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Abstract

Neoclassical tearing modes (NTMs) are plasma instabilities that can limit the perfor-

mance of tokamaks and cause a termination of the plasma if allowed to grow. Systems to

mitigate NTMs exist but have significant power requirements, which motivates further

study of the mechanisms that lead to their growth in order to assist in the development

of NTM avoidance strategies. NTMs typically require a seed magnetic island, above

some threshold width, before they become unstable. The best available description of

this threshold is the modified Rutherford equation (MRE) for NTM evolution; a com-

bination of different models, which includes the effect of transport on NTM stability.

Finite transport across magnetic field lines means that magnetic islands smaller than

a critical width, wc, do not completely flatten the pressure profiles and have a reduced

bootstrap current perturbation, which leads to a threshold width, wth.

This thesis describes novel measurements of NTMs with mode structure m/n =

2/1 on the MAST spherical tokamak (ST), which have allowed a direct evaluation of

the effect of transport on island behaviour for the first time on an ST. Temperature

profiles obtained with the upgraded Thomson scattering system on MAST have been

used to constrain the solutions of a heat transport equation for a magnetic island [1],

allowing the experimental determination of wc, an important parameter in the MRE.

The measured value of wc = 0.7± 0.2cm obtained for an ensemble of MAST discharges

is used in an analysis of the MRE for 2/1 NTM onset and saturation on MAST. By

using a probabilistic method for parameter and error estimation, which takes account of

the experimental uncertainty on measured equilibrium parameters, it is found that the

temporal evolution of the island size is well described by marginally, classically unstable

NTMs (that is, ∆′ & 0) with strongly destabilising bootstrap current and stabilising

curvature terms. Finally, an analysis of two β ramp-down discharges is presented, in

which the measured wc value explains the observed threshold width well.
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Chapter 1

Introduction

1.1 Fusion power

The sun is the solar system’s main source of power, producing approximately 3.8× 1026

Watts. In 1939 nuclear fusion was identified as the origin of this power [2]. What

emerged from this discovery was the idea that the human race could harness nuclear

fusion to generate electricity. Since the late 1940s there have been many experiments

investigating the production of controlled fusion reactions on Earth. Though many

advances have been made, a series of physics and engineering challenges have slowed

progress towards commercial fusion power.

Fusion power is arguably more necessary now than it was at the time of its conception

for a number of reasons. As of 2011, fossil fuels make up approximately 81% of global

energy consumption [3] but these resources are finite. For example, in the 1950s it was

predicted that the rate at which the human race consumes oil will increase until the

Earth’s oil fields are so depleted that the rate of consumption is forced to drop [4]. The

theory is known as “Peak oil” and it is forecasted that this maximum will occur in a

matter of decades [5] after which the amount of energy available from oil will decline and

alternative energy sources will be required to make up the deficit. Also, a combination

of population increase and the industrialisation of developing countries will continue to

push global energy demand upwards. By 2030, global demand is predicted to increase

by around 40% [6]. Furthermore, it is now widely accepted that the combustion of fossil

fuels has caused an increased concentration of greenhouse gases in Earth’s atmosphere,

that this is the main cause of the global warming observed throughout the 20th century

and that the temperature will continue to rise unless these concentrations are reduced

1
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very soon. Such a temperature increase is likely to cause droughts, rising sea levels and

a series of other potentially catastrophic events [7].

For these reasons it is clear that providing sufficient energy for the future will be

extremely challenging. It will be necessary to move away from fossil fuels and find

alternative sources of energy that can not only replace but surpass the current capacity

of fossil fuels to satisfy global energy demand.

It is likely that nuclear fission power will provide a significant fraction of the future

energy market but the proliferation of nuclear weapons, the safe and ecological storage

of long-lived nuclear waste and the risk of a large scale disaster all remain a genuine

concern. The main drawbacks associated with renewable technologies are their relative

expense, large land requirements and inconsistent power output due to natural variations

in the input source. Solar power from photo-voltaic cells is the most promising of these

technologies but with current levels of efficiency, approximately 0.5% of Earth’s landmass

would need to be covered to meet current energy demand [8].

It is possible to take the list of problems associated with current energy sources and

turn it into a “wish-list” of properties, which an ideal future source of power would

possess. It should have an abundant source of fuel, not produce greenhouse gases, not

produce long-lived nuclear waste, be free from the risk of large scale disasters, generate

energy at a consistent rate, use a small amount of land to produce a large amount of

energy and be commercially attractive for private sector investment. Fusion power has

the potential to fulfill all of these criteria but a number of problems remain to be solved

before it can be made commercially viable.

1.1.1 Fusion reactions

In a fusion reaction, two light nuclei must come close enough together that the short-

range, attractive, strong nuclear force becomes larger than the electrostatic repulsion

between their nuclei. Energy is released because the total mass of the constituents is

greater than the total mass of the products. The “missing” mass, m, is converted into

a certain amount of energy, E, given by the famous equation, E = mc2 [9].

The reaction between deuterium and tritium is most commonly used in fusion reactor

design. The main reason for this is that the cross section peak is both higher and at

a temperature lower than that of any other fusion reaction, as illustrated by figure 1.1,

but also because the reactants can be obtained with relative ease and because a large



Chapter 1. Introduction 3

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Energy (keV)

C
ro

ss
 S

ec
tio

n 
(b

ar
ns

)

 

 
DD
DT
DHe3
TT

Figure 1.1: Fusion cross sections for light nuclei as a function of particle energy.

amount of energy is released. Deuterium can be extracted from sea water and tritium

can be produced through nuclear fission reactions between lithium and a neutron. The

products of the DT reaction are a helium nucleus (α particle) with 3.5MeV and a neutron

with 14.1MeV (see equation 1.1). This neutron can then be used to breed tritium from

lithium (see equations 1.2 and 1.3).

2
1D + 3

1T → 4
2He + n + 17.6MeV (1.1)

6
3Li + n → 4

2He + 3
1T + 4.8MeV (1.2)

7
3Li + n → 4

2He + 3
1T + n− 2.5MeV (1.3)

For the nuclei to overcome the Coulomb barrier and achieve fusion, they require a

certain amount of energy. If this energy can be supplied by a sufficient number of fusing

nuclei then the reaction will be self sustaining. This threshold is called ignition and in

1957 John D. Lawson calculated the criteria for this to be achieved [10]. The calculation

uses a number of assumptions, such as the fuel being pure DT with no impurity or 4
2He

component, but it provides a useful lower limit for the ignition criterion. It is most

commonly expressed in the form of the fusion triple product:

nT τE ≥
12

Efus

T 2

〈σv〉
≈ 1021keV s/m3 (for the DT reaction) (1.4)



Chapter 1. Introduction 4

Here, n is the density, T is the temperature and τE is the energy confinement time

which is a measure of the rate at which energy is lost to the environment. At this point

it is worth noting that throughout this thesis, and in plasma physics more generally,

temperatures are usually expressed in units of electron-volts (eV).

Equation 1.4 leads to the classification of two different schemes for fusion reactor

design. Both aim to increase the temperature towards the peak cross-section energy

in figure 1.1 (around 100 million degrees), an important consequence of which is that

the DT fuel becomes a fully ionised plasma (see section 1.2). In addition, one scheme

simultaneously tries to maximise the density for a short period of time whilst the other

aims to maximise the confinement time at lower density. In the first scheme, known

as “Inertial Confinement Fusion” (ICF), a pellet of DT fuel is heated and compressed

using pulsed, high powered lasers. The energy is confined for a short period of time

using the inertia of the collapsing fuel pellet. In the second scheme, known as “Magnetic

Confinement Fusion” (MCF) on which this thesis will focus, the plasma fuel is confined

by magnetic fields whilst being heated. If a sufficient fusion reaction rate was achieved,

an MCF reactor could operate steady-state with a relatively small amount of external

heating and current drive. It is worth noting that the sun’s core temperature and density

are not high compared to man-made MCF and ICF experiments but it is able to operate

as a successful fusion reactor because it has an extremely long confinement time.

In the race to find a configuration capable of achieving commercial MCF power, the

tokamak is generally considered to be the front-runner (see section 1.3). There are many

tokamaks conducting MCF experiments around the world, the largest of which is JET

at Culham, Oxfordshire. JET and TFTR (Princeton) have had some DT operation

but most current tokamaks use 100% deuterium fuel as the neutron flux from the DT

reaction requires costly safety measures. In addition, large supplies of tritium are not

available because it has a short half-life and is only currently produced in a limited

number of fission laboratories. Much of the research done in the MCF community is in

preparation for the ITER project. ITER will be the largest tokamak ever. The main

project aims are to demonstrate a DT plasma, producing 10 times more fusion power

than applied heating power, lasting for ∼3000s [11]. This would be considered proof

that MCF fusion is technically feasible and would be followed by the construction of

a demonstration power station. Construction of ITER has commenced in the south of

France and completion is expected by the end of the decade. Though it will be larger

than any current tokamak, it is likely to be faced with some similar challenges and a more
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complete understanding of phenomena on smaller machines will help in the preparation

for ITER. The tokamak on which this thesis will focus is MAST, also at Culham.

1.2 Plasma physics

A plasma is a gas-like ensemble of particles, a significant fraction of which are ionised.

An important characteristic of a plasma is that it exhibits collective behaviour. For

example, the charged particles in a plasma tend to rearrange themselves to cancel out

any electric fields, so that the plasma is ‘quasi-neutral’. These collective effects can

only be understood by considering the plasma as an ensemble but discussions of plasma

behaviour often begin by considering the motion of individual charged particles, as this

can help to demonstrate a number of other important effects.

A charged particle can respond to electric and magnetic fields in a variety of ways

depending on the field configuration. For example, a positive ion will experience a force

parallel to the electric field and will be accelerated in that direction. In a magnetic field,

the particle experiences a force perpendicular to the field which gives rise to a circular

motion (with speed, v⊥) around the field line. The radius of the circular motion, given

by rL = mv⊥/eB, is known as the Larmor radius. If the velocity also has a parallel

component (v‖) this circular path becomes helical.

When different fields and forces are combined, or vary in space, the particle can

experience an extra component of velocity known as a drift. Important examples are

the E ×B drift and the ∇B drift. Figure 1.2 shows that these drifts can be explained

in terms of changes in rL. a) E×B - The ion circular motion is alternately parallel and

anti-parallel to E. It is accelerated during its descent and decelerated during its ascent,

so the net motion is downwards. This drift is in the same direction for electrons and

ions. b) ∇B - When the particle is in the high |B| region, rL is smaller than in the low

|B| region. This causes a sideways drift in opposite directions for electrons and ions.

If the magnetic field strength increases in the direction of the field, the particle

will experience a magnetic mirror force in the opposite direction. Figure 1.2c shows

how magnetic field lines come closer together in a region of high field. Where |B| is

increasing, there is a component of the field (Br) in the radial direction of the particle’s

circular orbit. As this is perpendicular to the velocity, there is a force, Fmirror = qv×Br,

that pushes the particle towards the low field region. Another way to understand this is

to consider the fact that the magnetic moment, µ, is conserved. As the particle enters
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Figure 1.2: a) E×B drift (B out of the page). b) ∇B drift. c) Magnetic mirror.

the high field region its Larmor radius decreases so, to conserve µ, its perpendicular

velocity increases. As energy must also be conserved, this leads to a reduction in the

parallel velocity.

Though study of single particle motion can be instructive, the task of simulating a

plasma requires a higher level formalism, such as the kinetic description or the Magneto-

Hydrodynamic (MHD) fluid description, which will be used in this thesis. The set of

four solveable MHD equations is obtained by taking moments of the particle distribution

function and using the adiabatic equation of state as a closure relation. The MHD

equations, outlined below, assume the electron mass is negligible compared to the ion

mass in order to treat the electrons and ions as a single fluid. The validity of these

equations breaks down when the system under consideration is small enough to be

comparable with the Larmor radius or when the mean free path of a particle becomes

comparable to the system length scale. This can be an issue when considering the

plasma’s behaviour in the direction parallel to the magnetic field, where the mean free

path is often much longer than it is perpendicular to the field.

∂ρ

∂t
+∇ · (ρu) = 0 (1.5)

ρ

[
∂u

∂t
+ (u · ∇) u

]
= −∇p+ J×B (1.6)

∂p

∂t
+ (u · ∇) p = −γp (∇ · u) (1.7)

E + u×B = ηJ (1.8)

Here, ρ is the mass density, u is the flow, J is the current, B is the magnetic field, p

is the pressure, γ is ratio of specific heats, E is the electric field and η is the resistivity.

Equation 1.5 is the equation of continuity which is an expression of mass conservation.
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Equation 1.6 is the force balance equation which describes the flow of plasma under the

influence of a combination of magnetic and pressure forces. Equation 1.7 is the equation

of state, which assumes that the plasma behaves adiabatically. Equation 1.8 is a version

of Ohm’s law describing the influence of electric fields on a plasma with finite resistivity,

η. These equations ignore some important physics but they do provide a useful (and

surprisingly accurate) starting point for analysis of plasma stability.

If the plasma resistivity is small then Ohm’s law becomes E + u×B = 0. Consider

the magnetic flux through a surface S, Ψ =
∫
S B.dS (see figure 1.3). The rate of change

of flux through this surface is the sum of two parts: 1) The change in background flux.

2) The plasma flow changes the size and shape of the curve C, also changing the flux

through the loop. Equation 1.9 shows these two parts summed together.

Figure 1.3: The flux through surface S bounded by curve C in a plasma with flow u.

dΨ

dt
=

∫
S

∂B

∂t
.dS +

∮
C

B. (u× dl) (1.9)

dΨ

dt
= −

∫
S

∇×E.dS−
∮
C

u×B.dl

dΨ

dt
= −

∫
S

∇× [E + u×B] .dS = 0 (1.10)

Equation 1.10 shows that for η = 0, dΨ/dt through any surface is zero. The signifi-

cance of this result is that in the η = 0 case, magnetic flux is frozen in to the plasma.

That is, the field lines move with the plasma and vice versa. In some cases, it is impor-

tant to take into account the finite resistivity of the plasma. Equation 1.11 is obtained

by taking the curl of equation 1.8 (Ohm’s law).



Chapter 1. Introduction 8

∂B

∂t
= ∇× (u×B) +

η

µ0
∇2B (1.11)

This is has the form of a convection-diffusion equation. The movement of the field

lines with the plasma is described by the first term (this is the frozen in part) while

their diffusion through the plasma is described by the second term [12]. The ratio of

these two terms is approximately expressed as the Lundquist number, S (equation 1.12).

If S is small then the diffusive term becomes important and the magnetic field lines

can move through the plasma and even tear and reconnect to form a completely new

topology. This process is called magnetic reconnection; a key concept in this thesis.

S ≈ |∇ × (u×B) |
| ηµ0∇

2B|
≈ µ0LVA

η
(1.12)

where L is the system length scale and VA is the Alfvén speed. There are certain thin

layers within a tokamak plasma that have very short system length scales and a small

S value, which means that resistivity is important to consider and that magnetic recon-

nection can become favourable. Because of this, these regions can become susceptible

to the growth of a type of resistive plasma instability called a neoclassical tearing mode

(NTM). NTMs can impair the performance of a tokamak by reducing the temperature

of the core plasma or by causing a plasma disruption if allowed to grow to a large size

(see section 1.4). The aim of this thesis is to develop a deeper understanding of the

onset and growth of NTMs in order to find ways of minimising these effects.

1.3 Tokamaks

1.3.1 Magnetic field configuration

In the limit of zero plasma resistivity and viscosity (i.e. no collisions between particles,

so-called ideal MHD), the particles tend to stay within rL of a field line. If a field line

joins back on itself, the particles will be confined to stream along it (neglecting drifts).

The simplest way to bend a column of plasma to join back on itself is the toroidal

geometry. Figure 1.4a shows half a torus with the relevant toroidal coordinates.

Here, r is the minor radius (a is the value of r at the plasma edge), R is the major

radius (R0 is the value of R at the magnetic axis), θ is the poloidal angle, φ is the toroidal

angle and Z is the vertical coordinate. The usual method for inducing a toroidal field,
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Figure 1.4: a) Toroidal geometry. b) Toroidal field generation in a torus.

Bφ, is to wrap a series of coils, carrying toroidal field current, Itf , around the toroidal

vessel (see figure 1.4b). As the coils are more closely spaced on the inside of the torus,

the toroidal field strength varies approximately like Bφ ∼ 1/R. This makes it necessary

to distinguish between the high and low field sides of the vessel, known as the inboard

and outboard sides, respectively.

An important consequence of this 1/R dependence is that there is a ∇B drift; in op-

posite directions for electrons and ions. Similarly, the toroidal curvature of the magnetic

field gives rise to a curvature drift, in the same direction as the ∇B drift. Figure 1.5a

shows that if the field was purely in the toroidal direction, the ions and electrons would

separate, giving rise to an electric field. In combination with the toroidal magnetic field,

this electric field would cause both species to have an E × B drift out of the plasma,

resulting in complete loss of plasma confinement.

The solution is to include another magnetic field in the poloidal direction, Bθ. This

can be done using specially shaped coils or by ramping current through a central solenoid

to produce a time varying magnetic field in the Z direction, which generates a toroidal

plasma current (Ip) and an associated Bθ, as shown in figure 1.5b. The sum of Bθ and

Bφ has a toroidal helix shape, which prevents either species from collecting at the top

or bottom of the vessel. The ∇B and curvature drifts still exist but by avoiding charge

accumulation, large scale E×B drifts are eliminated. In general, the combination of a

poloidal and toroidal field is known as the toroidal pinch.

The amount the helical field lines ‘twist’ in a toroidal pinch is quantified by a param-

eter known as the safety factor, q. This is defined as the number of times a field line

winds around the torus toroidally for every once poloidally. At this point it is necessary

to state, without proof, that magnetic field lines lie in closed toroidal surfaces. This is

discussed more thoroughly in section 1.3.2. The magnetic surfaces where q has a ratio-

nal value are of particular interest, as the field lines connect back on themselves and
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Figure 1.5: a) Drifts with a purely toroidal field. b) Poloidal field. c) Total helical field.

perturbations to these field lines have periodic boundary conditions. This means that

these surfaces are resonant with particular modes, made up of toroidal and poloidal har-

monics with toroidal mode number, n, and the poloidal mode number, m. Modes with

a particular combination of m and n will be resonant on surfaces with q = m/n. These

modes may be unstable and grow in amplitude so are often referred to as instabilities.

Furthermore, the plasma resistivity can become important at these rational surfaces,

making them susceptible to magnetic reconnection and resistive instabilities, such as

tearing modes (as was mentioned in section 1.2). The radial gradient of the q profile

is also an important parameter in determining the stability of modes and is normally

expressed in terms of the magnetic shear defined as:

s =
r

q

dq

dr
(1.13)

There are three stable variations of the toroidal pinch, with different q profiles shown

in figure 1.6. These configurations often have q profiles tailored to avoid the q = 1

surface, as it can be become susceptible to large and rapidly growing m/n = 1/1 kink-

like instabilities. The stellarator consists of a series of twisted coils, which provide a

helical field without the need for a plasma current. Its safety factor profile usually has

negative magnetic shear and, though there are a variety of different stellarator q profile
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Figure 1.6: Safety factor for different toroidal pinch configurations as a function of nor-
malised minor radius [13].

designs, the classical stellarator q profile goes from 2-3 at the axis to about 1 at the

edge. The reversed field pinch (RFP) uses a plasma current to produce a poloidal field

of similar magnitude to the external toroidal field. The RFP is a self organised plasma

configuration; a minimum energy state, in which the toroidal field spontaneously changes

direction close to the plasma edge. This leads to a very low negative shear safety factor

profile, with a central q of just below 1 and an edge q of just below 0. The tokamak has

a toroidal field much stronger than its poloidal field. It’s safety factor profile usually has

positive magnetic shear, starting at around 1 at the centre and increases to somewhere

in the range 3-10 towards the plasma edge.

1.3.2 Equilibrium

It is instructive to study the MHD equilibrium in a tokamak. Conventionally axisymme-

try is assumed, which allows much of the analysis to be restricted to the poloidal plane.

If we assume that the global plasma flow is zero, the force balance equation (equation

1.6) becomes ∇p = J×B.

Combining force balance and Ampère’s law gives:
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J×B =
1

µ0
(∇×B)×B

=
1

µ0
(B.∇) B− 1

2µ0
∇B2 (1.14)

The first term of equation 1.14 describes the forces due to the curvature of the

magnetic field. The fact that it takes energy to bend magnetic field lines has important

implications for plasma stability and this is discussed later. The second term describes

the magnetic pressure forces that act when field lines are compressed together. An

important equilibrium parameter is the ratio of the plasma pressure and this magnetic

pressure:

β =
p

B2/2µ0
(1.15)

The magnetic pressure is related to the strength of the externally applied field which

should be minimised to reduce the power requirements of the tokamak. A high β scenario

is desirable as it uses relatively little magnetic pressure to achieve a hot and dense

plasma. Another, similar parameter of interest is βp, the poloidal β, which is calculated

by replacing B with Bθ in equation 1.15.

The plasma β cannot increase indefinitely, as eventually global MHD instabilities

rapidly grow and terminate the plasma. Troyon calculated the β limit beyond which

the plasma, without a stabilising metal wall, becomes globally unstable to an ideal kink

mode [14]. For a large aspect ratio, circular cross section tokamak, this limit was found

to follow the scaling βN = 4li [15], where βN = β[%]a[m]B[T]
Ip[MA] is the ‘normalised β’ and

li = 2
∫ a

0 Bθrdr/a
2Bθ(a) is the plasma internal inductance.

In a successful MCF device, the pressure should be greater in the core than at the

edges, with nested surfaces of constant p (see figure 1.7). As p is a scalar field, ∇p will

always point perpendicular to these surfaces. The surface area of the inboard side of a

torus is less than that of the outboard side. Since pressure is force per unit area and is

constant on a surface, the surfaces are pushed away from the inboard side so that the

maximum pressure is shifted off centre. This contributes to a shift of the flux surfaces

towards the outboard side of the torus, known as the Shafranov shift (see figure 1.7),

which leads to a distinction between the geometric and magnetic axes of the plasma. In

this thesis, ‘axis’ will generally refer to the magnetic axis.
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Figure 1.7: Surfaces of constant pressure with Shafranov shift off axis. Magnetic field lines
and currents lie in surfaces.

The dot product of the equilibrium force balance with B gives B.∇p = 0 and the

dot product with J gives J.∇p = 0. This means that both B and J lie in the surfaces

of constant p, perpendicular to ∇p, which is illustrated in figure 1.7. This result can be

used to show that the magnetic flux due to the poloidal field, Ψ, is also constant on a

pressure surface. It is often useful to label each surface by its local Ψ value (renaming

them flux surfaces) and to use Ψ as a substitute spatial coordinate, independent of

plasma cross section shape (unlike r).

Transport of heat and particles is much faster parallel to magnetic field lines than

it is perpendicular to magnetic field lines. Field lines that lie in closed equilibrium

flux surfaces, are good for confinement because they only allow slower perpendicular

transport of heat and particles out of the plasma. Any perturbation or instability that

breaks open flux surfaces or provides a component of the magnetic field perpendicular

to the equilibrium surfaces will have a detrimental effect on confinement as heat and

particles can free stream out of the plasma. Instabilities such as neoclassical tearing

modes can have such an effect and this will be revisited in more detail later.

Force balance is also influenced by the rotation of the plasma. This rotation is

primarily in the toroidal direction and to a large extent is driven by momentum input

from the tangential neutral beams (covered in section 1.3.4), although there is some

intrinsic toroidal and poloidal rotation the cause of which is not fully understood. The

toroidal rotation usually has a sheared profile with a high rotation in the plasma core,

which tends to be beneficial for stability, although there is still some debate about the

effects of rotation shear. Loss of rotation often results in a disruption of the plasma.
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A range of other factors can influence plasma equilibrium from fast particles produced

in the plasma core by external heat sources to the influx of impurities and neutrals at

the plasma edge. Some of these other factors will be looked at in Chapter 2, when

considering MAST equilibria in more depth.

1.3.3 Plasma stability

Sections 1.3.1 and 1.3.2 described some of the properties of plasma equilibrium that can

lead to the growth of instabilities, such as high β or the presence of rational q surfaces.

Plasma stability is often determined by considering whether there is free energy available

for a perturbation to grow, which can be influenced by a wide range of local and global

plasma parameters.

Pressure gradients are one potential source of free energy to drive instability growth.

One example of this is the Edge Localised Mode (ELM), a periodic eruption of the

plasma edge, which can cause highly damaging transient heat loads on the plasma-

facing components. In 1982, a new high β operational regime was discovered when a

new plasma edge configuration, called a divertor (see section 1.3.5), was used [16]. This

high confinement mode (H-mode, in contrast to the low confinement, L-mode) has a

steep edge pressure gradient (or pedestal) and a significantly higher core pressure (see

figure 1.8). The confinement time was found to approximately double. H-mode seems

to be an advantageous operational regime for an MCF reactor but this high pedestal

pressure gradient makes the edge plasma susceptible to ELMs, which are likely to cause

unacceptable levels of damage if not mitigated on ITER.

Figure 1.8: Typical pressure profiles for L and H mode operational regimes.
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Another important parameter for determining plasma stability is the curvature of

the field, κ, defined as a unit vector which points from the infinitesimal arc of field

line towards the centre of the arc’s circle. MHD stability analysis shows that in regions

where ∇p.κ > 0, such as the outboard side of the torus, the curvature has a destabilising

effect on perturbations, whereas curvature acts to stabilise on the inboard side, which

has ∇p.κ < 0. This effect is seen in experimental observations of ELMs, which erupt

much more violently on the outboard side of the tokamak.

This thesis considers the various contributions to the stability of neoclassical tearing

modes, which includes the effects of pressure gradients, curvature and also other effects

such as the shape of the current profile. Further details can be found in Chapters 3 and

6.

1.3.4 Heating and current drive

The magnetic fields provide the plasma confinement, but to access the Lawson ignition

condition the plasma must also be heated. There are three main heat sources used in

tokamaks:

1. The plasma current provides ohmic heating.

2. Radio or microwave frequency radiation, resonant with certain plasma oscillations,

is used as a source of heating. Common examples are ion and electron cyclotron

resonance heating (ICRH and ECRH). A similar system can be used to drive

current (e.g. electron cyclotron current drive, ECCD).

3. High energy beams of neutral deuterium atoms are often injected into the plasma.

This neutral beam injection (NBI) provides heating, current drive and angular

momentum in the toroidal direction.

1.3.5 Tokamak design

Tokamaks are designed in a variety of different sizes and configurations, but a number

of features are common to most modern tokamaks. Figure 1.9 shows a schematic of a

tokamak with some of these features labelled.

The first wall faces the plasma and is built to withstand high heat loads and exposure

to x-rays caused by runaway electrons during a disruption. Graphite tiles are used for

the first wall in many tokamaks (e.g. MAST) but sometimes metal walls are used such
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Figure 1.9: A tokamak plasma cross section with shaping. The dashed red line is the
separatrix and the solid red line is the last closed flux surface. δ is the triangularity and κ is
the elongation.

as in JET, which is currently using an all metal wall in preparation for ITER. The centre

column contains the central solenoid and the inner loop of the toroidal field coils. It is

protected by the first wall. The divertor is the point where the plasma makes contact

with the first wall. The magnetic field configuration in a divertor tokamak has a field

null X-point, just above the divertor, which creates a separatrix flux surface and two

legs down which plasma streams onto the divertor target plates. Building these plates

to withstand high heat loads, particularly transient events, presents a real challenge.

Just inside the separatrix is the last closed flux surface (LCFS) and just outside it is

the region called the scrape-off layer (SOL). The flux region spanning from Ψ/ΨLCFS ≈

0.95 to just outside the SOL is called the edge plasma. The physics of this region is

very complex due to the steep gradients in pressure and current and the large neutral

particle fraction, but this will not be covered in detail in this thesis. The core plasma

is fully ionised and is usually confined by closed toroidal flux surfaces. The low q values

in this region make it susceptible to large scale, low m/n MHD instabilities, which will

be the focus of this thesis.

The plasma cross section used in most tokamak experiments is not circular but ‘D’

shaped (see figure 1.9), characterised by the triangularity parameter, δ, and the elon-

gation parameter, κ. One advantage of this shape is that it allows a higher achievable

plasma pressure. A number of additional magnetic coils are required to provide this

plasma shaping, as well as for position control.
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1.3.5.1 Spherical tokamaks

Another important parameter is the aspect ratio of the torus, R0/a. If this parameter

is large, the toroidal curvature of the plasma is small and a cylindrical approximation

can be made. Figure 1.10 shows the path followed by field lines in the large and small

aspect ratio cases for a q = 5 flux surface. A small aspect ratio tokamak is usually called

a Spherical Tokamak (ST). This thesis will focus on data from the Mega Amp Spherical

Tokamak (MAST), which is described in more detail in Chapter 3.

Figure 1.10: Comparison of magnetic field lines in a conventional large aspect ratio tokamak
and spherical tokamak (ST).
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The ST has a number of advantages over the conventional, large aspect ratio toka-

mak. As the inboard side of a flux surface is much closer to the centre column, the

magnetic field is considerably stronger there than on the outboard side. This means

that a magnetic field line winds more tightly around the centre column, as shown in

figure 1.10, and there is more field line length in ‘good curvature’ regions. The ST is

therefore able to achieve higher β than a conventional tokamak due to improved plasma

stability. Increases in natural elongation and triangularity also contribute to this effect.

Another advantage is that pushing the plasma closer to the centre column can provide

a large bootstrap current, a current intrinsically generated by a tokamak plasma, which

is described below, in section 1.3.6.

1.3.6 The neoclassical model

In the large aspect ratio approximation, the magnetic field is generally assumed to be

constant on a flux surface. This is known as the classical model. Section 1.3.5.1 showed

that, for smaller aspect ratio machines, differences in the field strength on the inboard

and outboard side become important. A more realistic approach is the neoclassical model

in which the 1/R dependence of the toroidal field is included. One consequence is that

particles with low v‖/|v| experience a magnetic mirror force and become trapped on the

outboard side of the tokamak. Their trajectories almost follow field lines but are lifted

slightly off this course by the ∇B drift (see figure 1.11a). When projected onto the

poloidal plane this path has a banana shape and as a result is called a banana orbit. It

can be shown that the banana orbit width is wb ∼ π√
2

qrL√
ε
> rL.

Figure 1.11: a) Banana orbit trajectory in the poloidal plane. b) Neighbouring banana
orbits in a pressure gradient.
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Unfortunately for confinement, diffusion of heat and particles across field lines is in-

herent in all tokamaks. Initially, it was thought that the mechanism for such diffusion

was Coulomb collisions and that the diffusivity of a plasma is related to the mean free

path of the particles, λmf . In a collisional plasma, the particle mean free path is approx-

imately equal to the Larmor radius, rL. As the plasma moves to higher temperature,

the resistivity of the plasma decreases and fewer collisions occur. Here, particles are

often able to follow full banana orbits before collisions occur and as such it is called

the banana regime, so λmf ∼ wb > rL. This means that the banana regime has an

enhanced diffusivity and transport of heat and particles out of the plasma is increased.

However, the observed perpendicular transport is still higher than the values predicted

by neoclassical theory and it is now understood that the dominant transport mechanism

in tokamaks is turbulence.

Kinetic theory considerations of electron-ion momentum exchange in the banana

regime predict a field-aligned current known as the bootstrap current [17]. The boot-

strap current has been measured experimentally and is found to agree with theoretical

predictions [18]. It is possible to obtain an approximate formula for Jbs (the bootstrap

current density) [19]. The plasma pressure increases towards the centre of the tokamak

which means there are a greater number of faster particles on inner banana orbits (see

figure 1.11b). By considering the pressure gradient between neighbouring banana orbits,

a net banana current density (along the path of the trapped particles) can be shown to

exist. Trapped particles exchange momentum with passing particles and Jbs arises from

a force balance between this momentum change and an opposing frictional force due to

collisions of passing particles. This gives an estimate of the bootstrap current density:

Jbs ∼
√
ε

Bθ

dp

dr
(1.16)

where ε = r/R is the inverse aspect ratio (considered to be small in this approxima-

tion).

This extra current can constitute a considerable fraction of the total current, which

can reduce the amount of external current drive required. A large bootstrap fraction

would be advantageous in a tokamak fusion power station, as this would help to provide

steady state operation. This could be achieved if 50-90% of the plasma current was

provided by the bootstrap current [20].
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1.4 Neoclassical tearing modes

Figure 3.2a shows a slab of plasma with sheet flux surfaces, in which the magnetic field

lines lie (shown in blue). This can be thought of as a toroidal plasma that has been

straightened out into a cylinder, then sliced radially down the poloidal cross section and

flattened out. The top flux surface is a q = 2 rational surface. If a filamented current

perturbation is introduced parallel to the q = 2 field line, an additional field component

arises, perpendicular to the flux surface. The flux surface tears open, reconnecting to

form a m/n = 2/1 magnetic island, shown in figure 3.2b. This tearing mode can be

caused by a variety of parallel current perturbations. The key features of the associated

magnetic island are its O-point, X-point and separatrix shown as a red line in figure

3.2b.

Figure 1.12: a) A slab of plasma. b) Slab with a magnetic island.

Figure 1.13 shows a set of toroidal flux surfaces without (left) and with (right) a

m/n = 2/1 magnetic island along with their associated pressure profiles. Since the pres-

sure is usually constant on a flux surface, the new island flux surfaces make a flat region

in the pressure profile and reduce the central pressure, which is detrimental to tokamak

performance. This flattening in the pressure profile constitutes a perturbation to the

neoclassical bootstrap current, parallel to the magnetic field, which further destabilises

the mode. Tearing modes driven unstable by perturbations to the bootstrap current are

therefore known as neoclassical tearing modes (NTMs).

Experiments show that NTMs require a seed perturbation before they can grow. One

theory is that magnetic islands smaller than a critical island width, wc, do not completely

flatten the pressure profile or perturb the bootstrap current, which leads to a threshold

island width, wth, above which the NTM will grow. Investigating the physics of this

threshold is a key aim of this thesis.
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Figure 1.13: Left: Example tokamak flux surfaces and pressure profile. Right: With
magnetic island.

Another problem caused by NTMs is that the additional field component, perpen-

dicular to the flux surfaces, can induce eddy currents in the metal tokamak vessel and

cause a drag on the rotating plasma. Large magnetic islands can completely ‘lock’ to

the wall and cause a loss of global plasma rotation and stability. This usually results in

a disruption in which the plasma’s stored energy is lost to the vessel wall over a short

period of time. The projected first wall energy load for a disruption on ITER is on the

order of 100 MJ m−2 s−0.5, whereas the limit of melting and vapourisation is on the

order of 10 MJ m−2 s−0.5 for the first wall materials, beryllium, carbon and tungsten

[21]. As such, all feasible measures to avoid disruptions should be taken, including the

avoidance and mitigation of NTMs.

Systems have been developed to stabilise and mitigate NTMs but the power required

to run these systems will significantly reduce the overall efficiency of the tokamak. Figure

1.14 is a plot of power applied to the plasma by the mitigation systems against the

effective Q factor, the ratio of fusion power to applied heating power for a standard ITER

discharge. Points A and B are for plasmas without the mitigation system switched on,

containing an m/n = 3/2 and 2/1 NTM, respectively. The effective Q factors of these

points are reduced from an initial value of 10 to about 7 and 5 due to the confinement

degradation caused by the NTM. Points C and D are for the same plasmas but with the

NTMs mitigated by 10MW and 20MW of mitigation power, respectively. Though the Q

factors are higher in scenarios C and D than in A and B, they are still both significantly
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Figure 1.14: ITER Q = 10 scenarios with NTMs. A: 3/2 NTM, no mitigation.
B: 2/1 NTM, no mitigation. C: 3/2 NTM, mitigation power=10MW. D: 2/1 NTM,
mitigation power=20MW. [22]

below Q = 10. Depending on how long the mitigation system has to remain switched

on, this presents the potential for a significant reduction in tokamak performance [22].

Minimising the use of these mitigation systems is clearly a priority if fusion is to be

made commercially viable and this is the motivation for the thesis presented here. This

thesis will make comparisons of NTM theory and experiment with the aim of providing

an improved understanding of the physics of the threshold for growth, in order to inform

NTM avoidance strategies on future devices.

1.5 Thesis overview

This chapter has covered the background plasma and tokamak physics required for the

study of NTMs and outlined the motivation for gaining an improved understanding of

this instability. Chapter 2 provides a description of the MAST tokamak and its diag-

nostic capabilities. A study of MAST’s operational parameter space is undertaken in

order to help develop the experimental scenarios used throughout this thesis, which are

also described. In Chapter 3, the theoretical models for NTMs are examined and the

experimental and theoretical literature is reviewed. The modified Rutherford equation

(MRE) for NTM evolution is described, term by term, so that it can be used to inves-

tigate the balance of the different contributions to NTM stability later in the thesis. A

heat transport equation for a magnetic island is presented in Chapter 4. The solutions
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of this equation are model temperature profiles, described by a set of six free parame-

ters, including wc, the critical width for temperature flattening. Chapter 5 focuses on

a method of measuring wc experimentally by fitting the solutions of the heat transport

model to experimental Thomson scattering data. This is the first time such a measure-

ment has been made on a spherical tokamak. In Chapter 6, a study of the competing

NTM growth mechanisms is undertaken. The evolution of the magnetic island width,

evaluated from the MRE, is fitted to experimental data using a probabilistic method

that takes into account the uncertainties on measured parameters. The value of wc

measured in Chapter 5 is used to help constrain these fits. The experimentally observed

NTM threshold is found to agree with that predicted using the MRE. Finally, Chapter

7 concludes with a review, a summary of the previous four chapters and an outline of

potential future work in this area.





Chapter 2

Experimental tools and scenarios

2.1 Introduction

This chapter describes the experimental facilities, diagnostic tools and plasma scenarios

used throughout this thesis to study neoclassical tearing modes. The experimental

measurements were made on the Mega Amp Spherical Tokamak (MAST); the UK’s

national magnetic confinement fusion experiment. Section 2.2 gives a brief overview of

MAST’s design and capabilities. Section 2.3 outlines a selection of MAST’s diagnostics,

such as the Mirnov coil array and the Thomson scattering diagnostic, which are relevant

to the study of NTMs. Section 2.4 describes an investigation of MAST’s operational

parameter space, which was conducted in order to identify conditions suitable for NTM

experiments. The chapter finishes with a description of the characteristics of the MAST

scenarios analysed in this thesis.

2.2 The MAST tokamak

As a spherical tokamak (ST), MAST has a low aspect ratio of R/a ≈ 1.5. Figure 2.1a

shows a schematic cut-away of the cylindrical stainless steel vacuum vessel, which is

4.4m high and 4m in diameter. There are 24 rectangular toroidal field coils, a central

solenoid and five pairs of horizontal ring-shaped coils for shaping and plasma vertical

position control. All the coils are water-cooled. The vacuum vessel has an open design,

with no close-fitting first wall on the outboard side of the plasma. This allows access for

a wide range of plasma diagnostics, through three rings of diagnostic ports, also shown

25
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a) b) c)

Figure 2.1: a) A schematic cut-away of the MAST vacuum vessel with toroidal field
coils, central solenoid, shaping coils (also for plasma vertical position control) and three
rings of diagnostic ports indicated. b) The Double Null Divertor (DND) configuration.
c) The (lower) Single Null Divertor (SND) configuration.

in figure 2.1a. A selection of MAST’s diagnostics are described in section 2.3. Some of

MAST’s key parameters are displayed in table 2.1.

Parameter Value

Maximum plasma current (MA) 1.3
Major radius, R (m) 0.9
Minor radius, a(m) 0.6
Toroidal field (T) 0.55 (at R0)

Maximum shot length (s) 0.7
NBI heating power (MW) 5 (2 × 2.5 MW)

Typical core Te (keV) 0.5-1.5
Typical core ne (m3) 1-5 × 1019

Typical core velocity (km/s) 300
Inverse aspect ratio, ε 0.75

Elongation, κ 1.6 ≤ κ ≤ 2.5
Triangularity, δ δ ≤ 0.5

Record β 15%

Table 2.1: MAST’s key parameters [23].

MAST is equipped with both an upper and a lower divertor, which allows the tokamak

to operate in a number of configurations. Figures 2.1b and 2.1c show the Double Null

Divertor (DND) and (lower) Single Null Divertor (SND) configurations, which are the

most commonly used. Mainly DND discharges are used in this thesis as they are a more

attractive operating scenario for an ST.

The plasma is heated both ohmically and by two neutral beams, providing a maxi-

mum of 2.5MW each. Conventional microwave heating, such as ECRH and ICRH are

not readily applied to spherical tokamaks, which tend to operate at high density and low
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outboard magnetic field making them over-dense to cyclotron radiation in the required

frequency ranges. The neutral beams also provide current drive, angular momentum

injection and a source of light from within the plasma due to charge exchange reactions

with impurity carbon ions or line emission from injected neutral deuterium, which can

be used to diagnose the plasma (see sections 2.3.4 and 2.3.5).

2.3 Diagnostics

One of MAST’s strengths is its large number of plasma diagnostic systems. This sec-

tion covers the key diagnostics used to measure NTMs on MAST but starts with a

brief overview of the systems used to trace the time history of the different stages of a

discharge, which is an important tool for interpreting NTM behaviour.

2.3.1 Basic global discharge diagnostics
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Figure 2.2: Time traces for MAST discharge 24081. a) Ip, the plasma current. b)
Line integrated electron density, ne. c) Line integrated Dα emission showing L-H and
H-L transitions and ELMs. d) Summed power from MAST’s two neutral beams

A measurement of the total plasma current, Ip shows a clear picture of the key stages

of a typical MAST discharge. This is demonstrated by the upper trace shown in figure

2.2, produced using a Rogowski coil diagnostic. The stages are;

1. Plasma breakdown. The deuterium gas is ionised and a small plasma current begins

to flow.

2. Current ramp-up. The plasma current is increased, mainly by ramping flux through

the central solenoid.
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3. Flat top. The plasma current is held at a constant level. By this point, the plasma

has reached the required size and shape. NTMs usually occur in the second half

of this stage, when the highest temperatures and densities are achieved.

4. Termination. Plasma confinement is lost and the discharge terminates. This may

occur relatively quickly due to some large plasma instability such as a locked NTM

or sawtooth crash. Alternatively, if plasma stability can be maintained, this may

occur when it is no longer possible to ramp any more flux through the solenoid.

Another key diagnostic trace is the line integrated density, also shown in figure 2.2.

This is provided by the interferometer, which uses the relation between the electron

density integrated along a line through the plasma and the phase shift of a laser beam

directed along that line. This can be used to provide ‘density feedback’ control in order

to avoid over-fueling the plasma and also provides a useful calibration for the Thomson

scattering electron density profile measurement (discussed in section 2.3.3). During the

current ramp-up phase, the density gradually increases as the plasma is fueled. The rate

of density increase then drops due to low confinement during the L-mode phase. At about

0.15s there is a sudden transition to H-mode and the density begins to increase rapidly.

During this stage, edge localised modes (ELMs, described in Chapter 1) periodically

erupt from the plasma edge and cause sharp but temporary decreases in density.

Deuterium Dα emission is line radiation that occurs in the edge plasma and SOL,

where the plasma is cooler and there are more neutral particles, which can be excited

by the flux of heat and particles leaving the plasma. This light is measured with a

series of cameras and can be used for diagnostic purposes. If there is an improvement

in confinement at the plasma edge, the measured Dα emission decreases due to the

reduction in the losses of heat and particles from the plasma, which results in a reduction

in excited neutrals. Similarly the emission increases if the confinement decreases. This

means that L-H transitions and ELMs are also visible on the Dα trace, shown in figure

2.2. The Dα emission during the L-mode period is quite high and consistently ‘fuzzy’,

due to characteristic filaments leaving the edge of the plasma [24]. The H-mode period is

characterised either by periodic spikes in Dα emission (ELMs) or a low level of quiescent

Dα emission (ELM-free or inter-ELM H-mode).

Another important trace, also shown in figure 2.2, is the NBI injected power. As

MAST has only limited microwave heating capabilities, the NBI injected power is the

main form of βp control (gas puffing can also be used to control the particle density).
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As it is often necessary to rapidly increase and decrease βp during NTM experiments

(see section 2.5 and Chapters 3 and 5), it is very important to monitor the NBI power.

Furthermore, two important diagnostic systems make use of the light emitted when

neutral particles are injected by the NBI system (see sections 2.3.4 and 2.3.5), which

provides another reason for monitoring this trace.

2.3.2 Mirnov coil array

A Mirnov coil is a simple multi-turn loop of wire that measures the rate of change of

magnetic field in the direction perpendicular to the plane of the loop via Faraday’s law.

A signal can be registered either because the field strength is varying in time or there is

a spatially varying magnetic field moving relative to the coil. In the case of a magnetic

island, changes in this signal come from both the rotation around the torus at about

50km/s and a slower variation due to growth of the magnetic island width on the order

of 1m/s.

MAST’s Mirnov coils are arranged in both poloidal and toroidal arrays of coils. The

locations of the poloidal array coils, which measure BZ , are indicated as blue circles in

figure 2.3a. The coils have a high time resolution of 1.25µs, limited by the digitisation

rate of the analogue-to-digital converter (ADC), and can provide spatial and spectral

information about rotating MHD activity in a tokamak plasma. It is possible to identify

the toroidal and poloidal mode number of a particular mode by using a combination of

several spatially separated Mirnov coils, which can help to distinguish between different

modes and localise them to specific rational surfaces. For example, a simple way of

identifying modes with n equal to an odd number is to subtract the signals of two coils

separated by a toroidal angle of φ = π. Figures 2.3b, 2.3c and 2.3d show Mirnov coil

data for a 2/1 NTM located on the q = 2 surface, shown as a red line on 2.3a.

Figures 2.3b shows the NTM data on a magnetic island width evolution timescale

(determined by resistive diffusion) and 2.3c shows the same data over a single island

rotation period (at a time indicated by the red line on figure 2.3b). The two timescales

differ by approximately two orders of magnitude, which allows the assumption that the

magnetic island structure does not change during a single rotation period. By using

this assumption, identifying this mode as having an n = 1 structure and measuring

the mode rotation frequency, it is possible to transform the temporal Mirnov data into

spatial data in the φ direction, as shown in figure 2.3d. This figure shows data from the
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Figure 2.3: MAST Mirnov coil data for discharge 23447. a) Locations of the poloidal
array of Mirnov coils (blue dots) relative to the q = 2 surface location (red line). b)
Data from a Mirnov coil over island growth timescales (0.01s). Red line shows the time
used for figure c. c) Data from the same Mirnov coil as figure b over island rotation
timescales (0.1ms). d) Data from the inboard poloidal Mirnov coil array over the same
timescale as figure c.

whole inboard Mirnov array (the vertical line of coils on the centre column, or left hand

side of figure 2.3a) and reveals the spatial structure of the instability.

A variety of plasma instabilities, such as NTMs, ideal MHD modes and chirping fast

particle modes, can be identified by their characteristic time traces on a Fourier trans-

form spectrogram of a Mirnov coil signal (see figure 2.4). MAST’s neutral beams create

a population of fast particles that often gives rise to instabilities known as fishbones,

which chirp down in frequency as they lose energy. Figure 2.4 shows how chirping fish-

bones can drive another mode unstable; the ideal n = 1 Long-Lived Mode (LLM) [25].

The LLM has only been observed on MAST although ideal modes with similar charac-

teristics have been observed on the spherical tokamak, NSTX [26]. This mode is often

present simultaneously with 2/1 NTMs on MAST and can alter the rotation profile (see

section 2.5).

Mirnov coils provide a useful source of information on a number of other key pa-

rameters. For example, it is possible to obtain some information about the magnetic

island width from Mirnov coil data by making certain assumptions about the magnetic

island structure, the perturbed current and the additional Mirnov signal due to eddy

currents in the vessel wall. A method for doing this is discussed in Chapter 6. Also,
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Figure 2.4: Running Fourier transform spectrogram from a Mirnov coil for discharge
23447. Plasma instabilities indicated.

when combined with plasma flow velocity diagnostics (see section 2.3.4) this informa-

tion can be used to work out if there is a difference in rotation frequency between the

magnetic island and the plasma at the rational surface, which can have implications for

NTM stability (see Chapter 3).

2.3.3 Thomson Scattering (TS)

Thomson scattering is the elastic scattering of electromagnetic radiation by charged par-

ticles, discovered by J. J. Thomson in 1906 [27]. The scattering can either be coherent

or incoherent, depending on the size of the Debye length relative to the scattering k

vector (which depends on the angle of observation and the radiation wavelength). If

the Debye length is short and collective behaviour is important, the Thomson scattering

will be coherent. If the Debye length is large relative to k and the radiation scatters off

individual particles, as is generally the case in MCF plasmas, then the Thomson scat-

tering will be incoherent. The electric field of the incident radiation causes the charged

particle to oscillate and emit radiation at the same frequency as the incident radiation.

The resulting dipole radiation is polarised along the direction of the particle’s oscillat-

ing motion and is strongest in the direction perpendicular to the plane of oscillation.

By measuring the spectrum of the scattered light, and comparing it to a theoretical
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spectrum, information about the plasma in the scattering volume can be obtained. The

theoretical spectrum can be derived by considering the motion of individual particles,

including relativistic effects, which become significant over a temperature of 1-10keV.

The two main parameters that can be obtained are the particle temperature, which is a

function of the spectrum width (through Doppler broadening) and the particle density,

which is a function of the area under the spectrum (the emission increases with the

number of particles in the scattering volume).

In fusion plasma diagnostics, this incident radiation comes from a well characterised

external laser and scatters off electrons. The temperature and density are perhaps the

most important parameters in determining fusion success and the Thomson scattering

diagnostic plays a key role due to the relative simplicity of its data interpretation, its

reliability and its lack of dependence on other measurements. This importance was

demonstrated in 1968 when a team of British physicists transported a Thomson scatter-

ing system to measure the temperature in the T3 tokamak in Moscow. The maximum

measured temperature of 1keV was record breaking at the time and established the

tokamak as the most promising MCF configuration.
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Figure 2.5: Thomson scattering Te and ne profiles for a MAST standard ohmic
discharge 26945.

The MAST Thomson scattering diagnostic provides high spatial (∼1cm) and tem-

poral (>240Hz) resolution Te and ne profiles (ne normally calibrated against the line-

integrated interferometer measurement). MAST’s electron temperature tends not to

exceed 2keV, so though relativistic effects are included in the diagnostic analysis, they

are generally small for the MAST plasmas considered in this thesis (though they are

significant for hotter tokamaks, such as JET). Core electron densities are typically
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≈ 1 − 5 × 1019m−3. Figure 2.5 shows example Te and ne profiles for a MAST stan-

dard ohmic discharge. The increased density towards the inboard edge is due to the

location of the inboard fueling valve.

The main system consists of eight 30Hz 1.6J Nd:YAG lasers fired along approximately

the same beam line into a beam dump and a set of collection optics covering 130 spatial

points across a full range of major radii within the plasma [28] (see figure 2.6). From

the collection optics, the light is guided to 130 polychromators, which each measure the

Thomson scattering spectrum over five spectral channels. Figure 2.7 shows a cartoon

plan view of MAST with the beam line in red, tangential to the central column, and

the viewing angle of the collection optics in green. The separation of the spatial points

tangentially, δrtan, projected onto the tokamak major radius gives a better radial res-

olution, δrrad, on the inboard side than on the outboard side (also illustrated in figure

2.7).

Figure 2.6: A schematic diagram of the MAST TS system. [28]

The scattering volume has a sub-cm width and, as the instrument functions for

individual spatial points do not overlap at the radii considered in this thesis (typically

R = 0.3 − 0.5m), the emission is assumed to come from a point source. A secondary

set of collection optics allows investigation into phenomena at the plasma edge, but this

system will not be considered here. There is also a single ruby laser with 240 spatial

points providing a higher spatial resolution but this is only able to fire once per discharge.

The Nd:YAG system can operate with a large range of laser time spacings. For NTM

studies, it is usually operated in one of two temporal modes. In continuous mode the
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Figure 2.7: A cartoon plan view of the MAST TS system. The red line indicates
the tangential laser beam line. The dashed green lines indicate the collection optics
viewing angle. The black dots and black dashed line illustrate the projection of the
spatial points onto the tokamak major radius. The radial resolution is better on the
inboard than the outboard side.

eight lasers are spaced equally in time, with ∼4ms between each laser, which is beneficial

for constraining the plasma equilibrium at regular intervals. In burst mode the eight

lasers are temporally bunched together in bursts, each separated by 33ms. This is useful

for measuring fast phenomena, such as the L-H transition or an NTM rotating around

the torus. Figure 2.8 shows these two temporal modes in operation while an NTM is

present in the plasma.

Figure 2.8: TS temporal modes. Top: ne profiles. Middle: Te profiles. Bottom:
Mirnov time trace with color coded TS time slices indicated as vertical lines. Left :
Continuous mode. Right : Burst mode.
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2.3.3.1 TS triggering

A real-time triggering system has been developed so that the TS lasers can be fired at

specific times, such as stages of an NTM’s evolution or points of its transit around the

torus [23]. The system uses a Mirnov coil on the midplane to detect the frequency, phase

and magnetic amplitude of the NTM in real-time. A Hilbert transform is used so that

continuous phase information can be gathered if the rotation frequency changes during

a single period of oscillation.

Figure 2.9: TS profiles from triggered measurements. The triggering system is set to
fire the TS lasers across the magnetic island O-point. The flat regions, which can be
seen in the Te plot (middle) indicate the two magnetic island cross sections which cut
across the poloidal plane for this m = 2 mode.

There are two TS triggering options available. The first makes use of continuous

mode, making small adjustments to the laser’s fire time so that it locks to a particular

phase of the NTM. The phase is continually monitored by the triggering unit but there is

a delay of around 400µs in calculating the phase and firing the lasers so that this method

only works if the frequency does not vary significantly over a couple of oscillation periods.

For example, the system can be set to a phase of π, triggering the lasers on the island

O-point and obtaining a series of measurements of the width of the island temperature

flattening (see figure 2.9).

The second option is to trigger a burst of lasers on a particular NTM magnetic

amplitude for either a growing or shrinking magnetic island. First of all the triggering

unit detects the presence of an NTM when the Mirnov amplitude reaches a certain

threshold, which arms the TS lasers. The unit then tracks the island amplitude and
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whether it is growing or shrinking and fires the laser burst at the desired point, which

provides a 2D temperature profile of the magnetic island at that particular amplitude.

The measurement of NTMs with the Thomson scattering system is a key part of this

thesis and is discussed in more detail in Chapters 5 and 6.

2.3.4 Charge Exchange Recombination Spectroscopy (CXRS)

Neutral deuterium atoms injected by the NBI system undergo charge exchange reactions

with the impurity carbon C6+ ions to produce C5+ ions, which emit a characteristic

spectrum of light. The Doppler broadening of a particular peak in the spectrum gives

the temperature of the C ions and the Doppler shift gives their velocity. It is often

assumed that the energy transfer between C ions and D ions occurs on a faster time

scale than the energy confinement and so the temperature and velocity can be taken to

be the same. In some circumstances the differences between the main ion and impurity

ion species can be important [29], but a full discussion of these effects is beyond the

scope of thesis.
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Figure 2.10: CXRS vi and Ti profiles for an NBI heated MAST discharge 23447 in
ELM-free H-mode.

As these reactions and emission of light occur in a localised volume, looking along

a line of sight that intersects the neutral beam line can provide a localised emission

measurement, which allows the construction of vi and Ti profiles. The MAST CXRS

system has a spatial resolution of ∼1cm over a range R = 0.8 − 1.4m and a temporal

resolution of 5ms [30]. These measurements are clearly not possible if the NBI system is

not injecting neutral deuterium. Similarly, if the beam voltages are too low, the amount
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of emitted light will be too low to infer a reliable measurement. Figure 2.10 shows

example vi and Ti profiles.

The vi profile can be converted to a toroidal rotation frequency profile by the simple

formula f = vφ/2πR. If the radial location of an NTM can be determined, it is possible to

compare the rotation frequency at this point to the rotation frequency of the magnetic

island, as measured by the Mirnov coil array. Section 2.5 covers the phenomenology

of the typical discharges used in this thesis and includes a plot comparing these two

frequencies.

2.3.5 EFIT

In Chapter 1 the concept of plasma force balance was introduced. If the plasma is in

equilibrium, it is possible to calculate the balance of forces contributing to that equi-

librium and to reconstruct the magnetic flux surfaces. Most models of plasma stability

and transport require knowledge of flux surface locations and the associated q profiles

to calculate many of their key results, so finding the locations of the surfaces experi-

mentally allows these models to be tested. Calculating the equilibrium force balance

is commonly done using an equilibrium code. On MAST, the EFIT code is used to

calculate the equilibrium, making use of extra information from a range of diagnostics

to help constrain the results.

The equilibrium is primarily dependent on the balance of three spatially varying

parameters; the magnetic flux due to the poloidal field, Ψ, the toroidal field function,

f = RBφ and the total pressure, p. The equilibrium force balance equation, ∇p = J×B,

can be written in terms of Ψ, p and f . The dimensionality can be reduced by assuming

toroidal axisymmetry and treating p and f as poloidal flux functions. In this form it is

known as the Grad Shafranov equation (equation 2.1).

R
∂

∂R

[
1

R

∂Ψ

∂R

]
+
∂2Ψ

∂Z2
= −µ0R

2 ∂p

∂Ψ
− f ∂f

∂Ψ
(2.1)

The EFIT code solves this equation to fully reconstruct the equilibrium magnetic

field, current and pressure profiles, usually assuming that the profiles are described

by a set of polynomial basis functions. There are often significant uncertainties, but

if measurements of the plasma edge location, the externally applied magnetic field,

the pressure profile and current density profile can be made, it is possible to find a

well constrained solution. A version of EFIT, called EFIT++, allows the introduction
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of such experimentally measured parameter values and usually produces more reliable

results. On MAST, the current density profile can be inferred using the Motional Stark

Effect (MSE) diagnostic, which uses the polarisation of certain light from NBI particle

interactions to reveal the pitch of the magnetic field. This is also often used as a

constraint in EFIT++. EFIT also calculates the time evolution of various useful global

parameters such as βp (shown in figure 2.2) and the magnetic axis position. Typical

EFIT ouput for MAST is plotted in figure 2.11.
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Figure 2.11: MAST discharge 23447. a) The reconstructed, normalised poloidal flux
Ψn = (Ψ − Ψaxis)/(Ψboundary − Ψaxis). b) The reconstructed q profile with various
rational surfaces indicated. c) The reconstructed p profile with various rational surfaces
indicated.

When studying NTMs, it is sometimes of interest to switch between real space and

flux space coordinates. For radial locations around m/n = 2/1 magnetic islands, which

are the main subject of this thesis, it is approximately the case that Ψ(r) ∝ r so this

transform is usually made using a constant factor for the inboard side and another factor

for the outboard side.
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2.4 NTM occurrence in the MAST operational parameter

space

NTMs occur regularly on MAST and can often cause plasma disruptions if they lock to

the vessel wall. NTMs with mode number m/n = 2/1 are common and usually have

a large amplitude, growing to a typical saturated size of W ≈ 10cm (about 20% of

the minor radius). The 2/1 mode is the focus of this thesis, partly due to its regular

occurrence and partly due to its large saturated size, which makes it easier to measure

using the TS system. Other mode number NTMs, such as 3/2 and 4/3, do occur and

will be discussed in more detail in Chapter 6. As was mentioned in Chapter 1, NTMs

usually need a seed island, caused by some kind of triggering perturbation, but in some

cases apparently ‘triggerless’ NTMs can grow. The NTMs examined in this thesis are

thought to be triggerless and possible mechanisms to explain their growth are described

in Chapter 3.

In order to identify the optimum MAST scenarios for studying NTMs, an investi-

gation into the MAST operational parameter space has been conducted. Data-mining

several key tokamak parameters over a large number of discharges has made it possible

to examine their achievable values in a MAST plasma. The following parameters were

considered; βN , βp, li, q0 (the q value at Ψn = 0), q95 (the q value at Ψn = 0.95),

ne/nGrwld (where nGrwld =
Ip
πa2
× 1020 is the Greenwald density limit, above which

the plasma usually terminates [31]), δ (the triangularity), κ (the elongation) and the

Z position of the magnetic axis. A database has been constructed by examining 6300

consecutive discharges, retaining only those discharges that reach plasma current ‘flat

top’, splitting the discharge time history into 10ms slices and retaining only those time

slices which occur during the plasma current ‘flat top’ stage of the discharge. For each

time slice, the parameters listed above are entered into the database and an algorithm

is run to decide whether a 2/1 NTM is present or not (based on Mirnov amplitude and

typical rotation frequency range). Using a Mirnov coil signal, the magnetic island width

was then estimated (the method for doing this is described in Chapter 6). The results

are plotted in figure 2.12.

Figure 2.12 shows contour plots of MAST discharge time slices in different cross

sections of the parameter space. White space indicates regions of parameter space that

were not accessed in the existing MAST database, black space indicates regions that

MAST has accessed but where the likelihood of a 2/1 NTM growing is negligible and
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Figure 2.12: Database of MAST discharges with NTM magnetic island width super-
imposed. White space indicates regions of parameter space that were not accessed in the
existing database, black space indicates regions that MAST can access but where the
likelihood of a 2/1 NTM growing is negligible and the colour contour region indicates
the average magnetic island width of an NTM if it occurs at that point in parameter
space.

the colour contour region indicates the average magnetic island width of an NTM if it

occurs at that point in parameter space. As the plotted island width is a binned average,

the maximum width on most of the plots is around 6-7cm but it is worth noting that

island widths of up to 10 or 12 cm are possible. The plot of βN against li also has a black

line indicating the approximate ideal βN limit of 4li. From this plot it is clear that the

largest NTMs occur close to the ideal limit (a potential reason for this is explained in

Chapter 3). Another trend illustrated by a number of these plots, is that large magnetic
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Figure 2.13: Database of MAST discharges. Space within the pale blue line indicates
a DND discharge. Space within a dark blue line indicates a DND discharge with a 2/1
NTM. Space within the yellow line indicates an SND discharge. Space within a red line
indicates an SND discharge with a 2/1 NTM.

island formation seems to be more sensitive to the current profile through li, q0 and q95

than the pressure through parameters βN and βp. In this case, a high level of sensitivity

to a particular parameter is heuristically characterised by the large island width region

being constrained to a narrow range of values for that parameter. The values q0 ≈ 1

and q95 ≈ 5 are most favourable to the growth of large 2/1 magnetic islands. It should

be noted that large magnetic island formation is also relatively sensitive to ne/nGrwld.

Both the diffusion of the current profile towards q0 ≈ 1 and q95 ≈ 5 and the increase in

density towards the Greenwald limit tend to occur towards the end of a discharge, so
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the effects are correlated and it is a challenge to isolate these sensitivities and deduce

which is the most important.

Another point of interest in figure 2.12 is the plot of βp against magnetic axis Z

position, which shows that DND discharges are more likely to have large NTMs than

SND discharges. The effect of SND plasmas being lower in the vessel and therefore

slightly further away from the Mirnov array has been investigated but this cannot explain

the difference. In figure 2.13, figure 2.12 is replotted with a focus on the differences in the

DND and SND NTM populations. One potential explanation for this is that the lower

magnetic axis position of SND plasmas leads to the peak NBI current drive being shifted

off-axis. This off-axis current drive could lead to an increase in magnetic shear at the

q = 2 surface, which would reduce the likelihood of NTM growth, although conclusive

evidence of this effect is yet to be found.

2.5 Phenomenology of discharges used in this thesis

Though tokamak scenarios are usually theoretically planned, they are rarely executed

perfectly and some experimental development of scenarios is normally required. This

section provides an overview of the properties and phenomena observed in the typical

discharges used in this thesis. Some of these phenomena, though not well understood,

must be described in order to account for the resulting NTM behaviour. However, a

detailed investigation of all of the plasma conditions is beyond the scope of the thesis.

As was demonstrated in section 2.4, the likelihood of an NTM growing increases with

the plasma β (this is more fully explained in Chapter 3). For this reason, discharges

used in this thesis usually aim to achieve as high β as possible, using a high NBI power

input of > 3MW and a high level of fueling to increase the plasma density.

Profiles and time traces from discharge 23447, a typical example, are shown in figure

2.14. There are several important features in these plots that may be related to or may

influence NTM behaviour:

1. There is a tendency for the q profiles in these discharges to have reversed shear

towards the core but this usually becomes less pronounced later in the discharge,

ending with very broad, almost flat profiles. It is thought that the steep tempera-

ture gradients (resembling an internal transport barrier), the very strong flow shear

(which could reduce turbulent transport) and reversed magnetic shear at 0.2s are
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Figure 2.14: Example profiles and time traces for typical high β NTM discharge,
23447. Blue indicates the time slice at 0.2s. Red indicates the time slice at 0.31s.
a) n = 1 Mirnov amplitude. A 2/1 NTM grows at about 0.29s. b) Line integrated
Dα emission. L-H transition is at 0.27s. c) EFIT++ q profiles. d) TS Te profiles
(diamonds) and CXRS Ti profiles (circles). e) TS ne profiles. f) CXRS vi profiles.

all associated and that this is approaching a so-called ‘advanced’ tokamak scenario

with a significant bootstrap current at the location of the strong gradients. This

effect is reduced later as the flow shear is lost and the density profile flattens.

2. Te and Ti differ significantly in the core due to the NBI heating. An explanation

of the difference between these temperatures would require an energy balance cal-

culation, taking into account the NBI particle slowing down time, the confinement

times of the different species and the effect of any fast particle or micro-instabilities
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that can redistribute their energy. This is beyond the scope of this thesis. How-

ever, in the region close to the q = 2 surface (R ≈ 0.45m and R ≈ 1.3m), which

is the region of interest for this thesis, both temperatures and their gradients are

similar and it is therefore assumed that Ti = Te. Neither Ti nor Te changes sig-

nificantly between L-mode and H-mode, other than a small temperature pedestal

being formed.

3. At 0.2s, the plasma is in L-mode and the electron density gradient, dnedr is negative

across the profile. However, at 0.31 when the plasma is in H-mode, the edge

confinement increases significantly and there is an accumulation of electrons close

to the plasma edge; so-called ‘edge density ears’, which are commonly observed in

MAST H-mode discharges. These ears are thought to be due to an accumulation of

impurity carbon ions but conclusive evidence for this is yet to be found. This type

of density profile is unusual in a tokamak and is likely to influence the bootstrap

current in that region.

4. vi drops significantly in the core as the discharge progresses but momentum is

transferred outwards causing vi to increase around the q = 2 surface and towards

the plasma edge. There is some evidence that a potential mechanism for this

momentum transfer is toroidal coupling between an n = 1 LLM in the core and

the n = 1 NTM at the q = 2 surface, although the LLM is not always present

when this is observed. Figure 2.15 illustrates this phenomenon in more detail.

Figure 2.15 shows a Mirnov spectrogram with CXRS plasma rotation data over-

plotted. The upper CXRS line follows the point in the profile with the maximum

rotation frequency, fmax. This decreases in line with the fishbone instabilities, which

also chirp down in frequency. At about 0.28s the fishbones drive a LLM unstable, which

follows the same constant frequency as fmax. Shortly after this, a 2/1 NTM grows

with no obvious triggering perturbation, initially at a slower frequency than the q = 2

plasma rotation frequency (this is a common feature of the triggerless NTMs observed on

MAST). As the NTM grows it reaches the same frequency as the q = 2 plasma rotation

frequency. Then the LLM rotation begins to slow and the NTM rotation simultaneously

speeds up; momentum seems to be magnetically transferred from the LLM to the NTM.

By the time the NTM has reached its saturated size, the LLM has disappeared.
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Figure 2.15: Comparison of CXRS plasma rotation data and Mirnov MHD rotation
data for discharge 23447. The colour contour is a Mirnov spectrogram for an outboard,
midplane Mirnov coil. The black dots are the time evolution of the maximum of the
CXRS rotation frequency profile and the rotation frequency at the q = 2 surface.

2.5.1 β ramp-down discharges

For the NTM stability studies conducted in Chapter 6, it was necessary to find a sce-

nario where the β is decreased while an NTM is present. This so-called ‘β ramp-down’

scenario, which is explained in more detail in Chapters 3 and 6, allows the behaviour

of a shrinking NTM magnetic island to be investigated, as the saturated island width

is roughly proportional to βp. This is a difficult scenario for MAST to achieve for a

number of reasons. Firstly, due to the amount of flux available in the central solenoid,

MAST pulses are relatively short compared to those in other tokamaks and it can take a

significant fraction of the discharge length to reach the β required to generate an NTM.

In a β ramp-down scenario, the β then has to be reduced by removing the NBI power,

as this is the only easily controlled heating input available in these discharges. It can

take around 100ms for the β to drop sufficiently so, if this is to happen before the end

of the discharge, it is necessary to initially increase the β as quickly as possible, using

gas-puff fueling and NBI heating, in order to drive an NTM unstable .

Furthermore, when removing the NBI power, the plasma rotation is also reduced,

which can lead to mode-locking and disruption if there is a large 2/1 NTM present.

Some NBI systems used on other tokamaks are capable of versatile real-time power and

rotation control, but power control capabilities are not sufficiently well developed to
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implement this on MAST. Furthermore, stepping the NBI power down gradually, one

beam at a time, does not allow the β to drop quickly enough for the magnetic island

to disappear before the end of the discharge. It was therefore necessary to find the

optimum NBI ‘turn-off’ time for both beams that allowed the β to rise and fall suffi-

ciently quickly without reducing the rotation too early. Fortuitously, this was assisted by

momentum transfer phenomenon (possibly assisted by the 1/1 mode) described above,

which appeared to keep the q = 2 surface rotating even after the NBI system has been

removed.

The discharges used in this thesis are a mixture of β ramp-downs and discharges

where the NBI remains switched on until the plasma disrupts, but most of the features

described in section 2.5 are common to both. In Chapters 5 and 6, data from these

discharges are analysed and the influence of these phenomena on NTM behaviour are

considered.

2.6 Summary

This chapter has provided a brief overview of the MAST tokamak. This included a

description of some of MAST’s many diagnostic systems, with a focus on those systems

important to the study of NTMs and those used for plasma equilibrium and discharge

monitoring. An introduction to the behaviour of NTMs on MAST was also presented,

including an investigation into the parameter regimes in which NTMs are most likely to

grow. Details of the time evolution and typical profiles of the discharges used throughout

this thesis were also presented. Further physics, necessary to understand this behaviour

in more detail, is discussed in Chapter 3. In Chapters 4 and 5, the Thomson scattering

diagnostic is used to probe the structure of NTM magnetic islands on MAST. Chapter

6 describes an analysis of the time evolution of NTMs on MAST using data from the

diagnostics discussed in this chapter.



Chapter 3

An introduction to neoclassical

tearing modes

3.1 Introduction

This chapter gives an overview of the theory of neoclassical tearing modes (NTMs) and

notable experimental observations of their behaviour in tokamaks. The formation of the

magnetic island associated with the NTM and the various stabilising and destabilising

contributions that can exist in a tokamak are considered. Section 3.2 covers the classical

tearing mode theory developed by Rutherford over 40 years ago. The subsequent sections

describe a number of modifications that have been added to Rutherford’s theory since

then. The result is the modified Rutherford equation, which describes the balance of

stabilising and destablising terms that govern the evolution of the magnetic island width.

3.1.1 Magnetic islands

A magnetic island can form around a filamented current perturbation in a region sus-

ceptible to magnetic reconnection, such as the sheet current shown in figure 3.1. The

current filament generates an encircling magnetic field, given by Ampère’s law, which

causes the equilibrium field lines to reconnect in a new topology. There are a variety of

possible mechanisms that can provide such a current perturbation and cause a magnetic

island to grow. This chapter considers those mechanisms important to tokamaks.

In a tokamak, a magnetic island can grow on a rational surface where field lines

form simply connected helical loops. For a current perturbation to be destabilising (i.e.

for instability growth), it must be directed along magnetic field lines. As an island

47
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Figure 3.1: Left: A sheet current and the resulting magnetic field. A current filament
is imposed. Right: The new reconnected field configuration: a magnetic island. The
island X-point, O-point, separatrix and island width, W , are indicated.

forms around a field line it also has this helical structure, with X-points and O-points

following closed field lines. A magnetic island is a normal mode of the rational surface,

with periodic boundary conditions in the poloidal and toroidal directions. In the poloidal

cross section there are an integer number, m, of islands in a joined up chain and in the

toroidal cross section there are n islands, where m and n are the poloidal and toroidal

mode numbers.

Figure 3.2: a) A m/n = 2/1 magnetic island in the slab geometry. b) The magnetic
island transformed into the X, ζ coordinate system.

The magnetic island geometry used for this thesis is now considered. Figure 3.2a

shows an m/n = 2/1 magnetic island in the ‘slab’ geometry. This geometry is an ap-

proximation to the toroidal geometry, which is less valid for finite aspect ratio tokamaks.

However, working in this geometry helps to make a number of interesting problems

tractable and it is therefore used with the caveat that some physics may be missing

from the final results. Figure 3.2b shows the same island transformed into a coordinate

system in which the poloidal and toroidal angles, θ and φ, have been combined into a

helical angle, given by:

ζ = m

(
θ − φ

qs

)
(3.1)
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A shifted radial coordinate r−rs (equal to 0 at the rational surface rs) and the island

half width, w (not to be confused with the full width W ) are also introduced.

The equilibrium helical field is given by [32]:

Bζ = Bθ

(
1− q(r)

qs

)
(3.2)

This is the normal equilibrium field minus a single helicity field with the same helicity

as the rational surface. The helical field changes sign as the rational surface is crossed.

The Taylor expansion of the q profile about rs is q(x) = qs + q′s(r − rs) + ... (where

q′s = dq
dr

∣∣∣
r=rs

). This can be inserted into equation 3.2:

Bζ = Bθ
q′s
qs

(r − rs) (3.3)

The magnetic island introduces an additional radial magnetic field component, which

can also be expressed as a perturbed island flux:

Br = B̃r sin ζ (3.4)

ψ = ψ̃ cos ζ (3.5)

The direction of the perturbed field lines is given by:

m

rs

dr

dζ
=
Br
Bζ

(3.6)

Equations 3.3 and 3.4 are then substituted in to equation 3.6:

(r − rs)dr =
rsqsB̃r
mq′sBθ

sin ζdζ (3.7)

The equation for the island half width is the radial amplitude of this sinusoidal

perturbation:

w =

√
4
rsqsB̃r
mq′sBθ

(3.8)

Note that a high magnetic shear or a high poloidal mode number leads to a smaller

island width. Including this in equation 3.7, integrating and multiplying by 4 gives:
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2(r − rs)2 = w2 cos ζ + w2Ω (3.9)

Here Ω is a constant of integration, constant on a perturbed island flux surface. The

equation defining the island flux surfaces then becomes:

Ω =
2(r − rs)2

w2
− cos ζ (3.10)

The value of Ω is 1 on the separatrix and -1 at the island O-point. The 2(r− rs)2/w2

part of equation 3.10 is due to the equilibrium helical flux. In assuming that the q

profile could be described by the zeroth and first order terms of the Taylor expansion, a

quadratic form has been obtained. The inclusion of higher order terms to give a more

realistic q profile would introduce more corrective terms to this equilibrium part. In

calculating the perturbed flux term, cos ζ, it has been assumed that the amplitude of the

perturbed helical flux, ψ̃ is independent of r; the so-called ‘constant ψ approximation’.

Alternatives to the constant ψ approximation are considered in section 3.2.

3.2 Classical tearing mode theory

Classical tearing modes can grow spontaneously as the result of unfavourable current

and pressure profiles. As was described in Chapter 1, magnetic reconnection can only

occur in regions where the resistive and ideal parts of Ohm’s law become comparable.

There is a thin resistive layer of width l around a rational surface, within which ideal

MHD becomes invalid and resistive MHD must be used [33]. Whether the region is

stable or unstable depends on global profiles and this is usually determined for a large

aspect ratio tokamak by solving the cylindrical tearing mode equation (equation 3.11)

for the resultant perturbed flux, ψ(r).

d2ψ

dr2
+

1

r

dψ

dr
−

(
m2

r2
+

µ0
dj
dr

Bθ(r)
[
1− q(r) nm

])ψ = 0 (3.11)

The solution method is as follows. Outside the layer, ideal MHD can be used with

appropriate boundary conditions far from the rational surface. Inside the layer resistive

MHD is used. The solutions must then be matched at either side of the layer but this

cannot, in general, happen without a discontinuity in the first radial derivative, dψdr [34].

This discontinuity is characterised by the ∆′ parameter, given by:
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∆′ =
1

ψ

[
dψ

dr

∣∣∣∣
r=rs+l

− dψ

dr

∣∣∣∣
r=rs−l

]
(3.12)

Figure 3.3 shows an approximate analytic solution to 3.11, which assumes an equi-

librium current profile of the form j(r) = j0(1 − (r/a)2) [35]. The plot of ψ has a

discontinuity at the rational surface, the location of which is indicated by the dashed

black line.
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Figure 3.3: An approximate analytic solution to the cylindrical tearing mode equa-
tion; the perturbed flux amplitude, ψ. The rational surface location is indicated by the
dashed black line.

It is important to note that the peak of the perturbed flux is typically inside the

rational surface (r < rs) for the cylindrical geometry. This means that there is a gradient

in ψ either side of the rational surface and demonstrates that use of the constant ψ

approximation does not allow for a realistic island geometry. This form of the perturbed

flux gives rise to magnetic islands that are radially asymmetric, with a wider side in

the region r < rs, which is observed experimentally [35]. Asymmetric islands can also

be explained by a more complex equilibrium flux function, with the inclusion of higher

order terms in the q profile Taylor expansion [36]. A ‘realistic’ formula for the island flux

surfaces (both perturbed and equilibrium) can be derived using the cylindrical tearing

mode equation and a realistic q profile but a number of new unknown free parameters

are introduced [35]. This presents its own set of difficulties and is covered in more

detail in Chapter 4, where a quasi-linear correction for asymmetric magnetic islands

is used (equation 3.13). Here a single free parameter, A, is introduced to capture the

asymmetric geometry but avoid an excess of unknown free parameters.
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Ω =
2(r − rs)2

w2
−
[
A(r − rs)

w
+ 1

]
cos ζ (3.13)

For the rest of this chapter, the constant ψ approximation is assumed, in order to

present a simple description of the essential physics of each mechanism.

3.2.1 The Rutherford equation

A highly localised jump in dψ
dr also means a spike in d2ψ

dr2
, which, by Ampere’s law, gives

a parallel current perturbation. This can either stabilise or destabilise a tearing mode

depending on the sign of the discontinuity. The time evolution of such a mode can be

evaluated by considering the resistive diffusion of the perturbed radial field in Ohm’s

law:

∂Br
∂t

=
η

µ0
∇2Br (3.14)

Since the mode is narrow in r compared to ζ, it can be approximated that ∇2 ≈

d2/dr2. Equation 3.14 is then integrated across the full island width:

∫ +W/2

−W/2

dBr
dt

dr ≈ η

µ0

∫ +W/2

−W/2

d2Br
dr2

dr (3.15)

Assuming the constant ψ approximation, Br is independent of r and we have:

W
dBr
dt
≈ η

µ0

[
dBr
dr

]+W/2

−W/2
(3.16)

Since Br ∝ W 2, the substitution W dBr
dt = 2Br

dW
dt can be made. Also, making the

substitution Br = mψ
r :

2µ0

η

dW

dt
≈ 1

ψ

[
dψ

dr

]+W/2

−W/2
(3.17)

Using the equations for ∆′, assuming the island width is about the same as the

resistive layer, and the timescale for resistive diffusion, τR = 1.22µ0r
2

η (where the 1.22

comes from flux surface averaging in a large aspect ratio, circular cross section geometry),

the Rutherford equation for the time evolution of the classical tearing mode width, W ,

can be obtained. The equation from the original paper, which has a derivation more

complicated than the one presented above is shown below:
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τR
r2

dW

dt
= ∆′ (3.18)

From equation 3.18 it is clear that ∆′ > 0 gives island growth. Also, it can be shown

that the magnetic energy change due to the presence of a tearing mode is proportional

to −∆′ [37], which again indicates that positive ∆′ makes the island the most energet-

ically favourable state and the tearing mode unstable. ∆′ is normally considered to be

constant, giving rise to linear growth or decay in time from this contribution. In most

modern tokamaks, the current profile is tailored such that ∆′ is negative for the rational

surfaces in the plasma. However, there are circumstances when it is possible for ∆′

to become positive even with this profile tailoring. This is discussed in more detail in

section 3.7.

3.3 The bootstrap current drive

As described above, a tearing mode consists of a helical magnetic island with its own

internal flux surfaces. This provides a route for transport of heat and particles along

field lines from one side of the island to the other. This fast parallel transport serves

to flatten the pressure profile across the island. In a high temperature tokamak, this

produces a helical ‘hole’ in the pressure gradient dependent bootstrap current at the

island O-point, providing a neoclassical drive for tearing mode growth. The Rutherford

equation for this neoclassical tearing mode (NTM) is modified by an additional term,

describing the bootstrap current perturbation. An early version of this modification is

shown below [38].

τR
r2
s

dW

dt
= ∆′ − ε

1
2
Lq
Lp

βp
W

(3.19)

Here, ε is the inverse aspect ratio and Lq and Lp are the gradient length scales for

the safety factor, q and the pressure, p, defined as q(dq/dr)−1 and p(dp/dr)−1. This new

drive term:

∆bs(W ) = −ε
1
2
Lq
Lp

βp
W

(3.20)

predicts spontaneous growth of NTMs from zero size, with no perturbation required.

This is usually positive due to the negative pressure gradient in Lp and positive magnetic
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shear in Lq. If this description were accurate no tokamak would be able to maintain a

stable plasma, which implies that some additional physics must be included. In 1995,

neoclassical tearing modes were observed experimentally on the TFTR tokamak and

compared with theory for the first time. Measurements made with the electron cyclotron

emission (ECE) diagnostic showed that there was a threshold island width above which

NTMs grew, observed to be just larger than 1cm [39]. It was shown that large island

evolution agreed well with the bootstrap current model in equation 3.19 but that there

was deviation from this as the mode decayed, indicating the presence of additional small

island effects. Later that year, Fitzpatrick published a paper describing a transport

model for a magnetic island, which provided an explanation for the NTM threshold and

small island physics [1]. It was shown that small islands do not completely flatten the

pressure profile and therefore have a reduced bootstrap drive.

This can be explained by considering the connection length, Lc, the length along a

field line from one side of the island to the other. Appendix A outlines the numerical

integration method for calculating Lc for a magnetic island. Figure 3.4 shows plots of

Lc as a function of r for islands of different half widths. Field lines lying on the island

separatrix do not wrap around the island so Lc increases asymptotically as the separatrix

is approached.
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Figure 3.4: The connection length as a function of radius at ζ = π for islands of three
different half widths, indicated in the key.

The result of this increasing field line length is that the parallel transport around the

island is reduced to a level comparable to the perpendicular transport across the island.

This gives rise to a boundary layer, in the vicinity of the island separatrix, in which the
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pressure is not completely flattened. The width of this layer is a function of the ratio

of perpendicular and parallel thermal diffusivities, χ⊥/χ‖. Figure 3.4 shows that, as

the island width decreases, the separatrices get closer together and Lc increases with a

1/W dependence. Consequently, the flattening and bootstrap current perturbation are

expected to be reduced for small islands. When ∆′ < 0 (i.e. classically stable) this gives

rise to a threshold width, Wth, below which the bootstrap drive, ∆bs, is less than |∆′|

and the island shrinks away. In this case a seed island, larger than Wth, is required for

an NTM to grow (see section 3.3.1).

Fitzpatrick showed how equation 3.20 could be further modified to include this

physics. The result is shown in equation 3.21.

∆bs(W ) = absrsβp
W

W 2 +W 2
d

(3.21)

The abs term contains information about the bootstrap current:

abs = a1Lbs
Lq
Lp

(3.22)

Lbs is the bootstrap current length scale, defined in detail by Sauter [40]. The con-

stant a1 can be calculated for a given equilibrium and has a typical value of ∼ −3 [41].

This is discussed in more detail in Chapter 6.

Also introduced in equation 3.21 is the characteristic length scale, Wd, given by

equation 3.23.

Wd = 5.1wc = 5.1

(
χ⊥L

2
s

χ‖k
2
θ

) 1
4

(3.23)

Here, Ls is the magnetic shear length scale and kθ is the poloidal wavenumber. This

term reduces the bootstrap drive for small islands and is related to the threshold island

width. The critical width, wc, was also introduced by Fitzpatrick [1] and is related to

the width of the boundary layer in the pressure profile. The relation Wd = 5.1wc comes

from matching analytic small and large island limits. Chapter 4 describes a method for

inferring wc from experimental Thomson scattering data.



Chapter 3. An introduction to neoclassical tearing modes 56

3.3.1 Seed islands

Seed islands with a width above Wth can be created by a variety of instabilities, fluctu-

ations and external perturbations.

Instabilities located at different radial locations can perturb rational surfaces through-

out the plasma, which can result in NTM growth if the perturbation is big enough. For

example, a sawtooth instability is an internal kink mode at the q = 1 surface that can

periodically ‘crash’, throwing heat and particles out of the core and perturb other ratio-

nal surfaces. This is a common cause of NTM growth and can be ameliorated by using

localised current drive to increase the sawtooth frequency, which decreases the size of the

crash and the likelihood of NTM growth [42]. Another potential source of seed islands

is the fishbone instability, also related to the q = 1 surface but is driven unstable by

energetic, trapped particles. As was mentioned in Chapter 2, fishbones are common in

NBI heated plasmas as they tend to have a large fast particle population. Edge localised

modes (ELMs) are periodic edge-plasma eruptions caused by the steep pedestal pressure

gradient in H-mode, which can also create seed islands. To avoid damage to the plasma

facing components, future tokamaks will have to avoid ELMs or find ways of minimising

their size, which should reduce the chance of creating seed islands bigger than Wth. Such

instabilities have been observed to trigger NTM seed island formation on all of the large

modern tokamaks, such as NSTX [26], DIII-D [43, 44] and ASDEX Upgrade [45].

In order to decouple the formation of a seed island from the interaction with its

seeding instability, external perturbations can be applied in a controlled way to drive an

NTM unstable. Resonant magnetic perturbation (RMP) coils have been used to apply

a well described perturbations to the flux surfaces on COMPASS-D [46]. Similarly, a

set of RMP coils on the TEXTOR tokamak have been used to grow well characterised

NTMs for ECCD stabilisation experiments [47].

There is also a class of so-called ‘spontaneous’ or ‘triggerless’ NTMs which grow,

apparently without a seed island, from an unknown small size below the background

noise level. Explanations for the growth of such NTMs include coupling between an

(m − 1)/n mode and the q = m/n surface [26], proximity to a plasma β limit [48] or

a removal of the threshold by a coupling to resistive wall modes [49]. Such triggerless

NTMs have been observed to grow on MAST and are discussed in Chapter 4. Section

3.7 describes the β limit thought to cause the growth of these NTMs and describes their

characteristics in more detail.
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3.4 The curvature contribution

Curvature increases the energy it takes to bend the field lines in a tokamak and has a

stabilising effect on perturbations. In 1975, Glasser, Greene and Johnson derived the

mathematics to describe this stabilising contribution, which is often referred to as the

GGJ effect [50]. For NTMs, the important term to emerge from this work was the resis-

tive interchange parameter, DR. This can be introduced as an additional contribution

to the Rutherford equation of the form [51]:

∆GGJ(W ) = aGGJrsβp
1√

W 2 + 0.65W 2
d

(3.24)

The form of the aGGJ term is shown in equation 3.25. The resistive interchange

parameter can be calculated using equilibrium codes, such as CHEASE [52], or using a

simplified analytic expression, also shown in equation 3.25 (see Chapter 6).

aGGJ = a2
DR

βp
≈ a2

ε2

s

Lq
Lp

(
1− 1

q2

)
(3.25)

Here, s is the magnetic shear. The curvature contribution scales as ε3/2βp whereas

the bootstrap contribution ε1/2βp. In large aspect ratio tokamaks the bootstrap drive

tends to dominate over the curvature stabilisation but in spherical tokamaks this ε

dependence results in the two terms being comparable. This would imply that STs are

less susceptible to NTMs [41].

3.5 The polarisation current contribution

In Chapter 2 it was explained that magnetic islands rotate toroidally in the lab frame.

Islands can also rotate in the frame of the plasma, at frequency ω. As an island rotates

through the plasma, it pushes the electrons and ions out of the way. The inertia difference

between electrons and ions means that they move at different speeds and there is a net

flow of current perpendicular to the island. Charge conservation and quasineutrality

mean that the current must obey ∇.J = 0 and there must be a return current parallel to

the island (and the magnetic field). Depending on the direction of the current, this can

either stabilise or destabilise an NTM. This ‘polarisation current’ effect can be included

as another additional contribution to the Rutherford equation [53]:



Chapter 3. An introduction to neoclassical tearing modes 58

∆pol(W ) = apolrsβp
W√

W 4 +W 4
b,i

(3.26)

Here, Wb,i is the ion banana orbit width, given by Wb,i ≈ πrL,i/
√

2ε. At present,

polarisation current theory is only developed for W > Wb,i. In order to take account of

this, the functional form ∆pol ∝ W/(W 4 +W 4
b,i) was adopted as a heuristic model [53].

Equation 3.27 gives the form of apol.

apol = a3

(
Lq
Lp

)2

W 2
b,i g(ε, νii, ω) (3.27)

Here, a3 is an order 1 constant, which will be discussed further in Chapters 6 and

7. The parameter g is a function of ε, the inverse aspect ratio, νii, the ion collision

frequency and ω, the island rotation frequency and must be determined by a kinetic

calculation. However, analytic approximations, shown in equation 3.28, are available in

the collisional [54] and collisionless [55] regimes.

g(ε, νi, ω) =


ε−1 for νii/εω →∞

1.64ε
1
2 for νii/εω → 0

(3.28)

The 1/W 3 dependence of ∆pol means that this effect is significant for very small

islands, which means it should play a role in determining Wth. However, there is a great

deal of uncertainty over the nature of this contribution due to the complex rotation and

collisionality dependences of g(ε, νii, ω). Though there have been attempts to compare

experimental data with the predictions of this model [56], islands must be very small to

see a significant effect. For a thorough investigation, it must also be possible to control

the rotation of the island relative to the plasma, which is only possible on a small number

of tokamaks, such as DIII-D. These issues are discussed in more detail in Chapter 6.

3.6 The non-linear contribution from the current profile

The classical tearing stability parameter, ∆′, describes linear growth for a small island.

For islands that grow much larger than the resistive layer width, it is important to

include the nonlinear effects due to the equilibrium current profile. As many of the

magnetic islands considered in this thesis approach 20% of MAST’s minor radius, this
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contribution should be considered. A simple approximation for this contribution to the

Rutherford equation is given by [57]:

∆nl = −anlW (3.29)

This term describes the nonlinear saturation of the classical tearing mode. The pa-

rameter, anl, can be calculated but is a function of the first and second radial derivatives

of the equilibrium current density [58], which have very large errors experimentally. It

is worth noting that this nonlinear physics is often described as being due to ∆′ having

a stabilising W dependence for larger islands [43, 57, 59], which essentially has the same

effect as the term used here. This will be discussed further in Chapter 6.

3.7 The ideal βN limit and positive ∆′

It has been shown that, close to the ideal βN limit, there is a large, positive ‘pole’ in ∆′

which can drive tearing modes unstable [48, 60]. ‘Triggerless’ NTMs have been reported

close to the βN limit in DIII-D hybrid scenarios [61] and similar NTMs, observed on

MAST, are reported in Chapter 6 of this thesis.

When considering the positive ∆′ case, it is important to point out that a tearing

mode is defined as ‘classical’ if ∆′ is the dominant driving term and ‘neoclassical’ if ∆bs is

the dominant driving term. It is entirely possible that the balance of these contributions

could change during the lifetime of an NTM. For example, it has already been shown

that ∆bs decreases for islands smaller than Wd. It is possible that a small positive ∆′

could make a classical tearing mode unstable from a very small size but that as it grew

to a size comparable to Wd, ∆bs would become dominant and the tearing mode would

become neoclassical. Furthermore, it is also possible that the growth of a large magnetic

island could cause ∆′ to decrease, either by degrading confinement and reducing the β

away from the ideal limit or by altering the equilibrium current profile. The balance of

these terms will be discussed further in Chapter 6.

3.8 The modified Rutherford equation

The overall stability of an NTM is given by a sum of various contributions, known as the

modified Rutherford equation (MRE). Here, only those contributions outlined above are
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included but there are numerous other effects that can be added in, such as externally

imposed ECCD stabilisation [59] or the effect of sheared plasma flows [62]. The version

of the MRE used throughout this thesis is shown below:

τr
rs

dW

dt
= rs∆

′ − anlW + ∆bs(W ) + ∆GGJ(W ) + ∆pol(W ) (3.30)

It is instructive to study the relative effects of each of the terms in a plot of dW/dt

against W . Figure 3.5 shows pairs of dW/dt against W (top) and W against t (bottom)

plots for different combinations of terms from the MRE.
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Figure 3.5: The MRE with different combinations of terms. a) Destabilising ∆′ only.
b) Stabilising ∆′, −anlW term and ∆bs term. c) Marginally destabilising ∆′, −anlW
term, ∆bs and ∆GGJ term. d) Marginally destabilising ∆′, −anlW term, ∆bs, ∆GGJ

term and ∆pol term.

For these examples, Wd is taken to be 3.5cm (approximately the value of this param-

eter calculated in Chapter 4). The sizes of other parameters are not discussed in detail

but are typical for the MAST plasmas considered in Chapter 6. The four pairs of plots

are described below:

a) This pair of plots has rs∆
′ = 1 and no other terms included. It shows linear growth

from zero starting size with no saturation.

b) This pair has rs∆
′ = −4 but also includes the −anlW term and the ∆bs term.

This is an illustrative example for a hypothetical large aspect ratio tokamak with
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a strong bootstrap current drive and a small curvature term that can be neglected.

Even with a stabilising ∆′, the threshold island width is less than 1cm. With a

1.5cm seed island, dW/dt is immediately strongly positive and the island grows to

saturation.

c) This pair has rs∆
′ = 0.1 and the ∆GGJ term is also included. This example is

more representative of the MAST plasmas considered in this thesis. The curvature

term is strongly stabilising so, for NTM growth from the 1.5cm seed island, a

marginally destabilising ∆′ is required. The lower plot shows that dW/dt initially

small and linear, indicating that ∆′ is initially the dominant driving term. As the

island grows bigger than Wd, the bootstrap drive takes over and the growth rate

increases.

d) This pair of plots is the same as in pair c but with the addition of a destabilising

∆pol term. This only noticeably affects the early part of the island evolution.

There are now two additional terms compared to the centre-left pair but the plots

do not look significantly different. This is a heuristic illustration that distinguishing

between the different contributions using the magnetic island width evolution can

be a challenge. This issue is revisited more quantitatively in Chapter 6.

There have been several analyses of the MRE for NTMs in different tokamaks such as

MAST [41], JET [63] and ASDEX-U [59]. The equation is usually fitted to experimental

data with a number of free parameters, such as the coefficients a1, a2, a3 [41, 59] and

Wd [41]. Alternatively, comparisons of the quality of fit to data are made with some

contributions not included. This can help to investigate, for example, whether the

small island evolution is best described by the bootstrap current model, the polarisation

current model or both combined [41, 63].

In these fitting procedures the value of Wd is often calculated using analytical for-

mulae for χ⊥ and χ‖, which make assumptions about the nature of the heat transport.

In this thesis Wd is inferred from experimental measurements of the island tempera-

ture profile, which avoids the need predict the formulae for χ⊥ and χ‖. This method is

described in Chapter 4

3.8.1 βp dependence

An important feature of the MRE is that the ∆bs, ∆GGJ and ∆pol terms are all pro-

portional to βp. If ∆′ is negative there is a value of βp below which an NTM cannot
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grow, regardless of the seed island size. Figure 3.6 shows plots for the MRE and the

time-integrated MRE for two values of βp; one in blue, above the marginal value, and

one in red, just below the marginal value.
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Figure 3.6: Left: The MRE. Right: The time-integrated MRE. The blue curve is
above the marginal βp and therefore an island grows to saturation. The red curve is
just below the marginal βp and islands of all widths have a negative growth rate.

Equation 3.31 for the saturated island width (dW/dt = 0) can be written down,

assuming that the saturated island size is much larger than Wd, assuming the ∆pol term

is negligible for large islands and ignoring the −anlW term for the sake of simplicity.

Wsat ≈ rsβp
abs + aGGJ
−∆′

(3.31)

Equation 3.31 shows that Wsat is approximately proportional to βp. This dependence

has enabled a series of ‘β ramp-down’ experiments, which allow investigation of the

balance of stabilising and destabilising terms in the MRE for different sized islands (see

figure 3.7). Three stages of the island evolution are defined; growth, saturation and

decay. The growth and saturation stages usually occur spontaneously after an NTM is

driven unstable but the decay stage is usually externally imposed by a reduction in global

βp via a reduction in the applied heat power. For instability triggered NTMs, the growth

stage can start at any island size bigger than Wth and depends on the size of the initial

seed island. As the timing and size of the triggering instability is in some sense ‘random’,

small island physics in the growth stage can be difficult to investigate. To some extent,

the decay stage is more externally controllable and can allow observations of small island

physics, which is the main advantage of β ramp-down experiments. Figure 3.7 shows

that towards the end of the decay phase, as the island shrinks below Wd = 3.5cm, the

decay rate increases as the ∆bs drive term rapidly shrinks.
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Figure 3.7: A simulated β ramp-down. The MRE is integrated while βp is made to
decrease linearly in time.

As was mentioned above, Wd is inferred from experimentally measured temperature

profiles in Chapter 4 and this is then compared to the experimentally measured W

evolution for a β ramp-down experiment in Chapter 6.

3.9 Summary

This chapter has described a range of stabilising and destabilising contributions affecting

NTM evolution. These particular contributions are thought to be most relevant to

NTMs on the MAST tokamak, but there are other contributions that are worthy of

consideration. These terms have been included in a version of the modified Rutherford

equation, which will be used in Chapter 6 for a study of magnetic island evolution

on MAST. One particular parameter in this equation, Wd(= 5.1wc), is thought to be

of particular importance in determining the physics of small islands and the threshold

island width for NTM growth. In Chapter 4, a method for experimentally determining

wc, and hence Wd, will be presented. This will then be used in Chapter 6’s analysis of

NTM evolution.





Chapter 4

A heat transport model for a

magnetic island

4.1 Introduction

In Chapter 3, the theories that describe NTM evolution were outlined, including Fitz-

patrick’s transport model, which provides a potential explanation for the observed

threshold island width [1]. The model allows the geometry of the NTM temperature

perturbation to be studied by solving a heat transport equation for the associated mag-

netic island. This chapter investigates a version of Fitzpatrick’s equation, modified to

account for the radially asymmetric magnetic islands observed on MAST. Similar trans-

port model schemes have been investigated previously by Meskat [35] and Hölzl [64] but

here a fast solution method is presented, which uses Fourier series for one dimension

and a finite difference scheme for the other. Appropriate boundary conditions are then

derived by taking analytic limits of the equation. The solutions are model temperature

profiles, the geometry of which is described by a set of six parameters, including w, the

island half width, and wc, a key parameter in the transport threshold model. In Chap-

ter 5, these temperature profiles are fitted to data from the MAST Thomson scattering

system, in order to experimentally infer the value of wc.

4.2 The heat transport model

Recall that an NTM induced magnetic island provides a route for the transport of heat

and particles along a field line from one side of the island to the other. This flattens
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the temperature profile across the island and produces a helical ‘hole’ in the bootstrap

current at the island O-point, providing a drive for NTM growth. The connection

length, Lc, along a field line from one side of the island to the other increases towards

the separatrix, which leads to a boundary layer where the temperature is not completely

flattened. For small islands, the boundary layer takes up a significant fraction of the

island width, which means that both the amount of temperature flattening and the size

of the bootstrap current perturbation are reduced. In Chapter 3 it was shown that this

gives rise to threshold width, wth, below which the island shrinks away.

This boundary layer can be measured in electron temperature (Te) profiles within and

around islands. With a suitable model for heat transport this can be used to infer the

critical width, wc [1, 65, 66]. If this model is correct then wc inferred from experimental

Te profiles can be used to estimate wth, which can then be compared to the value of wth

evaluated using a β ramp-down experiment (see Chapter 6). One of the key aims of this

thesis is to make this comparison.

A 2D coordinate system is used for the magnetic island, in which ζ = m
(
θ − φ

qs

)
is the helical angle (with θ and φ the poloidal and toroidal angles), X = (Ψ−Ψs)

w is a

normalised poloidal flux coordinate and w = W/2 is the island half-width. As was shown

in Chapter 3, the flux surfaces are described by flux function Ω:

Ω = 2X2 − (AX + 1) cos ζ (4.1)

Example island flux surfaces are plotted in figure 4.1. Fitzpatrick’s original equation

assumed constant ψ whereas here a quasi-linear correction to the perturbed flux is used,

parameterised by A [36]. In Chapter 3 it was shown that the perturbed flux solution

to the cylindrical tearing mode equation has a gradient dψ/dr < 0, which means that

the larger side of the island is usually on the side of the rational surface nearest the

core and that A > 0. More complicated flux functions are available but, in order to

avoid over-fitting, a form has been chosen which both passes a quality of fit to data test,

described in section 5.3.1, and has the fewest free parameters.

Assuming divergence-free, diffusive heat flow, the model can be written down as

a heat transport equation of the form χ‖∇2
‖T + χ⊥∇2

⊥T = 0. Appendix B outlines

the derivation of the parallel derivative, ∇‖, using equation 4.1. The perpendicular

derivative is given by ∇⊥ = 1
w

d
dX . The thermal diffusivities parallel and perpendicular
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Figure 4.1: Surfaces of constant Ω in the (X, ζ) coordinate system. X is a dimension-
less coordinate.

to the magnetic field are χ⊥ and χ‖. The resulting heat transport equation is shown in

equation 4.2.

[(
X +

A cos ζ

4

)
∂

∂ζ

∣∣∣∣
X

+
AX + 1

4
sin ζ

∂

∂X

∣∣∣∣
ζ

]2

T +
w4
c

w4

∂2T

∂X2
= 0 (4.2)

A divergence-free model is thought to be justified at typical MAST q = 2 surface

minor radii as they are neither in the core, where the NBI heating power is predominantly

deposited, or close to the edge, where large heat losses can occur [67]. Here, wc is given

by:

wc =

(
χ⊥L

2
s

χ‖k
2
θ

) 1
4

(4.3)

where Ls is the magnetic shear length scale and kθ is the poloidal wavenumber. For

simplicity χ⊥ and χ‖ are taken to be constant over the region of interest. When w ∼ wc,

the perpendicular derivative term in equation 4.2 becomes important and a gradient is

supported across the island. Note that wc, as defined in this framework, is a factor of
√

8 smaller than the parameter defined in Fitzpatrick [1].

Previous work on ASDEX-U [35], in a low collisionality regime with electron mean

free path λe >> Lc, used a collisional model with a correction factor to approximate

convective heat transport. The relatively low temperature (∼ 350 eV) and high density

(∼ 4 × 1019m−3) at the MAST q = 2 surface cause λe and Lc to be comparable at

∼30m, putting it in a much more collisional regime and justifying our diffusive parallel
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transport model. A kinetic approach, beyond the scope of this thesis, is required to treat

lower collisionality regimes properly but such a model is currently under development

at the University of York and future comparisons between this model and experimental

data are discussed in Chapter 7.

Previous studies of NTM stability [41, 59, 63] have used analytic approximations to

χ⊥ and χ‖ to estimate wc. Choosing appropriate formulae for these diffusivities is not

trivial as the nature of transport in a tokamak is not well understood. The advantage of

absorbing all the transport physics into wc and using it as an experimental fit parameter

is that no specific models for χ⊥ and χ‖ need to be chosen. Indeed, the ratio χ⊥/χ‖

can also be calculated from the inferred value of wc, although the uncertainties on this

value are significant as it is proportional to w4
c .

4.3 Solving the heat transport equation

In this section, the different stages of the method for solving equation 4.2 are presented.

This is complemented by the full derivation of a required set of matrix elements in

Appendix C and the derivation of the equation boundary conditions in Appendix D.

4.3.1 Solution method

Equation 4.2 is solved using a trial N + 1 mode Fourier series solution of the form:

T (X, ζ) =
N∑
n=0

Tn(X) cosnζ (4.4)

This trial solution is substituted into equation 4.2, which is then multiplied by an

arbitrary cos kζ (integer k) and integrated over 1
2π

π∫
−π

. . . dζ, resulting in an equation of

the form:

N∑
n=0

[
akn

d2Tn
dX2

+ bkn
dTn
dX

+ cknTn

]
= 0 (4.5)

i.e. N + 1 coupled equations for the N + 1 Fourier mode amplitudes. The matrix

elements akn, bkn and ckn, are given by the following formulae (derived in Appendix C):
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ak,n = − 1

128
(AX + 1)2

(
δk,n−2 + δk,2−n + δk,n+2

)
(4.6)

+

(
1

64
(AX + 1)2 +

1

2

w4
c

w4

)(
δk,n + δk,−n

)

bk,n =
AX + 1

16

[
−An

4

(
δk,n−2 + δk,2−n − δk,n+2

)
(4.7)

+X
(
δk,n−1 + δk,1−n + δk,n+1

)
−2nX

(
δk,n−1 + δk,1−n − δk,n+1

)
+
A

2

(
δk,n + δk,−n

)]

ck,n = −A
2n2

128

(
δk,n−2 + δk,2−n + δk,n+2

)
(4.8)

+
A2n

128

(
δk,n−2 + δk,2−n − δk,n+2

)
−An

2X

8

(
δk,n−1 + δk,1−n + δk,n+1

)
− n

16

(
δk,n−1 + δk,1−n − δk,n+1

)
−
(

1

2
n2X2 +

A2n2

64

)(
δk,n + δk,−n

)

Here, δk,n is the Kroneker delta function, equal to 1 for k = n and equal to 0 otherwise.

The underlined terms are only included for certain n, as k and n must be positive.

A second order finite difference scheme is used to solve equation 4.5. The Fourier

coefficients Tn(X) are discretised onto a radial grid with grid point index i and grid

spacing ∆ (there are 2I + 1 of these points, −I ≤ i ≤ I). The domain considered is the

radial range −Xend ≤ X ≤ Xend, which covers about 40% of the minor radius, although

typically only about half of this region is used when fitting to data. Equation 4.9 shows

the equations used to approximate the derivatives.
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d2Tn
dX2

=
T i+1
n − 2T in + T i−1

n

∆2
(4.9)

dTn
dX

=
T i+1
n − T i−1

n

2∆

Tn = T in

Substituting equation 4.9 into equation 4.5 gives:

N∑
n=0

[
ak,n

T i+1
n − 2T in + T i−1

n

∆2
+ bk,n

T i+1
n − T i−1

n

2∆
+ ck,nT

i
n

]
= 0 (4.10)

or:

N∑
n=0

[
PknT

i−1
n +QknT

i
n + SknT

i+1
n

]
= 0 (4.11)

where Pkn, Qkn and Skn are linear combinations of akn, bkn and ckn, given by:

Pkn =
ak,n
∆2
−
bk,n
2∆

Qkn =
−2ak,n

∆2
+ ck,n

Skn =
ak,n
∆2

+
bk,n
2∆

(4.12)

The domain is split into two regions at an arbitrary reference point, Xr. Boundary

conditions at the end of each of these regions give two pieces of the solution which must

be matched at Xr. The details of these boundary conditions are outlined in section

4.3.2.

In order to find the Fourier coefficients T in that satisfy equation 4.11, they are each

written as the sum of a basis set (with the same number of terms as the Fourier series):

T in =
N∑
m=0

gmt
i
nm (4.13)

Equation 4.11 can then be re-written:

N∑
n=0

N∑
m=0

[
Pknt

i−1
nm gm +Qknt

i
nmgm + Sknt

i+1
nm gm

]
= 0 (4.14)
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Equations 4.15 and 4.16 are used to relate tinm to its radially neighbouring coefficients,

ti+1
nm or ti−1

nm , assuming that the solution varies linearly from one grid point to the next.

• For X > Xr:

tinm = αinjt
i+1
jm + βinm (4.15)

• For X < Xr:

tinm = αinjt
i−1
jm + βinm (4.16)

• For X = Xr:

αinj = 0 βinm = δnm (4.17)

Using equation 4.17 for αinj and βinm at Xr decouples the solution at this point from

the solution elsewhere and allows the two pieces to be matched at Xr.

The equations for matrices αi and βi
m

are obtained by substituting equations 4.15

and 4.16 into equation 4.11, which gives equations 4.18, 4.19, 4.20 and 4.21.

• For X > Xr:

αi = −
[
P i.αi−1 +Q

]−1
S (4.18)

βi
m

= −
[
P i.αi−1 +Q

]−1
P .βi−1 (4.19)

• For X < Xr:

αi = −
[
Q+ Si.αi+1

]−1
P (4.20)

βi
m

= −
[
Q+ Si.αi+1

]−1
S.βi+1 (4.21)

Initially, P , Q and S are calculated at each grid point using equation 4.12. Then,

starting at Xr, where αi and βi
m

have known values (given by equation 4.17), αi and

βi
m

for the whole domain can be calculated by working outwards in either direction.
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Equation 4.11 is then satisfied everywhere except at Xr. The condition for satisfying

the equation at this point is:

P rknt
r−1
nm gm +Qrknt

r
nmgm + Srknt

r+1
nm gm = 0 (4.22)

This can be written as an eigenvalue equation of the form M.g = 0 where Mkm =

P rknt
r−1
nm + Qrknt

r
nm + Srknt

r+1
nm . If a particular M with a zero eigenvalue can be found,

the equation will be satisfied everywhere. This zero eigenvalued M is found by iterating

over the boundary condition Tn(Xend) = T In .

4.3.2 Boundary conditions

The boundary conditions are obtained by considering the behaviour of equation 4.2 at

large X. The terms that decay at large X, are tracked by tagging them with a small

parameter, ε:

[(
X + ε

A cos ζ

4

)
∂

∂ζ

∣∣∣∣
X

+ ε
AX + 1

4
sin ζ

∂

∂X

∣∣∣∣
ζ

]2

T + ε2w
4
c

w4

∂2T

∂X2
= 0 (4.23)

The temperature at large X, T , is expanded as a linear sum of basis functions, shown

in equation 4.24. It is assumed that higher order terms are smaller at large X and are

tagged with increasing order ε.

T = ε0t0 + ε1t1 + ε2t2 + . . . (4.24)

Equation 4.24 is then substituted into equation 4.23. The terms that are tagged with

matching order ε (denoted by O(ε)) are considered independently and solved as separate

equations. For example, the O(ε0) equation is given by:

X2∂
2t0
∂ζ2

= 0 (4.25)

Each O(ε) equation is solved in turn, eventually revealing the functional forms of t0

and t1 at large X. Terms of higher order than t1 are ignored as they are assumed to be

negligible at large X. The calculation for each order ε is shown in detail in Appendix D

but the results of the calculation are outlined here. First, the O(ε0) equation is solved
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and it is found that t0 is purely a function of X. Then, using the O(ε1) equation, the

following equation for t1 is obtained:

t1 =

(
1

4X
+
A

4

)
dt0
dX

+ t̄1(X) (4.26)

where t̄1(X) is an unknown function of X. Next, the solution to the O(ε2) equation

is found, which shows that t0 is linear in X. Finally, the O(ε3) equation is solved and

t̄1(X) is also found to be linear, so it can be absorbed into t0.

The result of this calculation is that the appropriate boundary conditions for the

zeroth and first order temperature basis functions are given by:

t0m = tend

t1m =

(
1

4X
+
A

4

)
dt0m
dX

(4.27)

As was previously stated, it is assumed that all higher order terms in the tnm basis

set decay away at large X. In terms of the discretised basis set, the values of t1m at

Xend and at −Xend are given by:

tI1m =

(
1− αI−1

00

)
tend − βI−1

0m

αI−1
01 + 4∆

(
1
XI +A

)−1 (4.28)

t−I1m =

(
α−I+1

00 − 1
)
tend + β−I+1

0m

4∆
(

1
X−I

+A
)−1 − α−I+1

01

(4.29)

Recall that the index I is for the grid point at Xend. The final boundary conditions

is then:

t±Im =


tend

t±I1m

0
...

 (4.30)

The value of the zeroth order term, tend, is varied until the solution is convergent at

the matching point. The M which satisfies the matching condition is found by linear
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interpolation of the smallest eigenvalue with respect to tend to find the zero crossing. At

each step of the iteration, the tinm are recalculated from the new boundary condition,

giving a different M each time, until the eigenvalue converges to zero. The associated

eigenvector, g, is then used to reconstruct T i from the basis set. Finally, the full Fourier

series solution can be reconstructed and the 2D temperature profile obtained.

Once the equation is solved, the whole solution is multiplied by a factor that sets the

temperature gradient far from the island, T ′end = T ′(−Xend) = T ′(Xend), and summed

with the rational surface temperature, T0, usually to match experimental data.

4.3.3 Solution summary

In summary the solution method is as follows:

1. Calculate Pkn, Qkn and Skn at every point in the domain.

2. Starting from X = Xr, work outwards in either direction calculating αi and βi
m

using equations 4.18, 4.19, 4.20 and 4.21.

3. Starting at the boundaries, X = −Xend and X = Xend (with boundary condition

t±end), work inwards calculating tinm using equations 4.15 and 4.16.

4. Check to see if M has a zero eigenvalue. If not, change the value of t±end and go

back to step 3. Iterate on the boundary condition until a zero eigenvalue is found.

5. Reconstruct the T profile using the associated eigenvector, g.

The method has been implemented in a FORTRAN 90 routine called ntmtemp, which

can be called by other routines to quickly generate model temperature profiles in order to

fit them to data using a least-squares minimisation, described in Chapter 5. The speed of

the solution depends on the number of Fourier harmonics used but is usually around 1s

per solution. This fast implementation has also been quasi-parallelised, using OpenMP,

to enable a comprehensive set of data simulation runs, also described in Chapter 5.

4.4 Characterising the solutions

Figure 4.2 shows an example of the first four Fourier harmonic amplitudes of the solution,

Tn(X) (for n = 0, 1, 2, 3), for a symmetric magnetic island (A = 0). The zeroth harmonic

is the dominant component at large X and has to be reduced by a factor of ten to fit
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onto this plot. The first harmonic tends towards a constant value at large X, set by

the boundary condition. The higher harmonics play a role close to the island separatrix

(where the T profile has sharp changes in gradient) but decay to zero at larger values of

X.
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Figure 4.2: The first four Fourier harmonics of the magnetic island temperature
perturbation, Tn(X) (where n = 0, 1, 2, 3).
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Figure 4.3: Te around an NTM island. O and X point profiles (left), X dependence of
1st and 2nd harmonic of the helical temperature perturbation (middle) and 2D profile
of T (X, ζ) (right). a) A = 0, wc

w = 0.1 b) A = 0.8, wc

w = 0.1 c) A = 0.8, wc

w = 0.4.
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Further examples of harmonics and reconstructed T profiles are plotted in figure 4.3.

The plots in row a have wc/w = 0.1 and A = 0. In row b, wc/w remains at 0.1 but A is

increased to 0.8. In row c, A remains at 0.8 but wc/w is increased to 0.25. The increase

in A between rows a and b causes the island and its T profile to become asymmetric. The

Fourier harmonics also become asymmetric and the first harmonic now tends towards

two different values at positive and negative large X, as given by the derived boundary

condition. It can also be seen from the differences between the black line flux contours

and the block colour temperature contours that there is indeed a region, close to the

separatrix, in which perpendicular diffusion becomes important and the temperature is

not a function of the island flux surfaces. From row b to row c, the width of this region

can be seen to increase with wc as shown by an increased ‘smoothing out’ of the sharp

regions in the T profile. The increased perpendicular diffusion has a similar smoothing

effect on the Fourier harmonics, which also become less sharp from row b to row c. In

order to obtain a smooth solution, typically 12 Fourier harmonics are used to solve the

heat transport equation but this is increased up to 24 for smaller values of wc or larger

values of A in order to resolve sharp gradient changes.

In order to compare to experimental data, the geometry of the model solutions can

be described by a set of six free parameters; w, wc, T
′
end (the temperature gradient at

large X), T0 (the temperature at the rational surface), A and X0 (a small shift in the X

axis to correct for an inaccurate rational surface position). In Chapter 5, it is shown that

the value of wc can be inferred by fitting the solutions of the heat transport equation to

experimental data, using these six free parameters.

4.4.1 Boundary layer width

Another point illustrated by the colour contour plots in figure 4.3 is that the bound-

ary layer is wider at the X-point than at the O-point. This can be demonstrated by

considering an approximation to the balance of parallel and perpendicular diffusion [1]:

∇2
‖T ∼

χ⊥
χ‖
∇2
⊥T

k2
θX

2
T

L2
s

T ∼ χ⊥
χ‖

T

δ2
b

(4.31)
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Here XT is a length scale for the flattened region and δb is the boundary layer width.

Rearrange to find δb:

δb ∼
Ls
kθXT

(
χ⊥
χ‖

) 1
2

(4.32)

At the island O-point, XT ∼ w, which gives:

δb,O ∼
Ls
kθw

(
χ⊥
χ‖

) 1
2

∼ w2
c

w
(4.33)

At the island X-point, XT ∼ δb,X , which gives:

δb,X ∼
(
Ls
kθ

) 1
2
(
χ⊥
χ‖

) 1
4

∼ wc (4.34)

As expected δb,X > δb,O. This result suggests that measuring the island X-point is

important for inferring wc. Similarly, as the island is at its widest at the O-point, a

measurement at this phase is important for inferring w. This result will be revisited in

Chapter 5.

4.5 Summary

This chapter described a heat transport equation for an asymmetric magnetic island,

based on Fitzpatrick’s transport threshold model [1]. The method for solving the 2D

equation uses Fourier series for the helical direction and a finite difference scheme for

the radial direction. Boundary conditions were derived by taking analytic limits of the

equation far from the rational surface. The solutions of this equation are magnetic island

temperature profiles, described by a set of six free parameters. The solution method

was implemented in a FORTRAN routine that can be called repeatedly and quickly so

that the temperature profiles can be fitted to both experimental and simulated Thomson

scattering data. The data simulation and fitting procedures are described in Chapter

5.





Chapter 5

First measurements of the NTM

temperature perturbation with

Thomson scattering

5.1 Introduction

Chapter 4, described a heat transport equation for a magnetic island, the solutions of

which are profiles of the NTM temperature perturbation. This chapter demonstrates a

method for fitting these model profiles to experimental Thomson scattering data from

the MAST tokamak using a set of six free parameters that describe the geometry of the

perturbation, including wc, which is an important parameter in the modified Rutherford

equation for island evolution. The best fit value of this parameter can then be used as

an experimentally measured estimate, avoiding the approximate analytic formula for wc

used in previous studies [41, 59, 63]. In section 5.3, this parameter estimation method

is validated by fitting the model to simulated temperature profiles with a known value

of wc in a comprehensive set of simulated experimental scenarios. In section 5.4, an

ensemble of NTM data from similar MAST discharges is used to provide a best estimate

of wc for these plasmas. This is the first time such a measurement has been made with

Thomson scattering and on a spherical tokamak.

79
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5.2 Thomson scattering data around a magnetic island

In conventional tokamaks, electron cyclotron emission (ECE) systems have previously

been used to compare electron temperature profiles in the vicinity of magnetic islands to

those predicted by transport models [35, 64]. In spherical tokamaks (STs), which have

low outboard magnetic field, low ECE harmonics meet the cut-off density before leaving

the plasma. Therefore, Thomson scattering (TS) is the preferred electron temperature

diagnostic. In Chapter 2, MAST’s eight Nd:YAG TS system was described [28]. It

has 130 spatial points, a radial resolution of ∼ 1cm and can be fired in a burst to

measure fast rotating phenomena [65]. The high spatial and temporal resolution has

enabled this study of the temperature profiles of rotating NTM magnetic islands; the

first investigation of its kind on an ST.
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Figure 5.1: MAST discharge 24623. a) Mirnov coil signal with Te profile timing
indicated by coloured lines. b) Full Te profile indicating region sectioned in c, around
inboard q = 2 surface. c) Thomson scattering Te profile sections in an 8 laser burst
around a 2/1 NTM period. Laser 4 (yellow) is closest to the O-point and laser 8 (blue)
is closest to the X-point.
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Figure 5.1 shows an example of data from a burst of TS lasers around a 2/1 NTM in

a MAST discharge and an example of the Mirnov coil signal induced by the magnetic

island rotating past. The timing of the eight TS lasers is overlaid on the Mirnov signal

to demonstrate the positions of the lasers at different phases of the island.

Figure 5.2: Plan view of the TS system and its inboard view of a rotating 2/1 magnetic
island.

Figure 5.2 shows a cartoon plan view of the TS system and its inboard view of a 2/1

magnetic island. As was shown in Chapter 2, a Mirnov coil’s signal varies sinusoidally

in time as different phases of the magnetic island rotate past in the toroidal direction.

Mirnov coil signal minima occur when the island X-point is closest to the coil and

maxima occur when the O-point is closest. Using the relative positions of a Mirnov

coil, situated on the tokamak midplane, and the TS beam line, the island phase at

each TS measurement position can be calculated. The radial position of each point

can be translated into equilibrium flux space, given by Ψ, using the EFIT equilibrium

reconstruction (see Chapter 2). If the rational surface position, Ψs, and the island half-

width, w, can be estimated then the Ψ data can be translated to the transport model

radial coordinate, X, by subtracting Ψs and dividing by w. The parameter w is varied

from its initial estimate during the fitting procedure as the TS data contains information

about its value. Also, the parameter, X0, introduced in Chapter 4, can be added to the

X grid as a global correction to the initial estimate of Ψs.

Assuming the island structure grows on a much slower time scale than the rotation

period, which was shown to be the case in Chapter 2, the process described above

translates the TS data into a 2D temperature profile in the (X, ζ) coordinate system so

that it can be compared to solutions of the transport model.
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5.3 Thomson scattering data simulation

There are six parameters that define the geometry of a particular magnetic island tem-

perature perturbation: w, wc, T
′
end, T0, A, and X0. The values of these parameters

can be inferred from a particular measured temperature profile by performing a least-

squares fit of the model profiles to the data, varying the six parameters to find the best-fit

solution. In order to validate this approach to parameter estimation, the parameter un-

certainties have been characterised by fitting solutions of the heat transport equation to

simulated TS temperature profiles. The fitting procedures for the simulated data and

real data share many of the same features and are therefore described in tandem.

The first step of the data simulation is to choose a scenario to be tested. Values

must be picked for the six free parameters and the number and ζ locations of the lasers

must be chosen. The X locations are set by the radial resolution of the system and

are typically 15-20 points covering 15-20cm in real space. The heat transport equation

is then solved to produce a 2D temperature profile with the geometry defined by the

chosen set of parameters and sampled at the X and ζ locations of each TS measurement

point. The final step of the data simulation is to add random Gaussian noise with a

standard deviation of 5% to T at each TS measurement point (errors of this size are

predicted for the TS system). The noise is produced using the Box-Muller method [68].

The simulated data is now complete and can be stored as Tdata(X, ζ) (an example of

this simulated data is shown in figure 5.4).

Next, the best fit solution to the data is found. This step is the same whether

simulated or real TS data is being used. First, an initial estimate of the expected best

fit values of the six free parameters is required. The heat transport equation is then

solved using these parameter values and spatially sampled to get Tmodel(X, ζ). It is then

necessary to calculate χ2 using the formula:

χ2 =
∑
i

(Tdata,i − Tmodel,i)
2

σ2
i

(5.1)

where σi are the uncertainties on the measurements. The minimum of χ2 in 6D free

parameter space is then found using a Marquadt-Levenberg routine [69]. The best fit

values of w, wc, T
′
end, T0, A and X0 are then recorded.

If real data is being used, the procedure is now complete and the best-fit parame-

ter values can be used as experimental estimates. If simulated data is being used, a
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Figure 5.3: Flow chart for data simulation and least-squares fitting procedure.

new Tdata(X, ζ) is created by generating a new set of random noise and repeating the

subsequent stages. This is repeated several hundred times to build six free parameter

value distributions. The number of repeated simulations in a distribution is denoted

as Nsim. Finally, histograms for the free parameter value distributions are generated

and Gaussian curves are fitted to estimate the mean and standard deviation values for

the distributions. The mean values are compared to the initial parameter values chosen

earlier. The proximity of the mean to this initial value gives an indication of how accu-

rately the ‘true value’ of the parameter can be inferred from the data at this particular

point in parameter space and with this particular arrangement of lasers. The standard
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deviation gives the expected uncertainty on the measurement.

The process described above is summarised by the flow chart in figure 5.3.
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Figure 5.4: O-point profile across model solution (black line) which has been spatially
sampled and had noise added (blue dots).

5.3.1 Contours of χ2

The reduced χ2 is defined as χ2
red = χ2/ν where ν is the number of degrees of freedom;

the number of data points minus the number of free parameters. A standard indicator

of a good quality of fit is that the minimum value of χ2
red should be ≈ 1. It is of interest

to examine the contours of χ2
red for an individual fit to simulated data in various 2D

slices through the 6D parameter space (see figure 5.5). The minimum values are all ≈ 1,

showing that the quality of fit to the simulated data is as expected.

The forms of the χ2
red contours around the minima reveal which parameters are well

constrained and which parameters are correlated with one another. Correlations can

also be investigated by calculating the Pearson’s correlation coefficient for the simulated

parameter distributions, obtained using the method above. Pearson’s coefficient for

parameters a and b, is given by:

ρa,b =
cov(a, b)

σaσb
(5.2)

where cov(a, b) is the covariance of a and b and σa and σb are the standard deviations.

ρa,b has a value of 1 for perfectly positive correlation between a and b.

Figure 5.5a shows the contours in the w, wc plane. The angled minimum reveals a

strong correlation between these two parameters, confirmed by a high Pearson coefficient
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Figure 5.5: Contours of χ2
red for an individual data simulation. a) w and wc - input

values are w = 0.08 and wc = 0.01. b) w and T ′end - input values are w = 0.08 and
T ′end = 1100. c) T0 and T ′end - input values are T0 = 350 and T ′end = 1100. d) T0 and
wc - input values are T0 = 350 and wc = 0.01. e) w and A - input values are w = 0.08
and A = 0.4. f) X0 and A - input values are X0 = 0 and A = 0.4. Lengths are in units
of normalised flux and temperatures in eV. A is dimensionless.

of ρw,wc ≈ 0.85 (the exact value depends on the arrangement of the lasers and the initial

input values of the parameters for the simulated data). This correlation has important

consequences for the inference of parameter values and will be revisited later. Figures

5.5c, d and f show that, as global parameters influenced by all data points, T0 and X0

are well constrained and have narrow χ2
red minima. T ′end is also semi-global (all of the

data points outside the island influence its value) and figures 5.5b, c show that it is

quite well constrained. The broad minima in the A direction of figures 5.5e and f show

that the parameter is quite poorly constrained. These qualitative descriptions inferred

from the shapes of the χ2
red surfaces are complemented by quantitative estimates of the

parameter uncertainties in section 5.3.3.
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The correlation between w and wc can be understood by considering the geometry of

the temperature perturbation. The cartoon in figure 5.6 gives a heuristic illustration of

the origin of this correlation. The total width of the temperature perturbation, WT , is

defined as the horizontal distance between the two straight line sections of T (X), either

side of the island O-point. It can be seen that from the figure that WT is related to the

linear function 2w − 2wc. It is instructive to think of wc as a measure of how much the

equilibrium profile ‘leaks’ or diffuses into the island. An increase in wc decreases the

overall size of WT as it causes the two straight line sections to move closer together. A

given value of WT can be obtained either by increasing both w and wc or decreasing

both w and wc.

Figure 5.6: The origin of the correlation between w and wc. WT is the overall width
of the temperature perturbation. An increase in wc can decrease WT .

Like T ′end, WT is a well constrained semi-global parameter influenced by a large num-

ber of data points but, because of this correlation, the two parameters that contribute to

it are less well constrained. This correlation means that an inaccurate estimate of w will

lead to an inaccurate estimate of wc. As the main reason for performing this analysis

is to infer wc, it is important to try and mitigate this effect. In fact, the correlation

itself can be used to get a better estimate of wc. If an independent estimate of w can be

obtained from the amplitude of a Mirnov coil signal and introduced as a constraint on

w, the uncertainties on wc will be reduced. The method used to constrain w is described

in section 5.3.2, below.

5.3.2 Constraining parameters

A parameter can be constrained using newly acquired information with a simple appli-

cation of Bayes’ theorem [70]:



Chapter 5. First measurements of the NTM temperature perturbation with TS 87

P (model|data) ∝ P (data|model)P (model) (5.3)

where P (model|data) is called the posterior probability density function (PDF),

P (data|model) is called the likelihood PDF and P (model) is called the prior PDF.

The likelihood is the probability that the observed data is described by a model with

certain free parameters. The prior is a PDF of the model free parameters that has been

previously obtained from some other information source. The posterior is the PDF for

the model, which contains all the information from the data and any prior knowledge

that has been obtained.

The information about w and wc contained in the temperature data is accessed using

the transport model. The likelihood for this system is given by:

P (Tdata|Tmodel(w,wc)) ∝ exp

(
−χ

2

2

)
(5.4)

where χ2 =
∑
i

(Tdata,i − Tmodel,i)
2/σ2

i , as before. An independent measurement of w

can be obtained from a Mirnov coil, with a value wmag and a standard deviation σwmag .

Assuming this measurement has a Gaussian uncertainty, the prior is given by:

P (Tmodel(w,wc)) ∝ exp

(
−(w − wmag)2

2σ2
wmag

)
(5.5)

Thus the posterior probability density function describing the probability that w and

wc have particular values, given the temperature data and the prior magnetic measure-

ment, is given by:

P (Tmodel(w,wc)|Tdata) ∝ exp

(
−χ

2

2

)
exp

(
−(w − wmag)2

2σ2
wmag

)
(5.6)

This PDF can now be turned into a modified χ2 by taking the natural logarithm, ig-

noring the additional term due to taking the logarithm of the constant of proportionality

and multiplying by -2:

χ2
mod = χ2 +

(w − wmag)2

σ2
wmag

(5.7)

The (w−wmag)2/σ2
wmag term is the additional ‘constraint’ referred to in section 5.3.1.

The effect of using such a constraint is demonstrated by two examples in section 5.3.3.
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This method is also used to constrain free parameters in Chapter 6.

5.3.3 Data simulation results
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Figure 5.7: Histograms and fitted Gaussian functions for the six free parameters in
a Thomson scattering data simulation with Nsim = 500. Input values are w = 0.08,
wc = 0.02, T ′end = 1100, T0 = 350, A = 0.6, X0 = 0. Lengths are in units of normalised
flux and temperatures in eV.

Figure 5.7 shows an example of the six histograms of the best fit parameters for

Nsim = 500. This example simulated eight lasers, evenly spaced across the interval ζ = 0

to ζ = 2π. The input values were w = 0.08, wc = 0.02, T ′end = 1100, T0 = 350, A = 0.6,

X0 = 0. The histograms are approximately Gaussian, with mean and σ obtained from

a least-squares fit. The mean values of the histograms match their respective fitting

parameter input values well. The calculated standard deviation values, as a percentage

of the mean, are σw% = 7%, σwc% = 19%, σT ′end% = 2.2%, σT0% = 1.0%, σA% = 13%,

σX0% = 4.6%. The uncertainty on the rational surface position, σX0%, is taken as a

percentage of w, as its mean value is close to zero. The relative sizes of these percentage

errors match the qualitative estimates obtained from the χ2 surfaces.

After estimating the uncertainty on the parameters at a single point in the 6D pa-

rameter space and with a single arrangement of lasers, a more detailed understanding of

this inference method was obtained by repeating this process at different points in pa-

rameter space and with different numbers and arrangements of lasers. This analysis was

conducted to find out whether there are optimum conditions under which to infer the

values of the parameters. In particular, it is important to estimate the uncertainty on
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measurements of w and wc under different conditions, as they are the main parameters

of interest for determining NTM stability.

Figure 5.8 shows the mean and σ of w and wc for a series of Nsim = 500 simulation

runs with varying numbers of lasers spread evenly over an island period. As before, the

initial input values were w = 0.08, wc = 0.02, T ′end = 1100, T0 = 350, A = 0.6, X0 = 0.

Though the result is no surprise, it is important to note that the uncertainties on w and

wc decrease with increasing number of lasers, due to the increase in ζ resolution. Another

point of interest is that the use of a single laser at the O-point constrains w reasonably

well but leaves wc poorly constrained, whereas a single laser at the X-point constrains

wc reasonably well but fails to constrain w. This is in agreement with the prediction

from the boundary layer width calculation, made in section 4.4.1, that a measurement

of the O-point is required to infer w and a measurement of the X-point is required to

infer wc.
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Figure 5.8: Errors on w (blue line with squares) and wc (red line with diamonds) as
a function of the number of TS lasers used (spread evenly over a 2π island period).

Although it is possible to obtain reasonable estimates of w and wc with two or four

lasers, eight lasers are typically used as this provides the best possible estimate available.

Using fewer lasers could be favourable in future experiments, as it would allow more

measurements of w and wc to be made per discharge. However, it would have to be

ensured, using the triggering system, that the lasers were fired over the X and O-points,

in order to constrain w and wc.

The different arrangements of the eight lasers, shown in figure 5.9, are now considered.

Figure 5.10 shows the mean and σ of w and wc for a series of Nsim = 500 simulation
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Figure 5.9: The eight TS lasers in a series of different arrangements of ζ values.

runs using these arrangements.
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Figure 5.10: Errors on w (blue line with squares) and wc (red line with diamonds)
as a function of the laser arrangement. Laser arrangements shown in figure 5.9.

As in the previous example, the initial input values were w = 0.08, wc = 0.02,

T ′end = 1100, T0 = 350, A = 0.6, X0 = 0. Arrangements b and c, which miss out

the O-point and X-point, respectively, have larger uncertainties. As with figure 5.8,

the lack of O-point measurement means that w is poorly constrained and the lack of

X-point measurement means that wc is poorly constrained. Furthermore, due to the
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correlation between w and wc, arrangements b and c show that increased uncertainty

on one parameter also increases the uncertainty on the other parameter. Overall, the

other arrangements give similar results and it is difficult to say whether small differences

between them are due to statistical fluctuations or marginal improvements. Most of the

experimental data used in the rest of this chapter uses arrangements a and d.

As was mentioned earlier, the main parameter of interest is wc as inferring its value

experimentally means that the use of analytic approximations can be avoided. In Chap-

ter 6, the value of wc inferred from TS temperature profiles is compared to that inferred

from a β ramp-down experiment. A further set of Nsim = 500 runs was conducted to

simulate a β ramp-down experiment by reducing w while keeping wc constant. The aim

of this simulation is to see if there is an optimum w at which to measure wc. The value

of wc chosen was 0.01 (flux units) as this is approximately the value obtained in fits to

real data (see section 5.4). The results are shown in figure 5.11.
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Figure 5.11: Error on wc as a function of w. Simulation of a β ramp-down. Red line
with diamonds is for a fit with constrained w, assuming w is known within 10% of the
saturated w. Blue line with squares is for the unconstrained case. The reduced errors
for the constrained case are due to the correlation between w and wc.

As w approaches wc, perpendicular diffusion becomes important and the blurred is-

land edges make w difficult to determine, increasing its uncertainty (as was shown in

the colour contour plots of the island temperature profile in Chapter 4). Since w and wc

are correlated, the uncertainty on wc is also increased. This result shows that, though

the effects of diffusion are most relevant for small islands, a combination of parameter

correlation and spatial resolution make directly measuring those effects extremely chal-

lenging. In fact, counterintuitively, more reliable information about the threshold can
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be gained by measuring larger islands, because w can be inferred more accurately. It is

important to note that this is only the case if it is assumed that the thermal diffusivities

do not change significantly between island saturation and island threshold. The red line

in figure 5.11 shows that introducing a w constraint, such as an independent Mirnov coil

measurement (see Chapter 6), can at least partially mitigate this effect.

A final set of Nsim = 500 simulation runs was conducted with varying wc values. The

aim of this simulation was to investigate the extent to which different sized wc values

can be resolved. The value of w was fixed at 0.08 (flux units). The results are shown in

figure 5.12.
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Figure 5.12: Error on wc as a function of wc/δrTS where δrTS is the radial resolution
of the MAST TS system (∼ 1cm). Red line with diamonds is for a fit with constrained
w, assuming w is known within 10%. Blue line with squares is for the unconstrained
case. The reduced errors for the constrained case are due to the correlation between w
and wc.

Again, when wc gets large (beginning to approach w), the blurred island edges act

to increase the uncertainty on both w and wc. The error on wc also increases as wc gets

smaller, due to the finite resolution of the TS system. These two error dependences,

illustrated in figure 5.12, give rise to an optimum ratio wc/w at which the errors on wc

are minimised. For this example, the optimum ratio is wc/w ≈ 0.4, which again suggests

that wc is best inferred when the island is not too close to the threshold. As with the

previous example, figure 5.12 also demonstrates that the error on wc can be reduced

by constraining w using magnetic measurements. It is of interest to note that a useful

estimate can be obtained even if wc falls below the radial resolution of the TS system.
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As wc affects the Te contours right across the profile, the extra information provided by

multiple lasers in the ζ direction constrains the value of wc when wc/δrTS . 1.

The conclusion of this analysis of synthesised data is that wc can be inferred from

TS data, assuming the model is valid, and provides an estimate of the uncertainty that

can be used when analysing real data. For a reliable measurement of w and wc, it is

crucial that both the O-point and X-point are measured. It is also important that the

measurement be made when w is not too small, as the increased uncertainty on w and

the correlation between w and wc act to increase the uncertainty on wc. If a reliable

constraint on w can be applied then this effect can be partially mitigated.

5.4 Results using real MAST Thomson scattering data

After validating this approach to estimating wc, the model solutions, T (X, ζ), were

fitted to experimental TS data in order to estimate wc for a series of 13 similar MAST

discharges with 2/1 NTMs, the characteristics of which are described in Chapter 2.

The temporal evolution of magnetic island widths in a selection of these discharges is

discussed in Chapter 6.

Data from both the inboard and outboard sides of MAST are available but this

analysis focuses on the inboard data because the radial resolution is higher close to the

central column, due to both flux expansion and the tangential trajectory of the TS laser

beam line (see Chapter 2).

For this data set, the majority of the islands are measured in, or close to, their

saturated state, with a full width in the range ∼7-10cm. Measuring the islands of this

size provides a favourable ratio of wc/w for minimising the uncertainty on wc. Estimates

of the magnetic island width taken from a Mirnov coil, with an assumed uncertainty of

10%, were used to constrain w and therefore reduce the uncertainty on wc (the method

for estimating w from Mirnov signals is described in Chapter 6). Two examples of the

Te data, in the vicinity of the island, along with the best-fit solutions are shown in figure

5.13.

In order to get a best estimate for wc, data from multiple discharges in similar

parameter regimes can be used. One method for estimating wc is to use the formula

wc =
(
χ⊥L

2
s

χ‖k
2
θ

) 1
4

with analytic estimates for χ⊥ and χ‖. The perpendicular transport in

tokamaks, although widely attributed to small scale turbulence [71], is not well described
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Figure 5.13: MAST discharges 23447 and 24623. A fit of model, T (X, ζ) to TS data.
a) A profile close to the O-point of the island, black solid line showing best-fit model
and blue dots showing data. b) The 1st Fourier harmonic of the helical Te perturbation,
black solid line showing best-fit model and blue dots showing data. c) Shaded contours
of Te data with best-fit contours of Ω over-laid. d) Shaded contours of best-fit model
Te with best-fit contours of Ω over-laid.
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quantitatively and as such is known as ‘anomalous transport’. Here, a gyro-Bohm model

is used as a rough estimate for χ⊥, with the following forumla:

χ⊥ ∼ ρ2
i vth,i/r (5.8)

The parallel diffusivity, χ‖, is sometimes estimated using a formula which corrects

the conductive Spitzer-Harm formula with a factor taking into account the ratio of the

electron mean free path to Lc [35] to provide a pseudo-convective χ‖ given by equation

5.9 for MAST plasmas (n19 is the electron density in units of 1019m−3).

χ‖ ∼ 1.2× 1010T
5
2
keV /n19 (5.9)

Using this method, the value of wc is then estimated for the 13 discharges considered

here. The mean of this distribution of wc values is 0.5cm and the standard deviation is

only 8% (recall that χ⊥/χ‖ has quarter power dependence in equation 4.3, which acts

to reduce any variation). As there is a great deal of uncertainty in the validity of the

models of χ⊥ and χ‖ used, the means value can only really act as an order of magnitude

estimate, but the low standard deviation suggests that the transport properties in these

discharges are similar. This standard deviation is smaller than the usual uncertainty

on wc, estimated in section 5.3.3, and it is therefore assumed that a better estimate for

wc can be obtained by combining the experimentally inferred values from the multiple

discharges.

As the data simulation method for estimating σwc described in section 5.3 provides a

Gaussian probability density function (PDF) for wc for each discharge, the joint PDF is

obtained simply by multiplying together the individual PDFs to give a weighted mean.

The final joint mean and error for the discharges is wc = 0.7±0.2cm, consistent with the

order of magnitude estimate described above.

Translating this measured wc into a ratio of thermal diffusivities gives a value in the

range
χ‖
χ⊥

= 6 × 106 − 7 × 107 (uncertainties are large as
χ‖
χ⊥
∝ w4

c ). This is somewhat

lower than the values of
χ‖
χ⊥

= 108− 109 found by Meskat [35] on ASDEX and
χ‖
χ⊥

= 108

found by Hölzl [64] on TEXTOR. TEXTOR generally operates at lower density than

MAST and ASDEX is generally hotter and less dense than MAST. If equations 5.8 and

5.9 are assumed to be valid then χ‖ ∝ T
5
2 /n and χ⊥ ∝ T

3
2 , which leads to the relation

χ‖
χ⊥
∝ T

n . This scaling of temperature and density fits qualitatively with the observation
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that
χ‖
χ⊥

is higher on hotter, less dense tokamaks. However, this is rather simplistic

as the magnetic field strength and other equilibrium parameters are also likely to play

a significant role in determining the turbulent perpendicular transport and therefore

predictions for ITER on the basis of this observation are not included here.

The directly measured value of wc, described above, has been used in an analysis

of the modified Rutherford equation (see Chapter 3) for the evolution of the NTMs in

these MAST discharges. This analysis is described in detail in Chapter 6.

5.5 Summary

This chapter has outlined a method of inferring wc, an important parameter in deter-

mining NTM stability, from experimental Thomson scattering data. The advantage of

this method is that it avoids the need to choose a model for χ⊥ and χ‖, which previous

studies of NTM stability [41, 59, 63] have required. In Chapter 4, a heat transport

equation for an asymmetric magnetic island, based on Fitzpatrick’s transport threshold

model, was presented. The solutions of this equation are magnetic island temperature

profiles, described by a set of six free parameters. With spatial sampling and the ad-

dition of randomly sampled Gaussian distributed noise, these profiles can be used to

generate synthetic MAST Thomson scattering (TS) Te data. By fitting the solutions to

the synthetic TS data, the uncertainties on the six free parameters can be estimated.

A comprehensive set of simulation runs was conducted, investigating several regions

within the parameter space as well as different numbers and arrangements of lasers. It

was found that the geometry of the temperature perturbation causes the parameters w

and wc to be correlated and that, by constraining w with a magnetic amplitude esti-

mate, the uncertainties on wc can be reduced. Finally, the model T profiles were fitted

to MAST Te data for an ensemble of similar discharges with saturated 2/1 NTMs. From

this analysis, an estimate of wc = 0.7± 0.2cm was inferred for these MAST discharges.



Chapter 6

Neoclassical tearing mode

stability analysis on MAST

6.1 Introduction

A number of stabilising and destablising contributions govern NTM stability. The net

effect of these contributions can be studied using the modified Rutherford equation

(MRE), presented in Chapter 3, which describes the evolution of the magnetic island

width, W . In this chapter, a method for estimating W is presented and the MRE is

evaluated for a series of MAST discharges. The balance of the different contributions

is characterised for the discharges and a possible explanation for the observed ‘trigger-

less’ NTMs is found. The uncertainties for the different contributions, which have been

neglected in most previous analyses [41, 63, 72], are calculated by propagating the un-

certainties on the measured parameters through the MRE analysis. This method also

helps to keep track of correlations between terms in the MRE due to their shared de-

pendences on measured parameters. Finally, a comparison is made between the NTM

threshold predicted by the direct experimental estimation of wc obtained in Chapter

4 and the threshold observed in two β ramp-down experiments. Though some adjust-

ments are required to take account of interactions with other instabilities, the results

from the MRE agree well with the observed behaviour. These comparisons indicate that

the transport model outlined in Chapter 4, influenced by the measured wc, plays an

important role in explaining the observed threshold for these discharges. Uncertainties

on the contribution from the polarisation current are significant and make it difficult to

judge the importance of this threshold mechanism.

97



Chapter 6. Neoclassical tearing mode stability analysis on MAST 98

6.2 The modified Rutherford equation for NTM evolution

The modified Rutherford equation was presented in Chapter 3 as:

τr
rs

dW

dt
= rs∆

′ − anlW + ∆bs(W ) + ∆GGJ(W ) + ∆pol(W ) (6.1)

Here, τr is defined as the current diffusion time and rs as the minor radius of the

rational surface. The first term on the right hand side of equation 6.1, rs∆
′, is related to

the free energy available for magnetic reconnection in the current profile and is known as

the classical tearing stability index [33]. The second term, anlW , describes the nonlinear

evolution of the classical tearing mode, leading to saturation, and is related to higher

order derivatives of the current profile [58]. ∆bs is the contribution from the perturbation

to the bootstrap current caused by the flattening of the pressure profile by the magnetic

island associated with the mode. As has been shown in Chapters 3 and 4, islands smaller

than a critical island width, wc, do not completely flatten the profile, which leads to a

threshold island width, wth, above which the NTM grows [1]. ∆GGJ is the contribution

from the stabilising effect of magnetic field curvature [50]. This is particularly important

in the MAST plasmas reported here due to the low aspect ratio and high level of plasma

shaping [41]. The final term is due to the polarisation current, which is predicted to

play a significant role when the island is small [55, 73, 74].

The evolution of the magnetic island width, W , is found by integrating the MRE with

respect to time. One of the main aims of this chapter is to compare this theoretically

predicted W (t) with the experimentally observed W (t). A method for experimentally

inferring W from magnetic perturbation measurements is outlined below, in section 6.3.

6.3 Calculating the magnetic island width from Mirnov

coil signals

Using the equation for the island half width in cylindrical geometry, which was presented

in Chapter 3, the equation for the full-width, W , can be written down:

W = 4

√
rsqsB̃r
mq′sBθ

(6.2)



Chapter 6. Neoclassical tearing mode stability analysis on MAST 99

where qs is the q value at the rational surface, B̃r is the amplitude of the perturbed

radial magnetic field at the rational surface, m is the poloidal mode number, q′s is the

gradient of q with respect to r at the rational surface and Bθ is the poloidal field at

the rational surface. The only part of this equation that cannot be evaluated from a

simple mode number analysis and equilibrium construction is B̃r. However, a number

of measurements of the perturbed vertical field, B̃z, are available at the locations of the

Mirnov coil array, described in Chapter 2. As B̃z ∝ B̃r [75], an estimate for W can be

obtained if the constant of proportionality relating B̃r at the rational surface to B̃z at a

coil can be calculated, assuming the cylindrical approximation holds.

Following a similar method to that followed by Scarabosio [76] and in the TORFLD

code [77], a routine was written to generate synthetic Mirnov coil array data using the

magnetic field produced by a set of current filaments within the plasma. The filaments

are assumed to be rotating toroidally at a constant frequency so that the time integrated

Mirnov signal,
∫
dB̃z
dt .dt, is equivalent to a series of toroidally separated measurements of

B̃z. The filaments lie in a sheet on the rational surface and follow equilibrium magnetic

field lines, the trajectories of which are found using an equilibrium reconstruction. For

R and Z points restricted to the rational surface, the field lines follow constant values

of the helical angle:

ζ = m

(
θ? − φ

qs

)
(6.3)

where the θ? coordinate replaces θ to provide a realistic field line trajectory. As

magnetic field lines are straight in the (θ?, φ) plane, this is often known as the straight

field-line coordinate system. This is calculated by considering the local magnetic field

pitch, given by equation 6.4, which is not constant on a flux surface.

dθ

dφ
=
B · ∇θ
B · ∇φ

(6.4)

The transform to θ? can be found by substituting the equation for the magnetic field,

B = I(Ψ)∇φ+∇Ψ×∇φ, into equation 6.4, giving:

∇Ψ×∇φ · ∇θ︸ ︷︷ ︸
J

·∂θ
?

∂θ
=
I(Ψ)

qR2
(6.5)
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Here, J is the Jacobian of the transform from toroidal coordinates into cylindrical

coordinates, given by:

J =
∂Ψ

∂R

(R−R0)

r2
+
∂Ψ

∂Z

Z

r2
(6.6)

Then by integrating with respect to θ, equation 6.7 for θ? is obtained.

θ?(θ) =
I(Ψ)

q(Ψ)

∫ θ

0

dθ

R2J
+ C (6.7)

The unknown constant C is then found by normalising to 2π.
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Figure 6.1: 16 q = 2 filaments following field lines on the MAST q = 2 surface.

Figure 6.1 shows 16 q = 2 filaments following field lines on the MAST q = 2 surface.

Each filament carries current, If (ζ). The variation of If and therefore the island struc-

ture is given by If = I0 sin ζ for a single helicity perturbation. Using the Biot-Savart

law, the magnetic field due to the current filaments can be found at the locations of the

Mirnov coil array. The magnetic island current is not the only signal picked up by the

real Mirnov coils. The rotating magnetic island induces eddy currents in the conducting

wall that generate a reflection of the magnetic island signal. Scarabosio [76] used a full

wall model and showed that, for rotation frequencies greater than 1kHz, the pertur-

bation is reflected almost perfectly and the measured signal is effectively double that

which would be measured without a conducting wall. As the magnetic islands on MAST

typically rotate at about 10kHz, it is assumed the Mirnov signal due to the magnetic
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island can be found simply by dividing the total measured signal by two. This approach

has also been validated by previous modelling of the MAST vacuum vessel [78].

The Mirnov array data can then be simulated and fitted to experimental data (time

integrated to give B̃z), using a vector of NI current filament values, If , as free param-

eters. This method has been implemented in the MINERVA framework for Bayesian

inference and has similarities to that used in Svensson 2008 [79]. This is a relatively

simple model that does not take full advantage of the MINERVA framework but there

is potential for developing it further and this is discussed in Chapter 7.

As there is a linear relationship between the current in an individual filament and

the resulting magnetic field measured at a coil in the array, the entire system can be

represented by the matrix equation:

P = M If (6.8)

where P is a vector of NM predicted Mirnov measurements and M is a matrix of

coefficients. If the vector of real Mirnov measurements, B̃z, has Gaussian uncertainties,

and a covariance matrix, Σ, the probability density function (PDF) for the observed

data, given the currents, is given by:

p(B̃z|If ) =
1

(2π)NM/2|Σ|1/2
exp

(
−1

2
(M If − B̃z)

TΣ−1(M If − B̃z))

)
(6.9)

The mean of this multivariate normal distribution, given by equation 6.10, is taken

as the best-fit of the currents [79].

mIf
= (MTΣ−1M)−1MTΣ−1B̃z (6.10)

An example of the Mirnov array data and the best-fit simulated data is shown in

figure 6.2.

Finally, it is possible to obtain the coefficient of proportionality between B̃coil
z and

B̃r and make an estimate of W based on equation 6.2. For fits to real MAST data this

gives perturbed current amplitudes on the order of I0 =1kA for a saturated 2/1 NTM

with W ≈ 10cm.
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Figure 6.2: a) Real and b) simulated data from the MAST inboard Mirnov coil array
for a saturated 2/1 NTM. White bands are broken coils.

There are limitations to this model, such as the approximation that the current

perturbation lies in an infinitesimally thin sheet and the fact that it is a simple vacuum

model that neglects any effect of the plasma itself. However, the values of W obtained

with this method have been checked against successful measurements of large saturated

island widths using all 8 lasers of the Thomson scattering system and are found to be

in agreement. Errors on the calculated W calibration factor are estimated to be about

10%, which as Chapter 4 showed, can provide a useful constraint on the transport model.

The rest of this chapter focuses on a study of the evolution of W , calculated using the

method presented here, in a series of high performance MAST discharges.

6.4 High performance MAST discharges

Chapter 2 covered the basic characteristics of the high performance MAST discharges

used in this thesis. In this chapter, the growth of 2/1 NTMs in three of these discharges

is analysed in more detail. The discharges have similar electron pressure profiles and

q profiles, with slightly reversed magnetic shear in the core and q0 > 1 (see figure

6.3). The discharges are also characterised by reaching a high βN = β/(Ip/aB) of ∼4,

usually in ELM-free H-mode. Figure 6.4 shows NTM evolution, from onset to saturation



Chapter 6. Neoclassical tearing mode stability analysis on MAST 103

0.0 0.5 1.0 1.5 2.0
R (m)

0

2000

4000

6000

8000

10000

p e
 (

P
a)

0.0 0.5 1.0 1.5 2.0
R (m)

0

2000

4000

6000

8000

10000

p e
 (

P
a)

2

4

6

8

10

q

pe
q

Figure 6.3: Fitted pe and q profiles from motional stark effect and Thomson scattering
constrained EFIT++ equilibrium reconstruction. Taken at 0.3s in discharge 23447.
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Figure 6.4: Evolution of 2/1 NTM width for discharge 23447. NTM onset coincides
with βN reaching the ideal no wall limit, calculated using MISHKA. The large aspect
ratio estimation of the limit, 4li (where li is the plasma internal inductance), is also
close to this result.
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(and disruption at 0.345s), for discharge 23447. βN increases and reaches the no wall,

ideal limit calculated using ideal MHD stability code, MISHKA [80]. This matches

surprisingly well with the large aspect ratio estimate for the limit, 4li (where li is li(3),

the plasma internal inductance obtained from EFIT). In all the discharges considered,

the onset of the NTM coincides closely with reaching this βN limit and obvious seed

island triggers are often lacking. The onset characteristics of these ‘triggerless’ NTMs

are consistent with those reported in similar scenarios on the DIII-D tokamak [61]. The

origin of this triggerless destabilisation is investigated in section 6.6.

6.5 The MRE expressed in terms of basic tokamak plasma

parameters

The terms in equation 6.1 can either be calculated using a variety of stability codes [72]

or, assuming an idealised geometry, written down analytically in terms of measurable

parameters [59, 63]. In this chapter the latter option is chosen, with the aim of attribut-

ing meaningful errors to the input parameters, which can be propagated through the

full analysis. Equation 6.1 is rewritten as the following semi-heuristic model, based on

those used in Buttery et al. (2002) [41] Sauter et al. (2002) [63] and Urso et al. (2005)

[59]:

1.9× 104µ0rsT
3
2
eV

ln Λ

dW

dt
= rs∆

′ − anlW

+a1rsβpLq

√
rs
R0

1.4

Lp

W

W 2 +W 2
d

+a2rsβp
(
q2 − 1

) rsL
2
q

qR2
0Lp

1√
W 2 + 0.65W 2

d

−a3rsβp
2mTeV
eB2

θ

(
Lq
Lp

)2

g(ε, νi, ω)
W

W 4 +W 4
b

(6.11)

Here Wd = 5.1wc; a relation that was mentioned in Chapter 3 and is obtained by

matching of small and large island limits [1]. This is approximately the W for which dW
dt

is a maximum and is therefore considered to be the marginal value of W at marginal

βp. W is the magnetic island width, calculated using the method described in section

6.3. Wb is the ion banana width. Lq and Lp are the gradient length scales for the safety

factor, q and the pressure, p, defined as q(dq/dr)−1 and p(dp/dr)−1. βp is the local
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poloidal β defined as 2µ0p/ 〈Bθ〉, where 〈Bθ〉 is the flux surface averaged poloidal field.

TeV is the electron temperature in eV, which is found to be approximately equal to the

ion temperature in the vicinity of the rational surface. The term g(ε, νi, ω), where ε is

the inverse aspect ratio, νi is the ion collisionality and ω is the island rotation frequency

in the plasma frame, describes the magnitude of the polarisation current and is discussed

in more detail later in this section. All parameters except W and βp are measured at

the time of NTM onset and assumed to stay constant during the period of interest. This

approach has been used in previous studies [63] and in most cases there are only small

changes in profiles during island evolution. The coefficients ∆′, anl, a1, a2 and a3 are

also assumed to remain constant in time.

Following Urso et al. (2005) [59], the analytic large aspect ratio formulae for boot-

strap current, jbs, and resistive interchange parameter, DR, are used in order to write

them in terms of the measurable parameters mentioned above. This method not only

has the advantage of facilitating error propagation but also allows the correlation that

exists between some of the terms in equation 6.11, due to their dependence on these

measureable parameters, to be captured in the analysis. Values of jbs and DR have

also been obtained using the NCLASS [81] and CHEASE [52] codes respectively. Full

propagation of experimental errors through these codes is non-trivial and beyond the

scope of this thesis. All calculations of jbs and DR are very sensitive to the quality of

the equilibrium reconstruction and the method chosen for calculating Lp (or Ln, LTe

and LTi) from the TS data, which requires a smoothing or fitting procedure to avoid

mistaking fluctuations for equilibrium gradients. Consequently, uncertainties on jbs and

DR are large, whichever method is used. For the analytic method the uncertainties

are estimated to be σjbs ∼ 20% and σDR ∼ 30% and are expected to be similar when

using NCLASS and CHEASE, though calculating errors for this method is not simple.

The NCLASS and CHEASE values calculated here typically differ from those calculated

using the analytic formulae by less than a factor of two, depending on the equilibrium

reconstruction used. Recent calculations of DR for NSTX, using the NIMROD code,

have also shown only a small difference of about 15% compared to an analytic, large

aspect ratio calculation [82]. It should be emphasised that the limitations of using these

analytic approximations are well understood but that this approach is taken in order

to preserve the effects of the parameter correlations described above. Any necessary

correction of jbs and DR due to plasma shaping should be captured in a1 and a2 during

the fitting procedure described below.
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Another term which cannot be determined simply from measurements is g(ε, νi, ω),

a function associated with the polarisation current. In order to evaluate this term, it is

necessary to make a transform to the rotating frame in which the radial electric field,

Er, is zero at the rational surface [56]. This is done experimentally using the charge

exchange recombination spectroscopy diagnostic (CXRS), described in Chapter 2, which

gives measurements of the ion flow and temperature. From this, the rotation frequency

of the Er = 0 frame, ωEr=0, can be estimated. Then the island rotation frequency,

ωMirnov, is Doppler shifted from the lab frame to the Er = 0 frame. The term is

expected to provide a similar contribution to the MRE in all the discharges considered

here, due to the islands being born at a similar frequency lower than ωEr=0 and in the

opposite direction (in the lab frame) in all cases. However, it is not possible to make a

quantitative statement about g(ε, νi, ω) for these discharges as current available models

do not include sufficient physics. In the absence of a complete theory, the unknown

contribution is absorbed into dimensionless fitting parameter, a3. As was mentioned in

Chapter 3, polarisation current theory is only developed for W > Wb, the banana width.

In order to take account of this, the functional form ∆pol ∝W/(W 4 +W 4
b ) was adopted

as a heuristic model [53].

The coefficients associated with each of the five terms: ∆′, anl, a1, a2 and a3, are now

considered. ∆′ is notoriously difficult to calculate [83] and requires extremely accurate

equilibrium reconstruction before it can be derived. Even with an accurate equilibrium

reconstruction, sensitivity to small changes in the current and pressure profiles make

uncertainties very high. anl can be calculated but is a function of the first and second

radial derivatives of the equilibrium current density [58], which have large errors experi-

mentally. a1 and a2 can be estimated for a given equilibrium and have values ∼ −3 and

∼ 6 respectively [41]. a3 is an order 1 constant which can be calculated numerically,

again with large uncertainty. Given the theoretical uncertainties, the five coefficients are

estimated by using them as free parameters in a fit of equation 6.11 (integrated w.r.t

time) to the experimentally measured W . The fitting method is described below, in

section 6.5.1.

6.5.1 Probabilistic approach to fitting

The version of the MRE presented in section 6.5 is written in terms of a series of ba-

sic plasma parameters, all of which are either directly measurable or relatively well
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constrained parameters in the EFIT++ equilibrium reconstruction. The measured pa-

rameters and their estimated uncertainties are written down in table 6.1. The errors

on parameters derived from Thomson scattering data, such as kinetic profiles and the

rational surface position, are charaterised by the typical size of Te and ne fluctuations

[84] and the radial resolution of the diagnostic. Errors on parameters taken from EFIT

are harder to estimate as they rely on a number of separate measurements but the val-

ues chosen here are thought to be reasonable for such a well constrained solution to the

Grad-Shafranov equation.

Parameter Uncertainty

W 10% + 0.5cm
βp 10%
Wd 30%
R 1cm
rs 1cm

ln Λ ±0.5
TeV 5%
Lp 10%
Lq 10%
Bθ 5%

Table 6.1: Measurable parameters from the MRE and their uncertainties.

The approach taken is similar to that in Urso et al. (2010) [85] and in Chapter 4.

Each of the measurable parameters from table 6.1 are assumed to be described by a

Gaussian probability density function (PDF) with a mean and σ given by the experi-

mentally measured value and its experimental uncertainty. Values are then randomly

sampled from these PDFs and fed into equation 6.11 before integrating and fitting it to

the experimentally observed W . This process is then repeated 1000 times to build up

histograms of the free parameters (the five coefficients), the mean and σ of which are

the best estimate and uncertainty of the parameter.

For the observed value of W , a significant part of the estimated uncertainty comes

from the 10% error on the calibration factor calculated in section 6.3. This is propa-

gated through the MRE using a single multiplication factor for the whole time series,

randomly sampled from a Gaussian distribution with a mean of 1 and σ=10%. In addi-

tion, a Gaussian error component of 0.5cm, estimated from the background noise floor,

is included to account for the noise in the Mirnov signal from magnetic fluctuations.

Following the same procedure used for the constraint on w in Chapter 4, constraints

on the free parameters, based on their theoretically predicted values, are included in the
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Figure 6.5: Flow chart for MRE fitting procedure.

fit to ensure that their sign and order of magnitude is physically plausible. For the a1

and a2 parameters, whose values are fairly well characterised by theory, the constraints

are fairly stringent with σ = 20%. The other parameters have much looser restrictions

at σ = 200%.

This method provides an experimental estimate of the relative contributions of the

five terms and also experimental errors not easily derived from the usual calculation

methods. Note that the mean evolution of W obtained through this method may not

necessarily give the closest fit to the data, but it is the most probable given the experi-

mental uncertainty and the prior theoretical information about the fit parameters. The

fitting procedure is summarised in the flow chart in figure 6.5.
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6.6 Results for fitting to NTM onset up to saturation

The majority of MAST discharges with NTMs result in disruption when the associated

magnetic island grows large and locks to the wall. Section 6.6.1, below, outlines the

results from the fitting of the MRE to the observed NTM evolution in one of these

discharges.

6.6.1 Discharge 23447

Discharge 23447 was presented in section 6.4 as an example in which the ideal βN limit

is reached and a ‘triggerless’ NTM is destabilised. Figure 6.6 shows that this is a high

power discharge with around 3MW of injected NBI power and a maximum βN of over 4.

The discharge is particularly quiescent, entering a 0.07s period of ELM free H-mode at

about 0.27s. The βN increases continuously due to the high level of heating and fueling

throughout the discharge, as well as the good confinement and lack of energy-dissipating

ELMs during the H-mode period. An NTM starts to grow from a very low size at around

0.29s, saturates at about 0.32s, locks to the wall at 0.34s and terminates the plasma at

0.35s. The wall-locking is seen as a drop in the amplitude of the Mirnov signal as the

rotation slows, giving a reduced dB/dt.
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Figure 6.6: Time traces for discharge 23447. From top to bottom: 1. n=odd Mirnov
coil amplitude. 2. Summed power from MAST’s two neutral beams. 3. βN , the
normalised β of the plasma. 4. Ip, the plasma current. 5. Line integrated Dα emission.
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This discharge provides 0.05s of NTM evolution at a range of magnetic island widths,

which can be studied using the MRE. One advantage of using this discharge is the

relatively smooth evolution of the NTM in the quiescent ELM free H-mode period. As

section 6.7.2 will show, other instabilities can often interrupt or modify NTM evolution,

which can make fitting a challenge. For example, a sudden transient event, such as a

large ELM, can often reduce the plasma rotation in the vicinity of the magnetic island,

resulting in a reduction in the measured Mirnov amplitude. However, this can be very

difficult to decouple from any simultaneous change in the magnetic island width due

to the perturbation and the signal due to the ejected ELM filament. Therefore, it is

advantageous to study such quiescent discharges so as to minimise these external effects,

which are not easily included in the MRE.

6.6.1.1 Best fit solution

Figure 6.7 shows the coefficient distributions for discharge 23447. They are approxi-

mately Gaussian and their mean and σ give the best-estimate and uncertainty for the

five parameters: ∆′ = 1.6±0.8, anl = 26±9, a1 = −3.6±0.8, a2 = 7.1±0.6, a3 = 1.0±1.2.

Figure 6.8 shows the best-fit solution compared to the experimental data.
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Figure 6.7: Distributions of the five coefficients for discharge 23447, found to be
approximately Gaussian. The mean of each distribution is taken to be the best-estimate
given the errors on the measured data.

It is of interest to look at the overall contributions from the five terms in equation

3.30 as they evolve in time (figure 6.9). Both a strongly destabilising ∆bs, due to steep

pressure gradients, and a positive ∆′ are required for NTM growth from such a small

starting size. As expected in a spherical tokamak, the ∆GGJ term is significantly stabil-

ising and a2 is somewhat larger than the theoretically predicted value (7.1 rather than

6.5), suggesting that a small aspect ratio correction to the resistive interchange parame-

ter, DR, has been absorbed into this coefficient. Also, with a positive ∆′, it is important

to include the stabilising non-linear term, in order to account for the saturation of the
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Figure 6.8: Measured W from Mirnov coil data and model W , during island onset
and growth, using mean values from parameter distributions for discharge 23447.

island. The a3∆pol term appears to play a small stabilising role when the island is small,

although errors are significant due to the 1/W 3 dependence.
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Figure 6.9: Time evolution of individual contributions to the modified Rutherford
equation for discharge 23447.

The requirement for a positive ∆′ is in-line with the theory that, close to the ideal

βN limit, a ‘pole’ in ∆′ is approached [48, 60]. Note that approaching a pole is unlikely

to result in a very large, positive ∆′ because an NTM will be driven unstable as soon

as ∆′ becomes sufficiently positive, i.e. ∆′ ∼ 1.6. Also, it is unlikely that the NTM is

really ‘triggerless’, but that the destabilising contribution of ∆′ causes the required seed
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island size to be smaller than the noise floor, in which case small magnetic fluctuations

may be creating seed islands above the threshold.

Reimerdes [53] has shown that classically unstable tearing modes, which later become

neoclassically unstable, show two phases of distinctly different evolution, with an increase

in growth rate as the mode becomes neoclassical. In 23447, the NTM is both classically

and neoclassically unstable at onset, but the two contributions are comparable. Two

distinct phases are not present, but there is a clear increase in growth rate as the

neoclassical drive takes over, shortly after onset.

6.6.1.2 Contours of χ2
red

As in Chapter 4, it is instructive to look at the χ2
red contours for an individual fit in

order to examine the relationships between pairs of parameters. Figure 6.10 shows a

series of 2D cross sections of χ2
red in the 5D parameter space.
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Figure 6.10: Contours of χ2
red for discharge 23447. a) ∆′ and anl. b) a1 and a2. c)

∆′ and a1. d) a1 and a3. All parameters are dimensionless except ∆′, which has units
of m−1.

The minimum value is close to χ2
red = 1 but this test is perhaps not appropriate for

this type of data as the majority of the error comes from the overall multiplication factor

used to calculate W , rather than noise on the signal. Still, it is a useful indication of

quality of fit and is therefore used as a guide. The angled minima demonstrate that there

are correlations between most of the parameters, due to numerous shared dependences
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on the measured parameters. For example, a1 and a2 are anti-correlated because ∆bs and

∆GGJ share similar βp, Lp and W dependences but with opposite signs. One interesting

feature of several of the plots is the visibility of the NTM threshold. This can be seen

clearly as a very steep gradient in χ2
red in the bottom left corners of figures 6.10a and c

and the top right corner of figure d. When the model is in a parameter regime below

the threshold, the island shrinks away, leading to a very large χ2
red due to the large

difference between the observed W and the model W . In these three plots, the minima

appear to be very close to the threshold in parameter space. This is in agreement with

the hypothesis, presented in section 6.6.1.1, that as the ideal limit is approached ∆′

becomes more positive and the threshold is crossed just as the balance of terms for a

very small seed island becomes net-destabilising.

6.7 Results for NTM β ramp-down experiments

NTM stability can be investigated further by studying the β dependence of equation

6.11. This has previously been investigated on various tokamaks, notably for 3/2 NTMs

on MAST [41] and 3/2 and 2/1 NTMs on JET [63]. As was explained in Chapter 2, there

is a particular difficulty in ramping down β for spherical tokamak plasmas containing 2/1

NTMs as the q = 2 surface tends to be close to the plasma edge and all external heating

and torque sources are supplied by the NBI system. Furthermore, stepping the NBI

power input down gradually is not currently possible on MAST and even if it were, it

would be very difficult to make this gradual power reduction quick enough to remove the

NTM before the end of the shot. The loss of torque input also means that removing the

NBI power is very likely to result in the mode locking and plasma disruption before β can

drop significantly. However, scenario development has enabled an operational window

in which successful β ramp-downs have been achieved, providing NTM stabilisation and

disappearance without mode locking. Two examples of β ramp-downs are presented in

sections 6.7.1 and 6.7.2.

6.7.1 Discharge 24082

The time traces for discharge 24082 are shown in figure 6.11. The main characteristics

are similar to 23447, with similar profiles and a βN reaching 4li, leading to NTM growth.

One difference is the H-L back-transition, which can be seen on the line integrated Dα

emission trace of figure 6.11 at about 0.26s. This event does interrupt the Mirnov signal
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Figure 6.11: Time traces for β ramp-down discharge 24082. From top to bottom: 1.
n=odd Mirnov coil amplitude. 2. Summed power from MAST’s two neutral beams. 3.
βN , the normalised β of the plasma. 4. Ip, the plasma current. 5. Line integrated Dα

emission. β ramp-down analysis carried out between 0.22s and 0.28s.

as plasma filaments are lost from the edge but it is not clear whether the magnetic island

itself is affected. It does not appear to affect the fitting procedure significantly. Fits in

previous studies [41, 63] have included an H-L transition without problem.

One change to the model is required for a decreasing β. In the previous section,

it was assumed that ∆′ stays constant between NTM onset and saturation and, as β

usually remains roughly constant during this period, this is a reasonable assumption.

However, as β is reduced below the ideal limit, ∆′ is expected to move away from its

initially destabilising value. It is probable that, at lower β and smaller saturated island

size, the two terms making up the classical tearing part of equation 6.1 will return to

a stabilising constant ∼ −2m [59]. Equation 6.12 shows the functional form used to

describe the evolution of the classical tearing terms. This form captures the essential

behaviour and is a matching of two limits rather than a derived expression.

∆classical = rs∆
′ − anlW rs∆

′ − anlW ≤ −2m

∆classical = −2m rs∆
′ − anlW > −2m (6.12)

The 2/1 NTM evolution for discharge 24082 is shown in figure 6.12. Also shown are
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Figure 6.12: NTM evolution for β ramp-down discharge, 24082. a. H-L transition.
b. Stabilisation, with change in growth rate due to transport threshold. c. Island
width drops below noise level and is assumed to be stabilised.

the injected NBI power, removed at 0.22s, and the local βp (at the q = 2 surface), which

begins to drop thereafter. The island width, W , drops steadily with β until about 0.28s

when the decay rate suddenly increases. Figure 6.12 also shows the best-fit solution,

which is found to be a good match to the data.
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Figure 6.13: Time evolution of individual contributions to the modified Rutherford
equation for discharge 24082, indicating the role of the reduction in bootstrap drive as
the island width approaches the measured transport threshold.

The five contributions as a function of time are shown in figure 6.13. The best fit
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values are ∆′ = 0.4±0.7, anl = 83±16, a1 = −3.4±0.6, a2 = 6.8±1.0, a3 = −0.05±1.5.

It is found that ∆′ ∼ 0, initially, and that the a1∆bs term is the most significant

destabilising term. The main conclusion of this analysis is that the island stabilisation

at 0.28s is found to be close to the marginal point predicted by the transport threshold,

when W reaches a value close to Wd = 5.1wc = 3.6cm, obtained from experimental Te

profiles in Chapter 4. The contribution from the polarisation current is found to be

small and only plays a role later, when the island is smaller than Wd but, again, the

uncertainties are significant.

6.7.2 Discharge 28124
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Figure 6.14: Time traces for β ramp-down discharge 28124. From top to bottom: 1.
n=odd Mirnov coil amplitude. 2. Summed power from MAST’s two neutral beams. 3.
βN . 4. Ip, the plasma current. 5. Line integrated Dα emission. β ramp-down analysis
carried out between 0.225s and 0.33s.

The time traces for discharge 28124 are shown in figure 6.14. Again, it has similar

characteristics to 23447 and 24082, with similar profiles and a βN reaching 4li, leading

to NTM growth.

One significant difference is the presence of higher mode number NTMs, on different

rational surfaces, in the early stages of the evolution of the 2/1 NTM. This is shown in

the toroidal mode number analysis in figure 6.15 performed using an array of toroidal

separated Mirnov coils. An EFIT reconstruction shows that the 3/2 and 4/3 surfaces are

approximately 7cm and 10cm away from the q=2 surface. Previous work [63] has shown
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that a 3/2 or 4/3 mode can non-resonantly couple to a 2/1 mode, providing a stabilising

contribution to the MRE. In Sauter et al. (2002) [63] this was semi-heuristically modelled

as an additional term: −rs∆3/2 or −rs∆4/3.

Figure 6.15: Toroidal mode number analysis for discharge 28124. The analysis reveals
simultaneous 3/2 and 4/3 NTMs growing and decaying away as a 2/1 NTM grows.

This effect is further complicated by interaction with ELMs. The first ELM to

have an effect on the 2/1 NTM occurs at 0.26s, just as the 3/2 and 4/3 modes are

disappearing. This ELM perturbs the 2/1 NTM, which then starts a new phase of

growth. The 2/1 NTM is able to grow to a larger saturated width than previously as

it is now free from the stabilising effects of the non-resonant mode coupling, which is

considered to disappear with the 3/2 and 4/3 modes at 0.26s. As with section 6.7.1, a

heuristic model was devised in order to extract the general behaviour of the 2/1 NTM,

without properly considering its interactions with other modes. A realistic model for this

system of interacting instabilities would require much more detail, such as the inclusion

of stochastic field lines due to overlapping magnetic islands, for which the MRE is not

well-suited.

The simple approach used here is to split the evolution of W into two time regions,

one before the first ELM (t = 0.225s−0.26s) in which the 3/2 and 4/3 modes are present,

and one after the ELM (t = 0.26s−0.33s) when the modes are not. By fitting the MRE
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to these two regions separately, the magnitude of the effect of the 3/2 and 4/3 modes

can be extracted without having to implement a complicated model.

The best fit parameters for the first time region are: ∆′ = 10.1± 2.5, anl = 550± 16,

a1 = −4.8 ± 1.7, a2 = 5.81 ± 2.2, a3 = 0.0 ± 1.3. For the second time region, they are:

∆′ = −0.5± 1.2, anl = 112± 10, a1 = −3.3± 0.9, a2 = 6.8± 0.8, a3 = 0.8± 1.2. Figure

6.16 shows the best-fit solution compared to the experimental data.
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Figure 6.16: NTM evolution for β ramp-down discharge, 28124. In time region 1,
a 3/2 and a 4/3 are NTM present. In time region 2, the 3/2 and 4/3 NTMs have
disappeared.

The best fit values of ∆′ and anl in the first time region are questionable, but this was

to be expected as the combined physics of the ideal βN limit and the non-resonant mode

coupling is absorbed into these terms. The high value of ∆′ is required to destabilise the

2/1 NTM from small W . Though probably an overestimate, this result is consistent with

the hypothesis that the approach to the ideal βN limit gives rise to a positive ∆′. The

large value of anl is required to both compensate for the large ∆′ and to take account of

the additional stabilisation due to the 3/2 and 4/3 modes. In Sauter et al. (2002) [63], it

is found that ∆′ is negative and that the bootstrap current drive is the main destabilising

term. Furthermore, the other modes do not appear until the 2/1 NTM is already at

its saturated W . For Sauter, the addition of a simple stabilising −rs∆3/2 or −rs∆4/3

term does not prevent the 2/1 NTM from growing. However, for the MAST discharge

considered here, where a positive ∆′ is required to provide the initial destabilisation for

the 2/1 NTM, this simple stabilising contribution has to be absorbed into anl, which

only takes effect after the 2/1 NTM has started growing and does not inhibit the initial
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growth of the small island. The best-fit values of a1, a2 and a3 in the first time region

are all similar to those obtained in the previous two discharges.

All of the best fit parameters in the second time region are closer to those in the

previous two discharges. The fact that all parameters return to reasonable values as

soon as the 3/2 and 4/3 NTMs disappear validates that hypothesis that it is their

presence that causes the unusual best-fit values of ∆′ and anl in the first time region.

The negative ∆′ term is as expected because the βN has dropped well below the ideal

limit by 0.26s. Also, the threshold island stabilisation as the βp drops below its marginal

value is well matched by the model, which, as before makes use of the wc obtained in

Chapter 4.

6.8 Summary

The modified Rutherford equation (MRE) is a well-established model for NTM evolution

that has been used in numerous studies to investigate NTM stability, but the analysis

presented above has several key differences. One advantage is that the value of wc, which

contributes to the ∆bs and ∆GGJ terms, has been experimentally evaluated using the

technique described in Chapter 4, so that no specific models for parallel or perpendicular

heat transport are assumed. This has not been the case in many previous analyses

of NTM growth. Estimation of the coefficients of the MRE was undertaken using a

probabilistic approach which provides estimates of the uncertainties on the parameters,

which have usually been neglected in previous studies.

In a series of MAST discharges, all approaching the ideal, no wall β limit, it was

found that ∆′ was marginally destabilising, the non-linear classical evolution term was

stabilising, the bootstrap current term was strongly destabilising and the curvature term

was stabilising. The contribution from the polarisation current term was found to be

small for these discharges with large uncertainties, and it is not currently possible to

make general statements about the significance of this term without a more complete

physics model. The fitted parameters are summarised in table 6.2:

The fitted values are generally consistent with the theoretical values, although ∆′ was

found to be positive, as discussed above. The parameter anl demonstrates considerable

variation between discharges, although its order of magnitude is consistent with the

theoretical value. This may be explained by the fact that the parameter is sensitive

to small changes in the current profile especially in discharge 28124, which has a lot of
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Discharge ∆′ anl a1 a2 a3

23447 1.6 26 -3.6 7.1 1
24082 0.3 86 -3.6 6.7 -0.1
28124 -0.5 112 -3.3 6.8 0.8

Theoretical values [43, 59] -2 ∼ 50 -3– -4.6 6.35 ∼1

Table 6.2: Fitted values of MRE coefficients compared against theoretical values.
Note that the theoretical ∆′ is stabilising but as was stated previously this parameter
can become destabilising.

MHD activity affecting the current profile. It is worth noting that a2 is consistently

higher than the theoretical prediction in these fits, which may be due to the plasma

shaping effects of the spherical tokamak not properly included in the simple version of

the MRE used here.

The probabilistic approach outlined here indicates that errors on measurements of

the polarisation current term are significant, mainly due to the 1/W 3 dependence. A

careful treatment of small island measurements, with good statistics, will be required

if this is to be overcome in future. Data from two β ramp-down experiments was also

analysed. A simple model was used to account for the effect of non-resonant coupling

with other instabilities on the evolution of the 2/1 NTM, which did not reveal anything

about the nature of the interaction itself but did facilitate an analysis of the balance

of terms in the MRE. In both cases, the transport threshold for the bootstrap current

drive was found to explain the increase in decay rate at W ∼Wd.



Chapter 7

Conclusions

Though neoclassical tearing modes (NTMs) can be controlled, they remain one of the

major concerns to the future of fusion as a commercially viable energy source. The

most effective mitigation systems available have significant power requirements that are

predicted to reduce the efficiency by over 20% while in use on ITER [22]. For this reason

it is important to attempt to better understand the causes of NTM destabilisation,

both through theoretical models and experimental measurements on existing tokamaks.

NTMs typically require a seed magnetic island, above a certain threshold width, before

they become unstable and therefore much of the theoretical work of the past 20 years

has focused on the behaviour of small magnetic islands. As a result, a number of

different but correlated models are thought to influence this behaviour and are often

combined together in a single equation, known as the modified Rutherford equation

(MRE), in order to study their net effect. This thesis has investigated the limits of the

experimentalist’s ability to resolve the structure and evolution of small magnetic islands

with current MAST diagnostics and to distinguish between the effects of different models,

given the uncertainties on experimental measurements. Section 7.1 presents a summary

of each of the chapters and their findings. A key theme of this thesis has been that if

there are correlations between model parameters, additional independent measurements

or theoretical constraints can be used to reduce uncertainties and build a more complete

picture of the system under observation. This is reflected in section 7.2, which outlines a

number of ideas for future work, including the potential implementation of an integrated

approach to the study of NTMs that would use a number of diagnostics simultaneously

to constrain key parameters of interest, such as ∆′ and wc.
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7.1 Summary

NTMs are not isolated phenomena and are influenced by the conditions throughout the

tokamak, such as the amount of external heating, the global confinement, the presence

of other instabilities and the proximity to the conducting wall of the tokamak vessel.

Therefore, Chapter 1 described the features of the tokamak, with a focus on those at-

tributes that impact NTM behaviour. This included an explanation of resonant surfaces

and their susceptibility to plasma instabilities, the origins and pressure dependence of

the bootstrap current and an overview of high β and high confinement tokamak regimes.

The analysis methods presented in this thesis are generally applicable to the study of

NTMs on most tokamaks but here they were applied to the MAST spherical tokamak.

Chapter 2 described the diagnostic tools used to measure the plasma parameters that

affect NTM stability and the experiment design process that was conducted in order to

find a suitable regime for studying NTMs on MAST. In order to help find this regime, a

database of MAST discharges was created, in which the dependence of the NTM mag-

netic island width on a range of different parameters was considered. In particular, it

was necessary to find a scenario in which an NTM β ramp-down could be studied. This

required rapid but controlled energy input followed by a similarly rapid but controlled

reduction in the stored energy, which proved to be a challenging scenario to find. This

process was further complicated by interactions with the vessel wall and other insta-

bilities but an operational window was found, which enabled the collection of useful β

ramp-down data.

Chapter 3 introduced the various theories that govern NTM evolution. The key

parameters and coordinate systems used to study magnetic islands were presented and

previous experimental observations of NTMs in various tokamaks were summarised.

Each of the contributions that make up the MRE were described in turn but particular

attention was paid to the bootstrap current drive and the associated transport model,

thought to give rise to a threshold for NTM growth. The critical width for island

temperature flattening, wc, which has been used throughout this thesis, was introduced

as a key parameter in this transport threshold model. Finally, all the contributions were

combined in a version of the MRE, which was used again in more detail in Chapter 6.

The transport threshold model was revisited more thoroughly in Chapters 4 and 5.

The aim here was to generate temperature profiles using Fitzpatrick’s heat transport

model for a magnetic island and fit them to MAST Thomson scattering Te profiles in
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order to infer the size of wc [1]. In Chapter 4, the heat transport equation was modified

to take account of the radially asymmetric islands observed on MAST. To avoid over-

complicating the model, a simple quasi-linear correction to the perturbed flux was used,

parameterised by a single variable, A. The equation was solved numerically using a finite

difference scheme with appropriate boundary conditions. The solutions are 2D profiles

of the magnetic island temperature perturbation, with characteristic geometry described

by a set of six parameters, including the island half width, w, the critical width, wc, and

the asymmetry parameter, A.

In Chapter 5, these free parameters were used to fit the model temperature profiles

to data. Initially, the fitting procedure was tested by fitting to synthetic data, generated

by adding randomly sampled Gaussian noise to the transport model solutions. By

repeatedly generating data using different random noise each time, histograms of the

best fit parameters were produced, which were found to be approximately Gaussian. The

mean of the Gaussian gave an indication of the accuracy of the fitting method and the

standard deviation was an estimate of the experimental uncertainty. This process was

repeated for a variety of experimental arrangements and the variation of the parameter

uncertainties under different conditions was characterised. It was found that wc could be

inferred with reasonable levels of certainty in most realistic experimental arrangements

but that there were optimum conditions under which the uncertainty was minimised.

It was also found that wc is correlated with w and that an independent measurement

of w can help to constrain wc. Following this, the model temperated profiles were

fitted to real data from the MAST Thomson scattering system for a series of 13 similar

discharges. By combining the estimates of wc from each of the discharges, a best estimate

of wc = 0.7± 0.2cm was obtained.

Finally, the scenario development described in Chapter 2 and the inferred experi-

mental results from Chapter 5 were brought together in Chapter 6 to study the balance

of terms in the MRE for a series of high performance MAST discharges. Though this

type of analysis has been conducted in the past [41, 59, 63], the work presented here has

several key differences. Firstly, an experimentally measured wc was used, rather than

one calculated using analytical models for parallel and perpendicular transport processes

that are not well understood. Secondly, a probabilistic method for parameter estimation

was used, representing the measured parameters as probability density functions. The

functions were propagated through the analysis, giving estimates of the uncertainties on

the different terms in the MRE and taking into account the correlations between the
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terms due to their shared parameter dependences. In each of the discharges considered,

the ideal, no wall β limit was reached. It was found that ∆′ was marginally destabilising,

the non-linear classical evolution term was stabilising, the bootstrap current term was

strongly destabilising and the curvature term was stabilising. The contribution from the

polarisation current term was found to be small and the uncertainties were significant

so that the sign of this term was unclear. It is not possible to compare this result to

theory as current models do not include all the necessary physics. Two β ramp-down

discharges were also considered, one of which required a modification of the analysis in

order to account for non-resonant coupling with NTMs on nearby rational surfaces. The

measured value of wc matched well with the observed stabilisation threshold, in both

cases.

This thesis has considered different phenomena that are difficult to resolve exper-

imentally, either because the structures under consideration are at the limits of the

diagnostic resolution or because the models being tested are complicated by a large

numbers of correlated parameters. One significant finding was that, assuming model

assumptions hold, wc can be resolved with the MAST Thomson scattering system with

a reasonable level of certainty and that this measurement can be optimised under certain

conditions and with an independent measurement of the island width. Another signifi-

cant finding was that, when included in the MRE, the measured value of wc explained

the observed island threshold well. This agreement does not necessarily mean that the

transport threshold is always the most important contribution for small islands; this

thesis has only investigated one particular scenario. The contribution from the polari-

sation current may also be important, but was found to have large uncertainties due to

the 1/W 3 dependence. In addition, the polarisation current model used here is unsat-

isfactory as it does not include the necessary physics. There is significant potential for

constraining the MRE using improved and increased numbers of measurements of the

different parameters. For example, a reduction in the uncertainty on measurements of

the magnetic island width would have the substantial benefit of constraining both the

polarisation current contribution and wc simultaneously. Section 7.2, below, describes

potential ways in which the work from this thesis could be extended, including com-

parisons with a new, more complete polarisation current model and a framework for

introducing multiple measurements to constrain the MRE model and rigorously find the

most likely balance of contributions, given the measured data.



Chapter 7. Conclusions 125

7.2 Future work

The value of wc calculated in Chapter 5 is only valid for one specific MAST scenario,

the characteristics of which were described in Chapters 2 and 6. In order to test this

model further it would be of interest to try and alter the transport properties to see if wc

changes. As wc depends on the 1
4 power of χ⊥/χ‖, a significant change in either of these

diffusivities would be required to observe a modest change in wc. This would be further

complicated by the fact that an attempt to change the discharge transport properties

may result in other changes that could also influence wc. For example, changing the

pressure will also influence the local bootstrap current, resistivity and ultimately the

local q profile, on which wc depends more sensitively than χ⊥ and χ‖. As many tokamak

parameters are correlated, it can often be difficult to perform an isolated ‘scan’ of a single

parameter but, with careful scenario development and detailed measurements, this type

of experiment might be feasible in the future. Testing the model on other tokamaks may

also provide a way of varying the transport.

The model described in Chapters 4 and 5 deals specifically with conductive heat

transport but there are other potentially important effects not addressed in this thesis,

such as convective heat transport and density transport. These effects are complicated

by the need to consider electrons and ions separately whilst ensuring quasi-neutrality,

which requires kinetic modelling to calculate the electric potential and describe the

transport processes properly. This has the potential to be addressed by a new code being

developed at the York Plasma Institute by K. Imada [86], which builds on previous work

[87]. The primary purpose of this code is to study the effects of the polarisation current

with a more realistic set of assumptions than has been previously used. In this code, the

island width is assumed to be small compared to the minor radius and comparable to the

banana orbit width, whereas previously it has been assumed that the island is wider than

the banana orbit, which is rarely the case in modern tokamaks. Furthermore, the code

promises to include the contributions from both inside and outside the separatrix, which

has not previously been possible. It may provide new experimentally testable predictions

for the effects of the polarisation current and transport on the NTM threshold and, if

so, this would be an important area of future work. Experimentally, density transport

is more difficult to measure than temperature because tokamak density profiles tend to

be flat, so that any magnetic island flattening is indistinguishable from the equilibrium

profile. As Chapter 6 demonstrated, the polarisation current effects are difficult to
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measure experimentally, but MAST’s high resolution charge exchange diagnostic makes

it an ideal place to study this effect.

The transport model fitting routine developed in this thesis can be implemented for

both Thomson scattering systems, as in this thesis, and ECE systems, as in Meskat et al.

[35] and Hölzl et al. [64]. Each implementation has associated advantages and disadvan-

tages. The Thomson scattering Te measurement requires relatively simple calibration

and interpretation. Also, the instrument function for the MAST system is narrow enough

that the light is typically considered to be emitted from a point source. The calibration

of ECE diagnostics to obtain an absolute Te measurement can be problematic and in-

terpretation of the results can give rise to uncertainties unless the microwave emission

is properly modelled. On the other hand, ECE systems provide much more data than

TS systems, with typical time resolutions of ∼50kHz, which can allow time-averaging

to reduce the random fluctuations that can make features of the temperature profile

difficult to resolve [35]. The model presented in Chapter 4 is currently being modified

for use with the 2D ECE imaging diagnostic on the K-STAR tokamak. There are still

calibration and interpretation issues to overcome but if this can be achieved the high

time resolution and 2D radial and poloidal grid will make it possible to map the NTM

Te profile in great detail and potentially measure wc with unprecedented accuracy.

In Chapter 4 it was demonstrated that, with a simple application of Bayes’ theorem,

a constraint on a particular parameter could lead to a reduction in uncertainty on the

value of a correlated parameter. In recent years, a similar, but much more detailed,

approach has been developed by J. Svensson and others, in the MINERVA framework

for Bayesian inference [88, 89] (used briefly in Chapter 6 to implement the magnetic

island current filament model). In this framework, the system under observation is

described by a joint probability density function over all parameters, which depends on

the model relationships between parameters and can be influenced by measurements

of parameters from different diagnostics. Each new measurement that is introduced

helps to constrain the overall picture of the experiment via the models that relate the

parameters to one another.

MINERVA is typically used to study axisymmetric equilibrium plasmas but a new

model for studying NTMs could be developed within the framework. Chapter 5 showed

how magnetic measurements could be combined with temperature measurements to help

reduce uncertainties. A simlar idea has recently been implemented in Brunetti et al.

[90], using ECE profiles to measure the temperature perturbation and Mirnov coils to
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measure the magnetic perturbation. In Brunetti’s model, an approximate analytic so-

lution to Fitzpatrick’s transport equation provides the model temperature perturbation

and an approximate analytic solution to the cylindrical tearing mode equation provides

the model perturbed flux. The model solutions are then fitted to experimental data

with respect to a set of free parameters, including important stability parameters, such

as wc and ∆′. As the models both share parameters, each of the measurements helps

to constrain the whole system. This model, or something similar based on the current

filament model described in Chapter 6, could be further developed in MINERVA. Ad-

ditional measurements from different diagnostics could be introduced, such as motional

stark effect measurements of the perturbed current [91] or the perturbed field [92].

The idea that NTM spatial structure and temporal evolution are intrinsically linked

has been an important theme in this thesis. For example, information on both wc and

∆′ can be obtained by studying the spatial structure of the magnetic and temperature

perturbations or by studying the evolution of the magnetic island width. In MINERVA,

both spatial and temporal models could be linked through the joint PDF of all the

related parameters. This could provide much improved experimental picture of NTM

stability and could be another advantage of using the Bayesian approach.

Though this thesis has provided some important information about 2/1 NTM stabil-

ity on MAST, it has not been possible to conclusively answer the vital question: “Which

model really explains the NTM threshold, according to the measured data?”. One pos-

sible way of trying to answer this question is to use a tool, provided by Bayes’ theorem

and MINERVA, for testing different models: the well-known ‘Occam’s razor’ test (the

link to Bayesian probability theory is outlined by MacKay [93]). This is a way of quanti-

tatively finding the probability that a particular model describes the underlying physics

of a dataset. This is a generalisation of the reduced χ2 test used in Chapter 5 and there

is a preference towards the simplest model that fits the data, within the uncertainties.

Different versions of the MRE could be tried, perhaps removing the polarisation current

term or the transport threshold term, to quantitatively find out which combination of

terms is most probable for the measured set of data.

Ultimately, these methods would have to be applied to multiple tokamaks in an

attempt to provide scalings to ITER for the different parameters and terms. By mapping

out the parameter space in detail, it may be possible to find regimes that minimise the

use of the costly NTM mitigation systems and the chance of damaging disruptions in

the future.





Appendix A

Connection length for a magnetic

island

This is an arc length calculation using the (x, θ, ζ) coordinate system, where x = r− rs.

First dl must be derived for the magnetic island, then integrated along a field line.

dl2 = dl2x + dl2θ + dl2ζ (A.1)

dl2 = dx2 +

[
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(A.3)

To calculate the term dx
dζ , the equation for island flux surface function, Ω, is rear-

ranged:

Ω =
2x2

w2
+ cos ζ (A.4)

x =
w√
2

√
Ω− cos ζ (A.5)

dx
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= − w

2
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2

sin ζ√
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(A.6)

The following simple approximate relation is also used:

dθ

dζ
= 1 (A.7)
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These results are put back into the equation for
(
dl
dζ

)2
and it is rearranged to dl:
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Now the equation is integrated over ζ along a field line. Inside the separatrix, the

limits are from ζ = π to where the flux surface crosses x = 0 which is at ζ = cos−1 (Ω).

This only gives the length half way around so it is also necessary to multiply by 2, giving

the connection length:

Lc =
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By using different values of Ω and numerically calculating the integral, it is possible

to obtain Lc for a particular perturbed flux surface.
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Calculation of the parallel

derivative for an asymmetric

magnetic island

This appendix builds on the magnetic island geometry calculations in Chapter 3 to

construct the parallel derivative for an asymmetric magnetic island, described by a quasi-

linear perturbed flux. The radial coordinate used here is Ψ, the normalised equilibrium

poloidal flux. Length scales w and wc are also measured in units of normalised flux.

B.1 Flux

The flux function is given by:

Ω = 2
(Ψ−Ψs)

2

w2
−
(
A (Ψ−Ψs)

w
+ 1

)
cos ζ (B.1)

B.2 Parallel derivative

The equilibrium magnetic field is given by a sum of toroidal and poloidal components:

B = I (Ψ)∇φ+∇φ×∇ (Ψ + ψ) (B.2)

where ψ = ψ̃
(
A(Ψ−Ψs)

w + 1
)

cos ζ.

The parallel derivative is given by ∇‖ = B.∇/Bφ assuming B ≈ Bφ:
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Expanding out ∇ψ:
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Crossing with ∇φ:
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Finding the parallel part of ∇φ×∇ψ:
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Using |∇Ψ|2 = R2B2
θ and |∇θ|2 = 1

r2
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Now the helical angle ζ = m
(
θ − φ

qs

)
is introduced. The following identities are used

to switch ∇‖ from (Ψ, θ, φ) to (Ψ, θ, ζ) coordinates:
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By poloidal averaging, the first term (underlined) goes to zero and the following

expression is obtained:
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Now grouping terms:
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Using the first order Taylor expansion of the q profile, q = qs + q′s (Ψ−Ψs):
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Now substitute a rearranged form of the expression for the magnetic island half width

in flux space, ψ̃ = w2
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Finally, switch to an alternative radial coordinate, normalised to the island half width,

X = Ψ−Ψs
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sin ζ

∂

∂X

∣∣∣∣
ζ

]
(B.15)

This is the parallel derivative used in the Fitzpatrick model.





Appendix C

Calculation of matrix elements

for the heat transport model

The heat transport equation:

[(
X +

A cos ζ

4

)
∂

∂ζ

∣∣∣∣
X

+
AX + 1

4
sin ζ

∂

∂X

∣∣∣∣
ζ

]2

T +
w4
c

w4

∂2T

∂X2
= 0 (C.1)

can be solved using Fourier series solutions of the form:

T (X, ζ) =

N∑
n=0

Tn (X) cosnζ (C.2)

Substitute these solutions into equation C.1.

0 =

N∑
n=0

[
−
(
X +

A cos ζ

4

)
∂

∂ζ

[(
X +

A cos ζ

4

)
n sinnζTn

]
(C.3)

+

(
X +

A cos ζ

4

)
∂

∂ζ

[
AX + 1

4
sin ζ cosnζ T ′n

]
−AX + 1

4
sin ζ

∂

∂X

[(
X +

A cos ζ

4

)
n sinnζTn

]
+
AX + 1

4
sin ζ

∂

∂X

[
AX + 1

4
sin ζ cosnζ T ′n

]
+
w4
c

w4
cosnζ T ′′n

]

135
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Expand and rearrange:

0 =
N∑
n=0

[
−
(
X +

A cos ζ

4

)(
n2X cosnζ +

An

4
(n cos ζ cosnζ − sin ζ sinnζ)

)
Tn (C.4)

+

(
X +

A cos ζ

4

)
AX + 1

4
(cos ζ cosnζ − n sin ζ sinnζ)T ′n

−AX + 1

4
n sin ζ sinnζ

[
Tn +XT ′n

]
− A cos ζ

4

AX + 1

4
n sin ζ sinnζT ′n

+
AX + 1

4
sin2 ζ cosnζ

(
A

4
T ′n +

AX + 1

4
T ′′n

)
+
w4
c

w4
cosnζ T ′′n

]

C.1 Coefficients of X derivatives

The equation will be re-written in the form:

N∑
n=0

[
aT ′′n + bT ′n + cTn

]
= 0 (C.5)

Trig identities to be used:

cos ζ cosnζ =
1

2
cos [(n− 1) ζ] +

1

2
cos [(n+ 1) ζ]

cos2 ζ cosnζ =
1

2
cosnζ +

1

4
cos [(n− 2) ζ] +

1

4
cos [(n+ 2) ζ]

sin2 ζ cosnζ =
1

2
cosnζ − 1

4
cos [(n− 2) ζ]− 1

4
cos [(n+ 2) ζ]

sin ζ sinnζ =
1

2
cos [(n− 1) ζ]− 1

2
cos [(n+ 1) ζ] (C.6)

cos ζ sin ζ sinnζ =
1

4
cos [(n− 2) ζ]− 1

4
cos [(n+ 2) ζ]

C.1.1 Tn coefficient

This term has coefficient c:

c = −
(
X +

A cos ζ

4

)(
n2X cosnζ +

An

4
(n cos ζ cosnζ − sin ζ sinnζ)

)
−AX + 1

4
n sin ζ sinnζ (C.7)

Multiply out:
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c = −n2X2 cosnζ − AnX

4
(n cos ζ cosnζ − sin ζ sinnζ) (C.8)

−An
2X

4
cos ζ cosnζ − A2n

16
cos ζ (n cos ζ cosnζ − sin ζ sinnζ)

−AX + 1

4
n sin ζ sinnζ

Using trig identities:

c = −n2X2 cosnζ − An2X

4

[
1

2
cos [(n− 1) ζ] +

1

2
cos [(n+ 1) ζ]

]
(C.9)

+
AnX

4

[
1

2
cos [(n− 1) ζ]− 1

2
cos [(n+ 1) ζ]

]
−An

2X

4

[
1

2
cos [(n− 1) ζ] +

1

2
cos [(n+ 1) ζ]

]
−A

2n2

16

[
1

2
cosnζ +

1

4
cos [(n− 2) ζ] +

1

4
cos [(n+ 2) ζ]

]
+
A2n

16

[
1

4
cos [(n− 2) ζ]− 1

4
cos [(n+ 2) ζ]

]
−AX + 1

4
n

[
1

2
cos [(n− 1) ζ]− 1

2
cos [(n+ 1) ζ]

]

So c can be written as:

c = −A
2n2

64
[cos [(n− 2) ζ] + cos [(n+ 2) ζ]] (C.10)

+
A2n

64
[cos [(n− 2) ζ]− cos [(n+ 2) ζ]]

−An
2X

4
[cos [(n− 1) ζ] + cos [(n+ 1) ζ]]

−n
8

[cos [(n− 1) ζ]− cos [(n+ 1) ζ]]

−
(
n2X2 +

A2n2

32

)
cosnζ

C.1.2 T ′n coefficient

This term has coefficient b:
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b =

(
X +

A cos ζ

4

)
AX + 1

4
(cos ζ cosnζ − n sin ζ sinnζ) (C.11)

−n
(
X +

A cos ζ

4

)
AX + 1

4
sin ζ sinnζ +

A

4

AX + 1

4
sin2 ζ cosnζ

Using identities to remove the sine terms:

b =
AX + 1

4

[
X

(
1

2
cos [(n− 1) ζ] +

1

2
cos [(n+ 1) ζ]

)
(C.12)

−2nX

(
1

2
cos [(n− 1) ζ]− 1

2
cos [(n+ 1) ζ]

)
+
A

4

[
1

2
cosnζ +

1

4
cos [(n− 2) ζ] +

1

4
cos [(n+ 2) ζ]

]
−An

4

[
1

4
cos [(n− 2) ζ]− 1

4
cos [(n+ 2) ζ]

]
−An

4

[
1

4
cos [(n− 2) ζ]− 1

4
cos [(n+ 2) ζ]

]
+
A

4

(
1

2
cosnζ − 1

4
cos [(n− 2) ζ]− 1

4
cos [(n+ 2) ζ]

)]

So b can be written as:

b =
AX + 1

8

[
−An

4
(cos [(n− 2) ζ]− cos [(n+ 2) ζ]) (C.13)

+X (cos [(n− 1) ζ] + cos [(n+ 1) ζ])

−2nX (cos [(n− 1) ζ]− cos [(n+ 1) ζ])

+
A

2
cosnζ

]

C.1.3 T ′′n coefficient

This term has coefficient a:

a =

(
AX + 1

4

)2

sin2 ζ cosnζ +
w4
c

w4
cosnζ (C.14)

Multiply out and remove sine terms:
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a =

(
AX + 1

4

)2(1

2
cosnζ − 1

4
cos [(n− 2) ζ]− 1

4
cos [(n+ 2) ζ]

)
+
w4
c

w4
cosnζ (C.15)

So a can be written as:

a = −
(
AX + 1

8

)2

(cos [(n− 2) ζ] + cos [(n+ 2) ζ]) (C.16)

+

(
1

2

(
AX + 1

4

)2

+
w4
c

w4

)
cosnζ

C.2 Matrix form of the equation

The equation is multiplied by an arbitrary cos kζ and integrate 1
2π

∫ π
−π . . . dζ. Using the

following relation:

1

2π

∫ π

−π
cosmζ cosnζdζ =

δm,n
2

m,n > 0 (C.17)

= 1 m,n = 0

The coefficients of the differential equation in X then become:

ak,n = − 1

128
(AX + 1)2

(
δk,n−2 + δk,2−n + δk,n+2 +���

�δk,−n−2

)
(C.18)

+

(
1

64
(AX + 1)2 +

1

2

w4
c

w4

)(
δk,n + δk,−n

)

bk,n =
AX + 1

16

[
−An

4

(
δk,n−2 + δk,2−n − δk,n+2 −����δk,−n−2

)
(C.19)

+X
(
δk,n−1 + δk,1−n + δk,n+1 +���

�δk,−n−1

)
−2nX

(
δk,n−1 + δk,1−n − δk,n+1 −����δk,−n−1

)
+
A

2

(
δk,n + δk,−n

)]
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ck,n = −A
2n2

128

(
δk,n−2 + δk,2−n + δk,n+2 +���

�δk,−n−2

)
(C.20)

+
A2n

128

(
δk,n−2 + δk,2−n − δk,n+2 −����δk,−n−2

)
−An

2X

8

(
δk,n−1 + δk,1−n + δk,n+1 +���

�δk,−n−1

)
− n

16

(
δk,n−1 + δk,1−n − δk,n+1 −����δk,−n−1

)
−
(

1

2
n2X2 +

A2n2

64

)(
δk,n + δk,−n

)

All the 4th terms can be neglected as there are negative n. The 2nd terms (underlined)

are only included for certain n. For example, δk,a−n is only included for n = 0, 1, ..., a.

There are N + 1 coupled equations for N + 1 Fourier modes. For each k (0 ≤ k ≤ N)

we have:

N∑
n=0

[
ak,nT

′′
n + bk,nT

′
n + ck,nTn

]
= 0 (C.21)

Where ak,n, bk,n and ck,n are the matrix elements.



Appendix D

Boundary conditions for the heat

transport equation

D.1 Heat Transport Equation

Recall the heat transport equation for a magnetic island:

[(
X +

A cos ζ

4

)
∂

∂ζ

∣∣∣∣
X

+
AX + 1

4
sin ζ

∂

∂X

∣∣∣∣
ζ

]2

T +
w4
c

w4

∂2T

∂X2
= 0 (D.1)

Expand out the brackets:

0 =

(
X +

A cos ζ

4

)
∂

∂ζ

[(
X +

A cos ζ

4

)
∂T

∂ζ

]
(D.2)

+

(
X +

A cos ζ

4

)
∂

∂ζ

[
AX + 1

4
sin ζ

∂T

∂X

]
+
AX + 1

4
sin ζ

∂

∂X

[(
X +

A cos ζ

4

)
∂T

∂ζ

]
+
AX + 1

4
sin ζ

∂

∂X

[
AX + 1

4
sin ζ

∂T

∂X

]
+
w4
c

w4

∂2T

∂X2

141
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D.2 Boundary condition

Now the behaviour of the heat transport equation at large X is investigated. Small

terms are tagged with parameter ε:

[(
X + ε

A cos ζ

4

)
∂

∂ζ

∣∣∣∣
X

+ ε
AX + 1

4
sin ζ

∂

∂X

∣∣∣∣
ζ

]2

T + ε2w
4
c

w4

∂2T

∂X2
= 0 (D.3)

0 =

(
X + ε

A cos ζ

4

)
∂

∂ζ

[(
X + ε

A cos ζ

4

)
∂T

∂ζ

]
(D.4)

+

(
X + ε

A cos ζ

4

)
∂

∂ζ

[
ε
AX + 1

4
sin ζ

∂T

∂X

]
+ε

AX + 1

4
sin ζ

∂

∂X

[(
X + ε

A cos ζ

4

)
∂T

∂ζ

]
+ε

AX + 1

4
sin ζ

∂

∂X

[
ε
AX + 1

4
sin ζ

∂T

∂X

]
+ ε2w

4
c

w4

∂2T

∂X2

Expand T as a linear sum of basis functions, also tagged with ε:

T = t0 + εt1 + ε2t2 + . . . (D.5)

The following sections look at the parts of the equation tagged with increasing order

ε (i.e. starting with the largest terms and moving down to smaller terms).

D.2.1 O(ε0)

The O(ε0) terms from the heat transport equation are:

X2∂
2t0
∂ζ2

= 0 (D.6)

X2∂t0
∂ζ

= c0

introduce operator 〈. . . 〉 = 1
2π

∮
. . . dζ. t0 is periodic in ζ so

〈
∂t0
∂ζ

〉
= 0 and c0 = 0.

This means that t0 is purely a function of X.
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D.2.2 O(ε1)

The O(ε1) terms from the heat transport equation are:

0 = X2∂
2t1
∂ζ2

(D.7)

+X
∂

∂ζ

[
A cos ζ

4 �
�
�∂t0

∂ζ

]
+
A cos ζ

4

∂

∂ζ

[
X
�
�
�∂t0

∂ζ

]
+X

∂

∂ζ

[
AX + 1

4
sin ζ

∂t0
∂X

]
+
AX + 1

4
sin ζ

∂

∂X

[
X
�
�
�∂t0

∂ζ

]

The ζ derivative of t0 is equal to zero as t0 is a function of X. Integrate w.r.t. ζ.

X
∂t1
∂ζ

= −AX + 1

4
sin ζ

∂t0
∂X

+��>
0

c1 (D.8)

Neglect c1 as 〈sin ζ〉 = 0 and integrate again w.r.t ζ.

t1 =

(
A

4
+

1

4X

)
cos ζ

∂t0
∂X

+ t̄1(X) (D.9)

To use this as a boundary condition, the behaviour of t̄1(X) at large X must also be

investigated (see sections D.2.4 and D.2.5).

D.2.3 O(ε2)

The O(ε2) terms from the heat transport equation are:

0 = X2∂
2t2
∂ζ2

(D.10)

+X
∂

∂ζ

[
A cos ζ

4

∂t1
∂ζ

]
+
A cos ζ

4

∂

∂ζ

[
X
∂t1
∂ζ

]
+
A cos ζ

4

∂

∂ζ

[
AX + 1

4
sin ζ

∂t0
∂X

]
+X

∂

∂ζ

[
AX + 1

4
sin ζ

∂t1
∂X

]
+
AX + 1

4
sin ζ

∂

∂X

[
A cos ζ

4 �
�
�∂t0

∂ζ

]
+
AX + 1

4
sin ζ

∂

∂X

[
X
∂t1
∂ζ

]
+
AX + 1

4
sin ζ

∂

∂X

[
AX + 1

4
sin ζ

∂t0
∂X

]
+
w4
c

w4

∂2t0
∂X2
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Substitute in the equation for ∂t1
∂ζ :

0 = X2∂
2t2
∂ζ2

(D.11)

− ∂

∂ζ

[
A cos ζ

4

AX + 1

4
sin ζ

∂t0
∂X

]
−
(((

((((
(((

((((
(

A cos ζ

4

∂

∂ζ

[
AX + 1

4
sin ζ

∂t0
∂X

]
+
(((

((((
(((

((((
(

A cos ζ

4

∂

∂ζ

[
AX + 1

4
sin ζ

∂t0
∂X

]
+X

∂

∂ζ

[
AX + 1

4
sin ζ

∂t1
∂X

]
−
((((

((((
((((

(((
(((

AX + 1

4
sin ζ

∂

∂X

[
AX + 1

4
sin ζ

∂t0
∂X

]
+
(((

((((
(((

((((
((((AX + 1

4
sin ζ

∂

∂X

[
AX + 1

4
sin ζ

∂t0
∂X

]
+
w4
c

w4

∂2t0
∂X2

After doing this, various terms cancel. Now, use the 〈. . . 〉 operator on the whole

equation:

0 =
w4
c

w4

∂2t0
∂X2

(D.12)

This shows that t0 is linear and has the form t0 = BX + C at large X.

D.2.4 Obtaining term from O(ε2) to substitute into O(ε3) equation

Go back to equation D.12 and substitute in the equation t1 =
(
A
4 + 1

4X

)
cos ζ ∂t0∂X + t̄1(X):

0 = X2∂
2t2
∂ζ2

(D.13)

− ∂

∂ζ

[
A cos ζ

4

AX + 1

4
sin ζ

∂t0
∂X

]
+X

∂

∂ζ

[
AX + 1

4
sin ζ

∂

∂X

((
A

4
+

1

4X

)
cos ζ

∂t0
∂X

+ t̄1

)]
+
w4
c

w4

∂2t0
∂X2

Expanding and rearranging gives:
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0 = X2∂
2t2
∂ζ2

(D.14)

−AX + 1

4

∂

∂ζ
(sin ζ cos ζ)

A

4

∂t0
∂X

+
AX + 1

4

∂

∂ζ
(sin ζ cos ζ)X

∂

∂X

[(
A

4
+

1

4X

)
∂t0
∂X

]
−XAX + 1

4
cos ζ

∂t̄1
∂X

+
w4
c

w4

∂2t0
∂X2

Now multiply by cos ζ, divide through by X and use the 〈. . . 〉 operator on the whole

equation.

〈
X cos ζ

∂2t2
∂ζ2

〉
=
AX + 1

4X ���
���

���
���:0〈

cos ζ
∂

∂ζ
(sin ζ cos ζ)

〉
A

4

∂t0
∂X

(D.15)

−AX + 1

4X ���
���

���
���:0〈

cos ζ
∂

∂ζ
(sin ζ cos ζ)

〉
∂

∂X

[(
A

4
+

1

4X

)
∂t0
∂X

]
− AX + 1

4

〈
cos2 ζ

〉 ∂t̄1
∂X

〈
X cos ζ

∂2t2
∂ζ2

〉
= −AX + 1

4

〈
cos2 ζ

〉 ∂t̄1
∂X

(D.16)

This will result is used next in O(ε3) calculation.

D.2.5 O(ε3)

Ignore t3 as it is negligible at large X. The O(ε3) terms from the heat transport equation

are:

0 = X
∂

∂ζ

[
A cos ζ

4

∂t2
∂ζ

]
+
A cos ζ

4

∂

∂ζ

[
X
∂t2
∂ζ

]
+
A cos ζ

4

∂

∂ζ

[
A cos ζ

4

∂t1
∂ζ

]
(D.17)

+X
∂

∂ζ

[
AX + 1

4
sin ζ

∂t2
∂X

]
+
A cos ζ

4

∂

∂ζ

[
AX + 1

4
sin ζ

∂t1
∂X

]
+
AX + 1

4
sin ζ

∂

∂X

[
X
∂t2
∂ζ

]
+
AX + 1

4
sin ζ

∂

∂X

[
A cos ζ

4

∂t1
∂ζ

]
+
AX + 1

4
sin ζ

∂

∂X

[
AX + 1

4
sin ζ

∂t1
∂X

]
+
w4
c

w4

∂2t1
∂X2

Now use the 〈. . . 〉 operator on the whole equation.
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0 =

〈
A cos ζ

4

∂

∂ζ

[
X
∂t2
∂ζ

]〉
+

〈
A cos ζ

4

∂

∂ζ

[
A cos ζ

4

∂t1
∂ζ

]〉
(D.18)

+

〈
A cos ζ

4

∂

∂ζ

[
AX + 1

4
sin ζ

∂t1
∂X

]〉
+

〈
AX + 1

4
sin ζ

∂

∂X

[
X
∂t2
∂ζ

]〉
+

〈
AX + 1

4
sin ζ

∂

∂X

[
A cos ζ

4

∂t1
∂ζ

]〉
+

〈
AX + 1

4
sin ζ

∂

∂X

[
AX + 1

4
sin ζ

∂t1
∂X

]〉
+

〈
w4
c

w4

∂2t1
∂X2

〉

Substitute in the equation t1 =
(
A
4 + 1

4X

)
cos ζ ∂t0∂X + t̄1(X). Various terms cancel as〈

cos ζ ∂
∂ζ (sin ζ cos ζ)

〉
= 0 and

〈
sin2 ζ cos ζ

〉
= 0.

0 =

〈
A cos ζ

4

∂

∂ζ

[
X
∂t2
∂ζ

]〉
−
((((

(((
((((

(((
((((

((((〈
A cos ζ

4

∂

∂ζ

[
A cos ζ

4X

(
AX + 1

4
sin ζ

∂t0
∂X

)]〉
(D.19)

+

〈
A cos ζ

4

∂

∂ζ

[
AX + 1

4
sin ζ

∂

∂X

((
A

4
+

1

4X

)
��
�cos ζ
∂t0
∂X

+ t̄1

)]〉
+

〈
AX + 1

4
sin ζ

∂

∂X

[
X
∂t2
∂ζ

]〉

+

(((
((((

(((
((((

(((
((((

((((〈
AX + 1

4
sin ζ

∂

∂X

[
A cos ζ

4X

(
AX + 1

4
sin ζ

∂t0
∂X

)]〉
+

〈
AX + 1

4
sin ζ

∂

∂X

[
AX + 1

4
sin ζ

∂

∂X

((
A

4
+

1

4X

)
�
��cos ζ

∂t0
∂X

+ t̄1

)]〉
+
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Expanding out the ∂
∂ζ differentials, the equation now reads:

0 =

〈
A

4
X cos ζ

∂2t2
∂ζ2

〉
(D.20)

+
A

4

AX + 1

4

〈
cos2 ζ

〉 ∂t̄1
∂X

+

〈
AX + 1

4
sin ζ

∂

∂X

[
X
∂t2
∂ζ

]〉
+

〈
AX + 1

4
sin ζ

∂

∂X

[
AX + 1

4
sin ζ

∂t̄1
∂X

]〉
+

〈
w4
c

w4

∂2t̄1
∂X2

〉

Using
〈
X cos ζ ∂

2t2
∂ζ2

〉
= −AX+1

4

〈
cos2 ζ

〉
∂t̄1
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Using equation D.22 and the relation
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So t̄1 is also linear and can be absorbed into t0. The final boundary conditions, used

in the solution of the heat transport equation, are then:
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)
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(D.26)

D.3 Implementing the conditions in the finite difference

scheme

At large X, we have assumed that all but the first two harmonics of tim are negligible

(Tn is effectively linear). The form used at the end grid points is explained below.

For the first harmonic at XI we have:
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For the first harmonic at X−I we have:
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The boundary condition is then:
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Abbreviations

NTM Neoclassical Tearing Mode

MRE Modified Rutherford Equation

MHD Magneto-Hydro-Dynamics

MCF Magnetic Confinement Fusion

MAST Mega Amp Spherical Tokamak

JET Joint European Torus

ST Spherical Tokamak

CXRS Charge eXchange Recombination Spectroscopy

TS Thomson Scattering

ECE Electron Cyclotron Emission

NBI Neutral Beam Injection

ECRH Electron Cyclotron Resonance Heating

ICRH Ion Cyclotron Resonance Heating

ECCD Electron Cyclotron Current Drive

HFS High Field Side

LFS Low Field Side

SOL Scrape Off Layer

LCFS Last Closed Flux Surface

H-mode High confinement mode

L-mode Low confinement mode

ELM Edge Localised Mode

LLM Long Lived Mode

DND Double Null Divertor

SND Single Null Divertor

PDF Probability Density Function
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Symbols

q tokamak safety factor dimensionless

β ratio of plasma pressure to magnetic pressure dimensionless

Te electron temperature eV

ne electron density m3

Ti ion temperature eV

vi ion velocity m/s

Ψ equilibrium poloidal flux Tm2

rs rational surface location m

ψ perturbed flux Tm2

w magnetic island half width m

wc critical width for temperature flattening m

T ′end temperature gradient far from magnetic island (eV/m)

T0 temperature at rational surface (eV)

X0 rational surface position correction parameter dimensionless

A island asymmetry parameter dimensionless

W magnetic island full width m

Wd magnetic island width for which dW
dt a maximum m

∆′ classical tearing stability parameter dimensionless

anl nonlinear classical tearing term m−1

∆bs bootstrap contribution for NTM stability dimensionless

∆GGJ curvature contribution for NTM stability dimensionless

∆pol polarisation current contribution for NTM stability dimensionless

jbs bootstrap current density A

DR resistive interchange parameter dimensionless
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in the TCV tokamak. PhD Thesis, École Polytechnique Fédérale de Lausanne.,

2006.

[77] T. J. Martin (EURATOM/UKAEA Fusion Association). Private communication. .

[78] G. Cunningham (EURATOM/UKAEA Fusion Association). Private communica-

tion. .

[79] J. Svensson and A. Werner. Current tomography for axisymmetric plasmas. Plasma

Phys. Control. Fusion, 40:085002, 2008.

[80] A. B. Mikhailovskii, G. T. A. Huysmans, W. O. K. Kerner, and S. E. Sharapov.

Optimization of computational MHD normal-mode analysis for tokamaks. Plasma

Phys. Rep, 23:844, 1997.

[81] W. A. Houlberg, K. C. Shaing, S. P. Hirshman, and M. C. Zarnstorff. Bootstrap

current and neoclassical transport in tokamaks of arbitrary collisionality and aspect

ratio. Phys. Plasmas, 4:3230–3242, 1997.

[82] R. J. La Haye, R. J. Buttery, S. P. Gerhardt, S. A. Sabbagh, and D. P. Brennan.

Aspect ratio effects on neoclassical tearing modes from comparison between DIII-D

and National Spherical Torus Experiment. Phys. Plasmas, 19:062506, 2012.

[83] C. M. Bishop, J. W. Connor, R. J. Hastie, and S. C. Cowley. On the difficulty

of determining tearing mode stability. Plasma Phys. Control. Fusion, 33:389–395,

1990.

[84] C. Bowman (York Plasma Institute). Private communication. .

[85] L. Urso, R Fischer, A Isayama, et al. Application of the Bayesian analysis to

the modified Rutherford equation for NTM stabilization. Plasma Phys. Control.

Fusion, 52:055012, 2010.

[86] K. Imada (York Plasma Institute). Private communication. .

[87] K. Imada and H. R. Wilson. Collision frequency dependence of polarization current

in neoclassical tearing modes. Phys. Plasmas, 19:032120, 2012.

[88] J. Svensson, O. Ford, D. C. McDonald, A. Meakins, et al. Modelling of JET

diagnostics using Bayesian graphical models. Contrib. Plasma Phys., 51:152 157,

2011.



Bibliography 162

[89] J. Svensson and A. Werner. Large scale Bayesian data analysis for nuclear fusion

experiments. Proc. 21st IAEA Fusion Energy Conference, 2006.

[90] D. Brunetti, E. Lazzaro, F. de Luca, S. Nowak, and G. Gervasini. Interpretation of

tearing mode physics from ECE temperature fluctuations associated with magnetic

islands and Mirnov signals. Eur. Phys. J. D, 64:405 411, 2011.

[91] T. Oikawa, T. Suzuki, A. Isayama, N. Hayashi, et al. Observation of the bootstrap

current reduction at magnetic island in a neoclassical tearing mode plasma. Nucl.

Fusion, 45:1101, 2005.

[92] T. Suzuki, A. Isayama, G. Matsunaga, N. Oyama, T. Fujita, and T. Oikawa. Mag-

netic fluctuation profile measurement using optics of motional Stark effect diagnos-

tics in JT-60U. Rev. Sci. Instrum., 79:10F533, 2008.

[93] D. J. C. MacKay. Information theory, inference, and learning algorithms. Cambridge

University Press., 2003.


	Abstract
	List of Figures
	Acknowledgements
	Declaration of Authorship
	1 Introduction
	1.1 Fusion power
	1.1.1 Fusion reactions

	1.2 Plasma physics
	1.3 Tokamaks
	1.3.1 Magnetic field configuration
	1.3.2 Equilibrium
	1.3.3 Plasma stability
	1.3.4 Heating and current drive
	1.3.5 Tokamak design
	1.3.5.1 Spherical tokamaks

	1.3.6 The neoclassical model

	1.4 Neoclassical tearing modes
	1.5 Thesis overview

	2 Experimental tools and scenarios
	2.1 Introduction
	2.2 The MAST tokamak
	2.3 Diagnostics
	2.3.1 Basic global discharge diagnostics
	2.3.2 Mirnov coil array
	2.3.3 Thomson Scattering (TS)
	2.3.3.1 TS triggering

	2.3.4 Charge Exchange Recombination Spectroscopy (CXRS)
	2.3.5 EFIT

	2.4 NTM occurrence in the MAST operational parameter space
	2.5 Phenomenology of discharges used in this thesis
	2.5.1  ramp-down discharges

	2.6 Summary

	3 An introduction to neoclassical tearing modes
	3.1 Introduction
	3.1.1 Magnetic islands

	3.2 Classical tearing mode theory
	3.2.1 The Rutherford equation

	3.3 The bootstrap current drive
	3.3.1 Seed islands

	3.4 The curvature contribution
	3.5 The polarisation current contribution
	3.6 The non-linear contribution from the current profile
	3.7 The ideal N limit and positive '
	3.8 The modified Rutherford equation
	3.8.1 p dependence

	3.9 Summary

	4 A heat transport model for a magnetic island
	4.1 Introduction
	4.2 The heat transport model
	4.3 Solving the heat transport equation
	4.3.1 Solution method
	4.3.2 Boundary conditions
	4.3.3 Solution summary

	4.4 Characterising the solutions
	4.4.1 Boundary layer width

	4.5 Summary

	5 First measurements of the NTM temperature perturbation with Thomson scattering
	5.1 Introduction
	5.2 Thomson scattering data around a magnetic island
	5.3 Thomson scattering data simulation
	5.3.1 Contours of 2
	5.3.2 Constraining parameters
	5.3.3 Data simulation results

	5.4 Results using real MAST Thomson scattering data
	5.5 Summary

	6 Neoclassical tearing mode stability analysis on MAST
	6.1 Introduction
	6.2 The modified Rutherford equation for NTM evolution
	6.3 Calculating the magnetic island width from Mirnov coil signals
	6.4 High performance MAST discharges
	6.5 The MRE expressed in terms of basic tokamak plasma parameters
	6.5.1 Probabilistic approach to fitting

	6.6 Results for fitting to NTM onset up to saturation
	6.6.1 Discharge 23447
	6.6.1.1 Best fit solution
	6.6.1.2 Contours of 2red


	6.7 Results for NTM  ramp-down experiments
	6.7.1 Discharge 24082
	6.7.2 Discharge 28124

	6.8 Summary

	7 Conclusions
	7.1 Summary
	7.2 Future work

	A Connection length for a magnetic island
	B Calculation of the parallel derivative for an asymmetric magnetic island
	B.1 Flux
	B.2 Parallel derivative

	C Calculation of matrix elements for the heat transport model
	C.1 Coefficients of X derivatives
	C.1.1 Tn coefficient
	C.1.2 T'n coefficient
	C.1.3 T''n coefficient

	C.2 Matrix form of the equation

	D Boundary conditions for the heat transport equation
	D.1 Heat Transport Equation
	D.2 Boundary condition
	D.2.1 O(0)
	D.2.2 O(1)
	D.2.3 O(2)
	D.2.4 Obtaining term from O(2) to substitute into O(3) equation
	D.2.5 O(3)

	D.3 Implementing the conditions in the finite difference scheme

	Abbreviations
	Symbols
	Bibliography

