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1 PREFACE 

 

1.1 Abstract  

Leishmania mexicana is a parasitic protozoan, and one of the causative agents of cutaneous 

leishmaniasis – a skin infection causing large lesions. Leishmania spp. have some unusual 

biological features, due to their early evolutionary split from other eukaryotes. One is their 

unique kinetochore complex – the protein complex responsible for binding the 

chromosomes to microtubules during mitosis. To evaluate the role of specific 

phosphorylation sites on essential kinetochore proteins, a selection-free precision editing 

strategy using the CRISPR-Cas9 system was investigated in promastigotes. Genomic DNA 

was targeted with 120 nt single-stranded oligonucleotide repair DNA to generate 10 unique 

amino acid substitutions to create phosphosite mutants from kinetochore proteins KKT1, 

KKT2, KKT4 and KKT7 but was only successful in 2.0% of clones. Comparatively, using 160 

bp double-stranded repair DNA targeting 6 phosphosites between KKT2, KKT4 and KKT7 

generated phosphodeficient, phosphomimetic and synonymous mutants at each target 

site tested. Across 18 unique transfections, PCR screening detected integration of the 

repair template in 24.6% of clones screened. Surprisingly, following Sanger sequencing, it 

was found that 29.2% of clones screened were in fact edited. Mutant clones were 

predominantly homozygous (21.7% of clones), including at least one clone per transfection. 

Kinetochore phosphosite mutant clones were assessed for growth changes and cell cycle 

dysregulation, but no apparent phenotypes were detected. Lastly, to pave the way for 

higher-throughput precision editing using this method, a Python script was developed to 

replicate the design process used to create the 160 bp repair templates. The script uses a 

FASTA file, codon usage table and a simple Excel spreadsheet configuration file to design 

the desired repair template with a single nonsynonymous mutation, and additional 

synonymous mutations for screening purposes. It also generates a corresponding 

synonymous-mutation only repair template, as well as screening primers and primers to 

produce the repair templates for a ready-to-go approach.  
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2 CHAPTER ONE - INTRODUCTION 

2.1 Leishmaniasis Disease and the Leishmania Lifecycle 
Leishmania mexicana is a protozoan parasite and one of the causative agents for cutaneous 

leishmaniasis (CL) (Burza, Croft and Boelaert, 2018). CL causes lesions on the skin, which in 

some instances can be self-healing, but many often leave disfiguring scars. Leishmania spp. 

are transmitted by female sandflies, which bite mammals and feed on their blood. When a 

sandfly feeds on infected blood, it can propagate the infection to the next animal it feeds 

on, spreading the infection (Burza, Croft and Boelaert, 2018). As such, Leishmania spp. 

require a complex digenetic lifecycle to survive inside the different hosts, experiencing 

different temperatures, pHs and nutrient availabilities.  

Whilst carried by the sandfly, the parasites differentiate into the replicative promastigote 

form, as they live inside the midgut where nutrient availability is good. Once the number 

of cells has expanded, the promastigotes prepare for reinfection of a mammalian host, and 

differentiate into metacyclic promastigotes. In doing so, they move up into the stomodeal 

valve of the sandfly and block it with a gel plug (Sacks, 1989; Rogers, Chance and Bates, 

2002). The gel plug aids the parasite by affecting the way the sandfly feeds to increase its 

chances of infecting the next host. During feeding, the metacyclic promastigotes are 

injected into the host, where they interact with macrophages and are phagocytosed. For 

many infectious organisms, this would mean death, but Leishmania spp. have evolved to 

live in this environment. Once inside the macrophage, the parasite differentiates into the 

amastigote form, which are adapted to the acidic pH of the phagosome and the reduced 

nutrient availability (McConville and Naderer, 2011). They also change morphology, taking 

on a more round cell body shape, with a reduced flagellum that does not protrude from 

the cell body (Burza, Croft and Boelaert, 2018). However, amastigotes do not just survive 

inside the phagosome, they are able to replicate there, leading to the macrophage bursting, 

releasing the amastigotes. From there, amastigotes can re-infect macrophages, until either 

a sandfly takes up the blood meal from this host or the host clears the infection. If a sandfly 

takes up the infected blood meal, the amastigotes differentiate back into promastigotes, 

starting the cycle again.  
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There is a need to investigate the biology of Leishmania species, as there are around 1 

million new cases of leishmaniasis worldwide each year (Burza, Croft and Boelaert, 2018). 

Current treatments are largely chemotherapeutic, toxic, and can often be ineffective 

(Madusanka, Silva and Karunaweera, 2022). Understanding the unique biology of these 

parasites can help to find new drug targets and treatment approaches to reduce the burden 

of this disease. Additionally, since L. mexicana causes one of the least severe forms of 

leishmaniasis and grows well in vitro, L. mexicana has become a model for understanding 

the biology of Leishmania spp.  

 

2.2 Gene Editing and CRIPSR-Cas9 
One way to investigate the biology of Leishmania spp. is through gene editing. Gene editing 

can be used to elucidate the function of specific genes and the proteins encoded by them. 

Gene editing in Leishmania began using homologous recombination-based strategies from 

donor DNA containing large homologous sequences (Cruz and Beverley, 1990). Whilst this 

strategy was generally effective, the discovery of the bacterial CRISPR-Cas9 system has 

allowed gene editing to become quicker, easier and more efficient than before.  

In the CRISPR-Cas9 system, Cas9 is an endonuclease that can make double-stranded DNA 

(dsDNA) breaks at a specific sequence of DNA, as directed by a single-guide RNA (sgRNA) 

(Gasiunas et al., 2012). In bacteria, CRISPR (Clustered, regularly interspaced, short 

palindromic repeats) are a stored library of reference sequences from viral invaders. When 

a reference sequence is transcribed into an sgRNA, it directs the Cas9 endonuclease to 

cleave the sequence, hence removing viral sequences present in its genome and avoiding 

damage from viral replication. The cleavage of the DNA from Cas9 always takes place 3 

nucleotides away from a short motif called the Protospacer Adjacent Motif (PAM), which, 

in the most commonly used S. thermophilus Cas9, is an NGG motif (Gasiunas et al., 2012). 

By providing an sgRNA made in vitro, it is possible to “hijack” the Cas9 endonuclease activity 

to make a dsDNA break in any known DNA sequence ending with an NGG. Whilst Cas9 has 

very high specificity, some mismatches within the sequence can enable the dsDNA break 

to proceed, which can lead to off-target breaks elsewhere in the genome (Hsu et al., 2013). 

That being said, the precision and specificity of the CRISPR-Cas9 system is so versatile that 

it is indispensable in modern molecular biological research.  
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The CRISPR-Cas9 system was first tested in Leishmania in 2015 by Sollelis et al. This first 

approach used episomal expression of Cas9, with transfection of linearised plasmid 

containing sgRNA under a U6 RNA polymerase III promoter, and an antibiotic selection 

marker flanked with two ~1 kb homology regions to replace the target locus. This was able 

to successfully generate null mutants in a single round of transfection, which prior to Cas9 

would have required two rounds to remove both alleles (Sollelis et al., 2015). Whilst this 

approach was effective, generation of repair templates with such large homology regions 

is cumbersome. To attempt to tackle this issue, Beneke et al. (2017) investigated whether 

smaller homology regions would remain effective. They showed that homology regions of 

just 30 bp were equally as efficient when Cas9-directed breaks were made. Additionally, 

Beneke et al. (2017) used Cas9 integrated into the genome, and a T7 RNA polymerase (T7 

RNAP). Stable integration of Cas9 helped reduce some of the concerns over variable Cas9 

expression that Sollelis et al. (2015) experienced with episomal expression. Changing the 

sgRNA promoter to a T7 promoter also simplified the process. Using a T7 RNAP allowed 

transfection of DNA constructs containing a T7 promoter, which are then transcribed into 

the sgRNA in cellulo. In this cell line, the T7 RNAP gene was also integrated in the genome. 

From this, Beneke et al. developed a toolkit to make deleting and tagging genes easier than 

before (Beneke et al., 2017). This toolkit provides template sequences for either gene 

deletion or gene tagging which are contained on plasmids, and can be amplified with 

primers containing a 20 nt annealing sequence and 30 nt homology arm sequences. These 

repair templates contain an antibiotic resistance gene, to act as a positive selection marker 

for cells that have been edited, and to remove untransfected cells from the population. 

This method was demonstrated through the knock-out of flagellum genes in L. mexicana, 

L. major and T. brucei (Beneke et al., 2017). Because of the simplicity and versatility of such 

an approach, large-scale projects have used this system to generate mutants at scale. One 

example of this was the deletion and tagging of every kinase in the genome by Baker et al. 

(2021). However, this toolkit is limited to mutations at a whole gene scale due to the 

inclusion of the antibiotic resistance marker, which can only be incorporated at either end 

of, or in place of a gene. In order to generate mutations at a sub-gene scale (e.g. single 

nucleotide changes), an alternate approach is required: precision editing.  
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Presently, to make precision mutations that target a single amino acid of a protein, 

constructs have to be created for each gene - cloning the gene of interest into a plasmid 

and then editing it in vitro, before replacing the endogenous gene with the mutant version 

(Figure 1A). This method can be effective and has been used before, such as by Nerusheva 

and Akiyoshi in 2016 to generate mutants of interest in trypanosomes to investigate how 

KKT2 localises to the kinetochore. Similarly, Saldivia et al. (2020) generated a mutant 

version of CLK1/KKT10 on a plasmid, which was then inserted into the tubulin locus. 

Subsequently, RNA interference (RNAi) was used to prevent expression of the WT allele 

(Figure 1C). However, this process of cloning, editing and reintegrating is time consuming 

and laborious for what may be only a handful of nucleotide changes on one gene. Hence, 

it is not scalable to evaluate larger numbers of sites of interest, such as in a library screen. 

It also still relies on incorporation of a positive selection marker, which is a relatively large-

scale change, which may not be suitable for all applications.  

Smaller constructs have been used as repair templates for CRISPR-directed mutants in a 

range of kinetoplastids, typically in the form of oligonucleotide repair templates (Figure 

1B). Zhang and Matlashewski (2015) used single-stranded oligonucleotide repair templates 

with 25 nt homology arms to modify the miltefosine transporter gene, to incorporate 

premature stop codons into L. donovani (Pal and Dam, 2022). Rico et al. (2018) also used 

oligonucleotide repair templates with 50 nt homology arms to modify the aquaglyceroporin 

gene in T. brucei. Also in T. brucei, 68 nt oligonucleotides have been used as repair 

templates to generate enzymatic mutations to the CPSF3 gene, mutating only 8 nucleotides 

in total (Wall et al., 2018). Medeiros et al. (2017) used oligonucleotides as repair templates 

to introduce premature stop codons in fluorescent reporter genes in T. cruzi, using 

recombinantly produced Cas9 ribonucleoprotein complexes rather than endogenous Cas9 

expression (Lander and Chiurillo, 2019). Interestingly, small oligonucleotide-derived repair 

templates have also been effective at generating precision edited mutants without the use 

of CRISPR-Cas9 system to generate drug resistant cell lines in T. brucei (Altmann et al., 

2022). Outside of kinetoplastids but within the realm of parasitology, similar protocols have 

been used to modify Plasmodium falciparum using 200 nt oligonucleotide repair templates 

(Crawford et al., 2017) and either 50 bp and 125 bp double-stranded oligonucleotide or 125 

bp PCR generated repair templates in Trichomonas vaginalis (Janssen et al., 2018).  
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Figure 1. Current site-directed mutagenesis technologies for kinetoplastids. A) 

Mutagenesis through whole gene replacement of a gene of interest (GOI). The GOI is 

amplified from genomic DNA and cloned into a vector. In vitro mutagenesis approaches are 

used to generate the mutation of interest in the vector. The mutated vector is linearised 

(either by PCR amplification or restriction digest) to retrieve the mutated gene, and is 

transfected into a CRISPR-Cas9 cell line with sgRNAs targeting either end of the gene of 

interest. Following the double-stranded DNA (dsDNA) break by Cas9, homology-directed 

repair (HDR) leads to integration of the repair template. In some instances, a positive-

selection marker may also be included in the repair template to select for mutant cells. B) 

Oligonucleotide/single-stranded DNA (ssDNA) precision editing approaches used by other 

groups in the literature (Zhang and Matlashewski, 2015; Medeiros et al., 2017; Rico et al., 

2018; Wall et al., 2018; Pal and Dam, 2022). A repair template is designed containing 

homology arms and the mutation(s) of interest. This is synthesized as an oligonucleotide 

and transfected into CRISPR-Cas9 competent cells with one or two sgRNAs targeting the 

region adjacent to the mutation of interest. The dsDNA break leads to HDR and integration 

of the repair template, though efficiency of this approach is typically low due to no 

selection for transfected cells. C) RNA-interference (RNAi) for expression of mutant GOI 

(not possible in most Leishmania species, but present in Trypanosoma brucei). A cell line is 

generated containing the construct indicated on the left to enable expression of a double-

stranded RNA (dsRNA) corresponding to a GOI. This construct uses bi-directional T7 

promoters to generate a self-complementary RNA sequence and is controlled by a 

tetracycline (Tet) inducible operon to enable controlled induction of expression. This 

dsRNA is generated from a region of sequence corresponding to the mRNA of the GOI. The 

cell’s internal machinery processes the dsRNA to small-interfering or micro-RNA (siRNA or 

miRNA). This leads to recruitment of the RISC complex which enables recognition of mRNA 

from the GOI and eventually degradation of this mRNA, generating a knock-down effect on 

gene expression. If a mutant GOI is present in the cell line that has altered sequence 

sufficient to prevent binding of the WT-specific siRNA/miRNA, then expression of the 

mutant copy can take place whilst the WT GOI is knocked-down. This approach can allow 

for mutant gene expression of essential genes without requiring removal of the WT copy 

of the GOI.  
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One thing that remains apparent is that there is large variation in the design of small, often 

oligonucleotide-derived, repair templates between different groups. Whilst adjustments 

may be necessary between species, given that the protocols used as part of the CRISPR-

Cas9 editing toolkit are transferable between the TriTryps (Leishmania, T. brucei and T. 

cruzi) (Beneke et al., 2017), it stands to reason that the same repair template designs will 

work similarly across these species. This would suggest that development of an optimised 

method for one of these species could have benefits for them all.    

 

2.3 The Kinetochore Complex  
2.3.1 VERTEBRATES AND HIGHER EUKARYOTES 
The kinetochore is a protein complex responsible for connecting microtubules to DNA 

during mitotic (and meiotic) division (Musacchio and Desai, 2017). This complex is 

composed of two major parts – the inner and outer kinetochore. The inner kinetochore is 

the direct linker to the genomic DNA, whilst the outer kinetochore links the inner 

kinetochore to the microtubule spindle. 

In vertebrates, the inner kinetochore contains an unusual centromere-specific histone H3 

variant CENP-A (CENtromere Protein A) and 16 other proteins which make up the 

constitutive centromere associated network (CCAN) – see Figure 2A for schematic (Sridhar 

and Fukagawa, 2022). Whilst CENP-A is not present in all species, in those that retain it, it 

forms the basis for the kinetochore, replacing typical histone H3 at the centromere. CENP-

A then recruits CENP-C and CENP-N (both part of the CCAN) to form a centromeric 

nucleosome (Sridhar and Fukagawa, 2022). The other members of the CCAN interact with 

each other in discrete sub-complexes, and help tightly trap the DNA in order to transmit 

the forces of the mitotic spindle.  

In species lacking CENP-A, CENP-T provides an alternate DNA-binding starting point for the 

kinetochore. Interestingly, CENP-T is also present in many species containing CENP-A 

genes, providing an alternate, often favoured, method of DNA attachment (Sridhar and 

Fukagawa, 2022). CENP-T proteins are less well conserved than CENP-A proteins between 

eukaryotes. When CENP-T binds DNA, it forms its own complex, made up of sub-complexes 

typically containing CENP-T and -W, and CENP-S and –X (Sridhar and Fukagawa, 2022). 
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Similarly to CENP-A, they form a nucleosome-like structure on the chromatin, but 

preferentially bind to linker DNA rather than nucleosome-bound DNA. When CENP-A is also 

present, the CENP-T complex forms between two CENP-A nucleosomes, as is the case in 

humans. CENP-T also interacts with the outer kinetochore, via its long unstructured N-

terminal region, and is regulated by phosphorylation by CDK1.   

The inner kinetochore is linked to the mitotic spindle via the outer kinetochore. The outer 

kinetochore is composed of a 10-member protein network called the KMN network. The 

KMN network is subsequently composed of several sub-complexes which give it its name – 

Knl1C, Mis12C and Ndc80C (Sridhar and Fukagawa, 2022). The Ndc80C complex forms the 

primary microtubule binding site, and is helped to localise to the kinetochore through 

members of the Mis12C complex, which can be disrupted by phosphorylation from Aurora 

B kinase. As well as interacting with the Ndc80C complex, the Mis12C complex also 

facilitates interactions with the Knl1C complex. Knl1C complex in turn facilitates further 

protein-protein interactions, which allows it to make contact with proteins involved in 

regulation of the kinetochore, error correction, and activation and silencing of the Spindle 

Assembly Checkpoint (SAC) (Sridhar and Fukagawa, 2022). The outer kinetochore also has 

several other accessory proteins which form other complexes, namely the Dam1 complex 

and the Ska complex, which are found variably across species.  

As already alluded to, the full complement of these proteins are not present in all 

eukaryotic species. Overall, the inner kinetochore has shown a wider diversity in 

components than the outer kinetochore (Sridhar and Fukagawa, 2022), although examples 

exist of systems with a wide range of absent inner and outer kinetochore components. 

 

2.3.2 KINETOPLASTIDS 
Many of the components of the kinetochore are conserved across numerous eukaryotic 

species, but kinetoplastids are an unusual exception, in that their kinetochore proteins lack 

homology to almost all of the canonical components (Akiyoshi and Gull, 2014). To date, 25 

unique proteins have been identified in the trypanosomatid inner kinetochore (Akiyoshi 

and Gull, 2014; Nerusheva and Akiyoshi, 2016; Nerusheva, Ludzia and Akiyoshi, 2019;  
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Figure 2. Kinetochore complex schematic diagrams from eukaryotic organisms. A) Human 

(left) and budding yeast (S. cerevisiae, right) kinetochores, adapted from Sridhar and 

Fukagawa (2022). Homologous complexes between humans and yeast have been indicated 

in the same colours and kinetochore homologs have been shown in the corresponding 

positions. B and C) Current understanding of the Trypanosoma brucei kinetochore adapted 

from B: D’Archivio and Wickstead (2017), and C: Brusini et al. (2021). Both studies used pull 

downs of various kinetochore components and RNAi depletion to develop this model. kMT 

– kinetochore microtubule. In C, the KOK (kinetoplastid outer kinetochore) complex 

contains KKIP2-4, 6, 8-12. N and C indicate the positions of the respective termini of KKIP1. 

D) Current understanding of the Leishmania mexicana kinetochore adapted from 

Geoghegan et al. (2022). Data based on proximity of proteins and phospho-proteins 

relative to KKT3 (inner kinetochore).  

 

 

Geoghegan et al., 2022). These proteins have been systematically named Kinetoplastid 

Kinetochore proteins (KKT) 1-26 (excluding KKT21 due to renaming). As well as these 

components, there are also 12 KKT-interacting proteins (KKIPs), identified in Trypanosoma 

brucei, which make up the outer kinetochore – see Figure 2B for schematic (D’Archivio and 

Wickstead, 2017; Brusini et al., 2021). Only  KKIP1, which has been identified to be a highly 

divergent Ndc80/Nuf2 homologue (D’Archivio and Wickstead, 2017), and KKT14 and KKT15 

which have been identified as divergent Bub1 and Bub3 proteins (Ballmer et al., 2024), have 

homology to canonical kinetochore components. None of the other KKT or KKIP proteins 

share sequence similarity nor known structural similarity, with canonical kinetochore 

proteins, and are not found outside kinetoplastids. However, within kinetoplastids, there 

is high conservation with the KKT proteins, and some conservation of KKIPs (Akiyoshi and 

Gull, 2014; Brusini et al., 2021). Whilst some of the functions of specific KKTs and KKIPs are 

beginning to be understood, many of these proteins are still of unknown function with no 

known protein domains.  

Of the KKT proteins that have had more detailed investigation, it is understood that KKT4 

has microtubule-binding properties, but is unusually found in the inner kinetochore (Llauró 
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et al., 2018). Additionally, the inner kinetochore contains four protein kinases (KKT2, KKT3, 

KKT10 (CLK1) and KKT19 (CLK2)), of which KKT2 and KKT3 are known to have centromere 

localisation domains. KKT2 and KKT3 are thought to make up the foundation of the 

kinetochore by binding to the DNA using their divergent POLO box domains, allowing other 

kinetochore proteins to localise to them (Nerusheva and Akiyoshi, 2016; Marcianò et al., 

2021; Ishii et al., 2022). KKT10/CLK1 is known to phosphorylate KKT2, but little is known 

about the substrates of KKT2’s and KKT3’s kinase domains (Saldivia et al., 2021). KKT10 and 

KKT19 were identified first as being cdc2-like kinases (CLKs) in T. brucei (Altmann et al., 

2013), and subsequently as members of the kinetochore (Akiyoshi and Gull, 2014). 

KKT10/CLK1 has been shown to be important for kinetochore formation, causing KKT2 to 

improperly localise on KKT10/CLK1 inhibition, as well as regulation to kinetochore assembly 

(Saldivia et al., 2020, 2021). Recently, KKT14 and KKT15 have been identified as divergent 

Bub1 and Bub3 proteins, which are involved in the spindle checkpoint of other organisms, 

and are needed for accurate chromosome segregation in T. brucei (Ballmer et al., 2024). 

KKIP1 has been shown to provide a linker between the inner and outer kinetochores 

(Brusini et al., 2021) (Figure 2B and C). As previously mentioned KKIP1 is a highly divergent 

Ncd80/Nuf2 homologue, which occupies a similar niche, bridging the inner and outer 

kinetochore (Brusini et al., 2021). KKIP2-4, 6, and 8-12 form a stable complex that is part of 

the outer kinetochore in T. brucei, and have been found to interact with many proteins 

thought to be involved in RNA-processing (Nerusheva, Ludzia and Akiyoshi, 2019; Brusini 

et al., 2021). However, it should be noted that no homologs have been identified for KKIP3, 

4, 6, 9, 11 or 12 in L. mexicana, so whether the outer kinetochore has the same structure 

in Leishmania is not known (Brusini et al., 2021).  

Having a core role in cell division, many components of the kinetochore have been 

identified as essential in Leishmania promastigotes. Of these, KKT2 and KKT3 are essential, 

as well as one of either KKT10 or KKT19 being necessary for survival (but not both) (Baker 

et al., 2021). Additionally, KKT7, KKT9, KKT11 and KKT12 are also necessary for consistent 

chromosomal segregation in trypanosomes, with growth defects quickly developing 

following RNAi knockdown (Akiyoshi and Gull, 2014). Similar fitness defects have been seen 

following RNAi knockdown of all KKT proteins in trypanosomes (Horn, 2022).  
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Given the presence of protein kinases playing a core role in the kinetochore, the role of 

phosphorylation has been investigated in the L. mexicana kinetochore throughout the cell 

cycle by Geoghegan et al. (2022) – see Figure 2D for schematic. Phosphorylation was shown 

to be a dynamic process in the cell cycle, with a peak in phosphorylated proteins during S-

phase, in many cases, independent of protein levels. In particular, they identified several 

peptides which changed phosphorylation state disproportionately to their protein levels 

throughout the cell cycle. These peptides included phosphorylation sites S493 and S530 on 

KKT2; and T120-S144, S300, T318-S328 and T421-T430 on KKT4. Specific phosphorylation 

sites were unable to be derived from all phospho-peptides due to the presence of several 

serine and threonine residues within some peptides.  KKT7 S304 also showed a strong 

decrease in phosphorylation following AB1 treatment (which blocks KKT10/CLK1 and 

KKT19/CLK2 mediated phosphorylation).  This suggested that phosphorylation plays a key 

role in the control of the kinetochore complex during the cell cycle. However, to date, very 

little is known about the effect of individual phosphorylation events on kinetochore 

function, and which kinases are responsible.  

As the kinetochore of trypanosomatids such as L. mexicana is so unique, they pose 

interesting questions on both the unique evolutionary biology of these organisms, and their 

propensity to be drug targets. As such, this project aims to investigate the kinetochore 

complex of L. mexicana through precision editing with the CRISPR-Cas9 system.  

This project has several aims. The first aim is to investigate the biology of the kinetochore 

in L. mexicana using mutants generated with this precision editing methodology, initially 

starting with phosphorylation sites identified in the kinetochore by Geoghegan et al. 

(2022). The second aim is to investigate improvements to the efficiency of this 

methodology. The final aim is to investigate ways to scale-up this precision editing through 

computer-aided design.   
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3 CHAPTER TWO - METHODOLOGIES 

3.1 Cell Culture 
T7Cas9 Leishmania mexicana promastigotes (Beneke et al., 2017) were grown in HOMEM 

media with 10% Fetal Bovine Serum (FBS) and 1% penicillin-streptomycin (henceforth 

called 10% FBS HOMEM). T7Cas9 cells were also kept under continual selection with 50 

µg/ml hygromycin and 75 µg/ml nourseothricin at 25°C in non-vented TC coated flasks. 

Cells were passaged 1 in 1000 weekly until passage 20, when cells were replaced with lower 

passage cells from cryo-storage.  

 

3.2 Single-stranded Oligonucleotide Repair Template Design 
To attempt to generate mutations of interest, single-stranded DNA (ssDNA) repair 

templates were designed using strategies adapted from unpublished work by Juliana 

Carnielli and similar approaches in the literature (Zhang and Matlashewski, 2015; Medeiros 

et al., 2017; Rico et al., 2018; Wall et al., 2018; Pal and Dam, 2022). Genomic sequences for 

genes of interest were retrieved from TriTrypDB.org from the Leishmania 

mexicana MHOM/GT/2001/U1103 genome. Target site was identified, and ~60 nt either 

side was selected to create a region of a total of 120 nt (Figure 3). Genomic sequences for 

this region were used for sgRNA design on EuPaGDT (http://grna.ctegd.uga.edu/). The 

highest ranking two guides in as close proximity to the target site as possible were chosen 

– with one making a break before, and the other after the target site. The first 30 nt and 

final 30 nt of the 120 nt region were kept as the native sequence (homology arms). 

Sequences corresponding to the protospacer motifs and PAM sequences were recoded 

using an alternate codon with the highest frequency of usage from Leishmania infantum 

(from https://www.kazusa.or.jp/codon/) - see Appendix 7.2.4.1 for a copy of the table.  The 

L. infantum dataset was used as a reference rather than L. mexicana because the L. 

mexicana dataset was calculated from only 93 CDS sequences. The total L. mexicana 

genome contains 9,169 genes (Fiebig, Kelly and Gluenz, 2015), and as such this data set 

only represents about 1% of the genome which was deemed unlikely to be representative. 

The Leishmania species with the highest coverage of the genome was L. infantum, covering 

8,139 CDS sequences out of their total 8,241 predicted protein coding genes (Rogers et al., 

2011), so this dataset was used instead. The codon sequence for the target mutation  was  

http://grna.ctegd.uga.edu/
https://www.kazusa.or.jp/codon/
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Figure 3. Single-stranded repair template design process as described in Methods 3.2. 

First, the target codon (yellow) was identified in the genomic sequence. Next, a region of 

approximately 60 nt either side of the target codon, to a final length of exactly 120 nt was 

selected. sgRNA guides (orange arrows) were designed in the centre of this sequence 

(editing region), such that one break site was either side of the target (orange dashed line). 

The 30 nt at each end of this region were left as the native sequence to allow homologous 
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recombination (homology arms). Lastly, the sgRNA protospacer and PAM sequences were 

recoded (dark blue), and the target mutation was incorporated (purple). Note that sgRNA 

protospacer sequences could be on either strand, but synonymous recoding of the plus 

strand was still employed when sgRNA protospacer sequences were on the minus strand, 

but in the complementary positions. The synonymous recoding also either added a new 

restriction site or removed an existing one for screening purposes (white line). Not to scale. 

 

 

taken as the highest frequency usage codon for the desired amino acid. The exception to 

this recoding strategy was when generating a change in the restriction digestion pattern, 

where alternate codons were chosen to either add or remove a restriction site to the 

sequence. This design process is also shown in Figure 3. 

 

 

3.3 sgRNA Production 
Method as per Beneke et al.  (2017). Briefly, protospacer sequences were incorporated into 

the following template primer, in place of the N’s: 5’- 

gaaattaatacgactcactataggNNNNNNNNNNNNNNNNNNNNgttttagagctagaaatagc (Merck) – 

see Appendix 7.2.5.1 for primer sequences. This primer contains a T7 promoter sequence 

and an annealing region to bind to the primer OL6137 (G00 from Beneke et al., 2017). An 

annealing and amplification reaction was completed with 100 µM target specific sgRNA 

primer and OL6137. Annealing and amplification took place with Q5 polymerase (NEB), as 

per manufacturer’s instructions and with the following cycling conditions: 98°C for 30 

seconds (1 cycle); 98°C for 10 seconds, 60°C for 30 seconds and 72°C for 15 seconds (35 

cycles); 72°C for 10 minutes (1 cycle). Resulting reactions were examined on an agarose gel 

to check for expected products, and stored at -20°C between production and use in 

downstream applications. The final construct contains a T7 RNA polymerase promoter 

sequence, the protospacer sequence and the CRISPR RNA backbone in DNA form, which is 

transcribed endogenously into RNA by T7 polymerase.  
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3.4 DNA Preparation for Transfection 
sgRNA PCR products were purified using a PCR purification kit (Qiagen) as per the 

manufacturer’s instructions, except eluting in 10 µl of sterile distilled water. 

Oligonucleotides for repair templates (Merck) were ordered dry, and resuspended at 2 

µg/µl. 5 µl of each of the sgRNA purified PCR product (approximately 2.5 µg) and the repair 

template (10 µg) were combined.  

 

3.5 Transfection and Cloning 
T7Cas9 promastigote cells were grown until mid-log phase. 5 x 106 cells were pelleted at 

1000 x g for 10 minutes, washed once in Phosphate Buffered Saline (PBS), and pelleted 

again. Cells were resuspended in 100 µl P3 Primary Cell Nucleofector® Solution (Lonza) and 

10 µl of sgRNA-repair DNA mix. Cells were electroporated using a Lonza 4D Nucleofector® 

Unit using programme FI115, and promptly transferred to pre-warmed HOMEM media 

containing 20% FBS and 1% penicillin-streptomycin (henceforth called 20% FBS HOMEM), 

but without addition of other antibiotics. Cells were recovered overnight at 25°C. The 

following morning, cells were counted, and plated out into 96-well plates at a density of 

0.5 cells/well, in 20% FBS HOMEM. Clones were left to grow in the 96-well plates at 25°C 

for an additional 2 weeks. Clones were then chosen at random and passaged into 12-well 

plates of 10% FBS HOMEM for subsequent growth.  

 

3.6 Single-Stranded Screening 
3.6.1 SCREENING OF CLONES 
Genotyping of selected clones was completed through a restriction digest strategy. 

Stationary phase cells were pelleted at 1000 x g for 10 minutes, and washed once in PBS. 

Pellets were frozen dry at -20°C. After thawing, genomic DNA was extracted using Rapid 

Extract PCR Kit (PCR Biosystems), as per manufacturer’s instructions, except skipping the 

addition of water and final centrifugation step. DNA was stored at -20°C between uses.  

2 µl of DNA was used for a screening PCR with VeriFi polymerase mix (PCR Biosystems) on 

DNA collected from transfected clones and a T7Cas9 parental cell line as a WT control. This 

PCR spanned the entire region where the repair template was expected to integrate, as 
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well as some of the surrounding genomic sequence. See Appendix 7.2.6 for details of 

specific primers and cycling conditions. PCR products were confirmed on an agarose gel. 

Successful PCR products were purified using a PCR Purification Kit (Qiagen) as per 

manufacturer’s instructions. Purified PCR products were quantified using a nanodrop and 

adjusted to the same concentration using the elution buffer.  

Due to the inclusion of a restriction site change in the repair template, the genotype could 

be determined by digesting the previous PCR. To do so, 500 ng of purified PCR product from 

each clone and the parental T7Cas9 cell line (WT) was digested with the corresponding 

enzyme listed in Appendix 7.2.6. The reaction was incubated for 1 hour at the appropriate 

temperature, and then frozen at -20°C to halt the reaction. Undigested input DNA and 

digested DNA were run out on agarose gels to determine genotype. Undigested DNA from 

the parental cells and clones indicating a mutant genotype were sent for Sanger Sequencing 

(Eurofins) with the primers indicated in Appendix 7.2.5.3.  

 

3.7 Single-Stranded Pooled Experiment 
3.7.1 DESIGN OF REPAIR TEMPLATES 
In order to assess the effect of the possible silent mutations, a small library of repair 

templates were designed to assess integration of each design, targeting either KKT2 S493 

or KKT2 S530. Repair templates were designed mostly as before, except with changes in 

strategy for the synonymous recoding. Five recoding strategies were used to generate 5 

unique repair templates for each target site. Each design had a different subset of possible 

synonymous mutations to choose from, which restricted both starting genomic sequences 

that could be mutated and what they could be mutated to. Strategies were devised based 

on the different levels of efficacy of mutations in single-stranded repair templates used in 

this report, as well as other data from the lab (Hannah Jones and Juliana Carnielli, 

unpublished data). In short, mutations were categorised based on the number of known 

instances of integration of each possible silent mutation across all precision editing 

attempts within these datasets. Subsequently, each design was constrained to use only 

mutations of a similar level of demonstrated integration (e.g. mutations which were only 

found in successful repair templates or mutations which had only been selected in failed 

transfections).  For more details on the criteria to choose acceptable mutations for each   
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Figure 4. Example pooled repair template transfection screening primer design process. 

In order to specifically detect each of the five repair templates in each pooled transfection, 

an iterative primer design process was used to design screening primers for each repair 

template. The process aimed to identify primers which were least likely to cross-react with 

other repair templates. An initial primer set were designed on the WT gene sequence, with 

one primer outside the repair template region (not shown), and another falling across a 

region of recoding in the repair templates (black outline). Primers binding to each other 

template were designed manually (one example shown in pink outline). Primers were 

designed to have reasonable annealing temperatures to pair with the external primer and 

ideally a unique 3’ base. Once a potential primer sequence was determined, the sequence 

was compared to the other templates in the same pool (i.e. non-synonymous or 

synonymous templates, and WT sequence) at the corresponding location (dotted outlines). 

Final primers used have the lowest identity possible with other templates, preferably less 

than 85%. Primers that do not have less than 85% identity with another template are 

highlighted with dark outlines in the comparison table.   

 

 

design, see Results 4.2, with the acceptable codon changes lists in Appendix 7.2.8. 

Synonymous repair templates were the same as the serine to alanine designs, except 

choosing the serine codon from the appropriate list for that design. An alignment of the 

recoded regions of these designs is shown in Table 1. 

 

3.7.2 DNA PREPARATION, TRANSFECTION AND GENOMIC DNA EXTRACTION 
sgRNA guides were made and prepared as before. Instead of using one repair template, 

five different repair templates were mixed in equal proportions (2 µg/µl stock), and 5 µl of 

the mixed repair templates were used for each transfection. These repair templates and 

the combinations of the pools they were mixed in are listed in Appendix 7.2.4.3.1, with 

sequences of each design in Appendix 7.2.4.3. Transfection was otherwise as before, except 

cells were not cloned out and were left as populations.  



 

  32 

After one week of recovery, half of the culture was pelleted and washed as before. DNA 

was extracted using a genomic DNA extraction kit (ENZA) as per the manufacturer’s 

instructions. DNA was also collected from the parental T7Cas9 cell line in the same way.  

 

 

3.7.3 SCREENING PCR FOR REPAIR TEMPLATE INTEGRATION FROM POOLED 
TRANSFECTIONS 

A PCR strategy was used to detect the correct integration of each repair template in the 

pooled transfection. This strategy involved the use of one shared primer outside of the 

repair template region, and one primer inside the repair template in a region unique to 

that repair template. The screening primer design process to detect integration of specific 

repair templates is shown in Figure 4. Briefly, primers were designed manually to ensure 

the binding region was as unique to the specific design as possible. Ideally, each primer had 

<85% identity against other repair templates in the same transfection, and where possible 

with a unique 3’ base, to reduce the chances of amplification against other repair 

templates. Screening primer sequences and cycling conditions using Q5 polymerase (NEB) 

can be found in Appendix 7.2.7. To clarify, one mastermix was set up per transfection 

containing the genomic DNA to ensure that any absence of a band was not due to the 

absence of template DNA. Resulting PCR products were assessed on an agarose gel.  

 

3.8 Repair Template Design – Double-Stranded 
3.8.1 DESIGN 
To assess whether double-stranded DNA was more efficient at generating precision 

mutants, repair template designs targeting KKT2 S493A, KKT2 S530A (1 guide design), and 

KKT2 S923A were reused. The only change to the design was that the homology arms were 

extended outwards from the mutagenized site by 20 bp to a final length of 160 bp repair 

template. Additionally, repair templates were designed to generate KKT2 S25 mutants to 

either alanine, glutamic acid or synonymous serines. The repair template was designed as 

per the pooled design 2 recoding methodology (see Methods 3.7.1 and Appendix 7.2.4.4 

for details), except extending the length (as with the other targets) and reducing the 
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emphasis on the inclusion of a restriction site (as PCR-based screening was to be used). For 

new targets, sgRNAs were preferentially chosen to leave a gap between each protospacer 

sequence, and recoding focussed on incorporating more A’s and T’s, to aid screening primer 

design. For targets attempted with single-stranded repair templates, the same sgRNAs and 

recoding were used, just with the extension to the homology arms of the repair template 

and modifying repair templates to include glutamic acid and synonymous mutations as 

well.  Designs and full sequences can be found in Appendices 7.2.4.4 and 7.2.5.5.  

 

3.8.2 PRODUCTION OF REPAIR TEMPLATES 
For double stranded repair templates, the design was split into roughly half, with an 

overlapping region of 18-20 bp (Figure 8). Oligonucleotides (Merck) for each half were 

annealed and amplified as in the method described to produce sgRNA (Methods 3.3), 

except adjusting the annealing temperature to each reaction.  Resulting reactions were run 

out on an agarose gel to check for correct product formation. Products were purified with 

a PCR purification kit (Qiagen) as per the manufacturer’s instructions, except eluted in 10 

µl of water. 

 

3.8.3 DNA PREPARATION, TRANSFECTION AND GENOMIC DNA EXTRACTION 
sgRNA was prepared as before – primer sequences can be found in Appendix 7.2.5.1. Repair 

templates and sgRNA guides were cleaned up using a PCR Purification Kit (Qiagen), as per 

the manufacturer’s instructions, except eluting in 10 µl of sterile distilled water. 5 µl of this 

was used for each transfection as before (Methods 3.5). This was approximately 5 µg of 

repair template per transfection, reduced from 10 µg used in the single-stranded DNA 

(ssDNA) transfections, as well as doubling the quantity of sgRNA compared to previous 

ssDNA transfections (approximately 5 µg sgRNA DNA). Transfected cells were recovered in 

20% FBS HOMEM containing 10 µM 6-biopterin (Merck) both before and during cloning, as 

6-biopterin has been shown to improve growth of Leishmania (Trager, 1969). Clones were 

expanded following 1 week of recovery.  On expansion, all cells were transferred to 10% 

FBS HOMEM without 6-biopterin. Cell pellets were collected from populations and clones 

as before.  
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3.8.4 SCREENING PCRS 
5 µl of the extracted genomic DNA was used for each screening PCR with VeriFi polymerase 

mix (PCR Biosystems) – see Appendix 7.2.5.6 for specific primer and cycling details. WT and 

mutant PCRs were set up independently, so an absence of a band in either reaction was 

considered to be a failure, but technical error was not controlled for due to the large 

quantities of reactions. PCR products were run out on agarose gels to determine genotype. 

 

3.8.5 SEQUENCING 
Clones indicating a positive result in the mutant PCR reaction were taken forward for 

Sanger sequencing. 5 µl of genomic DNA was used for an additional PCR that covered the 

whole repair template with Q5 polymerase (NEB) – see Appendix 7.2.5.7 for primers. PCR 

products were checked on an agarose gel, and then purified with a PCR purification kit 

(Qiagen) as per manufacturer’s instructions. PCR products were sent for Sanger Sequencing 

(Genewiz) with the same primers used for amplification. 

 

3.9 Alamar Blue Growth Assay 
Where possible, two homozygous clones of each kinetochore phosphosite mutation were 

selected at random. Where two were not available, either an additional clone with a 

different genotype was chosen, or only one clone was used. When a non-homozygous 

clone was used due to a lack of homozygous clones, where possible, it was chosen to have 

the target mutation on both alleles, and with as much of the repair template integrated 

into both alleles as possible. I.e. a “complex” mutant homozygous for the target was 

favoured over fully heterozygous mutants due to concerns of replacement of the target 

mutation with the WT allele. But a heterozygous mutant was used if no other mutants were 

available. Cultures were grown to mid-log phase in 10% FBS HOMEM. Dilutions of each 

culture were prepared to 2500 cells/ml in the same media and were seeded onto 96-well 

plates in triplicate such that 500 cells were seeded per well. A medium only control was 

also included, and empty wells were filled to the same volume with PBS. 96-well plates 

were prepared in duplicate (one for use as a day 0 plate, one for use as a day 5 plate). The 
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day 0 plate was immediately supplemented with 40 µl 0.0125% (w/v) resazurin (Alamar 

blue) in PBS into each well (except those containing PBS) and left to incubate in the dark at 

25°C for 4-6 hours. The day 5 plate, was returned to the incubator for 5 days, then 

supplemented with Alamar blue in the same way. After incubation with the Alamar blue, 

the fluorescence at emissions of 590 nm was measured with a BMG Labtech CLARIOstar® 

microplate reader. The readings of the wells containing cells were corrected to the media-

only wells (blank). The mean of the triplicate wells was normalised to the parental T7Cas9 

control to calculate the percentage growth.  

 

3.10 Flow Cytometry 
As the mutations generated all targeted the kinetochore complex, it was expected that 

these mutations would lead to a cell cycle progression phenotype such as an accumulation 

in one phase of the cell cycle. To assess this, the quantity of DNA content per cell was 

assessed through propidium-iodide flow cytometry. The same clones as per the Alamar 

Blue assay were grown in 10% FBS HOMEM media, and 1 x 107 mid-log phase cells were 

pelleted at 1000 x g for 10 minutes. Cells were washed once in PBS with 5 mM EDTA (PBS-

EDTA), and the pellet was resuspended in PBS with PBS-EDTA. Cold methanol was added 

slowly to a final concentration of 70% (v/v) and were left at 4°C to fix overnight. After 

fixation, samples were diluted to 36.8% methanol (v/v) by adding PBS-EDTA and cells were 

pelleted as before. The pellet was washed once in PBS-EDTA and was resuspended in PBS-

EDTA with 10 µg/ml propidium iodide and 10 µg/ml RNaseA. Samples were incubated in 

the dark at 4°C overnight, gently resuspended and transferred to a 96-well plate, splitting 

the sample between three wells per cell line. Samples were analysed on a CytoFLEX LX355, 

gating for parasite cells, followed by single cells (singles). Each well was set to record 20,000 

events in singles, measuring the propidium iodide, as well as forward and side scatter. FCS 

Express 7 was used to analyse the results. The gating used to collect the data was replicated 

for analysis, and the number of cells was plotted against the propidium iodide intensity. 

The proportion of cells under each peak was assessed using the built-in DNA content 

analysis (Multicycle) to fit 1 cycle using model 5. The percentages of cells in each cell cycle 

stage (G1, S and G2/M) were collated for the triplicate wells, which was then averaged. The 



 

  36 

replicates were the averaged and plotted, with the exception of KKT2 S530E clone 21 and 

KKT2 S25E clone 11 - see Results section 4.6 for further details.  

 

3.11 Statistical Analyses 
Statistical analyses were performed using GraphPad Prism version 8.3.0. For the Alamar 

blue growth assay, a one-way ANOVA test with Dunnett’s multiple comparisons was 

performed, comparing the means of each cell line with the parental T7Cas9.  

For the cell cycle flow cytometry, a 2-way ANOVA test with Dunnett’s multiple comparisons 

test was performed, set to compare the mean of each cell cycle stage for each cell line 

against the corresponding mean of the T7Cas9 parental cell cycle stage. Even though the 

percentages are linked (i.e. if G1 is higher, S + G2/M must be lower), each cell cycle stage 

was assessed independently to simplify the analysis.   
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4 CHAPTER THREE - RESULTS 

4.1 Single-Stranded Repair Templates 
To investigate the impact of phosphorylation on kinetochore proteins in Leishmania 

mexicana, a CRISPR-Cas9 precision editing strategy was used to attempt to ablate 

phosphosites of interest on kinetochore proteins. These sites were chosen based on data 

from Geoghegan et al. (2022), which indicated importance in the cell cycle. In order to 

generate the chosen mutations, the workflow shown in Figure 5 was used. Briefly, a repair 

template was designed and synthesised as a 120 nt oligonucleotide. This method was 

adapted from unpublished work by Juliana Carnielli, which had used a similar approach 

previously, to investigate the kinase domain of KKT2 by mutating the gate-keeper residue 

of the ATP-binding domain. Similar use of single-stranded oligonucleotide repair templates 

has also shown to be effective in kinetoplastids in the literature - Figure 1B (Zhang and 

Matlashewski, 2015; Medeiros et al., 2017; Rico et al., 2018; Wall et al., 2018; Pal and Dam, 

2022). 

Following transfections, up to 40 clones were screened using a restriction digest strategy 

to look for the presence of mutant alleles (Figure 5, see Appendix 7.2.6 for further details). 

If present, the clone was sequenced with Sanger sequencing. In addition to 

nonsynonymous mutations to ablate the phosphosite, a non-phosphosite positive control 

targeting KKT2 M146G (the gate-keeper residue of the kinase domain), and synonymous 

mutations for KKT7 S304 (KKT7 S304S) and KKT4 S300 (KKT4 S300S) were tested as 

additional positive controls. A summary of the results can be found in Table 2.  

Of the 16 different transfections, only 3 showed incorporation of the mutation – one of 

which was the positive control (KKT2 M146G) and had been produced previously (Juliana 

Carnielli, unpublished work). Other than KKT2 M146G, integration of the repair template 

was detected in 3 clones in KKT2 S493A and 2 clones in KKT4 S300A (Figure 6). Homozygous 

integration of the repair template was detected in all three transfections, but heterozygous 

integration was only detected in KKT2 M146G (Table 2). 

In addition to these clones, one clone from each of the KKT2 S493A and KKT4 S300A 

transfections indicated an unexpected genotype (KKT2 S493A Clone 37 and KKT4 S300A 

Clone 16, Figure 6A and B). Sanger sequencing revealed that these clones incorporated the  
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Figure 5. Schematic of the single-stranded DNA precision editing workflow. Repair 

template is designed to: mutate the target site codon, remove Cas9 break sites and change 

(add or remove) a restriction site. The repair template was synthesised as a 120 nt single-

stranded oligonucleotide (adapted from Juliana Carnielli, unpublished work). Cells were 

transfected with the repair template and sgRNA corresponding to the Cas9 break sites 

which were removed in the repair template. Following transfection, cells were cloned and 

allowed to recover to integrate the repair template. To screen clones, a PCR was completed 

with primers A and B to cover the entire repair template region. The PCR product was then 

digested with the appropriate restriction enzyme (as per the modified site in the design) to 

assess the genotype of the clone. Clones indicating a homozygous or heterozygous 

incorporation of the repair template were confirmed with Sanger sequencing.  

 

 

repair template differently on each allele. Each of these repair templates had two regions 

of synonymous mutations (corresponding to the two protospacer targeting sequences) 

with a gap in between, such that the synonymous mutations were effectively separated in 

two (Figure 6A and B). In these clones, sequencing revealed that one of the regions of 

recoding was integrated in a homozygous manner, whilst the other showed a heterozygous 

incorporation. This suggested that recombination occurred at different places on each 

allele. It is likely that the short break in synonymous mutations (11 bp on KKT2 S493A, 21 

bp on KKT4 S300A) was used for recombination instead of the intended homology arms. 

Luckily, the target codons were part of the region which was mutated on both alleles in 

each of these clones. As these clones had a mix of homozygosity and heterozygosity, their 

genotype has been designated as “complex”. 

Surprisingly, no mutant clones were detected when using synonymous mutation only 

repair templates (Table 2). These repair templates were intended to act as a positive 

control, given that the coding sequence was unaltered. More strikingly, from the five 

synonymous repair templates tested, one of the corresponding non-synonymous 

mutations was successfully generated (KKT4 S300A) - Figure 6. Both KKT4 S300A and KKT4 

S300S transfections were completed in parallel, suggesting that the lack of detected KKT4  
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Table 2. Genotyping results for transfections using single-stranded oligonucleotide 
repair template, following detection by restriction digest and Sanger sequencing. 

 

Mutation 
No. of 
Clones 

Screened 
Homozygotes Heterozygotes 

Complex 
Genotypes 

Percentage of 
Mutants (all 
genotypes) 

KKT1 S1449A 7 0 0 0 - 

KKT2 M146G  40 2 1 0 7.5% 

KKT2 S493A 41 2 0 1 7.3% 

KKT2 S505A 39 0 0 0 - 

KKT2 S505S 40 0 0 0 - 

KKT2 S505A+S506A 23 0 0 0 - 

KKT2 S505S+S506S  20 0 0 0 - 

KKT2 S530A 21 0 0 0 - 

KKT2 S530A 1 guide 24 0 0 0 - 

KKT2 S530S 1 guide 16 0 0 0 - 

KKT2 S923A 21 0 0 0 - 

KKT4 S300A 33 1 0 1 6.0% 

KKT4 S300S 40 0 0 0 - 

KKT4 S422A 15 0 0 0 - 

KKT7 S304A 20 0 0 0 - 

KKT7 S304S 10 0 0 0 - 

TOTAL 402 5 1 2 2.0% 

 



 

  41 

 



 

  42 

Figure 6. Single-stranded oligonucleotide repair template precision editing results. 

Sequencing results for mutant clones from KKT2 S493A transfection (A), and KKT4 S300A 

transfection (B). Genotype, represented by the single-letter amino acid code that the target 

codon translates to is indicated below the cell line name, with superscript “WT” indicating 

that the codon shares the same DNA sequence as the reference sequence for identical 

encoded amino acids (WT DNA sequences - KKT2 S493: AGC; KKT4 S300A: AGC). Red arrows 

indicate protospacer sequences in WT sequences and equivalent position in repair 

templates; blue arrows indicate PAM sites in WT sequences and equivalent position in 

repair templates; yellow arrows indicate target site in WT sequences and mutated sites in 

repair templates. The translation is shown below each DNA sequence, with black text 

indicating the same protein and DNA sequence as the reference sequence, orange text 

indicating the same protein sequence but a different DNA sequence to the reference, and 

red indicating a difference in the protein sequence and hence DNA sequence. Sequencing 

results are cropped to show only the synonymously recoded region. (C) Summary 

genotyped results from KKT2 S493A and KKT4 S300A transfections. Total number of clones 

screened is represented by the n value, with the number of clones represented by each 

slice adjacent to the slice. 

 

 

S300S mutant clones was unlikely to be caused by a technical failure. In addition, the repair 

template for KKT4 S300A had all the same synonymous recoding as KKT4 S300S, 

demonstrating that the other mutations were tolerated. This led to the conclusion that the 

efficiency of this transfection was likely very poor.    
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4.2 Pooled Repair Templates 
To investigate whether the design of the oligonucleotide repair template was the cause of 

the low efficiency, five different oligonucleotide repair templates were designed targeting 

KKT2 S493 (positive control) and KKT2 S530, to generate both serine to alanine mutants, 

and serine to serine synonymous mutants. Each design used different criteria for selecting 

synonymous mutations to incorporate, based on analysis of oligonucleotide repair 

templates which had shown to work previously (analysis not shown - in addition to data in 

this report, data also came from Juliana Carnielli and Hannah Jones, unpublished work). 

From the previous data, all possible synonymous mutations were categorised as either: (A) 

the specific codon change had worked every time it was tried; (B) the specific codon change 

had appeared in both transfections which did generate mutants, and also in others that did 

not successfully generate mutants; (C) the specific codon change had not worked any time 

it was tried; or (D) the specific codon change was untested. These lists formed the basis of 

each design criteria. Design 1 utilised the previously generated repair templates to have as 

a comparator. Design 2 used recoding which met the criteria of (A). However, this list was 

very short, and so design 2 also had access to list (B) to ensure sufficient coverage of 

different target sequences to be able to remove PAM sites. Design 3 exclusively used codon 

changes from list (B). Design 4 primarily used list (B), except that for the three amino acids 

encoded by 6 triplet codes (serine, arginine and leucine), mutations were only chosen from 

codons that had altered the first base. Lastly, design five combined lists (C) and (D). As none 

of these lists contained the full complement of genomic codons, not all codons within the 

editing region could be mutated in every design. As such, this created varied spacing 

between synonymous mutations in the different designs (Table 1). Full lists can be found in 

Appendix 7.2.8, with full repair template sequences available in Appendix 7.2.4.3. 

Each of the five oligonucleotide repair templates for each of the four mutations (KKT2 

S493A, KKT2 S493S, KKT2 S530A and KKT2 S530S) were mixed in equal proportion 

respectively, and this mix was transfected into cells with sgRNA common to that target site 

(Figure 7A). Whilst there was the possibility that any given cell could take up more than one 

oligonucleotide repair template, given the low efficiency previously seen, it was thought 

that this was unlikely. Additionally, as the aim of this experiment was to assess the effect 

of the repair template design on integration, cells were not cloned but left as a population. 



 

  44 

DNA was collected from the population of cells after one week of recovery, to minimise 

loss of cells with a lethal phenotype. This DNA was assessed for the presence of WT alleles, 

and for each of the five different oligonucleotide repair templates mixed in each 

transfection using specific primers for each potential allele i.e. WT allele and each 

oligonucleotide repair template design (Figure 7B). Across all four transfections using this 

method, strikingly, integration of 18 of the 20 unique oligonucleotide repair template 

designs were detected by PCR (Figure 7C and D). One of the two not detected (KKT2 S530A 

design 2) was unclear whether it was present due to the primers also amplifying WT DNA. 

The other (KKT2 S530S design 5) was the only reaction that did not produce a clear PCR 

product with either WT or transfected KKT2 S530S population DNA. Given that the 

equivalent nonsynonymous design for design 5 was detected, it is unlikely that it was 

something inherent about the design that caused the integration of this repair template to 

be undetected. But the exact reason design 5 of the S530S transfection was not detected 

was not explored further.  

 

It should be noted that whilst screening primers were carefully designed to distinguish each 

repair template by requiring the primer to have less than 85% identity with another design 

than its target, due to the small region to choose from, some screening primers shared the 

3’ base with another oligonucleotide repair template other than its target (Figure 4). 

Hypothetically, this could allow amplification to occur in the absence of its intended target 

repair template, but in the presence of another sharing the same 3’ base. As such, it is not 

entirely possible to rule out that for example, the primer that recognises design 2 of a 

transfection was amplifying from DNA which had integrated design 3. However, it is clear 

that all of the KKT2 S493A/S and KKT2 S530S primers did not amplify when tested with WT 

DNA, and that all except one of the KKT2 S530A primers also did not react with WT DNA. 

As such, it is safe to conclude that mutant cells from one or more of the designs were 

present in the population, suggesting that the recoding strategy used in the design of the 

oligonucleotide repair template did not appear to have a bias with regards to integration.   
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Figure 7. Single-stranded pooled repair template results. (A) Workflow of the transfection. 

Five repair templates targeting the same codon were combined in equal proportion and 

transfected into T7Cas9 cells. Cells were grown as a population following transfection. (B) 

Screening PCRs schematic. Orange primer corresponds to a design specific primer for either 

S493A or S493S. Yellow primer corresponds to a design specific primer for either S530A or 

S530S. Primer sequences can be found in Appendix 7.2.5.4. (C and D) Agarose gels of 

genotyping PCRs as described in B for S493A and synonymous pools (C), or S530A and 

synonymous pools (D). WT input DNA indicates parental T7Cas9 DNA, S->A indicates input 

DNA was from the serine to alanine mutant pool for that target site, and Syn indicates input 

DNA from the synonymous mutant pool for that target site.  
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4.3 KKT2 Synonymous Mutations Using Double-Stranded 
Repair Templates 

From the pooled repair template experiment (Figure 7), it was apparent that 

nonsynonymous mutations were possible in KKT2, but were not generated at high enough 

efficiency to be detected at a clonal level with the current methodology (Figure 6). To 

separate the effect of the methodology from the potential impact of a nonsynonymous 

mutation, a new methodology using double-stranded DNA repair templates was tested 

using repair templates that would only produce synonymous mutations. If successful, the 

method would then be tested on nonsynonymous mutations.  

As such, double-stranded repair templates for synonymous equivalent designs of KKT2 

S493S, S530S and S923S were created, as well as a repair template for KKT2 S25S using the 

same strategy as before. Whilst the recoding was generally the same as the single-stranded 

repair templates, the homology arms were increased to 50 bp for a final repair template 

length of 160 bp. The repair templates were produced using a PCR reaction, by annealing 

and extending two primers, as shown in Figure 8.  

12 clones from each transfection were screened by PCR for integration of the repair 

template (see Appendix 7.2.2.2 for all agarose gel images). Of these clones, several of them 

indicated the presence of a mutant allele (Table 3). Positive clones by PCR were sent for 

Sanger sequencing – example sequencing results can be found in Figure 9. Homozygous 

mutants were confirmed in all four transfections (Figure 9 and Table 3).  

As previously described, the repair templates used in this experiment shared the same 

synonymous recoding designs as some oligonucleotide repair templates tested previously, 

with the exception of the codon corresponding to the target serine. Sequencing revealed 

that in some mutated KKT2 S923S clones, the cells did not take up the necessary recoding 

to generate the restriction site change, but did integrate other parts of the repair template 

(Figure 9D – clone 11). In this design, a single base change at the 5’ end of the repair 

 

 



 

  47 

 

 

Figure 8. Production of double-stranded repair template using oligonucleotide primers. 

Each design was split into a forward and reverse primer that encompassed about half of 

the total repair template, with an overlapping annealing region (yellow). Primers were 

annealed together in a PCR reaction and extended to complete the entire repair template, 

and the product was checked by gel electrophoresis. For sequences, see Appendix 7.2.4.4 

and 7.2.5.5. Diagram not to scale. 

Table 3. Genotyping results of synonymous mutant clones from transfections using 
double-stranded repair templates when screening 12 clones. 

 

Transfection Homozygous Mutants Heterozygous Mutants 

KKT2 S25S   5 (4)   2 (0) 

KKT2 S493S 0* (2) 3* (0) 

KKT2 S530S   1 (1)   0 (0) 

KKT2 S923S   1 (1)   3 (2) 

TOTAL   7 (8)   8 (2) 

Numbers inside brackets indicate results confirmed by sequencing.  

*Genotyping PCR was unclear.  
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Figure 9. Example sequencing results for mutant clones from transfections using double-

stranded repair templates. (A) Example homozygous mutant clone from KKT2 S25S 

transfection. (B) Example homozygous mutant clone from KKT2 S493S transfection. (C) 

Example homozygous mutant clone from KKT2 S530S transfection. (D) Example 

homozygous and heterozygous mutant clones from KKT2 S923S transfection. In all panels, 

genotype, represented by the single-letter amino acid code encoded, is indicated below 

the cell line name. Superscript “WT” indicates the codon sequence for that residue is the 

same as the WT reference sequence, and superscript “mut” indicates the synonymously 

mutated sequence (KKT2 S493: WT – AGC, mutant – TCT; KKT2 S530: WT – TCG, mutant – 

AGT; KKT2 S25: WT – TCG, mutant – AGT; KKT2 S923: WT – TCC, mutant – AGT). Red arrows 

indicate protospacer sequences in WT sequences and equivalent position in repair 

templates; blue arrows indicate PAM sites in WT sequences and equivalent position in 

repair templates; yellow arrows indicate target site in WT sequences and mutated sites in 

repair templates. The translation is shown below each DNA sequence, with black text 

indicating the same protein and DNA sequence as the reference sequence, orange text 

indicating the same protein sequence but a different DNA sequence to the reference, and 

red indicating a difference in the protein sequence and hence DNA sequence.  

 

template removes the restriction site. However, this change is isolated from the other 

mutations. In fact, there is another ~30 bp of homologous DNA between this base change 

and the remaining recoded sequence, so it is plausible that the cells used this region for 

recombination instead of the intended homology arms upstream of this base. This was not 

surprising, following previous results which showed recombination could occur with 

shorter stretches of homologous sequence (11 bp - Figure 6A and B). However, this result 

suggests that screening strategies should be designed to recognise larger regions of 

continuous sequence recoding, as single isolated base changes are not consistently 

integrated, and could lead to false negative results. It is plausible, that this was happening 

in the single-stranded oligonucleotide repair template transfections targeting KKT2 S923A 

and thus mutant clones were misidentified as WT because alternate homologous 

recombination had occurred that did not remove the expected restriction site.  
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4.4 Kinetochore Phosphosite Mutations Using Double-
Stranded DNA Repair Templates 

Phosphosites on kinetochore proteins (KKT2: S25, S493, S530 and S923; KKT4 S422; and 

KKT7 S304) were targeted for mutation to either alanine, glutamic acid or a synonymous 

alternate serine codon using 160 bp dsDNA repair templates. Following transfection, 

initially 12 clones were screened for integration of the repair template by PCR, followed by 

a further 12 clones if none were detected in the first batch (see Appendix 7.2.2 for agarose 

gel images). If PCR screening indicated a potential integration event of the repair template, 

a second PCR which amplified over the entire template region was completed, and this PCR 

product was sent for Sanger sequencing. Due to the transfection being selection-free, it 

was expected that clones could either be homozygous mutants (i.e. the repair template 

integrated successfully on both alleles), heterozygous mutants (i.e. the repair template only 

integrated on one allele, leaving the other with the WT/native sequence), or homozygous 

WT (i.e. the repair template failed to integrate on either allele leaving both alleles with the 

native sequence). Following the ssDNA transfections, it was also possible to find “complex” 

mutants but it was unclear how likely this would be.  

Of the 18 different transfections, at least one homozygous mutant clone was identified in 

each transfection following Sanger sequencing, except for KKT2 S923S. This result in of itself 

suggests that this methodology has a vast improvement in efficiency in comparison to the 

other methods investigated in this project. One mutant clone within 12 suggests a 

minimum efficiency of 8.3%, compared to the less than 2% efficiency when using single-

stranded DNA (Figure 6).  

From these 18 transfections, 29.2% of clones screened showed integration of the repair 

template (Table 4). Overall, 21.7% of clones screened were homozygous mutants, with the 

remaining 7.5% of mutant clones being either heterozygous or complex mutants. These 

percentages were calculated using the repeat KKT2 S923S transfection where no mutant 

clones could be detected. As previous data suggested that is possible to generate this 

mutation, using the data from the previous transfection (Table 3) for this site instead 

increases the editing efficiency to 30.4% - 22.1% homozygous, 6.3% heterozygous and 2.1% 

complex. Either way, the overall editing efficiency was around 30%, with just over 20% of  
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cells becoming homozygous mutants. This efficiency is an notable improvement over the 

use of single-stranded DNA repair templates, improving by over 10-fold.  

Efficiency varied between transfections, ranging from 1 homozygous mutant within 12 

clones (KKT7 S304A, S304E and S304S) – 8.3% integration – to 7 homozygous mutants and 

1 heterozygous mutant within 12 clones (KKT2 S493A) – 66.6% integration. Results for each 

repair template by both PCR and sequencing are in Figure 10. By PCR, KKT2 S25A had the 

highest percentage of mutations (66.6%). The largest number of mutants detected by PCR  

was 9 in KKT2 S923E, but as 24 clones were screened, this was equivalent to an editing 

percentage of 37.5%. In comparison, only one mutant was confirmed by Sanger sequencing 

in KKT2 S923A, KKT7 S304A, KKT7 S304E and KKT7 S304S. 

PCR screening was not clearly able to identify mutants in the transfections for KKT2 S923A, 

KKT7 S304A, KKT7 S304E and KKT7 S304S. For KKT2 S923A, 2 clones exhibited a single PCR 

product with high intensity in the mutant PCR and several PCR products of varying intensity 

in the WT PCR at unexpected product sizes (clones 4 and 11 – Supplementary data in 

Appendix 7.2.2.2). The other two clones that were unclear had an intense single PCR 

product in the WT PCR reaction but a lower intensity single PCR product in the mutant PCR 

reaction (clones 6 and 12). Clones 4 and 11 were both identified by sequencing to be 

homozygous mutants, suggesting the banding pattern seen in the WT PCR was non-specific 

amplification of an unknown locus. Clones 6 and 12 were identified by sequencing to be 

WT, potentially suggesting some non-specific amplification of the WT locus. Similar to 

clones 6 and 12, a low intensity PCR product was present in the parental reaction when 

amplified with the mutant PCR primers. But it is unclear why this product was more 

prominent in these samples than the other WT clones. For the KKT7 mutations, the banding 

pattern of all the clones, except the parental, showed two PCR products in the WT reaction. 

Most clones also showed several PCR products in the mutant PCR reactions. These products 

generally appeared non-specific, but did not correlate with the non-specific products seen 

in the parental reaction with the same primer pair. However, one clone in each mutation 

had a PCR product at the same size as the most intense WT PCR product (at the expected 

size). These clones, as well as one clone with the nonspecific PCR product pattern in the 

mutant PCR reaction, were sent for sequencing. Only those with the correct size PCR  
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Figure 10. Screening results of phosphosite mutant clones transfected with dsDNA repair 

templates. A) KKT2 PCR screening results. B) KKT2 Sanger sequencing results. C) KKT4 S422 

and KKT7 S304 PCR screening results. D) KKT4 S422 and KKT7 S304 Sanger sequencing 

results. Target site is indicated on the left with the target mutation indicated at the top. 

Number of clones screened is indicated by the n number below each pie chart, with number 

of clones represented by each slice around the outside, adjacent to their slice. Genotypes 

in A and C: WT – PCR product was detected in the WT primer set reaction and not in the 

mutant set reaction; heterozygous – PCR product was detected in both WT and mutant 

primer set reactions with approximately equivalent intensity; homozygous – PCR product 

was only detected in mutant primer set reaction; Unclear – PCR product was detected in 

both WT and mutant primer sets with either differing intensity in each or additional 

unknown products; Fail – no PCR product was detected in either reaction. Genotypes in B 

and D: WT – both alleles match the reference sequence; heterozygous – one allele matched 

the reference sequence, one allele matched the repair template sequence (identified by 

dual peaks of similar height in the chromatogram); homozygous – both alleles match the 

repair template sequence; complex – evidence of integration of the repair template either 

to different extents on each allele, or with unexpected mutations (see main body for more 

details); Fail – the sequence was unable to align with either the reference sequence or the 

repair template sequence.  

 

 

product were mutated (S304A clone 9, S304E clone 12 and S304S clone 5 – Appendix 

7.2.2.2). 

It was unexpected that KKT2 S923S did not yield a mutant clone within 24 clones when 

previous work had shown this was possible with the same repair sequence and sgRNA 

sequences (Figure 9D). It is likely that this result was caused by a technical issue with this 

transfection and/or screening process. Out of the 24 clones screened, 13 did not generate 

a PCR product in either the WT or mutant PCR reactions, suggesting a general issue with 

the collection of DNA, as the WT PCR on the parental DNA (which was from a different DNA 

extraction) worked as expected and all the reactions shared the same PCR mastermix.  
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In addition to the expected genotypes of homozygous and heterozygous incorporation, 

sequencing revealed that 5 clones had integrated the repair template in an unexpected 

way and have been called “complex”. These were one clone in KKT2 S493E, KKT2 S530E, 

and KKT2 S923E transfections; as well as 2 clones in the KKT4 S422S transfection. KKT2 

S493E clone 9 showed homozygous incorporation of the entire repair template, except it 

had complete loss of the codon encoding E496, which is in the middle of a recoding region. 

KKT2 S530E clone 19 seemed to show homozygous incorporation of the entire repair 

template, except the target codon which showed secondary peaks. The secondary peaks 

were not as high as the main peaks of the chromatogram, but notably higher than 

background. In addition, a few other mutated residues also seemed to have background 

peaks corresponding to the WT bases. This could either be indicative of the presence of a 

WT copy as well as two mutated copies, or could be suggestive that the cell line was not 

clonal. KKT2 S923E clone 22 incorporated the entire repair template in a homozygous 

manner, except the first base of H927 which was heterozygous. This led to a C->G 

transformation on one allele, causing a mutation to aspartic acid. KKT4 S422S clones 7 and 

12 showed an identical genotype, incorporating the repair template in a homozygous 

manner for the 3’ region of recoding (where the target S422 is) but a heterozygous 

incorporation of the repair template in the 5’ recoded region.  

On the assumption that the editing efficiency of this method is around 30%, when all 

mutant genotypes are taken into consideration, it is possible to predict the likelihoods of 

detecting a given number of mutant clones in the future. A binomial distribution can show 

the probabilities of detecting x number of mutant clones when screening 12 clones, to 

determine if 12 is a suitable number of clones to screen. The binomial distributions for a 

range of editing efficiencies are shown in Figure 11A. For an editing efficiency of 30%, the 

most likely scenario is that 3 or 4 mutant clones are detected, but it is much less likely that 

7 or more mutant clones are detected. By using the cumulative frequency of these 

probabilities (Figure 11B), it is possible to infer that at 30% editing efficiency, there is a 90% 

probability that up to 5 mutant clones are detected when screening 12 clones. When 

compared with the in vitro data (Figure 11C), it is apparent that the detection of larger 

numbers of clones is not very likely at this editing efficiency, but is more likely at a higher 

editing efficiency of 40%. In comparison, the large number of transfections with only 1   
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Figure 11. Mathematical analysis of precision editing efficiencies. A) Binomial distribution 

of the theoretical probabilities of identifying several mutant clones within 12 randomly 

selected clones for all mutant genotypes combined at a range of editing efficiencies. The 

theoretical proportion of mutant cells is given in the legend (right). This editing efficiency 

is a sum of all homozygous, heterozygous and complex mutants. 30% editing efficiency is 

shaded for clarity, given that the calculated editing efficiency in vitro was around 30%. 

Whilst the probability of finding 8 or more clones appears to be 0 under some conditions, 

it is never truly 0 but as low as 4 x 10-9 for the 20% mutants line (red). B) The cumulative 

frequency distributions for the same editing efficiencies as in part A. The dotted line 

indicates the point at which there is a 90% chance for detecting the respective number of 

clones (approximately 5) or fewer mutant clones with a 30% editing efficiency. This area is 

highlighted with orange shading. C) A histogram of the frequencies at which several 

kinetochore mutant clones (all genotypes) were detected when 12 clones were screened. 

Transfections where 24 clones were screened were omitted. D) Box and whisker plot of the 

editing efficiencies of all the kinetochore mutations (all genotypes). The mean is indicated 

with a cross.  

 

 

detected mutation is more similar to the trend seen when there is only a 20% editing 

efficiency. This sample size is very small, so drawing conclusions is challenging, but it does 

appear that there is a split, with some transfections fitting a 20% editing efficiency and 

some fitting a 40% efficiency (Figure 11C). If a transfection had a high editing efficiency, its 

sister transfections (i.e. the alternate amino acid replacement but the same target codon) 

had similarly high efficiency. The same is true of the inverse, i.e. that if one design had poor 

efficiency then its sister designs also had poor efficiency. For example, KKT2 S25A detected 

a total of 7 mutant clones within the 12 screened, and S25E and S25S had 5 and 3 

respectively. Only one mutant clone was detected in KKT7 S304A, and similarly in S304E 

and S304S. This would suggest that there is something inherent about either the 

synonymous recoding in the repair template or sgRNA design that is impacting the 
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integration, as these features are shared between them. Further analysis into the repair 

template and sgRNA designs is needed to identify the trends, and a larger sample size is 

needed to infer the “true” editing efficiency with more confidence. 

 

 

4.5 Growth Analysis of Kinetochore Phosphosite Mutants 
As the kinetochore phosphosite mutant clones did not appear to exhibit any visual 

morphological defects during normal passage and growth, it was hypothesised that the 

growth rate could be impacted by the phosphosite mutations generated. To assess this, 

kinetochore phosphosite mutants were grown to mid-log phase, and then 500 cells were 

loaded into a well of a 96-well plate. After 5 days, the growth of the culture was measured 

by Alamar blue assay using the fluorescence. A control plate (a duplicate of the 5-day plate 

to control for inaccurate loading of the small number of cells) was also set up and measured 

in the same way on day 0, but most of the data points when adjusted for the background 

were below zero, so this data has not been shown. Two clones were selected at random 

from the homozygous mutant clones. When two clones were not available, but other non-

homozygous clones were available, a second clone was chosen from the available clones. 

These were KKT2 S530E clone 10 which had a heterozygous genotype at the point of 

cryostorage (although genotype was not reassessed after thawing), and KKT2 S923E clone 

22 which had a heterozygous H927D mutation as well as homozygous S923E. 

KKT7 S304A clone 9 was the only cell line to show a significantly different rate of growth, 

when normalised to T7Cas9. KKT7 S304A clone 9 grew faster than the parental, with a mean 

growth of 176.3% growth at day 5 compared to the parental - Figure 12.  

Whilst no other mutants showed significantly different growth, some clones showed 

increased growth.  Most of the clones that showed an increased growth rate were 

synonymous mutant clones. The largest of these were KKT2 S530S clone 7, KKT2 S923S 

clone 10, KKT2 S422S clone 4 which had mean growths of 130.0%, 155.5% and 149.7% 

respectively. In contrast, the clones that showed a non-significant decrease in growth were 

mostly KKT2 S25 mutants. KKT2 S25A clone 5, KKT2 S25S clone 5 and KKT2 S25S clone 10 

showed decreased growth rates of 83.0%, 83.3% and 79.3% respectively. In addition, KKT2 
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S493A clone 10 and KKT2 S493E clone 6 also showed reduced growths of 84.0% and 83.3% 

respectively.  

Whilst only KKT7 S304A clone 9 showed a statistically significant growth change, it is 

apparent that growth rates between clones of the same genotype did not appear to grow 

similarly. This could be caused by other unknown genetic differences between the clones 

such as off-target effects or pre-existing genetic diversity from the parental population. 

However, further investigation is required to assess these differences. 

 

 

 

Figure 12. Alamar blue growth assay of kinetochore phosphosite mutants following 5 

days of growth. CL = clone. Colours of bars indicate target site groupings. KKT2 S530E clone 

10 is a heterozygote for the S530E mutation, indicated by S/E. KKT2 S923E clone 22 had a 

heterozygous H927D mutation and is indicated by §. Error bars indicate the standard 

deviation. * is p <0.05. n = 3 for all cell lines except KKT2 S493 and KKT2 S530 mutants which 

were n = 4.  
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4.6 Cell Cycle Analysis of Kinetochore Phosphosite Mutants 
To assess whether phosphosite mutations influenced cell cycle progression, the quantity of 

DNA in each cell was measured using propidium iodide flow cytometry in mid-log phase 

cultures. The proportion of cells in each cell cycle stage was assessed, as well as looking for 

anomalies in DNA content.  

When assessing each cell cycle stage independently, most mutants were not significantly 

different to the parental T7Cas9 cell line (Figure 13A). Only KKT2 S25S clone 5 showed a 

significant increase in the number of cells in G1 compared to T7Cas9, but neither S-phase 

nor G2/M cells showed a significant difference in proportion (Figure 13A). The other KKT2 

S25S clone (clone 10) did not mirror this difference. However, it should be noted that only 

one of the three replicates showed a notable difference in the percentage of G1 cells of 

66.5%, whereas the other two were 45.0% and 41.1% respectively.  

KKT2 S25E clone 11 and KKT2 S530E clone 21 had to be omitted from this analysis because 

of the presence of an additional peak with a greater fluorescence than the G2/M peak 

which the DNA content model fitting was unable to process (Figure 14A). For KKT2 S25E 

clone 11, this peak was consistent throughout all the replicates, and represented about 4% 

of the cells using the rough gating shown in Figure 14A. For KKT2 S530E clone 21, this peak 

grew in proportion with each replicate and passage. Initially, it started similarly to KKT2 

S25E clone 11 at around 4.8% but continuously grew in proportion, containing around 

13.7% of the cells after several passages. In addition, the apparent G1 peak dropped in 

proportion with this high intensity peak’s increase, starting at around 41% of cells and 

dropping to 4.6% of cells in the final replicate. Based on the intensity of these additional 

peaks in both cases, they likely represent a proportion of cells which have become triploid 

rather than tetraploid.  

Following identification of the triploid population in KKT2 S530E clone 21, a fresh batch of 

cells were thawed from cryostorage, and spit into 4 subpopulations which were grown 

independently. The flow cytometry analysis was repeated on each subpopulation as before, 

but the phenotype was not replicated, and showed a normal cell cycle distribution across 

all replicates (Figure 14B). On receiving this result, it was concluded that repeating KKT2 

S25E clone 11 was likely to yield the same result, so was not repeated.  
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Figure 13. Cell cycle analysis of mid-log phase cultures of kinetochore phosphosite 

mutants. A) KKT2 S25 and KKT2 S493 mutants, n = 3. B) KKT2 S530 and KKT2 S923 mutants, 

n= 4. KKT2 S530E clone 10 is a heterozygote for the S530E mutation, indicated by S/E. KKT2 

S923E clone 22 had a heterozygous H927D mutation and is indicated by §. C) KKT4 S422 

and KKT7 S304 mutants, n =2. * is p < 0.05. Error bars indicate the standard deviation in all 

panels. CL = clone in all panels.  
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Figure 14. Cell cycle analysis of KKT2 S530E clone 21 and KKT2 S25E clone 11. A) 

Histograms of propidium iodide intensity for each cell line. In each biological replicate 

(indicated on the left), three technical replicates are plotted as individual lines. Gates used 

are identical in width but have been repositioned to fit the exact intensity of the peaks for 

each biological replicate. Percentages correspond to one representative technical 

replicate. B) Cell cycle analysis of KKT2 S530E clone 21 repeat when split into four 

subpopulations (A to D). Error bars indicate the standard deviation. 
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4.7 Discussion 

It is clear from these results that precision editing is possible in Leishmania mexicana, but 

that the methodology used plays a large factor in the success of generating mutants. 

Broadly speaking, two approaches were investigated in this project – the use of single-

stranded DNA (ssDNA) repair templates and double-stranded DNA (dsDNA) repair 

templates. Single-stranded repair templates were inconsistent in the generation of 

mutants, and efficiency seemed to be low. The presence of the integrated repair template 

was demonstrated in populations (Figure 7), but not in clones in most cases (Table 2 and 

Figure 6). In contrast, double-stranded repair templates were far more consistent in the 

generation of mutations (Table 4, Table 5, Figure 9, and Figure 10). Based on the frequency 

that mutated clones were identified, double-stranded repair templates generated a higher 

proportion of mutant cells within a given population than the single-stranded 

oligonucleotide repair templates. Other than the “stranded-ness” of the repair templates, 

the only major differences between the methods were the increases in the length of the 

homology arms, the inclusion of 6-biopterin in the recovery media, and the larger quantity 

of sgRNA in the transfection. Whilst it cannot be ruled out that these factors were of more 

or equal importance than whether the repair template was single- or double-stranded, it 

seems suggestive that the change in “stranded-ness” is a key factor (Table 5). Whilst the 

experiments completed in this project are not able to determine why the type of DNA had  

 

Table 5. Comparison of the success of transfections using single-stranded or double-

stranded repair templates. 

Repair Template Type Successful Mutant Generation Out of Total 

Independent Attempts to Generate Mutants 

 Clones Population 

Single-stranded 3/16 (18.8%) 18/20 (90.0%) 

Double-stranded 21/22 (95.5%) - 
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such an impact, perhaps it is suggestive that the initiation of the DNA damage response is 

different between single- and double-stranded repair templates. Further investigation into 

this process in Leishmania may enable even greater improvements in editing efficiency.  

Whilst the type of DNA was evidently crucial in generating the desired mutations, it was 

interesting to reveal that the recoding strategy had little effect on the outcome. The 

variability in the success of transfections using the ssDNA repair templates was initially 

attributed to some aspect of the design. To investigate that hypothesis, two targets were 

chosen, and five repair templates were designed for each of them. These repair templates 

had a range of different recoding strategies such as using different codons, differences in 

spacing and quantity of mutations (Table 1). Unexpectedly, almost all the repair templates 

designed were detected by PCR (Figure 7). It should be noted that the sequences of these 

PCR products were not determined. However, on the assumption that each PCR exclusively 

detected the intended repair template, and with the additional data from the dsDNA repair 

transfections which used the same recoding as some of the ssDNA repair transfections, it 

is clear that the success of the transfection is not primarily linked to the recoding strategy 

used in the repair template design. This suggests that there is scope to recode the sequence 

in ways which enhance usability such as making screening simpler. That being said, this 

finding should be taken with caution because each of the repair templates tested here only 

induced ~10-15 SNPs in regions of about 60 bp of one gene in any given cell. Whilst studies 

in the literature indicate that translation rate is constant between sequences from across 

the whole genomes of higher eukaryotes, which inevitably vary in composition (Burchmore 

and Landfear, 1998; Brittingham et al., 2001; Villa et al., 2003; Beetham, Donelson and 

Dahlin, 2003), there is evidence to suggest that translation rate is dependent on the codons 

used in trypanosomes (Jeacock, Faria and Horn, 2018; Nascimento et al., 2018). Whilst the 

repair templates used here were small, it is likely that for larger scale recoding such as 

whole genes, there will be more consequences on the translation rate and hence health of 

the cell for diverging from the native sequences. As such, it is advisable to generate 

synonymous mutant control lines to help distinguish fitness effects caused by the recoding 

from those caused by the target-mutation, and to choose similarly used codons where 

possible.  
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When used cautiously, having the flexibility to choose any synonymous codon has great 

benefits for designing suitable screening approaches. The Leishmania genome has a high 

GC content of around 59% (Ivens et al., 2005; Peacock et al., 2007; Rogers et al., 2011; 

Chauhan, Vidyarthi and Poddar, 2011) compared to humans which has an average of 

around 41% (Lander et al., 2001). This can make primer design extremely challenging in the 

small regions of interest for precision editing, which can have even higher local GC content. 

Whilst there are approaches that can be used to amplify high GC content templates, 

increasing the chance of successful screening on the first attempt has several benefits. 

Failure to screen on the first attempt can lead to repeated passaging of the cells which can 

reduce the virulence, as well as requiring more media and consumables which increases 

the costs. To improve this technique in the future, it may be beneficial to intentionally 

recode regions with high GC content to increase the AT content (i.e. lower GC content), 

since editing efficiency does not appear to be impacted. Reducing GC content where the 

screening primer binds will lower the annealing temperature required during screening 

PCRs which could reduce instances of unclear genotyping from unexpected PCR results. 

Additionally, reducing the necessary melting temperature of the screening primer allows a 

wider range of annealing temperatures to be tested, should initial screening lead to unclear 

results. As such, repair template design and screening-primer design should be completed 

in parallel, to ensure annealing temperatures for primers are convenient for use. In 

addition, ensuring the 3’ base of the screening primer differs between WT and mutant 

sequence for that region can help to ensure specificity. In the KKT7 S304 PCR screening 

reactions, the 3’ base of the WT-specific primer was shared between the WT sequence and 

all the repair templates. The KKT7 S304 transfections had the most uncertain PCR products, 

with between 5/12 and 8/12 clones generating unclear PCR products each. It is plausible 

that the WT-specific primer was able to bind sufficiently to both WT and mutant DNA and 

allow amplification to occur, creating the unclear results. In these PCR reactions, most 

clones (but not parental DNA) produced two bands in the WT-specific PCR reaction, both 

of which were close to the expected product size (Appendix 7.2.2.2). This made 

interpretation of the results harder, as only one clone in each transfection had a single PCR 

product. Sequencing of clones with single-PCR products revealed they were homozygous 

mutants, indicating the product that was absent in their reactions was the real WT PCR 

product. Situations like this demonstrate that it is helpful to incorporate a back-up 
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screening approach into the design such as incorporating a change in common restriction 

site in the region of interest.  

Using a restriction digest strategy as the primary form of screening method was also tested 

in this project. In most cases, restriction digest tended to be more predictive of the 

genotype of the clone being assessed than PCR screening, following sequencing. This is with 

the caveat that this was only true when restriction sites were located in the same 

continuous stretch of recoded sequence as the mutation of interest. Restriction sites that 

were located further away from the target site, particularly in cases where there was a 

break in the recoding, were not good at predicting genotype. This was demonstrated by 

the presence of clones with a complex genotype, where the repair template was not always 

integrated in its entirety. A continuous region of recoding tended to be incorporated 

together, with only occasional failure to incorporate mutations at the end of a series of 

synonymous mutations. As such, it is highly plausible that clones with partial repair 

template integration were misidentified as WT if the sequence conferring the restriction 

site change was not integrated. Primers recognise a much longer sequence in most cases, 

so had higher chances of detecting a partial integration of the repair template than 

restriction enzymes which often only recognise a 6 bp long sequence. However, screening 

by PCR tended to be less accurate and dependent on how specifically the primer bound to 

either the WT or the mutant sequence. Several clones transfected with dsDNA indicated 

the presence of a mutant allele by PCR but were identified as WT by Sanger sequencing 

(5.0%). However, PCR screening was more convenient, and cheaper too. A 5.0% false-

positive rate was acceptable to have, since true positive results were also detected. 

However, it should be considered that of this 5.0% of clones, some PCR results were more 

suggestive of a particular genotype than others. 17.1% of clones screened by PCR that were 

transfected with dsDNA had an uncertain genotype following PCR screening (Appendix 

7.2.2.3). These included situations where both WT and mutant PCRs had bands but of 

unequal intensity, or the banding pattern in one or both PCRs were not as expected. As 

such, some of these PCRs seemed more likely to suggest that the clone was WT and had 

not integrated the repair template but the result left enough doubt to warrant sequencing. 

As such, it is not necessarily fair to say that all of these were strict false positives and 

suggests that the rate of misidentifying WT cells as a mutant genotype is likely less than 
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5.0%. However, there were instances where PCR screening misidentified mutant 

genotypes, such as misidentifying a homozygous mutant as a heterozygote. So taking 5.0% 

as an overall inaccuracy rate of PCR detection is reasonable.  

Both in the use of ssDNA and dsDNA, integration of the repair template was not always 

complete or perfectly faithfully on both alleles. These clones have been designated as 

“complex” genotypes. Most frequently, “complex” clones showed faithful inclusion of 

about half of the repair template, typically when there was a break in the recoding in the 

centre of the repair template. It is likely that in these cells, the WT sequence in the centre 

of the repair template was used for recombination rather than the intended homology 

arms. The smallest breaks in recoding were only 11 nt long. At this length of homology, it 

is more likely that the microhomology-mediated end joining pathway is activated, which 

can use regions of 5-25 nt in length for double-stranded DNA break repair (Zhang and 

Matlashewski, 2019).  Alternatively, it is possible that this genotype was caused by a failure 

to induce both double-stranded breaks on one allele by the Cas9 nuclease. In all the repair 

templates tested, the editing range was only 60 bp. The Cas9 nuclease is 160 kDa, 

approximately 10 nm x 10 nm x 5 nm in size (Josephs et al., 2015). Cas9 recognises and 

binds a region of 20 bp (the protospacer), but given its size, it is probable that in some (if 

not all) of the designs tested here, two Cas9 molecules would not be able to bind to the 

genomic DNA at the same time to make both breaks due to their proximity. Even though 

two Cas9 molecules would be unable to make both breaks simultaneously, it is still 

beneficial to have both sgRNAs. For example, one sgRNA may have better activity than the 

other, the different break sites may stimulate different repair responses from the cell, or 

the second may be broken after the first. In some cells, it is plausible that only one dsDNA 

break occurred, which increased the probability of recombination happening at a recoding 

break in the repair template.  Little is known about the specific factors involved in 

homologous recombination in Leishmania species (Kelso et al., 2017), despite its presence 

having been demonstrated around 30 years ago (Tobin, Laban and Wirth, 1991). RAD51 (a 

recombinase that is active during mitosis to repair DNA damage faithfully) is present in 

Leishmania and has been shown to respond to DNA damage (Kelso et al., 2017), as well as 

having roles in DNA replication (Damasceno et al., 2020). BRAC2 is also present and similar 

to other organisms, is responsible for localisation and loading of RAD51 onto sites of DNA 
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damage (Kelso et al., 2017). Further research into the other factors involved will hopefully 

shed light on the most effective way to stimulate the desired form of integration. 

Additionally, there were “complex” clones which contained an unexpected change to the 

amino acid sequence. It is apparent that these nonsynonymous mutations are unlikely to 

be compensatory, as at least one clone was identified in each transfection with the 

designed repair template faithfully integrated on both alleles. It is possible that these 

mutations help the cell manage the induced mutation, but they are clearly not required to 

survive. It is more likely that these events either stem from unfaithful DNA repair by the 

cell, or unfaithful production of the repair template (either during oligonucleotide 

production or during PCR amplification by the polymerase). Unfortunately, with the 

present data, it is not possible to determine the cause of these mutations.   

Of the attempts to use double-stranded repair template that failed to generate mutants, 

only the repeat of KKT2 S923S failed to identify mutant clones (Figure 10A and B). As this 

mutation was previously generated in this project (Figure 9D), this result is suggestive that 

there was a technical issue with this transfection and/or screening process. Whilst there is 

some evidence to suggest there were technical issue with the DNA extraction or PCR 

screening step, an alternate hypothesis is that the transfection efficiency dropped because 

of varying quality and quantity of DNA used. For the second replicate of KKT2 S923S using 

dsDNA, DNA was prepared in parallel to DNA for other KKT2 transfections in a single PCR 

plate, but S923 was the last to be used from this. As such, the plate was carefully opened, 

thawed and re-frozen several times prior to transfection. Doing so left the volumes in these 

wells to be slightly lower than expected when preparing them for transfection (likely due 

to evaporation), and perhaps caused some amount of DNA degradation. This could explain 

why the efficiency, which was 25% when only testing synonymous mutants with freshly 

made DNA, dropped to 0%.  

Whilst synonymous controls do not directly indicate whether a non-synonymous mutation 

is possible, it is clear from this report that their incorporation as a control in parallel is of 

great help in determining the reasons for failure to isolate the mutation of interest. 

Additionally, synonymous mutations are useful as controls in experiments that investigate 

the effect of the mutation of interest. Clones with synonymous mutations in this context 

can help to separate the effect of the non-synonymous mutation of interest from any 
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effects caused by the recoding used for screening purposes, as well as off-target effects 

from the guides used. If the recoded sequence affects things like translation speed, it will 

be apparent in both clones with synonymous only and non-synonymous mutations. 

Without the presence of synonymous mutation controls, this may be misidentified as a 

phenotypic difference between non-synonymous mutation and the parental line.  

Unfortunately, the mutants generated here did not appear to have a distinct phenotype. 

No mutation indicated a significant drop in growth rate, as was hypothesised for cell cycle-

dependent proteins. The only significant difference identified was KKT7 S304A clone 9, 

which grew faster than the parental when assessed by Alamar blue growth assay (Figure 

12). Without a second clone showing the same phenotype, it is hard to draw conclusions 

with certainty that this growth change is directly caused by the mutation in KKT7, or 

whether it is the result another genetic difference in this clone. Whilst no other mutant 

clones in this assay showed significant growth changes, it is quite apparent that other pairs 

of clones with the same mutation did not always grow at a consistent rate. It is not clear 

why some clones with identical mutations grew at differing rates but is most likely caused 

by the genetic diversity within the parental cell line. In addition, further validation of this 

phenotype is needed by a more accurate growth curve, as variance between replicates was 

high in all cell lines. On the whole, the lack of significantly different growth rates indicates 

that the phosphosite mutants generated here do not have notable changes to the rate of 

progression through the cell cycle such that their duplication time is affected, suggesting 

that none of the phosphosites mutated here have overarching control of the cell cycle.   

Additionally, most mutant clones did not exhibit a cell cycle defect. The only identified 

changes to the cell cycle were KKT2 S25E clone 11 and KKT2 S530E clone 21, which indicated 

apparent triploid cells (Figure 14A), and a slight increase in the proportion of G1 cells in 

KKT2 S25S clone 5 (Figure 13A). The triploid phenotype was not replicated when a fresh 

sample of cells were used (Figure 14B), suggesting this was a random event that was 

selected for when passaging the cells. It was hence presumed that KKT2 S25E clone 11 

shared a similar random event, as the other clone with this mutation lacked this phenotype 

so was not investigated further. Whether this mutation increases the likelihood of such 

random events remains to be seen. 
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Identifying several clones that have integrated the mutation of interest in a homozygous 

manner has been key to evaluating whether a phenotype is directly caused by the mutation 

of interest. It is plausible that differences seen between clones are the result of off-target 

mutations, compensatory mutations, or natural diversity in the parental population. But as 

none of the full genomes of these mutants have been sequenced, it is not possible to say 

which is the case with certainty. In the case of some of the mutations, only one clone was 

identified with the desired genotype. With only one clone it is difficult to be confident that 

differences seen are the result of the induced mutation alone. Having several clones with 

the mutation of interest can allow for reasonable scepticism that a phenotypic difference 

is caused by the mutation, if not all clones exhibit the same phenotype.  

The lack of phenotype from the phosphosite mutations generated in this project is not 

completely unsurprising. Other studies looking at the effect of both ablation of 

phosphorylation sites and phosphomimetic studies have found little to no phenotypic 

effect in cell lines with several mutated phosphosites (Hořejší et al., 2010; Yang et al., 2013; 

Marchand et al., 2022). Whilst these examples are not from kinetoplastids, they 

demonstrate that it is common for phosphorylation to play a subtle role in controlling 

protein function. In contrast, there are cases where a single phosphorylation site has 

significant impact on the cell (Xu et al., 2011; Canton et al., 2012; Keder et al., 2015). 

However, in the latter case, none of the mutations caused a lethal phenotype. As the 

kinetochore proteins investigated here are essential genes, complete dysregulation would 

likely be lethal. As such, it is unsurprising that there was no apparent effect from the loss 

of individual phosphosites.  

It should be noted that in many cases, the phosphosites that were mutated were in 

proximity to other serine or threonine residues in the primary protein sequence. For 

example, in KKT2 when looking at the 25 amino acid residues either side of S493, there are 

10 other serine or threonine residues. As the kinase that phosphorylates this site is not 

known, it is unclear whether it would be possible for this particular kinase to phosphorylate 

a nearby serine or threonine instead. If this upstream kinase is promiscuous enough to be 

able to phosphorylate alternate residues nearby, the phosphorylation state would likely be 

the same as a WT KKT2 protein, allowing function to proceed as normal. It has been shown 

in T. brucei that CLK1 can phosphorylate KKT2 at S508, which is thought to be equivalent of 
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S485 or S487 in L. mexicana (Saldivia et al., 2021; Geoghegan et al., 2022). However, CLK1 

has not been shown to phosphorylate alternate sites to date. Promiscuous phosphorylation 

is one potential explanation as to why the mutations generated here had little to no 

phenotype. Promiscuous kinases such as casein kinase II (Borgo et al., 2021) are known to 

phosphorylate various parts of the cell cycle machinery in humans (Schweighofer et al., 

2024), so it is highly plausible the same could be true for kinetoplastids. However, the 

phosphorylation status of the mutant proteins generated here was not investigated. Nor is 

it known whether the phosphorylation state is more or less important than the location of 

the added phosphate at particular residues. 

There have been more phosphorylation sites identified on these kinetochore proteins than 

were targeted for mutation here (Geoghegan et al., 2022). It is plausible that 

phosphorylation of several sites has a cumulative effect, and so removal of one 

phosphorylated residue has minimal impact. But loss of phosphorylation at several sites 

could cause a noticeable phenotype. Taking the example of KKT2 again, a double mutant 

was attempted targeting KKT2 S505 and S506 using the ssDNA approach, but no mutant 

cells were recovered. This is most likely due to the ssDNA method used, so repeating this 

target with the dsDNA approach would be enlightening. Further study is necessary to 

determine whether the phosphosites on KKT2, KKT4 and KKT7 have a cumulative effect, or 

whether phosphorylation plays a different currently unknown role. To determine if this is 

the case, protein-based approaches would be best to initiate investigation, to assess the 

range of potential phosphorylation states each kinetochore protein has, before moving to 

genetic modification to edit those sites. One way would be to use a phospho-protein mass 

spectrometry approach to identify the different phosphorylation states of each 

kinetochore protein. This approach could assess whether there are discrete 

phosphorylation states of high importance or a wider array of potential phosphorylation 

states with little indication of preference. In the former case, it is more likely that loss of a 

number of key sites would have an impact on fitness more so than in the latter, which could 

require loss of most or all phosphorylation sites to have an impact on function.  

It should be emphasised that the genes that were precisely edited here were essential. All 

three kinetochore genes in which the dsDNA method was tested are essential (Akiyoshi and 

Gull, 2014). The method developed here is likely to be widely applicable for use across the 
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genome, given that it works on essential genes which are most likely to be challenging to 

manipulate. Of course, not all mutations will be possible. For example, removing catalytic 

activity of an essential enzyme would likely be impossible to generate in an otherwise WT 

strain, even if other biochemically similar mutations are tolerated. The mutations induced 

here were only predicted to play a role on protein regulation, which given the lack of 

phenotype identified, is either multi-factorial or phosphorylation plays an alternative role. 

But this method opens up the possibility to unpick different aspects of essential genes that 

have previously been too technically challenging to investigate, as well as allowing more 

detailed study into non-essential genes. For example, this method could be used to modify 

motifs needed for other post-translational modifications, such as removing lysine residues 

of potential ubiquitination sites, or could be used to disrupt protein-protein interactions. It 

could also be used to manipulate trafficking signals or to influence drug-sensitivity.     

Whilst there are already examples in the literature of precision editing (Zhang and 

Matlashewski, 2015; Zhang, Lypaczewski and Matlashewski, 2017; Rico et al., 2018; 

Vasquez et al., 2018; Vergnes et al., 2019), there is little standardisation as to the approach 

being used (Yagoubat et al., 2020). As such, it is likely that time and resources amongst 

members of the field are wasted, due to failure to compare approaches. The method 

presented here is simple and consistent, which has the potential to become the standard 

in the field. Currently, the method presented here is not suitable for use en masse 

simultaneously. But it is otherwise quite flexible and could be used on any gene of interest, 

even beyond Leishmania species such as in trypanosomes. If there is desire to generate 

libraries of precisely edited mutants, this method has the potential to enable that, so long 

as mutants are generated in manageable batches for culturing and screening.  

Further research is still needed to adapt this method to become scalable in vitro at the 

point of transfection. To begin to increase the through-put of this method, an automated 

in silico approach to the design has been investigated and is presented in Chapter Four – 

Python Script. In order to complete the transfections and screening steps necessary to do 

a large number of precision mutants, it is first necessary to design the repair templates and 

oligonucleotide primers to create and screen them. Websites such as 

http://www.leishgedit.net/ (Beneke et al., 2017) have shown that automated design 

processes can aid in scale-up of mutant generation to allow large-scale projects, such as 

http://www.leishgedit.net/
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whole kinome assessment by Baker et al. (2021) to exist. Creating such tools also has the 

additional benefit of standardisation. Whilst efforts have been made to describe in detail 

how and when one codon sequence was chosen over another in this report, it is at the end 

of the day the individual’s choice as to which they use. Using a computer programme to 

execute this process ensures that the design will always follow the same decision making 

choices, independent of the researcher designing them. As long as the programme is coded 

to make design choices that have been shown to work in vitro, all non-lethal mutations 

should be possible to generate. However, the “rate-limiting step” of this precision editing 

method is the culturing and screening of clones on a transfection-by-transfection basis. 

Further work is needed to reduce this workload, as this will have the most impact at a high-

throughput scale.  

 

In conclusion, a methodology has been developed for consistent precision editing in 

Leishmania mexicana and has been shown to be effective on essential genes. Mutants were 

successfully generated on KKT2, KKT4 and KKT7, which included phosphomimetic mutants, 

phosphosite-deficient mutants, and synonymous mutants. Whilst efficiency of the editing 

varied by transfection, at least one homozygous mutant was recovered in each transfection 

and overall, 29.2% of mutants screened showed integration of the repair template. None 

of the mutants generated here showed growth defects or repeatable cell-cycle anomalies, 

suggesting that these mutations did not have significant impact on the cell cycle.   
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5 CHAPTER FOUR – PYTHON SCRIPT 

 

5.1 Introduction 
Python is an object-oriented high-level programming language with dynamic semantics and 

intuitive syntax (Python Institute, n.d.). It was created by Guido van Rossum in 1991, a 

Dutch programmer (Munro, 2024). Whilst Rossum made the first versions, Python has since 

been worked on by a large community of programmers from around the world, with the 

newest version (Python 3.0) being released in 2008 (Munro, 2024). This combination of 

Python being a human-friendly high-level language with intuitive syntax has increased its 

popularity and has led to significant development in the available packages.  

Some packages are used in a wide variety of programmes created for diverse purposes. 

Examples of these are NumPy (Numerical Python) which is a package designed around 

mathematical manipulations and handling of arrays of data (Harris et al., 2020); and Pandas 

(panel data) which can be used for statistical analysis of data and allows information to be 

represented in a table-like format called a DataFrame (Mckinney, 2010). These DataFrames 

can be used to store data, but equally they can be used to manipulate or search through 

data. Both packages allow organisation and manipulation of data, which is useful in many 

different programmes to perform the necessary calculations to derive the appropriate 

output.  

In contrast, some packages are highly specific to their uses. Biopython is a package 

designed for molecular biology and bioinformatics (Cock et al., 2009). Biopython’s features 

include (but are not limited to) translation of DNA and RNA to protein, calculating the 

complement and reverse complement of DNA sequences, and being able to produce and 

read sequence alignments. Some of the more advanced aspects of Biopython include 

analysis of large data sets such as handling Next Generation Sequencing reads. Reads can 

be taken through quality filtering, trimming, assembly into a full genome or analysis against 

a reference genome to assess gene expression and finally calculating Principal Component 

Analysis of differentially expressed genes. Development of Python scripts to complete tasks 

like these also ensure identical analysis of each dataset, allowing consistency between 

experimental conditions, or even across organisms. As the current version of Biopython has 
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many varied features, the creators have organised its capabilities into groups of smaller 

packages which can be imported individually. This approach minimises the memory 

required to run each respective script and keeps the syntax clear. But conveniently, there 

is cross-compatibility between all sub-packages.  

Another Python package for molecular biology is Primer3 (Koressaar and Remm, 2007; 

Untergasser et al., 2012). Primer3 is a package that can design PCR primers against an input 

DNA sequence, but can also analyse primer sequences for common features. Primer3 has 

a wide array of customisable input variables such as desired melting temperatures or GC 

content of the output primers, and selection or exclusion of certain sequences within the 

template sequence. It can generate several primer pairs, along with all the associated 

information such as PCR product length. Originally, Primer3 was developed for command 

line usage, but has since been adapted into a Python module in 2014 due to its popularity. 

One consideration when using Primer3 is that it only uses the input sequence for primer 

design and does not complete any form of cross-reactivity analysis with other parts of the 

given sequence, nor does it consider the wider genome for similar sequences. As such, 

caution should be used when designing primers with Primer3 on small reference sequences 

to ensure specificity. This is particularly important on genes with known homologs of high 

sequence similarity as primers designed by Primer3 could lack specificity to the intended 

target.  

In this chapter, I will describe and discuss how I created a Python script that can design a 

repair template in a similar manner to those that were designed and used in the previous 

chapters. The script is instructed by a simple Excel Spreadsheet “form” (that works as a 

configuration file), a user-provided a codon usage table, and a FASTA file of their gene. 

Following execution, two repair template sequences are produced. One repair template 

contains only synonymous mutations, and the other contains the desired nonsynonymous 

mutation. Both repair templates have additional identical synonymous mutations needed 

for screening. In addition, the script designs screening primers to detect the integration of 

the repair template, and long oligonucleotide primers to produce the respective repair 

templates. Lastly, the script also provides pairwise sequence alignments and some useful 

information about the repair templates and primers. All of these outputs are contained in 
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a single text document. This format allows visualisation of the alignments and creates a 

store for the information the script has calculated. 

 

5.2 Development 
A Python script was created using Python 3.10.9, as well as several other packages listed in 

Table 6, in particular the Biopython package (also known as Bio), Pandas and Primer3 

(Koressaar and Remm, 2007; Cock et al., 2009; Mckinney, 2010; Untergasser et al., 2012).  

In order to make the script more readable, avoid duplication, and to make it more flexible 

to modifications in future versions, several files were created which are interlinked. Each 

file contains a subset of the required code. Apart from the main file, each of the other files 

creates a series of functions that can be called by other files to execute that portion of code, 

so act like packages. Comparatively, the main file puts all of these other functions together 

in succession to achieve all the necessary steps. The file names, their purposes, the  

Table 6. Python package versions used in the creation of the Python repair template 

generating script. 

Package Version 

Python 3.10.9 

pandas 1.5.3 

Biopython (Bio) 

1.81 
Bio - SeqIO 

Bio - Seq 

Bio - Align 

NumPy 1.23.5 

io N/A 

random N/A 

Primer3 
2.0.1 

Primer3.bindings 
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shortened name used in the main file, and the appropriate appendices for the full code can 

be found in Table 7.  

One of Biopython’s features is that it has inbuilt codon tables, including variant codon 

usage tables. However, the inbuilt codon table in Biopython did not have capacity to 

retrieve every possible codon sequence for each amino acid – only one codon sequence 

was retrieved when Biopython was asked to provide the codons for any amino acid. As 

such, custom functions  were created to call all the codon sequences that code for a given 

amino acid, with or without the associated frequency usage data for every codon. All the 

codon sequence and amino acid pairs use the standard genetic code.  

 

Table 7. Repair generator constituent files and purposes. 

Filename Appendix 
Containing the 

Code 

Main Purposes/Theme Imported 
as 

main.py 7.2.10 To call each of the other 

functions in succession to 

perform the necessary steps 

to generate the repair 

template, screening primers 

and production primers, as 

well as reading the input 

Excel spreadsheet 

configuration file and 

producing a user-friendly 

output containing useful 

information.  

- 

reading_input_file.py 7.2.11 Interpretation of the input 

codon usage table and 

conversion to a Pandas 

DataFrame.  

rif 

codon_dictionaries.py 7.2.12 To separate out each codon 

from the input sequence 

into identifiable pieces and 

cdict 
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store them in dictionaries for 

retrieval and manipulation.  

codon_dataframes.py 7.2.13 To separate out each codon 

from the input sequence and 

associate that codon with 

frequency usage data to 

allow selection of alternate 

codons based on usage 

frequency. These are stored 

in Pandas DataFrames inside 

dictionaries. 

cdf 

formatting_functions.py 7.2.14 To create more readable 

versions of some of the 

outputs for the output file.  

formats 

stitching_functions.py 7.2.15 To break an input sequence 

into constituent parts and 

put DNA sequences together 

to form new sequences. 

stitch 

validator.py 7.2.16 To confirm the inputs given 

are consistent with each 

other e.g. that the specified 

codon codes for the amino 

acid listed.  

val 

primer_functions.py 7.2.17 To design screening and 

repair template primers with 

consistent settings that work 

with a range of target 

sequences.  

primers 

 

Biopython and Pandas packages in particular were used in conjunction to create a script 

that uses a series of dictionaries to identify the sequence to mutate from a larger DNA 

sequence, break the sequence down into constituent codon sequences, and then exchange 

those codon sequences with the replacement codon sequence as dictated by the recoding 

methodology chosen. Using dictionaries allowed nonsynonymous mutations to be created 
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by removing the key-value pair associated with the target codon’s wild-type sequence and 

replacing it with a new key-value pair corresponding to the desired mutation. Whilst 

dictionaries do not store data in a guaranteed order, using numbers as part of (or the 

entirety of) the key ensured codons were retrieved in the order they were in the original 

input sequence when it was time to recreate a continuous DNA sequence. This ensured 

that the protein sequence was maintained (except for the target nonsynonymous 

mutation) and ensured that the chosen synonymous recoding method had actually been 

applied to each codon, rather than effectively random triplet codes being chosen for each 

codon regardless of the recoding method selected. 

 

5.2.1 RECODING METHODOLOGIES 
One of the main benefits to the script is the automated recoding. Recoding a sequence 

manually is very time consuming and laborious. The script offers several recoding 

methodologies to generate both the synonymous recoding (used for screening purposes) 

and a nonsynonymous target mutation. There are four types of recoding the script can 

perform. The “matched” setting can only be applied to synonymous mutations, but the 

other three (“random”, “highest” and “lowest”) can be applied to both synonymous and 

nonsynonymous mutations. 

When the chosen recoding method is applied to nonsynonymous mutations, all codon 

sequences for the respective amino acid are considered in the selection process. However, 

when the recoding method is applied to synonymous mutations, the WT codon sequence 

is removed from the available codons to choose from to ensure a mutation occurs. The 

exceptions to this are the codons for methionine and tryptophan, which only have one 

codon each in the standard genetic code, so they will always be “replaced” with the same 

sequence as the WT codon. Similarly, for amino acids that are only encoded by two codons 

and are being synonymously mutated, the choice after removing the WT codon from the 

selection leaves only one possible replacement codon sequence. So, these codons will 

always be recoded predictably to the non-WT codon sequence, regardless of recoding 

methodology used. 
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“Random” is as the name suggests, a random unbiased selection of possible codons for the 

desired amino acid using the random Python package. Unlike the other recoding methods, 

“random” will cause a different output repair sequence on each execution of the code, 

when given the same inputs (excluding the exceptions already discussed). If little is known 

about the impact of different sequence compositions on the target gene or species, or if 

targeted approaches have been unsuccessful, this method provides a way to generate a 

repair template without bias in the design to explore options that might not have previously 

been considered. 

“Highest” and “lowest” settings are in reference to the frequency usage of the codon 

sequences. The user supplies a codon usage table as part of the required inputs (see Figure 

17B for an example). The codon usage table provided will dictate which codon is selected 

for each amino acid, with “highest” referring to the most used codon, and “lowest” the 

least used codon (see Figure 15, part 2 for more details). These allow the user to bias their 

recoding to use more common or rarer codon sequences, as desired.  

“Matched” is essentially a harmonized codon selection - choosing the codon that is most 

similarly used to the input codon, and is the most similar to the design strategy used in the 

previous chapter. To determine which codon is the “matched” codon, a simple subtraction 

is performed using the values in the “Fraction” column from the supplied codon usage table 

from https://www.kazusa.or.jp/codon/ (Figure 17C). However, using this approach means 

that ties can occur fairly frequently. In these instances, the data from the “Number” column 

(i.e. a count of instances in the selected genome) is used as a tiebreaker, taking the higher 

of the two. That being said, as this script currently stands, there is the possibility that a tie 

could persist and if that is the case, the script will output a text based error in the console, 

and will likely fail to complete. 

In all recoding methods, each codon is evaluated independently from other codons 

encoding the same amino acid. To achieve this, for “matched”, “highest” and “lowest” 

recoding, frequency usage data is copied from a reference for each codon, and then 

calculations are performed only on the copy. Similarly in the “random” setting, the list of 

codon sequences for a given amino acid is copied from a reference list, before adjusting to 

remove the WT sequence for synonymous mutations. This approach ensures that even in 

instances where the same amino acid is represented several times, the replacement  

https://www.kazusa.or.jp/codon/
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Figure 15. Python repair template generator script workflow (part 1). 1A) The script 

requires 3 supplemental files (a FASTA file, a codon usage table and the configuration 

spreadsheet – see Figure 17 for more detailed versions). The configuration spreadsheet is 

used to determine the location of the CDS (bold underlined) within the supplied FASTA file, 

and to identify: the target codon, surrounding region to recode (1B), and homology arms 

(1C). Generally, the recoding region is equally split to have the same number of recoded 

codons either side of the target codon (however, one side will contain one extra codon in 

instances where this is not possible). However, the recoding region is adjusted to stay 

within the CDS if the target codon is in close proximity to the start or end of the CDS (1B). 

2A) Each codon from the recoding region is identified and evaluated individually to select 

a suitable replacement sequence (2B), dictated by the chosen recoding strategy specified 

in the configuration spreadsheet (1A). The replacement codon will never be the same as 

the WT sequence, except for methionine and tryptophan codons. 2C) When using the 

matched recoding setting, the difference in usage of the alternate codons are compared 

with the WT codon sequence, and the most similarly used codon (either more or less 

frequently used) is chosen. 3A) For the nonsynonymous mutation, the codon sequence is 

chosen from any possible codon sequence for that amino acid. The chosen sequence is 

determined by the recoding method chosen in the configuration spreadsheet (1A). 3C) 

Lastly, the individual mutated codons are concatenated into the final repair template 

sequence, with the homology arms added at either end. 
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Figure 16. Python repair template generator script workflow (part 2). 4A) To design the 

primers needed to make the repair template, first an artificial gene sequence is created 

containing the recoded sequence (dark blue/orange) in place of the WT recoding region. 

This sequence will also include UTRs if provided. 4B) The sequence is split into 3 parts: 

upstream of the repair template, the repair template, and downstream of the repair 

template. 4C) In order to determine a suitable annealing sequence, a primer pair is 

designed such that the forward primer is within the recoded region/mutated target site of 

the repair template, and the reverse primer is constrained to the downstream region. The 

forward primer is used as the annealing sequence but the reverse primer is not used – 

single primers cannot be designed with Primer3 in this way. 4D) The forward primer 

sequence is used as the annealing region for the long primers needed to generate the repair 

template. To complete the long primers, the sequences are extended back to the full length 

of the repair template on each strand to create primers 1 and 2. Primers 1 and 2 must be 

less than 120 nt each, otherwise they are redesigned with an alternate annealing region 

(see Figure 19A for more details). 5A) To design screening primers, the WT sequence is split 

into 3 parts, similarly to the artificial sequence. 5B) The WT screening primer pair 

(red/purple) is generated by constraining the forward primer to the upstream region, and 

constraining the reverse primer to the recoding region (cyan/yellow). 5C) The mutant 

screening primer pair is designed using the forward primer (red) from the WT screening 

primer pair, and constraining the reverse primer (magenta) to the recoding region (dark 

blue/orange) of the artificial sequence containing the repair template generated in part 4A.  
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Figure 17. Additional input files needed to execute the Python script repair template 

generator. A) An example of the configuration Excel spreadsheet used to instruct the 

Python script. Some cells have data validation activated to provide dropdown menus (cells: 

B3, B5, B6 and B7). Sheet 2 (not shown) has the corresponding data for the validation. The 

lengths of the recoding regions and homology arms must be a multiple of three (see main 

body text for more details). As shown in the example, the word “end” (all lowercase) can 

be specified instead of the base pair number to signify the end of the CDS is the end of the 

FASTA file. When an alternating synonymous recoding methodology is selected, the 

“Alternating every nth residue” cell (B14) must also be filled with an integer value greater 

than zero. B) An example codon usage table collected from 

https://www.kazusa.or.jp/codon for L. infantum. After choosing the table on 

https://www.kazusa.or.jp/codon, a genetic code table is also chosen to reveal the 

translation column and the fraction column (columns 3 and 4 of each group). The filename 

also corresponds to the one specified in A. C) A screenshot of the codon table from 

https://www.kazusa.or.jp/codon, after selecting the desired genetic code to use. The red 

box highlights the data that the user is directed to copy and paste into the text document 

shown in B. 

 

 

sequence is chosen in relation to the codon sequence for that residue in the reference 

sequence, rather than a global change for all codons that code for the same amino acid.   

 

5.2.2 ALTERNATING RECODING 
In addition to recoding methods previously described, this script also offers the user the 

choice to design a repair template that alternates between recoded codons and WT 

codons. Alternating recoding in this way reduces the number of mutations added to the 

daughter cell line, whilst retaining a large region of altered sequence for screening 

purposes. The alternating recoding methods are available in all of the available 

synonymous recoding strategies and are designated by “alternating” in their name, 

followed by the type of recoding which the alternation will be.  

https://www.kazusa.or.jp/codon
https://www.kazusa.or.jp/codon
https://www.kazusa.or.jp/codon


 

  90 

If an “alternating” method is chosen, the user must also specify the interval (n). The first 

codon for any “alternating” method is always recoded, followed by the (n+1)th codon until 

the end of the repair template (Figure 18). The exception to this is that the target codon 

will always be mutated even if it would normally fall on a codon that is not recoded by the 

n value. In this situation, the pattern for the synonymous recoding will ignore the target 

codon, leaving the pattern unaffected (Figure 18, n=2 example). When an alternating 

recoding method is chosen, the alternating pattern (n value) chosen by the user will also 

be displayed in the output file.  

If no n value is provided or the provided value is 0, the script will prompt the user to rectify 

the mistake, or else the execution will be cancelled. The user will also be prompted if the 

script identifies that the user has put in an n value greater than half of the number of 

codons being recoded. E.g. if the recoding region was 10 codons long and n was set to 7. In  

 

 

 

Figure 18. Alternating recoding example. Each rectangle represents a codon. Colours 

indicate whether the codon is WT sequence (grey), synonymously recoded (blue) or the 

target codon which is both synonymously and nonsynonymously recoded depending on 

the repair template (orange). The alternating n value is given for each example. The target 

codon is always mutated regardless as to whether it would align with a synonymously 

mutated codon (as in the example of n=3, illustrated by half orange and half blue) or 

whether it falls between mutated codons (as in the example of n=2).   

 

Sequence to Recode 

WT 

Continuous / n=1 

n=2 

n=3 

WT codon 

Recoded codon 

Target codon 

Key 
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this instance, only the first codon, the target codon and one other codon would be 

mutated, which is unlikely to be desired. But if the user confirms that that is what is desired, 

the repair template will be designed with those settings.    

In order to create the “alternating” methods, the codons are initially sorted into two 

dictionaries – one to recode, and one to remain as the input sequence. The recoding 

method of choice is applied to the dictionary of the codons that fall within the recoding 

dictionary, and after mutating, the two dictionaries are recombined into one for 

reassembly into the final sequence.  

 

5.2.3 FINAL REPAIR SEQUENCE ASSEMBLY 
Once the recoding has completed, the new codon sequences are called from their 

dictionary in order and concatenated to form the recoded region sequences. Then, a check 

is run to confirm that the target codon translates into the expected amino acid for that 

repair template. If all is correct, the homology arms are added to the recoded region to 

complete the repair template. The homology arms are identified by using the co-ordinates 

of the recoded region in the WT sequence and adjusting them with the length of the 

homology arms specified by the user (see Figure 15 part 1C and 3B). Lastly, the homology 

arms and the recoded sequence are concatenated to form each repair template sequence.  

 

5.2.4 PRIMER DESIGN 
Once the repair sequences have been created, the script designs oligonucleotide primers 

to screen for integration and to generate the repair template itself. Both of these tasks use 

a similar method to design them, by constraining the Primer3 package to design the primers 

in specific locations of the DNA (Koressaar and Remm, 2007; Untergasser et al., 2012).  

For the screening primer design, one primer is always in the region outside of the repair 

template, with the other inside (Figure 16 part 5). Due to the constraints of the Primer3 

package, the primer outside of the repair template is always the forward primer and so is 

placed upstream of the repair region. As such, the primer design process may become 

limited if short reference sequences are provided upstream of the target codon. The 

reverse primer is designed to recognise either the WT sequence in the recoding region or 
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the mutated region of the repair template. It should be noted that the process including 

the WT primer pair design is completed independently for each repair template 

(synonymous and nonsynonymous), which can lead to two different WT screening primer 

sets in some instances. This situation is very rare, as the design process is using the same 

settings and same input sequence for the WT screening primer pair. However, when it does 

occur, it is up to the user to evaluate the primers and determine which they wish to use.  

To design long oligonucleotides for repair template generation, the forward primer is 

constrained against the recoded region of the repair template sequence, with the reverse 

primer downstream of the repair template (Figure 16 part 4). The reverse primer is not 

required, but Primer3 is only able to complete the design if both regions are specified. Using 

the downstream DNA rather than a dummy piece of DNA was chosen so that the sequence 

has more similar properties to that of the region the forward primer is designed against 

e.g. GC content. The forward primer is used as the annealing sequence for Primer 1 and its 

reverse-complement for Primer 2 (Figure 16 part 4C and D). The final primer sequences are 

completed by recounting the sequence from the annealing regions to the ends of the repair 

template (sense sequence for Primer 1, reverse complement sequence for Primer 2).  

Once completed, both Primer 1 and 2’s lengths are evaluated. Most commercial suppliers 

have a price cut-off for oligonucleotide sequences at 120 nt, and have a notable price 

increase for those over 120 nt. As such, this script will only accept repair primer sequences 

where both Primers 1 and 2 are less than or equal to 120 nt long. If this criteria is not met 

by one or both primers, up to two alternate annealing regions are assessed instead (Figure 

19A). This means that successful execution of the script will only be possible for repair 

templates ≤ 220 bp with a 20 bp annealing region. Generally, the region that can be used 

to create an annealing region is quite small, and so the settings for Primer3 have been 

somewhat relaxed compared to the screening primers, to ensure success. That being said, 

in some tests on the longest repair templates, it was not always possible to design a suitable 

annealing region, which led to the script failing to complete its execution. Usually, adjusting 

the design settings will allow repair templates to be generated in this instance. Primers 1 

and 2 are included in the output, both given as 5’ to 3’ sequences, such that they are ready 

to purchase (Figure 20 green section). A suggested melting temperature is also provided in 

the output document, as calculated by the Primer3 package.  
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5.2.5 ALIGNMENT 
In the output document, there are two sections containing alignments of the respective 

sequences (see Figure 20). Firstly, there is a sham alignment nearer the top, which displays 

the DNA and protein sequences of the WT “repair” sequence, and both repair sequences. 

This is not a true multiple sequence alignment (MSA), but rather just an alignment of the 

text characters using spaces and tab characters such that the relevant residues appear in 

line with each other in the appropriate coding frame. This format is user friendly and serves 

the same purpose as a MSA in this instance. Because this alignment relies on spacing using 

text characters, the user is recommended to use a font that has a standard character size 

such as Courier New, as the alignment of characters will be incorrect when viewed with 

fonts with variable character sizes such as Calibri or Times New Roman. Biopython does not 

have the capacity to generate MSAs, although it can interpret them, but it does have the 

capacity to generate pairwise-sequence alignments (PSAs). Other packages such as 

ClustalW for Python can create MSAs but ClustalW is not compatible with running on 

Windows, limiting which devices would be able to run this script. As such, the output also 

includes PSAs for WT-synonymous repair template and WT-nonsynonymous repair 

template pairs. As it is expected that every base in both sequences will align without gaps, 

the open gap and extension gap penalties were set to -10 (from the default suggested of -

1) to prevent alignments generating which did not have real biological relevance.  

The purpose of including the PSA as well as the sham-MSA is to more clearly highlight where 

the mutations are to the user and how they are spaced. Providing a PSA allows the user to 

clearly see which bases are mutated through the symbols. In comparison, reading through 

the sham-MSA is much harder to spot individual character differences across several lines 

of text. This format is also more accessible than the use of colours to indicate the 

differences for those with colour-blindness, which is also not usually possible to include in 

a text document file.  

Additionally, the script provides a count of the number of different bases between each 

repair template and the WT sequence as well. This function simply compares the nth 

character from each of the sequences being evaluated and counts the numbers of non-

identities (Figure 19B). 
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Figure 19. Schematics of the repair primer annealing region design process and the 

calculation of the number of mutations per repair template. A) The repair primer design 

analysis iteration. To generate the repair template, two primers are designed which have 

an overlapping annealing region (black) - see main body section 5.2.4 for more details. The 

length of these primers are evaluated. If one or both primers are too long, an alternate 

annealing sequence is evaluated and the primers are redesigned to fit the new annealing 

sequence. If one or both of the second set of primers are too long, a third and final 

annealing region is evaluated as before. B) Mutation counter example. The first base of 

each sequence is compared. If they are not identical (red text), 1 is added to a counter. If 
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they are identical (black text), nothing is added. The second base of each sequence is then 

compared in the same way, and so on and so forth. The total number of mutations is then 

reported in the output file.  

 

 

5.2.6 COMPLETING THE EXECUTION OF THE CODE AND THE OUTPUT 
DOCUMENT 

As mentioned in previous sections, the results of the executed script are put into a single 

file, which is saved as a text document with the job name from the configuration 

spreadsheet as the filename. Saving the results helps the user organise different designs, 

and is clearer for reading than displaying the results in the console window of the Python 

interpreter running the script. However, it should be noted that the script will overwrite 

any file that has the same name, which could overwrite previous files.  

The output document (Figure 20) comprises several sections that each contain different 

components needed to create precision mutants. Briefly, the output document contains 

the settings used (for record keeping); the repair template sequences (both with and 

without coding-frame spacing); screening primer sequences with PCR product sizes, repair 

primer sequences in a ready-to-purchase 5’ to 3’ format; and pairwise alignments (to 

visualise the mutations).   

On completing the execution of the script, the console also displays a text message to 

inform the user that it was successful and provides the filename of their output file. Whilst 

a text document is limited in what information and formatting can be incorporated, this 

document provides a ready-to-go package of all the sequences and primers needed to 

generate and screen for precise mutants. 
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Figure 20. Example output file generated by the Python script. Colours (left) indicate the 

different sections. Red – job details specified by the user. Orange – Sham multiple sequence 

alignment of the WT sequence, and both repair templates, as well as counts of the number 

of mutations each repair template has. The end of the sequences have been cropped of for 

legibility. Yellow – Screening primers and corresponding information. Green – Primer 

sequences to generate the repair template sequences. Cyan – The WT and both repair 

sequences without any spaces or additional characters. The end of the sequences have 

been cropped of for legibility. Magenta – Pairwise sequence alignments of the WT 

sequence with each of the repair templates (| indicates identity, • indicates non-identity). 

All DNA sequences are in the 5’ to 3’ orientation. A copy of the text in this file is available 

in a larger font size in Appendix 7.2.9. 

 

 

5.3  Results 
The script created and described here is able to generate recoded repair templates up to 

220 bp long for continuous coding sequences (i.e. no introns). It has been tested on DNA 

sequences from both Leishmania mexicana and Trypanosoma brucei, and was successfully 

able to design them within a matter of seconds (although results will vary with different 

computer’s memory availability). The script is instructed by a configuration Excel 

spreadsheet and exports the results into a text document, both of which increase 

accessibility for non-programmers. Additionally, all the required software and packages are 

freely available.  

The script has also been designed to take away tedious jobs from the user, so it is able to 

manipulate codon tables provided by https://www.kazusa.or.jp/codon/, which are given 

as RNA sequences, and reformats them into DNA sequences. This only requires the user to 

go to the website, retrieve the codon usage table for their organism, and then copy, paste 

and save the data (Figure 17B and C). This reduces the burden on the user, so that fewer 

mistakes are made. Additionally, once prepared, the codon table is reusable to apply to any 

target gene in the same organism. Other tedious tasks that the script completes include 

recoding each triplet code in the desired sequence, visualising each point mutation, and 

https://www.kazusa.or.jp/codon/
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assessing annealing sequences for primers to generate the repair template. Having 

personally created many repair templates manually, these tasks can take hours in total, 

especially when including checking for human errors. However, this script is able to 

perform each of these tasks consistently and far quicker than any human.   

The script is (somewhat) able to understand which part of a DNA sequence is coding and 

which is not, as guided by the user. This allows the user to prepare a single FASTA file for 

an entire gene sequence, including 5’ and 3’ untranslated regions (UTRs), to generate repair 

templates for as many sites as they wish in that gene by just providing the target amino 

acid residue and amino acid number. Whilst it would have been possible only require the  

amino acid number without the corresponding amino acid identity, requiring the user to 

provide the identity was intentionally chosen to provide opportunity for the user to identify 

mistakes, as prompted by the script’s checking mechanisms. If the DNA sequence of the 

given residue number does not correspond to the input amino acid residue, it will output a 

text-based error message in the console. In this instance, the script will continue to run, 

unless it encounters further issues. Likewise, the script will check that the user has correctly 

specified a coding sequence that is in frame i.e. the coding sequence length is a multiple of 

three. Currently, the script does not recognise coding sequences by the presence of start 

and stop codons. This has the benefit that a user can provide only a partial gene sequence, 

as long as it is in-frame. In this case, the script will treat the specified start and end as the 

“real” start and end, and will act in accordance with the special cases in Figure 15 part 1B, 

so it is not recommended to do this. Additionally, if the user supplies a sequence that is a 

multiple of three base pairs long, but from a nonsense frame, the script will still “recode” 

in the +1 frame. Hopefully it will be apparent to the user that the protein sequence they 

expected is not correct in the output, even if the code has not detected a difference in the 

expected amino acid residue and number.  

 

5.4 Limitations and Future Directions 
A key next step for this script is testing the designs it produces in vitro. Whilst the script 

generates sequences that seem sensible, those sequences are only useful if they have real 

world tractability. As such, designs using a variety of the settings should be tested on 

targets that have already been shown to be possible to mutate. Using a previously mutated 
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site and the same sgRNAs will ensure that a failure to mutate the site is because of some 

aspect of the repair template design, rather than leading to questions about its essentiality. 

Additionally, this experiment could also assess whether one of the design strategies is 

favoured for incorporation over the others, and whether different sequence compositions 

have different effects on the cell.  

Any computer programme is limited to what its programming tells it to do. In the modern 

era, we are all familiar with words such as “glitch” and “bug” in reference to programmes 

not performing the expected task, caused by mistakes in a piece of software’s code. Whilst 

this script has been tested on a variety of different inputs to remove as many issues as 

possible, there are still issues with this version of the script. Most of the known issues, 

regard features that are lacking or imperfect from a biologist’s perspective. However, from 

a programmer’s perspective, the main issue with the script at present is that it lacks proper 

error catching mechanisms. Currently, unless an issue arises that means the script is unable 

to perform a task, the script will continue to completion. The current “error catching” is 

only simple if clauses which when activated print out error related text. This text can be 

easy to miss in the console of the user’s Python interpreter and the presence of an output 

file may lead a user to believe the script has performed the task as expected, when it has 

not done so. In future versions of this script, it would be prudent to incorporate proper 

error catching mechanisms into it, which will cancel or stall the script if there are issues 

with the inputs or with the calculations. These errors are also harder for users to miss, as 

they involve brightly coloured text and error codes, which the user can use to investigate 

further.  

As for the biological issues with the code, the most major set of issues is with how this 

script interprets what is a coding sequence, how it should be translated and hence what 

DNA sequences should or should not be translated. This script does not use coding 

sequence detection methods to identify which part of the DNA sequence are coding and 

which are not. Instead, the user specifies where the coding sequence starts and ends, and 

the script verifies that this specified region has a length that is a multiple of three, 

corresponding to complete triplet codes. As such, this script interprets any string of A’s, C’s, 

G’s and T’s that has a length which is divisible by three to be suitable DNA for recoding. 

Technically, other letter characters may also be translated if they are used to represent 
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combinations of bases such as R for purines and Y for pyrimidines, either yielding “X” or a 

real amino acid if the character is in the wobble base position. Even if the sequence 

provided includes several stop codons, which are obvious to any biologist as being either 

nonsense or out of frame, the script will try to recode it. It only treats a stop codon 

differently for the specified end of the gene. However, this stop codon will still be recoded 

to an alternate one, if it is included in the recoding region (see Figure 15 part 1B for this 

special case). The script is able to detect incorrect target site translations, so it would be 

expected that in most of these instances, the desired residue to mutate would not match 

the input target residue. But, there is a possibility that there is a combination of DNA bases 

that match the target amino acid in the correct position, and hence the code completes. At 

present, it is hoped that the user will be able to identify an issue has occurred from the 

displayed coding sequence in the output file being noticeably wrong. Going forwards, it 

would be best to add an error catching mechanism that halts the progression of the code 

if the entire recoding region’s translation does not match the input. Alternatively, or in 

conjunction to that, adding coding sequence detection may prevent some of these errors 

going unnoticed.  

On a related note, if the DNA sequence provided is not a multiple of three, text-based error 

messages are displayed. In some tests, it was noticed that if the repair template’s length 

was not a multiple of three, the code would still continue to completion because the 

current error catching mechanisms do not prevent the code from completing. In these 

instances, the last codon of the repair template (i.e. in the homology arm) was presumed 

to be missing a base and so was not translated. On the assumption that it was in fact the 

last codon which was missing a base, this response is acceptable and is similar to how most 

commercially available programs would interpret the sequence. However, if in fact the base 

was missing from the start of the repair template, the script identifies the codons from the 

start of the sequence, so in effect “causes” a frame shift before calculating the translation. 

Going forwards, it would be good to add a feature that can handle repair template lengths 

that are not a multiple of three, perhaps by extracting the additional bases from the 

reference sequence, that are removed in the output.  

As eluded to, because the present version of the script can only correctly recode in-frame 

DNA, the user is limited to selecting homology arm lengths and recoding region lengths 
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that are multiples of three to avoid these issues. This is not inherently problematic, but 

does restrict flexibility and creates opportunities for mistakes that cause the script to fail 

to complete or produce nonsensical results. So in future versions, it would be good to either 

restrict the inputs that the user can pick from to being values that are multiples of three, 

or to find workarounds for the situations when they are not.  

An additional restriction the user has on their input DNA sequence is that this script can 

only handle continuous coding sequences. As such, the script is unable to provide repair 

templates for non-coding regions (although it can use non-coding DNA for homology arms 

if the target is in proximity to the start or end of a gene), and it cannot recode coding 

sequences that contain introns. As this script was designed for use in Leishmania species 

and other kinetoplastids, this is generally not a problem. Few genes in these species contain 

introns. However, it does mean that this script could not be used for higher eukaryotes that 

have much more complex gene structures, although it may work in some prokaryotic 

species (currently untested). Likewise, this script was designed to generate mutations in 

coding sequences, so it being unable to mutate untranslated sequences is not inherently a 

problem, but it does restrict its use-case somewhat. It may be possible to design a similar 

script to modify non-coding DNA sequences, but most likely, this would have to be on a 

case by case basis, as it is unlikely that mutations of interest for non-coding RNAs would be 

transferable to splicing signals, centromere sequences, or promoter sequences for 

example.  

Similarly, the script can only recode one continuous block of sequence. As discussed 

already, it can recode alternating codons from within a continuous block. But at present, it 

is not possible to design a repair template which has a stretch of recoding, followed by a 

break in recoding, followed by another region of continuous recoding, as was used for some 

repair templates tested in this project (for example KKT2 S493 repair templates). During 

some transfections, certain clones showed evidence of recombination at extended breaks 

in recoding (≥11 bp of continuous WT sequence) – these have been labelled as “complex”. 

To minimise chances of this happening, it seems advisable to avoid incorporation of such 

large blocks of WT sequence (even though the use of the alternating settings when n>3 

could produce this). As such, this feature was not developed for this script. However, if 

there is demand for such a feature from the field, it would be reasonably straightforward 
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to incorporate, using a similar strategy to the alternating recoding options that this script 

already includes.  

As this script was designed for coding sequences, the translations of each triplet code have 

been manually written into this code. As discussed previously, Biopython does include a 

range of codon tables, but it does not have full two-way directionality. When requesting 

the translation for any triplet code, it was able to recall the amino acid. However, when 

requesting the codons that correspond to an amino acid, it would only produce one of the 

triplet codes, regardless of how many there are (which could be up to six). So two functions 

were created to ensure that all triplet codes were recalled – one with, and one without 

frequency usage data. However, because this was manually coded into the script, this 

version of the script only recalls codons corresponding to the standard codon table, and 

does not know how to call abnormal codon usage sequences. In a future version, it would 

be possible to recreate these functions for all known codon usage tables, and require the 

user to select which table to translate from, although this is not necessary for 

kinetoplastids.  

Whilst the script is designed for coding mutations, it has been designed to only induce a 

single nonsynonymous mutation. There are instances where a pair or small number of 

coding mutations may be necessary in a single repair template, such as was trialled with 

KKT2 S505 and S506 double mutants using ssDNA in this project. As the main version of the 

code presented here did not allow for multiple mutations (so would have to be adjusted 

manually, which also impacts all of the primer designs), a first draft of a modified version 

of the code which can generate multiple mutations has been created. This version allows 

up to 5 mutations per repair template and is available in Appendix 7.2.19. This version 

requires the user to specify the number of mutations up to 5 (so can be used for a single 

mutation if desired), as well as the amino acid residue and number for each of them. It also 

has some more complex assessments of how to distribute the recoding region such that all 

target sites are incorporated if they are unevenly spaced. In short, if the target sites are 

evenly spaced, the recoding region will be centred around the middle of those sites. But if 

one target site is distant from the others, the recoding region will be adjusted to ensure 

that all target mutations are within the coding region, and any additional codons to record 

are spread as evenly as possible, flanking the target sites. However, this version has not 
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been tested as thoroughly as the main version presented, so may contain some currently 

unknown bugs.  

At present, this script does not automate the entire process of designing a repair template. 

The largest missing feature is the capacity to design sgRNAs for the target of interest. For 

this current version of the script, the user has to complete this step themselves, and then 

inputs the region to be recoded to cover the sgRNAs they have chosen, if they wish to 

replicate the methods used here. This step is a key part of creating the repair template, so 

will definitely be investigated for incorporation into future versions.  

In order to incorporate sgRNA design into the script, the script also needs to be able to 

complete BLAST searches of the entire genome to ensure the sgRNA sequence is unique. 

Primer design would also be improved if BLAST searching were incorporated as part of the 

design quality checking process, to reduce the possibility of off-target primer binding during 

the screening PCR. The current screening primers are designed only in reference to the 

input sequence. This could mean that the screening primers generated are not consistently 

specific enough to recognise only the target gene, especially if the target gene has very 

similar homologs in the genome. The Biopython package does offer BLAST searching 

capabilities using the NCBI (National Center for Biotechnology Information) servers via an 

internet connection or locally on the computer running the search. There are pros and cons 

to both local and remote BLAST searching. The script at present runs entirely locally, 

meaning it can be used without connection to the internet (after initial installation of the 

relevant packages), so local installation would maintain that aspect of the initial code. In 

some cases, it may also be faster to run locally as the user is not “competing” with other 

users for the server memory to complete the search. Additionally, local running retains 

confidentiality of the sequences (Cock et al., 2009). However, local BLAST searching 

requires a lot more set up, which would have to be completed on each user’s device to 

achieve, and that user would also require a database of the genomes to BLAST against on 

their device too. As such, it is most likely that future versions of this script will use online 

BLAST searching, to minimise the set up required by the user of the script (Cock et al., 

2009). This could have the benefit that the user will be able to access newer versions of 

genomes when they are published, with minimal extra steps to use.  
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Another design feature that would be beneficial to have in the script would be either the 

inclusion of a restriction site change in the sequence or at least an assessment of the new 

sequence for restriction site changes. Based on the practical experiments completed in this 

project, restriction enzymes seemed to be more accurate predictors of the genotype than 

PCRs when restriction sites were in close proximity to the target site. However, the results 

were sometimes less clear to interpret. In addition, when the designed primers conferred 

poor specificity at distinguishing WT from mutant sequence, restriction enzymes served as 

a useful backup. It was generally more laborious to screen by restriction digest, and comes 

with potentially higher costs (depending on the enzyme). But if the user has this 

information at the point of design, they can make informed choices about which way they 

wish to screen their mutants. Alternatively, they may choose a different design that better 

suits the reagents they have on-hand. It should be noted that the additional labour to 

screen by restriction digest largely comes from requiring a PCR amplification step to 

generate the DNA to be digested on all clones being screened. Therefore, if a user intends 

to use restriction site analysis, an additional primer set would be required. As such, primer 

design for this should be added to the script also. Alternatively, a separate script could be 

developed to allow the user to provide the repair template sequences and primer 

sequences that they have on-hand to suggest a restriction digest strategy, should the user 

have issues with PCR-based analysis.   

To further expand this script into a high-throughput tool, it would be beneficial to add batch 

job capacity. To tackle this problem, another version of the script was developed with batch 

capabilities and is available in Appendix 7.2.18. In short, this version uses a for-loop to 

iterate over the script several times, with each iteration corresponding to a column in a 

modified version of the Excel configuration form, where each column is a different job to 

execute. Surprisingly, execution of this script with 7 input columns did not take much longer 

to run. However, further testing of this version is required to determine the limitations and 

potential bugs that may exist in the new parts of the code.   

Lastly, it would greatly improve accessibility of this script if the script could be hosted on a 

website. There are already web-based tools for designing sgRNAs 

(http://grna.ctegd.uga.edu/), and for designing CRISPR-Cas9 edits 

(http://www.leishgedit.net/Home.html) which have been crucial in the field for much of 

http://grna.ctegd.uga.edu/
http://www.leishgedit.net/Home.html
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the recent work involving gene editing. Being web-based allows potentially global access 

to the script developed here, which could have the effect of standardising this methodology 

across the field. It would also allow improvement to the user-interface. At present, the use 

of an Excel spreadsheet “form” was chosen to make using the script less intimidating for 

non-programmers. However, setting up the script on the user’s device and executing the 

code still requires users to interact with a programming software, which can be quite 

intimidating. All of this could be hidden from the user on a website, only requiring them to 

fill in a more user-friendly form. A website may also allow visualisation options to be 

created to show the input sequence, its translation, and how the repair templates and 

primers designed fit in with that.  

 

5.5 Summary and Conclusion 
Overall, the script created here completes the tasks it was programmed to do successfully, 

which can help the user design repair templates and screening primers quickly. It has been 

tested on DNA sequences from both L. mexicana and T. brucei.  The script does not 

complete every task necessary to complete this precision editing methodology from 

scratch, but none of the missing features are untenable, and much of the labour load is 

reduced for the user when using this script in its current version. The missing features are 

hoped to be included in future versions to further improve on the work completed here, 

especially improving accessibility to use this script through hosting it on a website. At 

present, as long as the user understands the limitations of the script discussed here, it can 

be used effectively. Further testing is needed to assess whether the repair templates and 

screening primers designed with this tool are effective in vitro.  
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6 CHAPTER FIVE – GENERAL DISCUSSION 

6.1 Discussion 
This project set out to establish an efficient precision editing methodology for Leishmania 

mexicana in order to generate kinetochore phosphosite mutants. Two methods were 

trialled to engineer the desired amino acid substitutions: using 120 nt single-stranded DNA 

(ssDNA) repair templates and 160 bp double-stranded DNA (dsDNA) repair templates 

targeting the genomic DNA. Whilst both methods were able to generate some precision 

edited mutants, there was a stark contrast in the efficiency between them. dsDNA repair 

templates were about 15-fold more efficient on average than ssDNA repair templates.  

Successful generation of a range of kinetochore phosphosite mutants allowed for 

investigation into the effects of these mutations. Most mutations did not result in a 

statistically significant change in growth rate or cell cycle progression (Figure 12). 

Additionally, the kinetochore phosphosite mutants were assessed for cell cycle defects, 

which largely showed no change compared to WT. However, two clones with mutations in 

KKT2 showed an apparent triploid DNA content following continual passage (Figure 14), 

although the secondary clone for each of these cell lines failed to show the same 

phenotype. Additionally, the phenotype was not replicated when the experiment was 

repeated using a fresh sample of cells taken from cryo-storage. Leishmania are renowned 

for ploidy changes due to their high genome plasticity, especially in response to stress. The 

underlying mechanisms as to the drivers of these ploidy changes are not currently known, 

but reports of such events are common under a wide array of circumstances (Black et al., 

2023). Given that the phenotype was not seen in both clones assessed and that it was not 

repeatable, it suggests that these were likely random events. Whether the mutations 

induced in KKT2 lead to an increased probability of these events happening remains to be 

seen.  

To enable expansion of the technique developed here into higher throughput systems, a 

Python script was developed to automate the design process. Not only does the script 

design the repair template, but also generates PCR screening primers and long primers to 

generate the repair templates it has designed. The script has several customisation options 

concerning how the recoding is completed, to allow users to both mimic the strategy used 

here, but also to try alternate designs should the former approach not work. Whilst this 
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programme is currently lacking a few desired features to complete the entire repair 

template design process, namely protospacer identification and sgRNA design, in its 

current version, it is already a functional tool.  Two other versions of the tool have also 

been drafted. The first includes batch design of several repair templates from a single 

execution of the script (Appendix 7.2.18) and the second generates repair templates 

containing up to five nonsynonymous mutations in close proximity (Appendix 7.2.19).  

The purpose of creating a precision editing methodology that is efficient and convenient 

was largely to allow investigation into essential genes, without complete loss of the target 

protein. Currently in Leishmania, essential genes can be investigated through inducible 

deletion such as the DiCre LoxP system (Duncan, Jones and Mottram, 2017), episomal 

expression prior to genomic deletion, or using ex vivo/in vitro approaches such as 

recombinant protein expression. In the case of using DiCre recombinase, so called “leaky” 

expression can still be a problem, whereby a small proportion of cells escape deletion of 

the target locus. It is also a complex process to set up a cell line, typically requiring several 

rounds of transfection and screening of suitable clones. Whilst other kinetoplastids have 

RNAi machinery that can be used for inducible deletion, most Leishmania species lack RNAi 

machinery, including L. mexicana (Ullu, Tschudi and Chakraborty, 2004). Episomal 

expression of either WT or mutant versions of a target protein can often have the effect of 

dysregulated expression, typically in the form of over expression of the target protein, 

which can have cytotoxic effects. Recombinant expression can allow study of the target 

protein but takes it out of the cellular context of that protein. Additionally, some proteins 

are far more challenging to express and purify than others, and there is no way to 

determine this in advance, especially as many of the kinetochore proteins do not have 

identifiable protein domains. Moreover, interactors or substrate proteins may need to be 

expressed to gain any functional insights, only adding work to an already labour-intensive 

process.  

The benefits of precision editing have not gone unnoticed by the community, with 

examples of targeted editing using small selection-free constructs being used by a wide 

array of groups (Zhang and Matlashewski, 2015; Crawford et al., 2017; Medeiros et al., 

2017; Janssen et al., 2018; Rico et al., 2018; Wall et al., 2018; Lander and Chiurillo, 2019; 

Pal and Dam, 2022). However, the similarities end there, with each group using different 
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construct lengths, with different homology arm lengths, and some using ssDNA whilst 

others use dsDNA. Clearly all the methods used were able to generate the desired 

mutations but with varying levels of success. Broadly speaking the methodology was not 

the focus for these previous groups’ work, but was a means to investigate something of 

greater interest. Standardising the process could help to reduce time and money wasted in 

the community, as has been the case through the introduction of tools such as the CRISPR-

Cas9 toolkit developed by Beneke et al. (2017). It would also open up the methodology to 

groups who may have been put off by the laboriousness of the previously published 

methods which may not even generate the desired mutations.  

Uses for the precision editing cover a wide array of different biological questions. As well 

as investigation into post-translational modifications, as was explored here, precision 

editing could also be used to explore organelle targeting motifs, catalytic residues of 

enzymes, protein-protein and protein-non-protein interface interactions, processing 

signals of pro-proteins, and even potentially the effects of specific residues on protein 

structure and stability. All of these events require specific amino acid residues in specific 

locations of the protein, and so modifying those residues allows understanding into why 

these proteins have evolved to have the sequences and structures that are observed. Doing 

so in the most native context possible is important to ensure that interpretation of the 

results is accurate and not due to an artificial situation. For example, an in vitro expression 

of a mutant version of an enzyme could still detect catalytic activity at low levels when the 

substrates are provided in excess. But that same enzyme could be effectively non-

functional in a cellular setting where substrates exist in lower concentrations with temporal 

control. Or indeed the opposite could be true that in a cellular setting, additional post-

translational modifications could increase catalytic activity, which were absent in the 

recombinantly produced protein e.g. glycosylation is absent if the recombinant protein is 

made using Escherichia coli. Thus, it is important to supplement such in vitro experiments 

with studies in cellulo. 

Other potential uses of precision editing could include adding small protein tags in a 

selection free manner, modifying antibody-binding epitopes to enable use of non-

kinetoplastid commercial antibodies in molecular biological techniques, or generating a live 

attenuated vaccine. This project has not attempted to add sequence such as a protein tag 
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into the genome. Given that a 3xHA tag is only 24 amino acids long, equating to 72 bp of 

DNA sequence, it is not much larger than the constructs used here (editing window of 60 

bp, equivalent to 20 amino acids). The difference in size of the construct could affect the 

editing efficiency, but it stands to reason that this is within the realm of possible, so could 

offer selection-free tagging for cell lines that already contain larger numbers of antibiotic 

resistance genes. Especially as similar approaches have already been successful in T. brucei 

(Kovářová et al., 2022). Adding such tags is frequently necessary for techniques such as 

western blotting and immunofluorescence microscopy in kinetoplastids as most 

commercial antibodies are against protein epitopes that are not present in the 

kinetoplastid orthologs of the target proteins. This can become problematic if the gene of 

interest does not respond well to the addition of an epitope tag, particularly with large 

disruptions to UTRs from the insertion of antibiotic resistance makers. As such, an alternate 

approach could be to modify the target protein to become humanised or equivalent so that 

commercial antibodies could be used against it. This would not be applicable to the most 

divergent genes in Leishmania, but might increase the diversity of usable commercial 

antibodies. Antibody recognition of proteins is a key defence for the host immune response 

to a Leishmania infection. Since Leishmania do not rely on antigenic variation like their 

Trypanosoma cousins, any exposed surface proteins are likely to remain constant 

throughout infection. This suggests there is an opportunity to create a mutant cell line that 

could be attenuated during infection for the purposes of vaccine development. Surface 

proteins are one possible target, but since the majority of the mammalian host infection is 

intracellular, the immune system has limited opportunity to develop antibodies against 

metacyclic promastigotes or extracellular amastigotes before they are phagocytosed. 

Attenuating the parasite’s ability to invade immune cells could allow the immune system 

to have the time to activate the adaptive immune system to generate antibodies against 

the Leishmania cell. Alternatively, modifying the amastigote’s capacity to manipulate the 

host macrophage could allow the macrophage to process and present antigens to activate 

an immune pathway that is less reliant on antibody generation, which may be able to clear 

the infection.   
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As more groups use precision editing for more diverse studies, there becomes a greater 

need for tools to help with the process. For the small number of targets investigated in this 

project, manual design was sufficient, albeit time consuming. As one of the aims of this 

project was to investigate methods to scale up this approach, it became increasingly 

apparent that in order to create libraries worth of mutants, it would first be necessary to 

design them. Designing potentially hundreds of repair templates and screening primer sets 

individually was undoubtedly going to be extremely time consuming to do manually, and 

would likely result in errors in some repair templates. Even though the method developed 

here would not allow for a bulk library transfection to generate a mix of mutants, a library 

could still be created by generating mutants and then combining confirmed clones 

together. As this method is currently only about 30% efficient, combining confirmed clones 

to create a pool is a wiser approach than using a population of cells that could be largely 

WT after transfection. To open up this avenue for future studies, a tool was created using 

Python to generate the repair templates, screening primers and repair production primers. 

Further work is needed to complete the sgRNA design process, which currently has to be 

completed manually, but relieving the workload of the other design steps makes this 

process more tenable than before.  

To expand this technique into a bulk approach, significant modification would be needed. 

One major challenge when doing a library-style transfection is the identification of which 

cells in a population contain the mutations of interest. In previous studies such as Baker et 

al. (2021), barcodes were used which can be identified through Illumina sequencing. In this 

approach, a common sequence surrounding all barcodes allows for amplification of every 

barcode, no matter where it is integrated in the genome. This allows assessment of all 

mutations in the population from a single PCR reaction. However, it is not possible to 

incorporate a barcode that is common to all targets in precisely edited mutants targeting 

protein coding genes, as this would change the protein sequence encoded by the CDS. 

Alternatively, DNA encoding the sgRNA can be used as a barcode if it is either incorporated 

endogenously in a neutral locus, or if it is provided on an episome (plasmid) which is 

maintained by the cell. Endogenous incorporation of DNA encoding sgRNA for precision 

CRISPR editing has been done in T. brucei (Rico et al., 2018). In this instance, a construct 

containing the DNA to transcribe into the sgRNA, a T7 promoter, and a hepatitis delta virus 
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(HDV) ribozyme was integrated into a spacer region of the ribosomal DNA locus, in a cell 

line with tetracycline-inducible Cas9 expression. The HDV ribozyme is a self-cleaving RNA 

when transcribed by T7 polymerase, which releases free sgRNA to direct the Cas9 break 

(Rico et al., 2018). As such, it would be possible to amplify the DNA encoding the sgRNA 

from common regions of the integrated construct for library-scale assessment of mutations 

in the population. Along this premise, Engstler and Beneke (2023) transfected four 

Leishmania species with a series of plasmids containing sgRNAs and a Cas9-fusion cytosine 

base editor protein. Because the plasmids had a common backbone and were under 

constant selection, the presence of each targeted mutation in the population could be 

tracked by amplifying and sequencing the region of the plasmid containing the sgRNA 

target sequence. This suggests that a plasmid based sgRNA strategy could provide options 

for scaling up this precision editing strategy in a traceable manner. One potential challenge 

with this method would be developing a plasmid that incorporates the repair template and 

the sgRNA, without loss of the plasmid following homologous recombination or 

translocation of the repair template. It is necessary to link both the repair template and 

sgRNA on a single plasmid to ensure that cells that received the plasmid have the capacity 

to complete the precision editing, rather than just making a DSB without a repair template. 

This ensures that detection of their sgRNA sequence represents mutated cells, rather than 

cells which only have the guide.  Whilst it is known that Leishmania spp. can produce 

circular DNA to use for horizontal gene transfer (Douanne et al., 2022), and it is well 

established that they can maintain circular DNA constructs, it is not clearly established if 

circular DNA can be incorporated back into the nuclear genome, and what effect that has 

on the presence of the circular DNA.  

 

A significant challenge of this project has been working with the plasticity of the L. mexicana 

genome (Black et al., 2023). The absence of most of the components of the Non-

Homologous End Joining (NHEJ) pathway in Leishmania spp. (Passos-Silva et al., 2010) 

would lead one to believe that repair of double-stranded DNA breaks (DSBs) would favour 

faithful homology directed repair (HDR). However, the natural plasticity of the genome has 

in many instances shown that integration of the desired repair template can occur more 

flexibly than anticipated.  Any integration events in this project which did not incorporate 
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the entirety (or near entirety) on any given allele have been deemed “complex”. Most 

frequently, this was observed as integration of part of the repair template on one allele, 

but complete integration on the other. It is unclear whether the cause of this integration 

event was due to only one of the two DSBs occurring on that allele, or whether the parasite 

was able to use sequence in the middle of the repair template as a micro-homology region 

to alter the incorporation of the repair template. Repair template designs without breaks 

in recoding such as KKT2 S25A/E/S and KKT2 S923A/E/S did not detect the presence of this 

form of complex mutants. In contrast, these complex mutants were detected in KKT2 S493A 

(using ssDNA) and KKT2 S422S (using dsDNA), both of which contained a break in the 

recoding of either 11 bp or 18 bp respectively (see Appendices 7.2.4.2 and 7.2.4.4 for repair 

template designs). It should be noted that complex mutants were detected in KKT2 S923E, 

which did not have a break in the recoding, but were given this designation for 

incorporation of a single-nucleotide polymorphism (SNP) on one allele which was not part 

of the original repair template. Taken together, it is apparent that the plasticity of the 

genome means that sequencing mutant clones becomes paramount to using this 

technique, as one cannot just expect traditional homozygous and heterozygous genotypes. 

The mechanisms underlying this diverse integration of the repair template are currently 

unknown, and with deeper understanding, could potentially be manipulated in a 

favourable manner.   

 

A lack of an apparent phenotype in the kinetochore phosphosite mutants generated 

suggests that regulation of the kinetochore complex is not reliant on single phosphorylation 

events. More likely, this result suggests that regulation of the kinetochore formation and 

disassembly is more complex, and could potentially include fail-safes to ensure mitosis can 

occur correctly even if one protein is disrupted. KKT2, investigated here, has been shown 

to be crucial for kinetochore assembly following phosphorylation by CLK1/KKT10 in T. 

brucei (Saldivia et al., 2021). The results from this project suggests that either CLK1/KKT10 

is still able to phosphorylate the KKT2 mutants generated here such that it can correctly 

localise and initiate kinetochore assembly, or that correct localisation and initiation of 

kinetochore assembly are independent of CLK1/KKT10 phosphorylation of KKT2 in L. 

mexicana. Unfortunately, no KKT2 S505 or S506 mutants were generated, which Saldivia et 
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al. (2021) suggested were the L. mexicana equivalent of the phosphosite targeted by 

CLK1/KKT10 in T. brucei (KKT2 S508). It would be interesting to reattempt generation of 

these sites using the dsDNA method to see if they are attainable, and perhaps have a defect 

in kinetochore assembly. As for KKT4 S422 and KKT7 S304 mutants, both are known to be 

proximal to KKT3, and are more highly phosphorylated in S- and G2/M-phases (Geoghegan 

et al., 2022). Phosphorylation of both sites are reduced with AB1 treatment, which inhibits 

CLK1/KKT10 kinase activity and hence KKT2-mediated kinetochore assembly (Saldivia et al., 

2021; Geoghegan et al., 2022). But the kinase responsible for phosphorylating KKT4 S422 

is unknown. Another phosphosite on KKT4, S477 in T. brucei (equivalent to S590 in L. 

mexicana), is known to be phosphorylated by CLK1/KKT10 and CLK2/KKT19 (Ishii and 

Akiyoshi, 2020; Geoghegan et al., 2022), but was not shown to be impacted by AB1 

treatment in L. mexicana (Geoghegan et al., 2022). KKT7 is phosphorylated by CLK1/KKT10 

and CLK2/KKT19 in T. brucei. However, the equivalent phosphosite to S304 in T. brucei 

(T327) (Geoghegan et al., 2022) lacks the consensus sequence needed to be 

phosphorylated by CLK1/KKT10 or CLK2/KKT19 (Ishii and Akiyoshi, 2020). KKT7 also seems 

to be important for recruiting CLK1/KKT10 and CLK2/KKT19 to the kinetochore in an 

apparently phosphorylation independent manner (Ishii and Akiyoshi, 2020). Taken 

together, it is unclear what role these phosphorylation events play with regards to 

kinetochore assembly, function and regulation. But similarly to the results of this project, 

phosphodeficient mutants did not impact the fitness of the cells in other studies in the 

literature (Ishii and Akiyoshi, 2020).  

 

 

6.2 Future Directions 
Looking forwards, continued research is needed to convert the current methodology into 

a library-style high throughput screen. Currently, as the sgRNA guides and repair templates 

are free pieces of DNA, if two or more target sites were combined in one transfection, then 

a range of different events could happen. In the best-case scenario, it is possible that 

mutants for each respective gene are recovered. However, there are also possible scenarios 

where either poly-mutants are created (i.e. multiple mutations occur in the same cell), or 

more likely, few cells receive the right combination of guides and repairs to generate the 
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desired mutants, and most cells are either unable to make the dsDNA break or unable to 

repair the break with the mutated repair template. Both of these scenarios would likely 

lead to a huge drop off in efficiency, as most breaks would be repaired using genomic 

copies, if any breaks are made at all. In order to achieve the desired result, ideally, the 

guides and repair templates need to be a single piece of DNA that could be spliced or 

manipulated by the cell to release the constituent molecules. Designing a construct, either 

as a linear piece of DNA or a plasmid, will require some investigation to ensure the guide 

sequences are available to transcribe into the actual sgRNA, but that the repair template is 

retained as DNA, without additional bases that could cause frame shifts if incorporated. 

Plasmids have already been used to deliver repair templates for other CRISPR-directed 

mutations successfully (Sollelis et al., 2015), as well as being used for guide delivery for a 

Cas9-base editing fusion protein (Engstler and Beneke, 2023). Use of a plasmid also has the 

advantage that it can confer antibiotic resistance genes to allow for selection of cells that 

have taken it up, and to continually promote editing to take place, as was shown using the 

base-editing Cas9 by Engstler and Beneke (2023). However, as this method did not require 

a repair template, it requires adapting to determine if it is possible to include a repair 

template as well. Given that it has already been demonstrated that Leishmania can 

integrate DNA into the genome from a plasmid (Sollelis et al., 2015), and that plasmids can 

carry usable Cas9 guide sequences (Engstler and Beneke, 2023), creating such a plasmid to 

achieve precision editing is more a matter of “how” than “if”. As well as selection, as 

plasmids can be maintained in Leishmania, they also allow for a form of barcoding. One 

major issue with the current method is that because all the editing takes place within 

coding sequences, there is no way to include a unique barcode sequence flanked by shared 

sequences for amplification. If a library was created, every target would require a separate 

PCR to screen for its presence in the library, making it untenable for more than a handful 

of mutations to be combined.  However, the contents of the plasmid (i.e. the guide or repair 

template) could be used as a barcode itself, if flanked by sequences to allow amplification. 

This could allow for more complex assays to be completed on a wide variety of mutants, as 

well as allowing bulk transfection to generate such libraries, both of which would really 

take this methodology to the next level. 
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Once a proof-of-principle experiment has shown a plasmid could achieve a satisfactory 

level of precision editing in a library style setting, it will then become paramount to have a 

completed Python script to generate all the appropriate designs. At present, a version of 

the script has been generated to allow bulk design, but it needs further testing to remove 

potential bugs.  Incorporating some of the other missing features such as sgRNA design (as 

discussed in more detail in chapter 5.4) is necessary, but more challenging. sgRNA guide 

design en masse is greatly needed for any scaling up of this method beyond a dozen or so 

target mutations. As previously discussed, this is a more complex addition to the existing 

script but is undoubtedly worth the work required to do so. Additionally, the designs 

generated by the current version of the Python script are intended to be used as free linear 

DNA molecules, so modifications would need to be made to the outputs of the script to 

ease integration of these sequences into a plasmid. This could simply by done by designing 

suitable overhangs on the parental plasmid for Gibson assembly or similar methods which 

could be added onto the ends of the repair template or guides to allow integration. As 

functions have already been created within the Python script to “stick” sequences together, 

this would also be a straightforward modification to incorporate.  

As well as the additions and changes to the Python script already mentioned, hosting the 

code on a website is another goal to work towards in the future. Hosting it on a website 

will allow production of a more user-friendly interface, allow a wider user base to benefit 

from it and reduce the set-up required by each user. Currently the script runs on a local 

machine, which means set-up is required on each device, whereas a website would be 

accessible on any internet-enabled device from anywhere within the world. It will also 

allow the set-up of more interactive features, such as highlighting issues with the inputs to 

enable a user to change them; visualising the repair templates and sequences as a whole; 

and potentially widening usage to those who are put off by having to work with the code 

directly.  

Lastly, prior to release of the Python code in a public forum, it is necessary to investigate 

whether all the designs it produces are viable when transfected into cells. Currently, the 

designs produced have not been tested for integration to generate mutant cell lines. In 

principle, there is no reason that at least the continuous matched recoding would not 

integrate, as that is the principle used for the repair templates designed and used in the 
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ssDNA and dsDNA repair templates designed here. Whether the other options created in 

the Python script produce mutant clones at a similar editing efficiency and without 

additional effects such as altered transcription/translation speed remains to be seen. 

Establishing whether the different design options confer different rates of success at 

generating the mutants could also direct whether all the current options in the Python 

script would be included in a publicly available option. If one recoding setting conferred a 

far poorer efficiency than the others across several target sites, then it makes sense to 

remove that option before releasing the Python script to the public to prevent others from 

getting poor results also.  
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7.2 Appendices 
 

7.2.1 LIST OF ABBREVIATIONS 

Abbreviation Meaning 

ANOVA Analysis of variance 

ATP Adenosine Triphosphate 

BLAST Basic Local Alignment Search Tool 

bp Base pair(s) 

CCAN Constitutive centromere associated network 

CDS Coding sequence 

CENP CENtromere Protein 

CL Cutaneous Leishmaniasis 

CLK Cdc2-like kinase 

CRISPR Clustered regularly interspaced short palindromic repeats 

DAPI 4’6-diamidino-2-phenylindole 

DiCre Dimerizable Cre recombinase 

DNA Deoxyribonucleic acid 

DSB Double-strand break 

dsDNA Double-stranded DNA 

EDTA Ethylenediaminetetraacetic acid 

FASTA FAST-All 

FBS Foetal bovine serum 

HA Haemagglutinin 

HDR Homology-directed repair 

HDV Hepatitis delta virus 

kb Kilobase(s) 

KKIP Kinetoplastid kinetochore interacting protein 

KKT Kinetoplastid kinetochore protein 

MSA Multiple sequence alignment 
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NHEJ Non-homologous end joining 

nt Nucleotide(s) 

NumPy Numerical Python 

PAM Protospacer Adjacent Motif 

Pandas Panel data 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PFA Paraformaldehyde 

PSA Pairwise-sequence alignment 

RNA Ribonucleic acid 

RNAi RNA-interference 

SAC Spindle assembly checkpoint 

sgRNA Single-guide RNA 

SNP Single nucleotide polymorphism 

ssDNA Single-stranded DNA 

T7 RNAP T7 RNA polymerase 

UTR Untranslated region 

WT Wild-type 
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7.2.2 SUPPLEMENTARY DATA 
 

7.2.2.1 Single-stranded Transfection Restriction Digest Screens 
 

Restriction digests for screening clones to detect genotype following transfections with 

ssDNA repair templates which confer either phosphodeficient mutations or synonymous 

mutation equivalent designs. A PCR was designed which encompassed the whole repair 

region and some of the genomic DNA either side of the repair region. PCRs were purified 

and the same quantity of PCR product for each clone was digested with the restriction 

enzyme indicated on the respective agarose gel. The restriction enzyme used corresponded 

to a restriction site which was engineered into or removed from the repair sequence. 

Expected digest patterns for each mutation can be found in Appendix 7.2.6. T7Cas9 is the 

parental cell line. Numbers or CL followed by a number indicate clone number. “-" indicates 

undigested sample. “+” indicates digested sample.  

 

7.2.2.1.1 KKT1 S1449A 
For KKT1 S1449A only clones 14-20 were possible to screen.  
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7.2.2.1.2 KKT2 S493 
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7.2.2.1.3 KKT2 S505 
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7.2.2.1.4 KKT2 S506 
pGL2923 was a plasmid digested as a positive control to confirm enzyme activity.  
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7.2.2.1.5 KKT2 S505 + S506 
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7.2.2.1.6 KKT2 S530 
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7.2.2.1.7 KKT2 S923 
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7.2.2.1.8 KKT4 S300 

 

 

 

 

 

KKT4 S300S 
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7.2.2.1.9 KKT4 S422 
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7.2.2.1.10 KKT7 S304 
 

 

 

  

KKT7 S304S 



 

  144 

7.2.2.2 KKT2 Synonymous Only Mutant Double-stranded Transfection PCR 
Screens 

 

PCR screen for detecting genotype following transfections with dsDNA repair templates 

which confer synonymous mutations in KKT2. Expected PCR product sizes can be found in 

Appendix 7.2.5.6.2. Input DNA quantity was not standardised between clones but was 

consistent between each PCR on the same clone. T7Cas9 is the parental cell line. Numbers 

or CL followed by a number indicate clone number.  

 

7.2.2.2.1 KKT2 S25S 
 

 

KKT2 S25S Mutant PCR 
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7.2.2.2.2 KKT2 S493S 
 

  

KKT2 S493S Mutant PCR 
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7.2.2.2.3 KKT2 S530S 
 

  

KKT2 S530S Mutant PCR 
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7.2.2.2.4 KKT2 S923S 
 

 

  

KKT2 S923S Mutant PCR 
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7.2.2.3 Double-stranded Transfection PCR Screens 
 

PCR screen for detecting genotype of clones following transfections with dsDNA repair 

templates which confer either phosphodeficient, phosphomimetic or synonymous 

mutation equivalent designs. Expected PCR product sizes can be found in Appendix 

7.2.5.6.3. Input DNA quantity was not standardised between clones but was consistent 

between each PCR on the same clone. T7Cas9 is the parental cell line. Numbers or CL 

followed by a number indicate clone number. WT – WT PCR conditions. A – Alanine mutant 

specific PCR conditions. E – Glutamic acid mutant specific PCR conditions. S – Synonymous 

mutant specific PCR conditions. M – mutant PCR conditions (primer recognises a region of 

shared recoded sequence between alanine/glutamic acid/synonymous mutant repair 

templates).  
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7.2.2.3.1 KKT2 S25 
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7.2.2.3.2 KKT2 S493 
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7.2.2.3.3 KKT2 S530 
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7.2.2.3.4 KKT2 S923 
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7.2.2.3.5 KKT4 S422 
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7.2.2.3.6 KKT7 S304  
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7.2.3 GENES OF INTEREST 

7.2.3.1 Names and IDs 
Name Gene ID 

KKT1 LmxM.36.1900 

KKT2 LmxM.36.5350 

KKT4 LmxM.10.0300 

KKT7 LmxM.27.0430 

 

7.2.3.2 Genomic DNA Sequences 
All DNA sequences are for the CDS of the gene, except KKT2 which includes a region 
upstream of the start (indicated by underlined text) to show the homology regions of S25 
mutants.  

 

7.2.3.2.1 >KKT1 
ATGGTTCTCAATTTGTTCTCCGGTGCGGCGCTCAACGGGCACGGCAGCACGCACCGTCGCG

GGCGAGCGTCTTCCTCGCTCAACAGCACGGACACGGGGCGCCGGCCTCAGCAGCAGCGTCG

TCAGGCAAGTCGCAGCACGACATACGGTGCATCCATGCAGACGGATGGTGCCGAGCAGTCC

GGATCTGGGCTCCGTGCTGAAGCTGCCGAGGATCGCGTGCTCTTCAACAACTGCGTGGCGC

AGGTGCAGCGCCACCTCAAGACGCACGCGGATTCACCCAGCACGCTCCACACGCTCGCCTC

TTACTACACCAAAACAGAGCCGTTCATCGAGGGCCGCCCCTTTTGCGTGACCCTGAGCTAC

GCCACCTTTCTGTTTCACATGCAAATGGCCCGCATCAGCGTCACGGATGTGGAGCTGTACG

TGCAGCTTCTCACCAGCATCTTGTCGCAGATCACCGAGGATGATCAGCTCCACCACCCGTT

TGTACAGCAGGTGCTTCGCGATCATGTGTTCGGTCTGCCGTCGCCGACCTGCCGCGGCGCG

GCCCACAGCGTGGTGCTCTTGTCACCGCAGCAGTACCGTGCCTTTGCGACGATGACCACTG

CGCTCATTTCCCTCGCCGTGGTGCCGCTCAGCATTGTGTACCAGTTCCACGACCGGCTTGA

GACATACTGCGAGTGCGCCTCACCGCTTGTAGCCAACCGCGCCTTGGCGCTGCTCGTGCAG

ACAGTGGGCGAGGTGCGCATGGATGAGCAGGTCACTGCACTTCAGTACGTCCTGAAGACGA

AGCCGGTGAAGATGAATGTGGACTTCCTCCTCGCTTGCTACGAGCGTCTGAAACGCGCAGT

GATGGATCCGGCGCACGGACCGTCGTTCGGCCGCGCCCTCTCCATCCACTGTAGTGAACTC

TTCCTGCGCTTCCGGTCCCCGGTGCGGCGCGACTACGTGGAACGTTTCCTATACCCGAGTC

TGTGCCACAGCGACATGGCCAGCTTCCTGGAGATACCTGCAACTCGCAAGCACCTGTTGCG

CGAGCTGCTGTCGCAGTGCACGCCGGGCATGGGAACCATGAATCCGTTCTACATGTGCCTC

TGCGCCGTCCTGCAAAGTTGCTTCGACAACGAGACGGACGGCGCGCTCGAGACGGTGGCCC

TCATCAACTGCCATATGCCACACGCCGCTTATTTCATGTCTACCCTGGCTGTTGACTCGCA

CATGTCTGTGCCGATGTTTGCCAAAGTGATGATATCGCTCGCTCGCGGCGCCGGGATGGCT

ATGACGGGTCGCGACACGCCTGACGAGGTGGCCGCCTCGATCAACGAGAACCGCACGAGCG

TGTATAATGTGCTCTTCCTGCTCCGCGAGGTAGTTCGCAGCTGCTCCACCACCGCCTCTCG

CCGCGCCACCGATATGCTTAAGGCGCTGCGGGTCGCTGTGGCTCCAAAGACGATTGAGGCG

CTCGGAAAGCTGTCCAGCGAGGCCTTCGAGGCCGTCAGCGACATCACACTCGATCCGCAGC

TGCTGTGCGCAGAGCTGGCGATGGTGCTGCATCAGGACCATATCGCAGAGGCCATGGACTC

GGCAGTAGAGTACTTTCGCGACGTCAGGTCGAAGTGCCCGTACTGCGCGGCGGCGCGCAGC

TCTTCGCTGCTGTGCCCCGTCAACGGCACGGTGCACGTCGCCGGCCAGTCGTCGGTGAGCC

GCGTGCTGTCGACGCTATCGGAGTGCGCTGGCGCGAAGGCGGTGGAGGAGAAGCTGATCAG

CTATCTGCGCGATCCCGCCTTGCAGATGGAAAGCGCCGTGCACTACCTCATCTACCACATC
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GTCGCGAATGGCGGGCAGCACCGTAATACGCTCTTTGTGGCTGTGGAGCCGTACGTGCGGA

GCACATTACTGGCTTTGGTGAGCGCAGACCGCAGCGGGGTTCGCGGGCTCGTGGACAGCAC

GCTGAAGGCAAACGTGCTCATGCTGCACGTGAAGCTTGTCACCCTCCTCGCCTCCTCCATC

GACCCGTCGTACCTGGAGAGCATCTTGAAAGTCTTCTCGGAGCTGAGGCTGCGCAACAACC

ACGACGCGCTCGCGCTGTGGTACATGGGCAATGTTCTGCTGCGCAGCTGCCGCGGCAACTT

AGAGCTGCTACCCACCGACCCCCAGGAGAACAACTACTGCGTTGCCTTCCCTGGCTGCGCG

CCGGCAAGCGCGACGACCGCCGACAACGCGCAGCTCGTGCTGAAGCTGCTGCACCGCGCGC

ACAGCTTCAGCCCTGAGATGCACAAATTGGTTGGCTGTTGCGTGTGCAAGCTCATCCAGGA

CTTCAACATGCAGGCTCCAAACATTTGCAGCACCTTGCTGTCGCCTTTCGGCTTCTTCCCA

GTCGGACTCGAGTCACTGAACGCCTTCGCCCTTCCGGCAGGCGCCGGCAGCACCTTCTGGA

GCTTCTTTTTGCAGCAGATGCGCAGCTCTGCGCCGGCGCGGACGGCGTTCATGGCGACACT

GGCCAAAAGTCTATCGCGGCGCTTCCGCATTGCATCGCCAATGGACGCGCTCGCCCCGTAC

GGGGTGGAGCCGACAGGGCACTTGTTCGTCATCATGGTCTACGAGGCGATGAAGCGCAACC

CACCACTGGCGCGCGTGCTGCTCTACATGGTGTCGCACTGGATGAAGCAGGCAGGCCACCC

GCCCGGCAAGCTCGCGTGCCTCGTGTACGTGTGCGTGCAGCTCATCACAGTCGTGGTCGAC

CGTGCAGAGGGCCCGGCTGCGGCAGAGGTGGAGGCGGAGACGCCGCAGGATCGGCAGCAGT

TTGACGACGCCGTGAAGAAGGCGGCACGGGTACTGAAGAGTCAGCAGGCGCGCCTTGATAG

ACTGGCCCCGACGGCGCGGCGCGAGAACGTAGAATTCTTCCACCTGCTGCGCCGTTTGCAG

CGTCGCGTGCGCCGGACTGTGGCCACCGCCTCAGGTGAGATTGTTGTTGGCGACGAAGCCG

CGGAGGAGTACGACGACCACGATGACGCCGTTGACGACAGTTCGGCTGGCGGGCATGTGCG

GCAGGATTCCATCACAGACGCAGTTTGTGCCATGCAGGAGCTGCAGAATGCCGCTGACAAC

AGTGTGTTTGACGACTACGCCGATGATGTCGACCAAGAGGACGACGGCGCTTACGGGAACG

ATGAGGGTGCCTGCGACGCTGCTTCTCCAGGGCTTAGGCGTTCCGCGCAGACGGAGGGCAG

CGGCCACAGGGCCGAGGGCCCGCCTGCCCCAATGCAGATTCGCCACTTGCCGCAAGGCATA

ACCAGCATCCTGCGCTCGCCCGCGCAGAGAAGCCCCAACAAGAGCGACAGGGGTGCCGCCG

GTGTGGAGAAGGGCTCGACGACCTCTGTGAACATGTATCGTGAAGCGAACCGGCGAACCGA

TGTCGAGGGCGTCCCGCATGGCGCGGATGGCGATGATGCAGAGATGCGCAGTCGCGATGGC

GAAGCAGCCCACAGCTGTGCGCTGGGAGTTGAGCCTCGTACCCGGTCGACGTCTCGCGGCG

TGCAGACGGACGTGCCTCTGGCGAGCCCCGCGCTGCCCGGGAACGCGCCGCAGCGGAGCGT

GGGGACGTCACCGATACAGCCGGCAGGCACCTCGTCGCAGATCTCGGTCACGCGACGCGAC

GGCACGCAGCTGCCCTGTCGCACACCTGCCGACGTCGGCTCTGCGCACACTCCCTCCTCCT

CCCTCTATCAGCCACAGCGCTCCCACACACGGCCGCCAGAGGCCGATGGCATGCTCAGCGA

GGGTACTCGGACTCCAGCGCAGCGAGGATCGACGTGGCGTGAGCCGGACCTGGCCGACTAC

GTGGACGGTGACACCACCCCGATCGACGACTTCACCGGCGTGCCGCGGCTGCAGGCGACCA

CCACGAGTGACGGTATTGTGCTGCCCTCTGGTATGGTGCTCGAGTACCTGCGCACGCACCA

AGGGATGGACTCGTTGCAGCACGAGCTGAAACAGTTTGACCAGCAGTGGATGGTGCAGCAG

GTTGCTGAGTACGTGTCGCAGAACGGCGGCATGGTCGGCGCTGCTGGTCCGTCGTCGACTA

TTAGGGGCGGTGTGTCGTCTGTGCAGTCCGTTACGGTGGAAGGCCGCGCCAACAACTACAG

CCGCCCGCACGCCGATCCAACTGAGCTTGCGCCGACCCGCACGGTGTGCACAGAGGTGCAC

ATGATAGGGCCAGCCACGTCCTACTCGCGGCCACCTAGACAGGAGGAGCACGGGCGTGTCG

TGGCAGCCGCGCCGGGCCTGCCTGAAGAGGAGGAAGTGAACGTCGTAGATGGCGAACACCC

TATTCGCGCCGTCAGCGGCCCCCCAGACGACAGCGACCTTGCTGGACGCGCAGGTGACGAC

GAAGCGACTAAGCGCCGACGTGTGGAGGCCACCGGAGGCAACGCGACAACTCCGCTGCCAC

CACCAGTCTCCCCCGTAAGCGCTTTCCGCGGCCGCAACTTCTTCTTGAACCAGCATACACA

GCAGGAGGTGGGCTCGACGCTCCAGGACATTCACTACCTGCAGAGAAGGCAGCAGGCGAAC

ATGTCGGCGCTGGCCAAGGCGCAAAGCGCGGCTGAGACGGCGGAGTCAGCAGGTGACGACG

AGGCACCGCGCAAGACACCACACCAGGGTCAGTCCTCTACGGGCGTGGCGGGTGAGGGTGT

GCCGCCGACAACGCCTTACGGACAGGTTATTCTTCCAACTTGGATCGTGGAGCAGCGCAAC

GACACGGCTATCCGTGAGTTGCGACAGGTGATGGGGGCTCACAACCCGAATGACAGTCGAC

TATCGACGAGTGCGGGCAAGCGCAGCCGCATTCGCGGCAGTGGGACAGGCGACGGCAGCGG
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CAACAGCGCTGCGTGGTGGGCTGAGATGAGCTCGGCGCCGATGCCCAACTACGCTGCGGAC

CCTCAGTACTCCATGGAGCTCTTTTAG 

 

7.2.3.2.2 >KKT2 
GGCCTCTGATGTCACACTTTTGCGGCTCGTTGTCGAGGACTCCACCACGGGGTGGGGCGAT

ATCTATGCCGCGTGATTTGTCGCAGACCCCCGCCATCTCTCGACTTGGAAGCACGGTGAAG

ACGCCGCACATCCAAAAATGTGTTGTTGACCAAGCAGAGGATGATGATCATCCACTGGAGC

ACATGACGGTCTATTTTGAAGAGGAGGAGCTTAGAGTAGTTACCACTGGGCTGCTTGGAAA

AGGTGGGTTTGGAAAGGTATTTGATGCCGTTTCGAACAGCGGTGAGGCCTACGCGCTCAAA

GTGTCATCGAAACGCATGAGCGAGAACGACTGGAAGCGACTGAAGGAGGAGGTGACGCTCA

TGAGCCATTTCTCGCGCCATCCCAACATTGTCAAATTCTACGGTGCTGGTAGGGATGAAGA

TCGCGCCTACGTAGTAATGGAGCGGTGCGCAGGCAAGTCGCTTCACGACGTCATAGCCAGC

AGGAGTCTTGATGTGCCGGAGATTTTGTGGATTGGGTGGGCCCTGGTGAACACCATCTCCT

ACATTCATTCCAAAGGCTGCATTCACCGCGACCTGAAGCCACAGAATCTCTTGTTTGACAA

CGAAGGTAATTTGAAGATAACAGATTTTGGACTTTCCAGCCGCATATCAGAGGCGCATCCT

CGCAAGACGGTTGCCGGTACAGCAATGTACATGGCGCCTGAAATGGCAACTGAGGTTTACA

AGCGAATGACAAAAAACTCAGAAGCCCCTTCGCTGAGCTACGGCAAGGAGGTGGACACGTG

GAGTATTGGTGTGGTCCTCTACGTGCTCTTGACACGCATGAATCCGTATCTCGAGGCGATA

GAACAGAAAGGTATGCGCCAACTGGACAAAGAGCACAAATCGCTTGCCCTCTTCAACGCTG

TAGCGGGTGCCGCGTGGAGTTGGCCAAGGGAGTGGAGGGGAGATCCACAGCTCTGCGGACT

TGTGGAGCGCATGTTGCACCGCGAGCCGTCGCGGCGCGCCACGCTGATGGAGGTGCTCGAG

GACTCTGTGTGGAACCGCCGGCCACTGTCCTGCCCACTTTCGCTGCTCCAGAAGCTCAACT

TGCTGGAACCTTCGCCGTCGAGTGGCCTGCCTCTGAACAACCTTGCCGAGAATTTACAGTT

CCGCCCGAAGCGCTCGGCGGAGGCGGTGCTGCGCGAAGGACTAGAGCGCGTCGAAGCCACT

GAGCAGCGCGGTCGTGCGCAGCTGGAGCTTGAGTACTACGAAACCTACAATGTCCTCTGGA

GCCTTCTTACTCTGGCGCGGGCGGAAGAGGACGCCAGAGCTGACATCCTCCAGTCCGAGGA

GGTGCAGCGAGGCAAGCTGCGCAATCAGTCTCTTGCTCGCCAGTCTGCCCGTCGGAGGTGT

GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGCACGTCTC

GATCAGTGCGTCGTAGCGTCAGCTTAACGGAGCAGGAGCGGGGCAGACTTGTGCGTTCTAG

CCCGGTCCAGTACGCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAACCTTCGC

GCCGTAGTATCGCTGCCACGCGACATGACGGACGAGATCGAGCGCGAGTTCAAGTGCATGA

ACGGGCACGTAATGACAAAGTTGACCTCGATGCCGCACGGCTACAACGGCTTCGACTGCAA

TGTGTGCGATCGCGGCATTCTTACGATCACGGCCGAGTCACCAGCCTTCCGATGCTACAAG

TGCGACTACGATGTTTGCATGAAATGTGCGTACTCCGGCAAGTTCAAAGACGTTAACTTTG

TCTGTGTGACATGCGCGAAGCGCTTCACCTCAACCGCAAAGCTGCAGGGGCATTCCTTGCG

CTGTCGCGGCCCGAGCGAAAGTCCCTCACCGCGGCGATCGTCGCGCATGAACACGATGCTC

TGGGACGAGCCGAAGAGACCGAGCCTGCTGGAGGTACAGCTGCCTGAGGCGCCCCAGAGCG

AGCGGAAGCTGCGCGCCAGCCGCTGCCGCTCTGGACGCCCCACGTACAACCGCACATCGAC

CGGTGGCCGCATTAGCATTGGAGACTCGAATGCGCACAGTGTGGTGGACTTCGACGCAATG

GTGGCCTCGCACCGCGAGGCTGACTTTCCCAAGGTGAGCACACGCGCGTCTGCCACCGGCC

GCGAATCCTCGCAGAGACGGGAGCGCACGGGTAGTGGGCGTGGCCGACCATCCACCTCGTC

TAGCGGCAGCCTTTCACTTGACTTGCCGCCGCAGGTGCAGGTACCAAGCAAAGAGTCGCGC

CCACAGGTGCAGCCGCGTAGTTCCGCTGAGCTGCGCGATATCATGGAGGAGGTGGAGCAGC

GGAAGCAGGCACTGCCCCGTGACCCCCTCTTGTCCGCGCCGGCCACACCGCCGCAGTACAA

CTGCAACGGTGAGATCATCGGCATTTCTGCTCGTCGCCGCGCAGAGAGCCTGGAGATGGCG

CGCGCGGAAGTCATCACGATCCGCGCCGAGGTCGCGGACCGGCCGCGCGAGCTGCAGCATC

AGCCGCGTGTGCCGCGCAGCGCCTCCTCATCGAGAGCGGAGAAGGGGCTTCCGAGCCCCCA

CAAACGCCGTCGTGAGGAGTGGCAGCAGCCCGCGCATGCGCCGTCTCCATCCGGTACGGCG

AAGCGAGCCGCTGTGGAGGAGCACGTGGTGAAGCAAGCCATCATGCCGCCTCAGGTGCCAC

GCGGACGAGCACAGCAGCCACGTGCCCCCTCCGTCAGCGGGCACACCGCACAGGGCGGTCC
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GCCACTGCCGCGCCGCGGCCCAGCTGCGCCATCTCCTGCAGCCGCTTTGAAGGCGCACCTC

AGTCCCTTCCAGGCCCCCGCTGCGATTCCTCCCAAGAACTTTGCCTCCATCCTGCAGTCGC

GCTACTCCATGACGAACGCAATGGCGCCCACGTGCAACACTTCGACCACAAGGCCGGCGGG

CGGAGCAGGAGCTGCGACCGCTGCTCTTGGCCAGGGGGGTGCTCCGACATACAGCCATGCG

CTGAGCCGTCCCAACGGCGCCTTTTTGGCGTTGCCGCGCGAGGAGCGGAATCGCCAGCAAT

TCTTGGACGACTTTCTTAGTGGTGGCTGGGTGCGCTTCTACTCTTTCACAAACGAGGACAC

CGTCGTCATGTACTACTCACTGCAGCCTGGTCGCTACGGGGCCATGTTTCCCACCGAGGCA

GGCGTCGGCACTGCTGTGTTGGACGTGTACTCGAAACTGGTCCTCTATGTGCCGTGCATGA

ACAACGAGAGCACGAACCGCAGTCAACCCCACCCACACGTACAAACGTTCTACGACGAAGA

GGCGCGCATTCTTAGCTTGCCGGAGGCGCAGCGGTACCTGGGCGGCGTGCTACGCTGCATC

ACTGGATTTGTAGATGAGTTTAGCCGCTTGAAGGCTGAGGGCCTTACTCCAGCGGCGGTGC

ATGCTGCCTACATCCACCACCGTAGCATGTCCCACGTGCCGCGGGATACGAAGTTCGTGTA

CATTCGCAAAGTATTCCCTGACCCGGCTGGGTCTTTCACGCTTTTCCGCCTGTCGAACCTG

CGCTCGCAAGTCGTTTGCAACGCTATGGTGGACATTCGCTGGCAGAGTGACCGGCGCCACA

ACGTTGGCCAAAAGTATTACATCAACGCGGACGGCACCGCTGAGCCTTTTCTCGTCGATCA

AACCGGAATTCTGTCGCAGCTGGAGACGGTCCTCAACAACAATTTCCGGAGATGA 

 

7.2.3.2.3 >KKT4 
ATGAGCACCGACGCCCAGGAGCTGGTGCGCCAGCTCACGGAAAACCCAGAGGTTCTGGAGA

GCATGCAGCACATGATCTCTCTACTGCGTGCCAATCCTCCGCGTATCTCCGGCAGCAACAA

CGGTGGAGGTCTTGGCAACGCGGAGACTAACGGCCCTGAGAGAGGTGCACCGCAGTGTGTG

CGACCACCGCGCCGCGGATATGGCGCTGACGTTGATTGCGATCACCACCAGCCCACAACCA

GGCGGAAGCTGCGCAGCAGTGATGGCACCGCCCACAGCGCCACTTCCCTGTCTGCGTCGTC

GTTGACGCAGGAGGCGCACTCCTTCTATGGTGACGACAGGGTTGGTGCGCGCACCACCGTC

AGTGATCACAACGGCACCACCGGCGGCGCCTCTTCGCCTACGCCAAGCTTCGTCAGCACAG

GATCCCGCGCAGCGCCTCAGGTGGTCACTGCGGCCTCACGGCACGCGCCGCGCCGCTCCTC

GCTTCTCCCGAGCCCGCACGAGCATCGCCCCACCACAGCTCCCGATGAGCAGCTGATGGCC

ACCGCCAACAAGCTGACGGAGGCGCAGCGGCGCATTGCAGAACTGGAGAAGGAGCTCCAGC

GCACCACGCAGCGGGTGGACCAGTTGTCCGATGTGGTGCAGCGGCAGAAGGACGAGCTACA

GGCCGCGAAGGATCGACATGCGCTAGAGATGGAGGAAACACGACACGCCTACAACGCCGTG

ATTCACCGCAAAGACGAGGTGCAAGAGGAGGCGCTGCGCCAGCTGCTCAAATCCCGCCAGC

TGATGGTGTCGGCAGCCAGGTACGAGGCCGTCGTGGCGGCGAAGAAGCTTCACGCTCAGCG

GTTGGAAAAGGAGAACAACACCGGCGCCGATGATGCGATGGGAAGCCCGAAGGGGCTAGCA

GGCGTACAGGCAAGCGCGAACCCCAACGAGCGCGGCACTCACCCCGGGCTGGCGCCAAGTC

AGACATCAGTGAACGCGCGGCACTCTTCGACGCTCGGCTACGGGTCGGGCACGACAGCCAA

GTACAGCAGCGCTCTAAAGCGTGACCGCCAGAATGACGAGGGGGACCTTGTTGACGATGCC

GGCGTCGAGACTGGCGCACACGAGCCTGGTGAGGCGCGATACGGGGAAGCAGCTCACCACC

ATCCGCCAGTGAAGCGCACCACGTTGGACACGTCTCGTCTGCAGGGCAGCGCCGATCGTGT

CGTGCAAGGACGGAGGGGCGTTGCGGCGACCAAGGCGGAGACGTCTCCGGCGTACATCACC

ACCCCCACGCCGGCCGGCAAGGCGTCCACCGCGCTCGTCGGCACGCGCACTCAGTCAAGCA

GCGCGCGCAAGCGCCGCACCCCGCGCACGCCGAGCCGCACCAACGCTGAACGCATCGCCGG

GTCGGTGGCAGAGAACAGAATCCGCTCGCAACAGCGCCTGCCTGGGACAACGTCGCTGAAG

ATCGAAAGTCCCACGCCTGTGGTGAGCACCGCGTGGACGGCGGACCGTTCTCTCACGGGCA

GTCGTACGCCGCCGCCGTCCAGCGCTGGCGTGTGCACGGTGTCCGAGGCAGTGACCAAGCA

TCATCAACTTTACCCCCAGCAGCAAGTGCATCAAGTTCCGTCCACGAGACCGCCGCTCATG

CAGCGTGCAGCGGGTCGTCTTCCTCCAGCTCCGCACCGCACCGCGGCTGCCTCGACGGCGG

TGCCCAACACGCGAAGTGGTACCTCTTCCATTGCCTCCGGTGGCCCGACGCGGTCACCGTC

GCCTGTGAACCCGAAGCGTGGCGCCATGCTGCCGCGCCGCTTCATCTTCACAGGTCTGAAA

GACCATGAGCCTCAGCGGCTGGTTAGCGCAATAGCCGCGGTCGGCGAGGATGCCGCGGCAC

TGGCGAGCGACCTCGATGAGCCGCCGCCAAGCAGCACGACTCACATTGTGCTGCGCGGGAC
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GCCGCGTAGCGTCAAAGCCCTCTGCGGGGTGGTATCGGGCAAGTGGCTTGTCTCTCCCGAA

TACGTGTACAACAGCCAGCAAAGCGGCTTCTGGCTAGACGAGCTCGAGGAGGGCGGTCTGC

GCATCTTTCCGCCGCCGCTAAAGTGCCAGCGTTTTCTTCTGACGGTGGAGCACCCAGGCAT

CCGGGCGAAACTGGCGCAGGTGATCGAGTACGGCGGTGGCGAGGTTTTGGCAAGCGGCAGT

GACAAGCGTGGCCCTGGCGCCGGCGACACTGTGGCGCAGGACGTGGTCGTGATCACCTCTG

GTGATGACCTCTTGCGATATGCGACGCAAGACCGCGTGTAA 

 

7.2.3.2.4 >KKT7 
ATGACGGACGTAACCTCTTCGCTCCGCCCGTCGTCGCGCCAGGGCTCCCCGGTGCCGCGCC

GGCAGCTCGGCATTCTGCCTGTGAACCAGCGCTCCTACTCGCGTGTGGGCTCCAAGGGCAT

GATTGGCGACGACTCGCCGCTCATGTCACCCTTGCCCTACTATCCGCGTCGTCGCAGTGTC

ACCTTTGCCGGTGACCAGAGCGTGAGAGAGGAGCGACCCAACTACAACGCCGCATATTCCG

CTTCGGCTCCCGTTTCCCCGGCGCGTCACGGCTCACCGCCGCCGGTCTCCATCCTCAAGTC

GAACTTGTCGTTTCCGGCGGCAGAGGAGGAAGACAGCGGCGCTGCGCCGGCGTACCAGGCT

GCTGCGGCCACAGTGAGTGGTGTCTTGGACCGCAAGGACCGCGCGCGCAACTCTCCGGTGC

CGGTGCGCGGCCGCTCCAATAGTCGTCAGCGCCTTGCGGCGCGGCGCAAGGAGGCGCAGCT

GCATCGCAGCTTCTACGATGACAGCTTCGTGGAGGAGTATGTGCTACGAGCCAAGACGGAG

CTGGAGGAGGAGGAGGCAGAGCAACGCCGAATGCAGGAGCAGCTGAGGGCCGAACAGGAGA

GGGCGAAGAGGGCAGAGCGCCGCGTCTCGGAGGCAACGGAGAAGATCAACGCCCTGCAACA

CGCGAAAGAGGTGCTGATGGCGGCCACGGTGCGCCGCCACACCTCTGTGACGCCGTCTCCG

CAGCGTGCGCCTGCCGAAAAATCGAAGCGCAACTCCAGCCTTTTGCGGGAGCTCGAAGAGG

ACCCCGACCCAGAGGTGCAGGCAGCGCTGAAGGAGCTCGCACGCAACTCCATGGCGAAGCA

ACAGAGTCGCGTTCACTCTTCTGCCCATCAGCGTCGTCGGTCGATATCCATTGTCTCCGCC

GACGCCCTCGCGAAGAGCGGCGAGGACGAAGACGGTGACGACAACGACACCCGCAAGCGCG

CGCGTCTAGAGAAGATCGTCTCCACGCTGCTTGCGAAGAAGGCCAAGAGCAAGAGCAAGCG

TAGCGTGATGGTTATCGACTGGTCCGATCTCGACTCCGACGCCGACGGCAACACCTCGACC

ACTGATGAGGATGGGGAGGAGACTGCGGTGGGCCTCAAGCGACAACGCGGCCGCCCTGCCA

AGAGCCGCAGTATAGCGTTGGGGACCGAGGCGACACTGGTGTCATCGGCGAAGCATGTACA

GAAGCCGTCCACGAAGCGCGCAGCCTCGTCCCGTAAGCGCCATGTCAGCGCAGAGCCGGAG

TTGGGCGATTCGCTTCTTTTTGAGGATGAAGCGGAGCAGCCGATTTTGCTTCCTCGCCGGC

AGAACACGCGACCGGCTCCGACTCGGTCTATCTCGTACATCGAAATGGGTGGCGACGATGA

CCTGCTGAGGGATGCTTCCAGCGTTGAGCGTGTGGTGCGGCGACCACCTCGTGCCACGCGC

GCACCGGCCACGCGGCAGCGCCGCGGCCGTCTTGCATCTACTAGCACCCGCGAAGGTGCAG

AGGTCATGTCGTCTTTCACAGGCACCACCGCCTTGCGAGGACGTGCGTCGCAGCCACCAGC

CGCGCCGACAGGGGGCCCGACCGGCGTCCCGCCTCGCCGGCGCCGCGGGTCCGTCCAGCGC

GCAGACCCCAATGATCCCATGGCCGTTTTTTTTGAGGCTGCCTTTCCGAGTCCTTCGAAGT

TTGACGAGATGATGATGCAGGCTGGCGGCCTGCCAGAGACCCGTCGTGGCGGCGGTGGCGG

CGGGCGAGGACAGGGACGGCATCCCAACTTGGTGCTGCCTAGCTCCATTGGACGCCGCCGC

TGA 
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7.2.3.3 Native Protein Sequences 
As with the DNA sequences, the TriTrypDB start methionine for LmxM.31.0120 is indicated 
in underlined text. The protein sequence listed is the extended one.  

Sites targeted in this project are highlighted in yellow for each protein.  

 

7.2.3.3.1 >KKT1 
MVLNLFSGAALNGHGSTHRRGRASSSLNSTDTGRRPQQQRRQASRSTTYGASMQTDGAEQS

GSGLRAEAAEDRVLFNNCVAQVQRHLKTHADSPSTLHTLASYYTKTEPFIEGRPFCVTLSY

ATFLFHMQMARISVTDVELYVQLLTSILSQITEDDQLHHPFVQQVLRDHVFGLPSPTCRGA

AHSVVLLSPQQYRAFATMTTALISLAVVPLSIVYQFHDRLETYCECASPLVANRALALLVQ

TVGEVRMDEQVTALQYVLKTKPVKMNVDFLLACYERLKRAVMDPAHGPSFGRALSIHCSEL

FLRFRSPVRRDYVERFLYPSLCHSDMASFLEIPATRKHLLRELLSQCTPGMGTMNPFYMCL

CAVLQSCFDNETDGALETVALINCHMPHAAYFMSTLAVDSHMSVPMFAKVMISLARGAGMA

MTGRDTPDEVAASINENRTSVYNVLFLLREVVRSCSTTASRRATDMLKALRVAVAPKTIEA

LGKLSSEAFEAVSDITLDPQLLCAELAMVLHQDHIAEAMDSAVEYFRDVRSKCPYCAAARS

SSLLCPVNGTVHVAGQSSVSRVLSTLSECAGAKAVEEKLISYLRDPALQMESAVHYLIYHI

VANGGQHRNTLFVAVEPYVRSTLLALVSADRSGVRGLVDSTLKANVLMLHVKLVTLLASSI

DPSYLESILKVFSELRLRNNHDALALWYMGNVLLRSCRGNLELLPTDPQENNYCVAFPGCA

PASATTADNAQLVLKLLHRAHSFSPEMHKLVGCCVCKLIQDFNMQAPNICSTLLSPFGFFP

VGLESLNAFALPAGAGSTFWSFFLQQMRSSAPARTAFMATLAKSLSRRFRIASPMDALAPY

GVEPTGHLFVIMVYEAMKRNPPLARVLLYMVSHWMKQAGHPPGKLACLVYVCVQLITVVVD

RAEGPAAAEVEAETPQDRQQFDDAVKKAARVLKSQQARLDRLAPTARRENVEFFHLLRRLQ

RRVRRTVATASGEIVVGDEAAEEYDDHDDAVDDSSAGGHVRQDSITDAVCAMQELQNAADN

SVFDDYADDVDQEDDGAYGNDEGACDAASPGLRRSAQTEGSGHRAEGPPAPMQIRHLPQGI

TSILRSPAQRSPNKSDRGAAGVEKGSTTSVNMYREANRRTDVEGVPHGADGDDAEMRSRDG

EAAHSCALGVEPRTRSTSRGVQTDVPLASPALPGNAPQRSVGTSPIQPAGTSSQISVTRRD

GTQLPCRTPADVGSAHTPSSSLYQPQRSHTRPPEADGMLSEGTRTPAQRGSTWREPDLADY

VDGDTTPIDDFTGVPRLQATTTSDGIVLPSGMVLEYLRTHQGMDSLQHELKQFDQQWMVQQ

VAEYVSQNGGMVGAAGPSSTIRGGVSSVQSVTVEGRANNYSRPHADPTELAPTRTVCTEVH

MIGPATSYSRPPRQEEHGRVVAAAPGLPEEEEVNVVDGEHPIRAVSGPPDDSDLAGRAGDD

EATKRRRVEATGGNATTPLPPPVSPVSAFRGRNFFLNQHTQQEVGSTLQDIHYLQRRQQAN

MSALAKAQSAAETAESAGDDEAPRKTPHQGQSSTGVAGEGVPPTTPYGQVILPTWIVEQRN

DTAIRELRQVMGAHNPNDSRLSTSAGKRSRIRGSGTGDGSGNSAAWWAEMSSAPMPNYAAD

PQYSMELF 

 

7.2.3.3.2 >KKT2 
MSHFCGSLSRTPPRGGAISMPRDLSQTPAISRLGSTVKTPHIQKCVVDQAEDDDHPLEHMT

VYFEEEELRVVTTGLLGKGGFGKVFDAVSNSGEAYALKVSSKRMSENDWKRLKEEVTLMSH

FSRHPNIVKFYGAGRDEDRAYVVMERCAGKSLHDVIASRSLDVPEILWIGWALVNTISYIH

SKGCIHRDLKPQNLLFDNEGNLKITDFGLSSRISEAHPRKTVAGTAMYMAPEMATEVYKRM

TKNSEAPSLSYGKEVDTWSIGVVLYVLLTRMNPYLEAIEQKGMRQLDKEHKSLALFNAVAG

AAWSWPREWRGDPQLCGLVERMLHREPSRRATLMEVLEDSVWNRRPLSCPLSLLQKLNLLE

PSPSSGLPLNNLAENLQFRPKRSAEAVLREGLERVEATEQRGRAQLELEYYETYNVLWSLL

TLARAEEDARADILQSEEVQRGKLRNQSLARQSARRRCGSVSLVSEVADREEAAPRTSRSV

RRSVSLTEQERGRLVRSSPVQYAVVYPGRDTATRWNLRAVVSLPRDMTDEIEREFKCMNGH

VMTKLTSMPHGYNGFDCNVCDRGILTITAESPAFRCYKCDYDVCMKCAYSGKFKDVNFVCV

TCAKRFTSTAKLQGHSLRCRGPSESPSPRRSSRMNTMLWDEPKRPSLLEVQLPEAPQSERK
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LRASRCRSGRPTYNRTSTGGRISIGDSNAHSVVDFDAMVASHREADFPKVSTRASATGRES

SQRRERTGSGRGRPSTSSSGSLSLDLPPQVQVPSKESRPQVQPRSSAELRDIMEEVEQRKQ

ALPRDPLLSAPATPPQYNCNGEIIGISARRRAESLEMARAEVITIRAEVADRPRELQHQPR

VPRSASSSRAEKGLPSPHKRRREEWQQPAHAPSPSGTAKRAAVEEHVVKQAIMPPQVPRGR

AQQPRAPSVSGHTAQGGPPLPRRGPAAPSPAAALKAHLSPFQAPAAIPPKNFASILQSRYS

MTNAMAPTCNTSTTRPAGGAGAATAALGQGGAPTYSHALSRPNGAFLALPREERNRQQFLD

DFLSGGWVRFYSFTNEDTVVMYYSLQPGRYGAMFPTEAGVGTAVLDVYSKLVLYVPCMNNE

STNRSQPHPHVQTFYDEEARILSLPEAQRYLGGVLRCITGFVDEFSRLKAEGLTPAAVHAA

YIHHRSMSHVPRDTKFVYIRKVFPDPAGSFTLFRLSNLRSQVVCNAMVDIRWQSDRRHNVG

QKYYINADGTAEPFLVDQTGILSQLETVLNNNFRR 

 

7.2.3.3.3 >KKT4 
MSTDAQELVRQLTENPEVLESMQHMISLLRANPPRISGSNNGGGLGNAETNGPERGAPQCV

RPPRRGYGADVDCDHHQPTTRRKLRSSDGTAHSATSLSASSLTQEAHSFYGDDRVGARTTV

SDHNGTTGGASSPTPSFVSTGSRAAPQVVTAASRHAPRRSSLLPSPHEHRPTTAPDEQLMA

TANKLTEAQRRIAELEKELQRTTQRVDQLSDVVQRQKDELQAAKDRHALEMEETRHAYNAV

IHRKDEVQEEALRQLLKSRQLMVSAARYEAVVAAKKLHAQRLEKENNTGADDAMGSPKGLA

GVQASANPNERGTHPGLAPSQTSVNARHSSTLGYGSGTTAKYSSALKRDRQNDEGDLVDDA

GVETGAHEPGEARYGEAAHHHPPVKRTTLDTSRLQGSADRVVQGRRGVAATKAETSPAYIT

TPTPAGKASTALVGTRTQSSSARKRRTPRTPSRTNAERIAGSVAENRIRSQQRLPGTTSLK

IESPTPVVSTAWTADRSLTGSRTPPPSSAGVCTVSEAVTKHHQLYPQQQVHQVPSTRPPLM

QRAAGRLPPAPHRTAAASTAVPNTRSGTSSIASGGPTRSPSPVNPKRGAMLPRRFIFTGLK

DHEPQRLVSAIAAVGEDAAALASDLDEPPPSSTTHIVLRGTPRSVKALCGVVSGKWLVSPE

YVYNSQQSGFWLDELEEGGLRIFPPPLKCQRFLLTVEHPGIRAKLAQVIEYGGGEVLASGS

DKRGPGAGDTVAQDVVVITSGDDLLRYATQDRV 

 

7.2.3.3.4 >KKT7 
MTDVTSSLRPSSRQGSPVPRRQLGILPVNQRSYSRVGSKGMIGDDSPLMSPLPYYPRRRSV

TFAGDQSVREERPNYNAAYSASAPVSPARHGSPPPVSILKSNLSFPAAEEEDSGAAPAYQA

AAATVSGVLDRKDRARNSPVPVRGRSNSRQRLAARRKEAQLHRSFYDDSFVEEYVLRAKTE

LEEEEAEQRRMQEQLRAEQERAKRAERRVSEATEKINALQHAKEVLMAATVRRHTSVTPSP

QRAPAEKSKRNSSLLRELEEDPDPEVQAALKELARNSMAKQQSRVHSSAHQRRRSISIVSA

DALAKSGEDEDGDDNDTRKRARLEKIVSTLLAKKAKSKSKRSVMVIDWSDLDSDADGNTST

TDEDGEETAVGLKRQRGRPAKSRSIALGTEATLVSSAKHVQKPSTKRAASSRKRHVSAEPE

LGDSLLFEDEAEQPILLPRRQNTRPAPTRSISYIEMGGDDDLLRDASSVERVVRRPPRATR

APATRQRRGRLASTSTREGAEVMSSFTGTTALRGRASQPPAAPTGGPTGVPPRRRRGSVQR

ADPNDPMAVFFEAAFPSPSKFDEMMMQAGGLPETRRGGGGGGRGQGRHPNLVLPSSIGRRR 

 

7.2.4 REPAIR TEMPLATE DESIGNS 
From appendix 7.2.4.2 onwards, WT sequences and repair template designs for mutation 

are shown in the translated frame. Translations of the region are shown at the top. Target 

sites are highlighted in yellow. Black text indicates native sequence. Synonymously recoded 

regions are indicated in orange text. 
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7.2.4.1 Codon Usage of Leishmania Infantum from https://www.kazusa.or.jp/codon/  
 

  Second Base   

  U C A G   

  Triplet 
code 

Amino 
Acid 

Fraction 
Freq. per 
thousand 

Number 
Triplet 
code 

Amino 
Acid 

Fraction 
Freq. per 
thousand 

Number 
Triplet 
code 

Amino 
Acid 

Fraction 
Freq. per 
thousand 

Number 
Triplet 
code 

Amino 
Acid 

Fraction 
Freq. per 
thousand 

Number   

Fi
rs

t 
B

as
e

 

U 

UUU F 0.35 10.6 -52317 UCU S 0.12 10.1 -49998 UAU Y 0.17 4.1 -20192 UGU C 0.21 4.0 -19923 U 

Th
ir

d
 B

as
e

 

UUC F 0.65 19.3 -95738 UCC S 0.19 16.4 -81198 UAC Y 0.83 20.2 -100139 UGC C 0.79 14.7 -72980 C 

UUA L 0.02 1.7 -8226 UCA S 0.08 7.4 -36530 UAA * 0.21 0.3 -1675 UGA * 0.43 0.7 -3507 A 

UUG L 0.12 11.0 -54287 UCG S 0.24 21.0 -104031 UAG * 0.36 0.6 -2958 UGG W 1.00 10.8 -53398 G 

C 

CUU L 0.12 11.4 -56281 CCU P 0.15 8.9 -44052 CAU H 0.25 6.6 -32829 CGU R 0.14 10.4 -51646 U 

CUC L 0.27 25.1 -124189 CCC P 0.22 12.4 -61358 CAC H 0.75 20.3 -100341 CGC R 0.45 32.3 -159735 C 

CUA L 0.05 4.7 -23324 CCA P 0.18 10.5 -51760 CAA Q 0.19 7.7 -38242 CGA R 0.10 7.5 -37057 A 

CUG L 0.41 37.7 -186757 CCG P 0.45 25.8 -127867 CAG Q 0.81 33.2 -164619 CGG R 0.19 13.7 -67860 G 

A 

AUU I 0.28 8.6 -42717 ACU T 0.12 7.0 -34618 AAU N 0.21 5.6 -27605 AGU S 0.08 7.2 -35724 U 

AUC I 0.63 19.1 -94755 ACC T 0.29 17.5 -86625 AAC N 0.79 21.1 -104327 AGC S 0.29 25.3 -125511 C 

AUA I 0.09 2.8 -13730 ACA T 0.17 10.1 -49979 AAA K 0.17 5.8 -28498 AGA R 0.04 2.7 -13523 A 

AUG M 1.00 22.8 -113035 ACG T 0.42 24.9 -123090 AAG K 0.83 28.6 -141622 AGG R 0.08 5.5 -27170 G 

G 

GUU V 0.12 8.7 -42923 GCU A 0.15 18.2 -90366 GAU D 0.30 14.7 -73013 GGU G 0.19 12.1 -59837 U 

GUC V 0.27 19.5 -96651 GCC A 0.31 36.8 -182020 GAC D 0.70 34.2 -169136 GGC G 0.53 34.3 -170081 C 

GUA V 0.08 5.5 -27330 GCA A 0.17 20.3 -100314 GAA E 0.20 11.7 -58159 GGA G 0.10 6.6 -32881 A 

GUG V 0.53 37.3 -184912 GCG A 0.37 44.4 -220138 GAG E 0.80 48.3 -239092 GGG G 0.18 11.7 -58128 G 

https://www.kazusa.or.jp/codon/
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7.2.4.2 Single-Stranded Repair Templates 
 

Name                           

KKT1 S1449 

Translation 
 L P E E E E V N V V D G E H P I R A V S/A G P P D D 

KKT1 S1449 WT 

sequence 
 CTG CCT GAA GAG GAG GAA GTG AAC GTC GTA GAT GGC GAA CAC CCT ATT CGC GCC GTC AGC GGC CCC CCA GAC GAC 

KKT1 S1449A  CTG CCT GAA GAG GAG GAA GTG AAC GTC GTA GAT GGC GAA CAT CCA ATA CGG GCT GTT GCG GGT CCA CCT GAT GAT 

KKT1 S1449S   CTG CCT GAA GAG GAG GAA GTG AAC GTC GTA GAT GGC GAA CAT CCA ATA CGG GCT GTT TCG GGT CCA CCT GAT GAT 

                           

KKT2 M146 

Translation 
- S H F S R H P N I V K F Y G A G R D E D R A Y V V 

KKT2 M146 WT 

sequence 
G AGC CAT TTC TCG CGC CAT CCC AAC ATT GTC AAA TTC TAC GGT GCT GGT AGG GAT GAA GAT CGC GCC TAC GTA GTA 

KKT2 M146G G AGC CAT TTC TCG CGC CAT CCC AAC ATT GTC AAG TTT TAT GGA GCG GGC CGC GAC GAG GAC CGA GCG TAT GTG GTG 

                           

KKT2 S505/S506 

Translation 
 S R S V R R S V S L T E Q E R G R L V R S/A S/A P V Q 

KKT2 S505/S506 

WT sequence 
 TCT CGA TCA GTG CGT CGT AGC GTC AGC TTA ACG GAG CAG GAG CGG GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG 

KKT2 S505A  TCT CGA TCA GTG CGT CGT AGC GTC AGC CTA ACC GAA CAA GAA CGT GGC AGA CTT GTG CGT GCG AGC CCG GTG CAA 

KKT2 S505S   TCT CGA TCA GTG CGT CGT AGC GTC AGC CTA ACC GAA CAA GAA CGT GGC AGA CTT GTG CGT TCG AGC CCG GTG CAA 

KKT2 S506A  TCT CGA TCA GTG CGT CGT AGC GTC AGC CTA ACC GAA CAA GAA CGT GGC AGA CTT GTG CGT TCT GCC CCG GTG CAA 

KKT2 S506S   TCT CGA TCA GTG CGT CGT AGC GTC AGC CTA ACC GAA CAA GAA CGT GGC AGA CTT GTG CGT TCT AGT CCG GTG CAA 

KKT2 

S505A+S506A 

Double 

 TCT CGA TCA GTG CGT CGT AGC GTC AGC TTA ACC GAA CAA GAA CGT GGT AGG CTC GTC CGG GCG GCG CCC GTG CAA 

KKT2 

S505S+S506S 

Double  

 TCT CGA TCA GTG CGT CGT AGC GTC AGC TTA ACC GAA CAA GAA CGT GGT AGG CTC GTC CGG AGC TCG CCC GTG CAA 

Left hand side 
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KKT2 S493 

Translation 
 V S E V A D R E E A A P R T S R S V R R S V S/A L T 

KKT2 S493 WT 

sequence 
 GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCC CCT CGC ACG TCT CGA TCA GTG CGT CGT AGC GTC AGC TTA ACG 

KKT2 S493A  GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCA CGG ACC TCA CGT TCT GTC CGT CGT AGC GTA GCG CTA ACC 

KKT2 S493S   GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCA CGG ACC TCA CGT TCT GTC CGT CGT AGC GTA TCG CTA ACC 

                           

KKT2 S530 

Translation 
 V V Y P G R D T A T R W N L R A V V S/A L P R D M T 

KKT2 S530 WT 

sequence 
 GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAC CTT CGC GCC GTA GTA TCG CTG CCA CGC GAC ATG ACG 

KKT2 S530A  GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAT TTG CGG GCG GTT GTA GCG CTC CCT CGG GAT ATG ACC 

KKT2 S530S   GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAT TTG CGG GCG GTT GTA TCC CTC CCT CGG GAT ATG ACC 

                           

KKT2 S530 1 

guide 

Translation 

 A V V Y P G R D T A T R W N L R A V V S/A L P R D M 

KKT2 S530 1 

guide WT 

sequence 

 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAC CTT CGC GCC GTA GTA TCG CTG CCA CGC GAC ATG 

KKT2 S530A 1 

guide 
 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCG ACA CGG TGG AAT TTG CGG GCG GTT GTA GCG CTC CCT CGG GAT ATG 

KKT2 S530S 1 

guide 
 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCG ACA CGG TGG AAT TTG CGG GCG GTT GTA TCC CTC CCT CGG GAT ATG 

                           

KKT2 S923 

Translation 
 K Q A I M P P Q V P R G R A Q Q P R A P S/A V S G H 

KKT2 S923 WT 

sequence 
 AAG CAA GCC ATC ATG CCG CCT CAG GTG CCA CGC GGA CGA GCA CAG CAG CCA CGT GCC CCC TCC GTC AGC GGG CAC 

KKT2 S923A  AAG CAA GCC ATC ATG CCG CCT CAA GTG CCA CGC GGA CGA GCA CAG CAG CCA CGT GCG CCA GCG GTT TCG GGT CAT 

KKT2 S923S   AAG CAA GCC ATC ATG CCG CCT CAA GTG CCA CGC GGA CGA GCA CAG CAG CCA CGT GCG CCA TCG GTT TCG GGT CAT 
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KKT4 S300 

Translation 
 A A K K L H A Q R L E K E N N T G A D D A M G S/A P 

KKT4 S300 WT 

sequence 
 GCG GCG AAG AAG CTT CAC GCT CAG CGG TTG GAA AAG GAG AAC AAC ACC GGC GCC GAT GAT GCG ATG GGA AGC CCG 

KKT4 S300A  GCG GCG AAG AAG CTT CAC GCT CAG CGG TTG GAG AAA GAA AAT AAT ACG GGC GCC GAT GAT GCG ATG GGA GCG CCC 

KKT4 S300S   GCG GCG AAG AAG CTT CAC GCT CAG CGG TTG GAG AAA GAA AAT AAT ACG GGC GCC GAT GAT GCG ATG GGA TCG CCC 

                           

KKT4 S422 

Translation 
 L Q G S A D R V V Q G R R G V A A T K A E T S/A P A 

KKT4 S422 WT 

sequence 
 CTG CAG GGC AGC GCC GAT CGT GTC GTG CAA GGA CGG AGG GGC GTT GCG GCG ACC AAG GCG GAG ACG TCT CCG GCG 

KKT4 S422A  CTG CAG GGC AGC GCC GAT CGT GTC GTC CAG GGG CGT CGT GGC GTT GCG GCG ACC AAG GCG GAG ACG GCG CCG GCC 

KKT4 S422S   CTG CAG GGC AGC GCC GAT CGT GTC GTC CAG GGG CGT CGT GGC GTT GCG GCG ACC AAG GCG GAG ACG TCA CCG GCC 

                           

KKT7 S304 

Translation 
 A K Q Q S R V H S S A H Q R R R S I S I V S/A A D A 

KKT7 S304 WT 

sequence 
 GCG AAG CAA CAG AGT CGC GTT CAC TCT TCT GCC CAT CAG CGT CGT CGG TCG ATA TCC ATT GTC TCC GCC GAC GCC 

KKT7 S304A  GCG AAG CAA CAG AGT CGC GTT CAC TCT TCT GCG CAC CAA CGG CGG CGT AGC ATT AGC ATT GTC GCG GCG GAT GCG 

KKT7 S304S   GCG AAG CAA CAG AGT CGC GTT CAC TCT TCT GCG CAC CAA CGG CGG CGT AGC ATT AGC ATT GTC TCG GCG GAT GCG 
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Right hand side 

               Name 

S D L A G R A G D D E A T K R 
KKT1 S1449 

Translation 

AGC GAC CTT GCT GGA CGC GCA GGT GAC GAC GAA GCG ACT AAG CGC 
KKT1 S1449 WT 

sequence 

TCG GAT CTA GCT GGA CGC GCA GGT GAC GAC GAA GCG ACT AAG CGC KKT1 S1449A 

TCG GAT CTA GCT GGA CGC GCA GGT GAC GAC GAA GCG ACT AAG CGC KKT1 S1449S  

                

M/G E R C A G K S L H D V I A - 
KKT2 M146 

Translation 

ATG GAG CGG TGC GCA GGC AAG TCG CTT CAC GAC GTC ATA GCC AG 
KKT2 M146 WT 

sequence 

GCG GAA CGT TGT GCA GGC AAG TCG CTT CAC GAC GTC ATA GCC AG KKT2 M146G 

                

Y A V V Y P G R D T A T R W N 
KKT2 S505/S506 

Translation 

TAC GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAC 
KKT2 S505/S506 

WT sequence 

TAT GCT GTC GTC TAC CCA GGG CGC GAC ACT GCC ACT CGT TGG AAC KKT2 S505A 

TAT GCT GTC GTC TAC CCA GGG CGC GAC ACT GCC ACT CGT TGG AAC KKT2 S505S  

TAT GCT GTC GTC TAC CCA GGG CGC GAC ACT GCC ACT CGT TGG AAC KKT2 S506A 

TAT GCT GTC GTC TAC CCA GGG CGC GAC ACT GCC ACT CGT TGG AAC KKT2 S506S  

TAT GCC GTC GTC TAT CCG GGG CGC GAC ACT GCC ACT CGT TGG AAC 

KKT2 

S505A+S506A 

Double 

TAT GCC GTC GTC TAT CCG GGG CGC GAC ACT GCC ACT CGT TGG AAC 

KKT2 

S505S+S506S 

Double  
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E Q E R G R L V R S S P V Q Y 
KKT2 S493 

Translation 

GAG CAG GAG CGG GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC 
KKT2 S493 WT 

sequence 

GAA CAA GAA CGT GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493A 

GAA CAA GAA CGT GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493S  

                

D E I E R E F K C M N G H V M 
KKT2 S530 

Translation 

GAC GAG ATC GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA ATG 
KKT2 S530 WT 

sequence 

GAT GAA ATC GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA ATG KKT2 S530A 

GAT GAA ATC GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA ATG KKT2 S530S  

                

T D E I E R E F K C M N G H V 

KKT2 S530 1 

guide 

Translation 

ACG GAC GAG ATC GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA 

KKT2 S530 1 

guide WT 

sequence 

ACC GAT GAA ATT GAA CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA 
KKT2 S530A 1 

guide 

ACC GAT GAA ATT GAA CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA 
KKT2 S530S 1 

guide 

                

T A Q G G P P L P R R G P A A 
KKT2 S923 

Translation 

ACC GCA CAG GGC GGT CCG CCA CTG CCG CGC CGC GGC CCA GCT GCG 
KKT2 S923 WT 

sequence 

ACG GCT CAA GGT GGT CCG CCA CTG CCG CGC CGC GGC CCA GCT GCG KKT2 S923A 

ACG GCT CAA GGT GGT CCG CCA CTG CCG CGC CGC GGC CCA GCT GCG KKT2 S923S  
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K G L A G V Q A S A N P N E R 
KKT4 S300 

Translation 

AAG GGG CTA GCA GGC GTA CAG GCA AGC GCG AAC CCC AAC GAG CGC 
KKT4 S300 WT 

sequence 

AAA GGT CTT GCT GGG GTA CAG GCA AGC GCG AAC CCC AAC GAG CGC KKT4 S300A 

AAA GGT CTT GCT GGG GTA CAG GCA AGC GCG AAC CCC AAC GAG CGC KKT4 S300S  

                

Y I T T P T P A G K A S T A L 
KKT4 S422 

Translation 

TAC ATC ACC ACC CCC ACG CCG GCC GGC AAG GCG TCC ACC GCG CTC 
KKT4 S422 WT 

sequence 

TAT ATT ACG ACG CCC ACG CCC GCC GGC AAG GCG TCC ACC GCG CTC KKT4 S422A 

TAT ATT ACG ACG CCC ACG CCC GCC GGC AAG GCG TCC ACC GCG CTC KKT4 S422S  

                

L A K S G E D E D G D D N D T 
KKT7 S304 

Translation 

CTC GCG AAG AGC GGC GAG GAC GAA GAC GGT GAC GAC AAC GAC ACC 
KKT7 S304 WT 

sequence 

CTT GCC AAA TCG GGC GAG GAC GAA GAC GGT GAC GAC AAC GAC ACC KKT7 S304A 

CTT GCC AAA TCG GGC GAG GAC GAA GAC GGT GAC GAC AAC GAC ACC KKT7 S304S  
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7.2.4.3 Pooled Single-Stranded Repair Template Designs  

Name                               

KKT2 S493 Translation V S E V A D R E E A A P R T S R S V R R S V S/A L T E Q E R Y 

KKT2 S493 WT sequence GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCC CCT CGC ACG TCT CGA TCA GTG CGT CGT AGC GTC AGC TTA ACG GAG CAG GAG CGG TAC 

KKT2 S493A GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCA CGG ACC TCA CGT TCT GTC CGT CGT AGC GTA GCG CTA ACC GAA CAA GAA CGT TAC 

KKT2 S493S design 1 GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCA CGG ACC TCA CGT TCT GTC CGT CGT AGC GTA TCG CTA ACC GAA CAA GAA CGT TAC 

KKT2 S493A design 2 GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCT CGA ACG TCT CGA TCA GTG CGT CGT AGC GTA GCG CTC ACG GAG CAG GAG CGT TAC 

KKT2 S493S design 2 GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCT CGA ACG TCT CGA TCA GTG CGT CGT AGC GTA TCG CTC ACG GAG CAG GAG CGT TAC 

KKT2 S493A design 3 GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCA CGC ACG TCT CGA TCA GTG CGT CGT TCG GTA GCG CTA ACG GAG CAA GAA CGT TAC 

KKT2 S493S design 3 GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCA CGC ACG TCT CGA TCA GTG CGT CGT TCG GTA AGT CTA ACG GAG CAA GAA CGT TAC 

KKT2 S493A design 4 GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCT AGG ACG AGT CGA AGC GTG AGG CGT AGC GTA GCG CTC ACG GAG CAA GAG AGA TAC 

KKT2 S493S design 4 GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCT AGG ACG AGT CGA AGC GTG AGG CGT AGC GTA TCC CTC ACG GAG CAA GAG AGA TAC 

KKT2 S493A design 5 GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCA CCC CGT ACA TCT CGA TCA GTG CGT CGT TCC GTA GCG CTC ACA GAG CAG GAG AGG TAC 

KKT2 S493S design 5 GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCA CCC CGT ACA TCT CGA TCA GTG CGT CGT TCC GTA TCT CTC ACA GAG CAG GAG AGG TAC 

                               
KKT2 S530 1 guide 

Translation A V V Y P G R D T A T R W N L R A V V S/A L P R D M T D E I V 

KKT2 S530 WT sequence GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAC CTT CGC GCC GTA GTA TCG CTG CCA CGC GAC ATG ACG GAC GAG ATC GTA 

KKT2 S530A design 1 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCG ACA CGG TGG AAT TTG CGG GCG GTT GTA GCG CTC CCT CGG GAT ATG ACC GAT GAA ATT GTA 

KKT2 S530S design 1 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCG ACA CGG TGG AAT TTG CGG GCG GTT GTA TCC CTC CCT CGG GAT ATG ACC GAT GAA ATT GTA 

KKT2 S530A design 2 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAT TTG CGA GCC GTA GTA GCG CTT CCA CGT GAC ATG ACG GAC GAG ATC GTA 

KKT2 S530S design 2 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAT TTG CGA GCC GTA GTA TCA CTT CCA CGT GAC ATG ACG GAC GAG ATC GTA 

KKT2 S530A design 3 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAT TTG CGG GCG GTA GTG GCG CTC CCA CGA GAT ATG ACG GAC GAG ATC GTA 

KKT2 S530S design 3 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAT TTG CGG GCG GTA GTG TCA CTC CCA CGA GAT ATG ACG GAC GAG ATC GTA 

KKT2 S530A design 4 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAT TTG AGA GCC GTA GTT GCG TTA CCA AGG GAT ATG ACG GAC GAG ATC GTA 

KKT2 S530S design 4 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAT TTG AGA GCC GTA GTT AGT TTA CCA AGG GAT ATG ACG GAC GAG ATC GTA 

KKT2 S530A design 5 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAT TTA AGG GCT GTC GTA GCG TTG CCT CGT GAC ATG ACA GAC GAG ATA GTA 

KKT2 S530S design 5 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAT TTA AGG GCT GTC GTA TCT TTG CCT CGT GAC ATG ACA GAC GAG ATA GTA 

  

- Left hand side. 
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Right hand side. 
 

 

 

           Name 

G R L V R S S P V Q Y KKT2 S493 Translation 

GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493 WT sequence 

GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493A 

GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493S design 1 

GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493A design 2 

GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493S design 2 

GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493A design 3 

GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493S design 3 

GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493A design 4 

GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493S design 4 

GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493A design 5 

GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493S design 5 

            

E R E F K C M N G H V 

KKT2 S530 1 guide 

Translation 

GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530 WT sequence 

GAA CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530A design 1 

GAA CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530S design 1 

GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530A design 2 

GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530S design 2 

GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530A design 3 

GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530S design 3 

GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530A design 4 

GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530S design 4 

GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530A design 5 

GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530S design 5 
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7.2.4.3.1 Pooled single-stranded repair template sgRNA and repair template primer IDs. 
 

 S493A S493S S530A S530S 

sgRNA Primers OL12987 

OL12988 

 

OL12987 

OL12988 

 

OL12902 

OL12903 

 

OL12902 

OL12903 

 

Repair 

Templates 

OL12999 

OL13651 

OL13653 

OL13655 

OL13657 

OL13000 

OL13652 

OL13654 

OL13656 

OL13658 

OL13369 

OL13659 

OL13661 

OL13663 

OL13665 

OL13370 

OL13660 

OL13662 

OL13664 

OL13666 
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7.2.4.4 Double-Stranded Repair Template Designs 
Plus strand sequence only. Left hand side.  

Name                           

KKT2 S25 Translation - P L M S H F C G S L S R T P P R G G A I S M P R D 

KKT2 S25 WT sequence GG CCT CTG ATG TCA CAC TTT TGC GGC TCG TTG TCG AGG ACT CCA CCA CGG GGT GGG GCG ATA TCT ATG CCG CGT GAT 

KKT2 S25A GC CCT CTG ATG TCA CAC TTT TGC GGC TCG TTG TCG AGG ACT CCA CCA CGG GGT GGG GCG ATA TCT ATG CCC AGA GAC 

KKT2 S25E CC CCT CTG ATG TCA CAC TTT TGC GGC TCG TTG TCG AGG ACT CCA CCA CGG GGT GGG GCG ATA TCT ATG CCC AGA GAC 

KKT2 S25S  GG CCT CTG ATG TCA CAC TTT TGC GGC TCG TTG TCG AGG ACT CCA CCA CGG GGT GGG GCG ATA TCT ATG CCC AGA GAC 

                           

KKT2 S493 Translation - C G S V S L V S E V A D R E E A A P R T S R S V R 

KKT2 S493 WT sequence GG TGT GGC AGT GTC TCA CTG GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCC CCT CGC ACG TCT CGA TCA GTG CGT 

KKT2 S493A GG TGT GGC AGT GTC TCA CTG GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCA CGG ACC TCA CGT TCT GTC CGT 

KKT2 S493E GG TGT GGC AGT GTC TCA CTG GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCA CGG ACC TCA CGT TCT GTC CGT 

KKT2 S493S  GG TGT GGC AGT GTC TCA CTG GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCA CGG ACC TCA CGT TCT GTC CGT 

                           

KKT2 S530 Translation  R S S P V Q Y A V V Y P G R D T A T R W N L R A V 

KKT2 S530 WT sequence  CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAC CTT CGC GCC GTA 

KKT2 S530A  CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CGC GAC ACT GCG ACA CGG TGG AAT TTG CGG GCG GTT 

KKT2 S530E  CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CGC GAC ACT GCG ACA CGG TGG AAT TTG CGG GCG GTT 

KKT2 S530S   CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CGC GAC ACT GCG ACA CGG TGG AAT TTG CGG GCG GTT 

                           

KKT2 S923 Translation - V E E H V V K Q A I M P P Q V P R G R A Q Q P R A 

KKT2 S923 WT sequence CT GTG GAG GAG CAC GTG GTG AAG CAA GCC ATC ATG CCG CCT CAG GTG CCA CGC GGA CGA GCA CAG CAG CCA CGT GCC 

KKT2 S923A CT GTG GAG GAG CAC GTG GTG AAG CAA GCC ATC ATG CCG CCT CAA GTG CCA CGC GGA CGA GCA CAG CAG CCA CGT GCG 

KKT2 S923E CT GTG GAG GAG CAC GTG GTG AAG CAA GCC ATC ATG CCG CCT CAA GTG CCA CGC GGA CGA GCA CAG CAG CCA CGT GCG 

KKT2 S923S  CT GTG GAG GAG CAC GTG GTG AAG CAA GCC ATC ATG CCG CCT CAA GTG CCA CGC GGA CGA GCA CAG CAG CCA CGT GCG 
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KKT4 S422 Translation - T  T  L  D  T  S  R  L  Q  G  S  A  D  R  V  V  Q  G  R  R  G  V  A  A  T  

KKT4 S422 WT Sequence AC ACC ACG TTG GAC ACG TCT CGT CTG CAG GGC AGC GCC GAT CGT GTC GTG CAA GGA CGG AGG GGC GTT GCG GCG ACC 

KKT4 S422A AC ACC ACG TTG GAC ACG TCT CGT CTG CAG GGC AGC GCC GAT CGT GTC GTG CAG GGT CGC CGT GGT GTG GCC GCG ACC 

KKT4 S422E AC ACC ACG TTG GAC ACG TCT CGT CTG CAG GGC AGC GCC GAT CGT GTC GTG CAG GGT CGC CGT GGT GTG GCC GCG ACC 

KKT4 S422S AC ACC ACG TTG GAC ACG TCT CGT CTG CAG GGC AGC GCC GAT CGT GTC GTG CAG GGT CGC CGT GGT GTG GCC GCG ACC 

                           

KKT7 S304 Translation - L  A  R  N  S  M  A  K  Q  Q  S  R  V  H  S  S  A  H  Q  R  R  R  S  I  S  

KKT7 S304 WT Sequence CT CTC GCA CGC AAC TCC ATG GCG AAG CAA CAG AGT CGC GTT CAC TCT TCT GCC CAT CAG CGT CGT CGG TCG ATA TCC 

KKT7 S304A CT CTC GCA CGC AAC TCC ATG GCG AAG CAA CAG AGT CGC GTT CAC TCT TCT GCT CAC CAA CGC CGA CGC TCC ATC TCC 

KKT7 S304E CT CTC GCA CGC AAC TCC ATG GCG AAG CAA CAG AGT CGC GTT CAC TCT TCT GCT CAC CAA CGC CGA CGC TCC ATC TCC 

KKT7 S304S CT CTC GCA CGC AAC TCC ATG GCG AAG CAA CAG AGT CGC GTT CAC TCT TCT GCT CAC CAA CGC CGA CGC TCC ATC TCC 
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Plus strand sequence only. Right hand side 

                             Name 

L 

S/A

/E Q T P A I S R L G S T V K T P H I Q K C V V D Q A -  KKT2 S25 Translation 

TTG TCG CAG ACC CCC GCC ATC TCT CGA CTT GGA AGC ACG GTG AAG ACG CCG CAC ATC CAA AAA TGT GTT GTT GAC CAA GCA GA  KKT2 S25 WT sequence 

CTT GCG CAA ACA CCA GCG ATT TCA CGC CTG GGG AGC ACG GTG AAG ACG CCG CAC ATC CAA AAA TGT GTT GTT GAC CAA GCA GA  KKT2 S25A 

CTT GAG CAA ACA CCA GCG ATT TCA CGC CTG GGG AGC ACG GTG AAG ACG CCG CAC ATC CAA AAA TGT GTT GTT GAC CAA GCA GA  KKT2 S25E 

CTT AGT CAA ACA CCA GCG ATT TCA CGC CTG GGG AGC ACG GTG AAG ACG CCG CAC ATC CAA AAA TGT GTT GTT GAC CAA GCA GA  KKT2 S25S  

                              

R S V 

S/A

/E L T E Q E R G R L V R S S P V Q Y A V V Y P G -  KKT2 S493 Translation 

CGT AGC GTC AGC TTA ACG GAG CAG GAG CGG GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CG  KKT2 S493 WT sequence 

CGT AGC GTA GCG CTA ACC GAA CAA GAA CGT GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CG  KKT2 S493A 

CGT AGC GTA GAG CTA ACC GAA CAA GAA CGT GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CG  KKT2 S493E 

CGT AGC GTA TCT CTA ACC GAA CAA GAA CGT GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CG  KKT2 S493S  

                              

V 

S/A

/E L P R D M T D E I E R E F K C M N G H V M T K L T S - KKT2 S530 Translation 

GTA TCG CTG CCA CGC GAC ATG ACG GAC GAG ATC GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA ATG ACA AAG TTG ACC TCG A KKT2 S530 WT sequence 

GTA GCG CTC CCT CGG GAT ATG ACC GAT GAA ATT GAA CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA ATG ACA AAG TTG ACC TCG A KKT2 S530A 

GTA GAG CTC CCT CGG GAT ATG ACC GAT GAA ATT GAA CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA ATG ACA AAG TTG ACC TCG A KKT2 S530E 

GTA AGT CTC CCT CGG GAT ATG ACC GAT GAA ATT GAA CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA ATG ACA AAG TTG ACC TCG A KKT2 S530S  

                              

P 

S/A

/E V S G H T A Q G G P P L P R R G P A A P S P A A A -  KKT2 S923 Translation 

CCC TCC GTC AGC GGG CAC ACC GCA CAG GGC GGT CCG CCA CTG CCG CGC CGC GGC CCA GCT GCG CCA TCT CCT GCA GCC GCT TT  KKT2 S923 WT sequence 

CCA GCG GTT TCG GGT CAT ACG GCT CAA GGT GGT CCG CCA CTG CCG CGC CGC GGC CCA GCT GCG CCA TCT CCT GCA GCC GCT TT  KKT2 S923A 

CCA GAG GTT TCG GGT CAT ACG GCT CAA GGT GGT CCG CCA CTG CCG CGC CGC GGC CCA GCT GCG CCA TCT CCT GCA GCC GCT TT  KKT2 S923E 

CCA AGT GTT TCG GGT CAT ACG GCT CAA GGT GGT CCG CCA CTG CCG CGC CGC GGC CCA GCT GCG CCA TCT CCT GCA GCC GCT TT  KKT2 S923S  
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K  A  E  T  

S/A

/E  P  A  Y  I  T  T  P  T  P  A  G  K  A  S  T  A  L  V  G  T  R  T  -  KKT4 S422 Translation 

AAG GCG GAG ACG TCT CCG GCG TAC ATC ACC ACC CCC ACG CCG GCC GGC AAG GCG TCC ACC GCG CTC GTC GGC ACG CGC ACT CA  KKT4 S422 WT Sequence 

AAG GCG GAG ACG GCG CCC GCC TAT ATT ACG ACA CCC ACG CCG GCC GGC AAG GCG TCC ACC GCG CTC GTC GGC ACG CGC ACT CA  KKT4 S422A 

AAG GCG GAG ACG GAG CCC GCC TAT ATT ACG ACA CCC ACG CCG GCC GGC AAG GCG TCC ACC GCG CTC GTC GGC ACG CGC ACT CA  KKT4 S422E 

AAG GCG GAG ACG AGC CCC GCC TAT ATT ACG ACA CCC ACG CCG GCC GGC AAG GCG TCC ACC GCG CTC GTC GGC ACG CGC ACT CA  KKT4 S422S 

                              

I  V  

S/A

/E  A  D  A  L  A  K  S  G  E  D  E  D  G  D  D  N  D  T  R  K  R  A  R  L  -  KKT7 S304 Translation 

ATT GTC TCC GCC GAC GCC CTC GCG AAG AGC GGC GAG GAC GAA GAC GGT GAC GAC AAC GAC ACC CGC AAG CGC GCG CGT CTA GA  KKT7 S304 WT Sequence 

ATT GTC GCA GCG GAT GCA CTG GCC AAA TCG GGC GAG GAC GAA GAC GGT GAC GAC AAC GAC ACC CGC AAG CGC GCG CGT CTA GA  KKT7 S304A 

ATT GTC GAA GCG GAT GCA CTG GCC AAA TCG GGC GAG GAC GAA GAC GGT GAC GAC AAC GAC ACC CGC AAG CGC GCG CGT CTA GA  KKT7 S304E 

ATT GTC TCA GCG GAT GCA CTG GCC AAA TCG GGC GAG GAC GAA GAC GGT GAC GAC AAC GAC ACC CGC AAG CGC GCG CGT CTA GA  KKT7 S304S 
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7.2.5 PRIMERS 
All primer sequences are given in the 5’ to 3’ orientation.  

 

7.2.5.1 sgRNA Primers 
Capital letters indicate the protospacer recognition sequence. Note: OL12825’s 

protospacer sequence was later identified to be incorrect (copied from the repair template 

not the WT sequence), but not before ssDNA repair transfections were completed using it. 

It was replaced with OL14600 for dsDNA transfections.  

Name Target Sequence Description 

OL6137 - 
aaaagcaccgactcggtgccactttttcaagttgataacggacta
gccttattttaacttgctatttctagctctaaaac 

Universal sgRNA Primer 
(G00) 

OL12985 KKT1 
gaaattaatacgactcactataggGCAAGGTCGCTGTCGT
CTGGgttttagagctagaaatagc 

S1449 Guide 1 

OL12986 KKT1 
gaaattaatacgactcactataggCACCCTATTCGCGCCG
TCAGgttttagagctagaaatagc 

S1449 Guide 2 

OL12632 KKT2 
gaaattaatacgactcactataggGGGGTCTGCGACAAA
TCACGgttttagagctagaaatagc 

S25 Guide 1 

OL14011 KKT2 
gaaattaatacgactcactataggACCCCCGCCATCTCTC
GACTgttttagagctagaaatagc 

S25 Guide 2 

OL12987 KKT2 
gaaattaatacgactcactataggGCACTGATCGAGACGT
GCGAgttttagagctagaaatagc 

S493 Guide 1 

OL12988 KKT2 
gaaattaatacgactcactataggAGCTTAACGGAGCAG
GAGCGgttttagagctagaaatagc 

S493 Guide 2 

OL12775 KKT2 
gaaattaatacgactcactataggCCGGGTACACCACTGC
GTACgttttagagctagaaatagc 

S505/S506 Guide 1 

OL12898 KKT2 
gaaattaatacgactcactataggAGCTTAACGGAGCAG
GAGCGgttttagagctagaaatagc 

S506A Guide 2 

OL12902 KKT2 
gaaattaatacgactcactataggATCTCGTCCGTCATGT
CGCGgttttagagctagaaatagc 

S530 Guide 1 

OL12903 KKT2 
gaaattaatacgactcactataggGCAGCGATACTACGGC
GCGAgttttagagctagaaatagc 

S530 Guide 2 

OL12778 KKT2 
gaaattaatacgactcactataggGGTGTGCCCGCTGACG
GAGGgttttagagctagaaatagc 

S923 Guide 1 

OL12899 KKT2 
gaaattaatacgactcactataggAGCGGGCACACCGCA
CAGGGgttttagagctagaaatagc 

S923 Guide 2 

OL12989 KKT4 
gaaattaatacgactcactataggGTACGCCTGCTAGCCC
CTTCgttttagagctagaaatagc 

S300 Guide 1 

OL12990 KKT4 
gaaattaatacgactcactataggTTGGAAAAGGAGAAC
AACACgttttagagctagaaatagc 

S300 Guide 2 

OL12764 KKT4 
gaaattaatacgactcactataggATCGTGTCGTGCAAGG
ACGGgttttagagctagaaatagc 

S422 Guide 1 
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OL12900 KKT4 
gaaattaatacgactcactataggGTACATCACCACCCCC
ACGCgttttagagctagaaatagc 

S422 Guide 2 

OL12825 KKT7 
gaaattaatacgactcactataggGCTCTTCGCGAGGGCA
TCCGCCGgttttagagctagaaatagc 

S304 Guide 1 

OL12901 KKT7 
gaaattaatacgactcactataggATATCGACCGACGACG
CTGAgttttagagctagaaatagc 

S304 Guide 2 

OL14600 KKT7 
gaaattaatacgactcactataggGCTCTTCGCGAGGGCG
TCGGgttttagagctagaaatagc 

S304 Guide 3 (replacement 
for guide 1) 
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7.2.5.2 Single-Stranded Repair Primers 
 

Name Target Sequence Description 

OL12997 KKT1 
GCGCTTAGTCGCTTCGTCGTCACCTGCGCGTCCAGCTAGATCCGAATCATCAGGTGGACCCGCAACAGCCCGTAT
TGGATGTTCGCCATCTACGACGTTCACTTCCTCCTCTTCAGGCAG S1449A 

OL12998 KKT1 
GCGCTTAGTCGCTTCGTCGTCACCTGCGCGTCCAGCTAGATCCGAATCATCAGGTGGACCCGAAACAGCCCGTAT
TGGATGTTCGCCATCTACGACGTTCACTTCCTCCTCTTCAGGCAG S1449S  

OL12999 KKT2 
GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCACGGACCTCACGTTCTGTCCGTCGTAGCGTAGCGCTAAC
CGAACAAGAACGTGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC S493A 

OL13000 KKT2 
GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCACGGACCTCACGTTCTGTCCGTCGTAGCGTATCGCTAAC
CGAACAAGAACGTGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC S493S 

OL13001 KKT2 
TCTCGATCAGTGCGTCGTAGCGTCAGCCTAACCGAACAAGAACGTGGCAGACTTGTGCGTGCGAGCCCGGTGCA
ATATGCTGTCGTCTACCCAGGGCGCGACACTGCCACTCGTTGGAAC S505A 

OL13002 KKT2 
TCTCGATCAGTGCGTCGTAGCGTCAGCCTAACCGAACAAGAACGTGGCAGACTTGTGCGTTCGAGCCCGGTGCA
ATATGCTGTCGTCTACCCAGGGCGCGACACTGCCACTCGTTGGAAC S505S 

OL13369 KKT2 
GCAGTGGTGTACCCGGGGCGCGACACTGCGACACGGTGGAATTTGCGGGCGGTTGTAGCGCTCCCTCGGGATA
TGACCGATGAAATTGAACGCGAGTTCAAGTGCATGAACGGGCACGTA S530A one guide 

OL13370 KKT2 
GCAGTGGTGTACCCGGGGCGCGACACTGCGACACGGTGGAATTTGCGGGCGGTTGTATCCCTCCCTCGGGATAT
GACCGATGAAATTGAACGCGAGTTCAAGTGCATGAACGGGCACGTA S530S  one guide 

OL13651 KKT2 
GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCTCGAACGTCTCGATCAGTGCGTCGTAGCGTAGCGCTCAC
GGAGCAGGAGCGTGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC KKT2 S493A design 2 
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OL13652 KKT2 
GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCTCGAACGTCTCGATCAGTGCGTCGTAGCGTATCGCTCAC
GGAGCAGGAGCGTGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC KKT2 S493S  design 2 

OL13653 KKT2 
GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCACGCACGTCTCGATCAGTGCGTCGTTCGGTAGCGCTAAC
GGAGCAAGAACGTGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC KKT2 S493A design 3 

OL13654 KKT2 
GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCACGCACGTCTCGATCAGTGCGTCGTTCGGTAAGTCTAAC
GGAGCAAGAACGTGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC KKT2 S493S  design 3 

OL13655 KKT2 
GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCTAGGACGAGTCGAAGCGTGAGGCGTAGCGTAGCGCTCA
CGGAGCAAGAGAGAGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC KKT2 S493A design 4 

OL13656 KKT2 
GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCTAGGACGAGTCGAAGCGTGAGGCGTAGCGTATCCCTCA
CGGAGCAAGAGAGAGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC KKT2 S493S design 4 

OL13657 KKT2 
GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCACCCCGTACATCTCGATCAGTGCGTCGTTCCGTAGCGCTCAC
AGAGCAGGAGAGGGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC KKT2 S493A design 5 

OL13658 KKT2 
GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCACCCCGTACATCTCGATCAGTGCGTCGTTCCGTATCTCTCACA
GAGCAGGAGAGGGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC KKT2 S493S design 5 

OL13659 KKT2 
GCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTGCGAGCCGTAGTAGCGCTTCCACGTGACAT
GACGGACGAGATCGAGCGCGAGTTCAAGTGCATGAACGGGCACGTA KKT2 S530A design 2 

OL13660 KKT2 
GCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTGCGAGCCGTAGTATCACTTCCACGTGACAT
GACGGACGAGATCGAGCGCGAGTTCAAGTGCATGAACGGGCACGTA KKT2 S530S design 2 

OL13661 KKT2 
GCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTGCGGGCGGTAGTGGCGCTCCCACGAGATA
TGACGGACGAGATCGAGCGCGAGTTCAAGTGCATGAACGGGCACGTA KKT2 S530A design 3 

OL13662 KKT2 
GCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTGCGGGCGGTAGTGTCACTCCCACGAGATAT
GACGGACGAGATCGAGCGCGAGTTCAAGTGCATGAACGGGCACGTA KKT2 S530S design 3 
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OL13663 KKT2 
GCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTGAGAGCCGTAGTTGCGTTACCAAGGGATAT
GACGGACGAGATCGAGCGCGAGTTCAAGTGCATGAACGGGCACGTA KKT2 S530A design 4 

OL13664 KKT2 
GCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTGAGAGCCGTAGTTAGTTTACCAAGGGATAT
GACGGACGAGATCGAGCGCGAGTTCAAGTGCATGAACGGGCACGTA KKT2 S530S design 4 

OL13665 KKT2 
GCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTAAGGGCTGTCGTAGCGTTGCCTCGTGACAT
GACAGACGAGATAGAGCGCGAGTTCAAGTGCATGAACGGGCACGTA KKT2 S530A design 5 

OL13666 KKT2 
GCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTAAGGGCTGTCGTATCTTTGCCTCGTGACAT
GACAGACGAGATAGAGCGCGAGTTCAAGTGCATGAACGGGCACGTA KKT2 S530S design 5 

RC kkt2 
M146G KKT2 

GAGCCATTTCTCGCGCCATCCCAACATTGTCAAGTTTTATGGAGCGGGCCGCGACGAGGACCGAGCGTATGTGG
TGGGCGAACGTTGTGCAGGCAAGTCGCTTCACGACGTCATAGCCAG M146G 

OL12909 KKT2 
CAGTACGCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATCTTCGGGCCGTAGTAGCGCTGCCACG
GGATATGACGGACGAGATCGAGCGCGAGTTCAAGTGCATGAACGGG S530A 

OL12928 KKT2 
TCTCGATCAGTGCGTCGTAGCGTCAGCCTAACCGAACAAGAACGTGGCAGACTTGTGCGTTCTGCCCCGGTGCA
ATATGCTGTCGTCTACCCAGGGCGCGACACTGCCACTCGTTGGAAC S506A 

OL12929 KKT2 
TCTCGATCAGTGCGTCGTAGCGTCAGCCTAACCGAACAAGAACGTGGCAGACTTGTGCGTTCTAGTCCGGTGCA
ATATGCTGTCGTCTACCCAGGGCGCGACACTGCCACTCGTTGGAAC S506S 

OL12930 KKT2 
GTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTGCGGGCGGTTGTAGCGCTCCCTCGGGATATGAC
CGATGAAATCGAGCGCGAGTTCAAGTGCATGAACGGGCACGTAATG S530A 

OL12931 KKT2 
GTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTGCGGGCGGTTGTATCCCTCCCTCGGGATATGAC
CGATGAAATCGAGCGCGAGTTCAAGTGCATGAACGGGCACGTAATG S530S 

OL12932 KKT2 
AAGCAAGCCATCATGCCGCCTCAAGTGCCACGCGGACGAGCACAGCAGCCACGTGCGCCAGCGGTTTCGGGTC
ATACGGCTCAAGGTGGTCCGCCACTGCCGCGCCGCGGCCCAGCTGCG S923A 
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OL12933 KKT2 
AAGCAAGCCATCATGCCGCCTCAAGTGCCACGCGGACGAGCACAGCAGCCACGTGCGCCATCGGTTTCGGGTCA
TACGGCTCAAGGTGGTCCGCCACTGCCGCGCCGCGGCCCAGCTGCG S923S 

OL13351 KKT2 
TCTCGATCAGTGCGTCGTAGCGTCAGCTTAACCGAACAAGAACGTGGTAGGCTCGTCCGGGCGGCGCCCGTGCA
ATATGCCGTCGTCTATCCGGGGCGCGACACTGCCACTCGTTGGAAC 

S505A+S506A double 
mutant 

OL13352 KKT2 
TCTCGATCAGTGCGTCGTAGCGTCAGCTTAACCGAACAAGAACGTGGTAGGCTCGTCCGGAGCTCGCCCGTGCA
ATATGCCGTCGTCTATCCGGGGCGCGACACTGCCACTCGTTGGAAC 

S505S+S506S double 
mutant 

OL13003 KKT4 
GCGGCGAAGAAGCTTCACGCTCAGCGGTTGGAGAAAGAAAATAATACGGGCGCCGATGATGCGATGGGAGCG
CCCAAAGGTCTTGCTGGGGTACAGGCAAGCGCGAACCCCAACGAGCGC S300A 

OL13004 KKT4 
GCGGCGAAGAAGCTTCACGCTCAGCGGTTGGAGAAAGAAAATAATACGGGCGCCGATGATGCGATGGGATCGC
CCAAAGGTCTTGCTGGGGTACAGGCAAGCGCGAACCCCAACGAGCGC S300S 

OL12934 KKT4 
CTGCAGGGCAGCGCCGATCGTGTCGTCCAGGGGCGTCGTGGCGTTGCGGCGACCAAGGCGGAGACGGCGCCG
GCCTATATTACGACGCCCACGCCCGCCGGCAAGGCGTCCACCGCGCTC S422A 

OL12935 KKT4 
CTGCAGGGCAGCGCCGATCGTGTCGTCCAGGGGCGTCGTGGCGTTGCGGCGACCAAGGCGGAGACGTCACCG
GCCTATATTACGACGCCCACGCCCGCCGGCAAGGCGTCCACCGCGCTC S422S 

OL12936 KKT7 
GCGAAGCAACAGAGTCGCGTTCACTCTTCTGCGCACCAACGGCGGCGTAGCATTAGCATTGTCGCGGCGGATGC
GCTTGCCAAATCGGGCGAGGACGAAGACGGTGACGACAACGACACC S304A 

OL12937 KKT7 
GCGAAGCAACAGAGTCGCGTTCACTCTTCTGCGCACCAACGGCGGCGTAGCATTAGCATTGTCTCGGCGGATGC
GCTTGCCAAATCGGGCGAGGACGAAGACGGTGACGACAACGACACC S304S 
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7.2.5.3 Single-Stranded Screening and Sequencing Primers 
 

Name 

Target Sequence Description 

OL12991 KKT1 TGTCGCAACTCACGGATAGC S1449 

OL12992 KKT1 CTATTAGGGGCGGTGTGTCG S1449 

OL13055 KKT1 GACCCTGGTGTGGTGTCTTG S1449 

OL13055 KKT1 GACCCTGGTGTGGTGTCTTG S1449 

OL11617 KKT2 CTTCGCGTTAACGTGGATTT M146 

OL11618 KKT2 TGCAACCTCTGAGACCAGTG M146 

OL12993 KKT2 TACGGTGCTGGTAGGGATGA S493 

OL12994 KKT2 TGTCATTACGTGCCCGTTCA S493 

OL12904 KKT2 GACTTGTGGAGCGCATGTTG S505/S506/S530 

OL12905 KKT2 CACACATTGCAGTCGAAGCC S505/S506/S530 

OL13353 KKT2 ACGACTGGAAGCGACTGAAG S505+S506 Double Mutant 

OL13354 KKT2 CTTTGCGGTTGAGGTGAAGC S505+S506 Double Mutant 

OL12868 KKT2 CGGAAGTCATCACGATCCGC S923 

OL12869 KKT2 TTCTTGGGAGGAATCGCAGC S923 

OL12995 KKT4 CCGTGATTCACCGCAAAGAC S300 

OL12996 KKT4 CCACCGTCAGAAGAAAACGC S300 

OL12906 KKT4 ATTCACCGCAAAGACGAGGT S422 

OL12871 KKT4 TGTTGCGAGCGGATTCTGTT S422 

OL12870 KKT4 AGGGGGACCTTGTTGACGAT S422 

OL12907 KKT7 CATTCTGCCTGTGAACCAGC S304 

OL12908 KKT7 GCTCTTGCTCTTGGCCTTCT S304 

OL12878 KKT7 CGCCTGCCGAAAAATCGAAG S304 

OL12879 KKT7 TCCCCATCCTCATCAGTGGT S304 
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7.2.5.4 Single-Stranded Pooled Experiment Screening Primers 
 

Name Target Sequence Description 

OL13861 KKT2 GCTCCAGAAGCTCAACTTGC 
S493 shared mutant screening 
primer 

OL13864 KKT2 GCTTTGCGGTTGAGGTGAAG 
S530 shared mutant screening 
primer 

OL13964 KKT2 CTCCGTTAAGCTGACGCTAC S493 WT screening 
OL13965 
(OL13862) KKT2 CTTGTTCGGTTAGCGCTACG S493A design 1 screening 

OL13966 KKT2 GATCGAGACGTTCGAGGCG S493A design 2 screening 

OL13967 KKT2 CTTGCTCCGTTAGCGCTACC S493A design 3 screening 

OL13968 KKT2 CACGCTTCGACTCGTCCTAG S493A design 4 screening 

OL13969 KKT2 CTCTGTGAGCGCTACGGAAC S493A design 5 screening 

OL13970 KKT2 GTTCGGTTAGCGATACGCTAC S493S design 1 screening 

OL13971 KKT2 CTCCGTGAGCGATACGCTAC S493S design 2 screening 

OL13972 KKT2 CTTGCTCCGTTAGACTTACC S493S design 3 screening 

OL13973 KKT2 CTCCGTGAGGGATACGCTAC S493S design 4 screening 

OL13974 KKT2 CTGTGAGAGATACGGAACGAC S493S design 5 screening 

OL13975 KKT2 CCTTCGCGCCGTAGTATCGC S530 WT screening 

OL13976 KKT2 GCGCTCCCTCGGGATATG S530A design 1 screening 

OL13977 KKT2 GTAGTAGCGCTTCCACGTGAC S530A design 2 screening 

OL13978 KKT2 GGCGCTCCCACGAGATATG S530A design 3 screening 

OL13979 KKT2 CCGTAGTTGCGTTACCAAGG S530A design 4 screening 

OL13980 KKT2 GGGCTGTCGTAGCGTTG S530A design 5 screening 

OL13981 KKT2 GTATCCCTCCCTCGGGATATG S530S design 1 screening 

OL13982 KKT2 CGTAGTATCACTTCCACGTG S530S design 2 screening 

OL13983 KKT2 GGTAGTGTCACTCCCACGAG S530S design 3 screening 

OL13984 KKT2 GGAATTTGAGAGCCGTAGTTAG S530S design 4 screening 

OL13985 KKT2 GGGCTGTCGTATCTTTG S530S design 5 screening 
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7.2.5.5 Double-Stranded Repair Primers 

7.2.5.5.1 Primer Sequences 
 

Name Target Sequence Description 

OL14224 KKT2 GGCCTCTGATGTCACACTTTTGCGGCTCGTTGTCGAGGACTCCACCACGGGGTGGGGCGATATCTATGCCCAG
AGACCTTGCGCAAACACCAGCGATTTCACG 

S25A repair 

OL14225 KKT2 TCTGCTTGGTCAACAACACATTTTTGGATGTGCGGCGTCTTCACCGTGCTCCCCAGGCGTGAAATCGCTGGTG
TTTG 

S25A/E shared repair 

OL14226 KKT2 GGCCTCTGATGTCACACTTTTGCGGCTCGTTGTCGAGGACTCCACCACGGGGTGGGGCGATATCTATGCCCAG
AGACCTTGAGCAAACACCAGCGATTTCACG 

S25E repair 

OL14145 KKT2 GGCCTCTGATGTCACACTTTTGCGGCTCGTTGTCGAGGACTCCACCACGGGGTGGGGCGATATCTATGCCCAG
AGACCTTAGTCAAACACC 

S25S mutant forward 

OL14146 KKT2 TCTGCTTGGTCAACAACACATTTTTGGATGTGCGGCGTCTTCACCGTGCTCCCCAGGCGTGAAATCGCTGGTG
TTTGACTAAGGTCTCT 

S25S mutant reverse 

OL14228 KKT2 CGCCCCGGGTACACCACTGCGTACTGGACCGGGCTAGAACGCACAAGTCTGCCACGTTCTTGTTCGGTTAGCG
CTACGCTACGACGGACAGAACGTG 

S493A repair 

OL14227 KKT2 GGTGTGGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCACGGACCTCACGTTCTG
TCCGTCGTAGC 

S493A/E shared 

repair 

OL14229 KKT2 CGCCCCGGGTACACCACTGCGTACTGGACCGGGCTAGAACGCACAAGTCTGCCACGTTCTTGTTCGGTTAGCT
CTACGCTACGACGGACAGAACGTG 

S493E repair 
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OL14147 KKT2 GGTGTGGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCACGGACCTCACGTTCTG
TCCGTCGTAGCGTATCTCTAAC 

S493S mutant 

forward 

OL14148 KKT2 CGCCCCGGGTACACCACTGCGTACTGGACCGGGCTAGAACGCACAAGTCTGCCACGTTCTTGTTCGGTTAGA
GATACGCTACGACG 

S493S mutant 

reverse 

OL14230 KKT2 CGTTCTAGCCCGGTCCAGTACGCAGTGGTGTACCCGGGGCGCGACACTGCGACACGGTGGAATTTGCGGGC
GGTTGTAGCGCTCCCTCGGGATATGACCGATG 

S530A repair 

OL14231 KKT2 TCGAGGTCAACTTTGTCATTACGTGCCCGTTCATGCACTTGAACTCGCGTTCAATTTCATCGGTCATATCCCGA
GGG 

S530A/E shared 

repair 

OL14232 KKT2 CGTTCTAGCCCGGTCCAGTACGCAGTGGTGTACCCGGGGCGCGACACTGCGACACGGTGGAATTTGCGGGC
GGTTGTAGAGCTCCCTCGGGATATGACCGATG 

S530E repair 

OL14149 KKT2 CGTTCTAGCCCGGTCCAGTACGCAGTGGTGTACCCGGGGCGCGACACTGCGACACGGTGGAATTTGCGGGC
GGTTGTAAGTCTCCCTCGGGATATG 

S530S mutant 

forward 

OL14150 KKT2 TCGAGGTCAACTTTGTCATTACGTGCCCGTTCATGCACTTGAACTCGCGTTCAATTTCATCGGTCATATCCCGA
GGGAGACTTAC 

S530S mutant 

reverse 

OL14233 KKT2 CTGTGGAGGAGCACGTGGTGAAGCAAGCCATCATGCCGCCTCAAGTGCCACGCGGACGAGCACAGCAGCCA
CGTGCGCCAGCGGTTTCGGGTCATACGGCTCAAG 

S923A repair 

OL14234 KKT2 AAAGCGGCTGCAGGAGATGGCGCAGCTGGGCCGCGGCGCGGCAGTGGCGGACCACCTTGAGCCGTATGAC
CCGAA 

S923A/E shared 

repair 
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OL14235 KKT2 CTGTGGAGGAGCACGTGGTGAAGCAAGCCATCATGCCGCCTCAAGTGCCACGCGGACGAGCACAGCAGCCA
CGTGCGCCAGAGGTTTCGGGTCATACGGCTCAAG 

S923E repair 

OL14151 KKT2 CTGTGGAGGAGCACGTGGTGAAGCAAGCCATCATGCCGCCTCAAGTGCCACGCGGACGAGCACAGCAGCCA
CGTGCGCCAAGTGTTTCGGGTCATAC 

S923S  mutant 

forward 

OL14152 KKT2 AAAGCGGCTGCAGGAGATGGCGCAGCTGGGCCGCGGCGCGGCAGTGGCGGACCACCTTGAGCCGTATGAC
CCGAAACACTTGG 

S923S mutant 

reverse 

OL14595 KKT4 TGAGTGCGCGTGCCGACGAGCGCGGTGGACGCCTTGCCGGCCGGCGTGGGTGTCGTAATATA
GGCG 

KKT4 S422 shared 

repair 

OL14592 KKT4 GCACCACGTTGGACACGTCTCGTCTGCAGGGCAGCGCCGATCGTGTCGTGCAGGGTCGCCGT
GGTGTGGCCGCGACCAAGGCGGAGACGGCGCCCGCCTATATTACGACACCC 

KKT4 S422A repair 

OL14593 KKT4 GCACCACGTTGGACACGTCTCGTCTGCAGGGCAGCGCCGATCGTGTCGTGCAGGGTCGCCGT
GGTGTGGCCGCGACCAAGGCGGAGACGGAGCCCGCCTATATTACGACACCC 

KKT4 S422E repair 

OL14599 KKT7 AGCTCGCACGCAACTCCATGGCGAAGCAACAGAGTCGCGTTCACTCTTCTGCTCACCAACGCCG
ACGCTCCATCTCCATTGTC 

KKT7 S304 shared 

repair 

OL14598 KKT7 TCTAGACGCGCGCGCTTGCGGGTGTCGTTGTCGTCACCGTCTTCGTCCTCGCCCGATTTGGCC
AGTGCATCCGCTGAGACAATGGAGATGGAGCGTC 

KKT7 S304S repair 

OL14596 KKT7 TCTAGACGCGCGCGCTTGCGGGTGTCGTTGTCGTCACCGTCTTCGTCCTCGCCCGATTTGGCC
AGTGCATCCGCTGCGACAATGGAGATGGAGCGTC 

KKT7 S304A repair 

OL14597 KKT7 TCTAGACGCGCGCGCTTGCGGGTGTCGTTGTCGTCACCGTCTTCGTCCTCGCCCGATTTGGCC
AGTGCATCCGCTTCGACAATGGAGATGGAGCGTC 

KKT7 S304E repair 
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OL14594 KKT4 GCACCACGTTGGACACGTCTCGTCTGCAGGGCAGCGCCGATCGTGTCGTGCAGGGTCGCCGT
GGTGTGGCCGCGACCAAGGCGGAGACGAGCCCCGCCTATATTACGACACCC 

KKT4 S422S repair 
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7.2.5.5.2 Primer Combinations and Conditions 

  KKT2 S25 KKT2 S493 KKT2 S530 KKT2 S923 KKT4 S422 KKT7 S304 

Shared Primer OL14225 OL14227 OL14231 OL14234 OL14595 OL14599 

Alanine Mutant Primer OL14224 OL14228 OL14230 OL14233 OL14592 OL14596 

Glutamic Mutant Primer OL14226 OL14229 OL14232 OL14235 OL14593 OL14597 

Synonymous Mutant 
Primer(s) 

OL14145 
OL14146 

OL14147 
OL14148 

OL14149 
OL14150 

OL14151 
OL14152 

OL14594 OL14598 

       

  KKT2 Synonymous Mutants Only 
All Mutants 

 

 KKT2 S25S KKT2 S493S KKT2 S530S KKT2 S923S  

1 cycle 98°C 30 sec 30 sec 30 sec 30 sec 30 sec  

45 cycles 

98°C 10 sec 10 sec 10 sec 10 sec 10 sec  

Tm 

30 sec 

62°C 

30 sec 

62°C 

30 sec 

64°C 

30 sec 

64°C 

30 sec 

55°C 

30 sec 

 

72°C 15 sec 15 sec 15 sec 15 sec 15 sec  

1 cycle 72°C 10 mins 10 mins 10 mins 10 mins 10 mins  

hold 4°C hold hold hold hold hold  
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7.2.5.6 Double-Stranded Screening Primers 
 

7.2.5.6.1 Primer Sequences 

Name Target Sequence Description 

OL13866 KKT2 GCCAGCAATTCTTGGACGAC 
KKT2 mutant screening 
control 

OL13867 KKT2 TCACTCTGCCAGCGAATGTC 
KKT2 mutant screening 
control 

OL13860 KKT2 CAGCCCAGTGGTAACTACTC S25 

OL14209 KKT2 CTATGCCGCGTGATTTGTCG S25 WT  

OL13859 KKT2 CAGAGACCTTGCGCAAACAC S25A 

OL14242 KKT2 CTATGCCCAGAGACCTTGAG S25E 

OL14205 KKT2 GACCTTAGTCAAACACCAGCG S25S 

OL13861 KKT2 GCTCCAGAAGCTCAACTTGC S493 

OL13862 KKT2 CTTGTTCGGTTAGCGCTACG S493A 

OL14243 KKT2 CGTTCTTGTTCGGTTAGCTC S493E 

OL14206 KKT2 GACAGAACGTGAGGTCCGTG S493S  

OL13864 KKT2 GCTTTGCGGTTGAGGTGAAG S530 

OL13976 KKT2 GCGCTCCCTCGGGATATG S530A 

OL13863 KKT2 GACCGATGAAATTGAACGCG S530A/S 

OL14286 KKT2 ATTTGCGGGCGGTTGTAGAG S530E 

OL14207 KKT2 ATTTGCGGGCGGTTGTAAGT S530S 

OL7631 KKT2 CTGACTTTCCCAAGGTGAGC S923 

OL14210 KKT2 GTGCCCGCTGACGGAG S923 WT 

OL13865 KKT2 CACCTTGAGCCGTATGACCC S923A/S 

OL14208 KKT2 GCCGTATGACCCGAAACACT S923S   

OL14612 KKT4 GTGGTGATGTACGCCGGAGA S422 WT 

OL14613 KKT4 GTCGTAATATAGGCGGGCGC S422A 

OL14614 KKT4 GTCGTAATATAGGCGGGCTC S422E 

OL14615 KKT4 GTCGTAATATAGGCGGGGCT S422S 

OL14616 KKT7 CCAATAGTCGTCAGCGCCTT S304  

OL14617 KKT7 TCGGCGGAGACAATGGATA S304 WT  

OL14618 KKT7 GCCAGTGCATCCGCTGC S304A  

OL14619 KKT7 GGCCAGTGCATCCGCTTC S304E  

OL14620 KKT7 GCCAGTGCATCCGCTGA S304S 
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7.2.5.6.2 Synonymous KKT2 Mutants Only Screening Conditions 
Using Q5 polymerase. 

  
KKT2 
DNA 

Control 

KKT2 
S25S 

KKT2 
S493S 

KKT2 
S530S 

KKT2 
S923S 

WT Primers  
OL13866 
OL13867 

OL14209 
OL13860 

OL13964 
OL13861 

OL13975 
OL13864 

OL14210 
OL7631 

Mutant Primers  - 
OL14205 
OL13860 

OL14206 
OL13861 

OL14207 
OL13864 

OL14208 
OL7631 

Length (bp)  547 166 419 260 648 

       

1 cycle 98°C 1 min 5 min 5 min 5 min 5 min 

35 cycles 

98°C 30 sec 30 sec 30 sec 30 sec 30 sec 

Tm 68°C 
30 sec 

66°C 
30 sec 

67°C 
30 sec 

68°C 
30 sec 

67°C 
30 sec 

72°C 20 sec 8 sec 20 sec 8 sec 20 sec 

1 cycle 72°C 10 min 10 min 10 min 10 min 10 min 

hold 4°C hold hold hold hold hold 

 

7.2.5.6.3 All Mutant Screening Conditions  
Using VeriFi polymerase. 

 
KKT2 
S25 

KKT2 
S493 

KKT2 
S530 

KKT2 
S923 

KKT4 
S422 

KKT7 
S304 

Shared primer 
(paired with all 
others) 

OL13860 OL13861 OL13864 OL7631 OL12870 OL14616 

WT primer OL14209 OL13964 OL13975 OL14210 OL14612 OL14617 

Alanine mutant 
primer 

OL13859 OL13862 OL13976 OL13865 OL14613 OL14618 

Glutamic acid 
mutant primer 

OL14242 OL14243 OL14286 OL13865 OL14614 OL14619 

Synonymous mutant 
primer 

OL14205 OL14206 OL14207 OL13865 OL14615 OL14620 

Tm used for 
screening with VeriFi 
(°C) 

65 64 68 67 66 67 

Expected Product 
Size (bp) 

166 419 277 648 208 475 
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7.2.5.7 Double-Stranded Sequencing PCR Amplification Conditions and Sanger Sequencing Primers 
 

  
KKT2 S25 KKT2 S493 KKT2 S530 KKT2 S923 KKT4 S422 KKT7 S304 

PCR Amplification OL12128 
OL12616 

OL12871 
OL12906 

OL12907 
OL12908 

Length (bp) 4396 704 761 

     

1 cycle 95°C 1 min 1 min 1 min 

35 – 40 cycles 

95°C 15 sec 15 sec 15 sec 

Tm 68°C 

2 min 30 sec 

68°C 

24 sec 

68°C 

30 sec 

72°C 20 sec 20 sec 20 sec 

1 cycle 72°C 2 min 2 min 2 min 

hold 4°C hold hold hold 

Sequencing Primers OL13860 
OL12128 

OL12904 OL12905 OL12868 
OL12869 

OL12906 OL12908 
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7.2.6 SINGLE-STRANDED SCREENING CONDITIONS 
Highlights indicate restriction digestion patterns that are shared between WT and the 

synonymous control mutant.  

  KKT2 
S505/506A 

KKT2 
S530A 

KKT2 
S923A 

KKT4 
S422A 

KKT7 
S304A 

Primers  
OL12904 
OL12905 

OL12904 
OL12905 

OL12868 
OL12869 

OL12871  
OL12906  

OL12907 
OL12908 

Length (bp)  742 742 400 704 961 

       

1 cycle 95°C 1 min 1 min 1 min 1 min 1 min 

35 cycles 

95°C 15 sec 15 sec 15 sec 15 sec 15 sec 

Tm 68°C 
15 sec 

68°C 
15 sec 

69°C 
15 sec 

68°C 
15 sec 

68°C 
15 sec 

72°C 24 sec 24 sec 12 sec 24 sec 30 sec 

1 cycle 72°C 2 min 2 min 2 min 2 min 2 min 

hold 4°C hold hold hold hold hold 

       

Restriction Enzyme SmaI AfeI NlaIV NlaIV FokI 

Native Digestion 580 
162 

544 
198 

235 
141 
24 

355 
147 
113 
89 

752 
209 
 

Synonymous Control 
Digestion 

742 544 
198 

376 
24 

355 
147 
113 
89 

648 
209 
104 

S->A Mutant Digestion 742 427 
198 
117 

376 
24 

184 
171 
147 
113 
89 

648 
209 
104 
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  KKT1  
S1449A 

KKT1  
S1449A 

KKT2 
S493A 

KKT4 
S300A 

KKT2 
M146A 

Primers  
OL12991 
OL12992 

OL13055 
OL12992 

OL12993 
OL12994 

OL12995 
OL12996 

OL11617 
OL11618 

Length (bp)  700 582 1260 1395 1920 

       

1 cycle 95°C 1 min 1 min 1 min 1 min 1 min 

35 cycles 95°C 15 sec 15 sec 15 sec 15 sec 15 sec 

 Tm 68°C 
15 sec 

69°C 
15 sec 

68°C 
15 sec 

68°C 
15 sec 

64°C 
15 sec 

 72°C 22 sec 18 sec 38 sec 42 sec 58 sec 

1 cycle 72°C 2 min 2 min 2 min 2 min 2 min 

hold 4°C hold hold hold hold hold 

       

Restriction 
Enzyme 

 AluI AluI AfeI BseYI SinI or AvaII 

Native 
Digestion 

 611 
89 

493 
89 

766 
494 

874 
521 

1293 
627 

Synonymous 
Control 
Digestion 

 412 
199 
89 

294 
199 
89 

766 
494 

688 
521 
186 

- 

S->A Mutant 
Digestion 

 412 
199 
89 

294 
199 
89 

766 
316 
178 

688 
521 
186 

912 
627 
381 
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7.2.7 POOLED REPAIR SCREENING CONDITIONS 
 

7.2.7.1 Primer Combinations 
 

Design Specific Target Length Shared Primer Specific Primer Tm (°C) 

S493 WT screening 

419 bp OL13861 

OL13964 66 

S493A design 1 
OL13965 
(OL13862) 

67 

S493A design 2 OL13966 68 

S493A design 3 OL13967 68 

S493A design 4 OL13968 68 

S493A design 5 OL13969 68 

S493S design 1 OL13970 66 

S493S design 2 OL13971 68 

S493S design 3 OL13972 63 

S493S design 4 OL13973 68 

S493S design 5 OL13974 65 

     

S530 WT screening 

260 bp OL13864 

OL13975 68 

S530A design 1 OL13976 68 

S530A design 2 OL13977 68 

S530A design 3 OL13978 68 

S530A design 4 OL13979 67 

S530A design 5 OL13980 68 

S530S design 1 OL13981 67 

S530S design 2 OL13982 63 

S530S design 3 OL13983 68 

S530S design 4 OL13984 64 

S530S design 5 OL13985 67 
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7.2.7.2 Cycling Conditions  
Using Q5 polymerase. 

Step Temperature Time 

1 cycle 98°C 5 minutes 

35 Cycles  

98°C 30 seconds 

S493A/S – 63-68°C 
S530A/S – 63-68°C 

30 seconds 

72°C S493A/S – 14 seconds 
S530A/S – 8 seconds 

1 cycle 72°C 10 minutes 

Hold 4°C    
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7.2.8 POOLED REPAIR TEMPLATE RECODING LISTS 
Design was as described in Methods 3.7.1 and Results 4.2. Each design’s list is sorted alphabetically by amino acid single letter code. Some lists 

may not include certain amino acids as per the methodology for that specific design.  

Design 2 Design 3 Design 4 Design 5 
Preferred List Reserve List 

Amino 
Acid 

WT triplet 
codon 

Mutant 
codon 

Amino 
Acid 

WT triplet 
codon 

Mutant 
codon 

Amino 
Acid 

WT triplet 
codon 

Mutant 
codon 

Amino 
Acid 

WT triplet 
codon 

Mutant 
codon 

Amino 
Acid 

WT triplet 
codon 

Mutant 
codon 

A GCT GCG A GCA GCT A GCA GCT A GCA GCT A GCA GCC 

   A GCC GCG A GCC GCG A GCC GCG A GCA GCG 

C TGT TGC A GCG GCC A GCG GCC A GCG GCC A GCC GCT 

   A GCG GCA A GCG GCA A GCG GCA A GCC GCA 

F TTT TTC    A GCT GCG A GCT GCG A GCG GCT 

F TTC TTT C TGC TGT       A GCT GCA 

      C TGC TGT C TGC TGT A GCT GCC 

G GGT GGC D GAC GAT C TGT TGC C TGT TGC    

G GGT GGA D GAT GAC       G GCA GGT 

      D GAC GAT D GAT GAC G GGA GGC 

K AAA AAG E GAA GAG D GAT GAC D GAC GAT G GGG GGA 

   E GAG GAA       G GGG GGC 

L CTG CTT    E GAA GAG E GAA GAG G GGT GGG 

L CTT CTG G GGA GGG E GAG GAA E GAG GAA    

L TTA CTC G GGC GGG       H CAT CAC 

L TTG CTT G GGC GGT F TTC TTT F TTT TTC    

   G GGC GGA F TTT TTC F TTC TTT I ATA ATT 

R AGG CGC G GGG GGT       I ATC ATA 

R CGA CGC    G GGA GGG G GGA GGG I ATT ATA 

R CGC CGA H CAC CAT G GGC GGG G GGC GGG    
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R CGG CGT    G GGC GGT G GGC GGT L CTA TTG 

   I ATC ATT G GGC GGA G GGC GGA L CTA TTA 

T ACC ACT I ATT ATC G GGG GGT G GGG GGT L CTA CTG 

T ACC ACA    G GGT GGC G GGT GGC L CTC TTG 

   K AAG AAA G GGT GGA G GGT GGA L CTC CTA 

V GTA GTG          L CTC TTA 

V GTT GTA L CTA CTT H CAC CAT H CAC CAT L CTG TTA 

   L CTC CTT       L CTG TTG 

Y TAT TAC L CTC CTG I ATC ATT I ATC ATT L CTT CTA 

   L CTG CTA I ATT ATC I ATT ATC L CTT TTG 

   L CTG CTC       L CTT CTC 

   L TTA CTA K AAA AAG K AAA AAG L CTT TTA 

   L TTG CTC K AAG AAA K AAG AAA L TTA CTT 

            L TTA TTG 

   N AAC AAT L TTA CTA L TTA CTA L TTA CTG 

      L CTA CTT L TTA CTC L TTG TTA 

   P CCC CCA L CTC CTT L TTA CTG L TTG CTA 

   P CCG CCC L CTC CTG L TTA CTT L TTG CTG 

   P CCT CCA L CTG CTT L TTG CTA    

      L CTG CTA L TTG CTC N AAC AAT 

   Q CAG CAA L CTG CTC L TTG CTT    

      L CTT CTG L TTG CTG P CCA CCC 

   R CGA CGT L TTA CTC L CTA TTA P CCA CCT 

   R CGC CGG L TTG CTC L CTA TTG P CCA CCG 

      L TTG CTT L CTC TTA P CCC CCT 

   S AGC AGT    L CTC TTG P CCC CCG 

   S AGC TCG N AAC AAT L CTG TTA P CCG CCT 

   S TCA TCT    L CTG TTG P CCG CCA 
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   S TCT TCA P CCC CCA L CTT TTA P CCT CCG 

      P CCG CCC L CTT TTG P CCT CCC 

   T ACA ACG P CCT CCA       

   T ACC ACG    N AAC AAT Q CAA CAG 

   T ACG ACC Q CAG CAA       

   T ACG ACT    P CCC CCA R AGA CGT 

      R AGG CGC P CCG CCC R AGA CGC 

   V GTA GTT R CGA CGT P CCT CCA R AGA CGA 

   V GTC GTA R CGA CGC    R AGA CGG 

   V GTC GTT R CGC CGA Q CAG CAA R AGA AGG 

   V GTG GTC R CGC CGG    R AGG CGT 

   V GTT GTG R CGG CGT R AGA CGA R AGG AGA 

         R AGA CGC R AGG CGG 

   Y TAC TAT S AGC AGT R AGA CGG R AGG CGA 

      S AGC TCG R AGA CGT R CGA AGA 

      S TCA TCT R AGG CGA R CGA AGG 

      S TCT TCA R AGG CGC R CGC AGA 

         R AGG CGG R CGC CGT 

      T ACA ACG R AGG CGT R CGC AGG 

      T ACC ACT R CGA AGA R CGG AGA 

      T ACC ACG R CGA AGG R CGG AGG 

      T ACC ACA R CGC AGA R CGG CGC 

      T ACG ACC R CGC AGG R CGG CGT 

      T ACG ACT R CGG AGA R CGT AGG 

         R CGG AGG R CGT AGA 

      V GTA GTG R CGT AGA R CGT CGC 

      V GTA GTT R CGT AGG R CGT CGG 

      V GTC GTA       
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      V GTC GTT S AGT TCA S AGC TCA 

      V GTG GTC S AGT TCC S AGC TCC 

      V GTT GTA S AGT TCG S AGC TCT 

      V GTT GTG S AGT TCT S AGT AGC 

         S AGC TCA S AGT TCT 

      Y TAC TAT S AGC TCC S AGT TCC 

      Y TAT TAC S AGC TCG S AGT TCA 

         S AGC TCT S AGT TCG 

         S TCA AGC S TCA AGT 

         S TCA AGT S TCA TCG 

         S TCC AGC S TCA TCC 

         S TCC AGT S TCA AGC 

         S TCG AGC S TCC AGC 

         S TCG AGT S TCC TCG 

         S TCT AGC S TCC AGT 

         S TCT AGT S TCC TCA 

            S TCC TCT 

         T ACA ACG S TCG AGC 

         T ACC ACT S TCG TCC 

         T ACC ACG S TCG AGT 

         T ACC ACA S TCG TCA 

         T ACG ACC S TCG TCT 

         T ACG ACT S TCT AGC 

            S TCT TCG 

         V GTA GTG S TCT AGT 

         V GTA GTT S TCT TCC 

         V GTC GTA    

         V GTC GTT T ACA ACT 
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         V GTG GTC T ACA ACC 

         V GTT GTA T ACC ACT 

         V GTT GTG T ACG ACA 

            T ACT ACA 

         Y TAC TAT T ACT ACG 

         Y TAT TAC    

            V GTA GTC 

            V GTC GTG 

            V GTG GTA 

            V GTG GTT 

            V GTT GTC 
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7.2.9 EXAMPLE OUTPUT FILE TEXT FROM THE PYTHON SCRIPT 

7.2.9.1 Page 1 (left hand side) 
Job request details 

Job name: KKT2 S493E 

Target amino acid: S493E 

Synonymous recoding type: matched 

Nonsynonymous recode type: highest 

Homology arm length (bp): 51 

Recoding region length (bp): 60 

Total repair length (bp): 162 

 

 

 

Repair templates 

WT repair region sequence:    GGC AGT GTC TCA CTG GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCC CCT CGC ACG TCT CGA TCA GTG CGT CGT AGC  

WT translation:     G   S   V   S   L   V   S   E   V   A   D   R   E   E   A   A   P   R   T   S   R   S   V   R   R   S   

Synonymous repair region sequence:   GGC AGT GTC TCA CTG GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCC CCT CGG ACC AGC AGG AGT GTC CGA CGA TCG 

Synonymous repair translation:   G   S   V   S   L   V   S   E   V   A   D   R   E   E   A   A   P   R   T   S   R   S   V   R   R   S      

Nonsynonymous repair region sequence: GGC AGT GTC TCA CTG GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCC CCT CGG ACC AGC AGG AGT GTC CGA CGA TCG 

Nonsynonymous repair translation:   G   S   V   S   L   V   S   E   V   A   D   R   E   E   A   A   P   R   T   S   R   S   V   R   R   S      

 

Number of mutations in the synonymous repair template: 30 

Number of mutations in the nonsynonymous repair template: 30 

 

 

Screening primers 

Synonymous repair 

 

               Forward primer sequence Reverse primer sequence  PCR product size (bp)  Forward GC content (%)  Reverse GC content (%)   

WT primers          AGACGCCGCACATCCAAA      TGACGCTACGACGCACTG                   1365                   55.56                   61.11             

Repair primers      AGACGCCGCACATCCAAA      CGTCGGACACTCCTGCTG                   1357                   55.56                   66.67             

 

 

 

Nonsynonymous primers 

               Forward primer sequence Reverse primer sequence  PCR product size (bp)  Forward GC content (%)  Reverse GC content (%)   

WT primers          AGACGCCGCACATCCAAA      TGACGCTACGACGCACTG                   1365                   55.56                   61.11             

Repair primers      AGACGCCGCACATCCAAA      CGTCGGACACTCCTGCTG                   1357                   55.56                   66.67             
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7.2.9.2 Page 1 (right hand side) 
 

 

 

 

 

 

 

 

 

 

 

GTC AGC TTA ACG GAG CAG GAG CGG GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CGC GAC ACT  

V   S   L   T   E   Q   E   R   G   R   L   V   R   S   S   P   V   Q   Y   A   V   V   Y   P   G   R   D   T    

GTT TCG CTA ACC GAA CAA GAA CGT GGT AGG TTG GTG CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CGC GAC ACT  

V   S   L   T   E   Q   E   R   G   R   L   V   R   S   S   P   V   Q   Y   A   V   V   Y   P   G   R   D   T    

GTT GAG CTA ACC GAA CAA GAA CGT GGT AGG TTG GTG CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CGC GAC ACT  

V   E   L   T   E   Q   E   R   G   R   L   V   R   S   S   P   V   Q   Y   A   V   V   Y   P   G   R   D   T    

 

 

 

 

 

 

 

 

Forward Tm ('C)  Reverse Tm ('C) 

59.97            60.13 

59.97            60.13 

 

 

 

Forward Tm ('C)  Reverse Tm ('C) 

59.97            60.13 

59.97            60.13 
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7.2.9.3 Page 2 
 

 

 

Repair template primers 

Synonymous 

Forward primer (5'-): GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGGACCAGCAGGAGTGTCCGACG 

Reverse primer (5'-): AGTGTCGCGCCCCGGGTACACCACTGCGTACTGGACCGGGCTAGAACGCACCAACCTACCACGTTCTTGTTCGGTTAGCGAAACCGATCGTCGGACACTCCTGCTG 

Annealing sequence (5'-): CAGCAGGAGTGTCCGACG 

Tm ('C): 60.1 

 

 

Nonsynonymous 

Forward primer (5'-): GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGGACCAGCAGGAGTGTCCGACG 

Reverse primer (5'-): AGTGTCGCGCCCCGGGTACACCACTGCGTACTGGACCGGGCTAGAACGCACCAACCTACCACGTTCTTGTTCGGTTAGCTCAACCGATCGTCGGACACTCCTGCTG 

Annealing sequence (5'-): CAGCAGGAGTGTCCGACG 

Tm ('C): 60.1 

 

 

WT sequence (no spaces): 

GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGCACGTCTCGATCAGTGCGTCGTAGCGTCAGCTTAACGGAGCAGGAGCGGGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTACGCAGTGGTGT

ACCCGGGGCGCGACACT 

Synonymous sequence (no spaces): 

GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGGACCAGCAGGAGTGTCCGACGATCGGTTTCGCTAACCGAACAAGAACGTGGTAGGTTGGTGCGTTCTAGCCCGGTCCAGTACGCAGTGGTGT

ACCCGGGGCGCGACACT 

Nonsynonymous sequence (no spaces): 

GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGGACCAGCAGGAGTGTCCGACGATCGGTTGAGCTAACCGAACAAGAACGTGGTAGGTTGGTGCGTTCTAGCCCGGTCCAGTACGCAGTGGTGT

ACCCGGGGCGCGACACT 

 

 

Alignments 

Synonymous Repair 

Score = 132.0 

WT sequence            0 GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGCACGTCT 

                       0 |||||||||||||||||||||||||||||||||||||||||||||||||||||.||.... 

Syn. repair            0 GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGGACCAGC 

 

WT sequence           60 CGATCAGTGCGTCGTAGCGTCAGCTTAACGGAGCAGGAGCGGGGCAGACTTGTGCGTTCT 

                      60 .|....||.||.||....||.....||||.||.||.||.||.||.||..|.||||||||| 

Syn. repair           60 AGGAGTGTCCGACGATCGGTTTCGCTAACCGAACAAGAACGTGGTAGGTTGGTGCGTTCT 

 

WT sequence          120 AGCCCGGTCCAGTACGCAGTGGTGTACCCGGGGCGCGACACT 162 

                     120 |||||||||||||||||||||||||||||||||||||||||| 162 

Syn. repair          120 AGCCCGGTCCAGTACGCAGTGGTGTACCCGGGGCGCGACACT 162 
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Nonsynonymous 

Score = 132.0 

WT sequence            0 GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGCACGTCT 

                       0 |||||||||||||||||||||||||||||||||||||||||||||||||||||.||.... 

Nonsyn. repair         0 GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGGACCAGC 

 

WT sequence           60 CGATCAGTGCGTCGTAGCGTCAGCTTAACGGAGCAGGAGCGGGGCAGACTTGTGCGTTCT 

                      60 .|....||.||.||....||.....||||.||.||.||.||.||.||..|.||||||||| 

Nonsyn. repair        60 AGGAGTGTCCGACGATCGGTTTCGCTAACCGAACAAGAACGTGGTAGGTTGGTGCGTTCT 

 

WT sequence          120 AGCCCGGTCCAGTACGCAGTGGTGTACCCGGGGCGCGACACT 162 

                     120 |||||||||||||||||||||||||||||||||||||||||| 162 

Nonsyn. repair       120 AGCCCGGTCCAGTACGCAGTGGTGTACCCGGGGCGCGACACT 162 
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7.2.10 MAIN CODE  
# -*- coding: utf-8 -*- 

""" 

Created on Mon Jan 29 15:34:37 2024 

 

@author: ceh560 

""" 

#packages used in this file and/or the feeder files 

import pandas as pd 

from Bio import SeqIO 

from Bio import Seq 

from Bio import Align 

import numpy as np 

import io 

import random 

import primer3 

import primer3.bindings 

 

#custom files to import 

import codon_dataframes as cdf 

import codon_dictionaries as cdict 

import formatting_functions as formats 

import primer_functions as primers 

import reading_input_file as rif 

import validator as val 

import stitching_functions as stitch 

 

 

 

 

#read input files 

 

input_data = pd.read_excel("repair_template_input_excel.xlsx", 

index_col = 0, header = 0) 

 

 

pd.set_option('display.max_columns', 20) 

pd.set_option('display.max_rows', None) 

pd.set_option("display.width", 1000) 

pd.options.display.float_format = "{:,.2f}".format 

 

 

job_name = input_data.loc["Job name"][0] 

target_AA = input_data.loc["Target amino acid residue"][0] 

target_res_num = input_data.loc["Target amino acid number"][0] 

output_AA = input_data.loc["Replacement amino acid"][0] 

syn_recode_type = input_data.loc["Synonymous Recoding type"][0] 

nonsyn_recode_type = input_data.loc["Nonsynonymous Recoding 

Type"][0] 

codon_freq_input_file = input_data.loc["Codon Frequency data 

filename (incl. extension)"][0] 

recode_region_length = input_data.loc["Recoding region length 

(bp)"][0] 

hom_arm_length = input_data.loc["Homology arm length (bp)"][0] 
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ref_file_name = input_data.loc["Reference FASTA filename (incl. 

extension)"][0] 

CDS_start = input_data.loc["CDS start in reference file (bp 

number)"][0] 

CDS_end = input_data.loc["CDS end in reference file (bp 

number)"][0] 

alternating_repeat = input_data.loc["Alternating every nth 

residue"][0] 

 

#read input fasta file and process as necessary 

gene_name = job_name 

 

target_res_base_nums = [((target_res_num-1)*3), 

(target_res_num*3)] 

 

 

num_of_codons_to_recode = recode_region_length / 3 

target_codon_no = int(num_of_codons_to_recode/2) 

 

if recode_region_length % 2 == 0: 

    recode_start = int(target_res_base_nums[0] - 

(recode_region_length/2))     

     

else: 

    half_codon_percent = target_codon_no / num_of_codons_to_recode 

    back_bases = recode_region_length * half_codon_percent 

    recode_start = int(target_res_base_nums[0] - back_bases) 

 

 

recode_end = recode_start + recode_region_length 

 

#need some special cases for close to the start or end of the CDS 

#near the start special case 

 

if num_of_codons_to_recode > target_res_num:  

    recode_start = 0 

    recode_end = recode_region_length 

    target_codon_no = target_res_num - 1 

 

 

 

for gene_name in SeqIO.parse(ref_file_name,"fasta"): 

    #print(gene_name.id) 

    print(gene_name.description) 

    print(repr(gene_name.seq)) 

    print("Gene sequence length: ", len(gene_name), "bp") 

    print("\n") 

 

if CDS_end == "end": 

    CDS_end = len(gene_name.seq) 

else: 

    CDS_end = CDS_end 

 

 

if CDS_start > 1: 

    CDS_start = CDS_start - 1  
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    WT_CDS_seq = gene_name.seq[(CDS_start):CDS_end] 

    recode_start_whole = recode_start + CDS_start 

    recode_end_whole = recode_end + CDS_start 

     

else: 

    WT_CDS_seq = gene_name.seq[:CDS_end] 

    recode_start_whole = recode_start 

    recode_end_whole = recode_end 

     

     

 

#check input is a length divisible by 3         

val.triplet_checker(WT_CDS_seq) 

 

#check that the input given is correct and that the target codes 

for the expected residue 

val.translate_checker(WT_CDS_seq, target_res_num, target_AA) 

 

 

 

 

#near the end special case 

total_num_AAs = len(WT_CDS_seq.translate()) 

 

if target_res_num > (total_num_AAs - num_of_codons_to_recode): 

    recode_end = len(WT_CDS_seq) 

     

    recode_start = len(WT_CDS_seq) - recode_region_length 

     

    if CDS_start > 1: 

        recode_end_whole = recode_end + CDS_start 

        recode_start_whole = recode_start + CDS_start 

    else: 

        recode_end_whole = recode_end 

        recode_start_whole = recode_start 

     

    num_of_codons_to_recode = int((recode_end - recode_start + 1) 

/ 3) 

     

    target_codon_no = num_of_codons_to_recode - (total_num_AAs - 

target_res_num) - 1 

     

     

     

     

#establish the sequence to replace, and sequences before and after 

to stay the same 

WT_template_seq = 

gene_name.seq[recode_start_whole:recode_end_whole] 

upstream_dna = gene_name.seq[:recode_start_whole] 

downstream_dna = gene_name.seq[recode_end_whole:]     
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#make dictionary of codons with number keys and one with numbers 

and amino acids 

 

codons_to_recode = cdict.codon_dict_maker(WT_template_seq, 

key_format= "number") 

codons_to_recode_let_num = cdict.codon_dict_maker(WT_template_seq, 

key_format= "letter-number") 

 

 

#make reference dictionaries for all the amino acids 

ref_codon_table_df = 

rif.codon_table_processor(codon_freq_input_file) 

 

ref_codons = cdf.ref_codon_table_freqs(ref_codon_table_df) 

 

if syn_recode_type == "matched": 

 

    #use that dictionary to create a new one with the specific 

frequency values  

    codons_to_recode_freqs = 

cdf.codon_frequency_collector(input_dict = codons_to_recode, 

reference_dict = ref_codons, type = "value") 

     

    #create a dictionary with all the frequencies for the amino 

acids in this sequence for each codon 

    codons_to_recode_all_freqs = 

cdf.codon_frequency_collector(input_dict = codons_to_recode, 

reference_dict = ref_codons, type = "dataframe") 

     

     

    #calculate the differences for each possible codon to the 

original 

    recode_freq_diffs = 

cdf.codon_frequency_difference_calc(codons_to_recode_let_num, 

ref_codons) 

     

    #add the differences in frequency to "the" dataframe 

    codons_to_recode_abs_diffs = 

cdf.codon_freq_diff_adder(codons_to_recode_let_num 

,codons_to_recode_all_freqs, recode_freq_diffs) 

     

    #choose which codons to use for synonymous recoding 

    codons_to_use_syn = 

cdf.codon_freq_selector(codons_to_recode_abs_diffs) 

 

 

if syn_recode_type == "highest" or syn_recode_type == "lowest": 

     

    #use that dictionary to create a new one with the specific 

frequency values  

    codons_to_recode_freqs = 

cdf.codon_frequency_collector(input_dict = codons_to_recode, 

reference_dict = ref_codons, type = "value") 
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    #create a dictionary with all the frequencies for the amino 

acids in this sequence for each codon 

    codons_to_recode_all_freqs = 

cdf.codon_frequency_collector(input_dict = codons_to_recode, 

reference_dict = ref_codons, type = "dataframe") 

     

    codons_to_recode_choices_freqs = {} 

    #remove input codon from list 

    for let_num, seq in codons_to_recode_let_num.items(): 

        if seq == Seq.Seq("ATG") or seq == Seq.Seq("TGG"): 

 

            codons_to_recode_choices_freqs[let_num] = 

ref_codon_table_df.loc[ref_codon_table_df["DNA"] == str(seq)] 

        else: 

            current_df = codons_to_recode_all_freqs[let_num] 

            codons_to_recode_choices_freqs[let_num] = 

current_df.loc[current_df["DNA"] != str(seq)] 

 

#make the list of codons to use depending on recoding type     

    codons_to_use_syn = {} 

     

    if syn_recode_type == "highest": 

         

        for codon_num_let, seq_df in 

codons_to_recode_choices_freqs.items(): 

            max_freq_codon = max(seq_df["Fraction"]) 

            mutated_res_df_chosen = seq_df.loc[seq_df["Fraction"] 

== max_freq_codon, "DNA"] 

             

            #tie breaker for instances with same fraction usage - 

hopefully number won't ever have duplicate values 

            if len(mutated_res_df_chosen) > 1: 

                max_number_codon = max(seq_df["Number"]) 

                max_number_codon_seq = seq_df.loc[seq_df["Number"] 

== max_number_codon, "DNA"].item() 

                codons_to_use_syn[codon_num_let] = 

max_number_codon_seq 

                      

            else: 

                codons_to_use_syn[codon_num_let] = 

seq_df.loc[seq_df["Fraction"] == max_freq_codon, "DNA"].item() 

     

    if syn_recode_type == "lowest": 

         

        for codon_num_let, seq_df in 

codons_to_recode_choices_freqs.items(): 

            min_freq_codon = min(seq_df["Fraction"]) 

            mutated_res_df_chosen = seq_df.loc[seq_df["Fraction"] 

== min_freq_codon, "DNA"] 

             

            #tie breaker 

            if len(mutated_res_df_chosen) > 1: 

                min_number_codon = max(seq_df["Number"]) 

                min_number_codon_seq = seq_df.loc[seq_df["Number"] 

== min_number_codon, "DNA"].item() 
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                codons_to_use_syn[codon_num_let] = 

min_number_codon_seq 

                      

            else: 

                codons_to_use_syn[codon_num_let] = 

seq_df.loc[seq_df["Fraction"] == min_freq_codon, "DNA"].item() 

             

             

if syn_recode_type == "alternating matched" or syn_recode_type == 

"alternating random" or syn_recode_type == "alternating highest" 

or syn_recode_type == "alternating lowest": 

    #check input has been given suitably 

    if alternating_repeat == "N/A" or alternating_repeat <= 0 or 

pd.isna(alternating_repeat) == True: 

        print("\n\n\n***ERROR: No value or an invalid value was 

set for the alternating pattern of the codons to 

recode.***\n\n\n") 

        alternating_repeat = int(input("Please enter a positive 

integrer for the alternating repeat value: ")) 

         

    if alternating_repeat > (0.5 * num_of_codons_to_recode): 

        proceed_alt = input("The chosen repeat value is greater 

than half of the total number of codons being recoded so only 2 or 

fewer codons will be mutated.\n\nDo you wish to proceed? Y/N \n") 

         

        if proceed_alt == "N" or proceed_alt == "n" or proceed_alt 

== "NO" or proceed_alt == "No" or proceed_alt == "no": 

            alternating_repeat = int(input("Please enter a 

positive integer for the alternating repeat value: ")) 

             

        elif proceed_alt == "Y" or proceed_alt =="y" or 

proceed_alt =="YES" or proceed_alt == "Yes" or proceed_alt == 

"yes": 

           pass  

        else: 

            proceed_alt = input("\n\nThe input given is not valid. 

Please try again.\n\nThe chosen repeat value is greater than half 

of the total number of codons being recoded so only 2 or fewer 

codons will be mutated.\n\nDo you wish to proceed? Y/N \n") 

            if proceed_alt == "N" or proceed_alt == "n" or 

proceed_alt == "NO" or proceed_alt == "No" or proceed_alt == "no": 

                alternating_repeat = int(input("\nPlease enter a 

positive integer for the alternating repeat value: ")) 

            elif proceed_alt == "Y" or proceed_alt =="y" or 

proceed_alt =="YES" or proceed_alt == "Yes" or proceed_alt == 

"yes": 

               pass  

            else: 

                proceed_alt = input("\n\nThe input given is not 

valid. Please try again.\n\nThe chosen repeat value is greater 

than half of the total number of codons being recoded so only 2 or 

fewer codons will be mutated.\n\nDo you wish to proceed? Y/N \n") 

                if proceed_alt == "N" or proceed_alt == "n" or 

proceed_alt == "NO" or proceed_alt == "No" or proceed_alt == "no": 

                    alternating_repeat = int(input("\nPlease enter 

a positive integer for the alternating repeat value: ")) 
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                elif proceed_alt == "Y" or proceed_alt =="y" or 

proceed_alt =="YES" or proceed_alt == "Yes" or proceed_alt == 

"yes": 

                   pass 

                else: 

                    print("\n-------------------------------------

-----------------------") 

                    print(f"\n***Warning, your input was invalid 

so the code will continue with the value given. Your repair 

template will recode every {alternating_repeat} codons. If you do 

not want this, modify the input spreadsheet and rerun the 

programme.***") 

                 

     

    if alternating_repeat == "N/A" or alternating_repeat <= 0 or 

pd.isna(alternating_repeat) == True: 

        print("\n\n\n***ERROR: An invalid value was set for the 

alternating pattern of the codons to recode.***\n\n\n") 

        alternating_repeat = int(input("Please enter a positive 

integer for the alternating repeat value: ")) 

         

    if alternating_repeat == "N/A" or alternating_repeat <= 0 or 

pd.isna(alternating_repeat) == True: 

        print("\n\n\n***ERROR: An invalid value was set for the 

alternating pattern of the codons to recode.***\n\n\n") 

        alternating_repeat = int(input("Last chance - please enter 

a positive integer for the alternating repeat value: ")) 

         

    if alternating_repeat == "N/A" or alternating_repeat <= 0 or 

pd.isna(alternating_repeat) == True: 

        print("\n\n\n\nYou failed to provide an appropriate input 

so the programme will be cancelled.\n\nIf you wish to try again, 

either modify the input spreadsheet or provide a suitable value 

when prompted in the console.\n") 

        raise SystemExit 

     

     

if syn_recode_type == "alternating matched" or syn_recode_type == 

"alternating random": 

        

 

    #determine which codon numbers in range are to be mutated and 

which are not 

    num_of_codons_to_mutate = int(num_of_codons_to_recode / 

alternating_repeat) 

    n_terms = list(range(num_of_codons_to_mutate)) 

    codon_nums_to_recode = [] 

     

    for n in n_terms: 

        codon_num = n * alternating_repeat 

        codon_nums_to_recode.append(codon_num) 

     

    #ensure that target codon is always recoded even if it doesn't 

fit the alternating pattern 

    if target_codon_no not in codon_nums_to_recode: 

        codon_nums_to_recode.append(target_codon_no) 



 

  214 

     

     

    codon_nums_all = list(codons_to_recode.keys()) 

     

    #split the codons to be mutated into a separate dictionary 

from the ones to stay the same 

    codons_to_keep_WT = {} 

    specific_codons_to_recode = {} 

     

    for numbers in codon_nums_all: 

        if numbers not in codon_nums_to_recode: 

            codons_to_keep_WT[numbers] = codons_to_recode[numbers] 

         

        if numbers in codon_nums_to_recode: 

            specific_codons_to_recode[numbers] = 

codons_to_recode[numbers] 

     

 

    for numbers in codon_nums_to_recode: 

        if numbers not in codon_nums_to_recode: 

            codons_to_keep_WT = codons_to_recode[numbers] 

 

    if syn_recode_type == "alternating matched": 

        #on only the codons to recode 

        #use that dictionary to create a new one with the specific 

frequency values  

        codons_to_recode_freqs = 

cdf.codon_frequency_collector(input_dict = codons_to_recode, 

reference_dict = ref_codons, type = "value") 

         

        #create a dictionary with all the frequencies for the 

amino acids in this sequence for each codon 

        codons_to_recode_all_freqs = 

cdf.codon_frequency_collector(input_dict = codons_to_recode, 

reference_dict = ref_codons, type = "dataframe") 

         

         

        #calculate the differences for each possible codon to the 

original 

        recode_freq_diffs = 

cdf.codon_frequency_difference_calc(codons_to_recode_let_num, 

ref_codons) 

         

        #add the differences in frequency to "the" dataframe 

        codons_to_recode_abs_diffs = 

cdf.codon_freq_diff_adder(codons_to_recode_let_num 

,codons_to_recode_all_freqs, recode_freq_diffs) 

         

        #choose which codons to use for synonymous recoding 

        codons_to_use_syn = 

cdf.codon_freq_selector(codons_to_recode_abs_diffs) 

     

     

    if syn_recode_type == "alternating random": 

         

        #add letters to dictionary 
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        specific_codons_to_recode_let_num = {} 

         

        for keys, seq in specific_codons_to_recode.items(): 

            let_num = str(seq.translate()) + str(keys) 

            specific_codons_to_recode_let_num[let_num] = seq 

         

         

        #make a dictionary of the alternate codons to the input 

sequence 

        alt_codons_to_recode = 

cdict.alt_codons(specific_codons_to_recode_let_num) 

         

        #randomly select which of these to use for each codon 

        codons_to_use_syn = 

cdict.Syn_random_recoder(alt_codons_to_recode) 

         

 

    #combine the unchanged codons with the changed codons 

     

    codons_to_keep_WT_let_num = {} 

     

    for codon_num, seq in codons_to_keep_WT.items(): 

        translation = seq.translate() 

        codon_num_let = str(translation) + str(codon_num) 

         

        codons_to_keep_WT_let_num[codon_num_let] = seq 

     

    codons_to_use_syn.update(codons_to_keep_WT_let_num) 

     

 

if syn_recode_type == "alternating highest" or syn_recode_type == 

"alternating lowest": 

     

    num_of_codons_to_mutate = int(num_of_codons_to_recode / 

alternating_repeat) 

    n_terms = list(range(num_of_codons_to_mutate)) 

    codon_nums_to_recode = [] 

     

    for n in n_terms: 

        codon_num = n * alternating_repeat 

        codon_nums_to_recode.append(codon_num) 

     

    if target_codon_no not in codon_nums_to_recode: 

        codon_nums_to_recode.append(target_codon_no) 

     

     

    codon_nums_all = list(codons_to_recode.keys()) 

     

    codons_to_keep_WT = {} 

    specific_codons_to_recode = {} 

     

    for numbers in codon_nums_all: 

        if numbers not in codon_nums_to_recode: 

            translate = codons_to_recode[numbers].translate() 

            let_num = str(translate) + str(numbers) 

            codons_to_keep_WT[let_num] = codons_to_recode[numbers] 
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        if numbers in codon_nums_to_recode: 

            #translate = codons_to_recode[numbers].translate() 

            #let_num = str(translate) + str(numbers) 

            specific_codons_to_recode[numbers] = 

codons_to_recode[numbers] 

     

 

     

    for numbers in codon_nums_to_recode: 

        if numbers not in codon_nums_to_recode: 

            codons_to_keep_WT = codons_to_recode[numbers] 

 

    #use that dictionary to create a new one with the specific 

frequency values  

    codons_to_recode_freqs = 

cdf.codon_frequency_collector(input_dict = 

specific_codons_to_recode, reference_dict = ref_codons, type = 

"value") 

     

    #create a dictionary with all the frequencies for the amino 

acids in this sequence for each codon 

    codons_to_recode_all_freqs = 

cdf.codon_frequency_collector(input_dict = 

specific_codons_to_recode, reference_dict = ref_codons, type = 

"dataframe") 

     

    codons_to_recode_choices_freqs = {} 

    #remove input codon from list unless it's Met or Trp 

    for let_num, df in codons_to_recode_all_freqs.items(): 

        input_codon = codons_to_recode_let_num[let_num] 

        if input_codon == Seq.Seq("ATG") or input_codon == 

Seq.Seq("TGG"): 

 

            codons_to_recode_choices_freqs[let_num] = 

ref_codon_table_df.loc[ref_codon_table_df["DNA"] == 

str(input_codon)] 

        else: 

            current_df = codons_to_recode_all_freqs[let_num] 

            codons_to_recode_choices_freqs[let_num] = 

current_df.loc[current_df["DNA"] != str(input_codon)] 

 

    #recode based on input type 

    codons_to_use_syn = {} 

     

    if syn_recode_type == "alternating highest": 

         

        for codon_num_let, seq_df in 

codons_to_recode_choices_freqs.items(): 

            max_freq_codon = max(seq_df["Fraction"]) 

            max_freq_codon_seq = seq_df.loc[seq_df["Fraction"] == 

max_freq_codon, "DNA"] 

            if len(max_freq_codon_seq) > 1: 

                max_number_codon = max(seq_df["Number"]) 

                max_freq_codon_seq = seq_df.loc[seq_df["Number"] 

== max_number_codon, "DNA"].item() 
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                codons_to_use_syn[codon_num_let] = 

max_freq_codon_seq 

                      

            else: 

             codons_to_use_syn[codon_num_let] = 

max_freq_codon_seq.item() 

             

             

     

    if syn_recode_type == "alternating lowest": 

         

        for codon_num_let, seq_df in 

codons_to_recode_choices_freqs.items(): 

            min_freq_codon = min(seq_df["Fraction"]) 

            min_freq_codon_seq = seq_df.loc[seq_df["Fraction"] == 

min_freq_codon, "DNA"] 

            if len(min_freq_codon_seq) > 1: 

                min_number_codon = min(seq_df["Number"]) 

                min_freq_codon_seq = seq_df.loc[seq_df["Number"] 

== min_number_codon, "DNA"].item() 

                codons_to_use_syn[codon_num_let] = 

min_freq_codon_seq 

                      

            else: 

             codons_to_use_syn[codon_num_let] = 

min_freq_codon_seq.item() 

        

 

     

     

    #combine the unchanged codons with the changed codons 

     

    codons_to_keep_WT_let_num = {} 

     

    for codon_num, seq in codons_to_keep_WT.items(): 

        codons_to_keep_WT_let_num[codon_num] = seq 

     

    codons_to_use_syn.update(codons_to_keep_WT_let_num) 

 

 

if syn_recode_type == "random": 

    #make a dictionary of the alternate codons to the input 

sequence 

    alt_codons_to_recode = 

cdict.alt_codons(codons_to_recode_let_num) 

     

    #randomly select which of these to use for each codon 

    codons_to_use_syn = 

cdict.Syn_random_recoder(alt_codons_to_recode) 

 

 

#add in the nonsynonymous mutation 

 

if nonsyn_recode_type == "highest" or nonsyn_recode_type == 

"lowest": 
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    nonsyn_ref_dict = ref_codons 

     

if nonsyn_recode_type == "random": 

    nonsyn_ref_dict = cdict.alt_codons(codons_to_recode_let_num) 

    nonsyn_ref_dict = {output_AA : 

cdict.ref_codon_table(output_AA)} 

 

 

codons_to_use_nonsyn = cdf.non_syn_mutator(target_AA, 

target_codon_no, new_AA = output_AA, input_dict = 

codons_to_use_syn, type = nonsyn_recode_type, ref_dict = 

nonsyn_ref_dict ) 

 

 

 

#construct the final recoded sequences 

 

synonymous_repair = stitch.sequence_constructor(codons_to_use_syn, 

type = "letter-number") 

nonsynonymous_repair = 

stitch.sequence_constructor(codons_to_use_nonsyn, type = "letter-

number") 

 

#check all the modifications were as expected 

#adjust target codon number to what it would be by normal counting 

rather than python counting 

target_codon_no_not_py = target_codon_no + 1 

 

 

val.translate_checker(synonymous_repair, target_codon_no_not_py, 

target_AA) 

 

val.translate_checker(nonsynonymous_repair, 

target_codon_no_not_py, output_AA) 

 

 

 

#create the final repair sequence including the homology arms 

 

upstream_hom_arm = gene_name.seq[(recode_start_whole - 

hom_arm_length):recode_start_whole] 

downstream_hom_arm = gene_name.seq[recode_end_whole: 

(recode_end_whole + hom_arm_length)] 

 

WT_entire_repair_region = upstream_hom_arm + WT_template_seq + 

downstream_hom_arm 

entire_syn_repair = upstream_hom_arm + synonymous_repair + 

downstream_hom_arm 

entire_nonsyn_repair = upstream_hom_arm + nonsynonymous_repair + 

downstream_hom_arm 

 

 

 

#construct "gene" sequences for primer design 

integrated_synonymous, WT_recode_region = 

stitch.mut_seq_integrator(repair_seq = synonymous_repair, ref_seq 
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= gene_name.seq, repair_start = recode_start_whole, repair_end = 

recode_end_whole, WT_repair_seq= "Yes") 

integrated_nonsynonymous = stitch.mut_seq_integrator(repair_seq = 

nonsynonymous_repair, ref_seq = gene_name.seq, repair_start = 

recode_start_whole, repair_end = recode_end_whole, WT_repair_seq= 

"No") 

 

#design screening primers 

screening_primers_df_syn  = 

primers.screening_primer_designer(gene_name.seq, 

integrated_synonymous, recode_start_whole, recode_end_whole) 

screening_primers_df_nonsyn  = 

primers.screening_primer_designer(gene_name.seq, 

integrated_nonsynonymous, recode_start_whole, recode_end_whole) 

 

#design primers to generate the repair template 

syn_repair_template_primers = 

primers.repair_primer_designer(entire_syn_repair, hom_arm_length, 

downstream_dna) 

nonsyn_repair_template_primers = 

primers.repair_primer_designer(entire_nonsyn_repair, 

hom_arm_length, downstream_dna) 

 

#repair_template_primers = [syn_repair_template_primers, 

nonsyn_repair_template_primers] 

 

#repair_template_primers_df = 

pd.DataFrame(repair_template_primers) 

#repair_template_primers_df.index = ["Synonymous repair", 

"Nonsynonymous repair"] 

 

#do an alignment  

 

#create a pariwise alignment object 

aligner = Align.PairwiseAligner(target_internal_open_gap_score = -

10.0, query_internal_open_gap_score = -10.0) 

 

 

 

syn_alignment = aligner.align(WT_entire_repair_region, 

entire_syn_repair) 

for alignment1 in sorted(syn_alignment): 

    #print("Score = %.1f:" % alignment1.score) 

    #print(alignment1) 

    syn_score = alignment1.score 

alignment_str_syn = str(alignment1) 

alignment_str_syn = alignment_str_syn.replace("target", "WT 

sequence").replace("query", "Syn. repair").replace("\n           

", "\n                ") 

alignment_str_syn = alignment_str_syn.replace("Syn. repair           

", "Syn. repair          ") 

#print(alignment_str_syn)  

     

nonsyn_alignment = aligner.align(WT_entire_repair_region, 

entire_nonsyn_repair) 

for alignment2 in sorted(syn_alignment): 
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    #print("Score = %.1f:" % alignment2.score) 

    nonsyn_score = alignment2.score 

alignment_str_nonsyn = str(alignment2) 

alignment_str_nonsyn = alignment_str_nonsyn.replace("target", "WT 

sequence").replace("query", "Nonsyn. repair").replace("\n           

", "\n                ") 

alignment_str_nonsyn = alignment_str_nonsyn.replace("Nonsyn. 

repair           ", "Nonsyn. repair       ") 

#print(alignment_str_nonsyn)     

 

 

 

 

#format some outputs 

 

WT_repair_seq_spaced = 

formats.codon_spacing(WT_entire_repair_region) 

syn_repair_spaced = formats.codon_spacing(entire_syn_repair) 

nonsyn_repair_spaced = formats.codon_spacing(entire_nonsyn_repair) 

 

WT_repair_translate = WT_entire_repair_region.translate() 

syn_repair_translate = entire_syn_repair.translate() 

nonsyn_repair_translate = entire_nonsyn_repair.translate() 

 

WT_repair_translate_spaced = 

formats.protein_align_codon(WT_repair_translate) 

syn_repair_translate_spaced = 

formats.protein_align_codon(syn_repair_translate) 

nonsyn_repair_translate_spaced = 

formats.protein_align_codon(nonsyn_repair_translate) 

 

syn_repair_mutations_count = 

val.mutation_counter(entire_syn_repair, WT_entire_repair_region) 

nonsyn_repair_mutations_count = 

val.mutation_counter(entire_nonsyn_repair, 

WT_entire_repair_region) 

 

syn_repair_primers_output = "" 

 

for category, item in syn_repair_template_primers.items(): 

    if type(item) == float: 

        item = '{:.1f}'.format(item) 

    syn_repair_primers_output += category 

    syn_repair_primers_output += ": " 

    syn_repair_primers_output += str(item) 

    syn_repair_primers_output += "\n" 

     

nonsyn_repair_primers_output = "" 

 

for category, item in nonsyn_repair_template_primers.items(): 

    if type(item) == float: 

        item = '{:.1f}'.format(item) 

    nonsyn_repair_primers_output += category 

    nonsyn_repair_primers_output += ": " 

    nonsyn_repair_primers_output += str(item) 

    nonsyn_repair_primers_output += "\n" 
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if syn_recode_type == "alternating matched" or syn_recode_type == 

"alternating highest" or syn_recode_type == "alternating lowest" 

or syn_recode_type == "alternating random": 

    alternating_info = f"Alternating recoding every 

{alternating_repeat} codons" 

else: 

    alternating_info = "" 

 

 

output_file = open(f"{job_name}.txt", "w") 

 

file_lines = ["Job request details\n", 

              f"Job name: {job_name}\n", 

              f"Target amino acid: 

{target_AA}{target_res_num}{output_AA}\n", 

              f"Synonymous recoding type: {syn_recode_type}\n", 

              f"Nonsynonymous recode type: 

{nonsyn_recode_type}\n", 

              f"Homology arm length (bp): {hom_arm_length}\n", 

              f"Recoding region length (bp): 

{recode_region_length}\n", 

              f"Total repair length (bp): {(2*hom_arm_length) + 

recode_region_length}\n", 

              f"{alternating_info}\n", 

              "\n", 

              "\n", 

              "Repair templates\n", 

              f"WT repair region sequence: 

\t\t{WT_repair_seq_spaced}\n", 

              f"WT translation: 

\t\t\t{WT_repair_translate_spaced}\n", 

              f"Synonymous repair region sequence: 

\t{syn_repair_spaced}\n", 

              f"Synonymous repair translation: 

\t\t{syn_repair_translate_spaced}\n", 

              f"Nonsynonymous repair region sequence: 

\t{nonsyn_repair_spaced}\n", 

              f"Nonsynonymous repair translation: 

\t{nonsyn_repair_translate_spaced}\n", 

              "\n", 

              f"Number of mutations in the synonymous repair 

template: {syn_repair_mutations_count}\n", 

              f"Number of mutations in the nonsynonymous repair 

template: {nonsyn_repair_mutations_count}\n", 

              "\n", 

              "\n", 

              "Screening primers\n", 

              "Synonymous repair\n", 

              "\n", 

              f"{screening_primers_df_syn}\n", 

              "\n", 

              "\n", 

              "Nonsynonymous primers\n" 

              f"{screening_primers_df_nonsyn}", 

              "\n", 
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              "\n", 

              "Repair template primers\n", 

              "Synonymous\n", 

              f"{syn_repair_primers_output}\n", 

              "\n", 

              "Nonsynonymous\n", 

              f"{nonsyn_repair_primers_output}\n", 

              "\n", 

              f"WT sequence (no spaces): 

{WT_entire_repair_region}\n", 

              f"Synonymous sequence (no spaces): 

{entire_syn_repair}\n", 

              f"Nonsynonymous sequence (no spaces): 

{entire_nonsyn_repair}\n", 

              "\n", 

              "\n", 

              "Alignments\n", 

              "Synonymous Repair\n", 

              f"Score = {syn_score}\n", 

              f"{alignment_str_syn}\n", 

              "\n", 

              "Nonsynonymous\n", 

              f"Score = {nonsyn_score}\n", 

              f"{alignment_str_nonsyn}\n" 

               

    ] 

 

output_file.writelines(file_lines) 

output_file.close() 

 

#print confirmation message to make it clearer that it worked 

print(f"\n\n\nYour repair template designs have completed 

successfully. Please check your folder for a file with the name 

'{job_name}.txt'\n") 

print("\t.\t.\n", "\n\t\___/\n\n\n") 
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7.2.11 READING INPUT FILE 
# -*- coding: utf-8 -*- 

""" 

Created on Sat Jan 27 10:16:59 2024 

 

@author: sharl 

""" 

 

import pandas as pd 

#from Bio import SeqIO 

from Bio import Seq 

import numpy as np 

#import openpyxl 

#from Bio import Align 

import io 

 

 

 

 

def codon_table_processor(filename): 

    """Converts a text file with data copied from 

https://www.kazusa.or.jp/ codon tables into a dataframe. 

     

    Codon tables must have selected a genetic code in the format 

options and text file does not include headers.  

     

    Note: uracils are changed to thymines 

     

    Arguments  

    filename -- filename of the text file including extension as a 

string 

     

    Outputs a dataframe""" 

     

     

    raw_freq = open(filename, "r").read() 

 

    headers = ["DNA", "Protein", "Fraction", "Frequency", 

"Number"] 

 

    raw_freq_str = str(raw_freq) 

 

    raw_freq_str_lines = raw_freq_str.replace(") ", 

")\n").replace("\n ", "\n") 

    raw_freq_str_lines = raw_freq_str_lines.replace("( ", 

"").replace(")","").replace("(", "").replace("  ", " ") 

    raw_freq_str_lines_Ts = raw_freq_str_lines.replace("U", "T") 

    raw_freq_str_lines_Ts_tabs = raw_freq_str_lines_Ts.replace(" 

", "\t") 

 

    df = pd.read_csv(io.StringIO(raw_freq_str_lines_Ts_tabs), 

sep="\t", header = None) 

    df.columns = headers 

 

    return df   
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7.2.12 CODON DICTIONARIES 
# -*- coding: utf-8 -*- 

""" 

Created on Wed Jan 24 08:47:49 2024 

 

@author: ceh560 

""" 

from Bio import SeqIO 

from Bio import Seq 

import random 

 

def ref_codon_table(amino_acid): 

    """"A searchable dictionary for all possible standard triplet 

codes for each amino acid. 

    Arguments 

    amino_acid -- single letter code for amino acid as a string 

     

    Returns a list of possible triplet codes for that amino 

acid.""" 

     

     

    Ala_codons = [Seq.Seq('GCT'), Seq.Seq('GCC'), Seq.Seq('GCA'), 

Seq.Seq('GCG')] 

    Cys_codons = [Seq.Seq('TGT'), Seq.Seq('TGC')] 

    Asp_codons = [Seq.Seq('GAT'), Seq.Seq('GAC')] 

    Glu_codons = [Seq.Seq('GAA'), Seq.Seq('GAG')] 

    Phe_codons = [Seq.Seq('TTT'), Seq.Seq('TTC')] 

    Gly_codons = [Seq.Seq('GGT'), Seq.Seq('GGC'), Seq.Seq('GGA'), 

Seq.Seq('GGG')] 

    His_codons = [Seq.Seq('CAT'), Seq.Seq('CAC')] 

    Ile_codons = [Seq.Seq('ATT'), Seq.Seq('ATC'), Seq.Seq('ATA')] 

    Lys_codons = [Seq.Seq('AAA'), Seq.Seq('AAG')] 

    Leu_codons = [Seq.Seq('CTT'), Seq.Seq('CTC'), Seq.Seq('CTA'), 

Seq.Seq('CTG'), Seq.Seq('TTG'), Seq.Seq('TTA')] 

    Met_codons = [Seq.Seq('ATG'), Seq.Seq('ATG')] 

    Asn_codons = [Seq.Seq('AAT'), Seq.Seq('AAC')] 

    Pro_codons = [Seq.Seq('CCT'), Seq.Seq('CCC'), Seq.Seq('CCA'), 

Seq.Seq('CCG')] 

    Gln_codons = [Seq.Seq('CAA'), Seq.Seq('CAG')] 

    Arg_codons = [Seq.Seq('CGC'), Seq.Seq('CGT'), Seq.Seq('CGA'), 

Seq.Seq('CGG'), Seq.Seq('AGA'), Seq.Seq('AGG')] 

    Ser_codons = [Seq.Seq('AGT'), Seq.Seq('AGC'), Seq.Seq('TCT'), 

Seq.Seq('TCC'), Seq.Seq('TCA'), Seq.Seq('TCG')] 

    Thr_codons = [Seq.Seq('ACT'), Seq.Seq('ACC'), Seq.Seq('ACA'), 

Seq.Seq('ACG')] 

    Val_codons = [Seq.Seq('GTT'), Seq.Seq('GTC'), Seq.Seq('GTA'), 

Seq.Seq('GTG')] 

    Trp_codons = [Seq.Seq('TGG'), Seq.Seq('TGG')] 

    Tyr_codons = [Seq.Seq('TAT'), Seq.Seq('TAC')] 

    Stop_codons = [Seq.Seq('TAA'), Seq.Seq('TAG'), Seq.Seq('TGA')] 

 

    ref_codon_seq_all = {"A": Ala_codons, 

                         "C": Cys_codons, 

                         "D": Asp_codons, 

                         "E": Glu_codons, 
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                         "F": Phe_codons, 

                         "G": Gly_codons, 

                         "H": His_codons, 

                         "I": Ile_codons, 

                         "K": Lys_codons, 

                         "L": Leu_codons, 

                         "M": Met_codons, 

                         "N": Asn_codons, 

                         "P": Pro_codons, 

                         "Q": Gln_codons, 

                         "R": Arg_codons, 

                         "S": Ser_codons, 

                         "T": Thr_codons, 

                         "V": Val_codons, 

                         "W": Trp_codons, 

                         "Y": Tyr_codons, 

                         "*": Stop_codons 

        } 

    return ref_codon_seq_all[amino_acid] 

 

 

#convert the tupules to a dictionary with a custom function 

def DictConvert(tup, dic): 

    for a, b in tup: 

        dic.setdefault(a, b) 

    return dic 

 

 

def protein_dict_maker(input_seq): 

    """"Converts a DNA sequence into a dictionary of the 

translated amino acids of each codon, numbered by the order of 

appearance in the sequence. """ 

     

     

    codon_length = 3 

     

    codon_sequences_list = 

[input_seq[current_base:current_base+codon_length] for 

current_base in range(0, len(input_seq), codon_length)] 

     

    codon_no_seq_tupule = list(enumerate(codon_sequences_list)) 

     

    dict_of_AAs = {} 

    DictConvert(codon_no_seq_tupule, dict_of_AAs) 

       

    no_of_codons = int(len(input_seq)/3) 

    codon_nos_all = list(range(0, no_of_codons , 1)) 

     

    for codon_no, codon_seq in dict_of_AAs.items(): 

        trans_codon = codon_seq.translate() 

        #print(trans_codon) 

        if codon_no in codon_nos_all: 

            dict_of_AAs[codon_no] = trans_codon 

    return dict_of_AAs 
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def codon_dict_maker(input_seq = None, key_format = "number"): 

    """Converts a DNA sequence into a dictionary of the composite 

codons. 

     

    Keyword Arguments 

    input_seq -- the DNA sequence to convert 

    key_format -- 'number' gives keys as number in the sequence 

(default), 'letter-number' gives the keys in the form amino acid 

single letter code followed by the number in the sequence. 

     

    Returns a dictionary with the desired format. 

    """ 

     

     

    codon_length = 3 

     

    codon_sequences_list = 

[input_seq[current_base:current_base+codon_length] for 

current_base in range(0, len(input_seq), codon_length)] 

     

    codon_no_seq_tupule = list(enumerate(codon_sequences_list)) 

 

    #make a dictionary and convert the tupules into a dictionary  

    dict_of_codons = {} 

     

    if key_format == "number": 

        DictConvert(codon_no_seq_tupule, dict_of_codons) 

     

    if key_format == "letter-number": 

        DictConvert(codon_no_seq_tupule, dict_of_codons) 

        dict_of_codons2 = {} 

        for codon_no, codon_seq in dict_of_codons.items(): 

            trans_codon = codon_seq.translate() 

            trans_codon_name = str(trans_codon) 

            codon_no_name = str(codon_no) 

            codon_no_plus_name = trans_codon_name + codon_no_name 

             

            dict_of_codons2[codon_no_plus_name] = codon_seq 

        dict_of_codons = dict_of_codons2         

     

    return dict_of_codons 

 

 

 

def alt_codons(input_dict): 

     

    """Creates a dictionary of the alternate codon sequences for 

the same amino acid as the input. 

     

    Arguments 

    input_dict -- dictionary in the form {single-letter code + 

number: original codon sequence} 

     

    Outputs a dictionary in the form {single-letter code + number: 

list of alternate codons} 

     



 

  227 

    Note: Methionine and Tyrosine will output their only codon""" 

     

    alt_codons_dict = {} 

     

    for codon_name, codon_seq in input_dict.items(): 

         

        trans_codon = codon_name[0] 

        #make a list of the codons for each AA minus the one that 

was used in the WT 

        current_AA_codon_list = list(ref_codon_table(trans_codon)) 

        alt_AA_codons_list = current_AA_codon_list 

        alt_AA_codons_list.remove(codon_seq) 

        alt_codons_dict[codon_name]= alt_AA_codons_list 

     

    return alt_codons_dict 

 

 

   

 

 

 

def Syn_random_recoder(input_dict): 

    """Creates a dictionary of the a synonymous codon sequence for 

the same amino acid as the input. 

     

    Chosen codon will be randomly chosen from the alternate codons 

for that amino acid. 

     

    Arguments 

    input_dict -- dictionary in the form {single-letter code + 

number: list of alternate codon sequences} 

     

    Outputs a dictionary in the form {single-letter code + number: 

randomly chosen alternate codon} 

     

    Note: Methionine and Tyrosine will output their only codon.""" 

     

     

    codons_for_mutated_seq = {} 

 

    for codon_no_name, chosen_codon_seq in input_dict.items(): 

         

        chosen_AA = random.choice(chosen_codon_seq) 

        codons_for_mutated_seq[codon_no_name] = chosen_AA 

 

    return codons_for_mutated_seq 
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7.2.13 CODON DATAFRAMES 
# -*- coding: utf-8 -*- 

""" 

Created on Wed Jan 24 13:31:23 2024 

 

@author: ceh560 

""" 

 

import pandas as pd 

from Bio import SeqIO 

from Bio import Seq 

import numpy as np 

from Bio import Align 

import random 

import codon_dictionaries as cdict 

 

 

 

def ref_codon_table_freqs_excel(input_file = None): 

    """Converts an excel spreadsheet of the frequency data into a 

dictionary searchable by single-letter amino acid. 

     

    Arguments 

    input_file -- the filename of the reference spreadsheet with 

file extension as a string 

     

    Ouputs a dictionary in the form {single-letter code: data 

frame of frequency data}""" 

     

     

    codon_usage_df = pd.read_excel(input_file) 

     

    Ala_df = codon_usage_df.query("Protein == 'A'") 

    Cys_df = codon_usage_df.query("Protein == 'C'") 

    Asp_df = codon_usage_df.query("Protein == 'D'") 

    Glu_df = codon_usage_df.query("Protein == 'E'") 

    Phe_df = codon_usage_df.query("Protein == 'F'") 

    Gly_df = codon_usage_df.query("Protein == 'G'") 

    His_df = codon_usage_df.query("Protein == 'H'") 

    Ile_df = codon_usage_df.query("Protein == 'I'") 

    Lys_df = codon_usage_df.query("Protein == 'K'") 

    Leu_df = codon_usage_df.query("Protein == 'L'") 

    Met_df = codon_usage_df.query("Protein == 'M'") 

    Asn_df = codon_usage_df.query("Protein == 'N'") 

    Pro_df = codon_usage_df.query("Protein == 'P'") 

    Gln_df = codon_usage_df.query("Protein == 'Q'") 

    Arg_df = codon_usage_df.query("Protein == 'R'") 

    Ser_df = codon_usage_df.query("Protein == 'S'") 

    Thr_df = codon_usage_df.query("Protein == 'T'") 

    Val_df = codon_usage_df.query("Protein == 'V'") 

    Trp_df = codon_usage_df.query("Protein == 'W'") 

    Tyr_df = codon_usage_df.query("Protein == 'Y'") 

    Stop_df = codon_usage_df.query("Protein == '*'") 
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    dict_of_AAs_dfs_all = {"A": Ala_df, 

                           "C": Cys_df, 

                           "D": Asp_df, 

                           "E": Glu_df, 

                           "F": Phe_df, 

                           "G": Gly_df, 

                           "H": His_df, 

                           "I": Ile_df, 

                           "K": Lys_df, 

                           "L": Leu_df, 

                           "M": Met_df, 

                           "N": Asn_df, 

                           "P": Pro_df, 

                           "Q": Gln_df, 

                           "R": Arg_df, 

                           "S": Ser_df, 

                           "T": Thr_df, 

                           "V": Val_df, 

                           "W": Trp_df, 

                           "Y": Tyr_df, 

                           "*": Stop_df} 

     

    return dict_of_AAs_dfs_all 

 

 

def ref_codon_table_freqs(input_df = None): 

    """ Converts a dataframe of the frequency data into a 

dictionary, searchable by single-letter amino acid. 

     

    Arguments 

    input_file -- the filename of the reference spreadsheet with 

file extension as a string 

     

    Ouputs a dictionary in the form {single-letter code: data 

frame of frequency data}""" 

     

     

    codon_usage_df = input_df 

     

    Ala_df = codon_usage_df.query("Protein == 'A'") 

    Cys_df = codon_usage_df.query("Protein == 'C'") 

    Asp_df = codon_usage_df.query("Protein == 'D'") 

    Glu_df = codon_usage_df.query("Protein == 'E'") 

    Phe_df = codon_usage_df.query("Protein == 'F'") 

    Gly_df = codon_usage_df.query("Protein == 'G'") 

    His_df = codon_usage_df.query("Protein == 'H'") 

    Ile_df = codon_usage_df.query("Protein == 'I'") 

    Lys_df = codon_usage_df.query("Protein == 'K'") 

    Leu_df = codon_usage_df.query("Protein == 'L'") 

    Met_df = codon_usage_df.query("Protein == 'M'") 

    Asn_df = codon_usage_df.query("Protein == 'N'") 

    Pro_df = codon_usage_df.query("Protein == 'P'") 

    Gln_df = codon_usage_df.query("Protein == 'Q'") 

    Arg_df = codon_usage_df.query("Protein == 'R'") 

    Ser_df = codon_usage_df.query("Protein == 'S'") 
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    Thr_df = codon_usage_df.query("Protein == 'T'") 

    Val_df = codon_usage_df.query("Protein == 'V'") 

    Trp_df = codon_usage_df.query("Protein == 'W'") 

    Tyr_df = codon_usage_df.query("Protein == 'Y'") 

    Stop_df = codon_usage_df.query("Protein == '*'") 

 

 

 

    dict_of_AAs_dfs_all = {"A": Ala_df, 

                           "C": Cys_df, 

                           "D": Asp_df, 

                           "E": Glu_df, 

                           "F": Phe_df, 

                           "G": Gly_df, 

                           "H": His_df, 

                           "I": Ile_df, 

                           "K": Lys_df, 

                           "L": Leu_df, 

                           "M": Met_df, 

                           "N": Asn_df, 

                           "P": Pro_df, 

                           "Q": Gln_df, 

                           "R": Arg_df, 

                           "S": Ser_df, 

                           "T": Thr_df, 

                           "V": Val_df, 

                           "W": Trp_df, 

                           "Y": Tyr_df, 

                           "*": Stop_df} 

     

    return dict_of_AAs_dfs_all 

 

 

 

def codon_frequency_collector(input_dict, reference_dict, type = 

"value"): 

    """Creates a dictionary with the frequencies of the codons 

used in the input dictionary. 

     

    Arguments 

    input_dict -- a dictionary of the codons used in the sequence 

to assess in the form (when type = dataframe or value) {codon 

number: sequence} or (when type = list) {single-letter code + 

number: list of alternate codons} 

    reference_dict -- a dictionary of the frequency data for all 

codons in the form {single-letter code: data frame of frequency 

data} 

    type -- choice of collection of only a single frequency (type 

= value, default), (type = dataframe) the frequencies for all the 

codons for the amino acid the input codes for as a dataframe, or 

(type = list) the frequencies for all the codons for the amino 

acid the input codes for as a list. 

     

    Value outputs a dictionary in the form {single-letter code + 

codon number: frequency value} 
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    Dataframe outputs a dictionary in the form {single-letter code 

+ codon number: dataframe of frequencies for all codons} 

    List outputs a dictionary in the form {single-letter code + 

number: list of frequencies for all codons} 

    """ 

     

     

    dict_of_codons_value = {} 

    dict_of_codons_dataframe = {} 

    dict_of_codons_list = {} 

     

    if type == "value" or type == "dataframe": 

        for codon_no, codon_seq in input_dict.items(): 

            #create the keys in the form AA single letter code + 

codon number 

            trans_codon = codon_seq.translate() 

            trans_codon_name = str(trans_codon) 

            codon_no_name = str(codon_no) 

            codon_no = trans_codon_name + codon_no_name 

             

            #find the data frame corrsponding to the relevant AA 

            current_AA_df = reference_dict[trans_codon] 

             

            #find the frequency value for the input sequence codon 

            codon_seq = str(codon_seq) 

            relevant_seq_freq_row = 

current_AA_df.loc[current_AA_df["DNA"]==codon_seq] 

 

 

            #collect only the frequency value 

            relevant_seq_freq = 

np.array(relevant_seq_freq_row["Fraction"]) 

             

            relevant_seq_freq = float(relevant_seq_freq) 

            #relevant_seq_freq = np.vectorize(relevant_seq_freq) 

             

            #add the frequency value to dictionary  

            dict_of_codons_value[codon_no] = relevant_seq_freq 

             

 

            #to a second dictionary, add the relevant data frames 

(needed later) 

            dict_of_codons_dataframe[codon_no] = 

current_AA_df.copy() 

         

    if type == "list": 

        for codon_no_name, codon_seqs in input_dict.items(): 

            trans_codon = codon_no_name[0] 

            current_AA_df = reference_dict[trans_codon] 

 

            #collect only the frequency value 

            relevant_seq_freq = list(current_AA_df["Fraction"]) 

             

            dict_of_codons_list[codon_no_name] = relevant_seq_freq     
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    if type == "dataframe": 

        return dict_of_codons_dataframe 

     

    if type == "value": 

        return dict_of_codons_value 

     

    if type == "list": 

        return dict_of_codons_list 

         

         

 

 

 

def codon_frequency_difference_calc(input_dict, ref_dict): 

    """Creates a dictionary of the absolute frequency differences 

between an input codon and all other codons in a site-specific 

manner. 

     

    Arguments 

    input_codon_dict -- a dictionary of sequences to compare to in 

the form {single-letter code + number: sequence} 

    ref_codon_dict -- a dictionary of dataframes of frequency 

usage data in the form {single-letter code: dataframe} 

     

    Outputs a dictionary in the form {single-letter code + number: 

list of absolute differences in frequency""" 

     

    alt_codon_dict = {} 

    for codon_no_name, codon_seqs in input_dict.items(): 

        trans_codon = codon_no_name[0] 

        current_AA_df = ref_dict[trans_codon] 

 

        #collect only the frequency value 

        relevant_seq_freq = list(current_AA_df["Fraction"]) 

         

        alt_codon_dict[codon_no_name] = relevant_seq_freq    

          

     

     

    alt_codons_freqs_diff = {} 

    for codon_no_name, codon_freqs in alt_codon_dict.items(): 

        #creating the keys as the codon number and translated 

letter 

 

        ref_codon_seq = input_dict[codon_no_name] 

 

         

        #find the dataframe for the relevant AA from the 

dictionary of dataframes 

        trans_codon = ref_codon_seq.translate() 

        current_AA_df = ref_dict[trans_codon] 

         

        #find the triplet code to compare to from the previous 

dictionary with the DNA sequences from the input 

        relevant_seq = input_dict[codon_no_name] 
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        ref_codon_freq = 

current_AA_df.loc[current_AA_df["DNA"]==relevant_seq] 

 

        #collect only the frequency value from the data frame  

        relevant_seq_freq = np.array(ref_codon_freq["Fraction"]) 

        #relevant_seq_freq = np.vectorize(relevant_seq_freq) 

        relevant_seq_freq = float(relevant_seq_freq) 

         

        #make a list of the values of the differences for each of 

the possible codons and add that to a dictionary which links these 

to their respective codon 

        codon_freqs_diff = [] 

         

        for frequency in codon_freqs: 

            frequency_diff = abs(frequency - relevant_seq_freq)  

 

            codon_freqs_diff.append(frequency_diff) 

            alt_codons_freqs_diff[codon_no_name] = 

codon_freqs_diff  

     

    return alt_codons_freqs_diff 

 

 

def codon_freq_diff_adder(dict_of_codons, dict_of_dfs, diff_dict): 

    """Creates a dictionary with a modified data frame to the 

input to include absolute differences 

     

    Arguments 

   dict_of_codons -- a dictionary in the form of {single-letter 

code + number: sequence} 

    dict_of_dfs -- a dictionary in the form of {single-letter code 

+ number: dataframe for all codons for that amino acid} 

    diff_dict -- a dictionary in the form of {single-letter code + 

number: list of absolute differences} 

     

    Note: values in the lists in diff_dict must be in the same 

order as the values they correspond to in the dataframe in 

input_dict 

     

    Outputs a dictionary with the data frame from input_dict 

ammended with the values from the lists in diff_dict""" 

     

     

     

    output_dict = dict_of_dfs 

    #ensure the original codon can never be selected as the new 

one (except for Met and Tyr) 

    for codon_no_name, codon_df in dict_of_dfs.items(): 

        #take the data frame which had the copies of each AAs info 

for the input sequence 

        current_codon_df = dict_of_dfs[codon_no_name] 

         

        #add a new column to the data frame which is the 

differences calculated in the previous dictionary 
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        current_codon_df["Absolute Difference"] = 

diff_dict[codon_no_name] 

         

        #pull out the original input sequence for the codon being 

assessed  

        #current_codon_no = int(codon_no_name[1:]) 

        input_codon = dict_of_codons[codon_no_name] 

 

         

        #set the input codon freq to 1 for the input codon so that 

it's never chosen as the lowest value except for met and tyr 

        current_codon_df.loc[current_codon_df["DNA"] == 

input_codon, "Absolute Difference"] = 1 

         

    return output_dict 

     

 

 

 

 

def codon_freq_selector(input_dict): 

    """Creates a dictionary of the codon sequences with the lowest 

Absolute Difference in Frequency. 

     

    Arguments  

    input_dict -- a dictionary in the form {single-letter code + 

number: dataframe} where the dataframe contains a column for DNA 

sequence, Fraction and Absolute Difference. 

     

    Output is a dictionary in the form {single-letter code + 

number: chosen sequence (as a string)}""" 

     

     

    codons_for_mutated_seq = {} 

 

    for codon_no_name, chosen_codon_seq in input_dict.items(): 

         

        #find the dataframe for this codon 

        current_codon_df = input_dict[codon_no_name] 

         

        #find the value with the smallest absolute difference in 

that dataframe 

        smallest_diff = min(current_codon_df["Absolute 

Difference"]) 

 

        corresponding_seq_to_freq = 

current_codon_df.loc[current_codon_df["Absolute Difference"] == 

smallest_diff] 

 

         

        #dealing with multiple equivalent differences - if found, 

take the one with the bigger fraction of usage if they don't have 

equal 

        #pull out only the sequence of the smallest difference  

        if len(corresponding_seq_to_freq) == 1: 

            seq_to_use = corresponding_seq_to_freq["DNA"].item() 
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        else: 

            highest_freq = 

current_codon_df.loc[current_codon_df["Fraction"] == 

max(current_codon_df["Fraction"])] 

            highest_freq_value = highest_freq["Fraction"].item() 

 

            highest_freq_list = [] 

            highest_freq_list.append(highest_freq_value) 

 

             

            #check if there are two values with equal abs diff and 

equal fraction 

            if len(highest_freq_list) == 1: 

                seq_to_use = highest_freq["DNA"].item() 

             

            #needs a better else clause 

            else: print("\n\n\n ***Error: there are two or more 

values with equal abs difference in frequency and fraction of 

usage***\n\n\n") 

         

        codons_for_mutated_seq[codon_no_name] = seq_to_use    

    return codons_for_mutated_seq 

     

     

     

def non_syn_mutator(target_AA, AA_num, new_AA, input_dict, 

ref_dict = None, type = "random"): 

     

    """Generates a dictionary of codons, replacing a target amino 

acid with another either randomly or in a strategised manner. 

     

    Arguments 

    target_AA -- the starting amino acid residue in the WT 

sequence (single-letter code) 

    AA_num -- the amino acid number in the WT sequence 

    new_AA -- the amino acid to replace the target with (single-

letter code) 

    input_dict -- a dictionary of the WT sequence codons in the 

form {single-letter code + number: sequence} 

    ref_dict -- a reference dictionary of all codons. Either in 

the form (type = "random") {single-letter code: list of sequences} 

or (type = "highest" or "lowest") {single-letter code: dataframe 

of frequency data} 

    type -- determines how to pick the replacement codon. Default 

= "random". Options are random, highest (highest frequency), or 

lowest (lowest frequency) 

     

    Output is a dictionary which has replaced the target codon as 

specified in the form {single-letter code + number: sequence} 

    """ 

     

     

    #use input codon information to identify which codon is going 

to be mutated 
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    residue_to_mutate = target_AA + str(AA_num) 

 

    #define the output residue 

    mutated_target_residue = new_AA + str(AA_num) 

 

    if type == "random": 

        #determine DNA sequence for the new codon - random version 

 

        replacement_protein_DNA = random.choice(ref_dict[new_AA]) 

     

     

     

    if type == "highest": 

        mutated_res = {mutated_target_residue: "blank"} 

         

        mutated_res_freqs = codon_frequency_collector(mutated_res, 

ref_dict, type = "list") 

         

        max_freq_mutated_res = 

max(mutated_res_freqs[mutated_target_residue]) 

         

        mutated_res_df = ref_dict[new_AA] 

         

        mutated_res_df_chosen = 

mutated_res_df.loc[mutated_res_df["Fraction"] == 

max_freq_mutated_res] 

        #tie breaker 

        if len(mutated_res_df_chosen) > 1: 

            max_number_codon = max(mutated_res_df["Number"]) 

            max_number_codon_seq = 

mutated_res_df.loc[mutated_res_df["Number"] == max_number_codon, 

"DNA"].item() 

            replacement_protein_DNA = max_number_codon_seq 

                  

        else: 

            replacement_protein_DNA = 

mutated_res_df_chosen["DNA"].item() 

         

 

 

    if type == "lowest": 

        mutated_res = {mutated_target_residue: "blank"} 

         

        mutated_res_freqs = codon_frequency_collector(mutated_res, 

ref_dict, type = "list") 

         

        min_freq_mutated_res = 

min(mutated_res_freqs[mutated_target_residue]) 

         

        mutated_res_df = ref_dict[new_AA] 

         

        mutated_res_df_chosen = 

mutated_res_df.loc[mutated_res_df["Fraction"] == 

min_freq_mutated_res] 

        #tie breaker 
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        if len(mutated_res_df_chosen) > 1: 

            min_number_codon = min(mutated_res_df["Number"]) 

            min_number_codon_seq = 

mutated_res_df.loc[mutated_res_df["Number"] == min_number_codon, 

"DNA"].item() 

            replacement_protein_DNA = min_number_codon_seq 

                  

        else: 

            replacement_protein_DNA = 

mutated_res_df_chosen["DNA"].item() 

         

 

    #create a dictionary that has the new codon and removes the 

old one 

 

    dict_of_codons_output = {} 

 

    for codon_name, codon_seq in input_dict.items(): 

        dict_of_codons_output[codon_name] = codon_seq 

        dict_of_codons_output[mutated_target_residue] = 

replacement_protein_DNA 

 

 

    del dict_of_codons_output[residue_to_mutate] 

     

    return dict_of_codons_output 
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7.2.14 FORMATTING FUNCTIONS 
# -*- coding: utf-8 -*- 

""" 

Created on Thu Jan 25 09:52:49 2024 

 

@author: ceh560 

""" 

 

from Bio import Seq 

 

 

 

def codon_spacing(sequence): 

    """Adds a space every 3 bases to a sequence to visualise the 

codons more clearly. 

     

    Arguments 

    sequence -- a string or a sequence to be spaced 

     

    Note: if the sequence length is not a multiple of 3, the 

spacing still starts from the beginning so the last codon will be 

incomplete. The sequence will also end on a space. """ 

     

     

    spaced_seq = Seq.Seq("") 

    codon_length = 3 

 

    for base in range(0, len(sequence), codon_length): 

 

        spaced_seq += sequence[base:base+3] 

        spaced_seq += " " 

 

    return spaced_seq 

 

 

def protein_align_codon(protein_sequence): 

    """Adds space after every amino acid to align with a codon 

spaced DNA sequence. 

     

    Arguments 

    protein_sequence -- a string or a sequence to be spaced 

     

    Note: if the sequence length is not a multiple of 3, the 

spacing still starts from the beginning so the last codon will be 

incomplete. The sequence will also end on a space. """ 

     

     

    spaced_seq = Seq.Seq("") 

 

    for amino_acid in protein_sequence: 

        #spaced_seq += " " 

        spaced_seq += amino_acid 

        spaced_seq += "   " 

 

    return spaced_seq  
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7.2.15 STITCHING FUNCTIONS 
# -*- coding: utf-8 -*- 

""" 

Created on Tue Jan 23 10:57:41 2024 

 

@author: ceh560 

""" 

 

from Bio import Seq 

 

 

def repair_stitcher(*, ref_seq = None, recoded_seq = None, 

up_length = None, replacement_length = None, down_length = None): 

    """"Takes an input sequence and replaces a central sequence 

with another specified sequence 

     

    Keyword arguments: 

        ref_seq -- a sequence/string to work from 

        recoded_seq -- a sequence/string to replace part of the 

ref_seq with 

        up_length -- the legnth of the first sequence from the 

start of the input sequence to keep 

        replacement_length -- the length of the sequence which 

will be replaced, starting from the next base/character of the 

up_length 

        down_length -- the length of the third sequence, starting 

from the next base/character of the replacement_length to keep 

         

        Outputs a new sequence of the original starting sequence, 

followed by the replaced sequence, followed by the original end 

sequence 

        """ 

    upstream_seq = ref_seq[:up_length] 

    downstream_seq = ref_seq[(up_length + 

replacement_length):(up_length + replacement_length + 

down_length)] 

     

    return upstream_seq + recoded_seq + downstream_seq 

     

 

 

 

def sequence_splitter(*, ref_seq = None, up_length = None, 

mid_length = None, down_length = None): 

    """"Takes an input sequence and breaks it into 3 constituent 

sequences 

     

    Keyword arguments: 

        ref_seq -- a sequence/string to split 

        up_length -- the legnth of the first sequence from the 

start of the input sequence 

        mid_length -- the length of the second sequence, starting 

from the next base/character of the up_length 

        down_length -- the length of the third sequence, starting 

from the next base/character of the mid_length 
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        Outputs the sequences of start to up, up to mid and mid to 

down either in a tupule or assigned to 3 variables if specified. 

        """ 

    upstream_seq = ref_seq[:up_length] 

    middle_seq = ref_seq[up_length:(up_length + mid_length)] 

    downstream_seq = ref_seq[(up_length + mid_length):(up_length + 

mid_length + down_length)] 

     

    return upstream_seq, middle_seq, downstream_seq 

 

 

def sequence_constructor(input_dict, type = "number"): 

     

    """Constructs a sequence object from numbered sequences in a 

dictionary 

     

    Arguments 

    input_dict -- a dictionary in the form {number: sequence} or 

{single-letter code + number: sequence} 

    type -- default = "number", alternative is type = "letter-

number" 

     

    Output is a sequence constructed in numerical order from the 

constituent sequences in the dictionary.""" 

     

     

    counter = 0 

 

    mutated_seq = Seq.Seq("") 

     

    if type == "letter-number": 

        output_dict = {} 

         

        for codon_no_name, chosen_codon_seq in input_dict.items(): 

            codon_no = codon_no_name[1:] 

            output_dict[codon_no] = chosen_codon_seq 

             

        for codon_no, chosen_codon_seq in output_dict.items():   

            mutated_seq += output_dict[str(counter)] 

            counter = counter + 1 

         

    if type == "number": 

         

        for codon_no_name, chosen_codon_seq in input_dict.items(): 

             

             

            mutated_seq += input_dict[str(counter)] 

            counter = counter + 1 

 

     

    return mutated_seq 
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def mut_seq_integrator(repair_seq, ref_seq, repair_start, 

repair_end, WT_repair_seq = "No"): 

     

    """Generates a sequence corresponding to the integration of 

the inputted repair sequence into the gene sequence. 

     

    Arguments 

     

    repair_seq -- the sequence being integrated 

    ref_seq -- the gene sequence before replacement 

    repair start -- the starting base of where the repair template 

integrates 

    repair_end -- the ending base of where the repair template 

integrates 

    WT_repair_seq -- default = "No", if = Yes, it will also output 

the sequence for the WT region that is being replaced 

     

    Note: the repair_seq does not have to be the length of the 

replaced region (repair_start to repair_end) but there is no 

validation if this is the case.""" 

     

    #repair_start_py = repair_start - 1 

     

    WT_template_seq = ref_seq[repair_start:repair_end] 

     

    upstream_dna = ref_seq[:repair_start] 

 

    downstream_dna = ref_seq[repair_end:] 

     

    repair_total_seq = upstream_dna + repair_seq + downstream_dna 

     

    if WT_repair_seq == "No": 

        return repair_total_seq 

     

    if WT_repair_seq == "Yes": 

        return repair_total_seq, WT_template_seq 
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7.2.16 VALIDATOR 
# -*- coding: utf-8 -*- 

""" 

Created on Wed Jan 24 08:35:58 2024 

 

@author: ceh560 

""" 

 

from Bio import Seq 

from Bio import SeqIO 

 

def triplet_checker(input_seq): 

    """"Checks the input sequence is a whole number of codons 

(divisible by 3). Returns True, or False + error message.""" 

    seq_length = len(input_seq) 

    if seq_length % 3 == 0: 

        return True 

    else: 

        return False, print("\n\n\n ***Sequence input not a 

multiple of three*** \n Any result generated will likely be 

erroneous.\n\n\n") 

 

 

 

 

def translate_checker(input_seq, target_res_num, target_res_AA): 

     

     

    if type(input_seq) == str: 

        input_seq = Seq.Seq(input_seq) 

     

    target_res_num_py = target_res_num - 1 

     

    #determine the DNA sequence range from the codon number 

    target_codon_seq = 

input_seq[(target_res_num_py*3):((target_res_num_py*3)+3)] 

    #return print(input_seq, target_codon_seq) 

     

    #check the information matches up 

    target_codon_seq_translated = target_codon_seq.translate() 

    if target_codon_seq_translated != target_res_AA: 

        return False, print(f"\n\n\n ***Error, requested residue 

does not code for expected amino acid. Requested residue number 

{target_res_num} codes for {target_codon_seq_translated} but was 

expected to be {target_res_AA}.*** \n\n\n\n") 

     

    if  target_codon_seq_translated == target_res_AA: 

        return True 

 

 

     

 

def mutation_counter(mutated_seq, WT_seq): 

    """Determines the number of mutations in a DNA sequence 

compared to a reference sequence 
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    Arguments 

    mutated_seq -- the sequence which is expected to contain 

mutations 

    WT_seq -- a reference sequence for the same region of DNA 

     

    Outputs the number of mutations found""" 

     

     

     

    counter = 0 

     

    mutations = 0 

     

    for base in WT_seq: 

        if WT_seq[counter] != mutated_seq[counter]: 

            mutations += 1 

         

        counter += 1 

     

    return mutations 

 

  



 

  244 

7.2.17 PRIMER FUNCTIONS 
 
# -*- coding: utf-8 -*- 

""" 

Created on Fri Jan 26 16:53:51 2024 

 

@author: ceh560 

""" 

 

import primer3 

import primer3.bindings 

from Bio import SeqIO 

from Bio import Seq 

import pandas as pd 

 

 

 

def screening_primer_designer(WT_seq, integrated_repair_seq, 

repair_start, repair_end): 

    """Designs screening primers to distinguish an integrated 

repair sequence from the WT sequence. 

     

    Argumets 

    WT_seq -- the gene sequence of the WT gene 

    integrated_repair_seq -- the gene sequence if the desired 

repair template is integrated in place 

    repair_start -- the base pair number that the recoding region 

of the repair template starts 

    repair_end -- the base pair number that the recoding region of 

the repair template ends 

     

    Outputs a dataframe of the designed primers and some useful 

information""" 

     

    repair_start_py = repair_start - 1 

    WT_template_seq = WT_seq[repair_start_py:repair_end] 

 

    upstream_dna = WT_seq[:repair_start_py] 

 

    downstream_dna = WT_seq[repair_end:] 

 

 

 

    WT_dna_for_primers = str(WT_seq) 

 

 

    WT_primers = {'SEQUENCE_ID': "gene name", 

            "SEQUENCE_TEMPLATE": WT_dna_for_primers, 

            #"SEQUENCE_TARGET": [87,36], #first value = start, 

second value = length, the primers must cover this entire region  

            "PRIMER_TASK": "generic", 

            "PRIMER_PICK_LEFT_PRIMER": 1, 

            #"PRIMER_PICK_INTERNAL_OLIGO": 0, 

            "PRIMER_PICK_RIGHT_PRIMER": 1, 

            "PRIMER_OPT_SIZE": 18, 
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            "PRIMER_MIN_SIZE": 15, 

            "PRIMER_MAX_SIZE": 21, 

            "PRIMER_MAX_NS_ACCEPTED": 1, 

            "PRIMER_PRODICT_SIZE_RANGE": [150,1500], 

            "P3_FILE_FLAG": 1, 

            #"SEQUENCE_INTERNAL_EXCLUDED_REGION": [37,21], 

            "PRIMER_EXPLAIN_FLAG": 1, 

            "SEQUENCE_PRIMER_PAIR_OK_REGION_LIST": [0, 

repair_start_py, repair_start_py,(repair_end - repair_start_py)] 

            #"SEQUENCE_PRIMER": "GTCACACTTTTGCGGCTCG" #allows you 

to specify a left (fwd) primer only to use to design the right 

(rev) primer 

            }  

 

    global_args1 = {"PRIMER_TASK": "generic", 

                   "PRIMER_PICK_LEFT_PRIMER": 1, 

                   "PRIMER_PICK_INTERNAL_OLIGO": 0, 

                   "PRIMER_PICK_RIGHT_PRIMER": 1, 

                   "PRIMER_NUM_RETURN": 3, 

                   "PRIMER_MIN_3_PRIME_OVERLAP_OF_JUNCTION": 4, 

                   

"PRIMER_INTERNAL_MIN_3_PRIME_OVERLAP_OF_JUNCTION": 4, 

                   "PRIMER_MIN_5_PRIME_OVERLAP_OF_JUNCTION": 7, 

                   

"PRIMER_INTERNAL_MIN_5_PRIME_OVERLAP_OF_JUNCTION": 7, 

                   #"PRIMER_MUST_MATCH_FIVE_PRIME": "empty", 

                   #"PRIMER_INTERNAL_MUST_MATCH_FIVE_PRIME": 

"empty", 

                   #"PRIMER_MUST_MATCH_THREE_PRIME": "empty", 

                   #"PRIMER_INTERNAL_MUST_MATCH_THREE_PRIME": 

"empty", 

                   "PRIMER_PRODUCT_SIZE_RANGE": [100, 1500], 

                   "PRIMER_PRODUCT_OPT_SIZE": 500, 

                   "PRIMER_PAIR_WT_PRODUCT_SIZE_LT": 0.0, 

                   "PRIMER_PAIR_WT_PRODUCT_SIZE_GT": 0.0, 

                   "PRIMER_MIN_SIZE": 18, 

                   "PRIMER_INTERNAL_MIN_SIZE": 18, 

                   "PRIMER_OPT_SIZE": 20, 

                   "PRIMER_INTERNAL_OPT_SIZE": 20, 

                   "PRIMER_MAX_SIZE": 27, 

                   "PRIMER_INTERNAL_MAX_SIZE": 27, 

                   "PRIMER_WT_SIZE_LT": 1.0, 

                   "PRIMER_INTERNAL_WT_SIZE_LT": 1.0, 

                   "PRIMER_WT_SIZE_GT": 1.0, 

                   "PRIMER_INTERNAL_WT_SIZE_GT": 1.0, 

                   "PRIMER_MIN_GC": 20.0, 

                   "PRIMER_INTERNAL_MIN_GC": 20.0, 

                   "PRIMER_OPT_GC_PERCENT": 50.0, 

                   "PRIMER_INTERNAL_OPT_GC_PERCENT": 50.0, 

                   "PRIMER_MAX_GC": 80.0, 

                   "PRIMER_INTERNAL_MAX_GC": 80.0, 

                   "PRIMER_WT_GC_PERCENT_LT": 0.0, 

                   "PRIMER_INTERNAL_WT_GC_PERCENT_LT": 0.0, 

                   "PRIMER_WT_GC_PERCENT_GT": 0.0, 

                   "PRIMER_INTERNAL_WT_GC_PERCENT_GT": 0.0, 

                   "PRIMER_GC_CLAMP": 0, 
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                   "PRIMER_MAX_END_GC": 5, 

                   "PRIMER_MIN_TM": 56.0, 

                   "PRIMER_INTERNAL_MIN_TM": 56.0, 

                   "PRIMER_OPT_TM": 60.0, 

                   "PRIMER_INTERNAL_OPT_TM": 60.0, 

                   "PRIMER_MAX_TM": 63.0, 

                   "PRIMER_INTERNAL_MAX_TM": 63.0, 

                   "PRIMER_PAIR_MAX_DIFF_TM": 63.0, 

                   "PRIMER_WT_TM_LT": 1.0, 

                   "PRIMER_INTERNAL_WT_TM_LT": 1.0, 

                   "PRIMER_WT_TM_GT": 1.0, 

                   "PRIMER_INTERNAL_WT_TM_GT": 1.0, 

                   "PRIMER_PAIR_WT_DIFF_TM": 0.0, 

                   "PRIMER_PRODUCT_MIN_TM": -1000000.0, 

                   "PRIMER_PRODUCT_OPT_TM": 0.0, 

                   "PRIMER_PRODUCT_MAX_TM": 1000000.0, 

                   "PRIMER_PAIR_WT_PRODUCT_TM_LT": 0.0, 

                   "PRIMER_PAIR_WT_PRODUCT_TM_GT": 0.0, 

                   "PRIMER_TM_FORMULA": 1, 

                   "PRIMER_SALT_MONOVALENT": 50.0, 

                   "PRIMER_INTERNAL_SALT_MONOVALENT": 50.0, 

                   "PRIMER_SALT_DIVALENT": 1.5, 

                   "PRIMER_INTERNAL_SALT_DIVALENT": 0.0, 

                   "PRIMER_DNTP_CONC": 0.6, 

                   "PRIMER_INTERNAL_DNTP_CONC": 0.0, 

                   "PRIMER_SALT_CORRECTIONS": 1, 

                   "PRIMER_DNA_CONC": 50.0, 

                   "PRIMER_INTERNAL_DNA_CONC": 50.0, 

                   "PRIMER_DMSO_CONC": 0.0, 

                   "PRIMER_INTERNAL_DMSO_CONC": 0.0, 

                   "PRIMER_DMSO_FACTOR": 0.6, 

                   "PRIMER_INTERNAL_DMSO_FACTOR": 0.6, 

                   "PRIMER_FORMAMIDE_CONC": 0.0, 

                   "PRIMER_INTERNAL_FORMAMIDE_CONC": 0.0, 

                   "PRIMER_THERMODYNAMIC_OLIGO_ALIGNMENT": 1, 

                   "PRIMER_THERMODYNAMIC_TEMPLATE_ALIGNMENT": 0, 

                   "PRIMER_SECONDARY_STRUCTURE_ALIGNMENT": 0, 

                   "PRIMER_THERMODYNAMIC_PARAMETERS_PATH": 

"./primer3_config", 

                   "PRIMER_ANNEALING_TEMP": -10.0, 

                   "PRIMER_MIN_BOUND": -10.0, 

                   "PRIMER_INTERNAL_MIN_BOUND": -10.0, 

                   "PRIMER_OPT_BOUND": 97.0, 

                   "PRIMER_INTERNAL_OPT_BOUND": 97.0, 

                   "PRIMER_MAX_BOUND": 110.0, 

                   "PRIMER_INTERNAL_MAX_BOUND": 110.0, 

                   "PRIMER_WT_BOUND_LT": 0.0, 

                   "PRIMER_INTERNAL_WT_BOUND_LT": 0.0, 

                   "PRIMER_WT_BOUND_GT": 0.0, 

                   "PRIMER_INTERNAL_WT_BOUND_GT": 0.0, 

                   "PRIMER_MAX_SELF_ANY": 8.00, 

                   "PRIMER_MAX_SELF_ANY_TH": 47.00, 

                   "PRIMER_INTERNAL_MAX_SELF_ANY": 12.00, 

                   "PRIMER_INTERNAL_MAX_SELF_ANY_TH": 47.00, 

                   "PRIMER_PAIR_MAX_COMPL_ANY": 8.00, 

                   "PRIMER_PAIR_MAX_COMPL_ANY_TH": 47.00, 
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                   "PRIMER_WT_SELF_ANY": 0.0, 

                   "PRIMER_WT_SELF_ANY_TH": 0.0, 

                   "PRIMER_INTERNAL_WT_SELF_ANY": 0.0, 

                   "PRIMER_INTERNAL_WT_SELF_ANY_TH": 0.0, 

                   "PRIMER_PAIR_WT_COMPL_ANY": 0.0, 

                   "PRIMER_PAIR_WT_COMPL_ANY_TH": 0.0, 

                   "PRIMER_MAX_SELF_END": 3.00, 

                   "PRIMER_MAX_SELF_END_TH": 47.00, 

                   "PRIMER_INTERNAL_MAX_SELF_END": 12.00, 

                   "PRIMER_INTERNAL_MAX_SELF_END_TH": 47.00, 

                   "PRIMER_PAIR_MAX_COMPL_END": 3.00, 

                   "PRIMER_PAIR_MAX_COMPL_END_TH": 47.00, 

                   "PRIMER_WT_SELF_END": 0.0, 

                   "PRIMER_WT_SELF_END_TH": 0.0,  

                   "PRIMER_INTERNAL_WT_SELF_END": 0.0, 

                   "PRIMER_INTERNAL_WT_SELF_END_TH": 0.0, 

                   "PRIMER_PAIR_WT_COMPL_END": 0.0, 

                   "PRIMER_PAIR_WT_COMPL_END_TH": 0.0, 

                   "PRIMER_MAX_HAIRPIN_TH": 47.0, 

                   "PRIMER_INTERNAL_MAX_HAIRPIN_TH": 47.0, 

                   "PRIMER_WT_HAIRPIN_TH": 0.0, 

                   "PRIMER_INTERNAL_WT_HAIRPIN_TH": 0.0, 

                   "PRIMER_MAX_END_STABILITY": 100.0, 

                   "PRIMER_WT_END_STABILITY": 0.0, 

                   "PRIMER_MAX_NS_ACCEPTED": 0, 

                   "PRIMER_INTERNAL_MAX_NS_ACCEPTED": 0, 

                   "PRIMER_WT_NUM_NS": 0.0, 

                   "PRIMER_INTERNAL_WT_NUM_NS": 0.0, 

                   "PRIMER_MAX_POLY_X": 5, 

                   "PRIMER_INTERNAL_MAX_POLY_X": 5, 

                   #"PRIMER_MIN_LEFT_THREE_PRIME_DISTANCE": -1, 

                   #"PRIMER_INTERNAL_MIN_THREE_PRIME_DISTANCE": -

1, 

                   #"PRIMER_MIN_RIGHT_THREE_PRIME_DISTANCE": -1, 

                   "PRIMER_MIN_THREE_PRIME_DISTANCE": -1, 

                   "PRIMER_PICK_ANYWAY": 0, 

                   "PRIMER_LOWERCASE_MASKING": 0, 

                   "PRIMER_EXPLAIN_FLAG": 0, 

                   "PRIMER_LIBERAL_BASE": 0, 

                   "PRIMER_FIRST_BASE_INDEX": 0, 

                   "PRIMER_MAX_TEMPLATE_MISPRIMING": -1.00, 

                   "PRIMER_MAX_TEMPLATE_MISPRIMING_TH": -1.00, 

                   "PRIMER_PAIR_MAX_TEMPLATE_MISPRIMING": -1.00, 

                   "PRIMER_PAIR_MAX_TEMPLATE_MISPRIMING_TH": -

1.00, 

                   "PRIMER_WT_TEMPLATE_MISPRIMING": 0.0, 

                   "PRIMER_WT_TEMPLATE_MISPRIMING_TH": 0.0, 

                   "PRIMER_PAIR_WT_TEMPLATE_MISPRIMING": 0.0, 

                   "PRIMER_PAIR_WT_TEMPLATE_MISPRIMING_TH": 0.0, 

                   "PRIMER_MISPRIMING_LIBRARY": "", 

                   "PRIMER_INTERNAL_MISHYB_LIBRARY": "", 

                   "PRIMER_LIB_AMBIGUITY_CODES_CONSENSUS": 0, 

                   "PRIMER_MAX_LIBRARY_MISPRIMING": 12.00, 

                   "PRIMER_INTERNAL_MAX_LIBRARY_MISHYB": 12.00, 

                   "PRIMER_PAIR_MAX_LIBRARY_MISPRIMING": 24.00, 

                   "PRIMER_WT_LIBRARY_MISPRIMING": 0.0, 
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                   "PRIMER_INTERNAL_WT_LIBRARY_MISHYB": 0.0, 

                   "PRIMER_PAIR_WT_LIBRARY_MISPRIMING": 0.0, 

                   "PRIMER_MASK_TEMPLATE": 0, 

                   "PRIMER_MASK_FAILURE_RATE": 0.1, 

                   "PRIMER_WT_MASK_FAILURE_RATE": 0.0, 

                   "PRIMER_MASK_5P_DIRECTION": 1, 

                   "PRIMER_MASK_3P_DIRECTION": 0, 

                   #"PRIMER_MASK_KMERLIST_PATH": "../kmer_lists/", 

                   "PRIMER_MASK_KMERLIST_PREFIX": "homo_sapiens", 

                   "PRIMER_MIN_QUALITY": 0, 

                   "PRIMER_INTERNAL_MIN_QUALITY": 0, 

                   "PRIMER_MIN_END_QUALITY": 0, 

                   "PRIMER_QUALITY_RANGE_MIN": 0, 

                   "PRIMER_QUALITY_RANGE_MAX": 100, 

                   "PRIMER_WT_SEQ_QUAL": 0.0, 

                   "PRIMER_INTERNAL_WT_SEQ_QUAL": 0.0, 

                   "PRIMER_PAIR_WT_PR_PENALTY": 1.0, 

                   "PRIMER_PAIR_WT_IO_PENALTY": 0.0, 

                   "PRIMER_INSIDE_PENALTY": -1.0, 

                   "PRIMER_OUTSIDE_PENALTY": 0.0, 

                   "PRIMER_WT_POS_PENALTY": 1.0, 

                   "PRIMER_SEQUENCING_LEAD": 50, 

                   "PRIMER_SEQUENCING_SPACING": 500, 

                   "PRIMER_SEQUENCING_INTERVAL": 250, 

                   "PRIMER_SEQUENCING_ACCURACY": 20, 

                   "PRIMER_WT_END_QUAL": 0.0, 

                   "PRIMER_INTERNAL_WT_END_QUAL": 0.0 

                   } 

 

    WT_primers_results = primer3.design_primers(seq_args = 

WT_primers, global_args = global_args1) 

 

 

 

    upstream_fwd = WT_primers_results["PRIMER_LEFT_0_SEQUENCE"] 

    WT_rev = WT_primers_results["PRIMER_RIGHT_0_SEQUENCE"] 

    WT_PCR_product_size = 

WT_primers_results["PRIMER_PAIR_0_PRODUCT_SIZE"] 

    upstream_fwd_coords = WT_primers_results["PRIMER_LEFT_0"] 

    WT_rev_coords = WT_primers_results["PRIMER_RIGHT_0"] 

 

    #sticking some useful info into a smaller dictionary in case 

it comes in handy later 

    WT_primers_useful_results = { 

        "Forward primer sequence": upstream_fwd, 

        "Reverse primer sequence": WT_rev, 

        "PCR product size (bp)": WT_PCR_product_size, 

        "Forward GC content (%)": 

WT_primers_results["PRIMER_LEFT_0_GC_PERCENT"], 

        "Reverse GC content (%)": 

WT_primers_results["PRIMER_RIGHT_0_GC_PERCENT"], 

        "Forward Tm ('C)": WT_primers_results["PRIMER_LEFT_0_TM"], 

        "Reverse Tm ('C)": WT_primers_results["PRIMER_RIGHT_0_TM"] 

        #"WT PCR product sequence (5'->3')": 

WT_dna_for_primers[upstream_fwd_coords[0]:(WT_rev_coords[0] + 1)] 

        } 
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    #part 4 - design the mutant primers  

 

    recoded_dna_for_primers = str(integrated_repair_seq) 

 

    recoded_primers = {'SEQUENCE_ID': "gene name", 

            "SEQUENCE_TEMPLATE": recoded_dna_for_primers, 

            #"SEQUENCE_TARGET": [87,36], #first value = start, 

second value = length, the primers must cover this entire region  

            "PRIMER_TASK": "generic", 

            "PRIMER_PICK_LEFT_PRIMER": 1, 

            #"PRIMER_PICK_INTERNAL_OLIGO": 0, 

            "PRIMER_PICK_RIGHT_PRIMER": 1, 

            "PRIMER_OPT_SIZE": 18, 

            "PRIMER_MIN_SIZE": 15, 

            "PRIMER_MAX_SIZE": 22, 

            "PRIMER_MAX_NS_ACCEPTED": 1, 

            "PRIMER_PRODICT_SIZE_RANGE": [150,1500], 

            "P3_FILE_FLAG": 1, 

            #"SEQUENCE_INTERNAL_EXCLUDED_REGION": [37,21], 

            "PRIMER_EXPLAIN_FLAG": 1, 

            "SEQUENCE_PRIMER_PAIR_OK_REGION_LIST": [0, 

repair_start_py, repair_start_py,(repair_end - repair_start_py)], 

            "SEQUENCE_PRIMER": upstream_fwd #allows you to specify 

a left (fwd) primer only to use to design the right (rev) primer 

            }  

 

    recoded_primers_results = primer3.design_primers(seq_args = 

recoded_primers, global_args = global_args1) 

     

 

    recoded_rev = 

recoded_primers_results["PRIMER_RIGHT_0_SEQUENCE"] 

    recoded_PCR_product_size = 

recoded_primers_results["PRIMER_PAIR_0_PRODUCT_SIZE"] 

    recoded_rev_coords = recoded_primers_results["PRIMER_RIGHT_0"] 

 

    recoded_primers_useful_results = { 

        "Forward primer sequence": upstream_fwd, 

        "Reverse primer sequence": recoded_rev, 

        "PCR product size (bp)": recoded_PCR_product_size, 

        "Forward GC content (%)": 

recoded_primers_results["PRIMER_LEFT_0_GC_PERCENT"], 

        "Reverse GC content (%)": 

recoded_primers_results["PRIMER_RIGHT_0_GC_PERCENT"], 

        "Forward Tm ('C)": 

recoded_primers_results["PRIMER_LEFT_0_TM"], 

        "Reverse Tm ('C)": 

recoded_primers_results["PRIMER_RIGHT_0_TM"], 

        #"Recoded PCR product sequence (5'->3')": 

recoded_dna_for_primers[upstream_fwd_coords[0]:(recoded_rev_coords

[0] + 1)] 

        } 
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    primers_to_add = [WT_primers_useful_results, 

recoded_primers_useful_results] 

    primer_details = pd.DataFrame(primers_to_add) 

     

    row_names = ["WT primers", "Repair primers"] 

    primer_details.index = row_names 

     

    return primer_details 

 

 

 

def repair_primer_designer(repair_seq, hom_arm_length, 

downstream_seq): 

    """Designs primers to produce the repair template sequence put 

in. 

     

    Arguments 

    repair_seq -- a DNA sequence of the entire repair template. 

Must be less than/equal to 220 bp. 

    hom_arm_length -- the length of the homology arms in the 

repair template 

    downstream_dna -- a DNA sequence, essentially a dummy but 

ideally sequence from the same organism. Needs to be larger than 

the repair sequence length. 

     

    Outputs a dictionary of the necessary primer sequences, and 

some other useful information.""" 

     

     

     

    recoding_start_base = hom_arm_length 

    recoding_end_base = len(repair_seq) - hom_arm_length 

     

     

    recoding_start_base_py = recoding_start_base - 1 

 

     

    repair_length_total = len(repair_seq) 

    if repair_length_total > 220: 

        return print("\n\n\n***ERROR: repair length is too long to 

deisgn primers for***\n\n\n") 

     

    if recoding_end_base > 120: 

        annealing_region_end = 119 

         

        recoding_adjustment = recoding_end_base - 

annealing_region_end 

         

        left_primer_length_from_start = annealing_region_end - 

hom_arm_length - recoding_adjustment 

        recoding_start_base_py = recoding_start_base_py + 

recoding_adjustment 

         

    else: 

        annealing_region_end = recoding_end_base 
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        left_primer_length_from_start = annealing_region_end - 

hom_arm_length 

 

 

 

    repair_dna_for_primers = str(repair_seq)+str(downstream_seq) 

    primers_end = len(downstream_seq) 

     

    annealing = {'SEQUENCE_ID': "gene name", 

            "SEQUENCE_TEMPLATE": repair_dna_for_primers, 

            #"SEQUENCE_TARGET": [87,36], #first value = start, 

second value = length, the primers must cover this entire region  

            "PRIMER_TASK": "generic", 

            "PRIMER_PICK_LEFT_PRIMER": 3, 

            #"PRIMER_PICK_INTERNAL_OLIGO": 0, 

            "PRIMER_PICK_RIGHT_PRIMER": 3, 

            "PRIMER_OPT_SIZE": 18, 

            "PRIMER_MIN_SIZE": 15, 

            "PRIMER_MAX_SIZE": 24, 

            "PRIMER_MAX_NS_ACCEPTED": 1, 

            "PRIMER_PRODICT_SIZE_RANGE": [100,1000], 

            "P3_FILE_FLAG": 1, 

            #"SEQUENCE_INTERNAL_EXCLUDED_REGION": [37,21], 

            "PRIMER_EXPLAIN_FLAG": 1, 

            "SEQUENCE_PRIMER_PAIR_OK_REGION_LIST": 

[recoding_start_base_py, left_primer_length_from_start, 

annealing_region_end, primers_end] 

            #"SEQUENCE_PRIMER": "GTCACACTTTTGCGGCTCG" #allows you 

to specify a left (fwd) primer only to use to design the right 

(rev) primer 

            }  

 

    global_args1 = {"PRIMER_TASK": "generic", 

                   "PRIMER_PICK_LEFT_PRIMER": 3, 

                   "PRIMER_PICK_INTERNAL_OLIGO": 0, 

                   "PRIMER_PICK_RIGHT_PRIMER": 3, 

                   "PRIMER_NUM_RETURN": 3, 

                   "PRIMER_MIN_3_PRIME_OVERLAP_OF_JUNCTION": 4, 

                   

"PRIMER_INTERNAL_MIN_3_PRIME_OVERLAP_OF_JUNCTION": 4, 

                   "PRIMER_MIN_5_PRIME_OVERLAP_OF_JUNCTION": 7, 

                   

"PRIMER_INTERNAL_MIN_5_PRIME_OVERLAP_OF_JUNCTION": 7, 

                   #"PRIMER_MUST_MATCH_FIVE_PRIME": "empty", 

                   #"PRIMER_INTERNAL_MUST_MATCH_FIVE_PRIME": 

"empty", 

                   #"PRIMER_MUST_MATCH_THREE_PRIME": "empty", 

                   #"PRIMER_INTERNAL_MUST_MATCH_THREE_PRIME": 

"empty", 

                   "PRIMER_PRODUCT_SIZE_RANGE": [100, 1000], 

                   "PRIMER_PRODUCT_OPT_SIZE": 0, 

                   "PRIMER_PAIR_WT_PRODUCT_SIZE_LT": 0.0, 

                   "PRIMER_PAIR_WT_PRODUCT_SIZE_GT": 0.0, 

                   "PRIMER_MIN_SIZE": 16, 

                   "PRIMER_INTERNAL_MIN_SIZE": 16, 

                   "PRIMER_OPT_SIZE": 20, 
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                   "PRIMER_INTERNAL_OPT_SIZE": 20, 

                   "PRIMER_MAX_SIZE": 27, 

                   "PRIMER_INTERNAL_MAX_SIZE": 27, 

                   "PRIMER_WT_SIZE_LT": 1.0, 

                   "PRIMER_INTERNAL_WT_SIZE_LT": 1.0, 

                   "PRIMER_WT_SIZE_GT": 1.0, 

                   "PRIMER_INTERNAL_WT_SIZE_GT": 1.0, 

                   "PRIMER_MIN_GC": 20.0, 

                   "PRIMER_INTERNAL_MIN_GC": 20.0, 

                   "PRIMER_OPT_GC_PERCENT": 50.0, 

                   "PRIMER_INTERNAL_OPT_GC_PERCENT": 50.0, 

                   "PRIMER_MAX_GC": 80.0, 

                   "PRIMER_INTERNAL_MAX_GC": 80.0, 

                   "PRIMER_WT_GC_PERCENT_LT": 0.0, 

                   "PRIMER_INTERNAL_WT_GC_PERCENT_LT": 0.0, 

                   "PRIMER_WT_GC_PERCENT_GT": 0.0, 

                   "PRIMER_INTERNAL_WT_GC_PERCENT_GT": 0.0, 

                   "PRIMER_GC_CLAMP": 0, 

                   "PRIMER_MAX_END_GC": 5, 

                   "PRIMER_MIN_TM": 55.0, 

                   "PRIMER_INTERNAL_MIN_TM": 55.0, 

                   "PRIMER_OPT_TM": 60.0, 

                   "PRIMER_INTERNAL_OPT_TM": 60.0, 

                   "PRIMER_MAX_TM": 67.0, 

                   "PRIMER_INTERNAL_MAX_TM": 67.0, 

                   "PRIMER_PAIR_MAX_DIFF_TM": 67.0, 

                   "PRIMER_WT_TM_LT": 1.0, 

                   "PRIMER_INTERNAL_WT_TM_LT": 1.0, 

                   "PRIMER_WT_TM_GT": 1.0, 

                   "PRIMER_INTERNAL_WT_TM_GT": 1.0, 

                   "PRIMER_PAIR_WT_DIFF_TM": 0.0, 

                   "PRIMER_PRODUCT_MIN_TM": -1000000.0, 

                   "PRIMER_PRODUCT_OPT_TM": 0.0, 

                   "PRIMER_PRODUCT_MAX_TM": 1000000.0, 

                   "PRIMER_PAIR_WT_PRODUCT_TM_LT": 0.0, 

                   "PRIMER_PAIR_WT_PRODUCT_TM_GT": 0.0, 

                   "PRIMER_TM_FORMULA": 1, 

                   "PRIMER_SALT_MONOVALENT": 50.0, 

                   "PRIMER_INTERNAL_SALT_MONOVALENT": 50.0, 

                   "PRIMER_SALT_DIVALENT": 1.5, 

                   "PRIMER_INTERNAL_SALT_DIVALENT": 0.0, 

                   "PRIMER_DNTP_CONC": 0.6, 

                   "PRIMER_INTERNAL_DNTP_CONC": 0.0, 

                   "PRIMER_SALT_CORRECTIONS": 1, 

                   "PRIMER_DNA_CONC": 50.0, 

                   "PRIMER_INTERNAL_DNA_CONC": 50.0, 

                   "PRIMER_DMSO_CONC": 0.0, 

                   "PRIMER_INTERNAL_DMSO_CONC": 0.0, 

                   "PRIMER_DMSO_FACTOR": 0.6, 

                   "PRIMER_INTERNAL_DMSO_FACTOR": 0.6, 

                   "PRIMER_FORMAMIDE_CONC": 0.0, 

                   "PRIMER_INTERNAL_FORMAMIDE_CONC": 0.0, 

                   "PRIMER_THERMODYNAMIC_OLIGO_ALIGNMENT": 1, 

                   "PRIMER_THERMODYNAMIC_TEMPLATE_ALIGNMENT": 0, 

                   "PRIMER_SECONDARY_STRUCTURE_ALIGNMENT": 0, 
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                   "PRIMER_THERMODYNAMIC_PARAMETERS_PATH": 

"./primer3_config", 

                   "PRIMER_ANNEALING_TEMP": -10.0, 

                   "PRIMER_MIN_BOUND": -10.0, 

                   "PRIMER_INTERNAL_MIN_BOUND": -10.0, 

                   "PRIMER_OPT_BOUND": 97.0, 

                   "PRIMER_INTERNAL_OPT_BOUND": 97.0, 

                   "PRIMER_MAX_BOUND": 110.0, 

                   "PRIMER_INTERNAL_MAX_BOUND": 110.0, 

                   "PRIMER_WT_BOUND_LT": 0.0, 

                   "PRIMER_INTERNAL_WT_BOUND_LT": 0.0, 

                   "PRIMER_WT_BOUND_GT": 0.0, 

                   "PRIMER_INTERNAL_WT_BOUND_GT": 0.0, 

                   "PRIMER_MAX_SELF_ANY": 8.00, 

                   "PRIMER_MAX_SELF_ANY_TH": 47.00, 

                   "PRIMER_INTERNAL_MAX_SELF_ANY": 12.00, 

                   "PRIMER_INTERNAL_MAX_SELF_ANY_TH": 47.00, 

                   "PRIMER_PAIR_MAX_COMPL_ANY": 8.00, 

                   "PRIMER_PAIR_MAX_COMPL_ANY_TH": 47.00, 

                   "PRIMER_WT_SELF_ANY": 0.0, 

                   "PRIMER_WT_SELF_ANY_TH": 0.0, 

                   "PRIMER_INTERNAL_WT_SELF_ANY": 0.0, 

                   "PRIMER_INTERNAL_WT_SELF_ANY_TH": 0.0, 

                   "PRIMER_PAIR_WT_COMPL_ANY": 0.0, 

                   "PRIMER_PAIR_WT_COMPL_ANY_TH": 0.0, 

                   "PRIMER_MAX_SELF_END": 3.00, 

                   "PRIMER_MAX_SELF_END_TH": 47.00, 

                   "PRIMER_INTERNAL_MAX_SELF_END": 12.00, 

                   "PRIMER_INTERNAL_MAX_SELF_END_TH": 47.00, 

                   "PRIMER_PAIR_MAX_COMPL_END": 3.00, 

                   "PRIMER_PAIR_MAX_COMPL_END_TH": 47.00, 

                   "PRIMER_WT_SELF_END": 0.0, 

                   "PRIMER_WT_SELF_END_TH": 0.0,  

                   "PRIMER_INTERNAL_WT_SELF_END": 0.0, 

                   "PRIMER_INTERNAL_WT_SELF_END_TH": 0.0, 

                   "PRIMER_PAIR_WT_COMPL_END": 0.0, 

                   "PRIMER_PAIR_WT_COMPL_END_TH": 0.0, 

                   "PRIMER_MAX_HAIRPIN_TH": 47.0, 

                   "PRIMER_INTERNAL_MAX_HAIRPIN_TH": 47.0, 

                   "PRIMER_WT_HAIRPIN_TH": 0.0, 

                   "PRIMER_INTERNAL_WT_HAIRPIN_TH": 0.0, 

                   "PRIMER_MAX_END_STABILITY": 100.0, 

                   "PRIMER_WT_END_STABILITY": 0.0, 

                   "PRIMER_MAX_NS_ACCEPTED": 0, 

                   "PRIMER_INTERNAL_MAX_NS_ACCEPTED": 0, 

                   "PRIMER_WT_NUM_NS": 0.0, 

                   "PRIMER_INTERNAL_WT_NUM_NS": 0.0, 

                   "PRIMER_MAX_POLY_X": 5, 

                   "PRIMER_INTERNAL_MAX_POLY_X": 5, 

                   #"PRIMER_MIN_LEFT_THREE_PRIME_DISTANCE": -1, 

                   #"PRIMER_INTERNAL_MIN_THREE_PRIME_DISTANCE": -

1, 

                   #"PRIMER_MIN_RIGHT_THREE_PRIME_DISTANCE": -1, 

                   "PRIMER_MIN_THREE_PRIME_DISTANCE": -1, 

                   "PRIMER_PICK_ANYWAY": 0, 

                   "PRIMER_LOWERCASE_MASKING": 0, 
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                   "PRIMER_EXPLAIN_FLAG": 0, 

                   "PRIMER_LIBERAL_BASE": 0, 

                   "PRIMER_FIRST_BASE_INDEX": 0, 

                   "PRIMER_MAX_TEMPLATE_MISPRIMING": -1.00, 

                   "PRIMER_MAX_TEMPLATE_MISPRIMING_TH": -1.00, 

                   "PRIMER_PAIR_MAX_TEMPLATE_MISPRIMING": -1.00, 

                   "PRIMER_PAIR_MAX_TEMPLATE_MISPRIMING_TH": -

1.00, 

                   "PRIMER_WT_TEMPLATE_MISPRIMING": 0.0, 

                   "PRIMER_WT_TEMPLATE_MISPRIMING_TH": 0.0, 

                   "PRIMER_PAIR_WT_TEMPLATE_MISPRIMING": 0.0, 

                   "PRIMER_PAIR_WT_TEMPLATE_MISPRIMING_TH": 0.0, 

                   "PRIMER_MISPRIMING_LIBRARY": "", 

                   "PRIMER_INTERNAL_MISHYB_LIBRARY": "", 

                   "PRIMER_LIB_AMBIGUITY_CODES_CONSENSUS": 0, 

                   "PRIMER_MAX_LIBRARY_MISPRIMING": 12.00, 

                   "PRIMER_INTERNAL_MAX_LIBRARY_MISHYB": 12.00, 

                   "PRIMER_PAIR_MAX_LIBRARY_MISPRIMING": 24.00, 

                   "PRIMER_WT_LIBRARY_MISPRIMING": 0.0, 

                   "PRIMER_INTERNAL_WT_LIBRARY_MISHYB": 0.0, 

                   "PRIMER_PAIR_WT_LIBRARY_MISPRIMING": 0.0, 

                   "PRIMER_MASK_TEMPLATE": 0, 

                   "PRIMER_MASK_FAILURE_RATE": 0.1, 

                   "PRIMER_WT_MASK_FAILURE_RATE": 0.0, 

                   "PRIMER_MASK_5P_DIRECTION": 1, 

                   "PRIMER_MASK_3P_DIRECTION": 0, 

                   #"PRIMER_MASK_KMERLIST_PATH": "../kmer_lists/", 

                   "PRIMER_MASK_KMERLIST_PREFIX": "homo_sapiens", 

                   "PRIMER_MIN_QUALITY": 0, 

                   "PRIMER_INTERNAL_MIN_QUALITY": 0, 

                   "PRIMER_MIN_END_QUALITY": 0, 

                   "PRIMER_QUALITY_RANGE_MIN": 0, 

                   "PRIMER_QUALITY_RANGE_MAX": 100, 

                   "PRIMER_WT_SEQ_QUAL": 0.0, 

                   "PRIMER_INTERNAL_WT_SEQ_QUAL": 0.0, 

                   "PRIMER_PAIR_WT_PR_PENALTY": 1.0, 

                   "PRIMER_PAIR_WT_IO_PENALTY": 0.0, 

                   "PRIMER_INSIDE_PENALTY": -1.0, 

                   "PRIMER_OUTSIDE_PENALTY": 0.0, 

                   "PRIMER_WT_POS_PENALTY": 1.0, 

                   "PRIMER_SEQUENCING_LEAD": 50, 

                   "PRIMER_SEQUENCING_SPACING": 500, 

                   "PRIMER_SEQUENCING_INTERVAL": 250, 

                   "PRIMER_SEQUENCING_ACCURACY": 20, 

                   "PRIMER_WT_END_QUAL": 0.0, 

                   "PRIMER_INTERNAL_WT_END_QUAL": 0.0 

                   } 

    repair_primers = primer3.design_primers(seq_args = annealing, 

global_args = global_args1) 

     

    annealing_seq = repair_primers["PRIMER_LEFT_0_SEQUENCE"] 

    annealing_tm = repair_primers["PRIMER_LEFT_0_TM"] 

    annealing_coords = repair_primers["PRIMER_LEFT_0"] 
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    forward_primer = str(repair_seq[:(annealing_coords[0] + 

annealing_coords[1])]) 

     

    repair_as_seq = Seq.Seq(repair_seq) 

    repair_rc = repair_as_seq.reverse_complement() 

    repair_rc_str = str(repair_rc) 

    reverse_primer = repair_rc_str[0:(len(repair_seq) - 

annealing_coords[0])] 

     

     

    if len(forward_primer) > 120 or len(reverse_primer) > 120: 

        annealing_seq = repair_primers["PRIMER_LEFT_1_SEQUENCE"] 

        annealing_tm = repair_primers["PRIMER_LEFT_1_TM"] 

        annealing_coords = repair_primers["PRIMER_LEFT_1"] 

         

         

        forward_primer = str(repair_seq[:(annealing_coords[0] + 

annealing_coords[1])]) 

         

        repair_as_seq = Seq.Seq(repair_seq) 

        repair_rc = repair_as_seq.reverse_complement() 

        repair_rc_str = str(repair_rc) 

        reverse_primer = repair_rc_str[0:(len(repair_seq) - 

annealing_coords[0])] 

     

    if len(forward_primer) > 120 or len(reverse_primer) > 120: 

        annealing_seq = repair_primers["PRIMER_LEFT_2_SEQUENCE"] 

        annealing_tm = repair_primers["PRIMER_LEFT_2_TM"] 

        annealing_coords = repair_primers["PRIMER_LEFT_2"] 

         

         

        forward_primer = str(repair_seq[:(annealing_coords[0] + 

annealing_coords[1])]) 

         

        repair_as_seq = Seq.Seq(repair_seq) 

        repair_rc = repair_as_seq.reverse_complement() 

        repair_rc_str = str(repair_rc) 

        reverse_primer = repair_rc_str[0:(len(repair_seq) - 

annealing_coords[0])] 

     

     

    output_dict = {"Forward primer (5'-)": forward_primer, 

                   "Reverse primer (5'-)": reverse_primer, 

                   "Annealing sequence (5'-)": annealing_seq, 

                   "Tm ('C)": annealing_tm} 

     

    return output_dict 
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7.2.18 MAIN CODE BATCH VERSION 

7.2.18.1 Modified Configuration Spreadsheet 
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7.2.18.2 Code 
# -*- coding: utf-8 -*- 

""" 

Created on Thu May  9 13:06:02 2024 

 

@author: ceh560 

""" 

 

#packages used in this file and/or the feeder files 

import pandas as pd 

from Bio import SeqIO 

from Bio import Seq 

from Bio import Align 

import numpy as np 

import io 

import random 

import primer3 

import primer3.bindings 

 

#custom files to import 

import codon_dataframes as cdf 

import codon_dictionaries as cdict 

import formatting_functions as formats 

import primer_functions as primers 

import reading_input_file as rif 

import validator as val 

import stitching_functions as stitch 

 

#read input files 

 

input_data = 

pd.read_excel("repair_template_input_excel_batch.xlsx", index_col 

= 0, header = 0) 

 

 

pd.set_option('display.max_columns', 20) 

pd.set_option('display.max_rows', None) 

pd.set_option("display.width", 1000) 

pd.options.display.float_format = "{:,.2f}".format 

 

 

#check for missing values in each column before proceeding 

column_keys = list(input_data.keys()) 

 

complete_columns_keys = [] 

 

for column in column_keys: 

    if input_data[column].notna().all() == True: 

        complete_columns_keys.append(column) 

         

    if input_data[column].notna().all() == False: 

        if (input_data.isna().at["Alternating every nth residue", 

column] == True) and (input_data[column]["Synonymous Recoding 

type"] == "lowest" or input_data[column]["Synonymous Recoding 

type"] == "highest" or input_data[column]["Synonymous Recoding 
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type"] ==  "matched" or input_data[column]["Synonymous Recoding 

type"] == "random"): 

            complete_columns_keys.append(column) 

             

        if (input_data.isna().at["Alternating every nth residue", 

column] == True) and (input_data[column]["Synonymous Recoding 

type"] == "alternating lowest" or input_data[column]["Synonymous 

Recoding type"] == "alternating highest" or 

input_data[column]["Synonymous Recoding type"] == "alternating 

matched") and (input_data[column][input_data.index != "Alternating 

every nth residue"].notna().all() == True): 

            complete_columns_keys.append(column) 

 

if len(complete_columns_keys) != len(column_keys): 

    print("\n\n\n***Warning, one or more columns have not been 

included due to missing values.***\n\n\n") 

 

 

#check for duplicate filenames to prevent overwriting 

 

job_names = input_data.loc["Job name"].copy().transpose() 

 

#duplicated_names = [] 

 

 

if job_names.duplicated().any() == True: 

    duplicated_names = job_names.where(job_names.duplicated(keep = 

False) == True) 

 

    dup_names1 = dict(duplicated_names) 

    dup_names2 = dict(duplicated_names.isna()) 

 

    dup_names1_df = pd.DataFrame(dict(duplicated_names), index = 

["Duplicate vales"]) 

    dup_names2_df = pd.DataFrame(dict(duplicated_names.isna()), 

index = ["True/False"]) 

     

    #duplicated_names_df = pd.DataFrame(dup_names1, index = 

["Duplicate value"]) 

    duplicated_names_df = pd.concat([dup_names1_df, 

dup_names2_df.astype(bool)], ignore_index = True) 

     

    counter = 1 

     

    for columns in duplicated_names_df.columns.values.tolist(): 

        job_name = duplicated_names_df[columns][0] 

        unique_status = duplicated_names_df[columns][1] 

         

        if unique_status == False: 

            old_job_name = input_data.at["Job name", columns] 

            input_data.at["Job name", columns] = old_job_name + 

"(" + str(counter) + ")" 

             

            counter += 1 
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for column in complete_columns_keys: 

    job_name = input_data.loc["Job name"][column] 

    target_AA = input_data.loc["Target amino acid 

residue"][column] 

    target_res_num = input_data.loc["Target amino acid 

number"][column] 

    output_AA = input_data.loc["Replacement amino acid"][column] 

    syn_recode_type = input_data.loc["Synonymous Recoding 

type"][column] 

    nonsyn_recode_type = input_data.loc["Nonsynonymous Recoding 

Type"][column] 

    codon_freq_input_file = input_data.loc["Codon Frequency data 

filename (incl. extension)"][column] 

    recode_region_length = input_data.loc["Recoding region length 

(bp)"][column] 

    hom_arm_length = input_data.loc["Homology arm length 

(bp)"][column] 

    ref_file_name = input_data.loc["Reference FASTA filename 

(incl. extension)"][column] 

    CDS_start = input_data.loc["CDS start in reference file (bp 

number)"][column] 

    CDS_end = input_data.loc["CDS end in reference file (bp 

number)"][column] 

    alternating_repeat = input_data.loc["Alternating every nth 

residue"][column] 

     

    print("\n--------------------------------\n\n") 

    print(f"Start of {job_name}, mutation: 

{target_AA}{target_res_num}{output_AA}\n\n") 

     

     

 

    #read input fasta file and process as necessary 

    gene_name = job_name 

 

    target_res_base_nums = [((target_res_num-1)*3), 

(target_res_num*3)] 

 

 

    num_of_codons_to_recode = recode_region_length / 3 

    target_codon_no = int(num_of_codons_to_recode/2) 

 

    if recode_region_length % 2 == 0: 

        recode_start = int(target_res_base_nums[0] - 

(recode_region_length/2))     

         

    else: 

        half_codon_percent = target_codon_no / 

num_of_codons_to_recode 

        back_bases = recode_region_length * half_codon_percent 

        recode_start = int(target_res_base_nums[0] - back_bases) 
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    recode_end = recode_start + recode_region_length 

 

    #need some special cases for close to the start or end of the 

CDS 

    #near the start special case 

 

    if num_of_codons_to_recode > target_res_num:  

        recode_start = 0 

        recode_end = recode_region_length 

        target_codon_no = target_res_num - 1 

 

 

 

    for gene_name in SeqIO.parse(ref_file_name,"fasta"): 

        #print(gene_name.id) 

        print(gene_name.description) 

        print(repr(gene_name.seq)) 

        print("Gene sequence length: ", len(gene_name), "bp") 

        print("\n") 

 

    if CDS_end == "end": 

        CDS_end = len(gene_name.seq) 

    else: 

        CDS_end = CDS_end 

 

 

    if CDS_start > 1: 

        CDS_start = CDS_start - 1  

        WT_CDS_seq = gene_name.seq[(CDS_start):CDS_end] 

        recode_start_whole = recode_start + CDS_start 

        recode_end_whole = recode_end + CDS_start 

         

    else: 

        WT_CDS_seq = gene_name.seq[:CDS_end] 

        recode_start_whole = recode_start 

        recode_end_whole = recode_end 

         

         

 

    #check input is a length divisible by 3         

    val.triplet_checker(WT_CDS_seq) 

 

    #check that the input given is correct and that the target 

codes for the expected residue 

    val.translate_checker(WT_CDS_seq, target_res_num, target_AA) 

 

 

 

 

    #near the end special case 

    total_num_AAs = len(WT_CDS_seq.translate()) 

 

    if target_res_num > (total_num_AAs - num_of_codons_to_recode): 

        recode_end = len(WT_CDS_seq) 
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        recode_start = len(WT_CDS_seq) - recode_region_length 

         

        if CDS_start > 1: 

            recode_end_whole = recode_end + CDS_start 

            recode_start_whole = recode_start + CDS_start 

        else: 

            recode_end_whole = recode_end 

            recode_start_whole = recode_start 

         

        num_of_codons_to_recode = int((recode_end - recode_start + 

1) / 3) 

         

        target_codon_no = num_of_codons_to_recode - (total_num_AAs 

- target_res_num) - 1 

         

         

         

         

    #establish the sequence to replace, and sequences before and 

after to stay the same 

    WT_template_seq = 

gene_name.seq[recode_start_whole:recode_end_whole] 

    upstream_dna = gene_name.seq[:recode_start_whole] 

    downstream_dna = gene_name.seq[recode_end_whole:]     

         

 

 

 

 

 

    #make dictionary of codons with number keys and one with 

numbers and amino acids 

 

    codons_to_recode = cdict.codon_dict_maker(WT_template_seq, 

key_format= "number") 

    codons_to_recode_let_num = 

cdict.codon_dict_maker(WT_template_seq, key_format= "letter-

number") 

 

 

    #make reference dictionaries for all the amino acids 

    ref_codon_table_df = 

rif.codon_table_processor(codon_freq_input_file) 

 

    ref_codons = cdf.ref_codon_table_freqs(ref_codon_table_df) 

 

    if syn_recode_type == "matched": 

 

        #use that dictionary to create a new one with the specific 

frequency values  

        codons_to_recode_freqs = 

cdf.codon_frequency_collector(input_dict = codons_to_recode, 

reference_dict = ref_codons, type = "value") 

         

        #create a dictionary with all the frequencies for the 

amino acids in this sequence for each codon 
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        codons_to_recode_all_freqs = 

cdf.codon_frequency_collector(input_dict = codons_to_recode, 

reference_dict = ref_codons, type = "dataframe") 

         

         

        #calculate the differences for each possible codon to the 

original 

        recode_freq_diffs = 

cdf.codon_frequency_difference_calc(codons_to_recode_let_num, 

ref_codons) 

         

        #add the differences in frequency to "the" dataframe 

        codons_to_recode_abs_diffs = 

cdf.codon_freq_diff_adder(codons_to_recode_let_num 

,codons_to_recode_all_freqs, recode_freq_diffs) 

         

        #choose which codons to use for synonymous recoding 

        codons_to_use_syn = 

cdf.codon_freq_selector(codons_to_recode_abs_diffs) 

 

 

    if syn_recode_type == "highest" or syn_recode_type == 

"lowest": 

         

        #use that dictionary to create a new one with the specific 

frequency values  

        codons_to_recode_freqs = 

cdf.codon_frequency_collector(input_dict = codons_to_recode, 

reference_dict = ref_codons, type = "value") 

         

        #create a dictionary with all the frequencies for the 

amino acids in this sequence for each codon 

        codons_to_recode_all_freqs = 

cdf.codon_frequency_collector(input_dict = codons_to_recode, 

reference_dict = ref_codons, type = "dataframe") 

         

        codons_to_recode_choices_freqs = {} 

        #remove input codon from list 

        for let_num, seq in codons_to_recode_let_num.items(): 

            if seq == Seq.Seq("ATG") or seq == Seq.Seq("TGG"): 

 

                codons_to_recode_choices_freqs[let_num] = 

ref_codon_table_df.loc[ref_codon_table_df["DNA"] == str(seq)] 

            else: 

                current_df = codons_to_recode_all_freqs[let_num] 

                codons_to_recode_choices_freqs[let_num] = 

current_df.loc[current_df["DNA"] != str(seq)] 

 

    #make the list of codons to use depending on recoding type     

        codons_to_use_syn = {} 

         

        if syn_recode_type == "highest": 

             

            for codon_num_let, seq_df in 

codons_to_recode_choices_freqs.items(): 

                max_freq_codon = max(seq_df["Fraction"]) 
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                mutated_res_df_chosen = 

seq_df.loc[seq_df["Fraction"] == max_freq_codon, "DNA"] 

                 

                #tie breaker for instances with same fraction 

usage - hopefully number won't ever have duplicate values 

                if len(mutated_res_df_chosen) > 1: 

                    max_number_codon = max(seq_df["Number"]) 

                    max_number_codon_seq = 

seq_df.loc[seq_df["Number"] == max_number_codon, "DNA"].item() 

                    codons_to_use_syn[codon_num_let] = 

max_number_codon_seq 

                          

                else: 

                    codons_to_use_syn[codon_num_let] = 

seq_df.loc[seq_df["Fraction"] == max_freq_codon, "DNA"].item() 

         

        if syn_recode_type == "lowest": 

             

            for codon_num_let, seq_df in 

codons_to_recode_choices_freqs.items(): 

                min_freq_codon = min(seq_df["Fraction"]) 

                mutated_res_df_chosen = 

seq_df.loc[seq_df["Fraction"] == min_freq_codon, "DNA"] 

                 

                #tie breaker 

                if len(mutated_res_df_chosen) > 1: 

                    min_number_codon = max(seq_df["Number"]) 

                    min_number_codon_seq = 

seq_df.loc[seq_df["Number"] == min_number_codon, "DNA"].item() 

                    codons_to_use_syn[codon_num_let] = 

min_number_codon_seq 

                          

                else: 

                    codons_to_use_syn[codon_num_let] = 

seq_df.loc[seq_df["Fraction"] == min_freq_codon, "DNA"].item() 

                 

                 

    if syn_recode_type == "alternating matched" or syn_recode_type 

== "alternating random" or syn_recode_type == "alternating 

highest" or syn_recode_type == "alternating lowest": 

        #check input has been given suitably 

        if alternating_repeat == "N/A" or alternating_repeat <= 0 

or pd.isna(alternating_repeat) == True: 

            print("\n\n\n***ERROR: No value or an invalid value 

was set for the alternating pattern of the codons to 

recode.***\n\n\n") 

            alternating_repeat = int(input("Please enter a 

positive integrer for the alternating repeat value: ")) 

             

            input_data.at["Alternating every nth residue", column] 

= alternating_repeat 

             

        if alternating_repeat > (0.5 * num_of_codons_to_recode): 

            proceed_alt = input("The chosen repeat value is 

greater than half of the total number of codons being recoded so 
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only 2 or fewer codons will be mutated.\n\nDo you wish to proceed? 

Y/N \n") 

             

            if proceed_alt == "N" or proceed_alt == "n" or 

proceed_alt == "NO" or proceed_alt == "No" or proceed_alt == "no": 

                alternating_repeat = int(input("Please enter a 

positive integer for the alternating repeat value: ")) 

                 

                input_data.at["Alternating every nth residue", 

column] = alternating_repeat 

                 

            elif proceed_alt == "Y" or proceed_alt =="y" or 

proceed_alt =="YES" or proceed_alt == "Yes" or proceed_alt == 

"yes": 

               pass  

            else: 

                proceed_alt = input("\n\nThe input given is not 

valid. Please try again.\n\nThe chosen repeat value is greater 

than half of the total number of codons being recoded so only 2 or 

fewer codons will be mutated.\n\nDo you wish to proceed? Y/N \n") 

                if proceed_alt == "N" or proceed_alt == "n" or 

proceed_alt == "NO" or proceed_alt == "No" or proceed_alt == "no": 

                    alternating_repeat = int(input("\nPlease enter 

a positive integer for the alternating repeat value: ")) 

                     

                    input_data.at["Alternating every nth residue", 

column] = alternating_repeat 

                     

                elif proceed_alt == "Y" or proceed_alt =="y" or 

proceed_alt =="YES" or proceed_alt == "Yes" or proceed_alt == 

"yes": 

                   pass  

                else: 

                    proceed_alt = input("\n\nThe input given is 

not valid. Please try again.\n\nThe chosen repeat value is greater 

than half of the total number of codons being recoded so only 2 or 

fewer codons will be mutated.\n\nDo you wish to proceed? Y/N \n") 

                    if proceed_alt == "N" or proceed_alt == "n" or 

proceed_alt == "NO" or proceed_alt == "No" or proceed_alt == "no": 

                        alternating_repeat = int(input("\nPlease 

enter a positive integer for the alternating repeat value: ")) 

                         

                        input_data.at["Alternating every nth 

residue", column] = alternating_repeat 

                         

                    elif proceed_alt == "Y" or proceed_alt =="y" 

or proceed_alt =="YES" or proceed_alt == "Yes" or proceed_alt == 

"yes": 

                       pass 

                    else: 

                        print("\n---------------------------------

---------------------------") 

                        print(f"\n***Warning, your input was 

invalid so the code will continue with the value given. Your 

repair template will recode every {alternating_repeat} codons. If 
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you do not want this, modify the input spreadsheet and rerun the 

programme.***") 

                     

         

        if alternating_repeat == "N/A" or alternating_repeat <= 0 

or pd.isna(alternating_repeat) == True: 

            print("\n\n\n***ERROR: An invalid value was set for 

the alternating pattern of the codons to recode.***\n\n\n") 

            alternating_repeat = int(input("Please enter a 

positive integer for the alternating repeat value: ")) 

             

        if alternating_repeat == "N/A" or alternating_repeat <= 0 

or pd.isna(alternating_repeat) == True: 

            print("\n\n\n***ERROR: An invalid value was set for 

the alternating pattern of the codons to recode.***\n\n\n") 

            alternating_repeat = int(input("Last chance - please 

enter a positive integer for the alternating repeat value: ")) 

             

        if alternating_repeat == "N/A" or alternating_repeat <= 0 

or pd.isna(alternating_repeat) == True: 

            print("\n\n\n\nYou failed to provide an appropriate 

input so the programme will be cancelled.\n\nIf you wish to try 

again, either modify the input spreadsheet or provide a suitable 

value when prompted in the console.\n") 

            raise SystemExit 

         

         

    if syn_recode_type == "alternating matched" or syn_recode_type 

== "alternating random": 

            

 

        #determine which codon numbers in range are to be mutated 

and which are not 

        num_of_codons_to_mutate = int(num_of_codons_to_recode / 

alternating_repeat) 

        n_terms = list(range(num_of_codons_to_mutate)) 

        codon_nums_to_recode = [] 

         

        for n in n_terms: 

            codon_num = n * alternating_repeat 

            codon_nums_to_recode.append(codon_num) 

         

        #ensure that target codon is always recoded even if it 

doesn't fit the alternating pattern 

        if target_codon_no not in codon_nums_to_recode: 

            codon_nums_to_recode.append(target_codon_no) 

         

         

        codon_nums_all = list(codons_to_recode.keys()) 

         

        #split the codons to be mutated into a separate dictionary 

from the ones to stay the same 

        codons_to_keep_WT = {} 

        specific_codons_to_recode = {} 

         

        for numbers in codon_nums_all: 
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            if numbers not in codon_nums_to_recode: 

                codons_to_keep_WT[numbers] = 

codons_to_recode[numbers] 

             

            if numbers in codon_nums_to_recode: 

                specific_codons_to_recode[numbers] = 

codons_to_recode[numbers] 

         

 

        for numbers in codon_nums_to_recode: 

            if numbers not in codon_nums_to_recode: 

                codons_to_keep_WT = codons_to_recode[numbers] 

 

        if syn_recode_type == "alternating matched": 

            #on only the codons to recode 

            #use that dictionary to create a new one with the 

specific frequency values  

            codons_to_recode_freqs = 

cdf.codon_frequency_collector(input_dict = codons_to_recode, 

reference_dict = ref_codons, type = "value") 

             

            #create a dictionary with all the frequencies for the 

amino acids in this sequence for each codon 

            codons_to_recode_all_freqs = 

cdf.codon_frequency_collector(input_dict = codons_to_recode, 

reference_dict = ref_codons, type = "dataframe") 

             

             

            #calculate the differences for each possible codon to 

the original 

            recode_freq_diffs = 

cdf.codon_frequency_difference_calc(codons_to_recode_let_num, 

ref_codons) 

             

            #add the differences in frequency to "the" dataframe 

            codons_to_recode_abs_diffs = 

cdf.codon_freq_diff_adder(codons_to_recode_let_num 

,codons_to_recode_all_freqs, recode_freq_diffs) 

             

            #choose which codons to use for synonymous recoding 

            codons_to_use_syn = 

cdf.codon_freq_selector(codons_to_recode_abs_diffs) 

         

         

        if syn_recode_type == "alternating random": 

             

            #add letters to dictionary 

            specific_codons_to_recode_let_num = {} 

             

            for keys, seq in specific_codons_to_recode.items(): 

                let_num = str(seq.translate()) + str(keys) 

                specific_codons_to_recode_let_num[let_num] = seq 

             

             

            #make a dictionary of the alternate codons to the 

input sequence 
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            alt_codons_to_recode = 

cdict.alt_codons(specific_codons_to_recode_let_num) 

             

            #randomly select which of these to use for each codon 

            codons_to_use_syn = 

cdict.Syn_random_recoder(alt_codons_to_recode) 

             

 

        #combine the unchanged codons with the changed codons 

         

        codons_to_keep_WT_let_num = {} 

         

        for codon_num, seq in codons_to_keep_WT.items(): 

            translation = seq.translate() 

            codon_num_let = str(translation) + str(codon_num) 

             

            codons_to_keep_WT_let_num[codon_num_let] = seq 

         

        codons_to_use_syn.update(codons_to_keep_WT_let_num) 

         

 

    if syn_recode_type == "alternating highest" or syn_recode_type 

== "alternating lowest": 

         

        num_of_codons_to_mutate = int(num_of_codons_to_recode / 

alternating_repeat) 

        n_terms = list(range(num_of_codons_to_mutate)) 

        codon_nums_to_recode = [] 

         

        for n in n_terms: 

            codon_num = n * alternating_repeat 

            codon_nums_to_recode.append(codon_num) 

         

        if target_codon_no not in codon_nums_to_recode: 

            codon_nums_to_recode.append(target_codon_no) 

         

         

        codon_nums_all = list(codons_to_recode.keys()) 

         

        codons_to_keep_WT = {} 

        specific_codons_to_recode = {} 

         

        for numbers in codon_nums_all: 

            if numbers not in codon_nums_to_recode: 

                translate = codons_to_recode[numbers].translate() 

                let_num = str(translate) + str(numbers) 

                codons_to_keep_WT[let_num] = 

codons_to_recode[numbers] 

             

            if numbers in codon_nums_to_recode: 

                #translate = codons_to_recode[numbers].translate() 

                #let_num = str(translate) + str(numbers) 

                specific_codons_to_recode[numbers] = 

codons_to_recode[numbers] 
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        for numbers in codon_nums_to_recode: 

            if numbers not in codon_nums_to_recode: 

                codons_to_keep_WT = codons_to_recode[numbers] 

 

        #use that dictionary to create a new one with the specific 

frequency values  

        codons_to_recode_freqs = 

cdf.codon_frequency_collector(input_dict = 

specific_codons_to_recode, reference_dict = ref_codons, type = 

"value") 

         

        #create a dictionary with all the frequencies for the 

amino acids in this sequence for each codon 

        codons_to_recode_all_freqs = 

cdf.codon_frequency_collector(input_dict = 

specific_codons_to_recode, reference_dict = ref_codons, type = 

"dataframe") 

         

        codons_to_recode_choices_freqs = {} 

        #remove input codon from list unless it's Met or Trp 

        for let_num, df in codons_to_recode_all_freqs.items(): 

            input_codon = codons_to_recode_let_num[let_num] 

            if input_codon == Seq.Seq("ATG") or input_codon == 

Seq.Seq("TGG"): 

 

                codons_to_recode_choices_freqs[let_num] = 

ref_codon_table_df.loc[ref_codon_table_df["DNA"] == 

str(input_codon)] 

            else: 

                current_df = codons_to_recode_all_freqs[let_num] 

                codons_to_recode_choices_freqs[let_num] = 

current_df.loc[current_df["DNA"] != str(input_codon)] 

 

        #recode based on input type 

        codons_to_use_syn = {} 

         

        if syn_recode_type == "alternating highest": 

             

            for codon_num_let, seq_df in 

codons_to_recode_choices_freqs.items(): 

                max_freq_codon = max(seq_df["Fraction"]) 

                max_freq_codon_seq = seq_df.loc[seq_df["Fraction"] 

== max_freq_codon, "DNA"] 

                if len(max_freq_codon_seq) > 1: 

                    max_number_codon = max(seq_df["Number"]) 

                    max_freq_codon_seq = 

seq_df.loc[seq_df["Number"] == max_number_codon, "DNA"].item() 

                    codons_to_use_syn[codon_num_let] = 

max_freq_codon_seq 

                          

                else: 

                 codons_to_use_syn[codon_num_let] = 

max_freq_codon_seq.item() 
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        if syn_recode_type == "alternating lowest": 

             

            for codon_num_let, seq_df in 

codons_to_recode_choices_freqs.items(): 

                min_freq_codon = min(seq_df["Fraction"]) 

                min_freq_codon_seq = seq_df.loc[seq_df["Fraction"] 

== min_freq_codon, "DNA"] 

                if len(min_freq_codon_seq) > 1: 

                    min_number_codon = min(seq_df["Number"]) 

                    min_freq_codon_seq = 

seq_df.loc[seq_df["Number"] == min_number_codon, "DNA"].item() 

                    codons_to_use_syn[codon_num_let] = 

min_freq_codon_seq 

                          

                else: 

                 codons_to_use_syn[codon_num_let] = 

min_freq_codon_seq.item() 

            

 

         

         

        #combine the unchanged codons with the changed codons 

         

        codons_to_keep_WT_let_num = {} 

         

        for codon_num, seq in codons_to_keep_WT.items(): 

            codons_to_keep_WT_let_num[codon_num] = seq 

         

        codons_to_use_syn.update(codons_to_keep_WT_let_num) 

 

 

    if syn_recode_type == "random": 

        #make a dictionary of the alternate codons to the input 

sequence 

        alt_codons_to_recode = 

cdict.alt_codons(codons_to_recode_let_num) 

         

        #randomly select which of these to use for each codon 

        codons_to_use_syn = 

cdict.Syn_random_recoder(alt_codons_to_recode) 

 

 

    #add in the nonsynonymous mutation 

 

    if nonsyn_recode_type == "highest" or nonsyn_recode_type == 

"lowest": 

         

        nonsyn_ref_dict = ref_codons 

         

    if nonsyn_recode_type == "random": 

        nonsyn_ref_dict = 

cdict.alt_codons(codons_to_recode_let_num) 

        nonsyn_ref_dict = {output_AA : 

cdict.ref_codon_table(output_AA)} 
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    codons_to_use_nonsyn = cdf.non_syn_mutator(target_AA, 

target_codon_no, new_AA = output_AA, input_dict = 

codons_to_use_syn, type = nonsyn_recode_type, ref_dict = 

nonsyn_ref_dict ) 

 

 

 

    #construct the final recoded sequences 

 

    synonymous_repair = 

stitch.sequence_constructor(codons_to_use_syn, type = "letter-

number") 

    nonsynonymous_repair = 

stitch.sequence_constructor(codons_to_use_nonsyn, type = "letter-

number") 

 

    #check all the modifications were as expected 

    #adjust target codon number to what it would be by normal 

counting rather than python counting 

    target_codon_no_not_py = target_codon_no + 1 

 

 

    val.translate_checker(synonymous_repair, 

target_codon_no_not_py, target_AA) 

 

    val.translate_checker(nonsynonymous_repair, 

target_codon_no_not_py, output_AA) 

 

 

 

    #create the final repair sequence including the homology arms 

 

    upstream_hom_arm = gene_name.seq[(recode_start_whole - 

hom_arm_length):recode_start_whole] 

    downstream_hom_arm = gene_name.seq[recode_end_whole: 

(recode_end_whole + hom_arm_length)] 

 

    WT_entire_repair_region = upstream_hom_arm + WT_template_seq + 

downstream_hom_arm 

    entire_syn_repair = upstream_hom_arm + synonymous_repair + 

downstream_hom_arm 

    entire_nonsyn_repair = upstream_hom_arm + nonsynonymous_repair 

+ downstream_hom_arm 

 

 

 

    #construct "gene" sequences for primer design 

    integrated_synonymous, WT_recode_region = 

stitch.mut_seq_integrator(repair_seq = synonymous_repair, ref_seq 

= gene_name.seq, repair_start = recode_start_whole, repair_end = 

recode_end_whole, WT_repair_seq= "Yes") 

    integrated_nonsynonymous = 

stitch.mut_seq_integrator(repair_seq = nonsynonymous_repair, 

ref_seq = gene_name.seq, repair_start = recode_start_whole, 

repair_end = recode_end_whole, WT_repair_seq= "No") 
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    #design screening primers 

    screening_primers_df_syn  = 

primers.screening_primer_designer(gene_name.seq, 

integrated_synonymous, recode_start_whole, recode_end_whole) 

    screening_primers_df_nonsyn  = 

primers.screening_primer_designer(gene_name.seq, 

integrated_nonsynonymous, recode_start_whole, recode_end_whole) 

 

    #design primers to generate the repair template 

    syn_repair_template_primers = 

primers.repair_primer_designer(entire_syn_repair, hom_arm_length, 

downstream_dna) 

    nonsyn_repair_template_primers = 

primers.repair_primer_designer(entire_nonsyn_repair, 

hom_arm_length, downstream_dna) 

 

    #repair_template_primers = [syn_repair_template_primers, 

nonsyn_repair_template_primers] 

 

    #repair_template_primers_df = 

pd.DataFrame(repair_template_primers) 

    #repair_template_primers_df.index = ["Synonymous repair", 

"Nonsynonymous repair"] 

 

    #do an alignment  

 

    #create a pariwise alignment object 

    aligner = Align.PairwiseAligner(target_internal_open_gap_score 

= -10.0, query_internal_open_gap_score = -10.0) 

 

 

 

    syn_alignment = aligner.align(WT_entire_repair_region, 

entire_syn_repair) 

    for alignment1 in sorted(syn_alignment): 

        #print("Score = %.1f:" % alignment1.score) 

        #print(alignment1) 

        syn_score = alignment1.score 

    alignment_str_syn = str(alignment1) 

    alignment_str_syn = alignment_str_syn.replace("target", "WT 

sequence").replace("query", "Syn. repair").replace("\n           

", "\n                ") 

    alignment_str_syn = alignment_str_syn.replace("Syn. repair           

", "Syn. repair          ") 

    #print(alignment_str_syn)  

         

    nonsyn_alignment = aligner.align(WT_entire_repair_region, 

entire_nonsyn_repair) 

    for alignment2 in sorted(syn_alignment): 

        #print("Score = %.1f:" % alignment2.score) 

        nonsyn_score = alignment2.score 

    alignment_str_nonsyn = str(alignment2) 

    alignment_str_nonsyn = alignment_str_nonsyn.replace("target", 

"WT sequence").replace("query", "Nonsyn. repair").replace("\n           

", "\n                ") 
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    alignment_str_nonsyn = alignment_str_nonsyn.replace("Nonsyn. 

repair           ", "Nonsyn. repair       ") 

    #print(alignment_str_nonsyn)     

 

 

 

 

    #format some outputs 

 

    WT_repair_seq_spaced = 

formats.codon_spacing(WT_entire_repair_region) 

    syn_repair_spaced = formats.codon_spacing(entire_syn_repair) 

    nonsyn_repair_spaced = 

formats.codon_spacing(entire_nonsyn_repair) 

 

    WT_repair_translate = WT_entire_repair_region.translate() 

    syn_repair_translate = entire_syn_repair.translate() 

    nonsyn_repair_translate = entire_nonsyn_repair.translate() 

 

    WT_repair_translate_spaced = 

formats.protein_align_codon(WT_repair_translate) 

    syn_repair_translate_spaced = 

formats.protein_align_codon(syn_repair_translate) 

    nonsyn_repair_translate_spaced = 

formats.protein_align_codon(nonsyn_repair_translate) 

 

    syn_repair_mutations_count = 

val.mutation_counter(entire_syn_repair, WT_entire_repair_region) 

    nonsyn_repair_mutations_count = 

val.mutation_counter(entire_nonsyn_repair, 

WT_entire_repair_region) 

 

    syn_repair_primers_output = "" 

 

    for category, item in syn_repair_template_primers.items(): 

        if type(item) == float: 

            item = '{:.1f}'.format(item) 

        syn_repair_primers_output += category 

        syn_repair_primers_output += ": " 

        syn_repair_primers_output += str(item) 

        syn_repair_primers_output += "\n" 

         

    nonsyn_repair_primers_output = "" 

 

    for category, item in nonsyn_repair_template_primers.items(): 

        if type(item) == float: 

            item = '{:.1f}'.format(item) 

        nonsyn_repair_primers_output += category 

        nonsyn_repair_primers_output += ": " 

        nonsyn_repair_primers_output += str(item) 

        nonsyn_repair_primers_output += "\n" 

 

    if syn_recode_type == "alternating matched" or syn_recode_type 

== "alternating highest" or syn_recode_type == "alternating 

lowest" or syn_recode_type == "alternating random": 
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        alternating_info = f"Alternating recoding every 

{alternating_repeat} codons" 

    else: 

        alternating_info = "" 

 

 

    output_file = open(f"{job_name}.txt", "w") 

 

    file_lines = ["Job request details\n", 

                  f"Job name: {job_name}\n", 

                  f"Target amino acid: 

{target_AA}{target_res_num}{output_AA}\n", 

                  f"Synonymous recoding type: 

{syn_recode_type}\n", 

                  f"Nonsynonymous recode type: 

{nonsyn_recode_type}\n", 

                  f"Homology arm length (bp): {hom_arm_length}\n", 

                  f"Recoding region length (bp): 

{recode_region_length}\n", 

                  f"Total repair length (bp): {(2*hom_arm_length) 

+ recode_region_length}\n", 

                  f"{alternating_info}\n", 

                  "\n", 

                  "\n", 

                  "Repair templates\n", 

                  f"WT repair region sequence: 

\t\t{WT_repair_seq_spaced}\n", 

                  f"WT translation: 

\t\t\t{WT_repair_translate_spaced}\n", 

                  f"Synonymous repair region sequence: 

\t{syn_repair_spaced}\n", 

                  f"Synonymous repair translation: 

\t\t{syn_repair_translate_spaced}\n", 

                  f"Nonsynonymous repair region sequence: 

\t{nonsyn_repair_spaced}\n", 

                  f"Nonsynonymous repair translation: 

\t{nonsyn_repair_translate_spaced}\n", 

                  "\n", 

                  f"Number of mutations in the synonymous repair 

template: {syn_repair_mutations_count}\n", 

                  f"Number of mutations in the nonsynonymous 

repair template: {nonsyn_repair_mutations_count}\n", 

                  "\n", 

                  "\n", 

                  "Screening primers\n", 

                  "Synonymous repair\n", 

                  "\n", 

                  f"{screening_primers_df_syn}\n", 

                  "\n", 

                  "\n", 

                  "Nonsynonymous primers\n" 

                  f"{screening_primers_df_nonsyn}", 

                  "\n", 

                  "\n", 

                  "Repair template primers\n", 

                  "Synonymous\n", 
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                  f"{syn_repair_primers_output}\n", 

                  "\n", 

                  "Nonsynonymous\n", 

                  f"{nonsyn_repair_primers_output}\n", 

                  "\n", 

                  f"WT sequence (no spaces): 

{WT_entire_repair_region}\n", 

                  f"Synonymous sequence (no spaces): 

{entire_syn_repair}\n", 

                  f"Nonsynonymous sequence (no spaces): 

{entire_nonsyn_repair}\n", 

                  "\n", 

                  "\n", 

                  "Alignments\n", 

                  "Synonymous Repair\n", 

                  f"Score = {syn_score}\n", 

                  f"{alignment_str_syn}\n", 

                  "\n", 

                  "Nonsynonymous\n", 

                  f"Score = {nonsyn_score}\n", 

                  f"{alignment_str_nonsyn}\n" 

                   

        ] 

 

    output_file.writelines(file_lines) 

    output_file.close() 

 

    #print confirmation message to make it clearer that it worked 

    print(f"\n\n\nYour repair template designs have completed 

successfully. Please check your folder for a file with the name 

'{job_name}.txt'\n") 

    print("\t.\t.\n", "\n\t\___/\n\n\n") 

     

 

print("\n--------------------------------\n") 

 

 

 

print("Jobs that were completed:\n") 

 

 

for column in complete_columns_keys: 

     

    print(input_data[column]["Job name":"Nonsynonymous Recoding 

Type"]) 

    print("\n") 

 

 

if job_names.duplicated().any() == True: 

    print("\n***Warning: duplicate job names (file names) 

detected. Some files will be renamed to avoid 

overwriting.***\n\t\t\t\t***Please check the completed jobs above 

for details.***\n") 
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7.2.19  MAIN CODE MULTI MUTANT VERSION 

7.2.19.1 Modified Configuration Spreadsheet  
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7.2.19.2 Code 
# -*- coding: utf-8 -*- 

""" 

Created on Fri Jun  7 14:26:56 2024 

 

@author: ceh560 

""" 

 

#packages used in this file and/or the feeder files 

import pandas as pd 

from Bio import SeqIO 

from Bio import Seq 

from Bio import Align 

import numpy as np 

import io 

import random 

import primer3 

import primer3.bindings 

import statistics 

 

#custom files to import 

import codon_dataframes as cdf 

import codon_dictionaries as cdict 

import formatting_functions as formats 

import primer_functions as primers 

import reading_input_file as rif 

import validator as val 

import stitching_functions as stitch 

 

 

 

 

#read input files 

 

input_data = 

pd.read_excel("repair_template_input_excel_multi_mutant.xlsx", 

index_col = 0, header = 0) 

 

 

pd.set_option('display.max_columns', 20) 

pd.set_option('display.max_rows', None) 

pd.set_option("display.width", 1000) 

pd.options.display.float_format = "{:,.2f}".format 

 

 

job_name = input_data.loc["Job name"][0] 

syn_recode_type = input_data.loc["Synonymous Recoding type"][0] 

nonsyn_recode_type = input_data.loc["Nonsynonymous Recoding 

Type"][0] 

codon_freq_input_file = input_data.loc["Codon Frequency data 

filename (incl. extension)"][0] 

recode_region_length = input_data.loc["Recoding region length 

(bp)"][0] 

hom_arm_length = input_data.loc["Homology arm length (bp)"][0] 
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ref_file_name = input_data.loc["Reference FASTA filename (incl. 

extension)"][0] 

CDS_start = input_data.loc["CDS start in reference file (bp 

number)"][0] 

CDS_end = input_data.loc["CDS end in reference file (bp 

number)"][0] 

alternating_repeat = input_data.loc["Alternating every nth 

residue"][0] 

 

 

num_of_mutations = input_data.loc["Number of Nonsynonymous 

Mutations"][0] 

 

#mutation 1 

target_AA_1 = input_data.loc["Target amino acid residue 1"][0] 

target_res_num_1 = input_data.loc["Target amino acid number 1"][0] 

output_AA_1 = input_data.loc["Replacement amino acid 1"][0] 

 

#mutation 2 

target_AA_2 = input_data.loc["Target amino acid residue 2"][0] 

target_res_num_2 = input_data.loc["Target amino acid number 2"][0] 

output_AA_2 = input_data.loc["Replacement amino acid 2"][0] 

 

 

#mutation 3 

target_AA_3 = input_data.loc["Target amino acid residue 3"][0] 

target_res_num_3 = input_data.loc["Target amino acid number 3"][0] 

output_AA_3 = input_data.loc["Replacement amino acid 3"][0] 

 

 

#mutation 4 

target_AA_4 = input_data.loc["Target amino acid residue 4"][0] 

target_res_num_4 = input_data.loc["Target amino acid number 4"][0] 

output_AA_4 = input_data.loc["Replacement amino acid 4"][0] 

 

 

#mutation 5 

target_AA_5 = input_data.loc["Target amino acid residue 5"][0] 

target_res_num_5 = input_data.loc["Target amino acid number 5"][0] 

output_AA_5 = input_data.loc["Replacement amino acid 5"][0] 

 

 

#put all the mutants in a dataframe  

mut_details = {"Mutation number": [1,2,3,4,5], 

    "Target AA": [target_AA_1, target_AA_2, target_AA_3, 

target_AA_4, target_AA_5], 

    "Target residue number": [target_res_num_1, target_res_num_2, 

target_res_num_3, target_res_num_4, target_res_num_5], 

    "Replacement AA": [output_AA_1, output_AA_2, output_AA_3, 

output_AA_4, output_AA_5]} 

 

mut_details_df = pd.DataFrame(mut_details) 

 

 

#target_res_base_nums = [((target_res_num-1)*3), 

(target_res_num*3)] 
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#add residue numbers to dataframe 

 

for row in mut_details_df.index: 

    residue_no = mut_details_df.at[row, "Target residue number"] 

    residue_start = (residue_no - 1)*3 

    residue_end = residue_no * 3 

    mut_details_df.at[row, "Residue Start Base"] = residue_start 

    mut_details_df.at[row, "Residue End Base"] = residue_end 

 

 

#remove rows not needed for less than 5 mutations 

if num_of_mutations < 5: 

    mut_details_df = mut_details_df.iloc[:num_of_mutations] 

 

#when n/a's are present, they cause the other numbers to be 

floats, so to ensure that doesn't happen, after removing them, 

convert to integers 

 

mut_details_df["Target residue number"] = mut_details_df["Target 

residue number"].astype(int) 

 

 

 

#read input fasta file and process as necessary 

gene_name = job_name 

 

 

num_of_codons_to_recode = recode_region_length / 3 

 

lowest_target = min(mut_details_df["Target residue number"]) 

centre_target = statistics.median(mut_details_df["Target residue 

number"]) 

highest_target = max(mut_details_df["Target residue number"]) 

 

#if the median does not exist as a target e.g. the median of two 

values is halfway between them 

if mut_details_df.isin([centre_target]).any().all() == True: 

     

    #define codon numbers for each target 

    central_target_codon_no = int(num_of_codons_to_recode/2) 

    central_target_index = 

mut_details_df.loc[mut_details_df["Target residue 

number"]==centre_target].index.item() 

     

    mut_details_df["Codon no"] = None 

    mut_details_df.at[central_target_index, "Codon no"] = 

central_target_codon_no 

     

    #add target codon numbers to dataframe 

    for row in mut_details_df.index: 

        if pd.isna(mut_details_df.at[row, "Codon no"]) == False: 

            pass 

        target_res_num = mut_details_df.at[row, "Target residue 

number"] 

        diff = centre_target - target_res_num 
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        codon_no = central_target_codon_no + diff 

        mut_details_df.at[row, "Codon no"] = codon_no 

     

    centre_target_base_start = mut_details_df["Residue Start 

Base"].loc[(mut_details_df["Target residue number"] == 

centre_target)] 

     

     

    if recode_region_length % 2 == 0: 

        recode_start = int(centre_target_base_start - 

(recode_region_length/2))     

         

    else: 

        half_codon_percent = central_target_codon_no / 

num_of_codons_to_recode 

        back_bases = recode_region_length * half_codon_percent 

        recode_start = int(centre_target_base_start - back_bases) 

     

     

   

 

else: 

     

     

    central_target_codon_no = int(num_of_codons_to_recode/2) 

    central_target_codon_start = int(centre_target * 3) 

    central_target_codon_end = central_target_codon_start + 3 

     

    mut_details_df["Codon no"] = None 

     

    for row in mut_details_df.index: 

        target_res_num = mut_details_df.at[row, "Target residue 

number"] 

        diff = centre_target - target_res_num 

        codon_no = central_target_codon_no - diff 

        mut_details_df.at[row, "Codon no"] = codon_no 

         

    if recode_region_length % 2 == 0: 

        recode_start = int(central_target_codon_start - 

(recode_region_length/2) - 1)     

          

    else: 

         half_codon_percent = central_target_codon_no / 

num_of_codons_to_recode 

         back_bases = recode_region_length * half_codon_percent 

         recode_start = int(central_target_codon_start - 

back_bases)    

     

    if max(mut_details_df["Codon no"]) > num_of_codons_to_recode: 

        min_recode_start = min(mut_details_df["Residue Start 

Base"]) 

        min_recode_end = max(mut_details_df["Residue End Base"]) 

         

        min_recoding_region = min_recode_end - min_recode_start 

         

        if min_recoding_region == recode_region_length: 
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            recode_start = min_recode_start 

            recode_end = min_recode_end 

             

            lowest_target_index = 

mut_details_df.loc[mut_details_df["Target residue 

number"]==lowest_target].index.item() 

            mut_details_df.at[lowest_target_index, "Codon no"] = 0 

            lowest_target_codon_no = 

mut_details_df.at[lowest_target_index, "Codon no"] 

             

            for row in mut_details_df.index: 

                if pd.isna(mut_details_df.at[row, "Codon no"]) == 

False: 

                    pass 

                target_res_num = mut_details_df.at[row, "Target 

residue number"] 

                diff =  target_res_num - lowest_target 

                codon_no = lowest_target_codon_no + diff 

                mut_details_df.at[row, "Codon no"] = codon_no 

             

        else:  

            extra_bases = recode_region_length - 

min_recoding_region 

            extra_codons = extra_bases/3 

             

            codons_to_start = lowest_target - 1 

     

    #accounting for times where an uneven distribution of targets 

causes an inappropriate centre  

    if min(mut_details_df["Codon no"]) < 0: 

         

        targets_range = max(mut_details_df["Codon no"]) - 

min(mut_details_df["Codon no"]) 

         

        #if the number of codons to recode is the same distance as 

the range of the target sites 

        if targets_range == num_of_codons_to_recode: 

            recode_start = min_recode_start 

            recode_end = min_recode_end 

             

            lowest_target_index = 

mut_details_df.loc[mut_details_df["Target residue 

number"]==lowest_target].index.item() 

            mut_details_df.at[lowest_target_index, "Codon no"] = 0 

            lowest_target_codon_no = 

mut_details_df.at[lowest_target_index, "Codon no"] 

             

 

        #if the number of codons to recode is (larger) than the 

recoding region covered by the targets      

        else: 

            extra_codons = num_of_codons_to_recode - targets_range 

             

            lowest_target_index = 

mut_details_df.loc[mut_details_df["Target residue 

number"]==lowest_target].index.item() 
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            min_recode_start = 

mut_details_df.at[lowest_target_index, "Residue Start Base"] 

             

            #for an even number of spare codons, split equally at 

each end 

            if extra_codons % 2 == 0: 

                half_extra_codons = extra_codons / 2 

                 

                 

                mut_details_df.at[lowest_target_index, "Codon no"] 

= half_extra_codons 

                 

                recode_start = min_recode_start - 

(half_extra_codons * 3) 

                 

            #for an odd number of spare codons, put +1 codon 

upstream than downstream 

            else:  

                downstream_codons = (extra_codons - 1) /2 

                upstream_codons = extra_codons - downstream_codons 

                 

                mut_details_df.at[lowest_target_index, "Codon no"] 

= upstream_codons 

                 

                recode_start = min_recode_start - (upstream_codons 

* 3) 

                 

            lowest_target_codon_no = 

mut_details_df.at[lowest_target_index, "Codon no"]  

                    

         

        for row in mut_details_df.index: 

            if pd.isna(mut_details_df.at[row, "Codon no"]) == 

False: 

                pass 

            target_res_num = mut_details_df.at[row, "Target 

residue number"] 

            diff =  target_res_num - lowest_target 

            codon_no = lowest_target_codon_no + diff 

            mut_details_df.at[row, "Codon no"] = codon_no 

             

    if max(mut_details_df["Codon no"]) > num_of_codons_to_recode: 

        targets_range = max(mut_details_df["Codon no"]) - 

min(mut_details_df["Codon no"]) 

 

        #if the number of codons to recode is the same distance as 

the range of the target sites 

        if targets_range == num_of_codons_to_recode: 

            recode_start = min_recode_start 

            recode_end = min_recode_end 

             

            lowest_target_index = 

mut_details_df.loc[mut_details_df["Target residue 

number"]==lowest_target].index.item() 

            mut_details_df.at[lowest_target_index, "Codon no"] = 0 
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            lowest_target_codon_no = 

mut_details_df.at[lowest_target_index, "Codon no"] 

             

        #if the number of codons to recode is (larger) than the 

recoding region covered by the targets      

        else: 

            extra_codons = num_of_codons_to_recode - targets_range 

             

            highest_target_index = 

mut_details_df.loc[mut_details_df["Target residue 

number"]==highest_target].index.item() 

            min_recode_end = 

mut_details_df.at[highest_target_index, "Residue End Base"] 

             

            #for an even number of spare codons, split equally at 

each end 

            if extra_codons % 2 == 0: 

                half_extra_codons = extra_codons / 2 

                 

                 

                mut_details_df.at[highest_target_index, "Codon 

no"] = num_of_codons_to_recode - half_extra_codons 

                 

                recode_start = min_recode_start - 

(half_extra_codons * 3) 

                 

            #for an odd number of spare codons, put +1 codon 

upstream than downstream 

            else:  

                downstream_codons = (extra_codons - 1) /2 

                upstream_codons = extra_codons - downstream_codons 

                 

                mut_details_df.at[highest_target_index, "Codon 

no"] = downstream_codons 

                 

                recode_start = min_recode_start - (upstream_codons 

* 3) 

                 

            highest_target_codon_no = 

mut_details_df.at[highest_target_index, "Codon no"]  

             

        for row in mut_details_df.index: 

            if pd.isna(mut_details_df.at[row, "Codon no"]) == 

False: 

                pass 

            target_res_num = mut_details_df.at[row, "Target 

residue number"] 

            diff =  highest_target - target_res_num 

            codon_no = highest_target_codon_no - diff 

            mut_details_df.at[row, "Codon no"] = codon_no 

 

recode_end = recode_start + recode_region_length   

#need some special cases for close to the start or end of the CDS 

 

#near the start special case 
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#all within the recoding regin number of amino acids 

if num_of_codons_to_recode > lowest_target and 

num_of_codons_to_recode > highest_target:  

    recode_start = 0 

    recode_end = recode_region_length 

    #target_codon_no = lowest_target - 1 

     

    for row in mut_details_df.index: 

        target_res_num = mut_details_df.at[row, "Target residue 

number"] 

        mut_details_df.at[row, "Codon no"] = int(target_res_num - 

1) 

 

#for when the highet target residue is outisde the recoding range 

if it started at the beginning of the gene 

 

if num_of_codons_to_recode >= lowest_target and 

num_of_codons_to_recode <= highest_target: 

    min_recode_start = min(mut_details_df["Residue Start Base"]) 

    min_recode_end = max(mut_details_df["Residue End Base"]) 

     

    min_recoding_region = min_recode_end - min_recode_start 

     

    if min_recoding_region == recode_region_length: 

        recode_start = min_recode_start 

        recode_end = min_recode_end 

         

        lowest_target_index = 

mut_details_df.loc[mut_details_df["Target residue 

number"]==lowest_target].index.item() 

        mut_details_df.at[lowest_target_index, "Codon no"] = 0 

        lowest_target_codon_no = 

mut_details_df.at[lowest_target_index, "Codon no"] 

         

        for row in mut_details_df.index: 

            if pd.isna(mut_details_df.at[row, "Codon no"]) == 

False: 

                pass 

            target_res_num = mut_details_df.at[row, "Target 

residue number"] 

            diff =  target_res_num - lowest_target 

            codon_no = lowest_target_codon_no + diff 

            mut_details_df.at[row, "Codon no"] = codon_no 

         

    else:  

        extra_bases = recode_region_length - min_recoding_region 

        extra_codons = extra_bases/3 

         

        codons_to_start = lowest_target - 1 

         

        if codons_to_start >= extra_codons: 

         

            if extra_codons % 2 == 0: 

                recode_start = min_recode_start - (0.5 * 

extra_bases) 

                recode_end = min_recode_end + (0.5 * extra_bases) 
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            else: 

                half_extra_codons_down = int(extra_codons/2) 

                half_extra_codons_up = extra_codons - 

half_extra_codons_down 

                recode_start = int(min_recode_start - 

(half_extra_codons_up * 3)) 

                recode_end = int(min_recode_end + 

(half_extra_codons_down * 3)) 

             

                 

            mut_details_df["Codon no"] = None 

            lowest_target_start = min(mut_details_df["Residue 

Start Base"]) 

            codons_before_lowest = (min_recode_start - 

recode_start)/3 

            lowest_target_index = 

mut_details_df.loc[mut_details_df["Target residue 

number"]==lowest_target].index.item() 

            mut_details_df.at[lowest_target_index, "Codon no"] = 

codons_before_lowest 

            lowest_target_codon_no = 

mut_details_df.at[lowest_target_index, "Codon no"] 

             

            for row in mut_details_df.index: 

                if pd.isna(mut_details_df.at[row, "Codon no"]) == 

False: 

                    pass 

                target_res_num = mut_details_df.at[row, "Target 

residue number"] 

                diff =  target_res_num - lowest_target 

                codon_no = lowest_target_codon_no + diff 

                mut_details_df.at[row, "Codon no"] = codon_no 

             

             

                 

         

        if codons_to_start < extra_codons: 

            recode_start = 0 

            extra_end_codons = extra_codons - codons_to_start 

            recode_end = min_recode_end + (3 * extra_end_codons) 

             

            for row in mut_details_df.index: 

                target_res_num = mut_details_df.at[row, "Target 

residue number"] 

                mut_details_df.at[row, "Codon no"] = 

int(target_res_num - 1) 

 

mut_details_df["Codon no"] = mut_details_df["Codon 

no"].astype(int) 

 

 

#read gene fasta file and define the CDS  

for gene_name in SeqIO.parse(ref_file_name,"fasta"): 

    #print(gene_name.id) 
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    print(gene_name.description) 

    print(repr(gene_name.seq)) 

    print("Gene sequence length: ", len(gene_name), "bp") 

    print("\n") 

 

if CDS_end == "end": 

    CDS_end = len(gene_name.seq) 

else: 

    CDS_end = CDS_end 

 

 

if CDS_start > 1: 

    CDS_start = CDS_start - 1  

    WT_CDS_seq = gene_name.seq[(CDS_start):CDS_end] 

    recode_start_whole = int(recode_start + CDS_start) 

    recode_end_whole = int(recode_end + CDS_start) 

     

else: 

    WT_CDS_seq = gene_name.seq[:CDS_end] 

    recode_start_whole = int(recode_start) 

    recode_end_whole = int(recode_end) 

     

     

 

#check input is a length divisible by 3         

val.triplet_checker(WT_CDS_seq) 

 

#near the end special case 

total_num_AAs = len(WT_CDS_seq.translate()) 

 

if highest_target > (total_num_AAs - num_of_codons_to_recode): 

     

    if lowest_target > (total_num_AAs - num_of_codons_to_recode): 

     

        recode_end = len(WT_CDS_seq) 

        recode_start = len(WT_CDS_seq) - recode_region_length 

         

        num_of_codons_to_recode = int((recode_end - recode_start + 

1) / 3) 

        highest_target_codon_no = num_of_codons_to_recode - 

(total_num_AAs - highest_target) - 1 

         

        mut_details_df["Codon no"] = None 

         

        highest_target_index = 

mut_details_df.loc[mut_details_df["Target residue 

number"]==highest_target].index.item() 

        mut_details_df.at[highest_target_index, "Codon no"] = 

highest_target_codon_no 

         

         

        for row in mut_details_df.index: 

            if pd.isna(mut_details_df.at[row, "Codon no"]) == 

False: 

                pass 
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            target_res_num = mut_details_df.at[row, "Target 

residue number"] 

            diff = highest_target - target_res_num 

            codon_no = highest_target_codon_no - diff 

            mut_details_df.at[row, "Codon no"] = codon_no 

             

    else:  

        min_recode_start = min(mut_details_df["Residue Start 

Base"]) 

        min_recode_end = max(mut_details_df["Residue End Base"]) 

         

        min_recoding_region = min_recode_end - min_recode_start 

         

        codons_to_end = total_num_AAs - highest_target 

        

        extra_bases = recode_region_length - min_recoding_region 

        extra_codons = extra_bases/3 

         

        if min_recoding_region == recode_region_length: 

            recode_start = min_recode_start 

            recode_end = min_recode_end 

             

             

            highest_target_index = 

mut_details_df.loc[mut_details_df["Target residue 

number"]==highest_target].index.item() 

            mut_details_df.at[highest_target_index, "Codon no"] = 

num_of_codons_to_recode - 1 

            highest_target_codon_no = 

mut_details_df.at[highest_target_index, "Codon no"] 

             

            for row in mut_details_df.index: 

                if pd.isna(mut_details_df.at[row, "Codon no"]) == 

False: 

                    pass 

                target_res_num = mut_details_df.at[row, "Target 

residue number"] 

                diff =  highest_target - target_res_num  

                codon_no = highest_target_codon_no - diff 

                mut_details_df.at[row, "Codon no"] = codon_no 

             

             

             

        else:  

            if codons_to_end >= extra_codons: 

             

                if extra_codons % 2 == 0: 

                    recode_start = min_recode_start - (0.5 * 

extra_bases) 

                    recode_end = min_recode_end + (0.5 * 

extra_bases) 

                     

                     

                else: 

                    half_extra_codons_down = int(extra_codons/2) 
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                    half_extra_codons_up = extra_codons - 

half_extra_codons_down 

                    recode_start = int(min_recode_start - 

(half_extra_codons_up * 3)) 

                    recode_end = int(min_recode_end + 

(half_extra_codons_down * 3)) 

                 

                     

                mut_details_df["Codon no"] = None 

                highest_target_end = max(mut_details_df["Residue 

End Base"]) 

                codons_after_highest = (min_recode_end - 

recode_end)/3 

                highest_target_index = 

mut_details_df.loc[mut_details_df["Target residue 

number"]==highest_target].index.item() 

                mut_details_df.at[lowest_target_index, "Codon no"] 

= codons_after_highest 

                highest_target_codon_no = 

mut_details_df.at[highest_target_index, "Codon no"] 

                 

                for row in mut_details_df.index: 

                    if pd.isna(mut_details_df.at[row, "Codon no"]) 

== False: 

                        pass 

                    target_res_num = mut_details_df.at[row, 

"Target residue number"] 

                    diff =  highest_target - target_res_num  

                    codon_no = highest_target_codon_no - diff 

                    mut_details_df.at[row, "Codon no"] = codon_no 

                 

                 

                     

             

            if codons_to_start < extra_codons: 

                recode_start = 0 

                extra_end_codons = extra_codons - codons_to_start 

                recode_end = min_recode_end + (3 * 

extra_end_codons) 

                 

                for row in mut_details_df.index: 

                    target_res_num = mut_details_df.at[row, 

"Target residue number"] 

                    mut_details_df.at[row, "Codon no"] = 

int(target_res_num - 1) 

         

     

    if CDS_start > 1: 

        recode_end_whole = int(recode_end + CDS_start) 

        recode_start_whole = int(recode_start + CDS_start) 

    else: 

        recode_end_whole = int(recode_end) 

        recode_start_whole = int(recode_start) 

     

    mut_details_df["Codon no"] = mut_details_df["Codon 

no"].astype(int) 
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mut_details_df["Codon no"] = mut_details_df["Codon 

no"].astype(int) 

 

 

#check that the input given is correct and that the target codes 

for the expected residue 

 

for row in mut_details_df.index: 

    residue_no = int(mut_details_df.at[row, "Target residue 

number"]) 

    target_AA = mut_details_df.at[row, "Target AA"] 

    mut_details_df["Input AA Correct"] = 

val.translate_checker(WT_CDS_seq, residue_no, target_AA) 

 

#cancel the code if some incorrect starting amino acids given 

if mut_details_df["Input AA Correct"].any() == False: 

    print("\n\n\n***WARNING: One or more incorrect starting amino 

acids. Please review your inputs.\nThe code will now 

abort.***\n\n\n") 

    print("Your inputs:") 

    print(mut_details_df.loc[:, ["Mutation number", "Target AA", 

"Target residue number"]]) 

    raise SystemExit 

 

 

#check that the range of amino acids to mutate is not larger than 

the recoding range 

mutation_distance = max(mut_details_df["Residue End Base"]) - 

min(mut_details_df["Residue Start Base"]) 

 

if mutation_distance > recode_region_length: 

    print("\n\n\n***Warning: The distance between the target sites 

is greater than the recoding region length. Please ensure your 

recoding region length covers all target mutations.\nThe code will 

now abort.***\n") 

    print(f"You asked for a recoding region of 

{recode_region_length} bp, but the needed recoding region length 

is at least {int(mutation_distance)} bp.\n\n") 

     

    raise SystemExit 

 

 

 

 

#establish the sequence to replace, and sequences before and after 

to stay the same 

WT_template_seq = 

gene_name.seq[recode_start_whole:recode_end_whole] 

upstream_dna = gene_name.seq[:recode_start_whole] 

downstream_dna = gene_name.seq[recode_end_whole:]     

     

 

 

#make dictionary of codons with number keys and one with numbers 

and amino acids 
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codons_to_recode = cdict.codon_dict_maker(WT_template_seq, 

key_format= "number") 

codons_to_recode_let_num = cdict.codon_dict_maker(WT_template_seq, 

key_format= "letter-number") 

 

 

#make reference dictionaries for all the amino acids 

ref_codon_table_df = 

rif.codon_table_processor(codon_freq_input_file) 

 

ref_codons = cdf.ref_codon_table_freqs(ref_codon_table_df) 

 

 

#synonymous recoding - irrelevant to additional mutations 

if syn_recode_type == "matched": 

 

    #use that dictionary to create a new one with the specific 

frequency values  

    codons_to_recode_freqs = 

cdf.codon_frequency_collector(input_dict = codons_to_recode, 

reference_dict = ref_codons, type = "value") 

     

    #create a dictionary with all the frequencies for the amino 

acids in this sequence for each codon 

    codons_to_recode_all_freqs = 

cdf.codon_frequency_collector(input_dict = codons_to_recode, 

reference_dict = ref_codons, type = "dataframe") 

     

     

    #calculate the differences for each possible codon to the 

original 

    recode_freq_diffs = 

cdf.codon_frequency_difference_calc(codons_to_recode_let_num, 

ref_codons) 

     

    #add the differences in frequency to "the" dataframe 

    codons_to_recode_abs_diffs = 

cdf.codon_freq_diff_adder(codons_to_recode_let_num 

,codons_to_recode_all_freqs, recode_freq_diffs) 

     

    #choose which codons to use for synonymous recoding 

    codons_to_use_syn = 

cdf.codon_freq_selector(codons_to_recode_abs_diffs) 

 

 

if syn_recode_type == "highest" or syn_recode_type == "lowest": 

     

    #use that dictionary to create a new one with the specific 

frequency values  

    codons_to_recode_freqs = 

cdf.codon_frequency_collector(input_dict = codons_to_recode, 

reference_dict = ref_codons, type = "value") 

     

    #create a dictionary with all the frequencies for the amino 

acids in this sequence for each codon 
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    codons_to_recode_all_freqs = 

cdf.codon_frequency_collector(input_dict = codons_to_recode, 

reference_dict = ref_codons, type = "dataframe") 

     

    codons_to_recode_choices_freqs = {} 

    #remove input codon from list 

    for let_num, seq in codons_to_recode_let_num.items(): 

        if seq == Seq.Seq("ATG") or seq == Seq.Seq("TGG"): 

 

            codons_to_recode_choices_freqs[let_num] = 

ref_codon_table_df.loc[ref_codon_table_df["DNA"] == str(seq)] 

        else: 

            current_df = codons_to_recode_all_freqs[let_num] 

            codons_to_recode_choices_freqs[let_num] = 

current_df.loc[current_df["DNA"] != str(seq)] 

 

#make the list of codons to use depending on recoding type     

    codons_to_use_syn = {} 

     

    if syn_recode_type == "highest": 

         

        for codon_num_let, seq_df in 

codons_to_recode_choices_freqs.items(): 

            max_freq_codon = max(seq_df["Fraction"]) 

            mutated_res_df_chosen = seq_df.loc[seq_df["Fraction"] 

== max_freq_codon, "DNA"] 

             

            #tie breaker for instances with same fraction usage - 

hopefully number won't ever have duplicate values 

            if len(mutated_res_df_chosen) > 1: 

                max_number_codon = max(seq_df["Number"]) 

                max_number_codon_seq = seq_df.loc[seq_df["Number"] 

== max_number_codon, "DNA"].item() 

                codons_to_use_syn[codon_num_let] = 

max_number_codon_seq 

                      

            else: 

                codons_to_use_syn[codon_num_let] = 

seq_df.loc[seq_df["Fraction"] == max_freq_codon, "DNA"].item() 

     

    if syn_recode_type == "lowest": 

         

        for codon_num_let, seq_df in 

codons_to_recode_choices_freqs.items(): 

            min_freq_codon = min(seq_df["Fraction"]) 

            mutated_res_df_chosen = seq_df.loc[seq_df["Fraction"] 

== min_freq_codon, "DNA"] 

             

            #tie breaker 

            if len(mutated_res_df_chosen) > 1: 

                min_number_codon = max(seq_df["Number"]) 

                min_number_codon_seq = seq_df.loc[seq_df["Number"] 

== min_number_codon, "DNA"].item() 

                codons_to_use_syn[codon_num_let] = 

min_number_codon_seq 
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            else: 

                codons_to_use_syn[codon_num_let] = 

seq_df.loc[seq_df["Fraction"] == min_freq_codon, "DNA"].item() 

             

             

if syn_recode_type == "alternating matched" or syn_recode_type == 

"alternating random" or syn_recode_type == "alternating highest" 

or syn_recode_type == "alternating lowest": 

    #check input has been given suitably 

    if alternating_repeat == "N/A" or alternating_repeat <= 0 or 

pd.isna(alternating_repeat) == True: 

        print("\n\n\n***ERROR: No value or an invalid value was 

set for the alternating pattern of the codons to 

recode.***\n\n\n") 

        alternating_repeat = int(input("Please enter a positive 

integrer for the alternating repeat value: ")) 

         

    if alternating_repeat > (0.5 * num_of_codons_to_recode): 

        proceed_alt = input("The chosen repeat value is greater 

than half of the total number of codons being recoded so only 2 or 

fewer codons will be mutated.\n\nDo you wish to proceed? Y/N \n") 

         

        if proceed_alt == "N" or proceed_alt == "n" or proceed_alt 

== "NO" or proceed_alt == "No" or proceed_alt == "no": 

            alternating_repeat = int(input("Please enter a 

positive integer for the alternating repeat value: ")) 

             

        elif proceed_alt == "Y" or proceed_alt =="y" or 

proceed_alt =="YES" or proceed_alt == "Yes" or proceed_alt == 

"yes": 

           pass  

        else: 

            proceed_alt = input("\n\nThe input given is not valid. 

Please try again.\n\nThe chosen repeat value is greater than half 

of the total number of codons being recoded so only 2 or fewer 

codons will be mutated.\n\nDo you wish to proceed? Y/N \n") 

            if proceed_alt == "N" or proceed_alt == "n" or 

proceed_alt == "NO" or proceed_alt == "No" or proceed_alt == "no": 

                alternating_repeat = int(input("\nPlease enter a 

positive integer for the alternating repeat value: ")) 

            elif proceed_alt == "Y" or proceed_alt =="y" or 

proceed_alt =="YES" or proceed_alt == "Yes" or proceed_alt == 

"yes": 

               pass  

            else: 

                proceed_alt = input("\n\nThe input given is not 

valid. Please try again.\n\nThe chosen repeat value is greater 

than half of the total number of codons being recoded so only 2 or 

fewer codons will be mutated.\n\nDo you wish to proceed? Y/N \n") 

                if proceed_alt == "N" or proceed_alt == "n" or 

proceed_alt == "NO" or proceed_alt == "No" or proceed_alt == "no": 

                    alternating_repeat = int(input("\nPlease enter 

a positive integer for the alternating repeat value: ")) 

                elif proceed_alt == "Y" or proceed_alt =="y" or 

proceed_alt =="YES" or proceed_alt == "Yes" or proceed_alt == 

"yes": 
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                   pass 

                else: 

                    print("\n-------------------------------------

-----------------------") 

                    print(f"\n***Warning, your input was invalid 

so the code will continue with the value given. Your repair 

template will recode every {alternating_repeat} codons. If you do 

not want this, modify the input spreadsheet and rerun the 

programme.***") 

                 

     

    if alternating_repeat == "N/A" or alternating_repeat <= 0 or 

pd.isna(alternating_repeat) == True: 

        print("\n\n\n***ERROR: An invalid value was set for the 

alternating pattern of the codons to recode.***\n\n\n") 

        alternating_repeat = int(input("Please enter a positive 

integer for the alternating repeat value: ")) 

         

    if alternating_repeat == "N/A" or alternating_repeat <= 0 or 

pd.isna(alternating_repeat) == True: 

        print("\n\n\n***ERROR: An invalid value was set for the 

alternating pattern of the codons to recode.***\n\n\n") 

        alternating_repeat = int(input("Last chance - please enter 

a positive integer for the alternating repeat value: ")) 

         

    if alternating_repeat == "N/A" or alternating_repeat <= 0 or 

pd.isna(alternating_repeat) == True: 

        print("\n\n\n\nYou failed to provide an appropriate input 

so the programme will be cancelled.\n\nIf you wish to try again, 

either modify the input spreadsheet or provide a suitable value 

when prompted in the console.\n") 

        raise SystemExit 

     

     

if syn_recode_type == "alternating matched" or syn_recode_type == 

"alternating random": 

        

 

    #determine which codon numbers in range are to be mutated and 

which are not 

    num_of_codons_to_mutate = int(num_of_codons_to_recode / 

alternating_repeat) 

    n_terms = list(range(num_of_codons_to_mutate)) 

    codon_nums_to_recode = [] 

     

    for n in n_terms: 

        codon_num = n * alternating_repeat 

        codon_nums_to_recode.append(codon_num) 

     

    #ensure that target codons are always recoded even if they 

don't fit the alternating pattern 

     

    target_codons_nos = list(mut_details_df["Codon no"]) 

     

    for codon_no in target_codons_nos: 
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        if codon_no not in codon_nums_to_recode: 

            codon_nums_to_recode.append(codon_no) 

     

     

    codon_nums_all = list(codons_to_recode.keys()) 

     

    #split the codons to be mutated into a separate dictionary 

from the ones to stay the same 

    codons_to_keep_WT = {} 

    specific_codons_to_recode = {} 

     

    for numbers in codon_nums_all: 

        if numbers not in codon_nums_to_recode: 

            codons_to_keep_WT[numbers] = codons_to_recode[numbers] 

         

        if numbers in codon_nums_to_recode: 

            specific_codons_to_recode[numbers] = 

codons_to_recode[numbers] 

     

 

    for numbers in codon_nums_to_recode: 

        if numbers not in codon_nums_to_recode: 

            codons_to_keep_WT = codons_to_recode[numbers] 

 

    if syn_recode_type == "alternating matched": 

        #on only the codons to recode 

        #use that dictionary to create a new one with the specific 

frequency values  

        codons_to_recode_freqs = 

cdf.codon_frequency_collector(input_dict = codons_to_recode, 

reference_dict = ref_codons, type = "value") 

         

        #create a dictionary with all the frequencies for the 

amino acids in this sequence for each codon 

        codons_to_recode_all_freqs = 

cdf.codon_frequency_collector(input_dict = codons_to_recode, 

reference_dict = ref_codons, type = "dataframe") 

         

         

        #calculate the differences for each possible codon to the 

original 

        recode_freq_diffs = 

cdf.codon_frequency_difference_calc(codons_to_recode_let_num, 

ref_codons) 

         

        #add the differences in frequency to "the" dataframe 

        codons_to_recode_abs_diffs = 

cdf.codon_freq_diff_adder(codons_to_recode_let_num 

,codons_to_recode_all_freqs, recode_freq_diffs) 

         

        #choose which codons to use for synonymous recoding 

        codons_to_use_syn = 

cdf.codon_freq_selector(codons_to_recode_abs_diffs) 

     

     

    if syn_recode_type == "alternating random": 
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        #add letters to dictionary 

        specific_codons_to_recode_let_num = {} 

         

        for keys, seq in specific_codons_to_recode.items(): 

            let_num = str(seq.translate()) + str(keys) 

            specific_codons_to_recode_let_num[let_num] = seq 

         

         

        #make a dictionary of the alternate codons to the input 

sequence 

        alt_codons_to_recode = 

cdict.alt_codons(specific_codons_to_recode_let_num) 

         

        #randomly select which of these to use for each codon 

        codons_to_use_syn = 

cdict.Syn_random_recoder(alt_codons_to_recode) 

         

 

    #combine the unchanged codons with the changed codons 

     

    codons_to_keep_WT_let_num = {} 

     

    for codon_num, seq in codons_to_keep_WT.items(): 

        translation = seq.translate() 

        codon_num_let = str(translation) + str(codon_num) 

         

        codons_to_keep_WT_let_num[codon_num_let] = seq 

     

    codons_to_use_syn.update(codons_to_keep_WT_let_num) 

     

 

if syn_recode_type == "alternating highest" or syn_recode_type == 

"alternating lowest": 

     

    num_of_codons_to_mutate = int(num_of_codons_to_recode / 

alternating_repeat) 

    n_terms = list(range(num_of_codons_to_mutate)) 

    codon_nums_to_recode = [] 

     

    for n in n_terms: 

        codon_num = n * alternating_repeat 

        codon_nums_to_recode.append(codon_num) 

     

    #ensure that target codons are always recoded even if they 

don't fit the alternating pattern 

     

    target_codons_nos = list(mut_details_df["Codon no"]) 

     

    for codon_no in target_codons_nos: 

         

        if codon_no not in codon_nums_to_recode: 

            codon_nums_to_recode.append(codon_no) 

     

     

    codon_nums_all = list(codons_to_recode.keys()) 
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    codons_to_keep_WT = {} 

    specific_codons_to_recode = {} 

     

    for numbers in codon_nums_all: 

        if numbers not in codon_nums_to_recode: 

            translate = codons_to_recode[numbers].translate() 

            let_num = str(translate) + str(numbers) 

            codons_to_keep_WT[let_num] = codons_to_recode[numbers] 

         

        if numbers in codon_nums_to_recode: 

            #translate = codons_to_recode[numbers].translate() 

            #let_num = str(translate) + str(numbers) 

            specific_codons_to_recode[numbers] = 

codons_to_recode[numbers] 

     

 

     

    for numbers in codon_nums_to_recode: 

        if numbers not in codon_nums_to_recode: 

            codons_to_keep_WT = codons_to_recode[numbers] 

 

    #use that dictionary to create a new one with the specific 

frequency values  

    codons_to_recode_freqs = 

cdf.codon_frequency_collector(input_dict = 

specific_codons_to_recode, reference_dict = ref_codons, type = 

"value") 

     

    #create a dictionary with all the frequencies for the amino 

acids in this sequence for each codon 

    codons_to_recode_all_freqs = 

cdf.codon_frequency_collector(input_dict = 

specific_codons_to_recode, reference_dict = ref_codons, type = 

"dataframe") 

     

    codons_to_recode_choices_freqs = {} 

    #remove input codon from list unless it's Met or Trp 

    for let_num, df in codons_to_recode_all_freqs.items(): 

        input_codon = codons_to_recode_let_num[let_num] 

        if input_codon == Seq.Seq("ATG") or input_codon == 

Seq.Seq("TGG"): 

 

            codons_to_recode_choices_freqs[let_num] = 

ref_codon_table_df.loc[ref_codon_table_df["DNA"] == 

str(input_codon)] 

        else: 

            current_df = codons_to_recode_all_freqs[let_num] 

            codons_to_recode_choices_freqs[let_num] = 

current_df.loc[current_df["DNA"] != str(input_codon)] 

 

    #recode based on input type 

    codons_to_use_syn = {} 

     

    if syn_recode_type == "alternating highest": 
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        for codon_num_let, seq_df in 

codons_to_recode_choices_freqs.items(): 

            max_freq_codon = max(seq_df["Fraction"]) 

            max_freq_codon_seq = seq_df.loc[seq_df["Fraction"] == 

max_freq_codon, "DNA"] 

            if len(max_freq_codon_seq) > 1: 

                max_number_codon = max(seq_df["Number"]) 

                max_freq_codon_seq = seq_df.loc[seq_df["Number"] 

== max_number_codon, "DNA"].item() 

                codons_to_use_syn[codon_num_let] = 

max_freq_codon_seq 

                      

            else: 

             codons_to_use_syn[codon_num_let] = 

max_freq_codon_seq.item() 

             

             

     

    if syn_recode_type == "alternating lowest": 

         

        for codon_num_let, seq_df in 

codons_to_recode_choices_freqs.items(): 

            min_freq_codon = min(seq_df["Fraction"]) 

            min_freq_codon_seq = seq_df.loc[seq_df["Fraction"] == 

min_freq_codon, "DNA"] 

            if len(min_freq_codon_seq) > 1: 

                min_number_codon = min(seq_df["Number"]) 

                min_freq_codon_seq = seq_df.loc[seq_df["Number"] 

== min_number_codon, "DNA"].item() 

                codons_to_use_syn[codon_num_let] = 

min_freq_codon_seq 

                      

            else: 

             codons_to_use_syn[codon_num_let] = 

min_freq_codon_seq.item() 

        

 

     

     

    #combine the unchanged codons with the changed codons 

     

    codons_to_keep_WT_let_num = {} 

     

    for codon_num, seq in codons_to_keep_WT.items(): 

        codons_to_keep_WT_let_num[codon_num] = seq 

     

    codons_to_use_syn.update(codons_to_keep_WT_let_num) 

 

 

if syn_recode_type == "random": 

    #make a dictionary of the alternate codons to the input 

sequence 

    alt_codons_to_recode = 

cdict.alt_codons(codons_to_recode_let_num) 

     

    #randomly select which of these to use for each codon 
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    codons_to_use_syn = 

cdict.Syn_random_recoder(alt_codons_to_recode) 

 

 

#add in the nonsynonymous mutations 

 

if nonsyn_recode_type == "highest" or nonsyn_recode_type == 

"lowest": 

     

    nonsyn_ref_dict = ref_codons 

     

if nonsyn_recode_type == "random": 

    nonsyn_ref_dict = cdict.alt_codons(codons_to_recode_let_num) 

    nonsyn_ref_dict = {} 

     

    for row in mut_details_df.index: 

        output_AA = mut_details_df.at[row, "Replacement AA"] 

        nonsyn_ref_dict[output_AA] = 

cdict.ref_codon_table(output_AA) 

 

 

#codons_to_use_nonsyn = cdf.non_syn_mutator(target_AA, 

target_codon_no, new_AA = output_AA, input_dict = 

codons_to_use_syn, type = nonsyn_recode_type, ref_dict = 

nonsyn_ref_dict ) 

 

codons_to_use_nonsyn = codons_to_use_syn 

 

 

for row in mut_details_df.index: 

    target_AA = mut_details_df.at[row, "Target AA"] 

    target_codon_no = mut_details_df.at[row, "Codon no"] 

    output_AA = mut_details_df.at[row,"Replacement AA"] 

     

    current_mut_nonsyn_codon = cdf.non_syn_mutator(target_AA, 

target_codon_no, new_AA = output_AA, input_dict = 

codons_to_use_nonsyn, type = nonsyn_recode_type, ref_dict = 

nonsyn_ref_dict) 

     

    codons_to_use_nonsyn = current_mut_nonsyn_codon 

     

    target_key = str(output_AA) + str(target_codon_no) 

     

 

 

#construct the final recoded sequences 

 

synonymous_repair = stitch.sequence_constructor(codons_to_use_syn, 

type = "letter-number") 

nonsynonymous_repair = 

stitch.sequence_constructor(codons_to_use_nonsyn, type = "letter-

number") 

 

#check all the modifications were as expected 

#adjust target codon number to what it would be by normal counting 

rather than python counting 
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target_codon_no_not_py = target_codon_no + 1 

 

 

#check all is as expected 

 

for row in mut_details_df.index: 

    target_AA = mut_details_df.at[row, "Target AA"] 

    output_AA = mut_details_df.at[row, "Replacement AA"] 

    codon_no_py = mut_details_df.at[row, "Codon no"] + 1 

     

    mut_details_df.at[row, "Syn mutation correct"] = 

val.translate_checker(synonymous_repair, codon_no_py, target_AA) 

     

    mut_details_df.at[row, "Nonsyn mutation correct"] = 

val.translate_checker(nonsynonymous_repair, codon_no_py, 

output_AA) 

 

 

#error if some of these fail 

 

if mut_details_df["Syn mutation correct"].any() == False or 

mut_details_df["Nonsyn mutation correct"].any() == False: 

    print("\n\n\n***WARNING - Errors in recoding or mutating 

detected***\n\n\n") 

     

     

 

#create the final repair sequence including the homology arms 

 

upstream_hom_arm = gene_name.seq[(recode_start_whole - 

hom_arm_length):recode_start_whole] 

downstream_hom_arm = gene_name.seq[recode_end_whole: 

(recode_end_whole + hom_arm_length)] 

 

WT_entire_repair_region = upstream_hom_arm + WT_template_seq + 

downstream_hom_arm 

entire_syn_repair = upstream_hom_arm + synonymous_repair + 

downstream_hom_arm 

entire_nonsyn_repair = upstream_hom_arm + nonsynonymous_repair + 

downstream_hom_arm 

 

 

 

#construct "gene" sequences for primer design 

integrated_synonymous, WT_recode_region = 

stitch.mut_seq_integrator(repair_seq = synonymous_repair, ref_seq 

= gene_name.seq, repair_start = recode_start_whole, repair_end = 

recode_end_whole, WT_repair_seq= "Yes") 

integrated_nonsynonymous = stitch.mut_seq_integrator(repair_seq = 

nonsynonymous_repair, ref_seq = gene_name.seq, repair_start = 

recode_start_whole, repair_end = recode_end_whole, WT_repair_seq= 

"No") 

 

#design screening primers 
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screening_primers_df_syn  = 

primers.screening_primer_designer(gene_name.seq, 

integrated_synonymous, recode_start_whole, recode_end_whole) 

screening_primers_df_nonsyn  = 

primers.screening_primer_designer(gene_name.seq, 

integrated_nonsynonymous, recode_start_whole, recode_end_whole) 

 

#design primers to generate the repair template 

syn_repair_template_primers = 

primers.repair_primer_designer(entire_syn_repair, hom_arm_length, 

downstream_dna) 

nonsyn_repair_template_primers = 

primers.repair_primer_designer(entire_nonsyn_repair, 

hom_arm_length, downstream_dna) 

 

#repair_template_primers = [syn_repair_template_primers, 

nonsyn_repair_template_primers] 

 

#repair_template_primers_df = 

pd.DataFrame(repair_template_primers) 

#repair_template_primers_df.index = ["Synonymous repair", 

"Nonsynonymous repair"] 

 

#do an alignment  

 

#create a pariwise alignment object 

aligner = Align.PairwiseAligner(target_internal_open_gap_score = -

10.0, query_internal_open_gap_score = -10.0) 

 

 

 

syn_alignment = aligner.align(WT_entire_repair_region, 

entire_syn_repair) 

for alignment1 in sorted(syn_alignment): 

    #print("Score = %.1f:" % alignment1.score) 

    #print(alignment1) 

    syn_score = alignment1.score 

alignment_str_syn = str(alignment1) 

alignment_str_syn = alignment_str_syn.replace("target", "WT 

sequence").replace("query", "Syn. repair").replace("\n           

", "\n                ") 

alignment_str_syn = alignment_str_syn.replace("Syn. repair           

", "Syn. repair          ") 

#print(alignment_str_syn)  

     

nonsyn_alignment = aligner.align(WT_entire_repair_region, 

entire_nonsyn_repair) 

for alignment2 in sorted(nonsyn_alignment): 

    #print("Score = %.1f:" % alignment2.score) 

    nonsyn_score = alignment2.score 

alignment_str_nonsyn = str(alignment2) 

alignment_str_nonsyn = alignment_str_nonsyn.replace("target", "WT 

sequence").replace("query", "Nonsyn. repair").replace("\n           

", "\n                ") 

alignment_str_nonsyn = alignment_str_nonsyn.replace("Nonsyn. 

repair           ", "Nonsyn. repair       ") 
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#print(alignment_str_nonsyn)     

 

 

 

 

#format some outputs 

 

WT_repair_seq_spaced = 

formats.codon_spacing(WT_entire_repair_region) 

syn_repair_spaced = formats.codon_spacing(entire_syn_repair) 

nonsyn_repair_spaced = formats.codon_spacing(entire_nonsyn_repair) 

 

WT_repair_translate = WT_entire_repair_region.translate() 

syn_repair_translate = entire_syn_repair.translate() 

nonsyn_repair_translate = entire_nonsyn_repair.translate() 

 

WT_repair_translate_spaced = 

formats.protein_align_codon(WT_repair_translate) 

syn_repair_translate_spaced = 

formats.protein_align_codon(syn_repair_translate) 

nonsyn_repair_translate_spaced = 

formats.protein_align_codon(nonsyn_repair_translate) 

 

syn_repair_mutations_count = 

val.mutation_counter(entire_syn_repair, WT_entire_repair_region) 

nonsyn_repair_mutations_count = 

val.mutation_counter(entire_nonsyn_repair, 

WT_entire_repair_region) 

 

syn_repair_primers_output = "" 

 

for category, item in syn_repair_template_primers.items(): 

    if type(item) == float: 

        item = '{:.1f}'.format(item) 

    syn_repair_primers_output += category 

    syn_repair_primers_output += ": " 

    syn_repair_primers_output += str(item) 

    syn_repair_primers_output += "\n" 

     

nonsyn_repair_primers_output = "" 

 

for category, item in nonsyn_repair_template_primers.items(): 

    if type(item) == float: 

        item = '{:.1f}'.format(item) 

    nonsyn_repair_primers_output += category 

    nonsyn_repair_primers_output += ": " 

    nonsyn_repair_primers_output += str(item) 

    nonsyn_repair_primers_output += "\n" 

 

if syn_recode_type == "alternating matched" or syn_recode_type == 

"alternating highest" or syn_recode_type == "alternating lowest" 

or syn_recode_type == "alternating random": 

    alternating_info = f"Alternating recoding every 

{alternating_repeat} codons" 

else: 

    alternating_info = "" 
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mut_details_df.sort_values("Target residue number", inplace = 

True) 

 

mutations = [] 

 

for row in mut_details_df.index: 

    target_AA = mut_details_df.at[row, "Target AA"] 

    target_res_num = mut_details_df.at[row, "Target residue 

number"] 

    output_AA = mut_details_df.at[row, "Replacement AA"] 

    mutation = str(target_AA) + str(target_res_num) + 

str(output_AA)  

    mutations.append(mutation) 

     

mutations_text = str(mutations).replace("[", "").replace("]", 

"").replace("'", "") 

 

 

output_file = open(f"{job_name}.txt", "w") 

 

file_lines = ["Job request details\n", 

              f"Job name: {job_name}\n", 

              f"Number of Nonsynonymous mutations: 

{num_of_mutations}\n" 

              f"Mutations: {mutations_text}\n", 

              f"Synonymous recoding type: {syn_recode_type}\n", 

              f"Nonsynonymous recode type: 

{nonsyn_recode_type}\n", 

              f"Homology arm length (bp): {hom_arm_length}\n", 

              f"Recoding region length (bp): 

{recode_region_length}\n", 

              f"Total repair length (bp): {(2*hom_arm_length) + 

recode_region_length}\n", 

              f"{alternating_info}\n", 

              "\n", 

              "\n", 

              "Repair templates\n", 

              f"WT repair region sequence: 

\t\t{WT_repair_seq_spaced}\n", 

              f"WT translation: 

\t\t\t{WT_repair_translate_spaced}\n", 

              f"Synonymous repair region sequence: 

\t{syn_repair_spaced}\n", 

              f"Synonymous repair translation: 

\t\t{syn_repair_translate_spaced}\n", 

              f"Nonsynonymous repair region sequence: 

\t{nonsyn_repair_spaced}\n", 

              f"Nonsynonymous repair translation: 

\t{nonsyn_repair_translate_spaced}\n", 

              "\n", 

              f"Number of mutations in the synonymous repair 

template: {syn_repair_mutations_count}\n", 

              f"Number of mutations in the nonsynonymous repair 

template: {nonsyn_repair_mutations_count}\n", 
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              "\n", 

              "\n", 

              "Screening primers\n", 

              "Synonymous repair\n", 

              "\n", 

              f"{screening_primers_df_syn}\n", 

              "\n", 

              "\n", 

              "Nonsynonymous primers\n" 

              f"{screening_primers_df_nonsyn}", 

              "\n", 

              "\n", 

              "Repair template primers\n", 

              "Synonymous\n", 

              f"{syn_repair_primers_output}\n", 

              "\n", 

              "Nonsynonymous\n", 

              f"{nonsyn_repair_primers_output}\n", 

              "\n", 

              f"WT sequence (no spaces): 

{WT_entire_repair_region}\n", 

              f"Synonymous sequence (no spaces): 

{entire_syn_repair}\n", 

              f"Nonsynonymous sequence (no spaces): 

{entire_nonsyn_repair}\n", 

              "\n", 

              "\n", 

              "Alignments\n", 

              "Synonymous Repair\n", 

              f"Score = {syn_score}\n", 

              f"{alignment_str_syn}\n", 

              "\n", 

              "Nonsynonymous\n", 

              f"Score = {nonsyn_score}\n", 

              f"{alignment_str_nonsyn}\n" 

               

    ] 

 

output_file.writelines(file_lines) 

output_file.close() 

 

#print confirmation message to make it clearer that it worked 

print(f"\n\n\nYour repair template designs have completed 

successfully. Please check your folder for a file with the name 

'{job_name}.txt'\n") 

print("\t.\t.\n", "\n\t\___/\n\n\n") 

 

 

 


