
Model Predictive Control with Efficient

Trajectory Optimisation for

Contact-based Manipulation

David Mackenzie Charles Russell

School of Computer Science

The University of Leeds

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

5th June 2025

Dedicated to my parents, without whom I would have never begun my

PhD, and to Sophie, without whom I would have never completed it.

Declaration

I confirm that the work submitted is my own, except where work which has formed

part of jointly authored publications has been included. My contribution and the

other authors to this work has been explicitly indicated below. I confirm that

appropriate credit has been given within the thesis where reference has been made

to the work of others.

Some of the results and work presented in this thesis have been published in the

following papers:

• Russell, David, Rafael Papallas, and Mehmet Dogar. “Adaptive

approximation of dynamics gradients via interpolation to speed up trajectory

optimisation.” 2023 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2023.

• Russell, D., R. Papallas, and M. Dogar. “Online state vector reduction

during model predictive control with gradient-based trajectory optimisation.”

Springer Proceedings in Advanced Robotics (SPAR). Springer, 2024.

The above publications are primarily the work of myself. The co-authors on these

papers helped in an advisory role along with proof reading publications. The

development, experimentation and analysis was performed entirely by myself.

This copy has been supplied on the understanding that it is copyright material and

that no quotation from my thesis may be published without proper

acknowledgment. The right of David Russell to be identified as author of this work

has been asserted by David Russell in accordance with the Copyright, Designs and

Patents Act 1988.

i

Acknowledgements

There are many people I would like to thank for helping me complete this thesis. First and

foremost, I extend my sincere thanks to my supervisor, Professor Mehmet Dogar. Before

starting this PhD, I knew very little about robotics—and even less about what it takes

to be a good researcher. Throughout the PhD journey, there were many times when I

struggled: sometimes with understanding new concepts, other times with developing my

algorithms or communicating my research to a wider audience. I would not have been

able to overcome these challenges without your constant encouragement, guidance, and

friendship. I truly could not have asked for a better supervisor.

I would like to express my gratitude to my examiners, Bruno Vilhena Adorno and

Songyan Xin, for taking the time to evaluate and give constructive feedback on my thesis.

Your invaluable input has not only strengthened this thesis but also inspired exciting

avenues for future research.

I would like to thank my fellow PhD students at the University of Leeds Robotic

Manipulation Lab. Shengyin Wang and Zisong Xu were here before I started and were

always so friendly. I learned a great deal from both of you, and have enjoyed watching

your works progress over the years. Xiao Wang, Yulei Qiu, Longrui Chen and Ga Jun

Locher joined our lab during my PhD and it has been so nice getting to know you all. I

wish you all the best of luck in the future.

Special thanks to Rafael Papallas. You have been a great mentor to me over the last

few years and I learned a great many things from you: how to write clean and concise

code, how to be a better researcher and how to fix things that were broken in a systematic

way. More than that, you were a great friend; I will particularly miss our games of squash.

A PhD is not completed in isolation, often there are people behind the scenes offering

their support and encouragement. This thesis is no exception, as such, I would like to

thank all my family for their constant support over the years. To my parents, Fiona and

Matthew, and my siblings, Edward and Jennie, along with my siblings-in-law, Jenna and

Matt - thank you for always being there for me. A special thank you to my mum, who

always let me ramble on about everything I was working on, despite never having a clue

what I was talking about. A special mention goes to my three wonderful nieces: Ava and

Mia, who have brought so much laughter and joy into my life, and little Hannia, who I am

certain will be just as wonderful. Even though he can not read, I would like to thank my

beautiful Golden Retriever, Buster. You were the best boy, and I will miss you dearly.

Finally, thanks to my Sophie. You were always there for me, listening to me rant and

stress about everything relating to my general PhD work and also with writing this thesis.

Whilst this PhD journey has been great and I am excited to have achieved my doctorate,

I truly believe the best thing to come out of this PhD was meeting you. Thank you for

agreeing to come with me on this journey called life.

ii

Abstract

This thesis is concerned with enabling robots to manipulate their environments in

efficient ways, similar to how humans do. Humans employ a variety of manipula-

tion actions to efficiently manipulate their environments using non-prehensile ma-

nipulation. However, enabling robots to make use of these efficient non-prehensile

manipulation actions is challenging, particularly when tasking robots to manipulate

cluttered environments. There are a variety of issues that need to be addressed to

enable robots to reliably operate in cluttered environments. These include, but are

not limited to, difficulty predicting contact-interactions between multiple objects,

as well as the curse of dimensionality that occurs from scaling levels of clutter.

General purpose physics simulators can be used to predict, to differing levels

of accuracy, how multiple objects will interact with one another, subject to the

motion of a robotic manipulator. Using these physics simulators, trajectories can

be computed to enable a robotic manipulator to perform complex manipulations

in clutter to achieve some objective. However, these physics predictions can never

perfectly emulate the real world. If trajectories that were computed inside a physics

simulator are executed on real robotic hardware open-loop, they are often bound to

fail.

A general method to address this issue is model predictive control (MPC). MPC

can account for the stochastic difference between a physics simulator and the real

world by constantly re-planning trajectories from the current state of the real world.

The key idea is that this re-planning needs to occur fast to be effective. Current

methods for planning trajectories using physics simulators can be computationally

costly, especially when considering manipulation in clutter.

This thesis addresses the issue of computational expense for high dimensional

manipulation in clutter tasks, specifically focusing on trajectory optimisation tech-

niques. Two main methods are investigated. Firstly, this thesis explores how ap-

proximations can be used to accelerate the computation of dynamics derivatives

required by certain trajectory optimisation methods. Secondly, this thesis examines

how the dimensionality of a trajectory optimisation problem can be adjusted online

during task execution, leveraging the fact that not all objects in a scene are relevant

at all times. The thesis concludes by investigating the challenges involved in trans-

ferring solutions from simulation to real-world execution, demonstrated through a

packing through clutter task.

iii

Abbreviations

MPC model predictive control

DoFs degrees of freedoms

RRT rapidly-exploring random trees

PRM probabilistic roadmaps

RL reinforcement learning

IL imitation learning

NLP nonlinear program

SQP sequential quadratic programming

QP quadratic programming

KKT Karush-Kuhn-Tucker

DDP differential dynamic programming

iLQR iterative linear quadratic regulator

AD automatic differentiation

FD finite-differencing

iv

Contents

1 Introduction 1

1.1 Challenges of Manipulation in Clutter 5

1.2 Main themes . 6

1.3 Contributions . 7

1.4 Structure . 8

1.5 Publication Note . 8

2 Literature Review 9

2.1 Classical Motion Planning . 9

2.1.1 Useful terminology . 10

2.1.2 Sampling-based motion planning 12

2.2 Trajectory Optimisation Fundamentals 14

2.2.1 General formulation . 14

2.2.2 Shooting methods . 15

2.2.3 Direct methods . 19

2.2.4 Collision-free trajectory optimisation 22

2.2.5 Remarks . 23

2.3 Contact-Based Trajectory Optimisation 24

2.3.1 Shooting methods . 24

2.3.2 Direct methods . 26

2.4 Other Methods for Contact-based Manipulation / Locomotion 28

2.4.1 Learning-based approaches . 29

2.5 Approximations for Speeding up Robotic Motion Planning 35

2.5.1 Dimensionality reduction . 36

2.5.2 Other approximation methods 37

2.6 Remarks . 39

3 Background 40

3.1 The Optimisation State Vector . 40

3.2 Trajectory Optimisation (iLQR and SCVX) 41

3.2.1 iLQR . 42

3.2.2 SCVX . 44

v

CONTENTS

3.3 Differentiation Methods . 47

3.3.1 Finite-differencing . 47

3.3.2 Automatic-differentiation . 48

4 Speeding up Trajectory Optimisation Via Approximated Dynamics

Derivatives 49

4.1 Introduction . 49

4.1.1 Contributions . 52

4.1.2 Organisation . 53

4.2 Problem formulation . 53

4.3 Key-point Selection Methods . 55

4.4 Approximation Error Bound for the Pendulum System 60

4.5 Task Specifications and Testing Setup 63

4.5.1 Optimisers . 64

4.5.2 Tasks . 64

4.5.3 Key-point parametrisations 67

4.6 Results . 68

4.6.1 Evaluating interpolation accuracy 69

4.6.2 Impact of contact on optimisation and key-point selection . . 71

4.6.3 Long horizon optimisation performance 74

4.6.4 Short horizon optimisation performance 77

4.6.5 Execution performance on hardware 80

4.7 Discussion . 82

4.8 Conclusion . 84

5 Online State Vector Reduction during Model Predictive Control 86

5.1 Introduction . 86

5.1.1 Contributions . 89

5.1.2 Organisation . 89

5.2 Problem Formulation . 89

5.2.1 Definitions . 91

5.3 Method . 91

5.3.1 Optimise . 92

5.3.2 Reducing dimensionality . 94

5.4 Results . 96

5.4.1 Task definition . 97

5.4.2 Asynchronous MPC results 98

5.5 Conclusion . 101

vi

CONTENTS

6 Challenges of MPC on Real Robotic Hardware 103

6.1 Introduction . 103

6.1.1 Contributions . 105

6.1.2 Organisation . 105

6.2 MPC Performance . 105

6.2.1 Controllers . 107

6.2.2 Time indexing methods . 108

6.2.3 Results . 109

6.3 Packing an Object as an Optimisation Problem 116

6.4 Conclusion . 119

7 Conclusions & Future Work 121

7.1 Conclusions . 121

7.2 Remaining Problems / Limitations 123

7.3 Future Work . 124

7.3.1 Efficient picking/packing . 124

7.3.2 Change of basis online state vector reduction 125

7.3.3 Combining learning with trajectory optimisation 125

7.3.4 Using GPU-based physics simulation 126

7.4 Final Remarks . 127

vii

List of Figures

1.1 An example illustration of a contact-aware picking/packing system.

The dark gray shapes represent a pump end-effector attachment for

a robot. In this example, the high level objective is to retrieve a

purple object from a bin. Frame A shows the initial scene, where the

purple object is obscured by a green and dark blue object. In frame

B, the robot slides the green object into the corner of the bin. Then,

in frame C, the robot pushes the dark blue object out of the way,

subsequently moving the brown object also. These actions have then

cleared enough space so that the vacuum pump tip can reach in and

grab the purple object. Finally, frame D shows the robot removing

the purple object from the bin. 1

1.2 An example illustration of model predictive control (MPC) being used

for a contact-based manipulation task to correct for the deviations

between a planned trajectory in simulation (blue rectangles) and the

executed trajectory in the real world. The top row shows the real

trajectory of the pushed object when plan is executed open-loop. The

bottom row shows the path of pushed object when correct feedback

is applied via MPC. The bottom trajectory is more successful at

keeping the object on its planned path. 3

2.1 An example illustrated solution for the rapidly-exploring random trees

(RRT) [71] and probabilistic roadmaps (PRM) [61] algorithms for a

2D path planning problem. qstart is the starting configuration and

qgoal is the goal configuration. Black dots are sampled configurations

in Cfree that were added to the graph/tree. 11

viii

LIST OF FIGURES

4.1 Two finalised trajectories for pushing a green cylinder to a target loca-

tion (green silhouette) through clutter. The top row shows the base-

line method taking 9.48 s of optimisation time, whereas the middle

row shows a trajectory produced from one of the methods proposed

in this chapter which only took 2.66 s of optimisation time, whilst

achieving a similar solution. The bottom graph shows a derivative

value (one of many) over the course of the trajectory along with its

approximation. Through key-points, the number of derivative evalu-

ations was reduced from 1000 to 48. 50

4.2 Illustrative one-dimensional example of the Velocity Change method.

The top plot shows the underlying true derivative value (black curve)

with a set of key-points (green points) placed as determined by the

Velocity change method. The bottom curve shows the velocity profile

over the trajectory for some DoF. When velocities are large (at the

start of the trajectory), or the velocity changes direction often (near

the middle of the trajectory), key-points are placed more densely, and

when the velocity is small or more constant, key-points are placed

more sparsely. 56

4.3 Illustrative one-dimensional example of the Adaptive Jerk method.

The top plot shows the underlying true derivative value (black curve)

with a set of key-points (green points) placed as determined by the

Adaptive Jerk method. The bottom curve shows the jerk profile over

the trajectory for some DoF. When the jerk exceeds the jerk threshold

(J̄), key-points are placed more densely, and when jerk is below the

threshold, key-points are placed more sparsely. 57

4.4 Illustrative one-dimensional example of the Iterative Error method.

The black curve is the true underlying derivative, the blue dashed

line is the current linear approximation. Three iterations of the ap-

proximation being refined are shown. The top image is the first iter-

ation where it selects only three key-points (blue). Halfway between

the key-points, the approximate derivative value (red) is compared

against the accurate derivative (green). If the error between these

values is above a threshold, the segment is subdivided. This process

happens recursively until all segments are complete. 59

4.5 Free body diagram of the pendulum. 60

ix

LIST OF FIGURES

4.6 Approximation accuracy for different key-point methods and differ-

ent key-point parametrisations values, for the Acrobot task. The

colour of each data-point represents the specific key-point selection

method used and each data-point is a different parameterisation for

that method. Three parametrisations for each key-point method are

explicitly shown by a star, cross and diamond symbol and labelled

in the top right of the figure. 70

4.7 Optimisation performance for 100 instantiations of the Acrobot task

versus scaling values for the velocity change threshold. Green line

shows normalised final cost of the trajectory, blue line shows the av-

erage percentage of derivatives computed accurately. 71

4.8 Two snapshots from the 1D toy contact task. The red piston is actu-

ated and limited to 1D of motion. The green object is an un-actuated

cube. The goal is to push the green cube to the goal location (green

silhouette). 72

4.9 A 2x2 subset of graphs that show how values inside the A matrix

for the toy contact task change over the initial trajectory. The subset

shown are how the cube’s position and velocity are affected by the pis-

ton’s position and velocity. The blue line shows the accurate values,

the red line shows the approximation subject to the computed key-

points (yellow dots). The green dashed vertical line denotes moment

of contact tc. 73

4.10 Optimisation performance versus smoothing effect after one iteration

of optimisation. 73

4.11 MPC results for the Walker model over a variety of receding hori-

zon lengths for the different key-point methods. The top plot is the

performance of the executed trajectory when evaluated with the cost

function. The bottom plot shows the effective control frequency that

could be attained for the various methods. 79

4.12 Real robot scene setup, scene 1 (left) and scene 2 (right). Objective

is to push purple object to goal location (small green sticker) whilst

minimising the disturbance to the clutter obstacles (red and green

cylinders). 81

x

LIST OF FIGURES

5.1 A sequence of snapshots showing an example MPC trajectory gener-

ated by the method introduced in this chapter. The task is to push

the green cylinder to a goal region (the green transparent cylindrical

region) whilst minimally disturbing some clutter objects. The full

number of DoFs in this system is 55. The method identifies the rel-

evant degrees of freedoms (DoFs) of this system at different times

during execution and performs trajectory optimisation using this re-

duced state. Objects with stronger shades of red have more DoFs in

the state vector at that point during execution: If an object is dark

red, all of its six DoFs are considered; if an object is white, none of

its six DoFs are considered during trajectory optimisation. 87

5.2 A sequence of snapshots showing an example trajectory for the soft

task. The objective is to push the red deformable object to the green

flat circle on the floor. The full number of DoFs in this system is 115. 97

5.3 A sequence of snapshots showing an example trajectory for the soft

rigid task. The objective is to move the green cylinder to the goal

region (the transparent cylindrical region) with a high-dimensional

soft body being placed between the robot end-effector and the green

cylinder. The full number of DoFs in this system is 154. 98

5.4 Top plot shows the MPC cost averaged over 100 runs for the clut-

ter task. The lightly shaded area shows the 90% confidence interval

range. Bottom plot shows the average number of DoFs in the state

vector. Three different parameterisations of θ were used with scaling

values for ρ. 100

6.1 A set of plots showing the deviations between commanded velocity

(blue) and actual velocity (orange) of the real Franka Panda joints.

The top plots shows the best example (Inverse-Dynamics-6) of veloc-

ity tracking from Table 6.1, whereas the bottom sets of plots shows

the worst (Torque-PD-4). 7th joint omitted for the sake of space. . . 113

6.2 Three example sequences (from left to right) of packing a grasped

object (tomato sauce) to a goal position obstructed by two obstacles

(tomato soup and hot chocolate powder) on real robotic hardware. . . 118

xi

LIST OF FIGURES

7.1 The contact-aware picking/packing system that was discussed in Chap-

ter 1. The dark gray shapes represent a pump end-effector attachment

for a robot. To recap: In this example, the high level objective is to

retrieve a purple object from a bin. Frame A shows the initial scene,

where the purple object is obscured by a green and dark blue object.

In frame B, the robot slides the green object into the corner of the

bin. Then, in frame C, the robot pushes the dark blue object out of

the way, subsequently moving the brown object also. These actions

have then cleared enough space so that the vacuum pump tip can

reach in and grasp the purple object. Finally, frame D shows the

robot removing the purple object from the bin. 121

xii

List of Tables

4.1 Tasks used for simulation experiments. The left column shows the

task name and an image of the task. Right column gives a brief

description of the task objective followed by the optimiser used for

the task. The costs used for optimisation are shown below the task

description with cost notation as defined previously. ∆t is the model

time-step. 66

4.2 Summary of long-horizon optimisation performance. OT is the total

optimisation time in seconds, CR is cost reduction and NI is the num-

ber of optimisation iterations. For iLQR-FD and SCVX, the values

reported in the tables are mean values averaged over 100 start/goal

states. For iLQR-AD the values were single runs. 76

4.3 MPC results for mini-cheetah locomotion using different key-point

methods. 80

4.4 Results from real robot experiments. 82

5.1 Results of asynchronous MPC for three manipulation tasks. The

values in the table are averaged over 100 trials for the clutter task

and 20 trials for the soft and soft rigid task. The first value is the

mean and the second is the 90% confidence interval. For the three

first methods, the number of DoFs is a preset parameter, while the

rest of the methods adjust the number of DoFs dynamically. 99

6.1 Summary of real robot control performance under different control

parametrisations. LP is whether a low pass filter was used, TRL was

whether a torque rate limiter was used and FF is whether the feed

forward term was used. The values reported in the table are mean val-

ues plus/minus the standard deviation, averaged over 5 runs for each

control parametrisation. TC is whether the task was completed and

RS is whether the robot was stopped early, with the values showing

how many times this event occurred. 111

xiii

LIST OF TABLES

6.2 Summary of real robot performance data from Table 6.1 grouped by

different categories (Controller used, time indexing method, whether

the feed forward term was used or not and finally whether a low pass

filter or torque rate limiter were used). The values reported in this

table are mean values plus/minus the standard deviation, except for

TC and RS columns which report the number of times these events

occurred. 115

xiv

List of Algorithms

1 Simplified iLQR algorithm . 43

2 Simplified SCVX algorithm . 46

3 Finite-differencing . 47

4 TrajOptKP implementation of Get Derivatives 55

5 Velocity Change implementation of SelectKeyPoints 56

6 Adaptive Jerk implementation of SelectKeyPoints 58

7 Iterative Error implementation of SelectKeyPoints 60

8 Execution with MPC. 78

9 MPC with state vector reduction (asynchronous) 92

10 MPC real robot . 106

xv

Nomenclature

q Robot joint configuration.

C Configuration space.

x System state vector.

u System control vector.

nx Size of system state vector.

nu Size of system control vector.

T Trajectory optimisation horizon.

J Total running cost of a trajectory.

U Sequence of control vectors over a trajectory.

X Sequence of state vectors over a trajectory.

U∗ Optimal sequence of control vectors over a trajectory.

X∗ Optimal sequence of state vectors over a trajectory.

Ū Nominal sequence of control vectors over a trajectory.

X̄ Nominal sequence of state vectors over a trajectory.

Û New rollout sequence of control vectors over a trajectory.

X̂ New rollout sequence of state vectors over a trajectory.

A First order partial dynamics derivatives with respect to state vector.

B First order partial dynamics derivatives with respect to control vector.

l(xt,ut) Cost function at time-step t.

ϵ Small perturbation used for finite-differencing.

Â Accurate first order partial dynamics derivatives with respect to state vector.

xvi

NOMENCLATURE

B̂ Accurate first order partial dynamics derivatives with respect to control vec-

tor.

Nmin Minimum interval between key-points.

Nmin Maximum interval between key-points.

∆v̄ Array of velocity change thresholds for each DoF in the system.

J̄ Array of jerk thresholds for each DoF in the system.

ı̄ Iterative error threshold.

τ Torque vector.

W State dependent cost matrix.

Wf Terminal state dependent cost matrix.

R Control dependent cost matrix.

K State dependent feedback matrix.

x̃ Desired state vector.

No Number of rigid objects in a scene.

Ns Number of soft body objects in a scene.

ρ DoF importance threshold.

θ Number of DoFs to be randomly re-sampled.

C Set of reduced DoFs considered in state vector.

F Set of all DoFs in the system.

L Set of unused DoFs.

wi Weight scalar for i-th residual.

ni(·) Twice differentiable norm function for i-th residual.

ri(x,u) Residual function.

xvii

Chapter 1

Introduction

Figure 1.1: An example illustration of a contact-aware picking/packing system.

The dark gray shapes represent a pump end-effector attachment for a robot. In this

example, the high level objective is to retrieve a purple object from a bin. Frame

A shows the initial scene, where the purple object is obscured by a green and dark

blue object. In frame B, the robot slides the green object into the corner of the bin.

Then, in frame C, the robot pushes the dark blue object out of the way, subsequently

moving the brown object also. These actions have then cleared enough space so that

the vacuum pump tip can reach in and grab the purple object. Finally, frame D

shows the robot removing the purple object from the bin.

There are a variety of reasons why the automation of certain jobs is beneficial

to society. Firstly, automation can improve the efficiency in creating consumer

goods, making products and services cheaper. Certain jobs can be dangerous (e.g.,

maintenance work on high-voltage cables or decommissioning old nuclear reactors)

and even with significant health and safety equipment and protocols, there will

always be some inherent risk to the individuals who perform these jobs. Then there

are jobs that are not necessarily dangerous but are physically demanding and can

cause strain to a human body over the course of a lifetime. Warehouse jobs are

one such example, often requiring workers to lift heavy objects or adopt unnatural

postures that can be potentially harmful. Finally, there is the idea of fulfilment in

1

every day life. Imagine a society in which everyone is able to pursue what they truly

enjoy. If there are jobs that are necessary for society, but lack human interest or

willingness, then robotic automation can fill this need.

Let us consider an example where robotic automation has had a significant im-

pact on the world. In the 1960/70s, robotic automation was introduced in the

manufacturing of automotive vehicles [122]. This robotic automation considerably

increased the efficiency of producing cars, making them substantially more afford-

able. Due to this, cars have become ubiquitous in modern day civilisation.

Much like the automotive industry has already experienced, numerous sectors

stand to gain significant advantages by automating their services. For instance,

automation in food sorting warehouses for custom food orders could greatly improve

efficiency. In such systems, a wide variety of goods need to be selected and packed for

household delivery, a process that is currently highly labour-intensive and lacking

in automation. Workers in these settings often face physically demanding tasks

that can lead to repetitive strain injuries, such as back problems, and must endure

uncomfortable working conditions, particularly in chilled or frozen warehouses.

What are the challenges of automation in this setting? If robotic automation has

been so widely adopted in car manufacturing over 60 years ago, why is this particular

problem so challenging? Let us consider Fig. 1.1, which illustrates a robotic end-

effector with a suction gripper attachment that is operating in a cluttered and

unstructured warehouse box. The goal is to retrieve a purple object from this box,

however initially this object is not directly reachable, because it is covered by the

blue and green objects. In frame 2, the robot end-effector pushes the green object to

one side. After this, in frame 3 it pushes a blue object to the other side, which also

displaces a brown object. Finally, in frame 4, the purple object is now reachable so

the end-effector picks up the purple object and removes it from the bin.

This hypothetical system has significant implementation challenges and differ-

ences when compared to the robotic systems used to automate car manufacturing.

In automated car manufacturing, the environments are structured and well-defined,

and the robots are typically performing pre-defined actions repetitively. In a food

delivery warehouse there can be thousands of unique objects that could be in any

number of warehouse bins. This means that the robotic system to automate this

needs to be able to adapt to different environments programmatically.

Another significant challenge of this proposed system is that the robot needs

to manipulate objects in the bin using non-prehensile manipulation actions. Non-

prehensile manipulation is defined as manipulation actions that occur when an ob-

ject is not firmly grasped by a robot. Examples of these actions include pushing,

sweeping, rolling, toppling and throwing. These non-prehensile manipulation skills

are used by humans efficiently in our everyday lives without much thought.

2

Figure 1.2: An example illustration of MPC being used for a contact-based manipu-

lation task to correct for the deviations between a planned trajectory in simulation

(blue rectangles) and the executed trajectory in the real world. The top row shows

the real trajectory of the pushed object when plan is executed open-loop. The bot-

tom row shows the path of pushed object when correct feedback is applied via MPC.

The bottom trajectory is more successful at keeping the object on its planned path.

So why is it desirable for such a system to be able to take advantage of such ma-

nipulation skills? Firstly, these non-prehensile manipulation skills are often signifi-

cantly more efficient than manipulating objects individually via grasping. Imagine

a situation where several small objects need to be displaced to complete some task;

the robot could either sequentially retrieve each object and transfer them elsewhere

or it could sweep them all to some other location in one continuous action. The sec-

ond reason why non-prehensile manipulation skills are valuable is situations where

objects are too large or heavy to be directly grasped. In these situations, the robot

can only manipulate such objects via non-prehensile manipulation.

Unfortunately, imbuing robots with such skills is challenging, which is one of the

primary reasons why such systems are not commonplace in automated warehouses.

These non-prehensile manipulation skills require imbuing our robots with physical

reasoning skills. In other words, they need to understand how their actions will

affect their environment and be able to plan accordingly. One popular method is

“model-based” control, where a general-purpose physics simulator is used to predict

how objects will move subject to the forces imposed by some robot. These physics

simulators can then be used to plan non-prehensile manipulation actions to achieve

3

some goal.

Unfortunately, even with the abundance of accurate and fast physics simulators

[129, 128, 77, 29, 86, 18] significant challenges remain with regard to planning and

executing robust physics-based motion on real robotic hardware. The first challenge

is that computing non-prehensile manipulation actions, even inside a simulator is

a challenging problem due to them being an under-actuated problem. The second

challenge is that even if computing an optimal plan inside a physics simulator can

be guaranteed, trying to execute these plans on a real robotic system open-loop

will often fail to complete the desired task. The reason for this is that no physics

simulator can perfectly emulate the real world; there will be some inherent stochas-

ticity between the predicted motion of objects and the real motion. This stochastic

difference accumulates the longer the planned trajectory.

One powerful method to overcome this stochastic difference is called model pre-

dictive control (MPC). MPC is an advanced control strategy used in a variety of

disciplines. The general idea of MPC is to have some mathematical model of a sys-

tem that can predict its future behaviour subject to some control inputs. Using this

model, an optimal control policy can be computed at every time-step to minimise

some objective whilst obeying system constraints. When MPC is considered for

robotic control, the model of the system is often a general purpose physics simula-

tor. Consider Fig. 1.2, where a contact-based trajectory has been planned to push a

rectangular object forwards. The blue rectangles indicate the planned trajectory for

the object and the green rectangle indicates the rectangles current pose. On the top

row is a sequence of snapshots illustrating how an object could move when executing

the planned trajectory open-loop. As the trajectory progresses, the deviation of the

object from its planned pose increases until the end-effector loses contact with it.

The bottom row shows the same planned trajectory, but uses MPC to account for

the deviation between the planned pose of the object and its actual pose. Due to

this, the end-effector can correct its path to keep control of the rectangular object.

One of the key challenges of using MPC for non-prehensile manipulation in clut-

tered environments is the need to optimise trajectories quickly enough to keep pace

with real-world dynamics. The time taken to re-optimise trajectories in simulation

has a direct impact on real-world performance due to an effect known as policy lag.

Ideally, the controller would re-optimise trajectories instantaneously, allowing it to

immediately account for any deviations between the planned and actual trajecto-

ries. In practice, however, optimisation requires a finite amount of time, resulting in

periods where the robot is executing a stale control policy. The longer this period,

the greater the degradation in the robot’s performance. While policy lag can be

mitigated by reducing the optimisation horizon, doing so excessively leads to my-

opic behaviour, where the robot focuses only on short-term goals at the expense of

long-term effectiveness.

4

1.1 Challenges of Manipulation in Clutter

This thesis proposes several ideas to speed up the process of optimising tra-

jectories via different methods of utilising approximations. The main goal of the

proposed algorithms is to enable faster MPC algorithms to perform non-prehensile

manipulation in cluttered environments.

1.1 Challenges of Manipulation in Clutter

There are a variety of challenges which need to be solved to create an effective

contact-aware pick/place planner like the one described in Fig. 1.1. Some of these

challenges are outside the scope off this thesis but deserve to be mentioned. The

following challenges are addressed in this thesis:

• Under-actuation: Objects in the scene are under-actuated. To move them,

contact forces need to be applied to the objects from the actuated robots to

perform any required tasks. Under-actuated tasks are inherently more chal-

lenging to solve than fully-actuated problems.

• Planning through multi-object contact: Similarly to the previous point,

manipulation in cluttered environments needs to consider a large variety of

under-actuated objects, and the complex multi-object contact that is encoun-

tered between objects. This makes the problem even more challenging.

• Curse of dimensionality: Manipulation in cluttered environments are high-

dimensional problems. As the dimensionality of a problem increases, so does

the planning time, making motion planning in cluttered scenes computation-

ally expensive.

The challenges that are worth mentioning but are not addressed in this thesis are:

• Unknown object properties: To create accurate physical predictions of how

an object/objects will move due to non-prehensile manipulation actions, an

accurate parametrisation of physical object properties is required. Examples

of these physical properties include size, shape, mass, friction and others. Some

of these properties can be deduced by visual observations, but others require

estimates that can then be refined by physical interactions.

• Occlusions: Cluttered environments are inherently difficult to observe ac-

curately. Fig. 1.1 partially shows this, the purple object is initially almost

entirely occluded. To get a more accurate estimate of its pose, other objects

need to be moved.

5

1.2 Main themes

• Task and motion planning: Some tasks in manipulation in clutter will

require multi-step planning to achieve. Perhaps this will be the requirement

to move a large object to a location that will then enable a robot to reach

past and grab some other object. Task and motion planning adds additional

complexity to motion planning problems.

1.2 Main themes

The overall goal of this thesis is to work towards creating the system outlined in

Fig. 1.1. Importantly, the full system outlined in Fig. 1.1 is not completed in

this work, however, this thesis takes strides in addressing several of the challenges

of creating such a system, namely: under-actuation, planning through multi-object

contact and most importantly, the curse of dimensionality. In this thesis, a variety

of methods/algorithms are proposed to use conventional trajectory optimisation

techniques and make them computationally tractable when performing manipulation

in cluttered environments.

Chapter 4 of this thesis is concerned with speeding up gradient-based trajectory

optimisation. These methods have desirable convergence qualities when compared

to zero-order methods, but the downside is their additional computational complex-

ity. One of the bottlenecks of gradient-based trajectory optimisation methods is

computing the dynamics derivatives for contact-based manipulation problems. The

reason that computing dynamics derivatives is computationally expensive in these

cases is because analytical derivatives are often not available, meaning that numeri-

cal methods, such as finite-differencing (FD) are often required. Chapter 4 proposes

a general method of speeding up gradient-based trajectory optimisation by approxi-

mating dynamics derivatives. The general methodology is to limit the computation

of dynamics derivatives using expensive methods like FD at key-points over the

nominal trajectory. The remaining dynamics derivatives are then approximated via

cheap linear interpolation.

In a similar vein, Chapter 5 is also concerned with speeding up gradient-based

trajectory optimisation. The general method in this chapter is about limiting the

number of degrees of freedoms (DoFs) considered in the optimisation state vector to

only the most important DoFs to reduce the computational overhead of trajectory

optimisation. Depending on the task and its current configuration, certain objects

will be relevant to the task and others will not. Consider reaching through a cluttered

shelf; at the start of the task you may need to consider the physics of certain objects

that you push to the side to make space for your arm, but after this you can retrieve a

desired object and stop considering the objects you have just displaced. The general

method proposed in Chapter 5 is based on this philosophy; the method dynamically

changes what DoFs are considered in the optimisation state vector during MPC.

6

1.3 Contributions

Finally, Chapter 6 begins to consider creating the picking/packing system that

was described in Fig. 1.1. This chapter shows the challenges of performing MPC

on real robotic hardware. This challenge was that there was significant difference

between the accelerations produced on the real robot compared to in simulation by

the same commanded torques, due to an imperfect dynamics model. This chapter

investigates the utility in using different low-level feedback controllers in tandem

with MPC to enable more accurate tracking of a reference trajectory provided by

the high-level MPC algorithm. In addition to this, a simplified packing in clutter task

is formulated as an optimisation problem and evaluated on real robotic hardware.

1.3 Contributions

This thesis:

• Proposes a general method of speeding up gradient-based trajectory optimisa-

tion. The method only computes dynamics derivatives accurately at key-points

over a trajectory and then approximates the remaining dynamics derivatives

(Chapter 4).

• Proposes a variety of specific key-point selection methods to choose where

dynamics derivatives are computed accurately (Chapter 4).

• Evaluates the proposed key-point selection methods on a wide-variety of trajec-

tory optimisation tasks, with two different optimisation algorithms (iterative

linear quadratic regulator (iLQR) and SCVX) and two popular methods of

computing dynamics derivatives (FD and automatic differentiation (AD)) (Chap-

ter 4).

• Proposes a general framework for online state vector reduction during MPC

(Chapter 5).

• Proposes and evaluates a specific implementation of online state vector reduc-

tion during MPC for several high-dimensional tasks (Chapter 5).

• Performs an experimental analysis of the effectiveness of combining low-level

feedback controllers with MPC for trajectory stabilisation for a contact-based

manipulation task (Chapter 6).

• Formulates packing through contact as a optimisation problem (Chapter 6).

7

1.4 Structure

1.4 Structure

This Chapter has introduced the main themes of this thesis and roughly outlined the

contributions that are made. Chapter 2 presents an in-depth literature review that

is relevant to this thesis. Chapter 3 provides the reader with the necessary technical

background to understand the contributions of this thesis. Chapters 4 through 6

each outline a specific technical contribution. Finally, Chapter 7 concludes this

thesis and outlines possible directions for future work.

1.5 Publication Note

Some of the technical contributions in this thesis have already been published in

various conferences and journals. The details of which chapters relate to which

published work are listed below:

1. The content in Chapter 4 appears in:

(a) Published conference paper: International Conference on Robotics

and Automation (ICRA) 2023 [113].

(b) Source code: https://github.com/DMackRus/TrajOptKP

(c) Video: https://www.youtube.com/watch?v=rdRd2sgk8qY

2. The content in Chapter 5 appears in:

(a) Published conference paper: Workshop on Algorithmic Foundations

in Robotics (WAFR) 2024 [112].

(b) Source code: https://github.com/DMackRus/iLQR-SVR

(c) Video: https://www.youtube.com/watch?v=8K qfvb4lMI

3. The content in Chapter 6 appears in:

(a) Controller code: https://github.com/roboticsleeds/panda controllers

(b) Video: youtube.com/watch?v=Q1mxb1CMIKg

(c) Cobot pump code: github.com/roboticsleeds/cobot pump ros

8

https://github.com/DMackRus/TrajOptKP
https://www.youtube.com/watch?v=rdRd2sgk8qY
https://github.com/DMackRus/iLQR-SVR
https://www.youtube.com/watch?v=8K_qfvb4lMI
https://github.com/roboticsleeds/panda_controllers
https://www.youtube.com/watch?v=Q1mxb1CMIKg
https://github.com/roboticsleeds/cobot_pump_ros

Chapter 2

Literature Review

This chapter provides a comprehensive review of the literature in various areas which

are relevant to this thesis. Although all works are discussed with an appropriate level

of mathematical depth here, a dedicated background chapter (Chapter 3) provides

the minimal necessary technical detail to understand the specific contributions of

this thesis.

This chapter is structured as follows. Firstly, Section 2.1 discusses classical

motion planning for robotics and its limitations. Next, the fundamental ideas for

trajectory optimisation and some notable algorithms are discussed in Section 2.2.

After this, contact-based trajectory optimisation is discussed in Section 2.3. Section

2.4 discusses non-optimisation based methods for contact-based manipulation. Fi-

nally, this chapter ends by discussing different methods of approximations that have

been used in robotics to enable computationally tractable motion plans.

An in-depth review and background of trajectory optimisation is given in Sections

2.2 and 2.3. Both of these sections are relevant to all chapters of this thesis, as this

thesis is primarily concerned with using trajectory optimisation to perform contact-

based manipulation. Section 2.5 is relevant to Chapter 5 where dimensionality

reduction is used to speed up trajectory optimisation. The remaining sections are

included to give a holistic overview of the field of robotic manipulation and how it

has evolved from classical motion planning.

2.1 Classical Motion Planning

The term “classical motion planning” has some flexibility and may be interpreted

differently dependent on the researcher. In this thesis, the term “classical motion

planning” refers to computing collision-free paths from a starting configuration to

a goal configuration for some robot (whether the robot is a robotic manipulator,

mobile robot or something else). With regards to robotic manipulators, simply

moving from one configuration to another whilst avoiding collisions does not overly

9

2.1 Classical Motion Planning

achieve anything meaningful, as a robotic manipulator’s primary job is typically to

interact with their environments.

In the early days of robotic manipulation, a lot of researches were interested

in using robotic manipulators to create “pick-and-place” systems. These systems

would use a combination of grasping objects and classical motion planning to in-

teract with their environments. The robot could interact with an object using the

following steps: (1) Compute and follow a collision-free path from the robot’s cur-

rent configuration to a configuration that will place the robot’s end-effector in a pose

ready to grasp some goal object. (2) Grasp the goal object so that it is dynamically

stable within the robot’s end-effector. (3) Compute and follow another collision-free

path (this time also considering the geometry of the grasped object) from the robot’s

current configuration to a new configuration where the goal object will be placed.

It is important to note that this method of interacting with environments can be

quite inefficient and sometimes impossible in a variety of situations. Imagine a situa-

tion where space on a table needs to be cleared and there are tens of small objects on

the table. The pick-and-place approach would be to individually move every object

sequentially from the table to some other location. A more efficient solution would

be to use a sweeping action to move all of the objects to the new location at the same

time. Imagine a second scenario, where the object that needs to be moved is a large

box that is too large to be grasped; manipulating such an object can only be done

by pushing it to the new desired location. These alternative manipulation strategies

are referred to as “non-prehensile” manipulation. Non-prehensile manipulation is

the opposite of prehensile manipulation. In prehensile manipulation, objects need to

be rigidly grasped by the robotic manipulator and can be thought of as an extension

of the robot. In non-prehensile manipulation, external forces need to be imposed on

the object via the robotic manipulator, via actions like pushing, tilting, rolling, etc.

Returning back to the general pick-and-place problem; The two primary chal-

lenges that were present for creating a general pick-and-place system were: (1)

How to compute stable grasps of an object, especially when the object has com-

plicated or irregular geometry. (2) How to efficiently compute collision-free motion

plans through complicated environments for the higher dimensional control problems

present for robotic manipulators. This section only discusses the issue of computing

collision-free motion plans as it sets the stage for how robotic motion planning has

progressed from collision-free motion planning to contact-based motion planning.

2.1.1 Useful terminology

Configuration space: A configuration of a robot can be uniquely defined by a

vector of joint angles/positions q = [q1, q2, . . . qn], where qi represents the value of the

i-th joint. The full set of configurations of the robot is defined as the configuration

space C , otherwise known as the C -Space (q ∈ C). The C -Space is a useful

10

2.1 Classical Motion Planning

(a) RRT example. (b) probabilistic roadmaps (PRM) example.

Figure 2.1: An example illustrated solution for the RRT [71] and PRM [61] algo-

rithms for a 2D path planning problem. qstart is the starting configuration and qgoal

is the goal configuration. Black dots are sampled configurations in Cfree that were

added to the graph/tree.

abstraction often used in geometric path planning. An important concept of the

C -Space is the space in which the robot is in collision with either its environment or

itself; this is denoted as Cobs. The inverse of this is Cfree which is the space where

the robot is not in collision with anything. As discussed earlier, the classical path

planning problem was to find a path through Cfree from some starting configuration

qstart to some goal configuration qgoal.

State space: The state space is similar to the idea of configuration space, how-

ever it also considers dynamic attributes of the DoFs in a system. Commonly this

means including velocities of DoFs, but can also include higher-order terms such as

accelerations.

Forward kinematics: Forward kinematics refers to computing the end-effector

pose (and poses of other coordinate frames attached to the robot body) given the

joint positions of the robotic manipulator.

Inverse Kinematics: Inverse kinematics [47, 66] refers to computing a valid set of

joint positions that will place the robotic end-effector at some desired pose. Inverse

kinematics is a harder problem to solve than forward kinematics due to the fact that

there can often be multiple solutions or no solutions to achieve a specific end-effector

pose.

11

2.1 Classical Motion Planning

2.1.2 Sampling-based motion planning

A typical collision-free path planning method is to discretise a search space and

create a graph to connect all adjacent nodes. Using this graph, a search algorithm

such as the A∗ [45] algorithm could be used to find a path from the start node to

the end node. These discretisation methods worked well for mobile robots operating

in a 2D plane where the dimensionality of the problem was fairly low, but they

do not scale well to the higher-dimension systems present when controlling robotic

manipulators; typical robotic manipulators may have 6 or 7 DoFs to enable them

to operate effectively in their entire working environment. As such, a new branch of

algorithms needed to be created that could scale better to these higher-dimensional

path planning problems.

Sampling-based motion planning [62] offered a simple yet effective solution to

this problem. The general idea of sampling-based motion planning was not to dis-

cretise the configuration space, but instead to sample from the configuration space

and create a data structure (such as a graph or tree) of valid configurations and

connect them to nearby configurations. Once sufficient configurations have been

sampled, and the goal configuration is connected to the data structure, a traversal

search can be performed to find a path from the starting configuration to the goal

configuration. Every time a configuration is sampled, it needs to be determined

whether this configuration is contained within Cfree; this is done by using a combi-

nation of forward kinematics and then geometric collision checking to see whether

this configuration puts the robotic manipulator in collision with its environment or

itself. These sampling-based planners can be probabilistically complete, that is to

say that the more samples that are taken the more likely the planner will find a

path if one exists.

Two of the most well known, and probabilistically complete, sampling-based

planners are RRT [71] and PRM [61]. These two algorithms work similarly but have

one fundamental difference, which is if they reuse the data structure they compute

for subsequent path planning. Fig. 2.1 shows an illustration of the data structures

that these two methods would create to solve a 2D path planning problem.

In RRT [71], for every path planning problem, a new tree structure is created to

find a path between the start and goal configuration, even if the environment did

not change. This tree is created by sampling the configuration space qnew, checking

if the sample is within Cfree, and if it is, connecting it to the nearest node in the

current tree qnear by sampling points at intervals between qnear and qnew. The search

is biased towards the goal configuration qgoal by sampling the goal configuration as

qnew at set intervals. Once qgoal has been added to the tree, the path can be

determined by backtracking through the tree to the starting configuration.

In PRM [61], a graph structure is created that is a sparse representation of Cfree,

but more complete than the tree structure created by RRT. The graph is constructed

12

2.1 Classical Motion Planning

in two steps, Firstly, a user-defined number of points are sampled and are checked

whether they are within Cfree. All the points within Cfree are added as vertices to

the graph. Then, edges are created between each vertex and its k nearest neighbours,

as long as they can be connected by a local path planner without entering Cobs. Once

the graph has has been created, it can be used to plan a path between a starting

and goal configuration. This planning occurs by connecting qstart and qgoal to the

graph and using a search algorithm like A∗ to find the shortest path. This same

graph can then be used for subsequent path planning queries, assuming that, the

environment did not change drastically, making the existing graph invalid.

Both of these algorithms have inspired countless adaptations to adapt them to

be more versatile in certain scenarios [125, 92, 67, 13]. Kuffner et al. [67] proposed

changing the RRT algorithm to grow two trees instead of one (one starting at the

start configuration and one starting at the goal configuration). Both of these trees

would grow in parallel, extending them through the Cfree space. At set intervals,

both trees would try and connect themselves to the other. This bi-directional search

strategy often decreases the time taken to find a collision-free path. Bohlin et al.

[13] propose “lazy PRM”, a PRM adaptation that delays collision checking of states

until necessary. Initially the graph is constructed and it is assumed that all edges

are valid and no collision checking is required. When querying the graph to find a

collision free path, only then are collision checks done. This approach reduces the

amount of computation time required to build the initial graph.

There are two main issues with sampling-based algorithms. Firstly, the paths

that are computed are often not dynamically smooth. Following these paths can

often result in jerky movements of the robotic manipulator. This problem can be

addressed by implementing an additional smoothing stage after a path has been

found to try and make the path more dynamically smooth [98, 46]. Secondly, these

algorithms are only probabilistically complete. This means that if a solution does

not exist, these algorithms will not be able to report that. Therefore users must

rely on some timeout mechanism to determine when to stop trying to plan a path

and determine that a path is infeasible.

This section has described some of the classical elements of robotic motion plan-

ning. This was during a time when finding collision-free paths was the priority and

contact between a robot and its environment was undesired. Moving towards the

present day, it is quite common for researchers to try and make their robots com-

plete tasks by deliberately making contact with objects in their environments and

leveraging contact-based interactions. This new shift in thinking is largely what this

thesis is interested in. The work in this thesis leverages contact-based interactions

to enable robotic manipulators to achieve their goals using trajectory optimisation.

Before discussing how trajectory optimisation can be used for contact-based manip-

ulation, it is important to understand the fundamentals of trajectory optimisation

13

2.2 Trajectory Optimisation Fundamentals

and its first intended uses.

2.2 Trajectory Optimisation Fundamentals

The purpose of this section is to give the interested reader a brief introductory

overview into the field of trajectory optimisation. It discusses the general trajec-

tory optimisation formulation, shooting methods of optimisation and some notable

algorithms as well as direct methods of optimisation and some relevant algorithms.

Finally, works are discussed that use trajectory optimisation for collision-free motion

planning.

Trajectory optimisation is the field of study concerned with minimising the cost

of trajectories subject to a set of constraints. A trajectory is a path that an object

or dynamical system follows as it travels through both physical space and time. The

cost function that is minimised is defined by a user to incite some desired behaviour,

such as reaching some goal condition as fast as possible whilst minimising the cost

of reaching said goal condition. One of the first use cases of trajectory optimisation

was in the aerospace industry where it was used to optimise trajectories of rockets

and satellites to compute optimal launch and re-entry trajectories to minimise fuel

usage [10].

Following on from Sec. 2.1 where it was discussed how sampling-based plan-

ners have been used to compute collision-free motion plans, trajectory optimisation

has also been employed to achieve the same goal. Two popular algorithms named

STOMP [60] and CHOMP [110] both consider computing collision-free optimal mo-

tion plans to simultaneously compute a motion plan that avoids contact with obsta-

cles as well as minimising some dynamical quantities like acceleration and jerk. One

of the benefits that trajectory optimisation offers over sampling-based planners is

that the optimal trajectories they compute can minimise dynamic quantities like ac-

celeration or jerk automatically, by encoding this into the cost function. This means

that there is no requirement for a post-processing step to smooth the trajectory as

the optimal trajectory is already smooth.

2.2.1 General formulation

Consider a discrete-time dynamics system where the next state of the system is

subject to the previous state and control vector:

xt+1 = f(xt,ut), (2.1)

where xt ∈ Rnx and ut ∈ Rnu are the state and control vector respectively at time-

step t.

14

2.2 Trajectory Optimisation Fundamentals

Given a discrete-time trajectory (X,U) of length T , where X ≜ (x0,x1, . . . ,xT)

and U ≜ (u0,u1, . . . ,uT−1), we want to minimise the total running cost of a trajec-

tory J :

J(X,U) = lf (xT) +
T−1∑
t=0

l(xt,ut), (2.2)

where l(xt,ut) is some state and control vector dependent cost function and lf (xT)

is a terminal state dependent cost function.

The algorithms that solve this optimisation problem can be generally broken

down into two main categories; shooting and direct methods. Shooting methods

only consider the control vectors as the optimisation parameters and enforce the

dynamics of the system by rolling-out (or “shooting”) the control sequence through

the system dynamics. Direct methods consider both the control and state vectors as

optimisation variables, and enforce the system dynamics through constraints in the

optimisation problem. There is also the concept of multiple-shooting [10] which is a

hybrid of these two categories. Multiple-shooting works by dividing the trajectory

into segments, each segment is optimised in a shooting-like way where the dynamics

are rolled-out, but the knot points between each segment are optimised more like

a direct method where constraints are used to make sure that transitions between

segments is dynamically feasible. This enables the trajectory to be optimised more

in parallel which is one of the major shortcomings of shooting methods.

2.2.2 Shooting methods

Shooting methods optimise a trajectory by only considering the control vectors as

decision variables and then enforce the dynamics of the system by rolling out new

control trajectories through the system dynamics. More formally, they minimise the

total running cost of a trajectory (Eq. 2.2):

U∗,X∗ = argmin
U

[J(X,U)], (2.3a)

subject to: xt+1 = f(xt,ut) for t = 0, . . . , T − 1, (2.3b)

where the state trajectory X is computed by rolling out a control trajectory U

through the system dynamics. This thesis will refer to the nominal trajectory (X̄, Ū)

as the current best solution to the trajectory optimisation problem. After every

successful optimisation iteration, the nominal trajectory is updated.

Some shooting methods require optimisation to be considered over the full con-

trol sequence (i.e., u0,u1, . . . ,uT−1), whereas others are able to compress the control

sequence into a lower dimensional object such as a time-dependent spline represen-

tation [50]. When compressing controls using splines, a set of M knot points are

defined at times (t0, t1, . . . , tM−1) with associated control values (w0,w1, . . . ,wM−1).

The full control sequence can then be computed by interpolating between the knot

15

2.2 Trajectory Optimisation Fundamentals

points subject to the interpolation scheme used. For a linear interpolation scheme,

the control values between knot points i and i+ 1 would be computed via:

ut = wi +
t− ti
ti+1 − ti

(wi+1 −wi) for ti ≤ t ≤ ti+1. (2.4)

There are a few advantages to using spline representations. Firstly, as the number

of decision variables is reduced, the computational complexity of trajectory optimi-

sation can be reduced, as well as this, sometimes having fewer decision variables can

make it easier for optimisers to find and follow descent directions. Secondly, by using

splines, some smoothness is automatically incorporated into the optimal trajectory,

without smoothness even necessarily needing to be specified in the cost function.

However, one disadvantage of using splines is that they can limit the robot’s ability

to execute highly precise and discontinuous actions that can sometimes be required

dependent on the task.

Pontryagin’s maximum principle

Pontryagin’s maximum principle [79] is a first-order trajectory optimisation method

that uses gradient information about the system dynamics and cost function to

compute improved trajectories.

Initially, a nominal state trajectory needs to be computed via a rollout of some

initial control trajectory guess. Then, the costate λ sequence is computed using

a backwards pass from the end of the trajectory to the beginning. This costate

sequence is then used to compute optimal control modifications that are applied to

the nominal control trajectory via a line-search.

The backwards pass stage to compute the costate variables from (T − 1) to 0

can be shown as the following:

λt =
δl(xt,ut)

δxt

+
δf(xt,ut)

δxt

λt+1. (2.5)

These costate variables are then used to compute the descent direction of the total

running cost with respect to the control vector

δJ

δut

=
δl(xt,ut)

δut

+
δf(xt,ut)

δut

λt+1. (2.6)

The descent direction of the total running cost can then be used with a line-search

parameter α ∈ [αmin, αmax] to ensure that a lower cost trajectory is found:

U = Ū+ α
δJ

δŪ
. (2.7)

It is difficult to know what values are the best to use for the bounds on α, this

depends on how valid the linear approximation of the system dynamics is and how

close to any local minima the nominal trajectory is. As such, using a log-scale of α

values is a common method to handle this issue.

16

2.2 Trajectory Optimisation Fundamentals

Differential dynamic programming and the iterative linear quadratic reg-

ulator

Differential dynamic programming (DDP) [84] and the iLQR [73, 126] are both

trajectory optimisation algorithms that use dynamic programming to optimise a

trajectory. They both consider the Bellman equation which colloquially states that

the optimal action to take at the current state is irrespective of previous states and

actions. Mathematically, this idea can be expressed through the use of the “Value”

function.

Firstly, the cost-to-go Ji is defined as the running cost of a trajectory from

a specific time-step i along the trajectory when the remainder of the trajectory

controls Ui are applied:

Ji(xi,Ui) = lf (xT) +
T−1∑
t=i

l(xt,ut). (2.8)

The value at time-step i is then defined as the set of controls that minimise the

cost-to-go from the current time-step and state:

V (x, i) = argmin
Ui

[Ji(xi,Ui)]. (2.9)

By setting the value function at the final time-step of the trajectory to be equal

to the terminal state cost V (x, T) = lf (xT), dynamic programming can be used

to reduce the minimisation of the entire control sequence to a series of individual

control minimisation problems from the end of the trajectory to the beginning. This

is done by propagating the value function using the Bellman principle:

V (x, i) = argmin
ui

[l(xi,ui) + V (x, i+ 1)]. (2.10)

Colloquially, this equation means that the optimal control to take at any current

state is the one which minimises the current state cost in addition to the value at

the state which you end up in as a result of taking that action.

Using this dynamic programming principle, an optimal control policy can be

computed at every time-step, which constitutes of an open-loop term kt and state

feedback gain term Kt. The details for how this optimal control policy is computed

have been skipped, but the interested reader can find these details in [126].

This optimal control policy is then rolled out using the original system dynamics

(this is referred to as the “Forwards Pass”). (X̂, Û) represent the new states and

controls that are computed during the forwards pass.

x̂0 = x̄0, (2.11a)

ût = ūt + αkt +Kt(x̂t − x̄t), (2.11b)

x̂t+1 = f(x̂t, ût), (2.11c)

17

2.2 Trajectory Optimisation Fundamentals

where α is the line-search parameter 0 ≤ α ≤ 1.

To summarise, at every iteration of iLQR the following three steps need to be

repeated. Firstly, the first order dynamics derivatives of the system about the

nominal trajectory as well as the first and second order cost derivatives need to

be computed about the nominal trajectory. Secondly, the optimal control feedback

policy is computed through the use of dynamic programming. Finally, this control

feedback policy is then rolled out using the original system dynamics using a line-

search method to ensure that a lower cost trajectory is found.

iLQR has seen widespread use and adaptations. Some of these adaptations

include combining iLQR with reinforcement learning (RL) [151] (to simultaneously

aid in training a policy and using the policy to better inform the terminal state

cost), a probabilistic implementation for iLQR to consider stochastic systems [72],

modifying the iLQR algorithm into a multiple-shooting variant [38] and adding box

constraints that are solved via quadratic programming (QP) to ensure that controls

are kept within feasible limits [127].

In this thesis, iLQR is the primary trajectory optimisation algorithm used. This

is due to its computational efficiency at finding solutions to difficult problems and its

ease of use for highly non-linear dynamics. This work uses iLQR with the MuJoCo

[129] physics simulator to simulate the non-linear dynamics of a wide variety of

problems.

Sampling-based approaches

Sampling-based trajectory optimisation algorithms do not consider gradient-based

information about the system dynamics or cost function (they are sometimes referred

to as zero-order methods) and instead rely on sampling new control trajectories and

then evaluating their performance by rolling out the sampled control trajectories

using the system dynamics.

Sampling-based methods do not enjoy the same convergence properties as more

efficient gradient-based methods but can be effective irregardless of this. The pri-

mary reason for this is that the only computational bottleneck of these algorithms is

rolling out the sampled control trajectories using the system dynamics; they do not

require the computational overhead of computing derivatives or any form of back

propagation.

They are particularly useful when combined with MPC. In MPC it is typically

more important to compute an acceptable solution fast rather than an optimal so-

lution slowly [50]. This is because of the ever changing cost landscape that occurs

from using MPC on a real system and it is more important to stay within the basin

of the optimal solution than exactly at the optimal solution.

Pinneri et al. [107] propose an adapted cross entropy method [111] which they

name “iCEM” for sampling-based trajectory optimisation in MPC. The general

18

2.2 Trajectory Optimisation Fundamentals

CEM represents candidate trajectories by some mean and covariance values (µt, σt ∈
Rd×h), where µ is the mean of the sample, σ is the variance and d and h are the

dimensionality of the action space and number of planning time-steps respectively.

At every iteration, candidate trajectories are evaluated and an elite set of candidates

(the top performing trajectories) are used to instantiate the next iteration of samples.

Pinneri et al. [107] make two main improvements to the original algorithm which

are: (1) Proposing a new sampling strategy to make their method more efficiently

search the action space. (2) Maintaining some memory of previous elite trajectories

to be instantiated at the next iteration, instead of just updating the mean and

covariance values of the trajectory.

Model predictive path integral control (MPPI) [2, 140] works similarly to the

CEM. Candidate trajectories are randomly sampled from some Gaussian distribu-

tion about the nominal trajectory. These candidate trajectories are evaluated by

rolling them out using the system dynamics and a cost for each sampled trajectory

is computed. They key difference in MPPI is that all candidate trajectories are then

weighted and then used to compute an update to the nominal trajectory.

2.2.3 Direct methods

In direct optimisation, both the states and controls are treated as optimisation

variables. As there are no rollouts of the system dynamics, dynamic feasibility needs

to be enforced through the use of constraints. The direct optimisation problem can

be written more formally as:

U∗,X∗ = argmin
U,X

[J(U,X)]. (2.12)

Direct methods of trajectory optimisation transform the trajectory optimisation

problem into a nonlinear program (NLP) [8]. A NLP problem is an optimisation

problem where the objective function and/or constraints are nonlinear (as most

interesting problems are). A NLP can be written formally as

min
y

f(y), (2.13a)

subject to: gi(y) ≤ 0, i = 1, . . . ,m, (2.13b)

hj(y) = 0, j = 1, . . . , p, (2.13c)

where:

• y is the decision variable vector,

• f(y) is the nonlinear objective function,

• gi(y) are inequality constraints,

• hj(y) are equality constraints.

19

2.2 Trajectory Optimisation Fundamentals

Finding the optimal solution to constrained NLP problems is challenging and

there are a variety of methods that have been proposed to do this. These methods

generally consider what is referred to as the Karush-Kuhn-Tucker (KKT) conditions.

The KKT conditions outline a set of conditions for a solution to be optimal for such

a constrained optimisation problem.

Firstly, the Lagrangian of the original constrained NLP can be constructed by

combining the objective condition with its constraints through the use of Lagrange

multipliers:

L(y, λ,v) = f(y) +
m∑
i=1

λigi(y) +

p∑
j=1

vjhj(y), (2.14)

where λi and vj are the Lagrange multipliers for the inequality and equality con-

straints respectively.

There are four conditions which make up the KKT conditions, which are:

1. Stationarity

The gradient of the Lagrangian with respect to the decision variable must be zero:

∇f(y∗) +
m∑
i=1

λ∗i∇gi(y∗) +

p∑
j=1

v∗
j∇hj(y∗) = 0. (2.15)

2. Primal feasibility

The optimal solution y∗ must satisfy the original constraints:

gi(y
∗) ≤ 0, i = 1, . . . ,m, (2.16a)

hj(y
∗) = 0, j = 1, . . . , p. (2.16b)

3. Dual feasibility

The Lagrange multipliers for the inequality constraints must be non-negative:

λ∗i ≥ 0 i = 1, . . . ,m. (2.17)

This requirement effectively means that violating the constraint should not improve

the objective function.

4. Complementary Slackness

For each inequality constraint, the multiplication of the constraint and its Lagrange

multiplier must be equal to zero:

λ∗i gi(y
∗) = 0 i = 1, . . . ,m. (2.18)

This effectively means that either gi(y) = 0 (i.e the constraint is active) or that

λ∗i = 0 (the constraint is inactive). Informally this means that the constraint only

affects the solution when the constraint is active.

One of the family of algorithms to solve the KKT conditions are sequential

quadratic programming (SQP) methods [120]. The general SQP method is to it-

eratively approximate the NLP problem as a QP and solve the resulting QP sub

20

2.2 Trajectory Optimisation Fundamentals

problem efficiently. This process can be repeated until convergence or satisfaction

of the KKT conditions. A QP is a specific NLP where the objective function is

quadratic and the constraints are linear, which is a problem that can be efficiently

solved using a simple set of equations. In practice, with SQP the minimiser of the

QP subproblem can sometimes overshoot and increase the original objective func-

tion. To address this, a descent direction is computed, and the solution is then

updated along this direction using either a trust region or a line-search method. A

well-known software library that implements this SQP method is SNOPT [39].

Interior point methods [54] are another popular family of methods to solve NLP

problems. Interior point methods relax the fourth KKT condition (complementary

slackness) by relaxing Eq. 2.18 to:

λ∗i gi(y
∗) = µ i = 1, . . . ,m, (2.19)

for some µ ≥ 0. This relaxation makes the problem easier to solve as it smooths any

possible discontinuities caused by the complementarity requirement. To enforce this

modification, the objective function is augmented with logarithmic barrier functions

that penalise violations of the inequality constraints. The new objective function is

written as:

min
y
f(y)− µ

m∑
i=1

ln(−gi(y)). (2.20)

This relaxed problem can then be solved efficiently using Newton’s method. How-

ever, the solution to this is not the solution to the original problem. To address

this issue, interior point methods iteratively solve this minimisation sub problem

and reduce the size of µ. For every new sub problem, the previous solution is used

to warm start the optimisation, making Newton’s method converge faster and more

reliably. As µ → 0, the solution will approach the optimal solution to the original

problem as the KKT conditions will be satisfied. A popular implementation of an

interior point method solver is known as IPOPT [136] and is commonly used to solve

such NLP problems.

NLP problems and general methods of solving them have been discussed. It

is now important to briefly understand how this relates to our particular use-case,

which is for trajectory optimisation. Direct optimisation tries to minimise Eq. 2.12

and so this is the objective function of the NLP. The inequality and equality con-

straints are generally problem specific. Some quite common constraints are keeping

controls within certain limits:

umin ≤ ut ≤ umax, (2.21)

keeping dynamical quantities (such as velocity or acceleration) between certain

safety limits:

xmin ≤ xt ≤ xmax, (2.22)

21

2.2 Trajectory Optimisation Fundamentals

or maintaining dynamic feasibility of the system:

xt+1 − f(xt,ut) = 0. (2.23)

This final general dynamic feasibility constraint is the subject of a great amount of

research, particularly for contact-based optimisation problems. Works that address

this issue will be discussed in Sec. 2.3.

Direct optimisation methods offer several advantages over shooting-based ap-

proaches, such as improved global convergence properties and the ability to initial-

ize trajectory states instead of just controls. However, these benefits come with

significant challenges, particularly for contact-based optimisation problems. Some

of these issue include:

• Discontinuities: Due to the presence of contact dynamics, it is common to

have discontinuities in the objective and/or constraints of the NLP.

• Hybrid dynamics: Contact-based systems have hybrid dynamics with dif-

ferent modes. Modelling the switching between different modes leads to a

combinatorial explosion in the NLP.

• Sensitivity: Solving NLP problems can require a good initial guess to the

solution of the problem to converge to the global optima. This is especially

true for problems with highly non-linear dynamics which is the case for contact-

based systems.

Some of the works discussed in Sec. 2.3 will address some of these listed issues.

2.2.4 Collision-free trajectory optimisation

Trajectory optimisation has also been used for finding collision-free motion plans.

These works aimed to solve that key issue that occurred from the sampling-based

methods in classical motion planning. This issue was that the found collision-free

paths would often be non-smooth and jerky. The solutions found by trajectory

optimisation methods are naturally smooth, if smoothness of the trajectory was

encoded as a requirement into the cost function.

Ratliff et al. [110] proposed CHOMP (covariant hamiltonian optimised motion

planning). Their goal is to find a smooth collision-free path from a starting configu-

ration to a goal configuration via a set of waypoints. They denote this trajectory of

waypoints as ξ, where ξ = [q0,q1, . . . ,qT]. They split their cost function into two

parts: (1) fprior(ξ) which is used to minimise dynamic quantities such as velocity,

acceleration or any other higher order terms and (2) fobs(ξ) which is used to penalise

the robotic manipulator getting too close to obstacles in the environment. They use

covariant gradient descent to update the trajectory iteratively to find an optimal

smooth collision-free path.

22

2.2 Trajectory Optimisation Fundamentals

Kalakrishnan et al. [60] propose STOMP (stochastic optimised motion plan-

ning). Their problem formulation is largely identical to the problem in CHOMP

but they use stochastic sampling to compute descent directions to iteratively up-

date the optimal trajectory. One advantage of their method is that it can enable

the use of more complex and discontinuous cost functions as the direct need for

gradients is not required. The authors also note that STOMP is sometimes able to

escape small local minima due to the stochastic nature of its sampling.

It should be noted that both of these works (CHOMP and STOMP) do not

consider the general dynamics of the system. They both treat all joints of the

robotic manipulator as independent (which is not the case as the motion of linked

joints can affect one another based on inertial effects).

TrajOpt [117] and GuSTo [14] are both examples of direct optimisation works

that also consider the problem of finding a collision free motion plan. These works

do consider the system dynamics through the use of constraints and employ either

SQP or Sequential Convex Programming (SCP) to compute optimal motion plans.

GOMP [53] (grasp optimised motion planning) focuses on the problem of com-

puting optimal motion plans in a pick-and-place scenario, where it is desired for a

robot to maximise its “picks per hour” in an automated warehouse setting. They

formulate their problem as a trajectory optimisation problem for finding efficient

collision-free paths from one configuration to a goal configuration whilst transport-

ing an object. Interestingly, they consider optimising the grasp that is used to hold

objects while they are being transported. Certain grasps of an object will be more

dynamically stable than other grasps, which is also trajectory dependent. Choosing

an optimal grasp that enables the robotic manipulator to travel at higher speeds

without dropping the desired object is important for efficiency.

2.2.5 Remarks

This section has outlined the general trajectory optimisation problem and discussed

some different classes of algorithms that can be used to solve them. It has also briefly

touched upon some algorithms that have been developed that use these techniques

to solve collision-free optimised motion planning, the same type of problem that has

been deemed as “classical motion planning”.

Everything discussed so far is how trajectory optimisation has been used for

finding collision-free motion plans. However, the primary goal of this thesis is using

trajectory optimisation to perform contact-based motion plans, a significantly harder

challenge. The next section discusses how trajectory optimisation has been extended

in the literature to optimise motion plans that use contact.

23

2.3 Contact-Based Trajectory Optimisation

2.3 Contact-Based Trajectory Optimisation

This section discusses various works that consider using trajectory optimisation

to perform contact-based tasks, either for locomotion or manipulation. A common

theme that will be noticed throughout this section is the discussion of computational

complexity, especially relating to two key ideas; computing dynamics derivatives and

scaling issues with higher-dimensional problems like manipulation in clutter. These

two issues directly relate to Chapter 4 for how the issue of computational expense

computing dynamics derivatives can be reduced and Chapter 5 where methods of

reducing the dimensionality of a problem online during MPC are discussed.

2.3.1 Shooting methods

Several works have considered the problem of reaching through clutter using shooting-

based trajectory optimisation methods. The reaching through clutter problem con-

sists of a robot that is trying to grasp and retrieve some goal object in some tight

environment (such as a shelf or cupboard). In this environment are a variety of other

distractor objects that sometimes the robot does not want to interact with (such as

delicate objects) and other objects that the robot can interact with. Finding motion

plans in these setting can be challenging as the robot needs to reason about multi

robot-object and object-object interactions so that it can weave through the clutter

to grasp the goal object.

Kitaev et al. [63] consider this reaching through clutter problem. In their prob-

lem, they are interested in environments with lots of thin and tall objects that are

amenable to toppling and they encode not toppling objects in the environment into

their cost function. They sample different straight line movement of the end-effector

from different directions and choose the best trajectory as the initial input to their

optimiser. In their work, they show optimisation time results for solving environ-

ments with different levels of clutter. They show that the optimisation times can

becomes prohibitively expensive as the number of objects increases, noting that, the

main bottleneck of computation is computing dynamics derivatives via FD.

Both Agboh et al. [4] and Papallas et al. [100] also both consider the problem of

reaching through clutter using sampling-based shooting methods. Their tasks are

more focused on dense clutter where the target object is more difficult to grasp but

there are less concerned with what happens to the clutter. Importantly, both of

these works are focused on executing on real robotic hardware. Agboh et al. [4]

propose an approach call “Online Re-planning”, they note how executing trajectories

that were computed in simulation open-loop is bound to fail in such a task due to

the stochastic difference between physics simulators and the real world. Instead of

using conventional MPC techniques (due to longer planning times) they propose

executing trajectories open-loop and detecting the error between the planned state

24

2.3 Contact-Based Trajectory Optimisation

and the real world state (i.e. differences in object positions). If this error becomes

too large, they halt execution and re-optimise their trajectory. Papallas et al. [100]

consider a human in the loop approach to reaching through clutter. They note, that

often times directly reaching through the clutter for the goal object is not a viable

strategy, and in fact some objects may need to be relocated before a successful grasp

can occur. They leverage human input to provide directions to the robot to move

objects from one position to another before then trying to re-grasp the goal object.

In later work, Papallas et al. consider learning whether the robot could benefit from

human intervention using a neural network [102].

Kurtz et al. [69] use iLQR to optimise contact rich trajectories for both locomo-

tion of a quadruped as well as full arm manipulation. The full arm manipulation is

particularly impressive, managing to synthesize trajectories where the robotic ma-

nipulator can squeeze a large foam ball against itself and lift it vertically upwards.

This is achieved by the creation of a hydroelastic contact model that the authors

implemented in Drake [128]. This hydroelastic contact model proved to be useful

in softening the discontinuous effects of making and breaking contact and realistic

enough that the trajectories could be executed open-loop on real robotic hardware.

However, computing these trajectories was prohibitively expensive, taking tens of

minutes to compute trajectories that were only tens of seconds long. The authors

note that most of the optimisation time was spent computing dynamics derivatives

via AD.

There are a variety of locomotion based works that use either iLQR or DDP to

synthesize complex contact-rich locomotion of legged robots. Chatzinikolaidis et al.

[21] use DDP for synthesising dynamic motions for a single legged robot to jump

up from the floor. Tassa et al. [126] use iLQR for controlling a humanoid in an

asynchronous MPC framework in simulation. They note that the “real-world” en-

vironment required a 7x slowdown so that their humanoid could operate effectively.

They also note that the largest computational bottleneck was computing dynamics

derivatives. Erez et al. [35] also use iLQR for synthesising a variety of complex

contact-rich tasks such as making a humanoid robot stand up from a laying down

position. Grandia et al. [42] use a DDP variant to control a quadruped using MPC.

They show that despite the low update rate of the MPC algorithm (15Hz) they

can employ the local state-based feedback policy of the algorithm to keep the robot

stable.

Despite not having the strong convergence guarantees of gradient-based methods,

sampling-based planners have been used in a wide array of tasks [3, 20, 50, 100, 106].

One of the advantageous aspects of sampling-based shooting methods compared to

gradient-based methods is their ease of implementation and reduced computational

load (generally due to not requiring the expensive computation of dynamics deriva-

tives). Sampling-based planners are particularity amenable to multi-threading, and

25

2.3 Contact-Based Trajectory Optimisation

with the rise of GPU parallelised physics simulation [77, 6], this offers new oppor-

tunities. Pezzato et al. [106] use MPPI combined with GPU paralleisable physics

simulation to sample hundreds of possible trajectories for optimisation. Using hun-

dreds of environments also enables the use of domain randomisation in trajectory

optimisation, making policies more robust to inaccuracies in physical parameters.

2.3.2 Direct methods

The hybrid nature of contact dynamics is significantly challenging for direct opti-

misation. In situations where there is only a single continous dynamics model, then

direct optimisation is fairly simple, however this is not often the case for contact-

based tasks. Original works often considered “mode scheduling” where the optimiser

was given a set schedule for when the robot would switch between contact modes

and its task was to optimise each segment individually [118]. However, it is much

more desirable to let the optimiser itself decide when the robot should switch be-

tween contact modes as it allows greater flexibility in the final solution, as well as

taking away a possibly complex decision making process away from the user. This

second school of thinking is referred to as contact-implicit trajectory optimisation.

Under this contact-implicit paradigm, Mordatch et al. [87, 88] generated complex

behaviour for animated characters that would require complex mode scheduling.

Hogan and Rodriguez [49] consider such an approach. They consider the prob-

lem of the two dimensional push slider. They use the quasi-static assumption in

this work and formulate the problem as a MIQP (a more difficult version of a QP

problem). They use integer decision variables to handle the hybrid dynamics present

in this problem (sticking, sliding up and sliding down), enabling their method to

autonomously reason about switching between dynamics modes. However, as the

controller can switch between any of the three contact modes during execution, this

leads to a combinatorial explosion in the planning problem. They propose a “family

of modes” approach that uses a fundamental intuition that any instance of their

problem can be solved by the same sequence of four dynamics modes of different

lengths. For contact rich tasks like in-hand manipulation, this approach would not

be computationally tractable.

Moura et al. [89] look at a similar problem. They formulate this problem as an

MPCC (mathematical program with complementarity constraints)1. They encode

the hybrid dynamics of this task as complementarity conditions, as opposed to the

mixed-integer formulation proposed by Hogan and Rodriguez [49]. Solving strict

complementarity conditions can be challenging in NLP problems, as such, they add

1Complementarity constraints are ones where the multiplication of two variables must equal

zero, enforcing that at least one of the two variables must be zero. A common use of this in contact

handling is the idea of not applying force at a distance. Either the force a robot applies to an

object must be zero, or the distance between the robot and the object must be zero.

26

2.3 Contact-Based Trajectory Optimisation

a slack variable that allows their controller to violate complementarity slightly and

the size of this slack variables is then penalised in the cost function. Posa et al. [108]

also consider modelling problems as MPCC. They present a more general method

for tasks that involve contact dynamics and show that their method scales well with

dimensionality and can be applied to a variety of tasks, including both locomotion

and manipulation.

Önol et al. [95] investigate the differences between different contact models and

how well they facilitate contact-implicit trajectory optimisation when used with

complementarity constraints. Building upon this work, Önol et al. [96] propose

a method for performing contact-implicit trajectory optimisation for manipulation

that requires no meaningful initial trajectory. Their method uses the successive

convexification algorithm [80] and aims to penalise force applied at a distance until

a realistic trajectory is found. Later, they propose a tuning-free algorithm that uses

an outer-loop penalty method. This outer-loop iteratively increases the penalty of

applying force at a distance so that successive trajectories become more dynamically

feasible [97]. One issue with their method is that they need to specify contact points

that can apply force at a distance before optimisation begins, requiring human

intuition in that regard. Zhang et al. [145] propose one such solution to this problem

which they name STOCS (simultaneous optimisation and contact selection). Their

method interleaves contact point selection with trajectory optimisation.

Most trajectory optimisation methods that have been discussed so far consider

forward dynamics to create optimal trajectories. However, it is also possible to

use inverse dynamics to optimise trajectories which can be advantageous. Kurtz

et al. [70] propose an inverse dynamics trajectory optimisation approach, where

they formulate the decision variables as only the generalised positions of the scene.

Whilst inverse dynamics trajectory optimisation is not new [87, 88, 34], Kurtz et al.

show an efficient implementation with results on a wide variety of tasks. In their

formulation they create a custom point contact model that only requires their gen-

eralised positions to compute which is accurate enough for MPC. Inverse dynamics

trajectory optimisation can be faster than forward dynamics methods due to inverse

dynamics typically being faster to evaluate [36].

Graesdal et al. [41] use an approach named graphs of convex sets [81] for manip-

ulating a single T-block on a 2D planar surface. The general idea of graphs of convex

sets is to solve a graph search problem where the nodes in the graph are actually

continous convex sets. The nodes that are travelled to in the problem can then be

solved independently and efficiently as convex problems are easy to solve. Graes-

dal et al. [41] formulate their problem using this idea where each convex set was

either free motion of the robotic manipulator or an individual contact mode of the

system (sticking, sliding etc.). This approach has the advantage of providing global

optimality. However, it should be noted that this approach is not easily extended

27

2.4 Other Methods for Contact-based Manipulation / Locomotion

to multiple objects, as the authors formulate the problem from an object-centric

perspective.

2.4 Other Methods for Contact-based Manipula-

tion / Locomotion

This section provides an overview of non-optimisation based methods that have been

used for contact-based manipulation/locomotion. The largest category is learning-

based methods (such as RL and imitation learning (IL)), but before those methods

are discussed, non learning-based works will be discussed first.

One of the first seminal pieces of work that considered enabling robots to interact

with their environments using non-prehensile manipulation was conducted by Mason

[82]. In this work, Mason derives the fundamental mechanics of pushing. Building

on top of this, Dogar et al. [33] proposed push grasping, a mechanism for the robot

to use non-prehensile manipulation pushing actions to assist in grasping objects.

They note how pushing actions can actually be used as a method to funnel objects

into the manipulators end-effector and reduce uncertainty in the object’s position.

Dogar et al. [31] also consider the problem of grasping an object in clutter. They

propose a physics-based grasp planer that enables contact between a robotic end-

effector and multiple objects in an environment to grasp an object. Their method

enables the robot to push other objects out of the way to successfully close the

fingers around the desired object. To speed up planning, they pre-compute pos-

sible contact interactions between the robot’s end-effector and objects to be used

for planning. Importantly, whilst they enable multiple robot-object interactions in

their planner, they do not allow object-object interactions so that the problem is

computationally tractable. As well as this, Dogar et al. [32] propose a general

planning framework for non-prehensile manipulation in clutter. They consider the

problem of trying to retrieve some goal object from clutter where it is impossible

to initially grasp the object, without first relocating other objects out of the way

of the robot. Their method is to initially create a plan whilst ignoring contact to

grasp the target object. They then evaluate this plan and check what objects the

robot would collide with to achieve it and add them a list of objects that need to be

relocated. This methodology is then applied recursively, trying to relocate objects

to new areas using non-prehensile manipulation, evaluating if prior plans will require

prior rearrangements of other objects.

Saxena et al. [116, 115] consider a similar problem of retrieving a desired object

from a cluttered environment. They also consider situations where the robot will

first have to relocate objects before being able to grasp an object. They decompose

the planning problem into two steps, firstly they use a similar concept to the work

from Dogar et al. [32] and they plan a path of the robot whilst ignoring collision to

28

2.4 Other Methods for Contact-based Manipulation / Locomotion

the desired goal object. They then compute all the objects that would be in collision

over this path. To rearrange the scene they first treat all the objects that need to

be moved as “agents” which can actuate themselves in the scene. They compute

paths for all these agents and then achieve these paths by computing pushing plans

for the robot to manipulate them.

Papallas et al. also consider the problem of reaching through clutter [101]. They

use a kinodynamic sampling planner to compute trajectories for reaching through

clutter to retrieve some target object. Notably, they consider a human in the loop

approach where a human can be queried to provide sub-goals for the planner (moving

an object to a new location) which are intended to make the planning problem easier.

The works discussed so far in this section have all employed some form of vision to

observe the state of the real world and use this information for planning trajectories.

While vision is undoubtedly an important aspect of robotic motion planning, other

perception tools, such as tactile and force feedback, become relevant when discussing

contact-based manipulation. Tactile sensing enables humans to perform a variety

of dexterous tasks and operate in environments when we can not see. A variety of

tactile sensors have been designed and suggested by numerous researchers, significant

numbers of these can be prohibitively expensive. Ward-cherrier et al. [138] present

the TacTip family of tactile sensors, a 3D printable set of tactile sensors that are

cheap to manufacture. Brouwer et al. [17] use an end-effector covered in soft tactile

sensors to reach through dense clutter where vision is limited. Jain et al. [55] also

consider reaching through dense clutter but instead use whole-arm tactile sensing

to minimise the forces felt on the robotic manipulator.

Both Zito et al. [150] and Pang et al. [99] consider using RRT for performing

contact-based manipulation. Zito et al. [150] consider a two-level approach for

pushing manipulation. They consider the problem of manipulating an “L-flap”

object, in terms of its position and its orientation. The first stage of planing is

to use a global RRT planner in the objects space to find a sequence of poses that

the object could follow from one pose to the goal pose. Then a secondary local

push planner plans what actions the robot must take to manipulate the object

through the sequence of nodes as specified by the global planner. Pang et al. [99]

propose a global planning method for contact-rich tasks. They use a method called

“randomised smoothing” to smooth out discontinuous dynamics derivatives about

contact locations that are then used with an RRT based planner to plan contact-rich

manipulations.

2.4.1 Learning-based approaches

Learning-based contact manipulation approaches refers to methods that use some

form of machine learning to assist in the process of creating contact-based motion

29

2.4 Other Methods for Contact-based Manipulation / Locomotion

plans. This is quite a generic description, some examples of what this can refer to

are:

• “Model-free” approaches where an optimal robot policy is learned from data

that enables a robot to choose an action given its current state. There are

two main methods for learning these policies, either by RL where a robot can

experiment in a world to see which actions give the best cumulative reward

through trial and error [37, 143, 141], or by IL where a robot aims to copy an

expert demonstrator who shows what the best action is to take given a current

state observation [15, 146, 11].

• Methods that learn some form of a dynamics model of the system [5, 149, 56,

37, 65]. This dynamics model an then be used afterwards for planning actions.

• Learning other useful and hard to predict components for other control al-

gorithms. One such example is learning optimal value functions [9, 148, 135]

that can then be used in trajectory optimisation for MPC. Another example is

learning better initial trajectories that can be used in trajectory optimisation,

enabling optimisation to converge to a solution in fewer iterations. [19, 7].

This thesis does not use any learning-based approaches, however, it is important

to discuss some of the most relevant and cutting edge works in this area to show

examples of what these methods are capable of. Model-free approaches will be the

primary focus, starting with RL methods and then IL methods.

Reinforcement learning

RL is an unsupervised machine learning method where an agent1 learns to interact

with its environment with the goal of maximising the rewards it receives [124]. The

standard framework for RL is that a user will setup some task and define some

reward function (the reward function is meant to be large when the robot does

something that is desired) and then the robot will attempt to learn an optimal

policy through experimentation in the environment. An important aspect to note,

is that for RL for robotics, the environments the robots are trained in is usually

some form of a physics simulator. This is not always the case and there are works

where robot policies are directly trained on real robotic hardware [75, 30], however,

it is most common to train policies in physics simulators for the following reasons:

(1) RL training is data intensive. This process can be sped up via physics simulators

as they can run faster than real time. (2) It is easier to reset the system back to an

initial state in a physics simulator as it can be done autonomously, rather than in the

real world where human intervention would be needed and, (3) robots trained via

1For the purpose of this thesis, an agent refers to a robot or set of robots.

30

2.4 Other Methods for Contact-based Manipulation / Locomotion

RL can break easily in the real world in the training stage, however it is impossible

to “break” a simulated robot.

It should be noted, there are a lot of parallels between the mathematical for-

mulations of both RL and trajectory optimisation. As discussed earlier, trajectory

optimisation is concerned with minimising cost, while RL is about maximising re-

ward - two sides of the same coin. On occasion, a footnote will be added about

these similarities for the interested reader. This section will respect the typical RL

mathematical formulation; to begin with, this means that the state of the system

at some time-step t is denoted by st and the action is denoted by at
1.

Most RL methods consider the decision-making problem as a Markov Decision

Process, defined by the tuple ⟨S,A, P,R, γ⟩, where:

• S: is a set of states representing the environment.

• A: is a set of actions that the agent can take.

• P (s
′ |s, a): is the transition probability distribution, specifying the likelihood

that the agent ends up in state s
′
when currently in state s, taking action a.

• R(s, a): represents the reward function, a function that turns the current state

and action into a scalar reward for the agent.

• γ ∈ [0, 1): is the discount factor, determining the importance of rewards gained

in the future as opposed to rewards gained now.

The formal goal of RL is to find a policy π(a|s) (usually encoded as a neural

network) that enables the agent to maximise the cumulative reward over time:

G =
∞∑
k=0

γkR(st+k, at+k). (2.24)

It should be noted, that in the typical RL formulation an infinite horizon is consid-

ered, rather than the finite-horizon that is considered in trajectory optimisation. As

such, without the introduction of the discount factor which drives rewards to zero

as time progresses, the agent would learn that it is best to never complete its task

in the hope of gaining future rewards.

Most RL methods consider either the Value or action-value function (sometimes

referred to as the Q-function) to optimise their agents policy:. The value function

is defined as:

V π(s) = Eπ[G|S = s], (2.25)

1Recall, that in trajectory optimisation, the state vector was denoted by xt and the control

vector as ut (analogous for action).

31

2.4 Other Methods for Contact-based Manipulation / Locomotion

where Eπ denotes the expectation under policy π. The value function effectively

tells the agent how useful it is to be in a certain state. The action-value function,

on the other hand tells the robot how useful it is to take a specific action dependent

on the specific state the agent is currently in:

Qπ(s, a) = Eπ[G|S = s, A = a]. (2.26)

Then, using Bellmans equation1, recursive definitions of these functions can be writ-

ten. These recursive equations are the cornerstone of a variety of RL algorithms.

The mathematical formulation of RL will stop here as they are outside the scope

of this thesis, however, the interested reader is directed to a more comprehensive

introduction to RL provided by Sutton [124].

RL has shown great success in locomotion problems for walkers and quadrupeds

[43, 103, 64, 104], often enabling robots to find more efficient gait patterns, as well

as traversing complex and uneven terrain.

Zeng et al. [144] and Deng et al. [30] both consider situations where the robot

is required to grasp some object but is unable to due to the presence of surrounding

objects. They use RL to choose pushing actions to rearrange the objects so that

a specific item can then be grasped. Yuan et al. [143] learn end-to-end rearrange-

ment planning using pushing manipulation actions in simulation and then consider

how they can effectively transfer the policy their agent learned in simulation onto

a real robotic system effectively. Finn and Levine [37] propose a model-based ap-

proach that can learn how to push objects in the robots environment through self

experimentation. The robot, during a training phase, trials pushing actions in its

environment to create a dataset of how its actions affect that environment. Their

data is performed at a pixel level, so their model learns to predict how the pixels

of a camera image will change subject to its actions. The user can then specify the

robot to move an object by specifying a set of pixels to move to a new location in

the image. They show generalisation to unseen objects. The previous works primar-

ily considered 2D object pushing in a plane. Xu et al. [141] consider the problem

of pushing tall objects without toppling them. They use deep RL Q-learning and

demonstrate that their policy can be executed on real robotic hardware.

Some researchers have been interested in teaching high-dimensional anthropo-

morphic hands to complete a wide range of tasks using RL. Charlesworth et al. [20]

teach a robotic hand to perform a variety of complex tasks such as handing objects

between robots and spinning a pen in hand using a combination of trajectory opti-

misation and RL. They use a trajectory optimisation algorithm approach to speed

up the training of a RL agent which increases overall sample efficiency. The resulting

RL agent can outperform the trajectory optimisation method due to the trajectory

optimisation algorithm struggling to run in real-time for meaningful optimisation

1Similarly to how it is used in the iLQR optimisation algorithm.

32

2.4 Other Methods for Contact-based Manipulation / Locomotion

horizons. Huang et al. [52] also consider RL for controlling an anthropomorphic

hand. They consider the concept of handling delicate objects, in such situations it

is desired for the robot hand to minimise impact forces on the object when manip-

ulating it. They add this information to the reward function of the agent, making

the agent attempt to minimise the forces it applies to the object.

One common theme of these works is for the requirement that the user needs to

specify and probably experiment with a reward function for the agent to elicit some

desired behaviour. A different approach is inverse reinforcement learning where the

user provides a demonstration to the robot and then the robot infers what the goal

of the task is from the user demonstration [1].

Matas et al. [83] use RL for deformable object manipulation for the purpose of

manipulating 2D deformable objects, such as cloths. They show that their method

can achieve tasks such as diagonal folding and hanging a cloth over a wire frame.

Importantly, they show that their method can be deployed and executed on real

robotic hardware through the use of domain randomisation. Domain randomisation

is a common technique in RL to assist with transferring policies learned in simulation

to the real world, to overcome the sim-2-real gap. Basically, domain randomisation

randomises physical parameters of the world in simulation (e.g. friction values,

object weight, joint friction etc.) and trains the policy over a variety of different

environments. The policy that is trained is then more robust to different physical

parameters, making it easier to transfer to the real world.

Imitation learning

Imitation learning is an alternate learning approach in robotics where demonstra-

tions as to how to solve a task are provided by an expert, and the robot attempts to

use these demonstrations to help it solve the same task. Many of the works that will

be discussed in this section are more specifically classed as “behaviour cloning”, a

subset of imitation learning which has gained significant popularity in recent years

[15, 16, 146, 25, 149]. As opposed to RL, behaviour cloning is a supervised ma-

chine learning technique, where a policy π is trained to replicate the behaviour from

expert demonstrations.

This process initially requires an expert1 to create a dataset of demonstrations

DE = [(si, ai)]
N
i=1, where si ∈ S is the state of the system, ai ∈ A is the corresponding

action taken by the expert and N is the number of labelled data points. The goal

of behaviour cloning is then to find a policy πθ(a|s) that minimises the discrepancy

between the actions it takes and the actions provided by the expert, given a specific

state. This training can then be done using classical machine learning methods

1The expert is usually a human, but in some works, trajectory optimisation or other algorithms

can be used to provide expert demonstrations.

33

2.4 Other Methods for Contact-based Manipulation / Locomotion

by defining some loss function and then training a neural network using gradient-

descent algorithms.

One main reason why behaviour cloning has become so popular in recent years is

the advancements made in neural network architectures, particularly transformer-

based and diffusion-based models. Chi et al. [25] propose a diffusion policy method

that uses an iterative de-noising process to plan trajectories. Their method is shown

to perform 15 different tasks, such as T-block pushing, T-shirt folding and flipping

rigid objects, but importantly each task required a separate policy.

Brohan et al. [15, 16] consider using a transformer-based architecture for imi-

tation learning for completing tasks in a kitchen environment. They show a wide

variety of tasks can be learned using their architecture and importantly only train a

single model for all tasks. The task that the robot should complete is then encoded

as a text input with commands such as “retrieve the coke can from the fridge”.

They also show generalisation to some unseen tasks for which demonstrations were

not explicitly given. Zhao et al. [146] also consider transformer-based models, they

show how they can be used for fine-grained manipulation tasks (inserting batteries

into a TV remote, opening a zip-lock bag).

Several of these works realise that to achieve good control, temporal consistency

between control steps is a key requirement [25, 146, 15, 16]. Instead of planning

a single action for every observed state, these policies generally plan a sequence

of actions in the future, even if they are not all executed. This enables temporal

consistency between action steps and ensures the policy is not going to try and

alternate between different methods of solving a task1.

One of the major limitations of such behaviour cloning techniques is the data-

intensive requirement to be able to show generalisation over a wide variety of tasks.

O’Neill et al. [94] propose a general dataset they name “Open X-embodiment”

which collects datasets from research labs around the world for a variety of robot

morphologies and tasks. The idea being that this data-set can be used by researches

to train foundational models for robotic control. Black et al. [11] shows impressive

generalisation to a wide variety of tasks in one model which they name π0. They use

some of the data provided by the Open X-embodiment data-set to train their model

consisting of a pre-trained visual language model that gives their robot semantic

reasoning skills along with an “action expert” which generates sequences of actions.

Whilst these large datasets are indeed useful, there is no possible way that these

datasets will ever be able to hold data on all tasks that humans could ever want a

robot to do. If these models can not generalise to all tasks then some element of

retraining will be required to make a specific robot do a specific task that a human

wants. Some researchers have instead focused on what robots can achieve when very

1Imagine trying to go around a tree, you can either go left or right, but you need to stick to

one direction.

34

2.5 Approximations for Speeding up Robotic Motion Planning

few demonstration are given. Johns et al. [58] shows how contact-based tasks can

be performed when only giving a single demonstration to the robot. They provide a

demonstration at the “bottleneck” of the task (typically the point when contact is

made between the robot and object). The robot then learns under a self-supervised

setting how to approach the object to reach a desired configuration and then the

demonstration can simply be replayed exactly to accomplish the challenging part of

the task.

Providing demonstrations can also be used to assist with training RL policies, to

give them a foundational policy that can be improved upon. This idea has been used

in several RL works [109, 91, 48]. Hu et al. [51] proposed “Imitation Bootstrapped

Reinforcement Learning”, a framework that uses expert demonstrations to provide

a RL agent with a starting policy for how to solve a task. In the RL training phase,

the agent can either sample an action that an expert would take, or take a random

action; Using this methodology the agent can improve the policy provided by the

expert through unsupervised learning. They show that this methodology can greatly

increase the training speed of their agent.

One issue with imitation learning techniques is that if you want to teach the

robot to perform a task in a specific location, such as outdoors in a park, you need

to manually transport the robot to this location. This is so you can teleoperate

the robot in the location where it will be performing some task. Chi et al. [26]

address this issue and present UMI (the Universal Manipulation Interface). They

create a custom end-effector that can be both attached to a robot as well as held

by a human. The core idea is that the human can take just this end-effector to

any desired location and collect data themselves. This data can then be transferred

to the robot seamlessly as from the robots perspective, it looks like the robot was

executing the task.

2.5 Approximations for Speeding up Robotic Mo-

tion Planning

The work presented in this thesis broadly focuses on using approximations to speed

up robotic motion planning. This is quite a common idea in the robotics community

and has been used in a wide variety of different ways.

One common approach is dimensionality reduction, where high-dimensional prob-

lems are simplified by identifying and focusing only on the most important dimen-

sions or by discovering a lower dimensional representation of the problem which

captures most of the relevant information of the higher-dimensional problem.

35

2.5 Approximations for Speeding up Robotic Motion Planning

2.5.1 Dimensionality reduction

Dimensionality reduction has been used extensively in various different ways in

robotics. Zheng et al. [147] consider applying RRT to very high-dimensional prob-

lems. Even though RRT was designed to operate in high-dimensional spaces com-

pared to classical methods, eventually, increased dimensionality can harm compu-

tation time. They consider accelerating the RRT algorithm by reducing the dimen-

sionality of the state space.

Vernaza et al. [133, 134] propose “learning dimensional-descent”. They con-

sider locomotion problems for large abstract robots trying to find a collision-free

path through a heavily cluttered environment. Their method learns the optimal

dimensions to plan in whilst leaving the path in other dimensions fixed.

A different form of dimensionality reduction is explored by Hogan and Rodriguez

[49]. They formulate a mixed-integer direct trajectory optimisation problem for a

2D push-slider system. Due to the integer decision variables that are used to de-

termine contact modes of the system, solving this problem is difficult due to the

combinatorial explosion in the possible sequences of contact modes. They consider

a “Family of Modes” which reduces this combinatorial explosion. Their main ob-

servation was that the problem they aimed to solve could always be solved by the

same sequence of 4 contact modes, making this problem computationally tractable.

Manipulation of deformable objects is inherently very highly-dimensional. Wang

et al. [137] consider the problem of manipulating 1D and 2D soft bodies (ropes and

cloths) into goal configurations. To reduce computational costs, they computed

a minimal set of key-points that their algorithm can manipulate, enabling efficient

planning of folding tasks. Mahoney et al. [76] considered reducing the dimensionality

of a soft robot for computing collision free motion plans in tight environments, using

principal component analysis.

Notably, Sharma and Chakravorty [121] propose a reduced order iLQR imple-

mentation similar to the method proposed in Chapter 5, where the roll-outs are still

performed using the full system dynamics. They evaluate their methods for opti-

misation until convergence for high-dimensional partial differential equations. The

work presented in Chapter 5 is different in that it focuses on robotic manipulation

problems where analytical formulations of the partial differential equations are not

readily available. Crucially, it also focuses on dynamically changing the size of the

state vector used during online task execution, as the optimal reduced order model

changes during task execution.

Dexterous hands are another common high-dimensional problem routinely in-

vestigated in the robotics community. Robotic hands often have significantly more

DoFs than is required to solve certain routine manipulations, and as such, are good

candidates for dimensionality reduction. Ciorcarlie et al. [27] consider reducing

the dimensionality of grasping problems by restricting the number of grasps to a

36

2.5 Approximations for Speeding up Robotic Motion Planning

set of key “eigengrasps”. They show that this reduced action space is still capable

of grasping a wide variety of complex objects. Jin et al. [57] consider learning a

reduced-order hybrid model for complex three finger manipulation, enabling real-

time closed loop MPC.

Locomotion is one such area where reduced order models have found great per-

formance in enabling real time closed-loop control of high-dimensional robots. A

common simplification that is used for legged locomotion is approximating complex

robotic legs as simple inverted pendulums [12, 59]. Chen et al. [22] take these

ideas further and consider the idea of learning a reduced order model for bipedal

locomotion. In their work, they formulate a set of tasks for a bipedal robot to per-

form (walking on level ground, walking uphill etc.) for which they want to compute

a reduced order model offline that can be used for all their specified tasks. They

manually specify a feature vector (a lower dimensional combination of features from

the full-order model) and learn a set of linear weights for this feature vector offline

by performing trajectory optimisation using the current reduced order model. The

linear weights are adjusted via stochastic gradient descent.

2.5.2 Other approximation methods

There are also a variety of works that have used other types of approximations that

would not fit into the category of dimensionality reduction. However these methods

have been used to speed up various parts of robotic motion planning.

One of the most common approximations/simplifications in contact-planning is

the quasi-static assumption. This is where, at any given time the problem can be

thought of as static (that is to say that all inertial effects, such as acceleration are

ignored and considered negligible). Using this assumption can simplify the system

dynamics [49, 23].

Another common approximation is to approximate the friction cone within contact-

based planning [131, 123]. In direct optimisation methods, it enables exchanging

a single non-linear inequality constraint with four linear inequality constraints (by

approximating the friction cone as a pyramid). This approximation makes solvers

much more efficient as it is significantly easier to enforce four linear constraints as

opposed to one inequality constraint.

Saleem and Likachev [114] considered a planning approach that only used a com-

putationally expensive physics simulator when necessary. They relied on a cheaper

geometric model for actions when a robot was far away from obstacles and only used

the general physics simulator when contact was possible.

Following on from this, collision checking is an important aspect in many robotic

motion planning algorithms. A common approach to speed up collision checking is to

approximate robotic models with simple 3D objects (spheres, cylinder, cuboids) as

they are much easier to perform collision checks on [110, 90]. Kitaev et al. [63] use a

37

2.5 Approximations for Speeding up Robotic Motion Planning

simplified mesh of their robotic end-effector to speed up their optimisation algorithm

in the early iterations. As their algorithm begins to converge they use a more detailed

mesh of the end-effector. In locomotion, Perrin et al. [105] consider swept volume

approximations for fast collision checking so they can control a humanoid robot to

walk over uneven ground online.

In trajectory optimisation, one of the primary parameters that affects computa-

tion time is the optimisation horizon. Longer optimisation horizons naturally result

in longer computation times of the optimal trajectory. This is particularity impor-

tant in MPC applications, where it is critical for optimisation to occur fast so that

policy-lag does not have a detrimental effect on the real robotic system. However

reducing the optimisation horizon too significantly can result in myopic behaviour.

One way to address this is to add additional information into the terminal state

cost function to overcome this myopic behaviour. Some works use learning to try

and create more informative terminal state cost functions that can be used online

during MPC so that the optimisation horizon can be reduced [148, 135, 74].

As was discussed previously in Sec. 2.2, iLQR is a version of DDP that does not

consider the second order dynamics derivatives. Whilst using the second order dy-

namics derivatives aids convergence, the cost of computing them can be prohibitively

expensive. Due to this computational expense, many researchers use iLQR instead.

Manchester and Kuindersma [78] and Nganga and Wensing [93] both consider ap-

proaches to perform variations of DDP at roughly the computational cost of iLQR.

They acquire the advantages of the quadratic convergence from DDP whilst not

paying the full expensive cost of computing the second order dynamics derivatives

exactly.

Work by Cheng et al. [24] is relevant to the methods proposed in Chapter 4.

They consider a learning approach for approximating first order dynamics deriva-

tives of a system. They train a neural network per trajectory optimisation task,

that given a state and control vector, returns a prediction of the first order dynam-

ics derivatives of the system. The work proposed in Chapter 4 takes a different

approach, it computes key-points over a trajectory where the dynamics derivatives

will be computed accurately. The remainder of the dynamics derivatives are ap-

proximated using cheap linear interpolation. In addition, the methods proposed in

Chapter 4 are tested on more complex tasks than Cheng et al. (contact-rich ma-

nipulation/locomotion). Furthermore, the methods proposed in Chapter 4 do not

require training a neural network for every new trajectory optimisation task.

Finally, Han et al. [44] investigated methods for speeding up trajectory optimi-

sation for humanoid control. One of the techniques they investigate is referred to

as “derivative skipping”. Derivative skipping in their work is effectively the same

as the naive “Set Interval” method proposed in Chapter 4. Chapter 4 also proposes

38

2.6 Remarks

a variety of heuristic informed methods that can change the spacing between key-

points, allowing them to reduce the computational overhead of computing dynamics

derivatives more significantly. Furthermore, Chapter 4 performs a thorough inves-

tigation of sparsely computing dynamics derivatives for a wide vairety of tasks, two

optimisation algorithms and two different methods of computing dynamics deriva-

tives.

2.6 Remarks

This literature review has covered a wide variety of topics, including: classical robot

motion planning, trajectory optimisation and its uses in contact-based planning,

other methods for contact-based planning and how dimensionality reduction and

approximations have been used to speed up robotic motion planning.

Even though work on physics-based manipulation has improved in recent years,

there are still a variety of problems and research questions that need to be addressed.

One such issue in trajectory optimisation is the limiting factor of computing dynam-

ics derivatives through general purpose physics simulators. Several works have been

discussed which have noted that computing dynamics derivatives is a computa-

tional bottleneck in gradient-based trajectory optimisation, limiting what tasks can

be solved by these methods. The work presented in Chapter 4 aims to address this

issue through the use of approximations.

Another limiting factor for trajectory optimisation is the dimensionality of the

task. As dimensionality increases, it makes performing trajectory optimisation dif-

ficult due to the long optimisation times. This makes applying trajectory optimisa-

tion to situations like manipulation in clutter and also manipulation of deformable

objects difficult. Whilst some works have been discussed that use dimensionality

reduction to simplify high-dimensional spaces, these works often consider reducing

the dimensionality offline and using the reduced order model online. Whilst this is

effective for situations like locomotion, where the robot is self contained and there is

a theoretic optimal reduced order model, this logic does not extend to manipulation

in clutter. In manipulation in clutter scenarios, there is no one optimal reduced

order model and it in fact depends on the distribution of objects at any particu-

lar instance. As such, Chapter 5 investigates a method of online dimensionality

reduction.

This chapter has given a broad overview of the relevant literature surrounding

this work. In the next chapter, additional technical details for a small subset of

concepts that are necessary to understand the technical contributions of this thesis

will be provided.

39

Chapter 3

Background

The purpose of this chapter is to give the interested reader the minimal necessary

knowledge to understand the contributions of this thesis. Naturally, there will be

some overlap of certain discussion points from Chapter 2, however this section will

go into slightly more depth.

The topics that will be covered in this section will be: (1) The concept of an

optimisation state vector and what this typically includes. (2) Enhanced details

about specific trajectory optimisation algorithms used in this work, namely iLQR

and SCVX. (3) Different methods of computing dynamics derivatives and their rel-

evance to the work in this thesis.

3.1 The Optimisation State Vector

Trajectory optimisation aims to compute optimal motion plans for a system to

achieve some desired goal. This process relies on two key concepts, the state vector

x and the control vector u.

The control vector is a collection of control inputs that are applied to the actuated

joints of a robot or multiple robots. Its dimensionality is equal to the total number

of actuated DoFs in the system.

The optimisation state vector is slightly more complex. It describes the instan-

taneous state of the system by consisting of positional and velocity elements for all

DoFs in a system. This includes:

• All the joints of any robots in the scene (for non-grounded robots, a free joint

to represent the robots’ pose in the world frame is also added).

• Contributions from all rigid bodies in a scene, with every rigid body contribut-

ing 6 DoFs (x, y, z, ϕ, β, ψ).

• Contributions from all deformable objects in a scene. These deformable objects

are generally modelled as a set of particles all connected to their neighbours

40

3.2 Trajectory Optimisation (iLQR and SCVX)

by spring-damper models. Every particle contributes three DoFs to the state

vector (x, y, z).

Chapter 5 explores methods to reduce the number of DoFs that are considered in

the optimisation state vector by focusing on task-relevant DoFs. This reduction in

the size of the optimisation vector reduces the computational burden of trajectory

optimisation.

3.2 Trajectory Optimisation (iLQR and SCVX)

Sec. 2.2 has already outlined the general trajectory optimisation problem along with

a brief overview of both iLQR and SCVX. This section goes into more detail about

these algorithms and how they relate to the contributions proposed in this thesis.

To ensure this chapter is self-contained, the general trajectory optimisation problem

will be re-introduced.

Consider a discrete-time dynamics system where the next state of the system is

subject to the previous state and control vector:

xt+1 = f(xt,ut), (3.1)

where xt ∈ Rnx and ut ∈ Rnu are the state and control respectively vector at

time-step t. Given a discrete-time trajectory (X,U) of length T , where X ≜

(x0,x1, . . . ,xT) and U ≜ (u0,u1, . . . ,uT−1), we want to minimise the total run-

ning cost of a trajectory J :

J = lf (xT) +
T−1∑
t=0

l(xt,ut), (3.2)

where l(xt,ut) is some state and control vector dependent cost function and lf (xT)

is a terminal state dependent cost function.

Both trajectory optimisation algorithms considered in this work (iLQR and

SCVX) require a first-order linearisation of the system dynamics about the pre-

vious trajectory. This first-order approximation is given by:

δxt+1 = Atδxt +Btδut, (3.3)

where At = ∂f(xt,ut)/∂xt and Bt = ∂f(xt,ut)/∂ut are the first-order partial

derivatives of the dynamics function with respect to the state and control vector

respectively.

41

3.2 Trajectory Optimisation (iLQR and SCVX)

3.2.1 iLQR

At every iteration of iLQR [73, 126] the first order dynamics derivatives A,B and

the first and second order cost derivatives (lx, lxx, lu, luu) are computed around the

nominal trajectory. Please note that all these derivatives are specific to the time-step

along the trajectory, (i.e., A ≜ (A0,A1, . . . ,AT−1)).

iLQR uses dynamic programming to reduce the minimisation over all controls

in the trajectory to a sequence of individual minimisation problems. This is done

using the concept of the value function. Consider the cost-to-go Ji as the cost of a

trajectory starting at some time-step along the trajectory i:

Ji(xi,Ui) = lf (xT) +
T−1∑
t=i

l(xt,ut). (3.4)

The value V at time-step i is the sequence of controls from time-step i that minimises

the cost-to-go:

V (x, i) = argmin
Ui

[Ji(xi,Ui)]. (3.5)

By setting the value function equal to the terminal state cost V (x, T) = lf (XT), the

dynamic programming principle can be used to compute optimal controls from the

end of the trajectory to the beginning:

V (x, i) = argmin
u

[l(x,u) + V (f(x,u), i+ 1)]. (3.6)

By defining the minimum of Eq. 3.6 as the perturbation of the pair (x,u):

Q(δx, δu) = l(x+ δx,u+ δu, i)− l(x,u, i)

+ V (f(x+ δx,u+ δu, i+ 1)− V (f(x,u, i+ 1). (3.7)

The perturbation in Eq. 3.7 will be referred to as the “Q-function”. The second

order Taylor expansion coefficients of this Q-function can be shown as the following:

Qx = lx + (A)TV
′

x, (3.8a)

Qu = lu + (B)TV
′

x, (3.8b)

Qxx = lxx + (A)TV
′

xxA, (3.8c)

Quu = luu + (B)TV
′

xxB, (3.8d)

Qux = lux + (B)TV
′

xxA. (3.8e)

These Q-function expansions can then be used to compute an optimal control policy

at every time-step:

42

3.2 Trajectory Optimisation (iLQR and SCVX)

Algorithm 1 Simplified iLQR algorithm

Require: Prediction horizon T

Convergence criteria

Starting state x0 and initial control sequence U

1: while not converged do

Step 1: (Get Derivatives)

2: for t in (0, 1, . . . , T) do

3: Calculate At Bt lx t lxx t lu t luu t

Step 2: (Backwards Pass)

4: for t in (T, . . . , 1, 0) do

5: Calculate kt and Kt solving Riccati-like equations

Step 3: (Forwards Pass with line-search)

6: Update X using the new control law kt and Kt
return U

kt = −Q−1
uuQu, (3.9a)

Kt = −Q−1
uuQux. (3.9b)

where kt is an open-loop control term and Kt is the state-dependent closed-loop

feedback term.

The value function is then updated:

V
′

x = Qx −QuQ
−1
uuQux, (3.10a)

V
′

xx = Qxx −QuQ
−1
uuQux. (3.10b)

The backwards pass stage of iLQR recursively computes Eqs. 3.8 - 3.10 starting at

the end of the trajectory (t = T − 1) to the beginning of the trajectory (t = 0).

This optimal closed-loop control policy is then rolled-out using the original sys-

tem dynamics within a line-search to find a lower cost trajectory:

x̂0 = x̄0, (3.11a)

ût = ūt + αkt +Kt(x̂t − x̄t), (3.11b)

x̂t+1 = f(x̂t, ût), (3.11c)

where (x̂, û) represents the new rolled-out trajectory and (x̄, ū) represents the nom-

inal trajectory which the derivatives were computed around. A simplified overview

of iLQR can be seen in Alg. 1.

The majority of the computational expense of iLQR is in computing the first

order dynamics derivatives, followed by performing the backwards pass. Computing

43

3.2 Trajectory Optimisation (iLQR and SCVX)

dynamics derivatives for the problems this thesis is concerned with (contact-based

manipulation) requires the use of either finite-differencing or automatic differentia-

tion (please see Sec. 3.3). Even though the computation of these dynamics deriva-

tives can be parallelised, it still ends up being the computational bottleneck. This

problem directly relates to the work outlined in Chapter 4, which is about reducing

this computational expense through the use of approximations.

The backwards pass can also become computationally expensive as the size of

the state and control vector grows. Since the backward pass involves matrix-matrix

multiplication, its computational complexity scales cubically with the size of the

state vector (i.e, O(nx
3)). Chapter 5 addresses this challenge by reducing the di-

mensionality of high-dimensional problems, making them computationally feasible

for MPC.

3.2.2 SCVX

The SCvx (successive convexification) algorithm was originally proposed by Mao et

al. [80]. This algorithm broadly works by linearising the non-convex constraints in

a direct optimisation problem about the current nominal trajectory. This reduced

problem can then be solved efficiently and the nominal trajectory can be updated.

This process is repeated iteratively.

Önol et al. propose SCVX [96, 97], an adaptation of the original SCvx algo-

rithm. At every iteration of SCVX, a QP sub problem is created by linearising

the non-linear constraints. The primary constraint that is non-linear is dynamic

feasibility. The dynamic feasibility constraint is linearised by computing the first

order approximation of the dynamics derivatives (A,B) about the current nominal

trajectory (X̄, Ū). The following Quadratic Program (QP) is solved at each SCVX

iteration:

min
δX,δU

lf (x̄T + δxT) +
T−1∑
t=0

l(x̄t + δxt, ūt + δut), (3.12a)

subject to: δxt+1 = Atδxt +Btδxt for t = 1, . . . , T − 1, (3.12b)

xL ≤ x̄t + δxt ≤ xU for t = 1, . . . , T, (3.12c)

uL ≤ ūt + δut ≤ uU for t = 1, . . . , T − 1, (3.12d)

||δX||1 + ||δU||1 ≤ r, (3.12e)

solved subject to dynamics, box constraints, and an l1-norm trust region constraint

that bounds the deviation from the nominal trajectory. The state cost l(·) and

terminal state cost lf (·) both need to be quadratic functions to ensure that the

subproblem remains a QP.

This problem is solved within a trust radius instead of the global optima of the

QP, this is due to the fact that the global minima of the QP sub problem is not

44

3.2 Trajectory Optimisation (iLQR and SCVX)

necessarily a descent direction for the original problem due to the linearisation of

the dynamics.

Interestingly, SCVX does not directly update the nominal state trajectory di-

rectly from the solution to the QP. The updated nominal control trajectory will

be referred to as Unew = Ū + δU and the discarded updated state trajectory as

Xlin = X̄ + δX. SCVX applies the updated control trajectory and performs a

rollout using the original non-linear dynamics:

xnew t+1 = f(xnew t, ūt + δut) for t = 0, 1, . . . , T − 1, (3.13)

making this method a sort of hybrid between direct and shooting-based methods.

Finally, the size of the trust region is updated based on the accuracy of the

reduction in cost between the linearised states Xlin and non-linearised states Xnew.

The cost of the current nominal trajectory is:

P = lf (x̄T) +
T−1∑
t=0

l(x̄t, ūt). (3.14)

The cost of the new linearised trajectory L and non-linearised trajectory C are then

computed as follows:

C = lf (xnew T) +
T−1∑
t=0

l(xnew t,unew t), (3.15a)

L = lf (xlin T) +
T−1∑
t=0

l(xlin t,unew t). (3.15b)

The similarity between the cost improvements is then computed as φ:

φ =
P − C
P − L

. (3.16)

Subject to the value of φ, the newly computed trajectory can then either be accepted

or rejected and the trust region can be shrunk or expanded. These steps are then

repeated until convergence is reached. A simplified overview of the SCVX algorithm

can be seen in Alg. 2.

In terms of computational complexity, computing the dynamics derivatives of

the nominal trajectory is also a computational bottleneck for the SCVX algorithm.

However, this bottleneck is not as severe as in iLQR as solving the QP subproblems

and performing a rollout with the non-linear dynamics also takes considerable time.

As well as this, there are generally a number of optimisation iterations where the

solution to the QP does not decrease the solution using the original non-linear

dynamics. In such situations, the trust region is decreased and a new QP is solved.

In these situations, since the nominal trajectory is not updated, no time is spent

computing dynamics derivatives.

45

3.2 Trajectory Optimisation (iLQR and SCVX)

Algorithm 2 Simplified SCVX algorithm

Require: Prediction horizon T

Convergence criteria

Starting state x0 and initial control sequence U

1: while not converged do

Step 1: (Get Derivatives)

2: for t in (0, 1, . . . T) do

3: Calculate At Bt about X̄, Ū

Step 2: (Solve the Convex Subproblem)

4: Unew,Xlin = SolveQP(A,B)

Step 3: (Roll-out Non-linear Dynamics)

5: for t = 0, 1, . . . T − 1 do

6: xnew t+1 = f(xnew t,unew t)

Step 4: Update Trajectory

7: P = lf (x̄T) +
∑
l(x̄t, ūt)

8: C = lf (xlin T ,unew T) +
∑
l(xlin t,unew t)

9: L = lf (xnew T ,unew T) +
∑
l(xnew t,unew t)

10: φ = (P − C)/(P − L)
11: if φ > threshold then

12: X̄, Ū = Xnew,Unew

13: Update trust region

14: else

15: Shrink trust region
return U

46

3.3 Differentiation Methods

3.3 Differentiation Methods

Computing the first-order dynamics derivatives (A,B) are an important aspect of

the trajectory optimisation algorithms that have been discussed. Generally, there

are four different methods for computing the derivatives of a function, these are:

• Symbolic differentiation: Keeping track of how variables in a function are

updated symbolically and using these to evaluate the function derivatives.

• Analytical differentiation: This method relies on the user writing analytical

expressions for the derivatives of their function manually.

• Finite-differencing: Finite-differencing can be used to estimate the deriva-

tives of a function at a particular point by applying a small perturbation and

observing how the value of the function is affected.

• Automatic differentiation: Similarly to symbolic differentiation, automatic

differentiation can be used to keep track of the variables in a function as well

as its derivatives numerically.

For the problems this thesis is concerned with (contact-based manipulation) the

first two methods are infeasible. Symbolic differentiation becomes computationally

intractable for moderately difficult problems as the lengths of the derivatives can

explode combinatorially. Writing analytical derivatives for contact-based manipu-

lation is infeasible, especially for situations where there is contact between multiple

bodies in 3D space.

This leaves two practical methods for computing the derivatives that are required

for trajectory optimisation.

3.3.1 Finite-differencing

Algorithm 3 Finite-differencing

Require: State vector xt; Control vector ut;

Column index i

1: xinc t[i] = xt[i] + ϵ

2: xdec t[i] = xt[i]− ϵ
3: At[:, i] =

f(xinc t,ut)−f(xdec t,ut)
2ϵ

Finite-differencing is a common method of approximating derivative values of

a function by observing how small changes in input values affect the output of a

function.

The first-order dynamics derivatives (A,B) are matrices with size relative to the

size of the state and control vector. A state vector of size nx and a control vector of

47

3.3 Differentiation Methods

size nu will result in matrices A,B of size nx× nx and nx× nu respectively. Square

brackets are used to refer to an individual element within these matrices; so A[i, j]

will represent an element at the ith row and jth column. A[:, j] will refer to an entire

column of this matrix at the jth position.

When using central differences, every computation of a column in the A and

B matrices requires two evaluations of the dynamics function. Given a specific

state and control vector (xt,ut), a small perturbation ϵ is added/subtracted to an

individual element of the state vector. These perturbed states are then used as the

input to the dynamics function and the resulting states are saved. The difference

between these states is compared and divided by the size of the perturbation to

compute one column of the A matrix. An example algorithm block that shows

finite-differencing for an individual column in the A matrix can be seen in Alg. 3.

The computation for the B matrix is equivalent, except that the control vector is

perturbed instead.

When using a physics simulator, evaluating contact-interaction dynamics can be

expensive, especially when contacts are plentiful, since solving for contacts often

requires inner optimisation routines. Moreover, computing dynamics derivatives

over a trajectory becomes prohibitively more expensive as the size of the system

increases compared to simulating roll-outs of a trajectory. A single roll-out of a

trajectory requires T computations of f(xt,ut), whereas computing the first-order

dynamics derivatives over the trajectory would require 2nxT + 2nuT computations.

The computational expense of computing dynamics derivatives can be lowered by

parallelisation, however, this still becomes the significant time bottleneck in optimi-

sation as the size of the state and control vector increases.

3.3.2 Automatic-differentiation

Automatic differentiation is a tool used to track the first or higher-order deriva-

tives of programmatic functions automatically. There are two main approaches to

automatic differentiation: source code transformation [85] or operator overloading

[128].

Source code transformation takes a code base and converts it into a graph net-

work of simple analytically differentiable expressions. This pre-computed graph

can then be used to compute derivatives. Operator overloading is a more common

approach used in certain physics simulators, such as Drake [128]. All operations

simultaneously keep track of the primal values (values stored in variables) as well

as their associated tangent values (derivatives with respect to other variables in the

system). When any operation is performed, both the primal and tangent values are

updated simultaneously.

48

Chapter 4

Speeding up Trajectory Optimisa-

tion Via Approximated Dynamics

Derivatives

Chapter Deliverables

Video: https://www.youtube.com/watch?v=rdRd2sgk8qY

Source Code: https://github.com/DMackRus/TrajOptKP

4.1 Introduction

This chapter is about how approximating the dynamics derivatives of a system can

be used as a method of speeding up trajectory optimisation algorithms, particularly

for contact-based trajectory optimisation. In trajectory optimisation, the derivatives

of the dynamics are often required to compute optimal trajectories to solve a given

task. The computation of these dynamics derivatives is often the computational

bottleneck of these algorithms. This is particularly true for contact-based trajectory

optimisation. Due to the complexity of contact-interactions, formulating analytical

derivatives is typically infeasible for manipulation (especially when considering 3D

manipulation amongst multiple objects). Therefore, methods such as FD [63, 96,

126] or AD [69] are often used to compute the dynamics derivatives in works that

consider contact. As a result, a large portion of optimisation time is spent computing

these dynamics derivatives.

The work in this chapter aims to address this issue, and make trajectory opti-

misation a more computationally tractable approach for solving contact-rich tasks.

The core insight is fundamentally quite simple; between certain time-steps on a tra-

jectory, dynamics derivatives do not change significantly, making them amenable to

interpolation. This chapter proposes a general method for speeding up trajectory op-

49

https://www.youtube.com/watch?v=rdRd2sgk8qY
https://github.com/DMackRus/TrajOptKP

4.1 Introduction

Baseline - Optimisation time: 9.48s, Initial cost: 5.045, Final cost: 2.02

TrajOptKP - Optimisation time: 2.66s, Initial cost: 5.045, Final cost: 1.84

D
er
iv
at
iv
e
va
lu
e

T
0 200 400 600 800 1000

Key-points

Interpolated derivatives

Accurate derivatives

Figure 4.1: Two finalised trajectories for pushing a green cylinder to a target lo-

cation (green silhouette) through clutter. The top row shows the baseline method

taking 9.48 s of optimisation time, whereas the middle row shows a trajectory pro-

duced from one of the methods proposed in this chapter which only took 2.66 s of

optimisation time, whilst achieving a similar solution. The bottom graph shows a

derivative value (one of many) over the course of the trajectory along with its ap-

proximation. Through key-points, the number of derivative evaluations was reduced

from 1000 to 48.

50

4.1 Introduction

timisation which is named TrajOptKP (Trajectory Optimisation with Key-Points).

The approach is to compute the dynamics derivatives using computationally expen-

sive methods (FD or AD) only at certain time-steps along a trajectory, which are

referred to as key-points. The dynamics derivatives computed at these key-points by

AD or FD will be referred to as being computed accurately. In between these key-

points, the dynamics derivatives are approximated using interpolation. The result

of this, is the computation of a full (albeit partially approximated) set of dynamics

derivatives, that were computed significantly faster than computing all the dynamics

derivatives accurately.

Fig. 4.1 shows an example of a manipulation in clutter task (the most compu-

tationally expensive task in this chapter). The goal of this task is to the push the

green cylinder to a target location (green silhouette) whilst minimally disturbing

some clutter (red objects). The top row of snapshots shows the final computed tra-

jectory produced in the baseline case (where all dynamics derivatives are computed

accurately over the entire trajectory). The middle row of Fig. 4.1 shows the final

trajectory computed by the general TrajOptKP method. At the bottom of Fig. 4.1

is a sample dynamics derivative value in this task over the course of the trajectory

as well as the key-points and approximated dynamic derivative values. The two sets

of snapshots show similar final trajectories that both complete the task effectively,

however, the TrajOptKP method significantly reduces the overall computation time

from 9.66 s to 2.66 s. This reduction in optimisation time is due to the reduced

number of expensive FD computations. The bottom row of Fig. 4.1 shows that

the number of dynamics derivatives that were computed accurately in this example

were reduced from 1000 to only 48.

The main challenge of the proposed approach is how to choose key-points intelli-

gently, without directly knowing the shape of the underlying dynamics derivatives.

This chapter investigates a variety of key-point selection methods. First, a naive

method named Set Interval is proposed to serve as a baseline. Three more sophis-

ticated key-point selection methods are also proposed, which are named Adaptive

Jerk, Velocity Change and Iterative Error. Adaptive Jerk and Velocity Change both

consider some dynamics information about the current nominal trajectory to decide

where to place key-points. Iterative Error iteratively refines its dynamics derivative

approximation until some error threshold is satisfied. It begins with a greedy ap-

proximation of the dynamics derivatives and performs evaluations on how accurate

they are, refining its approximation as necessary.

This chapter evaluates the effects of using approximated dynamics derivatives

on two different optimisation algorithms. The two optimisation algorithms are: a

shooting method, named iLQR [73], and a sort of hybrid between a direct and

shooting-based method named SCVX [96]. The performance of these optimisation

algorithms is evaluated in terms of the reduction in optimisation time, as well as

51

4.1 Introduction

the reduction of the cost (i.e., the quality of the final solution). The results indicate

that, for both trajectory optimisation algorithms, there are significant time gains to

be made without degrading the quality of the final solution significantly.

The performance of the key-point selection methods is evaluated on a variety

of trajectory optimisation tasks, including existing contact-rich manipulation and

locomotion tasks from Kurtz et al. [69] and Önol et al. [95]. Additionally, a variety

of other tasks (Table 4.1) have been implemented, including under-actuated yet

dynamic tasks like the acrobot, contact-based manipulation through clutter (similar

to tasks from Kitaev et al. [63]), and contact-based locomotion of a 9-DoF walker.

The methods proposed in this chapter are particularly applicable to MPC ap-

proaches. When controlling real robotic hardware with MPC, optimal trajectories

that were computed can quickly become obsolete due to the simulation gap between

physics simulators and the real world. As such, it is more important to converge

to an acceptable solution quickly, rather than an optimal solution slowly [50]. This

chapter demonstrates MPC results in simulation for controlling a 9 DoF walker

and a mini-cheetah to perform locomotion whilst remaining upright. The optimisa-

tion time gains are also demonstrated on a real-world task (manipulating objects in

clutter using a Franka Panda manipulator).

4.1.1 Contributions

This chapter:

• Proposes a general framework to reduce the computational burden in trajec-

tory optimisation that comes from expensively computing dynamics deriva-

tives. The general framework only computes dynamics derivatives accurately

at key-points and approximates the remainder;

• Proposes three specific “intelligent” key-point selection methods, namelyAdap-

tive Jerk, Velocity Change and Iterative Error ;

• Presents a formal proof that one of the proposed key-point methods (Velocity

Change) can bound the approximation error subject to its parametrisation for

the single pendulum dynamics;

• Performs an empirical case study regarding a toy contact-based optimisation

task and shows the importance of modelling contact discontinuities;

• Integrates and evaluates the performance of the proposed methods on two

separate optimisation algorithms, namely iLQR and SCVX;

• Investigates the effects of using different methods to compute the dynamics

derivatives (FD and AD) and

52

4.2 Problem formulation

• Evaluates the performance of the proposed key-point selection methods on

ten tasks in simulation as well as one on real hardware. These tasks include

dynamic motion, contact-based manipulation in clutter and locomotion.

4.1.2 Organisation

The structure of this chapter is as follows: Sec. 4.2 specifies the general problem

formulation for this chapter and then Sec. 4.3 outlines the proposed key-point

selection methods. A small mathematical proof is provided in Sec. 4.4 that shows

how one of the proposed key-point selection methods can bound the approximation

error between the accurate derivatives and the approximated derivatives. Sec. 4.5

describes and gives the mathematical details for all the tasks that are evaluated

in this work, as well as introduces abbreviations for the optimisers that are used.

Then, Sec. 4.6 presents a variety of results: relating to approximation accuracy, how

the proposed key-point selection methods work around contact dynamics, general

results for long- and short-horizon optimisation and finally, some results performed

on real robotic hardware. The results are then discussed in Sec. 4.7, and finally,

this chapter is concluded in Sec. 4.8.

4.2 Problem formulation

Chapter 3 defined the first-order linearisation of the system dynamics matrices as

A and B, recall that At =
∂f(xt,ut)

∂xt
and Bt =

∂f(xt,ut)
∂ut

. Computing these dynamics

derivatives over an entire trajectory is computationally expensive, especially as di-

mensionality grows and multi-object contacts are plentiful. The methods proposed

in this chapter consider only performing these expensive computations at certain

time-steps over a trajectory, which are referred to as key-points. The remainder

of the derivatives are then approximated via linear interpolation. The dynamics

derivatives that are computed at key-points using FD or AD will be referred to as

the accurate derivatives and denoted by Ât, B̂t.

An important aspect of this chapter is how key-points are considered. In the

earlier version of this work [113], the key-points were considered as a single list for the

entire system. For example, imagine the optimisation horizon T was 10 time-steps

long and the key-points over the trajectory were located at t = [0, 3, 7, 10]. In the

earlier versions of this work, the method was to compute the full A and B matrices

at these time-steps, i.e [Â0, Â3, Â7, Â10] and [B̂0, B̂3, B̂7, B̂10]. The remainder of

the dynamics derivatives would then be computed via linear interpolation.

This concept can be taken further. When using finite-differencing, the compu-

tation of dynamics derivatives is done column-by-column. For instance, focusing on

the A matrices, every column of this matrix is computed by applying a perturbation

to an individual element (a positional or velocity component of an individual DoF)

53

4.2 Problem formulation

in the the state vector and then observing how this perturbation affects the general

integration of the system dynamics, i.e. xt+1 = f(xt,ut). Perturbing an individual

element in the state vector will result in the computation of the respective column

in the A matrix, i.e. perturbing the first element in the state vector x[0], would

yield:

At =


δf [0]
δx[0]

.
δf [1]
δx[0]

.
...

...
. . .

...
δf [nx−1]

δx[0]
.

 (4.1)

where f [0], f [1], . . . f [nx] represents the output an individual component in the state

vector of the function f(xt,ut). This concept is the same for B matrices, except the

control vector is perturbed instead.

Therefore, it is more computationally efficient to have individual specific lists of

key-points for every DoF in the system. This is because, for any segment over the

optimisation horizon, one DoF might have quite complex dynamics derivatives that

are changing rapidly over time whilst another DoF may have fairly static dynamics

derivatives1.

Chapter 3 discussed two gradient-based optimisation algorithms (iLQR [73] and

SCVX [95]) which both require first-order dynamics derivatives over the trajectory.

Simplified algorithm blocks for these two optimisation algorithms can be seen in

Chapter 3. The high-level idea of the proposed method is to re-implement Step

1: Get Derivatives of these algorithms using Alg. 4. The algorithm works as

follows: firstly, a set of key-points for every DoF are computed using the SELEC-

TKEYPOINTS function. Once a list of key-points has been computed, the specific

columns inside the A and B matrix that relate to that DoF at the specified time-

step are computed accurately ; For DoF i, this refers to columns A[:, i], A[; , i+ nx

2
]

and B[:, i]2. These columns of derivatives are then interpolated as specified by

the list of key-points for that DoF. This work only considers linear interpolation

methods. Whilst higher-order methods could potentially be useful depending on

the task, it was empirically determined that the additional computational expense

in using higher-order interpolation methods was not worth any potential accuracy

improvements.

1Consider the case of manipulation in clutter, when contact is made or broken between two

objects, this results in an often discontinuous change in the dynamics derivatives of those objects,

whereas other objects that are not in contact with anything and are not moving will have no change

in their dynamics derivatives.
2There may not be a corresponding B component for every i, as the systems of interest are

typically under-actuated.

54

4.3 Key-point Selection Methods

4.3 Key-point Selection Methods

This section proposes a variety of key-point selection methods to implement the

function SelectKeyPoints from Alg. 4. The general aim of these methods are

to compute a sufficient set of key-points (to reduce computational load) whilst still

accurately approximating the underlying accurate dynamics derivatives.

Four different key-point methods are introduced; Set Interval, Velocity Change,

Adaptive Jerk, and Iterative Error.

The Set Interval method

This method is the simplest key-point method to implement. It equally spaces key-

points over the trajectory and does not consider information about the nominal tra-

jectory. The only parameter for this method is N, the number of time steps between

consecutive key-points. This method implements the function SelectKeyPoints

from Alg. 4 as: [0, N, 2N, . . . , T]← SelectKeyPoints.

The Velocity Change method

The parameters for this method are:

• Nmin: Minimum number of time-steps between key-points.

• Nmax: Maximum number of time-steps between key-points.

• ∆v̄: Array of velocity change threshold values for each DoF in the system.

This Velocity Change method monitors the velocity profile of all DoFs in the

system over the trajectory. It enforces that key-points must be within Nmin and

Nmax of one another subject to the velocity profile. This method monitors the

absolute sum of velocity change since its last key-point, if this absolute change is

greater than ∆v̄, then a new key-point will be placed. This method also detects when

the velocity of a DoF changes direction and places a key-point in these situations

also. This algorithm implements the SelectKeyPoints function from Alg. 4 as

Alg. 5. An illustrative example of this method can be seen in Fig. 4.2.

Algorithm 4 TrajOptKP implementation of Get Derivatives

1: for i in (1, 2 . . . , nx/2) do

2: kp ← SelectKeyPoints(i)

3: for j in (1, 2, . . . len(kp)) do

4:
Âkp[j][:, i], Âkp[j][:, i+

nx

2
],

B̂kp[j][:, i] = ComputeDerivs()

5: A, B = Interpolate(Â, B̂ kp)

55

4.3 Key-point Selection Methods

D
er
iv
at
iv
e
va
lu
e

V
el
o
ci
ty

p
ro
fi
le

T

T

Key-points

Figure 4.2: Illustrative one-dimensional example of the Velocity Change method.

The top plot shows the underlying true derivative value (black curve) with a set of

key-points (green points) placed as determined by the Velocity change method. The

bottom curve shows the velocity profile over the trajectory for some DoF. When

velocities are large (at the start of the trajectory), or the velocity changes direction

often (near the middle of the trajectory), key-points are placed more densely, and

when the velocity is small or more constant, key-points are placed more sparsely.

Algorithm 5 Velocity Change implementation of SelectKeyPoints

Require: Nmin, Nmax, ∆v̄ // keypoint parameters

DoF index i, Nominal trajectory X̄

1: vsum = 0

2: for t in (0, 1, . . . , T) do

3: interval = IntervalSinceLastKeypoint()

4: vsum = vsum + |x̄t[i+ nx/2]| // accumulate velocity

5: if interval > Nmin then

6: if x̄t[i+ nx/2]× x̄t−1[i+ nx/2] < 0 then //velocity direction changes

7: keypoints [i].append(t)

8: vsum = 0

9: else if vsum > ∆v̄ then

10: keypoints [i].append(t)

11: vsum = 0

12: if interval > Nmax then

13: keypoints [i].append(t)

14: vsum = 0

15: return keypoints[i]

56

4.3 Key-point Selection Methods

D
er
iv
at
iv
e
va
lu
e

J
er
k
p
ro
fi
le

T

T

J̄

Key-points

Figure 4.3: Illustrative one-dimensional example of the Adaptive Jerk method. The

top plot shows the underlying true derivative value (black curve) with a set of key-

points (green points) placed as determined by the Adaptive Jerk method. The

bottom curve shows the jerk profile over the trajectory for some DoF. When the

jerk exceeds the jerk threshold (J̄), key-points are placed more densely, and when

jerk is below the threshold, key-points are placed more sparsely.

The Adaptive Jerk method

The parameters for this method are:

• Nmin: Minimum number of time-steps between key-points.

• Nmax: Maximum number of time-steps between key-points.

• J̄: Array of jerk threshold values for each DoF in the system.

The Adaptive Jerk method changes the interval size between key-points for each

DoF dependent on the magnitude of jerk (derivative of acceleration with respect to

time). When DoFs have high levels of jerk, it translates to periods in the trajectory

where the dynamics derivatives are changing rapidly. Due to the impulse effect of

detecting jerk on different DoFs, it enables this algorithm to detect the making and

breaking of contact, which has a noticeable impact on the dynamics derivatives.

This method places key-points from the start of the trajectory to the end by en-

forcing that key-points are placed within Nmin and Nmax of one another depending

on the jerk of that DoF in the trajectory. This algorithm implements the Selec-

tKeyPoints function from Alg. 4 as Alg. 6. An illustrative example of this

method can be seen in Fig. 4.3. The function ComputeJerkProfile() estimates

the jerk profile for a given DoF over the trajectory horizon by applying backward

57

4.3 Key-point Selection Methods

Algorithm 6 Adaptive Jerk implementation of SelectKeyPoints

Require: Nmin, Nmax, J̄ // keypoint parameters

DoF index i, Nominal trajectory X̄

1: jerk = ComputeJerkProfile(X̄)

2: for t in (0, 1, . . . , T) do

3: interval = IntervalSinceLastKeypoint()

4: if interval > Nmin then

5: if jerk [i][t] > J̄[i] then

6: keypoints [i].append(t)

7: else if interval > Nmax then

8: keypoints [i].append(t)

9: return keypoints[i]

Euler finite differences to the velocity profile twice — first to obtain acceleration,

and then again to obtain jerk. As this method relies on discrete differentiation, it

can be sensitive to noise. Anecdotally, noisy estimates of the jerk did not seem to

affect the performance of this key-point method.

The Iterative Error method

The parameters for this method are:

• Nmin: Minimum number of time-steps between key-points.

• ı̄: Error threshold to determine when a line fitting approximation is accurate

enough or whether the algorithm needs to insert additional key-points for a

more accurate approximation.

The Iterative Error method is significantly different from Adaptive Jerk and

Velocity Change methods. Iterative Error begins with a greedy (and probably poor)

approximation of the dynamics derivatives. It then performs an error check between

its approximation and the accurate derivatives (i.e., as determined by FD or AD)

and determines whether it needs to refine its approximation by inserting additional

key-points. An illustrative example of this method can be seen in Fig. 4.4.

This algorithm implements the SelectKeyPoints function from Alg. 4 as Alg.

7. Notably, the function ApproximationError can be implemented in a variety

of ways. The implementation in this chapter simply checks the mid-point between

every pair of key-points and compares the linear approximation against the accurate

derivatives. If the error is below the error threshold (̄ı) then the approximation was

acceptable and that segment of the trajectory is finished. If the error is above ı̄,

the algorithm would further subdivide that section and repeat the process. The

Iterative Error algorithm is an example of a “divide-and-conquer” strategy [28].

58

4.3 Key-point Selection Methods

It
er
at
io
n
1

T

T

T

It
er
at
io
n
2

It
er
at
io
n
3

e1

e1

e2

e1

Figure 4.4: Illustrative one-dimensional example of the Iterative Error method. The

black curve is the true underlying derivative, the blue dashed line is the current linear

approximation. Three iterations of the approximation being refined are shown.

The top image is the first iteration where it selects only three key-points (blue).

Halfway between the key-points, the approximate derivative value (red) is compared

against the accurate derivative (green). If the error between these values is above

a threshold, the segment is subdivided. This process happens recursively until all

segments are complete.

59

4.4 Approximation Error Bound for the Pendulum System

Algorithm 7 Iterative Error implementation of SelectKeyPoints

Require: Nmin, ı̄ // keypoint parameters

DoF index i

1: stack = [(0, T)]

2: while stack not empty do

3: indices = stack.pop()

4: interval = IntervalBetweenIndices(indices)

5: if interval < Nmin then

6: keypoints [i].append(indices)

7: else

8: error = ApproximationError(indices)

9: if error > ı̄ then

10: newIndices = subdivide(indices)

11: stack.push(newIndices)

12: else

13: keypoints [i].append(indices)

14: return keypoints[i]

4.4 Approximation Error Bound for the Pendu-

lum System

This section performs a short proof that shows how one of the proposed key-point

selection methods, the Velocity Change method, can bound the approximation error

between the true dynamics derivatives and the linear approximations. Due to the

fact that this proof needs explicit dynamics derivatives, a specific dynamic system

is considered, as such, this proof is performed for the single pendulum. Fig. 4.5

shows the free body diagram for the single pendulum. The equation of motion for

m

l g

θ

τt

Figure 4.5: Free body diagram of the pendulum.

60

4.4 Approximation Error Bound for the Pendulum System

this system is:

ml2θ̈t +mglsin(θt) = −bθ̇t + τt, (4.2)

where m is the pendulum mass, l is the pendulum length, θt is the angle of the

pendulum from its resting position at time-step t, b is some damping coefficient, g

is gravity and finally τt is a control torque applied at time-step t.

By rearranging Eq. 4.2 in terms of acceleration, and assuming discrete-time

Euler integration of the system dynamics, how the state of the pendulum system

updates with time can be written as:

θt+1 = θt + θ̇t∆t, (4.3)

θ̇t+1 = θ̇t + (
τt
ml2
− bθ̇t
ml2
− gsinθt

l
)∆t, (4.4)

where ∆t is the system integration time-step. Differentiating Eq. 4.3 and Eq. 4.4

with respect to the state and control vector yields the first order linearisation of the

system dynamics:

At =

[
1 ∆t

−gcos(θt)∆t
l

1− b
ml2

∆t

]
, (4.5)

Bt =

[
0

1
ml2

∆t

]
. (4.6)

The aim of this proof is to show that the Velocity Change method can bound the

approximation error of At and Bt. Only one term in At and Bt changes with respect

to the state or control vector. This term is δθ̇t+1

δθt
= −gcos(θt)∆t

l
. The remainder of this

proof focuses on this term, as the other elements of At and Bt are constants.

During optimisation, there is some nominal trajectory (X̄, Ū). Without loss of

generality, assume there are two placed key-points, such that the first key-point is

at t = 0 and the second is at t = n. The placement of the second key-point will be

subject to the parametrisation of the Velocity Change key-point selection method.

The Velocity Change method (Alg. 5) has three parameters: Nmin (minimum in-

terval between key-points); Nmax (maximum interval between key-points); and ∆v̄

(maximum absolute velocity gain between key-points). The algorithm enforces the

following constraints:
n∑

m=0

|θ̇m| ≤ ∆v̄, (4.7a)

Nmin ≤ n ≤ Nmax. (4.7b)

At any time-index i between the two key-points, the key-point method’s approxi-

mated value will be a linear interpolation between the true values at the two key-

points:
i

n

(
−gcos(θn)∆t

l
+
gcos(θ0)∆t

l

)
− gcos(θ0)∆t

l
. (4.8)

Therefore, the absolute approximation error at time-step i can be written using the

difference between Eq. 4.8 and the true value −gcos(θi)∆t
l

:

61

4.4 Approximation Error Bound for the Pendulum System

Errori =
g∆t

l
| − cos(θi) +

i

n
cos(θn)−

i

n
cos(θ0) + cos(θ0)|. (4.9)

As the velocity profile of the trajectory is known and using Euler integration of the

system dynamics, the general expression for any joint angle in the system is:

θa = θ0 +
a∑

m=0

θ̇m∆t. (4.10)

Substituting Eq. 4.10 into Eq. 4.9 yields;

Errori =
g∆t

l

∣∣∣∣∣− cos

(
θ0 +

i∑
m=0

θ̇m∆t

)

+
i

n
cos

(
θ0 +

n∑
m=0

θ̇m∆t

)
− i

n
cos(θ0) + cos(θ0)

∣∣∣∣∣ . (4.11)

The goal is to bound the total approximation error between the true dynamics

derivatives and the linear approximation:

TotalError =
n∑

i=0

Errori. (4.12)

The following terms are introduced as simplifications:

Ci = cos(θ0 +
i∑

m=0

θ̇m∆t), (4.13a)

Cn = cos(θ0 +
n∑

m=0

θ̇m∆t), (4.13b)

C0 = cos(θ0). (4.13c)

Therefore, the total error equation can be written as:

TotalError =
g∆t

l

n∑
i=0

| − Ci +
i

n
Cn −

i

n
C0 + C0|. (4.14)

The following identity is true for any real values of x, y:

|cos(x)− cos(y)| ≤ |x− y|. (4.15)

Eq. 4.15 can be derived from the Mean Value Theorem. For the function cos(x),

which has the derivative −sin(x), the Mean Value Theorem states that

cos(x)− cos(y) = −sin(c)(x− y), (4.16)

for some value c between x and y. Taking the absolute value of both sides and using

sin(c) ≤ 1, Eq. 4.15 is achieved.

62

4.5 Task Specifications and Testing Setup

Using Eq. 4.15, the following expression can be written:

|C0 − Ci| ≤ |
i∑

m=0

θ̇m∆t|. (4.17)

Using the triangle inequality:

∆t|
i∑

m=0

θ̇m| ≤ ∆t
i∑

m=0

|θ̇m|. (4.18)

Hence, the difference between CO and Ci can be bounded:

|CO − Ci| ≤ ∆t
i∑

m=0

|θ̇m| ≤ ∆t∆v̄, (4.19)

where Eq. 4.7a is used.

Similarly, it can be shown that:

|Cn − C0| ≤ ∆t∆v̄. (4.20)

Each term can be rewritten in the summation in Eq. 4.14 as:

|C0 − Ci +
i

n
(Cn − C0)| ≤ |C0 − Ci|+ |

i

n
(Cn − C0)|. (4.21)

Then, using Eqs. 4.19 and 4.20, the total error can be bounded by the velocity

change threshold and the length of the interval between key-points:

TotalError ≤ g∆t

l

n∑
i=0

∆t(∆v̄+
i

n
∆v̄), (4.22)

TotalError ≤ g(∆t)2

l
(∆v̄n+

(n+ 1)

2
∆v̄). (4.23)

Eq. 4.23 clearly shows that the total error is bounded, linearly by ∆v̄ and linearly

by n. Both of these are parameters that can be controlled by the Velocity change

key-point method. ∆v̄ can be adjusted as desired to linearly reduce the error and

n has to be between the parameters Nmin and Nmax.

4.5 Task Specifications and Testing Setup

This chapter evaluates the proposed key-point methods on a wide variety of tasks,

ranging from dynamic locomotion, full body robotic manipulation and manipulation

in clutter. This section outlines the objective of each task and the specific costs used

in optimisation, short hand notation for three different optimisation implementations

and also the specific key-point parametrisations that were used to generate results

in Sec. 4.6.

All experiments were performed on a 16 virtual core CPU (11h Gen Intel(R)

Core(TM) i9-11900@2.50GHz) with 128 GB RAM.

63

4.5 Task Specifications and Testing Setup

4.5.1 Optimisers

Three different optimisers were used to perform simulation experiments, which were:

• iLQR-FD: An implementation of iLQR in C++ using MuJoCo as the physics

simulator. Derivative computation is performed using FD and is parallelised.

• iLQR-AD: An implementation provided by Kurtz and Lin [69] which is aug-

mented with the proposed key-point methods. Written in Python using Drake

as the physics simulator. Derivative computation is performed using AD and

is not parallelised.1

• SCVX: An implementation of SCVX provided by Önol et al. [95] which

is augmented with the proposed key-point methods. Written in C++ using

MuJoCo as the physics simulator. Derivative computation is performed using

FD and is not parallelised.

For instances where a specific key-point algorithm for an optimiser is discussed,

square brackets will be used to denote this. For example iLQR-FD [Adaptive

Jerk] refers to the implementation of iLQR using FD for dynamics derivative com-

putation, using the Adaptive Jerk key-point method. When the method in square

brackets is Baseline, this means that all the dynamics derivatives are computed

and no interpolation is used. Finally, throughout the results section, when a specific

Set Interval method is referred to, the abbreviation SIN is used, where N is the size

of the interval.

4.5.2 Tasks

Table 4.1 presents the tasks used in this chapter. In this table, the left column

shows an example image of the task underneath the task name. The right column

gives a brief description of the task and also shows the specific costs that were used

during optimisation. For brevity, some cost function abbreviations will be denoted

here. The cost function for all tasks can be written as:

l(xt,ut) = (xt − x̃t)W(xt − x̃t)
T + utRuT

t , (4.24)

as well as some final cost function:

lf (xT) = (xT − x̃T)Wf (xT − x̃T)
T , (4.25)

where R is a positive semi-definite matrix that penalises control costs and W and

Wf are similarly positive semi-definite matrices that penalise the difference from the

1Key-points were used for the whole system in this implementation, rather than using a unique

set of key-points per DoF. This is due to the fact that there was no time save for only computing

certain columns of the dynamics derivatives matrices when using Drake’s AD.

64

4.5 Task Specifications and Testing Setup

desired state x̃t, with Wf only being used for the final state in the trajectory. The

costs inside the W matrix used for each task are separated into multiple segments

that refer to different aspects of the state vector, such as position and velocity

components for robots and bodies, as shown in the list below:

• Wpr : Positional cost of a robot joint.

• Wvr : Velocity cost of a robot joint.

• Wpb : Positional cost of an un-actuated body.

• Wvb : Velocity cost of an un-actuated body.

• Wpθb : Orientation cost of an un-actuated body.

• Wpbg : Positional cost of manipuland.

• Wvbg : Velocity cost of manipuland.

• Wpbj : Positional cost of clutter objects.

• Wvbj : Velocity components of clutter objects.

The f subscript is used to denote a final cost. For example, Wfpr refers to the

final position costs for a robot. Robot cost elements refer to actuated joints. Free-

floating bodies are un-actuated DoFs in the system which are sometimes split up

into manipulands (objects that need to be pushed to some goal position) as well as

clutter objects (objects that hinder the motion of the manipuland).

The cost parameters used in all experiments were determined empirically. They

were selected to elicit desired optimisation behaviour when using the baseline method.

The time-step parameter, ∆t, was chosen to be as large as possible without compro-

mising simulation stability or optimisation performance, again based on observations

from the baseline method of optimisation.

65

4.5 Task Specifications and Testing Setup

Table 4.1: Tasks used for simulation experiments. The left column shows the task

name and an image of the task. Right column gives a brief description of the task

objective followed by the optimiser used for the task. The costs used for optimisation

are shown below the task description with cost notation as defined previously. ∆t

is the model time-step.

Task Description
Acrobot Under-actuated double pendulum. Needs to build momentum to

swing up to unstable position. Optimiser: iLQR FD.

x = (q1, q2, q̇1, q2) u = (τ1) ∆t = 0.01
Wpr = [0],Wfpr = [10],Wpb = [0],Wfpb = [10]

Wvr = [0.001],Wfvr = [1],Wvb = [0.001],Wfvb = [1]
R = [0.0001]

Panda
reaching

Franka Panda robot, moving to a desired joint configuration
whilst minimising joint velocities. Optimiser: iLQR FD.

x = (q1, q2, . . . q7, q̇1, q̇2, . . . q̇7) u = (τ1, τ2, . . . τ7)
∆t = 0.008

Wpr = [0],Wfpr = [100],
Wvr = [1],Wfvr = [10],R = [0]

Push
(n/l/h)
clutter

Franka Panda robot, pushing a green cylinder to target location
(green silhouette), in different levels of clutter (red objects). (no
light heavy) = (0, 3, 7) objects. Optimiser: iLQR FD.

x = (q1, q2, . . . q7, xg, yg, xj, yj, q̇1, q̇2, . . . q̇7, ẋg, ẏg, ẋj, ẏj)
u = (τ1, τ2, . . . τ7) ∆t = 0.008

Wpr = [0],Wfpr = [0],Wpbg = [0],Wfpbg = [1000]
Wpbj = [0],Wfpbj = [10],Wvr = [0],Wfvr = [0]

Wvbg = [0.1],Wfvbg = [0],Wvbj = [0],Wfvbj = [0],R = [0]
Box sweep Franka Panda robot sweeping a large and heavy green box to

target location (transparent). Optimiser: iLQR FD.

x = (q1, q2, . . . q7, xg, yg, q̇1, q̇2, . . . q̇7, ẋg, ẏg)
u = (τ1, τ2, . . . τ7) ∆t = 0.008

Wpr = [0],Wfpr = [100],Wpg = [0],Wfpg = [100]
Wvr = [1],Wfvr = [10],Wvg = [0.1],

Wfvg = [0],R = [0]
Walker 9 DoF walker, walk forwards at desired velocity as well as main-

tain a certain height and upright orientation of the body. Opti-
miser: iLQR FD.

x = (q1, q2, . . . q6, x, z, θ, q̇1, q̇2, . . . q̇6, ẋ, ż, θ̇)
u = (τ1, τ2, . . . τ6) ∆t = 0.005

Wpr = [0],Wfpr = [0],Wvr = [0],Wfvr = [0]
Wpb = [1],Wfpb = [1],Wvb = [0.1],Wfvb = [0]

Wpθ = [1],Wvθ = [0],R = [1e− 5]

66

4.5 Task Specifications and Testing Setup

Task Description
Ball push
forwards

Kinova manipulator pushing a large ball to a desired position by
rolling it forwards. Optimiser: iLQR AD.

x = (q1, q2, . . . q7, xg, yg, zg, qxg, qyg, qzg, wg, q̇1, q̇2 . . . q̇7,

ẋg, ẏg, żg, ψ̇g, θ̇g, ϕ̇g) u = (τ1, τ2. . . . τ7) ∆t = 0.01
Wpr = [0],Wfpr = [0],Wvr = [0.1],Wfvr = [0.1]

Wpb = [100],Wfpb = [100],Wvb = [0.1],Wfvb = [10],
Wpbθ = [0],Wfpbθ = [0],R = [0.01]

Ball push
side

Kinova manipulator sliding a large ball to a desired position by
rolling it sideways. Optimiser: iLQR AD.

x = (q1, q2, . . . q7, xg, yg, zg, qxg, qyg, qzg, wg, q̇1, q̇2 . . . q̇7,

ẋg, ẏg, żg, ψ̇g, θ̇g, ϕ̇g) u = (τ1, τ2. . . . τ7) ∆t = 0.01
Wpr = [0],Wfpr = [0],Wvr = [0.1],Wfvr = [0.1]

Wpb = [100],Wfpb = [100],Wvb = [0.1],Wfvb = [10],
Wpbθ = [0],Wfpbθ = [0],R = [0.01]

Ball lift Kinova manipulator lifting a ball against itself to a desired height.
Optimiser: iLQR AD.

x = (q1, q2, . . . q7, xg, yg, zg, qxg, qyg, qzg, wg, q̇1, q̇2 . . . q̇7,

ẋg, ẏg, żg, ψ̇g, θ̇g, ϕ̇g) u = (τ1, τ2. . . . τ7) ∆t = 0.01
Wpr = [0],Wfpr = [0],Wvr = [0.1],Wfvr = [0.1]

Wpb = [100],Wfpb = [100],Wvb = [0.1],Wfvb = [10],
Wpbθ = [0],Wfpbθ = [0],R = [0.01]

Mini
cheetah

Mini cheetah moving forwards whilst remaining upright trying
to maintain a target velocity. Optimiser: iLQR AD.

x = (q1, q2, . . . q12, xg, yg, zg, qxg, qyg, qzg, wg, q̇1, q̇2 . . . q̇12,

ẋg, ẏg, żg, ψ̇g, θ̇g, ϕ̇g) u = (τ1, τ2. . . . τ12) ∆t = 0.01
Wpr = [0.01],Wfpr = [1.1],Wvr = [0.01],Wfvr = [0.01]

Wpb = [2],Wfpb = [10],Wvb = [1],Wfvb = [10],
Wpbθ = [2],Wfpbθ = [10],R = [0.01]

Box slide Sawyer robot arm pushing a box to a desired location. Optimiser:
SCVX.

x = (q1, q2, . . . q7, xg, yg, zg, qxg, qyg, qzg, wg, q̇1, q̇2 . . . q̇7,

ẋg, ẏg, żg, ψ̇g, θ̇g, ϕ̇g) u = (τ1, τ2. . . . τ7) ∆t = 0.01
Wpr = [0],Wfpr = [0],Wvr = [0],Wfvr = [0]

Wpb = [10000],Wfpb = [10000],Wvb = [0],Wfvb = [0],
Wpbθ = [1],Wfpbθ = [1],R = [0]

4.5.3 Key-point parametrisations

The following key-point parametrisations are used for all the outlined tasks:

• Acrobot - Adaptive Jerk: Nmin=1, Nmax=50, J̄ = 150 for both joints.

Velocity Change: Nmin=1, Nmax=50, ∆v̄ = 1 for both joints. Iterative

Error: Nmin=1, ı̄=0.0001.

• Reaching - Adaptive Jerk: Nmin=5, Nmax=100, J̄ of 10 used. Velocity

67

4.6 Results

Change: Nmin: 5, Nmax: 50, ∆v̄: [1, 1, 1, 1, 0.1, 0.1, 0.1]. Iterative Error:

Nmin: 1, ı̄: 0.001.

• Push no clutter - Adaptive Jerk: Nmin=5, Nmax=100, J̄ of 1 used for

robotic arm and 1 used for goal object. Velocity Change: Nmin=5, Nmax=50,

∆v̄ of 1 used for robotic arm joints and goal object. Iterative Error: Nmin=1,

ı̄=0.01.

• Push low clutter - Adaptive Jerk: Nmin=5, Nmax=100, J̄ of 1 used for

robotic arm and 0.1 used for all objects in scene. Velocity Change: Nmin=1,

Nmax=100, ∆v̄ of 0.1 used for robotic arm joints and all objects in scene.

Iterative Error: Nmin=1, ı̄=0.001.

• Push heavy clutter - Adaptive Jerk: Nmin=2, Nmax=100, J̄ of 1 used for

robotic arm and 0.1 used for all objects in scene. Velocity Change: Nmin=2,

Nmax=100, ∆v̄ of 0.05 used for robotic arm joints and 0.01 for all objects in

scene. Iterative Error: Nmin=1, ı̄=0.0001.

• Box sweep - Adaptive Jerk: Nmin=1, Nmax=1000, J̄ of 1000 used for

robotic arm and for goal object. Velocity Change: Nmin=1, Nmax=100, ∆v̄

of 0.1 used for robotic arm joints and 0.05 for goal object. Iterative Error:

Nmin=1, ı̄=0.00001.

• Box slide - Adaptive Jerk: Nmin=1, Nmax=5, J̄ of 500 used for robotic arm

and for goal object. Velocity Change: Nmin=1, Nmax=5, ∆v̄ of 0.1 used for

robotic arm joints and goal object. Iterative Error: Nmin=1, ı̄=0.1.

• Ball tasks - Adaptive Jerk: Nmin=2, Nmax=20, J̄ of 5000 used for robotic

arm and for goal object. Velocity Change: Nmin=2, Nmax=20, ∆v̄ of 0.5

used for robotic arm joints and goal object. Iterative Error: Nmin=2, ı̄=800.

4.6 Results

This section showcases a wide variety of simulation and hardware results. Initially,

Sec. 4.6.1 investigates how the different key-point methods perform in terms of

approximation accuracy and the number of key-points required when comparing the

approximated dynamics derivatives with the accurate dynamics derivatives for the

Acrobot task. Next, Sec. 4.6.2 focuses on a simplistic toy contact problem (shown in

Fig. 4.8) to understand how optimisation via the proposed key-points methods works

around the introduction of contact-interactions. Sec. 4.6.3 performs long horizon

optimisation performance tests (shown in Table 4.2) on a wide variety of tasks. The

key-point methods are evaluated compared to the baseline in terms of optimisation

time reduction and the quality of the final computed solution. Following on from

68

4.6 Results

this, Sec. 4.6.4 evaluates how the proposed key-point methods perform when using

shorter optimisation horizons (such as the ones used when performing MPC) for two

locomotion tasks in simulation. Finally, Sec. 4.6.5 performs some experiments on

real robotic hardware for a complex manipulation in clutter task.

4.6.1 Evaluating interpolation accuracy

The key-point methods outlined in Section 4.3 aim to match the accurate derivatives

over the trajectory as closely as possible with as few key-points as possible. To

evaluate the approximation accuracy of an interpolated set of dynamics derivatives, a

scalar value representing overall approximation accuracy is defined by comparing the

absolute difference of the values between the approximated and accurate dynamics

derivatives over a trajectory:

MAE =

nx,nx∑
i=0,j=0

∑T
t=0 |Ât[i, j]−At[i, j]|

T
/(nx ∗ nx)

+

nu,nx∑
i=0,j=0

∑T
t=0 |B̂t[i, j]−Bt[i, j]|

T
/(nx ∗ nu)). (4.26)

To evaluate the approximation error of the proposed key-point methods, 100 test

trajectories are generated and the A and B matrices are computed accurately at

every time-step, either by FD or AD. To evaluate a particular key-point method

and parametrisation, the MAE is computed for each of the 100 trajectories and

averaged.

A variety of key-point parametrisations are evaluated to determine what methods

worked best to obtain a cheap, yet accurate approximation. The results are shown

in Fig. 4.6 for the Acrobot task where the horizontal axis is the percentage of

derivatives that were computed accurately.

Ideally, one would choose a key-point method and its associating parameters to

minimise both the error as well as the percentage of derivatives. Naturally, there is

a trade-off between accuracy and the percentage of derivatives making this a multi-

objective optimisation problem. Therefore, a suitable level of MAE is empirically

defined above which the optimisation performance begins to degrade (denoted as

MAE threshold and a dashed red line in Fig. 4.6). Everything below this line is

defined as a good approximation. For each method, three sets of parameters are

highlighted, the star values are what are defined as optimal, which are values below

the MAE threshold with the lowest percentage of derivatives. The cross symbol

values have the lowest percentage of derivatives and the diamond markers have the

lowest MAE.

For any Set Interval method that is plotted (black markers), there is always

an adaptive method that outperforms it by having both a lower MAE as well as

a lower percentage of derivatives. That is to say no Set Interval methods would

69

4.6 Results

Percentage of derivatives calculated accurately

M
A
E
av
er
ag
ed

ov
er

al
l
tr
a
je
ct
or
ie
s

Adaptive Jerk

Error threshold Other parametrisations

Iterative Error

Velocity Change

Set Interval

Min n: 2
Max n: 4

Jerk thresh: 0.1

Min n: 2
Max n: 4

Vel thresh: 0.5

Min n: 5Min n: 15 Min n: 20

Min n: 10
Max n: 30

Vel thresh: 2.0

Min n: 20
Max n: 60

Vel thresh: 2.0

Min n: 2
Max n: 4

Error thresh: 1e-5

Min n: 20
Max n: 40

Error thresh: 1e-4

Min n: 20
Max n: 40

Error thresh: 1e-5

Min n: 20
Max n: 60

Jerk thresh: 0.1

Min n: 10
Max n: 20

Jerk thresh: 0.1

10

8

6

4

2

0

10−4

5 10 15 20 25

Figure 4.6: Approximation accuracy for different key-point methods and different

key-point parametrisations values, for the Acrobot task. The colour of each data-

point represents the specific key-point selection method used and each data-point

is a different parameterisation for that method. Three parametrisations for each

key-point method are explicitly shown by a star, cross and diamond symbol and

labelled in the top right of the figure.

70

4.6 Results

Velocity change thresholds (m/s)
0

0.25

0

20

40

60

80

100

0.30

0.35

0.40

0.45

20 40 60 80 100

Final cost
Percentage of derivatives calculated

Figure 4.7: Optimisation performance for 100 instantiations of the Acrobot task

versus scaling values for the velocity change threshold. Green line shows normalised

final cost of the trajectory, blue line shows the average percentage of derivatives

computed accurately.

be included on the pareto-front boundary. Generally, for this Acrobot task, the

Velocity Change method works exceptionally well. This is due to the fact that the

dynamics derivatives change in a way that are very closely related to the velocity of

both the acrobot joints.

To understand what level of error was acceptable, the optimisation performance

for the Velocity Change key-point method is evaluated on the Acrobot task. Opti-

misation until convergence for 100 instantiations of the Acrobot task (different start

and goal states) was performed with scaling thresholds for the Velocity Change

key-point method.

The results of this can be seen in Fig. 4.7. As the velocity change threshold was

increased, the percentage of derivatives computed accurately reduces and the final

cost achieved by optimisation increases, which is of course the expected outcome.

It can be seen that there is a region (around the velocity change threshold value of

20) where the percentage of derivatives calculated is significantly reduced, without

any loss in terms of the final cost performance. This can be thought of as the sort of

“sweet spot” where the optimisation time reductions are gained with no significant

degradation in the quality of the final trajectory.

4.6.2 Impact of contact on optimisation and key-point se-

lection

An important aspect to consider is how the proposed key-point methods perform

in situations that involve contact. When contact is made or broken, this generally

71

4.6 Results

Figure 4.8: Two snapshots from the 1D toy contact task. The red piston is actuated

and limited to 1D of motion. The green object is an un-actuated cube. The goal is

to push the green cube to the goal location (green silhouette).

creates a discontinuity in the dynamics derivatives due to the contact mode being

changed. Even though physics simulators typically circumvent this issue through the

use of “soft contact” models [129, 128], there is still a rapid change in the dynamics

derivatives when a contact is made or broken.

This section focuses on two particular questions: (1) How important is it for

optimisation performance that key-points are accurately located at time-steps when

contact is made or broken? (2) How capable are the proposed key-point methods at

detecting these contact discontinuities?

To investigate these questions in-depth, this section focuses on a 1D toy contact

task. This task was implemented in MuJoCo and consists of a 1 DoF robot piston

and a green un-actuated cube (Fig. 4.8). The objective is to minimise the cube’s

distance to the goal at the end of the trajectory, whilst also minimising the cube’s

velocity. The state vector of this system is four dimensional: the piston’s joint

position and joint velocity, as well as the cube’s position and velocity (all in 1D).

(1) Impact of contact discontinuities on optimisation performance: In Fig.

4.9, a subset of the values in the A matrix (4 of 16) are shown and how they change

over an initial trajectory. The initial trajectory moves the piston forward and makes

contact with the green cube at time-step tc. This time-step is shown on the figure

as the vertical green-dashed line. As can be clearly seen in the figure, this contact

event creates a discontinuity in the dynamics derivatives.

To analyse how important it is to accurately map this contact discontinuity

for optimisation performance, the following experiment is performed. The contact

making time-step tc is identified and the derivative values inside the A matrix are

deliberately “smoothed” around this time-step. This smoothing is done by linearly

interpolating the dynamics derivatives between tc−p and tc+p, where p is the number

of time-steps of smoothing. A single optimisation iteration is then performed about

the same nominal trajectory using increasing values of p. As the value of p increases,

the contact discontinuity is smoothed more.

The result of this experiment can be seen in Fig. 4.10. The vertical axis shows

the cost of the trajectory after one optimisation iteration and the horizontal axis

shows the value of p. As the value of p increases the general trend is that the

optimisation performance decreases. Some level of blending is acceptable (up to

72

4.6 Results

Accurate values
Approximated values
tc
Key-points

A[2, 0]

A[3, 0]

A[2, 1]

A[3, 1]

Figure 4.9: A 2x2 subset of graphs that show how values inside the A matrix for the

toy contact task change over the initial trajectory. The subset shown are how the

cube’s position and velocity are affected by the piston’s position and velocity. The

blue line shows the accurate values, the red line shows the approximation subject

to the computed key-points (yellow dots). The green dashed vertical line denotes

moment of contact tc.

p
0

1.0

1.5

2.0

2.5

3.0

3.5

20

With smoothing

Accurate

40 60 80 100

C
os
t
af
te
r
on

e
op

ti
m
is
at
io
n
it
er
at
io
n

Figure 4.10: Optimisation performance versus smoothing effect after one iteration

of optimisation.

73

4.6 Results

approximately 30 time-steps for this scene). This result implies that in contact-

based optimisation, it is important to generally model the contact discontinuity, but

some level of blending can be acceptable.

Identifying contact discontinuities with key-point methods: Fig. 4.9 shows

that the Adaptive Jerk key-point method can accurately map the contact disconti-

nuity when appropriate jerk threshold values are selected (jerk thresholds of 1 ms−3

for the piston and un-actuated cube are used). The yellow dots are the placement

of key-points, as decided by the Adaptive Jerk method. The plots clearly show that

the Adaptive Jerk method places a significant number of key-points where contact

is made and the dynamics derivatives are very noisy. Around the start and end of

the trajectory, where the derivative values are static, Adaptive Jerk places minimal

key-points.

4.6.3 Long horizon optimisation performance

In this section, the performance of the key-point methods is investigated on what

is referred to as “long horizon” optimisation. Long horizon optimisation refers to

optimisation on a task where the horizon is sufficient to complete the task and op-

timisation is performed until convergence or a maximum number of optimisation

iterations. These experiments are performed to validate that the key-point meth-

ods can significantly reduce optimisation time whilst retaining a similar level of

performance in terms of the quality of the final converged trajectory.

To evaluate the performance of the final converged trajectories, a metric called

cost reduction (CR) is defined. Cost reduction simply measures the proportion that

the cost has been reduced by comparing the converged trajectory cost to the initial

trajectory cost. A value of zero means the converged trajectory has the same cost

as the initial trajectory, and a value of one means that the converged trajectory

had a cost of zero (generally not feasible with how most optimisation problems are

formulated). This is shown in Eq. 4.27:

CR = 1− Final cost

Initial cost
. (4.27)

In Table 4.2, various optimisation metrics are presented for four key-point selection

methods across a variety of tasks. These metrics include overall optimisation time

(OT), cost reduction (CR) (defined in Eq. 4.27), and number of optimisation itera-

tions (NI). For the iLQR-FD and SCVX experiments, 100 start/goal states were

randomly generated, and the mean values are reported (the standard deviations

were all small and are not shown). For the iLQR-AD experiments, only a single

experiment was conducted for each task, as the comparison follows the whole-body

ball manipulation tasks from Kurtz & Lin [69], with no changes other than the use of

key-point methods. However, average results for all three types of ball manipulation

using the same key-point parametrisations are shown in the “Ball average” row.

74

4.6 Results

The results in Table 4.2 clearly show that, across all tasks and optimisers, opti-

misation times can be significantly reduced by all key-point methods when compared

to the baseline, at the cost of some small degradation in performance in terms of

CR. This naturally poses an interesting question regarding the trade-off between

these two metrics: How much reduction in CR performance is acceptable for the

level of optimisation time reduction achieved? This trade-off largely depends on the

specific use-case. In certain contexts, such as MPC, it is more important to optimise

to an acceptable solution quickly, rather than a perfect solution slowly, due to the

detrimental effects that policy lag can have on execution performance. This concept

is explored further in Sec. 4.6.4.

On average, the key-point methods perform marginally fewer optimisation itera-

tions than the baseline. This contributes to the slight degradation observed in terms

of CR. Importantly, the achieved optimisation time reductions are not primarily due

to this reduction in the number of optimisation iterations, but are instead mainly

attributed to the reduced optimisation iteration time. The average optimisation

iteration time can be computed by dividing the OT by the NI. This result suggests

that approximated derivatives are fundamentally effective at optimising trajectories

close to the global minima, but may struggle to reach the global minima directly.

75

4.6 Results

T
ab

le
4.
2:

S
u
m
m
ar
y
of

lo
n
g-
h
or
iz
on

op
ti
m
is
at
io
n
p
er
fo
rm

an
ce
.
O
T
is
th
e
to
ta
l
op

ti
m
is
at
io
n
ti
m
e
in

se
co
n
d
s,
C
R

is
co
st

re
d
u
ct
io
n
an

d
N
I
is
th
e

n
u
m
b
er

of
op

ti
m
is
at
io
n
it
er
at
io
n
s.

F
or

iL
Q
R
-F

D
an

d
S
C
V
X
,
th
e
va
lu
es

re
p
or
te
d
in

th
e
ta
b
le
s
ar
e
m
ea
n
va
lu
es

av
er
ag
ed

ov
er

10
0
st
ar
t/
go
al

st
at
es
.
F
or

iL
Q
R
-A

D
th
e
va
lu
es

w
er
e
si
n
gl
e
ru
n
s.

iL
Q
R
-F

D

B
as
el
in
e

S
I5

S
I1
00

0
A
d
ap

ti
ve

J
er
k

V
el
o
ci
ty

C
h
a
n
g
e

It
er
a
ti
ve

E
rr
o
r

O
T

C
R

N
I

O
T

C
R

N
I

O
T

C
R

N
I

O
T

C
R

N
I

O
T

C
R

N
I

O
T

C
R

N
I

A
cr
ob

ot
0.
04

1
0.
77

7.
49

0.
02

1
0.
76

7.
06

0.
01

0
0.
36

4.
15

0.
01

8
0.
73

6.
08

0
.0
2
4

0
.7
7

7
.6
2

0
.1
2

0
.7
7

7
.2
8

R
ea
ch
in
g

0.
91

0.
94

7.
64

0.
51

0.
94

7.
56

0.
39

0.
90

7.
11

0.
43

0.
94

7.
6
3

0
.4
6

0
.9
4

7
.6
5

0
.5
4

0
.9
4

7
.5
2

P
u
sh

n
cl
u
tt
er

0.
99

0.
25

4.
45

0.
41

0.
29

4.
38

0.
25

0.
20

4.
24

0.
31

0.
24

4.
50

0
.4
8

0
.2
5

4
.3
5

0
.5
6

0
.2
5

4
.3
7

P
u
sh

l
cl
u
tt
er

4.
08

0.
28

4.
78

1.
23

0.
27

4.
61

0.
58

0.
26

4.
45

0.
91

0.
22

4.
35

1
.2
5

0
.2
4

4
.5
4

2
.1
6

0
.2
8

4
.7
6

P
u
sh

h
cl
u
tt
er

9.
26

0.
47

5.
09

2.
74

0.
42

5.
00

1.
09

0.
34

4.
37

2.
85

0.
42

4.
83

3
.3
6

0
.4
3

4
.9
0

6
.1
4

0
.4
6

5
.0
1

B
ox

sw
ee
p

1.
88

0.
60

4.
87

0.
53

0.
38

4.
18

0.
38

0.
46

4.
50

0.
39

0.
54

4.
37

0
.7
3

0
.4
5

4
.4
2

1
.5
4

0
.5
4

4
.6
0

S
C
V
X

B
as
el
in
e

S
I2

S
I2
0

A
d
ap

ti
ve

J
er
k

V
el
o
ci
ty

C
h
a
n
g
e

It
er
a
ti
ve

E
rr
o
r

O
T

C
R

N
I

O
T

C
R

N
I

O
T

C
R

N
I

O
T

C
R

N
I

O
T

C
R

N
I

O
T

C
R

N
I

B
ox

sl
id
e

8.
87

0.
98

9
30

.6
9

6.
14

0.
98

5
27

.4
8

7.
62

0.
93

7
35

.6
5

6.
13

0.
98

5
30

.4
3

6
.8
1

0
.9
8
3

3
0
.8
5

7
.3
8

0
.9
5
1

3
4
.7
9

iL
Q
R
-A

D

B
as
el
in
e

S
I2

S
I2
0

A
d
ap

ti
ve

J
er
k

V
el
o
ci
ty

C
h
a
n
g
e

It
er
a
ti
ve

E
rr
o
r

O
T

C
R

N
I

O
T

C
R

N
I

O
T

C
R

N
I

O
T

C
R

N
I

O
T

C
R

N
I

O
T

C
R

N
I

B
al
l
fo
rw

ar
d

12
8.
71

0.
78

35
49

.2
0

0.
79

24
4.
34

0.
77

13
4.
12

0.
75

11
4
6
.0
0

0
.7
7

2
0

1
4
.0
6

0
.4

1
1

B
al
l
si
d
e

65
.2
4

0.
74

27
24

.7
7

0.
70

20
2.
73

0.
54

8
15

.8
3

0.
65

32
2
1
.4
3

0
.7
0

2
0

1
0
.5
5

0
.6
8

1
7

B
al
l
li
ft

26
1.
52

0.
92

41
38

.3
5

0.
88

17
26

.4
6

0.
86

20
34

.3
2

0.
90

22
1
6
.0
0

0
.8
6

9
8
9
.2
3

0
.9
2

2
4

B
al
l
av
er
ag

e
15

1.
82

0.
81

34
.3
3

37
.4
4

0.
79

20
.3
0

11
.1
8

0.
72

13
.6
7

18
.0
9

0.
77

21
.6
7

2
7
.8
1

0
.7
8

1
6
.3

3
7
.9
5

0
.6
7

1
7
.3
3

76

4.6 Results

It is important to note that the key-point selection methods require some form

of tuning to perform well. The general approach for tuning was to start with a non-

greedy key-point parametrisation for any particular method, and then to iteratively

make the key-point parametrisation more greedy until an unsatisfactory reduction

in CR was observed.

By averaging the results in Table 4.2, it can be seen that Adaptive Jerk and

Velocity Change both reduce the optimisation time more than the smallest interval

Set Interval method, whilst achieving identical performance in terms of CR. They do

not reduce the optimisation time as much as the largest interval Set Interval method,

however they achieve a noticeably higher CR. Iterative Error performs well in terms

of CR for the iLQR-FD tasks, however does not achieve as substantial optimisation

time reductions as the other key-point methods. The reason for this is that the

Iterative Error method does not take advantage of the ability to compute dynamics

derivatives in parallel as much as the other key-point methods do. There will be a

more detailed discussion about the Iterative Error method and its shortcomings in

Sec. 4.7.

For the iLQR-AD tasks, the optimisation times were significantly longer than

the iLQR-FD tasks, despite having similar dimensionality. There are three main

reasons for this: (i) Python is a slower language than C++, (ii) the computation

of dynamics derivatives was not parallelised over CPU cores, and (iii) the hydro-

elastic contact model is more expensive than the one used in iLQR-FD. However,

any improvements made to these three attributes would also speed up the key-point

methods performance.

Finally, when using SCVX, the optimisation time reductions were not as sub-

stantial as they were in the iLQR based methods. The fundamental reason behind

this was that computing dynamics derivatives was not as severe a bottleneck as

it was for iLQR. In SCVX, the two parts of the algorithm that take substantial

amounts of time were computing dynamics derivatives and solving quadratic pro-

grams (QPs) using SQOPT. Even though computing dynamics derivatives was more

computationally expensive than solving QPs, there were a significant number of iter-

ations (even in the baseline case) where the solver had to reduce the size of the trust

region to find a lower cost trajectory when using the non-linear dynamics. When

the solver reduced the size of the trust region, it was unnecessary to recompute

dynamics derivatives as the nominal trajectory had remained the same.

4.6.4 Short horizon optimisation performance

The previous section examined the performance of the key-point methods in long-

horizon optimisation. While long-horizon optimisation planning offers significant

utility, it also has its drawbacks. For instance, executing such plans on real robotic

hardware in an open-loop manner can be problematic, particularly when contact

77

4.6 Results

Algorithm 8 Execution with MPC.

Require: controls before replan, T , max iterations

1: U = Initialise controls for T horizon

2: controls executed = 0

3: while not timeout do

4: if controls executed > controls before replan then

5: controls executed = 0

6: U = Optimise(U, T , max iterations)

7: Execute U0 in environment

8: Remove U0 from U

9: Expand U with UT−1

10: controls executed++

dynamics are involved. Despite best efforts, no physics simulator can perfectly repli-

cate the real world. Consequently, executing a long-horizon trajectory computed in

simulation often leads to different outcomes when transferred to the real world.

There are a variety of ways to overcome this, optimisation can be done using

domain randomisation to create probabilistically robust actions [106], execution of

the optimised trajectory can be executed open-loop until a significant enough devi-

ation has occurred from the plan in simulation and what has happened in reality [4]

or finally, MPC can be used to optimise closed-loop to account for the deviations

between the physics simulator and the real world. This section investigates how

the key-point methods can aid in an MPC setting, under optimisation with shorter

horizons.

MPC results are provided for two locomotion tasks in simulation (Walker and

Mini cheetah from Table 4.1). The context in which MPC is performed is impor-

tant to understand the results. In this MPC implementation the execution (in a

simulator) and optimisation is performed sequentially, meaning that the execution

is not integrated with time until the optimisation has converged and the next op-

timal control is ready to be applied. This means that there is no policy lag in the

system as the system is frozen until optimisation converges. This means that slower

optimisation processes are not punished (i.e. the baseline). The MPC approach is

shown in Alg. 8.

The Mini cheetah locomotion model used the iLQR-AD optimiser and used

MPC from Alg. 8 with the following parameters (4, 50, 10). This controller exe-

cuted 400 controls before terminating, with 100 receding horizon optimisations (as

4 controls were executed before the next re-optimisation step). For the baseline, the

whole task took approximately 18 minutes of computation time, where 76 % of the

planning time was spent computing dynamics derivatives.

The key-point methods significantly reduce the time taken to perform the same

number of controls, whilst importantly still enabling the mini-cheetah to remain up-

78

4.6 Results

Velocity Change

SI5

Adaptive Jerk

SI20

Iterative Error

Baseline

Optimisation horizon (time-steps)

F
in
al

co
st

C
on

tr
ol

fr
eq
u
en
cy

(H
z)

20

100

0

250

500

750

1000

1250

1500

1750

2000

200

300

400

500

600

30 40 50 60 70 80

20 30 40 50 60 70 80

Figure 4.11: MPC results for the Walker model over a variety of receding horizon

lengths for the different key-point methods. The top plot is the performance of the

executed trajectory when evaluated with the cost function. The bottom plot shows

the effective control frequency that could be attained for the various methods.

right whilst performing locomotion. The results are shown in Table 4.3. The overall

optimisation time is the summation of all the optimisations until task termination

(i.e., 100 optimisations). The cost function used in the optimiser is also used to

evaluate the final executed trajectory. Finally, if a method caused the mini cheetah

to topple, the simulation would crash and the percentage through the task at which

the simulation crashed is recorded. All three of the adaptive key-point methods

managed to complete the task, with substantial reductions in optimisation time1.

The MPC implementation for the Walker was Alg. 8 with the following param-

eters (1, (20 - 80), 1). This controller executed 1500 controls before terminating.

Notably, experiments are provided for a range of horizons for this task. For each

1The optimisation times were still prohibitively expensive for this task, making traditional MPC

infeasible. This is due to a variety of factors, including: contact model, python implementation and

lack of parallelisation. The purpose of these experiments are to show generality of the proposed

methods in this chapter in terms of reducing optimisation times.

79

4.6 Results

Table 4.3: MPC results for mini-cheetah locomotion using different key-point meth-

ods.

Cost Optimisation time (s) Percentage of task

Baseline 45.9 1001 100

SI2 43.5 545 100

SI5 - - 95

Adaptive Jerk 39.0 313 100

Iterative error 50.7 300 100

Velocity change 50.1 502 100

horizon length, the task was performed via MPC 100 times for each of the key-point

methods. The 100 different trajectories all had different target velocities for the

Walker between 0.9 and 1.3 m/s. The results are then averaged over the 100 runs

and the data is presented the data in Fig. 4.11.

The top plot of Fig. 4.11 shows the final cost of the generated trajectories

from the different key-point methods. The bottom plot shows the average control

frequency that was achieved by each method. This control frequency was computed

by averaging the optimisation iteration times over the task execution.

The top plot of Fig. 4.11 shows two main ideas. Firstly, increasing the optimisa-

tion horizon of the Walker model is important to achieve good performance in terms

of final cost. This is due to the fact that the optimised controls are myopic when the

optimisation horizon is low, resulting in poor overall performance. Secondly, as the

optimisation horizon is increased, all key-point methods achieve similar performance

in terms of final cost as the baseline method. As can be seen in the bottom plot of

Fig. 4.11, at an optimisation horizon of 80 time-steps, the control frequency of the

Walker model is increased between 33% and 66% when using the key-point methods

(except for Iterative Error). Increasing the control frequency of MPC iterations is

desirable for real world execution, as it enables the robot to make adjustments to its

trajectory to account for model inaccuracies between the real world and the physics

simulator.

4.6.5 Execution performance on hardware

Finally, the proposed key-point methods were validated on real robotic hardware,

namely the Franka Panda, and show the significant speed improvements that can

be achieved on robotic manipulation in cluttered environments.

A similar task to the “push heavy clutter” task from the simulation experiments

was created, with a few notable changes which can be seen in Fig. 4.12. Firstly, static

immovable walls to constrain the scene were added. The goal location for the pushed

80

4.6 Results

object is then placed near the static walls, making the push substantially more

challenging as clutter objects can get stuck. A cost penalty was added to penalise

disturbing the clutter obstacles in the scene for the terminal state. Meaning that

whilst pushing the goal object to its target location is desired, it was also necessary

to push through the clutter intelligently. Fig. 4.12 shows the starting configuration

for scenes 1 and 2 for the real-world experiments.

Three different methods were evaluated for this task on the real robot. Simple

straight line pushes (Initialisation), iLQR-FD [Baseline] as well as iLQR-FD

[Adaptive Jerk]. In these experiments, to control real robotic hardware, an error-

based re-planning approach was used. Long horizon optimisation plans were com-

puted and then executed open-loop. These long-horizon plans were executed until

completion, or until significant deviation between the planned and actual state of

the system. The Euclidean distance of all objects in the scene between their planned

positions and their actual was used to determine whether significant deviation had

occurred or not.

Execution on the robot was stopper after either: (i) the time-out (24 seconds of

executing controls) occurred, (ii) four optimised pushes have been executed, or (iii)

the target object was within a 3-cm radius of the goal location.

Results

Experiments were ran 10 times for both scenes, for each of three methods discussed.

The average of these results can be seen in Table 4.4. Execution time is the time

taken for the task to be completed or to time-out (including both planning and

execution time). Planning time includes the time spent initialising and optimising

controls in simulation. Finally, final cost measures how well the task was performed

by replaying the real states from execution through the cost function.

In both scenes, using optimisation enabled the robot to find a more effective final

trajectory for completing the task, as shown by the final cost. The Adaptive Jerk

Figure 4.12: Real robot scene setup, scene 1 (left) and scene 2 (right). Objective

is to push purple object to goal location (small green sticker) whilst minimising the

disturbance to the clutter obstacles (red and green cylinders).

81

4.7 Discussion

Table 4.4: Results from real robot experiments.

Scene 1

Initialisation [Baseline] [Adaptive Jerk]

Execution time (s) 25.2 134.2 36.6

Planning time (s) 1.3 110.5 12.7

Final cost 15.2 11.3 11.4

Scene 2

Initialisation [Baseline] [Adaptive Jerk]

Execution time (s) 25.0 159.2 36.3

Planning time (s) 1.2 135.0 13.5

Final cost 11.3 9.7 9.2

key-point method reduced the optimisation time by approximately 75 % whilst still

achieving a near-identical final cost as the baseline method.

4.7 Discussion

This chapter has proposed and evaluated three “intelligent” key-point selection

methods (i.e., Adaptive Jerk, Velocity Change, and Iterative Error) using two opti-

misation algorithms (i.e., iLQR and SCVX) for a variety of contact-interaction tasks.

The Adaptive Jerk method was designed in part to detect contact mode changes.

Whereas, the Velocity Change method was designed for dynamic tasks that require

large velocities, such as the Acrobot or Walker tasks. However, from the data that

has been collected, both methods seem to work equally well over most tasks (both

contact-based and dynamic). These proposed methods optimised trajectories faster

on average than the smallest-interval Set Interval methods, whilst obtaining similar

performance. Compared to the largest-interval Set Interval methods, they optimised

slightly slower but yielded higher-quality trajectories on average.

The Iterative Error method worked fundamentally differently to the Adaptive

Jerk and Velocity Change methods. Adaptive Jerk and Velocity Change considered

some dynamic attributes of the nominal trajectory to compute a set of key-points.

The dynamics derivatives were then computed at these key-points in parallel over

CPU cores. The Iterative Error method on the other hand interleaved choosing

key-points with dynamic derivative computations. A negative consequence of this

was that this imposed a certain level of sequential computation into the process.

That is, after each iteration of computing dynamics derivatives, there was a break

whilst the key-point method checked whether the approximation was adequate or

not. Notably, in the iLQR-FD tasks, the Iterative Error method obtained the highest

CR of all the key-point methods. However, the optimisation time reductions were

82

4.7 Discussion

not as significant as one would expect from the percentage of derivatives computed,

due to this formulation issue. There were improvements that could theoretically

be made to the Iterative Error method, but fundamentally, some level of sequential

computation is required by this key-point method.

Another potential limitation of the Iterative Error method is its susceptibility to

being misled by certain function behaviours. For example, consider approximating

a sinusoidal function using only the start and end points of a full cycle as key-

points. The midpoint, where the function returns to zero, may appear to yield

a low approximation error when compared to the linear segment. However, this

result can be deceptive: despite the low local error, a straight line is clearly an

inadequate representation of the underlying oscillatory behaviour. This highlights

a potential blind spot in the algorithm, where mid-point evaluations may fail to

capture significant curvature or higher-order variations in the trajectory. It should

be noted that, despite this possible limitation, the Iterative Error method generally

performed quite well in terms of CR for the tasks in this chapter. The main issue

was the lack of reduction in optimisation time due to the natural introduction of

sequential computation.

The methods proposed in this chapter are particularly applicable to MPC. In

MPC it is typically more important to optimise to an acceptable solution quickly,

as opposed to an optimal solution slowly. This is due to the fact that the cost

landscape is ever changing during MPC and by the time an optimisation iteration

is complete, the system has fundamentally moved on from where it was when op-

timisation began. This chapter has shown that the proposed key-point methods

work in a short-horizon optimisation setting on both the Walker and Mini-cheetah

tasks. Whilst these tasks were completed in a synchronous environment, the in-

tended result was to demonstrate that optimisation remains successful when using

the key-point methods instead of the baseline, and that the possible control fre-

quency is significantly increased.

One limitation of the proposed key-point methods is that the parameters of

these methods need to be tuned per task which can sometimes be time-consuming,

especially when trying to find an ideal trade-off between optimisation time and

performance. The general method of tuning parameters for tasks in this work is

shown in Fig. 4.7. The parametrisation of the key-point method was selected to

be non-greedy initially, and then it was iteratively made increasingly greedy until

a notable degradation in performance was observed (in terms of CR). This process

was performed on small subset of tasks before being evaluated over the full set of

tasks start/goal states to show generalisation.

83

4.8 Conclusion

4.8 Conclusion

This chapter has outlined a general method for how trajectory optimisation can be

performed faster by not paying the full computational cost of computing dynamics

derivatives. The methods proposed involve only computing dynamics derivatives ac-

curately at certain time-steps over a trajectory (which are referred to as key-points),

the remainder of the dynamics derivatives are then approximated via simple linear

interpolation. Three “intelligent” key-point selection methods have been proposed

and their performance evaluated on a wide variety of tasks. Depending on the task,

this chapter has shown that the proposed key-point methods can greatly reduce the

optimisation time required without significant loss in the quality of the final com-

puted trajectory. Even in situations where the quality of the computed trajectory

may be worse, this trade-off may still be beneficial, especially when one considers

controlling robots with MPC, where fast optimisation times are more valuable than

converging to optimal solutions due to the ever changing cost landscape of executing

controls on real robotic hardware.

One of the strengths of this work is the demonstration that the proposed meth-

ods can generalise to a variety of trajectory optimisation tasks, as well as to two

different trajectory optimisation algorithms (iLQR and SCVX), and two different

methods for computing dynamics derivatives in physics simulators (FD and AD).

Although no experiments were conducted on trajectory optimisation methods that

utilise higher-order dynamics information (such as DDP), the methods presented

here are expected to be extendable to such approaches and may yield similar opti-

misation time reductions.

There are several limitations of this work which could lead to future research

areas:

• Firstly, the proposed key-point methods require some level of parameter tuning

to perform well. This may be a natural consequence of these methods but it

would be advantageous if key-point methods could be tuning-free.

• On occasion, these methods can fail achieve satisfactory levels of CR when

compared to the baseline method. This can sometime happen when the key-

point methods miss some key information in the dynamics derivatives due

to a unlucky poor approximation. A possible method around this would be

to create some mechanism that if optimisation fails too early, the key-point

methods can be relaxed allowing more dynamics derivatives to be computed

accurately, to hopefully overcome this issue.

• Hardware experiments using a conventional MPC implementation are not per-

formed. The reason for this was due to issues in controlling the real robotic

hardware using direct torque control. The simulated robot did not seem to

84

4.8 Conclusion

be a good digital clone of the real robot when using direct torque control. As

a result, a position controller that used some form of PID control to follow

a desired trajectory was used instead. It is difficult to perform short-horizon

MPC with a position controller due to small differences between the target

and current joint positions do not convert to torques that can overcome joint

friction.

A primary future research direction could be in regards to the key-point parameter

tuning issues. During this work, a concept for automatically adjusting key-point

parametrisation during MPC was experimented with. The core idea was that dur-

ing successful MPC optimisation iterations, the key-point parametrisation could be

made more “greedy” (i.e. use fewer key-points) whereas when optimisation fails to

improve the trajectory, the key-point parametrisation would be made less “greedy”.

This general idea could be a good method to address the issues of tuning key-point

parameters automatically.

85

Chapter 5

Online State Vector Reduction dur-

ing Model Predictive Control

Chapter Deliverables

Video: https://www.youtube.com/watch?v=8K qfvb4lMI

Source Code: https://github.com/DMackRus/iLQR-SVR

5.1 Introduction

Trajectory optimisation algorithms are capable of synthesising complex motion to

solve a variety of challenging robotic manipulation tasks [63, 69, 126, 96, 102, 119].

However, trajectory optimisation methods struggle scaling to high dimensional sys-

tems, such as manipulation in cluttered environments or manipulation on deformable

objects. The long optimisation times caused by the curse of dimensionality make it

difficult to perform closed-loop MPC in these high-dimensional systems.

This chapter is concerned with trying to reduce the dimensionality of these sys-

tems dynamically so that closed-loop MPC can be achieved. The key insight is that,

in a variety of these high-dimensional tasks, a large number of DoFs are not relevant

to the problem at all times during task execution. This intuition makes sense on a

fundamental level: Humans do not consider the full physical effects of all DoFs in a

system when performing various tasks. When we fold clothes we do not consider in

great detail the path each particle in the cloth will take; similarly, when we reach

into a cluttered shelf, we are good at identifying which objects matter for our goals

and ignoring others.

Fig. 5.1 shows a trajectory generated by the method proposed in this chapter for

a non-prehensile manipulation task in clutter. Traditionally, during trajectory opti-

misation in such a scene, all six DoFs of all movable rigid objects (which contribute

twelve state vector elements, the positional and velocity element of each DoF) are

86

https://www.youtube.com/watch?v=8K_qfvb4lMI
https://github.com/DMackRus/iLQR-SVR

5.1 Introduction

Figure 5.1: A sequence of snapshots showing an example MPC trajectory generated

by the method introduced in this chapter. The task is to push the green cylinder to

a goal region (the green transparent cylindrical region) whilst minimally disturbing

some clutter objects. The full number of DoFs in this system is 55. The method

identifies the relevant DoFs of this system at different times during execution and

performs trajectory optimisation using this reduced state. Objects with stronger

shades of red have more DoFs in the state vector at that point during execution: If

an object is dark red, all of its six DoFs are considered; if an object is white, none

of its six DoFs are considered during trajectory optimisation.

considered in the system state, in addition to the robot DoFs. Instead, this chapter

proposes a method that can identify the relevant DoFs at different times during the

task, and perform trajectory optimisation only with the reduced system state.

Reduced order models for efficient planning and control have been used in robotics

before. Locomotion is one such area where reduced order models have found great

performance in enabling real time closed-loop control of high-dimensional robots [12,

59]. These can be pre-defined, such as inverted-pendulum models, or learned models

given a task description [22]. While it is possible to take such approaches for loco-

motion (where the full model is almost always limited to the robot, and the reduced

model is a lower-dimensional approximation of the same robot), it is more difficult

to take a similar approach to object manipulation tasks as in Fig. 5.1, since the full

model can include an arbitrary number, shape, and configuration of objects, which

are unknown beforehand. That is why this work considers a method of reducing

dimensionality online during task execution, given a task instance. Furthermore,

the reduced state can be different for different stages of the task, as shown in the

different snapshots in Fig. 5.1.

An important aspect of this work is that a reduced dynamics model of the system

is not extracted; rather, only a reduced state vector to be used in optimisation is

extracted. The full dynamics model is still used for system integration, whereas

the reduced state vector is what is considered for how to optimise a trajectory.

This chapter shows that there are significant gains (in terms of optimisation time)

to be made with a reduced state vector, specifically when using gradient-based

87

5.1 Introduction

shooting trajectory optimisation methods, e.g., iLQR [73]. There are two parts of

the iLQR algorithm that can benefit from a reduced optimisation state vector; these

parts are computing dynamics derivatives and performing the backwards pass. As

discussed in Chapter 4, computing dynamics derivatives is computationally costly.

That chapter shows how the computational cost could be reduced by only paying the

expensive cost of FD or AD at key-points, and then approximating the remainder

of dynamics derivatives via linear interpolation. This chapter shows how reducing

the dimensionality can reduce this computational cost as well, by computing no

dynamics derivatives for certain DoFs in the system. The backwards pass can also

become computationally expensive for high-dimensional systems, due to it involving

many matrix-matrix multiplication computations. By reducing the optimisation

state vector, the size of these matrices is smaller, making the backwards pass take

less computation time as well. This chapter presents modifications to the iLQR

algorithm, which enables it to be used with a reduced optimisation state vector and

make significant time gains, while the forward/dynamics model of the system still

uses the full state inside a physics simulator, namely MuJoCo [129].

This chapter proposes and compares different methods to identify the relevant

DoFs of the system. The first proposed method is a naive method, which considers

a DoF relevant if and only if it directly appears in the cost function for a given task.

While this in general gives a good heuristic, it can miss important DoFs that are not

in the cost formulation (e.g., an object that is not considered in the cost, pushing

another object that is in the cost), as well as include DoFs in the state vector that

are not always relevant (e.g., an object that is in the cost formulation, but is not in

a position to improve the cost given the current state and the nominal trajectory).

Therefore, more intelligent methods that try to identify the relevant DoFs for the

current state and around the current nominal trajectory are investigated. These

methods use the LQR gain matrix, K, which relates how changes in the current state

should result in changes in current controls, for optimal behaviour. Two methods

are proposed that use the K matrix: The first method directly uses the values in

the columns of K to identify the state elements that can induce a large change in

controls for optimal behaviour, and therefore are considered relevant. The second

method performs an SVD decomposition on K to identify the principal axes and

use them to identify the most important state elements. These three methods are

compared to two baselines: A vanilla iLQR implementation that uses the full state

vector at all times, and finally a method that randomly chooses subsets of the state

vector during optimisation. The results of this work show that the K-informed

methods can identify the relevant DoFs of the task at different points during task

execution (as can also be seen in Fig. 5.1).

It is important to clarify why the proposed methods are particularly useful for

MPC. Since optimisation is performed with a reduced state vector, each individ-

88

5.2 Problem Formulation

ual optimisation iteration is expected to perform slightly worse when compared to

the baseline. However, the proposed methods offer advantages for two key reasons.

Firstly, due to the significantly reduced optimisation time, more optimisation iter-

ations can be completed within a given time period, compounding the benefits of

previous optimisation iterations. Secondly, the methods exhibit reduced policy-lag.

In MPC, every time optimisation occurs from a specific state, by the time optimi-

sation has finished, the system will have moved on past that state. This means that

the optimal control trajectory that has just been computed is stale. Depending on

how large the policy-lag is, this can have significant detrimental effects on the real

control performance of the robot.

5.1.1 Contributions

This chapter:

• Proposes a general MPC approach that changes the elements inside the state

vector online to reduce optimisation times, and therefore policy-lag.

• Proposes and compares different methods to identify the relevant DoFs inside

the state vector for a given task.

• Presents modifications to iLQR, to perform trajectory optimisation with a

reduced state vector.

• Evaluates the proposed methods on three high-dimensional non-prehensile ma-

nipulation tasks.

5.1.2 Organisation

The structure of this chapter is as follows: The general problem formulation is

specified in Sec. 5.2. Sec. 5.3 presents the general methodology for how to perform

optimisation with a reduced state vector, as well as how to determine what DoFs

to keep in the reduced state vector. Results for the proposed methods are shown in

Sec. 5.4 and finally Sec. 5.5 concludes this chapter.

5.2 Problem Formulation

As discussed in Chapter 3, a discrete time dynamics system is considered:

xt+1 = f(xt,ut), (5.1)

where xt and ut are the state and control vectors respectively, at some time-step t

along a trajectory.

89

5.2 Problem Formulation

There is some running cost function:

l(xt,ut) = (xt − x̃t)
TW(xt − x̃t) + uT

t Rut, (5.2)

where W and R are semi-positive definite cost weighting matrices and x̃t is the

desired state at time-step t.

The total running cost of a trajectory, J , is the summation of all the running costs

as well as the terminal cost function, when a control sequenceU ≜ (u0,u1, · · · ,uT−1)

is applied from some initial starting state x0:

J(x0,U) = lf (xT) +
T−1∑
t=0

l(xt,ut), (5.3)

where lf is the terminal cost function of the same form as Eq. 5.2 but with a different

final state matrix Wf and no control cost penalisation as this is the final state.

The general trajectory optimisation problem is to compute an optimal sequence

of controls that minimise the total running cost of the trajectory, from some initial

state:

U∗(x0) = argmin
U

J(x0,U). (5.4)

This work is interested in using trajectory optimisation within an MPC framework.

During each MPC iteration, the optimisation problem from Eq. 5.4 is solved, and

the optimised controls are executed on the real1 system, while another round of

optimisation is initiated with the current state of the system. Therefore, the control

frequency is determined by how quickly Eq. 5.4 is solved, and it has a significant

effect on the performance of the real robot.

Let xt represent the real system state during MPC execution at time t, and

suppose the MPC executes Y controls before it stops2. MPC Cost is used to quantify

method performance under an MPC framework:

MPC Cost = lf (xY) +
Y−1∑
t=0

l(xt,ut). (5.5)

The expression above is similar to Eq. 5.3 and uses the same cost functions l and

lf . The difference is that, while Eq. 5.3 is evaluated over the states xt as predicted

by the dynamics model, Eq. 5.5 is evaluated over the real states achieved by the

system. Furthermore, while Eq. 5.3 sums over the optimisation horizon T , Eq. 5.5

sums over the complete duration of the execution, Y .

In this work, the aim is to reduce the MPC Cost by solving Eq. 5.4 faster, and

therefore achieving a higher control frequency during MPC.

1This work uses a simulator to also represent the real system.
2The controller is stopped if a Task timeout is reached, or if some success condition is achieved.

90

5.3 Method

5.2.1 Definitions

Chapter 3 discussed what elements are traditionally included inside the optimisation

state vector. These definitions will now be briefly formalised.

This work considers manipulation tasks consisting of a robot with nq joints and

multiple objects. There are NO rigid objects and NS deformable/soft objects. Rigid

objects simply have 6 degrees of freedom representing their pose. Deformable object

i consists of NSi
particles, and has three DoFs {x, y, z} per particle. F refers to the

set of all DoFs in the system. Therefore,

|F| = nq + 6NO + 3

NS∑
i=1

NSi
. (5.6)

This work is interested in discovering and using a reduced set of DoFs, C ⊆ F.

Superscript notation will be used when referring to the reduced versions of vectors

or matrices of the system. For example, xC
t refers to the reduced state vector which

only includes elements corresponding to DoFs in C. Superscript notation is not used

when the full set of DoFs is used.

The optimisation state vector considered both positional and velocity elements

for each DoF. Therefore, xt ∈ R2|F| whereas xC
t ∈ R2|C|. The control vector has

size nu, ut ∈ Rnu , and does not change size. The set of DoFs not currently in the

reduced set of DoFs is denoted as L, i.e., L = F \ C.

5.3 Method

A general asynchronous MPC scheme (similar to Howell et al. [50]) can be seen

in Alg. 9. An agent continuously executes an optimised control sequence U. The

optimiser continuously queries the current state from the agent (line 5) and optimises

the control sequence U (line 9)1. Depending on how long the optimiser takes to

optimise the control sequenceU, the agent moves beyond the state that the optimiser

is initialized with. The consequence of this is that the control sequence becomes less

useful the longer optimisation takes; this is often referred to as policy lag.

This work augments this general MPC formulation to dynamically change the

size of the state vector currently being used in line 9, to reduce optimisation times,

thus decreasing policy lag. The reduced set of DoFs is initialised in line 1: this work

simply sets C = F, but if a better heuristic is available that can be used instead.

Before every optimisation call, a number of unused DoFs in L are identified to be

reintroduced to the reduced set of DoFs C on line 6. A control sequence is then

optimised using this reduced set of DoFs and after computing the control sequence,

a set of DoFs that were unimportant to the previous trajectory optimisation problem

are identified on line 10. These DoFs are then removed from the reduced set of DoFs.

1In MPC, only one iteration of optimisation is performed, not optimisation until convergence.

91

5.3 Method

There are three important components of this general approach. Firstly, a

method of optimising a trajectory using only a reduced set of DoFs is needed (Alg. 9,

line 9). Sec. 5.3.1 discusses this and formulates performing iLQR [73, 126] on the

subset of reduced DoFs. Secondly, a method of determining which DoFs can be

removed is required (Alg. 9, line 10).

Sec. 5.3.2 outlines different methods to identify the DoFs to be removed. Finally,

a method for reintroducing DoFs into the reduced set of DoFs is required (Alg. 9,

line 6). This work proposes a simple random sampling strategy from the unused

DoFs L. It would be trivial to improve on the method for reintroducing DoFs

into the system if specific information about the task and current trajectory was

exploited. However, the purpose of this work was to suggest an abstract method for

online state vector reduction that is task agnostic, as such this line of work was not

pursued.

5.3.1 Optimise

This section discusses the specific augmentations made to the iLQR [73, 126] al-

gorithm to operate on the reduced set of DoFs C. The high level overview is that

derivative computation and backwards pass calculations are only performed for the

reduced set of DoFs. The MuJoCo physics simulator is used to model the full sys-

tem. When performing the forwards-rollouts, the full set of DoFs are updated using

Algorithm 9 MPC with state vector reduction (asynchronous)

1: C← InitialiseSubset(F)

2: L← F \ C
3: U← InitialiseControls()

Optimiser Asynchronous (Planning)

4: while task not complete do

5: x0 ← GetCurrentState()

6: dofs to add← IdentifyDoFsToAdd(L)

7: C← C ∪ dofs to add

8: L← L \ dofs to add

9: U,KC ← Optimise(x0,U,C)

10: dofs to remove← IdentifyDoFsToRemove(KC)

11: C← C \ dofs to remove

12: L← L ∪ dofs to remove

Agent Asynchronous (Execution)

13: while task not complete do

14: Execute first control from U

15: Remove first control from U

16: Pad U with the last control

92

5.3 Method

MuJoCo, as well as computing the total running cost of the trajectory. This iLQR

adaptation is referred to as iLQR with state vector reduction (iLQR-SVR).

iLQR-SVR uses a first order approximation of the system dynamics where Eq.

5.1 is written as Eq. 5.7.

xC
t+1 = AC

t x
C
t +BC

t ut, (5.7)

where AC
t = ∂f(xC

t ,ut)/∂x
C
t and BC

t = ∂f(xC
t ,ut)/∂ut. iLQR-SVR also requires a

first and second order approximation of the cost derivatives with respect to the state

and control vector (lCx, l
C
xx, lu, luu).

The computation of the dynamics derivatives A ≜ (A0,A1, · · · ,AT−1) and B ≜

(B0,B1, · · · ,BT−1) is often the bottleneck in gradient-based trajectory optimisation.

These derivatives usually need to be computed via computationally costly finite-

differencing. FD requires evaluating the system dynamics for every DoF in the

system as well as any control inputs. By only computing dynamics derivatives for

the reduced state (AC and BC), the number of dynamics evaluations per time-step

is reduced to 2|C|+ nu instead of 2|F|+ nu.

Using these approximations, optimal control modifications can be computed re-

cursively using the dynamic programming principle [73, 126]. This step is colloqui-

ally referred to as the backwards pass, and works by propagating the value function

V from the end of the trajectory to the beginning by computing equations 5.8 -

5.10 from t = T to t = 0. The following equations are rewritten to operate on the

reduced set of DoFs:

QC
x = lCx + (AC)TV

′C
x , (5.8a)

Qu = lu + (BC)TV
′C
x , (5.8b)

QC
xx = lCxx + (AC)TV

′C
xxA

C, (5.8c)

Quu = luu + (BC)TV
′C
xxB

C, (5.8d)

QC
ux = lCux + (BC)TV

′C
xxA

C. (5.8e)

At every time-step, these Q matrices can be used to compute an open-loop feedback

term k as well as a closed-loop state feedback gain K:

kt = −Q−1
uuQu, (5.9a)

KC
t = −Q−1

uuQ
C
ux. (5.9b)

Finally the value function needs to be updated.

V C
x = QC

x −QuQ
−1
uuQ

C
ux, (5.10a)

V C
xx = QC

xx −QuQ
−1
uuQ

C
ux. (5.10b)

93

5.3 Method

iLQR-SVR performs a forwards roll-out using the MuJoCo model, i.e., using the full

non-linear system dynamics. The state vector is updated for the full set of DoFs

whilst only computing control modifications based on the reduced set of DoFs,

according to:

x̂0 = x0, (5.11)

ût = ūt + αkt +KC
t (x̂

C
t − x̄C

t), (5.12)

x̂t+1 = f(x̂t, ût). (5.13)

Above, x̂t, ût denotes the new computed trajectory states and controls and α is

a line-search parameter between 0 and 1. If a lower cost trajectory is found, the

nominal state and control trajectory is updated from the roll-out.

Remark 1. If a DoF is removed from C, that DoF will still incur a cost when com-

puting the running cost of a trajectory, i.e., the cost function always operates over

the full set of DoFs F.

5.3.2 Reducing dimensionality

This section outlines how DoFs are identified to be removed from the current state

vector. The core idea of these methods is leveraging information from the LQR gain

matrices, K, which are already computed and returned by the iLQR algorithm, as

the state-feedback gain matrices. In case another optimisation algorithm is used,

then a linearised LQR approximation could be applied about the nominal trajectory,

to compute a closed-loop state-feedback gain around it.

The K ≜ (K0,K1 · · · ,KT−1) matrices compute a closed-loop control modifi-

cation to add to the nominal control vector when performing a roll-out using full

non-linear dynamics. This is achieved by calculating the difference in the current

state along the new trajectory against the nominal trajectory for which derivatives

were computed. This difference is then multiplied by a linear gain (i.e., the K)

matrix. This is shown explicitly for a single time-step in Eq. 5.14.


u(0)

u(1)
...

u(nu)

 =


KC(0, 0) KC(0, 1) · · · KC(0, 2|C|)
KC(1, 0) KC(1, 1) · · · KC(1, 2|C|)

...
...

. . .
...

KC(nu, 0) KC(nu, 1) · · · KC(nu, 2|C|)




x̂C(0)− x̄C(0)

x̂C(1)− x̄C(1)
...

x̂C(2|C|)− x̄C(2|C|)


(5.14)

Parentheses notation is used to denote indexing inside the matrix, i.e., K(., .). The

columns inside the K matrix correspond to computing entire control vector mod-

ifications based on the deviation of a specific DoF from the nominal. This chapter

reasons that, DoFs that have small gain values associated with them over the entire

trajectory are not important to the overall trajectory optimisation problem and can

94

5.3 Method

be ignored. This is because even if that DoF had a large deviation from its nominal

position, it would have a minimal impact on the newly computed control.

Two approaches of leveraging this information are considered, a) simply sum-

ming up the relevant values inside these matrices, b) performing singular value

decomposition (SVD) to try find the most relevant DoFs. Both methods compute

dof importance values for every DoF in C, then, a threshold parameter ρ is used to

determine which DoFs should remain in the C and which ones should be removed.

Summing

The summing method simply leverages the values inside the K matrix for each DoF

and how much of an impact they have on the control vector modification. If the

values inside theK matrix are large for a particular DoF over the entire optimisation

horizon, then that DoF is likely important to the trajectory optimisation problem

currently. A dof importance value for each DoF is computed using the following

formula:

dof importance[j] =
T∑
t=0

m∑
p=0

(
|KC

t (p, j)|+ |KC
t (p, j + |C|)|

)/
T. (5.15)

The summation is carried out over the number of controls in the control vector nu

as well as summing over all matrices over the optimisation horizon. The summation

is also carried out over both columns corresponding to the positional and velocity

element for the DoF j.

SVD

The SVD method aims to identify the most influential combinations of DoFs based

on the structure of the state-feedback gain matrices. For each time step t, the matrix

Kt ∈ Rnu×2|C| is decomposed using singular value decomposition as follows:

Kt = UtΣtV
T
t , (5.16)

where Ut ∈ Rnu×nu and Vt ∈ R2|C|×2|C| are orthogonal matrices, and Σt is a diagonal

matrix containing the singular values σ1 ≥ σ2 ≥ . . . ≥ σnu ≥ 0. The columns of Vt

represent orthonormal directions in the state space (i.e., combinations of position

and velocity terms) that contribute most to the control adjustments.

To measure the influence of each individual DoF, the method examines how

strongly its associated state variables project onto the most dominant singular direc-

tions. Specifically, the first g singular values (g = 3 in this work) and corresponding

right-singular vectors are used to compute a dof importance score as follows:

dof importance[j] =
T∑
t=0

g∑
n=1

((
|Vt(j, n)|+ |Vt(j + |C|, n)|

)
σn

)/
T. (5.17)

95

5.4 Results

Again, parentheses V (., .) are used to denote indexing inside the matrix. Here,

Vt(j, n) denotes the j-th DoF’s positional contribution to the n-th principal direction,

and Vt(j + |C|, n) the corresponding velocity component. The use of singular values

σn as weights ensures that more important directions (as judged by their influence

on control effort) contribute more to the importance score. Notably, both methods

of computing dof importance values normalise via the optimisation horizon so that

ρ does not need to change dependent on the optimisation horizon used.

Both of the proposed methods use the dof importance values to determine which

DoFs to remove for Alg. 9 line 10. Any DoFs that have an importance value that

is below ρ are removed from the current reduced set of DoFs C. One exception to

this is that the robot DoFs are not allowed to be removed by any of the methods;

i.e., the robot DoFs always appear in the state vector.

5.4 Results

Simulation experiments are performed under an asynchronous MPC framework as

described in Alg. 9. Results are provided for a variety of methods, there are two

baseline methods:

• iLQR-Baseline: A baseline method, where iLQR is performed as normal on

the full set of DoFs in the system.

• iLQR-Rand : A baseline method where iLQR is performed on a random re-

duced set of DoFs. Instead of using any intelligent method to determine which

DoFs, this method randomly samples θ DoFs to use (in addition to the robot

DoFs) in every optimisation iteration1.

This chapter proposes three methods to evaluate against these baselines:

• iLQR-Naive: This method reduces the set of DoFs in the reduced set to only

the DoFs that are directly considered in the cost function for the task.

• iLQR-SVR-SVD : This method dynamically changes the number of DoFs as

described in Sec. 5.3.2-SVD.

• iLQR-SVR-Sum: This method dynamically changes the number of DoFs as

described in Sec. 5.3.2-Summing.

All experiments were performed on a 16-core 11th Gen Intel(R) Core(TM) i7-

11850H @ 2.50G with 32GB of RAM.

1The purpose of this baseline is to show that simply reducing the number of DoFs is not enough

to perform well, there needs to be some intelligent thought behind it.

96

5.4 Results

5.4.1 Task definition

Three high-dimensional non-prehensile manipulation tasks were selected. The main

idea behind these tasks was to create tasks that were not too mechanically chal-

lenging but were high-dimensional to see if the proposed methods are capable of

determining what DoFs are needed to solve the tasks efficiently. In some of the

tasks that have very large state spaces, it was required to slow down the simulated

agent thread by some factor to maintain some level of performance. All tasks used

a Franka Panda robotic arm with 7 actuated robotic joints (not considering the

grippers in the control vector).

The general description of the three tasks as well as their task parameters are

outlined below. T is the optimisation horizon, ∆t was the model time-step. Y is

the task timeout which is the number of time-steps in the agent thread until the

task was finished. Finally, slowdown factor was how many times slower the agent

thread was compared to the model time-step. For all tasks, the initial trajectory

that was used to warm-start the first optimisation iteration of MPC was a straight

line trajectory of the robotic end-effector to the manipulated object.

Clutter task: The aim of this task is to push a green cylinder to a target goal

region (shown by a green silhouette) whilst minimally disturbing a set of distractor

objects (example in Fig. 5.1). The task parameters were as follows; T = 80,

∆t = 0.004, Y = 2000, Slowdown factor = 1.

Soft task: The aim of this task is to push a soft body. This task aimed to push

a high dimensional red soft body to a goal location (example in Fig. 5.2). The task

parameters were as follows; T = 50, ∆t = 0.004, Y = 1000, Slowdown factor = 3.

Soft rigid task: This task aimed to push a green cylinder to a target location

(green silhouette) but there is a high dimensional soft body in between the robot

end-effector and the goal object. This means that the optimiser needs to reason

about the dynamics between the soft body and the rigid body to achieve the task

(example in Fig. 5.3). The task parameters were as follows; T = 100, ∆t = 0.004,

Y = 1000, Slowdown factor = 5.

Figure 5.2: A sequence of snapshots showing an example trajectory for the soft

task. The objective is to push the red deformable object to the green flat circle on

the floor. The full number of DoFs in this system is 115.

97

5.4 Results

Figure 5.3: A sequence of snapshots showing an example trajectory for the soft rigid

task. The objective is to move the green cylinder to the goal region (the transparent

cylindrical region) with a high-dimensional soft body being placed between the robot

end-effector and the green cylinder. The full number of DoFs in this system is 154.

5.4.2 Asynchronous MPC results

This section evaluates the performance of the proposed methods on the three out-

lined tasks. Earlier, Eq. 5.5 defined the MPC cost as the cost of the actual trajectory

executed in the real system. This is used as the main metric of success in this sec-

tion. This section shows that the proposed methods are capable of reducing the

MPC cost compared to the baselines, even though they are optimising only on a re-

duced state vector. This is because that whilst individual optimisation performance

will be somewhat lower when only considering a subset of DoFs, the significant

optimisation time savings reduce the detrimental effects of policy lag.

Table 5.1 shows the results from the asynchronous MPC experiments. 100 runs

were performed for the clutter task and 20 runs for the soft and soft rigid tasks.

The first values in the table are the mean values and the second values are 90%

confidence intervals. It should be noted that outliers were removed for the clutter

task to prevent individual data points from disproportionately affecting the results.

In this task, due to cylinders being used as the goal and distractor objects, in

certain occasions if a cylinder was toppled with some large velocity, it would roll

into the distance away from its goal position until the task timeout. The result

of this would be a disproportionately high cost, in situations where this occurred

these outliers were removed. Finally, cost values were normalised with respect to

the iLQR Baseline method.

The results show that, for all three tasks, the proposed methods (iLQR-Naive,

iLQR-SVR-SVD and iLQR-SVR-Sum) are capable of achieving a lower MPC Cost

than the iLQR-Baseline. iLQR-Naive on average reduces the MPC cost by 27%

over all three tasks. Choosing the best parameterisation of the dynamic methods,

they manage to lower the MPC cost by 14%. Importantly, it is shown that simply

limiting the size of the state vector does not achieve the same level of performance

as the intelligent methods as iLQR-Rand only reduces the MPC cost by 6%.

These results are skewed slightly by the soft rigid task, where the iLQR-Naive

method significantly outperformed all other methods. If we only consider the clut-

98

5.4 Results

Table 5.1: Results of asynchronous MPC for three manipulation tasks. The values

in the table are averaged over 100 trials for the clutter task and 20 trials for the soft

and soft rigid task. The first value is the mean and the second is the 90% confidence

interval. For the three first methods, the number of DoFs is a preset parameter,

while the rest of the methods adjust the number of DoFs dynamically.

Method / Task Clutter Soft Soft rigid

iLQR-Baseline

MPC cost 1.00± 0.034 1.00± 0.080 1.00± 0.096

Opt time (ms) 485.71± 5.16 620.97± 7.35 4322.39± 366.65

Num DoFs (preset) 55 115 154

iLQR-Rand
MPC cost 0.94± 0.033 1.14± 0.104 0.74± 0.071

Opt time (ms) 148.91± 1.69 79.12± 4.13 881.54± 7.67

θ = 5 Num DoFs (preset) 12 12 12

iLQR-Naive

MPC cost 0.89± 0.035 0.92± 0.067 0.38 ± 0.066

Opt time (ms) 219.07± 2.11 395.52± 7.71 583.06± 85.72

Num DoFs (preset) 23 79 9

iLQR-SVR-SVD
MPC cost 0.86 ± 0.033 0.90 ± 0.065 0.88± 0.071

Opt time (ms) 335.16± 13.61 367.18± 49.60 2320.80± 392.91

θ =10, ρ =1 Num DoFs 31.85± 1.12 72.55± 9.37 85.19± 18.32

iLQR-SVR-SVD
MPC cost 0.91± 0.036 0.91± 0.069 0.66± 0.063

Opt time (ms) 237.79± 5.76 116.20± 4.73 1051.20± 32.55

θ =10, ρ =500 Num DoFs 21.06± 0.33 23.32± 0.77 24.72± 0.17

iLQR-SVR-SVD
MPC cost 0.91± 0.036 0.90± 0.061 0.89± 0.068

Opt time (ms) 271.21± 11.41 251.90± 38.30 1296.29± 184.13

θ =5, ρ =1 Num DoFs 24.38± 1.00 49.59± 7.34 38.69± 8.66

iLQR-SVR-Sum
MPC cost 0.86± 0.032 0.94± 0.073 0.77± 0.074

Opt time (ms) 287.05± 10.91 136.18± 10.92 1130.83± 54.68

θ =10, ρ =1 Num DoFs 29.82± 1.01 26.68± 2.08 29.10± 2.92

iLQR-SVR-Sum
MPC cost 0.87± 0.029 1.00± 0.081 0.70± 0.071

Opt time (ms) 192.59± 2.08 101.15± 4.73 997.71± 32.55

θ =10, ρ =500 Num DoFs 18.69± 0.10 18.20± 0.11 24.09± 0.46

iLQR-SVR-Sum
MPC cost 0.94± 0.042 0.97± 0.079 0.75± 0.066

Opt time (ms) 218.45± 8.38 114.74± 13.76 935.45± 37.03

θ =5, ρ =1 Num DoFs 21.91± 0.86 19.94± 1.87 20.21± 0.91

99

5.4 Results

θ = 0

M
P
C

co
st

N
u
m

D
oF

s

ρ

500100502010510.50.10

10

20

30

40

50

θ = 10
θ = 5

1000

1100

1200

1300

1400

Figure 5.4: Top plot shows the MPC cost averaged over 100 runs for the clutter task.

The lightly shaded area shows the 90% confidence interval range. Bottom plot shows

the average number of DoFs in the state vector. Three different parameterisations

of θ were used with scaling values for ρ.

ter and soft tasks then iLQR-Naive reduces the MPC cost by 8.5%, iLQR-SVR by

12%, whereas iLQR-Rand actually increase the MPC cost by 4%.

This implies that the K-informed methods are more capable in these two tasks.

This makes sense as the Naive methods always include DoFs in the state vector that

are not necessarily important. For example, in the clutter task, when some objects

are not involved in contact with the goal object / robot directly or indirectly, consid-

ering their dynamical properties adds nothing of value to the trajectory optimisation

solution. The K-informed methods are capable of deducing this automatically.

It is important to recognise that only three parameterisations of θ and ρ are

shown in these results and are kept them the same for all three tasks to test the

generalisability of the proposed methods. Better results could have been achieved if

these values were tuned to each task specifically.

This section also experimented with the effects of modifying the values for θ and

ρ for the clutter task, the results of this can be seen in Fig. 5.4. Three different

values for θ are used and the value of ρ is scaled between 0 and 500 (please note the

values are not spaced equally). Firstly, when ρ is set to zero, iLQR-SVR operates

identically to iLQR-Baseline. This can be seen clearly in Fig. 5.4 as all three data

points have nearly identical MPC Costs. As the value for ρ is increased, it makes

100

5.5 Conclusion

the proposed methods “pickier” at what DoFs remain in the state vector. This can

clearly be seen in the bottom plots where the average number of DoFs in the state

vector decreases as ρ increases.

When θ is set to zero, no DoFs are ever re-introduced to the reduced set of DoFs.

This means that once a DoF has been removed it never has the opportunity to be

reconsidered in optimisation. This is clearly a bad strategy as it negates the core

idea of the proposed methodology which is that DoFs importance can change over

time during a task, noticeably in Fig. 5.4, this value of θ performs noticeably worse

compared to the other two parameterisations of θ.

The optimal parameterisation for ρ would be some moderate value, as when ρ

approaches zero iLQR-SVR performance should tend towards iLQR-Baseline and

when ρ tends towards large values, iLQR-SVR performance tend towards iLQR-

Rand.

5.5 Conclusion

This chapter has discussed how dimensionality reduction can be used online as

a method of reducing the computational cost of trajectory optimisation for high-

dimensional tasks, such as manipulation in clutter or manipulation of deformable

objects. Several contributions have been made in this work: Firstly, this chap-

ter has outlined a general method for changing the size of a state vector that is

used within MPC online. Secondly, a heuristic method of reducing the number of

DoFs considered in trajectory optimisation has been outlined and shown that the

proposed methods can increase the performance of a robot under an asynchronous

MPC scheme.

Importantly, in this work, the methods that have been outlined have been task

agnostic. They do not use any specific task related information to determine how to

remove or add DoFs from/into the optimisation state vector. As such, it would be

fairly trivial to take the general approach and apply it to a specific robotic system

where a more informed heuristic could be used to inform how important certain

DoFs are.

The general methods proposed in this chapter could be very important in using

trajectory optimisation for robotic manipulation in high-dimensional scenes, par-

ticularly for manipulation in clutter where there are lots of objects, but not all of

these objects are relevant to the task at all times. In such situations, it could be

advantageous to consider a more informed heuristic for how to consider what DoFs

are included in the state vector, particularly with regards to adding DoFs back into

the state vector.

This work has some limitations, some of the most notable of these are:

• Using a thresholding scheme to determine what DoFs should be kept or re-

moved can be problematic and requires some level of manual tuning. These

101

5.5 Conclusion

parameters can also be somewhat task dependent.

• The methods considered in this chapter are axis-aligned forms of dimensional-

ity reduction, where each degree of freedom (DoF) is either fully considered or

not considered at all. While simple and interpretable, these methods cannot

capture lower-dimensional correlations across multiple DoFs, which may be

useful for certain manipulation tasks.

• The proposed methods are limited to deliberately not remove robot joints from

the state vector. This limitation was a design choice for the tasks investigated

in this chapter as most of the robot joints should be considered at most times

during task execution. However for tasks like locomotion, the proposed meth-

ods would not be useful with this limitation.

Finally, regarding future avenues of work, the primary focus should be on ad-

dressing the previously stated limitations. First, eliminating the need for manual

tuning of a threshold parameter would be advantageous. One possible approach is

to determine an optimal fixed size for the state vector. Rather than removing DoFs

that fall below a threshold, the most important DoFs could be retained until the

desired state vector size is reached. Although this still introduces a tunable param-

eter—the optimal size of the state vector—it is likely to be easier to tune than a

threshold value.

There are certain tasks for which the current methods may not be well suited. For

example, in tasks involving the scooping of many small objects from one location

to another using a funnel, it is unlikely that any specific DoFs are significantly

more important than others. However, individually considering all DoFs remains

computationally inefficient. This issue could potentially be addressed by applying a

dimensionality reduction technique that combines the relevant object states into a

lower-dimensional representation.

Finally, an interesting direction for future work would be to remove the current

limitation of excluding robot joints from state vector reduction and to apply the

proposed methods to high-dimensional humanoid robots. Depending on the task, a

humanoid robot may not need to explicitly consider all of its joints. For instance,

when walking from one location to another, it may be unnecessary to account for

the joints of the fingers—or even the arms. Conversely, during a manipulation task

after reaching a goal location, considering leg joints might offer little benefit, and

assuming a static stance could be advantageous. Similar ideas have been investigated

previously under standard control paradigms [40] for locomotive tasks for highly

redundant robots.

102

Chapter 6

Challenges of MPC on Real Robotic

Hardware

Chapter Deliverables

Video: youtube.com/watch?v=Q1mxb1CMIKg

Controllers Code: github.com/roboticsleeds/panda controllers

Cobot Pump Code: github.com/roboticsleeds/cobot pump ros

6.1 Introduction

The motivation of this chapter is to begin building the general packing/picking

system that was outlined in Chapter 1. Specifically, creating such a system to

operate on real robotic hardware, namely the Franka-Emika Panda.

To recap, the system that was motivated at the start of this thesis was one where

a robotic manipulator could leverage contact-based interactions for efficient picking

and packing operations. Let us consider a picking example where the desired object

to be picked is occluded by other objects. A traditional method to handle this would

be to move objects out of the way of the desired object by sequentially grasping and

moving each object to a new location. A more efficient approach would be to use

non-prehensile manipulation to move objects out of the way to clear space so that

the desired object can be picked. Similarly, let us consider a packing example where

the robot wants to pack an object at a location that is obstructed by other objects.

Again, a traditional approach would be to sequentially grasp each obstructing object

and move them out of the way, before grasping the desired object and placing it at

the now cleared location. A more efficient approach would be to grasp the desired

object and use non-prehensile manipulation to clear space by using the grasped

object to push other objects out of the way.

In this chapter, to enable a robot to operate in such a way, trajectory opti-

103

https://www.youtube.com/watch?v=Q1mxb1CMIKg
https://github.com/roboticsleeds/panda_controllers
https://github.com/roboticsleeds/cobot_pump_ros

6.1 Introduction

misation is used with a general purpose physics simulator (namely MuJoCo [129])

to simulate contact-interactions MPC is used to account for the fidelity issues be-

tween the physics simulator and the real world. The previous two chapters have

discussed how trajectory optimisation can be sped up for contact-based manipula-

tion of robotic systems for gradient-based methods. This has either been done via

using approximations (Chapter 4) or through the use of dimensionality reduction

(Chapter 5). One of the purposes of these methods was to make trajectory optimi-

sation faster so that MPC can be performed at higher control frequencies so that

better control of real robotic systems can be achieved.

This thesis has already presented experiments on asynchronous MPC in simula-

tion in Chapter 5. In theory, translating the MPC code from simulation to the real

robot should be straightforward. Instead of sending controls to a simulated robot

and relying on the physics simulator to integrate the system dynamics, the controls

are sent to the real robot instead and sensors are queried to obtain the real-world

state. However, this transition was not as straightforward. Despite using a popular

dynamics model of the Franka Panda arm [68], no system identification is perfect,

and there were significant discrepancies between the real and simulated accelerations

induced by the same torques.

While MPC is designed to compensate for differences between a model and a

real system, if the model deviates too much from reality, MPC alone cannot fully

account for these discrepancies. Although better system identification could po-

tentially improve the model, it is unclear how accurate the model would need to

be for MPC alone to be sufficient. Therefore, the primary focus of this chapter is

to explore the design of a robust control method that enables effective MPC-based

control despite imperfect system identification.

Chapter 4 performed some real world experiments and faced the same issue. That

chapter addresses this issue by using a position controller to enable better tracking

of the optimised trajectory. However, this lead to a new issue that made controlling

the robot using conventional short-horizon MPC problematic. The issue was that

the commanded positions being sent to the robot were close to the robots current

configuration; the resulting torques produced by the proportional controller were

then not enough to overcome joint friction. Instead, an online-replanning method [4]

was used, where longer-horizon trajectories were optimised and executed on the real

robotic hardware. These longer horizon trajectories were executed until completion

or until significant divergence was detected between the planned system state and

the actual real world state. Significant divergence was defined by measuring the

Euclidean distance between the planned and actual positions of all objects in a

scene. This chapter performs more conventional MPC with a shorter optimisation

horizon and the optimisation thread is constantly re-optimising the trajectory from

the current state. To achieve this, two low level feedback controllers are implemented

and evaluated: an inverse dynamics controller and a torque proportional derivative

(torque PD) controller. As well as testing these two different controllers, a variety

104

6.2 MPC Performance

of controller parameters and some MPC strategies are also evaluated to observe how

they affect the control performance of the real robot.

Finally, this chapter concludes by using the best performing controller setup

with MPC to control the robot to perform a packing-based task. This general task

involves placing some object at a desired location, where the location is obstructed

by other objects. The robotic manipulator needs to move the obstructing obstacles

out of the way using non-prehensile manipulation so that the grasped object can

be placed at the correct location. Some brief analysis is performed on how effective

this method is in terms of time to complete the task and placement accuracy.

6.1.1 Contributions

This chapter:

• Frames the packing in clutter problem as an optimisation problem, where the

robot wants to place a desired object at some desired location that is obscured

by clutter. The proposed method enables the robot to use contact-interactions

to clear the desired area to place the object efficiently.

• Investigates the effects of various controllers and MPC parameters on the

control performance of the real Franka-Emika Panda robot for a contact-based

manipulation task.

6.1.2 Organisation

The organisation of this chapter is as follows: Sec. 6.2 investigates two separate

controllers for the Franka Panda as well as a variety of controller and MPC param-

eters and how they affect the control performance of the real robot. Then, Sec. 6.3

frames the packing problem as an optimisation problem and shows some results of

the efficiency of this method. Results are shown for how well the proposed method

can perform in terms of placement accuracy and amount of disturbance applied to

the scene. Finally, Sec. 6.4 concludes this chapter.

6.2 MPC Performance

As discussed previously, the focus here is on developing a system capable of reliably

controlling the real Franka Panda robot using MPC, despite the imperfect system

identification present in the current model of the arm. Two different controllers

are implemented and tested to help address the fidelity gap between the simulated

and the real robot. In addition to evaluating these controllers, various controller-

dependent parameters and MPC parameters are also tested in an effort to improve

the real robot’s control performance.

105

6.2 MPC Performance

The general asynchronous MPC framework used to control the real robot can

be seen in Alg. 10. There are two threads running in parallel, the first thread (the

Optimiser) is constantly optimising (using iLQR) a short horizon trajectory from

the current real world state. In Line 3, the current real world state is stored in x0,

then a short horizon trajectory is optimised in Line 4, from the current state x0 and

the current warm-start guess for the optimal trajectory. It returns a newly optimised

trajectory of controls U and states X, as well as a state-dependent feedback control

law K (as the iLQR optimisation algorithm is used). A flag is set in Line 5 to

communicate with the other thread to update the control sequence to send to the

robot. Importantly, in line 6, the algorithm chooses what will be the first control

index to send to the robot. Due to the fact that the Optimise function will take a

non-insignificant amount of time, the first control in the trajectory will have been

optimised for a state that the robot is no longer in. A general GetStartIndex

function is proposed with three different implementations of this function being

evaluated, detailed in Sec. 6.2.2.

The second thread (the Executor) is constantly sending controls provided by the

optimiser to the real robot, under whatever control scheme is currently being used.

In line 8, whenever the new controls flag is set to true, the executor thread will

update the current control index. In line 11, the robot state is extracted from the

system state. This simply involves retrieving the positional and velocity values of the

robot from the correct indices in the state vector. The acceleration term is computed

using finite-differencing of the current robot velocities and the last robot velocities.

Similarly, in line 12, the torques to send to the robot are also retrieved from the

Algorithm 10 MPC real robot

1: U← InitialiseControls()

The Optimiser Thread

2: while task not complete do

3: x0 ← GetRealWorldState()

4: U,X,K← Optimise(x0,U)

5: New controls flag = true

6: ts = GetStartIndex()

The Executor Thread

7: while task not complete do

8: if New controls flag then

9: tc = ts

10: New controls flag = false

11: qdesired, q̇desired, q̈feedforward = GetRobotState(Xtc)

12: τfeedforward = GetRobotTorques(Utc)

13: SendCommandToRobot(τfeedforward, qdesired, q̇desired, q̈feedforward)

14: tc = tc + 1

106

6.2 MPC Performance

control vector. In simulation, the torques that were computed by the optimiser

include gravity compensation terms of the Franka Panda. The real Franka Panda

automatically compensates for gravity, and as such, the gravity compensation needs

to be subtracted from the control sequence. Finally, in line 13, the current control

command is sent to the robot using the generic function SendCommandToRobot.

This work investigates different methods off sending the commands to the robot, the

details of this will be discussed in Sec. 6.2.1.

6.2.1 Controllers

This section will discuss two different controllers that were implemented for the

Franka Panda, as well as other control modifications that are evaluated. The combi-

nation of the controller and any small adaptations make up a unique implementation

of the function SendCommmandToRobot from Alg. 10.

Inverse dynamics controller

The first controller is an inverse dynamics controller, this controller computes torques

to apply to the real robot in the following two parts. Firstly a desired acceleration

term q̈desired is computed:

q̈desired = q̈feedforward +Kp(qdesired − qactual) +Kd(q̇desired − q̇actual), (6.1)

where q̈feedforward, qdesired and q̇desired are the commanded acceleration, position and

velocity sent to the robot. qactual and q̇actual are the actual position and velocity

terms of the real robot. Finally, Kp and Kd are gain terms.

The desired acceleration is then processed through the inverse dynamics formula

to compute the torques to apply to the robot:

τ =M(qactual)q̈desired + C(qactual, q̇actual)q̇actual +G(qactual), (6.2)

where M , C and G are the mass, coriolis and gravity matrices respectively.

There are two alterations to this controller which are evaluated. Firstly, the

effects of sending or ignoring the feed forward acceleration term. When the feed

forward term is included, this is denoted as FF in Table 6.1. Secondly, when the

feedforward acceleration term is sent to the robot, a low-pass filter is also tested to

reduce high-frequency noise that can cause jerky motion in the real system. Before

sending the acceleration to the real robot, a damped version is computed via the

following:

q̈feedforward = αq̈feedforward + (1− α)q̈feedforward last, (6.3)

where q̈feedforward last is the last feed forward acceleration sent to the robot and

0 ≤ α ≤ 1 is a scalar (this work uses α = 0.2). When a low pass filter is used, it is

denoted as LP in Table 6.1.

107

6.2 MPC Performance

Torque PD controller

The second controller that is implemented was a torque PD controller. This con-

troller is similar to the inverse dynamics controller in the sense that it also uses

feedback based on the desired and actual positions and velocities. However, the

commanded torques are computed in one step:

τ = τfeedforward +Kp(qdesired − qactual) +Kd(q̇desired − q̇actual), (6.4)

where τfeedforward is the feed forward torque computed from the optimiser. This

controller does not consider the dynamics of the arm, but instead relies on gain

terms for the positions and velocity components to correct for deviations between

the simulated and real robot.

There are three alterations that are tested for this controller. Similarly to the

inverse dynamics controller, the effects of sending or omitting the feedforward term

τfeedforward are evaluated. When τfeedforward is included, it is denoted by FF in Table

6.1. The impact of applying a low-pass filter is also examined for this controller.

However, unlike the inverse dynamics controller, the low-pass filter is applied on

the controller side, meaning that the actual torques sent to the robot are filtered as

opposed to the feed forward torques, i.e:

τ = ατ + (1− α)τlast, (6.5)

where τlast are the last torques sent to the real robot. Again, when a low pass filter

is applied, this is denoted as LP in Table 6.1.

Finally, the effects of using a torque rate limiter are also tested, again imple-

mented on the controller side. A torque rate limiter ensures that the torques sent

to the robot can not change faster than some preset limit:

τ = τlast + clamp(τ − τlast,−τ̇max, τ̇max), (6.6)

where τ̇max is the maximum allowed rate of change of the commanded torques. When

the torque rate limiter is used, this is denoted as TRL in Table 6.1.

6.2.2 Time indexing methods

This section describes different implementations of the function GetStartIndex

from Alg. 10. To reiterate why the choice of the starting control index is important,

for contact-based manipulation, the Optimise function from Alg. 10 takes a non-

negligible amount of time. As a result, by the time a new optimal control sequence

has been computed, the initial control was optimised for a state that no longer

represents the state of the scene. This effect (commonly referred to as policy-lag)

worsens as the optimisation time increases, which scales with both the dimensionality

of the optimisation problem and the optimisation horizon.

108

6.2 MPC Performance

This chapter proposes three methods for selecting the starting control index when

applying controls from the optimiser to the real robot:

• T0: Simply select the first control index and ignore the effects of policy lag.

• Opt Time: Measure the duration of the Optimise function and convert that

time into the corresponding control index.

• Error: Iterate through the nominal state trajectory produced by the optimiser

and compute the error between each state and the current real robot state.

Select the control index corresponding to the state that is closest to the real

robot’s current state.

6.2.3 Results

This section evaluates the control performance of the different controllers, controller

adaptations and MPC methods. A unique combination of these three concepts is

referred to as a control parametrisation.

For the controller performance evaluations, a packing task is set up where the

objective is to carry a grasped object using a vacuum gripper and place it at a desired

location. These initial evaluations are conducted with no obstacles obstructing the

goal region, in order to isolate and assess the control performance of the arm under

collision-free motion.

For each control parametrisation, the task is executed five times from the same

initial robot arm configuration and goal position of the grasped object. Execution

continues until one of the following conditions is met: a task timeout is reached

(2000 control steps applied), the task is successfully completed (determined by the

distance between the grasped object and its desired position falling below a pre-

defined threshold), or the robot is stopped prematurely (either manually due to

observed unsafe behaviour, or automatically by the internal Franka Panda firmware

under various fault conditions). Under these testing conditions, a variety of data

and performance metrics are collected for each control parametrisation. The results

are presented in Table 6.1. The collected data and metrics include the following:

• Pos Error: The positional error between commanded positions qdesired and

the actual positions of the robot qactual over the task execution, normalised by

the length of the trial.

Pos Error =
N∑
t=0

|qdesired t − qactual t|/N, (6.7)

where N is the length of the individual task.

• Vel Error: The velocity error between commanded velocities q̇desired and the

actual velocities of the robot q̇actual over the task execution, normalised by the

109

6.2 MPC Performance

length of the trial.

Vel Error =
N∑
t=0

|q̇desired t − q̇actual t|/N. (6.8)

• Torque Grad: The summation of the gradient of the actual torques sent to

the robot, normalised by the length of the trial.

Torque Grad =
N∑
t=1

|τt − τt−1|/N. (6.9)

• Cost: The cost of the actual trajectory of states and controls from the real

robot, when ran through the cost function used for optimisation.

Cost =
N∑
t=0

l(xt,ut). (6.10)

• Task Length: The length of the individual task.

Task Length = N. (6.11)

• TC (Task Complete): Whether the individual task run was successful or

not.

• RS (Robot Stopped): Whether the robot was stopped early or not, either

manually when unsafe motion was observed or when the internal Franka Panda

firmware stopped the robot for safety reasons.

These metrics were averaged over the 5 runs and mean and standard deviation

values were computed and shown in Table 6.1. For the TC and RS metrics, the

number of times these events occurred is shown compared to the total number of

runs.

110

6.2 MPC Performance

T
ab

le
6.
1:

S
u
m
m
ar
y
of

re
al

ro
b
ot

co
n
tr
ol

p
er
fo
rm

an
ce

u
n
d
er

d
iff
er
en
t
co
n
tr
ol

p
ar
am

et
ri
sa
ti
on

s.
L
P
is
w
h
et
h
er

a
lo
w

p
as
s
fi
lt
er

w
as

u
se
d
,
T
R
L

w
as

w
h
et
h
er

a
to
rq
u
e
ra
te

li
m
it
er

w
as

u
se
d
an

d
F
F

is
w
h
et
h
er

th
e
fe
ed

fo
rw

ar
d
te
rm

w
as

u
se
d
.
T
h
e
va
lu
es

re
p
or
te
d
in

th
e
ta
b
le

ar
e
m
ea
n

va
lu
es

p
lu
s/
m
in
u
s
th
e
st
an

d
ar
d
d
ev
ia
ti
on

,
av
er
ag
ed

ov
er

5
ru
n
s
fo
r
ea
ch

co
n
tr
ol

p
ar
am

et
ri
sa
ti
on

.
T
C

is
w
h
et
h
er

th
e
ta
sk

w
as

co
m
p
le
te
d
an

d

R
S
is
w
h
et
h
er

th
e
ro
b
ot

w
as

st
op

p
ed

ea
rl
y,

w
it
h
th
e
va
lu
es

sh
ow

in
g
h
ow

m
an

y
ti
m
es

th
is
ev
en
t
o
cc
u
rr
ed
.

C
on

tr
ol
le
r
N
am

e
T
im

e
In
d
ex
in
g

L
P

T
R
L

F
F

P
os

E
rr
o
r
(×

1
0
−
3
)

V
el

E
rr
o
r
(×

1
0
−
3
)

T
o
rq
u
e
G
ra
d
(×

1
0
−
3
)

C
o
st

T
a
sk

L
en
g
th

T
C

R
S

In
ve
rs
e-
D
y
n
am

ic
s-
1

T
0

0.
40
±

0
.5
7

1
4
.4
2
±

2
1
.3
6

2
.6
3
±

0
.1
5

2
0
3
.0
±

4
2
.7

1
,9
2
9
.8
±

9
7
.3

2
/
5

0
/
5

In
ve
rs
e-
D
y
n
am

ic
s-
2

T
0

✓
0.
40
±

0
.2
3

1
1
.6
4
±

6
.9
1

5
.1
0
±

1
.5
7

4
6
.2
±

1
2
.1

5
7
8
.4
±

2
8
9
.8

4
/
5

1
/
5

In
ve
rs
e-
D
y
n
am

ic
s-
3

T
0

✓
✓

0.
24
±

0
.2
4

7
.7
1
±

7
.6
3

3
.1
4
±

0
.4
9

1
0
5
.3
±

8
4
.3

9
7
7
.6
±

4
4
2
.8

3
/
5

2
/
5

In
ve
rs
e-
D
y
n
am

ic
s-
4

E
rr
or

0.
86
±

0
.2
0

6
.2
3
±

1
.0
4

4
.2
1
±

0
.4
1

1
2
4
.9
±

8
.3

9
9
4
.2
±

1
3
4
.9

0
/
5

5
/
5

In
ve
rs
e-
D
y
n
am

ic
s-
5

E
rr
or

✓
0.
36
±

0
.2
1

7
.6
5
±

5
.5
7

6
.7
7
±

2
.9
9

9
0
.4
±

1
1
4
.3

5
8
9
.6
±

8
2
3
.8

0
/
5

4
/
5

In
ve
rs
e-
D
y
n
am

ic
s-
6

E
rr
or

✓
✓

0.
19
±

0
.2
6

2
.6
9
±

1
.4
6

3
.2
6
±

1
.0
2

1
1
0
.0
±

8
9
.5

7
8
3
.4
±

6
5
5
.9

0
/
5

5
/
5

In
ve
rs
e-
D
y
n
am

ic
s-
7

O
p
t
T
im

e
0.
34
±

0
.1
7

7
.6
4
±

4
.9
4

2
.5
4
±

0
.1
0

9
5
.5
±

8
9
.7

1
,3
9
1
.0
±

8
3
4
.0

2
/
5

0
/
5

In
ve
rs
e-
D
y
n
am

ic
s-
8

O
p
t
T
im

e
✓

0.
15
±

0
.1
1

2
.9
2
±

2
.3
8

4
.2
0
±

1
.6
7

1
0
6
.8
±

1
0
5
.6

7
2
5
.2
±

7
1
5
.7

1
/
5

3
/
5

In
ve
rs
e-
D
y
n
am

ic
s-
9

O
p
t
T
im

e
✓

✓
0.
21
±

0
.0
9

5
.2
5
±

2
.9
5

2
.6
5
±

0
.1
5

6
3
.5
±

5
.8

1
,3
9
6
.2
±

8
2
7
.3

0
/
5

2
/
5

T
or
q
u
e-
P
D
-1

T
0

0.
87
±

0
.4
7

2
2
.6
7
±

1
0
.3
7

4
.5
1
±

0
.7
6

1
2
0
.2
±

3
1
.8

1
,2
8
7
.2
±

5
4
8
.9

4
/
5

0
/
5

T
or
q
u
e-
P
D
-2

T
0

✓
0.
61
±

0
.2
5

1
4
.7
8
±

5
.6
9

6
.3
7
±

0
.8
1

8
5
.0
±

4
6
.1

1
3
1
.0
±

2
2
.4

0
/
5

5
/
5

T
or
q
u
e-
P
D
-3

T
0

✓
✓

0.
66
±

0
.2
1

1
6
.2
7
±

4
.2
6

5
.5
5
±

0
.7
1

8
4
.1
±

5
5
.4

2
0
2
.0
±

1
2
0
.6

0
/
5

5
/
5

T
or
q
u
e-
P
D
-4

T
0

✓
✓

4.
43
±

5
.2
5

1
3
6
.3
7
±

1
6
9
.3
3

9
.2
0
±

6
.1
5

1
5
4
.3
±

1
1
0
.1

3
3
6
.0
±

3
2
7
.1

0
/
5

5
/
5

T
or
q
u
e-
P
D
-5

T
0

✓
✓

✓
2.
06
±

3
.1
0

9
5
.2
2
±

1
7
2
.9
4

9
.7
1
±

5
.3
4

1
5
6
.4
±

2
1
4
.7

3
2
0
.2
±

4
3
8
.8

0
/
5

5
/
5

T
or
q
u
e-
P
D
-6

E
rr
or

1.
56
±

0
.9
0

4
1
.0
2
±

6
6
.0
0

2
.9
1
±

1
.6
9

8
9
.4
±

6
2
.2

1
,6
5
5
.6
±

7
7
0
.1

0
/
5

0
/
5

T
or
q
u
e-
P
D
-7

E
rr
or

✓
18
.3
4
±

3
2
.2
4

8
3
.2
8
±

8
7
.5
2

8
.4
4
±

2
.0
0

1
5
3
.5
±

1
5
8
.0

1
,1
4
3
.0
±

6
8
7
.8

3
/
5

1
/
5

T
or
q
u
e-
P
D
-8

E
rr
or

✓
✓

0.
88
±

0
.6
4

4
.4
6
±

1
.3
9

5
.9
6
±

2
.6
8

8
8
.8
±

4
6
.9

4
7
1
.2
±

2
2
1
.3

1
/
5

4
/
5

T
or
q
u
e-
P
D
-9

E
rr
or

✓
✓

0.
92
±

0
.4
5

1
2
.9
1
±

1
2
.2
2

6
.8
1
±

1
.7
7

7
1
.4
±

3
2
.6

7
7
4
.0
±

4
1
6
.1

4
/
5

1
/
5

T
or
q
u
e-
P
D
-1
0

E
rr
or

✓
✓

✓
0.
72
±

0
.2
8

5
.7
4
±

3
.3
2

4
.9
7
±

1
.3
7

6
2
.9
±

7
.5

4
9
0
.8
±

2
4
7
.1

3
/
5

2
/
5

T
or
q
u
e-
P
D
-1
1

O
p
t
T
im

e
0.
82
±

0
.1
2

1
5
.0
9
±

1
.6
5

2
.8
4
±

0
.1
1

4
9
.5
±

2
.2

2
,0
0
0
.0
±

0
.0

0
/
5

0
/
5

T
or
q
u
e-
P
D
-1
2

O
p
t
T
im

e
✓

0
.1
3
±

0
.0
8

2
.9
1
±

1
.9
6

2
.9
4
±

0
.2
1

4
8
.9
±

9
.0

2
,0
0
0
.0
±

0
.0

0
/
5

0
/
5

T
or
q
u
e-
P
D
-1
3

O
p
t
T
im

e
✓

✓
1.
87
±

1
.9
0

6
5
.6
9
±

6
6
.4
3

5
.5
8
±

2
.6
1

4
2
.6
±

2
0
.0

6
1
0
.2
±

7
8
5
.7

3
/
5

0
/
5

T
o
rq

u
e
-P

D
-1
4

O
p
t
T
im

e
✓

✓
0.
19
±

0
.0
5

3
.3
9
±

0
.8
2

3
.5
2
±

0
.4
6

4
3
.3
±

6
.0

3
6
7
.6
±

7
8
.3

5
/
5

0
/
5

T
or
q
u
e-
P
D
-1
5

O
p
t
T
im

e
✓

✓
✓

1.
16
±

2
.1
1

3
8
.4
2
±

7
5
.9
2

5
.3
8
±

2
.9
8

3
8
.0
±

3
.3

3
0
9
.4
±

1
3
2
.0

5
/
5

0
/
5

111

6.2 MPC Performance

Regarding Table 6.1, the best result for each metric is highlighted in bold, and

the worst result is marked in red. An exception is made for the task length metric.

For this particular metric, the smallest task length was observed for a controller

that did not perform well overall; this controller triggered an early robot stopping

condition in all five trials, thereby artificially reducing the task length. Consequently,

the lowest task length that also included successful task completions is highlighted

instead.

Due to the number of different metrics considered, no single controller outper-

formed across all of them. Determining the “best” controller involves a degree

of subjectivity. The selection criteria used prioritised strong position and velocity

tracking, consistent task completion, and a low overall task cost. The controller

name believed to be the most suitable for these objectives is highlighted in bold

in Table 6.1. This controller (Torque-PD-14) demonstrated strong position track-

ing (2nd overall), strong velocity tracking (3rd overall), completed the task in all

five trials, and achieved a low task cost (3rd overall). Additionally, it maintained

a relatively low torque gradient (9th overall). Based on these results, this control

parametrisation was selected for further experiments in Sec. 6.3.

Before proceeding, some context is provided for the numerical levels of position

and velocity tracking errors. In general, accurately tracking commanded velocities is

more challenging than tracking positions; therefore, results are presented for velocity

tracking only. Fig. 6.1 illustrates a single trial on the real Franka Panda robot arm,

highlighting the differences between commanded and actual joint velocities. The top

set of plots corresponds to the best-performing control parametrisation for velocity

tracking (Inverse-Dynamics-6), while the bottom set depicts the worst-performing

parametrisation (Torque-PD-6). The seventh joint was omitted from the plots to

improve visual clarity, as its commanded velocities were minimal.

As shown in Fig. 6.1, the top plots demonstrate close adherence to the com-

manded velocity profiles, whereas the bottom plots exhibit significantly more oscil-

latory behaviour. The poor performance of the torque controller is likely attributable

to the combination of the controller itself and the naive T0 time indexing method.

This method appears particularly ineffective when used with the torque controller,

possibly because it does not account for the robot’s true dynamics (as described

by the inverse dynamics equation). Consequently, torques computed for a prior

robot state receive less corrective adjustment than those computed via the inverse

dynamics controller, negatively impacting this control parametrisation.

To examine the effects of individual control parametrisation design choices (con-

troller, time indexing etc.), the data from Table 6.1 is grouped by different controller

parameters in Table 6.2. This grouping of the data reveals several noteworthy trends

that align with observations made during the experimental process. Firstly, the

torque controller generally demonstrated better task completion rates and lower

overall task costs compared to the inverse dynamics controller. However, it tended

to perform worse in tracking the commanded positions and velocities. One likely

112

6.2 MPC Performance

Commanded Velocity

Actual Velocity

Commanded Velocity

Actual Velocity

Inverse-Dynamics-6

Torque-PD-4

J
o
in
t
1

J
o
in
t
2

J
o
in
t
3

J
o
in
t
4

J
o
in
t
5

J
o
in
t
6

J
o
in
t
1

J
o
in
t
2

J
o
in
t
3

J
o
in
t
4

J
o
in
t
5

J
o
in
t
6

Figure 6.1: A set of plots showing the deviations between commanded velocity (blue)

and actual velocity (orange) of the real Franka Panda joints. The top plots shows

the best example (Inverse-Dynamics-6) of velocity tracking from Table 6.1, whereas

the bottom sets of plots shows the worst (Torque-PD-4). 7th joint omitted for the

sake of space.

113

6.2 MPC Performance

explanation for this is that the torque controller frequently overshot the commanded

trajectory, while the inverse dynamics controller typically undershot. As a result,

the inverse dynamics controller often became trapped in local minima, where the

optimiser was unable to compute commands that would improve the cost of the

current trajectory. In several trials using the inverse dynamics controller, this led

to the robot ceasing movement and failing to complete the task. Additionally, in

some trials, a substantial portion of the execution time was spent commanding small

or zero velocities, which may have made trajectory tracking appear more accurate.

This issue is addressed in Sec. 6.4 as one of the limitations of the work presented in

this chapter.

One of the most notable performance differences is by the time indexing method

that was used. The results clearly imply that the Opt Time method for choosing an

initial control index proved to be the most effective in almost all metrics. It enabled

the task to be completed slightly more than the other methods, and significantly

reduced the number of times the robot needed to be stopped early, generally implying

that the robot operated in a more safe manner when this time indexing method was

used. The Opt Time indexing method had the lowest positional and velocity tracking

error, as well as the smallest torque gradient and overall task cost. This method

is able to consistently account for the policy-lag of the optimiser by converting

the optimisation time into a corresponding control index. Whilst the robot is not

guaranteed to be at the state specific by the time-indexing method, it does help

reduce state mismatch which lead to better MPC performance.

Generally, sending the feedforward term for either controller improved the robot’s

ability to complete the task, while also resulting in a higher frequency of early stop

events due to safety concerns. This outcome is likely related to the previously dis-

cussed issue, where controllers that undershot the desired trajectory became stuck

in local minima. The feedforward term played a critical role in preventing under-

shooting of commanded positions and velocities; however, it was also a primary

factor contributing to unsafe robot movements. Lastly, the use of either a torque

rate limiter or a low-pass filter appeared to have negligible overall effects, although

there was some indication of improved position and velocity tracking performance.

114

6.2 MPC Performance

T
ab

le
6.
2:

S
u
m
m
ar
y
of

re
al

ro
b
ot

p
er
fo
rm

an
ce

d
at
a
fr
om

T
ab

le
6.
1
gr
ou

p
ed

b
y
d
iff
er
en
t
ca
te
go
ri
es

(C
on

tr
ol
le
r
u
se
d
,
ti
m
e
in
d
ex
in
g
m
et
h
o
d
,

w
h
et
h
er

th
e
fe
ed

fo
rw

ar
d
te
rm

w
as

u
se
d
or

n
ot

an
d
fi
n
al
ly

w
h
et
h
er

a
lo
w

p
as
s
fi
lt
er

or
to
rq
u
e
ra
te

li
m
it
er

w
er
e
u
se
d
).

T
h
e
va
lu
es

re
p
or
te
d
in

th
is

ta
b
le

ar
e
m
ea
n
va
lu
es

p
lu
s/
m
in
u
s
th
e
st
an

d
ar
d
d
ev
ia
ti
on

,
ex
ce
p
t
fo
r
T
C

an
d
R
S
co
lu
m
n
s
w
h
ic
h
re
p
or
t
th
e
n
u
m
b
er

of
ti
m
es

th
es
e
ev
en
ts

o
cc
u
rr
ed
.

G
ro

u
p
e
d

b
y
C
o
n
tr
o
ll
e
r

C
on

tr
ol
le
r
N
am

e
T
im

e
In
d
ex
in
g

L
P

T
R
L

F
F

P
os

E
rr
or

(×
1
0−

3
)

V
el

E
rr
o
r
(×

1
0−

3
)

T
o
rq
u
e
G
ra
d
(×

1
0
−
3
)

C
o
st

T
a
sk

L
en
g
th

T
C

R
S

In
ve
rs
e
D
y
n
am

ic
s

-
-

-
-

0.
35
±

0
.3
2

7
.3
5
±

8
.4
2

3
.8
3
±

1
.8
0

1
0
5
.1
±

7
9
.1

1
,0
4
0
.6
±

6
9
7
.1

1
2
/
4
5

2
2
/
4
5

T
or
q
u
e
P
D

-
-

-
-

2.
35
±

8
.8
5

3
7
.2
2
±

7
6
.9
5

5
.6
5
±

3
.1
9

8
5
.9
±

8
3
.2

8
0
6
.5
±

7
3
3
.8

2
8
/
7
5

2
8
/
7
5

G
ro

u
p
e
d

b
y
T
im

e
In

d
e
x
in
g

C
on

tr
ol
le
r
N
am

e
T
im

e
In
d
ex
in
g

L
P

T
R
L

F
F

P
os

E
rr
or

(×
1
0−

3
)

V
el

E
rr
o
r
(×

1
0−

3
)

T
o
rq
u
e
G
ra
d
(×

1
0
−
3
)

C
o
st

T
a
sk

L
en
g
th

T
C

R
S

-
T
0

-
-

-
1.
21
±

2
.3
9

3
9
.8
9
±

9
0
.4
2

5
.7
8
±

3
.6
4

1
1
9
.3
±

9
8
.9

7
2
0
.3
±

6
7
1
.6

1
3
/
4
0

2
3
/
4
0

-
E
rr
or

-
-

-
2.
98
±

1
1
.8
9

2
0
.5
0
±

4
4
.3
6

5
.4
2
±

2
.5
1

9
8
.9
±

7
9
.0

8
6
2
.7
±

6
2
9
.0

1
1
/
4
0

2
2
/
4
0

-
O
p
t
T
im

e
-

-
-

0.
61
±

1
.0
9

1
7
.6
7
±

3
8
.9
2

3
.7
1
±

1
.8
1

6
1
.0
±

5
1
.4

1
,1
0
0
.0
±

8
2
9
.0

1
6
/
4
0

5
/
4
0

G
ro

u
p
e
d

b
y
S
e
n
d

F
e
e
d
fo
rw

a
rd

T
e
rm

C
on

tr
ol
le
r
N
am

e
T
im

e
In
d
ex
in
g

L
P

T
R
L

F
F

P
os

E
rr
or

(×
1
0−

3
)

V
el

E
rr
o
r
(×

1
0−

3
)

T
o
rq
u
e
G
ra
d
(×

1
0
−
3
)

C
o
st

T
a
sk

L
en
g
th

T
C

R
S

-
-

-
-

0.
81
±

0
.6
0

1
7
.8
5
±

2
8
.7
0

3
.2
7
±

1
.0
7

1
1
3
.8
±

6
5
.7

1
,5
4
3
.0
±

5
9
5
.2

8
/
3
0

5
/
3
0

-
-

-
-

✓
1.
86
±

8
.1
2

2
8
.7
4
±

7
0
.3
0

5
.5
3
±

3
.0
7

8
6
.2
±

8
5
.9

6
7
8
.1
±

6
3
3
.0

3
2
/
9
0

4
5
/
9
0

G
ro

u
p
e
d

b
y
L
P

O
R

T
R
L

C
on

tr
ol
le
r
N
am

e
T
im

e
In
d
ex
in
g

L
P

T
R
L

F
F

P
os

E
rr
or

(×
1
0−

3
)

V
el

E
rr
o
r
(×

1
0−

3
)

T
o
rq
u
e
G
ra
d
(×

1
0
−
3
)

C
o
st

T
a
sk

L
en
g
th

T
C

R
S

-
-

-
3.
72
±

1
3
.7
1

2
9
.9
6
±

4
9
.0
1

4
.6
7
±

2
.3
9

9
1
.1
±

7
6
.5

1
,3
6
9
.5
±

7
8
3
.8

7
/
3
0

6
/
3
0

-
-

✓
✓

-
0.
89
±

1
.7
7

2
4
.7
0
±

6
6
.7
2

5
.0
7
±

3
.0
3

9
3
.7
±

8
4
.0

7
3
5
.9
±

6
3
5
.3

3
3
/
9
0

4
4
/
9
0

115

6.3 Packing an Object as an Optimisation Problem

6.3 Packing an Object as an Optimisation Prob-

lem

Building upon the best performing control parametrisation from Sec. 6.2 (Torque-

PD-6), this chapter now tackles performing a simplified version of the packing task

that has previously been outlined. Fig. 6.2 shows three examples of this packing task

with different starting configurations and goal positions, showing that the control

method is capable of using non-prehensile manipulation actions to clear the goal

region so that a grasped object can be placed efficiently.

A cost formulation setup similar to Howell et al. [50] was used:

cost =
M∑
i=1

wi · ni(ri(x,u)), (6.12)

where wi is a scalar weight, ni is some twice differentiable norm function (a simple

squared function is used in this work), ri is a residual term that is “small when the

task is solved” and M is the number of residuals. The five residuals specified for

this task were:

1. X position: The difference between the grasped object’s current x position

and the goal x position. The cost weight scalar was 2.0.

2. Y position: The difference between the grasped object’s current y position

and the goal y position. The cost weight scalar was 2.0.

3. Z position: The difference between the grasped object’s current z position

and the goal z position. The cost weight scalar was 1.0.

4. Object upright: A residual that was minimised when the grasped object was

facing upright. The cost weight scalar was 0.4.

5. Object velocity: The object’s Euclidean velocity. The cost weight scalar

was 0.6.

Importantly, the cost term for minimising the object’s position to the goal was

split into three separate residuals, instead of also using the Euclidean object position.

The reason for this was to penalise the separate dimensions differently, allowing the

robot to demonstrate behaviour where the robot would prioritise moving the grasped

object over the goal position first and then moving vertically downwards.

To implement the function GetRealWorldState from Alg. 10, two sources

of sensor information were used. Firstly, to track the poses of the obstacle objects

in the scene, an optitrack system was used and reflective markers were placed on

these objects for accurate pose estimation. Secondly, joint state information from the

franka ROS library was used to access the current positional and velocity information

of the robot arm. Importantly, this work always assumed that the grasped object

116

6.3 Packing an Object as an Optimisation Problem

was grasped by the vacuum gripper of the robot throughout task execution. To

this end, a model of the grasped object was added to the robot model used in

MuJoCo. This simplification was necessary due to the fact that the OptiTrack1

system struggled to track the grasp object due to occlusion.

The performance of the control parametrisation and optimiser was evaluated

over 30 trials, each with different start and goal configurations. On average, the

method was able to place the target object within 3.6 cm of the goal location, with

an average displacement of surrounding objects of 7.5 cm. The task was successfully

completed in 26 out of the 30 trials, with an average completion time of 6.5 seconds.

Although no direct baseline methods are available for comparison, these results

demonstrate the potential efficiency of non-prehensile manipulation for this type

of task. Unlike prehensile manipulation strategies, which would require the robot

to individually grasp and relocate each obstructing object before transporting the

target, this approach achieves the objective in a single coordinated motion.

1OptiTrack website: https://optitrack.com/

117

https://optitrack.com/

6.3 Packing an Object as an Optimisation Problem

F
ig
u
re

6.
2:

T
h
re
e
ex
am

p
le

se
q
u
en
ce
s
(f
ro
m

le
ft

to
ri
gh

t)
of

p
ac
k
in
g
a
gr
as
p
ed

ob
je
ct

(t
om

at
o
sa
u
ce
)
to

a
go
al

p
os
it
io
n
ob

st
ru
ct
ed

b
y
tw

o

ob
st
ac
le
s
(t
om

at
o
so
u
p
an

d
h
ot

ch
o
co
la
te

p
ow

d
er
)
on

re
al

ro
b
ot
ic

h
ar
d
w
ar
e.

118

6.4 Conclusion

6.4 Conclusion

This chapter has investigated some of the issues of controlling real robotic hard-

ware using MPC despite imperfect system identification. Two well known feedback

controllers were implemented for the Franka Panda robotic manipulator through a

ROS interface, as well as a variety of time-indexing methods and control alterations.

These control parametrisations have been evlauated under an MPC framework to

choose a “best” control parametrisation for real robot MPC.

The “best” control parametrisation was then used to complete a simplified pack-

ing through clutter task, similar to the general one motivated in Chapter 1. This

chapter shows that the proposed control parametrisation and trajectory optimisation

formulation is capable of completing the task efficiently on real robotic hardware.

Despite the number of obstructing objects being small in the case that was tested,

these methods could be extended to work in more complicated scenes with higher

levels of clutter. As the levels of clutter increases, the optimisation time would also

increase, consequently increasing the policy lag of the execution thread. As such,

the methods outlined in Chapters 4 and 5 would prove useful in making the problem

computationally tractable.

There are a few limitations to the work in this chapter. These are:

• Issues in the initial analysis of controller performance whilst using MPC. As

mentioned in Sec. 6.2.3, some controllers got stuck in certain robot configu-

rations due to the optimiser getting stuck in a local minima. This generally

occurred from controllers that undershot the commanded velocity. This had

two negative effects, firstly, this increased the overall task cost of these meth-

ods and secondly, it decreased the tracking errors for these methods as the

commanded positions and velocities were easier to achieve.

• The initial testing performed for each control parametrisation only used 5 trials

per control parametrisation, due to the large number of control parametrisa-

tions and limited time.

• The final tests were performed in a simplified packing scene with a low level of

clutter, whereas the problem that was motivated in Chapter 1 had higher levels

of clutter. In this vein, it would have been desired to show that increasing the

levels of clutter would then necessitate using the methods proposed in Chapters

4 and 5 to improve task performance.

In terms of future work, it would be valuable to address the limitations outlined

above. Although the initial tests provided insights into the performance of various

control parametrisations under MPC, tracking performance could be more effectively

evaluated using an alternative testing procedure. In particular, assessing the con-

trollers on a pre-programmed, collision-free trajectory would isolate their tracking

capabilities by removing the influence of the optimiser. This approach would enable

119

6.4 Conclusion

a clearer analysis of each controller’s ability to follow a desired path. Naturally, this

test would not apply to the time indexing methods, as they are only relevant within

the context of MPC. Additionally, increasing the number of trials conducted would

help to improve the statistical reliability of the results.

Finally, a key objective for future work is to integrate the methods outlined

in this chapter and throughout the thesis into a complete packing system. The

envisioned system would be capable of packing a diverse set of rigid and deformable

objects, stored in an unstructured manner, into a designated container. Crucially,

the system would leverage non-prehensile manipulation actions to achieve efficient

and robust packing performance.

120

Chapter 7

Conclusions & Future Work

This concluding chapter will summarise and reflect on the key contributions of this

thesis, alongside its limitation. Content from Chapter 1 will be referenced to eval-

uate the progress made toward the general picking/packing system that has been

proposed. The remaining research problems that need to be addressed to fully create

such a system will also be discussed.

Figure 7.1: The contact-aware picking/packing system that was discussed in Chapter

1. The dark gray shapes represent a pump end-effector attachment for a robot. To

recap: In this example, the high level objective is to retrieve a purple object from

a bin. Frame A shows the initial scene, where the purple object is obscured by a

green and dark blue object. In frame B, the robot slides the green object into the

corner of the bin. Then, in frame C, the robot pushes the dark blue object out of the

way, subsequently moving the brown object also. These actions have then cleared

enough space so that the vacuum pump tip can reach in and grasp the purple object.

Finally, frame D shows the robot removing the purple object from the bin.

7.1 Conclusions

This thesis has begun working toward creating the system outlined in Chapter 1.

This system, shown in Fig. 7.1, employs non-prehensile manipulation to efficiently

pick or pack goods in a cluttered bin. However, there were several challenges to

121

7.1 Conclusions

create such a system, one of these challenges is the difficultly of executing non-

prehensile manipulation actions reliably in the real world. The method used in

this thesis to overcome this was MPC, where an optimiser is constantly re-planning

trajectories from the current real world state to account for differences between a

physics simulator and the real world. For MPC to be effective, optimisation needs to

occur fast, which traditionally has been a challenge in contact-based manipulation,

particularly in clutter. The methods proposed in this thesis aim to tackle this

challenge.

Chapter 4 introduced a method of using approximations to speed up trajectory

optimisation. This idea was to only compute dynamics derivatives at key-points

over a trajectory and approximate the remainder through the use of simple lin-

ear interpolation. It was shown that this methodology can significantly decrease

optimisation times with only small degradations in the quality of the computed tra-

jectories. Chapter 4 showed that the proposed method generalised to two different

gradient-based optimisation algorithms (iLQR and SCVX), ten different tasks (most

of which included contact-based manipulation) as well as two methods of computing

dynamics derivatives (FD and AD). The methods proposed in that chapter have

multiple uses: They can speed up long horizon trajectory optimisation to compute a

trajectory to solve a given task much faster or they can be used with shorter horizon

MPC to increase the control frequency, enabling robots to account for deviations

between a physics simulator and the real world faster.

In a similar vein, the methods proposed in Chapter 5 aimed to speed up tra-

jectory optimisation for MPC. This work focused on robotic manipulation in high-

dimensional scenes, where not all of the DoFs are important to the task at all times

during execution. Chapter 5 reasoned that, in such situations, the trajectory op-

timisation algorithm should only consider the DoFs most relevant to the current

state of the problem. By reducing the number of DoFs considered by the optimiser,

optimisation times are decreased, resulting in tighter closed-loop control of the real

system.

While the work presented in Chapters 4 and 5 produced promising results in

speeding up trajectory optimisation, both share a common limitation: reliance on

tuneable parameters for optimal performance. In Chapter 4, these parameters in-

volved the parametrisation of the proposed key-point methods, whereas in Chapter

5, they pertained to the thresholding criteria for determining whether a particular

DoF should be considered in optimisation. Anecdotally, it was observed that al-

though these parameters were not highly specific, they still required some degree of

tuning to achieve the best performance. In the conclusion sections of both chapters,

potential strategies for mitigating this tuning issue were outlined, which represent

promising avenues for future work.

Finally, Chapter 6 investigated the issues of using MPC to control real robotic

hardware, namely the Franka-Emika Panda. The issue was that the torques com-

puted in simulation induced a much larger acceleration on the real robot than they

122

7.2 Remaining Problems / Limitations

did in simulation. This issue caused motion plans to become quickly invalid. As

such, Chapter 6 investigates using an inverse dynamics controller and also a torque

proportional derivative controller to help account for this deviation between simu-

lated and real robot accelerations. This chapter also investigates a variety of other

control parameters to improve the control performance of the real robot. In addition

to this, results were shown for a simplified packing task through low levels of clutter

on real robotic hardware using MPC.

7.2 Remaining Problems / Limitations

All of the chapters of this thesis build towards creating the efficient picking/packing

system that has previously been discussed. One of the largest pieces of work that

still need to be implemented is some form of a high-level task planner which can

use trajectory optimisation primitives to achieve the overall goal. One of these

trajectory optimisation primitives would be the one showed in Chapter 6. Other

primitives might include: Moving an object to a new location to clear space, grouping

objects closer together, and reorientating an object. The methods of speeding up

trajectory optimisation in chapters 4 and 5 would prove useful in enabling MPC to

run efficiently when the number of items in the bin is increased.

Another issue that remains to be addressed in this system represents an addi-

tional limitation of this thesis: perception. This thesis has relied on an OptiTrack

system to provide accurate information about the poses of all objects in the sim-

ulated environment. OptiTrack is a system that uses infra-red cameras attached

in known locations and relies on a unique combination of reflective stickers to be

placed on objects so each object can be uniquely identified. Using OptiTrack in the

real world for such a system would be highly impractical. For instance, imagine

a warehouse that processes tens of thousands of items per day, there would be no

feasible way to individually attach reflective markers in a unique patter to identify

each object. However, it is possible to use QR codes for pose tracking of objects

which is already used in some warehouse environments. For unconventional objects

however, perception may need to rely on more conventional stereo camera systems

to obtain pose information for any objects in the environment. One major chal-

lenge, particularly in warehouse scenarios, is high levels of occlusion, where objects

are partially or fully hidden. This gives rise to the intriguing question: How can

our system instantiate the scene within the physics simulator without having full

knowledge of the poses of all objects? One potential solution could involve combin-

ing the physical knowledge of partially visible objects with a physics simulator to

create valid approximations of the objects’ locations [142].

The work done in this thesis has always assumed some level of complete knowl-

edge of the environment. For real robotic experiments, this has involved creating

scenes to be used in a simulator which included all of the relevant objects in the

environment. In reality, a system would be needed to create a model of the scene

123

7.3 Future Work

purely from the information provided by any sensors. In addition to this is the issue

of object’s physical parameters. Before conducting physical experiments, objects

were weighed and estimates of their friction coefficients were used as inputs to a

physics simulator. In reality, a robot will need to discover and adapt these physical

object parameters during task execution, as they can not necessarily be known a

priori.

Finally, another limitation of this work is that it does not address the issue of

absent gradients in under-actuated trajectory optimisation tasks. This problem is

often overlooked in non-prehensile manipulation scenarios. Essentially, when an ac-

tuated robot is tasked with moving an under-actuated object to a target position,

the robot must apply force directly to the object. In situations where the robot

and object are not in contact, the optimiser lacks the gradient information needed

to improve the nominal trajectory. There are several workarounds to this issue.

This work typically initialises a trajectory that ensures contact between the robot

and the object. This approach provides the optimiser with the necessary gradient

information to improve the nominal trajectory, although it does require additional

implementation considerations for the user, dependent on the task. Another ap-

proach involves adding a term to the cost function that encourages the robot to

make contact with the object. For instance, one can include a term that minimises

the distance between the robot’s end-effector and the object, thereby supplying gra-

dient information that directs the optimiser to move the end-effector toward the

object. However, this method also presents implementation challenges and limits

the robot’s ability to manipulate the object solely using its end-effector.

A more sophisticated method is demonstrated by Önol et al. [96]. They employ a

direct optimisation approach that allows a robot to apply “virtual” forces on objects

despite not being in contact with them. These “virtual” forces are then penalised in

the cost function dependant on the distance between the robot and the object. This

method is similar to the previous approach but is perhaps more robust, however, the

disadvantage remains the same which is the need to specify contact points between

the robot and the object a priori. Nonetheless, some work [145] has explored ways

to overcome this challenge.

7.3 Future Work

This section will briefly discuss some broad research areas for possible future avenues

of work, some of which extend ideas presented in this thesis.

7.3.1 Efficient picking/packing

The efficient contact-based picking/packing system that was introduced at the be-

ginning of this thesis still has several components that need to be implemented.

Firstly, a high-level planner capable of invoking trajectory optimisation tasks us-

124

7.3 Future Work

ing a library of contact-based trajectory optimisation primitives is required. These

primitives would include placing an object through clutter, relocating an object to

a new position using non-prehensile manipulation, and reorienting objects, among

others. The contributions made in Chapters 4 and 5 can be used to improve opti-

misation times for these trajectory optimisation primitives, enabling the system to

operate effectively in highly cluttered environments.

Beyond requiring a high-level task planner, such a system will also need a robust

pose detection method that does not rely on physical modifications to the appearance

of objects. Placing multiple cameras around the scene appears to be the most logical

approach, and various neural network libraries exist for estimating the 3D pose of

objects from 2D RGB images [130, 139]. However, these methods can only detect

objects that are visible to the cameras. In a bin picking/packing scenario, objects

will frequently be occluded due to the movement of other items. To address this

issue, tracking systems that integrate sensor data with physics simulations to predict

object motion could prove useful [142].

7.3.2 Change of basis online state vector reduction

As a direction for future work, it may be valuable to extend the methods discussed

in Chapter 5 beyond purely axis-aligned dimensionality reduction, in which each

degree of freedom (DoF) is either fully considered or not considered at all. A natural

progression would involve exploring change-of-basis approaches that enable feature

compression, allowing multiple DoFs to be represented within a lower-dimensional

subspace. Such methods could offer improved generalisation and coordination for

tasks involving complex interactions, such as scooping small objects or manipulating

deformable materials.

7.3.3 Combining learning with trajectory optimisation

There are various works that explore using learning in conjunction with trajec-

tory optimisation for improved efficiency. This can be achieved by learning better

warm-start trajectories for the optimiser [7, 19], reducing the number of iterations

required to converge to an optimal solution, or learning better-informed terminal

value conditions, enabling the use of shorter optimisation horizons [9, 135, 148].

These methods have not been extended to or demonstrated in contact-based

manipulation tasks. They could be highly beneficial in such settings, particularly

in learning improved warm-start trajectory initialisations. As discussed earlier, the

absent gradients problem in under-actuated manipulation tasks necessitates some

workaround. A learning-based warm-start trajectory could offer an effective way to

initialise a trajectory so that the robot makes meaningful contact with the object

being manipulated.

125

7.3 Future Work

7.3.4 Using GPU-based physics simulation

Finally, the recent advancements in GPU-based physics simulation [77, 6] open up

promising avenues for future work. These advancements enable hundreds or even

thousands of simulated environments to run in parallel, significantly increasing the

number of sampled actions per second. This is particularly beneficial to the RL

community, where it accelerates the training of neural network policies by generating

more simulated data. However, it can also be applied to trajectory optimisation,

allowing for a greater number of sampled trajectories in short-horizon MPC. As

graphics cards become more affordable, it becomes more feasible that future robotic

systems will have access to them for motion planning.

GPU-based physics simulators naturally extend to traditional sampling-based

algorithms [2, 111, 50]. Additionally, for gradient-based optimisers such as iLQR,

computing the dynamics derivatives is a highly parallelisable task. Therefore, it

would be interesting to investigate the effectiveness of performing derivative com-

putations on the GPU.

One important consideration when using GPU-based physics simulators for op-

timisation is the trade-off between optimisation horizon and the number of sampled

trajectories. Intuitively, CPU-based trajectory optimisation can be thought of as a

“depth-first” search, where fewer trajectories are sampled, but they extend further

in time due to the efficient optimisation of CPU cores. In contrast, GPU-based

trajectory optimisation resembles a “breadth-first” search, where many more tra-

jectories can be trialled, but with shorter horizons. This distinction arises from the

architectural differences: While a single physics simulation step is typically faster on

a CPU, the GPU accelerates overall throughput by performing hundreds or thou-

sands of physics simulation steps in parallel. Some tasks may benefit from a longer

optimisation horizon, whereas others may be better suited to evaluating a larger

number of short-horizon trajectories.

126

7.4 Final Remarks

7.4 Final Remarks

This thesis has explored some of the challenges of robotic manipulation, particularly

focusing on speeding up trajectory optimisation for contact-based manipulation.

By addressing computational bottlenecks and integrating efficient motion planning

strategies, this work has contributed to the broader goal of making robotic systems

more capable of interacting with their environments using more efficient actions that

humans take for granted.

Fundamentally, the tasks considered in this thesis such as pushing, sliding, and

dynamically repositioning objects are ones that a human would solve effortlessly.

Yet, for a robot, these actions require intricate modelling, careful control, and com-

putational efficiency to execute in real time. This discrepancy highlights the com-

plexity of robotic manipulation in unstructured environments and shows the need

for continued research in this field.

The general motivation for this work extends beyond the realm of academic in-

quiry. The world as a whole is experiencing an ageing workforce [132] and increasing

labour shortages, a problem, that is bound to worsen in the future. As such, there is

a growing need for increased automation that extends beyond traditional controlled

factory settings. The robots of the future must go beyond traditional rigid pick-

and-place operations and develop the abilities to manipulate their surroundings as

efficiently as humans.

127

Bibliography

[1] Pieter Abbeel and Andrew Y Ng. “Apprenticeship learning via inverse rein-

forcement learning”. In: Proceedings of the twenty-first international confer-

ence on Machine learning. 2004, p. 1.

[2] Ian Abraham et al. “Model-based generalization under parameter uncertainty

using path integral control”. In: IEEE Robotics and Automation Letters 5.2

(2020), pp. 2864–2871. issn: 2377-3766.

[3] Wisdom C Agboh and Mehmet R Dogar. “Pushing fast and slow: Task-

adaptive planning for non-prehensile manipulation under uncertainty”. In:

Algorithmic Foundations of Robotics XIII: Proceedings of the 13th Workshop

on the Algorithmic Foundations of Robotics 13. Springer, 2018, pp. 160–176.

isbn: 3030440508.

[4] Wisdom C Agboh and Mehmet R Dogar. “Real-time online re-planning for

grasping under clutter and uncertainty”. In: 2018 IEEE-RAS 18th Interna-

tional Conference on Humanoid Robots (Humanoids). IEEE, 2018, pp. 1–8.

isbn: 1538672839.

[5] Pulkit Agrawal et al. “Learning to poke by poking: Experiential learning of

intuitive physics”. In: Advances in neural information processing systems 29

(2016).

[6] Genesis Authors. Genesis: A Universal and Generative Physics Engine for

Robotics and Beyond. 2024. url: https://github.com/Genesis-Embodied-

AI/Genesis.

[7] Somrita Banerjee et al. “Learning-based warm-starting for fast sequential

convex programming and trajectory optimization”. In: 2020 IEEE Aerospace

Conference. IEEE, 2020, pp. 1–8. isbn: 1728127343.

[8] Mokhtar S Bazaraa, Hanif D Sherali, and Chitharanjan M Shetty. Nonlinear

programming: theory and algorithms. John wiley & sons, 2006.

[9] Wissam Bejjani, Mehmet R Dogar, and Matteo Leonetti. “Learning physics-

based manipulation in clutter: Combining image-based generalization and

look-ahead planning”. In: 2019 IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS). IEEE, 2019, pp. 6562–6569. isbn:

1728140048.

128

https://github.com/Genesis-Embodied-AI/Genesis
https://github.com/Genesis-Embodied-AI/Genesis

BIBLIOGRAPHY

[10] John T Betts. Practical methods for optimal control and estimation using

nonlinear programming. SIAM, 2010.

[11] Kevin Black et al. “π0: A Vision-Language-Action Flow Model for General

Robot Control”. In: arXiv preprint arXiv:2410.24164 (2024).

[12] Reinhard Blickhan. “The spring-mass model for running and hopping”. In:

Journal of biomechanics 22.11-12 (1989), pp. 1217–1227. issn: 0021-9290.

[13] Robert Bohlin and Lydia E Kavraki. “Path planning using lazy PRM”.

In: Proceedings 2000 ICRA. Millennium conference. IEEE international

conference on robotics and automation. Symposia proceedings (Cat. No.

00CH37065). Vol. 1. IEEE. 2000, pp. 521–528.

[14] Riccardo Bonalli et al. “Gusto: Guaranteed sequential trajectory optimiza-

tion via sequential convex programming”. In: 2019 International conference

on robotics and automation (ICRA). IEEE. 2019, pp. 6741–6747.

[15] Anthony Brohan et al. “Rt-1: Robotics transformer for real-world control at

scale”. In: arXiv preprint arXiv:2212.06817 (2022).

[16] Anthony Brohan et al. “Rt-2: Vision-language-action models transfer web

knowledge to robotic control”. In: arXiv preprint arXiv:2307.15818 (2023).

[17] Dane Brouwer et al. “Tactile-informed action primitives mitigate jamming

in dense clutter”. In: 2024 IEEE International Conference on Robotics and

Automation (ICRA). IEEE. 2024, pp. 7991–7997.

[18] Justin Carpentier, Quentin Le Lidec, and Louis Montaut. “From Compliant

to Rigid Contact Simulation: a Unified and Efficient Approach”. In: 20th

edition of the “Robotics: Science and Systems”(RSS) Conference. 2024.

[19] Davide Celestini et al. “Transformer-based model predictive control: Trajec-

tory optimization via sequence modeling”. In: IEEE Robotics and Automation

Letters (2024).

[20] Henry J Charlesworth and Giovanni Montana. “Solving challenging dexterous

manipulation tasks with trajectory optimisation and reinforcement learning”.

In: International Conference on Machine Learning. PMLR, 2021, pp. 1496–

1506. isbn: 2640-3498.

[21] Iordanis Chatzinikolaidis and Zhibin Li. “Trajectory optimization of contact-

rich motions using implicit differential dynamic programming”. In: IEEE

Robotics and Automation Letters 6.2 (2021), pp. 2626–2633. issn: 2377-3766.

[22] Yu-Ming Chen and Michael Posa. “Optimal reduced-order modeling of

bipedal locomotion”. In: 2020 IEEE International Conference on Robotics

and Automation (ICRA). IEEE, 2020, pp. 8753–8760. isbn: 1728173957.

[23] Xianyi Cheng et al. “Contact mode guided motion planning for quasidynamic

dexterous manipulation in 3d”. In: 2022 International Conference on Robotics

and Automation (ICRA). IEEE. 2022, pp. 2730–2736.

129

BIBLIOGRAPHY

[24] Z Cheng et al. “Neural network iLQR: A reinforcement learning architecture

for trajectory optimization”. In: arXiv preprint arXiv:2011.10737 (2020).

[25] Cheng Chi et al. “Diffusion policy: Visuomotor policy learning via ac-

tion diffusion”. In: The International Journal of Robotics Research (2023),

p. 02783649241273668.

[26] Cheng Chi et al. “Universal Manipulation Interface: In-The-Wild Robot

Teaching Without In-The-Wild Robots”. In: Proceedings of Robotics: Science

and Systems (RSS). 2024.

[27] Matei Ciocarlie, Corey Goldfeder, and Peter Allen. “Dimensionality reduc-

tion for hand-independent dexterous robotic grasping”. In: 2007 IEEE/RSJ

International Conference on Intelligent Robots and Systems. IEEE, 2007,

pp. 3270–3275. isbn: 142440911X.

[28] Thomas H Cormen et al. “Introduction to Algorithms (3-rd edition)”. In:

MIT Press and McGraw-Hill (2009).

[29] Erwin Coumans and Yunfei Bai. “Pybullet, a python module for physics

simulation for games, robotics and machine learning”. In: (2016).

[30] Yuhong Deng et al. “Deep reinforcement learning for robotic pushing and

picking in cluttered environment”. In: 2019 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS). Ieee. 2019, pp. 619–626.

[31] M Dogar et al. “Physics-based grasp planning through clutter”. In: (2012).

[32] Mehmet R Dogar and Siddhartha S Srinivasa. “A planning framework for

non-prehensile manipulation under clutter and uncertainty”. In: Autonomous

Robots 33.3 (2012), pp. 217–236. issn: 1573-7527.

[33] Mehmet R Dogar and Siddhartha S Srinivasa. “Push-grasping with dexterous

hands: Mechanics and a method”. In: 2010 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems. IEEE. 2010, pp. 2123–2130.

[34] Tom Erez and Emanuel Todorov. “Trajectory optimization for domains with

contacts using inverse dynamics”. In: 2012 IEEE/RSJ International confer-

ence on intelligent robots and systems. IEEE. 2012, pp. 4914–4919.

[35] Tom Erez et al. “An integrated system for real-time model predictive control

of humanoid robots”. In: 2013 13th IEEE-RAS International conference on

humanoid robots (Humanoids). IEEE, 2013, pp. 292–299. isbn: 1479926191.

[36] Henrique Ferrolho et al. “Inverse dynamics vs. forward dynamics in direct

transcription formulations for trajectory optimization”. In: 2021 IEEE In-

ternational Conference on Robotics and Automation (ICRA). IEEE. 2021,

pp. 12752–12758.

[37] Chelsea Finn and Sergey Levine. “Deep visual foresight for planning robot

motion”. In: 2017 IEEE International Conference on Robotics and Automa-

tion (ICRA). IEEE, 2017, pp. 2786–2793. isbn: 150904633X.

130

BIBLIOGRAPHY

[38] Markus Giftthaler et al. “A family of iterative gauss-newton shooting meth-

ods for nonlinear optimal control”. In: 2018 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 1–9.

[39] Philip E Gill, Walter Murray, and Michael A Saunders. “SNOPT: An SQP

algorithm for large-scale constrained optimization”. In: SIAM review 47.1

(2005), pp. 99–131. issn: 0036-1445.

[40] Viniçius Mariano Gonçalves et al. “Parsimonious kinematic control of highly

redundant robots”. In: IEEE Robotics and Automation Letters 1.1 (2015),

pp. 65–72.

[41] Bernhard P Graesdal et al. “Towards Tight Convex Relaxations for Contact-

Rich Manipulation”. In: Proceedings of Robotics: Science and Systems (RSS)

(2024).

[42] Ruben Grandia et al. “Feedback mpc for torque-controlled legged robots”. In:

2019 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE, 2013, pp. 4730–4737. isbn: 1728140048.

[43] Tuomas Haarnoja et al. “Learning to Walk Via Deep Reinforcement Learn-

ing”. In: Robotics: Science and Systems XV (2019).

[44] Daseong Han et al. “Data-guided model predictive control based on smoothed

contact dynamics”. In: Computer Graphics Forum. Vol. 35. Wiley Online

Library, 2016, pp. 533–543. isbn: 0167-7055.

[45] Peter E Hart, Nils J Nilsson, and Bertram Raphael. “A formal basis for the

heuristic determination of minimum cost paths”. In: IEEE transactions on

Systems Science and Cybernetics 4.2 (1968), pp. 100–107.

[46] Kris Hauser and Victor Ng-Thow-Hing. “Fast smoothing of manipulator tra-

jectories using optimal bounded-acceleration shortcuts”. In: 2010 IEEE in-

ternational conference on robotics and automation. IEEE. 2010, pp. 2493–

2498.

[47] Yanhao He and Steven Liu. “Analytical Inverse Kinematics for Franka Emika

Panda – a Geometrical Solver for 7-DOF Manipulators with Unconventional

Design”. In: 2021 9th International Conference on Control, Mechatronics and

Automation (ICCMA2021). IEEE, Nov. 2021. doi: 10.1109/ICCMA54375.

2021.9646185.

[48] Todd Hester et al. “Deep q-learning from demonstrations”. In: Proceedings

of the AAAI conference on artificial intelligence. Vol. 32. 1. 2018.

[49] François Robert Hogan and Alberto Rodriguez. “Feedback control of the

pusher-slider system: A story of hybrid and underactuated contact dy-

namics”. In: Algorithmic Foundations of Robotics XII: Proceedings of the

Twelfth Workshop on the Algorithmic Foundations of Robotics. Springer.

2020, pp. 800–815.

131

https://doi.org/10.1109/ICCMA54375.2021.9646185
https://doi.org/10.1109/ICCMA54375.2021.9646185

BIBLIOGRAPHY

[50] Taylor Howell et al. “Predictive sampling: Real-time behaviour synthesis with

mujoco”. In: arXiv preprint arXiv:2212.00541 (2022).

[51] Hengyuan Hu, Suvir Mirchandani, and Dorsa Sadigh. “Imitation Boot-

strapped Reinforcement Learning”. In: arXiv preprint arXiv:2311.02198

(2023).

[52] Sandy H Huang et al. “Learning gentle object manipulation with curiosity-

driven deep reinforcement learning”. In: arXiv preprint arXiv:1903.08542

(2019).

[53] Jeffrey Ichnowski et al. “GOMP: Grasp-optimized motion planning for bin

picking”. In: 2020 IEEE international conference on robotics and automation

(ICRA). IEEE. 2020, pp. 5270–5277.

[54] “Interior-Point Methods for Nonlinear Programming”. In: Numerical Op-

timization. New York, NY: Springer New York, 2006, pp. 563–597. isbn:

978-0-387-40065-5. doi: 10.1007/978-0-387-40065-5_19. url: https:

//doi.org/10.1007/978-0-387-40065-5_19.

[55] Advait Jain et al. “Reaching in clutter with whole-arm tactile sensing”. In:

The International Journal of Robotics Research 32.4 (2013), pp. 458–482.

issn: 0278-3649.

[56] Michael Janner et al. “Planning with Diffusion for Flexible Behavior Syn-

thesis”. In: International Conference on Machine Learning. PMLR. 2022,

pp. 9902–9915.

[57] Wanxin Jin and Michael Posa. “Task-driven hybrid model reduction for dex-

terous manipulation”. In: IEEE Transactions on Robotics (2024). issn: 1552-

3098.

[58] Edward Johns. “Coarse-to-fine imitation learning: Robot manipulation from

a single demonstration”. In: 2021 IEEE international conference on robotics

and automation (ICRA). IEEE, 2021, pp. 4613–4619. isbn: 1728190770.

[59] Shuuji Kajita and Kazuo Tani. “Study of dynamic biped locomotion on

rugged terrain-derivation and application of the linear inverted pendulum

mode”. In: Proceedings. 1991 IEEE International Conference on Robotics

and Automation. IEEE Computer Society, 1991, pp. 1405, 1406, 1407, 1408,

1409, 1410, 1411–1405, 1406, 1407, 1408, 1409, 1410, 1411.

[60] Mrinal Kalakrishnan et al. “STOMP: Stochastic trajectory optimization for

motion planning”. In: 2011 IEEE international conference on robotics and

automation. IEEE, 2011, pp. 4569–4574. isbn: 1612843859.

[61] Lydia E Kavraki et al. “Probabilistic roadmaps for path planning in high-

dimensional configuration spaces”. In: IEEE transactions on Robotics and

Automation 12.4 (1996), pp. 566–580. issn: 1042-296X.

132

https://doi.org/10.1007/978-0-387-40065-5_19
https://doi.org/10.1007/978-0-387-40065-5_19
https://doi.org/10.1007/978-0-387-40065-5_19

BIBLIOGRAPHY

[62] Zachary Kingston, Mark Moll, and Lydia E Kavraki. “Sampling-based meth-

ods for motion planning with constraints”. In: Annual review of control,

robotics, and autonomous systems 1.1 (2018), pp. 159–185.

[63] Nikita Kitaev et al. “Physics-based trajectory optimization for grasp-

ing in cluttered environments”. In: 2015 IEEE International Conference

on Robotics and Automation (ICRA). IEEE, 2015, pp. 3102–3109. isbn:

1479969230.

[64] Nate Kohl and Peter Stone. “Policy gradient reinforcement learning for fast

quadrupedal locomotion”. In: IEEE International Conference on Robotics

and Automation, 2004. Proceedings. ICRA’04. 2004. Vol. 3. IEEE. 2004,

pp. 2619–2624.

[65] Marek Kopicki et al. “Learning to predict how rigid objects behave under

simple manipulation”. In: 2011 IEEE international conference on robotics

and automation. IEEE, 2011, pp. 5722–5729. isbn: 1612843859.

[66] Serdar Kucuk and Zafer Bingul. Robot kinematics: Forward and inverse kine-

matics. INTECH Open Access Publisher London, UK, 2006.

[67] James J Kuffner and Steven M LaValle. “RRT-connect: An efficient approach

to single-query path planning”. In: Proceedings 2000 ICRA. Millennium Con-

ference. IEEE International Conference on Robotics and Automation. Sym-

posia Proceedings (Cat. No. 00CH37065). Vol. 2. IEEE, 2000, pp. 995–1001.

isbn: 0780358864.

[68] Vikash Kumar. Franka Sim - A MuJoCo Model of the Franka Panda Robot.

GitHub repository. 2018. url: https://github.com/vikashplus/franka_

sim.

[69] Vince Kurtz and Hai Lin. “Contact-implicit trajectory optimization with

hydroelastic contact and ilqr”. In: 2022 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). IEEE, 2022, pp. 8829–8834. isbn:

1665479272.

[70] Vince Kurtz et al. “Inverse Dynamics Trajectory Optimization for Contact-

Implicit Model Predictive Control”. In: arXiv preprint arXiv:2309.01813

(2023).

[71] Steven M LaValle. “Rapidly-exploring random trees: A new tool for path

planning”. In: (1998).

[72] Teguh Santoso Lembono and Sylvain Calinon. “Probabilistic iterative LQR

for short time horizon MPC”. In: 2021 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). IEEE. 2021, pp. 579–585.

[73] Weiwei Li and Emanuel Todorov. “Iterative linear quadratic regulator design

for nonlinear biological movement systems”. In: ICINCO (1). Citeseer, 2004,

pp. 222–229.

133

https://github.com/vikashplus/franka_sim
https://github.com/vikashplus/franka_sim

BIBLIOGRAPHY

[74] Kendall Lowrey et al. “Plan online, learn offline: Efficient learning and explo-

ration via model-based control”. In: arXiv preprint arXiv:1811.01848 (2018).

[75] Jianlan Luo et al. “Precise and Dexterous Robotic Manipulation via Human-

in-the-Loop Reinforcement Learning”. In: arXiv preprint arXiv:2410.21845

(2024).

[76] Arthur Mahoney, Joshua Bross, and David Johnson. “Deformable robot mo-

tion planning in a reduced-dimension configuration space”. In: 2010 IEEE In-

ternational Conference on Robotics and Automation. IEEE, 2010, pp. 5133–

5138. isbn: 1424450381.

[77] Viktor Makoviychuk et al. “Isaac gym: High performance gpu-based physics

simulation for robot learning”. In: arXiv preprint arXiv:2108.10470 (2021).

[78] Zachary Manchester and Scott Kuindersma. “Derivative-free trajectory opti-

mization with unscented dynamic programming”. In: 2016 IEEE 55th Con-

ference on Decision and Control (CDC). IEEE, 2016, pp. 3642–3647. isbn:

1509018379.

[79] Olvi L Mangasarian. “Sufficient conditions for the optimal control of non-

linear systems”. In: SIAM Journal on control 4.1 (1966), pp. 139–152. issn:

0036-1402.

[80] Yuanqi Mao et al. “Successive convexification: A superlinearly convergent

algorithm for non-convex optimal control problems”. In: arXiv preprint

arXiv:1804.06539 (2018).

[81] Tobia Marcucci et al. “Shortest paths in graphs of convex sets”. In: SIAM

Journal on Optimization 34.1 (2024), pp. 507–532.

[82] Matthew T Mason. “Mechanics and planning of manipulator pushing opera-

tions”. In: The International Journal of Robotics Research 5.3 (1986), pp. 53–

71.

[83] Jan Matas, Stephen James, and Andrew J Davison. “Sim-to-real reinforce-

ment learning for deformable object manipulation”. In: Conference on Robot

Learning. PMLR. 2018, pp. 734–743.

[84] David Mayne. “A second-order gradient method for determining optimal tra-

jectories of non-linear discrete-time systems”. In: International Journal of

Control 3.1 (1966), pp. 85–95. issn: 0020-7179.

[85] Bart van Merriënboer, Alexander BWiltschko, and Dan Moldovan. “Tangent:

Automatic differentiation using source code transformation in Python”. In:

arXiv preprint arXiv:1711.02712 (2017).

[86] Mayank Mittal et al. “Orbit: A unified simulation framework for interactive

robot learning environments”. In: IEEE Robotics and Automation Letters 8.6

(2023), pp. 3740–3747. issn: 2377-3766.

134

BIBLIOGRAPHY

[87] Igor Mordatch, Zoran Popović, and Emanuel Todorov. “Contact-invariant

optimization for hand manipulation”. In: Proceedings of the ACM SIG-

GRAPH/Eurographics symposium on computer animation. 2012, pp. 137–

144.

[88] Igor Mordatch, Emanuel Todorov, and Zoran Popović. “Discovery of complex

behaviors through contact-invariant optimization”. In: ACM Transactions on

Graphics (ToG) 31.4 (2012), pp. 1–8. issn: 0730-0301.

[89] João Moura, Theodoros Stouraitis, and Sethu Vijayakumar. “Non-prehensile

planar manipulation via trajectory optimization with complementarity con-

straints”. In: 2022 International Conference on Robotics and Automation

(ICRA). IEEE, 2022, pp. 970–976. isbn: 1728196817.

[90] Mustafa Mukadam et al. “Continuous-time Gaussian process motion plan-

ning via probabilistic inference”. In: The International Journal of Robotics

Research 37.11 (2018), pp. 1319–1340.

[91] Ashvin Nair et al. “Overcoming exploration in reinforcement learning with

demonstrations”. In: 2018 IEEE international conference on robotics and

automation (ICRA). IEEE. 2018, pp. 6292–6299.

[92] Jauwairia Nasir et al. “RRT*-SMART: A rapid convergence implementation

of RRT”. In: International Journal of Advanced Robotic Systems 10.7 (2013),

p. 299. issn: 1729-8814.

[93] John N Nganga and Patrick M Wensing. “Accelerating second-order differ-

ential dynamic programming for rigid-body systems”. In: IEEE Robotics and

Automation Letters 6.4 (2021), pp. 7659–7666.

[94] Abby O’Neill et al. “Open x-embodiment: Robotic learning datasets and rt-x

models: Open x-embodiment collaboration 0”. In: 2024 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 2024, pp. 6892–6903.

isbn: 9798350384574.

[95] Aykut Ozgun Onol, Philip Long, and Taskin Padlr. “A comparative anal-

ysis of contact models in trajectory optimization for manipulation”. In:

2018 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE, 2018, pp. 1–9. isbn: 1538680947.

[96] Aykut Özgun Önol, Philip Long, and Taşkın Padır. “Contact-implicit trajec-

tory optimization based on a variable smooth contact model and successive

convexification”. In: 2019 International Conference on Robotics and Automa-

tion (ICRA). IEEE, 2019, pp. 2447–2453. isbn: 153866027X.

[97] Aykut Özgun Önol et al. “Tuning-free contact-implicit trajectory optimiza-

tion”. In: 2020 IEEE International Conference on Robotics and Automation

(ICRA). IEEE, 2020, pp. 1183–1189. isbn: 1728173957.

135

BIBLIOGRAPHY

[98] Jia Pan, Liangjun Zhang, and Dinesh Manocha. “Collision-free and smooth

trajectory computation in cluttered environments”. In: The International

Journal of Robotics Research 31.10 (2012), pp. 1155–1175.

[99] Tao Pang et al. “Global planning for contact-rich manipulation via local

smoothing of quasi-dynamic contact models”. In: IEEE Transactions on

robotics (2023). issn: 1552-3098.

[100] Rafael Papallas, Anthony G Cohn, and Mehmet R Dogar. “Online replan-

ning with human-in-the-loop for non-prehensile manipulation in clutter—a

trajectory optimization based approach”. In: IEEE Robotics and Automation

Letters 5.4 (2020), pp. 5377–5384. issn: 2377-3766.

[101] Rafael Papallas and Mehmet R Dogar. “Non-prehensile manipulation in clut-

ter with human-in-the-loop”. In: 2020 IEEE International Conference on

Robotics and Automation (ICRA). IEEE. 2020, pp. 6723–6729.

[102] Rafael Papallas and Mehmet R Dogar. “To ask for help or not to ask: A

predictive approach to human-in-the-loop motion planning for robot manip-

ulation tasks”. In: 2022 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE, 2022, pp. 649–656. isbn: 1665479272.

[103] Xue Bin Peng, Glen Berseth, and Michiel Van de Panne. “Terrain-adaptive

locomotion skills using deep reinforcement learning”. In: ACM Transactions

on Graphics (TOG) 35.4 (2016), pp. 1–12.

[104] Xue Bin Peng et al. “Deeploco: Dynamic locomotion skills using hierarchical

deep reinforcement learning”. In: Acm transactions on graphics (tog) 36.4

(2017), pp. 1–13.

[105] Nicolas Perrin et al. “Fast humanoid robot collision-free footstep planning

using swept volume approximations”. In: IEEE Transactions on Robotics

28.2 (2011), pp. 427–439. issn: 1552-3098.

[106] Corrado Pezzato et al. “Sampling-based model predictive control leverag-

ing parallelizable physics simulations”. In: IEEE Robotics and Automation

Letters (2025).

[107] Cristina Pinneri et al. “Sample-efficient cross-entropy method for real-time

planning”. In: Conference on Robot Learning. PMLR, 2020, pp. 1049–1065.

isbn: 2640-3498.

[108] Michael Posa, Cecilia Cantu, and Russ Tedrake. “A direct method for tra-

jectory optimization of rigid bodies through contact”. In: The International

Journal of Robotics Research 33.1 (2014), pp. 69–81. issn: 0278-3649.

[109] Aravind Rajeswaran et al. “Learning Complex Dexterous Manipulation with

Deep Reinforcement Learning and Demonstrations”. In: Robotics: Science

and Systems XIV (2018).

136

BIBLIOGRAPHY

[110] Nathan Ratliff et al. “CHOMP: Gradient optimization techniques for efficient

motion planning”. In: 2009 IEEE International Conference on Robotics and

Automation. IEEE, 2009, pp. 489–494. isbn: 1424427886.

[111] Reuven Rubinstein. “The cross-entropy method for combinatorial and con-

tinuous optimization”. In: Methodology and computing in applied probability

1 (1999), pp. 127–190.

[112] D Russell, R Papallas, and M Dogar. “Online state vector reduction during

model predictive control with gradient-based trajectory optimisation”. In:

Workshop on Algorithmic Foundations in Robotics, Springer Proceedings in

Advanced Robotics (SPAR). Springer. 2024.

[113] David Russell, Rafael Papallas, and Mehmet Dogar. “Adaptive approxima-

tion of dynamics gradients via interpolation to speed up trajectory optimisa-

tion”. In: Proceedings of the 2023 IEEE International Conference on Robotics

and Automation (ICRA). IEEE, 2023. isbn: 1728196825.

[114] Muhammad Suhail Saleem and Maxim Likhachev. “Planning with selective

physics-based simulation for manipulation among movable objects”. In: 2020

IEEE International Conference on Robotics and Automation (ICRA). IEEE.

2020, pp. 6752–6758.

[115] Dhruv Mauria Saxena and Maxim Likhachev. “Planning for complex non-

prehensile manipulation among movable objects by interleaving multi-agent

pathfinding and physics-based simulation”. In: 2023 IEEE International Con-

ference on Robotics and Automation (ICRA). IEEE. 2023, pp. 8141–8147.

[116] Dhruv Mauria Saxena, Muhammad Suhail Saleem, and Maxim Likhachev.

“Manipulation Planning Among Movable Obstacles Using Physics-Based

Adaptive Motion Primitives”. In: 2021 IEEE International Conference

on Robotics and Automation (ICRA). IEEE, 2021, pp. 6570–6576. isbn:

1728190770.

[117] John Schulman et al. “Motion planning with sequential convex optimization

and convex collision checking”. In: The International Journal of Robotics

Research 33.9 (2014), pp. 1251–1270.

[118] Gerrit Schultz and Katja Mombaur. “Modeling and optimal control of

human-like running”. In: IEEE/ASME Transactions on mechatronics 15.5

(2009), pp. 783–792.

[119] Mario Selvaggio et al. “Non-prehensile object transportation via model pre-

dictive non-sliding manipulation control”. In: IEEE Transactions on Control

Systems Technology (2023).

[120] “Sequential Quadratic Programming”. In: Numerical Optimization. New

York, NY: Springer New York, 2006, pp. 529–562. isbn: 978-0-387-40065-

5. doi: 10.1007/978-0-387-40065-5_18. url: https://doi.org/10.

1007/978-0-387-40065-5_18.

137

https://doi.org/10.1007/978-0-387-40065-5_18
https://doi.org/10.1007/978-0-387-40065-5_18
https://doi.org/10.1007/978-0-387-40065-5_18

BIBLIOGRAPHY

[121] Aayushman Sharma and Suman Chakravorty. “A Reduced Order Iterative

Linear Quadratic Regulator (ILQR) Technique for the Optimal Control of

Nonlinear Partial Differential Equations”. In: 2023 American Control Con-

ference (ACC). IEEE, 2023, pp. 3389–3394. isbn: 9798350328066.

[122] Bruno Siciliano and Oussama Khatib. Springer handbook of robotics. springer,

2016. isbn: 3319325523.

[123] David Stewart and Jeffrey C Trinkle. “An implicit time-stepping scheme for

rigid body dynamics with coulomb friction”. In: Proceedings 2000 ICRA.

Millennium Conference. IEEE International Conference on Robotics and Au-

tomation. Symposia Proceedings (Cat. No. 00CH37065). Vol. 1. IEEE, 2000,

pp. 162–169. isbn: 0780358864.

[124] Richard S Sutton. “Reinforcement learning: An introduction”. In: A Bradford

Book (2018).

[125] Zaid Tahir et al. “Potentially guided bidirectionalized RRT* for fast opti-

mal path planning in cluttered environments”. In: Robotics and Autonomous

Systems 108 (2018), pp. 13–27. issn: 0921-8890.

[126] Yuval Tassa, Tom Erez, and Emanuel Todorov. “Synthesis and stabiliza-

tion of complex behaviors through online trajectory optimization”. In: 2012

IEEE/RSJ International Conference on Intelligent Robots and Systems.

IEEE, 2012, pp. 4906–4913. isbn: 1467317365.

[127] Yuval Tassa, Nicolas Mansard, and Emo Todorov. “Control-limited differ-

ential dynamic programming”. In: 2014 IEEE International Conference on

Robotics and Automation (ICRA). IEEE. 2014, pp. 1168–1175.

[128] R Tedrake. “Drake: Model-based design and verification for robotics”. In:

URL https://drake. mit. edu (2019).

[129] Emanuel Todorov, Tom Erez, and Yuval Tassa. “Mujoco: A physics engine for

model-based control”. In: 2012 IEEE/RSJ International Conference on In-

telligent Robots and Systems. IEEE, 2012, pp. 5026–5033. isbn: 1467317365.

[130] Jonathan Tremblay et al. “Deep Object Pose Estimation for Semantic

Robotic Grasping of Household Objects”. In: Conference on Robot Learn-

ing. PMLR. 2018, pp. 306–316.

[131] Tokuo Tsuji, Kensuke Harada, and Kenji Kaneko. “Easy and fast evaluation

of grasp stability by using ellipsoidal approximation of friction cone”. In:

2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

IEEE, 2009, pp. 1830–1837. isbn: 1424438039.

[132] United Nations, Department of Economic and Social Affairs, Population Di-

vision. World Population Prospects 2024: Summary of Results. Accessed:

2025-02-25. July 2024. url: https : / / desapublications . un . org /

publications/world-population-prospects-2024-summary-results.

138

https://desapublications.un.org/publications/world-population-prospects-2024-summary-results
https://desapublications.un.org/publications/world-population-prospects-2024-summary-results

BIBLIOGRAPHY

[133] Paul Vernaza and Daniel Lee. “Learning dimensional descent for optimal

motion planning in high-dimensional spaces”. In: Proceedings of the AAAI

Conference on Artificial Intelligence. Vol. 25. 2011. isbn: 2374-3468.

[134] Paul Vernaza and Daniel D Lee. “Learning and exploiting low-dimensional

structure for efficient holonomic motion planning in high-dimensional

spaces”. In: The International Journal of Robotics Research 31.14 (2012),

pp. 1739–1760. issn: 0278-3649.

[135] Julian Viereck, Avadesh Meduri, and Ludovic Righetti. “ValueNetQP:

Learned one-step optimal control for legged locomotion”. In: Learning for

Dynamics and Control Conference. PMLR, 2022, pp. 931–942. isbn: 2640-

3498.

[136] Andreas Wächter and Lorenz T Biegler. “On the implementation of an

interior-point filter line-search algorithm for large-scale nonlinear program-

ming”. In:Mathematical programming 106 (2006), pp. 25–57. issn: 0025-5610.

[137] Shengyin Wang et al. “Goal-conditioned action space reduction for de-

formable object manipulation”. In: 2023 IEEE International Conference

on Robotics and Automation (ICRA). IEEE, 2023, pp. 3623–3630. isbn:

9798350323658.

[138] Benjamin Ward-Cherrier et al. “The tactip family: Soft optical tactile sen-

sors with 3d-printed biomimetic morphologies”. In: Soft robotics 5.2 (2018),

pp. 216–227.

[139] Bowen Wen et al. “Foundationpose: Unified 6d pose estimation and tracking

of novel objects”. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition. 2024, pp. 17868–17879.

[140] Grady Williams, Andrew Aldrich, and Evangelos Theodorou. “Model predic-

tive path integral control using covariance variable importance sampling”.

In: arXiv preprint arXiv:1509.01149 (2015).

[141] Zhuo Xu et al. “Cocoi: Contact-aware online context inference for gener-

alizable non-planar pushing”. In: 2021 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). IEEE, 2021, pp. 176–182. isbn:

1665417145.

[142] Zisong Xu, Rafael Papallas, and Mehmet R Dogar. “Physics-Based Object

6D-Pose Estimation during Non-Prehensile Manipulation”. In: International

Symposium on Experimental Robotics. Springer. 2023, pp. 181–191.

[143] Weihao Yuan et al. “End-to-end nonprehensile rearrangement with deep rein-

forcement learning and simulation-to-reality transfer”. In: Robotics and Au-

tonomous Systems 119 (2019), pp. 119–134.

139

BIBLIOGRAPHY

[144] Andy Zeng et al. “Learning synergies between pushing and grasping with self-

supervised deep reinforcement learning”. In: 2018 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 4238–

4245.

[145] Mengchao Zhang et al. “Simultaneous Trajectory Optimization and Con-

tact Selection for Multi-Modal Manipulation Planning”. In: arXiv preprint

arXiv:2306.06465 (2023).

[146] Tony Zhao et al. “Learning Fine-Grained Bimanual Manipulation with Low-

Cost Hardware”. In: Robotics: Science and Systems XIX (2023).

[147] Dongliang Zheng and Panagiotis Tsiotras. “Accelerating kinodynamic RRT*

through dimensionality reduction”. In: 2021 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS). IEEE, 2021, pp. 3674–

3680. isbn: 1665417145.

[148] Mingyuan Zhong et al. “Value function approximation and model predic-

tive control”. In: 2013 IEEE symposium on adaptive dynamic program-

ming and reinforcement learning (ADPRL). IEEE, 2013, pp. 100–107. isbn:

1467359254.

[149] Guangyao Zhou et al. “Diffusion model predictive control”. In: arXiv preprint

arXiv:2410.05364 (2024).

[150] Claudio Zito et al. “Two-level RRT planning for robotic push manipula-

tion”. In: 2012 IEEE/RSJ international conference on intelligent robots and

systems. IEEE, 2012, pp. 678–685. isbn: 1467317365.

[151] Tongyu Zong, Liyang Sun, and Yong Liu. “Reinforced iLQR: A sample-

efficient robot locomotion learning”. In: 2021 IEEE International Conference

on Robotics and Automation (ICRA). IEEE. 2021, pp. 5906–5913.

140

	Introduction
	Challenges of Manipulation in Clutter
	Main themes
	Contributions
	Structure
	Publication Note

	Literature Review
	Classical Motion Planning
	Useful terminology
	Sampling-based motion planning

	Trajectory Optimisation Fundamentals
	General formulation
	Shooting methods
	Direct methods
	Collision-free trajectory optimisation
	Remarks

	Contact-Based Trajectory Optimisation
	Shooting methods
	Direct methods

	Other Methods for Contact-based Manipulation / Locomotion
	Learning-based approaches

	Approximations for Speeding up Robotic Motion Planning
	Dimensionality reduction
	Other approximation methods

	Remarks

	Background
	The Optimisation State Vector
	Trajectory Optimisation (iLQR and SCVX)
	iLQR
	SCVX

	Differentiation Methods
	Finite-differencing
	Automatic-differentiation

	Speeding up Trajectory Optimisation Via Approximated Dynamics Derivatives
	Introduction
	Contributions
	Organisation

	Problem formulation
	Key-point Selection Methods
	Approximation Error Bound for the Pendulum System
	Task Specifications and Testing Setup
	Optimisers
	Tasks
	Key-point parametrisations

	Results
	Evaluating interpolation accuracy
	Impact of contact on optimisation and key-point selection
	Long horizon optimisation performance
	Short horizon optimisation performance
	Execution performance on hardware

	Discussion
	Conclusion

	Online State Vector Reduction during Model Predictive Control
	Introduction
	Contributions
	Organisation

	Problem Formulation
	Definitions

	Method
	Optimise
	Reducing dimensionality

	Results
	Task definition
	Asynchronous MPC results

	Conclusion

	Challenges of MPC on Real Robotic Hardware
	Introduction
	Contributions
	Organisation

	MPC Performance
	Controllers
	Time indexing methods
	Results

	Packing an Object as an Optimisation Problem
	Conclusion

	Conclusions & Future Work
	Conclusions
	Remaining Problems / Limitations
	Future Work
	Efficient picking/packing
	Change of basis online state vector reduction
	Combining learning with trajectory optimisation
	Using GPU-based physics simulation

	Final Remarks

