear

the infection.
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As more groups use precision editing for more diverse studies, there becomes a greater
need for tools to help with the process. For the small number of targets investigated in this
project, manual design was sufficient, albeit time consuming. As one of the aims of this
project was to investigate methods to scale up this approach, it became increasingly
apparent that in order to create libraries worth of mutants, it would first be necessary to
design them. Designing potentially hundreds of repair templates and screening primer sets
individually was undoubtedly going to be extremely time consuming to do manually, and
would likely result in errors in some repair templates. Even though the method developed
here would not allow for a bulk library transfection to generate a mix of mutants, a library
could still be created by generating mutants and then combining confirmed clones
together. As this method is currently only about 30% efficient, combining confirmed clones
to create a pool is a wiser approach than using a population of cells that could be largely
WT after transfection. To open up this avenue for future studies, a tool was created using
Python to generate the repair templates, screening primers and repair production primers.
Further work is needed to complete the sgRNA design process, which currently has to be
completed manually, but relieving the workload of the other design steps makes this

process more tenable than before.

To expand this technique into a bulk approach, significant modification would be needed.
One major challenge when doing a library-style transfection is the identification of which
cells in a population contain the mutations of interest. In previous studies such as Baker et
al. (2021), barcodes were used which can be identified through Illlumina sequencing. In this
approach, a common sequence surrounding all barcodes allows for amplification of every
barcode, no matter where it is integrated in the genome. This allows assessment of all
mutations in the population from a single PCR reaction. However, it is not possible to
incorporate a barcode that is common to all targets in precisely edited mutants targeting
protein coding genes, as this would change the protein sequence encoded by the CDS.
Alternatively, DNA encoding the sgRNA can be used as a barcode if it is either incorporated
endogenously in a neutral locus, or if it is provided on an episome (plasmid) which is
maintained by the cell. Endogenous incorporation of DNA encoding sgRNA for precision
CRISPR editing has been done in T. brucei (Rico et al., 2018). In this instance, a construct

containing the DNA to transcribe into the sgRNA, a T7 promoter, and a hepatitis delta virus
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(HDV) ribozyme was integrated into a spacer region of the ribosomal DNA locus, in a cell
line with tetracycline-inducible Cas9 expression. The HDV ribozyme is a self-cleaving RNA
when transcribed by T7 polymerase, which releases free sgRNA to direct the Cas9 break
(Rico et al., 2018). As such, it would be possible to amplify the DNA encoding the sgRNA
from common regions of the integrated construct for library-scale assessment of mutations
in the population. Along this premise, Engstler and Beneke (2023) transfected four
Leishmania species with a series of plasmids containing sgRNAs and a Cas9-fusion cytosine
base editor protein. Because the plasmids had a common backbone and were under
constant selection, the presence of each targeted mutation in the population could be
tracked by amplifying and sequencing the region of the plasmid containing the sgRNA
target sequence. This suggests that a plasmid based sgRNA strategy could provide options
for scaling up this precision editing strategy in a traceable manner. One potential challenge
with this method would be developing a plasmid that incorporates the repair template and
the sgRNA, without loss of the plasmid following homologous recombination or
translocation of the repair template. It is necessary to link both the repair template and
sgRNA on a single plasmid to ensure that cells that received the plasmid have the capacity
to complete the precision editing, rather than just making a DSB without a repair template.
This ensures that detection of their sgRNA sequence represents mutated cells, rather than
cells which only have the guide. Whilst it is known that Leishmania spp. can produce
circular DNA to use for horizontal gene transfer (Douanne et al., 2022), and it is well
established that they can maintain circular DNA constructs, it is not clearly established if
circular DNA can be incorporated back into the nuclear genome, and what effect that has

on the presence of the circular DNA.

A significant challenge of this project has been working with the plasticity of the L. mexicana
genome (Black et al.,, 2023). The absence of most of the components of the Non-
Homologous End Joining (NHEJ) pathway in Leishmania spp. (Passos-Silva et al., 2010)
would lead one to believe that repair of double-stranded DNA breaks (DSBs) would favour
faithful homology directed repair (HDR). However, the natural plasticity of the genome has
in many instances shown that integration of the desired repair template can occur more

flexibly than anticipated. Any integration events in this project which did not incorporate
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the entirety (or near entirety) on any given allele have been deemed “complex”. Most
frequently, this was observed as integration of part of the repair template on one allele,
but complete integration on the other. It is unclear whether the cause of this integration
event was due to only one of the two DSBs occurring on that allele, or whether the parasite
was able to use sequence in the middle of the repair template as a micro-homology region
to alter the incorporation of the repair template. Repair template designs without breaks
in recoding such as KKT2 S25A/E/S and KKT2 S923A/E/S did not detect the presence of this
form of complex mutants. In contrast, these complex mutants were detected in KKT2 S493A
(using ssDNA) and KKT2 S422S (using dsDNA), both of which contained a break in the
recoding of either 11 bp or 18 bp respectively (see Appendices 7.2.4.2 and 7.2.4.4 for repair
template designs). It should be noted that complex mutants were detected in KKT2 S923E,
which did not have a break in the recoding, but were given this designation for
incorporation of a single-nucleotide polymorphism (SNP) on one allele which was not part
of the original repair template. Taken together, it is apparent that the plasticity of the
genome means that sequencing mutant clones becomes paramount to using this
technique, as one cannot just expect traditional homozygous and heterozygous genotypes.
The mechanisms underlying this diverse integration of the repair template are currently
unknown, and with deeper understanding, could potentially be manipulated in a

favourable manner.

A lack of an apparent phenotype in the kinetochore phosphosite mutants generated
suggests that regulation of the kinetochore complex is not reliant on single phosphorylation
events. More likely, this result suggests that regulation of the kinetochore formation and
disassembly is more complex, and could potentially include fail-safes to ensure mitosis can
occur correctly even if one protein is disrupted. KKT2, investigated here, has been shown
to be crucial for kinetochore assembly following phosphorylation by CLK1/KKT10 in T.
brucei (Saldivia et al., 2021). The results from this project suggests that either CLK1/KKT10
is still able to phosphorylate the KKT2 mutants generated here such that it can correctly
localise and initiate kinetochore assembly, or that correct localisation and initiation of
kinetochore assembly are independent of CLK1/KKT10 phosphorylation of KKT2 in L.

mexicana. Unfortunately, no KKT2 S505 or S506 mutants were generated, which Saldivia et
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al. (2021) suggested were the L. mexicana equivalent of the phosphosite targeted by
CLK1/KKT10 in T. brucei (KKT2 S508). It would be interesting to reattempt generation of
these sites using the dsDNA method to see if they are attainable, and perhaps have a defect
in kinetochore assembly. As for KKT4 S422 and KKT7 S304 mutants, both are known to be
proximal to KKT3, and are more highly phosphorylated in S- and G2/M-phases (Geoghegan
et al., 2022). Phosphorylation of both sites are reduced with AB1 treatment, which inhibits
CLK1/KKT10 kinase activity and hence KKT2-mediated kinetochore assembly (Saldivia et al.,
2021; Geoghegan et al., 2022). But the kinase responsible for phosphorylating KKT4 S422
is unknown. Another phosphosite on KKT4, S477 in T. brucei (equivalent to S590 in L.
mexicana), is known to be phosphorylated by CLK1/KKT10 and CLK2/KKT19 (Ishii and
Akiyoshi, 2020; Geoghegan et al., 2022), but was not shown to be impacted by AB1
treatment in L. mexicana (Geoghegan et al., 2022). KKT7 is phosphorylated by CLK1/KKT10
and CLK2/KKT19 in T. brucei. However, the equivalent phosphosite to S304 in T. brucei
(T327) (Geoghegan et al.,, 2022) lacks the consensus sequence needed to be
phosphorylated by CLK1/KKT10 or CLK2/KKT19 (Ishii and Akiyoshi, 2020). KKT7 also seems
to be important for recruiting CLK1/KKT10 and CLK2/KKT19 to the kinetochore in an
apparently phosphorylation independent manner (Ishii and Akiyoshi, 2020). Taken
together, it is unclear what role these phosphorylation events play with regards to
kinetochore assembly, function and regulation. But similarly to the results of this project,
phosphodeficient mutants did not impact the fitness of the cells in other studies in the

literature (Ishii and Akiyoshi, 2020).

6.2 Future Directions
Looking forwards, continued research is needed to convert the current methodology into

a library-style high throughput screen. Currently, as the sgRNA guides and repair templates
are free pieces of DNA, if two or more target sites were combined in one transfection, then
a range of different events could happen. In the best-case scenario, it is possible that
mutants for each respective gene are recovered. However, there are also possible scenarios
where either poly-mutants are created (i.e. multiple mutations occur in the same cell), or

more likely, few cells receive the right combination of guides and repairs to generate the
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desired mutants, and most cells are either unable to make the dsDNA break or unable to
repair the break with the mutated repair template. Both of these scenarios would likely
lead to a huge drop off in efficiency, as most breaks would be repaired using genomic
copies, if any breaks are made at all. In order to achieve the desired result, ideally, the
guides and repair templates need to be a single piece of DNA that could be spliced or
manipulated by the cell to release the constituent molecules. Designing a construct, either
as a linear piece of DNA or a plasmid, will require some investigation to ensure the guide
sequences are available to transcribe into the actual sgRNA, but that the repair template is
retained as DNA, without additional bases that could cause frame shifts if incorporated.
Plasmids have already been used to deliver repair templates for other CRISPR-directed
mutations successfully (Sollelis et al., 2015), as well as being used for guide delivery for a
Cas9-base editing fusion protein (Engstler and Beneke, 2023). Use of a plasmid also has the
advantage that it can confer antibiotic resistance genes to allow for selection of cells that
have taken it up, and to continually promote editing to take place, as was shown using the
base-editing Cas9 by Engstler and Beneke (2023). However, as this method did not require
a repair template, it requires adapting to determine if it is possible to include a repair
template as well. Given that it has already been demonstrated that Leishmania can
integrate DNA into the genome from a plasmid (Sollelis et al., 2015), and that plasmids can
carry usable Cas9 guide sequences (Engstler and Beneke, 2023), creating such a plasmid to
achieve precision editing is more a matter of “how” than “if”. As well as selection, as
plasmids can be maintained in Leishmania, they also allow for a form of barcoding. One
major issue with the current method is that because all the editing takes place within
coding sequences, there is no way to include a unique barcode sequence flanked by shared
sequences for amplification. If a library was created, every target would require a separate
PCR to screen for its presence in the library, making it untenable for more than a handful
of mutations to be combined. However, the contents of the plasmid (i.e. the guide or repair
template) could be used as a barcode itself, if flanked by sequences to allow amplification.
This could allow for more complex assays to be completed on a wide variety of mutants, as
well as allowing bulk transfection to generate such libraries, both of which would really

take this methodology to the next level.
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Once a proof-of-principle experiment has shown a plasmid could achieve a satisfactory
level of precision editing in a library style setting, it will then become paramount to have a
completed Python script to generate all the appropriate designs. At present, a version of
the script has been generated to allow bulk design, but it needs further testing to remove
potential bugs. Incorporating some of the other missing features such as sgRNA design (as
discussed in more detail in chapter 5.4) is necessary, but more challenging. sgRNA guide
design en masse is greatly needed for any scaling up of this method beyond a dozen or so
target mutations. As previously discussed, this is a more complex addition to the existing
script but is undoubtedly worth the work required to do so. Additionally, the designs
generated by the current version of the Python script are intended to be used as free linear
DNA molecules, so modifications would need to be made to the outputs of the script to
ease integration of these sequences into a plasmid. This could simply by done by designing
suitable overhangs on the parental plasmid for Gibson assembly or similar methods which
could be added onto the ends of the repair template or guides to allow integration. As
functions have already been created within the Python script to “stick” sequences together,

this would also be a straightforward modification to incorporate.

As well as the additions and changes to the Python script already mentioned, hosting the
code on a website is another goal to work towards in the future. Hosting it on a website
will allow production of a more user-friendly interface, allow a wider user base to benefit
from it and reduce the set-up required by each user. Currently the script runs on a local
machine, which means set-up is required on each device, whereas a website would be
accessible on any internet-enabled device from anywhere within the world. It will also
allow the set-up of more interactive features, such as highlighting issues with the inputs to
enable a user to change them; visualising the repair templates and sequences as a whole;
and potentially widening usage to those who are put off by having to work with the code

directly.

Lastly, prior to release of the Python code in a public forum, it is necessary to investigate
whether all the designs it produces are viable when transfected into cells. Currently, the
designs produced have not been tested for integration to generate mutant cell lines. In
principle, there is no reason that at least the continuous matched recoding would not

integrate, as that is the principle used for the repair templates designed and used in the
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ssDNA and dsDNA repair templates designed here. Whether the other options created in
the Python script produce mutant clones at a similar editing efficiency and without
additional effects such as altered transcription/translation speed remains to be seen.
Establishing whether the different design options confer different rates of success at
generating the mutants could also direct whether all the current options in the Python
script would be included in a publicly available option. If one recoding setting conferred a
far poorer efficiency than the others across several target sites, then it makes sense to
remove that option before releasing the Python script to the public to prevent others from

getting poor results also.
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7.2 Appendices

7.2.1 LIST OF ABBREVIATIONS

Abbreviation

Meaning

ANOVA
ATP
BLAST
bp
CCAN
CDS
CENP
CL

CLK
CRISPR
DAPI
DiCre
DNA
DSB
dsDNA
EDTA
FASTA
FBS
HA
HDR
HDV
kb
KKIP
KKT

MSA

Analysis of variance

Adenosine Triphosphate

Basic Local Alignment Search Tool

Base pair(s)

Constitutive centromere associated network
Coding sequence

CENtromere Protein

Cutaneous Leishmaniasis

Cdc2-like kinase

Clustered regularly interspaced short palindromic repeats

4’6-diamidino-2-phenylindole
Dimerizable Cre recombinase
Deoxyribonucleic acid
Double-strand break
Double-stranded DNA
Ethylenediaminetetraacetic acid
FAST-AII

Foetal bovine serum
Haemagglutinin
Homology-directed repair
Hepatitis delta virus

Kilobase(s)

Kinetoplastid kinetochore interacting protein
Kinetoplastid kinetochore protein

Multiple sequence alighment
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NHEJ
nt
NumPy
PAM
Pandas
PBS
PCR
PFA
PSA
RNA
RNAI
SAC
sgRNA
SNP
ssDNA
T7 RNAP
UTR
WT

Non-homologous end joining
Nucleotide(s)

Numerical Python
Protospacer Adjacent Motif
Panel data

Phosphate buffered saline
Polymerase chain reaction
Paraformaldehyde
Pairwise-sequence alignment
Ribonucleic acid
RNA-interference

Spindle assembly checkpoint
Single-guide RNA

Single nucleotide polymorphism
Single-stranded DNA

T7 RNA polymerase
Untranslated region

Wild-type
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7.2.2  SUPPLEMENTARY DATA

7.2.2.1 Single-stranded Transfection Restriction Digest Screens

Restriction digests for screening clones to detect genotype following transfections with
ssDNA repair templates which confer either phosphodeficient mutations or synonymous
mutation equivalent designs. A PCR was designed which encompassed the whole repair
region and some of the genomic DNA either side of the repair region. PCRs were purified
and the same quantity of PCR product for each clone was digested with the restriction
enzyme indicated on the respective agarose gel. The restriction enzyme used corresponded
to a restriction site which was engineered into or removed from the repair sequence.
Expected digest patterns for each mutation can be found in Appendix 7.2.6. T7Cas9 is the
parental cell line. Numbers or CL followed by a number indicate clone number. “-" indicates

undigested sample. “+” indicates digested sample.

7.2.2.1.1 KKT1 S1449A
For KKT1 S1449A only clones 14-20 were possible to screen.
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14 15 16 17 18 19 20 T7Cas9

Alul
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7.2.2.1.2 KKT2 S493
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7.2.2.1.3 KKT2 S505
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pGL2923 was a plasmid digested as a positive control to confirm enzyme activity.

7.2.2.1.4 KKT2 S506
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7.2.2.1.5 KKT2 S505 + S506
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7.2.2.1.6 KKT2 S530

KKT2 S530A
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7.2.2.1.7 KKT2 5923
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7.2.2.1.8 KKT4 S300
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7.2.2.1.9 KKT4 S422
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7.2.2.1.10 KKT7 S304
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7.2.2.2 KKT2 Synonymous Only Mutant Double-stranded Transfection PCR
Screens

PCR screen for detecting genotype following transfections with dsDNA repair templates
which confer synonymous mutations in KKT2. Expected PCR product sizes can be found in
Appendix 7.2.5.6.2. Input DNA quantity was not standardised between clones but was
consistent between each PCR on the same clone. T7Cas9 is the parental cell line. Numbers

or CL followed by a number indicate clone number.

7.2.2.2.1 KKT2 S25S

KKT2 S25S Mutant PCR

T7Cas9 1 2 3 4 5 6 Zi 8 9 10 1" 12

700 bp —

500bp —
400bp —

300bp —

200bp —
150bp —
100bp —
75bp —
50bp —
25bp —

KKT2 S25 WT PCR

T7Cas9 1 2 3 4 5 6 7 8 9 10 1 12

700bp —

500 bp —
400bp —

300bp —
200bp —
150bp —
100bp —

75bp —
50bp —

25bp —
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7.2.2.2.2 KKT2 S493S

KKT2 S493S Mutant PCR

T7Cas9 1 2 3 4 5 6 s 8 9 10 1" 12

KKT2 S493 WT PCR

T7Cas9 1 2 3 4 5 6 7 8 9 10 1" 12
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7.2.2.2.3 KKT2 S530S

KKT2 S530S Mutant PCR

T7Cas9 1 2 3 4 5 6 7 8 9 10 " 12

700bp —
500 bp —
400bp —
300bp —
200 bp —

150 bp —
100bp —

KKT2 §530 WT PCR

1 T7Cas9 2 3 4 5 6 7 8 9 10 1" 12

700 bp —

500bp —
400bp —
300bp —
200bp —

150 bp —
100bp —
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7.2.2.2.4 KKT2 S923S

KKT2 §923S Mutant PCR

T7Cas9 1 2 3 4 5 6 7 8 9 10 1" 12

KKT2 S923 WT PCR

T7Cas9 1 2 3 4 5 6 7 8 9 10 1 12
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7.2.2.3 Double-stranded Transfection PCR Screens

PCR screen for detecting genotype of clones following transfections with dsDNA repair
templates which confer either phosphodeficient, phosphomimetic or synonymous
mutation equivalent designs. Expected PCR product sizes can be found in Appendix
7.2.5.6.3. Input DNA quantity was not standardised between clones but was consistent
between each PCR on the same clone. T7Cas9 is the parental cell line. Numbers or CL
followed by a number indicate clone number. WT — WT PCR conditions. A — Alanine mutant
specific PCR conditions. E — Glutamic acid mutant specific PCR conditions. S — Synonymous
mutant specific PCR conditions. M — mutant PCR conditions (primer recognises a region of
shared recoded sequence between alanine/glutamic acid/synonymous mutant repair

templates).
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7.2.2.3.1 KKT2 S25
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7.2.2.3.2 KKT2 S493
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7.2.2.3.3 KKT2 S530
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7.2.2.3.4 KKT2 5923

S923A

CL1 CL2 CL3 CL4 CLS CL6 CL7 CL8 CL9

S923A S923E

CL10 CL11 CL12 CL1 CL2 CL3 CL4 CL5 CL6
WT M WT M WT M WT M WTr M WT M WT M WT M WT M

S923E S9238

CL7 CL8 CL9 CL10 CL11 CL12 CL1 CL2 CL3
WT M WT M WT M WT M WTr M WT M WT M WT M WT M

CL4 CLS CL6 CL7 CL8 CL9 CL10 CL11 CL12
WT M WT M WT M WT M WT M WT M WT M wWwr ™M WT M

T7Cas9
WT
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S923E

CL13 CL14 CL15 CL16 CL17 CL18 CL19 CL20 CL21

WT M WT M WT M WT M WT M WT M WT M WT M WT M

) S923E S923S

CL22 CL23 CL24 CL13 CL14 CL15 CL16 CL17 CL18
WT M WT M WT M WT M WT M WT M WT M WT M WT ]
-

1kb —

700 bp —
600 bp —
500 bp —
400 bp —
300 bp —
200 bp —

100 bp —

$9238

CL19 CL20 CL21 CL22 CL23 CL24 T7Cas9

WT M WT M WT M WT M WT M WT M WT M
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7.2.2.3.5 KKT4 5422

S422A

CL1 CL2 CL3 CL4 CLS CLe CL7 CL8 CL9

500 bp
400 bp —
300 bp —
200 bp —

100 bp —

S422A S422E

CL10 CL11 CL12 CL1 CL2 CL3 CL4 CL5 CL6
WT A WT A WT A WT E WT E WT E WT E WT E wWT E

1k —

500 bp —
400 bp —
300bp —
200bp —

100 bp —

500 bp —
400 bp
300 bp

2000p —

100bp —

CL4 CLS CL6 CL7 CL8 CL9 CL10 CL11 CL12
WT S WT S WT S WT S WT S WT S WT S WT S WT S

1K —

700 bp
— 500bp
— 400bp
— 300bp
— 200bp
— 150bp
— 100bp

500 bp —
400 bp —
300 bp —

200bp —

100 bp

T7Cas9
WT A E S

— 700bp
— 500bp
— 400bp
— 300bp

200 6p
— 150bp
B — 100bp
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7.2.2.3.6 KKT7 S304

CL1 CL2 CL1 CL2 CL3 CL4 CL5 CL6 CL7 CL8 CL9

WT WT A A WT A WT A WT A WT A WT A WT A WT A

1kb —

500 bp —
400 bp —
300bp —

200bp —

100bp —

S304A S304E

CL10 CL11 CL12 CL1 CL2 CL3 CL4 CL5 CL6
WT A WT A WT A WT E WT E WT E WT E WT E WT E

1k —

500 bp.
400bp —
300bp —

200bp —

100bp —

CL7 CL8 CL9 CL10 CL11 CL12 CL1 CL2 CL3
WT E WT E WT E WT E WT E WT E WT S WT S WT S

500 bp —
400 bp —
300 bp —

200bp —

100bp —

S304S

CL4 CL5 CL6 CL7 CL8 CL9 CL10 CL11 CL12
WT S WT S WT S WT S WT S WT S WT S WT S WT S

T7Cas9
WT A E S

500 bp

300 bp —
2006p —

100bp —
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7.2.3 GENES OF INTEREST
7.2.3.1 Names and IDs

Name Gene ID

KKT1 LmxM.36.1900
KKT2 LmxM.36.5350
KKT4 LmxM.10.0300
KKT7 LmxM.27.0430

7.2.3.2 Genomic DNA Sequences

All DNA sequences are for the CDS of the gene, except KKT2 which includes a region
upstream of the start (indicated by underlined text) to show the homology regions of S25
mutants.

7.2.3.2.1 >KKT1

ATGGTTCTCAATTTGTTCTCCGGTGCGGCGCTCAACGGGCACGGCAGCACGCACCGTCGCG
GGCGAGCGTCTTCCTCGCTCAACAGCACGGACACGGGGCGCCGGCCTCAGCAGCAGCGTCG
TCAGGCAAGTCGCAGCACGACATACGGTGCATCCATGCAGACGGATGGTGCCGAGCAGTCC
GGATCTGGGCTCCGTGCTGAAGCTGCCGAGGATCGCGTGCTCTTCAACAACTGCGTGGCGC
AGGTGCAGCGCCACCTCAAGACGCACGCGGATTCACCCAGCACGCTCCACACGCTCGCCTC
TTACTACACCAAAACAGAGCCGTTCATCGAGGGCCGCCCCTTTTGCGTGACCCTGAGCTAC
GCCACCTTTCTGTTTCACATGCAAATGGCCCGCATCAGCGTCACGGATGTGGAGCTGTACG
TGCAGCTTCTCACCAGCATCTTGTCGCAGATCACCGAGGATGATCAGCTCCACCACCCGTT
TGTACAGCAGGTGCTTCGCGATCATGTGTTCGGTCTGCCGTCGCCGACCTGCCGCGGCGCE
GCCCACAGCGTGGTGCTCTTGTCACCGCAGCAGTACCGTGCCTTTGCGACGATGACCACTG
CGCTCATTTCCCTCGCCGTGGTGCCGCTCAGCATTGTGTACCAGTTCCACGACCGGCTTGA
GACATACTGCGAGTGCGCCTCACCGCTTGTAGCCAACCGCGCCTTGGCGCTGCTCGTGCAG
ACAGTGGGCGAGGTGCGCATGGATGAGCAGGTCACTGCACTTCAGTACGTCCTGAAGACGA
AGCCGGTGAAGATGAATGTGGACTTCCTCCTCGCTTGCTACGAGCGTCTGAAACGCGCAGT
GATGGATCCGGCGCACGGACCGTCGTTCGGCCGCGCCCTCTCCATCCACTGTAGTGAACTC
TTCCTGCGCTTCCGGTCCCCGGTGCGGCGCGACTACGTGGAACGTTTCCTATACCCGAGTC
TGTGCCACAGCGACATGGCCAGCTTCCTGGAGATACCTGCAACTCGCAAGCACCTGTTGCG
CGAGCTGCTGTCGCAGTGCACGCCGGGCATGGGAACCATGAATCCGTTCTACATGTGCCTC
TGCGCCGTCCTGCAAAGTTGCTTCGACAACGAGACGGACGGCGCGCTCGAGACGGTGGCCC
TCATCAACTGCCATATGCCACACGCCGCTTATTTCATGTCTACCCTGGCTGTTGACTCGCA
CATGTCTGTGCCGATGTTTGCCAAAGTGATGATATCGCTCGCTCGCGGCGCCGGGATGGCT
ATGACGGGTCGCGACACGCCTGACGAGGTGGCCGCCTCGATCAACGAGAACCGCACGAGCG
TGTATAATGTGCTCTTCCTGCTCCGCGAGGTAGTTCGCAGCTGCTCCACCACCGCCTCTCG
CCGCGCCACCGATATGCTTAAGGCGCTGCGGGTCGCTGTGGCTCCAAAGACGATTGAGGCG
CTCGGAAAGCTGTCCAGCGAGGCCTTCGAGGCCGTCAGCGACATCACACTCGATCCGCAGC
TGCTGTGCGCAGAGCTGGCGATGGTGCTGCATCAGGACCATATCGCAGAGGCCATGGACTC
GGCAGTAGAGTACTTTCGCGACGTCAGGTCGAAGTGCCCGTACTGCGCGGCGGCGCGCAGC
TCTTCGCTGCTGTGCCCCGTCAACGGCACGGTGCACGTCGCCGGCCAGTCGTCGGTGAGCC
GCGTGCTGTCGACGCTATCGGAGTGCGCTGGCGCGAAGGCGGTGGAGGAGAAGCTGATCAG
CTATCTGCGCGATCCCGCCTTGCAGATGGAAAGCGCCGTGCACTACCTCATCTACCACATC
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GTCGCGAATGGCGGGCAGCACCGTAATACGCTCTTTGTGGCTGTGGAGCCGTACGTGCGGA
GCACATTACTGGCTTTGGTGAGCGCAGACCGCAGCGGGGTTCGCGGGCTCGTGGACAGCAC
GCTGAAGGCAAACGTGCTCATGCTGCACGTGAAGCTTGTCACCCTCCTCGCCTCCTCCATC
GACCCGTCGTACCTGGAGAGCATCTTGAAAGTCTTCTCGGAGCTGAGGCTGCGCAACAACC
ACGACGCGCTCGCGCTGTGGTACATGGGCAATGTTCTGCTGCGCAGCTGCCGCGGCAACTT
AGAGCTGCTACCCACCGACCCCCAGGAGAACAACTACTGCGTTGCCTTCCCTGGCTGCGCG
CCGGCAAGCGCGACGACCGCCGACAACGCGCAGCTCGTGCTGAAGCTGCTGCACCGCGLGC
ACAGCTTCAGCCCTGAGATGCACAAATTGGTTGGCTGTTGCGTGTGCAAGCTCATCCAGGA
CTTCAACATGCAGGCTCCAAACATTTGCAGCACCTTGCTGTCGCCTTTCGGCTTCTTCCCA
GTCGGACTCGAGTCACTGAACGCCTTCGCCCTTCCGGCAGGCGCCGGCAGCACCTTCTGGA
GCTTCTTTTTGCAGCAGATGCGCAGCTCTGCGCCGGCGCGGACGGCGTTCATGGCGACACT
GGCCAAAAGTCTATCGCGGCGCTTCCGCATTGCATCGCCAATGGACGCGCTCGCCCCGTAC
GGGGTGGAGCCGACAGGGCACTTGTTCGTCATCATGGTCTACGAGGCGATGAAGCGCAACC
CACCACTGGCGCGCGTGCTGCTCTACATGGTGTCGCACTGGATGAAGCAGGCAGGCCACCC
GCCCGGCAAGCTCGCGTGCCTCGTGTACGTGTGCGTGCAGCTCATCACAGTCGTGGTCGAC
CGTGCAGAGGGCCCGGCTGCGGCAGAGGTGGAGGCGGAGACGCCGCAGGATCGGCAGCAGT
TTGACGACGCCGTGAAGAAGGCGGCACGGGTACTGAAGAGTCAGCAGGCGCGCCTTGATAG
ACTGGCCCCGACGGCGCGGCGCGAGAACGTAGAATTCTTCCACCTGCTGCGCCGTTTGCAG
CGTCGCGTGCGCCGGACTGTGGCCACCGCCTCAGGTGAGATTGTTGTTGGCGACGAAGCCG
CGGAGGAGTACGACGACCACGATGACGCCGTTGACGACAGTTCGGCTGGCGGGCATGTGCG
GCAGGATTCCATCACAGACGCAGTTTGTGCCATGCAGGAGCTGCAGAATGCCGCTGACAAC
AGTGTGTTTGACGACTACGCCGATGATGTCGACCAAGAGGACGACGGCGCTTACGGGAACG
ATGAGGGTGCCTGCGACGCTGCTTCTCCAGGGCTTAGGCGTTCCGCGCAGACGGAGGGCAG
CGGCCACAGGGCCGAGGGCCCGCCTGCCCCAATGCAGATTCGCCACTTGCCGCAAGGCATA
ACCAGCATCCTGCGCTCGCCCGCGCAGAGAAGCCCCAACAAGAGCGACAGGGGTGLCCGCCG
GTGTGGAGAAGGGCTCGACGACCTCTGTGAACATGTATCGTGAAGCGAACCGGCGAACCGA
TGTCGAGGGCGTCCCGCATGGCGCGGATGGCGATGATGCAGAGATGCGCAGTCGCGATGGC
GAAGCAGCCCACAGCTGTGCGCTGGGAGTTGAGCCTCGTACCCGGTCGACGTCTCGCGGCG
TGCAGACGGACGTGCCTCTGGCGAGCCCCGCGLCTGCCCGGGAACGCGCCGCAGCGGAGCGT
GGGGACGTCACCGATACAGCCGGCAGGCACCTCGTCGCAGATCTCGGTCACGCGACGCGAC
GGCACGCAGCTGCCCTGTCGCACACCTGCCGACGTCGGCTCTGCGCACACTCCCTCCTCCT
CCCTCTATCAGCCACAGCGCTCCCACACACGGCCGCCAGAGGCCGATGGCATGCTCAGCGA
GGGTACTCGGACTCCAGCGCAGCGAGGATCGACGTGGCGTGAGCCGGACCTGGCCGACTAC
GTGGACGGTGACACCACCCCGATCGACGACTTCACCGGCGTGCCGCGGCTGCAGGCGACCA
CCACGAGTGACGGTATTGTGCTGCCCTCTGGTATGGTGCTCGAGTACCTGCGCACGCACCA
AGGGATGGACTCGTTGCAGCACGAGCTGAAACAGTTTGACCAGCAGTGGATGGTGCAGCAG
GTTGCTGAGTACGTGTCGCAGAACGGCGGCATGGTCGGCGCTGCTGGTCCGTCGTCGACTA
TTAGGGGCGGTGTGTCGTCTGTGCAGTCCGTTACGGTGGAAGGCCGCGCCAACAACTACAG
CCGCCCGCACGCCGATCCAACTGAGCTTGCGCCGACCCGCACGGTGTGCACAGAGGTGCAC
ATGATAGGGCCAGCCACGTCCTACTCGCGGCCACCTAGACAGGAGGAGCACGGGCGTGTCG
TGGCAGCCGCGCCGGGCCTGCCTGAAGAGGAGGAAGTGAACGTCGTAGATGGCGAACACCC
TATTCGCGCCGTCAGCGGCCCCCCAGACGACAGCGACCTTGCTGGACGCGCAGGTGACGAC
GAAGCGACTAAGCGCCGACGTGTGGAGGCCACCGGAGGCAACGCGACAACTCCGCTGCCAC
CACCAGTCTCCCCCGTAAGCGCTTTCCGCGGCCGCAACTTCTTCTTGAACCAGCATACACA
GCAGGAGGTGGGCTCGACGCTCCAGGACATTCACTACCTGCAGAGAAGGCAGCAGGCGAAC
ATGTCGGCGCTGGCCAAGGCGCAAAGCGCGGCTGAGACGGCGGAGTCAGCAGGTGACGALCG
AGGCACCGCGCAAGACACCACACCAGGGTCAGTCCTCTACGGGCGTGGCGGGTGAGGGTGT
GCCGCCGACAACGCCTTACGGACAGGTTATTCTTCCAACTTGGATCGTGGAGCAGCGCAAC
GACACGGCTATCCGTGAGTTGCGACAGGTGATGGGGGCTCACAACCCGAATGACAGTCGAC
TATCGACGAGTGCGGGCAAGCGCAGCCGCATTCGCGGCAGTGGGACAGGCGACGGCAGCGG
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CAACAGCGCTGCGTGGTGGGCTGAGATGAGCTCGGCGCCGATGCCCAACTACGCTGCGGAC
CCTCAGTACTCCATGGAGCTCTTTTAG

7.2.3.2.2 >KKT2

GGCCTCTGATGTCACACTTTTGCGGCTCGTTGTCGAGGACTCCACCACGGGGTGGGGCGAT
ATCTATGCCGCGTGATTTGTCGCAGACCCCCGCCATCTCTCGACTTGGAAGCACGGTGAAG
ACGCCGCACATCCAAAAATGTGTTGTTGACCAAGCAGAGGATGATGATCATCCACTGGAGC
ACATGACGGTCTATTTTGAAGAGGAGGAGCTTAGAGTAGTTACCACTGGGCTGCTTGGAAA
AGGTGGGTTTGGAAAGGTATTTGATGCCGTTTCGAACAGCGGTGAGGCCTACGCGCTCAAA
GTGTCATCGAAACGCATGAGCGAGAACGACTGGAAGCGACTGAAGGAGGAGGTGACGCTCA
TGAGCCATTTCTCGCGCCATCCCAACATTGTCAAATTCTACGGTGCTGGTAGGGATGAAGA
TCGCGCCTACGTAGTAATGGAGCGGTGCGCAGGCAAGTCGCTTCACGACGTCATAGCCAGC
AGGAGTCTTGATGTGCCGGAGATTTTGTGGATTGGGTGGGCCCTGGTGAACACCATCTCCT
ACATTCATTCCAAAGGCTGCATTCACCGCGACCTGAAGCCACAGAATCTCTTGTTTGACAA
CGAAGGTAATTTGAAGATAACAGATTTTGGACTTTCCAGCCGCATATCAGAGGCGCATCCT
CGCAAGACGGTTGCCGGTACAGCAATGTACATGGCGCCTGAAATGGCAACTGAGGTTTACA
AGCGAATGACAAAAAACTCAGAAGCCCCTTCGCTGAGCTACGGCAAGGAGGTGGACACGTG
GAGTATTGGTGTGGTCCTCTACGTGCTCTTGACACGCATGAATCCGTATCTCGAGGCGATA
GAACAGAAAGGTATGCGCCAACTGGACAAAGAGCACAAATCGCTTGCCCTCTTCAACGCTG
TAGCGGGTGCCGCGTGGAGTTGGCCAAGGGAGTGGAGGGGAGATCCACAGCTCTGCGGACT
TGTGGAGCGCATGTTGCACCGCGAGCCGTCGCGGCGCGCCACGCTGATGGAGGTGCTCGAG
GACTCTGTGTGGAACCGCCGGCCACTGTCCTGCCCACTTTCGCTGCTCCAGAAGCTCAACT
TGCTGGAACCTTCGCCGTCGAGTGGCCTGCCTCTGAACAACCTTGCCGAGAATTTACAGTT
CCGCCCGAAGCGCTCGGCGGAGGCGGTGCTGCGCGAAGGACTAGAGCGCGTCGAAGCCACLCT
GAGCAGCGCGGTCGTGCGCAGCTGGAGCTTGAGTACTACGAAACCTACAATGTCCTCTGGA
GCCTTCTTACTCTGGCGCGGGCGGAAGAGGACGCCAGAGCTGACATCCTCCAGTCCGAGGA
GGTGCAGCGAGGCAAGCTGCGCAATCAGTCTCTTGCTCGCCAGTCTGCCCGTCGGAGGTGT
GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGCACGTCTC
GATCAGTGCGTCGTAGCGTCAGCTTAACGGAGCAGGAGCGGGGCAGACTTGTGCGTTCTAG
CCCGGTCCAGTACGCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAACCTTCGC
GCCGTAGTATCGCTGCCACGCGACATGACGGACGAGATCGAGCGCGAGTTCAAGTGCATGA
ACGGGCACGTAATGACAAAGTTGACCTCGATGCCGCACGGCTACAACGGCTTCGACTGCAA
TGTGTGCGATCGCGGCATTCTTACGATCACGGCCGAGTCACCAGCCTTCCGATGCTACAAG
TGCGACTACGATGTTTGCATGAAATGTGCGTACTCCGGCAAGTTCAAAGACGTTAACTTTG
TCTGTGTGACATGCGCGAAGCGCTTCACCTCAACCGCAAAGCTGCAGGGGCATTCCTTGCG
CTGTCGCGGCCCGAGCGAAAGTCCCTCACCGCGGCGATCGTCGCGCATGAACACGATGCTC
TGGGACGAGCCGAAGAGACCGAGCCTGCTGGAGGTACAGCTGCCTGAGGCGCCCCAGAGCG
AGCGGAAGCTGCGCGCCAGCCGCTGCCGCTCTGGACGCCCCACGTACAACCGCACATCGAC
CGGTGGCCGCATTAGCATTGGAGACTCGAATGCGCACAGTGTGGTGGACTTCGACGCAATG
GTGGCCTCGCACCGCGAGGCTGACTTTCCCAAGGTGAGCACACGCGCGTCTGCCACCGGCC
GCGAATCCTCGCAGAGACGGGAGCGCACGGGTAGTGGGCGTGGCCGACCATCCACCTCGTC
TAGCGGCAGCCTTTCACTTGACTTGCCGCCGCAGGTGCAGGTACCAAGCAAAGAGTCGCGC
CCACAGGTGCAGCCGCGTAGTTCCGCTGAGCTGCGCGATATCATGGAGGAGGTGGAGCAGC
GGAAGCAGGCACTGCCCCGTGACCCCCTCTTGTCCGCGCCGGCCACACCGCCGCAGTACAA
CTGCAACGGTGAGATCATCGGCATTTCTGCTCGTCGCCGCGCAGAGAGCCTGGAGATGGCG
CGCGCGGAAGTCATCACGATCCGCGCCGAGGTCGCGGACCGGCCGCGCGAGCTGCAGCATC
AGCCGCGTGTGCCGCGCAGCGCCTCCTCATCGAGAGCGGAGAAGGGGCTTCCGAGCCCCCA
CAAACGCCGTCGTGAGGAGTGGCAGCAGCCCGCGCATGCGCCGTCTCCATCCGGTACGGCG
AAGCGAGCCGCTGTGGAGGAGCACGTGGTGAAGCAAGCCATCATGCCGCCTCAGGTGCCAC
GCGGACGAGCACAGCAGCCACGTGCCCCCTCCGTCAGCGGGCACACCGCACAGGGLCGGTCC
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GCCACTGCCGCGCCGCGGCCCAGCTGCGCCATCTCCTGCAGCCGCTTTGAAGGCGCACCTC
AGTCCCTTCCAGGCCCCCGCTGCGATTCCTCCCAAGAACTTTGCCTCCATCCTGCAGTCGC
GCTACTCCATGACGAACGCAATGGCGCCCACGTGCAACACTTCGACCACAAGGCCGGLCGGG
CGGAGCAGGAGCTGCGACCGCTGCTCTTGGCCAGGGGGGTGCTCCGACATACAGCCATGCG
CTGAGCCGTCCCAACGGCGCCTTTTTGGCGTTGCCGCGCGAGGAGCGGAATCGCCAGCAAT
TCTTGGACGACTTTCTTAGTGGTGGCTGGGTGCGCTTCTACTCTTTCACAAACGAGGACAC
CGTCGTCATGTACTACTCACTGCAGCCTGGTCGCTACGGGGCCATGTTTCCCACCGAGGCA
GGCGTCGGCACTGCTGTGTTGGACGTGTACTCGAAACTGGTCCTCTATGTGCCGTGCATGA
ACAACGAGAGCACGAACCGCAGTCAACCCCACCCACACGTACAAACGTTCTACGACGAAGA
GGCGCGCATTCTTAGCTTGCCGGAGGCGCAGCGGTACCTGGGCGGCGTGCTACGCTGCATC
ACTGGATTTGTAGATGAGTTTAGCCGCTTGAAGGCTGAGGGCCTTACTCCAGCGGCGGTGC
ATGCTGCCTACATCCACCACCGTAGCATGTCCCACGTGCCGCGGGATACGAAGTTCGTGTA
CATTCGCAAAGTATTCCCTGACCCGGCTGGGTCTTTCACGCTTTTCCGCCTGTCGAACCTG
CGCTCGCAAGTCGTTTGCAACGCTATGGTGGACATTCGCTGGCAGAGTGACCGGCGCCACA
ACGTTGGCCAAAAGTATTACATCAACGCGGACGGCACCGCTGAGCCTTTTCTCGTCGATCA
AACCGGAATTCTGTCGCAGCTGGAGACGGTCCTCAACAACAATTTCCGGAGATGA

7.2.3.2.3 >KKT4

ATGAGCACCGACGCCCAGGAGCTGGTGCGCCAGCTCACGGAAAACCCAGAGGTTCTGGAGA
GCATGCAGCACATGATCTCTCTACTGCGTGCCAATCCTCCGCGTATCTCCGGCAGCAACAA
CGGTGGAGGTCTTGGCAACGCGGAGACTAACGGCCCTGAGAGAGGTGCACCGCAGTGTGTG
CGACCACCGCGCCGCGGATATGGCGCTGACGTTGATTGCGATCACCACCAGCCCACAACCA
GGCGGAAGCTGCGCAGCAGTGATGGCACCGCCCACAGCGCCACTTCCCTGTCTGCGTCGTC
GTTGACGCAGGAGGCGCACTCCTTCTATGGTGACGACAGGGTTGGTGCGCGCACCACCGTC
AGTGATCACAACGGCACCACCGGCGGCGCCTCTTCGCCTACGCCAAGCTTCGTCAGCACAG
GATCCCGCGCAGCGCCTCAGGTGGTCACTGCGGCCTCACGGCACGCGCCGCGCCGCTCCTC
GCTTCTCCCGAGCCCGCACGAGCATCGCCCCACCACAGCTCCCGATGAGCAGCTGATGGCC
ACCGCCAACAAGCTGACGGAGGCGCAGCGGCGCATTGCAGAACTGGAGAAGGAGCTCCAGC
GCACCACGCAGCGGGTGGACCAGTTGTCCGATGTGGTGCAGCGGCAGAAGGACGAGCTACA
GGCCGCGAAGGATCGACATGCGCTAGAGATGGAGGAAACACGACACGCCTACAACGCCGTG
ATTCACCGCAAAGACGAGGTGCAAGAGGAGGCGCTGCGCCAGCTGCTCAAATCCCGCCAGC
TGATGGTGTCGGCAGCCAGGTACGAGGCCGTCGTGGCGGCGAAGAAGCTTCACGCTCAGCG
GTTGGAAAAGGAGAACAACACCGGCGCCGATGATGCGATGGGAAGCCCGAAGGGGCTAGCA
GGCGTACAGGCAAGCGCGAACCCCAACGAGCGCGGCACTCACCCCGGGCTGGCGCCAAGTC
AGACATCAGTGAACGCGCGGCACTCTTCGACGCTCGGCTACGGGTCGGGCACGACAGCCAA
GTACAGCAGCGCTCTAAAGCGTGACCGCCAGAATGACGAGGGGGACCTTGTTGACGATGCC
GGCGTCGAGACTGGCGCACACGAGCCTGGTGAGGCGCGATACGGGGAAGCAGCTCACCACC
ATCCGCCAGTGAAGCGCACCACGTTGGACACGTCTCGTCTGCAGGGCAGCGCCGATCGTGT
CGTGCAAGGACGGAGGGGCGTTGCGGCGACCAAGGCGGAGACGTCTCCGGCGTACATCACC
ACCCCCACGCCGGCCGGCAAGGCGTCCACCGCGCTCGTCGGCACGCGCACTCAGTCAAGCA
GCGCGCGCAAGCGCCGCACCCCGCGCACGCCGAGCCGCACCAACGCTGAACGCATCGLCCGG
GTCGGTGGCAGAGAACAGAATCCGCTCGCAACAGCGCCTGCCTGGGACAACGTCGCTGAAG
ATCGAAAGTCCCACGCCTGTGGTGAGCACCGCGTGGACGGCGGACCGTTCTCTCACGGGCA
GTCGTACGCCGCCGCCGTCCAGCGCTGGCGTGTGCACGGTGTCCGAGGCAGTGACCAAGCA
TCATCAACTTTACCCCCAGCAGCAAGTGCATCAAGTTCCGTCCACGAGACCGCCGCTCATG
CAGCGTGCAGCGGGTCGTCTTCCTCCAGCTCCGCACCGCACCGCGGCTGCCTCGACGGLGG
TGCCCAACACGCGAAGTGGTACCTCTTCCATTGCCTCCGGTGGCCCGACGCGGTCACCGTC
GCCTGTGAACCCGAAGCGTGGCGCCATGCTGCCGCGCCGCTTCATCTTCACAGGTCTGAAA
GACCATGAGCCTCAGCGGCTGGTTAGCGCAATAGCCGCGGTCGGCGAGGATGCCGCGGCAC
TGGCGAGCGACCTCGATGAGCCGCCGCCAAGCAGCACGACTCACATTGTGCTGCGCGGGAC
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GCCGCGTAGCGTCAAAGCCCTCTGCGGGGTGGTATCGGGCAAGTGGCTTGTCTCTCCCGAA
TACGTGTACAACAGCCAGCAAAGCGGCTTCTGGCTAGACGAGCTCGAGGAGGGCGGTCTGC
GCATCTTTCCGCCGCCGCTAAAGTGCCAGCGTTTTCTTCTGACGGTGGAGCACCCAGGCAT
CCGGGCGAAACTGGCGCAGGTGATCGAGTACGGCGGTGGCGAGGTTTTGGCAAGCGGCAGT
GACAAGCGTGGCCCTGGCGCCGGCGACACTGTGGCGCAGGACGTGGTCGTGATCACCTCTG
GTGATGACCTCTTGCGATATGCGACGCAAGACCGCGTGTAA

7.2.3.2.4 >KKT7
ATGACGGACGTAACCTCTTCGCTCCGCCCGTCGTCGCGCCAGGGCTCCCCGGTGCCGLCGLC
GGCAGCTCGGCATTCTGCCTGTGAACCAGCGCTCCTACTCGCGTGTGGGCTCCAAGGGCAT
GATTGGCGACGACTCGCCGCTCATGTCACCCTTGCCCTACTATCCGCGTCGTCGCAGTGTC
ACCTTTGCCGGTGACCAGAGCGTGAGAGAGGAGCGACCCAACTACAACGCCGCATATTCCG
CTTCGGCTCCCGTTTCCCCGGCGCGTCACGGCTCACCGCCGCCGGTCTCCATCCTCAAGTC
GAACTTGTCGTTTCCGGCGGCAGAGGAGGAAGACAGCGGCGCTGCGCCGGCGTACCAGGCT
GCTGCGGCCACAGTGAGTGGTGTCTTGGACCGCAAGGACCGCGCGCGCAACTCTCCGGTGC
CGGTGCGCGGCCGCTCCAATAGTCGTCAGCGCCTTGCGGCGCGGCGCAAGGAGGCGCAGCT
GCATCGCAGCTTCTACGATGACAGCTTCGTGGAGGAGTATGTGCTACGAGCCAAGACGGAG
CTGGAGGAGGAGGAGGCAGAGCAACGCCGAATGCAGGAGCAGCTGAGGGCCGAACAGGAGA
GGGCGAAGAGGGCAGAGCGCCGCGTCTCGGAGGCAACGGAGAAGATCAACGCCCTGCAACA
CGCGAAAGAGGTGCTGATGGCGGCCACGGTGCGCCGCCACACCTCTGTGACGCCGTCTCCG
CAGCGTGCGCCTGCCGAAAAATCGAAGCGCAACTCCAGCCTTTTGCGGGAGCTCGAAGAGG
ACCCCGACCCAGAGGTGCAGGCAGCGCTGAAGGAGCTCGCACGCAACTCCATGGCGAAGCA
ACAGAGTCGCGTTCACTCTTCTGCCCATCAGCGTCGTCGGTCGATATCCATTGTCTCCGCC
GACGCCCTCGCGAAGAGCGGCGAGGACGAAGACGGTGACGACAACGACACCCGCAAGLCGLG
CGCGTCTAGAGAAGATCGTCTCCACGCTGCTTGCGAAGAAGGCCAAGAGCAAGAGCAAGCG
TAGCGTGATGGTTATCGACTGGTCCGATCTCGACTCCGACGCCGACGGCAACACCTCGACC
ACTGATGAGGATGGGGAGGAGACTGCGGTGGGCCTCAAGCGACAACGCGGCCGCCCTGCCA
AGAGCCGCAGTATAGCGTTGGGGACCGAGGCGACACTGGTGTCATCGGCGAAGCATGTACA
GAAGCCGTCCACGAAGCGCGCAGCCTCGTCCCGTAAGCGCCATGTCAGCGCAGAGCCGGAG
TTGGGCGATTCGCTTCTTTTTGAGGATGAAGCGGAGCAGCCGATTTTGCTTCCTCGCCGGC
AGAACACGCGACCGGCTCCGACTCGGTCTATCTCGTACATCGAAATGGGTGGCGACGATGA
CCTGCTGAGGGATGCTTCCAGCGTTGAGCGTGTGGTGCGGCGACCACCTCGTGCCACGCGC
GCACCGGCCACGCGGCAGCGCCGCGGCCGTCTTGCATCTACTAGCACCCGCGAAGGTGCAG
AGGTCATGTCGTCTTTCACAGGCACCACCGCCTTGCGAGGACGTGCGTCGCAGCCACCAGC
CGCGCCGACAGGGGGCCCGACCGGLGTCCCGCCTCGLCCGGLCGLCCGLCGEGETCCGTCCAGLGC
GCAGACCCCAATGATCCCATGGCCGTTTTTTTTGAGGCTGCCTTTCCGAGTCCTTCGAAGT
TTGACGAGATGATGATGCAGGCTGGCGGCCTGCCAGAGACCCGTCGTGGCGGCGGTGGLCGE
CGGGCGAGGACAGGGACGGCATCCCAACTTGGTGCTGCCTAGCTCCATTGGACGCCGCCGL
TGA
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/.2.3.3 Native Protein Sequences
As with the DNA sequences, the TriTrypDB start methionine for LmxM.31.0120 is indicated
in underlined text. The protein sequence listed is the extended one.

Sites targeted in this project are highlighted in yellow for each protein.

7.2.3.3.1 >KKT1
MVLNLESGAALNGHGSTHRRGRASSSLNSTDTGRRPQOORROASRSTTYGASMQTDGAEQS
GSGLRAEAAEDRVLENNCVAQVQRHLKTHADSPSTLHTLASYYTKTEPFIEGRPFCVTLSY
ATFLFHMOMARISVTDVELYVQLLTSILSQITEDDQLHHPEFVQOVLRDHVEFGLPSPTCRGA
AHSVVLLSPOQYRAFATMTTALISLAVVPLSIVYQFHDRLETYCECASPLVANRALALLVQ
TVGEVRMDEQVTALQYVLKTKPVKMNVDFLLACYERLKRAVMDPAHGPSFGRALSIHCSEL
FLRFRSPVRRDYVERFLYPSLCHSDMASFLEIPATRKHLLRELLSQCTPGMGTMNPFYMCL
CAVLOQSCFDNETDGALETVALINCHMPHAAYFMSTLAVDSHMSVPMFAKVMISLARGAGMA
MTGRDTPDEVAASINENRTSVYNVLEFLLREVVRSCSTTASRRATDMLKALRVAVAPKTIEA
LGKLSSEAFEAVSDITLDPQLLCAELAMVLHQDHIAEAMDSAVEYFRDVRSKCPYCAAARS
SSLLCPVNGTVHVAGQSSVSRVLSTLSECAGAKAVEEKLISYLRDPALOQMESAVHYLIYHI
VANGGQHRNTLEFVAVEPYVRSTLLALVSADRSGVRGLVDSTLKANVLMLHVKLVTLLASSI
DPSYLESILKVFSELRLRNNHDALALWYMGNVLLRSCRGNLELLPTDPQENNYCVAFPGCA
PASATTADNAQLVLKLLHRAHSFSPEMHKLVGCCVCKLIQDEFNMOQAPNICSTLLSPEFGFEFFEP
VGLESLNAFALPAGAGSTEWSFFLOOMRSSAPARTAFMATLAKSLSRRFRIASPMDALAPY
GVEPTGHLFVIMVYEAMKRNPPLARVLLYMVSHWMKQAGHPPGKLACLVYVCVQLITVVVD
RAEGPAAAEVEAETPODROOFDDAVKKAARVLKSQOARLDRLAPTARRENVEFFHLLRRLQ
RRVRRTVATASGEIVVGDEAAEEYDDHDDAVDDSSAGGHVRODSITDAVCAMOQELONAADN
SVEDDYADDVDQEDDGAYGNDEGACDAASPGLRRSAQTEGSGHRAEGPPAPMOQIRHLPQGI
TSILRSPAQRSPNKSDRGAAGVEKGSTTSVNMYREANRRTDVEGVPHGADGDDAEMRSRDG
EAAHSCALGVEPRTRSTSRGVQTDVPLASPALPGNAPQRSVGTSPIQPAGTSSQISVTRRD
GTQLPCRTPADVGSAHTPSSSLYQPOQRSHTRPPEADGMLSEGTRTPAQRGSTWREPDLADY
VDGDTTPIDDFTGVPRLOATTTSDGIVLPSGMVLEYLRTHOGMDSLOHELKQEFDQOQWMVQQ
VAEYVSONGGMVGAAGPSSTIRGGVSSVQSVTVEGRANNYSRPHADPTELAPTRTVCTEVH
MIGPATSYSRPPRQEEHGRVVAAAPGLPEEEEVNVVDGEHPIRAVSGPPDDSDLAGRAGDD
EATKRRRVEATGGNATTPLPPPVSPVSAFRGRNFEFLNQHTOQOEVGSTLODIHYLORROQAN
MSALAKAQSAAETAESAGDDEAPRKTPHQGQSSTGVAGEGVPPTTPYGQVILPTWIVEQRN
DTAIRELRQVMGAHNPNDSRLSTSAGKRSRIRGSGTGDGSGNSAAWWAEMS SAPMPNYAAD
PQYSMELF

7.2.3.3.2 >KKT2

MSHEFCGSLSRTPPRGGAISMPRDLSQTPATISRLGSTVKTPHIQKCVVDQAEDDDHPLEHMT
VYFEEEELRVVTTGLLGKGGEFGKVFEFDAVSNSGEAYALKVSSKRMSENDWKRLKEEVTLMSH
FSRHPNIVKEFYGAGRDEDRAYVVMERCAGKSLHDVIASRSLDVPEILWIGWALVNTISYTH
SKGCIHRDLKPONLLEDNEGNLKITDFGLSSRISEAHPRKTVAGTAMYMAPEMATEVYKRM
TKNSEAPSLSYGKEVDTWSIGVVLYVLLTRMNPYLEATEQKGMRQLDKEHKSLALFNAVAG
AAWSWPREWRGDPQLCGLVERMLHREPSRRATLMEVLEDSVWNRRPLSCPLSLLOKLNLLE
PSPSSGLPLNNLAENLQFRPKRSAEAVLREGLERVEATEQRGRAQLELEYYETYNVLWSLL
TLARAEEDARADILQOSEEVQRGKLRNQSLARQSARRRCGSVSLVSEVADREEAAPRTSRSV
RRSVSLTEQERGRLVRSSPVQYAVVYPGRDTATRWNLRAVVSLPRDMTDETIEREFKCMNGH
VMTKLTSMPHGYNGEFDCNVCDRGILTITAESPAFRCYKCDYDVCMKCAYSGKEFKDVNEVCV
TCAKRFTSTAKLOGHSLRCRGPSESPSPRRSSRMNTMLWDEPKRPSLLEVQLPEAPQSERK
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LRASRCRSGRPTYNRTSTGGRISIGDSNAHSVVDFDAMVASHREADFPKVSTRASATGRES
SORRERTGSGRGRPSTSSSGSLSLDLPPOQVQVPSKESRPOQVOPRSSAELRDIMEEVEQRKQ
ALPRDPLLSAPATPPQYNCNGEITGISARRRAESLEMARAEVITIRAEVADRPRELOHQPR
VPRSASSSRAEKGLPSPHKRRREEWQOPAHAPSPSGTAKRAAVEEHVVKQAIMPPQVPRGR
AQOPRAPSVSGHTAQGGPPLPRRGPAAPSPAAALKAHLSPFQAPAATPPKNFASILOSRYS
MTNAMAPTCNTSTTRPAGGAGAATAALGOGGAPTYSHALSRPNGAFLALPREERNRQQFLD
DFLSGGWVREYSFTNEDTVVMYYSLOPGRYGAMFPTEAGVGTAVLDVYSKLVLYVPCMNNE
STNRSQPHPHVQTEFYDEEARILSLPEAQRYLGGVLRCITGEVDEFSRLKAEGLTPAAVHAA
YIHHRSMSHVPRDTKEVYIRKVEFPDPAGSEFTLFRLSNLRSQVVCNAMVDIRWQSDRRHNVG
QKYYINADGTAEPFLVDOQTGILSQLETVLNNNFEFRR

7.2.3.3.3 >KKT4
MSTDAQELVROLTENPEVLESMOHMISLLRANPPRISGSNNGGGLGNAETNGPERGAPQCV
RPPRRGYGADVDCDHHQPTTRRKLRSSDGTAHSATSLSASSLTQEAHSEFYGDDRVGARTTV
SDHNGTTGGASSPTPSEFVSTGSRAAPQVVTAASRHAPRRSSLLPSPHEHRPTTAPDEQLMA
TANKLTEAQRRIAELEKELQRTTQRVDQLSDVVQROQKDELQAAKDRHALEMEETRHAYNAV
ITHRKDEVQEEALRQLLKSRQLMVSAARYEAVVAAKKLHAQRLEKENNTGADDAMGSPKGLA
GVOASANPNERGTHPGLAPSQTSVNARHSSTLGYGSGTTAKYSSALKRDRONDEGDLVDDA
GVETGAHEPGEARYGEAAHHHPPVKRTTLDTSRLOGSADRVVOGRRGVAATKAETSPAYIT
TPTPAGKASTALVGTRTQSSSARKRRTPRTPSRTNAERTAGSVAENRIRSQQORLPGTTSLK
IESPTPVVSTAWTADRSLTGSRTPPPSSAGVCTVSEAVTKHHQLYPOQOVHQVPSTRPPLM
ORAAGRLPPAPHRTAAASTAVPNTRSGTSSIASGGPTRSPSPVNPKRGAMLPRRFIFTGLK
DHEPQRLVSAIAAVGEDAAALASDLDEPPPSSTTHIVLRGTPRSVKALCGVVSGKWLVSPE
YVYNSQOSGFWLDELEEGGLRIFPPPLKCORFLLTVEHPGIRAKLAQVIEYGGGEVLASGS
DKRGPGAGDTVAQDVVVITSGDDLLRYATQDRV

7.2.3.3.4 >KKT7

MTDVTSSLRPSSRQOGSPVPRROQLGILPVNQRSYSRVGSKGMIGDDSPLMSPLPYYPRRRSV
TEFAGDQSVREERPNYNAAYSASAPVSPARHGSPPPVSILKSNLSFPAAEEEDSGAAPAYQA
AAATVSGVLDRKDRARNSPVPVRGRSNSROQRLAARRKEAQLHRSEFYDDSEFVEEYVLRAKTE
LEEEEAEQRRMOEQLRAEQERAKRAERRVSEATEKINALQHAKEVLMAATVRRHTSVTPSP
OQRAPAEKSKRNSSLLRELEEDPDPEVQAALKELARNSMAKQOSRVHSSAHQRRRSISIVSA
DALAKSGEDEDGDDNDTRKRARLEKIVSTLLAKKAKSKSKRSVMVIDWSDLDSDADGNTST
TDEDGEETAVGLKROQRGRPAKSRSTIALGTEATLVSSAKHVOKPSTKRAASSRKRHVSAEPE
LGDSLLFEDEAEQPILLPRRONTRPAPTRSISYTIEMGGDDDLLRDASSVERVVRRPPRATR
APATRQRRGRLASTSTREGAEVMSSFTGTTALRGRASQPPAAPTGGPTGVPPRRRRGSVQR
ADPNDPMAVEFFEAAFPSPSKEDEMMMOAGGLPETRRGGGGGGRGOQGRAPNLVLPSSIGRRR

7.2.4 REPAIR TEMPLATE DESIGNS

From appendix 7.2.4.2 onwards, WT sequences and repair template designs for mutation
are shown in the translated frame. Translations of the region are shown at the top. Target
sites are highlighted in yellow. Black text indicates native sequence. Synonymously recoded

regions are indicated in orange text.
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7.2.4.1 Codon Usage of Leishmania Infantum from https://www.kazusa.or.jp/codon/
Second Base
[V} C A G

Tt i | o |1, ot b |78 A0 | o | 0 mor | 95|20 | o |1 o b (7B | 0 |t | 2B e

uuu F 0.35 10.6 -52317 ucu S 0.12 10.1 -49998 UAU Y 0.17 4.1 -20192 uUGu C 0.21 4.0 -19923

uuc F 0.65 19.3 -95738 ucc S 0.19 16.4 -81198 UAC Y 0.83 20.2 -100139 UGC C 0.79 14.7 -72980

v UUA L 0.02 1.7 -8226 UCA S 0.08 7.4 -36530 UAA * 0.21 0.3 -1675 UGA * 0.43 0.7 -3507

uuG L 0.12 11.0 -54287 UCG S 0.24 21.0 -104031 UAG * 0.36 0.6 -2958 UGG w 1.00 10.8 -53398

CuUu L 0.12 11.4 -56281 CCuU P 0.15 8.9 -44052 CAU H 0.25 6.6 -32829 CGU R 0.14 10.4 -51646

Ccuc L 0.27 25.1 -124189 ccc P 0.22 12.4 -61358 CAC H 0.75 20.3 -100341 CGC R 0.45 32.3 -159735

c CUA L 0.05 4.7 -23324 CCA P 0.18 10.5 -51760 CAA Q 0.19 7.7 -38242 CGA R 0.10 7.5 -37057
g CUG L 0.41 37.7 -186757 CCG P 0.45 25.8 -127867 CAG Q 0.81 33.2 -164619 CGG R 0.19 13.7 -67860 g
% 2
'E AUU | 0.28 8.6 -42717 ACU T 0.12 7.0 -34618 AAU N 0.21 5.6 -27605 AGU S 0.08 7.2 -35724 E

AUC | 0.63 19.1 -94755 ACC T 0.29 17.5 -86625 AAC N 0.79 21.1 -104327 AGC S 0.29 25.3 -125511

A AUA | 0.09 2.8 -13730 ACA T 0.17 10.1 -49979 AAA K 0.17 5.8 -28498 AGA R 0.04 2.7 -13523

AUG M 1.00 22.8 -113035 ACG T 0.42 24.9 -123090 AAG K 0.83 28.6 -141622 AGG R 0.08 5.5 -27170

GUU \% 0.12 8.7 -42923 GCU A 0.15 18.2 -90366 GAU D 0.30 14.7 -73013 GGU G 0.19 12.1 -59837

GUC \% 0.27 19.5 -96651 GCC A 0.31 36.8 -182020 GAC D 0.70 34.2 -169136 GGC G 0.53 34.3 -170081

¢ GUA \% 0.08 5.5 -27330 GCA A 0.17 20.3 -100314 GAA E 0.20 11.7 -58159 GGA G 0.10 6.6 -32881

GUG \% 0.53 37.3 -184912 GCG A 0.37 44.4 -220138 GAG E 0.80 48.3 -239092 GGG G 0.18 11.7 -58128
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https://www.kazusa.or.jp/codon/

7.2.4.2 Single-Stranded Repair Templates

Left hand side

Name

KKT1 51449 L P E E E E v N \Y% A% D G E H P I S/A 5 P P C D
Translation

KKT1 S1449 WT

sequence CTG CCT GAA GAG GAG GAA GTG AAC GTC GTA GAT GGC GAA CAC CCT ATT CGC GCC GTC AGC GGC CCC CCA GAC GAC
KKT1 S1449A CTG CCT GAA GAG GAG GAA GTG AAC GTC GTA GAT GGC GAA CAT A ATA GCG A GA A
KKT1 S1449s CTG CCT GAA GAG GAG GAA GTG AAC GTC GTA GAT GGC GAA CAT A ATA A GA A
KKT2 M14§ S H F S R H P N I \% A A

Translation

KKT2 M146 WT

sequence AGC CAT TTC TCG CGC CAT CCC AAC ATT GTC AAA TTC TAC GGT GCT GGT AGG GAT GAA GAT CGC GCC TAC GTA GTA
KKT2 M146G AGC CAT TTC TCG CGC CAT CCcC AAC ATT GTC AAG T TAT GG G TAT GTG

KKT2 SSO§/55O6 S R S \% R R S \Y% S Q 5 S/A S/A C
Translation

;§T2e2i2i22506 TCT CGA TCA GTG CGT CGT AGC GTC AGC TTA ACG GAG CAG GAG CGG GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG
KKT2 S505A TCT CGA TCA GTG CGT CGT AGC GTC AGC CTA ACC G GGC AGA CTT GTG CGT GCG AGC CCG GTG

KKT2 S5058 TCT CGA TCA GTG CGT CGT AGC GTC AGC CTA ACC G G GGC AGA CTT GTG CGT CG AGC CCG GTG

KKT2 S506A TCT CGA TCA GTG CGT CGT AGC GTC AGC CTZ2 A AR AR AR GT GGC AGA CTT GTG CGT TCT GCC CCG GTG AR
KKT2 S506S TCT CGA TCA GTG CGT CGT AGC GTC AGC CTA A AR AR AR >GT GGC AGA CTT GTG CGT TCT AGT CCG GTG AR
KKT2

S505A+S506A TCT CGA TCA GTG CGT CGT AGC GTC AGC TA cC G - G 5( >G( GCG GCG GTC
Double

KKT2

55055+5506S TCT CGA TCA GTG CGT CGT AGC GTC AGC TA ACC GAA CA GA 5( 5( Hele G GTG
Double
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KKT2 S493

. \% S E A% A D R E E A A P R T R S R R S S/A L T
Translation
KKT2 S493 WT
sequence GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCC CCT CGC ACG TCT CGA TCA GTG CGT CGT AGC GTC AGC TTA ACG
KKT2 S493A GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC CGG TCA CGT TCT GTC CGT CGT AGC GTA GCG CTA ACC
KKT2 S493S GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC CGG ACC TCA CGT TCT GTC CGT CGT AGC GTA TCG CTA ACC
KKT2 5539 \% \% Y P G R D T A T R w N L R A v S/A L P R D M T
Translation
KKT2 S530 WT
sequence GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAC CTT CGC GCC GTA GTA TCG CTG CCA CGC GAC ATG ACG
KKT2 S530A GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAT TTG CGG GCG GTT GTA GCG GAT ATG ACC
KKT2 S530S GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAT TTG CGG GCG GTT GTA TCC CCT CGG GAT ATG ACC
KKT2 S530 1
guide A \ \ Y P G R D T A T R w N L R A \ S/A L P R D M
Translation
KKT2 S530 1
guide WT GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAC CTT CGC GCC GTA GTA TCG CTG CCA CGC GAC ATG
sequence
§§32e8530A ! GCA GTG GTG TAC CCG GGG CGC GAC ACT GCG ACA CGG TGG AAT TTG GTT GTA GCG CTC CCT CGG GAT ATG
§§$26853OS ! GCA GTG GTG TAC CCG GGG CGC GAC ACT GCG ACA CGG TGG AAT TTG CGG GTT GTA TCC CTC CCT CGG GAT ATG
KKT2 8923 K Q A I M P P Q \% P R G R A Q Q P R A P S/A S G H
Translation
KKT2 S923 WT
sequence AAG CAA GCC ATC ATG CCG CCT CAG GTG CCA CGC GGA CGA GCA CAG CAG CCA CGT GCC ccc TCC GTC AGC GGG CAC
KKT2 S923A AAG CAA GCC ATC ATG CCG CCT GTG CCA CGC GGA CGA GCA CAG CAG CCA CGT CCA GCG GTT TCG AT
KKT2 S923S AAG CAA GCC ATC ATG CCG CCT “AA GTG CCA CGC GGA CGA GCA CAG CAG CCA CGT 5CG CA TCG GTT TCG GGT
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KKT4 S300

X A A K K L H A Q R L E K E N N T G A D D A M G S/A P
Translation

KKT4 5300 wWr GCG GCG AAG AAG CTT CAC GCT CAG CGG TTG GAA AAG GAG AAC AAC ACC GGC GCC GAT GAT GCG ATG GGA AGC CCG

sequence

KKT4 S300A GCG GCG AAG AAG CTT CAC GCT CAG CGG TTG AAA GAA AAT AAT ACG GGC GCC GAT GAT GCG ATG GGA GCG

KKT4 S300S GCG GCG AAG AAG CTT CAC GCT CAG CGG TTG AAR GAA AAT AAT ACG GGC GCC GAT GAT GCG ATG GGA TCG ccc
KKT4 542? L Q G S A D R v \Y% 0 G R R G v A A T K A E T S/A P A
Translation

KKT4 5422 WT CTG CAG GGC AGC GCC GAT CGT GTC GTG CAA GGA CGG AGG GGC GTT GCG GCG ACC AAG GCG GAG ACG TCT CCG GCG

sequence

KKT4 S422A CTG CAG GGC AGC GCC GAT CGT GTC CGT CGT GGC GTT GCG GCG ACC AAG GCG GAG ACG GCG CCG
KKT4 S422S CTG CAG GGC AGC GCC GAT CGT GTC GGC GTT GCG GCG ACC AAG GCG GAG ACG TCA CCG
KKT7 S304 N - - N
Translation A K Q Q s R v H S S o R R R I I v S/A D

KKT7 5304 WT GCG  AAG CAA  CAG AGT CGC GIT CAC TCT TCT GCC CAT CAG CGT CGT CGG TCG ATA TCC ATT GIC TCC GCC  GAC  GCC

sequence
KKT7 S304A GCG AAG CAA CAG AGT CGC GTT CAC TCT TCT A AA G AT AGC ATT GTC GCG G GA
KKT7 S3048 GCG AAG CAA CAG AGT CGC GTT CAC TCT TCT AA AT AGC ATT GTC TCG G GA
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Right hand side

Name
C I A G R A G D D E A T K R KKTL 514A9
Translation
AGC GAC CTT GCT GGA CGC GCA GGT GAC GAC GAA GCG ACT AAG CGC KKT1 51443 WT
sequence
TCG GAT T GCT GGA CGC GCA GGT GAC GAC GAA GCG ACT AAG CGC KKT1 S1449A
TCG GAT T GCT GGA CGC GCA GGT GAC GAC GAA GCG ACT AAG CGC KKT1 S1449s
M/G E R A G K S L H D v I A - KKT2 M1%6
Translation
ATG GAG CGG TGC GCA GGC AAG TCG CTT CAC GAC GTC ATA GCC AG KKT2 M146 WT
sequence
GCG G? G 5 GCA GGC AAG TCG CTT CAC GAC GTC ATA GCC AG KKT2 M146G
v . G R b T A T R - N KKT2 §505/8506
Translation
TAC GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAC KKT2 $505/5506
WT sequence
GC 5 GTC TAC >C GGG CGC GAC ACT GCC ACT CGT TGG AAC KKT2 S505A
GC 5 GTC TAC >C GGG CGC GAC ACT GCC ACT CGT TGG AAC KKT2 S505S
G G TAC GGG CGC GAC ACT GCC ACT CGT TGG AAC KKT2 S506A
G G TAC GGG CGC GAC ACT GCC ACT CGT TGG AAC KKT2 S506S
KKT2
TAT GC( T GT( TAT > GGG CGC GAC ACT GCC ACT CGT TGG AAC S505A+S506A
Double
KKT2
TAT GCC T GTC TAT > GGG CGC GAC ACT GCC ACT CGT TGG AAC S5058+S506S
Double
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KKT2 S493

E Q E F G R L v R S S P \Y% Q Y Translation
GAG CAG GAG CGG GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 5433 WT
sequence
GAA CAA GAA CGT GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493A
GAA CAA GAA CGT GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493S
D E I E R E F K C M N G H v M KKT2 SS:.%O
Translation
GAC GAG ATC GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA ATG KKT2 5530 Wr
sequence
GAT GAA ATC GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA ATG KKT2 S530A
GAT GAA ATC GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA ATG KKT2 S530S
KKT2 S530 1
T D E I E R E F K C M N G H \% guide
Translation
KKT2 S530 1
ACG GAC GAG ATC GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA guide WT
sequence
ACC GAT SARA ATT GAR CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 ;53OA !
guide
ATT e CGC GAG TTC ARG TGC ATG AAC GGG CAC GTA KKT2 35303 !
guide
A Q G G P P L P R R G P A A KKT2 59?3
Translation
ACC GCA CAG GGC GGT CCG CCA CTG CCG CGC CGC GGC CCA GCT GCG KKT2 5923 Wr
sequence
GCT GGT GGT CCG CCA CTG CCG CGC CGC GGC CCA GCT GCG KKT2 S923A
ACG GCT AR GGT GGT CCG CCA CTG CCG CGC CGC GGC CCA GCT GCG KKT2 S923S
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KKT4 S300

h Translation

AAG GGG CTA GCA GGC GTA CAG GCA AGC GCG AAC CcccC AAC GAG CGC KKT4 5300 wWr
sequence

AAA GTA CAG GCA AGC GCG AAC CCC AAC GAG CGC KKT4 S300A
GGT TT GCT GGG GTA CAG GCA AGC GCG AAC Ccc AAC GAG CGC KKT4 s300S
Y I T T P T P A G K A S T A L KKT4 84?2
Translation

TAC ATC ACC ACC CCcC ACG CCG GCC GGC AAG GCG TCC ACC GCG CTC KKT4 5422 WT
sequence

TAT A AC CCcC ACG CCcC GCC GGC AAG GCG TCC ACC GCG CTC KKT4 S422A
TAT A A CCcC ACG CCcC GCC GGC AAG GCG TCC ACC GCG CTC KKT4 S422S
K G E D E D G D D N D T KKT7 33(,)4

Translation

CTC GCG AAG AGC GGC GAG GAC GAA GAC GGT GAC GAC AAC GAC ACC KKT7 5304 Wr
sequence

G CG GGC GAG GAC GAA GAC GGT GAC GAC AAC GAC ACC KKT7 S304A

GGC GAG GAC GAA GAC GGT GAC GAC AAC GAC ACC KKT7 S304S
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7.2.4.3 Pooled Single-Stranded Repair Template Designs

- Left hand side.

Name

KKT2 S493 Translation v S E \Y% A D R E E A P R T R \Y% R R S/A L T E C E Y
KKT2 S493 WT sequence GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCC CCT CGC ACG TCT CGA TCA GTG CGT CGT AGC GTC AGC TTA ACG GAG CAG GAG CGG TAC
KKT2 S493A GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC A A TCA GT TCT CGT CGT AGC GTA CTA GAA CAA SAR GT TAC
KKT2 S493S design 1 GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC AC TCA CGT TCT CGT CGT AGC GTA TCG TA AC( GAA CAA AA TAC
KKT2 S493A design 2 GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCT GA ACG TCT CGA TCA GTG CGT CGT AGC GTE SCG CTC ACG GAG CAG GAG GT TAC
KKT2 S493S design 2 GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC ACG TCT CGA TCA GTG CGT CGT AGC GTA T« CTC ACG GAG CAG GAG TAC
KKT2 S493A design 3 GTC TCA GAG GIT GCA GAT CGC GAG GAA GCC A CGC ACG TCT CGA TCA GIG CGT CGT TCG GTA GCG CTA ACG GAG CAA GAPR GT TAC
KKT2 S493S design 3 GTC TCA GAG GTT GCA GAT CGC GAG GAA ACG TCT CGA TCA GTG CGT CGT GTA AG CTA ACG GAG CAA AA TAC
KKT2 S493A design 4 GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCT AGG ACG AGT CGA AGC GTG AGG CGT AGC GTA GCG CTC ACG GAG CAA GAG AGA TAC
KKT2 S493S design 4 GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC CCT ACG AGT CGA AGC GTG CGT AGC GTA T( CTC ACG GAG CAA GAG AGA TAC
KKT2 S493A design 5 GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCA GT ACA TCT CGA TCA GTG CGT CGT TCC GTA GCG T ACA GAG CAG GAG AGG TAC
KKT2 S493S design 5 GTC TCA GAG GTT GCA GAT CGC GAG GAA ¢ ACA TCT CGA TCA GTG CGT CGT GTA C ACA GAG CAG GAG TAC
KKT2 S530 1 guide

Translation A v v Y P G R D T A w N A v S/A P M v
KKT2 S530 WT sequence GCA GTG GTIG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAC CTT CGC GCC GTA GTA TCG CTG CCA CGC GAC ATG ACG GAC GAG ATC GTA
KKT2 S530A design 1 GCA GTG GTG TAC CCG GGG CGC GAC ACT ACA TGG AA G GTA GCG GA GAA A GTA
KKT2 S530S design 1 GCA GTG GTG TAC CCG GGG CGC GAC ACT ACPA sG TGG AAT GTT GTA T _CT GG GAT SAA ATT  GTA
KKT2 S530A design 2 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AA G CA GCC GTA GTA GCG CTT CCA CG GAC ATG ACG GAC GAG ATC GTA
KKT2 S530S design 2 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAT TTG GTA GTA TCA CTT CCA GT GAC ATG ACG GAC GAG ATC GTA
KKT2 S530A design 3 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG T TTG GTA CCA CC! T ATG ACG GAC GAG ATC GTA
KKT2 S530S design 3 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG T TTG GTA CCA CC! T ATG ACG GAC GAG ATC GTA
KKT2 S530A design 4 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAT TTG AGA GCC GTA GTT GCG TTA CCA AGG GAT ATG ACG GAC GAG ATC GTA
KKT2 S530S design 4 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG T TTG GCC GTA CTT GT TT CCA T ATG ACG GAC GAG ATC GTA
KKT2 S530A design 5 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAT TTA CGT GAC ATG ACA GAC GAG ATA GTA
KKT2 S530S design 5 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAT TTA CGT GAC ATG ACA GAC GAG GTA
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Name

G R L v R S S P v Q Y KKT2 S493 Translation
GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493 WT sequence
GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493A

GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493S design 1
GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493A design 2
GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493S design 2
GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493A design 3
GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493S design 3
GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493A design 4
GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493S design 4
GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493A design 5
GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493S design 5

KKT2 S530 1 guide
R E F K C M N G H \ Translation

GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530 WT sequence
G CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530A design 1
© CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530S design 1
GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530A design 2
GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530S design 2
GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530A design 3
GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530S design 3
GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530A design 4
GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530S design 4
GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530A design 5
GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530S design 5

Right hand side.
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7.2.4.3.1 Pooled single-stranded repair template sgRNA and repair template primer IDs.

S493A $493S S530A S$530S
sgRNA Primers ~ OL12987 OL12987 0OL12902 0OL12902
OL12988 OL12988 OL12903 OL12903
Repair OL12999 OL13000 OL13369 OL13370
Templates OL13651 OL13652 OL13659 OL13660
OL13653 OL13654 OL13661 OL13662
OL13655 OL13656 OL13663 OL13664
OL13657 OL13658 OL13665 OL13666
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7.2.4.4 Double-Stranded Repair Template Designs

Plus strand sequence only. Left hand side.

Name

KKT2 S25 Translation - P L M S H F C G S L S R T P P R G G A I S M

KKT2 S25 WT sequence GG CCT CTG ATG TCA CAC TTT TGC GGC TCG TTG TCG AGG ACT CCA CCA CGG GGT GGG GCG ATA TCT ATG CCG CGT GAT
KKT2 S25A GC CCT CTG ATG TCA CAC TTT TGC GGC TCG TTG TCG AGG ACT CCA CCA CGG GGT GGG GCG ATA TCT ATG AGA A
KKT2 S25E CC cCtr CTG ATG TCA CAC TTT TGC GGC TCG TTG TCG AGG ACT CCA CCA CGG GGT GGG GCG ATA TCT ATG ( \GA 5
KKT2 S258 GG CCT CTG ATG TCA CAC TTT TGC GGC TCG TTG TCG AGG ACT CCA CCA CGG GGT GGG GCG ATA TCT ATG AGA A
KKT2 S493 Translation - C G S \Y% S L \Y% S E A% A D R E E A P R T R R
KKT2 S493 WT sequence GG TGT GGC AGT GTC TCA CTG GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCC CCT CGC ACG TCT CGA TCA GTG CGT
KKT2 S493A GG TGT GGC AGT GTC TCA CTG GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG C 5G > T CGT ( CGT
KKT2 S493E GG TGT GGC AGT GTC TCA CTG GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC G C >C CG C CGT
KKT2 S493S GG TGT GGC AGT GIC TCA CTG GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG C 5G > TC CGT ( 5TC CGT
KKT2 S530 Translation R S S P v Q Y A v v Y P G R D T W ,

KKT2 S530 WT sequence CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAC CTT CGC GCC GTA
KKT2 S530A CGT TCT AGC CCG GIC CAG TAC GCA GTIG GTG TAC CCG GGG CGC GAC ACT GCG 56 TGG G GG 5CG 5
KKT2 S530E CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CGC GAC ACT GCG 5G TGG AT I'TG >GG 5CG GT
KKT2 S530S CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CGC GAC ACT G TGG G G 5C

KKT2 S923 Translation - \Y% E E H \% \% K Q A I M P P \% P R G R A Q Q P R

KKT2 S923 WT sequence CT GIG GAG GAG CAC GTG GTG AAG CAA GCC ATC ATG CCG CCT CAG GTIG CCA CGC GGA CGA GCA CAG CAG CCA CGT GCC
KKT2 S923A CT GTG GAG GAG CAC GTG GTG AAG CAA GCC ATC ATG CCG CCT GTG CCA CGC GGA CGA GCA CAG CAG CCA CGT

KKT2 S923E CT GIG GAG GAG CAC GTG GTG AAG CAA GCC ATC ATG CCG CCT AR GTG CCA CGC GGA CGA GCA CAG CAG CCA CGT 5
KKT2 S923S CT GTG GAG GAG CAC GTG GTG AAG CAA GCC ATC ATG CCG CCT GTG CCA CGC GGA CGA GCA CAG CAG CCA CGT
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KKT4 S422 Translation - T T L D T S R L Q G S A D R v v Q G R R G 4 A A T

KKT4 S422 WT Sequence AC ACC ACG TTG GAC ACG TCT CGT CTG CAG GGC  AGC GCC GAT CGT GTC GTG CAA GGA CGG  AGG GGC GTT GCG GCG ACC
KKT4 S422A AC ACC ACG TTG GAC  ACG TCT CGT CTG CAG GGC  AGC GCC GAT CGT GTC GTG CAG GGT CGC CGT GGT GTG 5( GCG ACC
KKT4 S422E AC ACC ACG TTG GAC ACG TCT CGT CTG CAG GGC  AGC GCC GAT CGT GTC GTG CAG GG CG( C GG GTG GCG ACC
KKT4 S422S AC ACC ACG TTG GAC ACG TCT CGT CTG CAG GGC  AGC GCC GAT CGT GTC GTG CAG GG CG( C GG GTG GCG ACC
KKT7 S304 Translation - L A R N S M A K Q Q S R v H S S A H Q R R R S I S

KKT7 S304 WT Sequence CT CTC GCA  CGC AAC TCC ATG GCG  AAG CAA CAG  AGT CGC GTT CAC TCT TCT GCC CAT CAG CGT CGT CGG TCG ATA TCC
KKT7 S304A CT CTC GCA CGC AAC TCC ATG GCG AAG CAA CAG AGT CGC GTT CAC TCT TCT CAA C CGA C C ATC TCC
KKT7 S304E CT CTC GCA  CGC AAC TCC ATG GCG  AAG CAA CAG  AGT CGC GTT CAC TCT TCT GCT CA( ( CG( CG CG( T( ATC TCC
KKT7 S3048 CT CTC GCA CGC AAC TCC ATG GCG AAG CAA CAG AGT CGC GTT CAC TCT TCT G CAA C CGA C ATC TCC
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Plus strand sequence only. Right hand side

Name
S/A
L /E o] T P A I S L G S T A% K T P H I Q K C \% \% D Q A - KKT2 S25 Translation
TTG TCG CAG ACC CCC GCC ATC TCT CGA CTT GGA AGC ACG GTG AAG ACG CCG CAC ATC CAA AAA TGT GTT GTT GAC CAA GCA GA KKT2 S25 WT sequence
CTT GCG GCG TT T CTG GGG AGC ACG GTG AAG ACG CCG CAC ATC CAA AAA TGT GTT GTT GAC CAA GCA GA KKT2 S25A
I GAG CAA ACA CCA A A AGC ACG GTG AAG ACG CCG CAC ATC CAA AAA TGT GTT GTT GAC CAA GCA GA KKT2 S25E
CTT AGT CAA ACA CCA GCG ATT TCA CGC CTG GGG AGC ACG GTG AAG ACG CCG CAC ATC CAA AAA TGT GTT GTT GAC CAA GCA GA KKT2 S258
S/A
R S /E ' , C ) R G R L \% R S S P \Y% Q Y A \Y% \% Y P G - KKT2 S493 Translation
CGT AGC GTIC AGC TTA ACG GAG CAG GAG CGG GGC AGA CTT GTIG CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CG KKT2 S493 WT sequence
CGT GTA GCG CTA AA CAA AR GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CG KKT2 S493A
CGT AGC GTA GAG CTA ACC GAA CAA GAA CGT GGC AGA CTT GTIG CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CG KKT2 S493E
CGT AGC GTA G GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CG KKT2 S493S
S/A
\% /E P R M T 5 R E F K C M N G H \% M T K L T S - KKT2 S530 Translation
GTA TCG CTG CCA CGC GAC ATG ACG GAC GAG ATC GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA ATG ACA AAG TTG ACC TCG A KKT2 S530 WT sequence
GTA GCG ATG \CC G GA AT GAA CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA ATG ACA AAG TTG ACC TCG A KKT2 S530A
GTA GAG CTC CCT CGG GAS ATG ACC GA GAA AT GAA CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA ATG ACA AAG TTG ACC TCG A KKT2 S530E
GTA AGT GA' ATG \CC G GA GAA CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA ATG ACA AAG TTG ACC TCG A KKT2 S5308
S/A
P /E S G ! o] G P P L P R R G P A A P S P A A A - KKT2 S923 Translation
CCC TCC GTC AGC GGG CAC ACC GCA CAG GGC GGT CCG CCA CTG CCG CGC CGC GGC CCA GCT GCG CCA TCT CCT GCA GCC GCT TT KKT2 S923 WT sequence
GCG GT" 'CG GG CA' CG GC! CAA  GGT GGT CCG CCA CTG CCG CGC CGC GGC CCA GCT GCG CCA TCT CCT GCA GCC GCT TT KKT2 S923A
CCA GAG GTT TCG GGT CAT ACG GCT CAA GGT GGT CCG CCA CTG CCG CGC CGC GGC CCA GCT GCG CCA TCT CCT GCA GCC GCT TT KKT2 S923E
G G CG G ( C GC" CAA  GGT GGT CCG CCA CTG CCG CGC CGC GGC CCA GCT GCG CCA TCT CCT GCA GCC GCT TT KKT2 S923S
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S/A

K A E T /E P A Y I T T P T P A G K A S T A L v G T R T - KKT4 S422 Translation
AAG GCG GAG ACG TCT CCG GCG TAC ATC ACC ACC CCC ACG CCG GCC GGC AAG GCG TCC ACC GCG CTC GTC GGC ACG CGC ACT CA KKT4 S422 WT Sequence
AAG GCG GAG ACG GCG cccC C TAT ATT A ACA CCC ACG CCG GCC GGC AAG GCG TCC ACC GCG CTC GTC GGC ACG CGC ACT cCA KKT4 S422A
AAG GCG GAG ACG GAG CCf 5( TAT ATT > CCC ACG CCG GCC GGC AAG GCG TCC ACC GCG CTC GTC GGC ACG CGC ACT CA KKT4 S422E
AAG GCG GAG ACG AG( A A A ACA CCC ACG CCG GCC GGC AAG GCG TCC ACC GCG CTC GTC GGC ACG CGC ACT cA KKT4 S4228

S/A

I v /E A D A L A K S G E D E D G D D N D T R K R A R L - KKT7 S304 Translation
ATT GTC TCC GCC GAC GCC CTC GCG AAG AGC GGC GAG GAC GAA GAC GGT GAC GAC AAC GAC ACC CGC AAG CGC GCG CGT CTA GA KKT7 S304 WT Sequence
ATT GTC GCA C GA G AAA GGC GAG GAC GAA GAC GGT GAC GAC AAC GAC ACC CGC AAG CGC GCG CGT CTA GA KKT7 S304A
ATT GTC GAA GCG GAT ¢ TG GCC TCG GGC GAG GAC GAA GAC GGT GAC GAC AAC GAC ACC CGC AAG CGC GCG CGT CTA GA KKT7 S304E
ATT GTC A C GA AAA GGC GAG GAC GAA GAC GGT GAC GAC AAC GAC ACC CGC AAG CGC GCG CGT CTA GA KKT7 S3048
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7.2.5 PRIMERS

All primer sequences are given in the 5’ to 3’ orientation.

/7.2.5.1 sgRNA Primers

Capital letters

indicate the protospacer recognition sequence.

Note: OL12825’s

protospacer sequence was later identified to be incorrect (copied from the repair template

not the WT sequence), but not before ssDNA repair transfections were completed using it.

It was replaced with OL14600 for dsDNA transfections.

Name Target

Sequence

Description

OL6137 =

0OL12985 KKT1

OL12986 KKT1

OL12632 KKT2

OL14011 KKT2

0OL12987 KKT2

OL12988 KKT2

OL12775 KKT2

OL12898 KKT2

0OL12902 KKT2

OL12903 KKT2

OL12778 KKT2

OL12899 KKT2

0OL12989 KKT4

OL12990 KKT4

OL12764 KKT4

aaaagcaccgactcggtgecactttttcaagttgataacggacta
gccttattttaacttgcetatttctagetctaaaac

gaaattaatacgactcactataggGCAAGGTCGCTGTCGT
CTGGgttttagagctagaaatagc

gaaattaatacgactcactataggCACCCTATTCGCGCCG
TCAGgttttagagctagaaatagc

gaaattaatacgactcactataggGGGGTCTGCGACAAA
TCACGgttttagagctagaaatagc

gaaattaatacgactcactataggACCCCCGCCATCTCTC
GACTgttttagagctagaaatagc

gaaattaatacgactcactataggGCACTGATCGAGACGT
GCGAgttttagagctagaaatagc

gaaattaatacgactcactataggAGCTTAACGGAGCAG
GAGCGgttttagagctagaaatagc

gaaattaatacgactcactatagg CCGGGTACACCACTGC
GTACgttttagagctagaaatagc

gaaattaatacgactcactataggAGCTTAACGGAGCAG
GAGCGgttttagagctagaaatagc

gaaattaatacgactcactataggATCTCGTCCGTCATGT
CGCGgttttagagctagaaatagc

gaaattaatacgactcactataggGCAGCGATACTACGGC
GCGAgttttagagctagaaatagc

gaaattaatacgactcactataggGGTGTGCCCGCTGACG
GAGGgttttagagctagaaatagc

gaaattaatacgactcactataggAGCGGGCACACCGCA
CAGGGgttttagagctagaaatagc

gaaattaatacgactcactataggGTACGCCTGCTAGCCC
CTTCgttttagagctagaaatagc

gaaattaatacgactcactataggTTGGAAAAGGAGAAC
AACACgttttagagctagaaatagc

gaaattaatacgactcactataggATCGTGTCGTGCAAGG
ACGGgttttagagctagaaatagc

Universal
(G00)

sgRNA  Primer

S$1449 Guide 1

$1449 Guide 2

S25 Guide 1

S25 Guide 2

S493 Guide 1

S493 Guide 2

$505/S506 Guide 1

S506A Guide 2

S530 Guide 1

$530 Guide 2

$923 Guide 1

$923 Guide 2

S300 Guide 1

S300 Guide 2

S422 Guide 1
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OL12900

0OL12825

OL12901

OL14600

KKT4

KKT7

KKT7

KKT7

gaaattaatacgactcactataggGTACATCACCACCCCC
ACGCgttttagagctagaaatagc

gaaattaatacgactcactataggGCTCTTCGCGAGGGCA
TCCGCCGgttttagagctagaaatagce

gaaattaatacgactcactataggATATCGACCGACGACG
CTGAgttttagagctagaaatagc

gaaattaatacgactcactataggGCTCTTCGCGAGGGCG
TCGGgttttagagctagaaatagce

S422 Guide 2

S304 Guide 1

$304 Guide 2

S304 Guide 3 (replacement
for guide 1)
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7.2.5.2 Single-Stranded Repair Primers

Name Target Sequence Description
GCGCTTAGTCGCTTCGTCGTCACCTGCGCGTCCAGCTAGATCCGAATCATCAGGTGGACCCGCAACAGCCCGTAT

OL12997 KKT1 TGGATGTTCGCCATCTACGACGTTCACTTCCTCCTCTTCAGGCAG S1449A
GCGCTTAGTCGCTTCGTCGTCACCTGCGCGTCCAGCTAGATCCGAATCATCAGGTGGACCCGAAACAGCCCGTAT

0OL12998  KKT1 TGGATGTTCGCCATCTACGACGTTCACTTCCTCCTCTTCAGGCAG $1449S
GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCACGGACCTCACGTTCTGTCCGTCGTAGCGTAGCGCTAAC

0L12999  KKT2 CGAACAAGAACGTGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC S493A
GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCACGGACCTCACGTTCTGTCCGTCGTAGCGTATCGCTAAC

OL13000  KKT2 CGAACAAGAACGTGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC $493S
TCTCGATCAGTGCGTCGTAGCGTCAGCCTAACCGAACAAGAACGTGGCAGACTTGTGCGTGCGAGCCCGGTGCA

OL13001  KKT2 ATATGCTGTCGTCTACCCAGGGCGCGACACTGCCACTCGTTGGAAC S505A
TCTCGATCAGTGCGTCGTAGCGTCAGCCTAACCGAACAAGAACGTGGCAGACTTGTGCGTTCGAGCCCGGTGCA

OL13002  KKT2 ATATGCTGTCGTCTACCCAGGGCGCGACACTGCCACTCGTTGGAAC S505S
GCAGTGGTGTACCCGGGGCGCGACACTGCGACACGGTGGAATTTGCGGGCGGTTGTAGCGCTCCCTCGGGATA

OL13369  KKT2 TGACCGATGAAATTGAACGCGAGTTCAAGTGCATGAACGGGCACGTA S530A one guide
GCAGTGGTGTACCCGGGGCGCGACACTGCGACACGGTGGAATTTGCGGGCGGTTGTATCCCTCCCTCGGGATAT

OL13370  KKT2 GACCGATGAAATTGAACGCGAGTTCAAGTGCATGAACGGGCACGTA S530S one guide
GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCTCGAACGTCTCGATCAGTGCGTCGTAGCGTAGCGCTCAC

OL13651  KKT2 GGAGCAGGAGCGTGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC KKT2 S493A design 2
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OL13652

OL13653

OL13654

OL13655

OL13656

OL13657

OL13658

OL13659

OL13660

OL13661

OL13662

KKT2

KKT2

KKT2

KKT2

KKT2

KKT2

KKT2

KKT2

KKT2

KKT2

KKT2

GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCTCGAACGTCTCGATCAGTGCGTCGTAGCGTATCGCTCAC
GGAGCAGGAGCGTGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC

GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCACGCACGTCTCGATCAGTGCGTCGTTCGGTAGCGCTAAC
GGAGCAAGAACGTGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC

GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCACGCACGTCTCGATCAGTGCGTCGTTCGGTAAGTCTAAC
GGAGCAAGAACGTGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC

GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCTAGGACGAGTCGAAGCGTGAGGCGTAGCGTAGCGCTCA
CGGAGCAAGAGAGAGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC

GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCTAGGACGAGTCGAAGCGTGAGGCGTAGCGTATCCCTCA
CGGAGCAAGAGAGAGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC

GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCACCCCGTACATCTCGATCAGTGCGTCGTTCCGTAGCGCTCAC
AGAGCAGGAGAGGGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC

GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCACCCCGTACATCTCGATCAGTGCGTCGTTCCGTATCTCTCACA
GAGCAGGAGAGGGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC

GCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTGCGAGCCGTAGTAGCGCTTCCACGTGACAT
GACGGACGAGATCGAGCGCGAGTTCAAGTGCATGAACGGGCACGTA

GCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTGCGAGCCGTAGTATCACTTCCACGTGACAT
GACGGACGAGATCGAGCGCGAGTTCAAGTGCATGAACGGGCACGTA

GCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTGCGGGCGGTAGTGGCGCTCCCACGAGATA
TGACGGACGAGATCGAGCGCGAGTTCAAGTGCATGAACGGGCACGTA

GCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTGCGGGCGGTAGTGTCACTCCCACGAGATAT
GACGGACGAGATCGAGCGCGAGTTCAAGTGCATGAACGGGCACGTA

KKT2 S493S design 2

KKT2 S493A design 3

KKT2 S493S design 3

KKT2 S493A design 4

KKT2 S493S design 4

KKT2 S493A design 5

KKT2 S493S design 5

KKT2 S530A design 2

KKT2 S530S design 2

KKT2 S530A design 3

KKT2 S530S design 3

181



OL13663

OL13664

OL13665

OL13666

RC  kkt2

M146G

0OL12909

0L12928

0OL12929

OL12930

OL12931

OL12932

KKT2

KKT2

KKT2

KKT2

KKT2

KKT2

KKT2

KKT2

KKT2

KKT2

KKT2

GCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTGAGAGCCGTAGTTGCGTTACCAAGGGATAT
GACGGACGAGATCGAGCGCGAGTTCAAGTGCATGAACGGGCACGTA

GCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTGAGAGCCGTAGTTAGTTTACCAAGGGATAT
GACGGACGAGATCGAGCGCGAGTTCAAGTGCATGAACGGGCACGTA

GCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTAAGGGCTGTCGTAGCGTTGCCTCGTGACAT
GACAGACGAGATAGAGCGCGAGTTCAAGTGCATGAACGGGCACGTA

GCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTAAGGGCTGTCGTATCTTTGCCTCGTGACAT
GACAGACGAGATAGAGCGCGAGTTCAAGTGCATGAACGGGCACGTA

GAGCCATTTCTCGCGCCATCCCAACATTGTCAAGTTTTATGGAGCGGGCCGCGACGAGGACCGAGCGTATGTGG
TGGGCGAACGTTGTGCAGGCAAGTCGCTTCACGACGTCATAGCCAG

CAGTACGCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATCTTCGGGCCGTAGTAGCGCTGCCACG
GGATATGACGGACGAGATCGAGCGCGAGTTCAAGTGCATGAACGGG

TCTCGATCAGTGCGTCGTAGCGTCAGCCTAACCGAACAAGAACGTGGCAGACTTGTGCGTTCTGCCCCGGTGCA
ATATGCTGTCGTCTACCCAGGGCGCGACACTGCCACTCGTTGGAAC

TCTCGATCAGTGCGTCGTAGCGTCAGCCTAACCGAACAAGAACGTGGCAGACTTGTGCGTTCTAGTCCGGTGCA
ATATGCTGTCGTCTACCCAGGGCGCGACACTGCCACTCGTTGGAAC

GTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTGCGGGCGGTTGTAGCGCTCCCTCGGGATATGAC
CGATGAAATCGAGCGCGAGTTCAAGTGCATGAACGGGCACGTAATG

GTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTGCGGGCGGTTGTATCCCTCCCTCGGGATATGAC
CGATGAAATCGAGCGCGAGTTCAAGTGCATGAACGGGCACGTAATG

AAGCAAGCCATCATGCCGCCTCAAGTGCCACGCGGACGAGCACAGCAGCCACGTGCGCCAGCGGTTTCGGGETC
ATACGGCTCAAGGTGGTCCGCCACTGCCGCGCCGCGGCCCAGLTGCG

KKT2 S530A design 4

KKT2 S530S design 4

KKT2 S530A design 5

KKT2 S530S design 5

M146G

S530A

S506A

S506S

S530A

S530S

S923A
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OL12933

OL13351

OL13352

OL13003

OL13004

OL12934

0OL12935

OL12936

OL12937

KKT2

KKT2

KKT2

KKT4

KKT4

KKT4

KKT4

KKT7

KKT7

AAGCAAGCCATCATGCCGCCTCAAGTGCCACGCGGACGAGCACAGCAGCCACGTGCGCCATCGGTTTCGGGTCA
TACGGCTCAAGGTGGTCCGCCACTGCCGCGCCGCGGCCCAGCTGCG

TCTCGATCAGTGCGTCGTAGCGTCAGCTTAACCGAACAAGAACGTGGTAGGCTCGTCCGGGCGGCGCCCGTGCA
ATATGCCGTCGTCTATCCGGGGCGCGACACTGCCACTCGTTGGAAC

TCTCGATCAGTGCGTCGTAGCGTCAGCTTAACCGAACAAGAACGTGGTAGGCTCGTCCGGAGCTCGCCCGTGCA
ATATGCCGTCGTCTATCCGGGGCGCGACACTGCCACTCGTTGGAAC

GCGGCGAAGAAGCTTCACGCTCAGCGGTTGGAGAAAGAAAATAATACGGGCGCCGATGATGCGATGGGAGCG
CCCAAAGGTCTTGCTGGGGTACAGGCAAGCGCGAACCCCAACGAGCGC

GCGGCGAAGAAGCTTCACGCTCAGCGGTTGGAGAAAGAAAATAATACGGGCGCCGATGATGCGATGGGATCGC
CCAAAGGTCTTGCTGGGGTACAGGCAAGCGCGAACCCCAACGAGCGC

CTGCAGGGCAGCGCCGATCGTGTCGTCCAGGGGCGTCGTGGCGTTGCGGCGACCAAGGCGGAGACGGCGCCG
GCCTATATTACGACGCCCACGCCCGCCGGCAAGGCGTCCACCGLGCTC

CTGCAGGGCAGCGCCGATCGTGTCGTCCAGGGGCGTCGTGGCGTTGCGGCGACCAAGGCGGAGACGTCACCG
GCCTATATTACGACGCCCACGCCCGCCGGCAAGGCGTCCACCGCGCTC

GCGAAGCAACAGAGTCGCGTTCACTCTTCTGCGCACCAACGGCGGCGTAGCATTAGCATTGTCGCGGCGGATGC
GCTTGCCAAATCGGGCGAGGACGAAGACGGTGACGACAACGACACC

GCGAAGCAACAGAGTCGCGTTCACTCTTCTGCGCACCAACGGCGGCGTAGCATTAGCATTGTCTCGGCGGATGC
GCTTGCCAAATCGGGCGAGGACGAAGACGGTGACGACAACGACACC

59235

S505A+S506A double

mutant

S5055+S506S

mutant

S300A

S300S

S422A

S422S

S304A

S304S

double
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7.2.5.3 Single-Stranded Screening and Sequencing Primers

Name
Target Sequence Description
OL12991 KKT1 TGTCGCAACTCACGGATAGC $1449
OL12992 KKT1 CTATTAGGGGCGGTGTGTCG 51449
OL13055 KKT1 GACCCTGGTGTGGTGTCTTG S1449
OL13055 KKT1 GACCCTGGTGTGGTGTCTTG S1449
OoL11617 KKT2 CTTCGCGTTAACGTGGATTT M146
OL11618 KKT2 TGCAACCTCTGAGACCAGTG M146
0L12993 KKT2 TACGGTGCTGGTAGGGATGA S493
0L12994 KKT2 TGTCATTACGTGCCCGTTCA S493
0L12904 KKT2 GACTTGTGGAGCGCATGTTG S505/5506/S530
0OL12905 KKT2 CACACATTGCAGTCGAAGCC S505/S506/S530
OL13353 KKT2 ACGACTGGAAGCGACTGAAG S505+S506 Double Mutant
0OL13354 KKT2 CTTTGCGGTTGAGGTGAAGC S505+S506 Double Mutant
0L12868 KKT2 CGGAAGTCATCACGATCCGC S923
0L12869 KKT2 TTCTTGGGAGGAATCGCAGC S923
0L12995 KKT4 CCGTGATTCACCGCAAAGAC S300
0L12996 KKT4 CCACCGTCAGAAGAAAACGC S300
OL12906 KKT4 ATTCACCGCAAAGACGAGGT S422
0L12871 KKT4 TGTTGCGAGCGGATTCTGTT S422
0L12870 KKT4 AGGGGGACCTTGTTGACGAT S422
OL12907 KKT7 CATTCTGCCTGTGAACCAGC S304
0L12908 KKT7 GCTCTTGCTCTTGGCCTTCT S304
0L12878 KKT7 CGCCTGCCGAAAAATCGAAG S304
0L12879 KKT7 TCCCCATCCTCATCAGTGGT S304
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7.2.5.4 Single-Stranded Pooled Experiment Screening Primers

Name Target Sequence Description

S493 shared mutant screening
OL13861 KKT2 GCTCCAGAAGCTCAACTTGC primer

S530 shared mutant screening
0OL13864 KKT2 GCTTTGCGGTTGAGGTGAAG primer
OL13964 KKT2  CTCCGTTAAGCTGACGCTAC S493 WT screening
OL13965
(OL13862) KKT2  CTTGTTCGGTTAGCGCTACG S493A design 1 screening
OL13966 KKT2  GATCGAGACGTTCGAGGCG S493A design 2 screening
OL13967 KKT2  CTTGCTCCGTTAGCGCTACC S493A design 3 screening
OL13968 KKT2  CACGCTTCGACTCGTCCTAG S493A design 4 screening
OL13969 KKT2  CTCTGTGAGCGCTACGGAAC S493A design 5 screening
OL13970 KKT2  GTTCGGTTAGCGATACGCTAC S$493S design 1 screening
OL13971 KKT2  CTCCGTGAGCGATACGCTAC $493S design 2 screening
OL13972 KKT2 CTTGCTCCGTTAGACTTACC S493S design 3 screening
OL13973 KKT2  CTCCGTGAGGGATACGCTAC S$493S design 4 screening
OL13974 KKT2  CTGTGAGAGATACGGAACGAC S493S design 5 screening
OL13975 KKT2  CCTTCGCGCCGTAGTATCGC S530 WT screening
0OL13976 KKT2 GCGCTCCCTCGGGATATG S530A design 1 screening
0oL13977 KKT2 GTAGTAGCGCTTCCACGTGAC S530A design 2 screening
OL13978 KKT2  GGCGCTCCCACGAGATATG S530A design 3 screening
0OL13979 KKT2 CCGTAGTTGCGTTACCAAGG S530A design 4 screening
0L13980 KKT2 GGGCTGTCGTAGCGTTG S530A design 5 screening
0OL13981 KKT2 ~ GTATCCCTCCCTCGGGATATG S530S design 1 screening
0L13982 KKT2 CGTAGTATCACTTCCACGTG S530S design 2 screening
0L13983 KKT2 GGTAGTGTCACTCCCACGAG S530S design 3 screening
OL13984 KKT2  GGAATTTGAGAGCCGTAGTTAG  S530S design 4 screening
0L13985 KKT2 GGGCTGTCGTATCTTTG S530S design 5 screening
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7.2.5.5 Double-Stranded Repair Primers

7.2.5.5.1 Primer Sequences

Name Target Sequence Description

0OL14224 KKT2 GGCCTCTGATGTCACACTTTTGCGGCTCGTTGTCGAGGACTCCACCACGGGGTGGGGCGATATCTATGCCCAG 5354 repair
AGACCTTGCGCAAACACCAGCGATTTCACG

0OL14225 KKT2 TCTGCTTGGTCAACAACACATTTTTGGATGTGCGGCGTCTTCACCGTGCTCCCCAGGCGTGAAATCGCTGGTG 550 /F shared repair
TTTG

0L14226 KKT2 GGCCTCTGATGTCACACTTTTGCGGCTCGTTGTCGAGGACTCCACCACGGGGTGGGGCGATATCTATGCCCAG  535€ repair
AGACCTTGAGCAAACACCAGCGATTTCACG

0OL14145 KKT2 GGCCTCTGATGTCACACTTTTGCGGCTCGTTGTCGAGGACTCCACCACGGGGTGGGGCGATATCTATGCCCAG  §355 mutant forward
AGACCTTAGTCAAACACC

0OL14146 KKT2 TCTGCTTGGTCAACAACACATTTTTGGATGTGCGGCGTCTTCACCGTGCTCCCCAGGCGTGAAATCGCTGGTG 5255 mutant reverse
TTTGACTAAGGTCTCT

0L14228 KKT2 CGCCCCGGGTACACCACTGCGTACTGGACCGGGCTAGAACGCACAAGTCTGCCACGTTCTTGTTCGGTTAGCG  5493A repair
CTACGCTACGACGGACAGAACGTG

S493A/E shared

0L14227 KKT2 GGTGTGGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCACGGACCTCACGTTCTG
TCCGTCGTAGC repair

OL14229 KKT2 CGCCCCGGGTACACCACTGCGTACTGGACCGGGCTAGAACGCACAAGTCTGCCACGTTCTTGTTCGGTTAGCT  5493E repair

CTACGCTACGACGGACAGAACGTG
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OL14147

0L14148

0OL14230

OL14231

OL14232

OL14149

OL14150

0OL14233

OL14234

KKT2

KKT2

KKT2

KKT2

KKT2

KKT2

KKT2

KKT2

KKT2

GGTGTGGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCACGGACCTCACGTTCTG
TCCGTCGTAGCGTATCTCTAAC

CGCCCCGGGTACACCACTGCGTACTGGACCGGGCTAGAACGCACAAGTCTGCCACGTTCTTGTTCGGTTAGA
GATACGCTACGACG

CGTTCTAGCCCGGTCCAGTACGCAGTGGTGTACCCGGGGCGCGACACTGCGACACGGTGGAATTTGCGGGC
GGTTGTAGCGCTCCCTCGGGATATGACCGATG

TCGAGGTCAACTTTGTCATTACGTGCCCGTTCATGCACTTGAACTCGCGTTCAATTTCATCGGTCATATCCCGA
GGG

CGTTCTAGCCCGGTCCAGTACGCAGTGGTGTACCCGGGGCGCGACACTGCGACACGGTGGAATTTGCGGGC
GGTTGTAGAGCTCCCTCGGGATATGACCGATG

CGTTCTAGCCCGGTCCAGTACGCAGTGGTGTACCCGGGGCGCGACACTGCGACACGGTGGAATTTGCGGGC
GGTTGTAAGTCTCCCTCGGGATATG

TCGAGGTCAACTTTGTCATTACGTGCCCGTTCATGCACTTGAACTCGCGTTCAATTTCATCGGTCATATCCCGA
GGGAGACTTAC

CTGTGGAGGAGCACGTGGTGAAGCAAGCCATCATGCCGCCTCAAGTGCCACGCGGACGAGCACAGCAGCCA
CGTGCGCCAGCGGTTTCGGGTCATACGGCTCAAG

AAAGCGGCTGCAGGAGATGGCGCAGCTGGGCCGCGGCGCGGCAGTGGCGGACCACCTTGAGCCGTATGAC
CCGAA

S$493S mutant

forward

S$493S mutant

reverse

S530A repair

S530A/E shared

repair

S530E repair

S$530S mutant

forward

S530S mutant

reverse

S923A repair

S923A/E shared

repair
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0OL14235

OL14151

OL14152

OL14595

OL14592

OL14593

OL14599

OL14598

OL14596

OL14597

KKT2

KKT2

KKT2

KKT4

KKT4

KKT4

KKT7

KKT7

KKT7

KKT7

CTGTGGAGGAGCACGTGGTGAAGCAAGCCATCATGCCGCCTCAAGTGCCACGCGGACGAGCACAGCAGCCA
CGTGCGCCAGAGGTTTCGGGTCATACGGCTCAAG

CTGTGGAGGAGCACGTGGTGAAGCAAGCCATCATGCCGCCTCAAGTGCCACGCGGACGAGCACAGCAGCCA
CGTGCGCCAAGTGTTTCGGGTCATAC

AAAGCGGCTGCAGGAGATGGCGCAGCTGGGCCGCGGCGCGGCAGTGGCGGACCACCTTGAGCCGTATGAC
CCGAAACACTTGG

TGAGTGCGCGTGCCGACGAGCGCGGTGGACGCCTTGCCGGCCGGCGTGGGTGTCGTAATATA
GGCG

GCACCACGTTGGACACGTCTCGTCTGCAGGGCAGCGCCGATCGTGTCGTGCAGGGTCGCCGT
GGTGTGGCCGCGACCAAGGCGGAGACGGCGCCCGCCTATATTACGACACCC

GCACCACGTTGGACACGTCTCGTCTGCAGGGCAGCGCCGATCGTGTCGTGCAGGGTCGCCGT
GGTGTGGCCGCGACCAAGGCGGAGACGGAGCCCGCCTATATTACGACACCC

AGCTCGCACGCAACTCCATGGCGAAGCAACAGAGTCGCGTTCACTCTTCTGCTCACCAACGCCG
ACGCTCCATCTCCATTGTC

TCTAGACGCGCGCGCTTGCGGGTGTCGTTGTCGTCACCGTCTTCGTCCTCGCCCGATTTGGCC
AGTGCATCCGCTGAGACAATGGAGATGGAGCGTC

TCTAGACGCGCGCGCTTGCGGGTGTCGTTGTCGTCACCGTCTTCGTCCTCGCCCGATTTGGCC
AGTGCATCCGCTGCGACAATGGAGATGGAGCGTC

TCTAGACGCGCGCGCTTGCGGGTGTCGTTGTCGTCACCGTCTTCGTCCTCGCCCGATTTGGCC
AGTGCATCCGCTTCGACAATGGAGATGGAGCGTC

S923E repair

S$923S mutant

forward

$923S mutant

reverse

KKT4 S422 shared

repair

KKT4 S422A repair

KKT4 S422E repair

KKT7 S304 shared

repair

KKT7 S304S repair

KKT7 S304A repair

KKT7 S304E repair
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0L14594 KKT4 GCACCACGTTGGACACGTCTCGTCTGCAGGGCAGCGCCGATCGTGTCGTGCAGGGTCGCCGT  KKT4 S422S repair
GGTGTGGCCGCGACCAAGGCGGAGACGAGCCCCGCCTATATTACGACACCC
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7.2.5.5.2 Primer Combinations and Conditions

KKT2 S25 KKT2 S493 KKT2 S530 KKT2 S923 KKT4 S422 KKT7 S304
Shared Primer 0OL14225 0oL14227 OL14231 0OL14234 OL14595 0OL14599
Alanine Mutant Primer 0OL14224 0L14228 0OL14230 0OL14233 OL14592 OL14596
Glutamic Mutant Primer 0OL14226 0OL14229 0OL14232 0OL14235 OL14593 OL14597
oot s ouan  oume oS o o

KKT2 Synonymous Mutants Only

All Mutants
KKT2 S25S KKT2 S493S KKT2 S530S KKT2 S923S
1 cycle 98°C 30 sec 30 sec 30 sec 30 sec 30 sec
98°C 10 sec 10 sec 10 sec 10 sec 10 sec
Tm 62°C 62°C 64°C 64°C 55°C
45 cycles
30 sec 30 sec 30 sec 30 sec 30 sec 30 sec
72°C 15 sec 15 sec 15 sec 15 sec 15 sec
1 cycle 72°C 10 mins 10 mins 10 mins 10 mins 10 mins
hold 4°C hold hold hold hold hold
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7.2.5.6 Double-Stranded Screening Primers

7.2.5.6.1 Primer Sequences

Name Target Sequence Description
0L13866 KKT2 GCCAGCAATTCTTGGACGAC Eg:tzr;‘?“ta nt screening
0L13867 KKT2 TCACTCTGCCAGCGAATGTC Eg:tzrcr)?“ta”t screening
0L13860 KKT2 CAGCCCAGTGGTAACTACTC 525
0114209 KKT2 CTATGCCGCGTGATTTGTCG $25 WT
0L13859 KKT2 CAGAGACCTTGCGCAAACAC S25A
0L14242 KKT2 CTATGCCCAGAGACCTTGAG S25E
0L14205 KKT2 GACCTTAGTCAAACACCAGCG 5255
0L13861 KKT2 GCTCCAGAAGCTCAACTTGC 5493
0L13862 KKT2 CTTGTTCGGTTAGCGCTACG S493A
0114243 KKT2 CGTTCTTGTTCGGTTAGCTC S493E
0L14206 KKT2 GACAGAACGTGAGGTCCGTG 54935
0L13864 KKT2 GCTTTGCGGTTGAGGTGAAG $530
0L13976 KKT2 GCGCTCCCTCGGGATATG S530A
0L13863 KKT2 GACCGATGAAATTGAACGCG S530A/5
0L14286 KKT2 ATTTGCGGGCGGTTGTAGAG S530E
0L14207 KKT2 ATTTGCGGGCGGTTGTAAGT $5305
0L7631 KKT2 CTGACTTTCCCAAGGTGAGC 5923
0L14210 KKT2 GTGCCCGCTGACGGAG $923 WT
0L13865 KKT2 CACCTTGAGCCGTATGACCC $923A/5
0114208 KKT2 GCCGTATGACCCGAAACACT 59235
OL14612 KKT4 GTGGTGATGTACGCCGGAGA S422 WT
OL14613 KKT4 GTCGTAATATAGGCGGGCGC S422A
OL14614 KKT4 GTCGTAATATAGGCGGGCTC S422E
OL14615 KKT4 GTCGTAATATAGGCGGGGCT S4225
OL14616 KKT7 CCAATAGTCGTCAGCGCCTT S304
OL14617 KKT7 TCGGCGGAGACAATGGATA S304 WT
OL14618 KKT7 GCCAGTGCATCCGCTGC S304A
OL14619 KKT7 GGCCAGTGCATCCGCTTC S304E
OL14620 KKT7 GCCAGTGCATCCGCTGA 53045
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7.2.5.6.2 Synonymous KKT2 Mutants Only Screening Conditions
Using Q5 polymerase.

KKT2
DNA
Control

KKT2 KKT2 KKT2 KKT2
$25S $493S $530S $923S

OL13866 0OL14209 OL13964 OL13975 OL14210

WT Primers OL13867 OL13860 OL13861 OL13864 OL7631

OL14205 OL14206 OL14207 0OL14208

Mutant Primers ’ OL13860 OL13861 OL13864 OL7631

Length (bp) 547 166 419 260 648

1 cycle 98°C 1 min 5 min 5 min 5 min 5 min

98°C 30 sec 30 sec 30 sec 30 sec 30 sec

35 cycles Tm 68°C 66°C 67°C 68°C 67°C
30 sec 30 sec 30 sec 30 sec 30 sec
72°C 20 sec 8 sec 20 sec 8 sec 20 sec
1 cycle 72°C 10 min 10 min 10 min 10 min 10 min
hold 4°C hold hold hold hold hold

7.2.5.6.3 All Mutant Screening Conditions
Using VeriFi polymerase.

KKT2 KKT2 KKT2 KKT2 KKT4 KKT7
$25 $493 $530 $923 $422 5304
Shared primer
(paired with all OL13860 OL13861 OL13864 OL7631 OL12870 OL14616
others)
WT primer OL14209 OL13964 OL13975 OL14210 OL14612 OL14617
’;:;:':rem”ta"t OL13859 OL13862 OL13976 OL13865 OL14613 OL14618

Glutamic acid

. OL14242 O0OL14243 0OL14286 OL13865 OL14614 OL14619
mutant primer

Synonymous mutant

primer OL14205 OL14206 0OL14207 OL13865 OL14615 OL14620

Tm used for
screening with VeriFi 65 64 68 67 66 67
(°C)

Expected Product

. 166 419 277 648 208 475
Size (bp)
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7.2.5.7 Double-Stranded Sequencing PCR Amplification Conditions and Sanger Sequencing Primers

KKT2 S25 KKT2 S493 KKT2 S530 KKT2 S923 KKT4 S422 KKT7 S304
PCR Amplification 0OL12128 0oL12871 OL12907
OL12616 OL12906 OL12908
Length (bp) 4396 704 761
1 cycle 95°C 1 min 1 min 1 min
95°C 15 sec 15 sec 15 sec
Tm 68°C 68°C 68°C
35-40 cycles
2 min 30 sec 24 sec 30 sec
72°C 20 sec 20 sec 20 sec
1 cycle 72°C 2 min 2 min 2 min
hold 4°C hold hold hold
Sequencing Primers 0OL13860 OL12904 OL12905 0OL12868 OL12906 0OL12908
OL12128 OL12869

193



7.2.6  SINGLE-STRANDED SCREENING CONDITIONS
Highlights indicate restriction digestion patterns that are shared between WT and the

synonymous control mutant.

KKT2 KKT2 KKT2 KKT4 KKT7
S505/506A  S530A S923A S422A S304A
Primers OL12904 OL12904 0L12868 0OL12871 OL12907
OL12905 OL12905 0OL12869 0OL12906 0OL12908
Length (bp) 742 742 400 704 961
1 cycle 95°C 1 min 1 min 1 min 1 min 1 min
95°C 15 sec 15 sec 15 sec 15 sec 15 sec
35 cveles Tm 68°C 68°C 69°C 68°C 68°C
¥ 15 sec 15 sec 15 sec 15 sec 15 sec
72°C 24 sec 24 sec 12 sec 24 sec 30 sec
1 cycle 72°C 2 min 2 min 2 min 2 min 2 min
hold 4°C hold hold hold hold hold
Restriction Enzyme Smal Afel NlalV NlalV Fokl
Native Digestion 580 544 235 355 752
162 198 141 147 209
24 113
89
Synonymous  Control 742 544 376 355 648
Digestion 198 24 147 209
113 104
89
S->A Mutant Digestion 742 427 376 184 648
198 24 171 209
117 147 104
113
89
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KKT1 KKT1 KKT2 KKT4 KKT2
S1449A S1449A S493A S300A M146A
Primers OL12991 OL13055 OL12993 OL12995 OL11617
OL12992 0OL12992 0OL12994 OL12996 OL11618
Length (bp) 700 582 1260 1395 1920
1 cycle 95°C 1 min 1 min 1 min 1 min 1 min
35 cycles 95°C 15 sec 15 sec 15 sec 15 sec 15 sec
Tm 68°C 69°C 68°C 68°C 64°C
15 sec 15 sec 15 sec 15 sec 15 sec
72°C 22 sec 18 sec 38 sec 42 sec 58 sec
1 cycle 72°C 2 min 2 min 2 min 2 min 2 min
hold 4°C hold hold hold hold hold
Restriction Alul Alul Afel BseYI Sinl or Avall
Enzyme
Native 611 493 766 874 1293
Digestion 89 89 494 521 627
Synonymous 412 294 766 688 -
Control 199 199 494 521
Digestion 89 89 186
S->A Mutant 412 294 766 688 912
Digestion 199 199 316 521 627
89 89 178 186 381
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7.2.7 POOLED REPAIR SCREENING CONDITIONS

7.2.7.1 Primer Combinations

Design Specific Target Length Shared Primer Specific Primer Tm (°C)
S493 WT screening 0L13964 66
S493A design 1 %3133?86:2) 67
S493A design 2 OL13966 68
S493A design 3 OL13967 68
S493A design 4 0OL13968 68
$493A design 5 419 bp OL13861 0113969 68
S493S design 1 0OL13970 66
S493S design 2 0OL13971 68
S493S design 3 0L13972 63
S493S design 4 0OL13973 68
S493S design 5 OL13974 65
S530 WT screening 0OL13975 68
S530A design 1 OL13976 68
S530A design 2 0L13977 68
S530A design 3 0L13978 68
S530A design 4 OL13979 67
S530A design 5 260 bp 0L13864 0L13980 68
S530S design 1 0L13981 67
S530S design 2 0L13982 63
S530S design 3 0L13983 68
S530S design 4 0L13984 64
S530S design 5 0L13985 67
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7.2.7.2 Cycling Conditions
Using Q5 polymerase.

Step Temperature Time
1 cycle 98°C 5 minutes
98°C 30 seconds
S493A/S - 63-68°C 30 seconds
35 Cycles S530A/S —63-68°C
72°C S493A/S — 14 seconds
S530A/S — 8 seconds
1 cycle 72°C 10 minutes
Hold 4°C
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7.2.8 POOLED REPAIR TEMPLATE RECODING LISTS

Design was as described in Methods 3.7.1 and Results 4.2. Each design’s list is sorted alphabetically by amino acid single letter code. Some lists

may not include certain amino acids as per the methodology for that specific design.

Design 2 Design 3 Design 4 Design 5
Preferred List Reserve List
Amino  WT triplet Mutant Amino  WT triplet  Mutant | Amino  WTtriplet Mutant | Amino  WT triplet  Mutant | Amino  WT triplet = Mutant
Acid codon codon Acid codon codon Acid codon codon Acid codon codon Acid codon codon
A GCT GCG A GCA GCT GCA GCT A GCA GCT GCA GCC
A GCC GCG A GCC GCG A GCC GCG A GCA GCG
C TGT TGC A GCG GCC A GCG GCC A GCG GCC A GCC GCT
A GCG GCA A GCG GCA A GCG GCA A GCC GCA
F TTT TTC A GCT GCG A GCT GCG A GCG GCT
F TTC TTT C TGC TGT A GCT GCA
C TGC TGT C TGC TGT A GCT GCC
GGT GGC GAC GAT TGT TGC TGT TGC
GGT GGA GAT GAC G GCA GGT
GAC GAT GAT GAC G GGA GGC
K AAA AAG E GAA GAG GAT GAC GAC GAT G GGG GGA
E GAG GAA G GGG GGC
L CTG CTT E GAA GAG E GAA GAG G GGT GGG
L CTT CTG G GGA GGG E GAG GAA E GAG GAA
L TTA CTC G GGC GGG H CAT CAC
L TTG cTT G GGC GGT F TTC TTT F TTT TTC
G GGC GGA F TTT TTC F TTC TTT | ATA ATT
R AGG CGC G GGG GGT I ATC ATA
R CGA CGC GGA GGG GGA GGG | ATT ATA
R CGC CGA H CAC CAT GGC GGG G GGC GGG
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ACC
ACT
ACA
ACA
ACG

ACA
ACC
ACG

ACT
ACT

GTC
GTG
GTA
GTT
GTC

GTA
GTC
GTG
GTG

GTT

GTC
GTA
GTG

GTG
GTT
GTT

TAT
TAC

TAC
TAT
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7.2.9 EXAMPLE OUTPUT FILE TEXT FROM THE PYTHON SCRIPT
7.2.9.1 Page 1 (left hand side)

Job request details

Job name: KKT2 S493E

Target amino acid: S493E
Synonymous recoding type: matched
Nonsynonymous recode type: highest
Homology arm length (bp): 51
Recoding region length (bp): 60
Total repair length (bp): 162

Repair templates

WT repair region sequence: GGC AGT GTC TCA CTG GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCC CCT CGC ACG TCT CGA TCA GTG CGT CGT AGC
WT translation: G S \Y% S L \Y% S E \Y% A D R E E A A P R T S R S \Y% R R S
Synonymous repailr region sequence: GGC AGT GTC TCA CTG GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCC CCT CGG ACC AGC AGG AGT GTC CGA CGA TCG
Synonymous repair translation: G S v S L v S E v A D R E E A A P R T S R S v R R S
Nonsynonymous repair region sequence: GGC AGT GTC TCA CTG GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCC CCT CGG ACC AGC AGG AGT GTC CGA CGA TCG
Nonsynonymous repair translation: G S v S L v S E v A D R E E A A P R T S R S v R R S

Number of mutations in the synonymous repair template: 30
Number of mutations in the nonsynonymous repair template: 30

Screening primers
Synonymous repair

Forward primer sequence Reverse primer sequence PCR product size (bp) Forward GC content (%) Reverse GC content (%)
WT primers AGACGCCGCACATCCAAA TGACGCTACGACGCACTG 1365 55.56 61.11
Repair primers AGACGCCGCACATCCAAA CGTCGGACACTCCTGCTG 1357 55.56 66.67

Nonsynonymous primers

Forward primer sequence Reverse primer sequence PCR product size (bp) Forward GC content (%) Reverse GC content (%)
WT primers AGACGCCGCACATCCAAA TGACGCTACGACGCACTG 1365 55.56 61.11
Repair primers AGACGCCGCACATCCAAA CGTCGGACACTCCTGCTG 1357 55.56 66.67
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7.2.9.2 Page 1 (right hand side)

GTC AGC TTA ACG GAG CAG GAG CGG GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CGC GAC ACT
\Y% S L T E Q E R G R L \Y% R S S P \Y% Q Y A \Y% \Y% Y P G R D T
GTT TCG CTA ACC GAA CAA GAA CGT GGT AGG TTG GTG CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CGC GAC ACT
\Y% S L T E Q E R G R L \Y% R S S P \Y% Q Y A \Y% \Y% Y P G R D T
GTT GAG CTA ACC GAA CAA GAA CGT GGT AGG TTG GTG CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CGC GAC ACT
\Y% E L T E Q E R G R L \Y% R S S P \Y% Q Y A \Y% \Y% Y P G R D T

Forward Tm ('C) Reverse Tm ('C)
59.97 60.13
59.97 60.13

Forward Tm ('C) Reverse Tm ('C)
59.97 60.13
59.97 60.13
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/.2.9.3 Page 2

Repair template primers

Synonymous

Forward primer (5'-): GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGGACCAGCAGGAGTGTCCGACG

Reverse primer (5'-): AGTGTCGCGCCCCGGGTACACCACTGCGTACTGGACCGGGCTAGAACGCACCAACCTACCACGTTCTTGTTCGGTTAGCGAAACCGATCGTCGGACACTCCTGCTG
Annealing sequence (5'-): CAGCAGGAGTGTCCGACG

Tm ('C): 60.1

Nonsynonymous

Forward primer (5'-): GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGGACCAGCAGGAGTGTCCGACG

Reverse primer (5'-): AGTGTCGCGCCCCGGGTACACCACTGCGTACTGGACCGGGCTAGAACGCACCAACCTACCACGTTCTTGTTCGGTTAGCTCAACCGATCGTCGGACACTCCTGCTG
Annealing sequence (5'-): CAGCAGGAGTGTCCGACG

Tm ('C): 60.1

WT sequence (no spaces):
GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGCACGTCTCGATCAGTGCGTCGTAGCGTCAGCTTAACGGAGCAGGAGCGGGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTACGCAGTGGTGT
ACCCGGGGCGCGACACT

Synonymous sequence (no spaces):
GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGGACCAGCAGGAGTGTCCGACGATCGGTTTCGCTAACCGAACAAGAACGTGGTAGGTTGGTGCGTTCTAGCCCGGTCCAGTACGCAGTGGTGT
ACCCGGGGCGCGACACT

Nonsynonymous sequence (no spaces):
GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGGACCAGCAGGAGTGTCCGACGATCGGTTGAGCTAACCGAACAAGAACGTGGTAGGTTGGTGCGTTCTAGCCCGGTCCAGTACGCAGTGGTGT
ACCCGGGGCGCGACACT

Alignments
Synonymous Repair
Score = 132.0

WT sequence 0 GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGCACGTCT
O T T T I I R I AP
Syn. repair 0 GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGGACCAGC
WT sequence 60 CGATCAGTGCGTCGTAGCGTCAGCTTAACGGAGCAGGAGCGGGGCAGACTTGTGCGTTCT
S e N I N I e A R R R N N N N N e P AR
Syn. repair 60 AGGAGTGTCCGACGATCGGTTTCGCTAACCGAACAAGAACGTGGTAGGTTGGTGCGTTCT
WT sequence 120 AGCCCGGTCCAGTACGCAGTGGTGTACCCGGGGCGCGACACT 162
1220 (et et e e et e e et rr e e e 162
Syn. repair 120 AGCCCGGTCCAGTACGCAGTGGTGTACCCGGGGCGCGACACT 162
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Nonsynonymous
Score = 132.0
WT sequence
Nonsyn. repair
WT sequence
Nonsyn. repair

WT sequence

Nonsyn. repair

o

60
60
60

120
120
120

GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGCACGTCT

I T I PR
GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGGACCAGC

CGATCAGTGCGTCGTAGCGTCAGCTTAACGGAGCAGGAGCGGGGCAGACTTGTGCGTTCT

o B B R N I R N e e R N AR
AGGAGTGTCCGACGATCGGTTTCGCTAACCGAACAAGAACGTGGTAGGTTGGTGCGTTCT

AGCCCGGTCCAGTACGCAGTGGTGTACCCGGGGCGCGACACT 162

FEEEErrrrrrr e et e e et e ey 1e2
AGCCCGGTCCAGTACGCAGTGGTGTACCCGGGGCGCGACACT 162
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7.2.10 MAIN CODE
# -*- coding: utf-8 -*-

mwwan

Created on Mon Jan 29 15:34:37 2024

@author: ceh560
#packages used in this file and/or the feeder files
import pandas as pd
from Bio import SeqIO
from Bio import Seq
from Bio import Align
import numpy as np
import io

import random

import primer3

import primer3.bindings

#custom files to import

import codon dataframes as cdf

import codon dictionaries as cdict
import formatting functions as formats
import primer functions as primers
import reading input file as rif
import validator as val

import stitching functions as stitch

#read input files

input data = pd.read excel ("repair template input excel.xlsx",
index col = 0, header = 0)

pd.set option('display.max columns', 20)
pd.set option('display.max rows', None)
pd.set option("display.width", 1000)

pd.options.display.float format = "{:,.2f}".format

job name = input data.loc["Job name"] [0]

target AA = input data.loc["Target amino acid residue"] [0]
target res num = input data.loc["Target amino acid number"] [0]

output AA = input data.loc["Replacement amino acid"] [0]
syn recode type = input data.loc["Synonymous Recoding type"] [0]

nonsyn recode type = input data.loc["Nonsynonymous Recoding
Type"] [0]

codon freqg input file = input data.loc["Codon Frequency data
filename (incl. extension)"][0]

recode region length = input data.loc["Recoding region length
(bp) "1 10]

hom arm length = input data.loc["Homology arm length (bp)"][0]

207



ref file name = input data.loc["Reference FASTA filename (incl.
extension)"][0]

CDS_start = input data.loc["CDS start in reference file (bp
number) "] [0]

CDS _end = input data.loc["CDS end in reference file (bp
number) "] [0]

alternating repeat = input data.loc["Alternating every nth
residue"][0]

#read input fasta file and process as necessary
gene name = job name

target res base nums = [((target res num-1)*3),
(target res num*3) ]

num of codons to recode = recode region length / 3
target codon no = int(num of codons to recode/2)

if recode region length % 2 == 0:
recode start = int(target res base nums[0] -
(recode region length/2))

else:
half codon percent = target codon no / num of codons to recode
back bases = recode region length * half codon percent
recode start = int(target res base nums[0] - back bases)

recode_end = recode start + recode region length

#need some special cases for close to the start or end of the CDS
fnear the start special case

if num of codons to recode > target res num:

recode start = 0
recode end = recode region length
target codon no = target res num - 1

for gene name in SeqglO.parse(ref file name, "fasta"):
#print (gene name.id)
print (gene name.description)
print (repr (gene name.seq))
print ("Gene sequence length: ", len(gene name), "bp")
print ("\n")

if CDS end == "end":
CDS_end = len(gene name.seq)
else:
CDS_end

CDS_end

if CDS start > 1:
CDS_start = CDS start -1
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WT CDS seqg = gene name.seq[ (CDS start) :CDS_end]
recode_ start whole = recode start + CDS start
recode_end whole = recode end + CDS start

else:
WT CDS seq = gene name.seq[:CDS end]
recode start whole = recode start
recode end whole = recode end

#check input is a length divisible by 3
val.triplet checker (WI CDS seq)

#check that the input given is correct and that the target codes
for the expected residue
val.translate checker (WT CDS seq, target res num, target AA)

#near the end special case
total num AAs = len(WT CDS seqg.translate())

if target res num > (total num AAs - num of codons to recode):
recode_end = len (WT CDS seq)

recode_ start len (WT CDS seq) - recode region length

if CDS_start > 1:

recode end whole = recode end + CDS start
recode start whole = recode start + CDS start
else:
recode end whole = recode end
recode start whole = recode start
num of codons to recode = int((recode end - recode start + 1)
/3)
target codon no = num of codons to recode - (total num AAs -
target res num) - 1

festablish the sequence to replace, and sequences before and after
to stay the same

WT template seq =

gene name.seg[recode start whole:recode end whole]

upstream dna = gene name.seq[:recode start whole]

downstream dna = gene name.seqg[recode end whole:]
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#make dictionary of codons with number keys and one with numbers
and amino acids

codons_to recode = cdict.codon dict maker (WT template seq,

key format= "number")

codons_to recode let num = cdict.codon dict maker (WT template seq,
key format= "letter-number")

#make reference dictionaries for all the amino acids
ref codon table df =
rif.codon table processor (codon freqg input file)

ref codons = cdf.ref codon table fregs(ref codon table df)
1f syn recode type == "matched":

#use that dictionary to create a new one with the specific
frequency values

codons_to recode fregs =
cdf.codon frequency collector (input dict = codons to recode,
reference dict = ref codons, type = "value")

fcreate a dictionary with all the frequencies for the amino
acids in this sequence for each codon
codons_to recode all fregs =
cdf.codon frequency collector (input dict = codons to recode,
reference dict = ref codons, type = "dataframe")

fcalculate the differences for each possible codon to the
original

recode freq diffs =
cdf.codon frequency difference calc(codons to recode let num,
ref codons)

#add the differences in frequency to "the" dataframe
codons_to recode abs diffs =
cdf.codon freq diff adder (codons to recode let num
,codons_to recode all freqgs, recode freq diffs)

#choose which codons to use for synonymous recoding
codons_to use syn =
cdf.codon freq selector (codons to recode abs diffs)

if syn recode type == "highest" or syn recode type == "lowest":

#use that dictionary to create a new one with the specific
frequency values

codons_to recode fregs =
cdf.codon frequency collector (input dict = codons to recode,
reference dict = ref codons, type = "value")
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#create a dictionary with all the frequencies for the amino
acids in this sequence for each codon
codons_to recode all fregs =

cdf.codon frequency collector (input dict = codons to recode,
reference dict = ref codons, type = "dataframe")
codons_to recode choices fregs = {}

#remove input codon from list
for let num, seq in codons to recode let num.items():
if seqg == Seq.Seq("ATG") or seq == Seq.Seq("TGG") :

codons_to recode choices fregs[let num] =

ref codon table df.loc[ref codon table df["DNA"] == str(seq)]
else:
current df = codons to recode all fregs[let num]
codons_to recode choices fregs[let num] =
current df.loc[current df["DNA"] != str(seq)]

#make the list of codons to use depending on recoding type
codons_to use syn = {}

1f syn recode type == "highest":

for codon num let, seqg df in
codons_to recode choices fregs.items():
max freq codon = max(seq df["Fraction"])
mutated res df chosen = seq df.loc[seq df["Fraction"]
== max freq codon, "DNA"]

#tie breaker for instances with same fraction usage -
hopefully number won't ever have duplicate values
if len(mutated res df chosen) > 1:

max number codon = max(seq df["Number"])
max number codon seq = seq df.loc[seqg df["Number"]
== max number codon, "DNA"].item()

codons_to use syn[codon num let]
max number codon seq

else:
codons_to use syn[codon num let] =
seq df.loc[seq df["Fraction"] == max freq codon, "DNA"].item()

if syn recode type == "lowest":

for codon num let, seq df in
codons_to recode choices fregs.items():
min freq codon = min(seq df["Fraction"])
mutated res df chosen = seq df.loc[seq df["Fraction"]
== min freqg codon, "DNA"]

#tie breaker
if len(mutated res df chosen) > 1:

min number codon = max(seq df["Number"])
min number codon seq = seq df.loc[seq df["Number"]
== min number codon, "DNA"].item()
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codons_to use syn[codon num let] =
min number codon seq

else:
codons_to use syn[codon num let] =

seq df.loc[seq df["Fraction"] == min freq codon, "DNA"].item()
if syn recode type == "alternating matched" or syn recode type ==
"alternating random" or syn recode type == "alternating highest"
or syn recode type == "alternating lowest":

#check input has been given suitably

if alternating repeat == "N/A" or alternating repeat <= 0 or
pd.isna(alternating repeat) == True:

print ("\n\n\n***ERROR: No value or an invalid value was
set for the alternating pattern of the codons to
recode.***\n\n\n")

alternating repeat = int (input ("Please enter a positive
integrer for the alternating repeat value: "))

if alternating repeat > (0.5 * num of codons to recode):
proceed alt = input("The chosen repeat value 1s greater
than half of the total number of codons being recoded so only 2 or
fewer codons will be mutated.\n\nDo you wish to proceed? Y/N \n")

if proceed alt == "N" or proceed alt == "n" or proceed alt
== "NO" or proceed alt == "No" or proceed alt == "no"
alternating repeat = int (input ("Please enter a

positive integer for the alternating repeat value: "))

elif proceed alt == "Y" or proceed alt =="y" or
proceed alt =="YES" or proceed alt == "Yes" or proceed alt ==
"yesl':
pass
else:
proceed alt = input ("\n\nThe input given is not wvalid.

Please try again.\n\nThe chosen repeat value is greater than half
of the total number of codons being recoded so only 2 or fewer
codons will be mutated.\n\nDo you wish to proceed? Y/N \n")

if proceed alt == "N" or proceed alt == "n" or
proceed alt == "NO" or proceed alt == "No" or proceed alt == "no"
alternating repeat = int (input ("\nPlease enter a
positive integer for the alternating repeat value: "))
elif proceed alt == "Y" or proceed alt =="y" or
proceed alt =="YES" or proceed alt == "Yes" or proceed alt ==
"yesl':
pass
else:
proceed alt = input ("\n\nThe input given is not

valid. Please try again.\n\nThe chosen repeat value is greater
than half of the total number of codons being recoded so only 2 or
fewer codons will be mutated.\n\nDo you wish to proceed? Y/N \n")

if proceed alt == "N" or proceed alt == "n" or
proceed alt == "NO" or proceed alt == "No" or proceed alt == "no"
alternating repeat = int (input ("\nPlease enter

a positive integer for the alternating repeat value: "))

212



elif proceed alt == "Y" or proceed alt =="y" or

proceed alt =="YES" or proceed alt == "Yes" or proceed alt ==
"yeS":
pass
else:
print ("\n----—-—————-—-————

print (f"\n***Warning, your input was invalid
so the code will continue with the value given. Your repair
template will recode every {alternating repeat} codons. If you do
not want this, modify the input spreadsheet and rerun the
programme.***")

if alternating repeat == "N/A" or alternating repeat <= 0 or
pd.isna(alternating repeat) == True:
print ("\n\n\n***ERROR: An invalid value was set for the
alternating pattern of the codons to recode.***\n\n\n")
alternating repeat = int (input ("Please enter a positive
integer for the alternating repeat value: "))

if alternating repeat == "N/A" or alternating repeat <= 0 or
pd.isna(alternating repeat) == True:
print ("\n\n\n***ERROR: An invalid value was set for the
alternating pattern of the codons to recode.***\n\n\n")
alternating repeat = int (input ("Last chance - please enter
a positive integer for the alternating repeat value: "))

if alternating repeat == "N/A" or alternating repeat <= 0 or
pd.isna(alternating repeat) == True:
print ("\n\n\n\nYou failed to provide an appropriate input
so the programme will be cancelled.\n\nIf you wish to try again,
either modify the input spreadsheet or provide a suitable value
when prompted in the console.\n")
raise SystemExit

if syn recode type == "alternating matched" or syn recode type ==
"alternating random":

fdetermine which codon numbers in range are to be mutated and
which are not

num of codons to mutate = int (num of codons to recode /
alternating repeat)
n terms = list(range(num of codons to mutate))

codon nums_to recode = []

for n in n terms:
codon num = n * alternating repeat
codon nums_to recode.append (codon num)

#ensure that target codon is always recoded even if it doesn't
fit the alternating pattern
if target codon no not in codon nums_ to recode:

codon _nums_to recode.append(target codon no)
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codon nums_all = list(codons to recode.keys())

#split the codons to be mutated into a separate dictionary
from the ones to stay the same

codons_to keep WT = {}

specific codons to recode = {}

for numbers in codon nums all:
if numbers not in codon nums_ to recode:
codons_to keep WT[numbers] = codons_ to recode[numbers]

if numbers in codon nums to recode:
specific codons to recode[numbers] =
codons_to recode [numbers]

for numbers in codon nums to recode:
1f numbers not in codon nums to recode:
codons_to keep WT = codons_to recode[numbers]

if syn recode type == "alternating matched":
#on only the codons to recode
#use that dictionary to create a new one with the specific
frequency values
codons_to recode fregs =
cdf.codon frequency collector (input dict = codons to recode,
reference dict = ref codons, type = "value")

#create a dictionary with all the frequencies for the
amino acids in this sequence for each codon

codons to recode all fregs =
cdf.codon frequency collector (input dict = codons to recode,
reference dict = ref codons, type = "dataframe")

#calculate the differences for each possible codon to the
original

recode freq diffs =
cdf.codon frequency difference calc(codons to recode let num,
ref codons)

#add the differences in frequency to "the" dataframe
codons_to recode abs diffs =
cdf.codon freq diff adder (codons to recode let num
,codons_to recode all freqgs, recode freq diffs)
#choose which codons to use for synonymous recoding
codons_to use syn =
cdf.codon freq selector (codons to recode abs diffs)

if syn recode type == "alternating random":

#add letters to dictionary
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specific codons to recode let num = {}

for keys, seq in specific codons to recode.items():
let num = str(seqg.translate()) + str(keys)
specific codons to recode let num[let num] = seq

#make a dictionary of the alternate codons to the input
sequence

alt codons to recode =
cdict.alt codons(specific codons to recode let num)

#randomly select which of these to use for each codon
codons_to use syn =
cdict.Syn random recoder (alt codons to recode)
#combine the unchanged codons with the changed codons

codons_to keep WT let num = {}

for codon num, seq in codons_to keep WT.items () :

translation = seqg.translate ()
codon num let = str(translation) + str(codon num)
codons_to keep WT let num[codon num let] = seqg

codons_to use syn.update (codons to keep WT let num)

1f syn recode type == "alternating highest" or syn recode type ==
"alternating lowest":

num of codons to mutate = int (num of codons to recode /
alternating repeat)
n terms = list(range(num of codons to mutate))

codon nums_to recode = []

for n in n terms:
codon num = n * alternating repeat
codon nums_to recode.append (codon num)

if target codon no not in codon nums_to recode:

codon nums_to recode.append(target codon no)

codon nums_all = list(codons_ to recode.keys())

codons_to keep WT = {}
specific codons to recode = {}

for numbers in codon nums all:
if numbers not in codon nums to recode:
translate = codons to recode[numbers].translate ()
let num = str(translate) + str (numbers)
codons_to keep WT[let num] = codons_ to recode[numbers]

215



if numbers in codon nums to recode:
#translate = codons_to recode[numbers].translate ()
#let_num = str(translate) + str (numbers)
specific codons to recode[numbers] =
codons_to recode [numbers]

for numbers in codon nums to recode:
if numbers not in codon nums_ to recode:
codons_to keep WT = codons_ to recode[numbers]

#use that dictionary to create a new one with the specific
frequency values

codons_to recode fregs =
cdf.codon frequency collector (input dict =
specific codons to recode, reference dict = ref codons, type =
"value")

#create a dictionary with all the frequencies for the amino
acids in this sequence for each codon
codons_to recode all fregs =
cdf.codon frequency collector (input dict =

specific codons to recode, reference dict = ref codons, type =
"dataframe")
codons_to recode choices fregs = {}

#remove input codon from list unless it's Met or Trp
for let num, df in codons to recode all fregs.items():
input codon = codons to recode let num[let num]
if input codon == Seq.Seq("ATG") or input codon ==
Seq.Seq ("TGG") :

codons_to recode choices fregs[let num] =
ref codon table df.loc[ref codon table df["DNA"] ==
str (input codon) ]
else:
current df = codons to recode all fregs[let num]
codons_to recode choices fregs[let num] =

current df.loc[current df["DNA"] != str(input codon)]

frecode based on input type
codons_to use syn = {}

if syn recode type == "alternating highest":

for codon num let, seqg df in
codons_to recode choices fregs.items():
max freq codon = max(seqg df["Fraction"])
max freq codon seq = seq df.loc[seq df["Fraction"] ==
max freg codon, "DNA"]
if len(max freqg codon seq) > 1:
max number codon = max (seq_df["Number"])
max freq codon seq = seq df.loc[seq df["Number"]
== max number codon, "DNA"].item()
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codons_to use syn[codon num let] =
max freg codon_ seq

else:
codons_to use syn[codon num let] =
max freq codon seq.item()

if syn recode type == "alternating lowest":

for codon num let, seqg df in
codons_to recode choices fregs.items():
min freq codon = min(seq df["Fraction"])
min freq codon seq = seq df.loc[seq df["Fraction"] ==
min freq codon, "DNA"]
if len(min freq codon seq) > 1:

min number codon = min (seq df["Number"])
min freq codon seq = seq df.loc[seq df["Number"]
== min number codon, "DNA"].item()

codons_to use syn[codon num let] =
min freq codon_ seq

else:

codons_to use syn[codon num let] =
min freq codon seqg.item()

#combine the unchanged codons with the changed codons
codons_to keep WT let num = {}

for codon num, seq in codons_ to keep WT.items () :
codons_to keep WT let num[codon num] = seq

codons_to use syn.update (codons to keep WT let num)

if syn recode type == "random":
fmake a dictionary of the alternate codons to the input
sequence

alt codons to recode =
cdict.alt codons(codons _to recode let num)

#randomly select which of these to use for each codon
codons_to use syn =
cdict.Syn random recoder (alt codons to recode)

#add in the nonsynonymous mutation

if nonsyn recode type == "highest" or nonsyn recode type ==
"lowest":
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nonsyn ref dict = ref codons

if nonsyn recode type == "random":
nonsyn ref dict = cdict.alt codons(codons to recode let num)
nonsyn ref dict = {output AA
cdict.ref codon table(output AA)}

codons_to use nonsyn = cdf.non syn mutator (target AA,
target codon no, new AA = output AA, input dict =
codons_to use syn, type = nonsyn recode type, ref dict =
nonsyn ref dict )

#construct the final recoded sequences

synonymous repalr = stitch.sequence constructor (codons to use syn,
type = "letter-number™)

nonsynonymous_repair =
stitch.sequence constructor (codons to use nonsyn, type = "letter-
number")

#check all the modifications were as expected

#adjust target codon number to what it would be by normal counting
rather than python counting

target codon no not py = target codon no + 1

val.translate checker (synonymous repair, target codon no not py,
target AA)

val.translate checker (nonsynonymous repailr,
target codon no not py, output AA)

fcreate the final repair sequence including the homology arms

upstream hom arm = gene name.seq[ (recode start whole -
hom arm length) :recode start whole]

downstream hom arm = gene name.seq[recode end whole:
(recode end whole + hom arm length) ]

WT entire repair region = upstream hom arm + WT template seqg +
downstream hom arm

entire syn repair = upstream hom arm + synonymous repair +
downstream hom arm
entire nonsyn repair = upstream hom arm + nonsynonymous repair +

downstream hom arm

#construct "gene" sequences for primer design
integrated synonymous, WT recode region =
stitch.mut seq integrator (repair seq = synonymous repair, ref seq
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= gene name.seq, repalr start = recode start whole, repair end =
recode end whole, WT repair seg= "Yes")

integrated nonsynonymous = stitch.mut seq integrator (repair seq
nonsynonymous_repair, ref seq = gene name.seq, repalr start =
recode start whole, repair end = recode end whole, WT repair seqg=
"No")

#design screening primers

screening primers df syn =
primers.screening primer designer (gene_ name.seq,

integrated synonymous, recode start whole, recode end whole)
screening primers df nonsyn =
primers.screening primer designer (gene_ name.seq,

integrated nonsynonymous, recode start whole, recode end whole)

#design primers to generate the repair template

syn repalr template primers =
primers.repalr primer designer (entire syn repair, hom arm length,
downstream dna)

nonsyn repalr template primers =
primers.repalr primer designer (entire nonsyn repair,

hom arm length, downstream dna)

#repair template primers = [syn repair template primers,
nonsyn repair template primers]

#repair template primers df =
pd.DataFrame (repair template primers)

#repair template primers df.index = ["Synonymous repair",
"Nonsynonymous repair"]

#do an alignment

fcreate a pariwise alignment object
aligner = Align.PairwiseAligner (target internal open gap score = -
10.0, gquery internal open gap score = -10.0)

syn alignment = aligner.align(WT entire repair region,
entire syn repair)
for alignmentl in sorted(syn alignment) :

#print ("Score = %$.1f:" % alignmentl.score)
#print (alignmentl)
syn _score = alignmentl.score
alignment str syn = str(alignmentl)
alignment str syn = alignment str syn.replace("target", "WT
sequence") .replace ("query", "Syn. repair").replace ("\n
", "\n ")

alignment str syn = alignment str syn.replace("Syn. repair
", "Syn. repair ")
#print (alignment str syn)

nonsyn alignment = aligner.align(WT entire repair region,

entire nonsyn repair)
for alignment2 in sorted(syn alignment) :
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#print ("Score = %$.1f:" % alignment2.score)

nonsyn _score = alignment2.score
alignment str nonsyn = str(alignment2)
alignment str nonsyn = alignment str nonsyn.replace("target", "WT
sequence") .replace ("query", "Nonsyn. repair").replace("\n
", "\n ")
alignment str nonsyn = alignment str nonsyn.replace ("Nonsyn.
repair ", "Nonsyn. repair ")

#print (alignment str nonsyn)

#format some outputs

WT repair seq spaced =
formats.codon spacing (WT entire repair region)

syn repalr spaced = formats.codon spacing(entire syn repair)
nonsyn repalr spaced = formats.codon spacing(entire nonsyn repailr)

WT repair translate = WT entire repair region.translate()
syn repalr translate = entire syn repair.translate()
nonsyn repair translate = entire nonsyn repair.translate()

WT repair translate spaced =
formats.protein align codon (WT repair translate)

syn repair translate spaced =
formats.protein align codon(syn repair translate)
nonsyn repalr translate spaced =
formats.protein align codon (nonsyn repair translate)

syn repalr mutations count =
val.mutation counter (entire syn repair, WT entire repair region)
nonsyn repalr mutations count =
val.mutation counter (entire nonsyn repair,

WT entire repair region)

Syn_repair_primers_Output — un

for category, item in syn repair template primers.items():
if type(item) == float:
item = "{:.1f}'.format (item)
syn repair primers output += category
syn _repair primers output += ": "
syn repair primers output += str (item)
syn_repair primers output += "\n"

nonsyn repair primers output = ""

for category, item in nonsyn repair template primers.items():
if type(item) == float:
item = "{:.1f}'.format (item)
nonsyn repair primers output += category
nonsyn repair primers output += ": "
nonsyn repailr primers output += str(item)
nonsyn repair primers output += "\n"
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if syn recode type == "alternating matched" or syn recode type ==

"alternating highest" or syn recode type == "alternating lowest"
or syn recode type == "alternating random":
alternating info = f"Alternating recoding every
{alternating repeat} codons"
else:

alternating info = ""

output file = open(f"{job name}.txt", "w")

file lines = ["Job request details\n",
f"Job name: {job name}\n",
f"Target amino acid:
{target AA}{target res num}{output AA}\n",
f"Synonymous recoding type: {syn recode type}\n",
f"Nonsynonymous recode type:
{nonsyn recode type}\n",
f"Homology arm length (bp): {hom arm length}\n",
f"Recoding region length (bp):
{recode region length}\n",
f"Total repair length (bp): {(2*hom arm length) +
recode region length}\n",
f"{alternating info}\n",
"\1’1",
" \nu,
"Repair templates\n",
f"WT repair region sequence:
\t\t{WT repair seq spaced}\n",
f"WT translation:
VENENE{WT repair translate spaced}\n",
f"Synonymous repalr region sequence:
\t{syn repair spaced}\n",
f"Synonymous repair translation:
\t\t{syn repair translate spaced}\n",
f"Nonsynonymous repalr region sequence:
\t{nonsyn repair spaced}\n",
f"Nonsynonymous repair translation:
\t{nonsyn repair translate spaced}\n",
n\nu,
f"Number of mutations in the synonymous repair
template: {syn repair mutations count}\n",
f"Number of mutations in the nonsynonymous repair
template: {nonsyn repair mutations count}\n",
"\n",
"\n",
"Screening primers\n",
"Synonymous repair\n",
" \nu,
f"{screening primers df syn}\n",
" \nu,
" \nu,
"Nonsynonymous primers\n"
f"{screening primers df nonsyn}",
"\n"’
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"\n"’

"Repair template primers\n",

"Synonymous\n",

f"{syn repair primers output}\n",

"\n",

"Nonsynonymous\n",

f"{nonsyn repair primers output}\n",

"\n",

f"WT sequence (no spaces) :
{WT entire repair region}\n",

f"Synonymous sequence (no spaces):
{entire syn repair}\n",

f"Nonsynonymous sequence (no spaces):
{entire nonsyn repair}\n",

"\n"’

"\n",

"Alignments\n",

"Synonymous Repair\n",

f"Score = {syn score}\n",

f"{alignment str syn}\n",

"\n",

"Nonsynonymous\n",

f"Score = {nonsyn_score}\n",

f"{alignment_str_nonsyn}\n"

]

output file.writelines(file lines)
output file.close ()

#print confirmation message to make it clearer that it worked
print (f"\n\n\nYour repair template designs have completed
successfully. Please check your folder for a file with the name
'{job name}.txt'\n")

print ("\t.\t.\n", "\n\t\___ /\n\n\n")
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7.2.11 READING INPUT FILE
# -*- coding: utf-8 -*-

mwwan

Created on Sat Jan 27 10:16:59 2024

@Qauthor: sharl

import pandas as pd
#from Bio import SeqgIO
from Bio import Seq
import numpy as np
#import openpyxl

#from Bio import Align
import io

def codon table processor (filename) :
"""Converts a text file with data copied from
https://www.kazusa.or.jp/ codon tables into a dataframe.

Codon tables must have selected a genetic code in the format
options and text file does not include headers.

Note: uracils are changed to thymines
Arguments
filename -- filename of the text file including extension as a

string

Outputs a dataframe"""

raw freqg = open(filename, "r").read()
headers = ["DNA", "Protein", "Fraction", "Frequency",

"Number" ]
raw freq str = str(raw freq)
raw_freq str lines = raw freq str.replace(") ",

ll) \nll) .replace (u\n u, n\nu)
raw_freq str lines = raw freq str lines.replace("( ",

"") 'replace(")","") 'replace("(", "") .replace(" ", " ")
raw_freq str lines Ts = raw freq str lines.replace("U", "T")
raw_freq str lines Ts tabs = raw freq str lines Ts.replace ("

" "\t")

14

df = pd.read csv(io.StringIO(raw freq str lines Ts tabs),
sep="\t", header = None)
df.columns = headers

return df
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7.2.12 CODON DICTIONARIES
# -*- coding: utf-8 -*-

mwwan

Created on Wed Jan 24 08:47:49 2024

@author: ceh560

from Bio import SeqIO
from Bio import Seq
import random

def ref codon table(amino acid):

""""A searchable dictionary for all possible standard triplet
codes for each amino acid.

Arguments

amino acid -- single letter code for amino acid as a string

Returns a list of possible triplet codes for that amino

acid mwwoan

Ala codons = [Seqg.Seq('GCT'), Seqg.Seqg('GCC'), Seq.Seg('GCA'),
Seqg.Seq ('GCG") ]

Cys _codons = [Seq.Seq('TGT'), Seq.Seq('TGC')]
Asp codons = [Seqg.Seq('GAT'), Seqg.Seqg('GAC')]
Glu codons = [Seqg.Seq('GAA'), Seq.Seq('GAG')]
Phe codons = [Seq.Seq('TTT'), Seq.Seqg('TTC')]
Gly codons = [Seq.Seq('GGT'), Seqg.Seq('GGC'), Seqg.Seq('GGA'"),
Seq.Seq ('GGG") ]
His codons = [Seq.Seq('CAT'), Seqg.Seq('CAC')]
Ile codons = [Seq.Seq('ATT'), Seg.Seqg('ATC'), Seqg.Seq('ATA')]
Lys codons = [Seqg.Seqg('AAA'), Seq.Seqg('AAG')]
Leu codons = [Seq.Seg('CTT'), Seqg.Seq('CTC'), Seqg.Seq('CTA'),

Seq.Seq('CTG'), Seq.Seqg('TTG'), Seqg.Seq('TTA'")]
Met codons = [Seq.Seq('ATG'), Seq.Seq('ATG')]
Asn codons = [Seq.Seq('AAT'), Seqg.Seq('AAC')]
Pro codons [Seq.Seq('CCT'), Seqg.Seg('CCC'), Seg.Seg('CCA'"),

Seg.Seqg ('CCG") ]

Gln codons = [Seqg.Seq('CAA'), Seq.Seq('CAG')]

Arg codons = [Seqg.Seq('CGC'), Seq.Seqg('CGT'), Seqg.Seq('CGA'),
Seq.Seq('CGG'), Seqg.Seqg('AGA'), Seqg.Seq('AGG')]

Ser codons = [Seqg.Seq('AGT'), Seq.Seqg('AGC'), Seqg.Seqg('TCT'),
Seqg.Seq('TCC'), Seqg.Seqg('TCA'), Seqg.Seq('TCG'")]

Thr codons = [Seq.Seq('ACT'), Seqg.Seq('ACC'), Seqg.Seq('ACA'),
Seqg.Seq ('ACG") ]

Val codons = [Seq.Seq('GTT'), Seq.Seq('GTC'), Seq.Seq('GTA'),
Seq.Seq('GTG'") ]

Trp codons = [Seq.Seq('TGG'), Seq.Seq('TGG")]

Tyr codons = [Seq.Seq('TAT'), Seq.Seq('TAC'")]

Stop codons = [Seq.Seq('TAA'), Seq.Seq('TAG'), Seq.Seq('TGA'")]

ref codon seq all = {"A": Ala codons,

"C": Cys_ codons,
"D": Asp codons,
"E": Glu codons,
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"F" .
"G" .
"H" .
"I
"KM
"L
RULE
"N
"p":
"Q" .
"R" .
"S" .
"T" .
"v" .
"W" .
Y

Wk,

}

Phe codons,
Gly codons,
His codons,
Ile codons,
Lys codons,
Leu codons,
Met codons,
Asn codons,
Pro codons,
Gln codons,
Arg codons,
Ser codons,
Thr codons,
Val codons,
Trp codons,
Tyr codons,
Stop codons

return ref codon seq all[amino_acid]

#convert the tupules to a dictionary with

def DictConvert (tup, dic):
for a, b in tup:
dic.setdefault (a, Db)
return dic

def protein dict maker (input seq):
""""Converts a DNA sequence into a dictionary of the

translated amino acids of each codon,

mwman

appearance in the sequence.

codon length = 3

codon sequences list =

a custom function

numbered by the order of

[input seqg[current base:current base+codon length] for
current base in range (0, len (input seq),

codon _no_seq tupule = list (enumerate (codon sequences list))

dict of AAs = {}

codon_ length)]

DictConvert (codon no_seq tupule, dict of AAs)

no of codons = int (len(input_seq)/3)
codon nos_all = list(range(0, no _of codons , 1))

for codon no, codon seq in dict of AAs.items():
trans codon = codon_ seq.translate()

#print (trans_codon)

if codon no in codon nos all:

dict of AAs[codon no] = trans_

return dict of AAs

codon
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def codon dict maker (input seq = None, key format = "number"):
"""Converts a DNA sequence into a dictionary of the composite
codons.

Keyword Arguments

input seqg -- the DNA sequence to convert

key format -- 'number' gives keys as number in the sequence
(default), 'letter-number' gives the keys in the form amino acid
single letter code followed by the number in the sequence.

Returns a dictionary with the desired format.

mwwan

codon length = 3

codon_sequences list =
[input seqg[current base:current base+codon length] for
current base in range (0, len(input seq), codon length)]

codon no_seq tupule = list (enumerate (codon sequences list))

#make a dictionary and convert the tupules into a dictionary
dict of codons = {}

if key format == "number":
DictConvert (codon no seq tupule, dict of codons)

if key format == "letter-number":
DictConvert (codon no seq tupule, dict of codons)
dict of codons2 = {}
for codon no, codon seq in dict of codons.items() :
trans codon = codon_seq.translate()

trans codon name = str(trans codon)

codon _no _name = str(codon no)

codon no plus name = trans codon name + codon no_ name

dict of codons2[codon no plus name] = codon_ seq
dict of codons = dict of codons2

return dict of codons

def alt codons (input dict):

"""Creates a dictionary of the alternate codon sequences for
the same amino acid as the input.

Arguments
input dict -- dictionary in the form {single-letter code +

number: original codon sequence}

Outputs a dictionary in the form {single-letter code + number:
list of alternate codons}
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was

def

the

for

Note: Methionine and Tyrosine will output their only codon"""
alt codons dict = {}
for codon name, codon seqg in input dict.items():

trans codon = codon name [0]

#fmake a list of the codons for each AA minus the one that
used in the WT

current AA codon list = list(ref codon table(trans codon))

alt AA codons list = current AA codon list

alt AA codons list.remove (codon seq)

alt codons dict[codon name]= alt AA codons list

return alt codons dict

Syn random recoder (input dict):
"""Creates a dictionary of the a synonymous codon sequence for
same amino acid as the input.

Chosen codon will be randomly chosen from the alternate codons
that amino acid.

Arguments
input dict -- dictionary in the form {single-letter code +

number: list of alternate codon sequences}

Outputs a dictionary in the form {single-letter code + number:

randomly chosen alternate codon}

Note: Methionine and Tyrosine will output their only codon."""

codons for mutated seq = {}
for codon no name, chosen codon seq in input dict.items():

chosen AA = random.choice (chosen codon_ seq)
codons_ for mutated seqg[codon no name] = chosen AA

return codons for mutated seq
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7.2.13 CODON DATAFRAMES
# -*- coding: utf-8 -*-

mwwan

Created on Wed Jan 24 13:31:23 2024

Qauthor: ceh560

import pandas as pd

from Bio import SeqIO

from Bio import Seq

import numpy as np

from Bio import Align

import random

import codon dictionaries as cdict

def ref codon table fregs excel (input file
"""Converts an excel spreadsheet of the frequency data into a
dictionary searchable by single-letter amino acid.

Arguments

None) :

input file -- the filename of the reference spreadsheet with

file extensio

Ouputs a dictionary in the form {single-letter code:

n as a string

frame of frequency data}"""

codon_usa

Ala df = codon usage df.query("Protein
Cys df = codon usage df.query("Protein
Asp df = codon usage df.query("Protein
Glu df = codon usage df.query("Protein
Phe df = codon usage df.query("Protein
Gly df = codon usage df.query("Protein ==
His df = codon usage df.query ("Protein
Ile df = codon usage df.query ("Protein
Lys df = codon usage df.query("Protein
Leu df = codon usage df.query ("Protein
Met df = codon usage df.query("Proteiln
Asn df = codon usage df.query ("Protein
Pro df = codon usage df.query ("Protein
Gln df = codon usage df.query("Protein
Arg df = codon usage df.query ("Protein
Ser df = codon usage df.query ("Protein
Thr df = codon usage df.query("Protein
Val df = codon usage df.query("Protein ==
Trp df = codon usage df.query("Protein
Tyr df = codon usage df.query("Protein
Stop df = codon usage df.query("Protein ==

ge df = pd.read excel (input file)
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dict of AAs dfs all = {"A": Ala df,

"C": Cys_df,
"D": Asp df,
"E": Glu df,
"F": Phe df,
"G": Gly df,
"H": His df,
"I": Ile df,

"K": Lys df,
"L": Leu df,
"M": Met df,
"N": Asn df,
"P": Pro_ df,

"Q": Gln df,
"R": Arg df,
"sS": Ser df,
"T": Thr df,

"v": Val df,
"Ww": Trp df,
"y": Tyr df,
"x": Stop df}

return dict of AAs dfs all
def ref codon table fregs(input df = None):

""" Converts a dataframe of the frequency data into a
dictionary, searchable by single-letter amino acid.

Arguments

input file -- the filename of the reference spreadsheet with
file extension as a string

Ouputs a dictionary in the form {single-letter code: data

frame of frequency data}"""

codon usage df = input df

Ala df = codon_usage df.query("Protein == 'A'")
Cys _df = codon usage df.query("Protein == 'C'")
Asp df = codon_usage df.query("Protein == 'D'")
Glu df = codon usage df.query("Protein == 'E'")
Phe df = codon usage df.query("Protein ‘B
Gly df = codon usage df.query("Protein == 'G'")
His df = codon usage df.query("Protein == 'H'")
Ile df = codon usage df.query("Protein == 'I'")
Lys df = codon usage df.query("Protein == 'K'")
Leu df = codon usage df.query("Protein == 'L'")
Met df = codon usage df.query("Protein '™M'™)
Asn df = codon usage df.query("Protein == 'N'")
Pro df = codon usage df.query("Protein == 'P'")
Gln df = codon usage df.query ("Protein 'Q'M)
Arg df = codon usage df.query("Protein 'R'™)
Ser df = codon usage df.query("Protein == 'S'")
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Thr df = codon usage df.query("Protein == 'T'")
Val df = codon usage df.query("Protein == 'V'")
Trp df = codon usage df.query("Protein == 'W'")
Tyr df = codon usage df.query("Protein == 'Y'")
Stop df = codon usage df.query("Protein == '*'")

dict of AAs dfs all = {"A": Ala df,
"C": Cys df,
"D": Asp df,
"E": Glu df,
"F": Phe df,

"G": Gly df,
"H": His df,
"I": Ile df,

"K": Lys df,
"L": Leu df,
"M": Met df,
"N": Asn df,
"P": Pro df,
"Q": Gln df,
"R": Arg df,
"S": Ser df,
"T": Thr df,
"v": Val df,
"W": Trp df,
"y": Tyr df,
"*": Stop df}

return dict of AAs dfs all

def codon frequency collector (input dict, reference dict, type =
"value") :

"""Creates a dictionary with the frequencies of the codons
used in the input dictionary.

Arguments

input dict -- a dictionary of the codons used in the sequence
to assess in the form (when type = dataframe or value) {codon
number: sequence} or (when type = list) {single-letter code +
number: list of alternate codons}

reference dict -- a dictionary of the frequency data for all

codons in the form {single-letter code: data frame of frequency
data}l

type -- choice of collection of only a single frequency (type
= value, default), (type = dataframe) the frequencies for all the
codons for the amino acid the input codes for as a dataframe, or
(type = list) the frequencies for all the codons for the amino
acid the input codes for as a list.

Value outputs a dictionary in the form {single-letter code +
codon number: frequency value}
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Dataframe outputs a dictionary in the form {single-letter code
+ codon number: dataframe of frequencies for all codons}

List outputs a dictionary in the form {single-letter code +
number: list of frequencies for all codons}

dict of codons value = {}
dict of codons dataframe = {}
dict of codons list = {}

if type
for

== "value" or type == "dataframe":
codon no, codon_seq in input dict.items():
fcreate the keys in the form AA single letter code +

codon number

trans codon = codon_ seq.translate()

trans codon name = str(trans_codon)

codon _no_name = str(codon no)

codon _no = trans_codon name + codon no_name

#find the data frame corrsponding to the relevant AA
current AA df = reference dict[trans codon]

#find the frequency value for the input sequence codon
codon_seqg = str(codon_ seq)
relevant seq freq row =

current AA df.loc[current AA df["DNA"]==codon sed]

#collect only the frequency value
relevant seq freqg =

np.array(relevant seq freq row["Fraction"])

relevant seq freq = float (relevant seq freq)
#relevant seq freq = np.vectorize(relevant seq freq)

#add the frequency value to dictionary
dict of codons value[codon no] = relevant seq freq

#to a second dictionary, add the relevant data frames

(needed later)

dict of codons dataframe[codon no] =

current AA df.copy ()

if type
for

== "list":

codon_no_name, codon_sedgs in input dict.items():
trans codon = codon no name[0]

current AA df = reference dict[trans codon]

#collect only the frequency value
relevant seq freqg = list(current AA df["Fraction"])

dict of codons list[codon no name] = relevant seq freq
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if type == "dataframe":
return dict of codons dataframe

if type == "value":
return dict of codons value

if type == "list":
return dict of codons list

def codon frequency difference calc(input dict, ref dict):

"""Creates a dictionary of the absolute frequency differences
between an input codon and all other codons in a site-specific
manner.

Arguments

input codon dict -- a dictionary of sequences to compare to in
the form {single-letter code + number: sequence}

ref codon dict -- a dictionary of dataframes of frequency

usage data in the form {single-letter code: dataframe}

Outputs a dictionary in the form {single-letter code + number:
list of absolute differences in frequency"""

alt codon dict = {}

for codon no name, codon_segs in input dict.items():
trans codon = codon no name[0]
current AA df = ref dict[trans codon]

#collect only the frequency value
relevant seq freq = list(current AA df["Fraction"])

alt codon dict[codon no name] = relevant seq freq

alt codons freqgs diff = {}
for codon no name, codon fregs in alt codon dict.items():
#creating the keys as the codon number and translated
letter

ref codon seq = input dict[codon no name]

#find the dataframe for the relevant AA from the
dictionary of dataframes

trans codon = ref codon seq.translate()

current AA df = ref dict[trans codon]

#find the triplet code to compare to from the previous

dictionary with the DNA sequences from the input
relevant seq = input dict[codon no name]
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ref codon freq =
current AA df.loc[current AA df["DNA"]==relevant seq]

#collect only the frequency value from the data frame
relevant seq freq = np.array(ref codon freqg["Fraction"])
#relevant seq freq = np.vectorize(relevant seq freq)
relevant seq freq = float(relevant seq freq)

#make a list of the values of the differences for each of
the possible codons and add that to a dictionary which links these
to their respective codon

codon fregs diff = []

for frequency in codon fregs:
frequency diff = abs(frequency - relevant seq freq)

codon_ fregs diff.append(frequency diff)
alt codons freqgs diff[codon no name] =
codon_fregs diff

return alt codons fregs diff

def codon freq diff adder(dict of codons, dict of dfs, diff dict):
"""Creates a dictionary with a modified data frame to the
input to include absolute differences

Arguments

dict of codons -- a dictionary in the form of {single-letter
code + number: sequence}

dict of dfs -- a dictionary in the form of {single-letter code
+ number: dataframe for all codons for that amino acid}

diff dict -- a dictionary in the form of {single-letter code +
number: list of absolute differences}

Note: values in the lists in diff dict must be in the same
order as the values they correspond to in the dataframe in
input dict

Outputs a dictionary with the data frame from input dict
ammended with the values from the lists in diff dict"""

output dict = dict of dfs
#ensure the original codon can never be selected as the new
one (except for Met and Tyr)
for codon no name, codon df in dict of dfs.items():
#take the data frame which had the copies of each AAs info
for the input sequence
current codon df = dict of dfs[codon no name]

#add a new column to the data frame which is the
differences calculated in the previous dictionary
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current codon df["Absolute Difference"] =
diff dict[codon no name]

#pull out the original input sequence for the codon being
assessed

#current_codon_no = int(codon no name[l:])

input codon = dict of codons[codon no name]

#set the input codon freq to 1 for the input codon so that
it's never chosen as the lowest value except for met and tyr
current codon df.loc[current codon df["DNA"] ==
input codon, "Absolute Difference"] =1

return output dict

def codon freq selector (input dict):
"""Creates a dictionary of the codon sequences with the lowest
Absolute Difference in Frequency.

Arguments

input dict -- a dictionary in the form {single-letter code +
number: dataframe} where the dataframe contains a column for DNA
sequence, Fraction and Absolute Difference.

Output is a dictionary in the form {single-letter code +
number: chosen sequence (as a string)}"""

codons for mutated seq = {}
for codon no name, chosen codon seqg in input dict.items():

#find the dataframe for this codon
current codon df = input dict[codon no name]

#find the value with the smallest absolute difference in
that dataframe

smallest diff = min(current codon df["Absolute
Difference"])

corresponding seq to freq =
current codon df.loc[current codon df["Absolute Difference"] ==
smallest diff]

#dealing with multiple equivalent differences - if found,
take the one with the bigger fraction of usage if they don't have
equal

#pull out only the sequence of the smallest difference

if len(corresponding seq to freq) ==

seq _to use = corresponding seq to freqg["DNA"].item()
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else:
highest freq =
current codon df.loc[current codon df["Fraction"] ==
max (current codon df["Fraction"])]
highest freq value = highest freg["Fraction"].item()

highest freq list = []
highest freq list.append(highest freq value)

#check if there are two values with equal abs diff and
equal fraction
if len(highest freq list) == 1:
seq to use = highest freqg["DNA"].item()

#needs a better else clause

else: print ("\n\n\n ***Error: there are two or more
values with equal abs difference in frequency and fraction of
usage***\n\n\n")

codons_for mutated seg[codon no name] = seqg to use
return codons_ for mutated seq

def non syn mutator (target AA, AA num, new AA, input dict,
ref dict = None, type = "random"):

"""Generates a dictionary of codons, replacing a target amino
acid with another either randomly or in a strategised manner.

Arguments

target AA -- the starting amino acid residue in the WT
sequence (single-letter code)

AA num -- the amino acid number in the WT sequence

new AA —-- the amino acid to replace the target with (single-
letter code)

input dict -- a dictionary of the WT sequence codons in the
form {single-letter code + number: sequence}

ref dict -- a reference dictionary of all codons. Either in
the form (type = "random") {single-letter code: list of sequences}
or (type = "highest" or "lowest") {single-letter code: dataframe
of frequency data}

type -- determines how to pick the replacement codon. Default

= "random". Options are random, highest (highest frequency), or
lowest (lowest frequency)

Output is a dictionary which has replaced the target codon as
specified in the form {single-letter code + number: sequence}

mrmn

#use input codon information to identify which codon is going
to be mutated
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residue to mutate = target AA + str (AA num)

#define the output residue

mutated target residue = new AA + str (AA num)
if type == "random":
#determine DNA sequence for the new codon - random version

replacement protein DNA = random.choice (ref dict[new AA])

if type == "highest":
mutated res = {mutated target residue: "blank"}
mutated res freqgs = codon_ frequency collector (mutated res,
ref dict, type = "list")

max freq mutated res =
max (mutated res fregs[mutated target residue])

mutated res df = ref dict[new AA]

mutated res df chosen =
mutated res df.loc[mutated res df["Fraction"] ==
max freqg mutated res]
#tie breaker
if len(mutated res df chosen) > 1:
max number codon = max (mutated res df["Number"])
max number codon seq =
mutated res df.loc[mutated res df["Number"] == max number codon,
"DNA"].item()
replacement protein DNA = max number codon seg

else:
replacement protein DNA
mutated res df chosen["DNA"].item()

if type == "lowest":
mutated res = {mutated target residue: "blank"}
mutated res fregs = codon frequency collector (mutated res,
ref dict, type = "list")

min freq mutated res =
min (mutated res fregs[mutated target residue])

mutated res df = ref dict[new AA]
mutated res df chosen =
mutated res df.loc[mutated res df["Fraction"] ==

min freq mutated res]
#tie breaker
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if len(mutated res df chosen) > 1:

min number codon = min (mutated res df["Number"])
min number codon seq =
mutated res df.loc[mutated res df["Number"] == min number codon,

"DNA"] .item()
replacement protein DNA

min number codon seq

else:
replacement protein DNA
mutated res df chosen["DNA"].item()

#create a dictionary that has the new codon and removes the
old one

dict of codons output = {}
for codon name, codon seq in input dict.items():
dict of codons_ output[codon name] = codon_ seq
dict of codons output[mutated target residue] =
replacement protein DNA

del dict of codons output[residue to mutate]

return dict of codons output

237



7.2.14 FORMATTING FUNCTIONS
# -*- coding: utf-8 -*-

mwwan

Created on Thu Jan 25 09:52:49 2024

Qauthor: ceh560

from Bio import Seq

def codon spacing(sequence) :
"""Adds a space every 3 bases to a sequence to visualise the
codons more clearly.

Arguments
sequence -- a string or a sequence to be spaced

Note: if the sequence length is not a multiple of 3, the

spacing still starts from the beginning so the last codon will be
incomplete. The sequence will also end on a space. """

spaced seq = Seqg.Seq("")
codon length = 3
for base in range (0, len(sequence), codon length):

spaced seq += sequence[base:base+3]
spaced seq += " "

return spaced seq
def protein align codon(protein sequence) :
"""Adds space after every amino acid to align with a codon

spaced DNA sequence.

Arguments
protein sequence -- a string or a sequence to be spaced

Note: if the sequence length is not a multiple of 3, the
spacing still starts from the beginning so the last codon will be
incomplete. The sequence will also end on a space. """

spaced seq = Seq.Seq("")

for amino_acid in protein sequence:

#spaced seq += " "
spaced seq += amino_acid

spaced seq += " "

return spaced seq
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7.2.15 STITCHING FUNCTIONS
# -*- coding: utf-8 -*-

mwwan

Created on Tue Jan 23 10:57:41 2024

Qauthor: ceh560

from Bio import Seq

def repair stitcher(*, ref seq = None, recoded seq = None,

up length = None, replacement length = None, down length = None):
""""Takes an input sequence and replaces a central sequence

with another specified sequence

Keyword arguments:

ref seq -- a sequence/string to work from

recoded seq -- a sequence/string to replace part of the
ref seq with

up length -- the legnth of the first sequence from the
start of the input sequence to keep

replacement length -- the length of the sequence which

will be replaced, starting from the next base/character of the
up_ length

down length -- the length of the third sequence, starting
from the next base/character of the replacement length to keep

Outputs a new sequence of the original starting sequence,
followed by the replaced sequence, followed by the original end
sequence

upstream seq = ref seq[:up length]

downstream seq = ref seq[ (up length +
replacement length) : (up length + replacement length +
down length) ]

return upstream seq + recoded seqg + downstream seq

def sequence splitter(*, ref seq = None, up length = None,
mid length = None, down length = None):

""""Takes an input sequence and breaks it into 3 constituent
sequences

Keyword arguments:

ref seq -- a sequence/string to split

up length -- the legnth of the first sequence from the
start of the input sequence

mid length -- the length of the second sequence, starting
from the next base/character of the up length

down length -- the length of the third sequence, starting
from the next base/character of the mid length
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Outputs the sequences of start to up, up to mid and mid to
down either in a tupule or assigned to 3 variables if specified.
upstream seq = ref seq[:up length]
middle seqg = ref seqglup length: (up length + mid length)]
downstream seq = ref seq[(up length + mid length): (up length +
mid length + down length)]

return upstream seq, middle seq, downstream seq

def sequence constructor (input dict, type = "number"):

"""Constructs a sequence object from numbered sequences in a
dictionary

Arguments

input dict -- a dictionary in the form {number: sequence} or
{single-letter code + number: sequence}

type -- default = "number", alternative is type = "letter-
number"

Output is a sequence constructed in numerical order from the
constituent sequences in the dictionary."""

counter = 0

mutated seq = Seg.Seqg("")

if type == "letter—-number":
output dict = {}

for codon no name, chosen codon seqg in input dict.items():
codon no = codon _no name[1l:]
output dict[codon no] = chosen codon seg

for codon no, chosen codon seqg in output dict.items():
mutated seq += output dict[str (counter)]
counter = counter + 1

if type == "number":
for codon no name, chosen codon seq in input dict.items():

mutated seq += input dict[str(counter)]
counter = counter + 1

return mutated seq
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def mut seq integrator(repair seq, ref seq, repair start,
repair end, WT repair seq = "No"):

"""Generates a sequence corresponding to the integration of
the inputted repair sequence into the gene sequence.

Arguments

repair seqg -- the sequence being integrated

ref seq -- the gene sequence before replacement

repair start -- the starting base of where the repair template
integrates

repair end -- the ending base of where the repair template
integrates

WT repair seq -- default = "No", if = Yes, it will also output

the sequence for the WT region that is being replaced

Note: the repair seq does not have to be the length of the
replaced region (repair start to repair end) but there is no
validation if this is the case.™""

#repair start py = repair start - 1

WT template seq = ref seqgrepair start:repair end]

upstream dna = ref seq[:repair start]

downstream dna = ref seqgrepair end:]

repalr total seq = upstream dna + repair seq + downstream dna

if WT repair seq == "No":
return repair total seq

if WT repair seq == "Yes":
return repair total seq, WT template seqg
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7.2.16 VALIDATOR
# -*- coding: utf-8 -*-

mwwan

Created on Wed Jan 24 08:35:58 2024

Qauthor: ceh560

from Bio import Seq
from Bio import SeqIO

def triplet checker (input seq):
""""Checks the input sequence is a whole number of codons
(divisible by 3). Returns True, or False + error message."""
seq length = len(input seq)
if seq length % 3 == 0:
return True
else:
return False, print ("\n\n\n ***Sequence input not a
multiple of three*** \n Any result generated will likely be

erroneous.\n\n\n")

def translate checker (input seq, target res num, target res AA):

if type(input seq) == str:
input seqg = Seq.Seg(input seq)

target res num py = target res num - 1

#determine the DNA sequence range from the codon number
target codon seq =

input seq[ (target res num py*3): ((target res num py*3)+3)]
#return print(input seq, target codon seq)

#check the information matches up
target codon seq translated = target codon seqg.translate ()
if target codon seq translated != target res AA:
return False, print (f"\n\n\n ***Error, requested residue
does not code for expected amino acid. Requested residue number
{target res num} codes for {target codon seq translated} but was
expected to be {target res AA}.*** \n\n\n\n")

if target codon seq translated == target res AA:
return True

def mutation counter (mutated seq, WT seq):
"""Determines the number of mutations in a DNA sequence
compared to a reference sequence
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Arguments

mutated seq -- the sequence which is expected to contain
mutations
WT seq -- a reference sequence for the same region of DNA

Outputs the number of mutations found"""

counter = 0
mutations = 0
for base in WT seq:
1f WT seqg[counter] != mutated seqg[counter]:
mutations += 1

counter += 1

return mutations
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7.2.17 PRIMER FUNCTIONS

# -*- coding: utf-8 —*-

mwwan

Created on Fri Jan 26 16:53:51 2024

Qauthor: ceh560

import primer3

import primer3.bindings
from Bio import SeqIO
from Bio import Seq
import pandas as pd

def screening primer designer (WT seq, integrated repair seq,
repair start, repair end):

"""Designs screening primers to distinguish an integrated
repair sequence from the WT sequence.

Argumets

WT seq -- the gene sequence of the WT gene

integrated repair seq -- the gene sequence if the desired
repair template is integrated in place

repair start -- the base pair number that the recoding region
of the repair template starts

repair end -- the base pair number that the recoding region of

the repair template ends

Outputs a dataframe of the designed primers and some useful
information"""

repalir start py = repair start - 1
WT template seqg = WT seq[repair start py:repair end]

upstream dna = WT seq[:repair start py]

downstream dna = WT seqg[repair end:]

WT dna for primers = str (WT seq)
WT primers = {'SEQUENCE ID': "gene name",
"SEQUENCE TEMPLATE": WT_dna_for_primers,
#"SEQUENCE TARGET": [87,36], #first value = start,
second value = length, the primers must cover this entire region
"PRIMER TASK": "generic",

"PRIMER PICK LEFT PRIMER": 1,
#"PRIMER PICK INTERNAL OLIGO": O,
"PRIMER PICK RIGHT PRIMER": 1,
"PRIMER OPT SIZE": 18,
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repair start py,
#"SEQUENCE_PRIMER":
to specify a left

(rev) primer

"PRIMER MIN SIZE": 15,
"PRIMER MAX SIZE": 21,
"PRIMER MAX NS ACCEPTED": 1,

"PRIMER PRODICT SIZE RANGE": [150,1500],

"P3 FILE FLAG": 1,
#"SEQUENCE_INTERNAL EXCLUDED REGION": [37,21],
"PRIMER EXPLAIN FLAG": 1,
"SEQUENCE_PRIMER PATR OK REGION LIST": [0,

}

repair start py, (repair end - repair start py)]
"GTCACACTTTTGCGGCTCG" #allows you

(fwd) primer only to use to design the right

global argsl = {"PRIMER TASK": "generic",

"PRIMER PICK LEFT PRIMER": 1,

"PRIMER PICK INTERNAL OLIGO": O,
"PRIMER PICK RIGHT PRIMER": 1,
"PRIMER NUM RETURN": 3,

"PRIMER MIN 3 PRIME OVERLAP OF JUNCTION":

"PRIMER INTERNAL MIN 3 PRIME OVERLAP OF JUNCTION": 4,

"PRIMER MIN 5 PRIME OVERLAP OF JUNCTION":

"PRIMER INTERNAL MIN 5 PRIME OVERLAP OF JUNCTION": 7,

n empty" ,

" empty" ’

#"PRIMER MUST MATCH FIVE PRIME": "empty",
#"PRIMER INTERNAL MUST MATCH FIVE PRIME":

#"PRIMER MUST MATCH THREE PRIME": "empty",
#"PRIMER INTERNAL MUST MATCH THREE PRIME":

"PRIMER PRODUCT SIZE RANGE": [100, 15007,
"PRIMER PRODUCT OPT SIZE": 500,
"PRIMER PAIR WT PRODUCT SIZE LT": 0.0,
"PRIMER PAIR WT PRODUCT SIZE GT": 0.0,
"PRIMER MIN SIZE": 18,

"PRIMER INTERNAL MIN SIZE": 18,
"PRIMER OPT SIZE": 20,

"PRIMER INTERNAL OPT SIZE": 20,
"PRIMER MAX SIZE": 27,

"PRIMER INTERNAL MAX SIZE": 27,
"PRIMER WT SIZE LT": 1.0,

"PRIMER INTERNAL WT SIZE LT": 1.0,
"PRIMER WT SIZE GT": 1.0,

"PRIMER INTERNAL WT SIZE GT": 1.0,
"PRIMER MIN GC": 20.0,

"PRIMER INTERNAL MIN GC": 20.0,
"PRIMER OPT GC PERCENT": 50.0,

"PRIMER INTERNAL OPT GC_PERCENT": 50.0,
"PRIMER MAX GC": 80.0,

"PRIMER INTERNAL MAX GC": 80.0,
"PRIMER WT GC_PERCENT LT": 0.0,

"PRIMER INTERNAL WT GC PERCENT LT": 0.0,
"PRIMER WT GC_PERCENT GT": 0.0,

"PRIMER INTERNAL WT GC PERCENT GT": 0.0,
"PRIMER GC CLAMP": O,

4,

7y
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"./primer3 config",

"PRIMER MAX END GC": 5,
"PRIMER MIN TM": 56.0,

"PRIMER INTERNAL MIN TM":

56.0,

"PRIMER_OPT TM":

60.0,

"PRIMER INTERNAL OPT TM": 60.0,

"PRIMER MAX TM": 63.0,
"PRIMER INTERNAL MAX TM": 63.0,
"PRIMER PATR MAX DIFF TM": 63.0,

"PRIMER WT TM LT": 1.0,
"PRIMER INTERNAL WT TM LT": 1.0,
"PRIMER WT TM GT": 1.0,

4

"PRIMER INTERNAL WT TM GT": 1.0,
"PRIMER PAIR WT DIFF TM": 0.0,
"PRIMER PRODUCT MIN TM": -1000000.0,
"PRIMER PRODUCT OPT TM": 0.0,
"PRIMER PRODUCT MAX TM": 1000000.0,
"PRIMER PAIR WT PRODUCT TM LT": 0.0,
"PRIMER PAIR WT PRODUCT TM GT": 0.0

"PRIMER TM FORMULA": 1,
"PRIMER SALT MONOVALENT": 50.0,
"PRIMER INTERNAL SALT MONOVALENT": 50.0,
"PRIMER SALT DIVALENT": 1.5,

"PRIMER INTERNAL SALT DIVALENT": 0.0,
"PRIMER DNTP CONC": 0.6,

"PRIMER INTERNAL DNTP CONC": 0.0,
"PRIMER SALT CORRECTIONS": 1,
"PRIMER DNA CONC": 50.0,

"PRIMER INTERNAL DNA CONC": 50.0,
"PRIMER DMSO CONC": 0.0,

"PRIMER INTERNAL DMSO CONC": 0.0,
"PRIMER DMSO FACTOR": 0.6,

"PRIMER INTERNAL DMSO FACTOR": 0.6,
"PRIMER FORMAMIDE CONC": 0.0,

"PRIMER INTERNAL FORMAMIDE CONC": 0.0,

"PRIMER THERMODYNAMIC OLIGO ALIGNMENT": 1,
"PRIMER THERMODYNAMIC TEMPLATE ALIGNMENT":
"PRIMER SECONDARY STRUCTURE ALIGNMENT": O,

"PRIMER THERMODYNAMIC PARAMETERS PATH":

"PRIMER ANNEALING TEMP": -10.0,
"PRIMER MIN BOUND": -10.0,
"PRIMER INTERNAL MIN BOUND":
"PRIMER OPT BOUND": 97.0,
"PRIMER INTERNAL OPT BOUND": 97.0,
"PRIMER MAX BOUND": 110.0,
"PRIMER INTERNAL MAX BOUND":
"PRIMER WT BOUND LT": 0.0,
"PRIMER INTERNAL WT BOUND LT": 0.0,
"PRIMER WT BOUND GT": 0.0,

"PRIMER INTERNAL WT BOUND GT": 0.0,

-10.0,

110.0,

"PRIMER MAX SELF ANY": 8.00,
"PRIMER MAX SELF ANY TH": 47.00,

"PRIMER INTERNAL MAX SELF ANY": 12.00,
"PRIMER INTERNAL MAX SELF_ANY TH": 47.00,
"PRIMER PAIR MAX COMPL ANY": 8.00,
"PRIMER PAIR MAX COMPL ANY TH": 47.00,
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.00,

"PRIMER WT SELF ANY": 0.0,
"PRIMER WT SELF ANY TH": 0.0,

"PRIMER INTERNAL WT SELF ANY": 0.0,
"PRIMER INTERNAL WT SELF ANY TH": 0.0,
"PRIMER PAIR WT COMPL ANY": 0.0,
"PRIMER PATIR WT COMPL ANY TH": 0.0,
"PRIMER MAX SELF END": 3.00,
"PRIMER MAX SELF END TH": 47.00,
"PRIMER INTERNAL MAX SELF END": 12.00,
"PRIMER INTERNAL MAX SELF END TH": 47.00,
"PRIMER PAIR MAX COMPL END": 3.00,
"PRIMER PAIR MAX COMPL END TH": 47.00,
"PRIMER WT SELF END": 0.0,
"PRIMER WT SELF END TH": 0.0,

"PRIMER INTERNAL WT SELF END": 0.0,
"PRIMER INTERNAL WT SELF END TH": 0.0,
"PRIMER PAIR WT COMPL_END": 0.0,
"PRIMER PATIR WT COMPL _END TH": 0.0,
"PRIMER MAX HATIRPIN TH": 47.0,

"PRIMER INTERNAL MAX HAIRPIN TH": 47.0,
"PRIMER WT HAIRPIN TH": 0.0,

"PRIMER INTERNAL WT HAIRPIN TH": 0.0,
"PRIMER MAX END STABILITY": 100.0,
"PRIMER WT END STABILITY": 0.0,
"PRIMER MAX NS ACCEPTED": 0,

"PRIMER INTERNAL MAX NS ACCEPTED": 0,
"PRIMER WT NUM NS": 0.0,

"PRIMER INTERNAL WT NUM NS": 0.0,
"PRIMER MAX POLY X": 5,

"PRIMER INTERNAL MAX POLY X": 5,
#"PRIMER MIN LEFT THREE PRIME DISTANCE": -1,
#"PRIMER INTERNAL MIN THREE PRIME DISTANCE": -

#"PRIMER MIN RIGHT THREE PRIME DISTANCE": -1,
"PRIMER MIN THREE PRIME DISTANCE": -1,
"PRIMER PICK ANYWAY": O,

"PRIMER LOWERCASE MASKING": 0,

"PRIMER EXPLAIN FLAG": 0,

"PRIMER LIBERAL BASE": 0,
"PRIMER FIRST BASE INDEX": 0,

"PRIMER MAX TEMPLATE MISPRIMING": -1.00,
"PRIMER MAX TEMPLATE MISPRIMING TH": -1.00,
"PRIMER PAIR MAX TEMPLATE MISPRIMING": -1.00,

"PRIMER PAIR MAX TEMPLATE MISPRIMING TH": -

"PRIMER WT TEMPLATE MISPRIMING": 0.0,
"PRIMER WT TEMPLATE MISPRIMING TH": 0.0,
"PRIMER PAIR WT TEMPLATE MISPRIMING": 0.0,
"PRIMER PAIR WT TEMPLATE MISPRIMING TH": 0.0,
"PRIMER MISPRIMING LIBRARY": "",

"PRIMER INTERNAL MISHYB LIBRARY": "',
"PRIMER LIB AMBIGUITY CODES CONSENSUS": 0,
"PRIMER MAX LIBRARY MISPRIMING": 12.00,
"PRIMER INTERNAL MAX LIBRARY MISHYB": 12.00,
"PRIMER PAIR MAX LIBRARY MISPRIMING": 24.00,
"PRIMER WT LIBRARY MISPRIMING": 0.0,
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WT primers, global args

"PRIMER INTERNAL WT LIBRARY MISHYB": 0.0,
"PRIMER PAIR WT LIBRARY MISPRIMING": 0.0

14

"PRIMER MASK TEMPLATE": O,
"PRIMER MASK FATILURE RATE": 0.1,
"PRIMER WT MASK FAILURE RATE": 0.0,
"PRIMER MASK 5P DIRECTION": 1,
"PRIMER MASK 3P DIRECTION": O,

#"PRIMER MASK KMERLIST PATH": "../kmer lists/",
"PRIMER MASK KMERLIST PREFIX": "homo sapiens",
"PRIMER MIN QUALITY": O,
"PRIMER INTERNAL MIN QUALITY":
"PRIMER MIN END QUALITY": O,
"PRIMER QUALITY RANGE MIN":
"PRIMER QUALITY RANGE MAX":
"PRIMER WT SEQ QUAL": 0.0,
"PRIMER INTERNAL WT SEQ QUAL":
"PRIMER PAIR WT PR _PENALTY":
"PRIMER PAIR WT IO PENALTY":
"PRIMER INSIDE PENALTY": -1.0,
"PRIMER OUTSIDE PENALTY": 0.0,
"PRIMER WT POS_PENALTY": 1.0,
"PRIMER SEQUENCING LEAD": 50,
"PRIMER SEQUENCING SPACING": 500,
"PRIMER SEQUENCING INTERVAL": 250,
"PRIMER SEQUENCING ACCURACY": 20,
"PRIMER WT END QUAL": 0.0,
"PRIMER INTERNAL WT END QUAL":
}

0,

0,
100,

0.0,
0,
0

4

1.
0.

0.0

WT primers results primer3.design primers (seq_args

global argsl)

upstream fwd WT primers results["PRIMER LEFT 0 SEQUENCE"]
WT rev WT primers results["PRIMER RIGHT O SEQUENCE"]
WT PCR product size =

WT primers results["PRIMER PAIR 0 PRODUCT SIZE"]

upstream fwd coords WT primers results["PRIMER LEFT 0"]
WT rev coords = WT_primers_results["PRIMER_RIGHT_O"]

#sticking some useful info into a smaller dictionary in case

it comes in handy later

WT primers useful results = {
"Forward primer sequence": upstream fwd,
"Reverse primer sequence": WT rev,
"PCR product size (bp)": WI PCR product size,

g)u.

"Forward GC content (%

WT primers results["PRIMER LEFT 0 GC PERCENT"],
"Reverse GC content (%)":

WT primers results["PRIMER RIGHT O GC PERCENT"],
"Forward Tm ('C)":
"Reverse Tm ('C)":

#"WT PCR product sequence (5'->3")":

WT dna for primers[upstream fwd coords[0]: (WI rev coords[0]

}

WT primers results["PRIMER LEFT 0 TM"],
WT primers results["PRIMER RIGHT 0 TM"]

+ 1)]
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#part 4 - design the mutant primers
recoded dna for primers = str(integrated repair seq)

recoded primers = {'SEQUENCE ID': "gene name",

"SEQUENCE TEMPLATE": recoded dna for primers,
#"SEQUENCE TARGET": [87,36], #first value = start,

second value = length, the primers must cover this entire region
"PRIMER TASK": "generic",
"PRIMER PICK LEFT PRIMER": 1,
#"PRIMER PICK INTERNAL OLIGO": O,
"PRIMER PICK RIGHT PRIMER": 1,
"PRIMER OPT SIZE": 18,
"PRIMER MIN SIZE": 15,
"PRIMER MAX SIZE": 22,
"PRIMER MAX NS ACCEPTED": 1,

"PRIMER PRODICT SIZE RANGE": [150,1500],

"P3 FILE FLAG": 1,
#"SEQUENCE_INTERNAL EXCLUDED REGION": [37,21],
"PRIMER EXPLAIN FLAG": 1,

"SEQUENCE PRIMER PAIR OK REGION LIST": [0,

repair start py, repair start py, (repair end - repair start py)],
"SEQUENCE PRIMER": upstream fwd #allows you to specify
a left (fwd) primer only to use to design the right (rev) primer

}

recoded primers results = primer3.design primers(seq args =
recoded primers, global args = global argsl)

recoded rev =

recoded primers results["PRIMER RIGHT 0 SEQUENCE"]
recoded PCR product size =

recoded primers results["PRIMER PAIR O PRODUCT SIZE"]
recoded rev coords = recoded primers results["PRIMER RIGHT 0"]

recoded primers useful results = {

"Forward primer sequence": upstream fwd,
"Reverse primer sequence": recoded rev,
"PCR product size (bp)": recoded PCR product size,
"Forward GC content (%)":

recoded primers results["PRIMER LEFT 0 GC PERCENT"],
"Reverse GC content (%)":

recoded primers results["PRIMER RIGHT 0 GC PERCENT"],
"Forward Tm ('C)":

recoded primers results["PRIMER LEFT 0 TM"],
"Reverse Tm ('C)":

recoded primers results["PRIMER RIGHT 0 TM"],
#"Recoded PCR product sequence (5'->3'")":

recoded dna for primers[upstream fwd coords[0]: (recoded rev coords

[0] + 1)1
}
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primers to add = [WT primers useful results,
recoded primers useful results]
primer details = pd.DataFrame (primers to add)

row names = ["WT primers", "Repair primers"]
primer details.index = row names

return primer details

def repair primer designer (repair seq, hom arm length,
downstream seq) :
"""Designs primers to produce the repair template sequence put

in.

Arguments

repair seq -- a DNA sequence of the entire repair template.
Must be less than/equal to 220 bp.

hom arm length -- the length of the homology arms in the
repair template

downstream dna -- a DNA sequence, essentially a dummy but

ideally sequence from the same organism. Needs to be larger than
the repair sequence length.

Outputs a dictionary of the necessary primer sequences, and
some other useful information."""

recoding start base = hom arm length

recoding end base = len(repair seq) - hom arm length
recoding start base py = recoding start base - 1
repair length total = len(repair seq)

if repair length total > 220:

return print ("\n\n\n***ERROR: repair length is too long to
deisgn primers for***\n\n\n")

if recoding end base > 120:
annealing region end = 119

recoding adjustment = recoding end base -
annealing region_ end

left primer length from start = annealing region end -
hom arm length - recoding adjustment

recoding start base py = recoding start base py +
recoding adjustment

else:
annealing region end = recoding end base
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left primer length from start = annealing region end -
hom arm length

repair dna for primers = str(repair seq)+str(downstream seq)
primers end = len (downstream seq)

annealing = {'SEQUENCE ID': "gene name",

"SEQUENCE TEMPLATE": repair dna for primers,
#"SEQUENCE TARGET": [87,36], #first value = start,

second value = length, the primers must cover this entire region
"PRIMER TASK": "generic",
"PRIMER_PICK_LEFT_PRIMER": 3,
#"PRIMER PICK INTERNAL OLIGO": O,
"PRIMER PICK RIGHT PRIMER": 3,
"PRIMER OPT SIZE": 18,
"PRIMER MIN SIZE": 15,
"PRIMER MAX SIZE": 24,
"PRIMER MAX NS ACCEPTED": 1,

"PRIMER PRODICT STZE RANGE": [100,1000],
"P3 FILE FLAG": 1,
#"SEQUENCE INTERNAL EXCLUDED REGION": [37,21],

"PRIMER EXPLAIN FLAG": 1,

"SEQUENCE PRIMER PAIR OK REGION LIST":
[recoding start base py, left primer length from start,
annealing region end, primers end]

#"SEQUENCE PRIMER": "GTCACACTTTTGCGGCTCG" #allows you
to specify a left (fwd) primer only to use to design the right
(rev) primer

}

global argsl = {"PRIMER TASK": "generic",
"PRIMER PICK LEFT PRIMER": 3,
"PRIMER PICK INTERNAL OLIGO": O,
"PRIMER PICK RIGHT PRIMER": 3,
"PRIMER NUM RETURN": 3,
"PRIMER MIN 3 PRIME OVERLAP OF JUNCTION": 4,

"PRIMER INTERNAL MIN 3 PRIME OVERLAP OF JUNCTION": 4,
"PRIMER MIN 5 PRIME OVERLAP OF JUNCTION": 7,

"PRIMER INTERNAL MIN 5 PRIME OVERLAP OF JUNCTION": 7,
#"PRIMER MUST MATCH FIVE PRIME": "empty",
#"PRIMER INTERNAL MUST MATCH FIVE PRIME":
"empty",
#"PRIMER MUST MATCH THREE PRIME": "empty",
#"PRIMER INTERNAL MUST MATCH THREE PRIME":
"empty",
"PRIMER PRODUCT SIZE RANGE": [100, 1000],
"PRIMER PRODUCT OPT SIZE": O,
"PRIMER PAIR WI PRODUCT SIZE LT": 0.0,
"PRIMER PAIR WI PRODUCT SIZE GT": 0.0
"PRIMER MIN SIZE": 16,
"PRIMER INTERNAL MIN SIZE": 16,
"PRIMER OPT SIZE": 20,

4
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"PRIMER INTERNAL OPT SIZE": 20,
"PRIMER MAX SIZE": 27,

"PRIMER INTERNAL MAX SIZE": 27,
"PRIMER WT SIZE LT": 1.0,

"PRIMER INTERNAL WT SIZE LT": 1.0,
"PRIMER WT SIZE GT": 1.0,

"PRIMER INTERNAL WT SIZE GT": 1.0,
"PRIMER MIN GC": 20.0,

"PRIMER INTERNAL MIN GC": 20.0,
"PRIMER OPT GC_PERCENT": 50.0,

"PRIMER INTERNAL OPT GC_PERCENT": 50.0,
"PRIMER MAX GC": 80.0,

"PRIMER INTERNAL MAX GC": 80.0,
"PRIMER WT GC_PERCENT LT": 0.0,

"PRIMER INTERNAL WT GC PERCENT LT": 0.0,
"PRIMER WT GC_PERCENT GT": 0.0,

"PRIMER INTERNAL WT GC PERCENT GT": 0.0,
"PRIMER GC_CLAMP": 0,
"PRIMER MAX END GC": 5,

"PRIMER MIN TM": 55.0,

"PRIMER INTERNAL MIN TM": 55.0,
"PRIMER OPT TM": 60.0,

"PRIMER INTERNAL OPT TM": 60.0,
"PRIMER MAX TM": 67.0,

"PRIMER INTERNAL MAX TM": 67.0,
"PRIMER PAIR MAX DIFF TM": 67.0,
"PRIMER WT TM LT": 1.0,

"PRIMER INTERNAL WT TM LT": 1.0,
"PRIMER WT TM GT": 1.0,

"PRIMER INTERNAL WT TM GT": 1.0,
"PRIMER PAIR WT DIFF TM": 0.0,

"PRIMER PRODUCT MIN TM": -1000000.0,
"PRIMER PRODUCT OPT TM": 0.0,
"PRIMER PRODUCT MAX TM": 1000000.0
"PRIMER PAIR WT PRODUCT TM LT":
"PRIMER PAIR WT PRODUCT TM GT":
"PRIMER TM FORMULA": 1,
"PRIMER SALT MONOVALENT": 50.0,
"PRIMER INTERNAL SALT MONOVALENT": 50.0,
"PRIMER SALT DIVALENT": 1.5,

"PRIMER INTERNAL SALT DIVALENT": 0.0,
"PRIMER DNTP CONC": 0.6,

"PRIMER INTERNAL DNTP CONC": 0.0,
"PRIMER SALT CORRECTIONS": 1,
"PRIMER DNA CONC": 50.0,

"PRIMER INTERNAL DNA CONC": 50.0,
"PRIMER DMSO CONC": 0.0,

"PRIMER INTERNAL DMSO CONC": 0.0,
"PRIMER DMSO FACTOR": 0.6,

"PRIMER INTERNAL DMSO FACTOR": 0.6,

"PRIMER FORMAMIDE CONC": 0.0,

"PRIMER INTERNAL FORMAMIDE CONC": 0.0,
"PRIMER THERMODYNAMIC OLIGO ALIGNMENT": 1,
"PRIMER THERMODYNAMIC TEMPLATE ALIGNMENT": O,
"PRIMER SECONDARY STRUCTURE ALIGNMENT": O,

0.0,
0.0

4
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"./primer3 config",

"PRIMER THERMODYNAMIC PARAMETERS PATH":

"PRIMER ANNEALING TEMP": -10.0,
"PRIMER MIN BOUND": -10.0,
"PRIMER INTERNAL MIN BOUND":
"PRIMER OPT BOUND": 97.0,
"PRIMER INTERNAL OPT BOUND":
"PRIMER MAX BOUND": 110.0,
"PRIMER INTERNAL MAX BOUND":
"PRIMER WT BOUND LT": 0.0,
"PRIMER INTERNAL WT BOUND LT":
"PRIMER WT BOUND GT": 0.0,
"PRIMER INTERNAL WT BOUND GT":
"PRIMER MAX SELF ANY": 8.00,
"PRIMER MAX SELF ANY TH": 47.00,
"PRIMER INTERNAL MAX SELF ANY": 12.
"PRIMER INTERNAL MAX SELF ANY TH":
"PRIMER PAIR MAX COMPL ANY": 8.00,
"PRIMER PAIR MAX COMPL ANY TH": 47.
"PRIMER WT SELF ANY": 0.0,
"PRIMER WT SELF ANY TH": 0.0,
"PRIMER INTERNAL WT SELF ANY":
"PRIMER INTERNAL WT SELF ANY TH":
"PRIMER PAIR WT COMPL ANY": 0.0,
"PRIMER PAIR WT COMPL ANY TH": 0.0,
"PRIMER MAX SELF END": 3.00,
"PRIMER MAX SELF END TH": 47.00,
"PRIMER INTERNAL MAX SELF END":
"PRIMER INTERNAL MAX SELF END TH":
"PRIMER PAIR MAX COMPL END": 3.00,
"PRIMER PAIR MAX COMPL END TH": 47.00,
"PRIMER WT SELF END": 0.0,
"PRIMER WT SELF END TH": 0.0,

"PRIMER INTERNAL WT SELF END": 0.0,
"PRIMER INTERNAL WT SELF END TH": 0.0,
"PRIMER PAIR WT COMPL END": 0.0,
"PRIMER PAIR WT COMPL END TH": 0.
"PRIMER MAX HAIRPIN TH": 47.0,
"PRIMER INTERNAL MAX HAIRPIN TH":
"PRIMER WT HAIRPIN TH": 0.0,
"PRIMER INTERNAL WT HAIRPIN TH": 0.0,
"PRIMER MAX END STABILITY": 100.0,
"PRIMER WT END STABILITY": 0.0,
"PRIMER MAX NS ACCEPTED": O,
"PRIMER INTERNAL MAX NS ACCEPTED":
"PRIMER WT NUM NS": 0.0,
"PRIMER INTERNAL WT NUM NS":
"PRIMER MAX POLY X": 5,
"PRIMER INTERNAL MAX POLY X": 5,

#"PRIMER MIN LEFT THREE PRIME DISTANCE": -1,
#"PRIMER INTERNAL MIN THREE PRIME DISTANCE": -

-10.0,

97.0,
110.0,
0.0,

0.0,

00,
47.00,
00,

0.0,
0.0,

12.00,
47.00,

0,

47.0,

0,

0.0,

#"PRIMER MIN RIGHT THREE PRIME DISTANCE":
"PRIMER MIN THREE PRIME DISTANCE": -1,
"PRIMER PICK ANYWAY": O,
"PRIMER LOWERCASE MASKING":

_1,

0,
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.00,

repair primers

"PRIMER EXPLAIN FLAG": 0,
"PRIMER LIBERAL BASE": 0,
"PRIMER FIRST BASE INDEX": O,

"PRIMER MAX TEMPLATE MISPRIMING": -1.00,
"PRIMER MAX TEMPLATE MISPRIMING TH": -1.00,
"PRIMER PAIR MAX TEMPLATE MISPRIMING": -1.00,

"PRIMER PAIR MAX TEMPLATE MISPRIMING TH": -

"PRIMER WT TEMPLATE MISPRIMING": 0.0,

"PRIMER WT TEMPLATE MISPRIMING TH": 0.0,
"PRIMER PAIR WT TEMPLATE MISPRIMING": 0.0,
"PRIMER PAIR WT TEMPLATE MISPRIMING TH": 0.0,
"PRIMER MISPRIMING LIBRARY": "",

"PRIMER INTERNAL MISHYB LIBRARY": "',

"PRIMER LIB AMBIGUITY CODES_ CONSENSUS": 0,
"PRIMER MAX LIBRARY MISPRIMING": 12.00,
"PRIMER INTERNAL MAX LIBRARY MISHYB": 12.00,
"PRIMER PAIR MAX LIBRARY MISPRIMING": 24.00,
"PRIMER WT LIBRARY MISPRIMING": 0.0,
"PRIMER INTERNAL WT LIBRARY MISHYB": 0.0,
"PRIMER PAIR WT LIBRARY MISPRIMING": 0.0
"PRIMER MASK TEMPLATE": O,
"PRIMER MASK FAILURE RATE": 0.1,

"PRIMER WT MASK FAILURE RATE": 0.0,
"PRIMER MASK 5P DIRECTION": 1,
"PRIMER MASK 3P DIRECTION": O,
#"PRIMER MASK KMERLIST PATH": "../kmer lists/",
"PRIMER MASK KMERLIST PREFIX": "homo sapiens",
"PRIMER MIN QUALITY": O,

"PRIMER INTERNAL MIN QUALITY": O,
"PRIMER MIN END QUALITY": O,

"PRIMER QUALITY RANGE MIN": O,

"PRIMER QUALITY RANGE MAX": 100,
"PRIMER WT SEQ QUAL": 0.0,
"PRIMER INTERNAL WT SEQ QUAL":
"PRIMER PAIR WT PR PENALTY": 1.
"PRIMER PAIR WT IO PENALTY": O.
"PRIMER INSIDE PENALTY": -1.0,
"PRIMER OUTSIDE PENALTY": 0.0,
"PRIMER WT POS_PENALTY": 1.0,
"PRIMER SEQUENCING LEAD": 50,
"PRIMER SEQUENCING SPACING": 500,
"PRIMER SEQUENCING INTERVAL": 250,
"PRIMER SEQUENCING ACCURACY": 20,
"PRIMER WT END QUAL": 0.0,

"PRIMER INTERNAL WT END QUAL": 0.0
}

= primer3.design primers(seq args = annealing,

4

0.0,
0,
0

14

global args = global argsl)

annealing seq = repair primers["PRIMER LEFT 0 SEQUENCE"]
annealing tm = repair primers["PRIMER LEFT 0 TM"]
annealing coords = repair primers["PRIMER LEFT 0"]
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forward primer = str(repair seq[: (annealing coords[0] +
annealing coords[1])])

repair as seq = Seq.Seg(repair seq)

repair rc = repair as seq.reverse complement ()
repair rc str = str(repair rc)
reverse primer = repair rc str[0: (len(repair seq) -

annealing coords[0])]

if len(forward primer) > 120 or len(reverse primer) > 120:
annealing seq = repair primers["PRIMER LEFT 1 SEQUENCE"]
annealing tm = repair primers["PRIMER LEFT 1 TM"]
annealing coords = repair primers["PRIMER LEFT 1"]

forward primer = str(repair seq[: (annealing coords[0] +
annealing coords[1])])

repalr as_seq = Seq.Seg(repalr seq)

repalr rc = repalr as_seq.reverse complement ()
repalr rc str = str(repair rc)
reverse primer = repair rc str[0: (len(repair seq) -

annealing coords[0]) ]

if len(forward primer) > 120 or len(reverse primer) > 120:
annealing seq = repair primers["PRIMER LEFT 2 SEQUENCE"]
annealing tm = repair primers["PRIMER LEFT 2 TM"]
annealing coords = repair primers["PRIMER LEFT 2"]

forward primer = str(repair seq[: (annealing coords[0] +
annealing coords[1])])

repair as seq = Seq.Seg(repair seq)

repair rc = repair as seq.reverse complement ()
repair rc str = str(repair rc)
reverse primer = repair rc str[0: (len(repair seq) -

annealing coords[0]) ]

output dict = {"Forward primer (5'-)": forward primer,
"Reverse primer (5'-)": reverse primer,
"Annealing sequence (5'-)": annealing seq,
"Tm ('C)": annealing tm}

return output dict
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Modified Configuration Spreadsheet

7.2.18 MAIN CODE BATCH VERSION

7.2.18.1
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7.2.18.2 Code
# -*- coding: utf-8 -*-

mwwan

Created on Thu May 9 13:06:02 2024

Qauthor: ceh560

#packages used in this file and/or the feeder files
import pandas as pd

from Bio import SeqIO

from Bio import Seq

from Bio import Align

import numpy as np

import io

import random

import primer3

import primer3.bindings

#custom files to import

import codon dataframes as cdf

import codon dictionaries as cdict
import formatting functions as formats
import primer functions as primers
import reading input file as rif
import validator as val

import stitching functions as stitch

#read input files

input data =
pd.read excel ("repair template input excel batch.xlsx", index col
= 0, header = 0)

pd.set option('display.max columns', 20)

pd.set option('display.max rows', None)

pd.set option("display.width", 1000)
pd.options.display.float format = "{:,.2f}".format

#check for missing values in each column before proceeding
column keys = list (input data.keys())

complete columns keys = []

for column in column keys:

if input data[column] .notna().all() == True:
complete columns keys.append (column)

if input data[column].notna().all() == False:
if (input data.isna() .at["Alternating every nth residue",
column] == True) and (input data[column] ["Synonymous Recoding
type"] == "lowest" or input data[column] ["Synonymous Recoding
type"] == "highest" or input data[column] ["Synonymous Recoding
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type"] == '"matched" or input data[column] ["Synonymous Recoding
type"] == "random") :
complete columns keys.append (column)

if (input data.isna() .at["Alternating every nth residue",

column] == True) and (input data[column] ["Synonymous Recoding
type"] == "alternating lowest" or input data[column] ["Synonymous
Recoding type"] == "alternating highest" or

input data[column] ["Synonymous Recoding type"] == "alternating
matched") and (input data[column] [input data.index != "Alternating
every nth residue"].notna () .all() == True):

complete columns keys.append (column)

if len(complete columns keys) != len(column keys):

print ("\n\n\n***Warning, one or more columns have not been
included due to missing values.***\n\n\n")
#check for duplicate filenames to prevent overwriting
job names = input data.loc["Job name"].copy () .transpose ()
#duplicated names = []
if job names.duplicated() .any() == True:

duplicated names = job names.where (job names.duplicated(keep =

False) == True)

dup namesl = dict (duplicated names)
dup names2 = dict (duplicated names.isna())

dup namesl df =
["Duplicate vales"])

dup names2 df = pd.DataFrame (dict (duplicated names.isna()),
index = ["True/False"])

pd.DataFrame (dict (duplicated names), index =

#duplicated names df = pd.DataFrame (dup namesl, index =
["Duplicate value"])

duplicated names df = pd.concat ([dup namesl df,
dup names2 df.astype(bool)], ignore index = True)

counter = 1
for columns in duplicated names df.columns.values.tolist():
job name = duplicated names df[columns] [0]
unique status = duplicated names df[columns] [1]
if unique status == False:
old job name = input data.at["Job name", columns]
input data.at["Job name", columns] = old job name +

"(" + str(counter) + ")"

counter += 1
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for column in complete columns keys:

job name = input data.loc["Job name"] [column]
target AA = input data.loc["Target amino acid
residue"] [column]

target res num = input data.loc["Target amino acid
number"] [column]

output AA = input data.loc["Replacement amino acid"] [column]

syn recode type = input data.loc["Synonymous Recoding
type"] [column]

nonsyn recode type = input data.loc["Nonsynonymous Recoding
Type"] [column]

codon freq input file = input data.loc["Codon Frequency data
filename (incl. extension)"] [column]

recode region length = input data.loc["Recoding region length
(bp)"] [column]

hom arm length = input data.loc["Homology arm length
(bp)"] [column]

ref file name = input data.loc["Reference FASTA filename
(incl. extension)"] [column]

CDS_start = input data.loc["CDS start in reference file (bp
number) "] [column]

CDS _end = input data.loc["CDS end in reference file (bp
number) "] [column]

alternating repeat = input data.loc["Alternating every nth
residue"] [column]

print ("\n----—-—-—-—-———-—————— - \n\n")
print (f"Start of {job name}, mutation:
{target AA}{target res num}{output AA}\n\n")

#read input fasta file and process as necessary
gene name = Jjob name

target res base nums = [ ((target res num-1)*3),
(target res num*3) ]

num of codons to recode = recode region length / 3
target codon no = int(num_of_codons_to_recode/2)

if recode region length % 2 == 0:
recode start = int(target res base nums[0] -
(recode region length/2))

else:
half codon percent = target codon no /
num of codons to recode
back bases = recode region length * half codon percent
recode_ start = int(target res base nums[0] - back bases)
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CDS

recode_end = recode start + recode region length
#need some special cases for close to the start or end of the
#near the start special case

if num of codons to recode > target res num:

recode start = 0
recode end = recode region length
target codon no = target res num - 1

for gene name in SeqIO.parse(ref file name, "fasta"):
#print (gene name.id)
print (gene name.description)
print (repr (gene name.seq))
print (
print(

"Gene sequence length: , len(gene name), "bp")
"\n")
if CDS _end == "end":
CDS_end = len(gene name.seq)
else:
CDS_end = CDS_end

if CDS start > 1:
CDS start = CDS start - 1
WT CDS seq = gene name.seq[ (CDS start) :CDS end]
recode start whole = recode start + CDS start
recode end whole = recode end + CDS start

else:
WT CDS seq = gene name.seq[:CDS end]
recode start whole = recode start
recode end whole = recode end

#check input is a length divisible by 3
val.triplet checker (WI CDS seq)

fcheck that the input given is correct and that the target

codes for the expected residue

val.translate checker (WT_CDS seq, target res num, target AA)

#near the end special case
total num AAs = len(WT CDS seqg.translate())

if target res num > (total num AAs - num of codons to recode):
recode _end = len(WT CDS seq)
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recode start = len(WT CDS seq) - recode region length

if CDS start > 1:

recode end whole = recode end + CDS start
recode start whole = recode start + CDS start
else:
recode end whole = recode end
recode start whole = recode start
num of codons to recode = int((recode end - recode start +
1)/ 3)
target codon no = num of codons to recode - (total num AAs
- target res num) - 1

#establish the sequence to replace, and sequences before and
after to stay the same
WT template seq =
gene name.seq[recode start whole:recode end whole]
upstream dna = gene name.seg[:recode start whole]
downstream dna = gene name.seqg[recode end whole:]

#make dictionary of codons with number keys and one with
numbers and amino acids

codons_to recode = cdict.codon dict maker (WT template seq,
key format= "number")

codons_to recode let num =
cdict.codon dict maker (WT template seq, key format= "letter-
number")

#make reference dictionaries for all the amino acids
ref codon table df =
rif.codon table processor (codon freq input file)

ref codons = cdf.ref codon table fregs(ref codon table df)
if syn recode type == "matched":
#use that dictionary to create a new one with the specific
frequency values
codons_to recode fregs =
cdf.codon frequency collector (input dict = codons to recode,

reference dict = ref codons, type = "value")

#create a dictionary with all the frequencies for the
amino acids in this sequence for each codon

261



codons_to recode all fregs =
cdf.codon frequency collector (input dict = codons_ to recode,
reference dict = ref codons, type = "dataframe")

#calculate the differences for each possible codon to the
original

recode freq diffs =
cdf.codon frequency difference calc(codons to recode let num,
ref codons)

#add the differences in frequency to "the" dataframe
codons_to recode abs diffs =
cdf.codon freq diff adder (codons to recode let num
,codons_to recode all fregs, recode freq diffs)

#choose which codons to use for synonymous recoding
codons_to use syn =
cdf.codon freq selector (codons to recode abs diffs)

1f syn recode type == "highest" or syn recode type ==
"lowest":

#use that dictionary to create a new one with the specific
frequency values

codons_to recode fregs =
cdf.codon frequency collector (input dict = codons to recode,
reference dict = ref codons, type = "value")

#create a dictionary with all the frequencies for the
amino acids in this sequence for each codon

codons to recode all fregs =
cdf.codon frequency collector (input dict = codons to recode,
reference dict = ref codons, type = "dataframe")

codons_to recode choices fregs = {}

#remove input codon from list

for let num, seq in codons to recode let num.items () :
if seqg == Seq.Seqg("ATG") or seq == Seq.Seq("TGG"):

codons_to recode choices fregs[let num] =

ref codon table df.loc[ref codon table df["DNA"] == str(seq)]
else:
current df = codons to recode all fregs[let num]
codons_to recode choices fregs[let num] =
current df.loc[current df["DNA"] != str(seq)]

#make the list of codons to use depending on recoding type
codons_to use syn = {}

if syn recode type == "highest":
for codon num let, seq df in

codons_to recode choices fregs.items():
max freq codon = max(seq df["Fraction"])

262



mutated res df chosen =
seq df.loc[seq df["Fraction"] == max freq codon, "DNA"]

#tie breaker for instances with same fraction
usage - hopefully number won't ever have duplicate values
if len(mutated res df chosen) > 1:
max number codon = max (seqg_ df["Number"])
max number codon seq =
seq df.loc[seq df["Number"] == max number codon, "DNA"].item()
codons_to use syn[codon num let] =
max number codon_ seq

else:
codons_to use syn[codon num let] =
seq df.loc[seq df["Fraction"] == max freq codon, "DNA"].item()
1f syn recode type == "lowest":

for codon num let, seq df in
codons_to recode choices fregs.items():

min freq codon = min(seq df["Fraction"])
mutated res df chosen =
seq df.loc[seq df["Fraction"] == min freq codon, "DNA"]

#tie breaker
if len(mutated res df chosen) > 1:

min number codon = max (seq df ["Number"])
min number codon seq =
seq df.loc[seq df["Number"] == min number codon, "DNA"].item/()

codons to use syn[codon num let] =
min number codon seq

else:
codons to use syn[codon num let] =
seq df.loc[seq df["Fraction"] == min freq codon, "DNA"].item()
if syn recode type == "alternating matched" or syn recode type

== "alternating random" or syn recode type == "alternating
highest" or syn recode type == "alternating lowest":

#check input has been given suitably

if alternating repeat == "N/A" or alternating repeat <= 0
or pd.isna(alternating repeat) == True:

print ("\n\n\n***ERROR: No value or an invalid value
was set for the alternating pattern of the codons to
recode.***\n\n\n")

alternating repeat = int (input ("Please enter a
positive integrer for the alternating repeat value: "))

input data.at["Alternating every nth residue", column]
= alternating repeat

if alternating repeat > (0.5 * num of codons to recode):

proceed alt = input ("The chosen repeat value is
greater than half of the total number of codons being recoded so
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only 2 or fewer codons will be mutated.\n\nDo you wish to proceed?
Y/N \n")

if proceed alt == "N" or proceed alt == "n" or
proceed alt == "NO" or proceed alt == "No" or proceed alt == "no"
alternating repeat = int (input ("Please enter a

positive integer for the alternating repeat value: "))

input data.at["Alternating every nth residue",

column] = alternating repeat
elif proceed alt == "Y" or proceed alt =="y" or
proceed alt =="YES" or proceed alt == "Yes" or proceed alt ==
"yes":
pass
else:
proceed alt = input("\n\nThe input given is not

valid. Please try again.\n\nThe chosen repeat value is greater
than half of the total number of codons being recoded so only 2 or
fewer codons will be mutated.\n\nDo you wish to proceed? Y/N \n")

if proceed alt == "N" or proceed alt == "n" or
proceed alt == "NO" or proceed alt == "No" or proceed alt == "no":
alternating repeat = int (input ("\nPlease enter

a positive integer for the alternating repeat value: "))

input data.at["Alternating every nth residue",

column] = alternating repeat
elif proceed alt == "Y" or proceed alt =="y" or
proceed alt =="YES" or proceed alt == "Yes" or proceed alt ==
"yes":
pass
else:
proceed alt = input ("\n\nThe input given is

not valid. Please try again.\n\nThe chosen repeat value is greater
than half of the total number of codons being recoded so only 2 or
fewer codons will be mutated.\n\nDo you wish to proceed? Y/N \n")

if proceed alt == "N" or proceed alt == "n" or
proceed alt == "NO" or proceed alt == "No" or proceed alt == "no"
alternating repeat = int (input ("\nPlease

enter a positive integer for the alternating repeat value: "))

input data.at["Alternating every nth

residue", column] = alternating repeat
elif proceed alt == "Y" or proceed alt =="y"
or proceed alt =="YES" or proceed alt == "Yes" or proceed alt ==
"yes":
pass
else:
print ("\n-—-=————-————

print (f"\n***Warning, your input was
invalid so the code will continue with the wvalue given. Your
repair template will recode every {alternating repeat} codons. If
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you do not want this, modify the input spreadsheet and rerun the
programme.***")

if alternating repeat == "N/A" or alternating repeat <= 0
or pd.isna(alternating repeat) == True:
print ("\n\n\n***ERROR: An invalid value was set for
the alternating pattern of the codons to recode.***\n\n\n")
alternating repeat = int (input ("Please enter a
positive integer for the alternating repeat value: "))

if alternating repeat == "N/A" or alternating repeat <= 0
or pd.isna(alternating repeat) == True:
print ("\n\n\n***ERROR: An invalid value was set for
the alternating pattern of the codons to recode.***\n\n\n")
alternating repeat = int (input ("Last chance - please
enter a positive integer for the alternating repeat value: "))

if alternating repeat == "N/A" or alternating repeat <= 0
or pd.isna(alternating repeat) == True:
print ("\n\n\n\nYou failed to provide an appropriate
input so the programme will be cancelled.\n\nIf you wish to try
again, either modify the input spreadsheet or provide a suitable
value when prompted in the console.\n")
raise SystemExit

if syn recode type == "alternating matched" or syn recode type
== "alternating random":

fdetermine which codon numbers in range are to be mutated
and which are not

num of codons to mutate = int (num of codons to recode /
alternating repeat)
n terms = list(range(num of codons to mutate))

codon nums_to recode = []

for n in n terms:
codon num = n * alternating repeat
codon _nums_to recode.append (codon num)

fensure that target codon is always recoded even if it
doesn't fit the alternating pattern
if target codon no not in codon nums_to recode:

codon _nums_to recode.append(target codon no)

codon nums_all = list(codons to recode.keys())

#split the codons to be mutated into a separate dictionary
from the ones to stay the same

codons_to keep WT = {}

specific codons to recode = {}

for numbers in codon nums_all:
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if numbers not in codon nums_ to recode:
codons_to keep WT[numbers] =
codons_to recode [numbers]

if numbers in codon nums to recode:
specific codons to recode[numbers] =
codons_to recode [numbers]

for numbers in codon nums to recode:
if numbers not in codon nums_ to recode:
codons_to _keep WT = codons_ to recode[numbers]

if syn recode type == "alternating matched":
#on only the codons to recode
#use that dictionary to create a new one with the
specific frequency values
codons_to recode fregs =
cdf.codon frequency collector (input dict = codons to recode,
reference dict = ref codons, type = "value")

#create a dictionary with all the frequencies for the
amino acids in this sequence for each codon
codons_to recode all fregs =
cdf.codon frequency collector (input dict = codons to recode,
reference dict = ref codons, type = "dataframe")

fcalculate the differences for each possible codon to
the original

recode freq diffs =
cdf.codon frequency difference calc(codons to recode let num,
ref codons)

#add the differences in frequency to "the" dataframe
codons_to recode abs diffs =
cdf.codon freq diff adder (codons to recode let num
,codons_to recode all fregs, recode freq diffs)

#choose which codons to use for synonymous recoding
codons_to use syn =
cdf.codon freq selector (codons to recode abs diffs)

if syn recode type == "alternating random":

#add letters to dictionary
specific codons to recode let num = {}

for keys, seq in specific codons to recode.items():

let num = str(seqg.translate()) + str(keys)
specific codons to recode let num[let num] = seq

#make a dictionary of the alternate codons to the
input sequence
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alt codons to recode =
cdict.alt codons(specific codons to recode let num)

#randomly select which of these to use for each codon
codons_to use syn =
cdict.Syn random recoder (alt codons to recode)
#combine the unchanged codons with the changed codons

codons_to keep WT let num = {}

for codon num, seq in codons_to keep WT.items () :

translation = seqg.translate()
codon num let = str(translation) + str(codon num)
codons_to keep WT let num[codon num let] = seq

codons_to use syn.update(codons to keep WT let num)

1f syn recode type == "alternating highest" or syn recode type
== "alternating lowest":

num of codons to mutate = int(num of codons to recode /
alternating repeat)
n terms = list(range(num of codons to mutate))

codon nums_to recode = []

for n in n terms:
codon num = n * alternating repeat
codon nums_to recode.append (codon num)

if target codon no not in codon nums_ to recode:

codon _nums_to recode.append(target codon no)

codon nums_all = list(codons to recode.keys())

codons_to keep WT = {}
specific codons to recode = {}

for numbers in codon nums_all:
if numbers not in codon nums_ to recode:
translate = codons to recode[numbers].translate ()
let num = str(translate) + str (numbers)
codons_to keep WT[let num] =
codons_to recode [numbers]

if numbers in codon nums to recode:
#translate = codons_to recode[numbers].translate ()
#let_num = str(translate) + str (numbers)
specific codons to recode[numbers] =
codons_to recode[numbers]
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for numbers in codon nums to recode:
if numbers not in codon nums_ to recode:
codons_to keep WT = codons to recode[numbers]

#use that dictionary to create a new one with the specific
frequency values

codons_to recode fregs =
cdf.codon frequency collector (input dict =
specific codons to recode, reference dict = ref codons, type =
"value")

#create a dictionary with all the frequencies for the
amino acids in this sequence for each codon
codons_to recode all fregs =
cdf.codon frequency collector (input dict =

specific codons to recode, reference dict = ref codons, type =
"dataframe")
codons_to recode choices fregs = {}

#remove input codon from list unless it's Met or Trp
for let num, df in codons_ to recode all freqgs.items():
input codon = codons to recode let num[let num]
if input codon == Seq.Seqg("ATG") or input codon ==
Seq.Seq ("TGG") :

codons_to recode choices fregs[let num] =
ref codon table df.loc[ref codon table df["DNA"] ==

str (input codon) ]

else:
current df = codons to recode all fregs[let num]
codons_to recode choices fregs[let num] =
current df.loc[current df["DNA"] != str (input codon) ]

#recode based on input type
codons_to use syn = {}

if syn recode type == "alternating highest":

for codon num let, seqg df in
codons_to recode choices fregs.items():
max freq codon = max(seq df["Fraction"])
max freq codon seq = seq df.loc[seq df["Fraction"]
== max_ freq codon, "DNA"]
if len(max freq codon seq) > 1:

max number codon = max (seq_df["Number"])
max freq codon seq =
seq df.loc[seq df["Number"] == max number codon, "DNA"].item()

codons_to use syn[codon num let] =
max freg codon seqg

else:

codons_to use syn[codon num let] =
max freq codon seqg.item()
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if syn recode type == "alternating lowest":

for codon num let, seq df in
codons_to recode choices fregs.items():
min freq codon = min(seq df["Fraction"])
min freq codon seq = seq df.loc[seq df["Fraction"]
== min freq codon, "DNA"]
if len(min freqg codon seq) > 1:

min number codon = min (seq df ["Number"])
min freq codon seq =
seq df.loc[seq df["Number"] == min number codon, "DNA"].item()

codons_to use syn[codon num let] =
min freq codon seq

else:
codons_to use syn[codon num let] =
min freq codon seqg.item()

#combine the unchanged codons with the changed codons
codons_to keep WT let num = {}

for codon num, seq in codons_ to keep WT.items () :
codons_to keep WT let num[codon num] = seq

codons to use syn.update(codons to keep WT let num)

i1f syn recode type == "random":
fmake a dictionary of the alternate codons to the input
sequence
alt codons to recode =
cdict.alt codons(codons to recode let num)

#randomly select which of these to use for each codon

codons_to use syn =
cdict.Syn random recoder (alt codons to recode)

#add in the nonsynonymous mutation

if nonsyn recode type == "highest" or nonsyn recode type ==
"lowest":
nonsyn ref dict = ref codons
if nonsyn recode type == "random":

nonsyn ref dict =
cdict.alt codons(codons to recode let num)
nonsyn ref dict = {output AA
cdict.ref codon table (output AA)}

269



codons_to use nonsyn = cdf.non syn mutator (target AA,
target codon no, new AA = output AA, input dict =
codons_to use syn, type = nonsyn recode type, ref dict =
nonsyn ref dict )

#construct the final recoded sequences

synonymous_repair =

stitch.sequence constructor (codons to use syn, type = "letter-
number")

nonsynonymous_repair =
stitch.sequence constructor (codons to use nonsyn, type = "letter-
number")

#check all the modifications were as expected

#adjust target codon number to what it would be by normal
counting rather than python counting

target codon no not py = target codon no + 1

val.translate checker (synonymous repair,
target codon no not py, target AA)

val.translate checker (nonsynonymous repair,
target codon no not py, output AA)

#create the final repair sequence including the homology arms

upstream hom arm = gene name.seq[ (recode start whole -
hom arm length) :recode start whole]

downstream hom arm = gene name.seqg[recode end whole:
(recode end whole + hom arm length)]

WT entire repair region = upstream hom arm + WT template seq +
downstream hom arm

entire syn repair = upstream hom arm + synonymous repair +
downstream hom arm
entire nonsyn repair = upstream hom arm + nonsynonymous_ repair

+ downstream hom arm

#construct "gene" sequences for primer design

integrated synonymous, WT recode region =
stitch.mut seq integrator (repair seq = synonymous repair, ref seq
= gene name.seq, repalr start = recode start whole, repair end =
recode end whole, WT repair seg= "Yes")

integrated nonsynonymous =
stitch.mut seq integrator (repair seq = nonsynonymous repair,
ref seq = gene name.seq, repair start = recode start whole,
repair end = recode end whole, WT repair seg= "No")
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#design screening primers
screening primers df syn =
primers.screening primer designer (gene name.sedq,
integrated synonymous, recode start whole, recode end whole)
screening primers df nonsyn =
primers.screening primer designer (gene name.sedq,
integrated nonsynonymous, recode start whole, recode end whole)

#design primers to generate the repair template

syn repair template primers =
primers.repair primer designer (entire syn repair, hom arm length,
downstream dna)

nonsyn repair template primers =
primers.repair primer designer (entire nonsyn repair,
hom arm length, downstream dna)

#repair template primers = [syn repair template primers,
nonsyn repalr template primers]

#repair template primers df =
pd.DataFrame (repair template primers)

#repair template primers df.index = ["Synonymous repair",
"Nonsynonymous repair"]

#do an alignment

fcreate a pariwise alignment object
aligner = Align.PairwiseAligner (target internal open gap score
= -10.0, query internal open gap score = -10.0)

syn alignment = aligner.align(WT entire repair region,
entire syn repair)
for alignmentl in sorted(syn alignment):

#print ("Score = %$.1f:" % alignmentl.score)
#print (alignmentl)
syn score = alignmentl.score
alignment str syn = str(alignmentl)
alignment str syn = alignment str syn.replace("target", "WT
sequence") .replace ("query", "Syn. repair").replace("\n
u, "\n u)
alignment str syn = alignment str syn.replace("Syn. repair

", "Syn. repair ")
#print (alignment str syn)

nonsyn alignment = aligner.align(WT entire repair region,
entire nonsyn repair)
for alignment2 in sorted(syn alignment):

#print ("Score = %$.1f:" % alignment2.score)
nonsyn score = alignment2.score
alignment str nonsyn = str(alignment2)
alignment str nonsyn = alignment str nonsyn.replace("target",
"WT sequence") .replace ("query", "Nonsyn. repair").replace("\n

", "\n ")
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alignment str nonsyn = alignment str nonsyn.replace ("Nonsyn.

repair ", "Nonsyn. repair ")

#print (alignment str nonsyn)

#format some outputs

WT repair seq spaced =

formats.codon spacing (WT entire repair region)

syn repair spaced = formats.codon spacing(entire syn repair)
nonsyn_repair spaced =

formats.codon spacing(entire nonsyn repair)

WT repair translate = WT entire repair region.translate()
syn repalr translate = entire syn repair.translate()
nonsyn repalr translate = entire nonsyn repair.translate ()

WT repair translate spaced =

formats.protein align codon (WT repair translate)

syn repalr translate spaced =

formats.protein align codon(syn repair translate)

nonsyn repair translate spaced =

formats.protein align codon(nonsyn repair translate)

syn repair mutations count =

val.mutation counter (entire syn repair, WT entire repair region)
nonsyn repalr mutations count =
val.mutation counter (entire nonsyn repair,

WT entire repair region)

syn repalr primers output = ""

for category, item in syn repair template primers.items():
if type(item) == float:
item = "{:.1f}"'.format (item)
syn repair primers output += category
syn repair primers output += ": "
syn repair primers output += str(item)
syn_repair primers output += "\n"

nonsyn repalir primers output = ""

for category, item in nonsyn repair template primers.items():
if type(item) == float:
item = "{:.1f}'.format (item)
nonsyn repair primers output += category
nonsyn repair primers output += ": "
nonsyn repair primers output += str(item)

nonsyn repair primers output += "\n"
if syn recode type == "alternating matched" or syn recode type
== "alternating highest" or syn recode type == "alternating
lowest™ or syn recode type == "alternating random":
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alternating info = f"Alternating recoding every
{alternating repeat} codons"
else:
alternating info = ""

output file = open(f"{job name}.txt", "w")

file lines = ["Job request details\n",

f"Job name: {job name}\n",

f"Target amino acid:
{target_AA}{target_res_num}{output_AA}\n",

f"Synonymous recoding type:
{syn_recode typel}\n",

f"Nonsynonymous recode type:
{nonsyn recode type}\n",

f"Homology arm length (bp): {hom arm length}\n",

f"Recoding region length (bp):
{recode region length}\n",

f"Total repair length (bp): {(2*hom arm length)
+ recode region length}\n",

f"{alternating info}\n",

"\1’1",

"\n"’

"Repair templates\n",

f"WT repair region sequence:
\t\t{WT repair seqg spaced}\n",

f"WT translation:
VENENE{WT repair translate spaced}\n",

f"Synonymous repalr region sequence:
\t{syn repair spaced}\n",

f"Synonymous repair translation:
\t\t{syn repair translate spaced}\n",

f"Nonsynonymous repalr region sequence:
\t{nonsyn repair spaced}\n",

f"Nonsynonymous repair translation:
\t{nonsyn repair translate spaced}\n",

" \nu,

f"Number of mutations in the synonymous repair
template: {syn repair mutations count}\n",

f"Number of mutations in the nonsynonymous
repair template: {nonsyn repair mutations count}\n",

"\n",

"\n",

"Screening primers\n",

"Synonymous repair\n",

"\n",

f"{screening primers df syn}\n",

" \nu,

" \nu,

"Nonsynonymous primers\n"

f"{screening primers df nonsyn}",

" \nu,

"\n"’

"Repair template primers\n",

"Synonymous\n",
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f"{syn repair primers output}\n",

"\n"’
"Nonsynonymous\n",

f"{nonsyn repair primers output}\n",

" \n"’
f"WT sequence (no spaces):

{WT entire repair region}\n",
f"Synonymous sequence (no spaces) :

{entire s

]

yn repair}\n",

f"Nonsynonymous sequence (no spaces):
{entire nonsyn repair}\n",

"\n"’

"\n"’

"Alignments\n",
"Synonymous Repair\n",

f"Score = {syn score}\n",
f"{alignment str syn}\n",
n \n"’

"Nonsynonymous\n",

f"Score = {nonsyn score}\n",

f"{alignment str nonsyn}\n"

output file.writelines(file lines)

outpu

t file.close()

#print confirmation message to make it clearer that it worked

print (£"\n\n\nYour repair template designs have completed
1ly. Please check your folder for a file with the name

successfu

'{job name}.txt'\n")

print ("\t.\t.\n", "\n\t\ /\n\n\n")
print ("\n-—-=-==-—==——————— \n")
print ("Jobs that were completed:\n")
for column in complete columns_ keys:

print (input datal[column] ["Job name":"Nonsynonymous Recoding
Type"])

print ("\n")
if job names.duplicated() .any() == True:

print ("\n***Warning: duplicate job names (file names)
detected. Some files will be renamed to avoid

overwriting.***\n\t\t\t\t***Please check the completed jobs above

for detai

ls.***\n")
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7.2.19 MAIN CODE MULTI MUTANT VERSION
7.2.19.1 Modified Configuration Spreadsheet

repair_template_input_excel_multi_mutant.xlsx -... = O

Insert | Page La‘ Formul.‘ Data | Review | View | Develog | ABBYY | Q Tell me... (Q'_ Share

ol _ ) S S N gy
D a6 ﬁ = % E[% Conditional Fermatting =] !
B ~ ¥ Format as Table -
Paste E Font Alignment Mumber Cells  Editing
. W - - - [Zécell Styles - - -
Clipboard Styles -
B13 = F D v
A =] C ] E F -
1 Input
2 |lob name C11 4-mut
Mumber of Nonsynonymous 2
3 |Mutations
4 [|Synonymous Recoding type lowest
Monsynonymous Recoding )
highest
5 [Type
Codon Frequency data
) q v . L_inf_codon_table rawtxt
g [filename (incl. extension)
+ |Recoding region length (bp) 66
g |Homology arm length (bp) 51
Reference FASTA filename
) ) LmxC11-HDK1 txt
g |{incl. extension)
CDS start in reference file (bp
501
10 |[number)
CDS end in reference file (bp
1316
i |number)
Alternating every nth residue 2
12
13 [Target amino acid residue 1 D -
14 [Target amino acid number 1 2
5 |Replacement amino acid 1 1%
& |Target amino acid residue 2 P
7 [Target amino acid number 2 3
" Replacement amino acid 2 %
1w |Target amino acid residue 3 5
oy [Target amino acid number 3 4
21 Replacement amino acid 3 ¥
o5 |Target amino acid residue 4 K
o |Target amino acid number 4 23
24 Replacement amino acid 4 a
o5 |Target amino acid residue 5 none
o |Target amino acid number 5 -
Sheetl | Shest2 ) 1 »
Ready 5 H - 1 +  T0%
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7.2.19.2 Code
# -*- coding: utf-8 -*-

mwwan

Created on Fri Jun 7 14:26:56 2024

Qauthor: ceh560

#packages used in this file and/or the feeder files
import pandas as pd
from Bio import SeqIO
from Bio import Seq
from Bio import Align
import numpy as np
import io

import random

import primer3

import primer3.bindings
import statistics

#custom files to import

import codon dataframes as cdf

import codon dictionaries as cdict
import formatting functions as formats
import primer functions as primers
import reading input file as rif
import validator as val

import stitching functions as stitch

#read input files

input data =
pd.read excel ("repair template input excel multi mutant.xlsx",
index col = 0, header = 0)

pd.set option('display.max columns', 20)
pd.set option('display.max rows', None)
pd.set option("display.width", 1000)

pd.options.display.float format = "{:,.2f}".format

job name = input data.loc["Job name"] [0]

syn recode type = input data.loc["Synonymous Recoding type"] [0]
nonsyn recode type = input data.loc["Nonsynonymous Recoding
Type"] [0]

codon freqg input file = input data.loc["Codon Frequency data
filename (incl. extension)"][0]

recode region length = input data.loc["Recoding region length
(bp) "11[0]

hom arm length = input data.loc["Homology arm length (bp)"][0]
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ref file name = input data.loc["Reference FASTA filename (incl.
extension)"][0]

CDS_start = input data.loc["CDS start in reference file (bp
number) "] [0]

CDS _end = input data.loc["CDS end in reference file (bp
number) "] [0]

alternating repeat = input data.loc["Alternating every nth
residue"][0]

num of mutations =
Mutations"][0]

#mutation 1

target AA 1 = input data.loc["Target amino acid
target res num 1 = input data.loc["Target amino
output AA 1 = input data.loc["Replacement amino

#mutation 2

target AA 2 = input data.loc["Target amino acid
target res num 2 = input data.loc["Target amino
output AA 2 = input data.loc["Replacement amino

#mutation 3

target AA 3 = input data.loc["Target amino acid
target res num 3 = input data.loc["Target amino
output AA 3 = input data.loc["Replacement amino

#mutation 4

target AA 4 = input data.loc["Target amino acid
target res num 4 = input data.loc["Target amino
output AA 4 = input data.loc["Replacement amino

#mutation 5

target AA 5 = input data.loc["Target amino acid
target res num 5 = input data.loc["Target amino
output AA 5 = input data.loc["Replacement amino

#put all the mutants in a dataframe

mut details = {"Mutation number": [1,2,3,4,5],
"Target AA":

target AA 4, target AA 5],
"Target residue number":

target res num 3,
"Replacement AA":

output AA 4,

[target res num 1,
target res num 4,
[output AA 1,
output AA 5]}

mut details df = pd.DataFrame (mut details)

#target res base nums =
(target res num*3) ]

[ ((target res num-1)*3),

input data.loc["Number of Nonsynonymous

residue 1"]11[0]
acid number 1"][0]
acid 1"][0]
residue 2"][0]
acid number 2"][0]
acid 2"][0]
residue 3"]11[0]
acid number 3"][0]
acid 3"][0]
residue 4"][0]
acid number 4"][0]
acid 4"]11[0]
residue 5"]1[0]
acid number 5"][0]
acid 5"][0]

[target AA 1, target AA 2, target AA 3,

target res num 2,

target res num 5],
output AA 2,

output AA 3,
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#add residue numbers to dataframe

for row in mut details df.index:
residue no = mut details df.at[row, "Target residue number"]

residue start = (residue no - 1)*3

residue end = residue no * 3

mut details df.at[row, "Residue Start Base"] = residue start
mut details df.at[row, "Residue End Base"] = residue end

#remove rows not needed for less than 5 mutations
if num of mutations < 5:
mut details df = mut details df.iloc[:num of mutations]

#when n/a's are present, they cause the other numbers to be
floats, so to ensure that doesn't happen, after removing them,
convert to integers

mut details df["Target residue number"] = mut details df["Target
residue number"].astype (int)

#read input fasta file and process as necessary
gene name = Jjob name

num of codons to recode = recode region length / 3

lowest target = min (mut details df["Target residue number"])
centre target statistics.median (mut details df["Target residue
number"])

highest target = max(mut details df["Target residue number"])

#if the median does not exist as a target e.g. the median of two
values is halfway between them
if mut details df.isin([centre target]).any().all() == True:

#define codon numbers for each target
central target codon no = int(num_of_codons_to_recode/2)
central target index =
mut details df.loc[mut details df["Target residue
number"]==centre target].index.item()

mut details df["Codon no"] = None
mut details df.at[central target index, "Codon no"] =
central target codon no

#add target codon numbers to dataframe
for row in mut details df.index:
if pd.isna(mut details df.at[row, "Codon no"]) == False:
pass
target res num = mut details df.at[row, "Target residue
number" ]
diff = centre target - target res num
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codon no = central target codon no + diff
mut details df.at[row, "Codon no"] = codon no

centre target base start = mut details df["Residue Start
Base"].loc[ (mut details df["Target residue number"] ==
centre target)]

o)

if recode region length % 2 == 0:
recode start = int (centre target base start -
(recode _region length/2))

else:
half codon percent = central target codon no /
num of codons to recode
back bases = recode region length * half codon percent
recode start = int(centre target base start - back bases)

else:

central target codon no = int (num of codons to recode/2)
central target codon start = int(centre target * 3)
central target codon end = central target codon start + 3

mut details df["Codon no"] = None

for row in mut details df.index:
target res num = mut details df.at[row, "Target residue

number"]
diff = centre target - target res num
codon no = central target codon no - diff
mut details df.at[row, "Codon no"] = codon no
if recode region length % 2 == 0:
recode start = int (central target codon start -
(recode region length/2) - 1)
else:
half codon percent = central target codon no /
num of codons to recode
back bases = recode region length * half codon percent
recode start = int (central target codon start -

back bases)
if max (mut details df["Codon no"]) > num of codons to recode:
min recode start = min (mut details df["Residue Start
Base"])
min recode end = max(mut details df["Residue End Base"])

min recoding region = min recode end - min recode start

if min recoding region == recode region length:
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recode start = min recode start
recode_end = min recode end

lowest target index =

mut details df.loc[mut details df["Target residue

number"]==lowest target].index.item()
mut details df.at[lowest target index, "Codon no"] = 0
lowest target codon no =

mut details df.at[lowest target index, "Codon no"]

for row in mut details df.index:
if pd.isna(mut details df.at[row, "Codon no"]) ==
False:
pass
target res num = mut details df.at[row, "Target
residue number"]

diff = target res num - lowest target
codon _no = lowest target codon no + diff
mut details df.at[row, "Codon no"] = codon no
else:
extra bases = recode region length -
min recoding region
extra codons = extra bases/3
codons_to start = lowest target - 1

#accounting for times where an uneven distribution of targets
causes an inappropriate centre
1f min(mut details df["Codon no"]) < 0:

targets range = max(mut details df["Codon no"]) -
min (mut details df["Codon no"])

#if the number of codons to recode is the same distance as
the range of the target sites
if targets range == num of codons to recode:
recode start = min recode start
recode end = min recode end

lowest target index =

mut details df.loc[mut details df["Target residue

number"]==lowest target].index.item()
mut details df.at[lowest target index, "Codon no"] = 0
lowest target codon no =

mut details df.at[lowest target index, "Codon no"]

#if the number of codons to recode is (larger) than the
recoding region covered by the targets
else:
extra codons = num of codons to recode - targets range

lowest target index =

mut details df.loc[mut details df["Target residue
number"]==lowest target].index.item()
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min recode start =
mut details df.at[lowest target index, "Residue Start Base"]

#for an even number of spare codons, split equally at

each end
if extra codons % 2 == 0:
half extra codons = extra codons / 2

mut details df.at[lowest target index, "Codon no"]
= half extra codons

recode start = min recode start -
(half extra codons * 3)

#for an odd number of spare codons, put +1 codon
upstream than downstream
else:
downstream codons = (extra codons - 1) /2
upstream codons = extra codons - downstream codons

mut details df.at[lowest target index, "Codon no"]
= upstream codons

recode start = min recode start - (upstream codons
* 3)

lowest target codon no =
mut details df.at[lowest target index, "Codon no"]

for row in mut details df.index:
if pd.isna(mut details df.at[row, "Codon no"]) ==
False:
pass
target res num = mut details df.at[row, "Target

residue number"]

diff = target res num - lowest target
codon no = lowest target codon no + diff
mut details df.at[row, "Codon no"] = codon no
if max (mut details df["Codon no"]) > num of codons to recode:

targets range = max(mut details df["Codon no"]) -
min (mut details df["Codon no"])

#if the number of codons to recode is the same distance as
the range of the target sites
if targets range == num of codons_ to recode:
recode start = min recode start
recode end = min recode end

lowest target index =
mut details df.loc[mut details df["Target residue
number"]==lowest target].index.item()
mut details df.at[lowest target index, "Codon no"] = 0
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lowest target codon no =
mut details df.at[lowest target index, "Codon no"]

#1if the number of codons to recode is (larger) than the
recoding region covered by the targets
else:
extra codons = num of codons to recode - targets range

highest target index =
mut details df.loc[mut details df["Target residue
number"]==highest target].index.item{()

min recode end =
mut details df.at[highest target index, "Residue End Base"]

#for an even number of spare codons, split equally at

each end
if extra codons % 2 == 0:
half extra codons = extra codons / 2
mut details df.at[highest target index, "Codon
no"] = num of codons to recode - half extra codons

recode start = min recode start -
(half extra codons * 3)

#for an odd number of spare codons, put +1 codon
upstream than downstream
else:
downstream codons = (extra codons - 1) /2
upstream codons = extra codons - downstream codons

mut details df.at[highest target index, "Codon
no"] = downstream codons

recode start = min recode start - (upstream codons
* 3)

highest target codon no =
mut details df.at[highest target index, "Codon no"]

for row in mut details df.index:
if pd.isna(mut details df.at[row, "Codon no"]) ==
False:
pass
target res num = mut details df.at[row, "Target

residue number"]

diff = highest target - target res num
codon no = highest target codon no - diff
mut details df.at[row, "Codon no"] = codon no

recode end = recode start + recode region length
#need some special cases for close to the start or end of the CDS

#near the start special case
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#all within the recoding regin number of amino acids
if num of codons to recode > lowest target and
num of codons to recode > highest target:

recode start = 0
recode end = recode region length
#target codon no = lowest target - 1

for row in mut details df.index:
target res num = mut details df.at[row, "Target residue
number"]
mut details df.at[row, "Codon no"] = int(target res num -
1)

#for when the highet target residue is outisde the recoding range
if it started at the beginning of the gene

if num of codons to recode >= lowest target and

num of codons to recode <= highest target:
min recode start = min(mut details df["Residue Start Base"])
min recode end = max(mut details df["Residue End Base"])

min recoding region = min recode end - min recode start

if min recoding region == recode region length:
recode start = min recode start
recode end = min recode end

lowest target index =
mut details df.loc[mut details df["Target residue
number"]==lowest target].index.item()
mut details df.at[lowest target index, "Codon no"] = 0
lowest target codon no =
mut details df.at[lowest target index, "Codon no"]

for row in mut details df.index:
if pd.isna(mut details df.at[row, "Codon no"]) ==
False:
pass
target res num = mut details df.at[row, "Target
residue number"]

diff = target res num - lowest target
codon no = lowest target codon no + diff
mut details df.at[row, "Codon no"] = codon no
else:
extra bases = recode region length - min recoding region
extra codons = extra bases/3
codons_to start = lowest target - 1

if codons to start >= extra codons:
if extra codons % 2 == 0:
recode start = min recode start - (0.5 *
extra bases)
recode _end = min recode end + (0.5 * extra bases)
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else:
half extra codons down = int (extra codons/2)
half extra codons up = extra codons -
half extra codons down
recode start = int(min recode start -
(half extra codons up * 3))
recode end = int(min recode end +
(half extra codons down * 3))

mut details df["Codon no"] = None

lowest target start = min(mut details df["Residue
Start Base"])

codons_before lowest = (min recode start -
recode start) /3

lowest target index =
mut details df.loc[mut details df["Target residue
number"]==lowest target].index.item()

mut details df.at[lowest target index, "Codon no"] =
codons_before lowest

lowest target codon no =
mut details df.at[lowest target index, "Codon no"]

for row in mut details df.index:

if pd.isna(mut details df.at[row, "Codon no"]) ==

False:
pass
target res num = mut details df.at[row, "Target

residue number"]

diff = target res num - lowest target
codon no = lowest target codon no + diff
mut details df.at[row, "Codon no"] = codon no

if codons to start < extra codons:
recode start = 0
extra end codons = extra codons - codons to start
recode _end = min recode end + (3 * extra end codons)

for row in mut details df.index:
target res num = mut details df.at[row, "Target

residue number"]
mut details df.at[row, "Codon no"] =

int (target res num - 1)

mut details df["Codon no"] = mut details df["Codon
no"].astype (int)

#read gene fasta file and define the CDS
for gene name in SeqlO.parse(ref file name, "fasta"):
#print (gene name.id)
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print (gene name.description)
print (repr (gene name.seq))
print ("Gene sequence length: ", len(gene name), "bp")
print ("\n")
if CDS end == "end":
CDS _end = len(gene name.seq)
else:
CDS _end = CDS end

if CDS start > 1:
CDS_start = CDS start -1
WT CDS seq = gene name.seq[ (CDS start) :CDS_end]
recode start whole = int(recode start + CDS start)
recode_end whole = int (recode end + CDS_ start)

else:
WT CDS_seq = gene name.seq[:CDS_end]

recode start whole = int(recode start)
recode end whole = int (recode end)

#check input is a length divisible by 3
val.triplet checker (WI CDS seq)

#near the end special case
total num AAs = len (WT CDS seq.translate())

i1f highest target > (total num AAs - num of codons to recode):
if lowest target > (total num AAs - num of codons to recode):

recode end = len (WT CDS seq)

recode start = len(WT CDS seq) - recode region length

num of codons to recode = int((recode end - recode start +
1) /7 3)

highest target codon no = num of codons to recode -
(total num AAs - highest target) -1

mut details df["Codon no"] = None

highest target index =
mut details df.loc[mut details df["Target residue
number"]==highest target].index.item{()

mut details df.at[highest target index, "Codon no"] =
highest target codon no

for row in mut details df.index:
if pd.isna(mut details df.at[row, "Codon no"]) ==
False:

pass
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target res num = mut details df.at[row, "Target
residue number"]

diff = highest target - target res num

codon no = highest target codon no - diff

mut details df.at[row, "Codon no"] = codon no

else:
min recode start = min(mut details df["Residue Start
Base"])
min recode end = max(mut details df["Residue End Base"])

min recoding region = min recode end - min recode start

codons_to end = total num AAs - highest target

extra bases = recode region length - min recoding region
extra codons = extra bases/3
1f min recoding region == recode region length:

recode start = min recode start

recode_end = min recode end

highest target index =
mut details df.loc[mut details df["Target residue

number"]==highest target].index.item()
mut details df.at[highest target index, "Codon no"] =
num of codons to recode - 1

highest target codon no =
mut details df.at[highest target index, "Codon no"]

for row in mut details df.index:

if pd.isna(mut details df.at[row, "Codon no"]) ==
False:

pass

target res num = mut details df.at[row, "Target
residue number"]

diff = highest target - target res num
codon no = highest target codon no - diff
mut details df.at[row, "Codon no"] = codon no

else:
if codons to end >= extra codons:

if extra codons % 2 == 0:
recode start = min recode start - (0.5 *
extra bases)

recode end = min recode end + (0.5 *
extra bases)

else:
half extra codons down = int (extra codons/2)
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half extra codons up = extra codons -
half extra codons down

recode start = int(min recode start -
(half extra codons up * 3))

recode end = int(min recode end +
(half extra codons down * 3))

mut details df["Codon no"] = None
highest target end = max(mut details df["Residue
End Base"])

codons_after highest (min recode end -
recode _end) /3

highest target index =
mut details df.loc[mut details df["Target residue
number"]==highest target].index.item/()

mut details df.at[lowest target index, "Codon no"]
= codons_after highest

highest target codon no =
mut details df.at[highest target index, "Codon no"]

for row in mut details df.index:
if pd.isna(mut details df.at[row, "Codon no"])
== False:
pass
target res num = mut details df.at[row,
"Target residue number"]

diff = highest target - target res num
codon no = highest target codon no - diff
mut details df.at[row, "Codon no"] = codon no

if codons to start < extra codons:
recode start = 0
extra end codons = extra codons - codons to start
recode end = min recode end + (3 *
extra end codons)

for row in mut details df.index:
target res num = mut details df.at[row,
"Target residue number"]
mut details df.at[row, "Codon no"] =
int (target res num - 1)

if CDS start > 1:

recode end whole = int (recode end + CDS start)
recode start whole = int(recode start + CDS start)
else:
recode end whole = int(recode end)
recode start whole = int(recode start)
mut details df["Codon no"] = mut details df["Codon
no"].astype (int)
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mut details df["Codon no"] = mut details df["Codon
no"].astype (int)

#check that the input given is correct and that the target codes
for the expected residue

for row in mut details df.index:

residue no = int (mut details df.at[row, "Target residue
number"])

target AA = mut details df.at[row, "Target AA"]

mut details df["Input AA Correct"] =
val.translate checker (WT CDS seq, residue no, target AA)

#cancel the code if some incorrect starting amino acids given
if mut details df["Input AA Correct"].any() == False:

print ("\n\n\n***WARNING: One or more incorrect starting amino
acids. Please review your inputs.\nThe code will now
abort.***\n\n\n")

print ("Your inputs:")

print (mut details df.loc[:, ["Mutation number", "Target AA",
"Target residue number"]])

raise SystemExit

#check that the range of amino acids to mutate is not larger than
the recoding range

mutation distance = max (mut details df["Residue End Base"]) -

min (mut details df["Residue Start Base"])

i1f mutation distance > recode region length:

print ("\n\n\n***Warning: The distance between the target sites
is greater than the recoding region length. Please ensure your
recoding region length covers all target mutations.\nThe code will
now abort.***\n")

print (f"You asked for a recoding region of
{recode region length} bp, but the needed recoding region length
is at least {int (mutation distance)} bp.\n\n")

raise SystemExit

festablish the sequence to replace, and sequences before and after
to stay the same

WT template seq =

gene name.seg[recode start whole:recode end whole]

upstream dna = gene name.seq[:recode start whole]

downstream dna = gene name.seqg[recode end whole:]

#make dictionary of codons with number keys and one with numbers
and amino acids
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codons_to recode = cdict.codon dict maker (WT template seq,

key format= "number")

codons_to recode let num = cdict.codon dict maker (WT template seq,
key format= "letter-number")

#make reference dictionaries for all the amino acids
ref codon table df =
rif.codon table processor (codon freqg input file)

ref codons = cdf.ref codon table freqgs(ref codon table df)

#synonymous recoding - irrelevant to additional mutations
1f syn recode type == "matched":

#use that dictionary to create a new one with the specific
frequency values

codons_to recode fregs =
cdf.codon frequency collector (input dict = codons to recode,
reference dict = ref codons, type = "value")

fcreate a dictionary with all the frequencies for the amino
acids in this sequence for each codon
codons_to recode all fregs =
cdf.codon frequency collector (input dict = codons to recode,
reference dict = ref codons, type = "dataframe")

fcalculate the differences for each possible codon to the
original

recode freq diffs =
cdf.codon frequency difference calc(codons to recode let num,
ref codons)

#add the differences in frequency to "the" dataframe
codons_to recode abs diffs =
cdf.codon freq diff adder (codons to recode let num
,codons_to recode all fregs, recode freq diffs)

fchoose which codons to use for synonymous recoding
codons_to use syn =
cdf.codon freq selector (codons to recode abs diffs)

if syn recode type == "highest" or syn recode type == "lowest":

#use that dictionary to create a new one with the specific
frequency values

codons_to recode fregs =
cdf.codon frequency collector (input dict = codons to recode,
reference dict = ref codons, type = "value")

#create a dictionary with all the frequencies for the amino
acids in this sequence for each codon
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codons_to recode all fregs =

cdf.codon frequency collector (input dict = codons_ to recode,
reference dict = ref codons, type = "dataframe")
codons_to recode choices fregs = {}

#remove input codon from list
for let num, seq in codons to recode let num.items():
if seg == Seq.Seqg("ATG") or seq == Seq.Seq("TGG"):

codons_to recode choices fregs[let num] =

ref codon table df.loc[ref codon table df["DNA"] == str(seq)]
else:
current df = codons to recode all fregs[let num]
codons_to recode choices fregs[let num] =
current df.loc[current df["DNA"] != str(seq)]

#make the list of codons to use depending on recoding type
codons_to use syn = {}

1f syn recode type == "highest":

for codon num let, seq df in
codons_to recode choices fregs.items():
max freq codon = max(seq df["Fraction"])
mutated res df chosen = seq df.loc[seq df["Fraction"]
== max_ freq codon, "DNA"]

#tie breaker for instances with same fraction usage -
hopefully number won't ever have duplicate values
if len(mutated res df chosen) > 1:
max number codon = max(seq df ["Number"])
max number codon seq = seq df.loc[seqg df["Number"]
== max_number codon, "DNA"].item()
codons to use syn[codon num let]
max number codon seq

else:
codons_to use syn[codon num let] =
seq df.loc[seq df["Fraction"] == max freq codon, "DNA"].item()

if syn recode type == "lowest":

for codon num let, seq df in
codons_to recode choices fregs.items():
min freq codon = min(seq df["Fraction"])
mutated res df chosen = seq df.loc[seq df["Fraction"]
== min_ freq codon, "DNA"]

#tie breaker
if len(mutated res df chosen) > 1:

min number codon = max (seq df["Number"])
min number codon seq = seq df.loc[seq df["Number"]
== min number codon, "DNA"].item()

codons_to use syn[codon num let] =
min number codon seq
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else:
codons_to use syn[codon num let] =

seq df.loc[seq df["Fraction"] == min freq codon, "DNA"].item()
if syn recode type == "alternating matched" or syn recode type ==
"alternating random" or syn recode type == "alternating highest"
or syn recode type == "alternating lowest":

#check input has been given suitably

if alternating repeat == "N/A" or alternating repeat <= 0 or
pd.isna(alternating repeat) == True:

print ("\n\n\n***ERROR: No value or an invalid value was
set for the alternating pattern of the codons to
recode.***\n\n\n")

alternating repeat = int (input ("Please enter a positive
integrer for the alternating repeat value: "))

if alternating repeat > (0.5 * num of codons to recode):
proceed alt = input("The chosen repeat value 1s greater
than half of the total number of codons being recoded so only 2 or
fewer codons will be mutated.\n\nDo you wish to proceed? Y/N \n")

if proceed alt == "N" or proceed alt == "n" or proceed alt
== "NO" or proceed alt == "No" or proceed alt == "no"
alternating repeat = int (input ("Please enter a

positive integer for the alternating repeat value: "))

elif proceed alt == "Y" or proceed alt =="y" or
proceed alt =="YES" or proceed alt == "Yes" or proceed alt ==
"yes":
pass
else:
proceed alt = input ("\n\nThe input given is not valid.

Please try again.\n\nThe chosen repeat value is greater than half
of the total number of codons being recoded so only 2 or fewer
codons will be mutated.\n\nDo you wish to proceed? Y/N \n")

if proceed alt == "N" or proceed alt == "n" or
proceed alt == "NO" or proceed alt == "No" or proceed alt == "no"
alternating repeat = int (input ("\nPlease enter a
positive integer for the alternating repeat value: "))
elif proceed alt == "Y" or proceed alt =="y" or
proceed alt =="YES" or proceed alt == "Yes" or proceed alt ==
"yesl':
pass
else:
proceed alt = input ("\n\nThe input given is not

valid. Please try again.\n\nThe chosen repeat value is greater
than half of the total number of codons being recoded so only 2 or
fewer codons will be mutated.\n\nDo you wish to proceed? Y/N \n")

if proceed alt == "N" or proceed alt == "n" or
proceed alt == "NO" or proceed alt == "No" or proceed alt == "no"
alternating repeat = int (input ("\nPlease enter
a positive integer for the alternating repeat value: "))
elif proceed alt == "Y" or proceed alt =="y" or
proceed alt =="YES" or proceed alt == "Yes" or proceed alt ==

"yesll:
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pass
else:
print ("\n----—-----—-—-——

print (f"\n***Warning, your input was invalid
so the code will continue with the value given. Your repair
template will recode every {alternating repeat} codons. If you do
not want this, modify the input spreadsheet and rerun the
programme.***")

if alternating repeat == "N/A" or alternating repeat <= 0 or
pd.isna(alternating repeat) == True:
print ("\n\n\n***ERROR: An invalid value was set for the
alternating pattern of the codons to recode.***\n\n\n")
alternating repeat = int (input ("Please enter a positive
integer for the alternating repeat value: "))

if alternating repeat == "N/A" or alternating repeat <= 0 or
pd.isna(alternating repeat) == True:
print ("\n\n\n***ERROR: An invalid value was set for the
alternating pattern of the codons to recode.***\n\n\n")
alternating repeat = int (input ("Last chance - please enter
a positive integer for the alternating repeat value: "))

if alternating repeat == "N/A" or alternating repeat <= 0 or
pd.isna(alternating repeat) == True:
print ("\n\n\n\nYou failed to provide an appropriate input
so the programme will be cancelled.\n\nIf you wish to try again,
either modify the input spreadsheet or provide a suitable value
when prompted in the console.\n")
raise SystemExit

if syn recode type == "alternating matched" or syn recode type ==
"alternating random":

#determine which codon numbers in range are to be mutated and
which are not

num of codons to mutate = int (num of codons to recode /
alternating repeat)
n _terms = list(range(num of codons to mutate))

codon nums_to recode = []
for n in n_terms:
codon num = n * alternating repeat

codon nums_to recode.append (codon num)

#fensure that target codons are always recoded even if they
don't fit the alternating pattern

target codons nos = list(mut details df["Codon no"])

for codon no in target codons nos:
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if codon no not in codon nums_ to recode:
codon_nums_to recode.append (codon no)

codon nums all = list(codons to recode.keys())

#split the codons to be mutated into a separate dictionary
from the ones to stay the same

codons_to keep WT = {}

specific codons to recode = {}

for numbers in codon nums all:
if numbers not in codon nums_ to recode:
codons_to keep WT[numbers] = codons_ to recode[numbers]

if numbers in codon nums_ to recode:
specific codons_ to recode[numbers] =
codons_to recode [numbers]

for numbers in codon nums to recode:
1f numbers not in codon nums to recode:
codons_to _keep WT = codons_ to recode[numbers]

if syn recode type == "alternating matched":
#on only the codons to recode
#use that dictionary to create a new one with the specific
frequency values
codons to recode fregs =
cdf.codon frequency collector (input dict = codons to recode,
reference dict = ref codons, type = "value")

#create a dictionary with all the frequencies for the
amino acids in this sequence for each codon
codons_to recode all fregs =
cdf.codon frequency collector (input dict = codons to recode,
reference dict = ref codons, type = "dataframe")

#calculate the differences for each possible codon to the
original

recode freq diffs =
cdf.codon frequency difference calc(codons to recode let num,
ref codons)

#add the differences in frequency to "the" dataframe
codons_to recode abs diffs =
cdf.codon freq diff adder (codons to recode let num
,codons_to recode all fregs, recode freq diffs)

#choose which codons to use for synonymous recoding
codons_to use syn =
cdf.codon freq selector (codons to recode abs diffs)

if syn recode type == "alternating random":
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#add letters to dictionary
specific codons to recode let num = {}

for keys, seq in specific codons to recode.items():
let num = str(seqg.translate()) + str(keys)
specific codons to recode let num[let num] = seq

#make a dictionary of the alternate codons to the input
sequence

alt codons to recode =
cdict.alt codons(specific codons to recode let num)

#randomly select which of these to use for each codon
codons_to use syn =
cdict.Syn random recoder (alt codons to recode)
#combine the unchanged codons with the changed codons

codons_to keep WT let num = {}

for codon num, seq in codons_ to keep WT.items () :

translation = seqg.translate ()
codon num let = str(translation) + str(codon num)
codons_to keep WT let num[codon num let] = seqg

codons to use syn.update(codons to keep WT let num)

1f syn recode type == "alternating highest" or syn recode type ==
"alternating lowest":

num of codons to mutate = int (num of codons to recode /
alternating repeat)
n terms = list(range(num of codons to mutate))

codon nums_to recode = []
for n in n_terms:
codon num = n * alternating repeat

codon nums_to recode.append (codon num)

fensure that target codons are always recoded even if they
don't fit the alternating pattern

target codons nos = list(mut details df["Codon no"])
for codon no in target codons nos:
if codon no not in codon nums to recode:

codon nums_to recode.append(codon no)

codon nums_all = list(codons to recode.keys())
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codons_to keep WT = {}
specific codons to recode = {}

for numbers in codon nums all:
if numbers not in codon nums_ to recode:
translate = codons to recode[numbers].translate ()
let num = str(translate) + str (numbers)
codons_to keep WT[let num] = codons to recode[numbers]

if numbers in codon nums to recode:
#translate = codons_to recode[numbers].translate ()
#let_num = str(translate) + str (numbers)
specific codons to recode[numbers] =
codons_to recode[numbers]

for numbers in codon nums to recode:
1f numbers not in codon nums to recode:
codons_to keep WT = codons_to recode[numbers]

#use that dictionary to create a new one with the specific
frequency values

codons_to recode fregs =
cdf.codon frequency collector (input dict =
specific codons to recode, reference dict = ref codons, type =
"value")

#create a dictionary with all the frequencies for the amino
acids in this sequence for each codon

codons to recode all fregs =
cdf.codon frequency collector (input dict =

specific codons to recode, reference dict = ref codons, type =
"dataframe")
codons_to recode choices fregs = {}

fremove input codon from list unless it's Met or Trp
for let num, df in codons to recode all fregs.items():
input codon = codons to recode let num[let num]
if input codon == Seq.Seqg("ATG") or input codon ==
Seq.Seq ("TGG") :

codons_to recode choices fregs[let num] =
ref codon table df.loc[ref codon table df["DNA"] ==
str (input codon) ]
else:
current df = codons to recode all fregs[let num]
codons_to recode choices fregs[let num] =

current df.loc[current df["DNA"] != str(input codon)]

#recode based on input type
codons_to use syn = {}

if syn recode type == "alternating highest":
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for codon num let, seqg df in
codons_to recode choices fregs.items():
max freq codon = max(seq df["Fraction"])
max freq codon seq = seq df.loc[seq df["Fraction"] ==
max freg codon, "DNA"]
if len(max freqg codon seq) > 1:
max number codon = max (seqg_df["Number"])
max freq codon seq = seq df.loc[seq df["Number"]
== max number codon, "DNA"].item()
codons_to use syn[codon num let] =
max freg codon_ seq

else:
codons_to use syn[codon num let] =
max freq codon seqg.item()

1f syn recode type == "alternating lowest":

for codon num let, seq df in
codons_to recode choices fregs.items():
min freq codon = min(seq df["Fraction"])
min freq codon seq = seq df.loc[seq df["Fraction"] ==
min freq codon, "DNA"]
if len(min freqg codon seq) > 1:
min number codon = min (seq df ["Number"])
min freq codon seq = seq df.loc[seq df["Number"]
== min number codon, "DNA"].item()
codons to use syn[codon num let] =
min freg codon seqg

else:

codons to use syn[codon num let] =
min freq codon seq.item()

fcombine the unchanged codons with the changed codons
codons_to keep WT let num = {}

for codon num, seq in codons_to keep WT.items () :
codons_to keep WT let num[codon num] = seq

codons_to use syn.update(codons to keep WT let num)

if syn recode type == "random":
#make a dictionary of the alternate codons to the input
sequence

alt codons to recode =
cdict.alt codons(codons to recode let num)

#randomly select which of these to use for each codon

296



codons_to use syn =
cdict.Syn random recoder (alt codons to recode)

#add in the nonsynonymous mutations

if nonsyn recode type == "highest" or nonsyn recode type ==
"lowest":
nonsyn ref dict = ref codons
if nonsyn recode type == "random":
nonsyn ref dict = cdict.alt codons(codons to recode let num)
nonsyn ref dict = {}

for row in mut details df.index:
output AA = mut details df.at[row, "Replacement AA"]
nonsyn ref dict[output AA] =
cdict.ref codon table (output AA)

#codons to use nonsyn = cdf.non syn mutator (target AA,
target codon no, new AA = output AA, input dict =
codons_to use syn, type = nonsyn recode type, ref dict =
nonsyn ref dict )

codons_to use nonsyn = codons to use syn
for row in mut details df.index:
target AA = mut details df.at[row, "Target AA"]
target codon no = mut details df.at[row, "Codon no"]
output AA = mut details df.at[row,"Replacement AA"]
current mut nonsyn codon = cdf.non syn mutator (target AA,
target codon no, new AA = output AA, input dict =
codons_to use nonsyn, type = nonsyn recode type, ref dict =
nonsyn ref dict)

codons_to use nonsyn = current mut nonsyn codon

target key = str(output AA) + str(target codon no)

fconstruct the final recoded sequences

synonymous_repair = stitch.sequence constructor (codons to use syn,
type = "letter-number")

nonsynonymous_repair =
stitch.sequence constructor (codons to use nonsyn, type = "letter-
number")

#check all the modifications were as expected
#adjust target codon number to what it would be by normal counting
rather than python counting
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target codon no not py = target codon no + 1

#check all is as expected

for row in mut details df.index:
target AA = mut details df.at[row, "Target AA"]
output AA = mut details df.at[row, "Replacement AA"]
codon no py = mut details df.at[row, "Codon no"] + 1

mut details df.at[row, "Syn mutation correct"] =
val.translate checker (synonymous repair, codon no py, target AA)

mut details df.at[row, "Nonsyn mutation correct"] =
val.translate checker (nonsynonymous repair, codon no py,
output AA)

ferror 1f some of these fail

if mut details df["Syn mutation correct"].any() == False or
mut details df["Nonsyn mutation correct"].any() == False:

print ("\n\n\n***WARNING - Errors in recoding or mutating
detected***\n\n\n")

#create the final repair sequence including the homology arms

upstream hom arm = gene name.seq[ (recode start whole -
hom arm length) :recode start whole]

downstream hom arm = gene name.seg[recode end whole:
(recode end whole + hom arm length) ]

WT entire repair region = upstream hom arm + WT template seq +
downstream hom arm

entire syn repair = upstream hom arm + synonymous repair +
downstream hom arm
entire nonsyn repair = upstream hom arm + nonsynonymous repair +

downstream hom arm

#construct "gene" sequences for primer design

integrated synonymous, WT recode region =
stitch.mut seq integrator (repair seq = synonymous repair, ref seq
= gene name.seq, repalr start = recode start whole, repair end =
recode end whole, WT repair seg= "Yes")

integrated nonsynonymous = stitch.mut seq integrator (repair seq =
nonsynonymous_ repair, ref seq = gene name.seq, repair start =
recode start whole, repair end = recode end whole, WT repair seqg=
"No")

#design screening primers
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screening primers df syn =
primers.screening primer designer (gene_ name.seq,

integrated synonymous, recode start whole, recode end whole)
screening primers df nonsyn =
primers.screening primer designer (gene name.sedq,

integrated nonsynonymous, recode start whole, recode end whole)

#design primers to generate the repair template
syn repair template primers =

primers.repair primer designer (entire syn repair, hom arm length,

downstream dna)

nonsyn repair template primers =
primers.repair primer designer (entire nonsyn repair,
hom arm length, downstream dna)

#repair template primers = [syn repair template primers,
nonsyn repalr template primers]

#repair template primers df =
pd.DataFrame (repair template primers)

#repair template primers df.index = ["Synonymous repair",
"Nonsynonymous repair"]

#do an alignment

#fcreate a pariwise alignment object

aligner = Align.PairwiseAligner (target internal open gap score

10.0, gquery internal open gap score = -10.0)

syn alignment = aligner.align(WT entire repair region,
entire syn repair)
for alignmentl in sorted(syn alignment) :

#print ("Score = %$.1f:" % alignmentl.score)
#print (alignmentl)
syn score = alignmentl.score
alignment str syn = str(alignmentl)
alignment str syn = alignment str syn.replace("target", "WT
sequence") .replace ("query", "Syn. repair").replace ("\n
", "\n ")
alignment str syn = alignment str syn.replace("Syn. repair

", "Syn. repair ")
#print (alignment str syn)

nonsyn_alignment = aligner.align(WT entire repair region,
entire nonsyn repair)
for alignment2 in sorted(nonsyn alignment) :

#print ("Score = %$.1f:" % alignment2.score)

nonsyn score = alignment2.score
alignment str nonsyn = str(alignment2)
alignment str nonsyn = alignment str nonsyn.replace("target",
sequence") .replace ("query", "Nonsyn. repair").replace("\n
u, "\1’1 u)
alignment str nonsyn = alignment str nonsyn.replace ("Nonsyn.
repair ", "Nonsyn. repair ")

" WT
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#print (alignment str nonsyn)

#format some outputs

WT repair seq spaced =
formats.codon spacing(WT entire repair region)

syn repair spaced = formats.codon spacing(entire syn repair)
nonsyn repair spaced = formats.codon spacing(entire nonsyn repair)

WT repair translate = WT entire repair region.translate()
syn repair translate = entire syn repair.translate()
nonsyn repair translate = entire nonsyn repair.translate()

WT repair translate spaced =
formats.protein align codon (WT repair translate)

syn repalr translate spaced =
formats.protein align codon(syn repair translate)
nonsyn repalr translate spaced =
formats.protein align codon(nonsyn repailr translate)

syn repair mutations count =
val.mutation counter (entire syn repair, WT entire repair region)
nonsyn repair mutations count =
val.mutation counter (entire nonsyn repair,

WT entire repair region)

syn repalr primers output = ""

for category, item in syn repair template primers.items() :
if type(item) == float:
item = "{:.1f}'.format (item)
syn repair primers output += category
syn repair primers output += ": "
syn repair primers output += str(item)
syn repair primers output += "\n"

mn

nonsyn repair primers output =

for category, item in nonsyn repair template primers.items() :
if type(item) == float:
item = "{:.1f}'.format (item)
nonsyn repalir primers output += category
nonsyn repair primers output += ": "
nonsyn repalr primers output += str(item)

nonsyn repair primers output += "\n"
if syn recode type == "alternating matched" or syn recode type ==
"alternating highest" or syn recode type == "alternating lowest"
or syn recode type == "alternating random":

alternating info = f"Alternating recoding every
{alternating repeat} codons"
else:

alternating info = ""
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mut details df.sort values("Target residue number", inplace =
True)

mutations = []

for row in mut details df.index:
target AA = mut details df.at[row, "Target AA"]
target res num = mut details df.at[row, "Target residue
number"]
output AA = mut details df.at[row, "Replacement AA"]
mutation = str(target AA) + str(target res num) +
str (output AA)
mutations.append (mutation)

) .replace("]",

" mwn
14

mutations text = str(mutations).replace("[
"") .replace("l", "")

output file = open(f"{job name}.txt", "w")

file lines = ["Job request details\n",
f"Job name: {job name}\n",
f"Number of Nonsynonymous mutations:
{num of mutations}\n"
f"Mutations: {mutations text}\n",
f"Synonymous recoding type: {syn recode type}\n",
f"Nonsynonymous recode type:
{nonsyn recode type}\n",
f"Homology arm length (bp): {hom arm length}\n",
f"Recoding region length (bp):
{recode region length}\n",
f"Total repair length (bp): {(2*hom arm length) +
recode region length}\n",
f"{alternating info}\n",
n \nu,
n \nu,
"Repair templates\n",
f"WT repair region sequence:
\t\t{WT repair seqg spaced}\n",
f"WT translation:
\t\t\t{WT repair translate spaced}\n",
f"Synonymous repailr region sequence:
\t{syn repair spaced}\n",
f"Synonymous repair translation:
\t\t{syn repair translate spaced}\n",
f"Nonsynonymous repalr region sequence:
\t{nonsyn repair spaced}\n",
f"Nonsynonymous repair translation:
\t{nonsyn repair translate spaced}\n",
n \nu,
f"Number of mutations in the synonymous repair
template: {syn repair mutations count}\n",
f"Number of mutations in the nonsynonymous repair
template: {nonsyn repair mutations count}\n",
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"\n"’

"\n"’

"Screening primers\n",
"Synonymous repair\n",

"\n",
f"{screening primers df syn}\n",
"\n",

"\n",

"Nonsynonymous primers\n"
f"{screening primers df nonsyn}",
"\n"’

"\n"’

"Repair template primers\n",
"Synonymous\n",

f"{syn repair primers output}\n",
"\n",

"Nonsynonymous\n",

f"{nonsyn repair primers output}\n",
"\n",

f"WT sequence (no spaces):

{WT entire repair region}\n",

f"Synonymous sequence (no spaces):

{entire syn repair}\n",

f"Nonsynonymous sequence (no spaces):

{entire nonsyn repair}\n",

]

"\1’1",

n \nu,

"Alignments\n",

"Synonymous Repair\n",
f"Score = {syn_score}\n",
f"{alignment str syn}\n",
n\n",

"Nonsynonymous\n",

f"Score = {nonsyn_score}\n",
f"{alignment str nonsyn}\n"

output file.writelines(file lines)
output file.close()

#print confirmation message to make it clearer that it worked
print (f"\n\n\nYour repair template designs have completed
Please check your folder for a file with the name

successfully.

'{job_name}.txt'\n")
print ("\t.\t.\n", "\n\t\___ /\n\n\n")
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