

 1

DEVELOPING AN EFFICIENT
PRECISION EDITING METHODOLOGY

FOR LEISHMANIA MEXICANA TO
INVESTIGATE THE KINETOCHORE

COMPLEX.

Charlotte Hughes

Master of Science

University of York

Biology

September 2024

 2

1 PREFACE

1.1 Abstract

Leishmania mexicana is a parasitic protozoan, and one of the causative agents of cutaneous

leishmaniasis – a skin infection causing large lesions. Leishmania spp. have some unusual

biological features, due to their early evolutionary split from other eukaryotes. One is their

unique kinetochore complex – the protein complex responsible for binding the

chromosomes to microtubules during mitosis. To evaluate the role of specific

phosphorylation sites on essential kinetochore proteins, a selection-free precision editing

strategy using the CRISPR-Cas9 system was investigated in promastigotes. Genomic DNA

was targeted with 120 nt single-stranded oligonucleotide repair DNA to generate 10 unique

amino acid substitutions to create phosphosite mutants from kinetochore proteins KKT1,

KKT2, KKT4 and KKT7 but was only successful in 2.0% of clones. Comparatively, using 160

bp double-stranded repair DNA targeting 6 phosphosites between KKT2, KKT4 and KKT7

generated phosphodeficient, phosphomimetic and synonymous mutants at each target

site tested. Across 18 unique transfections, PCR screening detected integration of the

repair template in 24.6% of clones screened. Surprisingly, following Sanger sequencing, it

was found that 29.2% of clones screened were in fact edited. Mutant clones were

predominantly homozygous (21.7% of clones), including at least one clone per transfection.

Kinetochore phosphosite mutant clones were assessed for growth changes and cell cycle

dysregulation, but no apparent phenotypes were detected. Lastly, to pave the way for

higher-throughput precision editing using this method, a Python script was developed to

replicate the design process used to create the 160 bp repair templates. The script uses a

FASTA file, codon usage table and a simple Excel spreadsheet configuration file to design

the desired repair template with a single nonsynonymous mutation, and additional

synonymous mutations for screening purposes. It also generates a corresponding

synonymous-mutation only repair template, as well as screening primers and primers to

produce the repair templates for a ready-to-go approach.

 3

1.2 Table of Contents
1 PREFACE .. 2

1.1 ABSTRACT ... 2

1.2 TABLE OF CONTENTS ... 3

1.3 LIST OF TABLES .. 6

1.4 LIST OF FIGURES ... 7

1.5 LIST OF ACCOMPANYING MATERIAL ... 8

1.6 ACKNOWLEDGEMENTS .. 10

1.7 AUTHOR’S DECLARATION ... 10

2 CHAPTER ONE - INTRODUCTION ... 11

2.1 LEISHMANIASIS DISEASE AND THE LEISHMANIA LIFECYCLE ... 11

2.2 GENE EDITING AND CRIPSR-CAS9 .. 12

2.3 THE KINETOCHORE COMPLEX ... 17

2.3.1 Vertebrates and Higher Eukaryotes ... 17

2.3.2 Kinetoplastids ... 18

3 CHAPTER TWO - METHODOLOGIES ... 23

3.1 CELL CULTURE ... 23

3.2 SINGLE-STRANDED OLIGONUCLEOTIDE REPAIR TEMPLATE DESIGN ... 23

3.3 SGRNA PRODUCTION ... 25

3.4 DNA PREPARATION FOR TRANSFECTION ... 26

3.5 TRANSFECTION AND CLONING ... 26

3.6 SINGLE-STRANDED SCREENING ... 26

3.6.1 Screening of Clones... 26

3.7 SINGLE-STRANDED POOLED EXPERIMENT .. 27

3.7.1 Design of Repair Templates .. 27

3.7.2 DNA Preparation, Transfection and Genomic DNA Extraction ... 31

3.7.3 Screening PCR for Repair Template Integration from Pooled Transfections 32

3.8 REPAIR TEMPLATE DESIGN – DOUBLE-STRANDED ... 32

3.8.1 Design ... 32

3.8.2 Production of Repair templates .. 33

3.8.3 DNA Preparation, Transfection and Genomic DNA Extraction ... 33

3.8.4 Screening PCRs ... 34

3.8.5 Sequencing ... 34

3.9 ALAMAR BLUE GROWTH ASSAY .. 34

3.10 FLOW CYTOMETRY ... 35

3.11 STATISTICAL ANALYSES .. 36

 4

4 CHAPTER THREE - RESULTS.. 37

4.1 SINGLE-STRANDED REPAIR TEMPLATES ... 37

4.2 POOLED REPAIR TEMPLATES ... 43

4.3 KKT2 SYNONYMOUS MUTATIONS USING DOUBLE-STRANDED REPAIR TEMPLATES ... 46

4.4 KINETOCHORE PHOSPHOSITE MUTATIONS USING DOUBLE-STRANDED DNA REPAIR TEMPLATES 50

4.5 GROWTH ANALYSIS OF KINETOCHORE PHOSPHOSITE MUTANTS .. 60

4.6 CELL CYCLE ANALYSIS OF KINETOCHORE PHOSPHOSITE MUTANTS .. 62

4.7 DISCUSSION .. 66

5 CHAPTER FOUR – PYTHON SCRIPT... 77

5.1 INTRODUCTION .. 77

5.2 DEVELOPMENT .. 79

5.2.1 Recoding Methodologies .. 82

5.2.2 Alternating Recoding .. 89

5.2.3 Final Repair Sequence Assembly... 91

5.2.4 Primer Design ... 91

5.2.5 Alignment ... 93

5.2.6 Completing the Execution of the Code and the Output Document... 95

5.3 RESULTS ... 98

5.4 LIMITATIONS AND FUTURE DIRECTIONS .. 99

5.5 SUMMARY AND CONCLUSION ... 106

6 CHAPTER FIVE – GENERAL DISCUSSION ... 107

6.1 DISCUSSION .. 107

6.2 FUTURE DIRECTIONS ... 114

7 EPILOGUE .. 118

7.1 REFERENCES .. 118

7.2 APPENDICES .. 130

7.2.1 List of Abbreviations ... 130

7.2.2 Supplementary Data ... 132

7.2.2.1 Single-stranded Transfection Restriction Digest Screens ... 132

7.2.2.2 KKT2 Synonymous Only Mutant Double-stranded Transfection PCR Screens 144

7.2.2.3 Double-stranded Transfection PCR Screens... 148

7.2.3 Genes of Interest .. 157

7.2.3.1 Names and IDs ... 157

7.2.3.2 Genomic DNA Sequences .. 157

7.2.3.3 Native Protein Sequences .. 162

7.2.4 Repair Template Designs .. 163

 5

7.2.4.1 Codon Usage of Leishmania Infantum from https://www.kazusa.or.jp/codon/ 164

7.2.4.2 Single-Stranded Repair Templates ... 165

7.2.4.3 Pooled Single-Stranded Repair Template Designs ... 171

7.2.4.4 Double-Stranded Repair Template Designs ... 174

7.2.5 Primers ... 178

7.2.5.1 sgRNA Primers ... 178

7.2.5.2 Single-Stranded Repair Primers ... 180

7.2.5.3 Single-Stranded Screening and Sequencing Primers ... 184

7.2.5.4 Single-Stranded Pooled Experiment Screening Primers .. 185

7.2.5.5 Double-Stranded Repair Primers ... 186

7.2.5.6 Double-Stranded Screening Primers .. 191

7.2.5.7 Double-Stranded Sequencing PCR Amplification Conditions and Sanger Sequencing Primers ... 193

7.2.6 Single-Stranded Screening Conditions .. 194

7.2.7 Pooled Repair Screening Conditions ... 196

7.2.7.1 Primer Combinations ... 196

7.2.7.2 Cycling Conditions .. 197

7.2.8 Pooled Repair Template Recoding Lists .. 198

7.2.9 Example Output File Text From the Python Script .. 203

7.2.9.1 Page 1 (left hand side) ... 203

7.2.9.2 Page 1 (right hand side) ... 204

7.2.9.3 Page 2 .. 205

7.2.10 Main Code .. 207

7.2.11 Reading Input File ... 223

7.2.12 Codon Dictionaries.. 224

7.2.13 Codon Dataframes.. 228

7.2.14 Formatting Functions ... 238

7.2.15 Stitching Functions ... 239

7.2.16 Validator ... 242

7.2.17 Primer Functions ... 244

7.2.18 Main Code Batch Version ... 256

7.2.18.1 Modified Configuration Spreadsheet... 256

7.2.18.2 Code ... 257

7.2.19 Main Code Multi Mutant Version ... 275

7.2.19.1 Modified Configuration Spreadsheet... 275

7.2.19.2 Code ... 276

 6

1.3 List of Tables

Table 1 Alignment of recoded regions of pooled

repair templates. Black text indicates WT

sequence, orange text indicates

synonymously recoded sequence, yellow

highlight indicates a non-synonymous

mutation from serine to alanine. ……………………….... 28

Table 2 Genotyping results for transfections using

single-stranded oligonucleotide repair

template, following detection by restriction

digest and Sanger sequencing. ……………………….... 40

Table 3 Genotyping results of synonymous mutant

clones from transfections using double-

stranded repair templates when screening

12 clones. ……………………….... 47

Table 4 Kinetochore phosphosite mutant

genotypes summary as detected by PCR

screen and Sanger sequencing. Percentages

are of the total number of clones screened. ……………………….... 51

Table 5 Comparison of the success of transfections

using single-stranded or double-stranded

repair templates. ……………………….... 66

Table 6 Python package versions used in the

creation of the Python repair template

generating script. ……………………….... 79

Table 7 Repair generator constituent files and

purposes. ……………………….... 80

 7

1.4 List of Figures

Figure 1 Current site-directed mutagenesis

technologies for kinetoplastids. …………………….. 16

Figure 2 Kinetochore complex schematic diagrams

from eukaryotic organisms. …………………….. 20

Figure 3 Single-stranded repair template design

process as described in Methods 3.2. …………………….. 24

Figure 4 Example pooled repair template transfection

screening primer design process. …………………….. 31

Figure 5 Schematic of the single-stranded DNA

precision editing workflow. …………………….. 39

Figure 6 Single-stranded oligonucleotide repair

template precision editing results. …………………….. 42

Figure 7 Single-stranded pooled repair template

results. …………………….. 45

Figure 8 Production of double-stranded repair

template using oligonucleotide primers. …………………….. 47

Figure 9 Example sequencing results for mutant

clones from transfections using double-

stranded repair templates. …………………….. 49

Figure 10 Screening results of phosphosite mutant

clones transfected with dsDNA repair

templates. …………………….. 56

Figure 11 Mathematical analysis of precision editing

efficiencies. …………………….. 59

Figure 12 Alamar blue growth assay of kinetochore

phosphosite mutants following 5 days of

growth. …………………….. 61

Figure 13 Cell cycle analysis of mid-log phase cultures

of kinetochore phosphosite mutants. …………………….. 63

Figure 14 Cell cycle analysis of KKT2 S530E clone 21 and

KKT2 S25E clone 11. …………………….. 65

 8

Figure 15 Python repair template generator script

workflow (part 1). …………………….. 85

Figure 16 Python repair template generator script

workflow (part 2). …………………….. 87

Figure 17 Additional input files needed to execute the

Python script repair template generator. …………………….. 89

Figure 18 Alternating recoding example. …………………….. 90

Figure 19 Schematics of the repair primer annealing

region design process and the calculation of

the number of mutations per repair

template. …………………….. 94

Figure 20 Example output file generated by the Python

script. …………………….. 98

1.5 List of Accompanying Material

Filename Description

Hughes_202006829_repair_template_input_

excel.xlsx

Template Excel spreadsheet

configuration file for instructing the

Python script.

Hughes_202006829_main.py Python file which when executed reads

the repair_template_input_excel.xlsx

file and designs repair templates and

primers.

Hughes_202006829_reading_input_file.py A Python file which is needed for

main.py to execute.

Hughes_202006829_codon_dictionaries.py A Python file which is needed for

main.py to execute.

Hughes_202006829_codon_dataframes.py A Python file which is needed for

main.py to execute.

 9

Hughes_202006829_formatting_functions.py A Python file which is needed for

main.py to execute.

Hughes_202006829_stitching_functions.py A Python file which is needed for

main.py to execute.

Hughes_202006829_validator.py A Python file which is needed for

main.py to execute.

Hughes_202006829_primer_functions.py A Python file which is needed for

main.py to execute.

Hughes_202006829_repair_template_input_

excel_batch.xlsx

Template Excel spreadsheet

configuration file for instructing the

batch version of the Python script.

Hughes_202006829_main_batch.py A modified version of main.py Python

file which when executed, reads

repair_template_input_excel_batch.xls

x and generates several sets of repair

templates and primers.

Hughes_202006829_repair_template_input_

excel_multi_mutant.xlsx

Template Excel spreadsheet

configuration file for instructing the

multi-mutant version of the Python

script.

Hughes_202006829_main_multi_mutant.py A modified version of main.py Python

file which when executed, reads

repair_template_input_excel_multi_m

utant.xlsx to generate a pair of repair

templates with up to 5 nonsynonymous

target mutations.

Please note that due to the naming requirements for submission, these files will not run

the Python script as intended unless the prefix (Hughes_202006829_) is removed from all

Python (.py) and Excel (.xlsx) file names before use. Additionally, all files must be saved in

the same folder/directory to run as intended.

 10

1.6 Acknowledgements
Thank you to Juliana Carnielli and Vincent Geoghegan for their support with designing

repair templates, choosing targets and general advice on this project. Thank you to Nicola

Baker for the idea to create a computer programme to scale up this approach. Thank you

to Sandy Macdonald for providing the Python training and Robert Callender for additional

Python help. Thank you to all the colleagues at York for their general help and advice,

especially those who provided genes to test the Python script on. Thank you to my

supervisors Jeremy Mottram and Joana Correia Faria, and TAP panel member Pegine

Walrad for their support and enthusiasm throughout the entire project. A huge thank you

to the University of York for signing the Technician commitment to continue to upskill

technicians like me, and to the department of biology for supporting me to do so.

1.7 Author’s Declaration
I declare that this thesis is a presentation of original work and I am the sole author. This

work has not previously been presented for a degree or other qualification at this

University or elsewhere. All sources are acknowledged as references.

 11

2 CHAPTER ONE - INTRODUCTION

2.1 Leishmaniasis Disease and the Leishmania Lifecycle
Leishmania mexicana is a protozoan parasite and one of the causative agents for cutaneous

leishmaniasis (CL) (Burza, Croft and Boelaert, 2018). CL causes lesions on the skin, which in

some instances can be self-healing, but many often leave disfiguring scars. Leishmania spp.

are transmitted by female sandflies, which bite mammals and feed on their blood. When a

sandfly feeds on infected blood, it can propagate the infection to the next animal it feeds

on, spreading the infection (Burza, Croft and Boelaert, 2018). As such, Leishmania spp.

require a complex digenetic lifecycle to survive inside the different hosts, experiencing

different temperatures, pHs and nutrient availabilities.

Whilst carried by the sandfly, the parasites differentiate into the replicative promastigote

form, as they live inside the midgut where nutrient availability is good. Once the number

of cells has expanded, the promastigotes prepare for reinfection of a mammalian host, and

differentiate into metacyclic promastigotes. In doing so, they move up into the stomodeal

valve of the sandfly and block it with a gel plug (Sacks, 1989; Rogers, Chance and Bates,

2002). The gel plug aids the parasite by affecting the way the sandfly feeds to increase its

chances of infecting the next host. During feeding, the metacyclic promastigotes are

injected into the host, where they interact with macrophages and are phagocytosed. For

many infectious organisms, this would mean death, but Leishmania spp. have evolved to

live in this environment. Once inside the macrophage, the parasite differentiates into the

amastigote form, which are adapted to the acidic pH of the phagosome and the reduced

nutrient availability (McConville and Naderer, 2011). They also change morphology, taking

on a more round cell body shape, with a reduced flagellum that does not protrude from

the cell body (Burza, Croft and Boelaert, 2018). However, amastigotes do not just survive

inside the phagosome, they are able to replicate there, leading to the macrophage bursting,

releasing the amastigotes. From there, amastigotes can re-infect macrophages, until either

a sandfly takes up the blood meal from this host or the host clears the infection. If a sandfly

takes up the infected blood meal, the amastigotes differentiate back into promastigotes,

starting the cycle again.

 12

There is a need to investigate the biology of Leishmania species, as there are around 1

million new cases of leishmaniasis worldwide each year (Burza, Croft and Boelaert, 2018).

Current treatments are largely chemotherapeutic, toxic, and can often be ineffective

(Madusanka, Silva and Karunaweera, 2022). Understanding the unique biology of these

parasites can help to find new drug targets and treatment approaches to reduce the burden

of this disease. Additionally, since L. mexicana causes one of the least severe forms of

leishmaniasis and grows well in vitro, L. mexicana has become a model for understanding

the biology of Leishmania spp.

2.2 Gene Editing and CRIPSR-Cas9
One way to investigate the biology of Leishmania spp. is through gene editing. Gene editing

can be used to elucidate the function of specific genes and the proteins encoded by them.

Gene editing in Leishmania began using homologous recombination-based strategies from

donor DNA containing large homologous sequences (Cruz and Beverley, 1990). Whilst this

strategy was generally effective, the discovery of the bacterial CRISPR-Cas9 system has

allowed gene editing to become quicker, easier and more efficient than before.

In the CRISPR-Cas9 system, Cas9 is an endonuclease that can make double-stranded DNA

(dsDNA) breaks at a specific sequence of DNA, as directed by a single-guide RNA (sgRNA)

(Gasiunas et al., 2012). In bacteria, CRISPR (Clustered, regularly interspaced, short

palindromic repeats) are a stored library of reference sequences from viral invaders. When

a reference sequence is transcribed into an sgRNA, it directs the Cas9 endonuclease to

cleave the sequence, hence removing viral sequences present in its genome and avoiding

damage from viral replication. The cleavage of the DNA from Cas9 always takes place 3

nucleotides away from a short motif called the Protospacer Adjacent Motif (PAM), which,

in the most commonly used S. thermophilus Cas9, is an NGG motif (Gasiunas et al., 2012).

By providing an sgRNA made in vitro, it is possible to “hijack” the Cas9 endonuclease activity

to make a dsDNA break in any known DNA sequence ending with an NGG. Whilst Cas9 has

very high specificity, some mismatches within the sequence can enable the dsDNA break

to proceed, which can lead to off-target breaks elsewhere in the genome (Hsu et al., 2013).

That being said, the precision and specificity of the CRISPR-Cas9 system is so versatile that

it is indispensable in modern molecular biological research.

 13

The CRISPR-Cas9 system was first tested in Leishmania in 2015 by Sollelis et al. This first

approach used episomal expression of Cas9, with transfection of linearised plasmid

containing sgRNA under a U6 RNA polymerase III promoter, and an antibiotic selection

marker flanked with two ~1 kb homology regions to replace the target locus. This was able

to successfully generate null mutants in a single round of transfection, which prior to Cas9

would have required two rounds to remove both alleles (Sollelis et al., 2015). Whilst this

approach was effective, generation of repair templates with such large homology regions

is cumbersome. To attempt to tackle this issue, Beneke et al. (2017) investigated whether

smaller homology regions would remain effective. They showed that homology regions of

just 30 bp were equally as efficient when Cas9-directed breaks were made. Additionally,

Beneke et al. (2017) used Cas9 integrated into the genome, and a T7 RNA polymerase (T7

RNAP). Stable integration of Cas9 helped reduce some of the concerns over variable Cas9

expression that Sollelis et al. (2015) experienced with episomal expression. Changing the

sgRNA promoter to a T7 promoter also simplified the process. Using a T7 RNAP allowed

transfection of DNA constructs containing a T7 promoter, which are then transcribed into

the sgRNA in cellulo. In this cell line, the T7 RNAP gene was also integrated in the genome.

From this, Beneke et al. developed a toolkit to make deleting and tagging genes easier than

before (Beneke et al., 2017). This toolkit provides template sequences for either gene

deletion or gene tagging which are contained on plasmids, and can be amplified with

primers containing a 20 nt annealing sequence and 30 nt homology arm sequences. These

repair templates contain an antibiotic resistance gene, to act as a positive selection marker

for cells that have been edited, and to remove untransfected cells from the population.

This method was demonstrated through the knock-out of flagellum genes in L. mexicana,

L. major and T. brucei (Beneke et al., 2017). Because of the simplicity and versatility of such

an approach, large-scale projects have used this system to generate mutants at scale. One

example of this was the deletion and tagging of every kinase in the genome by Baker et al.

(2021). However, this toolkit is limited to mutations at a whole gene scale due to the

inclusion of the antibiotic resistance marker, which can only be incorporated at either end

of, or in place of a gene. In order to generate mutations at a sub-gene scale (e.g. single

nucleotide changes), an alternate approach is required: precision editing.

 14

Presently, to make precision mutations that target a single amino acid of a protein,

constructs have to be created for each gene - cloning the gene of interest into a plasmid

and then editing it in vitro, before replacing the endogenous gene with the mutant version

(Figure 1A). This method can be effective and has been used before, such as by Nerusheva

and Akiyoshi in 2016 to generate mutants of interest in trypanosomes to investigate how

KKT2 localises to the kinetochore. Similarly, Saldivia et al. (2020) generated a mutant

version of CLK1/KKT10 on a plasmid, which was then inserted into the tubulin locus.

Subsequently, RNA interference (RNAi) was used to prevent expression of the WT allele

(Figure 1C). However, this process of cloning, editing and reintegrating is time consuming

and laborious for what may be only a handful of nucleotide changes on one gene. Hence,

it is not scalable to evaluate larger numbers of sites of interest, such as in a library screen.

It also still relies on incorporation of a positive selection marker, which is a relatively large-

scale change, which may not be suitable for all applications.

Smaller constructs have been used as repair templates for CRISPR-directed mutants in a

range of kinetoplastids, typically in the form of oligonucleotide repair templates (Figure

1B). Zhang and Matlashewski (2015) used single-stranded oligonucleotide repair templates

with 25 nt homology arms to modify the miltefosine transporter gene, to incorporate

premature stop codons into L. donovani (Pal and Dam, 2022). Rico et al. (2018) also used

oligonucleotide repair templates with 50 nt homology arms to modify the aquaglyceroporin

gene in T. brucei. Also in T. brucei, 68 nt oligonucleotides have been used as repair

templates to generate enzymatic mutations to the CPSF3 gene, mutating only 8 nucleotides

in total (Wall et al., 2018). Medeiros et al. (2017) used oligonucleotides as repair templates

to introduce premature stop codons in fluorescent reporter genes in T. cruzi, using

recombinantly produced Cas9 ribonucleoprotein complexes rather than endogenous Cas9

expression (Lander and Chiurillo, 2019). Interestingly, small oligonucleotide-derived repair

templates have also been effective at generating precision edited mutants without the use

of CRISPR-Cas9 system to generate drug resistant cell lines in T. brucei (Altmann et al.,

2022). Outside of kinetoplastids but within the realm of parasitology, similar protocols have

been used to modify Plasmodium falciparum using 200 nt oligonucleotide repair templates

(Crawford et al., 2017) and either 50 bp and 125 bp double-stranded oligonucleotide or 125

bp PCR generated repair templates in Trichomonas vaginalis (Janssen et al., 2018).

 15

 16

Figure 1. Current site-directed mutagenesis technologies for kinetoplastids. A)

Mutagenesis through whole gene replacement of a gene of interest (GOI). The GOI is

amplified from genomic DNA and cloned into a vector. In vitro mutagenesis approaches are

used to generate the mutation of interest in the vector. The mutated vector is linearised

(either by PCR amplification or restriction digest) to retrieve the mutated gene, and is

transfected into a CRISPR-Cas9 cell line with sgRNAs targeting either end of the gene of

interest. Following the double-stranded DNA (dsDNA) break by Cas9, homology-directed

repair (HDR) leads to integration of the repair template. In some instances, a positive-

selection marker may also be included in the repair template to select for mutant cells. B)

Oligonucleotide/single-stranded DNA (ssDNA) precision editing approaches used by other

groups in the literature (Zhang and Matlashewski, 2015; Medeiros et al., 2017; Rico et al.,

2018; Wall et al., 2018; Pal and Dam, 2022). A repair template is designed containing

homology arms and the mutation(s) of interest. This is synthesized as an oligonucleotide

and transfected into CRISPR-Cas9 competent cells with one or two sgRNAs targeting the

region adjacent to the mutation of interest. The dsDNA break leads to HDR and integration

of the repair template, though efficiency of this approach is typically low due to no

selection for transfected cells. C) RNA-interference (RNAi) for expression of mutant GOI

(not possible in most Leishmania species, but present in Trypanosoma brucei). A cell line is

generated containing the construct indicated on the left to enable expression of a double-

stranded RNA (dsRNA) corresponding to a GOI. This construct uses bi-directional T7

promoters to generate a self-complementary RNA sequence and is controlled by a

tetracycline (Tet) inducible operon to enable controlled induction of expression. This

dsRNA is generated from a region of sequence corresponding to the mRNA of the GOI. The

cell’s internal machinery processes the dsRNA to small-interfering or micro-RNA (siRNA or

miRNA). This leads to recruitment of the RISC complex which enables recognition of mRNA

from the GOI and eventually degradation of this mRNA, generating a knock-down effect on

gene expression. If a mutant GOI is present in the cell line that has altered sequence

sufficient to prevent binding of the WT-specific siRNA/miRNA, then expression of the

mutant copy can take place whilst the WT GOI is knocked-down. This approach can allow

for mutant gene expression of essential genes without requiring removal of the WT copy

of the GOI.

 17

One thing that remains apparent is that there is large variation in the design of small, often

oligonucleotide-derived, repair templates between different groups. Whilst adjustments

may be necessary between species, given that the protocols used as part of the CRISPR-

Cas9 editing toolkit are transferable between the TriTryps (Leishmania, T. brucei and T.

cruzi) (Beneke et al., 2017), it stands to reason that the same repair template designs will

work similarly across these species. This would suggest that development of an optimised

method for one of these species could have benefits for them all.

2.3 The Kinetochore Complex
2.3.1 VERTEBRATES AND HIGHER EUKARYOTES
The kinetochore is a protein complex responsible for connecting microtubules to DNA

during mitotic (and meiotic) division (Musacchio and Desai, 2017). This complex is

composed of two major parts – the inner and outer kinetochore. The inner kinetochore is

the direct linker to the genomic DNA, whilst the outer kinetochore links the inner

kinetochore to the microtubule spindle.

In vertebrates, the inner kinetochore contains an unusual centromere-specific histone H3

variant CENP-A (CENtromere Protein A) and 16 other proteins which make up the

constitutive centromere associated network (CCAN) – see Figure 2A for schematic (Sridhar

and Fukagawa, 2022). Whilst CENP-A is not present in all species, in those that retain it, it

forms the basis for the kinetochore, replacing typical histone H3 at the centromere. CENP-

A then recruits CENP-C and CENP-N (both part of the CCAN) to form a centromeric

nucleosome (Sridhar and Fukagawa, 2022). The other members of the CCAN interact with

each other in discrete sub-complexes, and help tightly trap the DNA in order to transmit

the forces of the mitotic spindle.

In species lacking CENP-A, CENP-T provides an alternate DNA-binding starting point for the

kinetochore. Interestingly, CENP-T is also present in many species containing CENP-A

genes, providing an alternate, often favoured, method of DNA attachment (Sridhar and

Fukagawa, 2022). CENP-T proteins are less well conserved than CENP-A proteins between

eukaryotes. When CENP-T binds DNA, it forms its own complex, made up of sub-complexes

typically containing CENP-T and -W, and CENP-S and –X (Sridhar and Fukagawa, 2022).

 18

Similarly to CENP-A, they form a nucleosome-like structure on the chromatin, but

preferentially bind to linker DNA rather than nucleosome-bound DNA. When CENP-A is also

present, the CENP-T complex forms between two CENP-A nucleosomes, as is the case in

humans. CENP-T also interacts with the outer kinetochore, via its long unstructured N-

terminal region, and is regulated by phosphorylation by CDK1.

The inner kinetochore is linked to the mitotic spindle via the outer kinetochore. The outer

kinetochore is composed of a 10-member protein network called the KMN network. The

KMN network is subsequently composed of several sub-complexes which give it its name –

Knl1C, Mis12C and Ndc80C (Sridhar and Fukagawa, 2022). The Ndc80C complex forms the

primary microtubule binding site, and is helped to localise to the kinetochore through

members of the Mis12C complex, which can be disrupted by phosphorylation from Aurora

B kinase. As well as interacting with the Ndc80C complex, the Mis12C complex also

facilitates interactions with the Knl1C complex. Knl1C complex in turn facilitates further

protein-protein interactions, which allows it to make contact with proteins involved in

regulation of the kinetochore, error correction, and activation and silencing of the Spindle

Assembly Checkpoint (SAC) (Sridhar and Fukagawa, 2022). The outer kinetochore also has

several other accessory proteins which form other complexes, namely the Dam1 complex

and the Ska complex, which are found variably across species.

As already alluded to, the full complement of these proteins are not present in all

eukaryotic species. Overall, the inner kinetochore has shown a wider diversity in

components than the outer kinetochore (Sridhar and Fukagawa, 2022), although examples

exist of systems with a wide range of absent inner and outer kinetochore components.

2.3.2 KINETOPLASTIDS
Many of the components of the kinetochore are conserved across numerous eukaryotic

species, but kinetoplastids are an unusual exception, in that their kinetochore proteins lack

homology to almost all of the canonical components (Akiyoshi and Gull, 2014). To date, 25

unique proteins have been identified in the trypanosomatid inner kinetochore (Akiyoshi

and Gull, 2014; Nerusheva and Akiyoshi, 2016; Nerusheva, Ludzia and Akiyoshi, 2019;

 19

 20

Figure 2. Kinetochore complex schematic diagrams from eukaryotic organisms. A) Human

(left) and budding yeast (S. cerevisiae, right) kinetochores, adapted from Sridhar and

Fukagawa (2022). Homologous complexes between humans and yeast have been indicated

in the same colours and kinetochore homologs have been shown in the corresponding

positions. B and C) Current understanding of the Trypanosoma brucei kinetochore adapted

from B: D’Archivio and Wickstead (2017), and C: Brusini et al. (2021). Both studies used pull

downs of various kinetochore components and RNAi depletion to develop this model. kMT

– kinetochore microtubule. In C, the KOK (kinetoplastid outer kinetochore) complex

contains KKIP2-4, 6, 8-12. N and C indicate the positions of the respective termini of KKIP1.

D) Current understanding of the Leishmania mexicana kinetochore adapted from

Geoghegan et al. (2022). Data based on proximity of proteins and phospho-proteins

relative to KKT3 (inner kinetochore).

Geoghegan et al., 2022). These proteins have been systematically named Kinetoplastid

Kinetochore proteins (KKT) 1-26 (excluding KKT21 due to renaming). As well as these

components, there are also 12 KKT-interacting proteins (KKIPs), identified in Trypanosoma

brucei, which make up the outer kinetochore – see Figure 2B for schematic (D’Archivio and

Wickstead, 2017; Brusini et al., 2021). Only KKIP1, which has been identified to be a highly

divergent Ndc80/Nuf2 homologue (D’Archivio and Wickstead, 2017), and KKT14 and KKT15

which have been identified as divergent Bub1 and Bub3 proteins (Ballmer et al., 2024), have

homology to canonical kinetochore components. None of the other KKT or KKIP proteins

share sequence similarity nor known structural similarity, with canonical kinetochore

proteins, and are not found outside kinetoplastids. However, within kinetoplastids, there

is high conservation with the KKT proteins, and some conservation of KKIPs (Akiyoshi and

Gull, 2014; Brusini et al., 2021). Whilst some of the functions of specific KKTs and KKIPs are

beginning to be understood, many of these proteins are still of unknown function with no

known protein domains.

Of the KKT proteins that have had more detailed investigation, it is understood that KKT4

has microtubule-binding properties, but is unusually found in the inner kinetochore (Llauró

 21

et al., 2018). Additionally, the inner kinetochore contains four protein kinases (KKT2, KKT3,

KKT10 (CLK1) and KKT19 (CLK2)), of which KKT2 and KKT3 are known to have centromere

localisation domains. KKT2 and KKT3 are thought to make up the foundation of the

kinetochore by binding to the DNA using their divergent POLO box domains, allowing other

kinetochore proteins to localise to them (Nerusheva and Akiyoshi, 2016; Marcianò et al.,

2021; Ishii et al., 2022). KKT10/CLK1 is known to phosphorylate KKT2, but little is known

about the substrates of KKT2’s and KKT3’s kinase domains (Saldivia et al., 2021). KKT10 and

KKT19 were identified first as being cdc2-like kinases (CLKs) in T. brucei (Altmann et al.,

2013), and subsequently as members of the kinetochore (Akiyoshi and Gull, 2014).

KKT10/CLK1 has been shown to be important for kinetochore formation, causing KKT2 to

improperly localise on KKT10/CLK1 inhibition, as well as regulation to kinetochore assembly

(Saldivia et al., 2020, 2021). Recently, KKT14 and KKT15 have been identified as divergent

Bub1 and Bub3 proteins, which are involved in the spindle checkpoint of other organisms,

and are needed for accurate chromosome segregation in T. brucei (Ballmer et al., 2024).

KKIP1 has been shown to provide a linker between the inner and outer kinetochores

(Brusini et al., 2021) (Figure 2B and C). As previously mentioned KKIP1 is a highly divergent

Ncd80/Nuf2 homologue, which occupies a similar niche, bridging the inner and outer

kinetochore (Brusini et al., 2021). KKIP2-4, 6, and 8-12 form a stable complex that is part of

the outer kinetochore in T. brucei, and have been found to interact with many proteins

thought to be involved in RNA-processing (Nerusheva, Ludzia and Akiyoshi, 2019; Brusini

et al., 2021). However, it should be noted that no homologs have been identified for KKIP3,

4, 6, 9, 11 or 12 in L. mexicana, so whether the outer kinetochore has the same structure

in Leishmania is not known (Brusini et al., 2021).

Having a core role in cell division, many components of the kinetochore have been

identified as essential in Leishmania promastigotes. Of these, KKT2 and KKT3 are essential,

as well as one of either KKT10 or KKT19 being necessary for survival (but not both) (Baker

et al., 2021). Additionally, KKT7, KKT9, KKT11 and KKT12 are also necessary for consistent

chromosomal segregation in trypanosomes, with growth defects quickly developing

following RNAi knockdown (Akiyoshi and Gull, 2014). Similar fitness defects have been seen

following RNAi knockdown of all KKT proteins in trypanosomes (Horn, 2022).

 22

Given the presence of protein kinases playing a core role in the kinetochore, the role of

phosphorylation has been investigated in the L. mexicana kinetochore throughout the cell

cycle by Geoghegan et al. (2022) – see Figure 2D for schematic. Phosphorylation was shown

to be a dynamic process in the cell cycle, with a peak in phosphorylated proteins during S-

phase, in many cases, independent of protein levels. In particular, they identified several

peptides which changed phosphorylation state disproportionately to their protein levels

throughout the cell cycle. These peptides included phosphorylation sites S493 and S530 on

KKT2; and T120-S144, S300, T318-S328 and T421-T430 on KKT4. Specific phosphorylation

sites were unable to be derived from all phospho-peptides due to the presence of several

serine and threonine residues within some peptides. KKT7 S304 also showed a strong

decrease in phosphorylation following AB1 treatment (which blocks KKT10/CLK1 and

KKT19/CLK2 mediated phosphorylation). This suggested that phosphorylation plays a key

role in the control of the kinetochore complex during the cell cycle. However, to date, very

little is known about the effect of individual phosphorylation events on kinetochore

function, and which kinases are responsible.

As the kinetochore of trypanosomatids such as L. mexicana is so unique, they pose

interesting questions on both the unique evolutionary biology of these organisms, and their

propensity to be drug targets. As such, this project aims to investigate the kinetochore

complex of L. mexicana through precision editing with the CRISPR-Cas9 system.

This project has several aims. The first aim is to investigate the biology of the kinetochore

in L. mexicana using mutants generated with this precision editing methodology, initially

starting with phosphorylation sites identified in the kinetochore by Geoghegan et al.

(2022). The second aim is to investigate improvements to the efficiency of this

methodology. The final aim is to investigate ways to scale-up this precision editing through

computer-aided design.

 23

3 CHAPTER TWO - METHODOLOGIES

3.1 Cell Culture
T7Cas9 Leishmania mexicana promastigotes (Beneke et al., 2017) were grown in HOMEM

media with 10% Fetal Bovine Serum (FBS) and 1% penicillin-streptomycin (henceforth

called 10% FBS HOMEM). T7Cas9 cells were also kept under continual selection with 50

µg/ml hygromycin and 75 µg/ml nourseothricin at 25°C in non-vented TC coated flasks.

Cells were passaged 1 in 1000 weekly until passage 20, when cells were replaced with lower

passage cells from cryo-storage.

3.2 Single-stranded Oligonucleotide Repair Template Design
To attempt to generate mutations of interest, single-stranded DNA (ssDNA) repair

templates were designed using strategies adapted from unpublished work by Juliana

Carnielli and similar approaches in the literature (Zhang and Matlashewski, 2015; Medeiros

et al., 2017; Rico et al., 2018; Wall et al., 2018; Pal and Dam, 2022). Genomic sequences for

genes of interest were retrieved from TriTrypDB.org from the Leishmania

mexicana MHOM/GT/2001/U1103 genome. Target site was identified, and ~60 nt either

side was selected to create a region of a total of 120 nt (Figure 3). Genomic sequences for

this region were used for sgRNA design on EuPaGDT (http://grna.ctegd.uga.edu/). The

highest ranking two guides in as close proximity to the target site as possible were chosen

– with one making a break before, and the other after the target site. The first 30 nt and

final 30 nt of the 120 nt region were kept as the native sequence (homology arms).

Sequences corresponding to the protospacer motifs and PAM sequences were recoded

using an alternate codon with the highest frequency of usage from Leishmania infantum

(from https://www.kazusa.or.jp/codon/) - see Appendix 7.2.4.1 for a copy of the table. The

L. infantum dataset was used as a reference rather than L. mexicana because the L.

mexicana dataset was calculated from only 93 CDS sequences. The total L. mexicana

genome contains 9,169 genes (Fiebig, Kelly and Gluenz, 2015), and as such this data set

only represents about 1% of the genome which was deemed unlikely to be representative.

The Leishmania species with the highest coverage of the genome was L. infantum, covering

8,139 CDS sequences out of their total 8,241 predicted protein coding genes (Rogers et al.,

2011), so this dataset was used instead. The codon sequence for the target mutation was

http://grna.ctegd.uga.edu/
https://www.kazusa.or.jp/codon/

 24

Figure 3. Single-stranded repair template design process as described in Methods 3.2.

First, the target codon (yellow) was identified in the genomic sequence. Next, a region of

approximately 60 nt either side of the target codon, to a final length of exactly 120 nt was

selected. sgRNA guides (orange arrows) were designed in the centre of this sequence

(editing region), such that one break site was either side of the target (orange dashed line).

The 30 nt at each end of this region were left as the native sequence to allow homologous

 25

recombination (homology arms). Lastly, the sgRNA protospacer and PAM sequences were

recoded (dark blue), and the target mutation was incorporated (purple). Note that sgRNA

protospacer sequences could be on either strand, but synonymous recoding of the plus

strand was still employed when sgRNA protospacer sequences were on the minus strand,

but in the complementary positions. The synonymous recoding also either added a new

restriction site or removed an existing one for screening purposes (white line). Not to scale.

taken as the highest frequency usage codon for the desired amino acid. The exception to

this recoding strategy was when generating a change in the restriction digestion pattern,

where alternate codons were chosen to either add or remove a restriction site to the

sequence. This design process is also shown in Figure 3.

3.3 sgRNA Production
Method as per Beneke et al. (2017). Briefly, protospacer sequences were incorporated into

the following template primer, in place of the N’s: 5’-

gaaattaatacgactcactataggNNNNNNNNNNNNNNNNNNNNgttttagagctagaaatagc (Merck) –

see Appendix 7.2.5.1 for primer sequences. This primer contains a T7 promoter sequence

and an annealing region to bind to the primer OL6137 (G00 from Beneke et al., 2017). An

annealing and amplification reaction was completed with 100 µM target specific sgRNA

primer and OL6137. Annealing and amplification took place with Q5 polymerase (NEB), as

per manufacturer’s instructions and with the following cycling conditions: 98°C for 30

seconds (1 cycle); 98°C for 10 seconds, 60°C for 30 seconds and 72°C for 15 seconds (35

cycles); 72°C for 10 minutes (1 cycle). Resulting reactions were examined on an agarose gel

to check for expected products, and stored at -20°C between production and use in

downstream applications. The final construct contains a T7 RNA polymerase promoter

sequence, the protospacer sequence and the CRISPR RNA backbone in DNA form, which is

transcribed endogenously into RNA by T7 polymerase.

 26

3.4 DNA Preparation for Transfection
sgRNA PCR products were purified using a PCR purification kit (Qiagen) as per the

manufacturer’s instructions, except eluting in 10 µl of sterile distilled water.

Oligonucleotides for repair templates (Merck) were ordered dry, and resuspended at 2

µg/µl. 5 µl of each of the sgRNA purified PCR product (approximately 2.5 µg) and the repair

template (10 µg) were combined.

3.5 Transfection and Cloning
T7Cas9 promastigote cells were grown until mid-log phase. 5 x 106 cells were pelleted at

1000 x g for 10 minutes, washed once in Phosphate Buffered Saline (PBS), and pelleted

again. Cells were resuspended in 100 µl P3 Primary Cell Nucleofector® Solution (Lonza) and

10 µl of sgRNA-repair DNA mix. Cells were electroporated using a Lonza 4D Nucleofector®

Unit using programme FI115, and promptly transferred to pre-warmed HOMEM media

containing 20% FBS and 1% penicillin-streptomycin (henceforth called 20% FBS HOMEM),

but without addition of other antibiotics. Cells were recovered overnight at 25°C. The

following morning, cells were counted, and plated out into 96-well plates at a density of

0.5 cells/well, in 20% FBS HOMEM. Clones were left to grow in the 96-well plates at 25°C

for an additional 2 weeks. Clones were then chosen at random and passaged into 12-well

plates of 10% FBS HOMEM for subsequent growth.

3.6 Single-Stranded Screening
3.6.1 SCREENING OF CLONES
Genotyping of selected clones was completed through a restriction digest strategy.

Stationary phase cells were pelleted at 1000 x g for 10 minutes, and washed once in PBS.

Pellets were frozen dry at -20°C. After thawing, genomic DNA was extracted using Rapid

Extract PCR Kit (PCR Biosystems), as per manufacturer’s instructions, except skipping the

addition of water and final centrifugation step. DNA was stored at -20°C between uses.

2 µl of DNA was used for a screening PCR with VeriFi polymerase mix (PCR Biosystems) on

DNA collected from transfected clones and a T7Cas9 parental cell line as a WT control. This

PCR spanned the entire region where the repair template was expected to integrate, as

 27

well as some of the surrounding genomic sequence. See Appendix 7.2.6 for details of

specific primers and cycling conditions. PCR products were confirmed on an agarose gel.

Successful PCR products were purified using a PCR Purification Kit (Qiagen) as per

manufacturer’s instructions. Purified PCR products were quantified using a nanodrop and

adjusted to the same concentration using the elution buffer.

Due to the inclusion of a restriction site change in the repair template, the genotype could

be determined by digesting the previous PCR. To do so, 500 ng of purified PCR product from

each clone and the parental T7Cas9 cell line (WT) was digested with the corresponding

enzyme listed in Appendix 7.2.6. The reaction was incubated for 1 hour at the appropriate

temperature, and then frozen at -20°C to halt the reaction. Undigested input DNA and

digested DNA were run out on agarose gels to determine genotype. Undigested DNA from

the parental cells and clones indicating a mutant genotype were sent for Sanger Sequencing

(Eurofins) with the primers indicated in Appendix 7.2.5.3.

3.7 Single-Stranded Pooled Experiment
3.7.1 DESIGN OF REPAIR TEMPLATES
In order to assess the effect of the possible silent mutations, a small library of repair

templates were designed to assess integration of each design, targeting either KKT2 S493

or KKT2 S530. Repair templates were designed mostly as before, except with changes in

strategy for the synonymous recoding. Five recoding strategies were used to generate 5

unique repair templates for each target site. Each design had a different subset of possible

synonymous mutations to choose from, which restricted both starting genomic sequences

that could be mutated and what they could be mutated to. Strategies were devised based

on the different levels of efficacy of mutations in single-stranded repair templates used in

this report, as well as other data from the lab (Hannah Jones and Juliana Carnielli,

unpublished data). In short, mutations were categorised based on the number of known

instances of integration of each possible silent mutation across all precision editing

attempts within these datasets. Subsequently, each design was constrained to use only

mutations of a similar level of demonstrated integration (e.g. mutations which were only

found in successful repair templates or mutations which had only been selected in failed

transfections). For more details on the criteria to choose acceptable mutations for each

 28

Ta
b

le
 1

.
A

lig
n

m
en

t
o

f
re

co
d

ed
 r

eg
io

n
s

o
f

p
o

o
le

d
 r

e
p

ai
r

te
m

p
la

te
s.

 B
la

ck
 t

e
xt

 in
d

ic
at

e
s

W
T

se
q

u
en

ce
,

o
ra

n
ge

 t
e

xt
 in

d
ic

at
es

 s
yn

o
n

ym
o

u
sl

y
re

co
d

ed
 s

e
q

u
en

ce
, y

el
lo

w
 h

ig
h

lig
h

t
in

d
ic

at
e

s
a

n
o

n
-s

yn
o

n
ym

o
u

s
m

u
ta

ti
o

n
 f

ro
m

 s
e

ri
n

e
to

 a
la

n
in

e.

N
a
m
e

K
K
T
2

S
4
9
3

T
r
a
n
s
l
a
t
i
o
n

A

P

R

T

S

R

S

V

R

R

S

V

S
/
A

L

T

E

Q

E

R

K
K
T
2

S
4
9
3

W
T

r
e
g
i
o
n

G
C
C

C
C
T

C
G
C

A
C
G

T
C
T

C
G
A

T
C
A

G
T
G

C
G
T

C
G
T

A
G
C

G
T
C

A
G
C

T
T
A

A
C
G

G
A
G

C
A
G

G
A
G

C
G
G

K
K
T
2

S
4
9
3
A

d
e
s
i
g
n

1

G
C
G

C
C
A

C
G
G

A
C
C

T
C
A

C
G
T

T
C
T

G
T
C

C
G
T

C
G
T

A
G
C

G
T
A

G
C
G

C
T
A

A
C
C

G
A
A

C
A
A

G
A
A

C
G
T

K
K
T
2

S
4
9
3
S

d
e
s
i
g
n

1

G
C
G

C
C
A

C
G
G

A
C
C

T
C
A

C
G
T

T
C
T

G
T
C

C
G
T

C
G
T

A
G
C

G
T
A

T
C
G

C
T
A

A
C
C

G
A
A

C
A
A

G
A
A

C
G
T

K
K
T
2

S
4
9
3
A

d
e
s
i
g
n

2

G
C
G

C
C
T

C
G
A

A
C
G

T
C
T

C
G
A

T
C
A

G
T
G

C
G
T

C
G
T

A
G
C

G
T
A

G
C
G

C
T
C

A
C
G

G
A
G

C
A
G

G
A
G

C
G
T

K
K
T
2

S
4
9
3
S

d
e
s
i
g
n

2

G
C
G

C
C
T

C
G
A

A
C
G

T
C
T

C
G
A

T
C
A

G
T
G

C
G
T

C
G
T

A
G
C

G
T
A

T
C
G

C
T
C

A
C
G

G
A
G

C
A
G

G
A
G

C
G
T

K
K
T
2

S
4
9
3
A

d
e
s
i
g
n

3

G
C
G

C
C
A

C
G
C

A
C
G

T
C
T

C
G
A

T
C
A

G
T
G

C
G
T

C
G
T

T
C
G

G
T
A

G
C
G

C
T
A

A
C
G

G
A
G

C
A
A

G
A
A

C
G
T

K
K
T
2

S
4
9
3
S

d
e
s
i
g
n

3

G
C
G

C
C
A

C
G
C

A
C
G

T
C
T

C
G
A

T
C
A

G
T
G

C
G
T

C
G
T

T
C
G

G
T
A

A
G
T

C
T
A

A
C
G

G
A
G

C
A
A

G
A
A

C
G
T

K
K
T
2

S
4
9
3
A

d
e
s
i
g
n

4

G
C
G

C
C
T

A
G
G

A
C
G

A
G
T

C
G
A

A
G
C

G
T
G

A
G
G

C
G
T

A
G
C

G
T
A

G
C
G

C
T
C

A
C
G

G
A
G

C
A
A

G
A
G

A
G
A

K
K
T
2

S
4
9
3
S

d
e
s
i
g
n

4

G
C
G

C
C
T

A
G
G

A
C
G

A
G
T

C
G
A

A
G
C

G
T
G

A
G
G

C
G
T

A
G
C

G
T
A

T
C
C

C
T
C

A
C
G

G
A
G

C
A
A

G
A
G

A
G
A

K
K
T
2

S
4
9
3
A

d
e
s
i
g
n

5

G
C
A

C
C
C

C
G
T

A
C
A

T
C
T

C
G
A

T
C
A

G
T
G

C
G
T

C
G
T

T
C
C

G
T
A

G
C
G

C
T
C

A
C
A

G
A
G

C
A
G

G
A
G

A
G
G

K
K
T
2

S
4
9
3
S

d
e
s
i
g
n

5

G
C
A

C
C
C

C
G
T

A
C
A

T
C
T

C
G
A

T
C
A

G
T
G

C
G
T

C
G
T

T
C
C

G
T
A

T
C
T

C
T
C

A
C
A

G
A
G

C
A
G

G
A
G

A
G
G

 29

N
a
m
e

K
K
T
2

S
5
3
0

1

g
u
i
d
e

T
r
a
n
s
l
a
t
i
o
n

A

T

R

W

N

L

R

A

V

V

S
/
A

L

P

R

D

M

T

D

E

I

E

K
K
T
2

S
5
3
0

W
T

r
e
g
i
o
n

G
C
C

A
C
T

C
G
T

T
G
G

A
A
C

C
T
T

C
G
C

G
C
C

G
T
A

G
T
A

T
C
G

C
T
G

C
C
A

C
G
C

G
A
C

A
T
G

A
C
G

G
A
C

G
A
G

A
T
C

G
A
G

K
K
T
2

S
5
3
0
A

d
e
s
i
g
n

1

G
C
G

A
C
A

C
G
G

T
G
G

A
A
T

T
T
G

C
G
G

G
C
G

G
T
T

G
T
A

G
C
G

C
T
C

C
C
T

C
G
G

G
A
T

A
T
G

A
C
C

G
A
T

G
A
A

A
T
T

G
A
A

K
K
T
2

S
5
3
0
S

d
e
s
i
g
n

1

G
C
G

A
C
A

C
G
G

T
G
G

A
A
T

T
T
G

C
G
G

G
C
G

G
T
T

G
T
A

T
C
C

C
T
C

C
C
T

C
G
G

G
A
T

A
T
G

A
C
C

G
A
T

G
A
A

A
T
T

G
A
A

K
K
T
2

S
5
3
0
A

d
e
s
i
g
n

2

G
C
C

A
C
T

C
G
T

T
G
G

A
A
T

T
T
G

C
G
A

G
C
C

G
T
A

G
T
A

G
C
G

C
T
T

C
C
A

C
G
T

G
A
C

A
T
G

A
C
G

G
A
C

G
A
G

A
T
C

G
A
G

K
K
T
2

S
5
3
0
S

d
e
s
i
g
n

2

G
C
C

A
C
T

C
G
T

T
G
G

A
A
T

T
T
G

C
G
A

G
C
C

G
T
A

G
T
A

T
C
A

C
T
T

C
C
A

C
G
T

G
A
C

A
T
G

A
C
G

G
A
C

G
A
G

A
T
C

G
A
G

K
K
T
2

S
5
3
0
A

d
e
s
i
g
n

3

G
C
C

A
C
T

C
G
T

T
G
G

A
A
T

T
T
G

C
G
G

G
C
G

G
T
A

G
T
G

G
C
G

C
T
C

C
C
A

C
G
A

G
A
T

A
T
G

A
C
G

G
A
C

G
A
G

A
T
C

G
A
G

K
K
T
2

S
5
3
0
S

d
e
s
i
g
n

3

G
C
C

A
C
T

C
G
T

T
G
G

A
A
T

T
T
G

C
G
G

G
C
G

G
T
A

G
T
G

T
C
A

C
T
C

C
C
A

C
G
A

G
A
T

A
T
G

A
C
G

G
A
C

G
A
G

A
T
C

G
A
G

K
K
T
2

S
5
3
0
A

d
e
s
i
g
n

4

G
C
C

A
C
T

C
G
T

T
G
G

A
A
T

T
T
G

A
G
A

G
C
C

G
T
A

G
T
T

G
C
G

T
T
A

C
C
A

A
G
G

G
A
T

A
T
G

A
C
G

G
A
C

G
A
G

A
T
C

G
A
G

K
K
T
2

S
5
3
0
S

d
e
s
i
g
n

4

G
C
C

A
C
T

C
G
T

T
G
G

A
A
T

T
T
G

A
G
A

G
C
C

G
T
A

G
T
T

A
G
T

T
T
A

C
C
A

A
G
G

G
A
T

A
T
G

A
C
G

G
A
C

G
A
G

A
T
C

G
A
G

K
K
T
2

S
5
3
0
A

d
e
s
i
g
n

5

G
C
C

A
C
T

C
G
T

T
G
G

A
A
T

T
T
A

A
G
G

G
C
T

G
T
C

G
T
A

G
C
G

T
T
G

C
C
T

C
G
T

G
A
C

A
T
G

A
C
A

G
A
C

G
A
G

A
T
A

G
A
G

K
K
T
2

S
5
3
0
S

d
e
s
i
g
n

5

G
C
C

A
C
T

C
G
T

T
G
G

A
A
T

T
T
A

A
G
G

G
C
T

G
T
C

G
T
A

T
C
T

T
T
G

C
C
T

C
G
T

G
A
C

A
T
G

A
C
A

G
A
C

G
A
G

A
T
A

G
A
G

 30

 31

Figure 4. Example pooled repair template transfection screening primer design process.

In order to specifically detect each of the five repair templates in each pooled transfection,

an iterative primer design process was used to design screening primers for each repair

template. The process aimed to identify primers which were least likely to cross-react with

other repair templates. An initial primer set were designed on the WT gene sequence, with

one primer outside the repair template region (not shown), and another falling across a

region of recoding in the repair templates (black outline). Primers binding to each other

template were designed manually (one example shown in pink outline). Primers were

designed to have reasonable annealing temperatures to pair with the external primer and

ideally a unique 3’ base. Once a potential primer sequence was determined, the sequence

was compared to the other templates in the same pool (i.e. non-synonymous or

synonymous templates, and WT sequence) at the corresponding location (dotted outlines).

Final primers used have the lowest identity possible with other templates, preferably less

than 85%. Primers that do not have less than 85% identity with another template are

highlighted with dark outlines in the comparison table.

design, see Results 4.2, with the acceptable codon changes lists in Appendix 7.2.8.

Synonymous repair templates were the same as the serine to alanine designs, except

choosing the serine codon from the appropriate list for that design. An alignment of the

recoded regions of these designs is shown in Table 1.

3.7.2 DNA PREPARATION, TRANSFECTION AND GENOMIC DNA EXTRACTION
sgRNA guides were made and prepared as before. Instead of using one repair template,

five different repair templates were mixed in equal proportions (2 µg/µl stock), and 5 µl of

the mixed repair templates were used for each transfection. These repair templates and

the combinations of the pools they were mixed in are listed in Appendix 7.2.4.3.1, with

sequences of each design in Appendix 7.2.4.3. Transfection was otherwise as before, except

cells were not cloned out and were left as populations.

 32

After one week of recovery, half of the culture was pelleted and washed as before. DNA

was extracted using a genomic DNA extraction kit (ENZA) as per the manufacturer’s

instructions. DNA was also collected from the parental T7Cas9 cell line in the same way.

3.7.3 SCREENING PCR FOR REPAIR TEMPLATE INTEGRATION FROM POOLED
TRANSFECTIONS

A PCR strategy was used to detect the correct integration of each repair template in the

pooled transfection. This strategy involved the use of one shared primer outside of the

repair template region, and one primer inside the repair template in a region unique to

that repair template. The screening primer design process to detect integration of specific

repair templates is shown in Figure 4. Briefly, primers were designed manually to ensure

the binding region was as unique to the specific design as possible. Ideally, each primer had

<85% identity against other repair templates in the same transfection, and where possible

with a unique 3’ base, to reduce the chances of amplification against other repair

templates. Screening primer sequences and cycling conditions using Q5 polymerase (NEB)

can be found in Appendix 7.2.7. To clarify, one mastermix was set up per transfection

containing the genomic DNA to ensure that any absence of a band was not due to the

absence of template DNA. Resulting PCR products were assessed on an agarose gel.

3.8 Repair Template Design – Double-Stranded
3.8.1 DESIGN
To assess whether double-stranded DNA was more efficient at generating precision

mutants, repair template designs targeting KKT2 S493A, KKT2 S530A (1 guide design), and

KKT2 S923A were reused. The only change to the design was that the homology arms were

extended outwards from the mutagenized site by 20 bp to a final length of 160 bp repair

template. Additionally, repair templates were designed to generate KKT2 S25 mutants to

either alanine, glutamic acid or synonymous serines. The repair template was designed as

per the pooled design 2 recoding methodology (see Methods 3.7.1 and Appendix 7.2.4.4

for details), except extending the length (as with the other targets) and reducing the

 33

emphasis on the inclusion of a restriction site (as PCR-based screening was to be used). For

new targets, sgRNAs were preferentially chosen to leave a gap between each protospacer

sequence, and recoding focussed on incorporating more A’s and T’s, to aid screening primer

design. For targets attempted with single-stranded repair templates, the same sgRNAs and

recoding were used, just with the extension to the homology arms of the repair template

and modifying repair templates to include glutamic acid and synonymous mutations as

well. Designs and full sequences can be found in Appendices 7.2.4.4 and 7.2.5.5.

3.8.2 PRODUCTION OF REPAIR TEMPLATES
For double stranded repair templates, the design was split into roughly half, with an

overlapping region of 18-20 bp (Figure 8). Oligonucleotides (Merck) for each half were

annealed and amplified as in the method described to produce sgRNA (Methods 3.3),

except adjusting the annealing temperature to each reaction. Resulting reactions were run

out on an agarose gel to check for correct product formation. Products were purified with

a PCR purification kit (Qiagen) as per the manufacturer’s instructions, except eluted in 10

µl of water.

3.8.3 DNA PREPARATION, TRANSFECTION AND GENOMIC DNA EXTRACTION
sgRNA was prepared as before – primer sequences can be found in Appendix 7.2.5.1. Repair

templates and sgRNA guides were cleaned up using a PCR Purification Kit (Qiagen), as per

the manufacturer’s instructions, except eluting in 10 µl of sterile distilled water. 5 µl of this

was used for each transfection as before (Methods 3.5). This was approximately 5 µg of

repair template per transfection, reduced from 10 µg used in the single-stranded DNA

(ssDNA) transfections, as well as doubling the quantity of sgRNA compared to previous

ssDNA transfections (approximately 5 µg sgRNA DNA). Transfected cells were recovered in

20% FBS HOMEM containing 10 µM 6-biopterin (Merck) both before and during cloning, as

6-biopterin has been shown to improve growth of Leishmania (Trager, 1969). Clones were

expanded following 1 week of recovery. On expansion, all cells were transferred to 10%

FBS HOMEM without 6-biopterin. Cell pellets were collected from populations and clones

as before.

 34

3.8.4 SCREENING PCRS
5 µl of the extracted genomic DNA was used for each screening PCR with VeriFi polymerase

mix (PCR Biosystems) – see Appendix 7.2.5.6 for specific primer and cycling details. WT and

mutant PCRs were set up independently, so an absence of a band in either reaction was

considered to be a failure, but technical error was not controlled for due to the large

quantities of reactions. PCR products were run out on agarose gels to determine genotype.

3.8.5 SEQUENCING
Clones indicating a positive result in the mutant PCR reaction were taken forward for

Sanger sequencing. 5 µl of genomic DNA was used for an additional PCR that covered the

whole repair template with Q5 polymerase (NEB) – see Appendix 7.2.5.7 for primers. PCR

products were checked on an agarose gel, and then purified with a PCR purification kit

(Qiagen) as per manufacturer’s instructions. PCR products were sent for Sanger Sequencing

(Genewiz) with the same primers used for amplification.

3.9 Alamar Blue Growth Assay
Where possible, two homozygous clones of each kinetochore phosphosite mutation were

selected at random. Where two were not available, either an additional clone with a

different genotype was chosen, or only one clone was used. When a non-homozygous

clone was used due to a lack of homozygous clones, where possible, it was chosen to have

the target mutation on both alleles, and with as much of the repair template integrated

into both alleles as possible. I.e. a “complex” mutant homozygous for the target was

favoured over fully heterozygous mutants due to concerns of replacement of the target

mutation with the WT allele. But a heterozygous mutant was used if no other mutants were

available. Cultures were grown to mid-log phase in 10% FBS HOMEM. Dilutions of each

culture were prepared to 2500 cells/ml in the same media and were seeded onto 96-well

plates in triplicate such that 500 cells were seeded per well. A medium only control was

also included, and empty wells were filled to the same volume with PBS. 96-well plates

were prepared in duplicate (one for use as a day 0 plate, one for use as a day 5 plate). The

 35

day 0 plate was immediately supplemented with 40 µl 0.0125% (w/v) resazurin (Alamar

blue) in PBS into each well (except those containing PBS) and left to incubate in the dark at

25°C for 4-6 hours. The day 5 plate, was returned to the incubator for 5 days, then

supplemented with Alamar blue in the same way. After incubation with the Alamar blue,

the fluorescence at emissions of 590 nm was measured with a BMG Labtech CLARIOstar®

microplate reader. The readings of the wells containing cells were corrected to the media-

only wells (blank). The mean of the triplicate wells was normalised to the parental T7Cas9

control to calculate the percentage growth.

3.10 Flow Cytometry
As the mutations generated all targeted the kinetochore complex, it was expected that

these mutations would lead to a cell cycle progression phenotype such as an accumulation

in one phase of the cell cycle. To assess this, the quantity of DNA content per cell was

assessed through propidium-iodide flow cytometry. The same clones as per the Alamar

Blue assay were grown in 10% FBS HOMEM media, and 1 x 107 mid-log phase cells were

pelleted at 1000 x g for 10 minutes. Cells were washed once in PBS with 5 mM EDTA (PBS-

EDTA), and the pellet was resuspended in PBS with PBS-EDTA. Cold methanol was added

slowly to a final concentration of 70% (v/v) and were left at 4°C to fix overnight. After

fixation, samples were diluted to 36.8% methanol (v/v) by adding PBS-EDTA and cells were

pelleted as before. The pellet was washed once in PBS-EDTA and was resuspended in PBS-

EDTA with 10 µg/ml propidium iodide and 10 µg/ml RNaseA. Samples were incubated in

the dark at 4°C overnight, gently resuspended and transferred to a 96-well plate, splitting

the sample between three wells per cell line. Samples were analysed on a CytoFLEX LX355,

gating for parasite cells, followed by single cells (singles). Each well was set to record 20,000

events in singles, measuring the propidium iodide, as well as forward and side scatter. FCS

Express 7 was used to analyse the results. The gating used to collect the data was replicated

for analysis, and the number of cells was plotted against the propidium iodide intensity.

The proportion of cells under each peak was assessed using the built-in DNA content

analysis (Multicycle) to fit 1 cycle using model 5. The percentages of cells in each cell cycle

stage (G1, S and G2/M) were collated for the triplicate wells, which was then averaged. The

 36

replicates were the averaged and plotted, with the exception of KKT2 S530E clone 21 and

KKT2 S25E clone 11 - see Results section 4.6 for further details.

3.11 Statistical Analyses
Statistical analyses were performed using GraphPad Prism version 8.3.0. For the Alamar

blue growth assay, a one-way ANOVA test with Dunnett’s multiple comparisons was

performed, comparing the means of each cell line with the parental T7Cas9.

For the cell cycle flow cytometry, a 2-way ANOVA test with Dunnett’s multiple comparisons

test was performed, set to compare the mean of each cell cycle stage for each cell line

against the corresponding mean of the T7Cas9 parental cell cycle stage. Even though the

percentages are linked (i.e. if G1 is higher, S + G2/M must be lower), each cell cycle stage

was assessed independently to simplify the analysis.

 37

4 CHAPTER THREE - RESULTS

4.1 Single-Stranded Repair Templates
To investigate the impact of phosphorylation on kinetochore proteins in Leishmania

mexicana, a CRISPR-Cas9 precision editing strategy was used to attempt to ablate

phosphosites of interest on kinetochore proteins. These sites were chosen based on data

from Geoghegan et al. (2022), which indicated importance in the cell cycle. In order to

generate the chosen mutations, the workflow shown in Figure 5 was used. Briefly, a repair

template was designed and synthesised as a 120 nt oligonucleotide. This method was

adapted from unpublished work by Juliana Carnielli, which had used a similar approach

previously, to investigate the kinase domain of KKT2 by mutating the gate-keeper residue

of the ATP-binding domain. Similar use of single-stranded oligonucleotide repair templates

has also shown to be effective in kinetoplastids in the literature - Figure 1B (Zhang and

Matlashewski, 2015; Medeiros et al., 2017; Rico et al., 2018; Wall et al., 2018; Pal and Dam,

2022).

Following transfections, up to 40 clones were screened using a restriction digest strategy

to look for the presence of mutant alleles (Figure 5, see Appendix 7.2.6 for further details).

If present, the clone was sequenced with Sanger sequencing. In addition to

nonsynonymous mutations to ablate the phosphosite, a non-phosphosite positive control

targeting KKT2 M146G (the gate-keeper residue of the kinase domain), and synonymous

mutations for KKT7 S304 (KKT7 S304S) and KKT4 S300 (KKT4 S300S) were tested as

additional positive controls. A summary of the results can be found in Table 2.

Of the 16 different transfections, only 3 showed incorporation of the mutation – one of

which was the positive control (KKT2 M146G) and had been produced previously (Juliana

Carnielli, unpublished work). Other than KKT2 M146G, integration of the repair template

was detected in 3 clones in KKT2 S493A and 2 clones in KKT4 S300A (Figure 6). Homozygous

integration of the repair template was detected in all three transfections, but heterozygous

integration was only detected in KKT2 M146G (Table 2).

In addition to these clones, one clone from each of the KKT2 S493A and KKT4 S300A

transfections indicated an unexpected genotype (KKT2 S493A Clone 37 and KKT4 S300A

Clone 16, Figure 6A and B). Sanger sequencing revealed that these clones incorporated the

 38

 39

Figure 5. Schematic of the single-stranded DNA precision editing workflow. Repair

template is designed to: mutate the target site codon, remove Cas9 break sites and change

(add or remove) a restriction site. The repair template was synthesised as a 120 nt single-

stranded oligonucleotide (adapted from Juliana Carnielli, unpublished work). Cells were

transfected with the repair template and sgRNA corresponding to the Cas9 break sites

which were removed in the repair template. Following transfection, cells were cloned and

allowed to recover to integrate the repair template. To screen clones, a PCR was completed

with primers A and B to cover the entire repair template region. The PCR product was then

digested with the appropriate restriction enzyme (as per the modified site in the design) to

assess the genotype of the clone. Clones indicating a homozygous or heterozygous

incorporation of the repair template were confirmed with Sanger sequencing.

repair template differently on each allele. Each of these repair templates had two regions

of synonymous mutations (corresponding to the two protospacer targeting sequences)

with a gap in between, such that the synonymous mutations were effectively separated in

two (Figure 6A and B). In these clones, sequencing revealed that one of the regions of

recoding was integrated in a homozygous manner, whilst the other showed a heterozygous

incorporation. This suggested that recombination occurred at different places on each

allele. It is likely that the short break in synonymous mutations (11 bp on KKT2 S493A, 21

bp on KKT4 S300A) was used for recombination instead of the intended homology arms.

Luckily, the target codons were part of the region which was mutated on both alleles in

each of these clones. As these clones had a mix of homozygosity and heterozygosity, their

genotype has been designated as “complex”.

Surprisingly, no mutant clones were detected when using synonymous mutation only

repair templates (Table 2). These repair templates were intended to act as a positive

control, given that the coding sequence was unaltered. More strikingly, from the five

synonymous repair templates tested, one of the corresponding non-synonymous

mutations was successfully generated (KKT4 S300A) - Figure 6. Both KKT4 S300A and KKT4

S300S transfections were completed in parallel, suggesting that the lack of detected KKT4

 40

Table 2. Genotyping results for transfections using single-stranded oligonucleotide
repair template, following detection by restriction digest and Sanger sequencing.

Mutation
No. of
Clones

Screened
Homozygotes Heterozygotes

Complex
Genotypes

Percentage of
Mutants (all
genotypes)

KKT1 S1449A 7 0 0 0 -

KKT2 M146G 40 2 1 0 7.5%

KKT2 S493A 41 2 0 1 7.3%

KKT2 S505A 39 0 0 0 -

KKT2 S505S 40 0 0 0 -

KKT2 S505A+S506A 23 0 0 0 -

KKT2 S505S+S506S 20 0 0 0 -

KKT2 S530A 21 0 0 0 -

KKT2 S530A 1 guide 24 0 0 0 -

KKT2 S530S 1 guide 16 0 0 0 -

KKT2 S923A 21 0 0 0 -

KKT4 S300A 33 1 0 1 6.0%

KKT4 S300S 40 0 0 0 -

KKT4 S422A 15 0 0 0 -

KKT7 S304A 20 0 0 0 -

KKT7 S304S 10 0 0 0 -

TOTAL 402 5 1 2 2.0%

 41

 42

Figure 6. Single-stranded oligonucleotide repair template precision editing results.

Sequencing results for mutant clones from KKT2 S493A transfection (A), and KKT4 S300A

transfection (B). Genotype, represented by the single-letter amino acid code that the target

codon translates to is indicated below the cell line name, with superscript “WT” indicating

that the codon shares the same DNA sequence as the reference sequence for identical

encoded amino acids (WT DNA sequences - KKT2 S493: AGC; KKT4 S300A: AGC). Red arrows

indicate protospacer sequences in WT sequences and equivalent position in repair

templates; blue arrows indicate PAM sites in WT sequences and equivalent position in

repair templates; yellow arrows indicate target site in WT sequences and mutated sites in

repair templates. The translation is shown below each DNA sequence, with black text

indicating the same protein and DNA sequence as the reference sequence, orange text

indicating the same protein sequence but a different DNA sequence to the reference, and

red indicating a difference in the protein sequence and hence DNA sequence. Sequencing

results are cropped to show only the synonymously recoded region. (C) Summary

genotyped results from KKT2 S493A and KKT4 S300A transfections. Total number of clones

screened is represented by the n value, with the number of clones represented by each

slice adjacent to the slice.

S300S mutant clones was unlikely to be caused by a technical failure. In addition, the repair

template for KKT4 S300A had all the same synonymous recoding as KKT4 S300S,

demonstrating that the other mutations were tolerated. This led to the conclusion that the

efficiency of this transfection was likely very poor.

 43

4.2 Pooled Repair Templates
To investigate whether the design of the oligonucleotide repair template was the cause of

the low efficiency, five different oligonucleotide repair templates were designed targeting

KKT2 S493 (positive control) and KKT2 S530, to generate both serine to alanine mutants,

and serine to serine synonymous mutants. Each design used different criteria for selecting

synonymous mutations to incorporate, based on analysis of oligonucleotide repair

templates which had shown to work previously (analysis not shown - in addition to data in

this report, data also came from Juliana Carnielli and Hannah Jones, unpublished work).

From the previous data, all possible synonymous mutations were categorised as either: (A)

the specific codon change had worked every time it was tried; (B) the specific codon change

had appeared in both transfections which did generate mutants, and also in others that did

not successfully generate mutants; (C) the specific codon change had not worked any time

it was tried; or (D) the specific codon change was untested. These lists formed the basis of

each design criteria. Design 1 utilised the previously generated repair templates to have as

a comparator. Design 2 used recoding which met the criteria of (A). However, this list was

very short, and so design 2 also had access to list (B) to ensure sufficient coverage of

different target sequences to be able to remove PAM sites. Design 3 exclusively used codon

changes from list (B). Design 4 primarily used list (B), except that for the three amino acids

encoded by 6 triplet codes (serine, arginine and leucine), mutations were only chosen from

codons that had altered the first base. Lastly, design five combined lists (C) and (D). As none

of these lists contained the full complement of genomic codons, not all codons within the

editing region could be mutated in every design. As such, this created varied spacing

between synonymous mutations in the different designs (Table 1). Full lists can be found in

Appendix 7.2.8, with full repair template sequences available in Appendix 7.2.4.3.

Each of the five oligonucleotide repair templates for each of the four mutations (KKT2

S493A, KKT2 S493S, KKT2 S530A and KKT2 S530S) were mixed in equal proportion

respectively, and this mix was transfected into cells with sgRNA common to that target site

(Figure 7A). Whilst there was the possibility that any given cell could take up more than one

oligonucleotide repair template, given the low efficiency previously seen, it was thought

that this was unlikely. Additionally, as the aim of this experiment was to assess the effect

of the repair template design on integration, cells were not cloned but left as a population.

 44

DNA was collected from the population of cells after one week of recovery, to minimise

loss of cells with a lethal phenotype. This DNA was assessed for the presence of WT alleles,

and for each of the five different oligonucleotide repair templates mixed in each

transfection using specific primers for each potential allele i.e. WT allele and each

oligonucleotide repair template design (Figure 7B). Across all four transfections using this

method, strikingly, integration of 18 of the 20 unique oligonucleotide repair template

designs were detected by PCR (Figure 7C and D). One of the two not detected (KKT2 S530A

design 2) was unclear whether it was present due to the primers also amplifying WT DNA.

The other (KKT2 S530S design 5) was the only reaction that did not produce a clear PCR

product with either WT or transfected KKT2 S530S population DNA. Given that the

equivalent nonsynonymous design for design 5 was detected, it is unlikely that it was

something inherent about the design that caused the integration of this repair template to

be undetected. But the exact reason design 5 of the S530S transfection was not detected

was not explored further.

It should be noted that whilst screening primers were carefully designed to distinguish each

repair template by requiring the primer to have less than 85% identity with another design

than its target, due to the small region to choose from, some screening primers shared the

3’ base with another oligonucleotide repair template other than its target (Figure 4).

Hypothetically, this could allow amplification to occur in the absence of its intended target

repair template, but in the presence of another sharing the same 3’ base. As such, it is not

entirely possible to rule out that for example, the primer that recognises design 2 of a

transfection was amplifying from DNA which had integrated design 3. However, it is clear

that all of the KKT2 S493A/S and KKT2 S530S primers did not amplify when tested with WT

DNA, and that all except one of the KKT2 S530A primers also did not react with WT DNA.

As such, it is safe to conclude that mutant cells from one or more of the designs were

present in the population, suggesting that the recoding strategy used in the design of the

oligonucleotide repair template did not appear to have a bias with regards to integration.

 45

Figure 7. Single-stranded pooled repair template results. (A) Workflow of the transfection.

Five repair templates targeting the same codon were combined in equal proportion and

transfected into T7Cas9 cells. Cells were grown as a population following transfection. (B)

Screening PCRs schematic. Orange primer corresponds to a design specific primer for either

S493A or S493S. Yellow primer corresponds to a design specific primer for either S530A or

S530S. Primer sequences can be found in Appendix 7.2.5.4. (C and D) Agarose gels of

genotyping PCRs as described in B for S493A and synonymous pools (C), or S530A and

synonymous pools (D). WT input DNA indicates parental T7Cas9 DNA, S->A indicates input

DNA was from the serine to alanine mutant pool for that target site, and Syn indicates input

DNA from the synonymous mutant pool for that target site.

 46

4.3 KKT2 Synonymous Mutations Using Double-Stranded
Repair Templates

From the pooled repair template experiment (Figure 7), it was apparent that

nonsynonymous mutations were possible in KKT2, but were not generated at high enough

efficiency to be detected at a clonal level with the current methodology (Figure 6). To

separate the effect of the methodology from the potential impact of a nonsynonymous

mutation, a new methodology using double-stranded DNA repair templates was tested

using repair templates that would only produce synonymous mutations. If successful, the

method would then be tested on nonsynonymous mutations.

As such, double-stranded repair templates for synonymous equivalent designs of KKT2

S493S, S530S and S923S were created, as well as a repair template for KKT2 S25S using the

same strategy as before. Whilst the recoding was generally the same as the single-stranded

repair templates, the homology arms were increased to 50 bp for a final repair template

length of 160 bp. The repair templates were produced using a PCR reaction, by annealing

and extending two primers, as shown in Figure 8.

12 clones from each transfection were screened by PCR for integration of the repair

template (see Appendix 7.2.2.2 for all agarose gel images). Of these clones, several of them

indicated the presence of a mutant allele (Table 3). Positive clones by PCR were sent for

Sanger sequencing – example sequencing results can be found in Figure 9. Homozygous

mutants were confirmed in all four transfections (Figure 9 and Table 3).

As previously described, the repair templates used in this experiment shared the same

synonymous recoding designs as some oligonucleotide repair templates tested previously,

with the exception of the codon corresponding to the target serine. Sequencing revealed

that in some mutated KKT2 S923S clones, the cells did not take up the necessary recoding

to generate the restriction site change, but did integrate other parts of the repair template

(Figure 9D – clone 11). In this design, a single base change at the 5’ end of the repair

 47

Figure 8. Production of double-stranded repair template using oligonucleotide primers.

Each design was split into a forward and reverse primer that encompassed about half of

the total repair template, with an overlapping annealing region (yellow). Primers were

annealed together in a PCR reaction and extended to complete the entire repair template,

and the product was checked by gel electrophoresis. For sequences, see Appendix 7.2.4.4

and 7.2.5.5. Diagram not to scale.

Table 3. Genotyping results of synonymous mutant clones from transfections using
double-stranded repair templates when screening 12 clones.

Transfection Homozygous Mutants Heterozygous Mutants

KKT2 S25S 5 (4) 2 (0)

KKT2 S493S 0* (2) 3* (0)

KKT2 S530S 1 (1) 0 (0)

KKT2 S923S 1 (1) 3 (2)

TOTAL 7 (8) 8 (2)

Numbers inside brackets indicate results confirmed by sequencing.

*Genotyping PCR was unclear.

 48

 49

Figure 9. Example sequencing results for mutant clones from transfections using double-

stranded repair templates. (A) Example homozygous mutant clone from KKT2 S25S

transfection. (B) Example homozygous mutant clone from KKT2 S493S transfection. (C)

Example homozygous mutant clone from KKT2 S530S transfection. (D) Example

homozygous and heterozygous mutant clones from KKT2 S923S transfection. In all panels,

genotype, represented by the single-letter amino acid code encoded, is indicated below

the cell line name. Superscript “WT” indicates the codon sequence for that residue is the

same as the WT reference sequence, and superscript “mut” indicates the synonymously

mutated sequence (KKT2 S493: WT – AGC, mutant – TCT; KKT2 S530: WT – TCG, mutant –

AGT; KKT2 S25: WT – TCG, mutant – AGT; KKT2 S923: WT – TCC, mutant – AGT). Red arrows

indicate protospacer sequences in WT sequences and equivalent position in repair

templates; blue arrows indicate PAM sites in WT sequences and equivalent position in

repair templates; yellow arrows indicate target site in WT sequences and mutated sites in

repair templates. The translation is shown below each DNA sequence, with black text

indicating the same protein and DNA sequence as the reference sequence, orange text

indicating the same protein sequence but a different DNA sequence to the reference, and

red indicating a difference in the protein sequence and hence DNA sequence.

template removes the restriction site. However, this change is isolated from the other

mutations. In fact, there is another ~30 bp of homologous DNA between this base change

and the remaining recoded sequence, so it is plausible that the cells used this region for

recombination instead of the intended homology arms upstream of this base. This was not

surprising, following previous results which showed recombination could occur with

shorter stretches of homologous sequence (11 bp - Figure 6A and B). However, this result

suggests that screening strategies should be designed to recognise larger regions of

continuous sequence recoding, as single isolated base changes are not consistently

integrated, and could lead to false negative results. It is plausible, that this was happening

in the single-stranded oligonucleotide repair template transfections targeting KKT2 S923A

and thus mutant clones were misidentified as WT because alternate homologous

recombination had occurred that did not remove the expected restriction site.

 50

4.4 Kinetochore Phosphosite Mutations Using Double-
Stranded DNA Repair Templates

Phosphosites on kinetochore proteins (KKT2: S25, S493, S530 and S923; KKT4 S422; and

KKT7 S304) were targeted for mutation to either alanine, glutamic acid or a synonymous

alternate serine codon using 160 bp dsDNA repair templates. Following transfection,

initially 12 clones were screened for integration of the repair template by PCR, followed by

a further 12 clones if none were detected in the first batch (see Appendix 7.2.2 for agarose

gel images). If PCR screening indicated a potential integration event of the repair template,

a second PCR which amplified over the entire template region was completed, and this PCR

product was sent for Sanger sequencing. Due to the transfection being selection-free, it

was expected that clones could either be homozygous mutants (i.e. the repair template

integrated successfully on both alleles), heterozygous mutants (i.e. the repair template only

integrated on one allele, leaving the other with the WT/native sequence), or homozygous

WT (i.e. the repair template failed to integrate on either allele leaving both alleles with the

native sequence). Following the ssDNA transfections, it was also possible to find “complex”

mutants but it was unclear how likely this would be.

Of the 18 different transfections, at least one homozygous mutant clone was identified in

each transfection following Sanger sequencing, except for KKT2 S923S. This result in of itself

suggests that this methodology has a vast improvement in efficiency in comparison to the

other methods investigated in this project. One mutant clone within 12 suggests a

minimum efficiency of 8.3%, compared to the less than 2% efficiency when using single-

stranded DNA (Figure 6).

From these 18 transfections, 29.2% of clones screened showed integration of the repair

template (Table 4). Overall, 21.7% of clones screened were homozygous mutants, with the

remaining 7.5% of mutant clones being either heterozygous or complex mutants. These

percentages were calculated using the repeat KKT2 S923S transfection where no mutant

clones could be detected. As previous data suggested that is possible to generate this

mutation, using the data from the previous transfection (Table 3) for this site instead

increases the editing efficiency to 30.4% - 22.1% homozygous, 6.3% heterozygous and 2.1%

complex. Either way, the overall editing efficiency was around 30%, with just over 20% of

 51

Ta
b

le
 4

. K
in

e
to

ch
o

re
 p

h
o

sp
h

o
si

te
 m

u
ta

n
t

ge
n

o
ty

p
e

s
su

m
m

ar
y

as
 d

e
te

ct
e

d
 b

y
P

C
R

 s
cr

e
e

n
 a

n
d

 S
an

ge
r

se
q

u
e

n
ci

n
g.

 P
e

rc
e

n
ta

ge
s

ar
e

 o
f

th
e

to
ta

l n
u

m
b

er
 o

f
cl

o
n

es
 s

cr
ee

n
ed

.

W
T

(%
)

H
et

e
ro

zy
go

u
s

M
u

ta
n

t
(%

)

H
o

m
o

zy
go

u
s

M
u

ta
n

t
(%

)

C
o

m
p

le
x

M
u

ta
n

t
(%

)

U
n

cl
ea

r

R
e

su
lt

 (
%

)

Fa
ile

d
 R

es
u

lt

(%
)

To
ta

l

A
ss

es
se

d
 (

%
)

K
in

et
o

ch
o

re

P
h

o
sp

h
o

si
te

M
u

ta
n

ts

P
C

R

1
22

 (
4

8
.4

)
3

2
 (

1
2

.7
)

3
0

 (
1

1
.9

)
-

4
3

 (
1

7
.1

)
2

5
 (

9
.9

)
2

5
2

 (
1

0
0

.0
)

Se
q

u
en

ci
n

g
1

2
 (

5
.0

)
1

3
 (

5
.4

)
5

2
 (

2
1

.7
)

5
 (

2
.1

)
-

5
 (

2
.1

)
8

7
 (

3
6

.3
)

Sy
n

o
n

ym
o

u
s

K
K

T2
 M

u
ta

n
ts

O
n

ly

P
C

R

3
3

 (
6

8
.8

)
5

 (
1

0
.4

)
7

 (
1

4
.6

)
-

3
 (

6
.3

)
0

 (
0

.0
)

4
8

 (
1

0
0

.0
)

Se
q

u
en

ci
n

g
0

 (
0

.0
)

2
 (

4
.2

)
8

 (
1

6
.7

)
0

 (
0

.0
)

-
0

 (
0

.0
)

1
0

 (
2

0
.8

)

C
o

m
b

in
ed

P

C
R

1

55
 (

5
1

.7
)

3
7

 (
1

2
.3

)
3

7
 (

1
2

.3
)

-
4

6
 (

1
5

.3
)

2
5

 (
8

.3
)

3
0

0
 (

1
0

0
.0

)

Se
q

u
en

ci
n

g
1

2
 (

4
.0

)
1

5
 (

5
.0

)
6

0
 (

2
0

.0
)

5
 (

1
.7

)
-

5
 (

1
.7

)
9

7
 (

3
2

.3
)

 52

cells becoming homozygous mutants. This efficiency is an notable improvement over the

use of single-stranded DNA repair templates, improving by over 10-fold.

Efficiency varied between transfections, ranging from 1 homozygous mutant within 12

clones (KKT7 S304A, S304E and S304S) – 8.3% integration – to 7 homozygous mutants and

1 heterozygous mutant within 12 clones (KKT2 S493A) – 66.6% integration. Results for each

repair template by both PCR and sequencing are in Figure 10. By PCR, KKT2 S25A had the

highest percentage of mutations (66.6%). The largest number of mutants detected by PCR

was 9 in KKT2 S923E, but as 24 clones were screened, this was equivalent to an editing

percentage of 37.5%. In comparison, only one mutant was confirmed by Sanger sequencing

in KKT2 S923A, KKT7 S304A, KKT7 S304E and KKT7 S304S.

PCR screening was not clearly able to identify mutants in the transfections for KKT2 S923A,

KKT7 S304A, KKT7 S304E and KKT7 S304S. For KKT2 S923A, 2 clones exhibited a single PCR

product with high intensity in the mutant PCR and several PCR products of varying intensity

in the WT PCR at unexpected product sizes (clones 4 and 11 – Supplementary data in

Appendix 7.2.2.2). The other two clones that were unclear had an intense single PCR

product in the WT PCR reaction but a lower intensity single PCR product in the mutant PCR

reaction (clones 6 and 12). Clones 4 and 11 were both identified by sequencing to be

homozygous mutants, suggesting the banding pattern seen in the WT PCR was non-specific

amplification of an unknown locus. Clones 6 and 12 were identified by sequencing to be

WT, potentially suggesting some non-specific amplification of the WT locus. Similar to

clones 6 and 12, a low intensity PCR product was present in the parental reaction when

amplified with the mutant PCR primers. But it is unclear why this product was more

prominent in these samples than the other WT clones. For the KKT7 mutations, the banding

pattern of all the clones, except the parental, showed two PCR products in the WT reaction.

Most clones also showed several PCR products in the mutant PCR reactions. These products

generally appeared non-specific, but did not correlate with the non-specific products seen

in the parental reaction with the same primer pair. However, one clone in each mutation

had a PCR product at the same size as the most intense WT PCR product (at the expected

size). These clones, as well as one clone with the nonspecific PCR product pattern in the

mutant PCR reaction, were sent for sequencing. Only those with the correct size PCR

 53

A

 54

B

 55

C

D

 56

Figure 10. Screening results of phosphosite mutant clones transfected with dsDNA repair

templates. A) KKT2 PCR screening results. B) KKT2 Sanger sequencing results. C) KKT4 S422

and KKT7 S304 PCR screening results. D) KKT4 S422 and KKT7 S304 Sanger sequencing

results. Target site is indicated on the left with the target mutation indicated at the top.

Number of clones screened is indicated by the n number below each pie chart, with number

of clones represented by each slice around the outside, adjacent to their slice. Genotypes

in A and C: WT – PCR product was detected in the WT primer set reaction and not in the

mutant set reaction; heterozygous – PCR product was detected in both WT and mutant

primer set reactions with approximately equivalent intensity; homozygous – PCR product

was only detected in mutant primer set reaction; Unclear – PCR product was detected in

both WT and mutant primer sets with either differing intensity in each or additional

unknown products; Fail – no PCR product was detected in either reaction. Genotypes in B

and D: WT – both alleles match the reference sequence; heterozygous – one allele matched

the reference sequence, one allele matched the repair template sequence (identified by

dual peaks of similar height in the chromatogram); homozygous – both alleles match the

repair template sequence; complex – evidence of integration of the repair template either

to different extents on each allele, or with unexpected mutations (see main body for more

details); Fail – the sequence was unable to align with either the reference sequence or the

repair template sequence.

product were mutated (S304A clone 9, S304E clone 12 and S304S clone 5 – Appendix

7.2.2.2).

It was unexpected that KKT2 S923S did not yield a mutant clone within 24 clones when

previous work had shown this was possible with the same repair sequence and sgRNA

sequences (Figure 9D). It is likely that this result was caused by a technical issue with this

transfection and/or screening process. Out of the 24 clones screened, 13 did not generate

a PCR product in either the WT or mutant PCR reactions, suggesting a general issue with

the collection of DNA, as the WT PCR on the parental DNA (which was from a different DNA

extraction) worked as expected and all the reactions shared the same PCR mastermix.

 57

In addition to the expected genotypes of homozygous and heterozygous incorporation,

sequencing revealed that 5 clones had integrated the repair template in an unexpected

way and have been called “complex”. These were one clone in KKT2 S493E, KKT2 S530E,

and KKT2 S923E transfections; as well as 2 clones in the KKT4 S422S transfection. KKT2

S493E clone 9 showed homozygous incorporation of the entire repair template, except it

had complete loss of the codon encoding E496, which is in the middle of a recoding region.

KKT2 S530E clone 19 seemed to show homozygous incorporation of the entire repair

template, except the target codon which showed secondary peaks. The secondary peaks

were not as high as the main peaks of the chromatogram, but notably higher than

background. In addition, a few other mutated residues also seemed to have background

peaks corresponding to the WT bases. This could either be indicative of the presence of a

WT copy as well as two mutated copies, or could be suggestive that the cell line was not

clonal. KKT2 S923E clone 22 incorporated the entire repair template in a homozygous

manner, except the first base of H927 which was heterozygous. This led to a C->G

transformation on one allele, causing a mutation to aspartic acid. KKT4 S422S clones 7 and

12 showed an identical genotype, incorporating the repair template in a homozygous

manner for the 3’ region of recoding (where the target S422 is) but a heterozygous

incorporation of the repair template in the 5’ recoded region.

On the assumption that the editing efficiency of this method is around 30%, when all

mutant genotypes are taken into consideration, it is possible to predict the likelihoods of

detecting a given number of mutant clones in the future. A binomial distribution can show

the probabilities of detecting x number of mutant clones when screening 12 clones, to

determine if 12 is a suitable number of clones to screen. The binomial distributions for a

range of editing efficiencies are shown in Figure 11A. For an editing efficiency of 30%, the

most likely scenario is that 3 or 4 mutant clones are detected, but it is much less likely that

7 or more mutant clones are detected. By using the cumulative frequency of these

probabilities (Figure 11B), it is possible to infer that at 30% editing efficiency, there is a 90%

probability that up to 5 mutant clones are detected when screening 12 clones. When

compared with the in vitro data (Figure 11C), it is apparent that the detection of larger

numbers of clones is not very likely at this editing efficiency, but is more likely at a higher

editing efficiency of 40%. In comparison, the large number of transfections with only 1

 58

A

B

C

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12

In
st

an
ce

s

Number of Mutant Clones
Detected within 12

D

 59

Figure 11. Mathematical analysis of precision editing efficiencies. A) Binomial distribution

of the theoretical probabilities of identifying several mutant clones within 12 randomly

selected clones for all mutant genotypes combined at a range of editing efficiencies. The

theoretical proportion of mutant cells is given in the legend (right). This editing efficiency

is a sum of all homozygous, heterozygous and complex mutants. 30% editing efficiency is

shaded for clarity, given that the calculated editing efficiency in vitro was around 30%.

Whilst the probability of finding 8 or more clones appears to be 0 under some conditions,

it is never truly 0 but as low as 4 x 10-9 for the 20% mutants line (red). B) The cumulative

frequency distributions for the same editing efficiencies as in part A. The dotted line

indicates the point at which there is a 90% chance for detecting the respective number of

clones (approximately 5) or fewer mutant clones with a 30% editing efficiency. This area is

highlighted with orange shading. C) A histogram of the frequencies at which several

kinetochore mutant clones (all genotypes) were detected when 12 clones were screened.

Transfections where 24 clones were screened were omitted. D) Box and whisker plot of the

editing efficiencies of all the kinetochore mutations (all genotypes). The mean is indicated

with a cross.

detected mutation is more similar to the trend seen when there is only a 20% editing

efficiency. This sample size is very small, so drawing conclusions is challenging, but it does

appear that there is a split, with some transfections fitting a 20% editing efficiency and

some fitting a 40% efficiency (Figure 11C). If a transfection had a high editing efficiency, its

sister transfections (i.e. the alternate amino acid replacement but the same target codon)

had similarly high efficiency. The same is true of the inverse, i.e. that if one design had poor

efficiency then its sister designs also had poor efficiency. For example, KKT2 S25A detected

a total of 7 mutant clones within the 12 screened, and S25E and S25S had 5 and 3

respectively. Only one mutant clone was detected in KKT7 S304A, and similarly in S304E

and S304S. This would suggest that there is something inherent about either the

synonymous recoding in the repair template or sgRNA design that is impacting the

 60

integration, as these features are shared between them. Further analysis into the repair

template and sgRNA designs is needed to identify the trends, and a larger sample size is

needed to infer the “true” editing efficiency with more confidence.

4.5 Growth Analysis of Kinetochore Phosphosite Mutants
As the kinetochore phosphosite mutant clones did not appear to exhibit any visual

morphological defects during normal passage and growth, it was hypothesised that the

growth rate could be impacted by the phosphosite mutations generated. To assess this,

kinetochore phosphosite mutants were grown to mid-log phase, and then 500 cells were

loaded into a well of a 96-well plate. After 5 days, the growth of the culture was measured

by Alamar blue assay using the fluorescence. A control plate (a duplicate of the 5-day plate

to control for inaccurate loading of the small number of cells) was also set up and measured

in the same way on day 0, but most of the data points when adjusted for the background

were below zero, so this data has not been shown. Two clones were selected at random

from the homozygous mutant clones. When two clones were not available, but other non-

homozygous clones were available, a second clone was chosen from the available clones.

These were KKT2 S530E clone 10 which had a heterozygous genotype at the point of

cryostorage (although genotype was not reassessed after thawing), and KKT2 S923E clone

22 which had a heterozygous H927D mutation as well as homozygous S923E.

KKT7 S304A clone 9 was the only cell line to show a significantly different rate of growth,

when normalised to T7Cas9. KKT7 S304A clone 9 grew faster than the parental, with a mean

growth of 176.3% growth at day 5 compared to the parental - Figure 12.

Whilst no other mutants showed significantly different growth, some clones showed

increased growth. Most of the clones that showed an increased growth rate were

synonymous mutant clones. The largest of these were KKT2 S530S clone 7, KKT2 S923S

clone 10, KKT2 S422S clone 4 which had mean growths of 130.0%, 155.5% and 149.7%

respectively. In contrast, the clones that showed a non-significant decrease in growth were

mostly KKT2 S25 mutants. KKT2 S25A clone 5, KKT2 S25S clone 5 and KKT2 S25S clone 10

showed decreased growth rates of 83.0%, 83.3% and 79.3% respectively. In addition, KKT2

 61

S493A clone 10 and KKT2 S493E clone 6 also showed reduced growths of 84.0% and 83.3%

respectively.

Whilst only KKT7 S304A clone 9 showed a statistically significant growth change, it is

apparent that growth rates between clones of the same genotype did not appear to grow

similarly. This could be caused by other unknown genetic differences between the clones

such as off-target effects or pre-existing genetic diversity from the parental population.

However, further investigation is required to assess these differences.

Figure 12. Alamar blue growth assay of kinetochore phosphosite mutants following 5

days of growth. CL = clone. Colours of bars indicate target site groupings. KKT2 S530E clone

10 is a heterozygote for the S530E mutation, indicated by S/E. KKT2 S923E clone 22 had a

heterozygous H927D mutation and is indicated by §. Error bars indicate the standard

deviation. * is p <0.05. n = 3 for all cell lines except KKT2 S493 and KKT2 S530 mutants which

were n = 4.

 62

4.6 Cell Cycle Analysis of Kinetochore Phosphosite Mutants
To assess whether phosphosite mutations influenced cell cycle progression, the quantity of

DNA in each cell was measured using propidium iodide flow cytometry in mid-log phase

cultures. The proportion of cells in each cell cycle stage was assessed, as well as looking for

anomalies in DNA content.

When assessing each cell cycle stage independently, most mutants were not significantly

different to the parental T7Cas9 cell line (Figure 13A). Only KKT2 S25S clone 5 showed a

significant increase in the number of cells in G1 compared to T7Cas9, but neither S-phase

nor G2/M cells showed a significant difference in proportion (Figure 13A). The other KKT2

S25S clone (clone 10) did not mirror this difference. However, it should be noted that only

one of the three replicates showed a notable difference in the percentage of G1 cells of

66.5%, whereas the other two were 45.0% and 41.1% respectively.

KKT2 S25E clone 11 and KKT2 S530E clone 21 had to be omitted from this analysis because

of the presence of an additional peak with a greater fluorescence than the G2/M peak

which the DNA content model fitting was unable to process (Figure 14A). For KKT2 S25E

clone 11, this peak was consistent throughout all the replicates, and represented about 4%

of the cells using the rough gating shown in Figure 14A. For KKT2 S530E clone 21, this peak

grew in proportion with each replicate and passage. Initially, it started similarly to KKT2

S25E clone 11 at around 4.8% but continuously grew in proportion, containing around

13.7% of the cells after several passages. In addition, the apparent G1 peak dropped in

proportion with this high intensity peak’s increase, starting at around 41% of cells and

dropping to 4.6% of cells in the final replicate. Based on the intensity of these additional

peaks in both cases, they likely represent a proportion of cells which have become triploid

rather than tetraploid.

Following identification of the triploid population in KKT2 S530E clone 21, a fresh batch of

cells were thawed from cryostorage, and spit into 4 subpopulations which were grown

independently. The flow cytometry analysis was repeated on each subpopulation as before,

but the phenotype was not replicated, and showed a normal cell cycle distribution across

all replicates (Figure 14B). On receiving this result, it was concluded that repeating KKT2

S25E clone 11 was likely to yield the same result, so was not repeated.

 63

Figure 13. Cell cycle analysis of mid-log phase cultures of kinetochore phosphosite

mutants. A) KKT2 S25 and KKT2 S493 mutants, n = 3. B) KKT2 S530 and KKT2 S923 mutants,

n= 4. KKT2 S530E clone 10 is a heterozygote for the S530E mutation, indicated by S/E. KKT2

S923E clone 22 had a heterozygous H927D mutation and is indicated by §. C) KKT4 S422

and KKT7 S304 mutants, n =2. * is p < 0.05. Error bars indicate the standard deviation in all

panels. CL = clone in all panels.

A

B

C

*

 64

Singles
07-Mar-2024

PI Y610-mCHERRY-A

C
o
u
n
t

10
5

10
6

10
7

0

183

366

549

733

G2-2
13.68%

G2/M/G1-2
57.79%

G1
4.56%

Singles
13-Feb-2024

PI Y610-mCHERRY-A

C
o
u
n
t

10
5

10
6

10
7

0

160

320

481

641

G1
21.26%

G2/M/G1-2
44.87%

G2-2
10.91%

Singles
30-Jan-2024

PI Y610-mCHERRY-A

C
o
u
n
t

10
5

10
6

10
7

0

204

409

613

817

G1
41.81%

G2/M/G1-2
33.09%

G2-2
4.85%

Singles
07-Feb-2024

PI Y610-mCHERRY-A

C
o
u
n
t

10
5

10
6

10
7

0

159

318

478

637

G1
31.26%

G2/M/G1-2
43.67%

G2-2
8.55%

Replicate 1

Replicate 2

Replicate 3

Replicate 4

KKT2 S530E Clone 21

Singles
12-Apr-2024

PI Y610-mCHERRY-A

C
o
u
n
t

10
5

10
6

10
7

0

131

262

394

525

G2-2
4.31%

G2/M/G1-2
31.59%

G1
30.97%

Singles
19-Mar-2024

PI Y610-mCHERRY-A

C
o
u
n
t

10
5

10
6

10
7

0

126

251

377

503

G2-2
4.48%

G2/M/G1-2
37.49%

G1
27.95%

Singles
27-Mar-2024

PI Y610-mCHERRY-A

C
o
u
n
t

10
5

10
6

10
7

0

127

253

380

506

G2-2
4.25%

G2/M/G1-2
38.31%

G1
29.67%

KKT2 S25E Clone 11A

 65

Figure 14. Cell cycle analysis of KKT2 S530E clone 21 and KKT2 S25E clone 11. A)

Histograms of propidium iodide intensity for each cell line. In each biological replicate

(indicated on the left), three technical replicates are plotted as individual lines. Gates used

are identical in width but have been repositioned to fit the exact intensity of the peaks for

each biological replicate. Percentages correspond to one representative technical

replicate. B) Cell cycle analysis of KKT2 S530E clone 21 repeat when split into four

subpopulations (A to D). Error bars indicate the standard deviation.

B

 66

4.7 Discussion

It is clear from these results that precision editing is possible in Leishmania mexicana, but

that the methodology used plays a large factor in the success of generating mutants.

Broadly speaking, two approaches were investigated in this project – the use of single-

stranded DNA (ssDNA) repair templates and double-stranded DNA (dsDNA) repair

templates. Single-stranded repair templates were inconsistent in the generation of

mutants, and efficiency seemed to be low. The presence of the integrated repair template

was demonstrated in populations (Figure 7), but not in clones in most cases (Table 2 and

Figure 6). In contrast, double-stranded repair templates were far more consistent in the

generation of mutations (Table 4, Table 5, Figure 9, and Figure 10). Based on the frequency

that mutated clones were identified, double-stranded repair templates generated a higher

proportion of mutant cells within a given population than the single-stranded

oligonucleotide repair templates. Other than the “stranded-ness” of the repair templates,

the only major differences between the methods were the increases in the length of the

homology arms, the inclusion of 6-biopterin in the recovery media, and the larger quantity

of sgRNA in the transfection. Whilst it cannot be ruled out that these factors were of more

or equal importance than whether the repair template was single- or double-stranded, it

seems suggestive that the change in “stranded-ness” is a key factor (Table 5). Whilst the

experiments completed in this project are not able to determine why the type of DNA had

Table 5. Comparison of the success of transfections using single-stranded or double-

stranded repair templates.

Repair Template Type Successful Mutant Generation Out of Total

Independent Attempts to Generate Mutants

 Clones Population

Single-stranded 3/16 (18.8%) 18/20 (90.0%)

Double-stranded 21/22 (95.5%) -

 67

such an impact, perhaps it is suggestive that the initiation of the DNA damage response is

different between single- and double-stranded repair templates. Further investigation into

this process in Leishmania may enable even greater improvements in editing efficiency.

Whilst the type of DNA was evidently crucial in generating the desired mutations, it was

interesting to reveal that the recoding strategy had little effect on the outcome. The

variability in the success of transfections using the ssDNA repair templates was initially

attributed to some aspect of the design. To investigate that hypothesis, two targets were

chosen, and five repair templates were designed for each of them. These repair templates

had a range of different recoding strategies such as using different codons, differences in

spacing and quantity of mutations (Table 1). Unexpectedly, almost all the repair templates

designed were detected by PCR (Figure 7). It should be noted that the sequences of these

PCR products were not determined. However, on the assumption that each PCR exclusively

detected the intended repair template, and with the additional data from the dsDNA repair

transfections which used the same recoding as some of the ssDNA repair transfections, it

is clear that the success of the transfection is not primarily linked to the recoding strategy

used in the repair template design. This suggests that there is scope to recode the sequence

in ways which enhance usability such as making screening simpler. That being said, this

finding should be taken with caution because each of the repair templates tested here only

induced ~10-15 SNPs in regions of about 60 bp of one gene in any given cell. Whilst studies

in the literature indicate that translation rate is constant between sequences from across

the whole genomes of higher eukaryotes, which inevitably vary in composition (Burchmore

and Landfear, 1998; Brittingham et al., 2001; Villa et al., 2003; Beetham, Donelson and

Dahlin, 2003), there is evidence to suggest that translation rate is dependent on the codons

used in trypanosomes (Jeacock, Faria and Horn, 2018; Nascimento et al., 2018). Whilst the

repair templates used here were small, it is likely that for larger scale recoding such as

whole genes, there will be more consequences on the translation rate and hence health of

the cell for diverging from the native sequences. As such, it is advisable to generate

synonymous mutant control lines to help distinguish fitness effects caused by the recoding

from those caused by the target-mutation, and to choose similarly used codons where

possible.

 68

When used cautiously, having the flexibility to choose any synonymous codon has great

benefits for designing suitable screening approaches. The Leishmania genome has a high

GC content of around 59% (Ivens et al., 2005; Peacock et al., 2007; Rogers et al., 2011;

Chauhan, Vidyarthi and Poddar, 2011) compared to humans which has an average of

around 41% (Lander et al., 2001). This can make primer design extremely challenging in the

small regions of interest for precision editing, which can have even higher local GC content.

Whilst there are approaches that can be used to amplify high GC content templates,

increasing the chance of successful screening on the first attempt has several benefits.

Failure to screen on the first attempt can lead to repeated passaging of the cells which can

reduce the virulence, as well as requiring more media and consumables which increases

the costs. To improve this technique in the future, it may be beneficial to intentionally

recode regions with high GC content to increase the AT content (i.e. lower GC content),

since editing efficiency does not appear to be impacted. Reducing GC content where the

screening primer binds will lower the annealing temperature required during screening

PCRs which could reduce instances of unclear genotyping from unexpected PCR results.

Additionally, reducing the necessary melting temperature of the screening primer allows a

wider range of annealing temperatures to be tested, should initial screening lead to unclear

results. As such, repair template design and screening-primer design should be completed

in parallel, to ensure annealing temperatures for primers are convenient for use. In

addition, ensuring the 3’ base of the screening primer differs between WT and mutant

sequence for that region can help to ensure specificity. In the KKT7 S304 PCR screening

reactions, the 3’ base of the WT-specific primer was shared between the WT sequence and

all the repair templates. The KKT7 S304 transfections had the most uncertain PCR products,

with between 5/12 and 8/12 clones generating unclear PCR products each. It is plausible

that the WT-specific primer was able to bind sufficiently to both WT and mutant DNA and

allow amplification to occur, creating the unclear results. In these PCR reactions, most

clones (but not parental DNA) produced two bands in the WT-specific PCR reaction, both

of which were close to the expected product size (Appendix 7.2.2.2). This made

interpretation of the results harder, as only one clone in each transfection had a single PCR

product. Sequencing of clones with single-PCR products revealed they were homozygous

mutants, indicating the product that was absent in their reactions was the real WT PCR

product. Situations like this demonstrate that it is helpful to incorporate a back-up

 69

screening approach into the design such as incorporating a change in common restriction

site in the region of interest.

Using a restriction digest strategy as the primary form of screening method was also tested

in this project. In most cases, restriction digest tended to be more predictive of the

genotype of the clone being assessed than PCR screening, following sequencing. This is with

the caveat that this was only true when restriction sites were located in the same

continuous stretch of recoded sequence as the mutation of interest. Restriction sites that

were located further away from the target site, particularly in cases where there was a

break in the recoding, were not good at predicting genotype. This was demonstrated by

the presence of clones with a complex genotype, where the repair template was not always

integrated in its entirety. A continuous region of recoding tended to be incorporated

together, with only occasional failure to incorporate mutations at the end of a series of

synonymous mutations. As such, it is highly plausible that clones with partial repair

template integration were misidentified as WT if the sequence conferring the restriction

site change was not integrated. Primers recognise a much longer sequence in most cases,

so had higher chances of detecting a partial integration of the repair template than

restriction enzymes which often only recognise a 6 bp long sequence. However, screening

by PCR tended to be less accurate and dependent on how specifically the primer bound to

either the WT or the mutant sequence. Several clones transfected with dsDNA indicated

the presence of a mutant allele by PCR but were identified as WT by Sanger sequencing

(5.0%). However, PCR screening was more convenient, and cheaper too. A 5.0% false-

positive rate was acceptable to have, since true positive results were also detected.

However, it should be considered that of this 5.0% of clones, some PCR results were more

suggestive of a particular genotype than others. 17.1% of clones screened by PCR that were

transfected with dsDNA had an uncertain genotype following PCR screening (Appendix

7.2.2.3). These included situations where both WT and mutant PCRs had bands but of

unequal intensity, or the banding pattern in one or both PCRs were not as expected. As

such, some of these PCRs seemed more likely to suggest that the clone was WT and had

not integrated the repair template but the result left enough doubt to warrant sequencing.

As such, it is not necessarily fair to say that all of these were strict false positives and

suggests that the rate of misidentifying WT cells as a mutant genotype is likely less than

 70

5.0%. However, there were instances where PCR screening misidentified mutant

genotypes, such as misidentifying a homozygous mutant as a heterozygote. So taking 5.0%

as an overall inaccuracy rate of PCR detection is reasonable.

Both in the use of ssDNA and dsDNA, integration of the repair template was not always

complete or perfectly faithfully on both alleles. These clones have been designated as

“complex” genotypes. Most frequently, “complex” clones showed faithful inclusion of

about half of the repair template, typically when there was a break in the recoding in the

centre of the repair template. It is likely that in these cells, the WT sequence in the centre

of the repair template was used for recombination rather than the intended homology

arms. The smallest breaks in recoding were only 11 nt long. At this length of homology, it

is more likely that the microhomology-mediated end joining pathway is activated, which

can use regions of 5-25 nt in length for double-stranded DNA break repair (Zhang and

Matlashewski, 2019). Alternatively, it is possible that this genotype was caused by a failure

to induce both double-stranded breaks on one allele by the Cas9 nuclease. In all the repair

templates tested, the editing range was only 60 bp. The Cas9 nuclease is 160 kDa,

approximately 10 nm x 10 nm x 5 nm in size (Josephs et al., 2015). Cas9 recognises and

binds a region of 20 bp (the protospacer), but given its size, it is probable that in some (if

not all) of the designs tested here, two Cas9 molecules would not be able to bind to the

genomic DNA at the same time to make both breaks due to their proximity. Even though

two Cas9 molecules would be unable to make both breaks simultaneously, it is still

beneficial to have both sgRNAs. For example, one sgRNA may have better activity than the

other, the different break sites may stimulate different repair responses from the cell, or

the second may be broken after the first. In some cells, it is plausible that only one dsDNA

break occurred, which increased the probability of recombination happening at a recoding

break in the repair template. Little is known about the specific factors involved in

homologous recombination in Leishmania species (Kelso et al., 2017), despite its presence

having been demonstrated around 30 years ago (Tobin, Laban and Wirth, 1991). RAD51 (a

recombinase that is active during mitosis to repair DNA damage faithfully) is present in

Leishmania and has been shown to respond to DNA damage (Kelso et al., 2017), as well as

having roles in DNA replication (Damasceno et al., 2020). BRAC2 is also present and similar

to other organisms, is responsible for localisation and loading of RAD51 onto sites of DNA

 71

damage (Kelso et al., 2017). Further research into the other factors involved will hopefully

shed light on the most effective way to stimulate the desired form of integration.

Additionally, there were “complex” clones which contained an unexpected change to the

amino acid sequence. It is apparent that these nonsynonymous mutations are unlikely to

be compensatory, as at least one clone was identified in each transfection with the

designed repair template faithfully integrated on both alleles. It is possible that these

mutations help the cell manage the induced mutation, but they are clearly not required to

survive. It is more likely that these events either stem from unfaithful DNA repair by the

cell, or unfaithful production of the repair template (either during oligonucleotide

production or during PCR amplification by the polymerase). Unfortunately, with the

present data, it is not possible to determine the cause of these mutations.

Of the attempts to use double-stranded repair template that failed to generate mutants,

only the repeat of KKT2 S923S failed to identify mutant clones (Figure 10A and B). As this

mutation was previously generated in this project (Figure 9D), this result is suggestive that

there was a technical issue with this transfection and/or screening process. Whilst there is

some evidence to suggest there were technical issue with the DNA extraction or PCR

screening step, an alternate hypothesis is that the transfection efficiency dropped because

of varying quality and quantity of DNA used. For the second replicate of KKT2 S923S using

dsDNA, DNA was prepared in parallel to DNA for other KKT2 transfections in a single PCR

plate, but S923 was the last to be used from this. As such, the plate was carefully opened,

thawed and re-frozen several times prior to transfection. Doing so left the volumes in these

wells to be slightly lower than expected when preparing them for transfection (likely due

to evaporation), and perhaps caused some amount of DNA degradation. This could explain

why the efficiency, which was 25% when only testing synonymous mutants with freshly

made DNA, dropped to 0%.

Whilst synonymous controls do not directly indicate whether a non-synonymous mutation

is possible, it is clear from this report that their incorporation as a control in parallel is of

great help in determining the reasons for failure to isolate the mutation of interest.

Additionally, synonymous mutations are useful as controls in experiments that investigate

the effect of the mutation of interest. Clones with synonymous mutations in this context

can help to separate the effect of the non-synonymous mutation of interest from any

 72

effects caused by the recoding used for screening purposes, as well as off-target effects

from the guides used. If the recoded sequence affects things like translation speed, it will

be apparent in both clones with synonymous only and non-synonymous mutations.

Without the presence of synonymous mutation controls, this may be misidentified as a

phenotypic difference between non-synonymous mutation and the parental line.

Unfortunately, the mutants generated here did not appear to have a distinct phenotype.

No mutation indicated a significant drop in growth rate, as was hypothesised for cell cycle-

dependent proteins. The only significant difference identified was KKT7 S304A clone 9,

which grew faster than the parental when assessed by Alamar blue growth assay (Figure

12). Without a second clone showing the same phenotype, it is hard to draw conclusions

with certainty that this growth change is directly caused by the mutation in KKT7, or

whether it is the result another genetic difference in this clone. Whilst no other mutant

clones in this assay showed significant growth changes, it is quite apparent that other pairs

of clones with the same mutation did not always grow at a consistent rate. It is not clear

why some clones with identical mutations grew at differing rates but is most likely caused

by the genetic diversity within the parental cell line. In addition, further validation of this

phenotype is needed by a more accurate growth curve, as variance between replicates was

high in all cell lines. On the whole, the lack of significantly different growth rates indicates

that the phosphosite mutants generated here do not have notable changes to the rate of

progression through the cell cycle such that their duplication time is affected, suggesting

that none of the phosphosites mutated here have overarching control of the cell cycle.

Additionally, most mutant clones did not exhibit a cell cycle defect. The only identified

changes to the cell cycle were KKT2 S25E clone 11 and KKT2 S530E clone 21, which indicated

apparent triploid cells (Figure 14A), and a slight increase in the proportion of G1 cells in

KKT2 S25S clone 5 (Figure 13A). The triploid phenotype was not replicated when a fresh

sample of cells were used (Figure 14B), suggesting this was a random event that was

selected for when passaging the cells. It was hence presumed that KKT2 S25E clone 11

shared a similar random event, as the other clone with this mutation lacked this phenotype

so was not investigated further. Whether this mutation increases the likelihood of such

random events remains to be seen.

 73

Identifying several clones that have integrated the mutation of interest in a homozygous

manner has been key to evaluating whether a phenotype is directly caused by the mutation

of interest. It is plausible that differences seen between clones are the result of off-target

mutations, compensatory mutations, or natural diversity in the parental population. But as

none of the full genomes of these mutants have been sequenced, it is not possible to say

which is the case with certainty. In the case of some of the mutations, only one clone was

identified with the desired genotype. With only one clone it is difficult to be confident that

differences seen are the result of the induced mutation alone. Having several clones with

the mutation of interest can allow for reasonable scepticism that a phenotypic difference

is caused by the mutation, if not all clones exhibit the same phenotype.

The lack of phenotype from the phosphosite mutations generated in this project is not

completely unsurprising. Other studies looking at the effect of both ablation of

phosphorylation sites and phosphomimetic studies have found little to no phenotypic

effect in cell lines with several mutated phosphosites (Hořejší et al., 2010; Yang et al., 2013;

Marchand et al., 2022). Whilst these examples are not from kinetoplastids, they

demonstrate that it is common for phosphorylation to play a subtle role in controlling

protein function. In contrast, there are cases where a single phosphorylation site has

significant impact on the cell (Xu et al., 2011; Canton et al., 2012; Keder et al., 2015).

However, in the latter case, none of the mutations caused a lethal phenotype. As the

kinetochore proteins investigated here are essential genes, complete dysregulation would

likely be lethal. As such, it is unsurprising that there was no apparent effect from the loss

of individual phosphosites.

It should be noted that in many cases, the phosphosites that were mutated were in

proximity to other serine or threonine residues in the primary protein sequence. For

example, in KKT2 when looking at the 25 amino acid residues either side of S493, there are

10 other serine or threonine residues. As the kinase that phosphorylates this site is not

known, it is unclear whether it would be possible for this particular kinase to phosphorylate

a nearby serine or threonine instead. If this upstream kinase is promiscuous enough to be

able to phosphorylate alternate residues nearby, the phosphorylation state would likely be

the same as a WT KKT2 protein, allowing function to proceed as normal. It has been shown

in T. brucei that CLK1 can phosphorylate KKT2 at S508, which is thought to be equivalent of

 74

S485 or S487 in L. mexicana (Saldivia et al., 2021; Geoghegan et al., 2022). However, CLK1

has not been shown to phosphorylate alternate sites to date. Promiscuous phosphorylation

is one potential explanation as to why the mutations generated here had little to no

phenotype. Promiscuous kinases such as casein kinase II (Borgo et al., 2021) are known to

phosphorylate various parts of the cell cycle machinery in humans (Schweighofer et al.,

2024), so it is highly plausible the same could be true for kinetoplastids. However, the

phosphorylation status of the mutant proteins generated here was not investigated. Nor is

it known whether the phosphorylation state is more or less important than the location of

the added phosphate at particular residues.

There have been more phosphorylation sites identified on these kinetochore proteins than

were targeted for mutation here (Geoghegan et al., 2022). It is plausible that

phosphorylation of several sites has a cumulative effect, and so removal of one

phosphorylated residue has minimal impact. But loss of phosphorylation at several sites

could cause a noticeable phenotype. Taking the example of KKT2 again, a double mutant

was attempted targeting KKT2 S505 and S506 using the ssDNA approach, but no mutant

cells were recovered. This is most likely due to the ssDNA method used, so repeating this

target with the dsDNA approach would be enlightening. Further study is necessary to

determine whether the phosphosites on KKT2, KKT4 and KKT7 have a cumulative effect, or

whether phosphorylation plays a different currently unknown role. To determine if this is

the case, protein-based approaches would be best to initiate investigation, to assess the

range of potential phosphorylation states each kinetochore protein has, before moving to

genetic modification to edit those sites. One way would be to use a phospho-protein mass

spectrometry approach to identify the different phosphorylation states of each

kinetochore protein. This approach could assess whether there are discrete

phosphorylation states of high importance or a wider array of potential phosphorylation

states with little indication of preference. In the former case, it is more likely that loss of a

number of key sites would have an impact on fitness more so than in the latter, which could

require loss of most or all phosphorylation sites to have an impact on function.

It should be emphasised that the genes that were precisely edited here were essential. All

three kinetochore genes in which the dsDNA method was tested are essential (Akiyoshi and

Gull, 2014). The method developed here is likely to be widely applicable for use across the

 75

genome, given that it works on essential genes which are most likely to be challenging to

manipulate. Of course, not all mutations will be possible. For example, removing catalytic

activity of an essential enzyme would likely be impossible to generate in an otherwise WT

strain, even if other biochemically similar mutations are tolerated. The mutations induced

here were only predicted to play a role on protein regulation, which given the lack of

phenotype identified, is either multi-factorial or phosphorylation plays an alternative role.

But this method opens up the possibility to unpick different aspects of essential genes that

have previously been too technically challenging to investigate, as well as allowing more

detailed study into non-essential genes. For example, this method could be used to modify

motifs needed for other post-translational modifications, such as removing lysine residues

of potential ubiquitination sites, or could be used to disrupt protein-protein interactions. It

could also be used to manipulate trafficking signals or to influence drug-sensitivity.

Whilst there are already examples in the literature of precision editing (Zhang and

Matlashewski, 2015; Zhang, Lypaczewski and Matlashewski, 2017; Rico et al., 2018;

Vasquez et al., 2018; Vergnes et al., 2019), there is little standardisation as to the approach

being used (Yagoubat et al., 2020). As such, it is likely that time and resources amongst

members of the field are wasted, due to failure to compare approaches. The method

presented here is simple and consistent, which has the potential to become the standard

in the field. Currently, the method presented here is not suitable for use en masse

simultaneously. But it is otherwise quite flexible and could be used on any gene of interest,

even beyond Leishmania species such as in trypanosomes. If there is desire to generate

libraries of precisely edited mutants, this method has the potential to enable that, so long

as mutants are generated in manageable batches for culturing and screening.

Further research is still needed to adapt this method to become scalable in vitro at the

point of transfection. To begin to increase the through-put of this method, an automated

in silico approach to the design has been investigated and is presented in Chapter Four –

Python Script. In order to complete the transfections and screening steps necessary to do

a large number of precision mutants, it is first necessary to design the repair templates and

oligonucleotide primers to create and screen them. Websites such as

http://www.leishgedit.net/ (Beneke et al., 2017) have shown that automated design

processes can aid in scale-up of mutant generation to allow large-scale projects, such as

http://www.leishgedit.net/

 76

whole kinome assessment by Baker et al. (2021) to exist. Creating such tools also has the

additional benefit of standardisation. Whilst efforts have been made to describe in detail

how and when one codon sequence was chosen over another in this report, it is at the end

of the day the individual’s choice as to which they use. Using a computer programme to

execute this process ensures that the design will always follow the same decision making

choices, independent of the researcher designing them. As long as the programme is coded

to make design choices that have been shown to work in vitro, all non-lethal mutations

should be possible to generate. However, the “rate-limiting step” of this precision editing

method is the culturing and screening of clones on a transfection-by-transfection basis.

Further work is needed to reduce this workload, as this will have the most impact at a high-

throughput scale.

In conclusion, a methodology has been developed for consistent precision editing in

Leishmania mexicana and has been shown to be effective on essential genes. Mutants were

successfully generated on KKT2, KKT4 and KKT7, which included phosphomimetic mutants,

phosphosite-deficient mutants, and synonymous mutants. Whilst efficiency of the editing

varied by transfection, at least one homozygous mutant was recovered in each transfection

and overall, 29.2% of mutants screened showed integration of the repair template. None

of the mutants generated here showed growth defects or repeatable cell-cycle anomalies,

suggesting that these mutations did not have significant impact on the cell cycle.

 77

5 CHAPTER FOUR – PYTHON SCRIPT

5.1 Introduction
Python is an object-oriented high-level programming language with dynamic semantics and

intuitive syntax (Python Institute, n.d.). It was created by Guido van Rossum in 1991, a

Dutch programmer (Munro, 2024). Whilst Rossum made the first versions, Python has since

been worked on by a large community of programmers from around the world, with the

newest version (Python 3.0) being released in 2008 (Munro, 2024). This combination of

Python being a human-friendly high-level language with intuitive syntax has increased its

popularity and has led to significant development in the available packages.

Some packages are used in a wide variety of programmes created for diverse purposes.

Examples of these are NumPy (Numerical Python) which is a package designed around

mathematical manipulations and handling of arrays of data (Harris et al., 2020); and Pandas

(panel data) which can be used for statistical analysis of data and allows information to be

represented in a table-like format called a DataFrame (Mckinney, 2010). These DataFrames

can be used to store data, but equally they can be used to manipulate or search through

data. Both packages allow organisation and manipulation of data, which is useful in many

different programmes to perform the necessary calculations to derive the appropriate

output.

In contrast, some packages are highly specific to their uses. Biopython is a package

designed for molecular biology and bioinformatics (Cock et al., 2009). Biopython’s features

include (but are not limited to) translation of DNA and RNA to protein, calculating the

complement and reverse complement of DNA sequences, and being able to produce and

read sequence alignments. Some of the more advanced aspects of Biopython include

analysis of large data sets such as handling Next Generation Sequencing reads. Reads can

be taken through quality filtering, trimming, assembly into a full genome or analysis against

a reference genome to assess gene expression and finally calculating Principal Component

Analysis of differentially expressed genes. Development of Python scripts to complete tasks

like these also ensure identical analysis of each dataset, allowing consistency between

experimental conditions, or even across organisms. As the current version of Biopython has

 78

many varied features, the creators have organised its capabilities into groups of smaller

packages which can be imported individually. This approach minimises the memory

required to run each respective script and keeps the syntax clear. But conveniently, there

is cross-compatibility between all sub-packages.

Another Python package for molecular biology is Primer3 (Koressaar and Remm, 2007;

Untergasser et al., 2012). Primer3 is a package that can design PCR primers against an input

DNA sequence, but can also analyse primer sequences for common features. Primer3 has

a wide array of customisable input variables such as desired melting temperatures or GC

content of the output primers, and selection or exclusion of certain sequences within the

template sequence. It can generate several primer pairs, along with all the associated

information such as PCR product length. Originally, Primer3 was developed for command

line usage, but has since been adapted into a Python module in 2014 due to its popularity.

One consideration when using Primer3 is that it only uses the input sequence for primer

design and does not complete any form of cross-reactivity analysis with other parts of the

given sequence, nor does it consider the wider genome for similar sequences. As such,

caution should be used when designing primers with Primer3 on small reference sequences

to ensure specificity. This is particularly important on genes with known homologs of high

sequence similarity as primers designed by Primer3 could lack specificity to the intended

target.

In this chapter, I will describe and discuss how I created a Python script that can design a

repair template in a similar manner to those that were designed and used in the previous

chapters. The script is instructed by a simple Excel Spreadsheet “form” (that works as a

configuration file), a user-provided a codon usage table, and a FASTA file of their gene.

Following execution, two repair template sequences are produced. One repair template

contains only synonymous mutations, and the other contains the desired nonsynonymous

mutation. Both repair templates have additional identical synonymous mutations needed

for screening. In addition, the script designs screening primers to detect the integration of

the repair template, and long oligonucleotide primers to produce the respective repair

templates. Lastly, the script also provides pairwise sequence alignments and some useful

information about the repair templates and primers. All of these outputs are contained in

 79

a single text document. This format allows visualisation of the alignments and creates a

store for the information the script has calculated.

5.2 Development
A Python script was created using Python 3.10.9, as well as several other packages listed in

Table 6, in particular the Biopython package (also known as Bio), Pandas and Primer3

(Koressaar and Remm, 2007; Cock et al., 2009; Mckinney, 2010; Untergasser et al., 2012).

In order to make the script more readable, avoid duplication, and to make it more flexible

to modifications in future versions, several files were created which are interlinked. Each

file contains a subset of the required code. Apart from the main file, each of the other files

creates a series of functions that can be called by other files to execute that portion of code,

so act like packages. Comparatively, the main file puts all of these other functions together

in succession to achieve all the necessary steps. The file names, their purposes, the

Table 6. Python package versions used in the creation of the Python repair template

generating script.

Package Version

Python 3.10.9

pandas 1.5.3

Biopython (Bio)

1.81
Bio - SeqIO

Bio - Seq

Bio - Align

NumPy 1.23.5

io N/A

random N/A

Primer3
2.0.1

Primer3.bindings

 80

shortened name used in the main file, and the appropriate appendices for the full code can

be found in Table 7.

One of Biopython’s features is that it has inbuilt codon tables, including variant codon

usage tables. However, the inbuilt codon table in Biopython did not have capacity to

retrieve every possible codon sequence for each amino acid – only one codon sequence

was retrieved when Biopython was asked to provide the codons for any amino acid. As

such, custom functions were created to call all the codon sequences that code for a given

amino acid, with or without the associated frequency usage data for every codon. All the

codon sequence and amino acid pairs use the standard genetic code.

Table 7. Repair generator constituent files and purposes.

Filename Appendix
Containing the

Code

Main Purposes/Theme Imported
as

main.py 7.2.10 To call each of the other

functions in succession to

perform the necessary steps

to generate the repair

template, screening primers

and production primers, as

well as reading the input

Excel spreadsheet

configuration file and

producing a user-friendly

output containing useful

information.

-

reading_input_file.py 7.2.11 Interpretation of the input

codon usage table and

conversion to a Pandas

DataFrame.

rif

codon_dictionaries.py 7.2.12 To separate out each codon

from the input sequence

into identifiable pieces and

cdict

 81

store them in dictionaries for

retrieval and manipulation.

codon_dataframes.py 7.2.13 To separate out each codon

from the input sequence and

associate that codon with

frequency usage data to

allow selection of alternate

codons based on usage

frequency. These are stored

in Pandas DataFrames inside

dictionaries.

cdf

formatting_functions.py 7.2.14 To create more readable

versions of some of the

outputs for the output file.

formats

stitching_functions.py 7.2.15 To break an input sequence

into constituent parts and

put DNA sequences together

to form new sequences.

stitch

validator.py 7.2.16 To confirm the inputs given

are consistent with each

other e.g. that the specified

codon codes for the amino

acid listed.

val

primer_functions.py 7.2.17 To design screening and

repair template primers with

consistent settings that work

with a range of target

sequences.

primers

Biopython and Pandas packages in particular were used in conjunction to create a script

that uses a series of dictionaries to identify the sequence to mutate from a larger DNA

sequence, break the sequence down into constituent codon sequences, and then exchange

those codon sequences with the replacement codon sequence as dictated by the recoding

methodology chosen. Using dictionaries allowed nonsynonymous mutations to be created

 82

by removing the key-value pair associated with the target codon’s wild-type sequence and

replacing it with a new key-value pair corresponding to the desired mutation. Whilst

dictionaries do not store data in a guaranteed order, using numbers as part of (or the

entirety of) the key ensured codons were retrieved in the order they were in the original

input sequence when it was time to recreate a continuous DNA sequence. This ensured

that the protein sequence was maintained (except for the target nonsynonymous

mutation) and ensured that the chosen synonymous recoding method had actually been

applied to each codon, rather than effectively random triplet codes being chosen for each

codon regardless of the recoding method selected.

5.2.1 RECODING METHODOLOGIES
One of the main benefits to the script is the automated recoding. Recoding a sequence

manually is very time consuming and laborious. The script offers several recoding

methodologies to generate both the synonymous recoding (used for screening purposes)

and a nonsynonymous target mutation. There are four types of recoding the script can

perform. The “matched” setting can only be applied to synonymous mutations, but the

other three (“random”, “highest” and “lowest”) can be applied to both synonymous and

nonsynonymous mutations.

When the chosen recoding method is applied to nonsynonymous mutations, all codon

sequences for the respective amino acid are considered in the selection process. However,

when the recoding method is applied to synonymous mutations, the WT codon sequence

is removed from the available codons to choose from to ensure a mutation occurs. The

exceptions to this are the codons for methionine and tryptophan, which only have one

codon each in the standard genetic code, so they will always be “replaced” with the same

sequence as the WT codon. Similarly, for amino acids that are only encoded by two codons

and are being synonymously mutated, the choice after removing the WT codon from the

selection leaves only one possible replacement codon sequence. So, these codons will

always be recoded predictably to the non-WT codon sequence, regardless of recoding

methodology used.

 83

“Random” is as the name suggests, a random unbiased selection of possible codons for the

desired amino acid using the random Python package. Unlike the other recoding methods,

“random” will cause a different output repair sequence on each execution of the code,

when given the same inputs (excluding the exceptions already discussed). If little is known

about the impact of different sequence compositions on the target gene or species, or if

targeted approaches have been unsuccessful, this method provides a way to generate a

repair template without bias in the design to explore options that might not have previously

been considered.

“Highest” and “lowest” settings are in reference to the frequency usage of the codon

sequences. The user supplies a codon usage table as part of the required inputs (see Figure

17B for an example). The codon usage table provided will dictate which codon is selected

for each amino acid, with “highest” referring to the most used codon, and “lowest” the

least used codon (see Figure 15, part 2 for more details). These allow the user to bias their

recoding to use more common or rarer codon sequences, as desired.

“Matched” is essentially a harmonized codon selection - choosing the codon that is most

similarly used to the input codon, and is the most similar to the design strategy used in the

previous chapter. To determine which codon is the “matched” codon, a simple subtraction

is performed using the values in the “Fraction” column from the supplied codon usage table

from https://www.kazusa.or.jp/codon/ (Figure 17C). However, using this approach means

that ties can occur fairly frequently. In these instances, the data from the “Number” column

(i.e. a count of instances in the selected genome) is used as a tiebreaker, taking the higher

of the two. That being said, as this script currently stands, there is the possibility that a tie

could persist and if that is the case, the script will output a text based error in the console,

and will likely fail to complete.

In all recoding methods, each codon is evaluated independently from other codons

encoding the same amino acid. To achieve this, for “matched”, “highest” and “lowest”

recoding, frequency usage data is copied from a reference for each codon, and then

calculations are performed only on the copy. Similarly in the “random” setting, the list of

codon sequences for a given amino acid is copied from a reference list, before adjusting to

remove the WT sequence for synonymous mutations. This approach ensures that even in

instances where the same amino acid is represented several times, the replacement

https://www.kazusa.or.jp/codon/

 84

 85

Figure 15. Python repair template generator script workflow (part 1). 1A) The script

requires 3 supplemental files (a FASTA file, a codon usage table and the configuration

spreadsheet – see Figure 17 for more detailed versions). The configuration spreadsheet is

used to determine the location of the CDS (bold underlined) within the supplied FASTA file,

and to identify: the target codon, surrounding region to recode (1B), and homology arms

(1C). Generally, the recoding region is equally split to have the same number of recoded

codons either side of the target codon (however, one side will contain one extra codon in

instances where this is not possible). However, the recoding region is adjusted to stay

within the CDS if the target codon is in close proximity to the start or end of the CDS (1B).

2A) Each codon from the recoding region is identified and evaluated individually to select

a suitable replacement sequence (2B), dictated by the chosen recoding strategy specified

in the configuration spreadsheet (1A). The replacement codon will never be the same as

the WT sequence, except for methionine and tryptophan codons. 2C) When using the

matched recoding setting, the difference in usage of the alternate codons are compared

with the WT codon sequence, and the most similarly used codon (either more or less

frequently used) is chosen. 3A) For the nonsynonymous mutation, the codon sequence is

chosen from any possible codon sequence for that amino acid. The chosen sequence is

determined by the recoding method chosen in the configuration spreadsheet (1A). 3C)

Lastly, the individual mutated codons are concatenated into the final repair template

sequence, with the homology arms added at either end.

 86

 87

Figure 16. Python repair template generator script workflow (part 2). 4A) To design the

primers needed to make the repair template, first an artificial gene sequence is created

containing the recoded sequence (dark blue/orange) in place of the WT recoding region.

This sequence will also include UTRs if provided. 4B) The sequence is split into 3 parts:

upstream of the repair template, the repair template, and downstream of the repair

template. 4C) In order to determine a suitable annealing sequence, a primer pair is

designed such that the forward primer is within the recoded region/mutated target site of

the repair template, and the reverse primer is constrained to the downstream region. The

forward primer is used as the annealing sequence but the reverse primer is not used –

single primers cannot be designed with Primer3 in this way. 4D) The forward primer

sequence is used as the annealing region for the long primers needed to generate the repair

template. To complete the long primers, the sequences are extended back to the full length

of the repair template on each strand to create primers 1 and 2. Primers 1 and 2 must be

less than 120 nt each, otherwise they are redesigned with an alternate annealing region

(see Figure 19A for more details). 5A) To design screening primers, the WT sequence is split

into 3 parts, similarly to the artificial sequence. 5B) The WT screening primer pair

(red/purple) is generated by constraining the forward primer to the upstream region, and

constraining the reverse primer to the recoding region (cyan/yellow). 5C) The mutant

screening primer pair is designed using the forward primer (red) from the WT screening

primer pair, and constraining the reverse primer (magenta) to the recoding region (dark

blue/orange) of the artificial sequence containing the repair template generated in part 4A.

 88

 89

Figure 17. Additional input files needed to execute the Python script repair template

generator. A) An example of the configuration Excel spreadsheet used to instruct the

Python script. Some cells have data validation activated to provide dropdown menus (cells:

B3, B5, B6 and B7). Sheet 2 (not shown) has the corresponding data for the validation. The

lengths of the recoding regions and homology arms must be a multiple of three (see main

body text for more details). As shown in the example, the word “end” (all lowercase) can

be specified instead of the base pair number to signify the end of the CDS is the end of the

FASTA file. When an alternating synonymous recoding methodology is selected, the

“Alternating every nth residue” cell (B14) must also be filled with an integer value greater

than zero. B) An example codon usage table collected from

https://www.kazusa.or.jp/codon for L. infantum. After choosing the table on

https://www.kazusa.or.jp/codon, a genetic code table is also chosen to reveal the

translation column and the fraction column (columns 3 and 4 of each group). The filename

also corresponds to the one specified in A. C) A screenshot of the codon table from

https://www.kazusa.or.jp/codon, after selecting the desired genetic code to use. The red

box highlights the data that the user is directed to copy and paste into the text document

shown in B.

sequence is chosen in relation to the codon sequence for that residue in the reference

sequence, rather than a global change for all codons that code for the same amino acid.

5.2.2 ALTERNATING RECODING
In addition to recoding methods previously described, this script also offers the user the

choice to design a repair template that alternates between recoded codons and WT

codons. Alternating recoding in this way reduces the number of mutations added to the

daughter cell line, whilst retaining a large region of altered sequence for screening

purposes. The alternating recoding methods are available in all of the available

synonymous recoding strategies and are designated by “alternating” in their name,

followed by the type of recoding which the alternation will be.

https://www.kazusa.or.jp/codon
https://www.kazusa.or.jp/codon
https://www.kazusa.or.jp/codon

 90

If an “alternating” method is chosen, the user must also specify the interval (n). The first

codon for any “alternating” method is always recoded, followed by the (n+1)th codon until

the end of the repair template (Figure 18). The exception to this is that the target codon

will always be mutated even if it would normally fall on a codon that is not recoded by the

n value. In this situation, the pattern for the synonymous recoding will ignore the target

codon, leaving the pattern unaffected (Figure 18, n=2 example). When an alternating

recoding method is chosen, the alternating pattern (n value) chosen by the user will also

be displayed in the output file.

If no n value is provided or the provided value is 0, the script will prompt the user to rectify

the mistake, or else the execution will be cancelled. The user will also be prompted if the

script identifies that the user has put in an n value greater than half of the number of

codons being recoded. E.g. if the recoding region was 10 codons long and n was set to 7. In

Figure 18. Alternating recoding example. Each rectangle represents a codon. Colours

indicate whether the codon is WT sequence (grey), synonymously recoded (blue) or the

target codon which is both synonymously and nonsynonymously recoded depending on

the repair template (orange). The alternating n value is given for each example. The target

codon is always mutated regardless as to whether it would align with a synonymously

mutated codon (as in the example of n=3, illustrated by half orange and half blue) or

whether it falls between mutated codons (as in the example of n=2).

Sequence to Recode

WT

Continuous / n=1

n=2

n=3

WT codon

Recoded codon

Target codon

Key

 91

this instance, only the first codon, the target codon and one other codon would be

mutated, which is unlikely to be desired. But if the user confirms that that is what is desired,

the repair template will be designed with those settings.

In order to create the “alternating” methods, the codons are initially sorted into two

dictionaries – one to recode, and one to remain as the input sequence. The recoding

method of choice is applied to the dictionary of the codons that fall within the recoding

dictionary, and after mutating, the two dictionaries are recombined into one for

reassembly into the final sequence.

5.2.3 FINAL REPAIR SEQUENCE ASSEMBLY
Once the recoding has completed, the new codon sequences are called from their

dictionary in order and concatenated to form the recoded region sequences. Then, a check

is run to confirm that the target codon translates into the expected amino acid for that

repair template. If all is correct, the homology arms are added to the recoded region to

complete the repair template. The homology arms are identified by using the co-ordinates

of the recoded region in the WT sequence and adjusting them with the length of the

homology arms specified by the user (see Figure 15 part 1C and 3B). Lastly, the homology

arms and the recoded sequence are concatenated to form each repair template sequence.

5.2.4 PRIMER DESIGN
Once the repair sequences have been created, the script designs oligonucleotide primers

to screen for integration and to generate the repair template itself. Both of these tasks use

a similar method to design them, by constraining the Primer3 package to design the primers

in specific locations of the DNA (Koressaar and Remm, 2007; Untergasser et al., 2012).

For the screening primer design, one primer is always in the region outside of the repair

template, with the other inside (Figure 16 part 5). Due to the constraints of the Primer3

package, the primer outside of the repair template is always the forward primer and so is

placed upstream of the repair region. As such, the primer design process may become

limited if short reference sequences are provided upstream of the target codon. The

reverse primer is designed to recognise either the WT sequence in the recoding region or

 92

the mutated region of the repair template. It should be noted that the process including

the WT primer pair design is completed independently for each repair template

(synonymous and nonsynonymous), which can lead to two different WT screening primer

sets in some instances. This situation is very rare, as the design process is using the same

settings and same input sequence for the WT screening primer pair. However, when it does

occur, it is up to the user to evaluate the primers and determine which they wish to use.

To design long oligonucleotides for repair template generation, the forward primer is

constrained against the recoded region of the repair template sequence, with the reverse

primer downstream of the repair template (Figure 16 part 4). The reverse primer is not

required, but Primer3 is only able to complete the design if both regions are specified. Using

the downstream DNA rather than a dummy piece of DNA was chosen so that the sequence

has more similar properties to that of the region the forward primer is designed against

e.g. GC content. The forward primer is used as the annealing sequence for Primer 1 and its

reverse-complement for Primer 2 (Figure 16 part 4C and D). The final primer sequences are

completed by recounting the sequence from the annealing regions to the ends of the repair

template (sense sequence for Primer 1, reverse complement sequence for Primer 2).

Once completed, both Primer 1 and 2’s lengths are evaluated. Most commercial suppliers

have a price cut-off for oligonucleotide sequences at 120 nt, and have a notable price

increase for those over 120 nt. As such, this script will only accept repair primer sequences

where both Primers 1 and 2 are less than or equal to 120 nt long. If this criteria is not met

by one or both primers, up to two alternate annealing regions are assessed instead (Figure

19A). This means that successful execution of the script will only be possible for repair

templates ≤ 220 bp with a 20 bp annealing region. Generally, the region that can be used

to create an annealing region is quite small, and so the settings for Primer3 have been

somewhat relaxed compared to the screening primers, to ensure success. That being said,

in some tests on the longest repair templates, it was not always possible to design a suitable

annealing region, which led to the script failing to complete its execution. Usually, adjusting

the design settings will allow repair templates to be generated in this instance. Primers 1

and 2 are included in the output, both given as 5’ to 3’ sequences, such that they are ready

to purchase (Figure 20 green section). A suggested melting temperature is also provided in

the output document, as calculated by the Primer3 package.

 93

5.2.5 ALIGNMENT
In the output document, there are two sections containing alignments of the respective

sequences (see Figure 20). Firstly, there is a sham alignment nearer the top, which displays

the DNA and protein sequences of the WT “repair” sequence, and both repair sequences.

This is not a true multiple sequence alignment (MSA), but rather just an alignment of the

text characters using spaces and tab characters such that the relevant residues appear in

line with each other in the appropriate coding frame. This format is user friendly and serves

the same purpose as a MSA in this instance. Because this alignment relies on spacing using

text characters, the user is recommended to use a font that has a standard character size

such as Courier New, as the alignment of characters will be incorrect when viewed with

fonts with variable character sizes such as Calibri or Times New Roman. Biopython does not

have the capacity to generate MSAs, although it can interpret them, but it does have the

capacity to generate pairwise-sequence alignments (PSAs). Other packages such as

ClustalW for Python can create MSAs but ClustalW is not compatible with running on

Windows, limiting which devices would be able to run this script. As such, the output also

includes PSAs for WT-synonymous repair template and WT-nonsynonymous repair

template pairs. As it is expected that every base in both sequences will align without gaps,

the open gap and extension gap penalties were set to -10 (from the default suggested of -

1) to prevent alignments generating which did not have real biological relevance.

The purpose of including the PSA as well as the sham-MSA is to more clearly highlight where

the mutations are to the user and how they are spaced. Providing a PSA allows the user to

clearly see which bases are mutated through the symbols. In comparison, reading through

the sham-MSA is much harder to spot individual character differences across several lines

of text. This format is also more accessible than the use of colours to indicate the

differences for those with colour-blindness, which is also not usually possible to include in

a text document file.

Additionally, the script provides a count of the number of different bases between each

repair template and the WT sequence as well. This function simply compares the nth

character from each of the sequences being evaluated and counts the numbers of non-

identities (Figure 19B).

 94

Figure 19. Schematics of the repair primer annealing region design process and the

calculation of the number of mutations per repair template. A) The repair primer design

analysis iteration. To generate the repair template, two primers are designed which have

an overlapping annealing region (black) - see main body section 5.2.4 for more details. The

length of these primers are evaluated. If one or both primers are too long, an alternate

annealing sequence is evaluated and the primers are redesigned to fit the new annealing

sequence. If one or both of the second set of primers are too long, a third and final

annealing region is evaluated as before. B) Mutation counter example. The first base of

each sequence is compared. If they are not identical (red text), 1 is added to a counter. If

 95

they are identical (black text), nothing is added. The second base of each sequence is then

compared in the same way, and so on and so forth. The total number of mutations is then

reported in the output file.

5.2.6 COMPLETING THE EXECUTION OF THE CODE AND THE OUTPUT
DOCUMENT

As mentioned in previous sections, the results of the executed script are put into a single

file, which is saved as a text document with the job name from the configuration

spreadsheet as the filename. Saving the results helps the user organise different designs,

and is clearer for reading than displaying the results in the console window of the Python

interpreter running the script. However, it should be noted that the script will overwrite

any file that has the same name, which could overwrite previous files.

The output document (Figure 20) comprises several sections that each contain different

components needed to create precision mutants. Briefly, the output document contains

the settings used (for record keeping); the repair template sequences (both with and

without coding-frame spacing); screening primer sequences with PCR product sizes, repair

primer sequences in a ready-to-purchase 5’ to 3’ format; and pairwise alignments (to

visualise the mutations).

On completing the execution of the script, the console also displays a text message to

inform the user that it was successful and provides the filename of their output file. Whilst

a text document is limited in what information and formatting can be incorporated, this

document provides a ready-to-go package of all the sequences and primers needed to

generate and screen for precise mutants.

 96

 97

 98

Figure 20. Example output file generated by the Python script. Colours (left) indicate the

different sections. Red – job details specified by the user. Orange – Sham multiple sequence

alignment of the WT sequence, and both repair templates, as well as counts of the number

of mutations each repair template has. The end of the sequences have been cropped of for

legibility. Yellow – Screening primers and corresponding information. Green – Primer

sequences to generate the repair template sequences. Cyan – The WT and both repair

sequences without any spaces or additional characters. The end of the sequences have

been cropped of for legibility. Magenta – Pairwise sequence alignments of the WT

sequence with each of the repair templates (| indicates identity, • indicates non-identity).

All DNA sequences are in the 5’ to 3’ orientation. A copy of the text in this file is available

in a larger font size in Appendix 7.2.9.

5.3 Results
The script created and described here is able to generate recoded repair templates up to

220 bp long for continuous coding sequences (i.e. no introns). It has been tested on DNA

sequences from both Leishmania mexicana and Trypanosoma brucei, and was successfully

able to design them within a matter of seconds (although results will vary with different

computer’s memory availability). The script is instructed by a configuration Excel

spreadsheet and exports the results into a text document, both of which increase

accessibility for non-programmers. Additionally, all the required software and packages are

freely available.

The script has also been designed to take away tedious jobs from the user, so it is able to

manipulate codon tables provided by https://www.kazusa.or.jp/codon/, which are given

as RNA sequences, and reformats them into DNA sequences. This only requires the user to

go to the website, retrieve the codon usage table for their organism, and then copy, paste

and save the data (Figure 17B and C). This reduces the burden on the user, so that fewer

mistakes are made. Additionally, once prepared, the codon table is reusable to apply to any

target gene in the same organism. Other tedious tasks that the script completes include

recoding each triplet code in the desired sequence, visualising each point mutation, and

https://www.kazusa.or.jp/codon/

 99

assessing annealing sequences for primers to generate the repair template. Having

personally created many repair templates manually, these tasks can take hours in total,

especially when including checking for human errors. However, this script is able to

perform each of these tasks consistently and far quicker than any human.

The script is (somewhat) able to understand which part of a DNA sequence is coding and

which is not, as guided by the user. This allows the user to prepare a single FASTA file for

an entire gene sequence, including 5’ and 3’ untranslated regions (UTRs), to generate repair

templates for as many sites as they wish in that gene by just providing the target amino

acid residue and amino acid number. Whilst it would have been possible only require the

amino acid number without the corresponding amino acid identity, requiring the user to

provide the identity was intentionally chosen to provide opportunity for the user to identify

mistakes, as prompted by the script’s checking mechanisms. If the DNA sequence of the

given residue number does not correspond to the input amino acid residue, it will output a

text-based error message in the console. In this instance, the script will continue to run,

unless it encounters further issues. Likewise, the script will check that the user has correctly

specified a coding sequence that is in frame i.e. the coding sequence length is a multiple of

three. Currently, the script does not recognise coding sequences by the presence of start

and stop codons. This has the benefit that a user can provide only a partial gene sequence,

as long as it is in-frame. In this case, the script will treat the specified start and end as the

“real” start and end, and will act in accordance with the special cases in Figure 15 part 1B,

so it is not recommended to do this. Additionally, if the user supplies a sequence that is a

multiple of three base pairs long, but from a nonsense frame, the script will still “recode”

in the +1 frame. Hopefully it will be apparent to the user that the protein sequence they

expected is not correct in the output, even if the code has not detected a difference in the

expected amino acid residue and number.

5.4 Limitations and Future Directions
A key next step for this script is testing the designs it produces in vitro. Whilst the script

generates sequences that seem sensible, those sequences are only useful if they have real

world tractability. As such, designs using a variety of the settings should be tested on

targets that have already been shown to be possible to mutate. Using a previously mutated

 100

site and the same sgRNAs will ensure that a failure to mutate the site is because of some

aspect of the repair template design, rather than leading to questions about its essentiality.

Additionally, this experiment could also assess whether one of the design strategies is

favoured for incorporation over the others, and whether different sequence compositions

have different effects on the cell.

Any computer programme is limited to what its programming tells it to do. In the modern

era, we are all familiar with words such as “glitch” and “bug” in reference to programmes

not performing the expected task, caused by mistakes in a piece of software’s code. Whilst

this script has been tested on a variety of different inputs to remove as many issues as

possible, there are still issues with this version of the script. Most of the known issues,

regard features that are lacking or imperfect from a biologist’s perspective. However, from

a programmer’s perspective, the main issue with the script at present is that it lacks proper

error catching mechanisms. Currently, unless an issue arises that means the script is unable

to perform a task, the script will continue to completion. The current “error catching” is

only simple if clauses which when activated print out error related text. This text can be

easy to miss in the console of the user’s Python interpreter and the presence of an output

file may lead a user to believe the script has performed the task as expected, when it has

not done so. In future versions of this script, it would be prudent to incorporate proper

error catching mechanisms into it, which will cancel or stall the script if there are issues

with the inputs or with the calculations. These errors are also harder for users to miss, as

they involve brightly coloured text and error codes, which the user can use to investigate

further.

As for the biological issues with the code, the most major set of issues is with how this

script interprets what is a coding sequence, how it should be translated and hence what

DNA sequences should or should not be translated. This script does not use coding

sequence detection methods to identify which part of the DNA sequence are coding and

which are not. Instead, the user specifies where the coding sequence starts and ends, and

the script verifies that this specified region has a length that is a multiple of three,

corresponding to complete triplet codes. As such, this script interprets any string of A’s, C’s,

G’s and T’s that has a length which is divisible by three to be suitable DNA for recoding.

Technically, other letter characters may also be translated if they are used to represent

 101

combinations of bases such as R for purines and Y for pyrimidines, either yielding “X” or a

real amino acid if the character is in the wobble base position. Even if the sequence

provided includes several stop codons, which are obvious to any biologist as being either

nonsense or out of frame, the script will try to recode it. It only treats a stop codon

differently for the specified end of the gene. However, this stop codon will still be recoded

to an alternate one, if it is included in the recoding region (see Figure 15 part 1B for this

special case). The script is able to detect incorrect target site translations, so it would be

expected that in most of these instances, the desired residue to mutate would not match

the input target residue. But, there is a possibility that there is a combination of DNA bases

that match the target amino acid in the correct position, and hence the code completes. At

present, it is hoped that the user will be able to identify an issue has occurred from the

displayed coding sequence in the output file being noticeably wrong. Going forwards, it

would be best to add an error catching mechanism that halts the progression of the code

if the entire recoding region’s translation does not match the input. Alternatively, or in

conjunction to that, adding coding sequence detection may prevent some of these errors

going unnoticed.

On a related note, if the DNA sequence provided is not a multiple of three, text-based error

messages are displayed. In some tests, it was noticed that if the repair template’s length

was not a multiple of three, the code would still continue to completion because the

current error catching mechanisms do not prevent the code from completing. In these

instances, the last codon of the repair template (i.e. in the homology arm) was presumed

to be missing a base and so was not translated. On the assumption that it was in fact the

last codon which was missing a base, this response is acceptable and is similar to how most

commercially available programs would interpret the sequence. However, if in fact the base

was missing from the start of the repair template, the script identifies the codons from the

start of the sequence, so in effect “causes” a frame shift before calculating the translation.

Going forwards, it would be good to add a feature that can handle repair template lengths

that are not a multiple of three, perhaps by extracting the additional bases from the

reference sequence, that are removed in the output.

As eluded to, because the present version of the script can only correctly recode in-frame

DNA, the user is limited to selecting homology arm lengths and recoding region lengths

 102

that are multiples of three to avoid these issues. This is not inherently problematic, but

does restrict flexibility and creates opportunities for mistakes that cause the script to fail

to complete or produce nonsensical results. So in future versions, it would be good to either

restrict the inputs that the user can pick from to being values that are multiples of three,

or to find workarounds for the situations when they are not.

An additional restriction the user has on their input DNA sequence is that this script can

only handle continuous coding sequences. As such, the script is unable to provide repair

templates for non-coding regions (although it can use non-coding DNA for homology arms

if the target is in proximity to the start or end of a gene), and it cannot recode coding

sequences that contain introns. As this script was designed for use in Leishmania species

and other kinetoplastids, this is generally not a problem. Few genes in these species contain

introns. However, it does mean that this script could not be used for higher eukaryotes that

have much more complex gene structures, although it may work in some prokaryotic

species (currently untested). Likewise, this script was designed to generate mutations in

coding sequences, so it being unable to mutate untranslated sequences is not inherently a

problem, but it does restrict its use-case somewhat. It may be possible to design a similar

script to modify non-coding DNA sequences, but most likely, this would have to be on a

case by case basis, as it is unlikely that mutations of interest for non-coding RNAs would be

transferable to splicing signals, centromere sequences, or promoter sequences for

example.

Similarly, the script can only recode one continuous block of sequence. As discussed

already, it can recode alternating codons from within a continuous block. But at present, it

is not possible to design a repair template which has a stretch of recoding, followed by a

break in recoding, followed by another region of continuous recoding, as was used for some

repair templates tested in this project (for example KKT2 S493 repair templates). During

some transfections, certain clones showed evidence of recombination at extended breaks

in recoding (≥11 bp of continuous WT sequence) – these have been labelled as “complex”.

To minimise chances of this happening, it seems advisable to avoid incorporation of such

large blocks of WT sequence (even though the use of the alternating settings when n>3

could produce this). As such, this feature was not developed for this script. However, if

there is demand for such a feature from the field, it would be reasonably straightforward

 103

to incorporate, using a similar strategy to the alternating recoding options that this script

already includes.

As this script was designed for coding sequences, the translations of each triplet code have

been manually written into this code. As discussed previously, Biopython does include a

range of codon tables, but it does not have full two-way directionality. When requesting

the translation for any triplet code, it was able to recall the amino acid. However, when

requesting the codons that correspond to an amino acid, it would only produce one of the

triplet codes, regardless of how many there are (which could be up to six). So two functions

were created to ensure that all triplet codes were recalled – one with, and one without

frequency usage data. However, because this was manually coded into the script, this

version of the script only recalls codons corresponding to the standard codon table, and

does not know how to call abnormal codon usage sequences. In a future version, it would

be possible to recreate these functions for all known codon usage tables, and require the

user to select which table to translate from, although this is not necessary for

kinetoplastids.

Whilst the script is designed for coding mutations, it has been designed to only induce a

single nonsynonymous mutation. There are instances where a pair or small number of

coding mutations may be necessary in a single repair template, such as was trialled with

KKT2 S505 and S506 double mutants using ssDNA in this project. As the main version of the

code presented here did not allow for multiple mutations (so would have to be adjusted

manually, which also impacts all of the primer designs), a first draft of a modified version

of the code which can generate multiple mutations has been created. This version allows

up to 5 mutations per repair template and is available in Appendix 7.2.19. This version

requires the user to specify the number of mutations up to 5 (so can be used for a single

mutation if desired), as well as the amino acid residue and number for each of them. It also

has some more complex assessments of how to distribute the recoding region such that all

target sites are incorporated if they are unevenly spaced. In short, if the target sites are

evenly spaced, the recoding region will be centred around the middle of those sites. But if

one target site is distant from the others, the recoding region will be adjusted to ensure

that all target mutations are within the coding region, and any additional codons to record

are spread as evenly as possible, flanking the target sites. However, this version has not

 104

been tested as thoroughly as the main version presented, so may contain some currently

unknown bugs.

At present, this script does not automate the entire process of designing a repair template.

The largest missing feature is the capacity to design sgRNAs for the target of interest. For

this current version of the script, the user has to complete this step themselves, and then

inputs the region to be recoded to cover the sgRNAs they have chosen, if they wish to

replicate the methods used here. This step is a key part of creating the repair template, so

will definitely be investigated for incorporation into future versions.

In order to incorporate sgRNA design into the script, the script also needs to be able to

complete BLAST searches of the entire genome to ensure the sgRNA sequence is unique.

Primer design would also be improved if BLAST searching were incorporated as part of the

design quality checking process, to reduce the possibility of off-target primer binding during

the screening PCR. The current screening primers are designed only in reference to the

input sequence. This could mean that the screening primers generated are not consistently

specific enough to recognise only the target gene, especially if the target gene has very

similar homologs in the genome. The Biopython package does offer BLAST searching

capabilities using the NCBI (National Center for Biotechnology Information) servers via an

internet connection or locally on the computer running the search. There are pros and cons

to both local and remote BLAST searching. The script at present runs entirely locally,

meaning it can be used without connection to the internet (after initial installation of the

relevant packages), so local installation would maintain that aspect of the initial code. In

some cases, it may also be faster to run locally as the user is not “competing” with other

users for the server memory to complete the search. Additionally, local running retains

confidentiality of the sequences (Cock et al., 2009). However, local BLAST searching

requires a lot more set up, which would have to be completed on each user’s device to

achieve, and that user would also require a database of the genomes to BLAST against on

their device too. As such, it is most likely that future versions of this script will use online

BLAST searching, to minimise the set up required by the user of the script (Cock et al.,

2009). This could have the benefit that the user will be able to access newer versions of

genomes when they are published, with minimal extra steps to use.

 105

Another design feature that would be beneficial to have in the script would be either the

inclusion of a restriction site change in the sequence or at least an assessment of the new

sequence for restriction site changes. Based on the practical experiments completed in this

project, restriction enzymes seemed to be more accurate predictors of the genotype than

PCRs when restriction sites were in close proximity to the target site. However, the results

were sometimes less clear to interpret. In addition, when the designed primers conferred

poor specificity at distinguishing WT from mutant sequence, restriction enzymes served as

a useful backup. It was generally more laborious to screen by restriction digest, and comes

with potentially higher costs (depending on the enzyme). But if the user has this

information at the point of design, they can make informed choices about which way they

wish to screen their mutants. Alternatively, they may choose a different design that better

suits the reagents they have on-hand. It should be noted that the additional labour to

screen by restriction digest largely comes from requiring a PCR amplification step to

generate the DNA to be digested on all clones being screened. Therefore, if a user intends

to use restriction site analysis, an additional primer set would be required. As such, primer

design for this should be added to the script also. Alternatively, a separate script could be

developed to allow the user to provide the repair template sequences and primer

sequences that they have on-hand to suggest a restriction digest strategy, should the user

have issues with PCR-based analysis.

To further expand this script into a high-throughput tool, it would be beneficial to add batch

job capacity. To tackle this problem, another version of the script was developed with batch

capabilities and is available in Appendix 7.2.18. In short, this version uses a for-loop to

iterate over the script several times, with each iteration corresponding to a column in a

modified version of the Excel configuration form, where each column is a different job to

execute. Surprisingly, execution of this script with 7 input columns did not take much longer

to run. However, further testing of this version is required to determine the limitations and

potential bugs that may exist in the new parts of the code.

Lastly, it would greatly improve accessibility of this script if the script could be hosted on a

website. There are already web-based tools for designing sgRNAs

(http://grna.ctegd.uga.edu/), and for designing CRISPR-Cas9 edits

(http://www.leishgedit.net/Home.html) which have been crucial in the field for much of

http://grna.ctegd.uga.edu/
http://www.leishgedit.net/Home.html

 106

the recent work involving gene editing. Being web-based allows potentially global access

to the script developed here, which could have the effect of standardising this methodology

across the field. It would also allow improvement to the user-interface. At present, the use

of an Excel spreadsheet “form” was chosen to make using the script less intimidating for

non-programmers. However, setting up the script on the user’s device and executing the

code still requires users to interact with a programming software, which can be quite

intimidating. All of this could be hidden from the user on a website, only requiring them to

fill in a more user-friendly form. A website may also allow visualisation options to be

created to show the input sequence, its translation, and how the repair templates and

primers designed fit in with that.

5.5 Summary and Conclusion
Overall, the script created here completes the tasks it was programmed to do successfully,

which can help the user design repair templates and screening primers quickly. It has been

tested on DNA sequences from both L. mexicana and T. brucei. The script does not

complete every task necessary to complete this precision editing methodology from

scratch, but none of the missing features are untenable, and much of the labour load is

reduced for the user when using this script in its current version. The missing features are

hoped to be included in future versions to further improve on the work completed here,

especially improving accessibility to use this script through hosting it on a website. At

present, as long as the user understands the limitations of the script discussed here, it can

be used effectively. Further testing is needed to assess whether the repair templates and

screening primers designed with this tool are effective in vitro.

 107

6 CHAPTER FIVE – GENERAL DISCUSSION

6.1 Discussion
This project set out to establish an efficient precision editing methodology for Leishmania

mexicana in order to generate kinetochore phosphosite mutants. Two methods were

trialled to engineer the desired amino acid substitutions: using 120 nt single-stranded DNA

(ssDNA) repair templates and 160 bp double-stranded DNA (dsDNA) repair templates

targeting the genomic DNA. Whilst both methods were able to generate some precision

edited mutants, there was a stark contrast in the efficiency between them. dsDNA repair

templates were about 15-fold more efficient on average than ssDNA repair templates.

Successful generation of a range of kinetochore phosphosite mutants allowed for

investigation into the effects of these mutations. Most mutations did not result in a

statistically significant change in growth rate or cell cycle progression (Figure 12).

Additionally, the kinetochore phosphosite mutants were assessed for cell cycle defects,

which largely showed no change compared to WT. However, two clones with mutations in

KKT2 showed an apparent triploid DNA content following continual passage (Figure 14),

although the secondary clone for each of these cell lines failed to show the same

phenotype. Additionally, the phenotype was not replicated when the experiment was

repeated using a fresh sample of cells taken from cryo-storage. Leishmania are renowned

for ploidy changes due to their high genome plasticity, especially in response to stress. The

underlying mechanisms as to the drivers of these ploidy changes are not currently known,

but reports of such events are common under a wide array of circumstances (Black et al.,

2023). Given that the phenotype was not seen in both clones assessed and that it was not

repeatable, it suggests that these were likely random events. Whether the mutations

induced in KKT2 lead to an increased probability of these events happening remains to be

seen.

To enable expansion of the technique developed here into higher throughput systems, a

Python script was developed to automate the design process. Not only does the script

design the repair template, but also generates PCR screening primers and long primers to

generate the repair templates it has designed. The script has several customisation options

concerning how the recoding is completed, to allow users to both mimic the strategy used

here, but also to try alternate designs should the former approach not work. Whilst this

 108

programme is currently lacking a few desired features to complete the entire repair

template design process, namely protospacer identification and sgRNA design, in its

current version, it is already a functional tool. Two other versions of the tool have also

been drafted. The first includes batch design of several repair templates from a single

execution of the script (Appendix 7.2.18) and the second generates repair templates

containing up to five nonsynonymous mutations in close proximity (Appendix 7.2.19).

The purpose of creating a precision editing methodology that is efficient and convenient

was largely to allow investigation into essential genes, without complete loss of the target

protein. Currently in Leishmania, essential genes can be investigated through inducible

deletion such as the DiCre LoxP system (Duncan, Jones and Mottram, 2017), episomal

expression prior to genomic deletion, or using ex vivo/in vitro approaches such as

recombinant protein expression. In the case of using DiCre recombinase, so called “leaky”

expression can still be a problem, whereby a small proportion of cells escape deletion of

the target locus. It is also a complex process to set up a cell line, typically requiring several

rounds of transfection and screening of suitable clones. Whilst other kinetoplastids have

RNAi machinery that can be used for inducible deletion, most Leishmania species lack RNAi

machinery, including L. mexicana (Ullu, Tschudi and Chakraborty, 2004). Episomal

expression of either WT or mutant versions of a target protein can often have the effect of

dysregulated expression, typically in the form of over expression of the target protein,

which can have cytotoxic effects. Recombinant expression can allow study of the target

protein but takes it out of the cellular context of that protein. Additionally, some proteins

are far more challenging to express and purify than others, and there is no way to

determine this in advance, especially as many of the kinetochore proteins do not have

identifiable protein domains. Moreover, interactors or substrate proteins may need to be

expressed to gain any functional insights, only adding work to an already labour-intensive

process.

The benefits of precision editing have not gone unnoticed by the community, with

examples of targeted editing using small selection-free constructs being used by a wide

array of groups (Zhang and Matlashewski, 2015; Crawford et al., 2017; Medeiros et al.,

2017; Janssen et al., 2018; Rico et al., 2018; Wall et al., 2018; Lander and Chiurillo, 2019;

Pal and Dam, 2022). However, the similarities end there, with each group using different

 109

construct lengths, with different homology arm lengths, and some using ssDNA whilst

others use dsDNA. Clearly all the methods used were able to generate the desired

mutations but with varying levels of success. Broadly speaking the methodology was not

the focus for these previous groups’ work, but was a means to investigate something of

greater interest. Standardising the process could help to reduce time and money wasted in

the community, as has been the case through the introduction of tools such as the CRISPR-

Cas9 toolkit developed by Beneke et al. (2017). It would also open up the methodology to

groups who may have been put off by the laboriousness of the previously published

methods which may not even generate the desired mutations.

Uses for the precision editing cover a wide array of different biological questions. As well

as investigation into post-translational modifications, as was explored here, precision

editing could also be used to explore organelle targeting motifs, catalytic residues of

enzymes, protein-protein and protein-non-protein interface interactions, processing

signals of pro-proteins, and even potentially the effects of specific residues on protein

structure and stability. All of these events require specific amino acid residues in specific

locations of the protein, and so modifying those residues allows understanding into why

these proteins have evolved to have the sequences and structures that are observed. Doing

so in the most native context possible is important to ensure that interpretation of the

results is accurate and not due to an artificial situation. For example, an in vitro expression

of a mutant version of an enzyme could still detect catalytic activity at low levels when the

substrates are provided in excess. But that same enzyme could be effectively non-

functional in a cellular setting where substrates exist in lower concentrations with temporal

control. Or indeed the opposite could be true that in a cellular setting, additional post-

translational modifications could increase catalytic activity, which were absent in the

recombinantly produced protein e.g. glycosylation is absent if the recombinant protein is

made using Escherichia coli. Thus, it is important to supplement such in vitro experiments

with studies in cellulo.

Other potential uses of precision editing could include adding small protein tags in a

selection free manner, modifying antibody-binding epitopes to enable use of non-

kinetoplastid commercial antibodies in molecular biological techniques, or generating a live

attenuated vaccine. This project has not attempted to add sequence such as a protein tag

 110

into the genome. Given that a 3xHA tag is only 24 amino acids long, equating to 72 bp of

DNA sequence, it is not much larger than the constructs used here (editing window of 60

bp, equivalent to 20 amino acids). The difference in size of the construct could affect the

editing efficiency, but it stands to reason that this is within the realm of possible, so could

offer selection-free tagging for cell lines that already contain larger numbers of antibiotic

resistance genes. Especially as similar approaches have already been successful in T. brucei

(Kovářová et al., 2022). Adding such tags is frequently necessary for techniques such as

western blotting and immunofluorescence microscopy in kinetoplastids as most

commercial antibodies are against protein epitopes that are not present in the

kinetoplastid orthologs of the target proteins. This can become problematic if the gene of

interest does not respond well to the addition of an epitope tag, particularly with large

disruptions to UTRs from the insertion of antibiotic resistance makers. As such, an alternate

approach could be to modify the target protein to become humanised or equivalent so that

commercial antibodies could be used against it. This would not be applicable to the most

divergent genes in Leishmania, but might increase the diversity of usable commercial

antibodies. Antibody recognition of proteins is a key defence for the host immune response

to a Leishmania infection. Since Leishmania do not rely on antigenic variation like their

Trypanosoma cousins, any exposed surface proteins are likely to remain constant

throughout infection. This suggests there is an opportunity to create a mutant cell line that

could be attenuated during infection for the purposes of vaccine development. Surface

proteins are one possible target, but since the majority of the mammalian host infection is

intracellular, the immune system has limited opportunity to develop antibodies against

metacyclic promastigotes or extracellular amastigotes before they are phagocytosed.

Attenuating the parasite’s ability to invade immune cells could allow the immune system

to have the time to activate the adaptive immune system to generate antibodies against

the Leishmania cell. Alternatively, modifying the amastigote’s capacity to manipulate the

host macrophage could allow the macrophage to process and present antigens to activate

an immune pathway that is less reliant on antibody generation, which may be able to clear

the infection.

 111

As more groups use precision editing for more diverse studies, there becomes a greater

need for tools to help with the process. For the small number of targets investigated in this

project, manual design was sufficient, albeit time consuming. As one of the aims of this

project was to investigate methods to scale up this approach, it became increasingly

apparent that in order to create libraries worth of mutants, it would first be necessary to

design them. Designing potentially hundreds of repair templates and screening primer sets

individually was undoubtedly going to be extremely time consuming to do manually, and

would likely result in errors in some repair templates. Even though the method developed

here would not allow for a bulk library transfection to generate a mix of mutants, a library

could still be created by generating mutants and then combining confirmed clones

together. As this method is currently only about 30% efficient, combining confirmed clones

to create a pool is a wiser approach than using a population of cells that could be largely

WT after transfection. To open up this avenue for future studies, a tool was created using

Python to generate the repair templates, screening primers and repair production primers.

Further work is needed to complete the sgRNA design process, which currently has to be

completed manually, but relieving the workload of the other design steps makes this

process more tenable than before.

To expand this technique into a bulk approach, significant modification would be needed.

One major challenge when doing a library-style transfection is the identification of which

cells in a population contain the mutations of interest. In previous studies such as Baker et

al. (2021), barcodes were used which can be identified through Illumina sequencing. In this

approach, a common sequence surrounding all barcodes allows for amplification of every

barcode, no matter where it is integrated in the genome. This allows assessment of all

mutations in the population from a single PCR reaction. However, it is not possible to

incorporate a barcode that is common to all targets in precisely edited mutants targeting

protein coding genes, as this would change the protein sequence encoded by the CDS.

Alternatively, DNA encoding the sgRNA can be used as a barcode if it is either incorporated

endogenously in a neutral locus, or if it is provided on an episome (plasmid) which is

maintained by the cell. Endogenous incorporation of DNA encoding sgRNA for precision

CRISPR editing has been done in T. brucei (Rico et al., 2018). In this instance, a construct

containing the DNA to transcribe into the sgRNA, a T7 promoter, and a hepatitis delta virus

 112

(HDV) ribozyme was integrated into a spacer region of the ribosomal DNA locus, in a cell

line with tetracycline-inducible Cas9 expression. The HDV ribozyme is a self-cleaving RNA

when transcribed by T7 polymerase, which releases free sgRNA to direct the Cas9 break

(Rico et al., 2018). As such, it would be possible to amplify the DNA encoding the sgRNA

from common regions of the integrated construct for library-scale assessment of mutations

in the population. Along this premise, Engstler and Beneke (2023) transfected four

Leishmania species with a series of plasmids containing sgRNAs and a Cas9-fusion cytosine

base editor protein. Because the plasmids had a common backbone and were under

constant selection, the presence of each targeted mutation in the population could be

tracked by amplifying and sequencing the region of the plasmid containing the sgRNA

target sequence. This suggests that a plasmid based sgRNA strategy could provide options

for scaling up this precision editing strategy in a traceable manner. One potential challenge

with this method would be developing a plasmid that incorporates the repair template and

the sgRNA, without loss of the plasmid following homologous recombination or

translocation of the repair template. It is necessary to link both the repair template and

sgRNA on a single plasmid to ensure that cells that received the plasmid have the capacity

to complete the precision editing, rather than just making a DSB without a repair template.

This ensures that detection of their sgRNA sequence represents mutated cells, rather than

cells which only have the guide. Whilst it is known that Leishmania spp. can produce

circular DNA to use for horizontal gene transfer (Douanne et al., 2022), and it is well

established that they can maintain circular DNA constructs, it is not clearly established if

circular DNA can be incorporated back into the nuclear genome, and what effect that has

on the presence of the circular DNA.

A significant challenge of this project has been working with the plasticity of the L. mexicana

genome (Black et al., 2023). The absence of most of the components of the Non-

Homologous End Joining (NHEJ) pathway in Leishmania spp. (Passos-Silva et al., 2010)

would lead one to believe that repair of double-stranded DNA breaks (DSBs) would favour

faithful homology directed repair (HDR). However, the natural plasticity of the genome has

in many instances shown that integration of the desired repair template can occur more

flexibly than anticipated. Any integration events in this project which did not incorporate

 113

the entirety (or near entirety) on any given allele have been deemed “complex”. Most

frequently, this was observed as integration of part of the repair template on one allele,

but complete integration on the other. It is unclear whether the cause of this integration

event was due to only one of the two DSBs occurring on that allele, or whether the parasite

was able to use sequence in the middle of the repair template as a micro-homology region

to alter the incorporation of the repair template. Repair template designs without breaks

in recoding such as KKT2 S25A/E/S and KKT2 S923A/E/S did not detect the presence of this

form of complex mutants. In contrast, these complex mutants were detected in KKT2 S493A

(using ssDNA) and KKT2 S422S (using dsDNA), both of which contained a break in the

recoding of either 11 bp or 18 bp respectively (see Appendices 7.2.4.2 and 7.2.4.4 for repair

template designs). It should be noted that complex mutants were detected in KKT2 S923E,

which did not have a break in the recoding, but were given this designation for

incorporation of a single-nucleotide polymorphism (SNP) on one allele which was not part

of the original repair template. Taken together, it is apparent that the plasticity of the

genome means that sequencing mutant clones becomes paramount to using this

technique, as one cannot just expect traditional homozygous and heterozygous genotypes.

The mechanisms underlying this diverse integration of the repair template are currently

unknown, and with deeper understanding, could potentially be manipulated in a

favourable manner.

A lack of an apparent phenotype in the kinetochore phosphosite mutants generated

suggests that regulation of the kinetochore complex is not reliant on single phosphorylation

events. More likely, this result suggests that regulation of the kinetochore formation and

disassembly is more complex, and could potentially include fail-safes to ensure mitosis can

occur correctly even if one protein is disrupted. KKT2, investigated here, has been shown

to be crucial for kinetochore assembly following phosphorylation by CLK1/KKT10 in T.

brucei (Saldivia et al., 2021). The results from this project suggests that either CLK1/KKT10

is still able to phosphorylate the KKT2 mutants generated here such that it can correctly

localise and initiate kinetochore assembly, or that correct localisation and initiation of

kinetochore assembly are independent of CLK1/KKT10 phosphorylation of KKT2 in L.

mexicana. Unfortunately, no KKT2 S505 or S506 mutants were generated, which Saldivia et

 114

al. (2021) suggested were the L. mexicana equivalent of the phosphosite targeted by

CLK1/KKT10 in T. brucei (KKT2 S508). It would be interesting to reattempt generation of

these sites using the dsDNA method to see if they are attainable, and perhaps have a defect

in kinetochore assembly. As for KKT4 S422 and KKT7 S304 mutants, both are known to be

proximal to KKT3, and are more highly phosphorylated in S- and G2/M-phases (Geoghegan

et al., 2022). Phosphorylation of both sites are reduced with AB1 treatment, which inhibits

CLK1/KKT10 kinase activity and hence KKT2-mediated kinetochore assembly (Saldivia et al.,

2021; Geoghegan et al., 2022). But the kinase responsible for phosphorylating KKT4 S422

is unknown. Another phosphosite on KKT4, S477 in T. brucei (equivalent to S590 in L.

mexicana), is known to be phosphorylated by CLK1/KKT10 and CLK2/KKT19 (Ishii and

Akiyoshi, 2020; Geoghegan et al., 2022), but was not shown to be impacted by AB1

treatment in L. mexicana (Geoghegan et al., 2022). KKT7 is phosphorylated by CLK1/KKT10

and CLK2/KKT19 in T. brucei. However, the equivalent phosphosite to S304 in T. brucei

(T327) (Geoghegan et al., 2022) lacks the consensus sequence needed to be

phosphorylated by CLK1/KKT10 or CLK2/KKT19 (Ishii and Akiyoshi, 2020). KKT7 also seems

to be important for recruiting CLK1/KKT10 and CLK2/KKT19 to the kinetochore in an

apparently phosphorylation independent manner (Ishii and Akiyoshi, 2020). Taken

together, it is unclear what role these phosphorylation events play with regards to

kinetochore assembly, function and regulation. But similarly to the results of this project,

phosphodeficient mutants did not impact the fitness of the cells in other studies in the

literature (Ishii and Akiyoshi, 2020).

6.2 Future Directions
Looking forwards, continued research is needed to convert the current methodology into

a library-style high throughput screen. Currently, as the sgRNA guides and repair templates

are free pieces of DNA, if two or more target sites were combined in one transfection, then

a range of different events could happen. In the best-case scenario, it is possible that

mutants for each respective gene are recovered. However, there are also possible scenarios

where either poly-mutants are created (i.e. multiple mutations occur in the same cell), or

more likely, few cells receive the right combination of guides and repairs to generate the

 115

desired mutants, and most cells are either unable to make the dsDNA break or unable to

repair the break with the mutated repair template. Both of these scenarios would likely

lead to a huge drop off in efficiency, as most breaks would be repaired using genomic

copies, if any breaks are made at all. In order to achieve the desired result, ideally, the

guides and repair templates need to be a single piece of DNA that could be spliced or

manipulated by the cell to release the constituent molecules. Designing a construct, either

as a linear piece of DNA or a plasmid, will require some investigation to ensure the guide

sequences are available to transcribe into the actual sgRNA, but that the repair template is

retained as DNA, without additional bases that could cause frame shifts if incorporated.

Plasmids have already been used to deliver repair templates for other CRISPR-directed

mutations successfully (Sollelis et al., 2015), as well as being used for guide delivery for a

Cas9-base editing fusion protein (Engstler and Beneke, 2023). Use of a plasmid also has the

advantage that it can confer antibiotic resistance genes to allow for selection of cells that

have taken it up, and to continually promote editing to take place, as was shown using the

base-editing Cas9 by Engstler and Beneke (2023). However, as this method did not require

a repair template, it requires adapting to determine if it is possible to include a repair

template as well. Given that it has already been demonstrated that Leishmania can

integrate DNA into the genome from a plasmid (Sollelis et al., 2015), and that plasmids can

carry usable Cas9 guide sequences (Engstler and Beneke, 2023), creating such a plasmid to

achieve precision editing is more a matter of “how” than “if”. As well as selection, as

plasmids can be maintained in Leishmania, they also allow for a form of barcoding. One

major issue with the current method is that because all the editing takes place within

coding sequences, there is no way to include a unique barcode sequence flanked by shared

sequences for amplification. If a library was created, every target would require a separate

PCR to screen for its presence in the library, making it untenable for more than a handful

of mutations to be combined. However, the contents of the plasmid (i.e. the guide or repair

template) could be used as a barcode itself, if flanked by sequences to allow amplification.

This could allow for more complex assays to be completed on a wide variety of mutants, as

well as allowing bulk transfection to generate such libraries, both of which would really

take this methodology to the next level.

 116

Once a proof-of-principle experiment has shown a plasmid could achieve a satisfactory

level of precision editing in a library style setting, it will then become paramount to have a

completed Python script to generate all the appropriate designs. At present, a version of

the script has been generated to allow bulk design, but it needs further testing to remove

potential bugs. Incorporating some of the other missing features such as sgRNA design (as

discussed in more detail in chapter 5.4) is necessary, but more challenging. sgRNA guide

design en masse is greatly needed for any scaling up of this method beyond a dozen or so

target mutations. As previously discussed, this is a more complex addition to the existing

script but is undoubtedly worth the work required to do so. Additionally, the designs

generated by the current version of the Python script are intended to be used as free linear

DNA molecules, so modifications would need to be made to the outputs of the script to

ease integration of these sequences into a plasmid. This could simply by done by designing

suitable overhangs on the parental plasmid for Gibson assembly or similar methods which

could be added onto the ends of the repair template or guides to allow integration. As

functions have already been created within the Python script to “stick” sequences together,

this would also be a straightforward modification to incorporate.

As well as the additions and changes to the Python script already mentioned, hosting the

code on a website is another goal to work towards in the future. Hosting it on a website

will allow production of a more user-friendly interface, allow a wider user base to benefit

from it and reduce the set-up required by each user. Currently the script runs on a local

machine, which means set-up is required on each device, whereas a website would be

accessible on any internet-enabled device from anywhere within the world. It will also

allow the set-up of more interactive features, such as highlighting issues with the inputs to

enable a user to change them; visualising the repair templates and sequences as a whole;

and potentially widening usage to those who are put off by having to work with the code

directly.

Lastly, prior to release of the Python code in a public forum, it is necessary to investigate

whether all the designs it produces are viable when transfected into cells. Currently, the

designs produced have not been tested for integration to generate mutant cell lines. In

principle, there is no reason that at least the continuous matched recoding would not

integrate, as that is the principle used for the repair templates designed and used in the

 117

ssDNA and dsDNA repair templates designed here. Whether the other options created in

the Python script produce mutant clones at a similar editing efficiency and without

additional effects such as altered transcription/translation speed remains to be seen.

Establishing whether the different design options confer different rates of success at

generating the mutants could also direct whether all the current options in the Python

script would be included in a publicly available option. If one recoding setting conferred a

far poorer efficiency than the others across several target sites, then it makes sense to

remove that option before releasing the Python script to the public to prevent others from

getting poor results also.

 118

7 EPILOGUE

7.1 References

Akiyoshi, B. and Gull, K., 2014. Discovery of Unconventional Kinetochores in Kinetoplastids.
Cell [Online], 156(6), pp.1247–1258. Available from:
https://doi.org/10.1016/J.CELL.2014.01.049 [Accessed 19 May 2023].

Altmann, S., Rico, E., Carvalho, S., Ridgway, M., Trenaman, A., Donnelly, H., Tinti, M., Wyllie,
S. and Horn, D., 2013. Oligo targeting for profiling drug resistance mutations in the parasitic
trypanosomatids. Nucleic Acids Research [Online], 1(1256879), pp.13–14. Available from:
https://doi.org/10.1093/NAR/GKAC319 [Accessed 9 May 2022].

Altmann, S., Rico, E., Carvalho, S., Ridgway, M., Trenaman, A., Donnelly, H., Tinti, M., Wyllie,
S. and Horn, D., 2022. Oligo targeting for profiling drug resistance mutations in the parasitic
trypanosomatids. Nucleic Acids Research [Online], 50(14), pp.e79–e79. Available from:
https://doi.org/10.1093/NAR/GKAC319 [Accessed 18 September 2024].

Baker, N., Catta-Preta, C.M.C., Neish, R., Sadlova, J., Powell, B., Alves-Ferreira, E.V.C.,
Geoghegan, V., Carnielli, J.B.T., Newling, K., Hughes, C., Vojtkova, B., Anand, J., Mihut, A.,
Walrad, P.B., Wilson, L.G., Pitchford, J.W., Volf, P. and Mottram, J.C., 2021. Systematic
functional analysis of Leishmania protein kinases identifies regulators of differentiation or
survival. Nature Communications 2021 12:1 [Online], 12(1), pp.1–15. Available from:
https://doi.org/10.1038/s41467-021-21360-8 [Accessed 23 July 2021].

Ballmer, D., Carter, W., Hooff, J.J.E. van, Tromer, E.C., Ishii, M., Ludzia, P. and Akiyoshi, B.,
2024. Kinetoplastid kinetochore proteins KKT14-KKT15 are divergent Bub1/BubR1-Bub3
proteins. bioRxiv [Online], p.2024.01.04.574194. Available from:
https://doi.org/10.1101/2024.01.04.574194 [Accessed 30 July 2024].

Beetham, J.K., Donelson, J.E. and Dahlin, R.R., 2003. Surface glycoprotein PSA (GP46)
expression during short- and long-term culture of Leishmania chagasi. Molecular and
Biochemical Parasitology [Online], 131(2), pp.109–117. Available from:
https://doi.org/10.1016/S0166-6851(03)00197-X [Accessed 13 June 2023].

Beneke, T., Madden, R., Makin, L., Valli, J., Sunter, J. and Gluenz, E., 2017. A CRISPR Cas9
high-throughput genome editing toolkit for kinetoplastids. Royal Society Open Science
[Online]. Available from: https://doi.org/10.1098/rsos.170095.

 119

Black, J.A., Reis-Cunha, J.L., Cruz, A.K. and Tosi, L.R.O., 2023. Life in plastic, it’s fantastic!
How Leishmania exploit genome instability to shape gene expression. Frontiers in Cellular
and Infection Microbiology [Online], 13, p.1102462. Available from:
https://doi.org/10.3389/FCIMB.2023.1102462/BIBTEX [Accessed 28 May 2024].

Borgo, C., D’Amore, C., Sarno, S., Salvi, M. and Ruzzene, M., 2021. Protein kinase CK2: a
potential therapeutic target for diverse human diseases. Signal transduction and targeted
therapy [Online], 6(1). Available from: https://doi.org/10.1038/S41392-021-00567-7
[Accessed 18 September 2024].

Brittingham, A., Miller, M.A., Donelson, J.E. and Wilson, M.E., 2001. Regulation of GP63
mRNA stability in promastigotes of virulent and attenuated Leishmania chagasi. Molecular
and Biochemical Parasitology [Online], 112(1), pp.51–59. Available from:
https://doi.org/10.1016/S0166-6851(00)00346-7 [Accessed 13 June 2023].

Brusini, L., D’Archivio, S., McDonald, J. and Wickstead, B., 2021. Trypanosome KKIP1
Dynamically Links the Inner Kinetochore to a Kinetoplastid Outer Kinetochore Complex.
Frontiers in Cellular and Infection Microbiology [Online], 11, p.159. Available from:
https://doi.org/10.3389/FCIMB.2021.641174/BIBTEX [Accessed 24 May 2023].

Burchmore, R.J.S. and Landfear, S.M., 1998. Differential regulation of multiple glucose
transporter genes in Leishmania mexicana. Journal of Biological Chemistry [Online],
273(44), pp.29118–29126. Available from: https://doi.org/10.1074/jbc.273.44.29118
[Accessed 13 June 2023].

Burza, S., Croft, S.L. and Boelaert, M., 2018. Leishmaniasis. The Lancet [Online], 392(10151),
pp.951–970. Available from: https://doi.org/10.1016/S0140-6736(18)31204-2 [Accessed 6
September 2019].

Canton, D.A., Keene, C.D., Swinney, K., Langeberg, L.K., Nguyen, V., Pelletier, L., Pawson, T.,
Wordeman, L., Stella, N. and Scott, J.D., 2012. Gravin Is a Transitory Effector of Polo-like
Kinase 1 during Cell Division. Molecular Cell [Online], 48(4), pp.547–559. Available from:
https://doi.org/10.1016/J.MOLCEL.2012.09.002 [Accessed 22 September 2023].

Chauhan, N., Vidyarthi, A.S. and Poddar, R., 2011. Comparative Multivariate Analysis of
Codon and Amino Acid Usage in Three Leishmania Genomes. Genomics, Proteomics &
Bioinformatics [Online], 9(6), pp.218–228. Available from: https://doi.org/10.1016/S1672-
0229(11)60025-9 [Accessed 12 June 2023].

 120

Cock, P.J.A., Antao, T., Chang, J.T., Chapman, B.A., Cox, C.J., Dalke, A., Friedberg, I.,
Hamelryck, T., Kauff, F., Wilczynski, B. and De Hoon, M.J.L., 2009. Biopython: freely
available Python tools for computational molecular biology and bioinformatics.
Bioinformatics (Oxford, England) [Online], 25(11), pp.1422–1423. Available from:
https://doi.org/10.1093/BIOINFORMATICS/BTP163 [Accessed 16 April 2024].

Codeacademy Team, 2020. What Is a Programming Language? [Online]. Available from:
https://www.codecademy.com/resources/blog/programming-languages/ [Accessed 16
April 2024].

Crawford, E.D., Quan, J., Horst, J.A., Ebert, D., Wu, W. and DeRisi, J.L., 2017. Plasmid-free
CRISPR/Cas9 genome editing in Plasmodium falciparum confirms mutations conferring
resistance to the dihydroisoquinolone clinical candidate SJ733. PLoS ONE [Online], 12(5).
Available from: https://doi.org/10.1371/JOURNAL.PONE.0178163 [Accessed 24 May
2024].

Damasceno, J.D., Reis-Cunha, J., Crouch, K., Beraldi, D., Lapsley, C., Tosi, L.R.O.,
Bartholomeu, D. and McCulloch, R., 2020. Conditional knockout of RAD51-related genes in
Leishmania major reveals a critical role for homologous recombination during genome
replication. PLOS Genetics [Online], 16(7), p.e1008828. Available from:
https://doi.org/10.1371/JOURNAL.PGEN.1008828 [Accessed 8 August 2024].

D’Archivio, S. and Wickstead, B., 2017. Trypanosome outer kinetochore proteins suggest
conservation of chromosome segregation machinery across eukaryotes. Journal of Cell
Biology [Online], 216(2), pp.379–391. Available from:
https://doi.org/10.1083/JCB.201608043 [Accessed 4 May 2023].

Douanne, N., Dong, G., Amin, A., Bernardo, L., Blanchette, M., Langlais, D., Olivier, M. and
Fernandez-Prada, C., 2022. Leishmania parasites exchange drug-resistance genes through
extracellular vesicles. Cell Reports [Online], 40(3), p.111121. Available from:
https://doi.org/10.1016/J.CELREP.2022.111121 [Accessed 5 July 2023].

Duncan, S.M., Jones, N.G. and Mottram, J.C., 2017. Recent advances in Leishmania reverse
genetics: Manipulating a manipulative parasite. Molecular and Biochemical Parasitology
[Online], 216, pp.30–38. Available from:
https://doi.org/10.1016/J.MOLBIOPARA.2017.06.005 [Accessed 6 September 2019].

 121

Engstler, M. and Beneke, T., 2023. Gene editing and scalable functional genomic screening
in Leishmania species using the CRISPR/Cas9 cytosine base editor toolbox LeishBASEedit.
eLife [Online], 12, p.e85605. Available from: https://doi.org/10.7554/eLife.85605.

Fiebig, M., Kelly, S. and Gluenz, E., 2015. Comparative Life Cycle Transcriptomics Revises
Leishmania mexicana Genome Annotation and Links a Chromosome Duplication with
Parasitism of Vertebrates. PLOS Pathogens [Online], 11(10), p.e1005186. Available from:
https://doi.org/10.1371/JOURNAL.PPAT.1005186 [Accessed 24 February 2023].

Gasiunas, G., Barrangou, R., Horvath, P. and Siksnys, V., 2012. Cas9-crRNA
ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in
bacteria. Proceedings of the National Academy of Sciences of the United States of America
[Online], 109(39), pp.E2579–E2586. Available from:
https://doi.org/10.1073/PNAS.1208507109/SUPPL_FILE/PNAS.201208507SI.PDF
[Accessed 14 October 2022].

Geoghegan, V., Carnielli, J.B.T., Jones, N.G., Saldivia, M., Antoniou, S., Hughes, C., Neish, R.,
Dowle, A. and Mottram, J.C., 2022. CLK1/CLK2-driven signalling at the Leishmania
kinetochore is captured by spatially referenced proximity phosphoproteomics.
Communications Biology 2022 5:1 [Online], 5(1), pp.1–17. Available from:
https://doi.org/10.1038/s42003-022-04280-1 [Accessed 28 November 2022].

Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M.H.,
Brett, M., Haldane, A., del Río, J.F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard,
K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C. and Oliphant, T.E., 2020. Array
programming with NumPy. Nature 2020 585:7825 [Online], 585(7825), pp.357–362.
Available from: https://doi.org/10.1038/s41586-020-2649-2 [Accessed 16 April 2024].

Hořejší, Z., Takai, H., Adelman, C.A., Collis, S.J., Flynn, H., Maslen, S., Skehel, J.M., de Lange,
T. and Boulton, S.J., 2010. CK2 Phospho-Dependent Binding of R2TP Complex to TEL2 Is
Essential for mTOR and SMG1 Stability. Molecular Cell [Online], 39(6), pp.839–850.
Available from: https://doi.org/10.1016/J.MOLCEL.2010.08.037 [Accessed 25 September
2023].

Horn, D., 2022. Genome-scale RNAi screens in African trypanosomes. Trends in
Parasitology [Online], 38(2), pp.160–173. Available from:
https://doi.org/10.1016/J.PT.2021.09.002 [Accessed 4 May 2023].

 122

Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V., Li, Y., Fine,
E.J., Wu, X., Shalem, O., Cradick, T.J., Marraffini, L.A., Bao, G. and Zhang, F., 2013. DNA
targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology 2013 31:9
[Online], 31(9), pp.827–832. Available from: https://doi.org/10.1038/nbt.2647 [Accessed
17 March 2025].

Ishii, M. and Akiyoshi, B., 2020. Characterization of unconventional kinetochore kinases
KKT10 and KKT19 in Trypanosoma brucei. Journal of Cell Science [Online], 133(8). Available
from: https://doi.org/10.1242/JCS.240978/266234/AM/CHARACTERIZATION-OF-
UNCONVENTIONAL-KINETOCHORE [Accessed 30 May 2024].

Ishii, M., Ludzia, P., Marcianò, G., Allen, W., Nerusheva, O.O. and Akiyoshi, B., 2022.
Divergent polo boxes in KKT2 bind KKT1 to initiate the kinetochore assembly cascade in
Trypanosoma brucei. Molecular Biology of the Cell [Online], 33(14). Available from:
https://doi.org/10.1091/MBC.E22-07-0269-T/ASSET/IMAGES/LARGE/MBC-33-AR143-
G006.JPEG [Accessed 22 May 2023].

Ivens, A.C., Peacock, C.S., Worthey, E.A., Murphy, L., Aggarwal, G., Berriman, M., Sisk, E.,
Rajandream, M.A., Adlem, E., Aert, R., Anupama, A., Apostolou, Z., Attipoe, P., Bason, N.,
Bauser, C., Beck, A., Beverley, S.M., Bianchettin, G., Borzym, K., Bothe, G., Bruschi, C. V.,
Collins, M., Cadag, E., Ciarloni, L., Clayton, C., Coulson, R.M.R., Cronin, A., Cruz, A.K., Davies,
R.M., De Gaudenzi, J., Dobson, D.E., Duesterhoeft, A., Fazelina, G., Fosker, N., Frasch, A.C.,
Fraser, A., Fuchs, M., Gabel, C., Goble, A., Goffeau, A., Harris, D., Hertz-Fowler, C., Hilbert,
H., Horn, D., Huang, Y., Klages, S., Knights, A., Kube, M., Larke, N., Litvin, L., Lord, A., Louie,
T., Marra, M., Masuy, D., Matthews, K., Michaeli, S., Mottram, J.C., Müller-Auer, S.,
Munden, H., Nelson, S., Norbertczak, H., Oliver, K., O’Neil, S., Pentony, M., Pohl, T.M., Price,
C., Purnelle, B., Quail, M.A., Rabbinowitsch, E., Reinhardt, R., Rieger, M., Rinta, J., Robben,
J., Robertson, L., Ruiz, J.C., Rutter, S., Saunders, D., Schäfer, M., Schein, J., Schwartz, D.C.,
Seeger, K., Seyler, A., Sharp, S., Shin, H., Sivam, D., Squares, R., Squares, S., Tosato, V., Vogt,
C., Volckaert, G., Wambutt, R., Warren, T., Wedler, H., Woodward, J., Zhou, S.,
Zimmermann, W., Smith, D.F., Blackwell, J.M., Stuart, K.D., Barrell, B. and Myler, P.J., 2005.
The genome of the kinetoplastid parasite, Leishmania major. Science [Online], 309(5733),
pp.436–442. Available from:
https://doi.org/10.1126/SCIENCE.1112680/SUPPL_FILE/IVENS_S1_S2.ZIP [Accessed 12
June 2023].

Janssen, B.D., Chen, Y.P., Molgora, B.M., Wang, S.E., Simoes-Barbosa, A. and Johnson, P.J.,
2018. CRISPR/Cas9-mediated gene modification and gene knock out in the human-infective
parasite Trichomonas vaginalis. Scientific Reports 2017 8:1 [Online], 8(1), pp.1–14.
Available from: https://doi.org/10.1038/s41598-017-18442-3 [Accessed 24 May 2024].

 123

Jeacock, L., Faria, J. and Horn, D., 2018. Codon usage bias controls mRNA and protein
abundance in trypanosomatids. eLife [Online], 7. Available from:
https://doi.org/10.7554/ELIFE.32496 [Accessed 19 February 2025].

Josephs, E.A., Kocak, D.D., Fitzgibbon, C.J., McMenemy, J., Gersbach, C.A. and Marszalek,
P.E., 2015. Structure and specificity of the RNA-guided endonuclease Cas9 during DNA
interrogation, target binding and cleavage. Nucleic Acids Research [Online], 43(18), p.8924.
Available from: https://doi.org/10.1093/NAR/GKV892 [Accessed 10 May 2024].

Keder, A., Rives-Quinto, N., Aerne, B.L., Franco, M., Tapon, N. and Carmena, A., 2015. The
Hippo Pathway Core Cassette Regulates Asymmetric Cell Division. Current Biology [Online],
25(21), pp.2739–2750. Available from: https://doi.org/10.1016/J.CUB.2015.08.064
[Accessed 25 September 2023].

Kelso, A.A., Waldvogel, S.M., Luthman, A.J. and Sehorn, M.G., 2017. Homologous
recombination in protozoan parasites and recombinase inhibitors. Frontiers in
Microbiology [Online], 8(SEP), p.286759. Available from:
https://doi.org/10.3389/FMICB.2017.01716/BIBTEX [Accessed 8 August 2024].

Koressaar, T. and Remm, M., 2007. Enhancements and modifications of primer design
program Primer3. Bioinformatics (Oxford, England) [Online], 23(10), pp.1289–1291.
Available from: https://doi.org/10.1093/BIOINFORMATICS/BTM091 [Accessed 16 April
2024].

Kovářová, J., Novotná, M., Faria, J., Rico, E., Wallace, C., Zoltner, M., Field, M.C. and Horn,
D., 2022. CRISPR/Cas9-based precision tagging of essential genes in bloodstream form
African trypanosomes. Molecular and Biochemical Parasitology [Online], 249, p.111476.
Available from: https://doi.org/10.1016/J.MOLBIOPARA.2022.111476 [Accessed 10
October 2022].

Lander, N. and Chiurillo, M.A., 2019. State-of-the-art CRISPR/Cas9 Technology for Genome
Editing in Trypanosomatids. Journal of Eukaryotic Microbiology [Online], 66(6), pp.981–
991. Available from: https://doi.org/10.1111/JEU.12747 [Accessed 24 May 2024].

Lee, K.D., 2011. Python Programming Fundamentals [Online]. London: Springer London.
Available from: https://doi.org/10.1007/978-1-84996-537-8 [Accessed 16 April 2024].

 124

Llauró, A., Hayashi, H., Bailey, M.E., Wilson, A., Ludzia, P., Asbury, C.L. and Akiyoshi, B.,
2018. The kinetoplastid kinetochore protein KKT4 is an unconventional microtubule tip–
coupling protein. Journal of Cell Biology [Online], 217(11), pp.3886–3900. Available from:
https://doi.org/10.1083/JCB.201711181 [Accessed 22 May 2023].

Madusanka, R.K., Silva, H. and Karunaweera, N.D., 2022. Treatment of Cutaneous
Leishmaniasis and Insights into Species-Specific Responses: A Narrative Review. Infectious
Diseases and Therapy [Online], 11(2), pp.695–711. Available from:
https://doi.org/10.1007/S40121-022-00602-2/METRICS [Accessed 3 May 2023].

Marchand, A., Sarchione, A., Athanasopoulos, P.S., Bauderlique-Le Roy, H., Goveas, L.,
Magnez, R., Drouyer, M., Emanuele, M., Ho, F.Y., Liberelle, M., Melnyk, P., Lebègue, N.,
Thuru, X., Nichols, R.J., Greggio, E., Kortholt, A., Galli, T., Chartier-Harlin, M.C. and Taymans,
J.M., 2022. A Phosphosite Mutant Approach on LRRK2 Links Phosphorylation and
Dephosphorylation to Protective and Deleterious Markers, Respectively. Cells [Online],
11(6), p.1018. Available from: https://doi.org/10.3390/CELLS11061018/S1 [Accessed 19
September 2023].

Marcianò, G., Ishii, M., Nerusheva, O.O. and Akiyoshi, B., 2021. Kinetoplastid kinetochore
proteins kkt2 and kkt3 have unique centromere localization domains. Journal of Cell Biology
[Online], 220(8). Available from: https://doi.org/10.1083/JCB.202101022/212224
[Accessed 23 May 2023].

McConville, M.J. and Naderer, T., 2011. Metabolic Pathways Required for the Intracellular
Survival of Leishmania. https://doi.org/10.1146/annurev-micro-090110-102913 [Online],
65, pp.543–561. Available from: https://doi.org/10.1146/ANNUREV-MICRO-090110-
102913 [Accessed 3 May 2023].

Mckinney, W., 2010. Data Structures for Statistical Computing in Python [Online]. Available
from: [Accessed 16 April 2024].

Medeiros, L.C.S., South, L., Peng, D., Bustamante, J.M., Wang, W., Bunkofske, M., Perumal,
N., Sanchez-Valdez, F. and Tarleton, R.L., 2017. Rapid, Selection-Free, High-Efficiency
Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins. mBio
[Online], 8(6). Available from: https://doi.org/10.1128/MBIO.01788-17 [Accessed 24 May
2024].

 125

Munro, A., 2024. Python [Online]. Available from:
https://www.britannica.com/technology/Python-computer-language [Accessed 16 April
2024].

Musacchio, A. and Desai, A., 2017. A Molecular View of Kinetochore Assembly and
Function. Biology [Online], 6(1). Available from: https://doi.org/10.3390/BIOLOGY6010005
[Accessed 4 May 2023].

Nascimento, J. de F., Kelly, S., Sunter, J. and Carrington, M., 2018. Codon choice directs
constitutive mRNA levels in trypanosomes. eLife [Online], 7. Available from:
https://doi.org/10.7554/ELIFE.32467 [Accessed 19 February 2025].

Nerusheva, O.O. and Akiyoshi, B., 2016. Divergent polo box domains underpin the unique
kinetoplastid kinetochore. Open Biology [Online], 6(3). Available from:
https://doi.org/10.1098/rsob.150206.

Nerusheva, O.O., Ludzia, P. and Akiyoshi, B., 2019. Identification of four unconventional
kinetoplastid kinetochore proteins KKT22–25 in Trypanosoma brucei. Open Biology
[Online], 9(12). Available from: https://doi.org/10.1098/RSOB.190236 [Accessed 24 May
2023].

Pal, S. and Dam, S., 2022. CRISPR-Cas9: Taming protozoan parasites with bacterial scissor.
Journal of Parasitic Diseases: Official Organ of the Indian Society for Parasitology [Online],
46(4), p.1204. Available from: https://doi.org/10.1007/S12639-022-01534-X [Accessed 23
May 2024].

Passos-Silva, D.G., Rajão, M.A., Nascimento De Aguiar, P.H., Vieira-Da-Rocha, J.P.,
Machado, C.R. and Furtado, C., 2010. Overview of DNA repair in Trypanosoma cruzi,
Trypanosoma brucei, and Leishmania major. Journal of Nucleic Acids [Online], 2010.
Available from: https://doi.org/10.4061/2010/840768 [Accessed 17 April 2023].

Peacock, C.S., Seeger, K., Harris, D., Murphy, L., Ruiz, J.C., Quail, M.A., Peters, N., Adlem, E.,
Tivey, A., Aslett, M., Kerhornou, A., Ivens, A., Fraser, A., Rajandream, M.A., Carver, T.,
Norbertczak, H., Chillingworth, T., Hance, Z., Jagels, K., Moule, S., Ormond, D., Rutter, S.,
Squares, R., Whitehead, S., Rabbinowitsch, E., Arrowsmith, C., White, B., Thurston, S.,
Bringaud, F., Baldauf, S.L., Faulconbridge, A., Jeffares, D., Depledge, D.P., Oyola, S.O., Hilley,
J.D., Brito, L.O., Tosi, L.R.O., Barrell, B., Cruz, A.K., Mottram, J.C., Smith, D.F. and Berriman,
M., 2007. Comparative genomic analysis of three Leishmania species that cause diverse

 126

human disease. Nature Genetics 2007 39:7 [Online], 39(7), pp.839–847. Available from:
https://doi.org/10.1038/ng2053 [Accessed 12 June 2023].

Python Institute, n.d. About Python [Online]. Available from:
https://pythoninstitute.org/about-python [Accessed 16 April 2024].

Rico, E., Jeacock, L., Kovářová, J. and Horn, D., 2018. Inducible high-efficiency CRISPR-Cas9-
targeted gene editing and precision base editing in African trypanosomes. Scientific Reports
2018 8:1 [Online], 8(1), pp.1–10. Available from: https://doi.org/10.1038/s41598-018-
26303-w [Accessed 10 October 2022].

Rogers, M.B., Hilley, J.D., Dickens, N.J., Wilkes, J., Bates, P.A., Depledge, D.P., Harris, D., Her,
Y., Herzyk, P., Imamura, H., Otto, T.D., Sanders, M., Seeger, K., Dujardin, J.C., Berriman, M.,
Smith, D.F., Hertz-Fowler, C. and Mottram, J.C., 2011. Chromosome and gene copy number
variation allow major structural change between species and strains of Leishmania.
Genome Research [Online], 21(12), p.2129. Available from:
https://doi.org/10.1101/GR.122945.111 [Accessed 6 August 2024].

Rogers, M.E., Chance, M.L. and Bates, P.A., 2002. The role of promastigote secretory gel in
the origin and transmission of the infective stage of Leishmania mexicana by the sandfly
Lutzomyia longipalpis. Parasitology [Online], 124(5), pp.495–507. Available from:
https://doi.org/10.1017/S0031182002001439 [Accessed 3 September 2021].

Sacks, D.L., 1989. Metacyclogenesis in Leishmania promastigotes. Experimental
Parasitology [Online], 69(1), pp.100–103. Available from: https://doi.org/10.1016/0014-
4894(89)90176-8 [Accessed 3 May 2023].

Saldivia, M., Fang, E., Ma, X., Myburgh, E., Carnielli, J.B.T., Bower-Lepts, C., Brown, E.,
Ritchie, R., Lakshminarayana, S.B., Chen, Y.-L., Patra, D., Ornelas, E., Koh, H.X.Y., Williams,
S.L., Supek, F., Paape, D., McCulloch, R., Kaiser, M., Barrett, M.P., Jiricek, J., Diagana, T.T.,
Mottram, J.C. and Rao, S.P.S., 2020. Targeting the trypanosome kinetochore with CLK1
protein kinase inhibitors. Nature Microbiology [Online], 5(10), pp.1207–1216. Available
from: https://doi.org/10.1038/s41564-020-0745-6.

Saldivia, M., Wollman, A.J.M., Carnielli, J.B.T., Jones, N.G., Leake, M.C., Bower-Lepts, C.,
Rao, S.P.S. and Mottram, J.C., 2021. A clk1-kkt2 signaling pathway regulating kinetochore
assembly in trypanosoma brucei. mBio [Online], 12(3). Available from:
https://doi.org/10.1128/MBIO.00687-21/SUPPL_FILE/MBIO.00687-21-S0001.DOCX
[Accessed 10 January 2023].

 127

Schweighofer, J., Mulay, B., Hoffmann, I., Vogt, D., Pesenti, M.E. and Musacchio, A., 2024.
Interactions with multiple inner kinetochore proteins determine mitotic localization of
FACT. bioRxiv [Online], p.2024.06.14.599021. Available from:
https://doi.org/10.1101/2024.06.14.599021 [Accessed 18 September 2024].

Sollelis, L., Ghorbal, M., Macpherson, C.R., Martins, R.M., Kuk, N., Crobu, L., Bastien, P.,
Scherf, A., Lopez-Rubio, J.J. and Sterkers, Y., 2015. First efficient CRISPR-Cas9-mediated
genome editing in Leishmania parasites. Cellular Microbiology [Online], 17(10), pp.1405–
1412. Available from: https://doi.org/10.1111/CMI.12456/SUPPINFO [Accessed 2
September 2022].

Sridhar, S. and Fukagawa, T., 2022. Kinetochore Architecture Employs Diverse Linker
Strategies Across Evolution. Frontiers in Cell and Developmental Biology [Online], 10,
p.862637. Available from: https://doi.org/10.3389/FCELL.2022.862637/BIBTEX [Accessed
18 July 2024].

Tobin, J.F., Laban, A. and Wirth, D.F., 1991. Homologous recombination in Leishmania
enriettii. Proceedings of the National Academy of Sciences of the United States of America
[Online], 88(3), pp.864–868. Available from: https://doi.org/10.1073/PNAS.88.3.864
[Accessed 8 August 2024].

Trager, W., 1969. Pteridine Requirement of the Hemoflagellate Leishmania tarentolae. The
Journal of Protozoology [Online], 16(2), pp.372–375. Available from:
https://doi.org/10.1111/J.1550-7408.1969.TB02284.X [Accessed 10 July 2024].

Ullu, E., Tschudi, C. and Chakraborty, T., 2004. RNA interference in protozoan parasites.
Cellular Microbiology [Online], 6(6), pp.509–519. Available from:
https://doi.org/10.1111/J.1462-5822.2004.00399.X [Accessed 24 May 2024].

Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M. and Rozen,
S.G., 2012. Primer3—new capabilities and interfaces. Nucleic Acids Research [Online],
40(15), p.e115. Available from: https://doi.org/10.1093/NAR/GKS596 [Accessed 16 April
2024].

Vasquez, J.J., Wedel, C., Cosentino, R.O. and Siegel, T.N., 2018. Exploiting CRISPR–Cas9
technology to investigate individual histone modifications. Nucleic Acids Research [Online],
46(18), p.e106. Available from: https://doi.org/10.1093/NAR/GKY517 [Accessed 13 June
2023].

 128

Vergnes, B., Gazanion, E., Mariac, C., Du Manoir, M., Sollelis, L., Lopez-Rubio, J.J., Sterkers,
Y. and Bañuls, A.L., 2019. A single amino acid substitution (H451Y) in Leishmania calcium-
dependent kinase SCAMK confers high tolerance and resistance to antimony. Journal of
Antimicrobial Chemotherapy [Online], 74(11), pp.3231–3239. Available from:
https://doi.org/10.1093/JAC/DKZ334 [Accessed 13 June 2023].

Villa, H., Marcos, A.R.O., Reguera, R.M., Balaña-Fouce, R., García-Estrada, C., Pérez-Pertejo,
Y., Tekwani, B.L., Myler, P.J., Stuart, K.D., Bjornsti, M.A. and Ordóñez, D., 2003. A novel
active DNA topoisomerase I in Leishmania donovani. Journal of Biological Chemistry
[Online], 278(6), pp.3521–3526. Available from: https://doi.org/10.1074/jbc.M203991200
[Accessed 13 June 2023].

Wall, R.J., Rico, E., Lukac, I., Zuccotto, F., Elg, S., Gilbert, I.H., Freund, Y., Alley, M.R.K., Field,
M.C., Wyllie, S. and Horn, D., 2018. Clinical and veterinary trypanocidal benzoxaboroles
target CPSF3. Proceedings of the National Academy of Sciences of the United States of
America [Online], 115(38), pp.9616–9621. Available from:
https://doi.org/10.1073/PNAS.1807915115/SUPPL_FILE/PNAS.1807915115.SAPP.PDF
[Accessed 17 September 2024].

Xu, J., Wang, M., Gao, X., Hu, B., Du, Y., Zhou, J., Tian, X. and Huang, X., 2011. Separase
Phosphosite Mutation Leads to Genome Instability and Primordial Germ Cell Depletion
during Oogenesis. PLOS ONE [Online], 6(4), p.e18763. Available from:
https://doi.org/10.1371/JOURNAL.PONE.0018763 [Accessed 19 September 2023].

Yagoubat, A., Corrales, R.M., Bastien, P., Lévêque, M.F. and Sterkers, Y., 2020. Gene Editing
in Trypanosomatids: Tips and Tricks in the CRISPR-Cas9 Era. Trends in Parasitology [Online],
36(9), pp.745–760. Available from: https://doi.org/10.1016/J.PT.2020.06.005 [Accessed 13
June 2023].

Yang, X., Lau, K.Y., Sevim, V. and Tang, C., 2013. Design Principles of the Yeast G1/S Switch.
PLOS Biology [Online], 11(10), p.e1001673. Available from:
https://doi.org/10.1371/JOURNAL.PBIO.1001673 [Accessed 20 September 2023].

Zhang, W.-W., Lypaczewski, P. and Matlashewski, G., 2017. Optimized CRISPR-Cas9
Genome Editing for Leishmania and Its Use To Target a Multigene Family, Induce
Chromosomal Translocation, and Study DNA Break Repair Mechanisms . mSphere [Online],
2(1). Available from: https://doi.org/10.1128/MSPHERE.00340-16/ASSET/CFBEB13D-5E70-
44F4-B94B-255C4E0D799C/ASSETS/GRAPHIC/SPH0011722180007.JPEG [Accessed 7
February 2023].

 129

Zhang, W.W. and Matlashewski, G., 2015. CRISPR-Cas9-mediated genome editing in
Leishmania donovani. mBio [Online], 6(4), pp.861–876. Available from:
https://doi.org/10.1128/MBIO.00861-15/SUPPL_FILE/MBO004152405SF10.DOCX
[Accessed 17 October 2022].

Zhang, W.-W. and Matlashewski, G., 2019. Single-Strand Annealing Plays a Major Role in
Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in Leishmania. mSphere
[Online], 4(4). Available from: https://doi.org/10.1128/MSPHERE.00408-19 [Accessed 10
May 2024].

 130

7.2 Appendices

7.2.1 LIST OF ABBREVIATIONS

Abbreviation Meaning

ANOVA Analysis of variance

ATP Adenosine Triphosphate

BLAST Basic Local Alignment Search Tool

bp Base pair(s)

CCAN Constitutive centromere associated network

CDS Coding sequence

CENP CENtromere Protein

CL Cutaneous Leishmaniasis

CLK Cdc2-like kinase

CRISPR Clustered regularly interspaced short palindromic repeats

DAPI 4’6-diamidino-2-phenylindole

DiCre Dimerizable Cre recombinase

DNA Deoxyribonucleic acid

DSB Double-strand break

dsDNA Double-stranded DNA

EDTA Ethylenediaminetetraacetic acid

FASTA FAST-All

FBS Foetal bovine serum

HA Haemagglutinin

HDR Homology-directed repair

HDV Hepatitis delta virus

kb Kilobase(s)

KKIP Kinetoplastid kinetochore interacting protein

KKT Kinetoplastid kinetochore protein

MSA Multiple sequence alignment

 131

NHEJ Non-homologous end joining

nt Nucleotide(s)

NumPy Numerical Python

PAM Protospacer Adjacent Motif

Pandas Panel data

PBS Phosphate buffered saline

PCR Polymerase chain reaction

PFA Paraformaldehyde

PSA Pairwise-sequence alignment

RNA Ribonucleic acid

RNAi RNA-interference

SAC Spindle assembly checkpoint

sgRNA Single-guide RNA

SNP Single nucleotide polymorphism

ssDNA Single-stranded DNA

T7 RNAP T7 RNA polymerase

UTR Untranslated region

WT Wild-type

 132

7.2.2 SUPPLEMENTARY DATA

7.2.2.1 Single-stranded Transfection Restriction Digest Screens

Restriction digests for screening clones to detect genotype following transfections with

ssDNA repair templates which confer either phosphodeficient mutations or synonymous

mutation equivalent designs. A PCR was designed which encompassed the whole repair

region and some of the genomic DNA either side of the repair region. PCRs were purified

and the same quantity of PCR product for each clone was digested with the restriction

enzyme indicated on the respective agarose gel. The restriction enzyme used corresponded

to a restriction site which was engineered into or removed from the repair sequence.

Expected digest patterns for each mutation can be found in Appendix 7.2.6. T7Cas9 is the

parental cell line. Numbers or CL followed by a number indicate clone number. “-" indicates

undigested sample. “+” indicates digested sample.

7.2.2.1.1 KKT1 S1449A
For KKT1 S1449A only clones 14-20 were possible to screen.

 133

7.2.2.1.2 KKT2 S493

 134

 135

7.2.2.1.3 KKT2 S505

 136

S
5

0
5

S

 137

7.2.2.1.4 KKT2 S506
pGL2923 was a plasmid digested as a positive control to confirm enzyme activity.

 138

7.2.2.1.5 KKT2 S505 + S506

K
K

T
2

 S
5

0
5
+

S
5

0
6

S

K
K

T
2

 S
5

0
5
+

S
5

0
6

S

K
K

T
2

 S
5

0
5
+

S
5

0
6

S

 139

7.2.2.1.6 KKT2 S530

 140

7.2.2.1.7 KKT2 S923

 141

7.2.2.1.8 KKT4 S300

KKT4 S300S

 142

7.2.2.1.9 KKT4 S422

 143

7.2.2.1.10 KKT7 S304

KKT7 S304S

 144

7.2.2.2 KKT2 Synonymous Only Mutant Double-stranded Transfection PCR
Screens

PCR screen for detecting genotype following transfections with dsDNA repair templates

which confer synonymous mutations in KKT2. Expected PCR product sizes can be found in

Appendix 7.2.5.6.2. Input DNA quantity was not standardised between clones but was

consistent between each PCR on the same clone. T7Cas9 is the parental cell line. Numbers

or CL followed by a number indicate clone number.

7.2.2.2.1 KKT2 S25S

KKT2 S25S Mutant PCR

 145

7.2.2.2.2 KKT2 S493S

KKT2 S493S Mutant PCR

 146

7.2.2.2.3 KKT2 S530S

KKT2 S530S Mutant PCR

 147

7.2.2.2.4 KKT2 S923S

KKT2 S923S Mutant PCR

 148

7.2.2.3 Double-stranded Transfection PCR Screens

PCR screen for detecting genotype of clones following transfections with dsDNA repair

templates which confer either phosphodeficient, phosphomimetic or synonymous

mutation equivalent designs. Expected PCR product sizes can be found in Appendix

7.2.5.6.3. Input DNA quantity was not standardised between clones but was consistent

between each PCR on the same clone. T7Cas9 is the parental cell line. Numbers or CL

followed by a number indicate clone number. WT – WT PCR conditions. A – Alanine mutant

specific PCR conditions. E – Glutamic acid mutant specific PCR conditions. S – Synonymous

mutant specific PCR conditions. M – mutant PCR conditions (primer recognises a region of

shared recoded sequence between alanine/glutamic acid/synonymous mutant repair

templates).

 149

7.2.2.3.1 KKT2 S25

 150

7.2.2.3.2 KKT2 S493

 151

7.2.2.3.3 KKT2 S530

 152

 153

7.2.2.3.4 KKT2 S923

 154

 155

7.2.2.3.5 KKT4 S422

 156

7.2.2.3.6 KKT7 S304

 157

7.2.3 GENES OF INTEREST

7.2.3.1 Names and IDs
Name Gene ID

KKT1 LmxM.36.1900

KKT2 LmxM.36.5350

KKT4 LmxM.10.0300

KKT7 LmxM.27.0430

7.2.3.2 Genomic DNA Sequences
All DNA sequences are for the CDS of the gene, except KKT2 which includes a region
upstream of the start (indicated by underlined text) to show the homology regions of S25
mutants.

7.2.3.2.1 >KKT1
ATGGTTCTCAATTTGTTCTCCGGTGCGGCGCTCAACGGGCACGGCAGCACGCACCGTCGCG

GGCGAGCGTCTTCCTCGCTCAACAGCACGGACACGGGGCGCCGGCCTCAGCAGCAGCGTCG

TCAGGCAAGTCGCAGCACGACATACGGTGCATCCATGCAGACGGATGGTGCCGAGCAGTCC

GGATCTGGGCTCCGTGCTGAAGCTGCCGAGGATCGCGTGCTCTTCAACAACTGCGTGGCGC

AGGTGCAGCGCCACCTCAAGACGCACGCGGATTCACCCAGCACGCTCCACACGCTCGCCTC

TTACTACACCAAAACAGAGCCGTTCATCGAGGGCCGCCCCTTTTGCGTGACCCTGAGCTAC

GCCACCTTTCTGTTTCACATGCAAATGGCCCGCATCAGCGTCACGGATGTGGAGCTGTACG

TGCAGCTTCTCACCAGCATCTTGTCGCAGATCACCGAGGATGATCAGCTCCACCACCCGTT

TGTACAGCAGGTGCTTCGCGATCATGTGTTCGGTCTGCCGTCGCCGACCTGCCGCGGCGCG

GCCCACAGCGTGGTGCTCTTGTCACCGCAGCAGTACCGTGCCTTTGCGACGATGACCACTG

CGCTCATTTCCCTCGCCGTGGTGCCGCTCAGCATTGTGTACCAGTTCCACGACCGGCTTGA

GACATACTGCGAGTGCGCCTCACCGCTTGTAGCCAACCGCGCCTTGGCGCTGCTCGTGCAG

ACAGTGGGCGAGGTGCGCATGGATGAGCAGGTCACTGCACTTCAGTACGTCCTGAAGACGA

AGCCGGTGAAGATGAATGTGGACTTCCTCCTCGCTTGCTACGAGCGTCTGAAACGCGCAGT

GATGGATCCGGCGCACGGACCGTCGTTCGGCCGCGCCCTCTCCATCCACTGTAGTGAACTC

TTCCTGCGCTTCCGGTCCCCGGTGCGGCGCGACTACGTGGAACGTTTCCTATACCCGAGTC

TGTGCCACAGCGACATGGCCAGCTTCCTGGAGATACCTGCAACTCGCAAGCACCTGTTGCG

CGAGCTGCTGTCGCAGTGCACGCCGGGCATGGGAACCATGAATCCGTTCTACATGTGCCTC

TGCGCCGTCCTGCAAAGTTGCTTCGACAACGAGACGGACGGCGCGCTCGAGACGGTGGCCC

TCATCAACTGCCATATGCCACACGCCGCTTATTTCATGTCTACCCTGGCTGTTGACTCGCA

CATGTCTGTGCCGATGTTTGCCAAAGTGATGATATCGCTCGCTCGCGGCGCCGGGATGGCT

ATGACGGGTCGCGACACGCCTGACGAGGTGGCCGCCTCGATCAACGAGAACCGCACGAGCG

TGTATAATGTGCTCTTCCTGCTCCGCGAGGTAGTTCGCAGCTGCTCCACCACCGCCTCTCG

CCGCGCCACCGATATGCTTAAGGCGCTGCGGGTCGCTGTGGCTCCAAAGACGATTGAGGCG

CTCGGAAAGCTGTCCAGCGAGGCCTTCGAGGCCGTCAGCGACATCACACTCGATCCGCAGC

TGCTGTGCGCAGAGCTGGCGATGGTGCTGCATCAGGACCATATCGCAGAGGCCATGGACTC

GGCAGTAGAGTACTTTCGCGACGTCAGGTCGAAGTGCCCGTACTGCGCGGCGGCGCGCAGC

TCTTCGCTGCTGTGCCCCGTCAACGGCACGGTGCACGTCGCCGGCCAGTCGTCGGTGAGCC

GCGTGCTGTCGACGCTATCGGAGTGCGCTGGCGCGAAGGCGGTGGAGGAGAAGCTGATCAG

CTATCTGCGCGATCCCGCCTTGCAGATGGAAAGCGCCGTGCACTACCTCATCTACCACATC

 158

GTCGCGAATGGCGGGCAGCACCGTAATACGCTCTTTGTGGCTGTGGAGCCGTACGTGCGGA

GCACATTACTGGCTTTGGTGAGCGCAGACCGCAGCGGGGTTCGCGGGCTCGTGGACAGCAC

GCTGAAGGCAAACGTGCTCATGCTGCACGTGAAGCTTGTCACCCTCCTCGCCTCCTCCATC

GACCCGTCGTACCTGGAGAGCATCTTGAAAGTCTTCTCGGAGCTGAGGCTGCGCAACAACC

ACGACGCGCTCGCGCTGTGGTACATGGGCAATGTTCTGCTGCGCAGCTGCCGCGGCAACTT

AGAGCTGCTACCCACCGACCCCCAGGAGAACAACTACTGCGTTGCCTTCCCTGGCTGCGCG

CCGGCAAGCGCGACGACCGCCGACAACGCGCAGCTCGTGCTGAAGCTGCTGCACCGCGCGC

ACAGCTTCAGCCCTGAGATGCACAAATTGGTTGGCTGTTGCGTGTGCAAGCTCATCCAGGA

CTTCAACATGCAGGCTCCAAACATTTGCAGCACCTTGCTGTCGCCTTTCGGCTTCTTCCCA

GTCGGACTCGAGTCACTGAACGCCTTCGCCCTTCCGGCAGGCGCCGGCAGCACCTTCTGGA

GCTTCTTTTTGCAGCAGATGCGCAGCTCTGCGCCGGCGCGGACGGCGTTCATGGCGACACT

GGCCAAAAGTCTATCGCGGCGCTTCCGCATTGCATCGCCAATGGACGCGCTCGCCCCGTAC

GGGGTGGAGCCGACAGGGCACTTGTTCGTCATCATGGTCTACGAGGCGATGAAGCGCAACC

CACCACTGGCGCGCGTGCTGCTCTACATGGTGTCGCACTGGATGAAGCAGGCAGGCCACCC

GCCCGGCAAGCTCGCGTGCCTCGTGTACGTGTGCGTGCAGCTCATCACAGTCGTGGTCGAC

CGTGCAGAGGGCCCGGCTGCGGCAGAGGTGGAGGCGGAGACGCCGCAGGATCGGCAGCAGT

TTGACGACGCCGTGAAGAAGGCGGCACGGGTACTGAAGAGTCAGCAGGCGCGCCTTGATAG

ACTGGCCCCGACGGCGCGGCGCGAGAACGTAGAATTCTTCCACCTGCTGCGCCGTTTGCAG

CGTCGCGTGCGCCGGACTGTGGCCACCGCCTCAGGTGAGATTGTTGTTGGCGACGAAGCCG

CGGAGGAGTACGACGACCACGATGACGCCGTTGACGACAGTTCGGCTGGCGGGCATGTGCG

GCAGGATTCCATCACAGACGCAGTTTGTGCCATGCAGGAGCTGCAGAATGCCGCTGACAAC

AGTGTGTTTGACGACTACGCCGATGATGTCGACCAAGAGGACGACGGCGCTTACGGGAACG

ATGAGGGTGCCTGCGACGCTGCTTCTCCAGGGCTTAGGCGTTCCGCGCAGACGGAGGGCAG

CGGCCACAGGGCCGAGGGCCCGCCTGCCCCAATGCAGATTCGCCACTTGCCGCAAGGCATA

ACCAGCATCCTGCGCTCGCCCGCGCAGAGAAGCCCCAACAAGAGCGACAGGGGTGCCGCCG

GTGTGGAGAAGGGCTCGACGACCTCTGTGAACATGTATCGTGAAGCGAACCGGCGAACCGA

TGTCGAGGGCGTCCCGCATGGCGCGGATGGCGATGATGCAGAGATGCGCAGTCGCGATGGC

GAAGCAGCCCACAGCTGTGCGCTGGGAGTTGAGCCTCGTACCCGGTCGACGTCTCGCGGCG

TGCAGACGGACGTGCCTCTGGCGAGCCCCGCGCTGCCCGGGAACGCGCCGCAGCGGAGCGT

GGGGACGTCACCGATACAGCCGGCAGGCACCTCGTCGCAGATCTCGGTCACGCGACGCGAC

GGCACGCAGCTGCCCTGTCGCACACCTGCCGACGTCGGCTCTGCGCACACTCCCTCCTCCT

CCCTCTATCAGCCACAGCGCTCCCACACACGGCCGCCAGAGGCCGATGGCATGCTCAGCGA

GGGTACTCGGACTCCAGCGCAGCGAGGATCGACGTGGCGTGAGCCGGACCTGGCCGACTAC

GTGGACGGTGACACCACCCCGATCGACGACTTCACCGGCGTGCCGCGGCTGCAGGCGACCA

CCACGAGTGACGGTATTGTGCTGCCCTCTGGTATGGTGCTCGAGTACCTGCGCACGCACCA

AGGGATGGACTCGTTGCAGCACGAGCTGAAACAGTTTGACCAGCAGTGGATGGTGCAGCAG

GTTGCTGAGTACGTGTCGCAGAACGGCGGCATGGTCGGCGCTGCTGGTCCGTCGTCGACTA

TTAGGGGCGGTGTGTCGTCTGTGCAGTCCGTTACGGTGGAAGGCCGCGCCAACAACTACAG

CCGCCCGCACGCCGATCCAACTGAGCTTGCGCCGACCCGCACGGTGTGCACAGAGGTGCAC

ATGATAGGGCCAGCCACGTCCTACTCGCGGCCACCTAGACAGGAGGAGCACGGGCGTGTCG

TGGCAGCCGCGCCGGGCCTGCCTGAAGAGGAGGAAGTGAACGTCGTAGATGGCGAACACCC

TATTCGCGCCGTCAGCGGCCCCCCAGACGACAGCGACCTTGCTGGACGCGCAGGTGACGAC

GAAGCGACTAAGCGCCGACGTGTGGAGGCCACCGGAGGCAACGCGACAACTCCGCTGCCAC

CACCAGTCTCCCCCGTAAGCGCTTTCCGCGGCCGCAACTTCTTCTTGAACCAGCATACACA

GCAGGAGGTGGGCTCGACGCTCCAGGACATTCACTACCTGCAGAGAAGGCAGCAGGCGAAC

ATGTCGGCGCTGGCCAAGGCGCAAAGCGCGGCTGAGACGGCGGAGTCAGCAGGTGACGACG

AGGCACCGCGCAAGACACCACACCAGGGTCAGTCCTCTACGGGCGTGGCGGGTGAGGGTGT

GCCGCCGACAACGCCTTACGGACAGGTTATTCTTCCAACTTGGATCGTGGAGCAGCGCAAC

GACACGGCTATCCGTGAGTTGCGACAGGTGATGGGGGCTCACAACCCGAATGACAGTCGAC

TATCGACGAGTGCGGGCAAGCGCAGCCGCATTCGCGGCAGTGGGACAGGCGACGGCAGCGG

 159

CAACAGCGCTGCGTGGTGGGCTGAGATGAGCTCGGCGCCGATGCCCAACTACGCTGCGGAC

CCTCAGTACTCCATGGAGCTCTTTTAG

7.2.3.2.2 >KKT2
GGCCTCTGATGTCACACTTTTGCGGCTCGTTGTCGAGGACTCCACCACGGGGTGGGGCGAT

ATCTATGCCGCGTGATTTGTCGCAGACCCCCGCCATCTCTCGACTTGGAAGCACGGTGAAG

ACGCCGCACATCCAAAAATGTGTTGTTGACCAAGCAGAGGATGATGATCATCCACTGGAGC

ACATGACGGTCTATTTTGAAGAGGAGGAGCTTAGAGTAGTTACCACTGGGCTGCTTGGAAA

AGGTGGGTTTGGAAAGGTATTTGATGCCGTTTCGAACAGCGGTGAGGCCTACGCGCTCAAA

GTGTCATCGAAACGCATGAGCGAGAACGACTGGAAGCGACTGAAGGAGGAGGTGACGCTCA

TGAGCCATTTCTCGCGCCATCCCAACATTGTCAAATTCTACGGTGCTGGTAGGGATGAAGA

TCGCGCCTACGTAGTAATGGAGCGGTGCGCAGGCAAGTCGCTTCACGACGTCATAGCCAGC

AGGAGTCTTGATGTGCCGGAGATTTTGTGGATTGGGTGGGCCCTGGTGAACACCATCTCCT

ACATTCATTCCAAAGGCTGCATTCACCGCGACCTGAAGCCACAGAATCTCTTGTTTGACAA

CGAAGGTAATTTGAAGATAACAGATTTTGGACTTTCCAGCCGCATATCAGAGGCGCATCCT

CGCAAGACGGTTGCCGGTACAGCAATGTACATGGCGCCTGAAATGGCAACTGAGGTTTACA

AGCGAATGACAAAAAACTCAGAAGCCCCTTCGCTGAGCTACGGCAAGGAGGTGGACACGTG

GAGTATTGGTGTGGTCCTCTACGTGCTCTTGACACGCATGAATCCGTATCTCGAGGCGATA

GAACAGAAAGGTATGCGCCAACTGGACAAAGAGCACAAATCGCTTGCCCTCTTCAACGCTG

TAGCGGGTGCCGCGTGGAGTTGGCCAAGGGAGTGGAGGGGAGATCCACAGCTCTGCGGACT

TGTGGAGCGCATGTTGCACCGCGAGCCGTCGCGGCGCGCCACGCTGATGGAGGTGCTCGAG

GACTCTGTGTGGAACCGCCGGCCACTGTCCTGCCCACTTTCGCTGCTCCAGAAGCTCAACT

TGCTGGAACCTTCGCCGTCGAGTGGCCTGCCTCTGAACAACCTTGCCGAGAATTTACAGTT

CCGCCCGAAGCGCTCGGCGGAGGCGGTGCTGCGCGAAGGACTAGAGCGCGTCGAAGCCACT

GAGCAGCGCGGTCGTGCGCAGCTGGAGCTTGAGTACTACGAAACCTACAATGTCCTCTGGA

GCCTTCTTACTCTGGCGCGGGCGGAAGAGGACGCCAGAGCTGACATCCTCCAGTCCGAGGA

GGTGCAGCGAGGCAAGCTGCGCAATCAGTCTCTTGCTCGCCAGTCTGCCCGTCGGAGGTGT

GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGCACGTCTC

GATCAGTGCGTCGTAGCGTCAGCTTAACGGAGCAGGAGCGGGGCAGACTTGTGCGTTCTAG

CCCGGTCCAGTACGCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAACCTTCGC

GCCGTAGTATCGCTGCCACGCGACATGACGGACGAGATCGAGCGCGAGTTCAAGTGCATGA

ACGGGCACGTAATGACAAAGTTGACCTCGATGCCGCACGGCTACAACGGCTTCGACTGCAA

TGTGTGCGATCGCGGCATTCTTACGATCACGGCCGAGTCACCAGCCTTCCGATGCTACAAG

TGCGACTACGATGTTTGCATGAAATGTGCGTACTCCGGCAAGTTCAAAGACGTTAACTTTG

TCTGTGTGACATGCGCGAAGCGCTTCACCTCAACCGCAAAGCTGCAGGGGCATTCCTTGCG

CTGTCGCGGCCCGAGCGAAAGTCCCTCACCGCGGCGATCGTCGCGCATGAACACGATGCTC

TGGGACGAGCCGAAGAGACCGAGCCTGCTGGAGGTACAGCTGCCTGAGGCGCCCCAGAGCG

AGCGGAAGCTGCGCGCCAGCCGCTGCCGCTCTGGACGCCCCACGTACAACCGCACATCGAC

CGGTGGCCGCATTAGCATTGGAGACTCGAATGCGCACAGTGTGGTGGACTTCGACGCAATG

GTGGCCTCGCACCGCGAGGCTGACTTTCCCAAGGTGAGCACACGCGCGTCTGCCACCGGCC

GCGAATCCTCGCAGAGACGGGAGCGCACGGGTAGTGGGCGTGGCCGACCATCCACCTCGTC

TAGCGGCAGCCTTTCACTTGACTTGCCGCCGCAGGTGCAGGTACCAAGCAAAGAGTCGCGC

CCACAGGTGCAGCCGCGTAGTTCCGCTGAGCTGCGCGATATCATGGAGGAGGTGGAGCAGC

GGAAGCAGGCACTGCCCCGTGACCCCCTCTTGTCCGCGCCGGCCACACCGCCGCAGTACAA

CTGCAACGGTGAGATCATCGGCATTTCTGCTCGTCGCCGCGCAGAGAGCCTGGAGATGGCG

CGCGCGGAAGTCATCACGATCCGCGCCGAGGTCGCGGACCGGCCGCGCGAGCTGCAGCATC

AGCCGCGTGTGCCGCGCAGCGCCTCCTCATCGAGAGCGGAGAAGGGGCTTCCGAGCCCCCA

CAAACGCCGTCGTGAGGAGTGGCAGCAGCCCGCGCATGCGCCGTCTCCATCCGGTACGGCG

AAGCGAGCCGCTGTGGAGGAGCACGTGGTGAAGCAAGCCATCATGCCGCCTCAGGTGCCAC

GCGGACGAGCACAGCAGCCACGTGCCCCCTCCGTCAGCGGGCACACCGCACAGGGCGGTCC

 160

GCCACTGCCGCGCCGCGGCCCAGCTGCGCCATCTCCTGCAGCCGCTTTGAAGGCGCACCTC

AGTCCCTTCCAGGCCCCCGCTGCGATTCCTCCCAAGAACTTTGCCTCCATCCTGCAGTCGC

GCTACTCCATGACGAACGCAATGGCGCCCACGTGCAACACTTCGACCACAAGGCCGGCGGG

CGGAGCAGGAGCTGCGACCGCTGCTCTTGGCCAGGGGGGTGCTCCGACATACAGCCATGCG

CTGAGCCGTCCCAACGGCGCCTTTTTGGCGTTGCCGCGCGAGGAGCGGAATCGCCAGCAAT

TCTTGGACGACTTTCTTAGTGGTGGCTGGGTGCGCTTCTACTCTTTCACAAACGAGGACAC

CGTCGTCATGTACTACTCACTGCAGCCTGGTCGCTACGGGGCCATGTTTCCCACCGAGGCA

GGCGTCGGCACTGCTGTGTTGGACGTGTACTCGAAACTGGTCCTCTATGTGCCGTGCATGA

ACAACGAGAGCACGAACCGCAGTCAACCCCACCCACACGTACAAACGTTCTACGACGAAGA

GGCGCGCATTCTTAGCTTGCCGGAGGCGCAGCGGTACCTGGGCGGCGTGCTACGCTGCATC

ACTGGATTTGTAGATGAGTTTAGCCGCTTGAAGGCTGAGGGCCTTACTCCAGCGGCGGTGC

ATGCTGCCTACATCCACCACCGTAGCATGTCCCACGTGCCGCGGGATACGAAGTTCGTGTA

CATTCGCAAAGTATTCCCTGACCCGGCTGGGTCTTTCACGCTTTTCCGCCTGTCGAACCTG

CGCTCGCAAGTCGTTTGCAACGCTATGGTGGACATTCGCTGGCAGAGTGACCGGCGCCACA

ACGTTGGCCAAAAGTATTACATCAACGCGGACGGCACCGCTGAGCCTTTTCTCGTCGATCA

AACCGGAATTCTGTCGCAGCTGGAGACGGTCCTCAACAACAATTTCCGGAGATGA

7.2.3.2.3 >KKT4
ATGAGCACCGACGCCCAGGAGCTGGTGCGCCAGCTCACGGAAAACCCAGAGGTTCTGGAGA

GCATGCAGCACATGATCTCTCTACTGCGTGCCAATCCTCCGCGTATCTCCGGCAGCAACAA

CGGTGGAGGTCTTGGCAACGCGGAGACTAACGGCCCTGAGAGAGGTGCACCGCAGTGTGTG

CGACCACCGCGCCGCGGATATGGCGCTGACGTTGATTGCGATCACCACCAGCCCACAACCA

GGCGGAAGCTGCGCAGCAGTGATGGCACCGCCCACAGCGCCACTTCCCTGTCTGCGTCGTC

GTTGACGCAGGAGGCGCACTCCTTCTATGGTGACGACAGGGTTGGTGCGCGCACCACCGTC

AGTGATCACAACGGCACCACCGGCGGCGCCTCTTCGCCTACGCCAAGCTTCGTCAGCACAG

GATCCCGCGCAGCGCCTCAGGTGGTCACTGCGGCCTCACGGCACGCGCCGCGCCGCTCCTC

GCTTCTCCCGAGCCCGCACGAGCATCGCCCCACCACAGCTCCCGATGAGCAGCTGATGGCC

ACCGCCAACAAGCTGACGGAGGCGCAGCGGCGCATTGCAGAACTGGAGAAGGAGCTCCAGC

GCACCACGCAGCGGGTGGACCAGTTGTCCGATGTGGTGCAGCGGCAGAAGGACGAGCTACA

GGCCGCGAAGGATCGACATGCGCTAGAGATGGAGGAAACACGACACGCCTACAACGCCGTG

ATTCACCGCAAAGACGAGGTGCAAGAGGAGGCGCTGCGCCAGCTGCTCAAATCCCGCCAGC

TGATGGTGTCGGCAGCCAGGTACGAGGCCGTCGTGGCGGCGAAGAAGCTTCACGCTCAGCG

GTTGGAAAAGGAGAACAACACCGGCGCCGATGATGCGATGGGAAGCCCGAAGGGGCTAGCA

GGCGTACAGGCAAGCGCGAACCCCAACGAGCGCGGCACTCACCCCGGGCTGGCGCCAAGTC

AGACATCAGTGAACGCGCGGCACTCTTCGACGCTCGGCTACGGGTCGGGCACGACAGCCAA

GTACAGCAGCGCTCTAAAGCGTGACCGCCAGAATGACGAGGGGGACCTTGTTGACGATGCC

GGCGTCGAGACTGGCGCACACGAGCCTGGTGAGGCGCGATACGGGGAAGCAGCTCACCACC

ATCCGCCAGTGAAGCGCACCACGTTGGACACGTCTCGTCTGCAGGGCAGCGCCGATCGTGT

CGTGCAAGGACGGAGGGGCGTTGCGGCGACCAAGGCGGAGACGTCTCCGGCGTACATCACC

ACCCCCACGCCGGCCGGCAAGGCGTCCACCGCGCTCGTCGGCACGCGCACTCAGTCAAGCA

GCGCGCGCAAGCGCCGCACCCCGCGCACGCCGAGCCGCACCAACGCTGAACGCATCGCCGG

GTCGGTGGCAGAGAACAGAATCCGCTCGCAACAGCGCCTGCCTGGGACAACGTCGCTGAAG

ATCGAAAGTCCCACGCCTGTGGTGAGCACCGCGTGGACGGCGGACCGTTCTCTCACGGGCA

GTCGTACGCCGCCGCCGTCCAGCGCTGGCGTGTGCACGGTGTCCGAGGCAGTGACCAAGCA

TCATCAACTTTACCCCCAGCAGCAAGTGCATCAAGTTCCGTCCACGAGACCGCCGCTCATG

CAGCGTGCAGCGGGTCGTCTTCCTCCAGCTCCGCACCGCACCGCGGCTGCCTCGACGGCGG

TGCCCAACACGCGAAGTGGTACCTCTTCCATTGCCTCCGGTGGCCCGACGCGGTCACCGTC

GCCTGTGAACCCGAAGCGTGGCGCCATGCTGCCGCGCCGCTTCATCTTCACAGGTCTGAAA

GACCATGAGCCTCAGCGGCTGGTTAGCGCAATAGCCGCGGTCGGCGAGGATGCCGCGGCAC

TGGCGAGCGACCTCGATGAGCCGCCGCCAAGCAGCACGACTCACATTGTGCTGCGCGGGAC

 161

GCCGCGTAGCGTCAAAGCCCTCTGCGGGGTGGTATCGGGCAAGTGGCTTGTCTCTCCCGAA

TACGTGTACAACAGCCAGCAAAGCGGCTTCTGGCTAGACGAGCTCGAGGAGGGCGGTCTGC

GCATCTTTCCGCCGCCGCTAAAGTGCCAGCGTTTTCTTCTGACGGTGGAGCACCCAGGCAT

CCGGGCGAAACTGGCGCAGGTGATCGAGTACGGCGGTGGCGAGGTTTTGGCAAGCGGCAGT

GACAAGCGTGGCCCTGGCGCCGGCGACACTGTGGCGCAGGACGTGGTCGTGATCACCTCTG

GTGATGACCTCTTGCGATATGCGACGCAAGACCGCGTGTAA

7.2.3.2.4 >KKT7
ATGACGGACGTAACCTCTTCGCTCCGCCCGTCGTCGCGCCAGGGCTCCCCGGTGCCGCGCC

GGCAGCTCGGCATTCTGCCTGTGAACCAGCGCTCCTACTCGCGTGTGGGCTCCAAGGGCAT

GATTGGCGACGACTCGCCGCTCATGTCACCCTTGCCCTACTATCCGCGTCGTCGCAGTGTC

ACCTTTGCCGGTGACCAGAGCGTGAGAGAGGAGCGACCCAACTACAACGCCGCATATTCCG

CTTCGGCTCCCGTTTCCCCGGCGCGTCACGGCTCACCGCCGCCGGTCTCCATCCTCAAGTC

GAACTTGTCGTTTCCGGCGGCAGAGGAGGAAGACAGCGGCGCTGCGCCGGCGTACCAGGCT

GCTGCGGCCACAGTGAGTGGTGTCTTGGACCGCAAGGACCGCGCGCGCAACTCTCCGGTGC

CGGTGCGCGGCCGCTCCAATAGTCGTCAGCGCCTTGCGGCGCGGCGCAAGGAGGCGCAGCT

GCATCGCAGCTTCTACGATGACAGCTTCGTGGAGGAGTATGTGCTACGAGCCAAGACGGAG

CTGGAGGAGGAGGAGGCAGAGCAACGCCGAATGCAGGAGCAGCTGAGGGCCGAACAGGAGA

GGGCGAAGAGGGCAGAGCGCCGCGTCTCGGAGGCAACGGAGAAGATCAACGCCCTGCAACA

CGCGAAAGAGGTGCTGATGGCGGCCACGGTGCGCCGCCACACCTCTGTGACGCCGTCTCCG

CAGCGTGCGCCTGCCGAAAAATCGAAGCGCAACTCCAGCCTTTTGCGGGAGCTCGAAGAGG

ACCCCGACCCAGAGGTGCAGGCAGCGCTGAAGGAGCTCGCACGCAACTCCATGGCGAAGCA

ACAGAGTCGCGTTCACTCTTCTGCCCATCAGCGTCGTCGGTCGATATCCATTGTCTCCGCC

GACGCCCTCGCGAAGAGCGGCGAGGACGAAGACGGTGACGACAACGACACCCGCAAGCGCG

CGCGTCTAGAGAAGATCGTCTCCACGCTGCTTGCGAAGAAGGCCAAGAGCAAGAGCAAGCG

TAGCGTGATGGTTATCGACTGGTCCGATCTCGACTCCGACGCCGACGGCAACACCTCGACC

ACTGATGAGGATGGGGAGGAGACTGCGGTGGGCCTCAAGCGACAACGCGGCCGCCCTGCCA

AGAGCCGCAGTATAGCGTTGGGGACCGAGGCGACACTGGTGTCATCGGCGAAGCATGTACA

GAAGCCGTCCACGAAGCGCGCAGCCTCGTCCCGTAAGCGCCATGTCAGCGCAGAGCCGGAG

TTGGGCGATTCGCTTCTTTTTGAGGATGAAGCGGAGCAGCCGATTTTGCTTCCTCGCCGGC

AGAACACGCGACCGGCTCCGACTCGGTCTATCTCGTACATCGAAATGGGTGGCGACGATGA

CCTGCTGAGGGATGCTTCCAGCGTTGAGCGTGTGGTGCGGCGACCACCTCGTGCCACGCGC

GCACCGGCCACGCGGCAGCGCCGCGGCCGTCTTGCATCTACTAGCACCCGCGAAGGTGCAG

AGGTCATGTCGTCTTTCACAGGCACCACCGCCTTGCGAGGACGTGCGTCGCAGCCACCAGC

CGCGCCGACAGGGGGCCCGACCGGCGTCCCGCCTCGCCGGCGCCGCGGGTCCGTCCAGCGC

GCAGACCCCAATGATCCCATGGCCGTTTTTTTTGAGGCTGCCTTTCCGAGTCCTTCGAAGT

TTGACGAGATGATGATGCAGGCTGGCGGCCTGCCAGAGACCCGTCGTGGCGGCGGTGGCGG

CGGGCGAGGACAGGGACGGCATCCCAACTTGGTGCTGCCTAGCTCCATTGGACGCCGCCGC

TGA

 162

7.2.3.3 Native Protein Sequences
As with the DNA sequences, the TriTrypDB start methionine for LmxM.31.0120 is indicated
in underlined text. The protein sequence listed is the extended one.

Sites targeted in this project are highlighted in yellow for each protein.

7.2.3.3.1 >KKT1
MVLNLFSGAALNGHGSTHRRGRASSSLNSTDTGRRPQQQRRQASRSTTYGASMQTDGAEQS

GSGLRAEAAEDRVLFNNCVAQVQRHLKTHADSPSTLHTLASYYTKTEPFIEGRPFCVTLSY

ATFLFHMQMARISVTDVELYVQLLTSILSQITEDDQLHHPFVQQVLRDHVFGLPSPTCRGA

AHSVVLLSPQQYRAFATMTTALISLAVVPLSIVYQFHDRLETYCECASPLVANRALALLVQ

TVGEVRMDEQVTALQYVLKTKPVKMNVDFLLACYERLKRAVMDPAHGPSFGRALSIHCSEL

FLRFRSPVRRDYVERFLYPSLCHSDMASFLEIPATRKHLLRELLSQCTPGMGTMNPFYMCL

CAVLQSCFDNETDGALETVALINCHMPHAAYFMSTLAVDSHMSVPMFAKVMISLARGAGMA

MTGRDTPDEVAASINENRTSVYNVLFLLREVVRSCSTTASRRATDMLKALRVAVAPKTIEA

LGKLSSEAFEAVSDITLDPQLLCAELAMVLHQDHIAEAMDSAVEYFRDVRSKCPYCAAARS

SSLLCPVNGTVHVAGQSSVSRVLSTLSECAGAKAVEEKLISYLRDPALQMESAVHYLIYHI

VANGGQHRNTLFVAVEPYVRSTLLALVSADRSGVRGLVDSTLKANVLMLHVKLVTLLASSI

DPSYLESILKVFSELRLRNNHDALALWYMGNVLLRSCRGNLELLPTDPQENNYCVAFPGCA

PASATTADNAQLVLKLLHRAHSFSPEMHKLVGCCVCKLIQDFNMQAPNICSTLLSPFGFFP

VGLESLNAFALPAGAGSTFWSFFLQQMRSSAPARTAFMATLAKSLSRRFRIASPMDALAPY

GVEPTGHLFVIMVYEAMKRNPPLARVLLYMVSHWMKQAGHPPGKLACLVYVCVQLITVVVD

RAEGPAAAEVEAETPQDRQQFDDAVKKAARVLKSQQARLDRLAPTARRENVEFFHLLRRLQ

RRVRRTVATASGEIVVGDEAAEEYDDHDDAVDDSSAGGHVRQDSITDAVCAMQELQNAADN

SVFDDYADDVDQEDDGAYGNDEGACDAASPGLRRSAQTEGSGHRAEGPPAPMQIRHLPQGI

TSILRSPAQRSPNKSDRGAAGVEKGSTTSVNMYREANRRTDVEGVPHGADGDDAEMRSRDG

EAAHSCALGVEPRTRSTSRGVQTDVPLASPALPGNAPQRSVGTSPIQPAGTSSQISVTRRD

GTQLPCRTPADVGSAHTPSSSLYQPQRSHTRPPEADGMLSEGTRTPAQRGSTWREPDLADY

VDGDTTPIDDFTGVPRLQATTTSDGIVLPSGMVLEYLRTHQGMDSLQHELKQFDQQWMVQQ

VAEYVSQNGGMVGAAGPSSTIRGGVSSVQSVTVEGRANNYSRPHADPTELAPTRTVCTEVH

MIGPATSYSRPPRQEEHGRVVAAAPGLPEEEEVNVVDGEHPIRAVSGPPDDSDLAGRAGDD

EATKRRRVEATGGNATTPLPPPVSPVSAFRGRNFFLNQHTQQEVGSTLQDIHYLQRRQQAN

MSALAKAQSAAETAESAGDDEAPRKTPHQGQSSTGVAGEGVPPTTPYGQVILPTWIVEQRN

DTAIRELRQVMGAHNPNDSRLSTSAGKRSRIRGSGTGDGSGNSAAWWAEMSSAPMPNYAAD

PQYSMELF

7.2.3.3.2 >KKT2
MSHFCGSLSRTPPRGGAISMPRDLSQTPAISRLGSTVKTPHIQKCVVDQAEDDDHPLEHMT

VYFEEEELRVVTTGLLGKGGFGKVFDAVSNSGEAYALKVSSKRMSENDWKRLKEEVTLMSH

FSRHPNIVKFYGAGRDEDRAYVVMERCAGKSLHDVIASRSLDVPEILWIGWALVNTISYIH

SKGCIHRDLKPQNLLFDNEGNLKITDFGLSSRISEAHPRKTVAGTAMYMAPEMATEVYKRM

TKNSEAPSLSYGKEVDTWSIGVVLYVLLTRMNPYLEAIEQKGMRQLDKEHKSLALFNAVAG

AAWSWPREWRGDPQLCGLVERMLHREPSRRATLMEVLEDSVWNRRPLSCPLSLLQKLNLLE

PSPSSGLPLNNLAENLQFRPKRSAEAVLREGLERVEATEQRGRAQLELEYYETYNVLWSLL

TLARAEEDARADILQSEEVQRGKLRNQSLARQSARRRCGSVSLVSEVADREEAAPRTSRSV

RRSVSLTEQERGRLVRSSPVQYAVVYPGRDTATRWNLRAVVSLPRDMTDEIEREFKCMNGH

VMTKLTSMPHGYNGFDCNVCDRGILTITAESPAFRCYKCDYDVCMKCAYSGKFKDVNFVCV

TCAKRFTSTAKLQGHSLRCRGPSESPSPRRSSRMNTMLWDEPKRPSLLEVQLPEAPQSERK

 163

LRASRCRSGRPTYNRTSTGGRISIGDSNAHSVVDFDAMVASHREADFPKVSTRASATGRES

SQRRERTGSGRGRPSTSSSGSLSLDLPPQVQVPSKESRPQVQPRSSAELRDIMEEVEQRKQ

ALPRDPLLSAPATPPQYNCNGEIIGISARRRAESLEMARAEVITIRAEVADRPRELQHQPR

VPRSASSSRAEKGLPSPHKRRREEWQQPAHAPSPSGTAKRAAVEEHVVKQAIMPPQVPRGR

AQQPRAPSVSGHTAQGGPPLPRRGPAAPSPAAALKAHLSPFQAPAAIPPKNFASILQSRYS

MTNAMAPTCNTSTTRPAGGAGAATAALGQGGAPTYSHALSRPNGAFLALPREERNRQQFLD

DFLSGGWVRFYSFTNEDTVVMYYSLQPGRYGAMFPTEAGVGTAVLDVYSKLVLYVPCMNNE

STNRSQPHPHVQTFYDEEARILSLPEAQRYLGGVLRCITGFVDEFSRLKAEGLTPAAVHAA

YIHHRSMSHVPRDTKFVYIRKVFPDPAGSFTLFRLSNLRSQVVCNAMVDIRWQSDRRHNVG

QKYYINADGTAEPFLVDQTGILSQLETVLNNNFRR

7.2.3.3.3 >KKT4
MSTDAQELVRQLTENPEVLESMQHMISLLRANPPRISGSNNGGGLGNAETNGPERGAPQCV

RPPRRGYGADVDCDHHQPTTRRKLRSSDGTAHSATSLSASSLTQEAHSFYGDDRVGARTTV

SDHNGTTGGASSPTPSFVSTGSRAAPQVVTAASRHAPRRSSLLPSPHEHRPTTAPDEQLMA

TANKLTEAQRRIAELEKELQRTTQRVDQLSDVVQRQKDELQAAKDRHALEMEETRHAYNAV

IHRKDEVQEEALRQLLKSRQLMVSAARYEAVVAAKKLHAQRLEKENNTGADDAMGSPKGLA

GVQASANPNERGTHPGLAPSQTSVNARHSSTLGYGSGTTAKYSSALKRDRQNDEGDLVDDA

GVETGAHEPGEARYGEAAHHHPPVKRTTLDTSRLQGSADRVVQGRRGVAATKAETSPAYIT

TPTPAGKASTALVGTRTQSSSARKRRTPRTPSRTNAERIAGSVAENRIRSQQRLPGTTSLK

IESPTPVVSTAWTADRSLTGSRTPPPSSAGVCTVSEAVTKHHQLYPQQQVHQVPSTRPPLM

QRAAGRLPPAPHRTAAASTAVPNTRSGTSSIASGGPTRSPSPVNPKRGAMLPRRFIFTGLK

DHEPQRLVSAIAAVGEDAAALASDLDEPPPSSTTHIVLRGTPRSVKALCGVVSGKWLVSPE

YVYNSQQSGFWLDELEEGGLRIFPPPLKCQRFLLTVEHPGIRAKLAQVIEYGGGEVLASGS

DKRGPGAGDTVAQDVVVITSGDDLLRYATQDRV

7.2.3.3.4 >KKT7
MTDVTSSLRPSSRQGSPVPRRQLGILPVNQRSYSRVGSKGMIGDDSPLMSPLPYYPRRRSV

TFAGDQSVREERPNYNAAYSASAPVSPARHGSPPPVSILKSNLSFPAAEEEDSGAAPAYQA

AAATVSGVLDRKDRARNSPVPVRGRSNSRQRLAARRKEAQLHRSFYDDSFVEEYVLRAKTE

LEEEEAEQRRMQEQLRAEQERAKRAERRVSEATEKINALQHAKEVLMAATVRRHTSVTPSP

QRAPAEKSKRNSSLLRELEEDPDPEVQAALKELARNSMAKQQSRVHSSAHQRRRSISIVSA

DALAKSGEDEDGDDNDTRKRARLEKIVSTLLAKKAKSKSKRSVMVIDWSDLDSDADGNTST

TDEDGEETAVGLKRQRGRPAKSRSIALGTEATLVSSAKHVQKPSTKRAASSRKRHVSAEPE

LGDSLLFEDEAEQPILLPRRQNTRPAPTRSISYIEMGGDDDLLRDASSVERVVRRPPRATR

APATRQRRGRLASTSTREGAEVMSSFTGTTALRGRASQPPAAPTGGPTGVPPRRRRGSVQR

ADPNDPMAVFFEAAFPSPSKFDEMMMQAGGLPETRRGGGGGGRGQGRHPNLVLPSSIGRRR

7.2.4 REPAIR TEMPLATE DESIGNS
From appendix 7.2.4.2 onwards, WT sequences and repair template designs for mutation

are shown in the translated frame. Translations of the region are shown at the top. Target

sites are highlighted in yellow. Black text indicates native sequence. Synonymously recoded

regions are indicated in orange text.

 164

7.2.4.1 Codon Usage of Leishmania Infantum from https://www.kazusa.or.jp/codon/

 Second Base

 U C A G

 Triplet
code

Amino
Acid

Fraction
Freq. per
thousand

Number
Triplet
code

Amino
Acid

Fraction
Freq. per
thousand

Number
Triplet
code

Amino
Acid

Fraction
Freq. per
thousand

Number
Triplet
code

Amino
Acid

Fraction
Freq. per
thousand

Number

Fi
rs

t
B

as
e

U

UUU F 0.35 10.6 -52317 UCU S 0.12 10.1 -49998 UAU Y 0.17 4.1 -20192 UGU C 0.21 4.0 -19923 U

Th
ir

d
 B

as
e

UUC F 0.65 19.3 -95738 UCC S 0.19 16.4 -81198 UAC Y 0.83 20.2 -100139 UGC C 0.79 14.7 -72980 C

UUA L 0.02 1.7 -8226 UCA S 0.08 7.4 -36530 UAA * 0.21 0.3 -1675 UGA * 0.43 0.7 -3507 A

UUG L 0.12 11.0 -54287 UCG S 0.24 21.0 -104031 UAG * 0.36 0.6 -2958 UGG W 1.00 10.8 -53398 G

C

CUU L 0.12 11.4 -56281 CCU P 0.15 8.9 -44052 CAU H 0.25 6.6 -32829 CGU R 0.14 10.4 -51646 U

CUC L 0.27 25.1 -124189 CCC P 0.22 12.4 -61358 CAC H 0.75 20.3 -100341 CGC R 0.45 32.3 -159735 C

CUA L 0.05 4.7 -23324 CCA P 0.18 10.5 -51760 CAA Q 0.19 7.7 -38242 CGA R 0.10 7.5 -37057 A

CUG L 0.41 37.7 -186757 CCG P 0.45 25.8 -127867 CAG Q 0.81 33.2 -164619 CGG R 0.19 13.7 -67860 G

A

AUU I 0.28 8.6 -42717 ACU T 0.12 7.0 -34618 AAU N 0.21 5.6 -27605 AGU S 0.08 7.2 -35724 U

AUC I 0.63 19.1 -94755 ACC T 0.29 17.5 -86625 AAC N 0.79 21.1 -104327 AGC S 0.29 25.3 -125511 C

AUA I 0.09 2.8 -13730 ACA T 0.17 10.1 -49979 AAA K 0.17 5.8 -28498 AGA R 0.04 2.7 -13523 A

AUG M 1.00 22.8 -113035 ACG T 0.42 24.9 -123090 AAG K 0.83 28.6 -141622 AGG R 0.08 5.5 -27170 G

G

GUU V 0.12 8.7 -42923 GCU A 0.15 18.2 -90366 GAU D 0.30 14.7 -73013 GGU G 0.19 12.1 -59837 U

GUC V 0.27 19.5 -96651 GCC A 0.31 36.8 -182020 GAC D 0.70 34.2 -169136 GGC G 0.53 34.3 -170081 C

GUA V 0.08 5.5 -27330 GCA A 0.17 20.3 -100314 GAA E 0.20 11.7 -58159 GGA G 0.10 6.6 -32881 A

GUG V 0.53 37.3 -184912 GCG A 0.37 44.4 -220138 GAG E 0.80 48.3 -239092 GGG G 0.18 11.7 -58128 G

https://www.kazusa.or.jp/codon/

 165

7.2.4.2 Single-Stranded Repair Templates

Name

KKT1 S1449

Translation
 L P E E E E V N V V D G E H P I R A V S/A G P P D D

KKT1 S1449 WT

sequence
 CTG CCT GAA GAG GAG GAA GTG AAC GTC GTA GAT GGC GAA CAC CCT ATT CGC GCC GTC AGC GGC CCC CCA GAC GAC

KKT1 S1449A CTG CCT GAA GAG GAG GAA GTG AAC GTC GTA GAT GGC GAA CAT CCA ATA CGG GCT GTT GCG GGT CCA CCT GAT GAT

KKT1 S1449S CTG CCT GAA GAG GAG GAA GTG AAC GTC GTA GAT GGC GAA CAT CCA ATA CGG GCT GTT TCG GGT CCA CCT GAT GAT

KKT2 M146

Translation
- S H F S R H P N I V K F Y G A G R D E D R A Y V V

KKT2 M146 WT

sequence
G AGC CAT TTC TCG CGC CAT CCC AAC ATT GTC AAA TTC TAC GGT GCT GGT AGG GAT GAA GAT CGC GCC TAC GTA GTA

KKT2 M146G G AGC CAT TTC TCG CGC CAT CCC AAC ATT GTC AAG TTT TAT GGA GCG GGC CGC GAC GAG GAC CGA GCG TAT GTG GTG

KKT2 S505/S506

Translation
 S R S V R R S V S L T E Q E R G R L V R S/A S/A P V Q

KKT2 S505/S506

WT sequence
 TCT CGA TCA GTG CGT CGT AGC GTC AGC TTA ACG GAG CAG GAG CGG GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG

KKT2 S505A TCT CGA TCA GTG CGT CGT AGC GTC AGC CTA ACC GAA CAA GAA CGT GGC AGA CTT GTG CGT GCG AGC CCG GTG CAA

KKT2 S505S TCT CGA TCA GTG CGT CGT AGC GTC AGC CTA ACC GAA CAA GAA CGT GGC AGA CTT GTG CGT TCG AGC CCG GTG CAA

KKT2 S506A TCT CGA TCA GTG CGT CGT AGC GTC AGC CTA ACC GAA CAA GAA CGT GGC AGA CTT GTG CGT TCT GCC CCG GTG CAA

KKT2 S506S TCT CGA TCA GTG CGT CGT AGC GTC AGC CTA ACC GAA CAA GAA CGT GGC AGA CTT GTG CGT TCT AGT CCG GTG CAA

KKT2

S505A+S506A

Double

 TCT CGA TCA GTG CGT CGT AGC GTC AGC TTA ACC GAA CAA GAA CGT GGT AGG CTC GTC CGG GCG GCG CCC GTG CAA

KKT2

S505S+S506S

Double

 TCT CGA TCA GTG CGT CGT AGC GTC AGC TTA ACC GAA CAA GAA CGT GGT AGG CTC GTC CGG AGC TCG CCC GTG CAA

Left hand side

 166

KKT2 S493

Translation
 V S E V A D R E E A A P R T S R S V R R S V S/A L T

KKT2 S493 WT

sequence
 GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCC CCT CGC ACG TCT CGA TCA GTG CGT CGT AGC GTC AGC TTA ACG

KKT2 S493A GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCA CGG ACC TCA CGT TCT GTC CGT CGT AGC GTA GCG CTA ACC

KKT2 S493S GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCA CGG ACC TCA CGT TCT GTC CGT CGT AGC GTA TCG CTA ACC

KKT2 S530

Translation
 V V Y P G R D T A T R W N L R A V V S/A L P R D M T

KKT2 S530 WT

sequence
 GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAC CTT CGC GCC GTA GTA TCG CTG CCA CGC GAC ATG ACG

KKT2 S530A GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAT TTG CGG GCG GTT GTA GCG CTC CCT CGG GAT ATG ACC

KKT2 S530S GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAT TTG CGG GCG GTT GTA TCC CTC CCT CGG GAT ATG ACC

KKT2 S530 1

guide

Translation

 A V V Y P G R D T A T R W N L R A V V S/A L P R D M

KKT2 S530 1

guide WT

sequence

 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAC CTT CGC GCC GTA GTA TCG CTG CCA CGC GAC ATG

KKT2 S530A 1

guide
 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCG ACA CGG TGG AAT TTG CGG GCG GTT GTA GCG CTC CCT CGG GAT ATG

KKT2 S530S 1

guide
 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCG ACA CGG TGG AAT TTG CGG GCG GTT GTA TCC CTC CCT CGG GAT ATG

KKT2 S923

Translation
 K Q A I M P P Q V P R G R A Q Q P R A P S/A V S G H

KKT2 S923 WT

sequence
 AAG CAA GCC ATC ATG CCG CCT CAG GTG CCA CGC GGA CGA GCA CAG CAG CCA CGT GCC CCC TCC GTC AGC GGG CAC

KKT2 S923A AAG CAA GCC ATC ATG CCG CCT CAA GTG CCA CGC GGA CGA GCA CAG CAG CCA CGT GCG CCA GCG GTT TCG GGT CAT

KKT2 S923S AAG CAA GCC ATC ATG CCG CCT CAA GTG CCA CGC GGA CGA GCA CAG CAG CCA CGT GCG CCA TCG GTT TCG GGT CAT

 167

KKT4 S300

Translation
 A A K K L H A Q R L E K E N N T G A D D A M G S/A P

KKT4 S300 WT

sequence
 GCG GCG AAG AAG CTT CAC GCT CAG CGG TTG GAA AAG GAG AAC AAC ACC GGC GCC GAT GAT GCG ATG GGA AGC CCG

KKT4 S300A GCG GCG AAG AAG CTT CAC GCT CAG CGG TTG GAG AAA GAA AAT AAT ACG GGC GCC GAT GAT GCG ATG GGA GCG CCC

KKT4 S300S GCG GCG AAG AAG CTT CAC GCT CAG CGG TTG GAG AAA GAA AAT AAT ACG GGC GCC GAT GAT GCG ATG GGA TCG CCC

KKT4 S422

Translation
 L Q G S A D R V V Q G R R G V A A T K A E T S/A P A

KKT4 S422 WT

sequence
 CTG CAG GGC AGC GCC GAT CGT GTC GTG CAA GGA CGG AGG GGC GTT GCG GCG ACC AAG GCG GAG ACG TCT CCG GCG

KKT4 S422A CTG CAG GGC AGC GCC GAT CGT GTC GTC CAG GGG CGT CGT GGC GTT GCG GCG ACC AAG GCG GAG ACG GCG CCG GCC

KKT4 S422S CTG CAG GGC AGC GCC GAT CGT GTC GTC CAG GGG CGT CGT GGC GTT GCG GCG ACC AAG GCG GAG ACG TCA CCG GCC

KKT7 S304

Translation
 A K Q Q S R V H S S A H Q R R R S I S I V S/A A D A

KKT7 S304 WT

sequence
 GCG AAG CAA CAG AGT CGC GTT CAC TCT TCT GCC CAT CAG CGT CGT CGG TCG ATA TCC ATT GTC TCC GCC GAC GCC

KKT7 S304A GCG AAG CAA CAG AGT CGC GTT CAC TCT TCT GCG CAC CAA CGG CGG CGT AGC ATT AGC ATT GTC GCG GCG GAT GCG

KKT7 S304S GCG AAG CAA CAG AGT CGC GTT CAC TCT TCT GCG CAC CAA CGG CGG CGT AGC ATT AGC ATT GTC TCG GCG GAT GCG

 168

Right hand side

 Name

S D L A G R A G D D E A T K R
KKT1 S1449

Translation

AGC GAC CTT GCT GGA CGC GCA GGT GAC GAC GAA GCG ACT AAG CGC
KKT1 S1449 WT

sequence

TCG GAT CTA GCT GGA CGC GCA GGT GAC GAC GAA GCG ACT AAG CGC KKT1 S1449A

TCG GAT CTA GCT GGA CGC GCA GGT GAC GAC GAA GCG ACT AAG CGC KKT1 S1449S

M/G E R C A G K S L H D V I A -
KKT2 M146

Translation

ATG GAG CGG TGC GCA GGC AAG TCG CTT CAC GAC GTC ATA GCC AG
KKT2 M146 WT

sequence

GCG GAA CGT TGT GCA GGC AAG TCG CTT CAC GAC GTC ATA GCC AG KKT2 M146G

Y A V V Y P G R D T A T R W N
KKT2 S505/S506

Translation

TAC GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAC
KKT2 S505/S506

WT sequence

TAT GCT GTC GTC TAC CCA GGG CGC GAC ACT GCC ACT CGT TGG AAC KKT2 S505A

TAT GCT GTC GTC TAC CCA GGG CGC GAC ACT GCC ACT CGT TGG AAC KKT2 S505S

TAT GCT GTC GTC TAC CCA GGG CGC GAC ACT GCC ACT CGT TGG AAC KKT2 S506A

TAT GCT GTC GTC TAC CCA GGG CGC GAC ACT GCC ACT CGT TGG AAC KKT2 S506S

TAT GCC GTC GTC TAT CCG GGG CGC GAC ACT GCC ACT CGT TGG AAC

KKT2

S505A+S506A

Double

TAT GCC GTC GTC TAT CCG GGG CGC GAC ACT GCC ACT CGT TGG AAC

KKT2

S505S+S506S

Double

 169

E Q E R G R L V R S S P V Q Y
KKT2 S493

Translation

GAG CAG GAG CGG GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC
KKT2 S493 WT

sequence

GAA CAA GAA CGT GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493A

GAA CAA GAA CGT GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493S

D E I E R E F K C M N G H V M
KKT2 S530

Translation

GAC GAG ATC GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA ATG
KKT2 S530 WT

sequence

GAT GAA ATC GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA ATG KKT2 S530A

GAT GAA ATC GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA ATG KKT2 S530S

T D E I E R E F K C M N G H V

KKT2 S530 1

guide

Translation

ACG GAC GAG ATC GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA

KKT2 S530 1

guide WT

sequence

ACC GAT GAA ATT GAA CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA
KKT2 S530A 1

guide

ACC GAT GAA ATT GAA CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA
KKT2 S530S 1

guide

T A Q G G P P L P R R G P A A
KKT2 S923

Translation

ACC GCA CAG GGC GGT CCG CCA CTG CCG CGC CGC GGC CCA GCT GCG
KKT2 S923 WT

sequence

ACG GCT CAA GGT GGT CCG CCA CTG CCG CGC CGC GGC CCA GCT GCG KKT2 S923A

ACG GCT CAA GGT GGT CCG CCA CTG CCG CGC CGC GGC CCA GCT GCG KKT2 S923S

 170

K G L A G V Q A S A N P N E R
KKT4 S300

Translation

AAG GGG CTA GCA GGC GTA CAG GCA AGC GCG AAC CCC AAC GAG CGC
KKT4 S300 WT

sequence

AAA GGT CTT GCT GGG GTA CAG GCA AGC GCG AAC CCC AAC GAG CGC KKT4 S300A

AAA GGT CTT GCT GGG GTA CAG GCA AGC GCG AAC CCC AAC GAG CGC KKT4 S300S

Y I T T P T P A G K A S T A L
KKT4 S422

Translation

TAC ATC ACC ACC CCC ACG CCG GCC GGC AAG GCG TCC ACC GCG CTC
KKT4 S422 WT

sequence

TAT ATT ACG ACG CCC ACG CCC GCC GGC AAG GCG TCC ACC GCG CTC KKT4 S422A

TAT ATT ACG ACG CCC ACG CCC GCC GGC AAG GCG TCC ACC GCG CTC KKT4 S422S

L A K S G E D E D G D D N D T
KKT7 S304

Translation

CTC GCG AAG AGC GGC GAG GAC GAA GAC GGT GAC GAC AAC GAC ACC
KKT7 S304 WT

sequence

CTT GCC AAA TCG GGC GAG GAC GAA GAC GGT GAC GAC AAC GAC ACC KKT7 S304A

CTT GCC AAA TCG GGC GAG GAC GAA GAC GGT GAC GAC AAC GAC ACC KKT7 S304S

 171

7.2.4.3 Pooled Single-Stranded Repair Template Designs

Name

KKT2 S493 Translation V S E V A D R E E A A P R T S R S V R R S V S/A L T E Q E R Y

KKT2 S493 WT sequence GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCC CCT CGC ACG TCT CGA TCA GTG CGT CGT AGC GTC AGC TTA ACG GAG CAG GAG CGG TAC

KKT2 S493A GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCA CGG ACC TCA CGT TCT GTC CGT CGT AGC GTA GCG CTA ACC GAA CAA GAA CGT TAC

KKT2 S493S design 1 GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCA CGG ACC TCA CGT TCT GTC CGT CGT AGC GTA TCG CTA ACC GAA CAA GAA CGT TAC

KKT2 S493A design 2 GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCT CGA ACG TCT CGA TCA GTG CGT CGT AGC GTA GCG CTC ACG GAG CAG GAG CGT TAC

KKT2 S493S design 2 GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCT CGA ACG TCT CGA TCA GTG CGT CGT AGC GTA TCG CTC ACG GAG CAG GAG CGT TAC

KKT2 S493A design 3 GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCA CGC ACG TCT CGA TCA GTG CGT CGT TCG GTA GCG CTA ACG GAG CAA GAA CGT TAC

KKT2 S493S design 3 GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCA CGC ACG TCT CGA TCA GTG CGT CGT TCG GTA AGT CTA ACG GAG CAA GAA CGT TAC

KKT2 S493A design 4 GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCT AGG ACG AGT CGA AGC GTG AGG CGT AGC GTA GCG CTC ACG GAG CAA GAG AGA TAC

KKT2 S493S design 4 GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCT AGG ACG AGT CGA AGC GTG AGG CGT AGC GTA TCC CTC ACG GAG CAA GAG AGA TAC

KKT2 S493A design 5 GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCA CCC CGT ACA TCT CGA TCA GTG CGT CGT TCC GTA GCG CTC ACA GAG CAG GAG AGG TAC

KKT2 S493S design 5 GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCA CCC CGT ACA TCT CGA TCA GTG CGT CGT TCC GTA TCT CTC ACA GAG CAG GAG AGG TAC

KKT2 S530 1 guide

Translation A V V Y P G R D T A T R W N L R A V V S/A L P R D M T D E I V

KKT2 S530 WT sequence GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAC CTT CGC GCC GTA GTA TCG CTG CCA CGC GAC ATG ACG GAC GAG ATC GTA

KKT2 S530A design 1 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCG ACA CGG TGG AAT TTG CGG GCG GTT GTA GCG CTC CCT CGG GAT ATG ACC GAT GAA ATT GTA

KKT2 S530S design 1 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCG ACA CGG TGG AAT TTG CGG GCG GTT GTA TCC CTC CCT CGG GAT ATG ACC GAT GAA ATT GTA

KKT2 S530A design 2 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAT TTG CGA GCC GTA GTA GCG CTT CCA CGT GAC ATG ACG GAC GAG ATC GTA

KKT2 S530S design 2 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAT TTG CGA GCC GTA GTA TCA CTT CCA CGT GAC ATG ACG GAC GAG ATC GTA

KKT2 S530A design 3 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAT TTG CGG GCG GTA GTG GCG CTC CCA CGA GAT ATG ACG GAC GAG ATC GTA

KKT2 S530S design 3 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAT TTG CGG GCG GTA GTG TCA CTC CCA CGA GAT ATG ACG GAC GAG ATC GTA

KKT2 S530A design 4 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAT TTG AGA GCC GTA GTT GCG TTA CCA AGG GAT ATG ACG GAC GAG ATC GTA

KKT2 S530S design 4 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAT TTG AGA GCC GTA GTT AGT TTA CCA AGG GAT ATG ACG GAC GAG ATC GTA

KKT2 S530A design 5 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAT TTA AGG GCT GTC GTA GCG TTG CCT CGT GAC ATG ACA GAC GAG ATA GTA

KKT2 S530S design 5 GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAT TTA AGG GCT GTC GTA TCT TTG CCT CGT GAC ATG ACA GAC GAG ATA GTA

- Left hand side.

 172

Right hand side.

 Name

G R L V R S S P V Q Y KKT2 S493 Translation

GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493 WT sequence

GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493A

GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493S design 1

GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493A design 2

GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493S design 2

GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493A design 3

GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493S design 3

GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493A design 4

GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493S design 4

GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493A design 5

GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC KKT2 S493S design 5

E R E F K C M N G H V

KKT2 S530 1 guide

Translation

GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530 WT sequence

GAA CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530A design 1

GAA CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530S design 1

GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530A design 2

GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530S design 2

GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530A design 3

GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530S design 3

GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530A design 4

GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530S design 4

GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530A design 5

GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA KKT2 S530S design 5

 173

7.2.4.3.1 Pooled single-stranded repair template sgRNA and repair template primer IDs.

 S493A S493S S530A S530S

sgRNA Primers OL12987

OL12988

OL12987

OL12988

OL12902

OL12903

OL12902

OL12903

Repair

Templates

OL12999

OL13651

OL13653

OL13655

OL13657

OL13000

OL13652

OL13654

OL13656

OL13658

OL13369

OL13659

OL13661

OL13663

OL13665

OL13370

OL13660

OL13662

OL13664

OL13666

 174

7.2.4.4 Double-Stranded Repair Template Designs
Plus strand sequence only. Left hand side.

Name

KKT2 S25 Translation - P L M S H F C G S L S R T P P R G G A I S M P R D

KKT2 S25 WT sequence GG CCT CTG ATG TCA CAC TTT TGC GGC TCG TTG TCG AGG ACT CCA CCA CGG GGT GGG GCG ATA TCT ATG CCG CGT GAT

KKT2 S25A GC CCT CTG ATG TCA CAC TTT TGC GGC TCG TTG TCG AGG ACT CCA CCA CGG GGT GGG GCG ATA TCT ATG CCC AGA GAC

KKT2 S25E CC CCT CTG ATG TCA CAC TTT TGC GGC TCG TTG TCG AGG ACT CCA CCA CGG GGT GGG GCG ATA TCT ATG CCC AGA GAC

KKT2 S25S GG CCT CTG ATG TCA CAC TTT TGC GGC TCG TTG TCG AGG ACT CCA CCA CGG GGT GGG GCG ATA TCT ATG CCC AGA GAC

KKT2 S493 Translation - C G S V S L V S E V A D R E E A A P R T S R S V R

KKT2 S493 WT sequence GG TGT GGC AGT GTC TCA CTG GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCC CCT CGC ACG TCT CGA TCA GTG CGT

KKT2 S493A GG TGT GGC AGT GTC TCA CTG GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCA CGG ACC TCA CGT TCT GTC CGT

KKT2 S493E GG TGT GGC AGT GTC TCA CTG GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCA CGG ACC TCA CGT TCT GTC CGT

KKT2 S493S GG TGT GGC AGT GTC TCA CTG GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCG CCA CGG ACC TCA CGT TCT GTC CGT

KKT2 S530 Translation R S S P V Q Y A V V Y P G R D T A T R W N L R A V

KKT2 S530 WT sequence CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CGC GAC ACT GCC ACT CGT TGG AAC CTT CGC GCC GTA

KKT2 S530A CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CGC GAC ACT GCG ACA CGG TGG AAT TTG CGG GCG GTT

KKT2 S530E CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CGC GAC ACT GCG ACA CGG TGG AAT TTG CGG GCG GTT

KKT2 S530S CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CGC GAC ACT GCG ACA CGG TGG AAT TTG CGG GCG GTT

KKT2 S923 Translation - V E E H V V K Q A I M P P Q V P R G R A Q Q P R A

KKT2 S923 WT sequence CT GTG GAG GAG CAC GTG GTG AAG CAA GCC ATC ATG CCG CCT CAG GTG CCA CGC GGA CGA GCA CAG CAG CCA CGT GCC

KKT2 S923A CT GTG GAG GAG CAC GTG GTG AAG CAA GCC ATC ATG CCG CCT CAA GTG CCA CGC GGA CGA GCA CAG CAG CCA CGT GCG

KKT2 S923E CT GTG GAG GAG CAC GTG GTG AAG CAA GCC ATC ATG CCG CCT CAA GTG CCA CGC GGA CGA GCA CAG CAG CCA CGT GCG

KKT2 S923S CT GTG GAG GAG CAC GTG GTG AAG CAA GCC ATC ATG CCG CCT CAA GTG CCA CGC GGA CGA GCA CAG CAG CCA CGT GCG

 175

KKT4 S422 Translation - T T L D T S R L Q G S A D R V V Q G R R G V A A T

KKT4 S422 WT Sequence AC ACC ACG TTG GAC ACG TCT CGT CTG CAG GGC AGC GCC GAT CGT GTC GTG CAA GGA CGG AGG GGC GTT GCG GCG ACC

KKT4 S422A AC ACC ACG TTG GAC ACG TCT CGT CTG CAG GGC AGC GCC GAT CGT GTC GTG CAG GGT CGC CGT GGT GTG GCC GCG ACC

KKT4 S422E AC ACC ACG TTG GAC ACG TCT CGT CTG CAG GGC AGC GCC GAT CGT GTC GTG CAG GGT CGC CGT GGT GTG GCC GCG ACC

KKT4 S422S AC ACC ACG TTG GAC ACG TCT CGT CTG CAG GGC AGC GCC GAT CGT GTC GTG CAG GGT CGC CGT GGT GTG GCC GCG ACC

KKT7 S304 Translation - L A R N S M A K Q Q S R V H S S A H Q R R R S I S

KKT7 S304 WT Sequence CT CTC GCA CGC AAC TCC ATG GCG AAG CAA CAG AGT CGC GTT CAC TCT TCT GCC CAT CAG CGT CGT CGG TCG ATA TCC

KKT7 S304A CT CTC GCA CGC AAC TCC ATG GCG AAG CAA CAG AGT CGC GTT CAC TCT TCT GCT CAC CAA CGC CGA CGC TCC ATC TCC

KKT7 S304E CT CTC GCA CGC AAC TCC ATG GCG AAG CAA CAG AGT CGC GTT CAC TCT TCT GCT CAC CAA CGC CGA CGC TCC ATC TCC

KKT7 S304S CT CTC GCA CGC AAC TCC ATG GCG AAG CAA CAG AGT CGC GTT CAC TCT TCT GCT CAC CAA CGC CGA CGC TCC ATC TCC

 176

Plus strand sequence only. Right hand side

 Name

L

S/A

/E Q T P A I S R L G S T V K T P H I Q K C V V D Q A - KKT2 S25 Translation

TTG TCG CAG ACC CCC GCC ATC TCT CGA CTT GGA AGC ACG GTG AAG ACG CCG CAC ATC CAA AAA TGT GTT GTT GAC CAA GCA GA KKT2 S25 WT sequence

CTT GCG CAA ACA CCA GCG ATT TCA CGC CTG GGG AGC ACG GTG AAG ACG CCG CAC ATC CAA AAA TGT GTT GTT GAC CAA GCA GA KKT2 S25A

CTT GAG CAA ACA CCA GCG ATT TCA CGC CTG GGG AGC ACG GTG AAG ACG CCG CAC ATC CAA AAA TGT GTT GTT GAC CAA GCA GA KKT2 S25E

CTT AGT CAA ACA CCA GCG ATT TCA CGC CTG GGG AGC ACG GTG AAG ACG CCG CAC ATC CAA AAA TGT GTT GTT GAC CAA GCA GA KKT2 S25S

R S V

S/A

/E L T E Q E R G R L V R S S P V Q Y A V V Y P G - KKT2 S493 Translation

CGT AGC GTC AGC TTA ACG GAG CAG GAG CGG GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CG KKT2 S493 WT sequence

CGT AGC GTA GCG CTA ACC GAA CAA GAA CGT GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CG KKT2 S493A

CGT AGC GTA GAG CTA ACC GAA CAA GAA CGT GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CG KKT2 S493E

CGT AGC GTA TCT CTA ACC GAA CAA GAA CGT GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CG KKT2 S493S

V

S/A

/E L P R D M T D E I E R E F K C M N G H V M T K L T S - KKT2 S530 Translation

GTA TCG CTG CCA CGC GAC ATG ACG GAC GAG ATC GAG CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA ATG ACA AAG TTG ACC TCG A KKT2 S530 WT sequence

GTA GCG CTC CCT CGG GAT ATG ACC GAT GAA ATT GAA CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA ATG ACA AAG TTG ACC TCG A KKT2 S530A

GTA GAG CTC CCT CGG GAT ATG ACC GAT GAA ATT GAA CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA ATG ACA AAG TTG ACC TCG A KKT2 S530E

GTA AGT CTC CCT CGG GAT ATG ACC GAT GAA ATT GAA CGC GAG TTC AAG TGC ATG AAC GGG CAC GTA ATG ACA AAG TTG ACC TCG A KKT2 S530S

P

S/A

/E V S G H T A Q G G P P L P R R G P A A P S P A A A - KKT2 S923 Translation

CCC TCC GTC AGC GGG CAC ACC GCA CAG GGC GGT CCG CCA CTG CCG CGC CGC GGC CCA GCT GCG CCA TCT CCT GCA GCC GCT TT KKT2 S923 WT sequence

CCA GCG GTT TCG GGT CAT ACG GCT CAA GGT GGT CCG CCA CTG CCG CGC CGC GGC CCA GCT GCG CCA TCT CCT GCA GCC GCT TT KKT2 S923A

CCA GAG GTT TCG GGT CAT ACG GCT CAA GGT GGT CCG CCA CTG CCG CGC CGC GGC CCA GCT GCG CCA TCT CCT GCA GCC GCT TT KKT2 S923E

CCA AGT GTT TCG GGT CAT ACG GCT CAA GGT GGT CCG CCA CTG CCG CGC CGC GGC CCA GCT GCG CCA TCT CCT GCA GCC GCT TT KKT2 S923S

 177

K A E T

S/A

/E P A Y I T T P T P A G K A S T A L V G T R T - KKT4 S422 Translation

AAG GCG GAG ACG TCT CCG GCG TAC ATC ACC ACC CCC ACG CCG GCC GGC AAG GCG TCC ACC GCG CTC GTC GGC ACG CGC ACT CA KKT4 S422 WT Sequence

AAG GCG GAG ACG GCG CCC GCC TAT ATT ACG ACA CCC ACG CCG GCC GGC AAG GCG TCC ACC GCG CTC GTC GGC ACG CGC ACT CA KKT4 S422A

AAG GCG GAG ACG GAG CCC GCC TAT ATT ACG ACA CCC ACG CCG GCC GGC AAG GCG TCC ACC GCG CTC GTC GGC ACG CGC ACT CA KKT4 S422E

AAG GCG GAG ACG AGC CCC GCC TAT ATT ACG ACA CCC ACG CCG GCC GGC AAG GCG TCC ACC GCG CTC GTC GGC ACG CGC ACT CA KKT4 S422S

I V

S/A

/E A D A L A K S G E D E D G D D N D T R K R A R L - KKT7 S304 Translation

ATT GTC TCC GCC GAC GCC CTC GCG AAG AGC GGC GAG GAC GAA GAC GGT GAC GAC AAC GAC ACC CGC AAG CGC GCG CGT CTA GA KKT7 S304 WT Sequence

ATT GTC GCA GCG GAT GCA CTG GCC AAA TCG GGC GAG GAC GAA GAC GGT GAC GAC AAC GAC ACC CGC AAG CGC GCG CGT CTA GA KKT7 S304A

ATT GTC GAA GCG GAT GCA CTG GCC AAA TCG GGC GAG GAC GAA GAC GGT GAC GAC AAC GAC ACC CGC AAG CGC GCG CGT CTA GA KKT7 S304E

ATT GTC TCA GCG GAT GCA CTG GCC AAA TCG GGC GAG GAC GAA GAC GGT GAC GAC AAC GAC ACC CGC AAG CGC GCG CGT CTA GA KKT7 S304S

 178

7.2.5 PRIMERS
All primer sequences are given in the 5’ to 3’ orientation.

7.2.5.1 sgRNA Primers
Capital letters indicate the protospacer recognition sequence. Note: OL12825’s

protospacer sequence was later identified to be incorrect (copied from the repair template

not the WT sequence), but not before ssDNA repair transfections were completed using it.

It was replaced with OL14600 for dsDNA transfections.

Name Target Sequence Description

OL6137 -
aaaagcaccgactcggtgccactttttcaagttgataacggacta
gccttattttaacttgctatttctagctctaaaac

Universal sgRNA Primer
(G00)

OL12985 KKT1
gaaattaatacgactcactataggGCAAGGTCGCTGTCGT
CTGGgttttagagctagaaatagc

S1449 Guide 1

OL12986 KKT1
gaaattaatacgactcactataggCACCCTATTCGCGCCG
TCAGgttttagagctagaaatagc

S1449 Guide 2

OL12632 KKT2
gaaattaatacgactcactataggGGGGTCTGCGACAAA
TCACGgttttagagctagaaatagc

S25 Guide 1

OL14011 KKT2
gaaattaatacgactcactataggACCCCCGCCATCTCTC
GACTgttttagagctagaaatagc

S25 Guide 2

OL12987 KKT2
gaaattaatacgactcactataggGCACTGATCGAGACGT
GCGAgttttagagctagaaatagc

S493 Guide 1

OL12988 KKT2
gaaattaatacgactcactataggAGCTTAACGGAGCAG
GAGCGgttttagagctagaaatagc

S493 Guide 2

OL12775 KKT2
gaaattaatacgactcactataggCCGGGTACACCACTGC
GTACgttttagagctagaaatagc

S505/S506 Guide 1

OL12898 KKT2
gaaattaatacgactcactataggAGCTTAACGGAGCAG
GAGCGgttttagagctagaaatagc

S506A Guide 2

OL12902 KKT2
gaaattaatacgactcactataggATCTCGTCCGTCATGT
CGCGgttttagagctagaaatagc

S530 Guide 1

OL12903 KKT2
gaaattaatacgactcactataggGCAGCGATACTACGGC
GCGAgttttagagctagaaatagc

S530 Guide 2

OL12778 KKT2
gaaattaatacgactcactataggGGTGTGCCCGCTGACG
GAGGgttttagagctagaaatagc

S923 Guide 1

OL12899 KKT2
gaaattaatacgactcactataggAGCGGGCACACCGCA
CAGGGgttttagagctagaaatagc

S923 Guide 2

OL12989 KKT4
gaaattaatacgactcactataggGTACGCCTGCTAGCCC
CTTCgttttagagctagaaatagc

S300 Guide 1

OL12990 KKT4
gaaattaatacgactcactataggTTGGAAAAGGAGAAC
AACACgttttagagctagaaatagc

S300 Guide 2

OL12764 KKT4
gaaattaatacgactcactataggATCGTGTCGTGCAAGG
ACGGgttttagagctagaaatagc

S422 Guide 1

 179

OL12900 KKT4
gaaattaatacgactcactataggGTACATCACCACCCCC
ACGCgttttagagctagaaatagc

S422 Guide 2

OL12825 KKT7
gaaattaatacgactcactataggGCTCTTCGCGAGGGCA
TCCGCCGgttttagagctagaaatagc

S304 Guide 1

OL12901 KKT7
gaaattaatacgactcactataggATATCGACCGACGACG
CTGAgttttagagctagaaatagc

S304 Guide 2

OL14600 KKT7
gaaattaatacgactcactataggGCTCTTCGCGAGGGCG
TCGGgttttagagctagaaatagc

S304 Guide 3 (replacement
for guide 1)

 180

7.2.5.2 Single-Stranded Repair Primers

Name Target Sequence Description

OL12997 KKT1
GCGCTTAGTCGCTTCGTCGTCACCTGCGCGTCCAGCTAGATCCGAATCATCAGGTGGACCCGCAACAGCCCGTAT
TGGATGTTCGCCATCTACGACGTTCACTTCCTCCTCTTCAGGCAG S1449A

OL12998 KKT1
GCGCTTAGTCGCTTCGTCGTCACCTGCGCGTCCAGCTAGATCCGAATCATCAGGTGGACCCGAAACAGCCCGTAT
TGGATGTTCGCCATCTACGACGTTCACTTCCTCCTCTTCAGGCAG S1449S

OL12999 KKT2
GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCACGGACCTCACGTTCTGTCCGTCGTAGCGTAGCGCTAAC
CGAACAAGAACGTGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC S493A

OL13000 KKT2
GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCACGGACCTCACGTTCTGTCCGTCGTAGCGTATCGCTAAC
CGAACAAGAACGTGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC S493S

OL13001 KKT2
TCTCGATCAGTGCGTCGTAGCGTCAGCCTAACCGAACAAGAACGTGGCAGACTTGTGCGTGCGAGCCCGGTGCA
ATATGCTGTCGTCTACCCAGGGCGCGACACTGCCACTCGTTGGAAC S505A

OL13002 KKT2
TCTCGATCAGTGCGTCGTAGCGTCAGCCTAACCGAACAAGAACGTGGCAGACTTGTGCGTTCGAGCCCGGTGCA
ATATGCTGTCGTCTACCCAGGGCGCGACACTGCCACTCGTTGGAAC S505S

OL13369 KKT2
GCAGTGGTGTACCCGGGGCGCGACACTGCGACACGGTGGAATTTGCGGGCGGTTGTAGCGCTCCCTCGGGATA
TGACCGATGAAATTGAACGCGAGTTCAAGTGCATGAACGGGCACGTA S530A one guide

OL13370 KKT2
GCAGTGGTGTACCCGGGGCGCGACACTGCGACACGGTGGAATTTGCGGGCGGTTGTATCCCTCCCTCGGGATAT
GACCGATGAAATTGAACGCGAGTTCAAGTGCATGAACGGGCACGTA S530S one guide

OL13651 KKT2
GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCTCGAACGTCTCGATCAGTGCGTCGTAGCGTAGCGCTCAC
GGAGCAGGAGCGTGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC KKT2 S493A design 2

 181

OL13652 KKT2
GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCTCGAACGTCTCGATCAGTGCGTCGTAGCGTATCGCTCAC
GGAGCAGGAGCGTGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC KKT2 S493S design 2

OL13653 KKT2
GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCACGCACGTCTCGATCAGTGCGTCGTTCGGTAGCGCTAAC
GGAGCAAGAACGTGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC KKT2 S493A design 3

OL13654 KKT2
GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCACGCACGTCTCGATCAGTGCGTCGTTCGGTAAGTCTAAC
GGAGCAAGAACGTGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC KKT2 S493S design 3

OL13655 KKT2
GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCTAGGACGAGTCGAAGCGTGAGGCGTAGCGTAGCGCTCA
CGGAGCAAGAGAGAGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC KKT2 S493A design 4

OL13656 KKT2
GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCTAGGACGAGTCGAAGCGTGAGGCGTAGCGTATCCCTCA
CGGAGCAAGAGAGAGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC KKT2 S493S design 4

OL13657 KKT2
GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCACCCCGTACATCTCGATCAGTGCGTCGTTCCGTAGCGCTCAC
AGAGCAGGAGAGGGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC KKT2 S493A design 5

OL13658 KKT2
GTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCACCCCGTACATCTCGATCAGTGCGTCGTTCCGTATCTCTCACA
GAGCAGGAGAGGGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTAC KKT2 S493S design 5

OL13659 KKT2
GCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTGCGAGCCGTAGTAGCGCTTCCACGTGACAT
GACGGACGAGATCGAGCGCGAGTTCAAGTGCATGAACGGGCACGTA KKT2 S530A design 2

OL13660 KKT2
GCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTGCGAGCCGTAGTATCACTTCCACGTGACAT
GACGGACGAGATCGAGCGCGAGTTCAAGTGCATGAACGGGCACGTA KKT2 S530S design 2

OL13661 KKT2
GCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTGCGGGCGGTAGTGGCGCTCCCACGAGATA
TGACGGACGAGATCGAGCGCGAGTTCAAGTGCATGAACGGGCACGTA KKT2 S530A design 3

OL13662 KKT2
GCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTGCGGGCGGTAGTGTCACTCCCACGAGATAT
GACGGACGAGATCGAGCGCGAGTTCAAGTGCATGAACGGGCACGTA KKT2 S530S design 3

 182

OL13663 KKT2
GCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTGAGAGCCGTAGTTGCGTTACCAAGGGATAT
GACGGACGAGATCGAGCGCGAGTTCAAGTGCATGAACGGGCACGTA KKT2 S530A design 4

OL13664 KKT2
GCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTGAGAGCCGTAGTTAGTTTACCAAGGGATAT
GACGGACGAGATCGAGCGCGAGTTCAAGTGCATGAACGGGCACGTA KKT2 S530S design 4

OL13665 KKT2
GCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTAAGGGCTGTCGTAGCGTTGCCTCGTGACAT
GACAGACGAGATAGAGCGCGAGTTCAAGTGCATGAACGGGCACGTA KKT2 S530A design 5

OL13666 KKT2
GCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTAAGGGCTGTCGTATCTTTGCCTCGTGACAT
GACAGACGAGATAGAGCGCGAGTTCAAGTGCATGAACGGGCACGTA KKT2 S530S design 5

RC kkt2
M146G KKT2

GAGCCATTTCTCGCGCCATCCCAACATTGTCAAGTTTTATGGAGCGGGCCGCGACGAGGACCGAGCGTATGTGG
TGGGCGAACGTTGTGCAGGCAAGTCGCTTCACGACGTCATAGCCAG M146G

OL12909 KKT2
CAGTACGCAGTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATCTTCGGGCCGTAGTAGCGCTGCCACG
GGATATGACGGACGAGATCGAGCGCGAGTTCAAGTGCATGAACGGG S530A

OL12928 KKT2
TCTCGATCAGTGCGTCGTAGCGTCAGCCTAACCGAACAAGAACGTGGCAGACTTGTGCGTTCTGCCCCGGTGCA
ATATGCTGTCGTCTACCCAGGGCGCGACACTGCCACTCGTTGGAAC S506A

OL12929 KKT2
TCTCGATCAGTGCGTCGTAGCGTCAGCCTAACCGAACAAGAACGTGGCAGACTTGTGCGTTCTAGTCCGGTGCA
ATATGCTGTCGTCTACCCAGGGCGCGACACTGCCACTCGTTGGAAC S506S

OL12930 KKT2
GTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTGCGGGCGGTTGTAGCGCTCCCTCGGGATATGAC
CGATGAAATCGAGCGCGAGTTCAAGTGCATGAACGGGCACGTAATG S530A

OL12931 KKT2
GTGGTGTACCCGGGGCGCGACACTGCCACTCGTTGGAATTTGCGGGCGGTTGTATCCCTCCCTCGGGATATGAC
CGATGAAATCGAGCGCGAGTTCAAGTGCATGAACGGGCACGTAATG S530S

OL12932 KKT2
AAGCAAGCCATCATGCCGCCTCAAGTGCCACGCGGACGAGCACAGCAGCCACGTGCGCCAGCGGTTTCGGGTC
ATACGGCTCAAGGTGGTCCGCCACTGCCGCGCCGCGGCCCAGCTGCG S923A

 183

OL12933 KKT2
AAGCAAGCCATCATGCCGCCTCAAGTGCCACGCGGACGAGCACAGCAGCCACGTGCGCCATCGGTTTCGGGTCA
TACGGCTCAAGGTGGTCCGCCACTGCCGCGCCGCGGCCCAGCTGCG S923S

OL13351 KKT2
TCTCGATCAGTGCGTCGTAGCGTCAGCTTAACCGAACAAGAACGTGGTAGGCTCGTCCGGGCGGCGCCCGTGCA
ATATGCCGTCGTCTATCCGGGGCGCGACACTGCCACTCGTTGGAAC

S505A+S506A double
mutant

OL13352 KKT2
TCTCGATCAGTGCGTCGTAGCGTCAGCTTAACCGAACAAGAACGTGGTAGGCTCGTCCGGAGCTCGCCCGTGCA
ATATGCCGTCGTCTATCCGGGGCGCGACACTGCCACTCGTTGGAAC

S505S+S506S double
mutant

OL13003 KKT4
GCGGCGAAGAAGCTTCACGCTCAGCGGTTGGAGAAAGAAAATAATACGGGCGCCGATGATGCGATGGGAGCG
CCCAAAGGTCTTGCTGGGGTACAGGCAAGCGCGAACCCCAACGAGCGC S300A

OL13004 KKT4
GCGGCGAAGAAGCTTCACGCTCAGCGGTTGGAGAAAGAAAATAATACGGGCGCCGATGATGCGATGGGATCGC
CCAAAGGTCTTGCTGGGGTACAGGCAAGCGCGAACCCCAACGAGCGC S300S

OL12934 KKT4
CTGCAGGGCAGCGCCGATCGTGTCGTCCAGGGGCGTCGTGGCGTTGCGGCGACCAAGGCGGAGACGGCGCCG
GCCTATATTACGACGCCCACGCCCGCCGGCAAGGCGTCCACCGCGCTC S422A

OL12935 KKT4
CTGCAGGGCAGCGCCGATCGTGTCGTCCAGGGGCGTCGTGGCGTTGCGGCGACCAAGGCGGAGACGTCACCG
GCCTATATTACGACGCCCACGCCCGCCGGCAAGGCGTCCACCGCGCTC S422S

OL12936 KKT7
GCGAAGCAACAGAGTCGCGTTCACTCTTCTGCGCACCAACGGCGGCGTAGCATTAGCATTGTCGCGGCGGATGC
GCTTGCCAAATCGGGCGAGGACGAAGACGGTGACGACAACGACACC S304A

OL12937 KKT7
GCGAAGCAACAGAGTCGCGTTCACTCTTCTGCGCACCAACGGCGGCGTAGCATTAGCATTGTCTCGGCGGATGC
GCTTGCCAAATCGGGCGAGGACGAAGACGGTGACGACAACGACACC S304S

 184

7.2.5.3 Single-Stranded Screening and Sequencing Primers

Name

Target Sequence Description

OL12991 KKT1 TGTCGCAACTCACGGATAGC S1449

OL12992 KKT1 CTATTAGGGGCGGTGTGTCG S1449

OL13055 KKT1 GACCCTGGTGTGGTGTCTTG S1449

OL13055 KKT1 GACCCTGGTGTGGTGTCTTG S1449

OL11617 KKT2 CTTCGCGTTAACGTGGATTT M146

OL11618 KKT2 TGCAACCTCTGAGACCAGTG M146

OL12993 KKT2 TACGGTGCTGGTAGGGATGA S493

OL12994 KKT2 TGTCATTACGTGCCCGTTCA S493

OL12904 KKT2 GACTTGTGGAGCGCATGTTG S505/S506/S530

OL12905 KKT2 CACACATTGCAGTCGAAGCC S505/S506/S530

OL13353 KKT2 ACGACTGGAAGCGACTGAAG S505+S506 Double Mutant

OL13354 KKT2 CTTTGCGGTTGAGGTGAAGC S505+S506 Double Mutant

OL12868 KKT2 CGGAAGTCATCACGATCCGC S923

OL12869 KKT2 TTCTTGGGAGGAATCGCAGC S923

OL12995 KKT4 CCGTGATTCACCGCAAAGAC S300

OL12996 KKT4 CCACCGTCAGAAGAAAACGC S300

OL12906 KKT4 ATTCACCGCAAAGACGAGGT S422

OL12871 KKT4 TGTTGCGAGCGGATTCTGTT S422

OL12870 KKT4 AGGGGGACCTTGTTGACGAT S422

OL12907 KKT7 CATTCTGCCTGTGAACCAGC S304

OL12908 KKT7 GCTCTTGCTCTTGGCCTTCT S304

OL12878 KKT7 CGCCTGCCGAAAAATCGAAG S304

OL12879 KKT7 TCCCCATCCTCATCAGTGGT S304

 185

7.2.5.4 Single-Stranded Pooled Experiment Screening Primers

Name Target Sequence Description

OL13861 KKT2 GCTCCAGAAGCTCAACTTGC
S493 shared mutant screening
primer

OL13864 KKT2 GCTTTGCGGTTGAGGTGAAG
S530 shared mutant screening
primer

OL13964 KKT2 CTCCGTTAAGCTGACGCTAC S493 WT screening
OL13965
(OL13862) KKT2 CTTGTTCGGTTAGCGCTACG S493A design 1 screening

OL13966 KKT2 GATCGAGACGTTCGAGGCG S493A design 2 screening

OL13967 KKT2 CTTGCTCCGTTAGCGCTACC S493A design 3 screening

OL13968 KKT2 CACGCTTCGACTCGTCCTAG S493A design 4 screening

OL13969 KKT2 CTCTGTGAGCGCTACGGAAC S493A design 5 screening

OL13970 KKT2 GTTCGGTTAGCGATACGCTAC S493S design 1 screening

OL13971 KKT2 CTCCGTGAGCGATACGCTAC S493S design 2 screening

OL13972 KKT2 CTTGCTCCGTTAGACTTACC S493S design 3 screening

OL13973 KKT2 CTCCGTGAGGGATACGCTAC S493S design 4 screening

OL13974 KKT2 CTGTGAGAGATACGGAACGAC S493S design 5 screening

OL13975 KKT2 CCTTCGCGCCGTAGTATCGC S530 WT screening

OL13976 KKT2 GCGCTCCCTCGGGATATG S530A design 1 screening

OL13977 KKT2 GTAGTAGCGCTTCCACGTGAC S530A design 2 screening

OL13978 KKT2 GGCGCTCCCACGAGATATG S530A design 3 screening

OL13979 KKT2 CCGTAGTTGCGTTACCAAGG S530A design 4 screening

OL13980 KKT2 GGGCTGTCGTAGCGTTG S530A design 5 screening

OL13981 KKT2 GTATCCCTCCCTCGGGATATG S530S design 1 screening

OL13982 KKT2 CGTAGTATCACTTCCACGTG S530S design 2 screening

OL13983 KKT2 GGTAGTGTCACTCCCACGAG S530S design 3 screening

OL13984 KKT2 GGAATTTGAGAGCCGTAGTTAG S530S design 4 screening

OL13985 KKT2 GGGCTGTCGTATCTTTG S530S design 5 screening

 186

7.2.5.5 Double-Stranded Repair Primers

7.2.5.5.1 Primer Sequences

Name Target Sequence Description

OL14224 KKT2 GGCCTCTGATGTCACACTTTTGCGGCTCGTTGTCGAGGACTCCACCACGGGGTGGGGCGATATCTATGCCCAG
AGACCTTGCGCAAACACCAGCGATTTCACG

S25A repair

OL14225 KKT2 TCTGCTTGGTCAACAACACATTTTTGGATGTGCGGCGTCTTCACCGTGCTCCCCAGGCGTGAAATCGCTGGTG
TTTG

S25A/E shared repair

OL14226 KKT2 GGCCTCTGATGTCACACTTTTGCGGCTCGTTGTCGAGGACTCCACCACGGGGTGGGGCGATATCTATGCCCAG
AGACCTTGAGCAAACACCAGCGATTTCACG

S25E repair

OL14145 KKT2 GGCCTCTGATGTCACACTTTTGCGGCTCGTTGTCGAGGACTCCACCACGGGGTGGGGCGATATCTATGCCCAG
AGACCTTAGTCAAACACC

S25S mutant forward

OL14146 KKT2 TCTGCTTGGTCAACAACACATTTTTGGATGTGCGGCGTCTTCACCGTGCTCCCCAGGCGTGAAATCGCTGGTG
TTTGACTAAGGTCTCT

S25S mutant reverse

OL14228 KKT2 CGCCCCGGGTACACCACTGCGTACTGGACCGGGCTAGAACGCACAAGTCTGCCACGTTCTTGTTCGGTTAGCG
CTACGCTACGACGGACAGAACGTG

S493A repair

OL14227 KKT2 GGTGTGGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCACGGACCTCACGTTCTG
TCCGTCGTAGC

S493A/E shared

repair

OL14229 KKT2 CGCCCCGGGTACACCACTGCGTACTGGACCGGGCTAGAACGCACAAGTCTGCCACGTTCTTGTTCGGTTAGCT
CTACGCTACGACGGACAGAACGTG

S493E repair

 187

OL14147 KKT2 GGTGTGGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCGCCACGGACCTCACGTTCTG
TCCGTCGTAGCGTATCTCTAAC

S493S mutant

forward

OL14148 KKT2 CGCCCCGGGTACACCACTGCGTACTGGACCGGGCTAGAACGCACAAGTCTGCCACGTTCTTGTTCGGTTAGA
GATACGCTACGACG

S493S mutant

reverse

OL14230 KKT2 CGTTCTAGCCCGGTCCAGTACGCAGTGGTGTACCCGGGGCGCGACACTGCGACACGGTGGAATTTGCGGGC
GGTTGTAGCGCTCCCTCGGGATATGACCGATG

S530A repair

OL14231 KKT2 TCGAGGTCAACTTTGTCATTACGTGCCCGTTCATGCACTTGAACTCGCGTTCAATTTCATCGGTCATATCCCGA
GGG

S530A/E shared

repair

OL14232 KKT2 CGTTCTAGCCCGGTCCAGTACGCAGTGGTGTACCCGGGGCGCGACACTGCGACACGGTGGAATTTGCGGGC
GGTTGTAGAGCTCCCTCGGGATATGACCGATG

S530E repair

OL14149 KKT2 CGTTCTAGCCCGGTCCAGTACGCAGTGGTGTACCCGGGGCGCGACACTGCGACACGGTGGAATTTGCGGGC
GGTTGTAAGTCTCCCTCGGGATATG

S530S mutant

forward

OL14150 KKT2 TCGAGGTCAACTTTGTCATTACGTGCCCGTTCATGCACTTGAACTCGCGTTCAATTTCATCGGTCATATCCCGA
GGGAGACTTAC

S530S mutant

reverse

OL14233 KKT2 CTGTGGAGGAGCACGTGGTGAAGCAAGCCATCATGCCGCCTCAAGTGCCACGCGGACGAGCACAGCAGCCA
CGTGCGCCAGCGGTTTCGGGTCATACGGCTCAAG

S923A repair

OL14234 KKT2 AAAGCGGCTGCAGGAGATGGCGCAGCTGGGCCGCGGCGCGGCAGTGGCGGACCACCTTGAGCCGTATGAC
CCGAA

S923A/E shared

repair

 188

OL14235 KKT2 CTGTGGAGGAGCACGTGGTGAAGCAAGCCATCATGCCGCCTCAAGTGCCACGCGGACGAGCACAGCAGCCA
CGTGCGCCAGAGGTTTCGGGTCATACGGCTCAAG

S923E repair

OL14151 KKT2 CTGTGGAGGAGCACGTGGTGAAGCAAGCCATCATGCCGCCTCAAGTGCCACGCGGACGAGCACAGCAGCCA
CGTGCGCCAAGTGTTTCGGGTCATAC

S923S mutant

forward

OL14152 KKT2 AAAGCGGCTGCAGGAGATGGCGCAGCTGGGCCGCGGCGCGGCAGTGGCGGACCACCTTGAGCCGTATGAC
CCGAAACACTTGG

S923S mutant

reverse

OL14595 KKT4 TGAGTGCGCGTGCCGACGAGCGCGGTGGACGCCTTGCCGGCCGGCGTGGGTGTCGTAATATA
GGCG

KKT4 S422 shared

repair

OL14592 KKT4 GCACCACGTTGGACACGTCTCGTCTGCAGGGCAGCGCCGATCGTGTCGTGCAGGGTCGCCGT
GGTGTGGCCGCGACCAAGGCGGAGACGGCGCCCGCCTATATTACGACACCC

KKT4 S422A repair

OL14593 KKT4 GCACCACGTTGGACACGTCTCGTCTGCAGGGCAGCGCCGATCGTGTCGTGCAGGGTCGCCGT
GGTGTGGCCGCGACCAAGGCGGAGACGGAGCCCGCCTATATTACGACACCC

KKT4 S422E repair

OL14599 KKT7 AGCTCGCACGCAACTCCATGGCGAAGCAACAGAGTCGCGTTCACTCTTCTGCTCACCAACGCCG
ACGCTCCATCTCCATTGTC

KKT7 S304 shared

repair

OL14598 KKT7 TCTAGACGCGCGCGCTTGCGGGTGTCGTTGTCGTCACCGTCTTCGTCCTCGCCCGATTTGGCC
AGTGCATCCGCTGAGACAATGGAGATGGAGCGTC

KKT7 S304S repair

OL14596 KKT7 TCTAGACGCGCGCGCTTGCGGGTGTCGTTGTCGTCACCGTCTTCGTCCTCGCCCGATTTGGCC
AGTGCATCCGCTGCGACAATGGAGATGGAGCGTC

KKT7 S304A repair

OL14597 KKT7 TCTAGACGCGCGCGCTTGCGGGTGTCGTTGTCGTCACCGTCTTCGTCCTCGCCCGATTTGGCC
AGTGCATCCGCTTCGACAATGGAGATGGAGCGTC

KKT7 S304E repair

 189

OL14594 KKT4 GCACCACGTTGGACACGTCTCGTCTGCAGGGCAGCGCCGATCGTGTCGTGCAGGGTCGCCGT
GGTGTGGCCGCGACCAAGGCGGAGACGAGCCCCGCCTATATTACGACACCC

KKT4 S422S repair

 190

7.2.5.5.2 Primer Combinations and Conditions

 KKT2 S25 KKT2 S493 KKT2 S530 KKT2 S923 KKT4 S422 KKT7 S304

Shared Primer OL14225 OL14227 OL14231 OL14234 OL14595 OL14599

Alanine Mutant Primer OL14224 OL14228 OL14230 OL14233 OL14592 OL14596

Glutamic Mutant Primer OL14226 OL14229 OL14232 OL14235 OL14593 OL14597

Synonymous Mutant
Primer(s)

OL14145
OL14146

OL14147
OL14148

OL14149
OL14150

OL14151
OL14152

OL14594 OL14598

 KKT2 Synonymous Mutants Only
All Mutants

 KKT2 S25S KKT2 S493S KKT2 S530S KKT2 S923S

1 cycle 98°C 30 sec 30 sec 30 sec 30 sec 30 sec

45 cycles

98°C 10 sec 10 sec 10 sec 10 sec 10 sec

Tm

30 sec

62°C

30 sec

62°C

30 sec

64°C

30 sec

64°C

30 sec

55°C

30 sec

72°C 15 sec 15 sec 15 sec 15 sec 15 sec

1 cycle 72°C 10 mins 10 mins 10 mins 10 mins 10 mins

hold 4°C hold hold hold hold hold

 191

7.2.5.6 Double-Stranded Screening Primers

7.2.5.6.1 Primer Sequences

Name Target Sequence Description

OL13866 KKT2 GCCAGCAATTCTTGGACGAC
KKT2 mutant screening
control

OL13867 KKT2 TCACTCTGCCAGCGAATGTC
KKT2 mutant screening
control

OL13860 KKT2 CAGCCCAGTGGTAACTACTC S25

OL14209 KKT2 CTATGCCGCGTGATTTGTCG S25 WT

OL13859 KKT2 CAGAGACCTTGCGCAAACAC S25A

OL14242 KKT2 CTATGCCCAGAGACCTTGAG S25E

OL14205 KKT2 GACCTTAGTCAAACACCAGCG S25S

OL13861 KKT2 GCTCCAGAAGCTCAACTTGC S493

OL13862 KKT2 CTTGTTCGGTTAGCGCTACG S493A

OL14243 KKT2 CGTTCTTGTTCGGTTAGCTC S493E

OL14206 KKT2 GACAGAACGTGAGGTCCGTG S493S

OL13864 KKT2 GCTTTGCGGTTGAGGTGAAG S530

OL13976 KKT2 GCGCTCCCTCGGGATATG S530A

OL13863 KKT2 GACCGATGAAATTGAACGCG S530A/S

OL14286 KKT2 ATTTGCGGGCGGTTGTAGAG S530E

OL14207 KKT2 ATTTGCGGGCGGTTGTAAGT S530S

OL7631 KKT2 CTGACTTTCCCAAGGTGAGC S923

OL14210 KKT2 GTGCCCGCTGACGGAG S923 WT

OL13865 KKT2 CACCTTGAGCCGTATGACCC S923A/S

OL14208 KKT2 GCCGTATGACCCGAAACACT S923S

OL14612 KKT4 GTGGTGATGTACGCCGGAGA S422 WT

OL14613 KKT4 GTCGTAATATAGGCGGGCGC S422A

OL14614 KKT4 GTCGTAATATAGGCGGGCTC S422E

OL14615 KKT4 GTCGTAATATAGGCGGGGCT S422S

OL14616 KKT7 CCAATAGTCGTCAGCGCCTT S304

OL14617 KKT7 TCGGCGGAGACAATGGATA S304 WT

OL14618 KKT7 GCCAGTGCATCCGCTGC S304A

OL14619 KKT7 GGCCAGTGCATCCGCTTC S304E

OL14620 KKT7 GCCAGTGCATCCGCTGA S304S

 192

7.2.5.6.2 Synonymous KKT2 Mutants Only Screening Conditions
Using Q5 polymerase.

KKT2
DNA

Control

KKT2
S25S

KKT2
S493S

KKT2
S530S

KKT2
S923S

WT Primers
OL13866
OL13867

OL14209
OL13860

OL13964
OL13861

OL13975
OL13864

OL14210
OL7631

Mutant Primers -
OL14205
OL13860

OL14206
OL13861

OL14207
OL13864

OL14208
OL7631

Length (bp) 547 166 419 260 648

1 cycle 98°C 1 min 5 min 5 min 5 min 5 min

35 cycles

98°C 30 sec 30 sec 30 sec 30 sec 30 sec

Tm 68°C
30 sec

66°C
30 sec

67°C
30 sec

68°C
30 sec

67°C
30 sec

72°C 20 sec 8 sec 20 sec 8 sec 20 sec

1 cycle 72°C 10 min 10 min 10 min 10 min 10 min

hold 4°C hold hold hold hold hold

7.2.5.6.3 All Mutant Screening Conditions
Using VeriFi polymerase.

KKT2
S25

KKT2
S493

KKT2
S530

KKT2
S923

KKT4
S422

KKT7
S304

Shared primer
(paired with all
others)

OL13860 OL13861 OL13864 OL7631 OL12870 OL14616

WT primer OL14209 OL13964 OL13975 OL14210 OL14612 OL14617

Alanine mutant
primer

OL13859 OL13862 OL13976 OL13865 OL14613 OL14618

Glutamic acid
mutant primer

OL14242 OL14243 OL14286 OL13865 OL14614 OL14619

Synonymous mutant
primer

OL14205 OL14206 OL14207 OL13865 OL14615 OL14620

Tm used for
screening with VeriFi
(°C)

65 64 68 67 66 67

Expected Product
Size (bp)

166 419 277 648 208 475

 193

7.2.5.7 Double-Stranded Sequencing PCR Amplification Conditions and Sanger Sequencing Primers

KKT2 S25 KKT2 S493 KKT2 S530 KKT2 S923 KKT4 S422 KKT7 S304

PCR Amplification OL12128
OL12616

OL12871
OL12906

OL12907
OL12908

Length (bp) 4396 704 761

1 cycle 95°C 1 min 1 min 1 min

35 – 40 cycles

95°C 15 sec 15 sec 15 sec

Tm 68°C

2 min 30 sec

68°C

24 sec

68°C

30 sec

72°C 20 sec 20 sec 20 sec

1 cycle 72°C 2 min 2 min 2 min

hold 4°C hold hold hold

Sequencing Primers OL13860
OL12128

OL12904 OL12905 OL12868
OL12869

OL12906 OL12908

 194

7.2.6 SINGLE-STRANDED SCREENING CONDITIONS
Highlights indicate restriction digestion patterns that are shared between WT and the

synonymous control mutant.

 KKT2
S505/506A

KKT2
S530A

KKT2
S923A

KKT4
S422A

KKT7
S304A

Primers
OL12904
OL12905

OL12904
OL12905

OL12868
OL12869

OL12871
OL12906

OL12907
OL12908

Length (bp) 742 742 400 704 961

1 cycle 95°C 1 min 1 min 1 min 1 min 1 min

35 cycles

95°C 15 sec 15 sec 15 sec 15 sec 15 sec

Tm 68°C
15 sec

68°C
15 sec

69°C
15 sec

68°C
15 sec

68°C
15 sec

72°C 24 sec 24 sec 12 sec 24 sec 30 sec

1 cycle 72°C 2 min 2 min 2 min 2 min 2 min

hold 4°C hold hold hold hold hold

Restriction Enzyme SmaI AfeI NlaIV NlaIV FokI

Native Digestion 580
162

544
198

235
141
24

355
147
113
89

752
209

Synonymous Control
Digestion

742 544
198

376
24

355
147
113
89

648
209
104

S->A Mutant Digestion 742 427
198
117

376
24

184
171
147
113
89

648
209
104

 195

 KKT1
S1449A

KKT1
S1449A

KKT2
S493A

KKT4
S300A

KKT2
M146A

Primers
OL12991
OL12992

OL13055
OL12992

OL12993
OL12994

OL12995
OL12996

OL11617
OL11618

Length (bp) 700 582 1260 1395 1920

1 cycle 95°C 1 min 1 min 1 min 1 min 1 min

35 cycles 95°C 15 sec 15 sec 15 sec 15 sec 15 sec

 Tm 68°C
15 sec

69°C
15 sec

68°C
15 sec

68°C
15 sec

64°C
15 sec

 72°C 22 sec 18 sec 38 sec 42 sec 58 sec

1 cycle 72°C 2 min 2 min 2 min 2 min 2 min

hold 4°C hold hold hold hold hold

Restriction
Enzyme

 AluI AluI AfeI BseYI SinI or AvaII

Native
Digestion

 611
89

493
89

766
494

874
521

1293
627

Synonymous
Control
Digestion

 412
199
89

294
199
89

766
494

688
521
186

-

S->A Mutant
Digestion

 412
199
89

294
199
89

766
316
178

688
521
186

912
627
381

 196

7.2.7 POOLED REPAIR SCREENING CONDITIONS

7.2.7.1 Primer Combinations

Design Specific Target Length Shared Primer Specific Primer Tm (°C)

S493 WT screening

419 bp OL13861

OL13964 66

S493A design 1
OL13965
(OL13862)

67

S493A design 2 OL13966 68

S493A design 3 OL13967 68

S493A design 4 OL13968 68

S493A design 5 OL13969 68

S493S design 1 OL13970 66

S493S design 2 OL13971 68

S493S design 3 OL13972 63

S493S design 4 OL13973 68

S493S design 5 OL13974 65

S530 WT screening

260 bp OL13864

OL13975 68

S530A design 1 OL13976 68

S530A design 2 OL13977 68

S530A design 3 OL13978 68

S530A design 4 OL13979 67

S530A design 5 OL13980 68

S530S design 1 OL13981 67

S530S design 2 OL13982 63

S530S design 3 OL13983 68

S530S design 4 OL13984 64

S530S design 5 OL13985 67

 197

7.2.7.2 Cycling Conditions
Using Q5 polymerase.

Step Temperature Time

1 cycle 98°C 5 minutes

35 Cycles

98°C 30 seconds

S493A/S – 63-68°C
S530A/S – 63-68°C

30 seconds

72°C S493A/S – 14 seconds
S530A/S – 8 seconds

1 cycle 72°C 10 minutes

Hold 4°C

 198

7.2.8 POOLED REPAIR TEMPLATE RECODING LISTS
Design was as described in Methods 3.7.1 and Results 4.2. Each design’s list is sorted alphabetically by amino acid single letter code. Some lists

may not include certain amino acids as per the methodology for that specific design.

Design 2 Design 3 Design 4 Design 5
Preferred List Reserve List

Amino
Acid

WT triplet
codon

Mutant
codon

Amino
Acid

WT triplet
codon

Mutant
codon

Amino
Acid

WT triplet
codon

Mutant
codon

Amino
Acid

WT triplet
codon

Mutant
codon

Amino
Acid

WT triplet
codon

Mutant
codon

A GCT GCG A GCA GCT A GCA GCT A GCA GCT A GCA GCC

 A GCC GCG A GCC GCG A GCC GCG A GCA GCG

C TGT TGC A GCG GCC A GCG GCC A GCG GCC A GCC GCT

 A GCG GCA A GCG GCA A GCG GCA A GCC GCA

F TTT TTC A GCT GCG A GCT GCG A GCG GCT

F TTC TTT C TGC TGT A GCT GCA

 C TGC TGT C TGC TGT A GCT GCC

G GGT GGC D GAC GAT C TGT TGC C TGT TGC

G GGT GGA D GAT GAC G GCA GGT

 D GAC GAT D GAT GAC G GGA GGC

K AAA AAG E GAA GAG D GAT GAC D GAC GAT G GGG GGA

 E GAG GAA G GGG GGC

L CTG CTT E GAA GAG E GAA GAG G GGT GGG

L CTT CTG G GGA GGG E GAG GAA E GAG GAA

L TTA CTC G GGC GGG H CAT CAC

L TTG CTT G GGC GGT F TTC TTT F TTT TTC

 G GGC GGA F TTT TTC F TTC TTT I ATA ATT

R AGG CGC G GGG GGT I ATC ATA

R CGA CGC G GGA GGG G GGA GGG I ATT ATA

R CGC CGA H CAC CAT G GGC GGG G GGC GGG

 199

R CGG CGT G GGC GGT G GGC GGT L CTA TTG

 I ATC ATT G GGC GGA G GGC GGA L CTA TTA

T ACC ACT I ATT ATC G GGG GGT G GGG GGT L CTA CTG

T ACC ACA G GGT GGC G GGT GGC L CTC TTG

 K AAG AAA G GGT GGA G GGT GGA L CTC CTA

V GTA GTG L CTC TTA

V GTT GTA L CTA CTT H CAC CAT H CAC CAT L CTG TTA

 L CTC CTT L CTG TTG

Y TAT TAC L CTC CTG I ATC ATT I ATC ATT L CTT CTA

 L CTG CTA I ATT ATC I ATT ATC L CTT TTG

 L CTG CTC L CTT CTC

 L TTA CTA K AAA AAG K AAA AAG L CTT TTA

 L TTG CTC K AAG AAA K AAG AAA L TTA CTT

 L TTA TTG

 N AAC AAT L TTA CTA L TTA CTA L TTA CTG

 L CTA CTT L TTA CTC L TTG TTA

 P CCC CCA L CTC CTT L TTA CTG L TTG CTA

 P CCG CCC L CTC CTG L TTA CTT L TTG CTG

 P CCT CCA L CTG CTT L TTG CTA

 L CTG CTA L TTG CTC N AAC AAT

 Q CAG CAA L CTG CTC L TTG CTT

 L CTT CTG L TTG CTG P CCA CCC

 R CGA CGT L TTA CTC L CTA TTA P CCA CCT

 R CGC CGG L TTG CTC L CTA TTG P CCA CCG

 L TTG CTT L CTC TTA P CCC CCT

 S AGC AGT L CTC TTG P CCC CCG

 S AGC TCG N AAC AAT L CTG TTA P CCG CCT

 S TCA TCT L CTG TTG P CCG CCA

 200

 S TCT TCA P CCC CCA L CTT TTA P CCT CCG

 P CCG CCC L CTT TTG P CCT CCC

 T ACA ACG P CCT CCA

 T ACC ACG N AAC AAT Q CAA CAG

 T ACG ACC Q CAG CAA

 T ACG ACT P CCC CCA R AGA CGT

 R AGG CGC P CCG CCC R AGA CGC

 V GTA GTT R CGA CGT P CCT CCA R AGA CGA

 V GTC GTA R CGA CGC R AGA CGG

 V GTC GTT R CGC CGA Q CAG CAA R AGA AGG

 V GTG GTC R CGC CGG R AGG CGT

 V GTT GTG R CGG CGT R AGA CGA R AGG AGA

 R AGA CGC R AGG CGG

 Y TAC TAT S AGC AGT R AGA CGG R AGG CGA

 S AGC TCG R AGA CGT R CGA AGA

 S TCA TCT R AGG CGA R CGA AGG

 S TCT TCA R AGG CGC R CGC AGA

 R AGG CGG R CGC CGT

 T ACA ACG R AGG CGT R CGC AGG

 T ACC ACT R CGA AGA R CGG AGA

 T ACC ACG R CGA AGG R CGG AGG

 T ACC ACA R CGC AGA R CGG CGC

 T ACG ACC R CGC AGG R CGG CGT

 T ACG ACT R CGG AGA R CGT AGG

 R CGG AGG R CGT AGA

 V GTA GTG R CGT AGA R CGT CGC

 V GTA GTT R CGT AGG R CGT CGG

 V GTC GTA

 201

 V GTC GTT S AGT TCA S AGC TCA

 V GTG GTC S AGT TCC S AGC TCC

 V GTT GTA S AGT TCG S AGC TCT

 V GTT GTG S AGT TCT S AGT AGC

 S AGC TCA S AGT TCT

 Y TAC TAT S AGC TCC S AGT TCC

 Y TAT TAC S AGC TCG S AGT TCA

 S AGC TCT S AGT TCG

 S TCA AGC S TCA AGT

 S TCA AGT S TCA TCG

 S TCC AGC S TCA TCC

 S TCC AGT S TCA AGC

 S TCG AGC S TCC AGC

 S TCG AGT S TCC TCG

 S TCT AGC S TCC AGT

 S TCT AGT S TCC TCA

 S TCC TCT

 T ACA ACG S TCG AGC

 T ACC ACT S TCG TCC

 T ACC ACG S TCG AGT

 T ACC ACA S TCG TCA

 T ACG ACC S TCG TCT

 T ACG ACT S TCT AGC

 S TCT TCG

 V GTA GTG S TCT AGT

 V GTA GTT S TCT TCC

 V GTC GTA

 V GTC GTT T ACA ACT

 202

 V GTG GTC T ACA ACC

 V GTT GTA T ACC ACT

 V GTT GTG T ACG ACA

 T ACT ACA

 Y TAC TAT T ACT ACG

 Y TAT TAC

 V GTA GTC

 V GTC GTG

 V GTG GTA

 V GTG GTT

 V GTT GTC

 203

7.2.9 EXAMPLE OUTPUT FILE TEXT FROM THE PYTHON SCRIPT

7.2.9.1 Page 1 (left hand side)
Job request details

Job name: KKT2 S493E

Target amino acid: S493E

Synonymous recoding type: matched

Nonsynonymous recode type: highest

Homology arm length (bp): 51

Recoding region length (bp): 60

Total repair length (bp): 162

Repair templates

WT repair region sequence: GGC AGT GTC TCA CTG GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCC CCT CGC ACG TCT CGA TCA GTG CGT CGT AGC

WT translation: G S V S L V S E V A D R E E A A P R T S R S V R R S

Synonymous repair region sequence: GGC AGT GTC TCA CTG GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCC CCT CGG ACC AGC AGG AGT GTC CGA CGA TCG

Synonymous repair translation: G S V S L V S E V A D R E E A A P R T S R S V R R S

Nonsynonymous repair region sequence: GGC AGT GTC TCA CTG GTC TCA GAG GTT GCA GAT CGC GAG GAA GCC GCC CCT CGG ACC AGC AGG AGT GTC CGA CGA TCG

Nonsynonymous repair translation: G S V S L V S E V A D R E E A A P R T S R S V R R S

Number of mutations in the synonymous repair template: 30

Number of mutations in the nonsynonymous repair template: 30

Screening primers

Synonymous repair

 Forward primer sequence Reverse primer sequence PCR product size (bp) Forward GC content (%) Reverse GC content (%)

WT primers AGACGCCGCACATCCAAA TGACGCTACGACGCACTG 1365 55.56 61.11

Repair primers AGACGCCGCACATCCAAA CGTCGGACACTCCTGCTG 1357 55.56 66.67

Nonsynonymous primers

 Forward primer sequence Reverse primer sequence PCR product size (bp) Forward GC content (%) Reverse GC content (%)

WT primers AGACGCCGCACATCCAAA TGACGCTACGACGCACTG 1365 55.56 61.11

Repair primers AGACGCCGCACATCCAAA CGTCGGACACTCCTGCTG 1357 55.56 66.67

 204

7.2.9.2 Page 1 (right hand side)

GTC AGC TTA ACG GAG CAG GAG CGG GGC AGA CTT GTG CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CGC GAC ACT

V S L T E Q E R G R L V R S S P V Q Y A V V Y P G R D T

GTT TCG CTA ACC GAA CAA GAA CGT GGT AGG TTG GTG CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CGC GAC ACT

V S L T E Q E R G R L V R S S P V Q Y A V V Y P G R D T

GTT GAG CTA ACC GAA CAA GAA CGT GGT AGG TTG GTG CGT TCT AGC CCG GTC CAG TAC GCA GTG GTG TAC CCG GGG CGC GAC ACT

V E L T E Q E R G R L V R S S P V Q Y A V V Y P G R D T

Forward Tm ('C) Reverse Tm ('C)

59.97 60.13

59.97 60.13

Forward Tm ('C) Reverse Tm ('C)

59.97 60.13

59.97 60.13

 205

7.2.9.3 Page 2

Repair template primers

Synonymous

Forward primer (5'-): GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGGACCAGCAGGAGTGTCCGACG

Reverse primer (5'-): AGTGTCGCGCCCCGGGTACACCACTGCGTACTGGACCGGGCTAGAACGCACCAACCTACCACGTTCTTGTTCGGTTAGCGAAACCGATCGTCGGACACTCCTGCTG

Annealing sequence (5'-): CAGCAGGAGTGTCCGACG

Tm ('C): 60.1

Nonsynonymous

Forward primer (5'-): GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGGACCAGCAGGAGTGTCCGACG

Reverse primer (5'-): AGTGTCGCGCCCCGGGTACACCACTGCGTACTGGACCGGGCTAGAACGCACCAACCTACCACGTTCTTGTTCGGTTAGCTCAACCGATCGTCGGACACTCCTGCTG

Annealing sequence (5'-): CAGCAGGAGTGTCCGACG

Tm ('C): 60.1

WT sequence (no spaces):

GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGCACGTCTCGATCAGTGCGTCGTAGCGTCAGCTTAACGGAGCAGGAGCGGGGCAGACTTGTGCGTTCTAGCCCGGTCCAGTACGCAGTGGTGT

ACCCGGGGCGCGACACT

Synonymous sequence (no spaces):

GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGGACCAGCAGGAGTGTCCGACGATCGGTTTCGCTAACCGAACAAGAACGTGGTAGGTTGGTGCGTTCTAGCCCGGTCCAGTACGCAGTGGTGT

ACCCGGGGCGCGACACT

Nonsynonymous sequence (no spaces):

GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGGACCAGCAGGAGTGTCCGACGATCGGTTGAGCTAACCGAACAAGAACGTGGTAGGTTGGTGCGTTCTAGCCCGGTCCAGTACGCAGTGGTGT

ACCCGGGGCGCGACACT

Alignments

Synonymous Repair

Score = 132.0

WT sequence 0 GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGCACGTCT

 0 |||.||....

Syn. repair 0 GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGGACCAGC

WT sequence 60 CGATCAGTGCGTCGTAGCGTCAGCTTAACGGAGCAGGAGCGGGGCAGACTTGTGCGTTCT

 60 .|....||.||.||....||.....||||.||.||.||.||.||.||..|.|||||||||

Syn. repair 60 AGGAGTGTCCGACGATCGGTTTCGCTAACCGAACAAGAACGTGGTAGGTTGGTGCGTTCT

WT sequence 120 AGCCCGGTCCAGTACGCAGTGGTGTACCCGGGGCGCGACACT 162

 120 || 162

Syn. repair 120 AGCCCGGTCCAGTACGCAGTGGTGTACCCGGGGCGCGACACT 162

 206

Nonsynonymous

Score = 132.0

WT sequence 0 GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGCACGTCT

 0 |||.||....

Nonsyn. repair 0 GGCAGTGTCTCACTGGTCTCAGAGGTTGCAGATCGCGAGGAAGCCGCCCCTCGGACCAGC

WT sequence 60 CGATCAGTGCGTCGTAGCGTCAGCTTAACGGAGCAGGAGCGGGGCAGACTTGTGCGTTCT

 60 .|....||.||.||....||.....||||.||.||.||.||.||.||..|.|||||||||

Nonsyn. repair 60 AGGAGTGTCCGACGATCGGTTTCGCTAACCGAACAAGAACGTGGTAGGTTGGTGCGTTCT

WT sequence 120 AGCCCGGTCCAGTACGCAGTGGTGTACCCGGGGCGCGACACT 162

 120 || 162

Nonsyn. repair 120 AGCCCGGTCCAGTACGCAGTGGTGTACCCGGGGCGCGACACT 162

 207

7.2.10 MAIN CODE
-*- coding: utf-8 -*-

"""

Created on Mon Jan 29 15:34:37 2024

@author: ceh560

"""

#packages used in this file and/or the feeder files

import pandas as pd

from Bio import SeqIO

from Bio import Seq

from Bio import Align

import numpy as np

import io

import random

import primer3

import primer3.bindings

#custom files to import

import codon_dataframes as cdf

import codon_dictionaries as cdict

import formatting_functions as formats

import primer_functions as primers

import reading_input_file as rif

import validator as val

import stitching_functions as stitch

#read input files

input_data = pd.read_excel("repair_template_input_excel.xlsx",

index_col = 0, header = 0)

pd.set_option('display.max_columns', 20)

pd.set_option('display.max_rows', None)

pd.set_option("display.width", 1000)

pd.options.display.float_format = "{:,.2f}".format

job_name = input_data.loc["Job name"][0]

target_AA = input_data.loc["Target amino acid residue"][0]

target_res_num = input_data.loc["Target amino acid number"][0]

output_AA = input_data.loc["Replacement amino acid"][0]

syn_recode_type = input_data.loc["Synonymous Recoding type"][0]

nonsyn_recode_type = input_data.loc["Nonsynonymous Recoding

Type"][0]

codon_freq_input_file = input_data.loc["Codon Frequency data

filename (incl. extension)"][0]

recode_region_length = input_data.loc["Recoding region length

(bp)"][0]

hom_arm_length = input_data.loc["Homology arm length (bp)"][0]

 208

ref_file_name = input_data.loc["Reference FASTA filename (incl.

extension)"][0]

CDS_start = input_data.loc["CDS start in reference file (bp

number)"][0]

CDS_end = input_data.loc["CDS end in reference file (bp

number)"][0]

alternating_repeat = input_data.loc["Alternating every nth

residue"][0]

#read input fasta file and process as necessary

gene_name = job_name

target_res_base_nums = [((target_res_num-1)*3),

(target_res_num*3)]

num_of_codons_to_recode = recode_region_length / 3

target_codon_no = int(num_of_codons_to_recode/2)

if recode_region_length % 2 == 0:

 recode_start = int(target_res_base_nums[0] -

(recode_region_length/2))

else:

 half_codon_percent = target_codon_no / num_of_codons_to_recode

 back_bases = recode_region_length * half_codon_percent

 recode_start = int(target_res_base_nums[0] - back_bases)

recode_end = recode_start + recode_region_length

#need some special cases for close to the start or end of the CDS

#near the start special case

if num_of_codons_to_recode > target_res_num:

 recode_start = 0

 recode_end = recode_region_length

 target_codon_no = target_res_num - 1

for gene_name in SeqIO.parse(ref_file_name,"fasta"):

 #print(gene_name.id)

 print(gene_name.description)

 print(repr(gene_name.seq))

 print("Gene sequence length: ", len(gene_name), "bp")

 print("\n")

if CDS_end == "end":

 CDS_end = len(gene_name.seq)

else:

 CDS_end = CDS_end

if CDS_start > 1:

 CDS_start = CDS_start - 1

 209

 WT_CDS_seq = gene_name.seq[(CDS_start):CDS_end]

 recode_start_whole = recode_start + CDS_start

 recode_end_whole = recode_end + CDS_start

else:

 WT_CDS_seq = gene_name.seq[:CDS_end]

 recode_start_whole = recode_start

 recode_end_whole = recode_end

#check input is a length divisible by 3

val.triplet_checker(WT_CDS_seq)

#check that the input given is correct and that the target codes

for the expected residue

val.translate_checker(WT_CDS_seq, target_res_num, target_AA)

#near the end special case

total_num_AAs = len(WT_CDS_seq.translate())

if target_res_num > (total_num_AAs - num_of_codons_to_recode):

 recode_end = len(WT_CDS_seq)

 recode_start = len(WT_CDS_seq) - recode_region_length

 if CDS_start > 1:

 recode_end_whole = recode_end + CDS_start

 recode_start_whole = recode_start + CDS_start

 else:

 recode_end_whole = recode_end

 recode_start_whole = recode_start

 num_of_codons_to_recode = int((recode_end - recode_start + 1)

/ 3)

 target_codon_no = num_of_codons_to_recode - (total_num_AAs -

target_res_num) - 1

#establish the sequence to replace, and sequences before and after

to stay the same

WT_template_seq =

gene_name.seq[recode_start_whole:recode_end_whole]

upstream_dna = gene_name.seq[:recode_start_whole]

downstream_dna = gene_name.seq[recode_end_whole:]

 210

#make dictionary of codons with number keys and one with numbers

and amino acids

codons_to_recode = cdict.codon_dict_maker(WT_template_seq,

key_format= "number")

codons_to_recode_let_num = cdict.codon_dict_maker(WT_template_seq,

key_format= "letter-number")

#make reference dictionaries for all the amino acids

ref_codon_table_df =

rif.codon_table_processor(codon_freq_input_file)

ref_codons = cdf.ref_codon_table_freqs(ref_codon_table_df)

if syn_recode_type == "matched":

 #use that dictionary to create a new one with the specific

frequency values

 codons_to_recode_freqs =

cdf.codon_frequency_collector(input_dict = codons_to_recode,

reference_dict = ref_codons, type = "value")

 #create a dictionary with all the frequencies for the amino

acids in this sequence for each codon

 codons_to_recode_all_freqs =

cdf.codon_frequency_collector(input_dict = codons_to_recode,

reference_dict = ref_codons, type = "dataframe")

 #calculate the differences for each possible codon to the

original

 recode_freq_diffs =

cdf.codon_frequency_difference_calc(codons_to_recode_let_num,

ref_codons)

 #add the differences in frequency to "the" dataframe

 codons_to_recode_abs_diffs =

cdf.codon_freq_diff_adder(codons_to_recode_let_num

,codons_to_recode_all_freqs, recode_freq_diffs)

 #choose which codons to use for synonymous recoding

 codons_to_use_syn =

cdf.codon_freq_selector(codons_to_recode_abs_diffs)

if syn_recode_type == "highest" or syn_recode_type == "lowest":

 #use that dictionary to create a new one with the specific

frequency values

 codons_to_recode_freqs =

cdf.codon_frequency_collector(input_dict = codons_to_recode,

reference_dict = ref_codons, type = "value")

 211

 #create a dictionary with all the frequencies for the amino

acids in this sequence for each codon

 codons_to_recode_all_freqs =

cdf.codon_frequency_collector(input_dict = codons_to_recode,

reference_dict = ref_codons, type = "dataframe")

 codons_to_recode_choices_freqs = {}

 #remove input codon from list

 for let_num, seq in codons_to_recode_let_num.items():

 if seq == Seq.Seq("ATG") or seq == Seq.Seq("TGG"):

 codons_to_recode_choices_freqs[let_num] =

ref_codon_table_df.loc[ref_codon_table_df["DNA"] == str(seq)]

 else:

 current_df = codons_to_recode_all_freqs[let_num]

 codons_to_recode_choices_freqs[let_num] =

current_df.loc[current_df["DNA"] != str(seq)]

#make the list of codons to use depending on recoding type

 codons_to_use_syn = {}

 if syn_recode_type == "highest":

 for codon_num_let, seq_df in

codons_to_recode_choices_freqs.items():

 max_freq_codon = max(seq_df["Fraction"])

 mutated_res_df_chosen = seq_df.loc[seq_df["Fraction"]

== max_freq_codon, "DNA"]

 #tie breaker for instances with same fraction usage -

hopefully number won't ever have duplicate values

 if len(mutated_res_df_chosen) > 1:

 max_number_codon = max(seq_df["Number"])

 max_number_codon_seq = seq_df.loc[seq_df["Number"]

== max_number_codon, "DNA"].item()

 codons_to_use_syn[codon_num_let] =

max_number_codon_seq

 else:

 codons_to_use_syn[codon_num_let] =

seq_df.loc[seq_df["Fraction"] == max_freq_codon, "DNA"].item()

 if syn_recode_type == "lowest":

 for codon_num_let, seq_df in

codons_to_recode_choices_freqs.items():

 min_freq_codon = min(seq_df["Fraction"])

 mutated_res_df_chosen = seq_df.loc[seq_df["Fraction"]

== min_freq_codon, "DNA"]

 #tie breaker

 if len(mutated_res_df_chosen) > 1:

 min_number_codon = max(seq_df["Number"])

 min_number_codon_seq = seq_df.loc[seq_df["Number"]

== min_number_codon, "DNA"].item()

 212

 codons_to_use_syn[codon_num_let] =

min_number_codon_seq

 else:

 codons_to_use_syn[codon_num_let] =

seq_df.loc[seq_df["Fraction"] == min_freq_codon, "DNA"].item()

if syn_recode_type == "alternating matched" or syn_recode_type ==

"alternating random" or syn_recode_type == "alternating highest"

or syn_recode_type == "alternating lowest":

 #check input has been given suitably

 if alternating_repeat == "N/A" or alternating_repeat <= 0 or

pd.isna(alternating_repeat) == True:

 print("\n\n\n***ERROR: No value or an invalid value was

set for the alternating pattern of the codons to

recode.***\n\n\n")

 alternating_repeat = int(input("Please enter a positive

integrer for the alternating repeat value: "))

 if alternating_repeat > (0.5 * num_of_codons_to_recode):

 proceed_alt = input("The chosen repeat value is greater

than half of the total number of codons being recoded so only 2 or

fewer codons will be mutated.\n\nDo you wish to proceed? Y/N \n")

 if proceed_alt == "N" or proceed_alt == "n" or proceed_alt

== "NO" or proceed_alt == "No" or proceed_alt == "no":

 alternating_repeat = int(input("Please enter a

positive integer for the alternating repeat value: "))

 elif proceed_alt == "Y" or proceed_alt =="y" or

proceed_alt =="YES" or proceed_alt == "Yes" or proceed_alt ==

"yes":

 pass

 else:

 proceed_alt = input("\n\nThe input given is not valid.

Please try again.\n\nThe chosen repeat value is greater than half

of the total number of codons being recoded so only 2 or fewer

codons will be mutated.\n\nDo you wish to proceed? Y/N \n")

 if proceed_alt == "N" or proceed_alt == "n" or

proceed_alt == "NO" or proceed_alt == "No" or proceed_alt == "no":

 alternating_repeat = int(input("\nPlease enter a

positive integer for the alternating repeat value: "))

 elif proceed_alt == "Y" or proceed_alt =="y" or

proceed_alt =="YES" or proceed_alt == "Yes" or proceed_alt ==

"yes":

 pass

 else:

 proceed_alt = input("\n\nThe input given is not

valid. Please try again.\n\nThe chosen repeat value is greater

than half of the total number of codons being recoded so only 2 or

fewer codons will be mutated.\n\nDo you wish to proceed? Y/N \n")

 if proceed_alt == "N" or proceed_alt == "n" or

proceed_alt == "NO" or proceed_alt == "No" or proceed_alt == "no":

 alternating_repeat = int(input("\nPlease enter

a positive integer for the alternating repeat value: "))

 213

 elif proceed_alt == "Y" or proceed_alt =="y" or

proceed_alt =="YES" or proceed_alt == "Yes" or proceed_alt ==

"yes":

 pass

 else:

 print("\n-------------------------------------

-----------------------")

 print(f"\n***Warning, your input was invalid

so the code will continue with the value given. Your repair

template will recode every {alternating_repeat} codons. If you do

not want this, modify the input spreadsheet and rerun the

programme.***")

 if alternating_repeat == "N/A" or alternating_repeat <= 0 or

pd.isna(alternating_repeat) == True:

 print("\n\n\n***ERROR: An invalid value was set for the

alternating pattern of the codons to recode.***\n\n\n")

 alternating_repeat = int(input("Please enter a positive

integer for the alternating repeat value: "))

 if alternating_repeat == "N/A" or alternating_repeat <= 0 or

pd.isna(alternating_repeat) == True:

 print("\n\n\n***ERROR: An invalid value was set for the

alternating pattern of the codons to recode.***\n\n\n")

 alternating_repeat = int(input("Last chance - please enter

a positive integer for the alternating repeat value: "))

 if alternating_repeat == "N/A" or alternating_repeat <= 0 or

pd.isna(alternating_repeat) == True:

 print("\n\n\n\nYou failed to provide an appropriate input

so the programme will be cancelled.\n\nIf you wish to try again,

either modify the input spreadsheet or provide a suitable value

when prompted in the console.\n")

 raise SystemExit

if syn_recode_type == "alternating matched" or syn_recode_type ==

"alternating random":

 #determine which codon numbers in range are to be mutated and

which are not

 num_of_codons_to_mutate = int(num_of_codons_to_recode /

alternating_repeat)

 n_terms = list(range(num_of_codons_to_mutate))

 codon_nums_to_recode = []

 for n in n_terms:

 codon_num = n * alternating_repeat

 codon_nums_to_recode.append(codon_num)

 #ensure that target codon is always recoded even if it doesn't

fit the alternating pattern

 if target_codon_no not in codon_nums_to_recode:

 codon_nums_to_recode.append(target_codon_no)

 214

 codon_nums_all = list(codons_to_recode.keys())

 #split the codons to be mutated into a separate dictionary

from the ones to stay the same

 codons_to_keep_WT = {}

 specific_codons_to_recode = {}

 for numbers in codon_nums_all:

 if numbers not in codon_nums_to_recode:

 codons_to_keep_WT[numbers] = codons_to_recode[numbers]

 if numbers in codon_nums_to_recode:

 specific_codons_to_recode[numbers] =

codons_to_recode[numbers]

 for numbers in codon_nums_to_recode:

 if numbers not in codon_nums_to_recode:

 codons_to_keep_WT = codons_to_recode[numbers]

 if syn_recode_type == "alternating matched":

 #on only the codons to recode

 #use that dictionary to create a new one with the specific

frequency values

 codons_to_recode_freqs =

cdf.codon_frequency_collector(input_dict = codons_to_recode,

reference_dict = ref_codons, type = "value")

 #create a dictionary with all the frequencies for the

amino acids in this sequence for each codon

 codons_to_recode_all_freqs =

cdf.codon_frequency_collector(input_dict = codons_to_recode,

reference_dict = ref_codons, type = "dataframe")

 #calculate the differences for each possible codon to the

original

 recode_freq_diffs =

cdf.codon_frequency_difference_calc(codons_to_recode_let_num,

ref_codons)

 #add the differences in frequency to "the" dataframe

 codons_to_recode_abs_diffs =

cdf.codon_freq_diff_adder(codons_to_recode_let_num

,codons_to_recode_all_freqs, recode_freq_diffs)

 #choose which codons to use for synonymous recoding

 codons_to_use_syn =

cdf.codon_freq_selector(codons_to_recode_abs_diffs)

 if syn_recode_type == "alternating random":

 #add letters to dictionary

 215

 specific_codons_to_recode_let_num = {}

 for keys, seq in specific_codons_to_recode.items():

 let_num = str(seq.translate()) + str(keys)

 specific_codons_to_recode_let_num[let_num] = seq

 #make a dictionary of the alternate codons to the input

sequence

 alt_codons_to_recode =

cdict.alt_codons(specific_codons_to_recode_let_num)

 #randomly select which of these to use for each codon

 codons_to_use_syn =

cdict.Syn_random_recoder(alt_codons_to_recode)

 #combine the unchanged codons with the changed codons

 codons_to_keep_WT_let_num = {}

 for codon_num, seq in codons_to_keep_WT.items():

 translation = seq.translate()

 codon_num_let = str(translation) + str(codon_num)

 codons_to_keep_WT_let_num[codon_num_let] = seq

 codons_to_use_syn.update(codons_to_keep_WT_let_num)

if syn_recode_type == "alternating highest" or syn_recode_type ==

"alternating lowest":

 num_of_codons_to_mutate = int(num_of_codons_to_recode /

alternating_repeat)

 n_terms = list(range(num_of_codons_to_mutate))

 codon_nums_to_recode = []

 for n in n_terms:

 codon_num = n * alternating_repeat

 codon_nums_to_recode.append(codon_num)

 if target_codon_no not in codon_nums_to_recode:

 codon_nums_to_recode.append(target_codon_no)

 codon_nums_all = list(codons_to_recode.keys())

 codons_to_keep_WT = {}

 specific_codons_to_recode = {}

 for numbers in codon_nums_all:

 if numbers not in codon_nums_to_recode:

 translate = codons_to_recode[numbers].translate()

 let_num = str(translate) + str(numbers)

 codons_to_keep_WT[let_num] = codons_to_recode[numbers]

 216

 if numbers in codon_nums_to_recode:

 #translate = codons_to_recode[numbers].translate()

 #let_num = str(translate) + str(numbers)

 specific_codons_to_recode[numbers] =

codons_to_recode[numbers]

 for numbers in codon_nums_to_recode:

 if numbers not in codon_nums_to_recode:

 codons_to_keep_WT = codons_to_recode[numbers]

 #use that dictionary to create a new one with the specific

frequency values

 codons_to_recode_freqs =

cdf.codon_frequency_collector(input_dict =

specific_codons_to_recode, reference_dict = ref_codons, type =

"value")

 #create a dictionary with all the frequencies for the amino

acids in this sequence for each codon

 codons_to_recode_all_freqs =

cdf.codon_frequency_collector(input_dict =

specific_codons_to_recode, reference_dict = ref_codons, type =

"dataframe")

 codons_to_recode_choices_freqs = {}

 #remove input codon from list unless it's Met or Trp

 for let_num, df in codons_to_recode_all_freqs.items():

 input_codon = codons_to_recode_let_num[let_num]

 if input_codon == Seq.Seq("ATG") or input_codon ==

Seq.Seq("TGG"):

 codons_to_recode_choices_freqs[let_num] =

ref_codon_table_df.loc[ref_codon_table_df["DNA"] ==

str(input_codon)]

 else:

 current_df = codons_to_recode_all_freqs[let_num]

 codons_to_recode_choices_freqs[let_num] =

current_df.loc[current_df["DNA"] != str(input_codon)]

 #recode based on input type

 codons_to_use_syn = {}

 if syn_recode_type == "alternating highest":

 for codon_num_let, seq_df in

codons_to_recode_choices_freqs.items():

 max_freq_codon = max(seq_df["Fraction"])

 max_freq_codon_seq = seq_df.loc[seq_df["Fraction"] ==

max_freq_codon, "DNA"]

 if len(max_freq_codon_seq) > 1:

 max_number_codon = max(seq_df["Number"])

 max_freq_codon_seq = seq_df.loc[seq_df["Number"]

== max_number_codon, "DNA"].item()

 217

 codons_to_use_syn[codon_num_let] =

max_freq_codon_seq

 else:

 codons_to_use_syn[codon_num_let] =

max_freq_codon_seq.item()

 if syn_recode_type == "alternating lowest":

 for codon_num_let, seq_df in

codons_to_recode_choices_freqs.items():

 min_freq_codon = min(seq_df["Fraction"])

 min_freq_codon_seq = seq_df.loc[seq_df["Fraction"] ==

min_freq_codon, "DNA"]

 if len(min_freq_codon_seq) > 1:

 min_number_codon = min(seq_df["Number"])

 min_freq_codon_seq = seq_df.loc[seq_df["Number"]

== min_number_codon, "DNA"].item()

 codons_to_use_syn[codon_num_let] =

min_freq_codon_seq

 else:

 codons_to_use_syn[codon_num_let] =

min_freq_codon_seq.item()

 #combine the unchanged codons with the changed codons

 codons_to_keep_WT_let_num = {}

 for codon_num, seq in codons_to_keep_WT.items():

 codons_to_keep_WT_let_num[codon_num] = seq

 codons_to_use_syn.update(codons_to_keep_WT_let_num)

if syn_recode_type == "random":

 #make a dictionary of the alternate codons to the input

sequence

 alt_codons_to_recode =

cdict.alt_codons(codons_to_recode_let_num)

 #randomly select which of these to use for each codon

 codons_to_use_syn =

cdict.Syn_random_recoder(alt_codons_to_recode)

#add in the nonsynonymous mutation

if nonsyn_recode_type == "highest" or nonsyn_recode_type ==

"lowest":

 218

 nonsyn_ref_dict = ref_codons

if nonsyn_recode_type == "random":

 nonsyn_ref_dict = cdict.alt_codons(codons_to_recode_let_num)

 nonsyn_ref_dict = {output_AA :

cdict.ref_codon_table(output_AA)}

codons_to_use_nonsyn = cdf.non_syn_mutator(target_AA,

target_codon_no, new_AA = output_AA, input_dict =

codons_to_use_syn, type = nonsyn_recode_type, ref_dict =

nonsyn_ref_dict)

#construct the final recoded sequences

synonymous_repair = stitch.sequence_constructor(codons_to_use_syn,

type = "letter-number")

nonsynonymous_repair =

stitch.sequence_constructor(codons_to_use_nonsyn, type = "letter-

number")

#check all the modifications were as expected

#adjust target codon number to what it would be by normal counting

rather than python counting

target_codon_no_not_py = target_codon_no + 1

val.translate_checker(synonymous_repair, target_codon_no_not_py,

target_AA)

val.translate_checker(nonsynonymous_repair,

target_codon_no_not_py, output_AA)

#create the final repair sequence including the homology arms

upstream_hom_arm = gene_name.seq[(recode_start_whole -

hom_arm_length):recode_start_whole]

downstream_hom_arm = gene_name.seq[recode_end_whole:

(recode_end_whole + hom_arm_length)]

WT_entire_repair_region = upstream_hom_arm + WT_template_seq +

downstream_hom_arm

entire_syn_repair = upstream_hom_arm + synonymous_repair +

downstream_hom_arm

entire_nonsyn_repair = upstream_hom_arm + nonsynonymous_repair +

downstream_hom_arm

#construct "gene" sequences for primer design

integrated_synonymous, WT_recode_region =

stitch.mut_seq_integrator(repair_seq = synonymous_repair, ref_seq

 219

= gene_name.seq, repair_start = recode_start_whole, repair_end =

recode_end_whole, WT_repair_seq= "Yes")

integrated_nonsynonymous = stitch.mut_seq_integrator(repair_seq =

nonsynonymous_repair, ref_seq = gene_name.seq, repair_start =

recode_start_whole, repair_end = recode_end_whole, WT_repair_seq=

"No")

#design screening primers

screening_primers_df_syn =

primers.screening_primer_designer(gene_name.seq,

integrated_synonymous, recode_start_whole, recode_end_whole)

screening_primers_df_nonsyn =

primers.screening_primer_designer(gene_name.seq,

integrated_nonsynonymous, recode_start_whole, recode_end_whole)

#design primers to generate the repair template

syn_repair_template_primers =

primers.repair_primer_designer(entire_syn_repair, hom_arm_length,

downstream_dna)

nonsyn_repair_template_primers =

primers.repair_primer_designer(entire_nonsyn_repair,

hom_arm_length, downstream_dna)

#repair_template_primers = [syn_repair_template_primers,

nonsyn_repair_template_primers]

#repair_template_primers_df =

pd.DataFrame(repair_template_primers)

#repair_template_primers_df.index = ["Synonymous repair",

"Nonsynonymous repair"]

#do an alignment

#create a pariwise alignment object

aligner = Align.PairwiseAligner(target_internal_open_gap_score = -

10.0, query_internal_open_gap_score = -10.0)

syn_alignment = aligner.align(WT_entire_repair_region,

entire_syn_repair)

for alignment1 in sorted(syn_alignment):

 #print("Score = %.1f:" % alignment1.score)

 #print(alignment1)

 syn_score = alignment1.score

alignment_str_syn = str(alignment1)

alignment_str_syn = alignment_str_syn.replace("target", "WT

sequence").replace("query", "Syn. repair").replace("\n

", "\n ")

alignment_str_syn = alignment_str_syn.replace("Syn. repair

", "Syn. repair ")

#print(alignment_str_syn)

nonsyn_alignment = aligner.align(WT_entire_repair_region,

entire_nonsyn_repair)

for alignment2 in sorted(syn_alignment):

 220

 #print("Score = %.1f:" % alignment2.score)

 nonsyn_score = alignment2.score

alignment_str_nonsyn = str(alignment2)

alignment_str_nonsyn = alignment_str_nonsyn.replace("target", "WT

sequence").replace("query", "Nonsyn. repair").replace("\n

", "\n ")

alignment_str_nonsyn = alignment_str_nonsyn.replace("Nonsyn.

repair ", "Nonsyn. repair ")

#print(alignment_str_nonsyn)

#format some outputs

WT_repair_seq_spaced =

formats.codon_spacing(WT_entire_repair_region)

syn_repair_spaced = formats.codon_spacing(entire_syn_repair)

nonsyn_repair_spaced = formats.codon_spacing(entire_nonsyn_repair)

WT_repair_translate = WT_entire_repair_region.translate()

syn_repair_translate = entire_syn_repair.translate()

nonsyn_repair_translate = entire_nonsyn_repair.translate()

WT_repair_translate_spaced =

formats.protein_align_codon(WT_repair_translate)

syn_repair_translate_spaced =

formats.protein_align_codon(syn_repair_translate)

nonsyn_repair_translate_spaced =

formats.protein_align_codon(nonsyn_repair_translate)

syn_repair_mutations_count =

val.mutation_counter(entire_syn_repair, WT_entire_repair_region)

nonsyn_repair_mutations_count =

val.mutation_counter(entire_nonsyn_repair,

WT_entire_repair_region)

syn_repair_primers_output = ""

for category, item in syn_repair_template_primers.items():

 if type(item) == float:

 item = '{:.1f}'.format(item)

 syn_repair_primers_output += category

 syn_repair_primers_output += ": "

 syn_repair_primers_output += str(item)

 syn_repair_primers_output += "\n"

nonsyn_repair_primers_output = ""

for category, item in nonsyn_repair_template_primers.items():

 if type(item) == float:

 item = '{:.1f}'.format(item)

 nonsyn_repair_primers_output += category

 nonsyn_repair_primers_output += ": "

 nonsyn_repair_primers_output += str(item)

 nonsyn_repair_primers_output += "\n"

 221

if syn_recode_type == "alternating matched" or syn_recode_type ==

"alternating highest" or syn_recode_type == "alternating lowest"

or syn_recode_type == "alternating random":

 alternating_info = f"Alternating recoding every

{alternating_repeat} codons"

else:

 alternating_info = ""

output_file = open(f"{job_name}.txt", "w")

file_lines = ["Job request details\n",

 f"Job name: {job_name}\n",

 f"Target amino acid:

{target_AA}{target_res_num}{output_AA}\n",

 f"Synonymous recoding type: {syn_recode_type}\n",

 f"Nonsynonymous recode type:

{nonsyn_recode_type}\n",

 f"Homology arm length (bp): {hom_arm_length}\n",

 f"Recoding region length (bp):

{recode_region_length}\n",

 f"Total repair length (bp): {(2*hom_arm_length) +

recode_region_length}\n",

 f"{alternating_info}\n",

 "\n",

 "\n",

 "Repair templates\n",

 f"WT repair region sequence:

\t\t{WT_repair_seq_spaced}\n",

 f"WT translation:

\t\t\t{WT_repair_translate_spaced}\n",

 f"Synonymous repair region sequence:

\t{syn_repair_spaced}\n",

 f"Synonymous repair translation:

\t\t{syn_repair_translate_spaced}\n",

 f"Nonsynonymous repair region sequence:

\t{nonsyn_repair_spaced}\n",

 f"Nonsynonymous repair translation:

\t{nonsyn_repair_translate_spaced}\n",

 "\n",

 f"Number of mutations in the synonymous repair

template: {syn_repair_mutations_count}\n",

 f"Number of mutations in the nonsynonymous repair

template: {nonsyn_repair_mutations_count}\n",

 "\n",

 "\n",

 "Screening primers\n",

 "Synonymous repair\n",

 "\n",

 f"{screening_primers_df_syn}\n",

 "\n",

 "\n",

 "Nonsynonymous primers\n"

 f"{screening_primers_df_nonsyn}",

 "\n",

 222

 "\n",

 "Repair template primers\n",

 "Synonymous\n",

 f"{syn_repair_primers_output}\n",

 "\n",

 "Nonsynonymous\n",

 f"{nonsyn_repair_primers_output}\n",

 "\n",

 f"WT sequence (no spaces):

{WT_entire_repair_region}\n",

 f"Synonymous sequence (no spaces):

{entire_syn_repair}\n",

 f"Nonsynonymous sequence (no spaces):

{entire_nonsyn_repair}\n",

 "\n",

 "\n",

 "Alignments\n",

 "Synonymous Repair\n",

 f"Score = {syn_score}\n",

 f"{alignment_str_syn}\n",

 "\n",

 "Nonsynonymous\n",

 f"Score = {nonsyn_score}\n",

 f"{alignment_str_nonsyn}\n"

]

output_file.writelines(file_lines)

output_file.close()

#print confirmation message to make it clearer that it worked

print(f"\n\n\nYour repair template designs have completed

successfully. Please check your folder for a file with the name

'{job_name}.txt'\n")

print("\t.\t.\n", "\n\t___/\n\n\n")

 223

7.2.11 READING INPUT FILE
-*- coding: utf-8 -*-

"""

Created on Sat Jan 27 10:16:59 2024

@author: sharl

"""

import pandas as pd

#from Bio import SeqIO

from Bio import Seq

import numpy as np

#import openpyxl

#from Bio import Align

import io

def codon_table_processor(filename):

 """Converts a text file with data copied from

https://www.kazusa.or.jp/ codon tables into a dataframe.

 Codon tables must have selected a genetic code in the format

options and text file does not include headers.

 Note: uracils are changed to thymines

 Arguments

 filename -- filename of the text file including extension as a

string

 Outputs a dataframe"""

 raw_freq = open(filename, "r").read()

 headers = ["DNA", "Protein", "Fraction", "Frequency",

"Number"]

 raw_freq_str = str(raw_freq)

 raw_freq_str_lines = raw_freq_str.replace(") ",

")\n").replace("\n ", "\n")

 raw_freq_str_lines = raw_freq_str_lines.replace("(",

"").replace(")","").replace("(", "").replace(" ", " ")

 raw_freq_str_lines_Ts = raw_freq_str_lines.replace("U", "T")

 raw_freq_str_lines_Ts_tabs = raw_freq_str_lines_Ts.replace("

", "\t")

 df = pd.read_csv(io.StringIO(raw_freq_str_lines_Ts_tabs),

sep="\t", header = None)

 df.columns = headers

 return df

 224

7.2.12 CODON DICTIONARIES
-*- coding: utf-8 -*-

"""

Created on Wed Jan 24 08:47:49 2024

@author: ceh560

"""

from Bio import SeqIO

from Bio import Seq

import random

def ref_codon_table(amino_acid):

 """"A searchable dictionary for all possible standard triplet

codes for each amino acid.

 Arguments

 amino_acid -- single letter code for amino acid as a string

 Returns a list of possible triplet codes for that amino

acid."""

 Ala_codons = [Seq.Seq('GCT'), Seq.Seq('GCC'), Seq.Seq('GCA'),

Seq.Seq('GCG')]

 Cys_codons = [Seq.Seq('TGT'), Seq.Seq('TGC')]

 Asp_codons = [Seq.Seq('GAT'), Seq.Seq('GAC')]

 Glu_codons = [Seq.Seq('GAA'), Seq.Seq('GAG')]

 Phe_codons = [Seq.Seq('TTT'), Seq.Seq('TTC')]

 Gly_codons = [Seq.Seq('GGT'), Seq.Seq('GGC'), Seq.Seq('GGA'),

Seq.Seq('GGG')]

 His_codons = [Seq.Seq('CAT'), Seq.Seq('CAC')]

 Ile_codons = [Seq.Seq('ATT'), Seq.Seq('ATC'), Seq.Seq('ATA')]

 Lys_codons = [Seq.Seq('AAA'), Seq.Seq('AAG')]

 Leu_codons = [Seq.Seq('CTT'), Seq.Seq('CTC'), Seq.Seq('CTA'),

Seq.Seq('CTG'), Seq.Seq('TTG'), Seq.Seq('TTA')]

 Met_codons = [Seq.Seq('ATG'), Seq.Seq('ATG')]

 Asn_codons = [Seq.Seq('AAT'), Seq.Seq('AAC')]

 Pro_codons = [Seq.Seq('CCT'), Seq.Seq('CCC'), Seq.Seq('CCA'),

Seq.Seq('CCG')]

 Gln_codons = [Seq.Seq('CAA'), Seq.Seq('CAG')]

 Arg_codons = [Seq.Seq('CGC'), Seq.Seq('CGT'), Seq.Seq('CGA'),

Seq.Seq('CGG'), Seq.Seq('AGA'), Seq.Seq('AGG')]

 Ser_codons = [Seq.Seq('AGT'), Seq.Seq('AGC'), Seq.Seq('TCT'),

Seq.Seq('TCC'), Seq.Seq('TCA'), Seq.Seq('TCG')]

 Thr_codons = [Seq.Seq('ACT'), Seq.Seq('ACC'), Seq.Seq('ACA'),

Seq.Seq('ACG')]

 Val_codons = [Seq.Seq('GTT'), Seq.Seq('GTC'), Seq.Seq('GTA'),

Seq.Seq('GTG')]

 Trp_codons = [Seq.Seq('TGG'), Seq.Seq('TGG')]

 Tyr_codons = [Seq.Seq('TAT'), Seq.Seq('TAC')]

 Stop_codons = [Seq.Seq('TAA'), Seq.Seq('TAG'), Seq.Seq('TGA')]

 ref_codon_seq_all = {"A": Ala_codons,

 "C": Cys_codons,

 "D": Asp_codons,

 "E": Glu_codons,

 225

 "F": Phe_codons,

 "G": Gly_codons,

 "H": His_codons,

 "I": Ile_codons,

 "K": Lys_codons,

 "L": Leu_codons,

 "M": Met_codons,

 "N": Asn_codons,

 "P": Pro_codons,

 "Q": Gln_codons,

 "R": Arg_codons,

 "S": Ser_codons,

 "T": Thr_codons,

 "V": Val_codons,

 "W": Trp_codons,

 "Y": Tyr_codons,

 "*": Stop_codons

 }

 return ref_codon_seq_all[amino_acid]

#convert the tupules to a dictionary with a custom function

def DictConvert(tup, dic):

 for a, b in tup:

 dic.setdefault(a, b)

 return dic

def protein_dict_maker(input_seq):

 """"Converts a DNA sequence into a dictionary of the

translated amino acids of each codon, numbered by the order of

appearance in the sequence. """

 codon_length = 3

 codon_sequences_list =

[input_seq[current_base:current_base+codon_length] for

current_base in range(0, len(input_seq), codon_length)]

 codon_no_seq_tupule = list(enumerate(codon_sequences_list))

 dict_of_AAs = {}

 DictConvert(codon_no_seq_tupule, dict_of_AAs)

 no_of_codons = int(len(input_seq)/3)

 codon_nos_all = list(range(0, no_of_codons , 1))

 for codon_no, codon_seq in dict_of_AAs.items():

 trans_codon = codon_seq.translate()

 #print(trans_codon)

 if codon_no in codon_nos_all:

 dict_of_AAs[codon_no] = trans_codon

 return dict_of_AAs

 226

def codon_dict_maker(input_seq = None, key_format = "number"):

 """Converts a DNA sequence into a dictionary of the composite

codons.

 Keyword Arguments

 input_seq -- the DNA sequence to convert

 key_format -- 'number' gives keys as number in the sequence

(default), 'letter-number' gives the keys in the form amino acid

single letter code followed by the number in the sequence.

 Returns a dictionary with the desired format.

 """

 codon_length = 3

 codon_sequences_list =

[input_seq[current_base:current_base+codon_length] for

current_base in range(0, len(input_seq), codon_length)]

 codon_no_seq_tupule = list(enumerate(codon_sequences_list))

 #make a dictionary and convert the tupules into a dictionary

 dict_of_codons = {}

 if key_format == "number":

 DictConvert(codon_no_seq_tupule, dict_of_codons)

 if key_format == "letter-number":

 DictConvert(codon_no_seq_tupule, dict_of_codons)

 dict_of_codons2 = {}

 for codon_no, codon_seq in dict_of_codons.items():

 trans_codon = codon_seq.translate()

 trans_codon_name = str(trans_codon)

 codon_no_name = str(codon_no)

 codon_no_plus_name = trans_codon_name + codon_no_name

 dict_of_codons2[codon_no_plus_name] = codon_seq

 dict_of_codons = dict_of_codons2

 return dict_of_codons

def alt_codons(input_dict):

 """Creates a dictionary of the alternate codon sequences for

the same amino acid as the input.

 Arguments

 input_dict -- dictionary in the form {single-letter code +

number: original codon sequence}

 Outputs a dictionary in the form {single-letter code + number:

list of alternate codons}

 227

 Note: Methionine and Tyrosine will output their only codon"""

 alt_codons_dict = {}

 for codon_name, codon_seq in input_dict.items():

 trans_codon = codon_name[0]

 #make a list of the codons for each AA minus the one that

was used in the WT

 current_AA_codon_list = list(ref_codon_table(trans_codon))

 alt_AA_codons_list = current_AA_codon_list

 alt_AA_codons_list.remove(codon_seq)

 alt_codons_dict[codon_name]= alt_AA_codons_list

 return alt_codons_dict

def Syn_random_recoder(input_dict):

 """Creates a dictionary of the a synonymous codon sequence for

the same amino acid as the input.

 Chosen codon will be randomly chosen from the alternate codons

for that amino acid.

 Arguments

 input_dict -- dictionary in the form {single-letter code +

number: list of alternate codon sequences}

 Outputs a dictionary in the form {single-letter code + number:

randomly chosen alternate codon}

 Note: Methionine and Tyrosine will output their only codon."""

 codons_for_mutated_seq = {}

 for codon_no_name, chosen_codon_seq in input_dict.items():

 chosen_AA = random.choice(chosen_codon_seq)

 codons_for_mutated_seq[codon_no_name] = chosen_AA

 return codons_for_mutated_seq

 228

7.2.13 CODON DATAFRAMES
-*- coding: utf-8 -*-

"""

Created on Wed Jan 24 13:31:23 2024

@author: ceh560

"""

import pandas as pd

from Bio import SeqIO

from Bio import Seq

import numpy as np

from Bio import Align

import random

import codon_dictionaries as cdict

def ref_codon_table_freqs_excel(input_file = None):

 """Converts an excel spreadsheet of the frequency data into a

dictionary searchable by single-letter amino acid.

 Arguments

 input_file -- the filename of the reference spreadsheet with

file extension as a string

 Ouputs a dictionary in the form {single-letter code: data

frame of frequency data}"""

 codon_usage_df = pd.read_excel(input_file)

 Ala_df = codon_usage_df.query("Protein == 'A'")

 Cys_df = codon_usage_df.query("Protein == 'C'")

 Asp_df = codon_usage_df.query("Protein == 'D'")

 Glu_df = codon_usage_df.query("Protein == 'E'")

 Phe_df = codon_usage_df.query("Protein == 'F'")

 Gly_df = codon_usage_df.query("Protein == 'G'")

 His_df = codon_usage_df.query("Protein == 'H'")

 Ile_df = codon_usage_df.query("Protein == 'I'")

 Lys_df = codon_usage_df.query("Protein == 'K'")

 Leu_df = codon_usage_df.query("Protein == 'L'")

 Met_df = codon_usage_df.query("Protein == 'M'")

 Asn_df = codon_usage_df.query("Protein == 'N'")

 Pro_df = codon_usage_df.query("Protein == 'P'")

 Gln_df = codon_usage_df.query("Protein == 'Q'")

 Arg_df = codon_usage_df.query("Protein == 'R'")

 Ser_df = codon_usage_df.query("Protein == 'S'")

 Thr_df = codon_usage_df.query("Protein == 'T'")

 Val_df = codon_usage_df.query("Protein == 'V'")

 Trp_df = codon_usage_df.query("Protein == 'W'")

 Tyr_df = codon_usage_df.query("Protein == 'Y'")

 Stop_df = codon_usage_df.query("Protein == '*'")

 229

 dict_of_AAs_dfs_all = {"A": Ala_df,

 "C": Cys_df,

 "D": Asp_df,

 "E": Glu_df,

 "F": Phe_df,

 "G": Gly_df,

 "H": His_df,

 "I": Ile_df,

 "K": Lys_df,

 "L": Leu_df,

 "M": Met_df,

 "N": Asn_df,

 "P": Pro_df,

 "Q": Gln_df,

 "R": Arg_df,

 "S": Ser_df,

 "T": Thr_df,

 "V": Val_df,

 "W": Trp_df,

 "Y": Tyr_df,

 "*": Stop_df}

 return dict_of_AAs_dfs_all

def ref_codon_table_freqs(input_df = None):

 """ Converts a dataframe of the frequency data into a

dictionary, searchable by single-letter amino acid.

 Arguments

 input_file -- the filename of the reference spreadsheet with

file extension as a string

 Ouputs a dictionary in the form {single-letter code: data

frame of frequency data}"""

 codon_usage_df = input_df

 Ala_df = codon_usage_df.query("Protein == 'A'")

 Cys_df = codon_usage_df.query("Protein == 'C'")

 Asp_df = codon_usage_df.query("Protein == 'D'")

 Glu_df = codon_usage_df.query("Protein == 'E'")

 Phe_df = codon_usage_df.query("Protein == 'F'")

 Gly_df = codon_usage_df.query("Protein == 'G'")

 His_df = codon_usage_df.query("Protein == 'H'")

 Ile_df = codon_usage_df.query("Protein == 'I'")

 Lys_df = codon_usage_df.query("Protein == 'K'")

 Leu_df = codon_usage_df.query("Protein == 'L'")

 Met_df = codon_usage_df.query("Protein == 'M'")

 Asn_df = codon_usage_df.query("Protein == 'N'")

 Pro_df = codon_usage_df.query("Protein == 'P'")

 Gln_df = codon_usage_df.query("Protein == 'Q'")

 Arg_df = codon_usage_df.query("Protein == 'R'")

 Ser_df = codon_usage_df.query("Protein == 'S'")

 230

 Thr_df = codon_usage_df.query("Protein == 'T'")

 Val_df = codon_usage_df.query("Protein == 'V'")

 Trp_df = codon_usage_df.query("Protein == 'W'")

 Tyr_df = codon_usage_df.query("Protein == 'Y'")

 Stop_df = codon_usage_df.query("Protein == '*'")

 dict_of_AAs_dfs_all = {"A": Ala_df,

 "C": Cys_df,

 "D": Asp_df,

 "E": Glu_df,

 "F": Phe_df,

 "G": Gly_df,

 "H": His_df,

 "I": Ile_df,

 "K": Lys_df,

 "L": Leu_df,

 "M": Met_df,

 "N": Asn_df,

 "P": Pro_df,

 "Q": Gln_df,

 "R": Arg_df,

 "S": Ser_df,

 "T": Thr_df,

 "V": Val_df,

 "W": Trp_df,

 "Y": Tyr_df,

 "*": Stop_df}

 return dict_of_AAs_dfs_all

def codon_frequency_collector(input_dict, reference_dict, type =

"value"):

 """Creates a dictionary with the frequencies of the codons

used in the input dictionary.

 Arguments

 input_dict -- a dictionary of the codons used in the sequence

to assess in the form (when type = dataframe or value) {codon

number: sequence} or (when type = list) {single-letter code +

number: list of alternate codons}

 reference_dict -- a dictionary of the frequency data for all

codons in the form {single-letter code: data frame of frequency

data}

 type -- choice of collection of only a single frequency (type

= value, default), (type = dataframe) the frequencies for all the

codons for the amino acid the input codes for as a dataframe, or

(type = list) the frequencies for all the codons for the amino

acid the input codes for as a list.

 Value outputs a dictionary in the form {single-letter code +

codon number: frequency value}

 231

 Dataframe outputs a dictionary in the form {single-letter code

+ codon number: dataframe of frequencies for all codons}

 List outputs a dictionary in the form {single-letter code +

number: list of frequencies for all codons}

 """

 dict_of_codons_value = {}

 dict_of_codons_dataframe = {}

 dict_of_codons_list = {}

 if type == "value" or type == "dataframe":

 for codon_no, codon_seq in input_dict.items():

 #create the keys in the form AA single letter code +

codon number

 trans_codon = codon_seq.translate()

 trans_codon_name = str(trans_codon)

 codon_no_name = str(codon_no)

 codon_no = trans_codon_name + codon_no_name

 #find the data frame corrsponding to the relevant AA

 current_AA_df = reference_dict[trans_codon]

 #find the frequency value for the input sequence codon

 codon_seq = str(codon_seq)

 relevant_seq_freq_row =

current_AA_df.loc[current_AA_df["DNA"]==codon_seq]

 #collect only the frequency value

 relevant_seq_freq =

np.array(relevant_seq_freq_row["Fraction"])

 relevant_seq_freq = float(relevant_seq_freq)

 #relevant_seq_freq = np.vectorize(relevant_seq_freq)

 #add the frequency value to dictionary

 dict_of_codons_value[codon_no] = relevant_seq_freq

 #to a second dictionary, add the relevant data frames

(needed later)

 dict_of_codons_dataframe[codon_no] =

current_AA_df.copy()

 if type == "list":

 for codon_no_name, codon_seqs in input_dict.items():

 trans_codon = codon_no_name[0]

 current_AA_df = reference_dict[trans_codon]

 #collect only the frequency value

 relevant_seq_freq = list(current_AA_df["Fraction"])

 dict_of_codons_list[codon_no_name] = relevant_seq_freq

 232

 if type == "dataframe":

 return dict_of_codons_dataframe

 if type == "value":

 return dict_of_codons_value

 if type == "list":

 return dict_of_codons_list

def codon_frequency_difference_calc(input_dict, ref_dict):

 """Creates a dictionary of the absolute frequency differences

between an input codon and all other codons in a site-specific

manner.

 Arguments

 input_codon_dict -- a dictionary of sequences to compare to in

the form {single-letter code + number: sequence}

 ref_codon_dict -- a dictionary of dataframes of frequency

usage data in the form {single-letter code: dataframe}

 Outputs a dictionary in the form {single-letter code + number:

list of absolute differences in frequency"""

 alt_codon_dict = {}

 for codon_no_name, codon_seqs in input_dict.items():

 trans_codon = codon_no_name[0]

 current_AA_df = ref_dict[trans_codon]

 #collect only the frequency value

 relevant_seq_freq = list(current_AA_df["Fraction"])

 alt_codon_dict[codon_no_name] = relevant_seq_freq

 alt_codons_freqs_diff = {}

 for codon_no_name, codon_freqs in alt_codon_dict.items():

 #creating the keys as the codon number and translated

letter

 ref_codon_seq = input_dict[codon_no_name]

 #find the dataframe for the relevant AA from the

dictionary of dataframes

 trans_codon = ref_codon_seq.translate()

 current_AA_df = ref_dict[trans_codon]

 #find the triplet code to compare to from the previous

dictionary with the DNA sequences from the input

 relevant_seq = input_dict[codon_no_name]

 233

 ref_codon_freq =

current_AA_df.loc[current_AA_df["DNA"]==relevant_seq]

 #collect only the frequency value from the data frame

 relevant_seq_freq = np.array(ref_codon_freq["Fraction"])

 #relevant_seq_freq = np.vectorize(relevant_seq_freq)

 relevant_seq_freq = float(relevant_seq_freq)

 #make a list of the values of the differences for each of

the possible codons and add that to a dictionary which links these

to their respective codon

 codon_freqs_diff = []

 for frequency in codon_freqs:

 frequency_diff = abs(frequency - relevant_seq_freq)

 codon_freqs_diff.append(frequency_diff)

 alt_codons_freqs_diff[codon_no_name] =

codon_freqs_diff

 return alt_codons_freqs_diff

def codon_freq_diff_adder(dict_of_codons, dict_of_dfs, diff_dict):

 """Creates a dictionary with a modified data frame to the

input to include absolute differences

 Arguments

 dict_of_codons -- a dictionary in the form of {single-letter

code + number: sequence}

 dict_of_dfs -- a dictionary in the form of {single-letter code

+ number: dataframe for all codons for that amino acid}

 diff_dict -- a dictionary in the form of {single-letter code +

number: list of absolute differences}

 Note: values in the lists in diff_dict must be in the same

order as the values they correspond to in the dataframe in

input_dict

 Outputs a dictionary with the data frame from input_dict

ammended with the values from the lists in diff_dict"""

 output_dict = dict_of_dfs

 #ensure the original codon can never be selected as the new

one (except for Met and Tyr)

 for codon_no_name, codon_df in dict_of_dfs.items():

 #take the data frame which had the copies of each AAs info

for the input sequence

 current_codon_df = dict_of_dfs[codon_no_name]

 #add a new column to the data frame which is the

differences calculated in the previous dictionary

 234

 current_codon_df["Absolute Difference"] =

diff_dict[codon_no_name]

 #pull out the original input sequence for the codon being

assessed

 #current_codon_no = int(codon_no_name[1:])

 input_codon = dict_of_codons[codon_no_name]

 #set the input codon freq to 1 for the input codon so that

it's never chosen as the lowest value except for met and tyr

 current_codon_df.loc[current_codon_df["DNA"] ==

input_codon, "Absolute Difference"] = 1

 return output_dict

def codon_freq_selector(input_dict):

 """Creates a dictionary of the codon sequences with the lowest

Absolute Difference in Frequency.

 Arguments

 input_dict -- a dictionary in the form {single-letter code +

number: dataframe} where the dataframe contains a column for DNA

sequence, Fraction and Absolute Difference.

 Output is a dictionary in the form {single-letter code +

number: chosen sequence (as a string)}"""

 codons_for_mutated_seq = {}

 for codon_no_name, chosen_codon_seq in input_dict.items():

 #find the dataframe for this codon

 current_codon_df = input_dict[codon_no_name]

 #find the value with the smallest absolute difference in

that dataframe

 smallest_diff = min(current_codon_df["Absolute

Difference"])

 corresponding_seq_to_freq =

current_codon_df.loc[current_codon_df["Absolute Difference"] ==

smallest_diff]

 #dealing with multiple equivalent differences - if found,

take the one with the bigger fraction of usage if they don't have

equal

 #pull out only the sequence of the smallest difference

 if len(corresponding_seq_to_freq) == 1:

 seq_to_use = corresponding_seq_to_freq["DNA"].item()

 235

 else:

 highest_freq =

current_codon_df.loc[current_codon_df["Fraction"] ==

max(current_codon_df["Fraction"])]

 highest_freq_value = highest_freq["Fraction"].item()

 highest_freq_list = []

 highest_freq_list.append(highest_freq_value)

 #check if there are two values with equal abs diff and

equal fraction

 if len(highest_freq_list) == 1:

 seq_to_use = highest_freq["DNA"].item()

 #needs a better else clause

 else: print("\n\n\n ***Error: there are two or more

values with equal abs difference in frequency and fraction of

usage***\n\n\n")

 codons_for_mutated_seq[codon_no_name] = seq_to_use

 return codons_for_mutated_seq

def non_syn_mutator(target_AA, AA_num, new_AA, input_dict,

ref_dict = None, type = "random"):

 """Generates a dictionary of codons, replacing a target amino

acid with another either randomly or in a strategised manner.

 Arguments

 target_AA -- the starting amino acid residue in the WT

sequence (single-letter code)

 AA_num -- the amino acid number in the WT sequence

 new_AA -- the amino acid to replace the target with (single-

letter code)

 input_dict -- a dictionary of the WT sequence codons in the

form {single-letter code + number: sequence}

 ref_dict -- a reference dictionary of all codons. Either in

the form (type = "random") {single-letter code: list of sequences}

or (type = "highest" or "lowest") {single-letter code: dataframe

of frequency data}

 type -- determines how to pick the replacement codon. Default

= "random". Options are random, highest (highest frequency), or

lowest (lowest frequency)

 Output is a dictionary which has replaced the target codon as

specified in the form {single-letter code + number: sequence}

 """

 #use input codon information to identify which codon is going

to be mutated

 236

 residue_to_mutate = target_AA + str(AA_num)

 #define the output residue

 mutated_target_residue = new_AA + str(AA_num)

 if type == "random":

 #determine DNA sequence for the new codon - random version

 replacement_protein_DNA = random.choice(ref_dict[new_AA])

 if type == "highest":

 mutated_res = {mutated_target_residue: "blank"}

 mutated_res_freqs = codon_frequency_collector(mutated_res,

ref_dict, type = "list")

 max_freq_mutated_res =

max(mutated_res_freqs[mutated_target_residue])

 mutated_res_df = ref_dict[new_AA]

 mutated_res_df_chosen =

mutated_res_df.loc[mutated_res_df["Fraction"] ==

max_freq_mutated_res]

 #tie breaker

 if len(mutated_res_df_chosen) > 1:

 max_number_codon = max(mutated_res_df["Number"])

 max_number_codon_seq =

mutated_res_df.loc[mutated_res_df["Number"] == max_number_codon,

"DNA"].item()

 replacement_protein_DNA = max_number_codon_seq

 else:

 replacement_protein_DNA =

mutated_res_df_chosen["DNA"].item()

 if type == "lowest":

 mutated_res = {mutated_target_residue: "blank"}

 mutated_res_freqs = codon_frequency_collector(mutated_res,

ref_dict, type = "list")

 min_freq_mutated_res =

min(mutated_res_freqs[mutated_target_residue])

 mutated_res_df = ref_dict[new_AA]

 mutated_res_df_chosen =

mutated_res_df.loc[mutated_res_df["Fraction"] ==

min_freq_mutated_res]

 #tie breaker

 237

 if len(mutated_res_df_chosen) > 1:

 min_number_codon = min(mutated_res_df["Number"])

 min_number_codon_seq =

mutated_res_df.loc[mutated_res_df["Number"] == min_number_codon,

"DNA"].item()

 replacement_protein_DNA = min_number_codon_seq

 else:

 replacement_protein_DNA =

mutated_res_df_chosen["DNA"].item()

 #create a dictionary that has the new codon and removes the

old one

 dict_of_codons_output = {}

 for codon_name, codon_seq in input_dict.items():

 dict_of_codons_output[codon_name] = codon_seq

 dict_of_codons_output[mutated_target_residue] =

replacement_protein_DNA

 del dict_of_codons_output[residue_to_mutate]

 return dict_of_codons_output

 238

7.2.14 FORMATTING FUNCTIONS
-*- coding: utf-8 -*-

"""

Created on Thu Jan 25 09:52:49 2024

@author: ceh560

"""

from Bio import Seq

def codon_spacing(sequence):

 """Adds a space every 3 bases to a sequence to visualise the

codons more clearly.

 Arguments

 sequence -- a string or a sequence to be spaced

 Note: if the sequence length is not a multiple of 3, the

spacing still starts from the beginning so the last codon will be

incomplete. The sequence will also end on a space. """

 spaced_seq = Seq.Seq("")

 codon_length = 3

 for base in range(0, len(sequence), codon_length):

 spaced_seq += sequence[base:base+3]

 spaced_seq += " "

 return spaced_seq

def protein_align_codon(protein_sequence):

 """Adds space after every amino acid to align with a codon

spaced DNA sequence.

 Arguments

 protein_sequence -- a string or a sequence to be spaced

 Note: if the sequence length is not a multiple of 3, the

spacing still starts from the beginning so the last codon will be

incomplete. The sequence will also end on a space. """

 spaced_seq = Seq.Seq("")

 for amino_acid in protein_sequence:

 #spaced_seq += " "

 spaced_seq += amino_acid

 spaced_seq += " "

 return spaced_seq

 239

7.2.15 STITCHING FUNCTIONS
-*- coding: utf-8 -*-

"""

Created on Tue Jan 23 10:57:41 2024

@author: ceh560

"""

from Bio import Seq

def repair_stitcher(*, ref_seq = None, recoded_seq = None,

up_length = None, replacement_length = None, down_length = None):

 """"Takes an input sequence and replaces a central sequence

with another specified sequence

 Keyword arguments:

 ref_seq -- a sequence/string to work from

 recoded_seq -- a sequence/string to replace part of the

ref_seq with

 up_length -- the legnth of the first sequence from the

start of the input sequence to keep

 replacement_length -- the length of the sequence which

will be replaced, starting from the next base/character of the

up_length

 down_length -- the length of the third sequence, starting

from the next base/character of the replacement_length to keep

 Outputs a new sequence of the original starting sequence,

followed by the replaced sequence, followed by the original end

sequence

 """

 upstream_seq = ref_seq[:up_length]

 downstream_seq = ref_seq[(up_length +

replacement_length):(up_length + replacement_length +

down_length)]

 return upstream_seq + recoded_seq + downstream_seq

def sequence_splitter(*, ref_seq = None, up_length = None,

mid_length = None, down_length = None):

 """"Takes an input sequence and breaks it into 3 constituent

sequences

 Keyword arguments:

 ref_seq -- a sequence/string to split

 up_length -- the legnth of the first sequence from the

start of the input sequence

 mid_length -- the length of the second sequence, starting

from the next base/character of the up_length

 down_length -- the length of the third sequence, starting

from the next base/character of the mid_length

 240

 Outputs the sequences of start to up, up to mid and mid to

down either in a tupule or assigned to 3 variables if specified.

 """

 upstream_seq = ref_seq[:up_length]

 middle_seq = ref_seq[up_length:(up_length + mid_length)]

 downstream_seq = ref_seq[(up_length + mid_length):(up_length +

mid_length + down_length)]

 return upstream_seq, middle_seq, downstream_seq

def sequence_constructor(input_dict, type = "number"):

 """Constructs a sequence object from numbered sequences in a

dictionary

 Arguments

 input_dict -- a dictionary in the form {number: sequence} or

{single-letter code + number: sequence}

 type -- default = "number", alternative is type = "letter-

number"

 Output is a sequence constructed in numerical order from the

constituent sequences in the dictionary."""

 counter = 0

 mutated_seq = Seq.Seq("")

 if type == "letter-number":

 output_dict = {}

 for codon_no_name, chosen_codon_seq in input_dict.items():

 codon_no = codon_no_name[1:]

 output_dict[codon_no] = chosen_codon_seq

 for codon_no, chosen_codon_seq in output_dict.items():

 mutated_seq += output_dict[str(counter)]

 counter = counter + 1

 if type == "number":

 for codon_no_name, chosen_codon_seq in input_dict.items():

 mutated_seq += input_dict[str(counter)]

 counter = counter + 1

 return mutated_seq

 241

def mut_seq_integrator(repair_seq, ref_seq, repair_start,

repair_end, WT_repair_seq = "No"):

 """Generates a sequence corresponding to the integration of

the inputted repair sequence into the gene sequence.

 Arguments

 repair_seq -- the sequence being integrated

 ref_seq -- the gene sequence before replacement

 repair start -- the starting base of where the repair template

integrates

 repair_end -- the ending base of where the repair template

integrates

 WT_repair_seq -- default = "No", if = Yes, it will also output

the sequence for the WT region that is being replaced

 Note: the repair_seq does not have to be the length of the

replaced region (repair_start to repair_end) but there is no

validation if this is the case."""

 #repair_start_py = repair_start - 1

 WT_template_seq = ref_seq[repair_start:repair_end]

 upstream_dna = ref_seq[:repair_start]

 downstream_dna = ref_seq[repair_end:]

 repair_total_seq = upstream_dna + repair_seq + downstream_dna

 if WT_repair_seq == "No":

 return repair_total_seq

 if WT_repair_seq == "Yes":

 return repair_total_seq, WT_template_seq

 242

7.2.16 VALIDATOR
-*- coding: utf-8 -*-

"""

Created on Wed Jan 24 08:35:58 2024

@author: ceh560

"""

from Bio import Seq

from Bio import SeqIO

def triplet_checker(input_seq):

 """"Checks the input sequence is a whole number of codons

(divisible by 3). Returns True, or False + error message."""

 seq_length = len(input_seq)

 if seq_length % 3 == 0:

 return True

 else:

 return False, print("\n\n\n ***Sequence input not a

multiple of three*** \n Any result generated will likely be

erroneous.\n\n\n")

def translate_checker(input_seq, target_res_num, target_res_AA):

 if type(input_seq) == str:

 input_seq = Seq.Seq(input_seq)

 target_res_num_py = target_res_num - 1

 #determine the DNA sequence range from the codon number

 target_codon_seq =

input_seq[(target_res_num_py*3):((target_res_num_py*3)+3)]

 #return print(input_seq, target_codon_seq)

 #check the information matches up

 target_codon_seq_translated = target_codon_seq.translate()

 if target_codon_seq_translated != target_res_AA:

 return False, print(f"\n\n\n ***Error, requested residue

does not code for expected amino acid. Requested residue number

{target_res_num} codes for {target_codon_seq_translated} but was

expected to be {target_res_AA}.*** \n\n\n\n")

 if target_codon_seq_translated == target_res_AA:

 return True

def mutation_counter(mutated_seq, WT_seq):

 """Determines the number of mutations in a DNA sequence

compared to a reference sequence

 243

 Arguments

 mutated_seq -- the sequence which is expected to contain

mutations

 WT_seq -- a reference sequence for the same region of DNA

 Outputs the number of mutations found"""

 counter = 0

 mutations = 0

 for base in WT_seq:

 if WT_seq[counter] != mutated_seq[counter]:

 mutations += 1

 counter += 1

 return mutations

 244

7.2.17 PRIMER FUNCTIONS

-*- coding: utf-8 -*-

"""

Created on Fri Jan 26 16:53:51 2024

@author: ceh560

"""

import primer3

import primer3.bindings

from Bio import SeqIO

from Bio import Seq

import pandas as pd

def screening_primer_designer(WT_seq, integrated_repair_seq,

repair_start, repair_end):

 """Designs screening primers to distinguish an integrated

repair sequence from the WT sequence.

 Argumets

 WT_seq -- the gene sequence of the WT gene

 integrated_repair_seq -- the gene sequence if the desired

repair template is integrated in place

 repair_start -- the base pair number that the recoding region

of the repair template starts

 repair_end -- the base pair number that the recoding region of

the repair template ends

 Outputs a dataframe of the designed primers and some useful

information"""

 repair_start_py = repair_start - 1

 WT_template_seq = WT_seq[repair_start_py:repair_end]

 upstream_dna = WT_seq[:repair_start_py]

 downstream_dna = WT_seq[repair_end:]

 WT_dna_for_primers = str(WT_seq)

 WT_primers = {'SEQUENCE_ID': "gene name",

 "SEQUENCE_TEMPLATE": WT_dna_for_primers,

 #"SEQUENCE_TARGET": [87,36], #first value = start,

second value = length, the primers must cover this entire region

 "PRIMER_TASK": "generic",

 "PRIMER_PICK_LEFT_PRIMER": 1,

 #"PRIMER_PICK_INTERNAL_OLIGO": 0,

 "PRIMER_PICK_RIGHT_PRIMER": 1,

 "PRIMER_OPT_SIZE": 18,

 245

 "PRIMER_MIN_SIZE": 15,

 "PRIMER_MAX_SIZE": 21,

 "PRIMER_MAX_NS_ACCEPTED": 1,

 "PRIMER_PRODICT_SIZE_RANGE": [150,1500],

 "P3_FILE_FLAG": 1,

 #"SEQUENCE_INTERNAL_EXCLUDED_REGION": [37,21],

 "PRIMER_EXPLAIN_FLAG": 1,

 "SEQUENCE_PRIMER_PAIR_OK_REGION_LIST": [0,

repair_start_py, repair_start_py,(repair_end - repair_start_py)]

 #"SEQUENCE_PRIMER": "GTCACACTTTTGCGGCTCG" #allows you

to specify a left (fwd) primer only to use to design the right

(rev) primer

 }

 global_args1 = {"PRIMER_TASK": "generic",

 "PRIMER_PICK_LEFT_PRIMER": 1,

 "PRIMER_PICK_INTERNAL_OLIGO": 0,

 "PRIMER_PICK_RIGHT_PRIMER": 1,

 "PRIMER_NUM_RETURN": 3,

 "PRIMER_MIN_3_PRIME_OVERLAP_OF_JUNCTION": 4,

"PRIMER_INTERNAL_MIN_3_PRIME_OVERLAP_OF_JUNCTION": 4,

 "PRIMER_MIN_5_PRIME_OVERLAP_OF_JUNCTION": 7,

"PRIMER_INTERNAL_MIN_5_PRIME_OVERLAP_OF_JUNCTION": 7,

 #"PRIMER_MUST_MATCH_FIVE_PRIME": "empty",

 #"PRIMER_INTERNAL_MUST_MATCH_FIVE_PRIME":

"empty",

 #"PRIMER_MUST_MATCH_THREE_PRIME": "empty",

 #"PRIMER_INTERNAL_MUST_MATCH_THREE_PRIME":

"empty",

 "PRIMER_PRODUCT_SIZE_RANGE": [100, 1500],

 "PRIMER_PRODUCT_OPT_SIZE": 500,

 "PRIMER_PAIR_WT_PRODUCT_SIZE_LT": 0.0,

 "PRIMER_PAIR_WT_PRODUCT_SIZE_GT": 0.0,

 "PRIMER_MIN_SIZE": 18,

 "PRIMER_INTERNAL_MIN_SIZE": 18,

 "PRIMER_OPT_SIZE": 20,

 "PRIMER_INTERNAL_OPT_SIZE": 20,

 "PRIMER_MAX_SIZE": 27,

 "PRIMER_INTERNAL_MAX_SIZE": 27,

 "PRIMER_WT_SIZE_LT": 1.0,

 "PRIMER_INTERNAL_WT_SIZE_LT": 1.0,

 "PRIMER_WT_SIZE_GT": 1.0,

 "PRIMER_INTERNAL_WT_SIZE_GT": 1.0,

 "PRIMER_MIN_GC": 20.0,

 "PRIMER_INTERNAL_MIN_GC": 20.0,

 "PRIMER_OPT_GC_PERCENT": 50.0,

 "PRIMER_INTERNAL_OPT_GC_PERCENT": 50.0,

 "PRIMER_MAX_GC": 80.0,

 "PRIMER_INTERNAL_MAX_GC": 80.0,

 "PRIMER_WT_GC_PERCENT_LT": 0.0,

 "PRIMER_INTERNAL_WT_GC_PERCENT_LT": 0.0,

 "PRIMER_WT_GC_PERCENT_GT": 0.0,

 "PRIMER_INTERNAL_WT_GC_PERCENT_GT": 0.0,

 "PRIMER_GC_CLAMP": 0,

 246

 "PRIMER_MAX_END_GC": 5,

 "PRIMER_MIN_TM": 56.0,

 "PRIMER_INTERNAL_MIN_TM": 56.0,

 "PRIMER_OPT_TM": 60.0,

 "PRIMER_INTERNAL_OPT_TM": 60.0,

 "PRIMER_MAX_TM": 63.0,

 "PRIMER_INTERNAL_MAX_TM": 63.0,

 "PRIMER_PAIR_MAX_DIFF_TM": 63.0,

 "PRIMER_WT_TM_LT": 1.0,

 "PRIMER_INTERNAL_WT_TM_LT": 1.0,

 "PRIMER_WT_TM_GT": 1.0,

 "PRIMER_INTERNAL_WT_TM_GT": 1.0,

 "PRIMER_PAIR_WT_DIFF_TM": 0.0,

 "PRIMER_PRODUCT_MIN_TM": -1000000.0,

 "PRIMER_PRODUCT_OPT_TM": 0.0,

 "PRIMER_PRODUCT_MAX_TM": 1000000.0,

 "PRIMER_PAIR_WT_PRODUCT_TM_LT": 0.0,

 "PRIMER_PAIR_WT_PRODUCT_TM_GT": 0.0,

 "PRIMER_TM_FORMULA": 1,

 "PRIMER_SALT_MONOVALENT": 50.0,

 "PRIMER_INTERNAL_SALT_MONOVALENT": 50.0,

 "PRIMER_SALT_DIVALENT": 1.5,

 "PRIMER_INTERNAL_SALT_DIVALENT": 0.0,

 "PRIMER_DNTP_CONC": 0.6,

 "PRIMER_INTERNAL_DNTP_CONC": 0.0,

 "PRIMER_SALT_CORRECTIONS": 1,

 "PRIMER_DNA_CONC": 50.0,

 "PRIMER_INTERNAL_DNA_CONC": 50.0,

 "PRIMER_DMSO_CONC": 0.0,

 "PRIMER_INTERNAL_DMSO_CONC": 0.0,

 "PRIMER_DMSO_FACTOR": 0.6,

 "PRIMER_INTERNAL_DMSO_FACTOR": 0.6,

 "PRIMER_FORMAMIDE_CONC": 0.0,

 "PRIMER_INTERNAL_FORMAMIDE_CONC": 0.0,

 "PRIMER_THERMODYNAMIC_OLIGO_ALIGNMENT": 1,

 "PRIMER_THERMODYNAMIC_TEMPLATE_ALIGNMENT": 0,

 "PRIMER_SECONDARY_STRUCTURE_ALIGNMENT": 0,

 "PRIMER_THERMODYNAMIC_PARAMETERS_PATH":

"./primer3_config",

 "PRIMER_ANNEALING_TEMP": -10.0,

 "PRIMER_MIN_BOUND": -10.0,

 "PRIMER_INTERNAL_MIN_BOUND": -10.0,

 "PRIMER_OPT_BOUND": 97.0,

 "PRIMER_INTERNAL_OPT_BOUND": 97.0,

 "PRIMER_MAX_BOUND": 110.0,

 "PRIMER_INTERNAL_MAX_BOUND": 110.0,

 "PRIMER_WT_BOUND_LT": 0.0,

 "PRIMER_INTERNAL_WT_BOUND_LT": 0.0,

 "PRIMER_WT_BOUND_GT": 0.0,

 "PRIMER_INTERNAL_WT_BOUND_GT": 0.0,

 "PRIMER_MAX_SELF_ANY": 8.00,

 "PRIMER_MAX_SELF_ANY_TH": 47.00,

 "PRIMER_INTERNAL_MAX_SELF_ANY": 12.00,

 "PRIMER_INTERNAL_MAX_SELF_ANY_TH": 47.00,

 "PRIMER_PAIR_MAX_COMPL_ANY": 8.00,

 "PRIMER_PAIR_MAX_COMPL_ANY_TH": 47.00,

 247

 "PRIMER_WT_SELF_ANY": 0.0,

 "PRIMER_WT_SELF_ANY_TH": 0.0,

 "PRIMER_INTERNAL_WT_SELF_ANY": 0.0,

 "PRIMER_INTERNAL_WT_SELF_ANY_TH": 0.0,

 "PRIMER_PAIR_WT_COMPL_ANY": 0.0,

 "PRIMER_PAIR_WT_COMPL_ANY_TH": 0.0,

 "PRIMER_MAX_SELF_END": 3.00,

 "PRIMER_MAX_SELF_END_TH": 47.00,

 "PRIMER_INTERNAL_MAX_SELF_END": 12.00,

 "PRIMER_INTERNAL_MAX_SELF_END_TH": 47.00,

 "PRIMER_PAIR_MAX_COMPL_END": 3.00,

 "PRIMER_PAIR_MAX_COMPL_END_TH": 47.00,

 "PRIMER_WT_SELF_END": 0.0,

 "PRIMER_WT_SELF_END_TH": 0.0,

 "PRIMER_INTERNAL_WT_SELF_END": 0.0,

 "PRIMER_INTERNAL_WT_SELF_END_TH": 0.0,

 "PRIMER_PAIR_WT_COMPL_END": 0.0,

 "PRIMER_PAIR_WT_COMPL_END_TH": 0.0,

 "PRIMER_MAX_HAIRPIN_TH": 47.0,

 "PRIMER_INTERNAL_MAX_HAIRPIN_TH": 47.0,

 "PRIMER_WT_HAIRPIN_TH": 0.0,

 "PRIMER_INTERNAL_WT_HAIRPIN_TH": 0.0,

 "PRIMER_MAX_END_STABILITY": 100.0,

 "PRIMER_WT_END_STABILITY": 0.0,

 "PRIMER_MAX_NS_ACCEPTED": 0,

 "PRIMER_INTERNAL_MAX_NS_ACCEPTED": 0,

 "PRIMER_WT_NUM_NS": 0.0,

 "PRIMER_INTERNAL_WT_NUM_NS": 0.0,

 "PRIMER_MAX_POLY_X": 5,

 "PRIMER_INTERNAL_MAX_POLY_X": 5,

 #"PRIMER_MIN_LEFT_THREE_PRIME_DISTANCE": -1,

 #"PRIMER_INTERNAL_MIN_THREE_PRIME_DISTANCE": -

1,

 #"PRIMER_MIN_RIGHT_THREE_PRIME_DISTANCE": -1,

 "PRIMER_MIN_THREE_PRIME_DISTANCE": -1,

 "PRIMER_PICK_ANYWAY": 0,

 "PRIMER_LOWERCASE_MASKING": 0,

 "PRIMER_EXPLAIN_FLAG": 0,

 "PRIMER_LIBERAL_BASE": 0,

 "PRIMER_FIRST_BASE_INDEX": 0,

 "PRIMER_MAX_TEMPLATE_MISPRIMING": -1.00,

 "PRIMER_MAX_TEMPLATE_MISPRIMING_TH": -1.00,

 "PRIMER_PAIR_MAX_TEMPLATE_MISPRIMING": -1.00,

 "PRIMER_PAIR_MAX_TEMPLATE_MISPRIMING_TH": -

1.00,

 "PRIMER_WT_TEMPLATE_MISPRIMING": 0.0,

 "PRIMER_WT_TEMPLATE_MISPRIMING_TH": 0.0,

 "PRIMER_PAIR_WT_TEMPLATE_MISPRIMING": 0.0,

 "PRIMER_PAIR_WT_TEMPLATE_MISPRIMING_TH": 0.0,

 "PRIMER_MISPRIMING_LIBRARY": "",

 "PRIMER_INTERNAL_MISHYB_LIBRARY": "",

 "PRIMER_LIB_AMBIGUITY_CODES_CONSENSUS": 0,

 "PRIMER_MAX_LIBRARY_MISPRIMING": 12.00,

 "PRIMER_INTERNAL_MAX_LIBRARY_MISHYB": 12.00,

 "PRIMER_PAIR_MAX_LIBRARY_MISPRIMING": 24.00,

 "PRIMER_WT_LIBRARY_MISPRIMING": 0.0,

 248

 "PRIMER_INTERNAL_WT_LIBRARY_MISHYB": 0.0,

 "PRIMER_PAIR_WT_LIBRARY_MISPRIMING": 0.0,

 "PRIMER_MASK_TEMPLATE": 0,

 "PRIMER_MASK_FAILURE_RATE": 0.1,

 "PRIMER_WT_MASK_FAILURE_RATE": 0.0,

 "PRIMER_MASK_5P_DIRECTION": 1,

 "PRIMER_MASK_3P_DIRECTION": 0,

 #"PRIMER_MASK_KMERLIST_PATH": "../kmer_lists/",

 "PRIMER_MASK_KMERLIST_PREFIX": "homo_sapiens",

 "PRIMER_MIN_QUALITY": 0,

 "PRIMER_INTERNAL_MIN_QUALITY": 0,

 "PRIMER_MIN_END_QUALITY": 0,

 "PRIMER_QUALITY_RANGE_MIN": 0,

 "PRIMER_QUALITY_RANGE_MAX": 100,

 "PRIMER_WT_SEQ_QUAL": 0.0,

 "PRIMER_INTERNAL_WT_SEQ_QUAL": 0.0,

 "PRIMER_PAIR_WT_PR_PENALTY": 1.0,

 "PRIMER_PAIR_WT_IO_PENALTY": 0.0,

 "PRIMER_INSIDE_PENALTY": -1.0,

 "PRIMER_OUTSIDE_PENALTY": 0.0,

 "PRIMER_WT_POS_PENALTY": 1.0,

 "PRIMER_SEQUENCING_LEAD": 50,

 "PRIMER_SEQUENCING_SPACING": 500,

 "PRIMER_SEQUENCING_INTERVAL": 250,

 "PRIMER_SEQUENCING_ACCURACY": 20,

 "PRIMER_WT_END_QUAL": 0.0,

 "PRIMER_INTERNAL_WT_END_QUAL": 0.0

 }

 WT_primers_results = primer3.design_primers(seq_args =

WT_primers, global_args = global_args1)

 upstream_fwd = WT_primers_results["PRIMER_LEFT_0_SEQUENCE"]

 WT_rev = WT_primers_results["PRIMER_RIGHT_0_SEQUENCE"]

 WT_PCR_product_size =

WT_primers_results["PRIMER_PAIR_0_PRODUCT_SIZE"]

 upstream_fwd_coords = WT_primers_results["PRIMER_LEFT_0"]

 WT_rev_coords = WT_primers_results["PRIMER_RIGHT_0"]

 #sticking some useful info into a smaller dictionary in case

it comes in handy later

 WT_primers_useful_results = {

 "Forward primer sequence": upstream_fwd,

 "Reverse primer sequence": WT_rev,

 "PCR product size (bp)": WT_PCR_product_size,

 "Forward GC content (%)":

WT_primers_results["PRIMER_LEFT_0_GC_PERCENT"],

 "Reverse GC content (%)":

WT_primers_results["PRIMER_RIGHT_0_GC_PERCENT"],

 "Forward Tm ('C)": WT_primers_results["PRIMER_LEFT_0_TM"],

 "Reverse Tm ('C)": WT_primers_results["PRIMER_RIGHT_0_TM"]

 #"WT PCR product sequence (5'->3')":

WT_dna_for_primers[upstream_fwd_coords[0]:(WT_rev_coords[0] + 1)]

 }

 249

 #part 4 - design the mutant primers

 recoded_dna_for_primers = str(integrated_repair_seq)

 recoded_primers = {'SEQUENCE_ID': "gene name",

 "SEQUENCE_TEMPLATE": recoded_dna_for_primers,

 #"SEQUENCE_TARGET": [87,36], #first value = start,

second value = length, the primers must cover this entire region

 "PRIMER_TASK": "generic",

 "PRIMER_PICK_LEFT_PRIMER": 1,

 #"PRIMER_PICK_INTERNAL_OLIGO": 0,

 "PRIMER_PICK_RIGHT_PRIMER": 1,

 "PRIMER_OPT_SIZE": 18,

 "PRIMER_MIN_SIZE": 15,

 "PRIMER_MAX_SIZE": 22,

 "PRIMER_MAX_NS_ACCEPTED": 1,

 "PRIMER_PRODICT_SIZE_RANGE": [150,1500],

 "P3_FILE_FLAG": 1,

 #"SEQUENCE_INTERNAL_EXCLUDED_REGION": [37,21],

 "PRIMER_EXPLAIN_FLAG": 1,

 "SEQUENCE_PRIMER_PAIR_OK_REGION_LIST": [0,

repair_start_py, repair_start_py,(repair_end - repair_start_py)],

 "SEQUENCE_PRIMER": upstream_fwd #allows you to specify

a left (fwd) primer only to use to design the right (rev) primer

 }

 recoded_primers_results = primer3.design_primers(seq_args =

recoded_primers, global_args = global_args1)

 recoded_rev =

recoded_primers_results["PRIMER_RIGHT_0_SEQUENCE"]

 recoded_PCR_product_size =

recoded_primers_results["PRIMER_PAIR_0_PRODUCT_SIZE"]

 recoded_rev_coords = recoded_primers_results["PRIMER_RIGHT_0"]

 recoded_primers_useful_results = {

 "Forward primer sequence": upstream_fwd,

 "Reverse primer sequence": recoded_rev,

 "PCR product size (bp)": recoded_PCR_product_size,

 "Forward GC content (%)":

recoded_primers_results["PRIMER_LEFT_0_GC_PERCENT"],

 "Reverse GC content (%)":

recoded_primers_results["PRIMER_RIGHT_0_GC_PERCENT"],

 "Forward Tm ('C)":

recoded_primers_results["PRIMER_LEFT_0_TM"],

 "Reverse Tm ('C)":

recoded_primers_results["PRIMER_RIGHT_0_TM"],

 #"Recoded PCR product sequence (5'->3')":

recoded_dna_for_primers[upstream_fwd_coords[0]:(recoded_rev_coords

[0] + 1)]

 }

 250

 primers_to_add = [WT_primers_useful_results,

recoded_primers_useful_results]

 primer_details = pd.DataFrame(primers_to_add)

 row_names = ["WT primers", "Repair primers"]

 primer_details.index = row_names

 return primer_details

def repair_primer_designer(repair_seq, hom_arm_length,

downstream_seq):

 """Designs primers to produce the repair template sequence put

in.

 Arguments

 repair_seq -- a DNA sequence of the entire repair template.

Must be less than/equal to 220 bp.

 hom_arm_length -- the length of the homology arms in the

repair template

 downstream_dna -- a DNA sequence, essentially a dummy but

ideally sequence from the same organism. Needs to be larger than

the repair sequence length.

 Outputs a dictionary of the necessary primer sequences, and

some other useful information."""

 recoding_start_base = hom_arm_length

 recoding_end_base = len(repair_seq) - hom_arm_length

 recoding_start_base_py = recoding_start_base - 1

 repair_length_total = len(repair_seq)

 if repair_length_total > 220:

 return print("\n\n\n***ERROR: repair length is too long to

deisgn primers for***\n\n\n")

 if recoding_end_base > 120:

 annealing_region_end = 119

 recoding_adjustment = recoding_end_base -

annealing_region_end

 left_primer_length_from_start = annealing_region_end -

hom_arm_length - recoding_adjustment

 recoding_start_base_py = recoding_start_base_py +

recoding_adjustment

 else:

 annealing_region_end = recoding_end_base

 251

 left_primer_length_from_start = annealing_region_end -

hom_arm_length

 repair_dna_for_primers = str(repair_seq)+str(downstream_seq)

 primers_end = len(downstream_seq)

 annealing = {'SEQUENCE_ID': "gene name",

 "SEQUENCE_TEMPLATE": repair_dna_for_primers,

 #"SEQUENCE_TARGET": [87,36], #first value = start,

second value = length, the primers must cover this entire region

 "PRIMER_TASK": "generic",

 "PRIMER_PICK_LEFT_PRIMER": 3,

 #"PRIMER_PICK_INTERNAL_OLIGO": 0,

 "PRIMER_PICK_RIGHT_PRIMER": 3,

 "PRIMER_OPT_SIZE": 18,

 "PRIMER_MIN_SIZE": 15,

 "PRIMER_MAX_SIZE": 24,

 "PRIMER_MAX_NS_ACCEPTED": 1,

 "PRIMER_PRODICT_SIZE_RANGE": [100,1000],

 "P3_FILE_FLAG": 1,

 #"SEQUENCE_INTERNAL_EXCLUDED_REGION": [37,21],

 "PRIMER_EXPLAIN_FLAG": 1,

 "SEQUENCE_PRIMER_PAIR_OK_REGION_LIST":

[recoding_start_base_py, left_primer_length_from_start,

annealing_region_end, primers_end]

 #"SEQUENCE_PRIMER": "GTCACACTTTTGCGGCTCG" #allows you

to specify a left (fwd) primer only to use to design the right

(rev) primer

 }

 global_args1 = {"PRIMER_TASK": "generic",

 "PRIMER_PICK_LEFT_PRIMER": 3,

 "PRIMER_PICK_INTERNAL_OLIGO": 0,

 "PRIMER_PICK_RIGHT_PRIMER": 3,

 "PRIMER_NUM_RETURN": 3,

 "PRIMER_MIN_3_PRIME_OVERLAP_OF_JUNCTION": 4,

"PRIMER_INTERNAL_MIN_3_PRIME_OVERLAP_OF_JUNCTION": 4,

 "PRIMER_MIN_5_PRIME_OVERLAP_OF_JUNCTION": 7,

"PRIMER_INTERNAL_MIN_5_PRIME_OVERLAP_OF_JUNCTION": 7,

 #"PRIMER_MUST_MATCH_FIVE_PRIME": "empty",

 #"PRIMER_INTERNAL_MUST_MATCH_FIVE_PRIME":

"empty",

 #"PRIMER_MUST_MATCH_THREE_PRIME": "empty",

 #"PRIMER_INTERNAL_MUST_MATCH_THREE_PRIME":

"empty",

 "PRIMER_PRODUCT_SIZE_RANGE": [100, 1000],

 "PRIMER_PRODUCT_OPT_SIZE": 0,

 "PRIMER_PAIR_WT_PRODUCT_SIZE_LT": 0.0,

 "PRIMER_PAIR_WT_PRODUCT_SIZE_GT": 0.0,

 "PRIMER_MIN_SIZE": 16,

 "PRIMER_INTERNAL_MIN_SIZE": 16,

 "PRIMER_OPT_SIZE": 20,

 252

 "PRIMER_INTERNAL_OPT_SIZE": 20,

 "PRIMER_MAX_SIZE": 27,

 "PRIMER_INTERNAL_MAX_SIZE": 27,

 "PRIMER_WT_SIZE_LT": 1.0,

 "PRIMER_INTERNAL_WT_SIZE_LT": 1.0,

 "PRIMER_WT_SIZE_GT": 1.0,

 "PRIMER_INTERNAL_WT_SIZE_GT": 1.0,

 "PRIMER_MIN_GC": 20.0,

 "PRIMER_INTERNAL_MIN_GC": 20.0,

 "PRIMER_OPT_GC_PERCENT": 50.0,

 "PRIMER_INTERNAL_OPT_GC_PERCENT": 50.0,

 "PRIMER_MAX_GC": 80.0,

 "PRIMER_INTERNAL_MAX_GC": 80.0,

 "PRIMER_WT_GC_PERCENT_LT": 0.0,

 "PRIMER_INTERNAL_WT_GC_PERCENT_LT": 0.0,

 "PRIMER_WT_GC_PERCENT_GT": 0.0,

 "PRIMER_INTERNAL_WT_GC_PERCENT_GT": 0.0,

 "PRIMER_GC_CLAMP": 0,

 "PRIMER_MAX_END_GC": 5,

 "PRIMER_MIN_TM": 55.0,

 "PRIMER_INTERNAL_MIN_TM": 55.0,

 "PRIMER_OPT_TM": 60.0,

 "PRIMER_INTERNAL_OPT_TM": 60.0,

 "PRIMER_MAX_TM": 67.0,

 "PRIMER_INTERNAL_MAX_TM": 67.0,

 "PRIMER_PAIR_MAX_DIFF_TM": 67.0,

 "PRIMER_WT_TM_LT": 1.0,

 "PRIMER_INTERNAL_WT_TM_LT": 1.0,

 "PRIMER_WT_TM_GT": 1.0,

 "PRIMER_INTERNAL_WT_TM_GT": 1.0,

 "PRIMER_PAIR_WT_DIFF_TM": 0.0,

 "PRIMER_PRODUCT_MIN_TM": -1000000.0,

 "PRIMER_PRODUCT_OPT_TM": 0.0,

 "PRIMER_PRODUCT_MAX_TM": 1000000.0,

 "PRIMER_PAIR_WT_PRODUCT_TM_LT": 0.0,

 "PRIMER_PAIR_WT_PRODUCT_TM_GT": 0.0,

 "PRIMER_TM_FORMULA": 1,

 "PRIMER_SALT_MONOVALENT": 50.0,

 "PRIMER_INTERNAL_SALT_MONOVALENT": 50.0,

 "PRIMER_SALT_DIVALENT": 1.5,

 "PRIMER_INTERNAL_SALT_DIVALENT": 0.0,

 "PRIMER_DNTP_CONC": 0.6,

 "PRIMER_INTERNAL_DNTP_CONC": 0.0,

 "PRIMER_SALT_CORRECTIONS": 1,

 "PRIMER_DNA_CONC": 50.0,

 "PRIMER_INTERNAL_DNA_CONC": 50.0,

 "PRIMER_DMSO_CONC": 0.0,

 "PRIMER_INTERNAL_DMSO_CONC": 0.0,

 "PRIMER_DMSO_FACTOR": 0.6,

 "PRIMER_INTERNAL_DMSO_FACTOR": 0.6,

 "PRIMER_FORMAMIDE_CONC": 0.0,

 "PRIMER_INTERNAL_FORMAMIDE_CONC": 0.0,

 "PRIMER_THERMODYNAMIC_OLIGO_ALIGNMENT": 1,

 "PRIMER_THERMODYNAMIC_TEMPLATE_ALIGNMENT": 0,

 "PRIMER_SECONDARY_STRUCTURE_ALIGNMENT": 0,

 253

 "PRIMER_THERMODYNAMIC_PARAMETERS_PATH":

"./primer3_config",

 "PRIMER_ANNEALING_TEMP": -10.0,

 "PRIMER_MIN_BOUND": -10.0,

 "PRIMER_INTERNAL_MIN_BOUND": -10.0,

 "PRIMER_OPT_BOUND": 97.0,

 "PRIMER_INTERNAL_OPT_BOUND": 97.0,

 "PRIMER_MAX_BOUND": 110.0,

 "PRIMER_INTERNAL_MAX_BOUND": 110.0,

 "PRIMER_WT_BOUND_LT": 0.0,

 "PRIMER_INTERNAL_WT_BOUND_LT": 0.0,

 "PRIMER_WT_BOUND_GT": 0.0,

 "PRIMER_INTERNAL_WT_BOUND_GT": 0.0,

 "PRIMER_MAX_SELF_ANY": 8.00,

 "PRIMER_MAX_SELF_ANY_TH": 47.00,

 "PRIMER_INTERNAL_MAX_SELF_ANY": 12.00,

 "PRIMER_INTERNAL_MAX_SELF_ANY_TH": 47.00,

 "PRIMER_PAIR_MAX_COMPL_ANY": 8.00,

 "PRIMER_PAIR_MAX_COMPL_ANY_TH": 47.00,

 "PRIMER_WT_SELF_ANY": 0.0,

 "PRIMER_WT_SELF_ANY_TH": 0.0,

 "PRIMER_INTERNAL_WT_SELF_ANY": 0.0,

 "PRIMER_INTERNAL_WT_SELF_ANY_TH": 0.0,

 "PRIMER_PAIR_WT_COMPL_ANY": 0.0,

 "PRIMER_PAIR_WT_COMPL_ANY_TH": 0.0,

 "PRIMER_MAX_SELF_END": 3.00,

 "PRIMER_MAX_SELF_END_TH": 47.00,

 "PRIMER_INTERNAL_MAX_SELF_END": 12.00,

 "PRIMER_INTERNAL_MAX_SELF_END_TH": 47.00,

 "PRIMER_PAIR_MAX_COMPL_END": 3.00,

 "PRIMER_PAIR_MAX_COMPL_END_TH": 47.00,

 "PRIMER_WT_SELF_END": 0.0,

 "PRIMER_WT_SELF_END_TH": 0.0,

 "PRIMER_INTERNAL_WT_SELF_END": 0.0,

 "PRIMER_INTERNAL_WT_SELF_END_TH": 0.0,

 "PRIMER_PAIR_WT_COMPL_END": 0.0,

 "PRIMER_PAIR_WT_COMPL_END_TH": 0.0,

 "PRIMER_MAX_HAIRPIN_TH": 47.0,

 "PRIMER_INTERNAL_MAX_HAIRPIN_TH": 47.0,

 "PRIMER_WT_HAIRPIN_TH": 0.0,

 "PRIMER_INTERNAL_WT_HAIRPIN_TH": 0.0,

 "PRIMER_MAX_END_STABILITY": 100.0,

 "PRIMER_WT_END_STABILITY": 0.0,

 "PRIMER_MAX_NS_ACCEPTED": 0,

 "PRIMER_INTERNAL_MAX_NS_ACCEPTED": 0,

 "PRIMER_WT_NUM_NS": 0.0,

 "PRIMER_INTERNAL_WT_NUM_NS": 0.0,

 "PRIMER_MAX_POLY_X": 5,

 "PRIMER_INTERNAL_MAX_POLY_X": 5,

 #"PRIMER_MIN_LEFT_THREE_PRIME_DISTANCE": -1,

 #"PRIMER_INTERNAL_MIN_THREE_PRIME_DISTANCE": -

1,

 #"PRIMER_MIN_RIGHT_THREE_PRIME_DISTANCE": -1,

 "PRIMER_MIN_THREE_PRIME_DISTANCE": -1,

 "PRIMER_PICK_ANYWAY": 0,

 "PRIMER_LOWERCASE_MASKING": 0,

 254

 "PRIMER_EXPLAIN_FLAG": 0,

 "PRIMER_LIBERAL_BASE": 0,

 "PRIMER_FIRST_BASE_INDEX": 0,

 "PRIMER_MAX_TEMPLATE_MISPRIMING": -1.00,

 "PRIMER_MAX_TEMPLATE_MISPRIMING_TH": -1.00,

 "PRIMER_PAIR_MAX_TEMPLATE_MISPRIMING": -1.00,

 "PRIMER_PAIR_MAX_TEMPLATE_MISPRIMING_TH": -

1.00,

 "PRIMER_WT_TEMPLATE_MISPRIMING": 0.0,

 "PRIMER_WT_TEMPLATE_MISPRIMING_TH": 0.0,

 "PRIMER_PAIR_WT_TEMPLATE_MISPRIMING": 0.0,

 "PRIMER_PAIR_WT_TEMPLATE_MISPRIMING_TH": 0.0,

 "PRIMER_MISPRIMING_LIBRARY": "",

 "PRIMER_INTERNAL_MISHYB_LIBRARY": "",

 "PRIMER_LIB_AMBIGUITY_CODES_CONSENSUS": 0,

 "PRIMER_MAX_LIBRARY_MISPRIMING": 12.00,

 "PRIMER_INTERNAL_MAX_LIBRARY_MISHYB": 12.00,

 "PRIMER_PAIR_MAX_LIBRARY_MISPRIMING": 24.00,

 "PRIMER_WT_LIBRARY_MISPRIMING": 0.0,

 "PRIMER_INTERNAL_WT_LIBRARY_MISHYB": 0.0,

 "PRIMER_PAIR_WT_LIBRARY_MISPRIMING": 0.0,

 "PRIMER_MASK_TEMPLATE": 0,

 "PRIMER_MASK_FAILURE_RATE": 0.1,

 "PRIMER_WT_MASK_FAILURE_RATE": 0.0,

 "PRIMER_MASK_5P_DIRECTION": 1,

 "PRIMER_MASK_3P_DIRECTION": 0,

 #"PRIMER_MASK_KMERLIST_PATH": "../kmer_lists/",

 "PRIMER_MASK_KMERLIST_PREFIX": "homo_sapiens",

 "PRIMER_MIN_QUALITY": 0,

 "PRIMER_INTERNAL_MIN_QUALITY": 0,

 "PRIMER_MIN_END_QUALITY": 0,

 "PRIMER_QUALITY_RANGE_MIN": 0,

 "PRIMER_QUALITY_RANGE_MAX": 100,

 "PRIMER_WT_SEQ_QUAL": 0.0,

 "PRIMER_INTERNAL_WT_SEQ_QUAL": 0.0,

 "PRIMER_PAIR_WT_PR_PENALTY": 1.0,

 "PRIMER_PAIR_WT_IO_PENALTY": 0.0,

 "PRIMER_INSIDE_PENALTY": -1.0,

 "PRIMER_OUTSIDE_PENALTY": 0.0,

 "PRIMER_WT_POS_PENALTY": 1.0,

 "PRIMER_SEQUENCING_LEAD": 50,

 "PRIMER_SEQUENCING_SPACING": 500,

 "PRIMER_SEQUENCING_INTERVAL": 250,

 "PRIMER_SEQUENCING_ACCURACY": 20,

 "PRIMER_WT_END_QUAL": 0.0,

 "PRIMER_INTERNAL_WT_END_QUAL": 0.0

 }

 repair_primers = primer3.design_primers(seq_args = annealing,

global_args = global_args1)

 annealing_seq = repair_primers["PRIMER_LEFT_0_SEQUENCE"]

 annealing_tm = repair_primers["PRIMER_LEFT_0_TM"]

 annealing_coords = repair_primers["PRIMER_LEFT_0"]

 255

 forward_primer = str(repair_seq[:(annealing_coords[0] +

annealing_coords[1])])

 repair_as_seq = Seq.Seq(repair_seq)

 repair_rc = repair_as_seq.reverse_complement()

 repair_rc_str = str(repair_rc)

 reverse_primer = repair_rc_str[0:(len(repair_seq) -

annealing_coords[0])]

 if len(forward_primer) > 120 or len(reverse_primer) > 120:

 annealing_seq = repair_primers["PRIMER_LEFT_1_SEQUENCE"]

 annealing_tm = repair_primers["PRIMER_LEFT_1_TM"]

 annealing_coords = repair_primers["PRIMER_LEFT_1"]

 forward_primer = str(repair_seq[:(annealing_coords[0] +

annealing_coords[1])])

 repair_as_seq = Seq.Seq(repair_seq)

 repair_rc = repair_as_seq.reverse_complement()

 repair_rc_str = str(repair_rc)

 reverse_primer = repair_rc_str[0:(len(repair_seq) -

annealing_coords[0])]

 if len(forward_primer) > 120 or len(reverse_primer) > 120:

 annealing_seq = repair_primers["PRIMER_LEFT_2_SEQUENCE"]

 annealing_tm = repair_primers["PRIMER_LEFT_2_TM"]

 annealing_coords = repair_primers["PRIMER_LEFT_2"]

 forward_primer = str(repair_seq[:(annealing_coords[0] +

annealing_coords[1])])

 repair_as_seq = Seq.Seq(repair_seq)

 repair_rc = repair_as_seq.reverse_complement()

 repair_rc_str = str(repair_rc)

 reverse_primer = repair_rc_str[0:(len(repair_seq) -

annealing_coords[0])]

 output_dict = {"Forward primer (5'-)": forward_primer,

 "Reverse primer (5'-)": reverse_primer,

 "Annealing sequence (5'-)": annealing_seq,

 "Tm ('C)": annealing_tm}

 return output_dict

 256

7.2.18 MAIN CODE BATCH VERSION

7.2.18.1 Modified Configuration Spreadsheet

 257

7.2.18.2 Code
-*- coding: utf-8 -*-

"""

Created on Thu May 9 13:06:02 2024

@author: ceh560

"""

#packages used in this file and/or the feeder files

import pandas as pd

from Bio import SeqIO

from Bio import Seq

from Bio import Align

import numpy as np

import io

import random

import primer3

import primer3.bindings

#custom files to import

import codon_dataframes as cdf

import codon_dictionaries as cdict

import formatting_functions as formats

import primer_functions as primers

import reading_input_file as rif

import validator as val

import stitching_functions as stitch

#read input files

input_data =

pd.read_excel("repair_template_input_excel_batch.xlsx", index_col

= 0, header = 0)

pd.set_option('display.max_columns', 20)

pd.set_option('display.max_rows', None)

pd.set_option("display.width", 1000)

pd.options.display.float_format = "{:,.2f}".format

#check for missing values in each column before proceeding

column_keys = list(input_data.keys())

complete_columns_keys = []

for column in column_keys:

 if input_data[column].notna().all() == True:

 complete_columns_keys.append(column)

 if input_data[column].notna().all() == False:

 if (input_data.isna().at["Alternating every nth residue",

column] == True) and (input_data[column]["Synonymous Recoding

type"] == "lowest" or input_data[column]["Synonymous Recoding

type"] == "highest" or input_data[column]["Synonymous Recoding

 258

type"] == "matched" or input_data[column]["Synonymous Recoding

type"] == "random"):

 complete_columns_keys.append(column)

 if (input_data.isna().at["Alternating every nth residue",

column] == True) and (input_data[column]["Synonymous Recoding

type"] == "alternating lowest" or input_data[column]["Synonymous

Recoding type"] == "alternating highest" or

input_data[column]["Synonymous Recoding type"] == "alternating

matched") and (input_data[column][input_data.index != "Alternating

every nth residue"].notna().all() == True):

 complete_columns_keys.append(column)

if len(complete_columns_keys) != len(column_keys):

 print("\n\n\n***Warning, one or more columns have not been

included due to missing values.***\n\n\n")

#check for duplicate filenames to prevent overwriting

job_names = input_data.loc["Job name"].copy().transpose()

#duplicated_names = []

if job_names.duplicated().any() == True:

 duplicated_names = job_names.where(job_names.duplicated(keep =

False) == True)

 dup_names1 = dict(duplicated_names)

 dup_names2 = dict(duplicated_names.isna())

 dup_names1_df = pd.DataFrame(dict(duplicated_names), index =

["Duplicate vales"])

 dup_names2_df = pd.DataFrame(dict(duplicated_names.isna()),

index = ["True/False"])

 #duplicated_names_df = pd.DataFrame(dup_names1, index =

["Duplicate value"])

 duplicated_names_df = pd.concat([dup_names1_df,

dup_names2_df.astype(bool)], ignore_index = True)

 counter = 1

 for columns in duplicated_names_df.columns.values.tolist():

 job_name = duplicated_names_df[columns][0]

 unique_status = duplicated_names_df[columns][1]

 if unique_status == False:

 old_job_name = input_data.at["Job name", columns]

 input_data.at["Job name", columns] = old_job_name +

"(" + str(counter) + ")"

 counter += 1

 259

for column in complete_columns_keys:

 job_name = input_data.loc["Job name"][column]

 target_AA = input_data.loc["Target amino acid

residue"][column]

 target_res_num = input_data.loc["Target amino acid

number"][column]

 output_AA = input_data.loc["Replacement amino acid"][column]

 syn_recode_type = input_data.loc["Synonymous Recoding

type"][column]

 nonsyn_recode_type = input_data.loc["Nonsynonymous Recoding

Type"][column]

 codon_freq_input_file = input_data.loc["Codon Frequency data

filename (incl. extension)"][column]

 recode_region_length = input_data.loc["Recoding region length

(bp)"][column]

 hom_arm_length = input_data.loc["Homology arm length

(bp)"][column]

 ref_file_name = input_data.loc["Reference FASTA filename

(incl. extension)"][column]

 CDS_start = input_data.loc["CDS start in reference file (bp

number)"][column]

 CDS_end = input_data.loc["CDS end in reference file (bp

number)"][column]

 alternating_repeat = input_data.loc["Alternating every nth

residue"][column]

 print("\n--------------------------------\n\n")

 print(f"Start of {job_name}, mutation:

{target_AA}{target_res_num}{output_AA}\n\n")

 #read input fasta file and process as necessary

 gene_name = job_name

 target_res_base_nums = [((target_res_num-1)*3),

(target_res_num*3)]

 num_of_codons_to_recode = recode_region_length / 3

 target_codon_no = int(num_of_codons_to_recode/2)

 if recode_region_length % 2 == 0:

 recode_start = int(target_res_base_nums[0] -

(recode_region_length/2))

 else:

 half_codon_percent = target_codon_no /

num_of_codons_to_recode

 back_bases = recode_region_length * half_codon_percent

 recode_start = int(target_res_base_nums[0] - back_bases)

 260

 recode_end = recode_start + recode_region_length

 #need some special cases for close to the start or end of the

CDS

 #near the start special case

 if num_of_codons_to_recode > target_res_num:

 recode_start = 0

 recode_end = recode_region_length

 target_codon_no = target_res_num - 1

 for gene_name in SeqIO.parse(ref_file_name,"fasta"):

 #print(gene_name.id)

 print(gene_name.description)

 print(repr(gene_name.seq))

 print("Gene sequence length: ", len(gene_name), "bp")

 print("\n")

 if CDS_end == "end":

 CDS_end = len(gene_name.seq)

 else:

 CDS_end = CDS_end

 if CDS_start > 1:

 CDS_start = CDS_start - 1

 WT_CDS_seq = gene_name.seq[(CDS_start):CDS_end]

 recode_start_whole = recode_start + CDS_start

 recode_end_whole = recode_end + CDS_start

 else:

 WT_CDS_seq = gene_name.seq[:CDS_end]

 recode_start_whole = recode_start

 recode_end_whole = recode_end

 #check input is a length divisible by 3

 val.triplet_checker(WT_CDS_seq)

 #check that the input given is correct and that the target

codes for the expected residue

 val.translate_checker(WT_CDS_seq, target_res_num, target_AA)

 #near the end special case

 total_num_AAs = len(WT_CDS_seq.translate())

 if target_res_num > (total_num_AAs - num_of_codons_to_recode):

 recode_end = len(WT_CDS_seq)

 261

 recode_start = len(WT_CDS_seq) - recode_region_length

 if CDS_start > 1:

 recode_end_whole = recode_end + CDS_start

 recode_start_whole = recode_start + CDS_start

 else:

 recode_end_whole = recode_end

 recode_start_whole = recode_start

 num_of_codons_to_recode = int((recode_end - recode_start +

1) / 3)

 target_codon_no = num_of_codons_to_recode - (total_num_AAs

- target_res_num) - 1

 #establish the sequence to replace, and sequences before and

after to stay the same

 WT_template_seq =

gene_name.seq[recode_start_whole:recode_end_whole]

 upstream_dna = gene_name.seq[:recode_start_whole]

 downstream_dna = gene_name.seq[recode_end_whole:]

 #make dictionary of codons with number keys and one with

numbers and amino acids

 codons_to_recode = cdict.codon_dict_maker(WT_template_seq,

key_format= "number")

 codons_to_recode_let_num =

cdict.codon_dict_maker(WT_template_seq, key_format= "letter-

number")

 #make reference dictionaries for all the amino acids

 ref_codon_table_df =

rif.codon_table_processor(codon_freq_input_file)

 ref_codons = cdf.ref_codon_table_freqs(ref_codon_table_df)

 if syn_recode_type == "matched":

 #use that dictionary to create a new one with the specific

frequency values

 codons_to_recode_freqs =

cdf.codon_frequency_collector(input_dict = codons_to_recode,

reference_dict = ref_codons, type = "value")

 #create a dictionary with all the frequencies for the

amino acids in this sequence for each codon

 262

 codons_to_recode_all_freqs =

cdf.codon_frequency_collector(input_dict = codons_to_recode,

reference_dict = ref_codons, type = "dataframe")

 #calculate the differences for each possible codon to the

original

 recode_freq_diffs =

cdf.codon_frequency_difference_calc(codons_to_recode_let_num,

ref_codons)

 #add the differences in frequency to "the" dataframe

 codons_to_recode_abs_diffs =

cdf.codon_freq_diff_adder(codons_to_recode_let_num

,codons_to_recode_all_freqs, recode_freq_diffs)

 #choose which codons to use for synonymous recoding

 codons_to_use_syn =

cdf.codon_freq_selector(codons_to_recode_abs_diffs)

 if syn_recode_type == "highest" or syn_recode_type ==

"lowest":

 #use that dictionary to create a new one with the specific

frequency values

 codons_to_recode_freqs =

cdf.codon_frequency_collector(input_dict = codons_to_recode,

reference_dict = ref_codons, type = "value")

 #create a dictionary with all the frequencies for the

amino acids in this sequence for each codon

 codons_to_recode_all_freqs =

cdf.codon_frequency_collector(input_dict = codons_to_recode,

reference_dict = ref_codons, type = "dataframe")

 codons_to_recode_choices_freqs = {}

 #remove input codon from list

 for let_num, seq in codons_to_recode_let_num.items():

 if seq == Seq.Seq("ATG") or seq == Seq.Seq("TGG"):

 codons_to_recode_choices_freqs[let_num] =

ref_codon_table_df.loc[ref_codon_table_df["DNA"] == str(seq)]

 else:

 current_df = codons_to_recode_all_freqs[let_num]

 codons_to_recode_choices_freqs[let_num] =

current_df.loc[current_df["DNA"] != str(seq)]

 #make the list of codons to use depending on recoding type

 codons_to_use_syn = {}

 if syn_recode_type == "highest":

 for codon_num_let, seq_df in

codons_to_recode_choices_freqs.items():

 max_freq_codon = max(seq_df["Fraction"])

 263

 mutated_res_df_chosen =

seq_df.loc[seq_df["Fraction"] == max_freq_codon, "DNA"]

 #tie breaker for instances with same fraction

usage - hopefully number won't ever have duplicate values

 if len(mutated_res_df_chosen) > 1:

 max_number_codon = max(seq_df["Number"])

 max_number_codon_seq =

seq_df.loc[seq_df["Number"] == max_number_codon, "DNA"].item()

 codons_to_use_syn[codon_num_let] =

max_number_codon_seq

 else:

 codons_to_use_syn[codon_num_let] =

seq_df.loc[seq_df["Fraction"] == max_freq_codon, "DNA"].item()

 if syn_recode_type == "lowest":

 for codon_num_let, seq_df in

codons_to_recode_choices_freqs.items():

 min_freq_codon = min(seq_df["Fraction"])

 mutated_res_df_chosen =

seq_df.loc[seq_df["Fraction"] == min_freq_codon, "DNA"]

 #tie breaker

 if len(mutated_res_df_chosen) > 1:

 min_number_codon = max(seq_df["Number"])

 min_number_codon_seq =

seq_df.loc[seq_df["Number"] == min_number_codon, "DNA"].item()

 codons_to_use_syn[codon_num_let] =

min_number_codon_seq

 else:

 codons_to_use_syn[codon_num_let] =

seq_df.loc[seq_df["Fraction"] == min_freq_codon, "DNA"].item()

 if syn_recode_type == "alternating matched" or syn_recode_type

== "alternating random" or syn_recode_type == "alternating

highest" or syn_recode_type == "alternating lowest":

 #check input has been given suitably

 if alternating_repeat == "N/A" or alternating_repeat <= 0

or pd.isna(alternating_repeat) == True:

 print("\n\n\n***ERROR: No value or an invalid value

was set for the alternating pattern of the codons to

recode.***\n\n\n")

 alternating_repeat = int(input("Please enter a

positive integrer for the alternating repeat value: "))

 input_data.at["Alternating every nth residue", column]

= alternating_repeat

 if alternating_repeat > (0.5 * num_of_codons_to_recode):

 proceed_alt = input("The chosen repeat value is

greater than half of the total number of codons being recoded so

 264

only 2 or fewer codons will be mutated.\n\nDo you wish to proceed?

Y/N \n")

 if proceed_alt == "N" or proceed_alt == "n" or

proceed_alt == "NO" or proceed_alt == "No" or proceed_alt == "no":

 alternating_repeat = int(input("Please enter a

positive integer for the alternating repeat value: "))

 input_data.at["Alternating every nth residue",

column] = alternating_repeat

 elif proceed_alt == "Y" or proceed_alt =="y" or

proceed_alt =="YES" or proceed_alt == "Yes" or proceed_alt ==

"yes":

 pass

 else:

 proceed_alt = input("\n\nThe input given is not

valid. Please try again.\n\nThe chosen repeat value is greater

than half of the total number of codons being recoded so only 2 or

fewer codons will be mutated.\n\nDo you wish to proceed? Y/N \n")

 if proceed_alt == "N" or proceed_alt == "n" or

proceed_alt == "NO" or proceed_alt == "No" or proceed_alt == "no":

 alternating_repeat = int(input("\nPlease enter

a positive integer for the alternating repeat value: "))

 input_data.at["Alternating every nth residue",

column] = alternating_repeat

 elif proceed_alt == "Y" or proceed_alt =="y" or

proceed_alt =="YES" or proceed_alt == "Yes" or proceed_alt ==

"yes":

 pass

 else:

 proceed_alt = input("\n\nThe input given is

not valid. Please try again.\n\nThe chosen repeat value is greater

than half of the total number of codons being recoded so only 2 or

fewer codons will be mutated.\n\nDo you wish to proceed? Y/N \n")

 if proceed_alt == "N" or proceed_alt == "n" or

proceed_alt == "NO" or proceed_alt == "No" or proceed_alt == "no":

 alternating_repeat = int(input("\nPlease

enter a positive integer for the alternating repeat value: "))

 input_data.at["Alternating every nth

residue", column] = alternating_repeat

 elif proceed_alt == "Y" or proceed_alt =="y"

or proceed_alt =="YES" or proceed_alt == "Yes" or proceed_alt ==

"yes":

 pass

 else:

 print("\n---------------------------------

---------------------------")

 print(f"\n***Warning, your input was

invalid so the code will continue with the value given. Your

repair template will recode every {alternating_repeat} codons. If

 265

you do not want this, modify the input spreadsheet and rerun the

programme.***")

 if alternating_repeat == "N/A" or alternating_repeat <= 0

or pd.isna(alternating_repeat) == True:

 print("\n\n\n***ERROR: An invalid value was set for

the alternating pattern of the codons to recode.***\n\n\n")

 alternating_repeat = int(input("Please enter a

positive integer for the alternating repeat value: "))

 if alternating_repeat == "N/A" or alternating_repeat <= 0

or pd.isna(alternating_repeat) == True:

 print("\n\n\n***ERROR: An invalid value was set for

the alternating pattern of the codons to recode.***\n\n\n")

 alternating_repeat = int(input("Last chance - please

enter a positive integer for the alternating repeat value: "))

 if alternating_repeat == "N/A" or alternating_repeat <= 0

or pd.isna(alternating_repeat) == True:

 print("\n\n\n\nYou failed to provide an appropriate

input so the programme will be cancelled.\n\nIf you wish to try

again, either modify the input spreadsheet or provide a suitable

value when prompted in the console.\n")

 raise SystemExit

 if syn_recode_type == "alternating matched" or syn_recode_type

== "alternating random":

 #determine which codon numbers in range are to be mutated

and which are not

 num_of_codons_to_mutate = int(num_of_codons_to_recode /

alternating_repeat)

 n_terms = list(range(num_of_codons_to_mutate))

 codon_nums_to_recode = []

 for n in n_terms:

 codon_num = n * alternating_repeat

 codon_nums_to_recode.append(codon_num)

 #ensure that target codon is always recoded even if it

doesn't fit the alternating pattern

 if target_codon_no not in codon_nums_to_recode:

 codon_nums_to_recode.append(target_codon_no)

 codon_nums_all = list(codons_to_recode.keys())

 #split the codons to be mutated into a separate dictionary

from the ones to stay the same

 codons_to_keep_WT = {}

 specific_codons_to_recode = {}

 for numbers in codon_nums_all:

 266

 if numbers not in codon_nums_to_recode:

 codons_to_keep_WT[numbers] =

codons_to_recode[numbers]

 if numbers in codon_nums_to_recode:

 specific_codons_to_recode[numbers] =

codons_to_recode[numbers]

 for numbers in codon_nums_to_recode:

 if numbers not in codon_nums_to_recode:

 codons_to_keep_WT = codons_to_recode[numbers]

 if syn_recode_type == "alternating matched":

 #on only the codons to recode

 #use that dictionary to create a new one with the

specific frequency values

 codons_to_recode_freqs =

cdf.codon_frequency_collector(input_dict = codons_to_recode,

reference_dict = ref_codons, type = "value")

 #create a dictionary with all the frequencies for the

amino acids in this sequence for each codon

 codons_to_recode_all_freqs =

cdf.codon_frequency_collector(input_dict = codons_to_recode,

reference_dict = ref_codons, type = "dataframe")

 #calculate the differences for each possible codon to

the original

 recode_freq_diffs =

cdf.codon_frequency_difference_calc(codons_to_recode_let_num,

ref_codons)

 #add the differences in frequency to "the" dataframe

 codons_to_recode_abs_diffs =

cdf.codon_freq_diff_adder(codons_to_recode_let_num

,codons_to_recode_all_freqs, recode_freq_diffs)

 #choose which codons to use for synonymous recoding

 codons_to_use_syn =

cdf.codon_freq_selector(codons_to_recode_abs_diffs)

 if syn_recode_type == "alternating random":

 #add letters to dictionary

 specific_codons_to_recode_let_num = {}

 for keys, seq in specific_codons_to_recode.items():

 let_num = str(seq.translate()) + str(keys)

 specific_codons_to_recode_let_num[let_num] = seq

 #make a dictionary of the alternate codons to the

input sequence

 267

 alt_codons_to_recode =

cdict.alt_codons(specific_codons_to_recode_let_num)

 #randomly select which of these to use for each codon

 codons_to_use_syn =

cdict.Syn_random_recoder(alt_codons_to_recode)

 #combine the unchanged codons with the changed codons

 codons_to_keep_WT_let_num = {}

 for codon_num, seq in codons_to_keep_WT.items():

 translation = seq.translate()

 codon_num_let = str(translation) + str(codon_num)

 codons_to_keep_WT_let_num[codon_num_let] = seq

 codons_to_use_syn.update(codons_to_keep_WT_let_num)

 if syn_recode_type == "alternating highest" or syn_recode_type

== "alternating lowest":

 num_of_codons_to_mutate = int(num_of_codons_to_recode /

alternating_repeat)

 n_terms = list(range(num_of_codons_to_mutate))

 codon_nums_to_recode = []

 for n in n_terms:

 codon_num = n * alternating_repeat

 codon_nums_to_recode.append(codon_num)

 if target_codon_no not in codon_nums_to_recode:

 codon_nums_to_recode.append(target_codon_no)

 codon_nums_all = list(codons_to_recode.keys())

 codons_to_keep_WT = {}

 specific_codons_to_recode = {}

 for numbers in codon_nums_all:

 if numbers not in codon_nums_to_recode:

 translate = codons_to_recode[numbers].translate()

 let_num = str(translate) + str(numbers)

 codons_to_keep_WT[let_num] =

codons_to_recode[numbers]

 if numbers in codon_nums_to_recode:

 #translate = codons_to_recode[numbers].translate()

 #let_num = str(translate) + str(numbers)

 specific_codons_to_recode[numbers] =

codons_to_recode[numbers]

 268

 for numbers in codon_nums_to_recode:

 if numbers not in codon_nums_to_recode:

 codons_to_keep_WT = codons_to_recode[numbers]

 #use that dictionary to create a new one with the specific

frequency values

 codons_to_recode_freqs =

cdf.codon_frequency_collector(input_dict =

specific_codons_to_recode, reference_dict = ref_codons, type =

"value")

 #create a dictionary with all the frequencies for the

amino acids in this sequence for each codon

 codons_to_recode_all_freqs =

cdf.codon_frequency_collector(input_dict =

specific_codons_to_recode, reference_dict = ref_codons, type =

"dataframe")

 codons_to_recode_choices_freqs = {}

 #remove input codon from list unless it's Met or Trp

 for let_num, df in codons_to_recode_all_freqs.items():

 input_codon = codons_to_recode_let_num[let_num]

 if input_codon == Seq.Seq("ATG") or input_codon ==

Seq.Seq("TGG"):

 codons_to_recode_choices_freqs[let_num] =

ref_codon_table_df.loc[ref_codon_table_df["DNA"] ==

str(input_codon)]

 else:

 current_df = codons_to_recode_all_freqs[let_num]

 codons_to_recode_choices_freqs[let_num] =

current_df.loc[current_df["DNA"] != str(input_codon)]

 #recode based on input type

 codons_to_use_syn = {}

 if syn_recode_type == "alternating highest":

 for codon_num_let, seq_df in

codons_to_recode_choices_freqs.items():

 max_freq_codon = max(seq_df["Fraction"])

 max_freq_codon_seq = seq_df.loc[seq_df["Fraction"]

== max_freq_codon, "DNA"]

 if len(max_freq_codon_seq) > 1:

 max_number_codon = max(seq_df["Number"])

 max_freq_codon_seq =

seq_df.loc[seq_df["Number"] == max_number_codon, "DNA"].item()

 codons_to_use_syn[codon_num_let] =

max_freq_codon_seq

 else:

 codons_to_use_syn[codon_num_let] =

max_freq_codon_seq.item()

 269

 if syn_recode_type == "alternating lowest":

 for codon_num_let, seq_df in

codons_to_recode_choices_freqs.items():

 min_freq_codon = min(seq_df["Fraction"])

 min_freq_codon_seq = seq_df.loc[seq_df["Fraction"]

== min_freq_codon, "DNA"]

 if len(min_freq_codon_seq) > 1:

 min_number_codon = min(seq_df["Number"])

 min_freq_codon_seq =

seq_df.loc[seq_df["Number"] == min_number_codon, "DNA"].item()

 codons_to_use_syn[codon_num_let] =

min_freq_codon_seq

 else:

 codons_to_use_syn[codon_num_let] =

min_freq_codon_seq.item()

 #combine the unchanged codons with the changed codons

 codons_to_keep_WT_let_num = {}

 for codon_num, seq in codons_to_keep_WT.items():

 codons_to_keep_WT_let_num[codon_num] = seq

 codons_to_use_syn.update(codons_to_keep_WT_let_num)

 if syn_recode_type == "random":

 #make a dictionary of the alternate codons to the input

sequence

 alt_codons_to_recode =

cdict.alt_codons(codons_to_recode_let_num)

 #randomly select which of these to use for each codon

 codons_to_use_syn =

cdict.Syn_random_recoder(alt_codons_to_recode)

 #add in the nonsynonymous mutation

 if nonsyn_recode_type == "highest" or nonsyn_recode_type ==

"lowest":

 nonsyn_ref_dict = ref_codons

 if nonsyn_recode_type == "random":

 nonsyn_ref_dict =

cdict.alt_codons(codons_to_recode_let_num)

 nonsyn_ref_dict = {output_AA :

cdict.ref_codon_table(output_AA)}

 270

 codons_to_use_nonsyn = cdf.non_syn_mutator(target_AA,

target_codon_no, new_AA = output_AA, input_dict =

codons_to_use_syn, type = nonsyn_recode_type, ref_dict =

nonsyn_ref_dict)

 #construct the final recoded sequences

 synonymous_repair =

stitch.sequence_constructor(codons_to_use_syn, type = "letter-

number")

 nonsynonymous_repair =

stitch.sequence_constructor(codons_to_use_nonsyn, type = "letter-

number")

 #check all the modifications were as expected

 #adjust target codon number to what it would be by normal

counting rather than python counting

 target_codon_no_not_py = target_codon_no + 1

 val.translate_checker(synonymous_repair,

target_codon_no_not_py, target_AA)

 val.translate_checker(nonsynonymous_repair,

target_codon_no_not_py, output_AA)

 #create the final repair sequence including the homology arms

 upstream_hom_arm = gene_name.seq[(recode_start_whole -

hom_arm_length):recode_start_whole]

 downstream_hom_arm = gene_name.seq[recode_end_whole:

(recode_end_whole + hom_arm_length)]

 WT_entire_repair_region = upstream_hom_arm + WT_template_seq +

downstream_hom_arm

 entire_syn_repair = upstream_hom_arm + synonymous_repair +

downstream_hom_arm

 entire_nonsyn_repair = upstream_hom_arm + nonsynonymous_repair

+ downstream_hom_arm

 #construct "gene" sequences for primer design

 integrated_synonymous, WT_recode_region =

stitch.mut_seq_integrator(repair_seq = synonymous_repair, ref_seq

= gene_name.seq, repair_start = recode_start_whole, repair_end =

recode_end_whole, WT_repair_seq= "Yes")

 integrated_nonsynonymous =

stitch.mut_seq_integrator(repair_seq = nonsynonymous_repair,

ref_seq = gene_name.seq, repair_start = recode_start_whole,

repair_end = recode_end_whole, WT_repair_seq= "No")

 271

 #design screening primers

 screening_primers_df_syn =

primers.screening_primer_designer(gene_name.seq,

integrated_synonymous, recode_start_whole, recode_end_whole)

 screening_primers_df_nonsyn =

primers.screening_primer_designer(gene_name.seq,

integrated_nonsynonymous, recode_start_whole, recode_end_whole)

 #design primers to generate the repair template

 syn_repair_template_primers =

primers.repair_primer_designer(entire_syn_repair, hom_arm_length,

downstream_dna)

 nonsyn_repair_template_primers =

primers.repair_primer_designer(entire_nonsyn_repair,

hom_arm_length, downstream_dna)

 #repair_template_primers = [syn_repair_template_primers,

nonsyn_repair_template_primers]

 #repair_template_primers_df =

pd.DataFrame(repair_template_primers)

 #repair_template_primers_df.index = ["Synonymous repair",

"Nonsynonymous repair"]

 #do an alignment

 #create a pariwise alignment object

 aligner = Align.PairwiseAligner(target_internal_open_gap_score

= -10.0, query_internal_open_gap_score = -10.0)

 syn_alignment = aligner.align(WT_entire_repair_region,

entire_syn_repair)

 for alignment1 in sorted(syn_alignment):

 #print("Score = %.1f:" % alignment1.score)

 #print(alignment1)

 syn_score = alignment1.score

 alignment_str_syn = str(alignment1)

 alignment_str_syn = alignment_str_syn.replace("target", "WT

sequence").replace("query", "Syn. repair").replace("\n

", "\n ")

 alignment_str_syn = alignment_str_syn.replace("Syn. repair

", "Syn. repair ")

 #print(alignment_str_syn)

 nonsyn_alignment = aligner.align(WT_entire_repair_region,

entire_nonsyn_repair)

 for alignment2 in sorted(syn_alignment):

 #print("Score = %.1f:" % alignment2.score)

 nonsyn_score = alignment2.score

 alignment_str_nonsyn = str(alignment2)

 alignment_str_nonsyn = alignment_str_nonsyn.replace("target",

"WT sequence").replace("query", "Nonsyn. repair").replace("\n

", "\n ")

 272

 alignment_str_nonsyn = alignment_str_nonsyn.replace("Nonsyn.

repair ", "Nonsyn. repair ")

 #print(alignment_str_nonsyn)

 #format some outputs

 WT_repair_seq_spaced =

formats.codon_spacing(WT_entire_repair_region)

 syn_repair_spaced = formats.codon_spacing(entire_syn_repair)

 nonsyn_repair_spaced =

formats.codon_spacing(entire_nonsyn_repair)

 WT_repair_translate = WT_entire_repair_region.translate()

 syn_repair_translate = entire_syn_repair.translate()

 nonsyn_repair_translate = entire_nonsyn_repair.translate()

 WT_repair_translate_spaced =

formats.protein_align_codon(WT_repair_translate)

 syn_repair_translate_spaced =

formats.protein_align_codon(syn_repair_translate)

 nonsyn_repair_translate_spaced =

formats.protein_align_codon(nonsyn_repair_translate)

 syn_repair_mutations_count =

val.mutation_counter(entire_syn_repair, WT_entire_repair_region)

 nonsyn_repair_mutations_count =

val.mutation_counter(entire_nonsyn_repair,

WT_entire_repair_region)

 syn_repair_primers_output = ""

 for category, item in syn_repair_template_primers.items():

 if type(item) == float:

 item = '{:.1f}'.format(item)

 syn_repair_primers_output += category

 syn_repair_primers_output += ": "

 syn_repair_primers_output += str(item)

 syn_repair_primers_output += "\n"

 nonsyn_repair_primers_output = ""

 for category, item in nonsyn_repair_template_primers.items():

 if type(item) == float:

 item = '{:.1f}'.format(item)

 nonsyn_repair_primers_output += category

 nonsyn_repair_primers_output += ": "

 nonsyn_repair_primers_output += str(item)

 nonsyn_repair_primers_output += "\n"

 if syn_recode_type == "alternating matched" or syn_recode_type

== "alternating highest" or syn_recode_type == "alternating

lowest" or syn_recode_type == "alternating random":

 273

 alternating_info = f"Alternating recoding every

{alternating_repeat} codons"

 else:

 alternating_info = ""

 output_file = open(f"{job_name}.txt", "w")

 file_lines = ["Job request details\n",

 f"Job name: {job_name}\n",

 f"Target amino acid:

{target_AA}{target_res_num}{output_AA}\n",

 f"Synonymous recoding type:

{syn_recode_type}\n",

 f"Nonsynonymous recode type:

{nonsyn_recode_type}\n",

 f"Homology arm length (bp): {hom_arm_length}\n",

 f"Recoding region length (bp):

{recode_region_length}\n",

 f"Total repair length (bp): {(2*hom_arm_length)

+ recode_region_length}\n",

 f"{alternating_info}\n",

 "\n",

 "\n",

 "Repair templates\n",

 f"WT repair region sequence:

\t\t{WT_repair_seq_spaced}\n",

 f"WT translation:

\t\t\t{WT_repair_translate_spaced}\n",

 f"Synonymous repair region sequence:

\t{syn_repair_spaced}\n",

 f"Synonymous repair translation:

\t\t{syn_repair_translate_spaced}\n",

 f"Nonsynonymous repair region sequence:

\t{nonsyn_repair_spaced}\n",

 f"Nonsynonymous repair translation:

\t{nonsyn_repair_translate_spaced}\n",

 "\n",

 f"Number of mutations in the synonymous repair

template: {syn_repair_mutations_count}\n",

 f"Number of mutations in the nonsynonymous

repair template: {nonsyn_repair_mutations_count}\n",

 "\n",

 "\n",

 "Screening primers\n",

 "Synonymous repair\n",

 "\n",

 f"{screening_primers_df_syn}\n",

 "\n",

 "\n",

 "Nonsynonymous primers\n"

 f"{screening_primers_df_nonsyn}",

 "\n",

 "\n",

 "Repair template primers\n",

 "Synonymous\n",

 274

 f"{syn_repair_primers_output}\n",

 "\n",

 "Nonsynonymous\n",

 f"{nonsyn_repair_primers_output}\n",

 "\n",

 f"WT sequence (no spaces):

{WT_entire_repair_region}\n",

 f"Synonymous sequence (no spaces):

{entire_syn_repair}\n",

 f"Nonsynonymous sequence (no spaces):

{entire_nonsyn_repair}\n",

 "\n",

 "\n",

 "Alignments\n",

 "Synonymous Repair\n",

 f"Score = {syn_score}\n",

 f"{alignment_str_syn}\n",

 "\n",

 "Nonsynonymous\n",

 f"Score = {nonsyn_score}\n",

 f"{alignment_str_nonsyn}\n"

]

 output_file.writelines(file_lines)

 output_file.close()

 #print confirmation message to make it clearer that it worked

 print(f"\n\n\nYour repair template designs have completed

successfully. Please check your folder for a file with the name

'{job_name}.txt'\n")

 print("\t.\t.\n", "\n\t___/\n\n\n")

print("\n--------------------------------\n")

print("Jobs that were completed:\n")

for column in complete_columns_keys:

 print(input_data[column]["Job name":"Nonsynonymous Recoding

Type"])

 print("\n")

if job_names.duplicated().any() == True:

 print("\n***Warning: duplicate job names (file names)

detected. Some files will be renamed to avoid

overwriting.***\n\t\t\t\t***Please check the completed jobs above

for details.***\n")

 275

7.2.19 MAIN CODE MULTI MUTANT VERSION

7.2.19.1 Modified Configuration Spreadsheet

 276

7.2.19.2 Code
-*- coding: utf-8 -*-

"""

Created on Fri Jun 7 14:26:56 2024

@author: ceh560

"""

#packages used in this file and/or the feeder files

import pandas as pd

from Bio import SeqIO

from Bio import Seq

from Bio import Align

import numpy as np

import io

import random

import primer3

import primer3.bindings

import statistics

#custom files to import

import codon_dataframes as cdf

import codon_dictionaries as cdict

import formatting_functions as formats

import primer_functions as primers

import reading_input_file as rif

import validator as val

import stitching_functions as stitch

#read input files

input_data =

pd.read_excel("repair_template_input_excel_multi_mutant.xlsx",

index_col = 0, header = 0)

pd.set_option('display.max_columns', 20)

pd.set_option('display.max_rows', None)

pd.set_option("display.width", 1000)

pd.options.display.float_format = "{:,.2f}".format

job_name = input_data.loc["Job name"][0]

syn_recode_type = input_data.loc["Synonymous Recoding type"][0]

nonsyn_recode_type = input_data.loc["Nonsynonymous Recoding

Type"][0]

codon_freq_input_file = input_data.loc["Codon Frequency data

filename (incl. extension)"][0]

recode_region_length = input_data.loc["Recoding region length

(bp)"][0]

hom_arm_length = input_data.loc["Homology arm length (bp)"][0]

 277

ref_file_name = input_data.loc["Reference FASTA filename (incl.

extension)"][0]

CDS_start = input_data.loc["CDS start in reference file (bp

number)"][0]

CDS_end = input_data.loc["CDS end in reference file (bp

number)"][0]

alternating_repeat = input_data.loc["Alternating every nth

residue"][0]

num_of_mutations = input_data.loc["Number of Nonsynonymous

Mutations"][0]

#mutation 1

target_AA_1 = input_data.loc["Target amino acid residue 1"][0]

target_res_num_1 = input_data.loc["Target amino acid number 1"][0]

output_AA_1 = input_data.loc["Replacement amino acid 1"][0]

#mutation 2

target_AA_2 = input_data.loc["Target amino acid residue 2"][0]

target_res_num_2 = input_data.loc["Target amino acid number 2"][0]

output_AA_2 = input_data.loc["Replacement amino acid 2"][0]

#mutation 3

target_AA_3 = input_data.loc["Target amino acid residue 3"][0]

target_res_num_3 = input_data.loc["Target amino acid number 3"][0]

output_AA_3 = input_data.loc["Replacement amino acid 3"][0]

#mutation 4

target_AA_4 = input_data.loc["Target amino acid residue 4"][0]

target_res_num_4 = input_data.loc["Target amino acid number 4"][0]

output_AA_4 = input_data.loc["Replacement amino acid 4"][0]

#mutation 5

target_AA_5 = input_data.loc["Target amino acid residue 5"][0]

target_res_num_5 = input_data.loc["Target amino acid number 5"][0]

output_AA_5 = input_data.loc["Replacement amino acid 5"][0]

#put all the mutants in a dataframe

mut_details = {"Mutation number": [1,2,3,4,5],

 "Target AA": [target_AA_1, target_AA_2, target_AA_3,

target_AA_4, target_AA_5],

 "Target residue number": [target_res_num_1, target_res_num_2,

target_res_num_3, target_res_num_4, target_res_num_5],

 "Replacement AA": [output_AA_1, output_AA_2, output_AA_3,

output_AA_4, output_AA_5]}

mut_details_df = pd.DataFrame(mut_details)

#target_res_base_nums = [((target_res_num-1)*3),

(target_res_num*3)]

 278

#add residue numbers to dataframe

for row in mut_details_df.index:

 residue_no = mut_details_df.at[row, "Target residue number"]

 residue_start = (residue_no - 1)*3

 residue_end = residue_no * 3

 mut_details_df.at[row, "Residue Start Base"] = residue_start

 mut_details_df.at[row, "Residue End Base"] = residue_end

#remove rows not needed for less than 5 mutations

if num_of_mutations < 5:

 mut_details_df = mut_details_df.iloc[:num_of_mutations]

#when n/a's are present, they cause the other numbers to be

floats, so to ensure that doesn't happen, after removing them,

convert to integers

mut_details_df["Target residue number"] = mut_details_df["Target

residue number"].astype(int)

#read input fasta file and process as necessary

gene_name = job_name

num_of_codons_to_recode = recode_region_length / 3

lowest_target = min(mut_details_df["Target residue number"])

centre_target = statistics.median(mut_details_df["Target residue

number"])

highest_target = max(mut_details_df["Target residue number"])

#if the median does not exist as a target e.g. the median of two

values is halfway between them

if mut_details_df.isin([centre_target]).any().all() == True:

 #define codon numbers for each target

 central_target_codon_no = int(num_of_codons_to_recode/2)

 central_target_index =

mut_details_df.loc[mut_details_df["Target residue

number"]==centre_target].index.item()

 mut_details_df["Codon no"] = None

 mut_details_df.at[central_target_index, "Codon no"] =

central_target_codon_no

 #add target codon numbers to dataframe

 for row in mut_details_df.index:

 if pd.isna(mut_details_df.at[row, "Codon no"]) == False:

 pass

 target_res_num = mut_details_df.at[row, "Target residue

number"]

 diff = centre_target - target_res_num

 279

 codon_no = central_target_codon_no + diff

 mut_details_df.at[row, "Codon no"] = codon_no

 centre_target_base_start = mut_details_df["Residue Start

Base"].loc[(mut_details_df["Target residue number"] ==

centre_target)]

 if recode_region_length % 2 == 0:

 recode_start = int(centre_target_base_start -

(recode_region_length/2))

 else:

 half_codon_percent = central_target_codon_no /

num_of_codons_to_recode

 back_bases = recode_region_length * half_codon_percent

 recode_start = int(centre_target_base_start - back_bases)

else:

 central_target_codon_no = int(num_of_codons_to_recode/2)

 central_target_codon_start = int(centre_target * 3)

 central_target_codon_end = central_target_codon_start + 3

 mut_details_df["Codon no"] = None

 for row in mut_details_df.index:

 target_res_num = mut_details_df.at[row, "Target residue

number"]

 diff = centre_target - target_res_num

 codon_no = central_target_codon_no - diff

 mut_details_df.at[row, "Codon no"] = codon_no

 if recode_region_length % 2 == 0:

 recode_start = int(central_target_codon_start -

(recode_region_length/2) - 1)

 else:

 half_codon_percent = central_target_codon_no /

num_of_codons_to_recode

 back_bases = recode_region_length * half_codon_percent

 recode_start = int(central_target_codon_start -

back_bases)

 if max(mut_details_df["Codon no"]) > num_of_codons_to_recode:

 min_recode_start = min(mut_details_df["Residue Start

Base"])

 min_recode_end = max(mut_details_df["Residue End Base"])

 min_recoding_region = min_recode_end - min_recode_start

 if min_recoding_region == recode_region_length:

 280

 recode_start = min_recode_start

 recode_end = min_recode_end

 lowest_target_index =

mut_details_df.loc[mut_details_df["Target residue

number"]==lowest_target].index.item()

 mut_details_df.at[lowest_target_index, "Codon no"] = 0

 lowest_target_codon_no =

mut_details_df.at[lowest_target_index, "Codon no"]

 for row in mut_details_df.index:

 if pd.isna(mut_details_df.at[row, "Codon no"]) ==

False:

 pass

 target_res_num = mut_details_df.at[row, "Target

residue number"]

 diff = target_res_num - lowest_target

 codon_no = lowest_target_codon_no + diff

 mut_details_df.at[row, "Codon no"] = codon_no

 else:

 extra_bases = recode_region_length -

min_recoding_region

 extra_codons = extra_bases/3

 codons_to_start = lowest_target - 1

 #accounting for times where an uneven distribution of targets

causes an inappropriate centre

 if min(mut_details_df["Codon no"]) < 0:

 targets_range = max(mut_details_df["Codon no"]) -

min(mut_details_df["Codon no"])

 #if the number of codons to recode is the same distance as

the range of the target sites

 if targets_range == num_of_codons_to_recode:

 recode_start = min_recode_start

 recode_end = min_recode_end

 lowest_target_index =

mut_details_df.loc[mut_details_df["Target residue

number"]==lowest_target].index.item()

 mut_details_df.at[lowest_target_index, "Codon no"] = 0

 lowest_target_codon_no =

mut_details_df.at[lowest_target_index, "Codon no"]

 #if the number of codons to recode is (larger) than the

recoding region covered by the targets

 else:

 extra_codons = num_of_codons_to_recode - targets_range

 lowest_target_index =

mut_details_df.loc[mut_details_df["Target residue

number"]==lowest_target].index.item()

 281

 min_recode_start =

mut_details_df.at[lowest_target_index, "Residue Start Base"]

 #for an even number of spare codons, split equally at

each end

 if extra_codons % 2 == 0:

 half_extra_codons = extra_codons / 2

 mut_details_df.at[lowest_target_index, "Codon no"]

= half_extra_codons

 recode_start = min_recode_start -

(half_extra_codons * 3)

 #for an odd number of spare codons, put +1 codon

upstream than downstream

 else:

 downstream_codons = (extra_codons - 1) /2

 upstream_codons = extra_codons - downstream_codons

 mut_details_df.at[lowest_target_index, "Codon no"]

= upstream_codons

 recode_start = min_recode_start - (upstream_codons

* 3)

 lowest_target_codon_no =

mut_details_df.at[lowest_target_index, "Codon no"]

 for row in mut_details_df.index:

 if pd.isna(mut_details_df.at[row, "Codon no"]) ==

False:

 pass

 target_res_num = mut_details_df.at[row, "Target

residue number"]

 diff = target_res_num - lowest_target

 codon_no = lowest_target_codon_no + diff

 mut_details_df.at[row, "Codon no"] = codon_no

 if max(mut_details_df["Codon no"]) > num_of_codons_to_recode:

 targets_range = max(mut_details_df["Codon no"]) -

min(mut_details_df["Codon no"])

 #if the number of codons to recode is the same distance as

the range of the target sites

 if targets_range == num_of_codons_to_recode:

 recode_start = min_recode_start

 recode_end = min_recode_end

 lowest_target_index =

mut_details_df.loc[mut_details_df["Target residue

number"]==lowest_target].index.item()

 mut_details_df.at[lowest_target_index, "Codon no"] = 0

 282

 lowest_target_codon_no =

mut_details_df.at[lowest_target_index, "Codon no"]

 #if the number of codons to recode is (larger) than the

recoding region covered by the targets

 else:

 extra_codons = num_of_codons_to_recode - targets_range

 highest_target_index =

mut_details_df.loc[mut_details_df["Target residue

number"]==highest_target].index.item()

 min_recode_end =

mut_details_df.at[highest_target_index, "Residue End Base"]

 #for an even number of spare codons, split equally at

each end

 if extra_codons % 2 == 0:

 half_extra_codons = extra_codons / 2

 mut_details_df.at[highest_target_index, "Codon

no"] = num_of_codons_to_recode - half_extra_codons

 recode_start = min_recode_start -

(half_extra_codons * 3)

 #for an odd number of spare codons, put +1 codon

upstream than downstream

 else:

 downstream_codons = (extra_codons - 1) /2

 upstream_codons = extra_codons - downstream_codons

 mut_details_df.at[highest_target_index, "Codon

no"] = downstream_codons

 recode_start = min_recode_start - (upstream_codons

* 3)

 highest_target_codon_no =

mut_details_df.at[highest_target_index, "Codon no"]

 for row in mut_details_df.index:

 if pd.isna(mut_details_df.at[row, "Codon no"]) ==

False:

 pass

 target_res_num = mut_details_df.at[row, "Target

residue number"]

 diff = highest_target - target_res_num

 codon_no = highest_target_codon_no - diff

 mut_details_df.at[row, "Codon no"] = codon_no

recode_end = recode_start + recode_region_length

#need some special cases for close to the start or end of the CDS

#near the start special case

 283

#all within the recoding regin number of amino acids

if num_of_codons_to_recode > lowest_target and

num_of_codons_to_recode > highest_target:

 recode_start = 0

 recode_end = recode_region_length

 #target_codon_no = lowest_target - 1

 for row in mut_details_df.index:

 target_res_num = mut_details_df.at[row, "Target residue

number"]

 mut_details_df.at[row, "Codon no"] = int(target_res_num -

1)

#for when the highet target residue is outisde the recoding range

if it started at the beginning of the gene

if num_of_codons_to_recode >= lowest_target and

num_of_codons_to_recode <= highest_target:

 min_recode_start = min(mut_details_df["Residue Start Base"])

 min_recode_end = max(mut_details_df["Residue End Base"])

 min_recoding_region = min_recode_end - min_recode_start

 if min_recoding_region == recode_region_length:

 recode_start = min_recode_start

 recode_end = min_recode_end

 lowest_target_index =

mut_details_df.loc[mut_details_df["Target residue

number"]==lowest_target].index.item()

 mut_details_df.at[lowest_target_index, "Codon no"] = 0

 lowest_target_codon_no =

mut_details_df.at[lowest_target_index, "Codon no"]

 for row in mut_details_df.index:

 if pd.isna(mut_details_df.at[row, "Codon no"]) ==

False:

 pass

 target_res_num = mut_details_df.at[row, "Target

residue number"]

 diff = target_res_num - lowest_target

 codon_no = lowest_target_codon_no + diff

 mut_details_df.at[row, "Codon no"] = codon_no

 else:

 extra_bases = recode_region_length - min_recoding_region

 extra_codons = extra_bases/3

 codons_to_start = lowest_target - 1

 if codons_to_start >= extra_codons:

 if extra_codons % 2 == 0:

 recode_start = min_recode_start - (0.5 *

extra_bases)

 recode_end = min_recode_end + (0.5 * extra_bases)

 284

 else:

 half_extra_codons_down = int(extra_codons/2)

 half_extra_codons_up = extra_codons -

half_extra_codons_down

 recode_start = int(min_recode_start -

(half_extra_codons_up * 3))

 recode_end = int(min_recode_end +

(half_extra_codons_down * 3))

 mut_details_df["Codon no"] = None

 lowest_target_start = min(mut_details_df["Residue

Start Base"])

 codons_before_lowest = (min_recode_start -

recode_start)/3

 lowest_target_index =

mut_details_df.loc[mut_details_df["Target residue

number"]==lowest_target].index.item()

 mut_details_df.at[lowest_target_index, "Codon no"] =

codons_before_lowest

 lowest_target_codon_no =

mut_details_df.at[lowest_target_index, "Codon no"]

 for row in mut_details_df.index:

 if pd.isna(mut_details_df.at[row, "Codon no"]) ==

False:

 pass

 target_res_num = mut_details_df.at[row, "Target

residue number"]

 diff = target_res_num - lowest_target

 codon_no = lowest_target_codon_no + diff

 mut_details_df.at[row, "Codon no"] = codon_no

 if codons_to_start < extra_codons:

 recode_start = 0

 extra_end_codons = extra_codons - codons_to_start

 recode_end = min_recode_end + (3 * extra_end_codons)

 for row in mut_details_df.index:

 target_res_num = mut_details_df.at[row, "Target

residue number"]

 mut_details_df.at[row, "Codon no"] =

int(target_res_num - 1)

mut_details_df["Codon no"] = mut_details_df["Codon

no"].astype(int)

#read gene fasta file and define the CDS

for gene_name in SeqIO.parse(ref_file_name,"fasta"):

 #print(gene_name.id)

 285

 print(gene_name.description)

 print(repr(gene_name.seq))

 print("Gene sequence length: ", len(gene_name), "bp")

 print("\n")

if CDS_end == "end":

 CDS_end = len(gene_name.seq)

else:

 CDS_end = CDS_end

if CDS_start > 1:

 CDS_start = CDS_start - 1

 WT_CDS_seq = gene_name.seq[(CDS_start):CDS_end]

 recode_start_whole = int(recode_start + CDS_start)

 recode_end_whole = int(recode_end + CDS_start)

else:

 WT_CDS_seq = gene_name.seq[:CDS_end]

 recode_start_whole = int(recode_start)

 recode_end_whole = int(recode_end)

#check input is a length divisible by 3

val.triplet_checker(WT_CDS_seq)

#near the end special case

total_num_AAs = len(WT_CDS_seq.translate())

if highest_target > (total_num_AAs - num_of_codons_to_recode):

 if lowest_target > (total_num_AAs - num_of_codons_to_recode):

 recode_end = len(WT_CDS_seq)

 recode_start = len(WT_CDS_seq) - recode_region_length

 num_of_codons_to_recode = int((recode_end - recode_start +

1) / 3)

 highest_target_codon_no = num_of_codons_to_recode -

(total_num_AAs - highest_target) - 1

 mut_details_df["Codon no"] = None

 highest_target_index =

mut_details_df.loc[mut_details_df["Target residue

number"]==highest_target].index.item()

 mut_details_df.at[highest_target_index, "Codon no"] =

highest_target_codon_no

 for row in mut_details_df.index:

 if pd.isna(mut_details_df.at[row, "Codon no"]) ==

False:

 pass

 286

 target_res_num = mut_details_df.at[row, "Target

residue number"]

 diff = highest_target - target_res_num

 codon_no = highest_target_codon_no - diff

 mut_details_df.at[row, "Codon no"] = codon_no

 else:

 min_recode_start = min(mut_details_df["Residue Start

Base"])

 min_recode_end = max(mut_details_df["Residue End Base"])

 min_recoding_region = min_recode_end - min_recode_start

 codons_to_end = total_num_AAs - highest_target

 extra_bases = recode_region_length - min_recoding_region

 extra_codons = extra_bases/3

 if min_recoding_region == recode_region_length:

 recode_start = min_recode_start

 recode_end = min_recode_end

 highest_target_index =

mut_details_df.loc[mut_details_df["Target residue

number"]==highest_target].index.item()

 mut_details_df.at[highest_target_index, "Codon no"] =

num_of_codons_to_recode - 1

 highest_target_codon_no =

mut_details_df.at[highest_target_index, "Codon no"]

 for row in mut_details_df.index:

 if pd.isna(mut_details_df.at[row, "Codon no"]) ==

False:

 pass

 target_res_num = mut_details_df.at[row, "Target

residue number"]

 diff = highest_target - target_res_num

 codon_no = highest_target_codon_no - diff

 mut_details_df.at[row, "Codon no"] = codon_no

 else:

 if codons_to_end >= extra_codons:

 if extra_codons % 2 == 0:

 recode_start = min_recode_start - (0.5 *

extra_bases)

 recode_end = min_recode_end + (0.5 *

extra_bases)

 else:

 half_extra_codons_down = int(extra_codons/2)

 287

 half_extra_codons_up = extra_codons -

half_extra_codons_down

 recode_start = int(min_recode_start -

(half_extra_codons_up * 3))

 recode_end = int(min_recode_end +

(half_extra_codons_down * 3))

 mut_details_df["Codon no"] = None

 highest_target_end = max(mut_details_df["Residue

End Base"])

 codons_after_highest = (min_recode_end -

recode_end)/3

 highest_target_index =

mut_details_df.loc[mut_details_df["Target residue

number"]==highest_target].index.item()

 mut_details_df.at[lowest_target_index, "Codon no"]

= codons_after_highest

 highest_target_codon_no =

mut_details_df.at[highest_target_index, "Codon no"]

 for row in mut_details_df.index:

 if pd.isna(mut_details_df.at[row, "Codon no"])

== False:

 pass

 target_res_num = mut_details_df.at[row,

"Target residue number"]

 diff = highest_target - target_res_num

 codon_no = highest_target_codon_no - diff

 mut_details_df.at[row, "Codon no"] = codon_no

 if codons_to_start < extra_codons:

 recode_start = 0

 extra_end_codons = extra_codons - codons_to_start

 recode_end = min_recode_end + (3 *

extra_end_codons)

 for row in mut_details_df.index:

 target_res_num = mut_details_df.at[row,

"Target residue number"]

 mut_details_df.at[row, "Codon no"] =

int(target_res_num - 1)

 if CDS_start > 1:

 recode_end_whole = int(recode_end + CDS_start)

 recode_start_whole = int(recode_start + CDS_start)

 else:

 recode_end_whole = int(recode_end)

 recode_start_whole = int(recode_start)

 mut_details_df["Codon no"] = mut_details_df["Codon

no"].astype(int)

 288

mut_details_df["Codon no"] = mut_details_df["Codon

no"].astype(int)

#check that the input given is correct and that the target codes

for the expected residue

for row in mut_details_df.index:

 residue_no = int(mut_details_df.at[row, "Target residue

number"])

 target_AA = mut_details_df.at[row, "Target AA"]

 mut_details_df["Input AA Correct"] =

val.translate_checker(WT_CDS_seq, residue_no, target_AA)

#cancel the code if some incorrect starting amino acids given

if mut_details_df["Input AA Correct"].any() == False:

 print("\n\n\n***WARNING: One or more incorrect starting amino

acids. Please review your inputs.\nThe code will now

abort.***\n\n\n")

 print("Your inputs:")

 print(mut_details_df.loc[:, ["Mutation number", "Target AA",

"Target residue number"]])

 raise SystemExit

#check that the range of amino acids to mutate is not larger than

the recoding range

mutation_distance = max(mut_details_df["Residue End Base"]) -

min(mut_details_df["Residue Start Base"])

if mutation_distance > recode_region_length:

 print("\n\n\n***Warning: The distance between the target sites

is greater than the recoding region length. Please ensure your

recoding region length covers all target mutations.\nThe code will

now abort.***\n")

 print(f"You asked for a recoding region of

{recode_region_length} bp, but the needed recoding region length

is at least {int(mutation_distance)} bp.\n\n")

 raise SystemExit

#establish the sequence to replace, and sequences before and after

to stay the same

WT_template_seq =

gene_name.seq[recode_start_whole:recode_end_whole]

upstream_dna = gene_name.seq[:recode_start_whole]

downstream_dna = gene_name.seq[recode_end_whole:]

#make dictionary of codons with number keys and one with numbers

and amino acids

 289

codons_to_recode = cdict.codon_dict_maker(WT_template_seq,

key_format= "number")

codons_to_recode_let_num = cdict.codon_dict_maker(WT_template_seq,

key_format= "letter-number")

#make reference dictionaries for all the amino acids

ref_codon_table_df =

rif.codon_table_processor(codon_freq_input_file)

ref_codons = cdf.ref_codon_table_freqs(ref_codon_table_df)

#synonymous recoding - irrelevant to additional mutations

if syn_recode_type == "matched":

 #use that dictionary to create a new one with the specific

frequency values

 codons_to_recode_freqs =

cdf.codon_frequency_collector(input_dict = codons_to_recode,

reference_dict = ref_codons, type = "value")

 #create a dictionary with all the frequencies for the amino

acids in this sequence for each codon

 codons_to_recode_all_freqs =

cdf.codon_frequency_collector(input_dict = codons_to_recode,

reference_dict = ref_codons, type = "dataframe")

 #calculate the differences for each possible codon to the

original

 recode_freq_diffs =

cdf.codon_frequency_difference_calc(codons_to_recode_let_num,

ref_codons)

 #add the differences in frequency to "the" dataframe

 codons_to_recode_abs_diffs =

cdf.codon_freq_diff_adder(codons_to_recode_let_num

,codons_to_recode_all_freqs, recode_freq_diffs)

 #choose which codons to use for synonymous recoding

 codons_to_use_syn =

cdf.codon_freq_selector(codons_to_recode_abs_diffs)

if syn_recode_type == "highest" or syn_recode_type == "lowest":

 #use that dictionary to create a new one with the specific

frequency values

 codons_to_recode_freqs =

cdf.codon_frequency_collector(input_dict = codons_to_recode,

reference_dict = ref_codons, type = "value")

 #create a dictionary with all the frequencies for the amino

acids in this sequence for each codon

 290

 codons_to_recode_all_freqs =

cdf.codon_frequency_collector(input_dict = codons_to_recode,

reference_dict = ref_codons, type = "dataframe")

 codons_to_recode_choices_freqs = {}

 #remove input codon from list

 for let_num, seq in codons_to_recode_let_num.items():

 if seq == Seq.Seq("ATG") or seq == Seq.Seq("TGG"):

 codons_to_recode_choices_freqs[let_num] =

ref_codon_table_df.loc[ref_codon_table_df["DNA"] == str(seq)]

 else:

 current_df = codons_to_recode_all_freqs[let_num]

 codons_to_recode_choices_freqs[let_num] =

current_df.loc[current_df["DNA"] != str(seq)]

#make the list of codons to use depending on recoding type

 codons_to_use_syn = {}

 if syn_recode_type == "highest":

 for codon_num_let, seq_df in

codons_to_recode_choices_freqs.items():

 max_freq_codon = max(seq_df["Fraction"])

 mutated_res_df_chosen = seq_df.loc[seq_df["Fraction"]

== max_freq_codon, "DNA"]

 #tie breaker for instances with same fraction usage -

hopefully number won't ever have duplicate values

 if len(mutated_res_df_chosen) > 1:

 max_number_codon = max(seq_df["Number"])

 max_number_codon_seq = seq_df.loc[seq_df["Number"]

== max_number_codon, "DNA"].item()

 codons_to_use_syn[codon_num_let] =

max_number_codon_seq

 else:

 codons_to_use_syn[codon_num_let] =

seq_df.loc[seq_df["Fraction"] == max_freq_codon, "DNA"].item()

 if syn_recode_type == "lowest":

 for codon_num_let, seq_df in

codons_to_recode_choices_freqs.items():

 min_freq_codon = min(seq_df["Fraction"])

 mutated_res_df_chosen = seq_df.loc[seq_df["Fraction"]

== min_freq_codon, "DNA"]

 #tie breaker

 if len(mutated_res_df_chosen) > 1:

 min_number_codon = max(seq_df["Number"])

 min_number_codon_seq = seq_df.loc[seq_df["Number"]

== min_number_codon, "DNA"].item()

 codons_to_use_syn[codon_num_let] =

min_number_codon_seq

 291

 else:

 codons_to_use_syn[codon_num_let] =

seq_df.loc[seq_df["Fraction"] == min_freq_codon, "DNA"].item()

if syn_recode_type == "alternating matched" or syn_recode_type ==

"alternating random" or syn_recode_type == "alternating highest"

or syn_recode_type == "alternating lowest":

 #check input has been given suitably

 if alternating_repeat == "N/A" or alternating_repeat <= 0 or

pd.isna(alternating_repeat) == True:

 print("\n\n\n***ERROR: No value or an invalid value was

set for the alternating pattern of the codons to

recode.***\n\n\n")

 alternating_repeat = int(input("Please enter a positive

integrer for the alternating repeat value: "))

 if alternating_repeat > (0.5 * num_of_codons_to_recode):

 proceed_alt = input("The chosen repeat value is greater

than half of the total number of codons being recoded so only 2 or

fewer codons will be mutated.\n\nDo you wish to proceed? Y/N \n")

 if proceed_alt == "N" or proceed_alt == "n" or proceed_alt

== "NO" or proceed_alt == "No" or proceed_alt == "no":

 alternating_repeat = int(input("Please enter a

positive integer for the alternating repeat value: "))

 elif proceed_alt == "Y" or proceed_alt =="y" or

proceed_alt =="YES" or proceed_alt == "Yes" or proceed_alt ==

"yes":

 pass

 else:

 proceed_alt = input("\n\nThe input given is not valid.

Please try again.\n\nThe chosen repeat value is greater than half

of the total number of codons being recoded so only 2 or fewer

codons will be mutated.\n\nDo you wish to proceed? Y/N \n")

 if proceed_alt == "N" or proceed_alt == "n" or

proceed_alt == "NO" or proceed_alt == "No" or proceed_alt == "no":

 alternating_repeat = int(input("\nPlease enter a

positive integer for the alternating repeat value: "))

 elif proceed_alt == "Y" or proceed_alt =="y" or

proceed_alt =="YES" or proceed_alt == "Yes" or proceed_alt ==

"yes":

 pass

 else:

 proceed_alt = input("\n\nThe input given is not

valid. Please try again.\n\nThe chosen repeat value is greater

than half of the total number of codons being recoded so only 2 or

fewer codons will be mutated.\n\nDo you wish to proceed? Y/N \n")

 if proceed_alt == "N" or proceed_alt == "n" or

proceed_alt == "NO" or proceed_alt == "No" or proceed_alt == "no":

 alternating_repeat = int(input("\nPlease enter

a positive integer for the alternating repeat value: "))

 elif proceed_alt == "Y" or proceed_alt =="y" or

proceed_alt =="YES" or proceed_alt == "Yes" or proceed_alt ==

"yes":

 292

 pass

 else:

 print("\n-------------------------------------

-----------------------")

 print(f"\n***Warning, your input was invalid

so the code will continue with the value given. Your repair

template will recode every {alternating_repeat} codons. If you do

not want this, modify the input spreadsheet and rerun the

programme.***")

 if alternating_repeat == "N/A" or alternating_repeat <= 0 or

pd.isna(alternating_repeat) == True:

 print("\n\n\n***ERROR: An invalid value was set for the

alternating pattern of the codons to recode.***\n\n\n")

 alternating_repeat = int(input("Please enter a positive

integer for the alternating repeat value: "))

 if alternating_repeat == "N/A" or alternating_repeat <= 0 or

pd.isna(alternating_repeat) == True:

 print("\n\n\n***ERROR: An invalid value was set for the

alternating pattern of the codons to recode.***\n\n\n")

 alternating_repeat = int(input("Last chance - please enter

a positive integer for the alternating repeat value: "))

 if alternating_repeat == "N/A" or alternating_repeat <= 0 or

pd.isna(alternating_repeat) == True:

 print("\n\n\n\nYou failed to provide an appropriate input

so the programme will be cancelled.\n\nIf you wish to try again,

either modify the input spreadsheet or provide a suitable value

when prompted in the console.\n")

 raise SystemExit

if syn_recode_type == "alternating matched" or syn_recode_type ==

"alternating random":

 #determine which codon numbers in range are to be mutated and

which are not

 num_of_codons_to_mutate = int(num_of_codons_to_recode /

alternating_repeat)

 n_terms = list(range(num_of_codons_to_mutate))

 codon_nums_to_recode = []

 for n in n_terms:

 codon_num = n * alternating_repeat

 codon_nums_to_recode.append(codon_num)

 #ensure that target codons are always recoded even if they

don't fit the alternating pattern

 target_codons_nos = list(mut_details_df["Codon no"])

 for codon_no in target_codons_nos:

 293

 if codon_no not in codon_nums_to_recode:

 codon_nums_to_recode.append(codon_no)

 codon_nums_all = list(codons_to_recode.keys())

 #split the codons to be mutated into a separate dictionary

from the ones to stay the same

 codons_to_keep_WT = {}

 specific_codons_to_recode = {}

 for numbers in codon_nums_all:

 if numbers not in codon_nums_to_recode:

 codons_to_keep_WT[numbers] = codons_to_recode[numbers]

 if numbers in codon_nums_to_recode:

 specific_codons_to_recode[numbers] =

codons_to_recode[numbers]

 for numbers in codon_nums_to_recode:

 if numbers not in codon_nums_to_recode:

 codons_to_keep_WT = codons_to_recode[numbers]

 if syn_recode_type == "alternating matched":

 #on only the codons to recode

 #use that dictionary to create a new one with the specific

frequency values

 codons_to_recode_freqs =

cdf.codon_frequency_collector(input_dict = codons_to_recode,

reference_dict = ref_codons, type = "value")

 #create a dictionary with all the frequencies for the

amino acids in this sequence for each codon

 codons_to_recode_all_freqs =

cdf.codon_frequency_collector(input_dict = codons_to_recode,

reference_dict = ref_codons, type = "dataframe")

 #calculate the differences for each possible codon to the

original

 recode_freq_diffs =

cdf.codon_frequency_difference_calc(codons_to_recode_let_num,

ref_codons)

 #add the differences in frequency to "the" dataframe

 codons_to_recode_abs_diffs =

cdf.codon_freq_diff_adder(codons_to_recode_let_num

,codons_to_recode_all_freqs, recode_freq_diffs)

 #choose which codons to use for synonymous recoding

 codons_to_use_syn =

cdf.codon_freq_selector(codons_to_recode_abs_diffs)

 if syn_recode_type == "alternating random":

 294

 #add letters to dictionary

 specific_codons_to_recode_let_num = {}

 for keys, seq in specific_codons_to_recode.items():

 let_num = str(seq.translate()) + str(keys)

 specific_codons_to_recode_let_num[let_num] = seq

 #make a dictionary of the alternate codons to the input

sequence

 alt_codons_to_recode =

cdict.alt_codons(specific_codons_to_recode_let_num)

 #randomly select which of these to use for each codon

 codons_to_use_syn =

cdict.Syn_random_recoder(alt_codons_to_recode)

 #combine the unchanged codons with the changed codons

 codons_to_keep_WT_let_num = {}

 for codon_num, seq in codons_to_keep_WT.items():

 translation = seq.translate()

 codon_num_let = str(translation) + str(codon_num)

 codons_to_keep_WT_let_num[codon_num_let] = seq

 codons_to_use_syn.update(codons_to_keep_WT_let_num)

if syn_recode_type == "alternating highest" or syn_recode_type ==

"alternating lowest":

 num_of_codons_to_mutate = int(num_of_codons_to_recode /

alternating_repeat)

 n_terms = list(range(num_of_codons_to_mutate))

 codon_nums_to_recode = []

 for n in n_terms:

 codon_num = n * alternating_repeat

 codon_nums_to_recode.append(codon_num)

 #ensure that target codons are always recoded even if they

don't fit the alternating pattern

 target_codons_nos = list(mut_details_df["Codon no"])

 for codon_no in target_codons_nos:

 if codon_no not in codon_nums_to_recode:

 codon_nums_to_recode.append(codon_no)

 codon_nums_all = list(codons_to_recode.keys())

 295

 codons_to_keep_WT = {}

 specific_codons_to_recode = {}

 for numbers in codon_nums_all:

 if numbers not in codon_nums_to_recode:

 translate = codons_to_recode[numbers].translate()

 let_num = str(translate) + str(numbers)

 codons_to_keep_WT[let_num] = codons_to_recode[numbers]

 if numbers in codon_nums_to_recode:

 #translate = codons_to_recode[numbers].translate()

 #let_num = str(translate) + str(numbers)

 specific_codons_to_recode[numbers] =

codons_to_recode[numbers]

 for numbers in codon_nums_to_recode:

 if numbers not in codon_nums_to_recode:

 codons_to_keep_WT = codons_to_recode[numbers]

 #use that dictionary to create a new one with the specific

frequency values

 codons_to_recode_freqs =

cdf.codon_frequency_collector(input_dict =

specific_codons_to_recode, reference_dict = ref_codons, type =

"value")

 #create a dictionary with all the frequencies for the amino

acids in this sequence for each codon

 codons_to_recode_all_freqs =

cdf.codon_frequency_collector(input_dict =

specific_codons_to_recode, reference_dict = ref_codons, type =

"dataframe")

 codons_to_recode_choices_freqs = {}

 #remove input codon from list unless it's Met or Trp

 for let_num, df in codons_to_recode_all_freqs.items():

 input_codon = codons_to_recode_let_num[let_num]

 if input_codon == Seq.Seq("ATG") or input_codon ==

Seq.Seq("TGG"):

 codons_to_recode_choices_freqs[let_num] =

ref_codon_table_df.loc[ref_codon_table_df["DNA"] ==

str(input_codon)]

 else:

 current_df = codons_to_recode_all_freqs[let_num]

 codons_to_recode_choices_freqs[let_num] =

current_df.loc[current_df["DNA"] != str(input_codon)]

 #recode based on input type

 codons_to_use_syn = {}

 if syn_recode_type == "alternating highest":

 296

 for codon_num_let, seq_df in

codons_to_recode_choices_freqs.items():

 max_freq_codon = max(seq_df["Fraction"])

 max_freq_codon_seq = seq_df.loc[seq_df["Fraction"] ==

max_freq_codon, "DNA"]

 if len(max_freq_codon_seq) > 1:

 max_number_codon = max(seq_df["Number"])

 max_freq_codon_seq = seq_df.loc[seq_df["Number"]

== max_number_codon, "DNA"].item()

 codons_to_use_syn[codon_num_let] =

max_freq_codon_seq

 else:

 codons_to_use_syn[codon_num_let] =

max_freq_codon_seq.item()

 if syn_recode_type == "alternating lowest":

 for codon_num_let, seq_df in

codons_to_recode_choices_freqs.items():

 min_freq_codon = min(seq_df["Fraction"])

 min_freq_codon_seq = seq_df.loc[seq_df["Fraction"] ==

min_freq_codon, "DNA"]

 if len(min_freq_codon_seq) > 1:

 min_number_codon = min(seq_df["Number"])

 min_freq_codon_seq = seq_df.loc[seq_df["Number"]

== min_number_codon, "DNA"].item()

 codons_to_use_syn[codon_num_let] =

min_freq_codon_seq

 else:

 codons_to_use_syn[codon_num_let] =

min_freq_codon_seq.item()

 #combine the unchanged codons with the changed codons

 codons_to_keep_WT_let_num = {}

 for codon_num, seq in codons_to_keep_WT.items():

 codons_to_keep_WT_let_num[codon_num] = seq

 codons_to_use_syn.update(codons_to_keep_WT_let_num)

if syn_recode_type == "random":

 #make a dictionary of the alternate codons to the input

sequence

 alt_codons_to_recode =

cdict.alt_codons(codons_to_recode_let_num)

 #randomly select which of these to use for each codon

 297

 codons_to_use_syn =

cdict.Syn_random_recoder(alt_codons_to_recode)

#add in the nonsynonymous mutations

if nonsyn_recode_type == "highest" or nonsyn_recode_type ==

"lowest":

 nonsyn_ref_dict = ref_codons

if nonsyn_recode_type == "random":

 nonsyn_ref_dict = cdict.alt_codons(codons_to_recode_let_num)

 nonsyn_ref_dict = {}

 for row in mut_details_df.index:

 output_AA = mut_details_df.at[row, "Replacement AA"]

 nonsyn_ref_dict[output_AA] =

cdict.ref_codon_table(output_AA)

#codons_to_use_nonsyn = cdf.non_syn_mutator(target_AA,

target_codon_no, new_AA = output_AA, input_dict =

codons_to_use_syn, type = nonsyn_recode_type, ref_dict =

nonsyn_ref_dict)

codons_to_use_nonsyn = codons_to_use_syn

for row in mut_details_df.index:

 target_AA = mut_details_df.at[row, "Target AA"]

 target_codon_no = mut_details_df.at[row, "Codon no"]

 output_AA = mut_details_df.at[row,"Replacement AA"]

 current_mut_nonsyn_codon = cdf.non_syn_mutator(target_AA,

target_codon_no, new_AA = output_AA, input_dict =

codons_to_use_nonsyn, type = nonsyn_recode_type, ref_dict =

nonsyn_ref_dict)

 codons_to_use_nonsyn = current_mut_nonsyn_codon

 target_key = str(output_AA) + str(target_codon_no)

#construct the final recoded sequences

synonymous_repair = stitch.sequence_constructor(codons_to_use_syn,

type = "letter-number")

nonsynonymous_repair =

stitch.sequence_constructor(codons_to_use_nonsyn, type = "letter-

number")

#check all the modifications were as expected

#adjust target codon number to what it would be by normal counting

rather than python counting

 298

target_codon_no_not_py = target_codon_no + 1

#check all is as expected

for row in mut_details_df.index:

 target_AA = mut_details_df.at[row, "Target AA"]

 output_AA = mut_details_df.at[row, "Replacement AA"]

 codon_no_py = mut_details_df.at[row, "Codon no"] + 1

 mut_details_df.at[row, "Syn mutation correct"] =

val.translate_checker(synonymous_repair, codon_no_py, target_AA)

 mut_details_df.at[row, "Nonsyn mutation correct"] =

val.translate_checker(nonsynonymous_repair, codon_no_py,

output_AA)

#error if some of these fail

if mut_details_df["Syn mutation correct"].any() == False or

mut_details_df["Nonsyn mutation correct"].any() == False:

 print("\n\n\n***WARNING - Errors in recoding or mutating

detected***\n\n\n")

#create the final repair sequence including the homology arms

upstream_hom_arm = gene_name.seq[(recode_start_whole -

hom_arm_length):recode_start_whole]

downstream_hom_arm = gene_name.seq[recode_end_whole:

(recode_end_whole + hom_arm_length)]

WT_entire_repair_region = upstream_hom_arm + WT_template_seq +

downstream_hom_arm

entire_syn_repair = upstream_hom_arm + synonymous_repair +

downstream_hom_arm

entire_nonsyn_repair = upstream_hom_arm + nonsynonymous_repair +

downstream_hom_arm

#construct "gene" sequences for primer design

integrated_synonymous, WT_recode_region =

stitch.mut_seq_integrator(repair_seq = synonymous_repair, ref_seq

= gene_name.seq, repair_start = recode_start_whole, repair_end =

recode_end_whole, WT_repair_seq= "Yes")

integrated_nonsynonymous = stitch.mut_seq_integrator(repair_seq =

nonsynonymous_repair, ref_seq = gene_name.seq, repair_start =

recode_start_whole, repair_end = recode_end_whole, WT_repair_seq=

"No")

#design screening primers

 299

screening_primers_df_syn =

primers.screening_primer_designer(gene_name.seq,

integrated_synonymous, recode_start_whole, recode_end_whole)

screening_primers_df_nonsyn =

primers.screening_primer_designer(gene_name.seq,

integrated_nonsynonymous, recode_start_whole, recode_end_whole)

#design primers to generate the repair template

syn_repair_template_primers =

primers.repair_primer_designer(entire_syn_repair, hom_arm_length,

downstream_dna)

nonsyn_repair_template_primers =

primers.repair_primer_designer(entire_nonsyn_repair,

hom_arm_length, downstream_dna)

#repair_template_primers = [syn_repair_template_primers,

nonsyn_repair_template_primers]

#repair_template_primers_df =

pd.DataFrame(repair_template_primers)

#repair_template_primers_df.index = ["Synonymous repair",

"Nonsynonymous repair"]

#do an alignment

#create a pariwise alignment object

aligner = Align.PairwiseAligner(target_internal_open_gap_score = -

10.0, query_internal_open_gap_score = -10.0)

syn_alignment = aligner.align(WT_entire_repair_region,

entire_syn_repair)

for alignment1 in sorted(syn_alignment):

 #print("Score = %.1f:" % alignment1.score)

 #print(alignment1)

 syn_score = alignment1.score

alignment_str_syn = str(alignment1)

alignment_str_syn = alignment_str_syn.replace("target", "WT

sequence").replace("query", "Syn. repair").replace("\n

", "\n ")

alignment_str_syn = alignment_str_syn.replace("Syn. repair

", "Syn. repair ")

#print(alignment_str_syn)

nonsyn_alignment = aligner.align(WT_entire_repair_region,

entire_nonsyn_repair)

for alignment2 in sorted(nonsyn_alignment):

 #print("Score = %.1f:" % alignment2.score)

 nonsyn_score = alignment2.score

alignment_str_nonsyn = str(alignment2)

alignment_str_nonsyn = alignment_str_nonsyn.replace("target", "WT

sequence").replace("query", "Nonsyn. repair").replace("\n

", "\n ")

alignment_str_nonsyn = alignment_str_nonsyn.replace("Nonsyn.

repair ", "Nonsyn. repair ")

 300

#print(alignment_str_nonsyn)

#format some outputs

WT_repair_seq_spaced =

formats.codon_spacing(WT_entire_repair_region)

syn_repair_spaced = formats.codon_spacing(entire_syn_repair)

nonsyn_repair_spaced = formats.codon_spacing(entire_nonsyn_repair)

WT_repair_translate = WT_entire_repair_region.translate()

syn_repair_translate = entire_syn_repair.translate()

nonsyn_repair_translate = entire_nonsyn_repair.translate()

WT_repair_translate_spaced =

formats.protein_align_codon(WT_repair_translate)

syn_repair_translate_spaced =

formats.protein_align_codon(syn_repair_translate)

nonsyn_repair_translate_spaced =

formats.protein_align_codon(nonsyn_repair_translate)

syn_repair_mutations_count =

val.mutation_counter(entire_syn_repair, WT_entire_repair_region)

nonsyn_repair_mutations_count =

val.mutation_counter(entire_nonsyn_repair,

WT_entire_repair_region)

syn_repair_primers_output = ""

for category, item in syn_repair_template_primers.items():

 if type(item) == float:

 item = '{:.1f}'.format(item)

 syn_repair_primers_output += category

 syn_repair_primers_output += ": "

 syn_repair_primers_output += str(item)

 syn_repair_primers_output += "\n"

nonsyn_repair_primers_output = ""

for category, item in nonsyn_repair_template_primers.items():

 if type(item) == float:

 item = '{:.1f}'.format(item)

 nonsyn_repair_primers_output += category

 nonsyn_repair_primers_output += ": "

 nonsyn_repair_primers_output += str(item)

 nonsyn_repair_primers_output += "\n"

if syn_recode_type == "alternating matched" or syn_recode_type ==

"alternating highest" or syn_recode_type == "alternating lowest"

or syn_recode_type == "alternating random":

 alternating_info = f"Alternating recoding every

{alternating_repeat} codons"

else:

 alternating_info = ""

 301

mut_details_df.sort_values("Target residue number", inplace =

True)

mutations = []

for row in mut_details_df.index:

 target_AA = mut_details_df.at[row, "Target AA"]

 target_res_num = mut_details_df.at[row, "Target residue

number"]

 output_AA = mut_details_df.at[row, "Replacement AA"]

 mutation = str(target_AA) + str(target_res_num) +

str(output_AA)

 mutations.append(mutation)

mutations_text = str(mutations).replace("[", "").replace("]",

"").replace("'", "")

output_file = open(f"{job_name}.txt", "w")

file_lines = ["Job request details\n",

 f"Job name: {job_name}\n",

 f"Number of Nonsynonymous mutations:

{num_of_mutations}\n"

 f"Mutations: {mutations_text}\n",

 f"Synonymous recoding type: {syn_recode_type}\n",

 f"Nonsynonymous recode type:

{nonsyn_recode_type}\n",

 f"Homology arm length (bp): {hom_arm_length}\n",

 f"Recoding region length (bp):

{recode_region_length}\n",

 f"Total repair length (bp): {(2*hom_arm_length) +

recode_region_length}\n",

 f"{alternating_info}\n",

 "\n",

 "\n",

 "Repair templates\n",

 f"WT repair region sequence:

\t\t{WT_repair_seq_spaced}\n",

 f"WT translation:

\t\t\t{WT_repair_translate_spaced}\n",

 f"Synonymous repair region sequence:

\t{syn_repair_spaced}\n",

 f"Synonymous repair translation:

\t\t{syn_repair_translate_spaced}\n",

 f"Nonsynonymous repair region sequence:

\t{nonsyn_repair_spaced}\n",

 f"Nonsynonymous repair translation:

\t{nonsyn_repair_translate_spaced}\n",

 "\n",

 f"Number of mutations in the synonymous repair

template: {syn_repair_mutations_count}\n",

 f"Number of mutations in the nonsynonymous repair

template: {nonsyn_repair_mutations_count}\n",

 302

 "\n",

 "\n",

 "Screening primers\n",

 "Synonymous repair\n",

 "\n",

 f"{screening_primers_df_syn}\n",

 "\n",

 "\n",

 "Nonsynonymous primers\n"

 f"{screening_primers_df_nonsyn}",

 "\n",

 "\n",

 "Repair template primers\n",

 "Synonymous\n",

 f"{syn_repair_primers_output}\n",

 "\n",

 "Nonsynonymous\n",

 f"{nonsyn_repair_primers_output}\n",

 "\n",

 f"WT sequence (no spaces):

{WT_entire_repair_region}\n",

 f"Synonymous sequence (no spaces):

{entire_syn_repair}\n",

 f"Nonsynonymous sequence (no spaces):

{entire_nonsyn_repair}\n",

 "\n",

 "\n",

 "Alignments\n",

 "Synonymous Repair\n",

 f"Score = {syn_score}\n",

 f"{alignment_str_syn}\n",

 "\n",

 "Nonsynonymous\n",

 f"Score = {nonsyn_score}\n",

 f"{alignment_str_nonsyn}\n"

]

output_file.writelines(file_lines)

output_file.close()

#print confirmation message to make it clearer that it worked

print(f"\n\n\nYour repair template designs have completed

successfully. Please check your folder for a file with the name

'{job_name}.txt'\n")

print("\t.\t.\n", "\n\t___/\n\n\n")

